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ERRATA

p. 1, 5th line: "nuclear" for "Nuclear"
p. 2, last line: "distinction" for "distinction"
p. 6, 2nd last line: "and metrics (Section 2.2)" for "and metrics Section 2.2"
p. 6, last line: "diffusion" for "diffussion"
p. 9, 4th line: "do" for "does"
p. 11, last paragraph: "/?*" for u/5i"
p. 12, 4th line: "coordinate" for "coodinate"
p. 22, last paragraph: "close" for "enclose"
p. 23, 2nd last line: "solvers" for "Solvers"
p. 23, 3 r d paragraph: "equation" for "Equation"
p. 41, second sentence: Remove superfluous "is"
p. 43, 4 th last line: "This" for "THis"
p. 45, caption to Figure 3.1: space between "sound" and "speed"
p. 46, 2n d para: "describe" for "descibe"
p. 54, 7th line: Remove superfluous comma
p. 54, 2n d para: "relativistic" for "Relativistic"
p. 57, 9t/l line: "noticeable" for "noticable"
p. 64, 2nd para: "Complementing" for "Complimenting"
p. 70, 2n d last line: space between "under" and "study"
p. 83, last paragraph" coordinate" for "coodinate"
p. 92, section 6.2.3, 1st para: Replace "Taub [1978]" with "[Taub, 1978]"
p. 93, 5 t / l sentence: Insert missing "a"
p. 105, 6th last line: Insert "is a" to read "..the other is a three.."
p. 119, 4th sentence: "open" for "opens"
p. 119, 5th sentence: "look" for :'lok"
p. 119, 4th sentence: "it has" for "it as"
p. 121, 1s t para: "neutron stars" for "Neutron Stars"
p. 121, 9th line: "principal" for "principle"
p. 126, last para: "thermodynamic" for "thermo-dynamic"
p. 129, 7th line: "condemning" for "comdemning"
p. 129, 13t/l line: "predictive" for "predicative"
p. 130, 1s t para: space between "ability" and ''of"
p. 130, 3 r d line: "quantitative" for "qualitative"
p. 155, 10</l line: "proper" for "proer"
p. 159, section 8.6.1, 5th line: space between "of" and "large"
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ADDENDUM
- p. 26, Add at start of para 1: "These transformations are of convenience, and
involve the kinetic energy, E. The m used is the rest mass value,"
- p. 28, Add to the end of first sentence: "Here F is the adiabatic index, given
by the ratio of specific heats."
- p. 40: Comment: For reference, Siegler and Riffert's equations are as follows:-

~ 9 2 ( +dt

and

((Pa + g«)Va(ln y/=£)a - ±TfVa(ga0)a

dotE - piqj

dt 2 ^ ~ D ? ~ + - D ^ V a

- p. 46: Comment: The v refers to the velocity of the moving frame K\ and is
appended to 7 as a subscript to specify that this factor corresponds to the frame's
motion, not that of a particle.
- p. 55, first para: Comment: It is erroneous to say that no new errors are being
introduced. However, the RNC analysis shows the the order of the error intro-
duced by this modification, is of the same order as the errors introduced by the
SPH interpolation algorithm and the leap-frog integration algorithm. Therefore
the order of the errors remains unchanged.
- p. 79, 2nd para: Delete ", and how important it is" and read "It is important.."
- p. 139, 2nd para: Add to the end of the first sentence: ", where the impact
parameter is defined to be the ratio between the separation of the nuclei centres
and the sum of their radii.
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'Science is the topography of ignorance/ Holmes

'If we knew what we were doing, it wouldn't be

called research, would it?/ Einstein

'Basic research is what I am doing when I don't

know what I am doing/ Wernher von Braun
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Summary

Einstein's Theory of Relativity predicts the effects of high speed motion or be-

ing in the vicinity of a massive object. Such effects create difficulties for com-

puter models. This thesis explores the design and application of an Smoothed

Particle Hydrodynamics (SPH) algorithm suitable for studying relativistic gas

dynamics.

In this thesis, we construct an algorithm capable of solving the equations

of gas motions within the framework of Special Relativity. We produce an

algorithm wluch specifically avoids reliance on exact solutions and 'tuning'

or parameters. The basic code is designed to be modular, allowing for extra

physics and routines to be added easily. This allows us to have subroutines

which change the initial conditions, boundary conditions and equations of

state, which we insert into the main loop and calculate a variety of simulations

using the one general algorithm. We generate artificial viscosity terms and

signal velocities which prevent acausal information travel.

As the algorithm works fundamentally in three spatial dimensions, we

also look at ways of increasing the efficiency of memory storage, and locating

nearest neighbours. This is done through carrying out much of the calcula-

tions in integer rankspace. This modification will also lend itself to future

parallelisation of the algorithm.

These concepts are then tested within the framework of ID shocktubes to



ensure the hydrodynamics is correct. The algorithm is then applied to the

quantitative °.tudy of Heavy Ion collisions with the use of a nuclear equation

of state and differing boundary conditions.

We finally apply the code to perfonn calculations in the vicinity of a black

hole, taking the effects of curved space-time into account
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Chapter 1

Introduction

purpose of this thesis is to develop a hydrodynamical code capable of

resolving wave phenomena and other fluid motions within the framework of

Relativistic Theory. The applications of such an algorithm encompass fluid

dynamical studies of environments far beyond those of human experience,

and range from Nuclear physics through to astrophysical studies of the regions

surrounding black holes. With such a diverse range of applications, we desire

that the algorithm be modular, allowing different physics and equations to be

exchanged readily, and simple, avoiding the use of problem specific solution

methods. This last point also encompasses the ait of parameter tuning to

resolve a specific feature of the solution.

The eventual aim of such a project is to develop the ability to evolve a

given initial state forward in time. The development of such a program is

envisaged as following the basic historical development of gravitational N-

body programs. The algorithm here will be able to evolve itself by responding

to the curvature of the space-time it finds itself in, just as early N-body codes

responded to a background gravitational potential. Eventually, it is hoped that

there will exist codes which, given a matter distribution (such as that output



from this algorithm), will be able to deduce the curvature of the space-time.

This will release us from the current restriction of analytic, vacuum space-time

solutions. With this in mind, where possible, we have incorporated notations

used by numerical relativists, hoping to ease the coupling of the two codes at

some future time.

Hydrodynamical modelling itself is the process of approximating a coher-

ent block of matter by a fluid which responds to known equations of motion.

Whilst sounding initially limiting, it is a very powerful technique, allowing

simulations of scenarios as diverse as ship wakes and aeronautics through to

planetary mantle convection and rock fracture.

The numerical solution of the equations of fluid motion can be done in

either a Eulerian, or a Lagrangian framework. Eulerian schemes typically ob-

serve the fluid moving from a distance. Placing a computational grid over the

fluid motion means that fluid flow between cells can be monitored by fluxes

across the cell's faces. Eulerian schemes therefore have a clear advantage in

their ability to model difficult boundaries and single fluid motions. They are

however limited in their resolution of effects smaller than the grid scale, and

so respond poorly to free boundaries or interfaces, particularly where there is

reconnection (cresting wave) or where there are important small-scale effects

such as turbulent motions.

Lagrangian schemes on the other hand observe the fluid from within,

using co-moving grids or particles from which to deduce the motions and

hydrodynamic variables. Lagrangian schemes then handle free boundaries

much better than their Eulerian counterparts, but fixed boundaries are a much

more difficult proposition. Computational nodes free to move with a fluid are

also able to resolve smaller details with out the expense of refining the grid

scale, and can re-connect the fluid flow easily. Perhaps the clearest distinction

6 " « " ,



between these two schools of thought however, is the readiness of Lagrangian

particle methods to move to higher dimensions.

A single spatial dimension Eulerian code must look at the way in which

fluid moves between cells in ID. The analogous particle code looks at how two

particles interact upon radial orbits. Moving up to two and three dimensions,

Eulerian codes need to 'understand' the fluid's behaviour as it crosses cell's

faces (which can reduce to a ID application as above), the more difficult

cell edge interactions, and the most difficult, the fluid's behaviour across cell

vertices. Particle codes on the other hand can always reduce to single particle-

particle interactions, with no additional complexity other than freedom of

motion being restricted to radial, planar or 3-dimensional orbits. Because of

this simplification, 3-dimensional particle codes are relatively simpla to write.

They do however, suffer from a drawback.

Particle methods represent the fluid as a series of discrete, computational

nodes. Physically, two colliding regions of fluid will heat, and not penetrate.

If however, these two packets of fluid are represented by two particles, free

to move in three-space, then the initial colliding orbits are easily deflected,

resulting in the particles passing each other. This would represent large fluid

interpenetration, something not seen physically, and not desirable computa-

tionally. To combat this, Lagrangian particle methods rely on artificial viscosi-

ties. One needs to be careful in the application of such numerical diffusion,

as it is easy to introduce unphysical results and communications. We will be

looking into this problem in the thesis.

Despite this difficulty, it has been decided that a Lagrangian particle

method gives the most general algorithm, capable of resolving unknown

hydrodynamical effects. The methodology used will be that of Smoothed Par-

ticle Hydrodynamics, a numerical method devised independantly by Lucy



[1977] and Gingold and Monaghan [1977], and presented in detail within the

work.

It is argued that once one knows what the basic gas behaviour is for a given

system, one can either choose a more appropriate or fine-tuned formulation,

or even a different numerical method, chosen specifically for its ability to

resolve or capture the noteworthy phenomena.

As the background spacetime upon which we will derive our equations

of motion is presumed to be static, the mass of the actual hydrodynamical

system must remain much less than that of the dominant, curvature inducing

mass energy. This is not a great restriction in itself, but it does mean that there

is no particle self gravity. To add this in a meaningful relativistic calculation is

far and above beyond the scope of such a work as this. But in abiding by the

assumption of keeping the hydrodynamic mass-energy small (relative to the

source mass-energy) a Newtonian self-gravity for the particles can be added

at a later date, and would be a worthwhile addition.

A condition is also placed upon the types of background space-time within

which we can perform hydrodynamical calculations. The current form of our

derived equations assumes that the shift vector used to describe subsequent

hypersurface translations is zero. Developing the equations further to incor-

porate a non-zero shift vector would open the work again to more physical

space-times.

It should also be noted that this is not the first work attempting to couple

the SPH algorithm to a curved space metric. Laguna et al. [1993] introduced a

similar method, and used it to model ID shocks, gas infall and Bondi collapse

problems. Siegler and Riffert [1999] have also presented similar equations.

Both these works however integrate the thermal energy equation, and have

awkward terms such as time derivatives of the relativistic contraction factor,



y, or non-symmetries in their equations. An excellent work by Oechslin et al.

[2001] solves both the relativistic field equations and the hydrodynamics on a

curved background. It is however limited to conformal metrics, and loses the

grid-free nature of SPH by applying a gravity grid.

Throughout this paper we will use the convention of superscripts and

subscripts where Greek indices, [i and v denote full four-vector components

(0,..., 3) and Latin indices (i, j , k) denote spatial components only (1,2,3). The

covariant derivative with respect to the coodinate #fi is shown by the subscript

; n, and the subscripts a and b are reserved to denote quantities associated with

particle a and b respectively. A 0 subscript is used to denote the proper rest-

frame quantity. The gas calculations are done in a Cartesian coordinate frame

specified by x? = [t,x, y,z], however we attempt to generate the equations in

a general form, applicable to an arbitrary choice of coordinates.



Chapter 2

Relativistic Hydrodynamical

Theory

n modelling any motions where the speeds approach significant fractions

of the speed of light we must rely upon relativistic theory, which tells us how

space and time are intrinsically coupled. As a consequence, the well known

and understood equations of hydrodynamics become increasingly complex,

even in the simplest case of flat spacetime. To calculate motions near an object

massive enough to dominate the curvature, it becomes necessary to include

local curvature effects, accomplished through the metric terms. If, however,

one wants to calculate the evolution of a changing spacetime induced by the

redistribution of the matter, then the full Einstein equations must be solved, a

problem of significant complexity which will not be attempted here.

We begin in Section 2.1 by establishing the relativistic concepts of space

and time such as coordinate frames (Secton 2.1 and Section 2.3) and metrics

Section 2.2, with which we can develop the diffusionless equations of motion.

Section 2.4 deals with some attempts to handle diffussion, and what one



2.1. DESCRIBING MOTIONS AND THE CONCEPT OF FRAMES
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expects the terms to look like. We also introduce the method of Riemann

Solvers to solve for the relativistic equations of fluid motion. Examination

of the theory behind these methods allows us to derive the diffusive term,

A. (Section 2.5) The following sections (Section 2.6) examine the equations of

state to be used.

2.1 Describing Motions and the Concept of Frames

Newtonian theories are built around the concept of instantaneous information

travel, a perfectly valid approximation if the notional velocities are much less

than that of light and distances much less than cosmological. When dealing

with relativistic speeds, one needs to be more careful with regards to terms

involving time and simultaneity, which can be rendered ambiguous, if not

meaningless, in this context.

The notion of frames is used to distinguish where a measurement was

taken. The laboratory frame is an inertial frame, within which a fluid is

moving. The other important frame required is a co-moving, or proper frame.

This inertial frame is instantaneosly co-moving with the fluid element of

interest, and leads to the concept of proper time, T, or the time the fluid

element measures.

With proper time as an obvious parameter, we can define the particle's

path to be X(T) = [t = 1{T),X = X{T),\J = I/(T),Z = Z(T)}. This leads to the

definition of the fluid element's 4-velocity

dx
(2.1)

which is constrained by the normalisation condition (in geometric coodinates
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where velocities are scaled to c)

(2.2)

In the laboratory frame, in which the fluid element is moving, we have the

relation &% = }-dt, where y is the usual 'Lorentz contraction factor' of Special

Relativity, given by

y ~" (2.3)
VI - v%

Here we see the use of xf which is the velocity of the co-moving frame

with respect to the laboratory, and is referred to as the 'transport velocity/ or

'fluid velocity', and is related to U? via

(2.4)

A relativistic fluid consisting entirely of baryons (a perfect one-fluid) is

fully described by specifying its baryon number density, p, its momentum

flux density, Q, its energy density, E, internal or thermal energy, e, and the

isotropic pressure, P, which together give us a natural choice for computa-

tional variables.

2.2 Metrics and Curved Space-Time

Just as important as knowing where a given measurement was taken and the

details of the observer who took it, is understanding the spacetin.e of that

event. This information is contained within the metric g^.

As previously mentioned, if one wishes to calculate how the changes in
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mass distribution affect the curvature, then the components of the metric

become evolving variables, whose evolution is dictated by Einstein's field

equations. If, however, one assumes that the hydrodynamics and particles'

distribution does not affect the metric, that is the motion or hydrodynamics

occur on a background spacetime, then the fluid equations of evolution will

reduce to familiar forms, analogous with Newtonian theory, albeit with the

addition of extra source functions due to the curvature.

For this assumption to retain an acceptable level of accuracy, i.e. for

the curvature to remain static and stationary, the total mass-energy of the

hydrodynamical system under study must be sufficiently small relative to the

mass-energy producing the background curvature.

For early test problems, and then in Heavy Ion collisions, the effects of

gravity are minimal compared with the body forces envolved in the reaction.

Therefore we can neglect curvature terms completely and use the flat-space,

Cartesian metric of Minkowski's space-time, given by

. = diagl-1,1,1,1} (25)

The second situation where the change in g^, can be neglected is regions of

space where the influence of the mass of the fluid body is much less than that

of some dominant, background mass. This could be as simple as a small body

under the influence of the Earth's field, or more interestingly, tne effects on

stellar mass objects trapped in the gravitational well of a supermassive black

hole, such as those believed to be in the centre of most galaxies.

In this work, we will use two curved space-time metrics other than that

prescribed by Minkowski. The first is the well known Schwarzschild metric
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of an isolated, static singularity, given by

ds2 = -(1 - — )dt2 + (1 + — )dr1 + + r2 sin2(0)#2 (2.6)

The second form is that of the isotropic Schwarzschild space-time, where

the line element can be described by

M

(2.7)
i r 2f

and using dQ2 as an appropriate flat 3-space metric and

(2.8)

A third possible description of this space-time is provided by Hawking

and Ellis [1973] through their description of a stationary, rotating singularity.

It is given in Cartesian, Kerr-Schild coordinates.

Imr3 rjxdx + ydy) - a{xdy - ydx) zdz
r4 + a2z2 r2 +a2 r

cit) (2.9)

where a is the specific angular momentum per unit mass of the central object

(black hole) and r can be determined (to a sign) from the relation

r4 + (X2 + f + z2 - a V - a2z2 = 0 (2.10)

This metric can be seen to reduce to a Schwarzschild spacetime (altliough

in Kerr-Schild coordinates) when a - 0. This metric is different to the others
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shown as it has a shift vector (see Section 2.2.1) and so is unsuitable currently,

but is of interest for further investigation and application.

2.2.1 3+1 Formalism

In an effort to reduce the computational labour of 4-dimensional calculations,

it is possible to split a given spacetime into a series of 3-manifolds, described by

their associated spatial metrics, layered along the time axis. This is the premise

behind Arnowitt, Deser & Misner's 3+1 formulation [Witten, 1962], of which a

full and detailed explanation is above and beyond this work. Although much

of the application is above the realm of this work, it is important to be aware

of its implications and notation. The 3+1 formalism, or some variation of it,

is used almost exclusively by numerical relativists. Not only can we align

this study with metric studies, but using this notation introduces a number of

terms which help clarify the equations. These are the lapse function, referred

to as a, and the shift vector, j3,-. In this notation, an arbitrary 3+1 spacetime is

given by the line element:

ds2 = -{a + f>%)d? + fcPj (2.11)

where//,,• is the spatial metric.

These (as shown in Figure 2.1) are effectively the distance between the

hypersurfaces along the time axis (an*1), and how the surfaces are stacked

relative to each other (/5i). They are necessary for an evolution in time of the

hypersurfaces, as they tell exactly how the time derivative, and hence time-

integral, is formulated. Whilst not purely necessary at this level, eventually,

hydrodynamical codes will be required to function on numerically derived

metrics which most likely will be 3+1 notations.
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FIGURE 2.1: 3 +1 space-time, two spacelike 3-manifolds shown

2.3 Riemann Normal Coordinates

In later sections the local region of a particle in curved space will become an

important issue, particularly when we look at how the numerical method will

interpolate thermodynamic variables. In a curved space-time, it is impossible

to define a set of coodinates where the connections, F? , are zero everywhere

for all time. That is, for an arbitrary space-time, it is not possible to find a

coodinate transformation to recover Minkowski (flat) space everywhere. It

is not impossible though to construct a local inertial reference frame, centred

on a particle O, where local, free particles move along straight lines. These

are the local Riemann Normal Coordinates. For a full description of their

derivation and uses, the reader is advised to turn to Misner et al. [1973a] or

Brewin [1997], available from
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ht tp: //newton. maths. monash. edu. au: 8006)/papers/rnc_notes. ps, gz The

basic principles relating to how we will use these frames are outlined in more

detail below.

If we take a particle at a given location in our space-time, designated O as

before, and envision all the geodesies of the space-time that go through that

point, we will have O at the focus of a radial explosion of vectors (Figure 2.2).

If we then look at a nearby particle, P, and provided it is not far away enough

that geodesies can intercept, then we can uniquely specify P's location as

(2.12)

where A is the geodesic distance, and a? are the components of the tangent

vector uniquely specifying the geodesic.

Working in direct analogy with Brewin's work, we can define A.Jp vector as

a function of the coordinates of O, JC£ and a new coordinate system y^ to give

(2.13)

Here 6 is the length scale of the coordinate patch where our local RNC will

be defined. The line element will then be

ds2 =

(2.14)

This is most naturally remapped to a conformal metric, denoted by a ~,
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FIGURE 2.2: Geodesies radiating outwards from the point O to all
locations on the patch

ds2 =

(2.15)

Knowing that F? is zero at the origin of this new coordinate system, and

by simple examination of the above Equations 2.14 and 2.15, the following

deductions can be made, noting that the conformal, tilde metric is in terms of

the y'1 coordinates, and the normal metric is in terms of x^
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FIGURE 2,3: The Riemann Normal Coordinate patch, depicted as a
plane, centred on the location 0 on a curved space manifold (2D
analogy)

O

0 ^

(2.16)

(2.17)

(2.18)

(2.19)

It should be noted that Ra^v is independent of the proportions of the

coordinate patch, leaving

R 2 (2.20)

Therefore, to order 62, the Riemann Normal Coordinates represent flat

space (Figure 2.3).
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2.4 Conservation Laws

The relativistic analogues to the familiar conservation laws from Newtonian

hydrodynamics can be generated by enforcing that the (4-)divergence of the

stress-energy tensor, T'"', is null. This gives us the four equations

Tllv = 0 (2.21)

The choice made for T^v should be dependent only upon the fluid being

modelled. The most complete stress-energy tensor available is probably that

of the so called 'first-order' theories of Eckart [1940] and Landau and Lifshitz

[1959], which are neatly expressed in the notation of Misner et al. [1973b] as

Vtv = (P - (2.22)

where C and £ are the bulk and shear viscosity coefficients, cf is the heat flux, 6

is the expansion of the fluid, given by the divergence of the 4-velocity, U^, and

a'JV = x
2(W'a(gv

a + UaW) + UVA{& + UaW)) - \6{fv+WUv) is the shear tensor.

The remaining terms (P, po, and e) are the hydrodynamic variables of isotropic

pressure, rest baryon number density and internal energy respectively.

