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ERRATA

Page 5, §1.4.1, paragraph 1, line 9: ”.,.assumed that the 5-minute ...” for ”...assumed that
the the 5-minute ..."

ADDENDUM

Page §, §1.4: Add at the end of paragraph 1:

“With regard to the interaction of solar p-modes with magnetic field, ring diagram analysis has
recently been used to determine that there is a local frequency shift and line widch contribution
associated with the presence of magnetically active regions {e.g., Hindman et al, 2682, 2001,
Rajaguru, Basu, and Antia, 2001). These observations are consistent with the other evidence
for the sensitivity of the p-mode frequencies and line widths to the degree of surface magnetic
activity (see §1.3); however, they do not have the spatial resolution required to explore small

scale features such as sunspots.”

page 21, line 9: Delete “... an isotropic magnetic pressure B2/24u, and a tension B?/u,.” and
read “...a magnetic pressure gradient V (B - B) /2u, and a magnetic tension (B- V) B/i,.”

page 23, line 2 and 3: “...Goossens and Poedts (1992); and Goossens, Ruderman, and Holiweg
(1995).” should read “... Goossens and Poedts (1992); Erdélyi, Goossens, and Ruderman (1995);
Goossens, Ruderman, and Hollweg (1995); and Erdélyi (1997)."

page 26, line 16:
“..and the (m # 0) kink mode with phase speed Cx = [{pC% + p.C3) [/ (p+ ,oa}]l/2 LT
should read “.,.and the {m = 1) kink and higher order (m > 1} flute modes with phase speed

Ck = [(pcf, + PeCi,e) /(p+ pe)] R

The Bibliography, add ihe following references (in order):

Erdélyi, R.: 1997, Solar Phys. 171, 49

Erdélyi, R., Goossens, M., and Ruderman, M. S.; 1995, Solar Phys. 161, 123
Hindman, B., Haber, D., Toomre, J., and Bogart, R.: 2000, Solar Phys. 192, 363

Hindman, B. W., Haber, D. A., Toomre, J., and Bogart, R. S.. 2001, in A. Wilson {ed.}, Proc.
SOHO 10/GONG 2000 Workshop, Helio- and Astervseismology at the Dawn of the Millennium,
(ESA SP-464), p. 143

Rajagury, S. P., Basu, §., and Antia, H. M.: 2001, Astrophys. J. 563, 410
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Abstract

In this thesis we investigate the interaction of solar acoustic oscillations, f- and p-modes,
with two distinct $ypes of magnetic field structure: sunspots and small-scale intense magnetic
fibrils.

Sunspots absorb (and scatter) incident p-modes. The responsible mechanism is uncertain.
One possibility is mode couversion to slow maguetoacoustic-gravity waves. In 1994, Cally,
Bogdan, and Zwcibel determined that, in vertical field. mode conversion can adequately
explain the observed f-mode absorption, but is too incfficient to explain the absorption of
p-modes. We calculate the efficiency of mode conversion in non-vertical ficld. In Chapter 3,
we assume two-dimensional propagation where the Alfvén waves decouple, computing the
efliciency of fast-to-slow magnetoacoustic-gravity wave conversion. It is found that resultant
p-munde absorption is significantly enhanced for moderate inclinations at higher frequencies,
whereas for p-modes at lower frequencies, and the f-mode in general, there is no useful
enhancement. In Chapter 4, we consider the efficiency of mode conversion in non-vertical
field with three ditnensional propagation, where fast and slow magnetoacoustic-gravity waves
and Alfvén waves are all coupled. The resultant damping rates are not substantially different
from thosc in the two-dimensional case (Alfvén waves decoupled). However, broadly speaking,
both slow wave leakage and Alfvén wave leakage play an equally significant role in non-vertical
field. In addition, a new type of highly damped solution, that mainly exists in highly inclined
field, is found.

In Chapter 5, the contribution to p~mode line widths from the excitation of tube mode
oscillations on an individual magnetic fibril is computed. An idealised model of the fibril
within the photosphere is implemented, consisting of a vertical, thin magnetic fux tube em-
bedded in a plane-parallel isentropic polytrope of index m. In 1996, Bogdan ef al. considered
a similar model, but imposed a stress-free boundary condition at the top of the photosphere
which acts to completely reflect any upward propagating tube waves back down into the
tube. The stress-frec boundary condition neglects a possibly important physical process -
the loss of energy to the upper solar atmosphere by the excitation of waves in the chromo-
sphere and corona. Using simple models of the solar chromosphere and corona we explore the
consequences of applying various boundary conditions. The resultant upward cnergr fluxes
are not large, but surprisingly the more realistic upper boundary conditions lead to a signif-
icant increase in kink mode flux out the bottomn. Nevertheless, the sausage mode remains
dominant in cases of interest, and is essentially unaffected by the new boundary conditions.
Consequently, the resultant total p-mode line width computed here can account for only a
few percent of the observed line width.

iv

K
&



Statement of authorship

This thesis contains no material which has been aceepted for the award of any other degree
or diploma in any university or other institution. To the best of my knowledge this thesis
contains no material previously published or written by another person except where due
reference is made in the text.

Ashley D. Crouch




Acknowledgements

1 would like to thank my friends, family, and colleagues, and also the bar-room philosophers
with whom 've shared a laugh over the past few years. T would especially like to thank:

Paul Cally,
for his excellent supervision and support;

and Danielle Nipe,
for her love, compassion and understanding.

S T

T AL N =T, w3 D, T A LS e ) T

T

[Ex

e R e

s T




Chapter 1

Introduction

1.1 Helioseismology

The normal modes of oscillation of the sun can be categorised as either p-modes (“p” stands
for “pressure”), f-modes, {(“f” for “flundamental”), or g-modes (“g” for “gravity”). The g-
modes are internal gravity waves for which the primary restoring force is buoyancy, and are
confined almost totally to the deep solar interior. The f-mode is an incompressive, surface
gravity wave with amplitude that decays roughly exponentially with depth away from the
solar surface. The p-modes are gravity-modified, acoustic waves, with pressure the primary
restoring force.

Figure 1.1 shows the eigenfrequencies of the normal modes as a function of degree I, com-
puted for a spherically symmetric standard solar model {(Christensen-Dalsgaard, 1982). The
eigenfrequencies for the f-mode and several of the p- and g-modes are shown. The parame-
ter { is the spherical harmonic degree, and it determines the surface horizontal wavenumber
E=[{+ 1)][/ 2 /Ry (where Rg is the radius of the Sun). For & given degree I, there are
discrete set of allowable frequencies. Each of these is characterised by another integer n -
the radial order which roughly corresponds to the number of radial nodes in the correspond-
ing displacement eigenfunciion (depending on the model). The f-mode has n = (. For the
p-modes, with ridges in the upper portion of Figure 1.1, the eigenfrequency increases with
increasing radial order n. In contrast, for the g-modes, with ridges in the lower portion of
Figure 1.1, ti.e eigenfrequency decreases with increasing radial order.

The p-modes are essentially trapped ~ bounded below (refracted upward) by the increase
in sound speed due to thermal stratification, and bounded above (reflected downward) by the
rapid increase in acoustic cutoff frequency near the solar surface. The depth of a p-mode’s
lower turning point depends on both { and n, and is roughly proportional to the ratio n/l
(e.g., Deubner and Gough, 1984). Hence, for a given frequency, p-modes with low degrees
have deeper lower turning points, and therefore probe further intc the interior, than those
with high degree. On the other hand, for fixed egree I, the depth of the lower turning point
scales with the radial order n (or the frequency). In simple terms, different p-modes sample
different regions of the solar interior. Heliuseismology exploits this characteristic to infer the
details of the structure of the solar interior.
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Figure 1.1: Eigenfrequencies v = w/f2m, as a function of degree I, for the p-, f-, and g-modes com-
puted for a standard solar mode! (Christensen-Dalsgaard, 1982). Sclected values of the radial order n
have been indicated. Reproduced from J. Christensen-Dalsgaard’s “Lecture Notes on Stellar Oscillations”
{http://astro.phys.au.dk/~jcd/oscilnotes/, p. 72).

The first observations of the oscillations of the solar surface were made by Leighton,
Noyes, and Simon (1962) and Evans and Michard (1962). Now both the p- and f-modes
are easily and routinely observed at the solar surface, with the peak power centred on a pe-
triod of roughly five minutes. The observed frequencies are used in both forward and inverse
modelling to constrain physical models or to directly infer details of subsurface structure.
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Helioseismology lins been able to detennine such features as the sound speed profile (e.g.,
Christensen-Dalsganrd et al., 1985), tho dupth of the convection zone (e.g., Christensen-
Dalsgaard, Gough, and Thompson, 1991}, the differential rotation (e.g., Gough, 1984; Brown
et al., 1989; Charbonneau et al., 1999), and the degree of gravitational settling and atomic
diffusion {e.g., Proffitt and Michaud, 1991) to name a fow. Comprehensive reviews of helio-
seismelogy may be found in Deubner and Gough (1984), Christensen-Dalsgaard et al. (1996)
and Christensen-Dalsgaard (2002).

1.2 Sunspots

Sunspots are the most prominent magnetic ux concentrations at the surface of the sun.
Typically, large sunspots have surface inagnetic field strengths as high as 3500 G. Broadly
speaking, the magnetic field in sunspots suppresses convection and introduces an additional
{magnetic) pressure, Both of these factors act to reduce the temperature of the gas in-
side sunspots, which is generally 2000 K cooler than the surrounding photosphere. Hence,
sunspots appear as dark spots on the surface of the sun.

Figure 1.2: A group of sunspots in aciive region 10030 on 15 July 2002 (courtesy Royal Swedish Academy of
Scien.es, see also Scharmer et al., 2002).




Figure 1.2 shows a group of sunspots in active region 10030 on 15 July 2002. The domninant
sunspot in the contre of Figure 1.2 shows the standard features possessed by most large
sunspots. These include the central dark core known as the umbra which is surronnded by
a region of Rlamentary appearance known as the penumbra. Typically, the umbral diamcter
is of order tens of Mm. In the relatively non-magnetic regions {quiet Sun) surrounding the
sunspot (Fig. 1.2), convection cells (the solar granulation} are evident.

Currently, the subsurface structure of sunspots is poorly understood. Below the photo-
sphere the sunspot magnetic field may remain as a single monolithic flux tube or, as suggested
by Parker (1979}, may be composed of a bundle of closely spaced magnetic fibrils. One uiti-
mate goal of sunspot seismology is Lo discriminate between the two possibilities.

Away from sunspots, the solar magnetic field is in a highly intermittent state. Roughly
90% of the magnetic flux that threads the photosphere is in the form of small-scale intense
magnetic flux tubes (or fibrils). These small-scale intense tubes have magnetic field strengths
of order 1500 G and diameters of about 100 km (Steuflo, 1978).

For the remainder of this chapter we scrutinise the array of observational evidence for the
interaction of solar p-modes with maguetic field. Broadly speaking, the interaction of solar p-
inodes w'th magnetic field may be categorised as either global or local, though the two regimes
are not ne -essavily unrelated. The Hrst category refers to the influence oi the magneiic field
on the global p-mode oscillation frequencies and lifetimes. The second refers to specific
magnetic regions on the solar surface, such as sunspots. The theoretical interpretations of
the observations are discussed in Chapter 2.