As with their Newtonian counterparts, these dissipation forms give rise

to parabolic equations of heat flow, with their associated infinite speeds of

propagation. This is unsettling in non-relativistic scenarios, but its inherent

violation of the principles of causality make it completely unacceptable for a

relativistic application.

Hiscock and Lindblom [1985] generalised these theories, and showed that

not only are they unstable to minor perturbations, but the forms of Eckart
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and Landau and Lifshitz do not even permit stable equilibria. These findings

are in agreement with the works of Israel [1976], who attributes these effects

to the arguably arbitrary fashion in which quadratic and higher order terms

(of deviations from the equilibrium values) of the heat flux and viscosity

are omitted from the entropy definition. Hence the title 'first-order' theories

which is attributed to these formulations. Israel goes on to formulate a second

order theory, where the quadratic terms are restored [Israel and Stewart,

1979] and which permits stable equilibria, and causal propagation of linear

perturbations.

Unfortunately for this work, the Israel-Stewart formalism produces many

terms of second order in the evolution equations, greatly complicating the

system. The coefficients of these terms are unrecoverable from the equation

of state [Olson and Hiscock, 1990], requiring experimental deduction, and so

are unsuitable for these applications.

In light of these complications, we remind ourselves of the heavy reliance

in numerical hydrodynamics of artificial viscosities to stabilise calculations,

and focus our attentions on fluids where many of these viscous terms can be

ignored.

Accordingly, in the interests of simplicity and clarity, the conductive terms

and dissipation terms are removed from the tensor. Artificial dissipation will

be added at a later stage in the guise cf an additional pressure term to help

resolve shocks, and its form is guided by the terms above and by comparisons

with analytical Riemann solvers.

The stress-energy tensor then becomes

Pf v

(2.23)
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where g^ are the contravariant metric components and

h = 1 + e -t • —
Po

(2.24)

is the relativistic enthalpy, which is the same as the Newtonian enthalpy,

with an additional term taking into account the rest mass-energy. Natural, or

geometric, units (c = 1) have been used.

It is interesting to consider these components in the laboratory frame

(Minkowski flat space), where the relation between the rest mass density

po and that measured is given by

p =
Po

vr

and y is the Lorentz contraction factor.

The stress-energy tensor is then given by

= Pohy2 - P

and

= phyv1

(2.25)

(2.26)

(2.27)

giving
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VIV -

E Q1 Q2 Q3

Q1 Qxux + P Qhi2 Qh?

Q2 Q2"1

Q3 Q 3 ^

Accordingly, we generate the Conservation laws as follows:

0 = ^

= dt[(po + poe + P)y2 - P] + di[{po + poe + P)ylvi]

which leads us to the Conservation of Energy Equation

dtE + d,(Eit) = -d^) (2.28)

where

£ = Relativistic Energy Density (rest mass included)

= T00

+ poe + P)y2 - P (2.29)

Similarly for Momentum, we get:

0 = dfl*

+ poe + P)yv{ - P] + dj[{pct + poe + P)y2vjvi]

and so Conservation of Momentum is given by,

+ dj(Qvj) = -di(P) (2.30)
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where

Q - Momentum density in the i'h direction

= T0'

(2.31)

These variables are best scaled to give the conserved variables,

e - - : specific energy/unit baryon number

• Q'q' = — : specific Momentum

(2.32)

(2.33)

The Conservation Equations (2.28) and (2.30) are further expressed in their

Lagrangian form as

with

de
dt

~ dte + v'

li

• >

(2.34)

(2.35)
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P P
+ € + - ) y

p
p

q' = (1 + € + — )vz>'
Po '

(2.36)

(2.37)

In using these definitions we have implicitly assumed no variation in chem-

ical potential across the fluid. This restriction precludes both any difference

in constituent fluid, and the possibility of creating or destroying particles. For

simulations involving molecular fluids, these particles would be the products

of any chemical reactions. In the context of a baryonic fluid, no new baryons

may be formed from an energy reaction. At first glance, this may appear a

perfectly satisfying restriction. However, many Heavy Ion Colliders used in

nuclear structure studies are capable of energies high enough to create new

particles. Through these energies they are capable of exploring the nuclear

equation of state in its higher energy bounds, and can probe properties of

quark/gluon plasmas. Whilst there is no reason that the methods described

here cannot be (easily) modified to handle these equations of state, the mod-

ifications required would demand that the general nature that we wish this

algorithm to retain would be lost.

When it comes to deriving the equivalent continuity equation, one must

note that while particles themselves are still conserved, their mass, (or at least

their perceived mass) changes as a function of velocity. That is, if mo is the

rest-mass of a given fluid element, then its perceived mass in the laboratory

frame is given bv yniQ. So it is not true, as it is in Newtonian hydrodynamics,

to say that the not mass flux is zero. (One must instead note the mass-energy

flux is ze 3.) It is to avoid this possible misconception, that we work instead

in number density p (as opposed to mass density), and specify the number
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flux must be zero, or

(poU% = 0

The continuity equation expressed in Eulerian form becomes

(2.38)

dtp + diipv) = 0 (2.39)

or, as we will use, the Lagrangian form of

dt
(2.40)

Having established the evolution of the system this way, it is natural to

describe the conserved variables in a vector of unknowns,

(2.41)

and its associated fluxes

<*>'• = [pv\ Q V + P6li, Q V + P52i, Q3v{ + Pb3i, (J - pv{] (2.42)

The system of equations (2.2), (2.21) and (2.38) require one more relation to

enclose the system. This is the Equation of State, relating the pressure to the

other hydrodynamical variables and generally of the form P = P(p,€). This

will looked at in more detail in a later section (Section 2.6).
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2.5 Comparison to Riemann Solvers

In recent times, there has been a number of attempt!* to produce High Reso-

lution Shock Capturing methods capable of handling relati-dstic flows. These

methods centre around conservative forms of the fluid equations, and calcula-

tion of numerical fluxes, usually through a Riemann Solver. Marti and Muller

[1994] have deduced the analytical solutions for the one-dimensional prob-

lems. In higher dimensions, these exact solutions become computationally

prohibitive, so many resort now to approximate solvers, or attempt to reduce

the problem to one of lesser dimensions.

If we look at our vectors (2.42) and (2.41) the conservation laws reduce to

(2.43)

Provided that the equation of state used to close this system is causal (i.e.

the sound speed is limited by c) then this system is hyperbolic [Anile, 1989].

Hyperbolic systems allow real valued eigenvalues, and a non-degenerate set

of eigenvectors, for the Jacobian matrix, - ^ p . Provided the system is known

at some time, these characteristics can be used to evolve the system forward

in time, often using simple integration techniques.

If we take the above Equation (2.43) and naively integrate it forward in

time from tn to tn+1 = tn + Af, we get the straight forward equation

Ax
(2.44)

where the £ represent some approximation to the flux. Here we can turn

to Roe-type linearised Riemann Solvers, as detailed in Marti and Muller [1999]

If B is the Jacobian ^ p , then the locally linear form, B, will admit d
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eigenvalues A, d left eigenvectors €\, and d right eigenvectors £r, where d is the

number of dimensions.

Given this, the flux approximations are given by

(2.45)

The form of the dissipative component, with its jumps in the state vector

and inclusion of eigenvalues and vectors, (which is also seen in Marti and

Muller's Piece wise Parabolic Method and Fa lie and Komissarov's Upwind

scheme), prompts us to look more closely at commonly used dissipation terms

in SPH applications. It should be noted that, as with uV Newtonian cases,

the eigenvalues of this hyperbolic system correspond to five waves through

the material, three material or fluid velocities (one toi each spatial coordinate

direction), and an up and down wind acoustic wave.

We can describe the up/down wind velocity as a form of signal speed, vS{,

and propose a numerical viscosity of the form

A = Kvsig(Vr - F,), (2.46)

where X is a parameter of order unity. This decomposes to the diffusive terms

used in the evolution equations of Chow and Monaghan [1997].

It is important that the deduction of the signal speed is done in such a

way to avoid the possibility of the artificial viscosity terms leading to super-

luminal (v > c) information travel. If we take the signal speed as the actual

acoustic upwind speed then this cannot occur, and the code will remain causal

and physical.
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2.6 The Equation of State

Having deduced the above equations/ the system requires an appropriate

equation of state to close it and maintain hyperbolicity. As mentioned previ-

ously, this requites a causal sound speed.

This problem was tackled by Chandrasekhar [1939]and Synge [1957].

Chandrasekhar approached from the concepts of an electron gas (includ-

ing the effects of degeneracy) where as Synge looked only at a simple gas

of material and photonic particles. Being more general, we will use Chan-

drasekhar's equations and notations. However, it is important to note that in

the non-degenerate case, the two formalisms are fundamentally the same.

Taking a small volume V of relativistic gas, and defining N as the number

of particles (N = pV) and U as the internal energy (U - peV), then these

values are given by

N =
sinh2fl cosh 6d6

11 =

n2h3 Jo ±exp5mc2cosh0+l

sinh2 6 cosh 0(cosh 9 - l)ddrsh

sinh4 6d6
P =

These are expressed using Juttner's transformation of

(2.47)

(2.48)

(249)

sinh0 =
me

= mc1{coshe-1)

(2.50)

(2.51)

and
1_
L

•Smc1

(2.52)
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They are best understood by considering the volume V is divided up into

cells of Planck dimension (H3 = {^ }3) capable of holding one fermion in a given

state. These are then integrated over the available momentum levels ((j). As

can be seen in (2.52), the function L depends on both e which is a measure of

the thermodynamic potential and $ which is the reciprocal temperature.

In their current forms, Chandresekhar's equations completely describe

the state of an ideal fluid. If we look at the functional £, and the condition

of degeneracy, we see e dominate the exponential, and £ becomes negligible,

leaving the simpler integrals

sinh20 cosh 6W0

nW Jo
sinh2 6 cosh 0(cosh 6 - \)d0

and

(2.53)

(2.54)

( 1 5 5 )

Of more interest to our study is the non-degenerate limit, where £ is large

relative to unity. In this case we are left with

(2.56)

U = r exp-^/c2cosh8 sinh2 6 cosh 0(cosh6 - l)dd (2.57)
Jo
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and

= NJtT

(2.58)

(2.59)

(2.60)

These can then be solved and the solutions expressed via modified Bessel's

functions of the second kind, KV(X), where X = $mc2 giving

'
(2.61)

Equation 2.61 coupled with Boyle's law (Equation 2.60) and the relation

between thermal energy and temperature for a material gas of

reveals

(2.62)

PV = NkT
_NkU

cv

U ~ cv

- I K

(2.63)

(2.64)

The righthand side of the relation can be plotted using Maple (see Figure
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o.es

o.e

O.55

U/(PV)

o.e

O.45

O.3S ie+11 I0+12 [ K ].1O+13

FIGURE 2.4: jfa against T[K]

2.4), revealing the asymptotic limits of F - 1 = | for a non-relativistic gas, and

5 for the relativistic limit.

Any true representation of a hydrodynamical flow where the values of

*j§r traverse the values of 0-10 (T ~ 5 x 1012JC for a baryonic flow), need to be

aware of this change in F. This has been Iiighlighted by plotting the percentage

difference between Chandresekhar's equations and a constant (F-1) value. In

this plot (Figure 2.5), we have assumed one changes from the non-relativistic

value of | to the relativistic limit | at the appropriate time. It is immediately

apparent that in the transition temperatures, an error of the factor 2 can be

introduced by this equation of state. Note : the glitch in the curves at ~ 4ell

is an artefact of the plotting routine.

For smaller temperature domains it would be quite acceptable to fix the

ratio of specific heats to a constant value, and use the form below.
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FIGURE 2.5: Absolute Error over a constant ratio of Specific Heats
model. Note the factor of 2 error induced at T~ 1013

(2.65)

Synge took his own derivations of this work,and calculated the sound-

speed of a material gas to be

5XGJX)
- G(X)) + 5XG(X)

(2.66)

where G(A') = ^ . This relationship is shown in Figure (2.6).

Due to the unrealistic computational effort required to calculate numeri-

cally the solution to Equation (2.66) for every particle at each timestep (possi-
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O.3

O.28

O.2

O.16

O.1

o.os

1e+1 1 1e+12
[K]

1O+13

FIGURE 2.6: cj? as a function of temperature, clearly showing the
relativistic limit

bly circumvented by use of a lock up table), we will use the following relation

and maintain f at a constant value to deduce the soundspeed:

h dpQ

r(T -
de

1+Te

(2.67)

(2.68)

wliich can be seen to be monotonically increasing for a T greater than unity

with a limit as the thermal energy approaches oo of T - 1 . Depending on the

choice of Y, Equation 2.68 can be shown to be a reasonable approximation to

Synge's formula, depicted in the following Figure 2.7.

The upper graph in Figure 2.7 depicts the approximation given by Equation

2.68 as having the correct limit, but increasingly over-estimating the value of
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FIQURE 2.7: Comparison of Synge's soundspeed (Solid Line) vs Equa-
tion 2.68(Points)
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c% The opposite is true in the righthand view, where higher temperatures are

used, and T = | . Here the sound speed is underestimated, but still maintains

the correct limit.

The choice of the value given to Y will range from mildly relativistic value

of | to the ultra-relativistic value of | .

2.6.1 RHICEoS

Since the inception of nuclear accelerators, collisions between particle beams

have been used to probe the nuclear equation of state. Early work by Glass-

gold et al. [1959] looked at the possibility of supersonic shocks passing through

the nuclear fluid, and proposed that study of the distribution of matter after

a collision would reveal the compressibility coefficient. Since then, study of

collisions between nuclei at high relative speeds indicate large compressions

within the nucleus, leading to the possibility of quasi-stable density isomers,

and even exotic states of matter such as Quark-Gluon Plasmas. All of these

things can be deduced from experiments such as those carried out at Fermi-

lab's Tevatron. Theory suggests that the observed distribution of debris after

one of these collisions should be directly related to the passage of a shockfront

through, and over the surface of, the target nuclei. The ejection of material

from the nr clear surface is assumed to be attributed entirely to the particle's

Fermi motion [Amsden et al., 1977].

Hydrodynamical models have been used from as early as 1955 (Belenki

and Landau) to study these collisions. Many early studies focussed on central

collisions, allowing the problem to be reduced to 2 spatial dimensions under

the assumption of axial symmetry. Due to the complex nature of the flows

and lack of boundary conditions, particle methods would seem particularly

c IM
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suited to this regime. Particle methods may also be well suited to modelling

the post collision phases, where equilibration and chemical freeze out occur.

These phases require that the reactivity of the fluid 'turn-off once a certain

temperature or density is reached. In SPH, this is as simple as having a flag on

each particle, controlling its reaction rates. Having been constructed in three

spatial dimensions, we should also be able to study the differing dynamics of

off-axis collisions. These issues are explored in more detail later in Section 7.6.

Differing from Field Calculations codes, fluid dynamical modelling relies

entirely upon the assumption of Local Thermal Equilibrium. There is con-

siderable conjecture as to whether this assumption can be applicable in the

extreme case of nuclear collisions [Bravina et al., 1999]. The Two-fluid model

[Amsden et al., 1978] is an attempt to circumvent this issue by incorporating

discrete cross-sections from nuclear cascade models into its drag terms. This

aside though, we should still hope to be able to, at least qualitatively, replicate

some features of Relativistic Heavy Ion Collision (RHIC) studies.

As this code was devised as a test bed, and required to be as general as pos-

sible, the equations of motion have no terms for nuclear viscosity, Coulombic

energy, surface tension or any of the suspected multi-field effects. As these are

expected to be small compared to the large impact energies experienced, this

should not affect the outcomes to any great degree. However, they do mean

any observed clustering of particle matter and outflows will be physically

meaningless. The momenta and energy distributions though, should be com-

parable to experimental measurement by deducing chemical compositions

through assumptions of equilibria and reaction rates.

It has been stated clearly before, that this algorithm currently has no ability

to account for the creation or destruction of particles. Neither can it keep track

of RHIC specific variables, such as strangeness. As a result, an Equation of
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State capable of phase transitions to quark plasmas is unnecessary. We will

use instead, a simple equation of state, based only upon the nuclear fluid's

internal state of energy.

Taking Myers & Swiatecki's application of a Thomas-Fermi treatment of an

attractive Yukawa function, multiplied by a quadratic function of momentum,

Amsden et al. [1975] deduce

3
V / Y 7 Q v / ¥ / < w y / Y / ' r u 5 ^ V ^ . O " /

r*0 *̂  r'O A*0 ^

where ô is the unperturbed rest baryon number density. This gives us an

explicit form for the pressure in terms of the known quantities of densities

and thermal energies which we will use in later work.
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Chapter 3

Discretizations and SPH

Methodology

Vl"he Smoothed Particle Hydrodynamical method, pioneered independently

by Gingold and Monaghan [1977] and Lucy [1977] is well known. The basic

premise involves dividing the computational space into free moving (La-

grangian) nodes or particles, which hold information about the surrounding

field variables. In order to deduce a variable at a certain point, one interpo-

lates between the surrounding nodes (particles) using direct summation and

an appropriate kernel function to weight the separate contributions.

The SPH algorithm is an incredibly simple implementation, often involv-

ing less than 1000 lines of code. This is both its benefit and detraction, as

minor errors in coding can still leave the code functioning fully, yet producing

unphysical results (in contrast to a grid/finite difference scheme which is more

likely to be brought down completely by a bug). Its simplicity allows for one

relatively simple code to be used for a wide variety of calculations, by simply

changing the initial and boundary condition modules.
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3.1 Interpolation Theory

The interpolation used in SPH is an approximation to the identity

A(x) = (3.1)

where 6(x' - x) is the Dirac delta function and A is any field variable. The 6

function is replaced by a suitably behaved kernel function, W(r,/i). Here r is

a radial vector with the particle's location as its origin, and h is a parameter

described as the smoothing length, which controls the distance and volume a

kernel is active for. It may change depending on the situation the particle is

located in, but does not necessarily do so.

Substituting this functional kernel for the delta function gives the approx-

imation to the field variable

< A(x) >-JV)W(x'-x,h)dx'. (3.2)

A 'suitably behaved' kernel function is one which satisfies the conditions

fv^x'-x^x^

and lim W(x' - x, h) = 6(x' - x)
h-*Q

(33)

(3.4)

Naturally, there are many choices for W which will fulfil these require-

ments, and the choice made can greatly affect the results. A Gaussian may

seem a most natural and obvious choice, but having wings extending out to

infinity requires a complete summation over N - 1 particles. In an effort to

reduce the computational expense of these summations, which would be par-
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ticularly prohibitive in three dimensions, most kernels used have 'compact

support/ that is having zero value beyond some length scale (typically 2h).

For reviews on kernel choices and their effects, please refer to Morris

[1996], Monaghan [1992], Lattanzio and Monaghan [1983],Monaghan and

Gingold [1983] and Fulbright et al. [1995] for a comparison between spherical

and spheroidal kernels.

Assuming that we have a suitable kernel function, and noticing that pdr is

the element of mass, dm, the integral (3.2) can be approximated according to

A(x) > = CA(X')W(X' ~ *,h)dx'

J P(*0

E A{x')
vb~rZ-W(*'-x,h) (3.5)

b P\*b'

where vb is the mass element associated with particle b. In non-relativistic

applications it is the true mass element. In relativistic calculations, the mass

is a frame dependent value. As a consequence, v& represents the invariant

number of baryons represented by the particle, recalling the assumption of

simple baryonic composition and conservation.

From this derivation we get the derivatives of the field variable to be

d <A > dA ....

sr=< it> (3-6)

V < A > =< VA >

L A(x)
v ^ V W ( x ' - x , l ! ) (3.7)

It should be noted that in using the above identities, the time and spatial
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components of the smoothing length (which is variable) have been ignored.

It would be expected that provided the length scale of variation in h is much

greater than h, then these contributions would be neglible. The full effect that

these terms may have on the general form of the error is unclear, although the

applications presented in this work give reasonable, self-consistent results.

Nonetheless, a fuller review of the possible effects is given in Section 4.5.

3.2 Discrete, Non-Dissipative, Lagrangian Equations

of Motion

Having derived the equations of motion for a relativistic gas in Section 2.4,

and the functional form of the particle equations, we can now discretise the

continuum equations to produce the equations of motion for an SPH particle.

In doing so, we attempt to utilise symmetry of forces where possible, reducing

computational time, but more importantly, conserving linear and angular

momentum by enforcing body-centred reactions.

Where appropriate, we present the equations using suitable computational

units, either to reduce clutter in the equations, or to increase performance and

stability in later numerical work.

The Lagrangian equations governing the system are

(3.8)
u
d
dfi) = jA(Prtf)*-(Pr)A (3-9)

(3.11)
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where D = \Jrjypo and -y/jj is the determinant of the spatial metric after it has

been decomposed into a 3 +1 form [Siegler and Riffert, 1999].

It can be noted that by taking the appropriate limits (<fyv -• fyn< =: diag{~l, 1,1,1},

and v «: c), these reduce to the easily recognised Euler equations of hydrody-

namics.

d ' * = -i(M;/

P

Taking equations (3.8) to (3.10) and reducing them to a symmetric SPH

form, we find

i™=
Va Wa Wab

dtfe) = T.

(3.12)

(3.13)

v,i\a (3.14)

N o t e tha t the |fl indicates the preceding t e rm is calculated wi th respect to

the ath part icle 's local R iemann Norma l Coordinates .

Othe r 1 b a n o u r inclusion of dissipation terms, nfl& a n d Qfl&, these are iden-

tical to equat ions (4.28) and (4.35) in M o n a g h a n a n d Price [2001] which are

derived using a Lagrangian method. The energy equation differs slightly, in

that we have assumed a static metric, so we have no time derivative compo-

nent of *fyv- These can be compared to the equations of Siegler and Riffert
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[1999] to see that whilst the forms are similar, we have used a symmetrised

pressure term and avoided the use of yf^ outside the summation.