1.3 Global effects

The sun’s magnetic cycle of 22 years dwmation (11 years if polarity is ignored) allows helio-
seismology to be performed through a wide range of magnetic activity. Woodard and Noyes
(1985) were the first to discover that the frequencies of the solar prmodes change during the
solar activity cycle. Subsequent investigations (e.g., Libbrecht and Woodard, 1990; Woodard,
Kuhn, Murray, and Libbrecht, 1991; Woodard and Libbrecht, 1991; Bachmann and Brown,
1993; Elsworth et al., 1994) established that the p-mode frequencies increase by up to several
hundred nHz above solar minimum values as the cycle progresses — with a strong linenr corre-
lation found between the frequency shifts and up to six different standard indicators of solar
activity (e.g., Bachmann and Brown, 1993; Chaplin et al, 2001). Interestingly, Woodard,
Kuhn, Murray, and Libbrecht (1991) and Bachmann and Brown {1593} found that the p-
mode frequencies change significantly over periods as short a one month (which also correlate
strongly with surface averaged solar activity). The frequency shift is frequency dependent -
rapidly increasing from effectively zero at low frequencies (=~ 1 mHz) to a maximum at about
3.5 mHz, and abruptly declining for frequencies above 3.9 mHz (Woodard and Libbrecht,
1991). It has also been shown (e.g., Libbrecht and Woodard, 1990; Woodard and Libbrecht,
1993; Howe, Komm, and Hill, 1999) that the even-index rotational splitting coefficients are
sensitive to the solar cycle.

The p-mode linc widths (for general observations of these sec e.g., Libbrecht, 1988; Ko-
rzennik, 1990; Jefleries et al., 1991), which are inversely propertional to the mode lifetimes,




have also been shown to vary with the solar cycle. Jefferies et al. (1991) found that the line
widths weve larger in 1981 (high activity) than in 1987 (low activity), suggesting that the line
width increases with increasing activity. Komum, Howe, and Hill (2000) recently confirmed
and clarified this result. Komm, Howe, and Hil! found that from solar minimum to solar
maximum, the p-mode line widths increase by about 7% on average and the associated mode
amplitudes decrease by 16%. This array of obscrvational evidence lgaves little doubt that the
global properties of the p-modes are sensitive to the degree of surface magnetic activity.

1.4 Sunspot seismology

Helioseismology traditionally exploits the characteristics (i.e., the frequencies) of the San's
free oscillations (p-modes) to infer global properties of the solar interior. Recently, in the
last decade or so, local helioseisinology has provided promising results on the structure of
localised features such as large-scale convection, subsurface flows, emerging active regions,
and sunspots. There are several distinct but complementary methods for pursuing local
helioseismology. In this section we discuss the techniques relevant to sunspot seismology
(Hankel or modal analysis, helioseismic tomography, and helioseismic holography) and the
subsequent observational results that have been gained. In passing only we briefly mention
ring-diagram analysis, which is another important local helioseismic technigue that has been
used mainly to infer the structure and evolution of meridional and zonal flows near the solar
surface {e.g., Hill, 1988; PatrOn et ai., 1995; Haber et al., 2000, 2002). )

1.4.1 Oscillations inside sunspots

Perhaps the obvious starting point for sunspot seismology is to use the observed charac-
teristics of oscillations inside a sunspot to infer its subsurface stracture. QOscillations inside
sunspots, first discovered by Beckers and Tallant (1969, sce also Bhatnagar, Livingston, and
Harvey, 1972; Beckers and Schultz, 1972; Bhatnagar and Tanaka, 1972; Giovanelli, 1972; Zirin
and Stein, 1972), can be broadly classified into three categories: 5-minute oscillations in the
umbral photosplhere, 3-minute oscillations in the umbral photosphere and chromosphere, and
running penumbral waves. Recently, Dogdan (2000) snggested that these oscillations are
probably just diffcrent manifestations of the global oscillations of the entire sunspot. Nev-
ertheless, carly approaches often assumed that the the 5-minute umbral oscillations are the
passive responsc of the sunspot to forcing by the (5-minute) p-modes in the surrounding
quiet Sun (e.g., Thomas, Cram, and Nye, 1982; Abdelatif, Lites, and Thomas, 1986; Ab-
delatif and Thomas, 1987; Penn and Labonte, 1993), and the 3-minute wnbral modes are
resonant oscillations of the sunspot itself.

Thomas, Cram, and Nye (1982) were the first to attempt to use the 5-minute umbral
oscillations as a subsurface probe of sunspot structure (see also Abdelatif, Lites, and Thomas,
1986; Abdelatif and Thomas, 1987). Thomas, Cram, and Nye assumed that the sunspot
oscillations only respond to the forcing of certain p-modes {i.e., the sunspot flux tube acts
as a selective fiiter), and that the peak response occurs at a wavelength comparable to twice
the umbral diameter. Subsequently, Thomas, Cram, and Nye (1982) were able to infer




{conditionally) the radius of the sunspot at the various effective depths probed by the filtered
p-modes,

Unlortunately, the development of this technique has been slow. Broadly speaking, ob-
servational progress is limited by resolution in both space and time {i.e., precise mode iden-
tification is problematic), and theoretical progress is limited by our understanding of the
ostillations supported by realistic model sunspots, The recent work by Lites et al. (1998}
provides an excellent up-to-date example of this technique - using data of exceptionally high
qualily and employing the best available sunspot model (Cally, Bogdan, and Zweibel, 1994).
Comprehensive discussion of the oscillations in sunspots, regarding both observational results
and theoretical interpretations, can be found in the reviews by Chitre (1992), Lites (1992},
Thomas and Wiess {1992}, and Bogdan (2000).

1.4.2 Hankel analysis

An alternative approach is to consider the effect of the sunspot on the incident p-modes as
a classical scattering problem. The aim is tc determine the amplitude and phases of the
p-modes in the quiet Sun surrounding the sunspot, distinguishing those modes propagating
toward the spot from those propagating away from it. A comparison of inward and outward
amplitudes and phases may then be used to characterise the interaction of the p-modes with
the sunspot. This method was first employed by Braun, Duvall, and LaBonte (1987} and
further developed by Braun, Duvall, and LaBonte (1988); Braun, LaBonte, and Duvall (1990);
Braun et al. {1992a); Bogdan et al. {1993); Braun {1995); Chen, Chou and the TON Team
{1996); Zhang (1997).

Typically, the data (either observed velocity or intensity fields) is analysed in a spherical
polar coordinate system (8, ¢) centred on the spot or feature of interest (¢ = 0). The analysis
is confined to an annulus excluding the sunspot itself {i.e., #nin < 0 < Opez). The prac-
tical advantages of observing oscillations outside the spot are many and include: increased
wavenumber resolution, better mode identification, reduction of scattered light, reduction of
line profile distortion, and increased signal-to-noise ratio, In addition, the properties of the
oscillations inside the spot are not well understood, whereas the properties of the p-modes in
quiet Sun are very well understood. For & < a, Hankel functions may be employed as ap-
proximations to the more accurate Legendre function decomposition. The observed quantity
is expressed as a sum of wave components of the form

U (6,6,1) = €MD A, (L,w) HYD (16) + B (L,w) BP (LO)] , (1)

where Hﬁ,}} and H,(f) are the Hankel functions of the first and second kind, respectively
(Abramowitz and Stegun, 1964, Chapter 9), m is the azimuthal order, L = I {1 +1)]'/?
(where ! is the spherical harmonic degree of the mode), t is time, and w is the angular
frequency. Braun (1995) estimmates that the relative error in wave amplitude, introduced
by approximating the Legendre functions with Hankel functions, is at worst a few percent.
In fact, Bogdan et al. (1993, see also Chen, Chou and the TON Team, 1996) employed a
decomposition in terms of the Legendre functions. Their results were very similar to those
of other studies where Hankel functions were used (e.g., Braun, Duvall, and LaBonte, 1987,




1988; Braun, LaBonte, and Duvall, 1990; Brauu, 1995). Because the decomposition {eq. [1.1])
is usunally in terms of Hankel functions, this method has come to be known as Hankel analysis.
In equation {(1.1), Ay and By, are coitiplex coeflicients that describe the power and phase
of waves travelling radially inward and outward, respectively. These may be evaluated from
the data by means of an appropriate set of azimuthal (Fourier), radial (Hanket), and temporal
(Fourier) transforms (for details see Braun, Duvall, and LaBonte, 1988; Bogdan et al.,, 1993).
The moduli of 4,, and By, correspond to the amplitudes of the incoming and outgoing waves,
with any difference reflecting the presence of sinks or sources of acoustic power, Subsequently,
the absorption coefficient is defined as
Py - P,

2
o= — oul =1 | &ll
R!l Ayn '
where P, and Py, are the power of the incoming and outgoing p-modes, respectively. Simi-
larly, scattering - due to horizontal phase speed inhomogeneities - will produce a difference
in the phasc between A,, and B,,. The phase shift is defined as

§ = arg (Bp) —arg (4,,) .

The definition of the absorption cocfficient must be viewed with some caution as what appears
to be actual absorption may be the result of scattering to higher unobservable wavenumbers
(e.g., Bogdan and Zweibel, 1987) or mode mixing (where a scatter, excited by an incident
wave mode with azimuthal and radial orders m and n, will produce outgoing wave modes
with the same temporal frequency but different 7n and/or », see Braun, 1995).

Braun, Duvall, and LaBonte (1987) were the first to report that sunspots absorb up to
50% of incident p-mode power. Shortly thereafter, Braun, Duvall, and LaBonte {1988) re-
considered their original observations (of three different spots) in greater detail, improved the
data reduction technigues, and also observed an isolated magnetic pore. For the purposes of
examining the variation of a with horizontal wavenumber &*, Braun, Duvall, and LaBonte
{1987, 1988) summed over azimuthal orders -5 < m < 5 and the p-modes ridges of radial
order n = 0—6 (corresponding to 1.5 mHz < » < 5 mHz). For each of the sunspots obsecrved,
Braun, Duvall, and LaBonte found that the levels of absorption are roughly constant (up to
50%) at higher wavenumbers (0.5 Mm™! < & < 1.5 Mm™!), but drop off rapidly at lower
wavenumbers (k < 0.5 Mm™!). In contrast, an identical analysis perforined on a region or
quiet Sun (i.c., a control) shows no significant difference between ingoing and outgoing power,
as one would expect. Braun, Duvall, and LaBonte (1988) also analysed the absorption as
a function of k£ along each individual p-mode ridge, this revealed the sauie trend as for the
combined results, including the f-mode. Braun, Duvall, and LaBonte (1988) subsequently
concluded, despite the difference in wave properties, that any theoretical interpretation of the
absorption mechanism sho~ld apply equally for the f-mode (an incompressive surface wave)
as well as the p-modes (gravity-modified acoustic waves).

For high-degree p-modes, the depth of the lower turning point scales as n/k (e.g., Deubner
and Gough, 1984). Therefore, a mode with a simaller horizontal wavenumber should be less

*The horizonta! wavenumber, in arc-length coordinates, is related to the spherical harmonic degree, {, by
the formmta k = [ (1 + 1))'/? /Rs.




affected by near-surface phenomena. This lead Braun, Duvall, and LaBonte (1988) to consider
the possibility that the observed decrease in e for &£ < 0.5 Mm™! may indicate tho presence
of a shallow, near-surface uniforin absorbing layer. The results of their simple computation
agree well with the obscrved variation of o with &, This lead Braun, Duvall, and LaBoniec
to conclude that some of the decrease in « seen at low wavenumbers may represent a falloff
in absorption at depths of 5 — 10 Mm below the photosphere. However, the corresponding
variation of o with radial order n predicted by this model is not observed — suggesting that
the variation of o with wavenumber & is actually a characteristic of the absorption mechanism
itself, rathor than the vertical structure of the absorbing region.