It should be noted that keeping the SPH equations symmetric in a and b

promotes, but does not guarantee, exact conservation of linear and angular

momentum. The last term in equation (3.14) lias a non-symmetric component,

which could lead to the violation of these consiervation laws. As we are looking

at a system where the particle positions do NOT feed back into a meixic

calculation, the symmetries of the posed problem dictate how badly these

conditions are violated. For instance, a direct radial infall on a Schwarzchild

metric, will not conserve linear momentum, as the particles will accelerate

towards the source, which will not reciprocate and accelerate towards them

(being fixed in space). Similarly, in the same metric, an orbital problem will

conserve angular momentum, but the linet r momentum will oscillate as the

particles complete each orbit. We need to be aware of this, and interpret

results with this in mind.

1 '•!
i

3.2.1 Conservation Properties

It is important to examine just how this algorithm does conserve values.

The usual conservation of mass becomes a more difficult proposition in a

relativistic setting, as the measured mass is a frame dependant value. We do

know however, that total baryonic rest-mass should be strictly maintained.

This is easily accomplished by attributing to eadi particle a fixed number

of baryons, v&. Naturally, summing over the system will generate the total

number of baryons within the system, which will remain unchanged.
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Nbaryan
= r

dt'

=E*>
b

= 0

(3.15)

(3.16)

Should a more complex equation of state be used, where particles can be

created by a process of energy exchange, then a more complex conservation of

mass-energy condition will need to be devised. Although this is would be a

fruitful and useful extension, it is unnecessary here and will not be attempted

in this thesis.

The energy of the system can similarly be calculated by summing over all

particles.

(3.17)

deb

- EVb E A
-\lLVb L

b a

LVb L v-(
By interchanging the a and fr on the second summation in equation (3.19) and

i' '-&
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noting the antisymmetry of VWflj, = ~VW/W, the second summation changes

sign, reducing the right hand side to 0.

If we perform a similar operation upon the momentum equation in the ith

coordinate direction, we see

In the case mentioned before, where we have spherical symmetry, i.e. the

spatial coordinates are (r, 6, </>), we can see this term will be zero for qe and q$

due to the derivative of the metric being zero in the d and (jf> directions, but

not so for the radial component qT.

3.3 Dissipation terms and their derivation

Most numerical methods will require numerical or artificial viscosity to help

diffuse post-shock ringing, or to stop particle interpenetration. It should not be

assumed that approaches which give good results in one-dimensional models

will necessarily carry over to higher dimensional work. This is particularly

true in the effort to stop particles from penetrating each other. It is easy

to see how, with the extra degrees of freedom available to a given particle

in three dimensions, the body centred repulsion forces between two particles

will lead not to the desired effect of heating and stopping motion, but rather to

a minor deflection of the original flight paths, and a continuing, penetrating

flow. This undesired interpenetration leads to unphysical communication

between regions of gas. We have also seen how difficult it is to involve

physically complete theories of heat flux into the equations of motion, and

how dangerous (in terms of stability) and inadequate it might be to arbitrarily
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import an ad hoc diffusive term into the system.

We can, however, borrow ideas from Riemann solutions, taking each par-

ticle involved in the interaction to be the left and right states in a Riemann

configuration. We have already deduced an expected dissipation form to be

A = Kvsi9(Vr - F,),

where K is a parameter of order unity and F is the state vector of conserved

variables used previously. Continuing in this line of reasoning leads to the

separation of two dissipative terms, the first (nfl&) for the momentum equa-

tions, and a second (Oflj) for the energy.

and

Kvsi9(qa - qb). j

KVsigiea - eb))

hb

(3.21)

(3.22)

In these expressions, we use j = jjjjj as the unit vector in the direction rflj,

[Chow and Monaghan, 1997], and £Jab is some averaging of the two baryon

number densities a and b. We have also upheld the symmetry properties

(provided an adequate choice for flab is made) which allow the characteristics

of Equations 3.18 and 3.20 to be maintained. The term vSi9 is an appropriately

chosen signal speed, which we will deal with in the next section (Section 3.4).

Note that like the Riemann solvers, these dissipation terms involve jv nps

in the conserved variables of q and e. THis is unlike non-relativistic SPH which

uses the thermodynamic variables v and the thermal energy component e in

its dissipation terms.

To ensure that these dissipative terms remain positive definite, we trans-
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pose the jump quantities to the line of sight values q* and e* by replacing y in

Equations 2.36 and 2.37 with

(3.23)
Vi-(v.j)2

giving

q" = / v ( l +1: + -—)
po

and
, _F\_.P

6 "y + 6 + p o p

The final form of the dissipative terms then are

(3.24)

(3.25)

j

and

(3.26)

(3.27)

Both the dissipation terms are set to zero if the particles are moving away

from one another, and approach zero in the continuity limit of infinite particles.

3.4 Choice and Derivation of Signal Speeds

The choice of signal speed can be, and usually is, guided by the physics of the

problem under consideration. In the non-relativistic case, one can see signal

speeds are simply eigenvalues of the flux equations, produced by combining

the sound (acoustic) speed and bulk (material) velocity. We would assume

this also to be the case in the relativistic problem.
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Unfortunately, unlike the Newtonian cases, we do not have the ability to

simply add the two velocities together. We are limited by the fact that issues

of simultaneity for any two particles are complicated by the finite speed of

light and subsequent information travel.

With this in mind, we take two inertial frames, the lab frame (K), in which

two particles are moving, and the frame (K'), in which particle a is at rest.

At some time particle a emits a signal to the second particle b. In K', we

know this signal to travel at the rest sound speed, cs. However to avoid

computational difficulties associated with maintaining every particle's proper

time, the numerical code works entirely in the lab frame. We therefore need

to determine the signal speed in the lab frame (K), which we will denote as ts.

l\

I tab

"lab

FIGURE 3.1: Frames of Reference for soundspeeds; In the laboratory
frame (on the left) we see two particles, a and b, travelling with
unique velocities, when a sends a signal to b. The right frame shows
a at the origin, with the x-axis aligned with a's observed velocity in
the lab frame. Particle a stiil transmits to particle b, but at a different
speed.

It would be possible to derive the following relationships using a com-

pletely arbitraiy frame. But through the postulate of there being no special
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observer, we can claim freedom with respect to the establishment of our frames

without loss of generality.

We establish K' such that its x1 axis is aligned with the vector va, and the

straight line connecting particle a and b, denoted by rab, is in the xl x2 plane.

We also define d to be the angle between the vectors rab and va. This then

reduces the original 3-dimensional problem to one in only two dimensions.

See Figure (3.1).

We descibe the signal with a 4-vector,

(3.28)

where co is the angular frequency and the wave vector, k, of wave numbers in

each of the coordinate directions. This is easily transformed between the two

frames by simple Lorentz transforms, giving.

Since co = csk, and

co' ~ yv(co -

K = rM - f
k'2 -

= cos(0)

k2 = si

(3.29)

the above transforms reduce to
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(oos(0) -

cs

CO =

cs

Cg

cos(0O

(3.30)

(3.31)

(3.32)

Using the invariant Wkn, and 3.30, we get

co2

"a

O-J)
(1-f)

c2

which can be solved for cs, giving (after scaling all velocities to c)

= ^~Ky2cos(0)±

(3.33)

(3.34)

cos (0))]
(3.35)

where T = (l

Multiplying both numerator and denominator by ^ produces the follow-

ing relation

a« =
i;cos(0)(l-c2)±cs

2(0) -cos2(0) sin2(O)]
(3.36)

If we decompose the velocity vector v into its components parallel, V\\, and

perpendicular, v±/ to the signal direction rab as suggested by the choice and
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alignment of the frames, equation (3.36)becomes

(3.37)

It should be noted that written in this way, equation (3.37) for the signal

speed is the same as the value A± deduced by Font et al. [1994] for their acoustic

waves travelling within a relativistic medium.

One can immediately see that for the one dimensional case (where vx = 0

and v = U|| necessarily), this reduces to the straight relativistic addition formula

s ±

l±csv{[

(3.38)

If we refer again to the General Relativistic High Resolution Shock Captur-

ing work on an arbitrary metric of Font et al. [1994], the eigenvalues associated

with the Jacobian matrix, B, introduced earlier (Section (2.5)) are

(3.39)

-jS1 (3.40)

with a and ft representing respectively the lapse function and shift vector of

the line element and superscripts correspond to directions.

By using this definition for our signal speeds (Equation 3.37) we ensure

that the sound speeds remain causal, and so do not put at risk any assumptions

made previously about the hyperbolicity of the system. We also ensure that

the artificial viscosity terms (Uab and Qab) do not lead to acausal effects.



Chapter 4

Numerics and Code Specifics

4.1 SPH: A Brief Overview

s has been previously mentioned, SPH is a Lagrangian particle method,

where the field variables are attributed to small fluid elements or particles,

which are then evolved through a set of hydrodynamical equations. By stipu-

lating that these elements represent an equal and constant number of baryorts,

then there must be a direct relation between the number of particles per unit

volume and the baryon number density. Being fundamentally an N-body

program, the fluid elements are free to move through space according to the

equations of motion. Inevitably this leads to some level of disorder in their

locations at any given time, and we can conclude that recovering the density

distribution from the particle distribution becomes a statistical process similar

to recovering a probability distribution.

This is done by a smoothing kernel method, introduced previously in

Section 3.1, which leads to the relations and functional forms of that section.

The resolution of the method is controlled by the smoothing length, h. It is
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natural then to apply some care when choosing both the kernel form, and the

smoothing length value, to ensure that they give the desired resolution for the

problem at hand. This choice is studied in Section 4.2.

Early applications of the SPH method selected a global value for h based on

the overall density of the modelled structure. This however failed to utilise one

of the great strengths of the SPH method. With the particles clustering with

higher density, the dynamical range of resolution available can be increased

by allowing locally varying smoothing lengths. There are a number of ways

to implement this, and one needs to ensure that errors are not compounded,

nor introduced by the implementation. This will be examined in Section 4.3.

With SPH's inherent Lagrangian nature, with particles being distributed

as per the density distribution, it would be a shame not to utilise its full

adaptive potential. Having built a method adaptive in space, and constrained

by the usual numerical Courant conditions, adaptive time-stepping through

individual particle timesteps is explored in Section 5.3.

4.2 Choice of Splines

As can be seen in equation (3.7), the gradients of the field variables are replaced

by gradients of the kernel function. Therefore it is essential that the kernel

function has derivatives at least to the order of the controlling hydrodynamical

equations. For basic hydrodynamics, this translates to the first derivative

needing to be smooth. For physical diffusion, at least the second derivative

must exist. So long as these conditions, and the basic conditions previously

asserted in Section 3.1 are abided by (being normalisation and approach to

the delta function in the infinite limit) there exists a plethora of choices. An

important consideration is the requisite of symmetry. This places additional
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constraints, not only on the kernel choice, but the method of choosing the

parameter h.

In order to sample a field value, a given particle must interrogate its

neighbours, and there are two fundamental ways to do this. They are the

concepts of computational 'gather' and 'scatter' of particle information. The

'ga^ «• ' method is perhaps more intuitive, as it maintains the imagery and

concept of each particle being a fluid element. The field variable, for instance

baryon density, is then calculated at a given locale by assuming the observer

is active and samples all surrounding particles, weighting their contribution

by the kernel W.

J ^ ) (4.1)

Note that, for pa the smoothing length used for all neighbours is ha, that of

particle a.

In the 'scatter' model, the particle is smeared out in space, according to the

kernel's distribution. The local value of a variable is then obtained by simply

summing the contribution from each surrounding particle.

(4.2)

Note that, unlike the gather model (Equation 4.1), here we use h\, for the

density at particle a.

Provided the smoothing parameter, h, is constant for all particles, then

these two models are identical. However, if one wishes to vary the resolution,

these two methods will produce differing neighbouring particle lists. This

is highlighted in Figure 4.1 when the particle in the upper left has a larger

smoothing length than O, and is included in the 'scatter' model, but not in the
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X

c
..••••"

/&••'
Gather Scatter

FIGURE 4.1: Schematic of gather and scatter

'gather' interpretation. As a consequence, exact conservation noted in Section

3.2.1 will not be maintained. It is therefore essential to somehow balance these

two methods, using some form of hybrid.

This can be achieved by either symmetrising the smoothing length, or

balancing the kernels [Hernquist and Katz, 1989], as follows:

(4.3)

where h is some averaged smoothing length given by any one of the many pos-

sible ways of averaging two values. Most common are the simple geometric

mean

[Evrard, 1988] or even

/ ) =

(4.4)

(4.5)

The other option available is to average the kernel contributions from each

particle,

wab = \(W(tttbM + WT*,h)} (4.6)
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[Hernquist and Katz, 1989]

It is argued that the latter method offers more refined control over the

number of neighbours contained in the summation, as Evrard's symmetri-

sation can only offer control over the minimum number. Some interactions

can be allowed, even though 2ha may be less than rab, provided 2/ty is large

enough to cause the average of the smoothing lengths to be greater than ra\,.

In this thesis, the number of neighbours used in each particle summation will

certainly be monitored, but not rigidly enforced or controlled, (Hernquist &

Katz rigidly control the number of neighbours to be 50, then on subsequent

runs allow a tolerance of ± 1 or 2) so we use Evrard's symmetrisation method.

This is justified by preliminary testing showing no discernable difference in

dissipation or response between the two methods.

Having decided how to balance the contributions and ensure symmetry,

the next choice is that of a kernel form.

Schussler and Schmitt [1981] indicate that kernels which have a null gra-

dient at the origin (VtV(r = 0) = 0) can lead to artificial clumping, and con-

sequently should be replaced with a functional with a non-zero derivative

across the origin. This artificial clumping effect, although not seen in any of

our tests, is actually desirable in our application. As particles 'on top' of one

another do not repulse or attract each other if VW(r = 0) = 0, they behave as

a single, conglomerate particle. This can be utilised to avoid artificial heating

near boundaries, caused by ghost particle collisions and heating. This will be

covered in more detail in Section 5.1.

Traditionally, a spherically symmetric kernel was used, although for many

applications, particularly those involving anisotropic compression or expan-

sion, it has been argued that spheroidal kernels may be better [Fulbright et alv

1995]. Whilst this certainly has some meritous effects, the added complica-

s -h
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tions are deemed unnecessary, and arguably inappropriate, for this work. Not

the least of these concerns is the reduction in the scheme's ability to conserve

angular momentum through the loss of the body-centred reaction forces. The

application of spheroidal kernels also gives rise to the question of exactly how

best to deform the original spherical unit. This is generally done through

either a simple analysis of the divergence of the fluid at study, or application

of the tensor, ~r In relativistic applications though, this would be further

complicated by relativistic length contraction in the direction of motion, and

even tidal curvature effects from a nearby gravitational source. Combined,

or individually, these contributions would lead to a given deformation of the

kernel appearing non-sensical and arbitrary as one moved between frames in

the analysis.

Early work and discussions about Relativistic SPH have also argued that

the kernel should be invariant under frame transformations [Lun, 2001]. It

is this author's opinion that this also is an unnecessary complication. If we

look at a similar finite difference scheme, with a laboratory centred symmetric

grid, and place ourselves in a different frame, such as one co-moving with the

fluid under consideration, the grid will appear arbitrary and of poor choice.

But so long as one is aware of which frame calculations are performed in, it is

a simple matter to transform variables into any other frame. For this reason

we avoid the expense of firstly finding a suitable, invariant kernel function,

and secondly, implementing it.

In support of this contention is the use of Riemann Normal Coordinates,

which are effectively a flat space centred on the particle in question. Whilst

curvature terms are integral for mapping one RNC to another particle, Section

2.3 shows that the Riemann tensor, Ra^v is of the order of the coordinate patch

length scale squared, 62. As we place a flat space kernel upon each particle,
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the errors associated with this as opposed to a curved space kernel can be

expected to be of the order of its size, h2. Provided that the interpolation error

of the kernel is of the same order, we will not be introducing any more errors.

The choice for the kernel is, in theory, infinite. In fact, work by Morris

[1996] establishes how one can derive sets of kernels, which can be summed

together, giving a kernel with whatever properties one desires. Although this

work is focussed mainly on the stability of SPH (particularly as the particles

are exposed to negative stresses), Ms findings on the desirability of higher

order kernels are no less applicabls.

Morris finds that lattice positioned particles approximating an isothermal

gas admit instabilities for large ratios of h to particle spacing. These are

induced by variations in the kernel's gradient function as the particles relax,

and the growth of these instabilities is greatly inhibited by use of higher order

polynomial spline kernels. This trend is observed right up to the Gaussian

limit, where the propagation becomes neglible. This suggests that the method

responds best to kernel implementations where the Fourier decomposition in

|r| falls off quickly.

With this foresight, one might conclude that the Gaussian kernel (or super-

Gaussian [Monaghan and Gingold, 1983]) is the most natural choice. How-

ever, this eads to all N-l particles contributing to each summation loop, when

it is clear that only the close neighbouring particles would affect the motion of

a given particle if we neglect the effects of gravity. Combining this effect with

the unsupportable computations that would be required in a 3-dimensional

calculation, and we conclude that at least a kernel with compact support is

required.

Compact support can be introduced by simply truncating the Gaussian,

this however means that the Fourier decomposition will no longer fall away
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as a Gaussian itself, and the benefits of the Gaussian curve are lost. The work

by Lattanzio and Monaghan [1983] introduced polynomial spline curves in

an effort to combat this effect.

These spline kernels can be broken into two broad classes: those optimised

to ensure stability through the smoothness of their curve and its derivatives,

and those optimised for accuracy over interpolating across a grid. The first

group use higher order polynomial splines (quadratic, cubic, quartic, etc.) to

increase their smoothness and continuity of higher derivatives. This increases

the computational effort in deducing them and using them, or at least memory

if ar adequate look-up table is devised, but the interpolation error is not

decreased by the increased smoothness. The second group use a different set

of splines to increase their interpolation accuracy over particles arranged on

a regular grid. Such kernels are really only of much use if it is ensured that

there are enough particles involved in the summations to ensure that the error

induced by the Monte Carlo integration is maintained at a smaller scale than

that induced by the kernel.

Another attribute of some of the higher order interpolation kernels is their

sacrifice of positive definiteness (see Figure 4.2). Steinmetz and Muller [1993]

point out that under certain situations this can lead to negative densities and

energies, particularly if the samr-iing of particles is too coarse. This situation

can easily arise in a rarefaction fan or similar, rapid expansion process. In a

rdativistic application, this can lead to there being no solution for the equation

of state. Whilst it is certainly an argument that this situation can be avoided

simply be employing a switch in the software to detect and correct a violation

of this form, a more robust application can be implemented by use of a positive

definite kernel.

Taking into consideration the desire for a general code capable of sim-
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ulating relativistic flows yet avoiding as much as possible any reliance on

exact solutions, the decision to use the 'common' B-spline kernel of Lattanzio

and Monaghan [1983] has been made. This allows a fast and proven kernel

with the requisite continuous derivative, and avoids unnecessary complica-

tions associated with non-spherically symmetric kernel choices or negative

densities.

W(s,h) = f(2-s)3;

0;

0 < s < l

s>2

(4.7)

where s is the separation distance given in smoothing lengths, h. The O(h3)

spline mentioned in the same paper was also assessed, but lead to no noti-

cable improvement and was deemed unsuitable, as it was no longer positive

definite.

It should be noted here that there is no requirement that only one kernel

is used. Optimised kernels can be used for density interpolation, with other

choices applied to calculations involving the pressure force, for instance. This

thesis, however, is looking to produce an algorithm in its most general form,

capable of being optimised for a given application at a later date, and so uses

the same kernel for all particle calculation loops.

The kernel is used not only in the integration of field variables, but also in

the code's neighbour counting regime, in an effort to avoid the possibility of

artificial shocking caused by a particle moving from a dense to rarefied region

(or vice versa). A 'top-hat' implemented counting kernel may modify the

smoothing length too quickly, allowing for the possibility of false shocking.

This modification is detailed in Section 4.3.
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FIGURE 4.2: Kernels of higher orders from Lattanzio and Monaghan
[1983], normalised

4.3 Smoothing Length Modification

As has been previously noted, it is desirable to use the full adaptability of

the SPH method. Early works in SPH have used a fixed value for h, usually

based upon the initial particle spacing, and many of the error estimates rely

heavily upon this assumption. Gingold and Monaghan [1978] introduced a

basic varying h in their cloud collapse work, where the smoothing length was

treated as a global parameter and was adjusted according to the simulation's

central density variation. However, neither of these basic methods utilise the

full adaptive resolution provided by endowing each particle with an indi-
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vidual smoothing length, and the ability to change its interaction radius in

response to the local environment.

A succinct analysis offered in Steinmetz and Mtiller [1993] highlights just

how large the dynamical range can be for a given simulation by looking at

the two number density extrema. The minimum density, pmjn, is found when

all particles are greater than 2h apart, and is found to be simply the particle's

self contribution of

Pmin = VW((U) (4.8)

Conversely, when all the particles are compressed into one point, we get

N

H) (4.9)

From these we see immediately that the theoretical range is N, although

as is correctly pointed out by the authors, this is particularly optimistic. In

order to avoid sampling errors, a minimum number of particles is required

(generally considered to be of the order 10) and at the other extreme, the

resolution offered by all particles collapsed to a point can only reveal density

distributions proportional to the kernel itself. Therefore the dynamical range

reduces to the still impressive ~ | j . . . ^

In the work of Gingold and Monaghan [1982], two proposals are offered.