Because the higher order azimuthal components sample an area of larger radius (i.c.,
higher impact parameter m/k), the variation of o with azimmuthal order m con be used to
infer information about the horizontal extent of the absorption region. Braun, Duvall, and
LaBonte (1988) cxamined the variation of o with both the azimuthal order (for ~30 < m <
30, at a single horizontal wavenumber & = 1 Mm™!) and the impact parameter. Braun,
Duvall, and LaBonte found that the decrease of o with both m aud m/k, for simple isolated
spots, is consistent with a uniform absorbing region of radius slightly larger than the visible
penumbra. On the other hand, for more complicated active regions and an isolated pore,
absorption occurs over a greatly extended region ~ associated with diffuse magnetic fields in
the surroundings.

Braun, LaBonte, and Duvall {1990) performed Hankel analysis at multiple positions rather
than just at the centre of the sunspots (as was done in Braun, Duvall, and LaBonte, 1987,
1988). By repeating the Hankel analysis at multiple locations (using only the azimuthally
symruetric m = 0 mode), Braun, LaBonte, and Duvall (1990} built up spatial maps of the p-
mode absorption over several active regions. These maps show that the maximum absorption
coincides with the largest spots in the active regions. However, a lesser amount of absorption
is also observed over a vast area associated with weak magnetic fields in surrounding plage, in
agreement with the observations of Braun, Duvall, and LaBonte (1988). Subscquently, Braun
(1995) found that isolated spotless plage does indeed show measurabie amounts of p-mode
absorption, at a level of 20% of that seen in typical sunspots. Braui, LaBoute, and Duvall
(1990) estimate that the absorption efficiency scales roughly with the mean magnetic field
strength, although they note the absorption appears to saturate inside the strongest fields
(see also Braun and Duvail, 1990).

Observations of a broad range of active regions suggest that the peak value of the absorp-
tion coefficient varies with the size of the region. With a small pore exhibiting a maximum of
o = 0.2 (Braun, Duvall, and LaBonte, 1988). Sunspots with penumbral radii of about 20 Mm
show absorption coefficients as high as 0.4 to 0.5 (Braun, Duvall, and LaBonte, 1987, 1988;
Bogdan e al.,, 1993; Braun, 1995). The giant sunspot group of NOAA 5395, with radius of
about 60 Mm, exhibited an absorption coefficient of 0.7 (Braun and Duvall, 1990).

Using a technique similar to but distinct from Hankel analysis, Penn and Labonte (1993)
examined the spatial distribution of p-mode absorption within two sunspots. The technique
counsists of measuring the difference between incoming and outgoing power on a circular disk
centred on the umbrae. The disk radius is increased incrementally until reaching the sunspot
umbral radius. The observed absorption was found to increase lincarly with the disk radius,
consistent with a model of a uniform distribution of absorption within the sunspot umbrae.




Bogdan et al. (1093) were able to attain a high signal-to-noise ratio ad high spatial
resolution — observing up to { & 1400 (k =~ 2 Mm~!), This allowed them to mensure the
variation of p-mode absorption as a function of degree ! along individual p-inode ridges with
radial orders » = 0,...,5 {in much greater detail than Braun, Duvall, and LaBoute, 1988).
They found that the absorption along each ridge tends to peak at intermediate values of the
spherical harmonic degree { in the rang: 200 < § < 400, The highest absorption is found
along the py ridge, and the absorption decceases with increasing radial order n. As mentioned
above, Bogdan et al. (1993) employed a decomposition in terms of Legendre functious (sce
also Chen, Chou and the TON Team, 1996). When summed over the same azimuthal orders
(-5 € m < 5) and integrated over the same frequencies (1.5 mHz < v < 5 mHz), the
absorption coefficient observed by Bogdan et al. (1993) agreed remarkably well with the
results of Braun, Duvall, and LaBonte (1987, 1988) for & < 0.8 Min™!, especially considering
that two different sunspots were observed and two guite different techniques for acquiring and
reducing the data were employed. However, for larger horizontal wavenumbers (0.8 Mm™! <
k £ 1.5 Mm~"), Bogdan et al. found that the absorption coefficient decreases with & - in
disagreement with Braun, Duvall, and LaBonte (1987, 1988) who found little if any decrease
over this range. Bogdan e! al. suggest that the decrease of a with k at high wavenumbers
may be due to finite lifetimes of the p-modes, rather than a real change in the absorption
propertics of the sunspot.

With this in mind, Bogdan and Braun (1995) analysed the obscrvations of the sunspot
NOAA 5254 using several different annulus sizes. Bogdan and Braun found that for { < 300,
the observed level of absorption was unaflected by the annulus size. On the other hand,
for I 2 300, the measured absorption level decreases considerably with increasing annulus
radius (for a comprehensive analysis see Chen, Chou and the TON Team, 1996). This result
verifies the suggestion of Bogdan et al. (1993) that p-modes with { 2 300 interact strongly
with the quiet Sun convection and, therefore, have lifetimes shorter than (or of a similar
duration to) the time taken for the modes to travel from the sunspot to the observed annular
region. In contrast, modes with | < 300 are more “global” in nature and, hence, do not decay
appreciably within the distance to the annulus.

The duration of the aforementioned observations (Braun, Duvall, and LaBonte, 1987,
1988; Braun and Duvall, 1999; Braun, LaBonte, and Duvall, 1990; Bogdan et al., 1993)
typically spanned 4-8 hours. This is insufficient to accurately determine the scattering phase
shiftg, §. Braun et al. (1992a) analysed a 68 hour data set made from the South Pole in 1988 -
cnabling the first unambiguous measurcment of the scattering phase shifts of p-modes induced
by a sunspot. Braun (1995) provided a wore detailed discussion of the p-mode scattering
analysis initially presented in Braun et al. (1992a), improved the data reduction technique,
and presented observations for an additional sunspot and a spotless magnetic plage (also for
durations of about 68 hours). The increased temporal duration also provides significantly
improved frequency resolution - allowing the measurement of « and 4 as a function of degree,
radial order, and azimuthal order,

Braun (1995) found that sunspots do not exhibit any significant variation of the measured
absorption cocfficients over the observed range of azimuthal orders (~20 < m < 20), though
there is considerable scatter. The absence of significant variation with m suggests that the
absorption is occurring over a region similar in size to, or extended beyond, the inner radius




of the annulus 0,,,,. This is consistent with the results of Braun, Duvall, and LaBonte
(1988), which showed that absorption also occurs in the diffuse maguetic regions (i.e., plage)
gurrounding sunspots. This interpretation is reinforced by finding that spotless plage also
exhibits absorption, though at a level of 20% of the value secn in sunspots (Braun, 1995).

Due to the lack of significant variation of o with m, Braun (1395) was able to increase
the signal-to-noise levels appreciably, without losing information, by computing absorption
coeflicients averaged aver m. Conscquently, Braun was able to plet @ as a function of [
along each p-mode ridge (n = 0 — 8). Braun found that the absorption scen in both sunspots
exhibited very similar behaviour as a function of { and n, although the larger sunspot exhibited
roughly 30% higher peak absorption than the smaller spot. The variation of a with ! is
broadly consistent with Bogdan et al. (1993) ~ the absorption along cach ridge tends to peak
at intermediate valucs of I, the highest absorption occurs for the f-, pi~, and p-modes, and
the absorption decreases with radial order.

Braun (1995) also observed the variation of the absorption cocflicient as a function of fre-
quency (sce also Braun ef al., 1992a). When ¢, grouped in different bins of degree {, is plotted
as a function of frequency a striking pattern emerges. The left panel of Figure 1.3 shows the
results for the sunspot NOAA 5254. A similar pattern of behaviour is evident for the other
spot observed by Braun, NOAA 5229, despite the drastic difference in surface structure. Fig-
ure 1.3 shows there is a broad peak in the absorptivn cocflicient at approximately 3 raHz,
a minimum of zero absorption at 5 mHz, and an increase in o with » at higher frequencies.
The plage (results not displayed) showed a similar frequency dependence, though measurable
levels of absorption are only observed for the highest { bins. On closer inspection, however,
Figure 1.3 is actually stightly misleading. Figure 1.4 (adopted from Braun, 1995) shows the
frequency variation of a for the individual radial orders n = 0 — 8 and the two different
sunspots (NOAA 5229 and NOAA 5254). For cach radial order, the frequency variation is
diflferent, though all modes show a peak in absorption at lower frequencies, & minimum at
moderate frequencies, and a general increase of o with v for higher frequencies (where the
results are shown). Figure 1.4 clearly shows that the location of the absorption maximwmun
and minimuwm varies with radial order, a feature not evident in Figure 1.3. There are two ad-
ditional features, evident in Figure 1.4, that are worth noting, Firstly, both sunspots exhibit
very similar behaviour despite the difference in appearance at the photosphere. Secondly,
the highest levels of absorption accur for the f-, pi-, and py-modes, and the peak absorption
decreases with increasing radial order n.

It is apparent from the right hand panel of Figure 1.3 that the quiet Sun control tends
to exhibit slight negative values of « ~ corresponding to emission (i.e., generation of acoustic
power), Both Bogdau et al. {1993) and Braun (1995) note that the larger values of the quiet
Snn emission tend to correspond to those modes which show the larger levels of absorption in
sunspots. Indeed, Braun (1995) showed that there is a significant anti-correlation between the
values of « for the spot NOAA 5254 and a region of quiet Sun. Assuming that a statistically
steady-state of p-mode generation and decay (i.e., emission and abgorption, respectively) is
achieved by the turbulent convection, Bogdan et al. (1993) suggest an apparent emission of
p-modes observed in an annulus centred on quiet Sun should, in fact, be present for modes
sufficiently “global” in nature to interact with nearby magnetic regions (¢.g., sunspots and
plage).
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Figure 1.3: The “m-averaged” absorption coefficient, a, plotted as a function of temporal frequency, v, for a
sunspot (NOAA 5254, left panel) and a region of quiet Sun (right penel). The vertical panels represent the
different values of ! into which the absorption data has been binned. Reproduced from Bogdan and Braun
(1995, who adopted it from Braun, 1995).
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Figure 1.4: The “m-averaged” absorption coefficient, a, plotted as a function of temporal {requencr, », for
cach of the radial orders n = 0 — 8, In this case the results for sunspots NOAA 5254 and NOAA 5229 are
displayed (with black and grey diamonds, respectively). Error bars are one standard deviation. Adopted from
Braun (1995).

Unlike the absorption coeflicient, the scattering phase shifts for both sunspots show a
strong dependence on azimuthal order. The scattering phase shift attains a maximum at
m = 0, and steadily decreases as |m| increases. Coincidently, the maximum observed phase
shift is abont 150°. The variation of § with m suggests that the phase shifts are produced
within an area about the size of the visible sunspot penumbra. This is in sharp contrast
to the absorption measurements, which implied that the absorption is not confined to the
sunspots but also occurs in the surrounding plage. Related to this observation is the finding
that spotless plage, while absorbing p-nodes, produces no measurable phase shifts (less than
a few percent of the correspouding value for spots). As expected, the quiet Sun control
produces no scattering phase shifts.

Braun (1995) also plotted the phase shifts, averaged over a small range of m, as a furction
of degree | aloug each p-mode ridge (n = 1—9). For both sunspots observed, the m-averaged
phase shifts are positive and increase with degree [, with an increase that is faster than linear.
Figure 1.5 {(adopted from Braun, 1995) shows the scattering phase shifts, §, as a function of
frequency for the individual radial orders n = 1 ~ 9 and the two different sunspots (NOAA
5229 and NOAA 5254). Figere 1.5 shows that § grows rapidly with increasing frequency, in a
similar fashion to the variation with degree {. Figure 1.5 also shows the scattering behaviour
of the two disparate sunspots is very similar, as is the absorption Lehaviour (Fig. 1.4). The
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frequency dependence of the phase shifts (Fig. 1.5) differs substantially from that of the
absorption coefficionts (Iig. 1.4). In particular, at frequencies where the sunspots produce
casentlally no absorption of p-modes, the phase shifts are at a maxitonm level. This scattering
Lehaviour has been interpreted by Fan, Braun, and Chouw (1995) to imply thal snnspots are
relatively shallow (depth & 1 M) acoustic structures (sce §2.3).
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Figure 1.5: The “mn-averaged” scattering phase shifts, 4, plotted as a function of temporal frequency, v, for
cach of the radial orders n = 1 — 9. In this case the results for sunspots NOAA 5254 and NOAA 5229 are
displaved (with black and grey diamonds, respectively). Error bars are one standard deviation. Adopted from
Broun (1995).