The first uses the relation

Nze hi = K = constant (4.10)

which can be solved for hj iteratively, and is basically the requirement that

the number of neighbours of the fh particle remains constant. (Although this
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expression, only holds for Gaussian kernels.)

The simpler option is to treat h as a variable, capable of being evolved

along with any other through

dh
dt

dh
(4.11)

Although both these approaches are meritous, the first is difficult to ap-

ply in its present form, and both can lead to instabilities through oscillatory

corrections to the value of the smoothing parameter.

If we recognise the reciprocal relation between the number density and h,

enforced by the particle distribution reflecting the mass distribution, then we

are led to the relation

h(t) oc -i- (4.12)
P*

where d is the number of spatial dimensions. Unfortunately, this is a cyclic

relation, h(r) is required to calculate p(r), which in turn is required to deduce

h.

Wood [1981] and subsequently Miyama et al [1984] use the value of the

number density, p, at previous time step to specify h at the current time-

step. This is however prone to instabilities mentioned above, which can be

overcome by using a predicted or smoothed value of the density on the right

hand side of relation (4.12) [Steinmetz and Muller, 1993] This method though,

appears to be both app>lication and kernel dependant, not to mention labour

intensive.

By taking the time derivative of relation (4.12) and combining with the

,tM
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continuity equation (in 3-dimensions), we can derive h's evolution to be

dh 1
(4.13)

which is the method implemented by Evrard [1988]. It is clear that this

implementation relates the change in h to its current value. Should a particle

from a higher density region (small h) find itself in a lower density region,

its ability to adapt relative to a local particle undergoing the same divergence

is greatly hindered. We would prefer that the technique used to modify the

smoothing length is based more on the particle's surroundings.

Another technique is that employed by Borve et al. [2000] in their Regu-

larised SPH formalism, which quantises the values of h, allowing only mul-

tiples of powers of two times some base value, ho. These are chosen by

fitting a piecewise-smooth curve through the density profile. Whilst showing

very promising results, particularly in Magneto-Hydrodynamical simulations

[Borve et al., 2001], it is deemed too computationally intensive and not general

enough for the applications in this thesis.

More appropriate than these methods of h evolution is the concept of near-

est neighbour limits, where the length of the neighbour list is maintained at a

constant, or nearly constant value. (An exact maintenance is computationally

expensive for arguably little gain, and many algorithms therefore work from

the closely related density profile.)

So, rather than matching the smoothing length to the density profiles (or

some related smooth profile), we can relate it to the number of neighbours,

which through the theoretical arguments presented in Section 4.1 should offer

a direct relationship.

This method evolves h by averaging the current smoothing length and that
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implied by the neighbour list length, N" (the number of particles inside the

interaction radius of 2/i at timestep n) indicated by

esired (4.14)

[Hernquist and Katz, 1989]

An appropriate minimum limit to h is usually enforced, depending on

the problem posed. Unfortunately this algorithm, as with those mentioned

previously, can suffer from oscillatory behaviour, particularly where there is

rotation in the problem. It can overcorrect for the apparent density changes

(tricked by particles moving closer together, but not on colliding orbits), lead-

ing to the number of neighbours being excessive, then too low on successive

timesteps. This artificial oscillation in the neighbour count (and consequent

assumptions about density) results in false clumping and 'ringing.' It can be

reduced by a smaller timestep, but this is not a desirable alternative due to the

already time-intensive nature of modern simulations. It is better to modify the

root cause, which is due to the effective 'top-hat' potential used in standard

neighbour counting regimes. This allows a minor extension (or reduction)

in the interaction radius defined by h to dramatically affect the number of

particles involved in the summation.

This case can be easily envisaged by visualising a particle with an interac-

tion radius of 2h which is enforced rigidly by counting all particles within this

radius as whole particles. Suppose that this particle had one neighbour less

than the optimum number, and so wishes to increase its smoothing length. If

there were a cluster of five particles just outside this counting potential of 2h,

then the increase in h will lead to an over supply of 4 neighbours. On the next

time-step, the particle will reduce its smoothing length to below what it was

i t
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when we started this example, which will naturally be too few neighbours.

If instead, we reduced the weighting of particles near the 7)\ cut-off, then

a small increase in h, which causes the cluster of particles to be included, will

not result in such an oscillation being established, and will serve to stabilise

the algorithm. This is achieved by removing the influence of the effectively

discontinuous 'top-hat' potential, and replacing it with a smoothly decreasing

one.

To illustrate this we show the usual weighting used in a standard SPH al-

gorhithm, Wstd, with that suggested by Thacker et al. [2000] and implemented

in this code, Wcomi>

1;

0;
(4.15)

' •countKT) *"
l; 0 < J < 1.5

f >1.5
(4.16)

where Wfl/, is the usual kernel function employed for the particle summation

loops.

The number of neighbours recognised as being used in a given summation

cycle changes from the previous methods of

to

Na =
t*ab\

%b
(4.17)

We then attempt to maintain this value as a constant number of neighbours,

d' Setting Njesjred higher, stabilises post-shock oscillations, but smears out



4.4. ASSOCIATED ERRORS AND STABILITY OF THE ALGORITHM 64

shock-fronts. A lower value resolves sharper discontinuities, but is less able

to damp out oscillations. The actual counting procedure involves little work,

as dynamical linked lists are used in the particle loops, and the lengths of

these are required for many other subroutines. In implementing this sort of

modification, one needs to ensure that 'false shocking' caused by a particle

finding itself in a drastically different environment and having too few parti-

cles to complete the summation adequately, is avoided. This is controlled by

applying Courant conditions on each time step.

Complimenting the idea of limiting timesteps by Courant conditions, we

also attempt to control the advent of 'false shocking' by controlling the amount

the smoothing length, 'h/ can be adjusted in any one timestep. This is done

by the algorithm again described by Thacker et al. [2000]

Setting s = (̂ ff2*)̂  (for 3 dimensions), we use

(4.18)

where a is a weighting coefficient described by

a =
0.2(1+s2); s < l

0.2(1+ £); s>l

4.4 Associated Errors and Stability of the Algo-

rithm

If we assume that the smoothing length is a fixed parameter, then the integral

(4.19)
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can be expanded around r = r' as a power series in h, giving

< /(r) >= /(r) + V/ . fsW(s)ds + ~/i2V2/ ( s2/i3W(a)ds + O(h3) (4.20)

[Gingold and Monaghan, 1982]

As the kernel is chosen to be an even function, and the spatial integrals

occur over all space, the second term is found to be zero. The last integral is

independent of h, so the smoothing approximation is shown to be of the order

h2, or O(£).

If we assume complete disorder in the particle positions, the integral ap-

proximation becomes a Monte Carlo estimate, and consequently the error

grows to O(-j=). As the particles do remain ordered to some extent, but cer-

tainly deviate from a grid [Gingold and Monaghan, 1978], the true error is

likely to be somewhere between these two bounds. Monaghan [1985] quotes

Wozniakowski's attempt to qualify this by assuming the particles were quasi-

ordered. This results in an error estimate of O((1°|f/)).

Just how disordered the positions of the particles in a given simulation can

become is an interesting issue ultimately at the centre of any method's error

estimates. Due to the clear parallels between the kernel interpolation and

statistical sampling, many applications have employed randomised initial

grids to lay the particles upon. As a given simulation evolves, it naturally

will maintain a random position matrix (if initialised with random positions).

More modern models tend to place the particles upon some ordered grid,

such as a body-centred cubic structure like this one. Although free to move

in a disordered fashion, a truly random distribution is unlikely to result from

such an initialisation.

i

1
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4.5 Effects of Omitting Vh Terms

When one implements the variable smoothing length algorithm, whether or

not the smoothing algorithm remains an O(h2) accurate one is unclear. No

matter upon which symmetrisation one chooses, the evolution equations will

all contain § or V/i terms. One would expect that these terms would be smaller

than the dominating hydrodynamical terms by O(W§), where p is generally

considered to be - 2, and so should be inconsequential for simulations with a

high enough resolution [Gingold and Monaghan, 1982].

There may be, however, situations where this may not be the case, and

violations in energy conservation may be of the order of 10% [Hernquist, 1993].

It should be noted that these large conservation of energy violations noted by

Hernquist occurred in extreme circumstances, where the entire simulated fluid

(governed by a polytropic equation of state) participated in a compressive

collision and subsequent expansion, and that the thermal energy component

was used as an integrable variable. Similar effects are noted by Nelson and

Papaloizou [1994], who also integrate the thermal energy variable. For lesser

grazing collisions, the violations would be expected to be less. Secondly,

in the relativistic case, it is the total energy equation which is integrated

forward, which has shown to be more stable than the integration of the thermal

component used in both Hernquist's and Nelson & Papaloiziou's models.

Having noted this though, any high resolution SPH simulation should

be examined closely. The effects on these Vft terms of integrating the total

energy equation rather than the thermal energy needs to be studied. For the

purposes of this work, we will not attempt to include these smoothing length

derivatives, relying on the inverse relation between N and the error estimates

and caution, to guide us.



Chapter 5

Application Specifics

aving prepared the equations of motion, the SPH formalism, and estab-

lished how the basic algorithm will function, there are now some issues spe-

cific to the application which need to be addressed. These include detenruning

how to implement boundary and initial conditions (Sections 5.1 and 5.2), find-

ing adequate, stable timestepping algorithms (Section 5.3), efficient memory

management techniques (Section 5.5) and which method will be used to solve

for transient variables, such as the pressure, on each time-slice (Section 5.4).

The algorithm in its current form uses a leapfrog predictor-corrector method,

where the conserved, integrable variables of p, q, and e are maintained on the

integer time step, and the hydrodynamical variables (P, v, e) are solved on the

half-steps.

5.1 Boundary Conditions

One of the clear benefits of a particle method over a grid method is the ease

in which free boundaries can be handled. Where possible, we use no bound-
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ary conditions, letting the particles have access to the whole computational

domain. Whilst this is fine for the collision experiments, and even the gravi-

tational infall problems, the hydrodynamic test problems require a fixed box

of known dimensions.

In this situation/ we employ a rectangular box which can be mapped easily

and quickly into rankspace (see Section 5.5). Two of the dimensions are peri-

odic, and the third uses ghost-particles to maintain its structure. Periodicity

is maintained by simply mapping the leftmost particles into pseudo-positions

against the right boundary (and vice versa), and modifying the location vec-

tors accordingly. This remapping is actually carried out in rankspace and,

other than the restriction of the size of the computational domain in terms of

requires little effort.

. « - - l . U - 1 ? ? T.f-f. »
Remapped from RHS Computational Zone Remapped frvmLHS

FIGURE 5.1: Maintaining a Periodic Boundary by remapping particles

Although Figure 5.1 shows a simple 1-dimensional application, care does

need to be taken with higher dimensions, and exactly how one handles the

edges and more particularly the vertices of a rectangular box. Care needs to

be taken in choosing the dimensions of the grid such that slight mismatches

between particles placed on the grid and the boundaries of the computational

box are not exacerbated by the triple remap of particles near edges (across,

up, and diagonally up and across if the particle is near the upper edge), and

then a reflection in the ghost boundary (if the particle is near the end of the
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computational cell). This many transformations can create a small clump of

particles at the vertices of the computational box, which can in turn cause

spurious waves as the extra gradients dissipate into the computational space.

Avoiding this situation does unfortunately place a restriction on the di-

mensions of the box. It is important that no particle have a smoothing length,

or interaction circle, which exceeds the dimensions of the computational cell.

Should this occur, multiple mirror mapping would need to be implemented

to avoid this particle 'seeing' beyond the edge of the box. Some possible situ-

ations arising from this form of particle vector remapping are shown in Figure

5.2, The upper image shows a computational box of / length, with a particle,

denoted by X. As X is near a boundary, its sphere of influence, governed by

7h can 'see' over to the other side. The particles located within 2h -(I -X)

of the left boundary are added to X's neighbour list with an additional tag

indicating that the location vector rxb does not point into the box, but rather

is located outside the computational zone.

The middle figure shows a shaded region of particles, which must be

counted twice in the particle summation loop. The first time they are con-

tribute to X is through a normal interaction within the box. The second time,

they will have had their location vector altered to place them in the psuedo

cell to the right of the computational box.

Finally, we can see the effects of X's smoothing length equalling | . This

situation would be unstable as the whole computational box must be double

counted, and X itself would contribute to the summation, possibly twice.

It should be noted that as the number of spatial dimensions increases, this

double counting effect increases four and eight-fold.

This periodic boundary implementation is applied to the y and z (x2 and

axes. The other axis is given ghost particles, which allow the computa-
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FIGURE 5.2:1-D example of remapping particles

tional box to describe asymmetrical problems in this direction. Initial testing

showed that a body-centred cubic (BCC) lattice was quite stable if contained

by these boundaries, and so the particles are initially laid out in this fashion.

It should be noted that this places another restriction upon the dimensions

of the box, in that the BCC lattice should fit precisely across it for maximum

stability. If this condition is not met, the particles need time to relax into a

hydrodynamical equilibrium. Whilst this in itself is not a problem, the simu-

lated wave understudy will interact upon a disordered set of particles. This

serves to increase numerical scattering, which may have some effects, or mask

'-'!
».«.«
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some effects, which we might be interested in

The basic principle of ghost particles is to place an effective mirror at the

boundary, where any particle on a path destined to leave the computational

box will 'see' an identical particle inward bound on the other side of the

boundary. Blindly reflecting these particles can lead to artificial heating, so

a little care is taken in this reflection process, using knowledge of the initial

system configuration.

Two approaching particles will respond to each other as described by their

kernel gradient function and their smoothing parameter. As the particles

come into range the kernels will exert a repulsive force, which in most cases

will result in the particles heating, deflecting and passing each other. True

head on collision will be rare, as small errors in the kernel function will impart

a small sideways force on the particles, which is magnified as the encounter

progresses. (If only one-dimension is available, then they will heat and repel.)

If one of the approaching particles happens to be a ghost of the other, then

there is no avoiding a collision at the boundary. Any deflection experienced

translates the particle along the wall, where it artificially impacts and heats

adjacent particles. This can lead to acoustic waves from the boundary rippling

into the computational box.

We combat this by using a ghost reflection derived from the initial lattice

layout. Instead of a single ghost particle approaching head on, we use (in

the 3-dimensional BCC example) four daughter ghost particles, displaced one

half of a grid spacing (as defined by the smoothing length) in each direction.

Each of these daughter particles is given one quarter the baryon number of the

original boundary approaching particle, with the other variables distributed

accordingly (See Table 5.1). The result of this is rather than numerical errors

pushing a directly approaching particle along the boundary, they serve to keep
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it approaching head-on. A two-dimensional example, using the 2-D analogue

of body-centred-cubic is shown in the right hand image of Figure 5.3. Instead

of four daughter ghost particles, each particle births two daughters of half

baryon number.

Attribute
X
V

q
baryon number
number density

Pressure
Energy

Particle
{^boundary ~~ X, t/, Z)

[VxtVy,V2]

[qx, qy, qz)
V

p
p
e

Ghost Particle
{^boundary + X,y± \ At/, Z ± \ Az}

\-vx,vpvz)
{-qx,qy,Ciz}

Jv
9
P
€

TABLE 5.1: Division of properties from original particle to each of its
4 daughters

In early stages of a simulation, the true particles inside the boundary

should be in their original BCC layout. If we were to use the traditional

particle reflection, one can see that the pattern of particles is broken at the

boundary (Figure 5.3, left diagram). But by using offset daughter particles,

each grid position is now occupied by four, quarter weight particles in three

dimensions, or two daughters in 2-D, effectively continuing the grid over

the boundary. Should one implement a kernel with non-zero gradient at the

origin as Schiissler and Schmitt [1981] suggest, then these daughter particles

will strongly repulse each other, destabilising the grid. If, on the other hand,

a zero gradient functional is used, these particles do not affect each other in

terms of evolution, and so the configuration is stable. Note that a zero gradient

kernel only affects the evolution equations, the summation approximation will

see all four (two) daughters in the one location (indicated by the larger circle

in Figure 5.3) and combine them accordingly.
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O
O

O
O

o
o
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8

o

FIGURE 5.3: Ghost Particle Configurations: Ghosts are depicted by
dashed lines. Primary reaction vectors only shown. Note in the
right hand example, how the BCC grid is continued.

5.2 Initial Conditions

The primary consideration with any particle code of this sort is to establish

the particle positions according to the density distribution. This means that

physical dimensions and particle spacings need to be carefully chosen. In or-

der to avoid the need to relax the system before any simulation, it is important

that these spacings fit neatly into the computational box so as the boundary

conditions applied continue the grid pattern.

For collision problems, the particles are initially laid out in their BCC grid,

before a radial distance calculation cleaves off the outer particles, leaving

the desired sphere (or length-contracted ellipsoid if travelling at a relativistic

speed). The particle hydrodynamical attributes are then allocated.

For gas tube problems, the computational cell is chosen such that the high

density lattice spacing fits exactly across the box. The number of particles

in this lattice is chosen so that the low density half fits as closely as possible

across the same box, and there are enough particles in it to avoid the problems

raised previously with regards to there being too few particles within the
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interaction radius (particles 'seeing' themselves in the mirror) or h needing to

be greater than / in order to maintain enough neighbours in their neighbour

Mstings (refer to Figure 5.2). This process will be explained in more detail in

the pertinent chapters (Section 6.3).

5.3 Timestepping Conditions

The previous chapter highlighted how beneficial it is to fully use the natural,

adaptive nature of the SPH particles. Having spatial resolution without tem-

poral adaption would be simply untenable in terms of the prohibitively small

timesteps that would be required for a collision model, when for much of the

run (approach and re-expansion) a larger timestep than that required for the

actual contact phase could be used. This raises the issue of how to choose the

timestep whilst maintaining stability.

Again we can refer to the much older techniques of grid and finite differ-

ence codes, and the existence of Courant, Friedrichs and Levy (CFL) condi-

tions deduced from sound propagation. We use the usual two velocity and

acceleration conditions, and a third 'spatial' CFL condition which becomes

particularly necessary to avoid penetration when there are two stable, collid-

ing regions, otherwise uninhibited by timestep controls. This last condition

is simply blocking the particle from moving too far (in terms of its interaction

sphere) in a given timestep. Each particle calculates these limits for the region

around itself, and then the extreme is chosen to ensure stability across the

whole computational space.

These Courant conditions are constrained by a set of parameters to further

reduce the timestep from the theoretical safe limit. These parameters are

initialised at the start of a simulation and remain constant.

'-.fe!
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The timestep used, dt, is given by

dt = mm{Cvdtvl Cadta/ Chdth) (5.1)

with

(5.2)

(5.4)

and typical values for Cv, Ca and Q, as 0.2,0.35 and 0.35 respectively.

Whilst the range for tuning these parameter is immense, other than re-

stricting the spatial condition in times before collisional impact, their effects

were not studied in any detail. It should also be noted that Thacker et al. [2000]

use the same Courant conditions, but use 0.4, 0.25 and 0.2 as their limiting

parameters Cv, Ca, and C/,. As any value under unity should be stable, there is

little difference in the actual effects of these changes. Their individual values

are dependant upon the kernel used, and the time-stepping rule used. The

dominant limiting factor is usually dtvt and it has been further limited in our

scheme in an attempt to reduce overshooting due to the frequent supersonic

motions and large gradients involved. The only time dth needs to be invoked

is when two otherwise stable balls of nuclear fluid are travelling towards each

other. In this case the other time conditions dtv and dta see no change in their

environment (as the approaching fluid is initially outside interaction range)

and will specify arbitrarily large timesteps as suitable, allowing the nuclei to

pass right by each other in one timestep unless the dth constraint is invoked.
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5.4 Solution for Pressure using a Non-Linear Equa-

tion

The final equation required is the equation of state (EoS), giving pressure as a

function of the density and internal thermal energy, P = P(p, e). Three choices

of EoS are used in this work.

For most of the hydrodynamical calculations, the perfect fluid assumption

is made. With this, we use an appropriate, constant T value and the relation

P=(T- l)poe. (5.5)

This form is not appropriate for colliding nuclei studies. For reasons

specified in Section 2.6.1, we use the equation of state given in Amsden et al.

[1975] and used in their later numerical works [Amsden et al., 1977] [Harlow

etal.,1976].

hT)4(T)+«T)^o + ̂  (5-6)
3 po 3 pQ po 3

where pfo is the unperturbed rest baryon number density.

Note that this equation does not allow for particle production, wliich is a

complexity beyond this application at the moment. It is certainly apparent

that this equation of state is not the most recent, however it is explicit, and

in physical variables already in use in the main algorithm. For a complete

application purely for studying Heavy Ion Collisions, not only would a more

suitable field-based equation be used, but one would also use different at-

tributes for the particles in the simulation. Whilst an interesting study, this

was never intended as the primary purpose of this generalised algorithm, and

so will not be entertained. However, this algorithm is suitably general, and
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the application of such a state equation is a logical extension.

As in any Relativistic Hydrodynamical code, the variables can be split

into the conserved variables evolved forward across timeslices (D, e & q), and

those deduced at each step (v, P, e, y) as functions of the conserved variables.

Unlike equation (5.6), equation (5.5) is implicit, and requires a specialised

subroutine to obtain the hydrodynamical variables from the conserved, in-

tegrable variables at each time step. This is done by creating f(P) from the

equation of state and other constraint equations, and solving for its root with

a Newton-Raphson method or other similar method.