In the two different sunspots observed (NOA A 5220 and NOAA 5254), Braun (1995) found
strong evidence that mode mixing occurs between modes of adjacent radial order at the same
frequency and same azimuthal order. The frequency variation of the mode mixing phase shifts
along each ridge pair is similar to the usual phase shifts (i.e., scattering between identical
radial orders}), but the mode mixing phase shifts are approximately 90° greater. On the other
hand, both the plage and the quiet Sun control exhibited no evidence of mode mixing. The
corresponding wmode mixing strengths (i.e., the power transfetind from an incoming mode
n to an outgoing mode n') were not able to be quantified in detail {see Braun, 1995, for
discussion}.
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1.4.3 Helioseismic tomography

Helioseismic tomography, also known as time-distance helioseismology, was first proposed by
Duvall et al. (1993}, Again letting ¥ be the observed acoustic oscitlation field at the surface
{ns in §1.4.2, this may be either observed velocity or intensity felds), then the cross-correlation
between signals al the surface positions ry and ro, separated by a horizontal distance A, s
determined by

T
CO(AJ)’:[ ¥ (e, ) (g0t + ),
4]

where 7 is the time delay between signals, and T 13 the tainporal duration of the observations.
Duvall et al. found that the cross-correlation, Cy, between fluctuations at two distinct surface
locations is maximal along a parabolic curve of the form A oc 7%, Dispensing with the modal
description (see §1.4.2) altogether, Duvall ¢t ¢l interpreted this behaviour in terms of a
ray {or optics) formalism, where the solar acoustic oscillations are regarded as a collection
of wave packets that travel along ray paths connecting the two points under consideration.
Subsequently, the time delay is interpreted as the time taken for the wave packet to travel
between the two surface points.

The basic idea of helioscizmic tomography is analogous to an approach commonly applied
in both terrestrial and oceanographic seismology. By mecaswring the travel times between
different points on the solar surface, helioseismic tomography aims to use these measurements
to infer the variation of the internal properties such as the sound speed, magnetic field, and
subsurface flow velovities along various ray paths. For example, in regards to sunspots,
helioseismic tomography attempts to distinguish between ray paths which encounter the
sunspot and those which merely propagate through undisturbed quiet Sun. The resultant
difference in travel time for the two different rays contains diagnostic information about the
subsurface structure of the spot.

Indeed, Duvall et gl. {1996) measured such travel time anomalies (see also Braun, 1997).
Duvall et al. generated maps of the travel time diflerences (and averages) over a region of the
solar surface. For each point in the region of interest, they used the cross-correlation function
Co to esiimate the travel times between the point and an annulus {of radius A) centred on it.
In the vicinity of active regions, Duvall et al. found that travcl times for outward propagating
waves {77) are smaller, by approximately one inute, than corresponding inward travel times
(7). They interpreted this as evidence of downflows within the spot and in its inmediate
surroundings - the ray paths are almost vertical near the surface, therefore, a downtlow would
decrease the travel time for an outgoing wave but increase it for an incoming wave. They
estimated that the downflows have velocities of about 2 kin s~!, and persist to depths of
roughly 2 Mm. Subsequent inversious of the Duvall ef ol. travel time data by Kosovichev
{1996) suggest that flows associated with active regions also oceur at even greater depths
{about 20 Mm). Additionally, Duvall et al. observed the mean travel time, which evidently
decreases by about (.4 min at the location of sunspots {corresponding to an average wave
speed increase). They concluded that this was consisient with the presence of a vertical
1-agnetic field with strength of 2 kG at the surface, that increases to 4 kG at a depth of
600 km.
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Braun (1997) applied the methods helioseismic tomography to GONG daia, and confirmed
the findings of Duvall et al. (1996) that 7+ — 7~ & 1 minute in the vicinity of sunspots (which
is not observed for the control cxperitnent where the sunspot is absent), By varying the
radius of the inner annulus, Braun also showed that the radial extent of the region producing
the travel time anomalies is coincident with the outer boundary of the sunspot penumbrac.
Braun then calenlated the cross-correlation function (o for points connected by a two-skip
trajectory, where the first skip (i.e., surlace reflection) occurs at the centre of a sunspot.
The resultant two-skip travel times (divided by 2) differ significantly to the single-skip travel
times. Braun suggested that the discrepancy probably arises from the use of the oscillation
signals within the sunspot in the correlation analysis (with associated limitations alluded to
in §1.4.1 and §1.4.2).

It should be noted thai the process of calculating the cross-correlation function Gy and
the subsequent construction of the time-distance diagram is completely independent of ray
theory. The ray formalism is employed at the level of interpretation and inversion, as a
convenient method for extracting information from the observations {e.g., D'Silva, 1994, 1996;
D'Silva and Duvall, 1995). Bogdan (1J97) clarificd the relationship between the tiine-distance
and modal-decomposition (sce §1.4.2) approaches to local helioseismology. By considering a
model for which analytic solutions are available, Bogdan was able o critically compare the
two approaches. He found that a wave-packet composed of & superposition of neighbouring
p~modes on the traditional k-w diagram (for an example of the analogous l-w diagram, see
Fig. 1.1) interferes constructively along the ray path predicted by ray theory. Hence, a cross-
correlation curve of the form A o 72 (Duvall et al., 1993} will always be observed. However,
Bogdan found that the wave packet is not localised to the ray path joining the two surface
bounce points, except if the radisl orders of the constituent p-modes are very large (i.e.,
3> 1, corresponding to p-modes with vertical wavelengths much less than the density scale,
consistent with the WKBJ approximation). In reality, the spectrum of five minute solar p-
modes used in observations (e.g., Duvall et al., 1996) have rather low radial orders. Therefore,
the subsequent wave packets are diffuse and sample portions of the solar envelope that are
up to 1) — 30 Mwm {rom the predicted ray path. Bogdan cautions against interpretations
drawn in .erms of a single ray path description, and suggesis techniques that account for ray
bundles {a sum of ray paths) should be considered for the analysis of the observed travel time
anomalies.

Bogdan et al, (1998) extended the investigation of the relationship between the time-
distance and modal-decomposition approaches to sunspot seismology. In particular, they
developed a pair of formulae relating the quantities measured by the approaches of time-
distance (namely, the cross-correlation function) and modal-decomposition (absorption coef-
ficient and scattering phase shift), Applying these to ihe observations previously analysed
by Braun (1997), along with concurrent observations from the HAO/NSO Advanced Stokes
Polarimeter, Bogdan et «l. demonstrated that the inferred GONG umbral oscillation signal
actually originates from the umbra-penumnbra boundary {abewt 6 Mm from the centre of the
spot). Additionally, they found that 5-minute oscillations of the wmbra-penumbra boundary
lag behind those in the centre of the umbra by roughly 1 minute, agreeing with the travel
time differences observed by Duvall et al. (1996) and Bogdan (1997). This observation casts
serious doubt on the inference made by Duvall et al. (1996), that the travel time difference
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i1 evideuce of steady downflows, Bogdan et al. also reported that mode mixing, spontancous
p-mode emission from within the sunspot, and the generalion of magneto-atmospheric waves
in the sunspot are all processes that can produce travel tine asymmetries (i.e., 75 # 77).

Finally, wo note the recent tomographical inversions by Kosovichev, Duvall, and Scherrer
{2000) and Kosovichev (2002) which have yielded impressive images of the three-dimensional
structure of the sound-specd perturbation below sunspots. Kosovichev, Duvall, and Scherver
(2000) report that the typical wave speed perturbations range from 0.3 -1 km s~ 1, in a region
as broad us the surface spot aud some 10 Min beneath it, At a depth of 4 Mm, Kusovichev,
Duvall, and Schevrer concluded that the wave speed perturbation may corrcspond to either
a 10% temperature enhancement (ahout 2800 K) or to a 18 kG magnetic field.

1.4.4 Helioseismic holography

Helioseismic holography treats the acoustic field observed at the two-dimensional solar surface
in an analogous fashion to how the cye treats the electromagnetic radiation observed at the
two-dimensional surface of the cornea. The acoustic ficld observed over the solar surface, ¥, is
propagated back (in time) into a model of the solar interior. The resultant three-dimensional
acoustic field is then sampled in “focal planes” at depths of interest — rendering an image
of the features that gave rise to the observed surface sigbal. Hence, belioseismic holography
can probe the three-dimensional distribution of local acoustic ancmalies (sinks, sources and
scatterers) within the solar interior ~ a task Hankel analysis can only perfern in a limited
fashion.

The acoustic egression, H.., provides a statistical assessment of the contribution made
by an acoustic disturbance emanating from a point in the intevior, (r, z), and time ¢, to the
observed surface acoustic field, ¥, at (r/,0) and time ¢'. The acoustic egression is defined as

Hy (r,2,8) = f f Gy (v =l z,t - #) ¥ (', ) dr'dl
a<|r-r'|<b

wheie G4 is a Green's function that expresses how a point disturbance at (r',0) propagates
backward in time to (r, z), or equivalently, forward in timne from (r, 2) to (r’,0). The acoustic
ingression, A, is the time reverse of the egression {with G replaced by its complex conju-
gate) and expresses the contribution to the surface acoustic field by waves converging onto
the focal point (r,z). The computational regressions are performed over an annular region,
the “pupil”, with inner radius e and outer radius b centred on r, the surface location directly
overlying the focal point {r, 2).

Helioseismic holography was first proposed as a method for imaging active regions on
the far side of the sun by Lindsey and Braun (1990, see also Roddier, 1975). However, this
has only come to fruition in the last few years (e.g., Lindsey and Braun, 20002; Braun and
Lindsey, 2001). In the interim, helioseismic holography was developed as a technique for
local helioscismology (c.g., Braun ef al,, 1992b; Lindsey and Braun, 1497; Braun et al., 1998;
Lindsey and Braun, 1999). The application of helioseismic holography to observations from
the SOHO Michelson Doppler Imager has resulted in the discovery of a remarkable array of
new solar acoustic phenomena, a comprehensive review of these can be found in Brann and
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Lindsey (2000a). Recent adiditional analysis of helioseisinic holography has been performed
by Barnes and Cally (2001) and Skartlien (2001, 2002).

In geveral, the results obtained with helioseisinic holography are in excellent agreement
with those of Hankel analysis (e.g., Braun, Duvall, and LaBonte, 1087, 1988; Bogdan e
al., 1993; Brauun, 1995, sce also §1.4.2). In particular, sunspots absorb energy from and
substantially shift the phase of p-modes incident upon them. For exammple, when the acoustic
egression power (i.e., |H|* iutegrated over time and nornalised with a smoothed ingression,
see Lindsey and Braun, 1999} is calculated for a sol of observations containing regions which
absorb p-modes, such as sunspots and plage, the absorbers shows up as regions of deficit in
the acoustic egression power (e.g., Chang et al,, 1997; Lindsey and Braun, 1998a,b, 1999;
Braun and Lindsey, 1999, 2000a).. It should be noted that Chang et al. (1997) were the first
to apply holography to actual solar data and confirm the localised absorption of p-modes by
sunspots, though they refer to the technique as “acoustic imaging” (for details and discussion
of the minor technical differences sce Braun et al,, 1998; Chou, 2000; Lindsey and Braun,
2000b). As alluded to above, holography can do more. We discuss some of the discoveries
relevant to sunspots and their immediate surroundings (other notable successes include the
first seismic images of a solar flare by Donea, Braun, and Lindsey, 1999).