Accordingly, we define f(P) to be

/ p P (5.7)

where

(5 '8)

1 (5 '9)

v(P) = ^ 2 t-= (5.10)

From these relations we generate f(P)a as a highly non-linear function

of the location of particle a on the background metric, and the integrated

hydrodynamic variables only, as follows:

S
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f<P)

We use the definition of q(equation (2.37)) and e (equation (5.5)) to deter-

mine the flat space relation

q = v(e + £) (5.12)

The minimum pressure will occur when all tlie energy of the particle is in

the momentum, or when |v| = 1. This tells us the minimum pressure value

possible for a given energy and momentum must be

= pdql - e) (5.13)

The monotonicity of f(P) within the range Pmin to oo ensures uniqueness of

the solution.

Knowing the minimum value for tlie pressure, and the monotonicity of

/(P) allows the safe application of a Newton-Raphson method to solve for the

pressure variable.

5.5 Neighbour Searching and Rank Space

As with many particle methods, a great amount of computational time is

spent on finding out the neighbouring particles on a given computational

node. Traditionally this has been done through the ubiquitous linked list
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routine. This method has some shortfallings however, not the least of which

is the requirement of a grid of some form to divide the particles into cells. In

simulations where there may be large voids, or large variations in h, this can

lead to difficulties in defining the grids and complications in terms of memory

management.

As was alluded to in Section 4.2 a 'scatter' algorithm can give different

nearest neighbour lists to a 'gather' model, and how important it is to avoid

this and use symmetrical neighbour lists. The generation of these lists needs

to be carefully considered, as this is the most computationally intensive com-

ponent of the algorithm, and non-symmetrical listings have been shown to

lead to violations in the conservation laws.

This problem has previously, and typically, been tackled by laying a grid

over the computational region and scanning each cell for particles. If one

defines the grid spacing to be 2hmax, and systematically sweeps the grid, then

a particle's neighbours must be in the particle's home cell, or at most the next

cell or cells along in the sweep (previous cells being checked and summed

beforehand). However, if the computational space has large variations in h,

or is an awkward shape, as depicted in Figure 5.4, then this method is com-

putationally expensive. Either cells contain far too many particles, increasing

queries which result in no contribution to the summation loops (rfl& > h), or

memory space is wasted in allocating empty cells.

These situations can be avoided by maintaining a regular computational

box, and giving all particles the same h value. This is very limiting in terms

of physical spaces, but we can attain just this configuration if we transfer our

computational space into its 'ranked' equivalent, and replace the aforemen-

tioned linked-list search, with ranked-lists.
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FIGURE 5.4: An awkward computational domain, showing the mem-
ory cells used in linked listing, many of which will be empty

5.5.1 Ranklisting

As mentioned previously, linked lists are the most common form of nearest

neighbour searching to be found in particle codes. In its simplest and briefest

form, creating a linked list involves dividing the computational space into

cells of a given size, usually determined by the twice the largest smoothing

length. A sweep is then carried out, attributing each particle to one of these

cells. Then, to find the interacting neighbours of a given particle, one need

only look in that particle's home cell, and possibly the neighbouring cells. (All

other particles assuredly more than 2h a~.vay and consequently not included

in anv interaction.)

The linked listing described here is most efficient when all the particles

have the same h, and each cell of computational space has only one or two

particles within it. The method's effectiveness decreases when there are large

areas with no particles, or regions with h much smaller than the largest value

used to assign cell sizes. This can lead to empty cells, or cells with many



5.5. NEIGHBOUR SEARCHING AND RANK SPACE 81

more particles within them than is computationally efficient and is a problem

exacerbated by increasing spatial dimensions. We can illustrate this with

Figure 5.5 where we can see 10 particles unevenly spaced across the domain.

r

b cde fghii

FIGURE 5.5: A ID simulation, showing particle positions (denoted by
letters) and the resultant density curve

Typically one would lay a grid over this space, defined by the largest

smoothing length, i.e. that of particle a. This grid is shown in Figure 5.6. Note

how, due to large differences in smoothing length, ceil #2 is empty, whereas

cell #5 has 6 particles in it.

•
be def

ghi
•

FIGURE 5.6: The Linked List memory map for Figure 5.5

If the computational space can be modified or manipulated in such a way

that the optimal configuration is achieved, then the problems associated with
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wasted particle queries will be alleviated. This can be accomplished by shift-

ing the computation into 'rank-space/ where each particles is ordered by its x,y

and z values, and its rank amongst all other particles in these three directions,

gives the rank coordinate of the particle in rank-space. One can immediately

see that however complex and transmuted the original workspace becomes,

it will always reduce down to a rectangular cell, of nx, ny, and nz dimensions,

with no voids, and a constant particle density of one particle per rank cell,

A B O D E F G H I J_
a b c d e f 9 h i i

A
a
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be
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de
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fgh

J
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FIGURE 5.7: The same computational space as in Figure 5.5, trans-
ferred to rankspace. Particle names are shown in lower case, the
x coordinate is shown in upper case (a is at x - A) The mapping
system is shown by placing upper and lower bound maps onto the
top and bottom of the cell respectively

In this space, we have replaced the spatial identification of a particle (x,

y, z) with an integer based call (ith in the x direction, fh in the y, #* in the z).

The ordered sweep used in a linked list sweep is no longer available to us

(as we do not know in which direction neighbours will be situated), so we

also rank the smoothing lengths of each particle. We can then avoid double

summations by only examining particles with a greater (or lesser) h.

This rank space can then be broken down in the usual fashion, creating a

linked list of the interacting and neighbouring particles. The only difference

required, is that a map of the particles' true spatial locations must now be



5.5. NEIGHBOUR SEARCHING AND RANK SPACE 83

kept. This corresponds to mapping the outside faces of the data cube. This

is then used, coupled with the home particle's position and smoothing length

value, to reduce the complete rank box down to a number of cells surrounding

the home particle's location which need to be searched. (This refined sub-box

need not be symmetric, and will in fact reflect the asymmetries of the density

(h) distribution.) The particles residing in each of these cells are assembled

into a list of neighbours, which is used in the particle summation loops.

If we were using the linked lists of Figure 5.6 and wished to find the

neighbours of particle c, then we would check the inhabitants of c's cell,

and the next along, giving a neighbour list of {b,d,efftg,h,i). Many of these

particles are in a higher density region, and so will not be required to interact

with particle c. This leads to spurious enquiries and inefficiency.

Figure 5.7 shows the ten particles of the earlier example now placed into

rankspace. In the upper image, the memory blocks for an occupation of one

particle per cell is shown. Only one map is then required, indicated by the

single coordinate map along the top. To deduce the neighbour list as before,

particle c examines its location (C) and its smoolJ ring length (hc) to find an

interaction radius of C ± hc. This is compared to the coordinate map, to see

that only b, d and e fall within this radius.

The lower image shows the same situation, but here memory efficiency has

been increased at the expense of searching efficiency, by using a cell occupation

parameter ( ^r"cles) of 2. In this situation two coodinate maps, specifying the

lowest and highest values in each cell. Particle c then must query the particles

in the cells where Xiw > C - hc and Xup < C + hc. In such a simple example as

this, the same list of particles (b, d and e) will be generated as before. However,

it is easy to see how increasing the occupancy of the rankcells results in more

false positives and spurious queries, but smaller memory demands.



Chapter 6

Preliminary (Shocktube) Testing

jjfn this chapter we show the code's ability to deal with hydrodynamical

shock waves. The importance of these waves, both as physical systems to be

understood and as numerical test cases, is introduced in Section 6.1. Their

analytical solutions are dealt with in the following Section 6.2. Having estab-

lished all these foundations to the problem, Section 6.3 explains the routine

used to establish the initial particle positions and hydrodynamical variables.

We then conclude this chapter by looking at the algorithm's performance in

modelling these phenomena.

6.1 The Shock Tube as a Hydrodynamical System

Sod [1978] introduced the shock-tube test as a powerful analytical tool in

assessing hydrodynamical codes and their capabilities. The shock tube as used

in Sod's paper, and later revised to relativistic attributes, is fundamentally a

special class of Riemann problem.
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A Riemann problem is governed by the conservation equations

= 0, (6.1)

and two initial states separated by a discontinuity in one of more of the state

variables.

Or; x>0,

This initial state breaks down into some configuration of three, non-linear

waves:

Rarefaction waves <R: where all the state variables are continuous and

undergo a smooth transition between the before and after slates.

Shock Waves S: These are indicated by a discontinuous jump in the density

and pressure. All state variables are thereby discontinuous across a shock

front.

Contact Discontinuities C: This wave travels at the fluid velocity and ex-

ibits a jump in the density variable only. Pressure and Velocity (necessarily)

are smooth over a contact discontinuity.

The differences between rarefactions and Shockwaves are' "nted by the

pressure of the before and after states. Shocks raise the pressure, and abruptly

accelerate the particles, whilst rarefactions result in a drop in pressure, and

smooth particle accelerations.

After the breakdown of the initial state, two waves (either shock or rarefac-

tion) move into the unperturbed left (L) and right (R) states. Between these

two waves, two new states will appear (L* and R*), which will be separated by

the contact discontinuity. If we use arrows to indicate a leftward or rightward
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travelling waves, then the possible configurations of this initial state's decay

are given by the three possibilities

a) L K- I* C K' S-* R
b) L 5 - V C R* S-> R
c) L <R^ U C R* K-> R

in direct analogy to the Newtonian dynamics cases

The first scenario, (a), is the shocktube decomposition. Here a shock front

impacts the lower energy state on the right, sweeping up material in a dense

shell demarked by the shock and the contact discontinuity, while a rarefaction

fan sweeps into the high energy state on the left.

The second decomposition, (b), is two colliding cold streams, and the third,

(c), is an explosive expansion.

We will use two standard shock test cases in the analysis of this algorithm's

performance. The first is that introduced by Sod (1978). This is a non-

relativistic shock/rarefaction pair separated by a contact discontinuity, used

to show the correct resolution of basic hydrodynamical shocks and the correct

Newtonian limits.

The second shock is a relativistic shock where the fluid is accelerated to

around 0.75c. Whilst the speeds of the gas reached are only mildly relativistic,

the particles swept up in the dense shell behind the shockfront experience a

density increase of up to an order of magnitude. In a thermodynamic sense

then, this is an extremely relativistic shock.
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6.2 Exact Solution

In order to solve the relativistic shock-tube cases, one needs to calculate the

locations of the three waveforms and the intervening states, V and R*. Thank-

fully, the solutions are self similar in y, allowing initial solutions to be propa-

gated forward in time by simple scaling. This is best highlighted by showing

the shocktube in the x -1 plane.

A

FIGURE 6.1: Characteristics of the Shocktube on the x -1 plane

In order to avoid complexity caused by over-generalisations, we will work

only with the shock where L* is the higher pressure initial state, expanding

into the R1 lower energy state. The problem reduces to 5 states separated by

the waves introduced earlier. Reading from left to right:
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1 L* Known state in a Riemann problem

2 Rarefaction Fan

3 Plateau Separated from 4 by CD

4 Plateau (Shocked Shell) Separated from 5 by »S

5 R* Known state in a Riemann problem

For a more complete and thorough examination of this problem, see the

papers of Marti and Miiller [1994], and Thompson [1986]. These works are

summarised briefly in the next few sections.

6,2.1 The Rarefaction

Denoted in Figure 6.1 as Region 2 and bounded by X\ and xi is the rarefaction

fan. The self similar solution dictates that the rarefaction is isentropic through

the stipulation that entropy is conserved along field lines. We can show this

by transforming the fluid equations into the variable x - f in the laboratory

frame (Eulerian), giving

sX = 0 (6.2)
Ac

~«° + v . Vs = 0 (6.3)
at

which, as we can reduce to one-spatial direction
dsQ 0 ds
- T V + vr- = 0 (6.4)
dt dx

| = 0 (6.5)

In general, v will not equal x> so entropy must be conserved. If we follow

f-i
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the same transformation with the equations of motion, we derive

g = o
~ = 0

(6.6)

(6.7)

where

c2 - (6.8)

In order to avoid trivial solutions, the determinant of the above coefficient

matrix must be null, which gives us the relation

(6.9)

Note that this is simply the one-dimensional equivalent of Equation 3.37.

Due to the nature of the Riemann problem the left hand state is stationary.

So solving Equation 6.9 for v - 0 gives #1 = -cs/ where the minus sign comes

from our initial establishment of the problem. This tells us that the head of

the rarefaction fan travels into State 1 at the local sound speed.

We can solve for the differentials of the density and the velocity by taking

Equation 6.9 and substituting it into Equation 6.6. This then gives us

y2dv ± —dpo = 0,
PoPo

(6.10)

which in turn gives

]n{
1 in . I

- p ± I
1-0 J

C

Po
= constant (6.11)
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As we are using a polytropic equation of state, we can write the sound

speed as a function of p0 alone, giving

s (6.12)

and allowing the integral in Equation 6.11 to be solved through the rarefaction

fan.

We now have the relation

_2

c o n s t a n t (6.13)

which gives us the fan, but cannot be used yet, as we do not know Xii the tail

of the fan.

6.2.2 The Intermediate States

In order to know where the fan stops, we need to know State 3, L*. We move

to a frame which is comoving with the shock, and introduce the subscripts of

s to denote shock values, A for ahead of the wave, and B for behind. With this

notation, the relativistic Rankine-Hugoniot jump conditions are

= 0 (6.14)

ty = 0 (6.15)

The square parenthesis denote the jump in the observed quantity

[Q] = QA~QB (6.16)
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and nmu is the normal to the hypersurface across which the discontinuity

occurs. In the co-moving frame, this will be given by

, 1,0,0).

The mass flux across the front will be

= ysDA(vA - vs) = ysDB(vB - vs)

(6.17)

(6.18)

Note: we are using the notation of previous chapters.

Understanding that in this frame, the mass, momentum and energy fluxes

must be continuous (or else there would be a build up at the shock front) we

can deduce the jump conditions to be

[P] = £[q]

[vP] = Ue\

(6.19)

(6.20)

(6.21)

We then take Equation 6.20, and using the definition of q and solving for

deduce

+ —7—

VB = hAyA + (PB - P A ) ( ^ + -1-)

We now can use this relation and the condition across the contact discon-

tinuity to deduce the plateau states 3 and 4 through

vL-(P) = (6.23)
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Having solved this, we also know #3, the speed of the Contact Discontinu-

ity, as it must travel at the fluid velocity, v.

6.2.3 The Shock Front

All that is left is to deduce the density of the shell in region 4 and the velocity

of the shock itself, vs. This requires the Taub adiabat Taub [1978], in analogy to

the application of the Hugoniot adiabat in Newtonian shock theory. The Taub

theory allows the jump condition for the relativistic enthalpy to be deduced

as
Jin h A

(6.24)
hA-

PB PA

As the Equation of State is polytropic, we can remove the post shock density

term, ps through
FPn

:, (6.25)

which leaves us with

(r-i)(PA-pB) (r-i)(pA-pB) pA-pB+ H A ~ Jm, JA
(6-26)

This is a simple quadratic in the post-shock enthalpy as a function of the

(known) post-shock pressure. It can be shown to always have one and only

one physical root, which allows the mass flux / to be found through

(6.27)

This in turn gives vs the shock velocity fa) through Equation 6.18.

We have now deduced the complete analytical solution to the relativistic

Riemann Shock.
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6.3 Initial Conditions

It has been previously stated that we attempt to keep the unperturbed particles

in as regular a formation as possible. This is an attempt to reduce scatter in the

signal caused by a wave impacting onto random distributions. In order for

this to occur, we need the initial particle distribution to be hydrodynamically

relaxed. This can be achieved two ways. The first is to allow the particles time

(usually a few sound crossing times) to reassemble into relaxed state. This has

the disadvantage of producing a disordered interaction face to the incoming

wave, which increases scatter, and may hide important performance issues.

In doing this, one would also have to relax each half of the computational

zone independently. Whilst not a concern in itself, establishing the initial

configuration after such a time would be difficult as discontinuities need to

be resolved over at least a few particles. Exactly how this would be done to a

disordered set without artificially introducing heat or other spurious artefacts

is unclear.

The second option involves placing the particles into a pseudo-relaxed

position. Using the Split-daughter boundary conditions and periodic bound-

aries introduced in Section 5.1, an initial equilibrium particle distribution with

no hydrodynamical gradients will maintain its grid structure for a number of

sound crossing times.

In order to implement these conditions, it is important that the initial

particle distribution fits within the box evenly and smoothly, with no strain

on the particle displacements.

We begin by looking at a 10:1 density shock.

The 10:1 variation in density corresponds (in 3-Dimensions) to a variation

in particle spacing of 10^, or approximately 2.15. We must consider the
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memory constraints of computational applications, and so attempt to inn the

simulation w'th as few particles as possible in the directions parallel to the

shock front. With this in mind, we establish the diaphragm in the y, z plane

at x = 0. The lower density region will have fewer particle across its bounds

by a factor of 2.15, but we wish the initial particle spacings to fit within the

box. We begin in the high density region, laying the particles down on a body

centred grid of 15 particles square. The smallest integer ratio giving a particle

density ratio of ~ 2.15 is 15:7 with a 0.33% misfit of the two grids. This does

create a small amount of particle settling, but it is a small effect, noticeable as

a minor increase in scatter near the boundaries, and one which we will not

worry ourselves with too much. For a more specific application, more c?.re

could be taken in establishing better performing spacings.

The initial particle spacing is an input parameter, and is used to specify

the resolution in the shock propagation direction, x. The y and z boundaries

(periodic) are established by the number of particles across the initial grid

spacing and this spacing parameter. The initialisation procedure involves

laying down the grid from x - -0.5 until close the the origin, where the

particle spacing smoothly changes across to the lower density values in the

right hand region. The upper x-boundary is chosen to fit the grid in smoothly

at around x = 0.5.

The smoothing procedure is a simple exponential, smearing any disconti-

nuity out across a few particle spacings in the x direction. To accomplish this,

we simply define the particle position to be in one of three zones, the left steady

state (AL), right steady state (AR), or a region of transferral in between. These

regions are defined by particle rank position, rather than x-coordinate.i.e. the

the smeared region of transferral extends for 10 particles either side of the

origin in the x direction. This is because particles can only interact over a
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certain range, controlled by their smoothing parameter, which is established

by numbers of neighbours. It is therefore more logical to set up this region as

numbers of particles.

The field variables < A > are then smoothed over the range by the rule

(6.28)

where Ax is the particle separation chosen to maintain the relation between

particles and desired density distribution. This is the same method used by

[Chow and Monaghan, 1997] in their 1-D application where it worked quite

well, and no need was seen to develop it further.

The number of baryons represented by each particle, v&, is the last variable

attributed to each particle. The number of particles to K used in the simu-

lation is decided by the desired resolution and the available memory, (see

Section 6.4.2) After establishing the value for the field variable p, the baryon

number density, the representative baryon number is chosen to satisfy this

condition. This is a simple calculation, through taking a single bcc cell, with

a volumeA*AyAz and noting that it contains two computational particle (one

in the centre of the box, and 8-octants in each corner).

6.4 SPH Performance and Results

It is important that any relativistic code, although optimised for relativis-

tic flows, should be able to handle subtler conditions. With this in mind,

we will reproduce firstly a non-relativistic shock flow. As one-dimensional

shock tests have already been performed using SPH, we will not reproduce

it here, opting instead to show the 3-dimensional algorithm's performance.
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One-dimensional test cases of relativistic shock havs also been performed,

however they will be reproduced here as a comparitive example. With only

one spatial dimension, colliding particles always move along radial orbits,

so the diffusion terms do not need to be as hard as they do in higher dimen-

sions, to produce an equivalent amount of stopping force and avoid unwanted

inter-particle penetration. By showing this 1-D case, and following with 3D

equivalent simulations, one can see the interpenetration and diffusive perfor-

mance differences more easily.

6.4.1 Diffusion Parameter Choices

Choosing the parameter K for the artificial diffusion terms may appear to be

a black art, the choice of which is capable of hiding, or causing, a number of

effects. For each initial conditions various values for the artificial viscosity

parameter were trial, and used as a form of similarity check. Starting from

values clearly too small, deduced from the code's inability to resolve the

density shell at all and crashing due to the density jump becoming unresolved,

through until the values calailated for each region reached some form of

constant value. Particularly in the 1 dimensional studies, it was found that

increasing K beyond this point would produce instabilities in the supposed

quiescent states of the simulation. This was found to be a good indicator

of how to set the artificial diffusion parameters. Closest results to analytical

solutions were gained by using a parameter just smaller than that which would

destabilise a static region, and around which small variations in it would not

affect the density value for the five resolved regions.

Increasing the value of K from some initial estimate, until the value of the

density shell in subsequent simulations stabilised, produced a value of K =



6A. SPH PERFORMANCE AND RESULTS 97

1.8. The maximum value which allowed correct modelling of the quiescent

end regions was 2.1, with severe diffusion across the contact discontinuity.

Consequently, the high-resolution ID simulations use a diffusion parameter

value of 1.85.

In 3-dimensional cases this distinction is no longer as clear, as it became

possible to reduce the density of the post-9hock shell through injudicious

application of artificial viscosity schemes, something not able to be done

in 1-D tests. Best results were still obtained by running a slightly smaller

value than that which created spurious density spikes in the quiescent gas.

These spurious effects appear as single particle's density jumping and is most

likely caused by inappropriate time step controls. As they occurred only

after increasing the amount of artificial viscosity above the sensible limits

discovered by stable runs, these were not investigated further. Sensible results

were gained for values of K < 6 which is very close to the 1-dimensional value

raised to the power 3 (1.853 « 6.3) and the code was not found to be particularly

sensitive to variations in K.