By performing depth diagnostics, Braun ef al. {1998} and Lindscy and Braun (1998a,b)
found that the depth dependence of the 3 mHz egression power deficits in sunspots are
consistent with absorption (in models) that occurs predominantly within a few Mm or less of
the photosphere. This is consistent with the p-tode absorption by sunspots measured using
Hankel analysis (e.g., Braun, Duvall, and LaBonte, 1987, 1988; Bogdan et al., 1993; Braun,
1995, see also §1.4.2), where a was found to decline with decreasing horizontal wavemunber
(i.e., increasing depth of the p-mode lower turning point) in the range £ <€ 0.5 Mm™".

In addition {o the egression power deficits coinciding with the sunspots and plage, Braun
et al. (1998), Lindsey and Braun {1998a), and Lindsey and Braun (1999) uncovered a region
showing a general deficit of 10-30% in 3—4 mHz acoustic emission {i.e., an apparent absorbing
region) which extends far beyond the sunspot, to distances of 30 ~ 70 Mm. This region is
referred to as the “acoustic moat”. The outer boundary of the aconstic moat roughly coincides
with plages in the neighbourhood of the sunspot (which are known p-mode absorbers, Braun,
1095) but often extends into regions that are non-magnetic (Braun and Lindsey, 2000a). It
should be noted that the spatial resolution of the Hankel absorption maps (Braun, LaBonte,
and Duvall, 1990) was insufficient to detect the presence of such a moat, The acoustic moat
was discovered using acoustic power holography, which is sensitive to acoustic sinks and
sources, but may only render images of scatters if they are illuminated by nearby sinks or
sources. On the other hand, phase-seusitive holography (Lindsey and Braun, 1997; Braun and
Lindsey, 2000b}, which computes a temporal correlation between the egression and ingression,
can detect subsurface features that scatter acoustic waves, While the acoustic moat may
have its own absorption mechanism, Lindsey and Braun (1998a) and Braun et al. (1998) note
that it may simply be a region that scatters the depleted waves emanating from the nearby
sunspot, such as a convection cell (driven by the accumulation of heat blocked by the sunspot
photosphere}. The results of Braun and Lindsey (2000b) using phase-sensitive holography
support this hypothesis. They found signatures of an extended, near-surface, rapid outfow
(though these results are in apparent conflict with the downfiows inferred from helioseismic
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towography by Duvall et al,, 1996).

By taking the tomporal Fourior transform of the egression and ingression the analysis
can be shifted to the “spectral perspective” (“chromatic holography” iu the terminology of
Lindsey and Braun, 1999), wheve the observations may be viewed as a function of frequency.
Using this technique, Lindsey and Braun (1999) fouud that the acoustic deficit (absorption
of p-modes) rendered by the sunspot itsell actually persists approximately uniformly over
the range 3 ~ 7 mHz. This result is in apparent contradiction with the results of Hankel
analysis (see Figure 1.3 and Brau, 1995), which show a distinctive absorption minimnm at
frequencies near 5 mHz, depending on the radial order {see Fig. 1.4). Instead, Lindsey and
Braun (1999) find a 2.6% enhancement of quiet Sun egression (i.c., localised generation of
acoustic power) at about 5 mHz in a region surrounding the sunspot that extends far beyond
the spot and the acoustic moat. Lindsey and Braun (1999) estitnate that the contribution of
this small enhanced emission at 5 mHz, over the broad range for which it exists, is sufficient
to cancel the acoustic deficit (absorption) caused by the sunspot and, therefore, obscures the
Hankel analysis results (Braun, 1995), _

The region of enhanced emission surrounding the sunspot, revealed by Lindsey and Braun
{1999), is a relatively wenk, diffuse “acoustic glory”. Acoustic glories (e.g., Braun and Lind-
sey, 1999, 2000a; Donea, Lindsey, and Braun, 2000) are halos of sharply enhanced higher
frequency {above 4.5 mHz) acoustic emission in the regions surrounding multipolar active
regions. Acoustic glories are largely comprised of small, discrete emitters that may generate
acoustic power 1.5 times that of the average quiet Sun. Douca, Lindsey, and Braun (2000)
show that these small emitters are nearly all confined to regious of quiet Sun, but have a
remarkable tendency to border weak magnetic regions.

Depth diagnostics reveal the existence of submerged “acoustic condensations”™ indicating
the presence of compact acoustic deficits 10 — 20 Mm below isolated sunspots (Lindsey and
Braun, 1998b) and multipolar active regions (Braun and Lindsey, 1999). These acoustic
condensations generally do not lie directly below the sunspots, but can appear tens of Mm
away from any sunspot. The reason for this is not currently understood. In a siintlar fashion
to the acoustic moat, Braun and Lindsey (1999) suggest these features may not be absorbers
at all, as they appear in the observations, but simply scalterers (associated with subsurface
thermal or Doppler perturbations).

Using multiple-skip chromatic holography Lindsey and Braun (1999, sce also Lindsey
and Braun, 2000b) confirmed that the quict sun photosphere is poor specular reflector for
frequencies above its acoustic cutofl frequency (this result is consistent with the observations
obtained using helioseisinic tomography by Duvall et al., 1993). In contrast, the photosphere
of active regious, including sunspots, efliciently reflects high frequency acoustic waves, This
somewhat surprising behaviour was revealed recently using phase-sensitive holography {(Braun
and Lindsey, 2000a,b). Additionally, observations using phase-sensitive holography indicate
that all nagnetic regions, including plage, induce sound travel time perturbations (consistent
with the presence of Wilson-like depressions with depths proportional to the surface magnetic
pressure). This is in contradiction with the results found using Hankel analysis, in which case
plage apparently absorbs but does not scatter incident p-modes (Braun, 1995, sce also §1.4.2).
The reason for this discrepancy is unclear.
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1.5 Outline

In Chapter 2 we discuss several theoretical models for the interaction of solar oscillations
(p-modes) with various magnetic fleld structures, which have been proposed to interpret the
aforementioned observations. In this thesis, we focus on two observational facts: sunspots
absorb (and scatter) incident p-modes; and p-modes have finite lifetimes (i.e., non-zero line
widths). Chapters 3 and 4 are devoted to modelling the absorption of solar p-modes by
suuspots, in particular, for regions with non-vertical magnetic field. In Chapter 5 we maodel
the global damping of solar p-modes by fibril ficld, calculating the p-mode lifetimes resulting
from energy escaping into both the solar interior and the upper atmosphere. Conclusions are
discussed in Chapter 6.
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Chapter 2

Modelling the interaction of solar
p-modes with magnetic field

From a theoretival perspective, the interaction of solar p-modes with magnetic ficld {obser-
vational evidence outlined in Chapter 1) is generally not well understood. In this chapter,
wo briefly discuss the magnetohydrodynamic approximation, which is central to modelling
the interaction. We then survey several candidate mechanisms for the interaction of solar
p-modes with the Sun’s magnetic field.

2.1 Magnetohydrodynamics

Magnetohydrodynamics (MHD) is a synthesis of fiuid dynamics (as described by the Navier-
Stokes equations) and electromagnetism (Maxwell’s equations and Ohin’s law) in the noun-
relativistic approximation. The fluid is considered to be highly electrically conducting (mean-
ing at least partial ionisation has taken place), and adequately describable as a single com-
ponent Quid (i.e., charge separation is negligible over all the length scales of interest). These
assumptions are valid for most (though not all) solar phenomena. For the purposes of this
investigation these assumptions are rcasonable.

Ideal MHD treats the plasma as a perfectly conducting fluid interacting with a magnetic
field. Ideal MHD neglects: viscosity, energy losses due to non-adiabatic effects {such as
thermal conduction and radiation), and Ohmic diffusion {i.c., electrical resistance). The
equations of ideal MHD are the equations for: continuity {conservation of mass),

ap

6t+v-Vp+pV-v=0,

conservation of momentum,

p(%{-+v-V\r) =—-Vp+-l-(VxB)xB-pgéz,
Uy

conservation of energy,
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the induction equation (which follows from Ampére’s, Faraday's and Ohm's Laws),

JB
"az":VX(VXB),

and the solenoid condition {expressiug the absence of magnetic monopoles),
V:B=0,

where p is the mass density, v is the velocity, p is the gas pressure, —gé, is the acceleration due
to gravity, B is the maguetic 4eld, and g, is the magnetic permeability. The continuity and
energy equations are just the asual (non-magnetic) fluid equations, whereas the momentumn
equation contains an extra term, the Lorentz force, introduced by the presence of the magnetic
field. The Lorentz force can be split into two components,

1 1 . 1
—(VxB)xB=—[B-V|B - —V|B B},
i (VxB) o [B-VIB - 5-ViB - B

indicating that the magnetic ficld introduces two forces that are absent in the non-magnetic
case: an isotropic magnetic pressure B?/2t,, and a tension B%/s,,. The Lorentz force has no
component in the direction along the field lines. Therefore, the magnetic pressure gradient in
the direction along the field lines must exactly balance the magnetic tension component along
the ficld lines. Another important consideration arises from the induction equation. When
the fluid is perfectly conducting, as in ideal MHD, Alfvén’s theorem implies that magnetic
flux is frozen into the fluid (i.e., magnetic ficld lines move with the fluid). Comprehensive
discussion of magnetohydrodynamics can be found in several textbooks (e.g., Ferraro and
Plumptou, 1966; Priest, 1982).

2.2 Possible interaction mechanisims

This section is devoted to surveying several mechanisms for the interaction of solar p-modes
with a range of magnetic structures. These arc for example: sunspots, plage, pores, intense
photospheric fiux tubes, and canopy field. The survey is not intended to be exhaustive, we
emphasise the topics central to this thesis. The interaction of p-modes with magnetic flux
concentrations can be decomposed into two distinct components -~ absorption and scatter-
ing (though the interaction with canopy field lies outside of this categorisation). We focus
on absorption, though scattering mechanisms are also briefly discussed. From a theoretical
perspective, it is fair to say, the interaction of solar p-modes with magnetic field is not well
understood. At present, theoretical models do not adequately explain the observations (out-
lined in Chapter 1}. However, recent advances using the results of this thesis (Appendix F)
are extremely promising.
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Broadly speaking, the various theoretical attempts eraploy two distinet approximate mod-
cls of a magnetic Hux concentration: (1) inhomogeneity primarily in the horizontal direction,
neglecting gravitational stratification {e.g., resonant absorption aud the interaction with bhun-
dles of flux tubes); (2) inhowogeneity primarily in the vertical direction (gravitational strati-
fication), neglecting horizontal variations (¢.g., mode conversion). There are also phenomeno-
logical models for sunspots, and we discuss these first.

2.3 Phenomenological models

A handful of phenomenological models for sunspots have been developed (e.g., Brown, 1990;
Fan, Braun, and Chou, 1995, Chou ef al, 1996; Chen, Chou and the TON Team, 1997,
Barnes and Cally, 2000). By assuming that the effect of the sunspot’s magnetic field can be
parametrised in some simple maunner, such as by a modified sound speed (e.g., Fan, Braun,
and Chou, 1995; Clhou et al, 1996; Chen, Chou and the TON Team, 1997) or modified
upper houndary condition (e.g., Barnes and Cally, 2000), phenomenological models avoid
the complications involved with calculating the full Lorentz force. This approach enables the
forward (Fan, Braun, and Chou, 1995; Chou et al., 1996) and inverse (Chen, Chou and the
TQON Team, 1997) problems in sunspot seismology to be tackled.

For example, Fan, Braun, and Chou (1995) calculate the scattering phase shifts for a
model “sunspot”. The model consists of a near-surface, disk-shaped inhomogeneity in which
the sound specd smoothly increases to it's peak value /2 times the external sound speed
at the same depth. Fan, Braun, and Chou (1995) find a substantial agreement beiween the
observations of sunspot NOAA 5254 (Braun, 1995} and their model when a disk of radius
25 Mm! extending over a depth of 1 Mm is employed.

Another example, Chou el al. (1996); Chen, Chou and the TON Team (1997) assume
the presence of the magnetic regions can be representedd by a complex sound speed - such a
model can both absorb and scatter incident p-modes. Chen, Chou and the TON Team (1997)
invert the measured absorption cocflicients in two sunspots NOAA 5264 (Braun, 1995) and
NOAA 7887 (Chen, Chou and the 'TON Team, 1997), and infer the depth dependence of the
real part of the interaction parameter {which corresponds to the absorption of waves). The
depth dependences are similar for both sunspots: the real part of the interaction parameter
increases rapidly with increasing depth, reaches a maximum value at a depth of about 7 Mm,
then gradually drops off to zero at a depth of about 28 ~ 35 Mm.

Phenomenological models deliberately ignore the details of the interaction mechanism.
However, if one can ascribe some physical interpretation to the chosen parametrisation, phe-
nomenological models may provide a bridge between the theory of the interaction mechanism
and observations.

2.4 Resonant absorption

Resonant absorption of acoustic oscillations occurs as a result of cross-field inhomogeneity in
regions with non-unifortn magnetic field. In the context of sunspots, this was first suggested

"The observed penumbral radius of sunspot NOAA 5254 was 18 Mm (Braun, 1995).
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by Hollweg (1988)2 and further devejoped by Lou (1990); Rosenthal (1990, 1992); Sakurai,
Goossens, and Hollweg (1901a,b); Goossens and Poedts (1992); and Goossens, Ruderman, and
Hollweg (1995). Resonant absorption occurs when, in horizontally inhomogencous regious,
the frequency of the oscillation coincides with the local Alfvén (or local cusp) freyuency
on a particnlar magnetic surface (corresponding to a singulavity in the ideal MHD limit).
Enhancud disvipation uitimately occurs at the resonant surface due to nou-ideal effects, such
as viscosity and olectrical resistivity though the rate of ahsorption is independent of these
(Goossens and Poedts, 1992; Erdélyi and Goossens, 1994). Resonant absorption of sound
waves is very efficient across a broad range of civcumstances {even for weakly dissipative
media), for example, straight (monolithic) magnetic Hux tubes (e.g., Hollweg, 1988; Lou,
1990; Sakurai, Goossens, and Hollweg, 1991a,b; Keppens, 1995}, twisted monolithic flux tubes
(e.g., Chitre and Davila, 199]; Goossens and Poedts, 1992; Stenuit, Poedts, and Goossens,
1993; Stenuit, Erdélyi, and Goossens, 1995), and fibril-type ficld (e.g., Rosenthal, 1990, 1992;
Keppens, Bogdan, and Goossens, 1994, discussed further in §2.6). Resonant absorption may
operate in a gravitationally stratified atmosphere {(e.g., Goossens, Poedts, and Hermans,
1985), though the efficiency remains uncertain.

2.4.1 Resonant absorption in canopy field

In general, gravitationally stratified atmospheres permeated by exactly horizontal inagnetic
field also possess the Alfvén and cusp resonant layers (Cally 1984, also see §3.1.2). Therefore,
resonant absorption {(as outlined in §2.4) may take place in canopy ficld (in the chromosphere
and corona) overlying the non-magnetic convection zone. Zhukov (1997); Ticry et al. (1998);
Pintér and Goossens (1999); Vanlommel and Goossens {1999); Vanlominel et al, (2002} con-
sider the interaction of the solar p-modes with resenant oscillations in the magnetic canopy.
This interaction results in a frequency shift, as well as p-mode damping. Rough agreement
with observations can be obtained, depending on the choice of model parameters. The in-
fluence of canopy field on the p-modes was aleo studied by Campbell and Roberts (1989);
Evans and Roberts (1990); Jain and Roberts (19%4a,b,¢). However, the canopy resonances
were avoided by a special choice of magnetic field and temperature profiles.

2.5 Mode conversion

Mode conversion occurs as a result of vertical gravitational stratification in atmosphercs
with a uniform, non-horizontal magnetic ficld. The damping of global oscillations in stars
by conversion to slow modes was first considered by Birout et al. {1982) and subsequently
by Roberts and Soward (1983) and Campbell and Papaloizou (1986). This mechanism was
first applicd to sunspots by Spruit and Bogdan (1992) and further developed by Cally and
Bogdan (1993, hereafter CB93); Cally, Bogdan, and Zweibel (1994, CBZ), Cally {1995);
Hindman, Zweibel, and Cally {(1996); Bogdan and Cally (1997, BCI7); and Lites el al.

*Though resonant absorption of Alfvén waves was originally studied iu thermonuciear fusion rescarch as a
mechanism for heating laboratory plasmas (see e.g., Chen and Hasegawa, 1674; Hasegawa and Chen, 1976),
and later in the heating of sular coronal loops (see e.g., lonson, 1578; Poedts, Goossens, and Kerner, 1989,
1990).
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{1988). Modn conversion oceurs becanse, in a gravitationally stratified atmosphere with a
wniform, non-horizontal magnetic fickl, the fast nud slow magnetoacoustic-gravity {MAG)
waves interact (predominantly in the region where the sound speed, Cg, and Alfvén speed,
C'a, are comparable). Iu uniforin, vertical magnetic fields, the Alivén waves decouple. In fact,
due to the interaction of the fust and slow MAG waves, it is not appropriate to use the terms
“fast” and “slow” - these only have meaning when the sound and Alfvén speeds differ greatly.
The resultant oscillations, governed by a fourth order system of differential equations, are
culled r-modes (as distinet from p-modes, in recognition of the role played by the magnetic
field). However, at great depth (where Cy4 < Cs), the fast and slow MAG wave componeits
of the m-modes are locally decoupled. There, the fast modes are essentially acoustic, trapped
oscillations much like the non-magnetic p-modes; and the slow modes are essentially Alfvénic
{tramsverse and incompressive), downward-travelling waves. Conscequently, the slow nodes
can leak energy away from the fast mode resorant cavity.

It is worthwhile noting that the concept of mode conversion is broadly consistent with
the observed absorption of p-modes by sunspots, pores and plage (see §1.4.2). In particular,
absorption occurs uniformly across the sunspot umbrae and penumbrae (e.g., Braun, Duvall,
and LaBonte, 1988; Braun, LaBoute, and Duvall, 1990; Penn and Labonte, 1993; Braun,
1995), and absorption scales roughly with both the size of the magnetic region (e.g., Braun,
Duvall, and LaBonte, 1988; Braun and Duvall, 1990; Braun, 1995) and the mecan magnetic
field strength {e.g., Braun, LaBonte, and Duvall, 1990). The results from helioseismic holog-
raphy (see §1.4.4) indicate that absorption in sunspots occurs predominantly within a few
Mm or less of the photosphere {e.g., Braun ¢t al., 1998; Lindsey and Braun, 1998h; Braun
and Lindsey, 2000a). This finding is in qualitative agreement with mode conversion occurring
in the layers where Cs = C4 {i.e., neax the surface).

The efficiency of fast-to-slow inode conversion, in gravitationally stratified, plane parallel,
atmospheres permeated by uniform, vertical magnetic fields, has been addressed by CB93,
CBZ, Cally (1995) and BC97. The fourth order boundary value problem, consisting of the
{ourth order MAG wave equation and four boundary conditions, resuits in an eigenvalue
problom. The eigenvalue is necessarily complex due to the leakage of energy by the slow
modes - the hinaginary part quantifies the efficiency of the mode conversion. CB93 and
BCI7 consider the temporal evolution of frec lincar oscillations, calculating complex (angular)
frequency eigenvalues w for given real horizontal wavenmmber k. The imaginary part of the
frequency eigenvalue indicates temporal decay of the n-modes. CBZ aund Cally (1995) carried
out the complementary study, the spatial evolution of driven linear oscillations - specifying
real angular frequency w and caleulating complex. wavenumber eigenvalues k. The imaginary
part of the wavenumber eigenvalue indicates horizontal spatial decay of the a-modes. The
latter approach is more suitable for the situation where external p-modes of a given frequency
drive osciilations inside the sunspot.

To quantify the driving of the internal w-modes by external p-modes, and hence p-Lo-slow
mode conversion, requires matching oscillations (total pressure and radial velocity) across
the boundary between the no -magnetic and magnetic regions. In particular, in the non-
tnagnetic region surrounding 1he sunspot, oscillations need to be decomposed in terins of
both a discrete spectrum of horizontally travelling p-modes and a continuous spectruimn of
horizontally evanescen. jacket modes (sce Bogdan and Cally, 1995, for details). The matching
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problem, including the jacket modes, has been addressed by Barnes and Cally (2000) for
a (phenomenological) thin-disk scattering model consisting of two non-magaetic regions of
finite depth®, with diffecent upper boundary conditions. The mathematical complications
are severe (especially for somi-infinite atmospheres), hence, the eigenvalue analyses do not
incorporate the matchiug problem,

Cally and Bogdan {1997) and Rosenthal and Julien (2000) carried out coruplementary
sumerical simulations of non-magnetic p-modes encountering a vertical maguetic flux con-
centration - this naturally includes the matching across the interface between the magnetic
and non-magnetic regions. Both eigenvalite analysis and numericat simulations agree that f-
modes ar: easily absorbed sufficiently to explain observations, whereas p,-modes (especially
n 2> 2} are definitely not absorbed sufficiently by this mechanism. In fact, p-to-siow mode
conversion becomnes very iueflicient with increasing radial order, n.

One obvious limitation of the vertical ficld models is the magnetic field geometry. For
example, the observations of Braun, Duvall, and LaBonte {1988), Braun, LLaBonte, and Duvall
(1990), and Braun {1995) indicate that p-mode absorptiou is not isolated to the umbrac of
sunspots (where the field is primarily vertical), but instead occurs nearly uniforinly across a
region slightly larger than the penttinbrae (where the field is highly inclined). The oscillations
supported by a spreading magnetic ficld are not well understood. Theoretical progress is beld
back by the presence of both vertical and radial gradients (see Bogdan, 1999, for the outline
of a methot of solution).

Reocently, Cally (2000) carried out two-dimensional finite diiference simulations of non-
magnetic p-modes encountering a sunspot model with a spreading magnetic field. Cally found
that p-mode absorption is greatly eshanced by field spread, though numerical limitations
precluded the investigation of models with sufficient spread to fully explain the observations.
There ave several possible reasons for enhanced absorption to occur in spreading field, for
exasnple: the deforination of the €y = Cg¢ conversion region (broadened and deepened -
higher radial order p,-modes carry tnuch of their energy at greater depths than the f-mode);
internal mode mixing (scattering of higher order p,-modes to more lossy low order modes);
or inclination of the magnetic field increases the excitation of the downward-radiating slow-
mode.

The purpose of Chapters 3 and 4 is to determine the effect of the magnetic feld inclination
on the efficiency of MAG wave conversion. This is done by generalising the vertical field
cigevvalue analysis of CBZ to a non-vertical magnetic field. In Chapter 3 we restrict ourselves
to two-dimensional propagation, and concentrate on fast-to-slow MAG wa.e conversion. In
Chapter 4 we consider propagation in three dimensions, where conversion between all three
types of waves (fast and slow MAG waves, and Alfvén waves) is possible.