Some time was spent in analysing possible extensions to these terms, par-

ticularly in closely watching effects of fluid and sound speeds. Whilst these

applications were fruitful in generating better numerical approximations to

the analytical solution, there was no clear distinctions to be made in how to

best choose the parameters. So they were abandoned for a lesser tuned ver-

sion, but whose results could be trusted in the situation where there was no

analytical solution to match the output data to.
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6.4.2 Sod's Shock

Sod's shock tube problem is an accepted initial test for any hydrodynamical

code. It is well understood, and replicated here. The initial states are described

in Table 6.1 with an equation of state of perfect fluid, and a value of § is used

forT.

TABLE 6 .1 : Soc

Pressure
Density

Shock Tube Test Conditions
Left state

1
4

Right State
0.1795

1

The first dimension to be ascertained is the lateral grid y - z dimensions.

For this prblem we will be modelling a 4:1 density drop, which corresponds

to(41/3 - 1.58 =* J|) to the nearest integer ratio.The physical y and z dimensions

are left free, set by the condition that the x spacing covers a physical range of

unity.

The initial placement of particles uses the body-centered cubic array, which

appears as four particles placed at each vertex of a cubic cell, and one directly

in the centre. This same configuration can also be described as a series of

uniform square sheets in the y - z plane, stacked along side each other in the

^-direction. Each sheet has a regular, square lattice of particles on it, and every

other sheet is off-set one half a spacing in the y and z directions. The particles

were laid out on this body-centred grid, of 15 x 15 particles in the y - z plane

and the spacing of the y - z sheets as an input parameter. This reduces to

10 x 10 partices in each sheet in the lower energy state and a similar increase

in x spacing after the discontinuity at x = 0 is crossed. This corresponds to

a density drop of 4:1 and yields an x resolution of ~ 1000 particles in the

x-direction, modelling the region -0.5 < x < 0.5.
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Hie actual numbers of particles filling the computational box in each di-

rection (x, y, z) is

627,15,15:353,10,10

141180 :35295 = 176475 particles

This highlights the memory difficulties of these sorts of tests. Ultimately,

we would prefer most particles to be situated around the shockfront to re-

solve the rapid acceleration experienced there, but are resigned to have most

memory used in allocating particles to the higher density, yet relatively qui-

escent, high density state. This problem is only exacerbated in later tests of

10:1 density drops.

The three waves mentioned in Section 6.1 can clearly be seen in Figures 6.2

through to 6.4. The rightward travelling shock and the leftward rarefaction

fan are clear characteristics. Note how the contact discontinuity marks the

end of the shocked density shell, but is unidentifiable in the pressure plot.

The clear difference in the rarefaction waves, as against the shock wave are

also clear in these images.

If we plot the velocity curve, we can immediately see the rapid acceleration

of the shock front, but also notice much more scatter in the plateau regions.

This region appears to be poorly resolved, although whilst there is a large

amount of scatter, the average velocity' of this region is correct. This scatter

is a direct result of post-shock ringing or oscillation, and can be controlled

by increasing numerical diffusivity, but has been included nonetheless to

highlight the difference in scatter between different variables.

The Plots shown in Figures 6.2, 6.3, 6.4 and 6.5 are created by sampling

down the middle of the computational box. This is done simply to reduce the
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FIGURE 6.2: 3-dimensional simulation of Sod's Shock tube showing
Baryon Number Density against x location
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RQURE 6.3: 3-dimensional simulation of Sod's Shock tube showing
Thermal Energy against x location
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FIGURE 6.4: 3-dimensional simulation of Sod's Shock tube showing
Pressure against x location
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FIQURE 6.5: Sod's Shock tube Velocity distribution, showing consid-
erable scatter in the plateau regions. The noise on the righthand
boundary is an errant Boundary condition not affecting the central
simulation
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actual number of particles in the image, and no selection process is carried out.

All plots show the same individual particles. Some of the plots show regions

where there apptsr to be no particles. This is a result of this method of plotting,

which ignores particles outside of some radial distance from the x-axis. These

gaps can be removed by simply increasing this sampling radius, usually by

a small amount, to capture the 'missing' particles in the plot. Increasing the

radius also increases the total amount of data within the plot increasing the

size of the image file unnecessarily. Figure 6.5 also shows an acoustic wave

coming in from the boundary. This is caused by a mismatch between the

particle spacings and the dimensions of the computational cell in the lower

density regions. This non-continuance of the initial particle placement grid is

exacerbated at the corners, where two periodic boundary conditions meet. For

this application, the particles spacings should differ by 4$ or ̂  1.587. The grid

ratio of 15 : 10 yields a 6% discrepancy or strain on the particle placements,

which is enough to cause this wave on the boundary. For later simulations,

this particle spacing to computational cell mismatch is much reduced, and

these waves do not appear.

6.5 Relativistic Shock Wave

The first relativistic example we will employ is the shock tube studied in

detail in one-dimension by Hawley et al. [1984], Schneider et al. [1993], Marti

and Muller [1996] and in three-dimensions by Siegler and Riffert [1999] .

This is similar in its initial conditions to the Sod tube shown previously, but

more extreme. As before, the higher density and pressure state is to the

left, and lower energy states to the right. When the two states are brought

together, a shock wave propagates into the low density gas to the right, and
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a rarefaction fan propagates leftwards into the higher density state. Between

these two waves, there is a contact discontinuity where the pressure and

velocity are continuous, but the density drops. In order to aid comparison

between one and three dimension simulations, the 1-dimension outputs in

Figures 6.6 through to 6.9 have been included.

TABLE 6.2: Relativistic Shock Tube Test

Pressure
Density

Left state
13.3
10

Right State
0.000001

1

The artificial viscosity was the largest value that would allow stable qui-

escent regions. This is dependent upon the number of particles, and for this

particular configuration came to be ~ 1.8

6.5.1 3-D Shocks

We have outlined previously the significant increase in demand placed upon

the dissipation terms in the extension into higher spatial dimensions. There

is a lot more opportunity with the added degrees of freedom for the particles

to interpenetrate, and for artificial or false communication to occur. Therefore

we would not expect that what occurs in ID necessarily carries over into 3D.

To highlight this fact, we show two shock simulations, one calculated in a

one-dimensional code, the other 3-dimensional application. The greatest dif-

ferences between the one and three dimensional performances are evidenced

in the baiyon number density plots which are shown in Figures 6.10 and 6.11.

The images shown in Figures 6.10 and 6.11 show the two codes after 2000

timesteps. The code on the left is a one dimensional application, with a total

of 3900 particles. This corresponds to ~ 350 in the lower density region. The



6.5. RELATIVISTIC SHOCK WAVE 106

FIGURE 6.6: ID simulation of the Rclativistic Shock showing Baryon
Number Density, Distribution

\ '
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FIGURE 6.7: ID simulation of the Relativistic Shock showing Pressure
Distribution
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FIGURE 6.8: ID fiauUation of the Relativistic Shock showing Thermal
Energy Distribution
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FIGURE 6.9: ID simulation of the ReJativistic Shock showing Velocity
Distribution
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FIGURE 6.10: 1-D baryon number density versus x location, with
identical particle resolution in the x direction as Figure 6.11
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FKJURE 6.11: 3-D simulation showing baryon number density versus
x location, with identical particle resolution in the x direction as
Figure 6.10
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right hand graph is the 3-dimensional simulation, with ~ 190,000 particles,

which also corresponds to ~ 350 sheets in the x direction,

771,15,15:354,7,7

173472:17347 particles

The issue raised in the study of the non-relativistic shock, with regards

to memory allocation is made again here. Most particles in these tests are

required in the non-active, or quiescent, regions of higher density, making

this a very memory inefficient test for this application. One would like to use

more of the particles in resolving the shock front, and surrounding regions,

but this would require variable particle baryon number representations, v&.

This is certainly something which would benefit from concerted study in the

future. In fact, this modification has been implemented in the MHD work of

Borve et al. [2001] with promising results.

Immediately apparent is the difference in diffusion of both the shock front

and the contact discontinuity. The apparent increase in sharpness of the three-

dimensional shock is due to the initial smearing application in the particle's

initial set up routine. As has been mentioned, the smearing is calculated by

a function of the right and left steady states, and an exponential involving

the particle separation. In the one dimensional case, the particle spacing

changes by the full factor of 10 as one goes from the high density to the low

density state. In three dimensions, this is only 10$, or ~ 2.15 in the x direction.

Therefore, in order to resolve the shock over ~ 12 particles, as it is in both of

these cases, the one-dimensional application resolves the shock over a larger

spatial distance. It should be noted though, that merely counting the numbers
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of particles across a shock front is a poor guide to the relative performance of

the codes, as both the particle spacings and smoothing lengths are completely

dynamic variables.

The diffusion evident on the contact discontinuity in 3-D is acceptable,

although clearly more than that seen in the one-dimensional case. This is due

to the large amount of diffusion required to inhibit post-shock ringing and over

estimation of the shell's density. Interestingly, or perhaps co-incidentally, in

order to gain similar resolution and smoothness, the 3-dimension diffusion

parameter is very close to that of the one-dimension to the power of three.

It is suggested from similar tests in one dimension, that the diffusion over

the contact discontinuity is reduced by increasing the number of particles,

unfortunately an impossibility at the moment due to memory restrictions on

single processor machines.

6.5.2 Effects of the Number of Neighbours

We can examine the extra diffusion caused by increasing the numbers of

desired neighbours. As shown in Section 6.3 the algorithm calls for the input

of a 'desired number of neighbours/ which is used to control the evolution of

h, the smoothing length. Increasing this number forces more particles to be

included in the particle summations, which smears out shocks, and equally

the postshock oscillations. Reducing this number will increase the resolution

of a shock wave, but be less likely to diffuse oscillations.

Except for variations in the number of desired neighbours in the particle

summation loops, the three simulations of relativistic shocks shown in Figures

6.12,6.13 and 6.14 use identical set-up algorithms and parameter configura-

tions.
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The most prominent feature immediately noticeable is the difference in

the scheme's ability to capture the shockfront. In the upper image, where the

desired number of included neighbours is only 35, the value of the peak of

the density spike is overestimated. The simulation still produces a reasonably

smooth profile however, with minimal oscillations. It is this ability which

means one needs to run convergence tests to ensure that the simulation is

producing correct results.

The middle images shows the scheme correctly capturing the peak value,

using 57 nearest neighbours. This has introduced a minor oscillation in the

plateau region immediately behind the shock. The shock front itself is also

more diffused.

The final image highlights how the peak value stabilises to that of around

the analytic solution. The extra diffusion introduced by summation loops of

80 neighbours smooths out the post shock oscillations completely, but also

smears the shockfront noticeably.

The second difference is the resolution of the rarefaction fan. With less than

optimum numbers of neighbours, one can see that the head of the fan is poorly

resolved, with too much apparent diffusion. It is also clear that there is some

density wave within the rarefaction fan. Looking carefully at this particular

run, it is noted that this wave travels as a downwind soundwave, i.e. travelling

at the speed j^jr where v is the fluid velocity (accelerating to the right) and cs

is the local sound speed. The soundwave originates at the origin at t=0, and is

possibly the initial grid mismatch leading to a perturbation at the initialisation

of the shockfront. With added neighbours (and the inherent diffusion) this

peak is dissipated into the surrounding fluid. Note that the integral £* pdV

is maintained and correct. It is this conservation which enforces the incorrect

rarefaction head in the low dissipation models.

iiil
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As the numbers of neighbours increases, and this soundwave is diffused

more and more, the rarefaction fan becomes increasingly better defined. How-

ever, there is a small glitch noted in the 80 neighbour simulation at the rar-

efaction tail. It is believed that this is caused by the h modification algorithm

acting too aggressively in its control of the smoothing length as the density

begins to increase again and the fluid stops accelerating.
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FIGURE 6.12: Varying the desired number of neighbours: 35 nearest
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FIGURE 6.13: Varying the desired number of neighbours: 57 nearest
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Chapter 7

Relativistic Heavy Ion Collisions

(RHIC)

'ne of the important experimental applications of relativistic fluid dynamics

is that of Heavy Ion Collisions. This is the practice of accelerating atomic

nuclei up to very high speeds, before colliding them into atomic targets of

some description. The resulting spray of subatomic debris is then analysed

to deduce information about the nuclear interaction. This chapter open with

an historical overview of these accelerators and their capabilities. Section 7.2

then iooks at the basic events that constitute a nuclear collision, and this is

followed with an analytical lok at ways these processes might be modelled

(Section 7.3). It as been discussed previously how collisional studies use the

equation of state as an input, and this cone :pt is looked at in more detail

in Section 7.4. Section 7.5 introduces what hydrodynamical phenomena one

would hope to see in a well performing model, which lead us to examining

some of the advantages to using a particle method when studying collisions

(Section 7.6).

Having fully established what precisely one would expect to see in a hydro-
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dynamical simulation of a nuclear collision, the following sections examif1*-'

algorithm specific topics, such as establishing the initial conditions

77) and how the final outputs and performance assessment of Section 79

carried out (Section 7.8).

7.1 An Historic Overview

All matter consists of atoms, the basic building block of the universe. If v/e

look only at the nucleus, ignoring the easily disassociated electrons, then \Ve

see a collection of neutrons and protons, generally referred to as nucleon^

Current theory states that each of these nucleons is a bound grouping of thr^e

of the most fundamental subatomic particles, quarks. The positively charge^

protons are made up by two up flavoured quarks and one down, where2s

the neutrons consist of two down and a single up. These sub-nuclear bags 0*

quarks are held together by the intermediatory mesons known collectively 0s

gluons.

Being fundamentally quantum particles, the available energy states iOT

any trinity of quarks will depend entirely upon the energy density of the sta*e

it finds itself in. For lighter nuclei, this means that the nucleon? maintain

some 'personal identity/ occupying distinct energy states. As the mass o*

the nucleus increases, the nucleons become packed more closely, increasing

the number of available states and simultaneously decreasing the spacinS

between them. Eventually, the available states become so numerous an"

so closely spaced that the nucleons lose their discrete qualities, and behaVe

approximately as a fluid. This coherent state is often referred to as 'nuclei

matter.'

Up until nuclei wich a nucleon number A ~ 210 (somewhere around lea**
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and bismuth) these configurations are stable. Above this stability limit, the

Coulombic repulsion of the like charged protons cause the nuclei to undergo

fission. However, sufficiently large numbers of nuclei (A ~ 1057) can be

stabilised by gravity, allowing the creation of Neutron Stars and other compact

objects. [Stock, 1989]

Understanding the behaviour of this fluid is important to accurately model

compact objects, supernova explosions (particularly the core-bounce sce-

nario) and even the nature and consequent evolution of the Big Bang. The

principle piece of information required for these models is just how stiff

nuclear matter is. That is, how quickly does the pressure rise as a func-

tion of an increasing density? A Type II supernova may experience num-

ber densities upwards of 0.6 fm~3, four times the rest density of a nucleus

(0.15 baryons per cubic femtometer (fm~3) corresponds to ~ 2.7xl014g cm"3)

[Stock, 1989]. The interior of neutron stars may be higher still. Clearly some

form of experiment was needed to get to these densities and deduce how

nuclear matter behaved.

It was not until 1974 when the Lawrence Berkeley Laboratory's Bevalac

became the first machine capable of replicating the densities required to ex-

plore the nuclear equation of state. Fundamentally a synergy of the Bevatron

synchrotron and a linear accelerator, the Bevalac accelerated a beam of ions

(originally only capable of up to A=40) up to energies of 2 GeV per nucleon.

This beam of accelerated particles then was allowed to impact into a stationary

target [Gutbrod and Stocker, 1991]. Basic improvements over time allowed the

Btwalac to use beams of nuclei with nucleon numbers up to that of uranium,

although the analysis of the debris from a collision event was still basically a

photographic system until the development of the Plastic Ball Spectrometer.

This was developed by Poskanzer, Ritter and Gutbrod, and was capable of
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measuring the mass, charge, energy and angle of emission at a high enough j
ii

sampling rate to collect nearly all the particles from a succession of events. |

This instrument showed that nuclei were indeed capable of stopping each :]

other and would not necessarily tunnel through each other. This stopping

effect was indicated by the complete disappearance of projectile and target

nuclei, which was replaced by a pile of nuclear debris at rest in the centre of

mass frame [Gutbrod and Stocker, 1991].

Evidence gathered from these experiments suggests that not only is the

equation of state for nuclear matter quite stiff, but may have a number of

metastable higher energy states, or even multiple phase transitions. One of

these proposed phases is the exotic quark-gluon plasma, whose existence r

indirectly allows for the existence of 'quark stars/ a new class of compact \

objects.

7.2 Phases of a Nuclear Collision

The physical description of a nuclear collision can be divided into four distinct

phases or time periods. The first of these is the initial contact and heating

phase, where the projectile nucleons first transfer some of their kinetic energy

into the target nucleus. As these motions are well above any conceivable local

sound speed, shocks propagate outwards from the initial point of contact. The

finite size of target nuclei means that these shockfronts will be quite complex

curves, and not describable in terms of simple curves of revolution.

When a nucleon first impacts another, considerable amounts of its ki-

netic energy are lost. Goldhaber and Busza (quoted in Wong [1994]) refer to

this as the 'nuclear stopping powe**' Nucleon-nucleus and nucleus-nucleus

collisions reveal that a substantial amount of the projectile nucleon's initial ki-
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netic energy is lost through this nucleon-nucleon collision interaction [Wong,

1994]. This energy is converted into the production of large numbers of par-

ticles (mostly pions). Simply put, the initial kinetic energy, in the form of

longitudinal momentum, is converted into energy of the hadronic matter in

the centre of mass of the system. This creates a fireball (the second phase),

the magnitude and degree of which depends on the equation of state, and its

ability to provide nuclear stopping.

The fireball zone translates much of the initial energies into transverse and

longitudinal motions which drive the third phase, a rapid expansion. This

phase is not seen in nucleon-nucleon collisions, implying that these systems

behave far from that of a macroscopic system capable of being understood with

a thermodynamic model [Hung and Shuryak, 1998]. However, more of this

collective flow is seen as the energies and mass of the colliding nuclei increase.

This implies that macroscopic behaviour increases with the energies, and with

macroscopic behaviour comes the ability to understand the collisions in terms

of thermodynamics. Murh cf the information from the previous fireball phase

is lost through scattering events during this phase of thermal expansion.

The final phase is the chemical freeze-out. Once the density drops to less

than around 30% of the rest density, the fluid disassociates into its constituent,

non-interacting hadrons. The exact temperatures and density this occurs at

is dependant upon the individual species created in the collision and their

individual response to their density and temperature environments. This

phase then becomes a bit of a bug-bear for the theoretical modellers and most

use some form of simple 'freezout' temperature, 7/, below which thermal and

chemical equilibrium are assumed. [Teaney et alv 2001]. Naturally, at this

stage, any hydrodynamic scheme will become inappropriate.

iii
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7.3 Modelling a Nuclear Collision

Hie choice for theoretical modelling of such a complicated event such as these

nuclear collisions can be broadly broken into two methods. If the ratio of mass

to kinetic energy of the nucleons is small, one can dispense with the relativistic

methods completely, and use a quantum dynamical, non-relativistic approach.

This will involve the solution to a many-body SchrOdinger Equation, which

would require many other assumptions and simplifications.

If, however, the momenta are significantly higher, then the de Broglie

wavelengths are small. This allows quantum effects to be ignored, and a

relativistic theory can be applied. Relativistic theories capable of being applied

to extremely relativistic collisions all fit within 4 groups:

Cascade Models

These models approximate the collision as a series of two-body collisions as-

sumed to be in free space. The resultant scattering is naturally restricted by

Pauli exclusion principles, but other than this, the collisions remain distinct.

This approximation is really only valid if the mean free path of the colliding

nucleons is much larger than the range of the nuclear force, and due to the as-

sumption of free-space collisions, can not reproduce any collective flows. No

assumptions need be made about local thermal or chemical equilibrium, but

the cross-sections for each possible interaction need to measured experimen-

tally and used as a basic input. These methods can however accurately depict

non-equilibrium effects, such as those after the thermal expansion phases,

where there is no time for any form of equilibrium to occur. These methods

will also predict the freeze-out surface well, where the density and coupling

are greatly reduced
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Hydrodynamics

At the other end of the spectrum to the cascade models, are hydrodynamical

models. The requisite assumption of there existing either a large interaction

(smaller interactions are resolved with the cascade models) or small bombard-

ing energies is the most contentious for the application of this model. Amsden

et al. [1977] contend that the mean free path required to stop a nucieon at 250

AMeV (250 MeV per nucieon) is 3 femtometer (fm) compared to the mean

free path for nucieon collisions at normal nuclear density of ~ 1.7 fm. This

means that the ability of a hydrodynamical code should be adequate at lower

bombarding energies, but as the bombarding energy and the stopping dis-

tance increase, its performance should deteriorate. As is also pointed out in

Amsden et al. [1977], these simple assumptions ignore the effects of coherent

collective fields, such as pion condensates, which would further reduce the

stopping distance. Despite this argument, later hydrodynamical codes used

to study the ion collisions, such as Aguiar et al. [2000], have shown good

results.

The other assumptions inherent to applying a general fluid algorithm

to this application are that there is enough time for the fluid to reach local

thermodynamic equilibrium and there are many degrees of freedom available.

The second of these is safe, in that initially there are 200+ nucleons, which

rapidly become a soup of many more subatomic particles.