2.6 Flux tubes

In the absence of gravity, the theory of waves travelling in and on isolated, uniform magnetic
flux tubes (referred to as tube modes) is well developed. Several early papers made the

u atmospheres of finite depth, the p-modes reduce to a finite set and the jacket modes to an infinite but
discrete set.
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thin flux tube approximation (c.g., Ryutov and Ryutova, 197G; Roberts and Webh, 1979;
Wilson, 1979; Spruit, 1982), some of which included gravitational stratification (e.g., Doelouw,
1976; Roberts and Webb, 1978; Spruit, 1981). Flux tubes of arbitrary radius wore considered
shortly thercafter {e.g., Wentzel, 1979; Wilson, 1981; Edwin and Roberts, 1983}, If dissipative
processes can be neglected, the tube modes will propagate along the ffux tube maintaining a
constant amplitude provided the disturbance they induce in the surrounding fluid is laterally
evanescent. In this case real frequencies are appropriate. However, Roberts and Webh (1979);
Wilson (1981); and Spruit (1982) realised that when the tube mode couples to a lavwerally
propagating wave (in the surrounding fluid), its amplitude will decay as energy is carried
away by the external waves. In this case, the tube mode is said to be “leaky” (Cally, 1985,
1986) or “acoustically damped” (Spruit, 1982}, and complex frequencies are required. Cally
(1985, 1986) carried out an extensive analysis of the leaky and non-leaky modes (allowing
for complex frequencies) for tubes of arbitrary width and with magnetic field in the external
environtnent. In the thin flux tube limit only two modes survive: the axisymmetric (m = 0)
sausage mode with characteristic phase speed (along the tube) Cp = CaCs/ (C2 + C3)' 2
and the (m # 0) kink mode with phase speed Cg = [(pCﬁ + peC2) [ (P 0.)] 172 (c.g.,
Defouw, 1976; Ryutov and Ryutova, 1976; Roberts and Webb, 1978, 1979; Wilson, 1979;
Spruit, 1982; Cally, 1985, 1986; Bogdan, 1989). Here, the subscript “e” refers to quantities
external to the tube, waereas unsubscripted quantities are internal. Recently, tube mode
theory has been extended to non-uniform fux tubes (in unstratified atmospheres} exhibiting
resonant absorption at critical surfaces {e.g., Keppens, 1995, 1996; Stenuit, Keppens, and
Goosscns, 1998; Stenuit et al., 1999).

Associated with the phenomena of acoustic damnping of tube modes is the complementary
process of resomance scattering, where the tube modes arc excited by waves in the surrounding
fluid. For example, the scattering resonances of a thin magnetic flux tube occur when the
frequency of the incident acoustic wave coincides with one of the natural tube frequencies
(corresponding to the characteristic phasc speeds of the thin tube modes Cr or Cg). When
the flux tube is driven at these frequencies, fluid motions in and around the tube are greatly
enhances over their typical non-resonant level (e.g., Ryutov and Ryutova, 1976; Bogdan,
1989; Ryutova and Priest, 1993a,b).

2.6.1 Ensembles of diverse flux tubes

The a“<orption of acoustic ascillations by resonance scattering in horizontally inhomoge-
neous regions has been investigated by Ryutov and Ryutova (1976} and Ryutova and Priest
(1993a,b). In this case, acoustic oscillations are absorbed by an ensemble of widely separated,
uniform thin magnetic flux tubes randomly distributed in space and over their parameters
(e.g., magnetic field strength, deunsity and radius). During the transient phase, absorption
occurs because tie frequency of the incident sound wave will nearly always coincide with
a (natural) resonant frequency in a fraction of the flux tubes. When this occurs, energy is
extracted from the acoustic waves as the enhanced response is built up in the resonantly
excited flux tubes. At later times, this energy is re-emitted as secondary acoustic waves in
higher layers of the atmosphere. Energy will be lost even in the absence of viscosity, thermal
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conduction and ohinic losses. However, in densely packed ensembles such as sunspots, large
localised gradients will develop due to the small scale inhomogeneitics, and classical dissi-
pation will be enhanced (Ryutova and Persson, 1984; Ryutova, Kaisig, and Tajima, 1991;
LaBonte and Ryutova, 1993; Lazzaro, Lontano, and Ryutov, 2000). The major limitation of
this mechanism is that thin flux tubes in gravitationally stratificd atmospheres do not have
global resonant frequencies (e.g., Bogdan ef al., 1996; Hasan and Bogdan, 1996; Hasan, 1997;
Crouch and Cally, 1999; Tirry, 2000, also see discussion in Cally, 2001b). Ia fact, Tirry (2000)
also showed that resonant frequencies (including multiple scattering resonances exhibited by
bundles of closely spaced tubes, sce Bogdan and Fox, 1991; Keppens, Bogdan, and Goossens,
1994) are absent in an unstratified cavity when one end of the flux tube is open to wave
leakage.

2.6.2 Bundles of identical flux tubes

At late times, the enhanced motions of any resonantly excited flux tubes will saturate at
their asymptotic level, the balance between excitation and re-emission results in zero net
absorption. The steady-state (late time) scattering of acoustic waves by bundles of identi-
cal, randomly distributed, uniform: magnetic flux tubes in unstratified atmospheres has been
investigated in considerable detail {e.g., Bogdan and Zweibel, 1985; Zweibel and Bogdan,
1986; Bogdan and Zweibel, 1987; Bogdan, 1987a,b; Bogdan and Cattanco, 1989; Bogdan and
Fox, 1991; Bogdan, 1992; Tirry, 2000, but for generalisations to stratified atinospheres see
Zweibel and Déappen, 1989 who develop a mean ficld theory approach, and Rosenthal, 1995
who employs the Born approximation). In these studies, as the individual flux tubes are
uniform, they — as well as the bundles they belong to - do not absorb acoustic power (at
late times). Keppens, Bogdan, and Goossens (1994), however, applied the theory of multiple
scattering (the T-matrix formalism developed by Bogdan and Fox, 1991} to incorporate res-
onant absorption by bundles of closcly spaced, non-uniformn tubes (where the resonant layer
in each tube is modelled using the method of Sakurai, Goossens, and Hollweg, 19912). For
a fixed amount of magnetic flux, Keppens, Bogdan, and Goossens found that fibril sunspots
{c.g., the “spaglietti” model suggested by Parker, 1979) absorb much more acoustic power
than their monolithic (non-uniform) counterparts. On the other hand, both (monolithic and
fibril) sunspot models scatter comparable amounts of incident acoustic energy. There are
several major limitations of this mechanism: it neglects tube modes not found in the thin
tube limit (e.g., Cally, 1985, 1986; Stenuit, Keppens, and Goossens, 1998; Stenuit ef al.,
1999); as mentioned in §2.4, the efliciency of resonant absorption in gravitationally stratified
atmospheres is not well understood; and multiple scattering resonances (responsible for the
enhanced absorption found by Keppens, Bog-an, and Goossens, 1994 in fibril sunspots) are
absent when one end of the fiux tube is open (Tirry, 2000, see also Cally, 2001b).

2.6.3 The absorption of p-modes by thin magnetic flux tubes

The observed p-mode line widths {e.g., Libbrecht, 1988; Korzennik, 1990; Jefferies et al., 1991)
canuot be accounted for by mechariical and thermal processes alone. Various modelling along
these lines includes the excitation and damping of p-modes by turbulent convection (e.g.,
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Christensen-Dalsganrd, Gough, and Libbreeht, 198%; Goldreich and Kumar, 1991; Goldreich,
Murray, and Kumar, 1994) and the scattering of p-modes by convective eddies (Goldreich
and Murray, 1994). As discussed in §1.4, it is now well established that sunspots and plage
absorb substantial amounts of energy from p-modes incldent upon thera (Brana, Duvall, and
LaBonte, 1987, 1988; Braun, LaBonte, and Duvall, 1990; Braun et al., 1992a; Bogdan et al.,
1993; Braun, 1995; Chen, Chou and the TON Team, 1996}, This prompted Jefferies et al.
(1991) to suggest that the absorption of high degree p-modes by active regions may provide
an additional {mmuodelled; component of the p-mode line widiths. Recent observations by
Komin, Howe, and Hill {2000, as discussed in §1.3) also indicate (though not conclusively)
that a component of p-mode damping is magnetic in nature.

Bogdan et al. (1996, hereafter BHCC) investigate the possibility that the interaction of
p-modes with isolated, thin magnetic flux tubes may represent another unmodelled process
capable of explaining the observed p-mmode line widths (e.g., Libbrecht, 1988; Korzennik, 1990,
Jefferics et al., 1991). BHCC developed a model for a {non-resonant) thin magnetic flux tube,
embedded in a gravitationally stratified atmosphere. They consider the tube to be in thermal
equilibriutn with its surroundings - a reasonable assumption if the tube is thin enough (see
§5.1.3). Conscquently, the plasma-4* is independent of depth, and the excitation of the tube
modes by the p-modes in the surrounding atinosphere may occur over the entire length of
the tube. The tube modes then travel down into the solar interior.

Above the photosphere the flux tube begins to flare out to such an extent that the thin
flux tube tnodel becomes unrealistic. To overcome this difficulty, BHCC imposed a stress-free
boundary condition at the photosphere, which acts to reftect any upward-propagating tube
waves completely back down into the tube. The stress-free boundary condition deliberately
neglects a possibly important physical process: the loss of energy to the upper solar atmo-
sphere by the excitation of waves in the chromosphere and corona. In Chapter 5, we use
simple models of the solar chromosphere and corona to explore the consequences of applying
various boundary conditions.

Spruit (1981) determined the two completely uncoupled modes of oscillation for a thin
magnetic flux tube: the kink modes, which describe transverse, incompressive motions of the
tube, and the sausage modes, which are longitudinal, compressive motions. At the top of the
convection vone the longitudinal, compressive inotions of the thin magnetic flux tube (sausage
mode) match onto longitudinal, compressive motions in the overlying chromosphere - MAG
waves. The transverse, incompressive motions of the thin magnetic flux tube (kink modes)
match onto transverse, incompressive motions in the overlying chromosphere - Alfvén waves.
With this in mind, plausible boundary conditions at the photosphere can be constructed.

The theoretical results of BHCC fall well short of the chservations (Korzennik, 1990), by
an order of magnitude or more. In Chapter 5, we determine the contribution to the p-mode
line width from both the tube modes (sausage and kink modes) escaping deep into the solar
interior, and the MAG and Alfvén waves cscaping into the upper solar atimosphere.

The plasma-J is defined as the ratio of the gas and magnetic pressure, § = 24,,p/B%.
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Chapter 3

Mode conversion of solar p-modes
in non-vertical magnetic fields:
Two-dimensional model

In this chapter we counsider the oscillations supported by a gravitationally stratified atmo-
spherc permeated by a uniform, non-vertical magnetic field. We derive the equations govern-
ing propagation in arbitrary directions. However, in this chapter, we assume two-dimensional
propagation where the Alfvén waves decouple. We calculate the efficiency of fast-to-slow MAG
wave conversion in non-vertical field for a complete polytrope.

3.1 The governing equations

The unperturbed model atmosphere consists of an inviscid, compressible, perfectly electrically
conducting, ideal gas. The atmosphere is plane-stratified! by the constant gravitational
acceleration, —gé., and permeated by a straight, uniform, non-vertical magnetic field inclined
in the (z, z)-plane,

B =B (sinfé, + cosfe;) , (3.1)

where 8 is the angle between the magnetic field vector and the vertical, &, (see Fig. 3.1). We
consider the steady-state?, linear? adiabatic oscillations of this atmosphere.

As the unperturbed atmosphere is in hydrostatic equilibrium, the mass density, p, and
gas pressure, p, are related by dp/dz = —pg. Consequently, the coefficients of the governing
PDEs (the linearised equations of ideal MHD) only depend on the vertical spatial coordinate,

'For features with horizontal extent greatly exceeded by the solar radius, such as sunspots and small-scale
intense maguetic flux tubes, the curvatnre of the solar surface may be safely neglected.