In terms of the possible extent that thermal equilibrium could be reached,

we can look at the time of the collision, which is of the order of the size of a

nucleus divided by the speed of light ~ ^gjg? « 10"23 s. An exchange of a

pion between two nucleons requires ~ 10~24 s [Amsden et al., 1977] or a tenth

of the collision time.
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The hydrodynamical codes reproduce the macroscopic behaviour of the

nuclear fluid, such as tine fireball phase and resultant collective motions, They

cannot deal with times after the freeze-out phase, as the fluid is completely

decoupled and so thermodynamical treatments become inappropriate.

As opposed to the cascade models, the hydrodynamical models require an

equation of state as a basic input.

Two-Fluid Hydrodynamics

The Two-fluid approximation attempts to combine the two previous methods,

by maintaining the bulk flow properties of the hydrodynamical models with

some of the cascade effects. This is done by solving the equations of fluid

motion, but with added terms coupling the target and projectile through

energy and momentum transfer as they penetrate each other. This is done

through a drag function, which takes into account the cross-sections of the

cascade models. For a detailed synopsis and presentation, refer to Amsden

etal.[1978].

Hybrid Models

The last group are the most recent and use thermo-dynamic modelling to

reproduce the bulk motion of the impact. This supplies the basic fluid prop-

erties of momentum, density and thermal energies, which are then used as

an input for a cascade model used to model the reaction from the expansion

phase onwards [Teaney et al., 2001].
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7A The Equation of State as an Hydrodynamical

Input

The fireball stage and its resultant spray of material is entirely dependent upon

the compressibility or nuclear stopping power of the nuclear fluid, which is

a function of the equation of state. Unlike the cascade models, which use

cross-sections as their inputs, a hydrodynamical code requires this relation

between pressure and mass^energy density as its input.

Following the paper of Nix et al. [1982] we identify that in the rest frame

of the nuclear fluid, the total energy per nucleon will be given by the ground

state energy per nucleon, eo, plus a thermal term

(7.1)

where T is the thermal contribution and is a function of the number density.

The pressure is then given by

(7.2)

(7.3)

with S denoting derivatives performed at constant entropy per baryon. [Ams-

den et al., 1977]

The ground state energy is given by

(7.4)

with a = 19.88MeV, b = 69.02MeV, and c = 33A6MeV. Taking the rest baryon
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number to be 0,1346 fm"3, we can then deduce

[Harlowetal.,1976]

As has been previously noted, the disregard of all terms to do with Coulom-

bic attraction and surface forces experienced by the nuclear fluid, mean that

this is by no means a complete simulation. Whilst these energies are small

relative to tha kinetic energy of the collision, it does preclude an accurate rep-

resentation of the coalescence of nuclear debris into particles after the fireball.

Making assumptions about equilibria and nuclear reaction rates and using

information from the temperature and baryon number densities, one could

interpret the momentum distribution to deduce theoretical particle spectra

from these simulations. These could be used as a comparison against the

experimental data in an effort to refine the equation of state. This, however, is

beyond the scope of this thesis.

In using this form of the equation of state, we have also neglected the

production of particles through the nuclear stopping interactions, and the

resultant radiative energy losses. Whilst this could be accommodated in a

later version of this algorithm, it is again beyond the scope of this work.

7.5 The Hydrodynamic Phenomena of RHIC

As has been pointed out in the discussions on equations of state and their

applications here, the performance of this algorithm in its current guise will

be purely phenomenological. A dedicated RHIC SPH application would use

more appropriate variables and coordinates, and certainly a more complex
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EoS. Even the seemingly safe choice of conservation of baryons used to es-

tablish the evolution equations in this work, could fail in the fireball phase

of a heavy-ion collision, Here, thermal pion production could result in a

null-baryon number, pion dominated phase region, and a completely inap-

propriate fluid description. [Aguiar et al., 2000]

By our choice of equation of state and its lack of particle production phases,

we are avoiding this eventuality, but at the same time comdemning ourselves

to be unable to resolve any effects dependant upon this transition. The abil-

ity to convert the longitudinal momentum into hadrons affects the so called

compressibility function of the nuclear matter, its ability to perform nuclear

stopping reactions. By deliberately excluding these effects, any conclusions

to be drawn from the fireball must be seen purely as qualitative, with little

predicative power. In other words, whilst compression will produce a fireball

region, our ignoring the effects of phase changes, particularly the generation

of a quark-gluon plasma, causes its magnitude and long term effects to be

ill-defined.

For a similar reason, determining the freeze-out surface from this algorithm

could be done, with experience in reducing our primitive variables into species

spectra. However, one expects that this surface would be at best a very

complicated structure and highly dependant on the nature of the fireball and

the amount of energy it deposits into the fluid. By knowingly simplifying this

early fireball stage, any follow on effects such as the freeze-out surface, would

also be greatly affected.

These effects are duie to the choice of the Equation of State which we

have made, and the desire to maintain as general an algorithm as is possible.

There is no obvious reason why more complex equations of state may not be

applied, and the resultant flows studied in more detail by later variations of
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this algorithm. (See Section 7.6)

These choices do not detract from the abiliryof the code to model the large

collective flows seen in heavy projectile impacts. Although the exact quali-

tative amount of energy deposited is unresolvable, conservation of energy is

maintained. So there is a clear energy increase in the central regions, which

will manifest itself as a thermal expansion phase. The overall response of

the nuclear fluid will also exhibit compressional heating and expansion ef-

fects, with resolvable shock fronts, all effects of relativistic hydrodynamics, as

opposed to specific nuclear dynamics.

The collective flows mentioned above are the macroscopic motions of nu-

clear matter during a collision, and as such are handled best by a hydrody-

namical description. The debris from a nuclear collision can be described by

'in-plane' motion, or 'out of plane'. Here the plane referred to is the reaction

plane, deduced by sphericity analysis or similar experimental reduction, and

is basically the plane defined by the projectile's longitudinal momentum be-

fore and after impact. Note that for head-on collisions, this momentum vector

will maintain a constant direction, and so there is no unique reaction plane.

This is what allows 2-dimensional codes to model heavy-ion collisions. How-

ever, once an impact parameter is introduced, the loss of symmetry provides

a before and after momentum vector, defining the reaction plane.

In the ejecta after the collision, there are three main flows detected by ex-

periments. Two of these are in the reaction plane, and a third is perpendicular

to it. Within the reaction timeframes, the effect of nuclear stopping and re-

gional heating should also be apparent. These two closely liked effects also

necessitate a distinction between nuclear particles to be drawn: 'participant'

and 'spectator' particles. Put simply, nuclear matter which has experienced

the fireball and been exposed to these pressures can be said to be participants.
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Much of the fluid will have been slowed, stopped and then its momentum re-

versed by the hardness of the colliding nuclei. This fluid will still be involved

in the subsequent re-expansion, but will not have undergone any reactions or

processing within the fireball region. This is the spectator fluid.

Side-Splash

The first of the collective, post-collision motions contained within the reaction

plane is known as 'side-splash'. As the name suggests, side-splash is an

assymmetric outflow of participant fluid, spraying out from the fireball region

in an azimuthal distribution.

Bounce-off

Having collided and transferred energy to target, some projectile spectators

will be given a side-ways push from the collision zone, and continue along

upon new, deflected paths. This flow will also be contained within the reaction

plane.

Squeeze-out

The final collective flow is perpendicular to the reaction plane, and occurs early

on in the reaction. It involves participant fluid, shock-heated in the fireball

region, being squeezed out laterally. It is this fluid which, experimentally, can

reveal the most information about the nuclear equation of state at its higher

densities. This fluid is ejected from the fireball region and almost immediately

freezes Oi., without passing through an interacting region of hadrons. It is

this fluid which can give a clear and distinct signal from the fireball region to

the detectors.

!
i

!
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Regional heating and nuclear stopping

The latter of these effects is perhaps a little obvious. Somehow the material

must have clear regions of unmixed fluid (spectators which will be picked

up on the experimental detectors). The nuclei must become compressed

enough to stop the interpenetration of the target and projectile. (Although at

high energies and light ions, this effect becomes less distinct as the quantum

effects of the individual participants becomes more apparent and the nucteons

become more transparent to each other)

This stopping results in regions of heating, which are currently used as

the initial condition for many nuclear codes. Other than the central fireball,

consisting entirely of participant fluid, two spectator regions of high density,

shock heated by the fireball and the mass of the nuclei colliding, should also

appear. This appears as three ellipsoids of high density described in spatial

order along the beam axis as: the core of the projectile (spectator), the fireball

region (participant), and the core of the target (spectator).

7.6 Advantages of Using a Particle Method for RHIC

Modelling

Neglecting the issues raised before about the complex nature of the nuclear

flow, there are a number of reasons one would use a particle method for these

problems over a Particle-In-Cell (PIC) or finite difference scheme.

The reliance of many grid schemes on exact or approximate Riemann

solvers means that their application to Heavy Ion collisions is compromised.

Riernann Solutions for these kind of equations of state are poorly understood,

and this becomes exacerbated in the three dimensions required to adequately
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model collisions.

The issue of efficiency of memory use for 3 dimensional calculations has

been raised, and the application to these sorts of collisions highlights the

point. In order to gain useful insights and to be able to compare results with

experimental detectors, the models must be able to run through the thermal

expansion phase until freeze-out. This means that for much of the collision, a

large empty space must be modelled if one is using a finite difference, or grid-

based scheme. This memory demand must be weighed against the need for

fine resolution in the fireball phase, to adequately model all interactions in the

region of compressed matter. An SPH application automatically distributes

its particles into this dense region, increasing resolution, and if used in con-

junction with a rank-space neighbour algorithm (Section 5.5), will not waste

memory in empty spaces. In fact, no extra memory is required as the parti-

cles expand outwards to the physical size of the detectors, as the rankspace

datacube remains a constant size.

Another issue is correct modelling of the freeze-out surface, across which

there is a transition from fluid to individual particles. This occurs when the

baryon density drops so low as to preclude any more interactions between the

nucleons. With a grid method, this will require some form of triangulation

and interpolation between nodes to determine where to turn off nuclear inter-

actions. For a full explanation of the amount of computational effort required

to perform this task, see the appendix of Hung and Shuryak [1998]. With an

SPH algorithm, the same can be achieved much more efficiently by attaching

a numerical tag to each particle, which dictates whether ur not the packet of

fluid depicted is chemically active or not. The rule for this chemical inertness

could be as simple as the rather naive: Once the baryon number density drops

to ~ 0.2 fm~3, the particle is understood to have passed through the freeze-out
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phase, or as complicated as one needs, using the thermodynamic variables

to predict a species spectrum for the represented fluid, and controlling the

evolution with regards to freeze-out through this. Visualising the freeze-out

surface is also simplified, as one would have knowledge of where each particle

was and its momentum when it passed through this phase, giving an instant

picture of the surface and its evolution.

The final benefit comes from being able to model a full collision interaction.

The grid distortion or remapping required to model the pre-contact phase

through to the fireball mean that many current codes use a separate generator

to produce a pre-fireball energy distribution [Aguiar et alv 2001], and then

evolve this through the expansion phases. There is no need to do this with a

particle code, as the grid entanglements and associated difficulties caused by

colliding or reconnecting flows simply do not exist.

7.7 Initial Conditions

In accordance with different particle accelerators, the velocities of the projectile

particles need to be deduced from the energy per nucleon classification of the

accelerator. This is frequently given in the form, for example, 200AMeV,

which corresponds to an energy of 200 MeV per nucleon. Having deduced

the required projectile velocity, the decision is made as to the computational

frame which will be used. Earlier simulations of these collisions had the target

nucleus stationary in the lab-frame. Hov/ever after the development of the

Plastic Ball Spectrometer, it became more common to study the centre of mass

frame.

The first models run are moderate collisions between 20Ne and 238U at

energies of 250 and 400 MeV per nucleon. This corresponds to the energies of



7,7. INITIAL CONDITIONS 135

the colliders available in the early 1980's.

Energy
250AMeV
400AMeV
2.1AGeV
5.0AGeV
ll.OAGeV

Lab Velocity
0.6149c
0.7219c
0.9516c
0.9876c
0.9969c

y
1.26
1.44
3.25
6.36
12.71

TABLE 7.1: Impactor speeds for stationary target for given energy
per nucleon

Energy

2.1AGeV
ll.OAGeV

Lab Velocity

0.719c
0.924c

Impact Velocity
(approach speed)

0.9516c
0.9969c

TABLE 7.2: Impact velocities for centre of mass frames for given
energy per nucleon

The basic nuclei are established in their own rest frame by first laying down

a cube of particles with specified spacing and side length of 2r0. The value of

ro is found by a simple calculation assuming the the number of nucleons are

known (which atomic species is being modelled) and the rest baryon number

density, taken to be 0.1346 fm"3. This initial cube is then cleaved, whereby

any particles greater than YQ from the centre of the cube are discarded. We

are then left with a sphere of radius r0 consisting of N particles laid out in a

body-centred grid structure.

Knowing how many particles are in this representation, and the number

of physical baryons (A) allows us to allocate the baryon number, vb, to each

particle and its number density variable and smoothing length value. All the

thermodynamic variables can then be allocated knowing the equation of state

and basic nuclear matter rest values.
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We now have a ball of particles representing a given nuclei at rest and

equilibrium. The laboratory velocity, chosen as an input parameter to repre-

sent the given energy of a collision, gives the special relativistic contraction

factor, y. (See Table 7,1) This is required because the nuclei are moving with

respect to the laboratory frame, and so will undergo length contraction in the

direction of motion. We chose the x direction for the beam axis, along which

the projectile will travel, and the y axis for any offset if a non-central collision is

simulated. As a consequence of this, only the x-axis will undergo contraction.

To perform this operation, the coordinates for each ball (spherical in its rest

frame) are contracted by a factor y in the x direction, resulting in the original

sphere appearing in the laboratory frame as an ellipsoid, circular in the y-z

plane, and foreshortened in x.

Some simulations of higher mass particles are calculated in the centre of

mass frame, where initially both the target and projectile are moving. In this

case, both nuclei need to be length contracted and have their computational

variable adjusted to the laboratory frame. These cases are shown in Table 7.2

for common energies per baryon.

To this new configuration, we attribute the pre-defined velocity and mo-

menta variables, and adjust the baryon number density by y such that it

corresponds to the computational frame rather than the nuclei's rest frame.

The final stage in the setting up of the collision simulation is to position the

nuclei such that they are close to each other on approaching trajectories. This is

a simple translation operation placing the centre of mass of the nuclei at ±(^ro+

3/io), where TQ is the rest frame nuclei radius, and ho is the attributed smoothing

length. A slide showing this phase is shown in Figure 7.1. Initialising the

projectile so close to the target nucleus is done for the simple reason that

we do not wish to use computational time modelling the flight of the nuclei

•\L
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15 10

FIGURE 7.1: The initial configuration showing the length contracted
projectile. 20Nc at 250 MeV colliding with 238U target

through free space.

As the contraction is only experienced in the x-direction, it is arguable that

a spheroidal kernel would offer the best resolution in this case. It has already

been explained why these kernel types have not been employed, but we are

left with the choice of smoothing length value to be used in the ellipsoid

representation. We have chosen to leave its value as that used to define the

original sphere of particles. Consequently, the particles will be exposed to

more neighbours than they were in the sphere, and possibly information from

regions of the nucleus which they should not be able to communicate with.

Fortunately, this problem is circumvented by the form of the sound speed we

are employing, which takes all the particles' velocities into consideration and

disallows acausal information travel. The particles will still have too many

particles in their summation loops, and as a consequence will adjust there

smoothing lengths in an attempt to rectify this. This is particularly evident for
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the particles on the surface of the sphere, who are limited in the numbers of

neighbours they can physically have access to. This means that the projectile

nucleus is not in a relaxed state, and so to avoid unnecessary adjusting of

smoothing lengths and positions pre-collision, we place the nuclei close to

one another at the start of the simulation.

7.8 Data Visualisation

As well as the restrictions placed upon higher dimensional modelling by the

requirement of computer memory and speed, visualisation of the data sets

can also become a problem.

In an effort to produce images of a manageable size yet with enough detail,

a central slice of data from the reaction plane and of a few particles in width

will be shown, with all z locations of the particles projected down onto a

now 2D slice in the x : y plane. As the x axis corresponds to the incoming

trajectory, and any non-central impact parameter results in a shift in the y

direction, this simple projection allows the major features of the modelled

interaction to be seen. The desired variable is plotted using colour, delineated

by a linear binning of the range in question. This is done by taking the

maximum and minimum values of the desired variable, dividing this evenly

into the resolution range required (i.e. 12 ranges) and then placing each

particle into one of these bins, depending on the value of its variable. These

bins are then allocated a colour, through the spectrum with black and white

at the extremes, and the particles are plotted on the x : y projection slice in

their appropriate colours.

The original plotting routine created each particle by a point, then a number

of concentric rings around it. Many of these rings are evident in the printouts
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and have nothing to do with f;he simulation. They are merely a printing

artefact.

73 Performance and Results

7.9.1 Neon: Uranium Collisions

The collision between a 20Ne nucleus and a 23817 nucleus was used as a test

bed for Nix and Strottman [1981]'s Particle-In-Cell method for relativistic

hydrodynamics, and also for Amsden et al. [1978]'s two-fluid PIC model.

It is presented here as a 3-dimensional SPH calculation for various impact

parameters (something unable to be done adequately with less than three

dimensions).

Figure 7.2 shows thermal energy contours from the central reaction plane

region for a collisional impact parameter (b) of 0.1 and projectile energies

2.1AGeV, plotted as described in the preceding section. The slide show the

particles after 150,300,450 and 600 timesteps, which correspond to 1.5 fmc"1,

3 fmc"1,4.5 fmc"1 and 6 fmc"1.

The important features to note are firstly the curved bow-shock structures

penetrating into the target nucleus. The projectile is flattened out into a disk-

like structure, both through Lorentz contraction (y - 3.25 from Table 7.1), and

its impact compression. The second slide shows the central fireball region

due to the shockheating, as well as the sftill defined projectile nucleus. This

frame also clearly depicts the side-splash region forming, producing a spray

of ejecta connected to the central dense regions. The third frame shows the

shocks travelling through the target. The projectile is nearly stopped, and is

stopped in the final image, where the shockfronts have run right through the
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target. Note the asymmetry of the side-splash, as the right-hand side of the

target has cooled already.

Figure 7.3 shows an identical collision model, except the projectile beam

is offset to give an impact parameter of 0.5. Here the initial shocks show the

same structure, but the regions of side-splash are much more evident. The

bounce-off can also be seen as a small projection in the lower left of the main

mass.

Figure 7.4, shows an impact parameter of 0.9. The bounce-off is clearly

evident, and shown to be a spectator mass by the fact that in this frame, one

can see the collision induced shockfront still traversing the projectile remnant.

Note also the complex structure and mixing evident in the exposed region of

side-splash.

Both Figures 7.3 and 7.4 show different base colours for the earlier timeslice.

This is most probably caused by a single particle (unseen in these spatial slices)

having an extremely low thermal energy, most likely ejected in the sidesplash

and cooled. As there is no continuity in terms of depicted colours between

the two timeframes, it does not detract nor enhance the information depicted

in these plots. Although the main target mass is depicted with a different

colour, we know that these energies (being purely spectator and completely

untouched by and shock waves of other form of energy transfer) must be the

same in the two images.

The extreme Lorentz contraction of the projectile, seen in both Figure 7.3

and 7.4 should also be noted.
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FIGURE 7.2: NeU collision sequence (b=0.1)/ showing thermal energy
distribution within the central region. Spatial scales are 10~15 m
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FIGURE 7.3: NeU collision sequence (b=0.5), showing thermal energy
distribution within the central region

FIGURE 7.4: NeU collision sequence (b=0.9), showing thermal energy
distribution within the central region
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7.9.2 Au:Au collisions

Experiments into Heavy Ion collisions advanced rapidly as developments

in colliders allowed heavier ions to be used, and at higher energieQ. Many

of the collective flow effects, most notably squeeze out, are only seen at the

higher energies and larger physical sizes of heavy projectiles such as gold and

uranium. Smaller, lighter ions retain too much identity in their constituent

nucleons, for these phenomena to really be seen. In order to keep the collisions

well within the bounds of thermodynamics, the situations of pure macroscopic

behaviour such as collective flow need to be visited. A collision involving two

gold atoms at GeV energies will produce just this sort of environment. We

have also employed a change in frame to that of the centre of mass. This

means that the resulting dataset is more consistent with the current practice

of accelerating two beams of particles in opposite directions on the same

trajectory before allowing them to collide within the detector, such as is used

in Plastic Ball Spectrometer experiments.

Figure 7.5 shows the thermal slicing used in the previous section,with

the baryon number density detail pictured below. The left images are after

300 timesteps, or approximately 1 fine""1, and the right images are at 1500

timesteps, or 4.9 fmc"1, well after the fireball phase and into the themal

expansion. The scales are equal on both axes to avoid any distortion.

Note how the left hand images show the central fireball region effectively

thermalised, but still with the distinct, ellipsoidal regions of differentiated

density. Note also how close to the surface the reacting region is, effectively

exposed. In the upper thermal slice, the propagating shock fronts extending

outwards from the fireball are also evident.

As the simulation then runs through the fireball phase, and into the thermal
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FIGURE 7.5: AuAu collision sequence
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expansion, we can see evidence of nuclear stopping, as the expansion of both

particles begins. The three ellipsoids, the central participants, and the two

spectator regions are very evident in this frame. There is also a distinctive

asymmetry, appearing as a warp in the fireball disk and the baryon nianber

density peaks. This does however exhibit a certain mirror symmetry about

the origin, so is most likely caused by a minor difference in the two ion's

constituent SPH particle's initial locations. This is a head on (b=0.0) collision,

so there should be no asymmetry extending from this cause.



Chapter 8

Performance on a Curved Metric

p until this stage, all calculations have been performed in regions where

the effects of gravity can safely be neglected. This has been accomplished by

using the Minkowski metric,

v = diag{-l, 1,1,1}. (8.1)

Many interesting hydrodynamical systems, particularly those studied under

the astrophysical umbrella, will naturally require gravity, and so it is logical

to extend the algorithm to function on a curved space metric.

We must first examine how a background metric can be justified, and the

inherent assumption we will use in such an application. This is done in Section

8.1. We then introduce the space-times we will use in Section 8.2. Sections

8.3 and 8.4 go on to generate exact geodesic equations and how they will be

used to assess the performance of the algorithm. It then becomes important

that the reader understands some of the physics involved in a radial infall

problem, and these are outlined in Section 8.5. The following sections look at

the algorithm's initial conditions (Section 8.6), and then the performance of
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the algorithm itself in Section 8.7.

8.1 Motivation

In the general relativistic understanding of the physics governing the motion

of masses, there are no forces. Rather, particles merely respond to the cur-

vature of the spacetime they find themselves in. Finding these curvatures

for a given mass distribution is no mean feat and requires the solving of ten

coupled, partial differential equations, the Einstein equations.

As a consequence of this computational difficulty, a relativistic version of

the Newtonian N-body codes which calculate the gravitational potential at

each step and evolvo their particles accordingly is not yet possible. This is

not to say that no meaningful simulation can be done, but it does place some

constraints.

Just as some gravitational simulations use a background gravitational po-

tential which is unaffected by the low mass test particles orbiting within it,

we will use a static background spacetime. This is a valid approximation pro-

vided that the mass-energy density of the fluid being modelled is significantly

smaller than that of the energy curving the spacetime.

This situation is precisely what is expected to be found in the region around

compact objects such as neutron stars or black holes.

Whilst eventually it is desired that this algorithm be applied to the mod-

elling of neutron stars themselves and the dynamics of black hole accretion

disks, this work is only looking at situations where the particles' self-gravity

can be ignored. Consequently we will look at the simple test case of radiai

infall of a cold gas cloud into a stationary, static black hole. By specifying the

spacetime to be static and stationary, we have an analytical solution against
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which to check the code's performance in integrating the equations of motion

correctly. We also have specified that the gas is cold dust. This effectively re-

moves the hydrodynamics from the gas' behaviour, leaving only the particles'

response to the curvature. Without specifying this constraint, the process of

gravitational infall results in heating and expansion of the gas, which resists

the straight forward geodesic infall predicted by the analytical solution. As

well as this, without paiticle self-gravity, there is no restoring force to counter

the gas' desire to expand as it heats. Without this restoring force, the gas

expands freely under the influence of the temperature gradients, resulting in

an unphysical representation.

8.2 The Schwarzschild and Kerr Spacetimes

The Schwarzschild space-time represents a spherically symmetric vacuum

space-time surrounding a non-charged, non-rotating black hole singularity.

Although it is a vacuum solution, provided we keep the modelled fluid's

mass-energy to much less than that of the singularity, there should be no

significant error in the simulation. The solution is unique, which means that

although a variety of coordinate systems can be used to describe the space-

time, all are locally isometric to the Schwarzschild space-time.

The classical Schwarzschild coordinates are given by

sin2 (8.2)
r r

Apart from the trivial singularites of all polar coordinates at 8 = 0 and

6 = n, this form suffers from a coordinate singularity at r = 2M as well as the

physical singularity at the origin r - 0.
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One way of avoiding this coordinate singularity is to transform the metric

to its isotropic form. This is done through the radial coordinate relation

r = (8.3)

where r is the previous Schwarzschild radial component.

This gives the new space-time description

dsz = -
1 —

2?

A/f
(8.4)

This form of the metric still suffers from singularities at the poles of the

coordinate system, but removes the coordinate singularity from the event

horizon at r = 2M and suffers only from the unavoidable physical singularity

at r = 0.

For reasons of simplicity, much of the numerical code has been written

in cartesian coordinates, and so we will transpose this metric again. This is

achieved through simple tensor transformation rules where,

dx" dx?
(8.5)

We are then left with the final form of the cartesian, isotropic metric:

(8.6)|
if

where

f2 = x2 + y2 + z2 (8.7)
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and

x- ?cos</>sin0

y - f s i n $ i 0

x = fcosfl

(8.8)

(8.9)

(8.10)

(8.11)

In this form we have described the simplest, non-Euclidean space-time,

that of the non-rotating blackhole. Practical observation suggests that most

astronomical bodies rotate. As a consequence the Schwarzschild description,

whilst used for most tests, is probably not likely to be an accurate description

of the spacetime in the vicinity of a blackhole. The Kerr metric describes the

extended space-time around a chargeless blackhole with rotation, and is given

below in Lindquist-Boyer coordinates x" = [t, r, 6, cf>}

dsz = a2 cos2 0)(
dr2

r2 - 2Mr + a2

+ (r2 + fl2)sin2&ty2-d*2 +

+ dB1) +

2Mr

g
(* sin2 ddcp - dtf, (8.12)

where a is the angular momentum per unit mass. Note how setting the

angular momentum to zero returns the previous Schwarzschild metric as

displayed in equation (8.2).

We then take this new space-time and convert to Kerr-Schild coordinates

[t,x, y,z) through the coodinate transform:
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iy - (r + ifl)sin(0)cis{/

2 = rcos0

az)dr

xJ

In these new coordinates, we have the metric

IMr3
 f r(xdx + ydy) - a(xdy-ydx)

where
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(8.13)

(8.14)

(8.15)

] 6 )

(8.17)

which reduces in the Schwarzschild limit of no angular momentum (a = 0)

to

d$2 = dy2 (8.18)

Note that this metric has cross-terms of dx'dt which correspond to a shift

vector, j3'. The equations of motion as described in previous chapters were

derived with the assumption that the shift vector was zero, precluding this

from of metric. It should be a small matter to include these terms in the

equations of motion and allow for application of Kerr-type metrics, however

it is beyond the scope of this thesis for the time being.
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8.3 Exact Solution

As a comparative tool, we would like analytical solutions of the Schwarzschild

orbits. As mentioned in the previous section, the metric given in Schwarzschild

radial components (equation (8.2)) has some coordinate irregularities that

make it unsuitable for the numerical application. It does however, lend it-

self to neat analytical geodesic solutions, which will allow us to monitor the

performance of the code. As the only difference between the two metrics of

equation (8.2) and equation (8.4) is the transformation of the radial coordinate

given in equation (8.3), we can readily apply these geodesic solutions to our

numerical output.

Given an appropriate Lagrangian, equations of motion can be derived. As

the initial conditions used specify a cold, dust equation of state (P = 0) with

no initial velocity, we can assume that the particles should simply fall along

the radial geodesies of the spacetime. Taking

ds2 = gilvdx»dxv (8.19)

as equation (8.2) with the assumption of constant 6 and (f>, then we have the

Lagrangian

di di
1. ,. 2M..rfr

(8.20)

(8.21)

(8.22)

with T an affrne parameter which can be taken to be the proper time of the
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particles, and / taken as the derivative of / ( T ) with respect to this parameter.

From this we deduce the two canonical momenta to be

2£
91

p,"

A _ ^_ - /I -

dr r

and the Hamiltonian of the system is given by

<H - -Pti -I- Prf - X = £ = constant,

(8.23)

(8.24)

(8.25)

ensuring the energy of the system comes entirely from the kinematics. Conse-

quently we can rescale T such that for the time-like geodesies we are interested

in,

1 (8.26)1.

The derivative of the time momenta, Pt gives us

dx dt

implying that

Pt ~ constant = (1 -

The equations of motion then governing this system reduce to

dt
di (1 - 2M)

(8.27)

(8.28)

(8.29)

and through substituting equation (8.29) into L~ -\
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(8.30)
«i r

These are the equations (96) from Chapter 2 of Chandrasekhar [1983]'s

work, which we now follow.

In order to find a solution to these equations, we transform to a new

parameter space through

r = r,cos2(r?), (8.31)

where r,- is the initial radial distance, and connected 1J E through equation

(8.30) and the initial condition r = 0 when r - r, to gb e

2M
' (1 ~ E2).

(8.32)

The equations of motion in terms of this parameter rj reduce to

dx

dr

Ecos2(f)

(f) - cos2(fcos (f
r,-sin(|)cos(-)

(8.33)

(8.34)

(8.35)

Here we have introduced the negative root in equation (8.33) (as we are

considering inf ailing particles) and the parameter \]n which corresponds to

the j] value when the particle arrives at the event horizon, r = 2M, given by

(8.36)
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Equations (8.35) and (8.33) combine to give

which is integrated assuming T = 0 when r - rx to give

r?

We can now show

dr, cos2(f) - cos2(f)

and

(8.37)

(8.38)

(8.39)

f? , 1
I E2),

tan2(f) + tan2©
(8.40)

Together with equation (8.32), equation (8.40) allows us to specify the coordi-

nate time and location of any particle as functions of its proer time and initial

position.

8.4 Generating the Exact Solution

In order to display the performance of the SPH algorithm in this application,

a plotter is required which is capable of deducing the location of a particle

at a given time. The code itself outputs all the relevant particle attributes

at each timestep, as v/ell as information regarding the coordinate time of

the simulation. To generate the exact comparison, each particle is treated

individually. Its initial f is determined and transformed into Schwarzschild
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coordinates, from which we deduce the value of £ through

(8.41)

We can then use a Newton-Raphson root-finding method to determine r\

from the root of

fin) = E(gj(j)4
tan2(f) + tan2©4# (8.42)

Having found the current r\, it is simple then to deduce r from equation (8.31)

and to convert this back to the isotropic radial coordinate, f.

For much of the analysis, only one particle is required to be traced. The

graphs, such as Figures 8.3, 8.4 and 8.5, which show f as a function of coor-

dinate time t or r\ show the evolution of just one particle (particle number n)

from a given simulation.

8.5 The Physics of the Schwarzschild Infall Prob-

lem

The spherically symmetric space-time described here is portrayed from the

point of view of an observer at a great distance from the source of the curvature,

i.e. the black hole. The curvature of the space-time increases indefinitely until

the origin, which is singular. At some point outwards from this there exists an

event horizon, across which no information can escape the black hole. There

is nothing physically different about this location, although the Schwarzschild
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coordinate system is singular at this point (r = 2M). The isotropic coordinate

frame is symmetric about the horizon (f = y) and how the geodesies behave

here is important.

The equations of the radial geodesies along which particles will move were

derived in the last section, and the major features of the paths are described

in Table 8.1.

Initial (r = r,-)
Event Horizon (r = 2M)

Singularity (r = 0)

0
r\H~2s\n~xE

n

T

0
r3 l

(sM^H + sin^H))

t
0

oo

**

TABLE 8.1: Critical Points in the Infall Problem

It is important to note that although the proper time for a particle to cross

the event horizon and to continue on down to the singularity is finite, for the

distant observer infinite time will pass before the particle reaches the event

horizon. As the curvature increases the lapse function collapses to zero at the

throat, effectively halting evolution in this coordinate frame.

8.6 Initial Conditions

In order to reproduce geodesic infall, all thermodynamical properties of the

SPH particles must be removed. This is done by simply specifying that the

isotropic pressure is zero, and all terms associated with the artificial viscosity

routines must also go to zero. If this is not done, the gravitational energy

of the clump of gas causes heating, and a tendency to expand, as it falls

into the gravitational well. Without any particle self-gravity, this heating

produces a force, lifting the particles from their initial geodesies, and making

any comparison with analytical solutions impossible.
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The initial conditions for this test use similar routines to those in the RHIC

tests (See Section 7.7). A ball of SPH particles, created by removing the

corners from a large, body-centred-cubic structured grid is placed at some

radius (r = 200M) and allowed to evolve.

r

FIGURE 8.1: Initial configuration, n=1100 particles showing the code
output on the upper panel, and the analytical solution on the lower

Figure 8.1 shows the initial set-up of a cold ball of approximately 1100
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particles situated at f = 200M. The frame below shows the exact solution,

which (naturally) is no different at f ~ 0.

8.6.1 A Note on Time-Stepping

As the normal time-stepping algorithm is inherently connected to tf e thermo-

dynamic properties of the gas, there is no time-step control applied here. The

maximum time-step allowed is an enforced, and arbitrary, At = 1.5M. This is

fine for stability, as there are no thermodynamics, but it causes large errors in

regions oflarge curvature, such as is found close to the black hole. These errors

can be reduced by forcing a smaller time-step, but would only resurface again

later in the simulation due to the re-scalabilty of the back-ground metric. As

any later simulation will utilise the full hydrodynamical nature of the SPH

algorithm and its variable time-stepping controls, developing variable time-

steps here would be fruitless as this is merely a test of correct response to

background curvature.

8.7 Performance

As mentioned before, the event horizon cannot be passed using this coordinate

system. This is not a physical problem though, as once crossed, no information

can be go?;=n back from this horizon, effectively removing any modelling

across it anyway. All meaningful models must be run in the space well

to the outside of this horizon. Whereas the Schwarzschild metric used to

generate the exact solution is undefined at this point, with a division by zero,

the isotropic metric used by the code is well defined, but symmetric across

the event horizon. The result of this is that should any particle erroneously
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contact the event horizon (through an inappropriate timestep) the code will be

unable to continue and crash. Up until this point though, one would expect no

problems from the metric, although the dilations anywhere near this horizon

do become extreme. This is highlighted in Figure 8.2, which depicts both the

computational output (above) and the exact solution (below) for t =* 3000M.

The axes are justified, as in Figure 8.1, to show the large tidal distortions

occurring.

The following graphs (Figures 8.3 to 8.5) present the data for only one

particle, plotted as a series of circles, and the exact solution, plotted as a solid

line. Figure 8.3 shows the particle's infall as a function of the coordinate time

t. This detail is also shown in Figure 8.4 where the r/ coodinate is used as the

independant variable. The value of T\H is shown on the right as a broken line.

Each circle represents the location of the nth particle at a given coordinate

time. Looking at the spacings between these points, which are fixed at con-

stant At, it is apparent how the timestep will lead to failure of the algorithm

eventually. Early on in the model run, the particle is in a region of weaker

curvature and the timestep is adequate, as indicated by the line of the exact

solution bisecting the circles. As the curvature, and hence acceleration, of the

particle increases, we can see the circles begin to leave the curve. This can be

rectified by using smaller timesteps. but due to the nature of the space-time,

any fixed timestep will eventually be too great for the curvature, and will fail.

Absolute errors associated with the particle's location are calculated and

are shown in Figure 8.5. The nature of the space-time means that errors

in location will compound, as seen by the exponential growth. The rate of

change of the curvature with respect to radial distance, commonly known

as tidal forces, is so great that small errors in the particle's location result

in different acceleration forces, which leave the particle in further error after
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FIGURE 8.2: Schwarzschild Infall, t=3000M, showing large tidal dis-
tortions of the initially spherical cluster of particles

each timestep. The error remains quite acceptable until such time as the

constant timestep is unable to handle the massive distortions that the space-

time experiences. Eventually, the particle will overstep and wrongly cross
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FIGURE 8.3: Single Particle Infall as a function of coordinate time, t.

the event horizon, crashing the code. Whilst this can easily be combatted by

using a smaller timestep, it cannot be resolved by any application of a constant

timestep, as eventually any time-step will become too large for the curvature.

The failure of a constant timestep routine is indicated most clearly by ex-
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RQURE 8.4: Single Particle Infall as a function of the parameter r\

amining the performance of the code in the r] coordinates, as seen in Figure

8.4. Here the asymptotic approach to the singularity is seen, and the inade-

quacy of the timestep as the distance between datapoints (circles) grows as

the curvature increases. Clearly this is the region where we need a smaller
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timestep to correctly resolve the rapid accelerations. This should be an easy

thing to implement, as information about time evolution is contained within

the lapse function, which can incorporated into the hydrodynamic timestep

controls. The choice of D = ^ypo also contains information that will control

dynamical timesteps, as increasing curvature appears as a density gradient in

the computational variables, which should induce smaller timesteps.

Figure 8.5 shows a ramping of the error as the particle approaches the

throat. This large error is not indicated on the other plots, and it is unclear

whether it is a case of small denominators inducing round-off errors, or the

fact that the analytical solution is coping with a coordinate failure in this

region.

As pointed out previously, this region of space is one with large distor-

tions and where one would not usually be attempting simulations. The errors

induced here can easily be avoided by not running simulations at too small a

radius, where the chosen timestep will be inadequate, or by using a hydrody-

namical timestep control which takes this curvature into account.
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FIGURE 8.5: Relative error of particle location



Chapter 9

Conclusions and Further

Applications

UL-his work has shown that the SPH method can be applied to problems

where the relativistic effects of high velocities and/or background space-time

curvature are non-trivial. One of the clear benefits of the SPH method is

its simplicity and ease of application. The three examples shown in this

thesis: Shock-Tubes, Relativistic Heavy Ion Collisions and Gravitational Infall

problems all use the same code. The only modules required to be changed are

the module containing the metric functions (Minkowski flat-space or isotropic

Schwarzschild), the chosen equation of state and the initial conditions. Thus,

the algorithm has the scope to be applied to a wide range of problems with

relatively little effort.

The algorithm does not reiy on exact or approximate Riemann Solvers to

resolve the shocks, and considering also the general nature of the code, its

ability to capture shocks and resolve density spikes is acceptable. The post-

shock ringing can be tuned out by changing the artificial viscosity parameter
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or numbers of desired neighbours, or selecting specific viscosity measures

for a given problem. Many of the oscillations are actually diminished by

increasing the resolution, something that the inefficiencies of modelling 1-D

shocktubes with a 3D code makes prohibitive and is more of an issue of poor

test case availability than a performance issue.

With the excellent performance of many high-resolution shock-capturing

codes, attempting to make SPH perform in this role would be ignoring the

real performance strengths of the method. The SPH method can resolve

fronts and waves within the fluid without pre-warning of what they will be.

It is best used in this application, where a simple code will resolve all the

hydrodyiiamical waves in the fluid, allowing further study with the benefit

of the knowledge of what wave types to expect, when and where and the

consequent application of a suitable method with the required resolution and

stability.

When there are free-surfaces, the particle method has clear advantages

over other methods which must somehow enforce a free boundary to the

grid.

The Relativistic Heavy Ion Collision calculations show that relativistic SPH

calculations perform satisfactorily, at least on the qualitative front. In partic-

ular, the avoidance of Riemann Solvers means the use of equations of state

more complex than that of the ideal relativistic gas is a trivial matter. The com-

plex fluid motions, particularly those of initial contact and grazing collisions,

are handled easily by the particle simulation, which models recombining flu-

ids without the expense of grid remapping, and automatically places more

particles into this region to resolve finer scale motions.

Whilst a detailed comparison with experimental results would require the

use of non-general, more elaborate equations of state which are beyond the
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aims of this thesis, certain advantages of the SPH method for this application

do become clear.

These include:

• The efficiency of using particles, placing the computational work where

the fluid is. This includes the efficient modelling of expansion processes

through the rank-list neighbour routines, ensuring that the computa-

tional box is free to expand or contract with no extra memory require-

ment.

• The non-reliance on Riemann Solvers with their non-triviality of adding

extra, more complicated physics such as non-ideal or empirical equa-

tions of state

• The ability to satisfy and incorporate other requirements peculiar to

HIC, such as calculations of the freeze-out surface which involves a

transition from coherent fluid behaviour to something closer to that of

non-interacting, individual particles.

It is on this last point that the method could best be improved. In doing

so, much of the general nature of the original application will be lost, and as

such the extensions are best done to suit the specific study at hand.

The algorithm has also shown it can perform well, responding to simple

background metrics (those with a zero-shift vector), allowing it to perform

hydrodynamical calculations in the region of compact objects without any

post-Newtonian additions or laborious pseudo-tensor calculations. The al-

gorithm is written in such a way as to incorporate features used in modern

numerical relativity studies, such as shift vectors. This allows it to be used in

testing 'new' metrics describing different regions of space.
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It is in this area of metric applications that the author believes most benefit

can come. The most obvious application is the modelling of thick, dusty

accretion disks around black-holes. In order to do this, a suitable internal

boundary condition must be devised to capture particles as they cross the

event horizon and remove them from the simulation. There would be no

reason to attribute their mass to the source, as the application and suitability

of the background space-time means that the SPH particles are much less

massive than the source anyway.

Changing the equations of motion so that the particles can respond to a

metric with non-zero shift vector would allow the most physically apt metric

for accretion and orbital problems (the Kerr) to be applied.

Possibly the clearest advantage in this algorithm is its use of efficient

memory allocation achieved by performing most calculations in rank-space.

In doing this, the effective computational cell remains the same size, and of

constant occupation density. This should easily allow load-balancing on a

parallel application. It also has the added benefit of simplifying the creation

of load-balanced oct-trees for applications with particle self gravity, in that

each node in the tree should remain constant. The structure of the tree then

can be built once on rank-space, and particles then allocated according to their

rank identities, not their physical location.

In conclusion, the relativistic SPH algorithm has shown itself to be a robust

and capable application, with clear benefits in both ease of writing and appli-

cation of complex physics. This thesis provided a simple, general algorithm

that has the potential to be applied to a wide range of modelling scenarios.

f
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'An expert is a person who has made all the mistakes

that can be made in a very narrow Held,' Niels Bohr

'If I had only known, I would have been a lock-

smith^ Einstein

'This World will never know Peace until the last
politician is strangled with the entrails of the last
priest 'Voltaire
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