?In quiet Sun, the solar p-iodes bave periods of the order five minutes and lifetimes of order hours to days.
Therefore, it is reasonable to neglect transients and focus ou the steady-state oscillations.

*In quiet Sun, the typical surface velocity amplitude associated with an individual p-mode is at most
about 10 cmn s~* (Christensen-Dalsgaard, 2002), whervas the sound speed in the near surface layers is of order
10 kra s~*. Hence, the small amplitude assumption is valid.
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Figure 3.1: The magnetic field vector, B, the wave-vector, k, the perpendicular wave-vector, ki, and the
angles # and ¢ in threc-dimensional Cartesian space.

z. It is, therefore, appropriate to use the method of separation of variables and we assume
that all perturbed quantities depend on the horizontal spatial coordinates, ¢ and y, and
temporal coordinate, ¢, according to exp{i (k- r — wt)], where k = &{cos$ &, +sing &)} is
the wave-vector, ¢ is the angle between the wave-vector and the z-axis, r = z&; -+ y&, is the
position vector and the angular frequency, w, is real and non-negative. Figure 3.1 shows the
magnetic field vector, B, and the wave-vector, k, and the angles ¢ and ¢ in thres-dimensionad
Cartesian space. )

The Lagrangian fluid displacement, & = £,6; + £,&, + &, = Ck+ nky + £.6,, where
ki = ~sing&;+cos ¢ &, (see Fig. 3.1), then satisfies a system of three coupled, second order,
ordinary differential equations:

2 [cos'zaa% ~ (sin® ¢ sin*8 + cos® 8) A* | ¢ + (w? - K2CE)¢
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- sin0C3 [cus:/) cos & oA ik9in? ¢ sinf— — cos ¢ cos O k%] &,
’ dz

dz
o d e o .
+ik [Cg‘{—;; - g] ¢, = ~iksing sin0C2 am (3.2)
G388 +w?] 1= - sing sin0 CR 8 [V €], (3.3)
& .2 g & d 2
sin® 9 C% E—,;,--—ms SR E, + C"dz* e +we| &,
2 I
- sinGOfl [cos ¢ cos@ -‘—T; —~ iksin® ¢ sin()-;-; —cos ¢ cos § k2] ¢
+ik [cs-d— —(y 1) J] ¢ = -sing sin0C3 9 [g”] (3.4)

where &) = B .V = ikcos¢ sind + cos ;ﬁ; is the directional derivative in the direction
parallel to the equilibrium magnetic field, C4 (2) = B/ {p.,,,o)l/ 2 is the Alfvén speed, and
Cs(z) = (yp/p)'? is the adiabatic sound speed. The sixth order system of differential
equations {3.2)-(3.4) completely describes the propagation and linear interaction of all types
of magnetoacoustic-gravity (MAG) waves - the fast and slow MAG waves and the Alfvén
waves (where the distinction is valid). Tn equations (3.2)-(3.4) the temperature stratification
is arbitrary. If can be verified that in the isothermal case, the equations are equivalent to
those derived by Leroy and Bel (1979) and Zhugzhida and Dzhalilov {1984a) in terms of the
standard Cartesian displacements £;, &, and §;.

3.1.1 Vertical field

Whea the equilibrium magnetic field is exactly vertical (i.e., & = 0), ¢-dependence vanishes
and equations (3.2)-(3.4) reproduce the governing equations first derived by Ferrato and
Plumpton {1958). In this case, the MAG waves (fourth order, with fluid displacement ¢k +
€:€., egs. {3.2] and [3.4]) and the transverse Alfvén waves (second order, with displacement
7k, eq. [3.3]) decouple. The vertical field MAG waves equations have received considerable
attention from many authors, often in the context of umbral oscillations in sunspots {(e.g.,
Scheuer and Thomas, 1981; Thomas and Scheuer, 1982; Leroy and Schwartz, 1982; Schwartz
and Leroy, 1982; Zhugzhda and Dzh ‘ilov, 1982; Zhugzhda, 1984; Hasan and Christensen-
Dalsgaard, 1992; Spruit and Bogdan, 1992; CB93; CBZ; Banerjee, Hasan, and Christensen-
Dalsgaard, 1995; Cally, 1995; Hindman, Zweibel, and Cally, 1996; BC97; Lites et al., 1998;
Cally, 2001a). The vertical field Alfvén wave equation has also been studied extensively in
various contexts (e.g., Ferraro, 1954; Ferraro and Plumpton, 1958; Hollweg, 1978; Thomas,
1978; Leroy, 1980, 1981; Bel and Leroy, 1981; Leroy and Schwartz, 1982; An et al., 1989).
The vertical ficld equations have also been studied with non-adiabatic effects incladed, in-
corporating either Newton’s law of radiative cooling (e.g., Banerjee, Hasan, and Christensen-
Dalsgaard, 1997; Birch et al., 2001; Banerjee et al., 2002) or thermal conduction {e.g., Autia
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and Chitre, 1979; Gore, 1997, 1998). Recently, Sctiele, Zhugzldda, and Stande (1999) and
Settele, Staude, and Zhugzhda (2001) have extended the vertical field equations to include
depih dependence of both the turbulent pressure and the adiabatic cocfficient.

3.1.2 Horizontal field

When the equilibrvium magnetic field is exactly horizontal {i.c., § = 90°) equations (3.2)--(3.4)
reduce to the second order differential equation first derived by Nye and Thomas (1976a), or
Nye and Thomas (1974} in the ¢ = 0 case. In general, this ODE possesses two singularitics
or critical layers, associated with the Alfvén and cusp resonances, across which wave cnergy
flux is discontinuous {e.g., Cally, 1984). It is worth noting that specific atmospheres may
not possess any of these critical layers. For example, atimospheres where both the snund and
Alfvén speeds are constant (e.g., Yu, 1965, sce also Campbell and Roberts, 1989; Jain and
Roberts, 1994b). The critical layers are not present for 8 # 90° (see §3.5 for details), however,
the horizontal ficld limit (8 — 90°) is singular, and for highly inclined ficlds {e.g., Kamp,
1989, 1990; Zhukov, 1983, 1989a,b, 1990) perturbation methods should be considered.

The horizontal field wave equation has been central to a great number of investigations.
For example, modelling canopy field in the chromosphere and corona {Campbell and Roberts,
1989; Evans and Roberts, 1990; Jain and Roberts, 1994a,b,c), including cases where resonant
absorption occurs at the critical layers (Zhukov, 1997; Tirry ef al., 1998; Pintér and Goossens,
1999; Vanlommel and Goossens, 1999; Vanlommel et al., 2002). The horizontal field wave
equation has also been used to model running penumbral waves in sunspots (Nye and Thomas,
1974, 1976b; Cally and Adam, 1983; Small and Roberts, 1984).

3.1.3 OQOutline — inclined field

With the exception of Leroy and Bel (1979) and Zhugzhda and Dzhalilov (1984a), the sixth
order system of equations (3.2)-(3.4) has received little atiention. When the oscillations
propagate solely in the direction parallel to the (z,z)-plane (ie., ¢ = 0, or k, = 0), the
Alfvén waves (eq. [3.3]} and the fast and slow MAG waves (egs. [3.2] and [3.4]) decouple.
The less complicated ¢ = 0 case has been investigated by several authors, for both the MAG
waves (e.g., Zhugzhda and Dzhalilov, 1984a,b,c; Schwartz and Bel, 1984a,b; Goossens, Poedts,
and Hermans, 1985; Campos and Saldanha, 1991) and the Alfvén waves (e.g., Schwartz, Cally,
and Bel, 1984), though mainly for isothermal stratification. The finite difference simulations
of Cally (2000}, which exhibit enhanced p-mode absorption, are two-dimensional, suggesting
that the ¢ = 0 case is of interest. The remainder of this chapter is devoted to two-dimensional
propagation, focusing on the domain ¢ = 0, —90° < 8 < 90°.

Propagation in directions oblique to the (z, z)-plane (i.c., the full sizzth order system of
equations (3.2)-(3.4) with ¢ £ 0) is addressed in Chapter 4. In this case, without loss of
generality, the parameter search need only focus on the domain 0 < ¢ < 180°, 0 < 8 < 90°.
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3.2 The complete polytrope

The model atmosphere is now specialised to a complete isentropic polytrope, with the surface
situated at z = 0, und the ideal gas Hlling the sci-infinite hallspace 2 < 0. The mass density,
/ and gny pressure, p, vary as

=p (-2)" o Dol ¢ zym 45
p(z)-—po( L) > and p('?")‘"m-l-l( L) ’ (3.5)

whero = 1/ (7y = 1) is the polytropic index (v = ¢p/¢, is the ratio of specific heats)?,
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Figure 3.2: Variation of the isothermal sound speed (p/p)'/? as a function of depth. The solid curve is
obtained from seismic solar model of Christensen-Dalsgaard, Proffitt, and Thompson (1993). The broken
curves represent iseutropic polytropes constisined to pass through p, = 2.78 x 107! kg m™ and P, =
1.21 x 10" kg m~'s™? (corresponding to (p,/0,)!/% = 6.60 km 57!} at zexo depth. The inset provides a
detailed view of the surface layers. Reproduced courtesy of BHCC.

The complete polytrope is a very simple approximation to the solar convection zone. To
evaluate the merits of the polytropic approximation, we temporarily ignore the magnetic
field and take the depth 2 = L to coincide with the 7,, = 1 level of the photospheric
reference model provided in Table 11 of Maltby et al. (1986). So p, = 2.78 x 107 kg m~?,

‘Isentropic polytropes are convectively neutral as the radiative and adiabatic temperature gradients co-
incide. Consequently, the Brunt-Vaisila frequency vanishes and the atimosphere does not support internal
gravity waves {g-modes).
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P = 1.21 x 10" kg m~'s~2 and g = 2.775 x 102 m s~2 are adopted as tho charncteristic
physical scales at z = ~L, where p, = p,gL/(m + 1), and, therefore L varies as m + 1.
Figure 3.2 (reproduced courtesy of BIICC) shows the variation of the isothermal sound speed
(p/p)'/? with depth for a solar model computed by Christensen-Dalsganrd, Profiitt, and
Thompson (1993)%, along with the 1 = 3/2 and m = 3.85 polytropes. BHCC wse these two
values of m to bracket the range of solar possibilitios, For example, the m = 3.85 polytrope
provides an acceptable fit to the model in the nenr surface layers (within the fivst 5 Mm
below the phiotosphere, sce inset). On the other hand, the m = 3/2 polytrope provides a
more reasonable approximation for the whole of the convection zone,

In the vertical field studies of CB93, CBZ and BC97, attention was restricted exclusively
to the m = 3/2 polytrope. Huuter (1999) relaxed this restriction. In his doctoral the-
sis, Hunter considered] the oscillations of complete polytropes, permeated by exactly vertical
magnetic field, for the cases m = 3/2, 2, §/2, 3, 7/2, 4. Hunter found that the eigenvalues
(inclnding the cfficiency of mnode conversion) are ouly weakiy influenced by changes in the
polytropic index, m (Hunter also caleulated the cigenvalues for the magnetised solar mnodel
of Christencen-Dalsgaard, Proffitt, and Thowpson {1993) with a similar outtome). Conse-
quently, in this investigation (as in CB93, CBZ aml BCI7), we are justified in concentrating
solely on the m = 3/2 polytrope.

Models with more realistic vertical stratification including chromosphere and corona (such
as those eaployed by CBZ; Cally 1995; Hindman, Zweibel, and Cally 1996; Lites et al
1998 with vertical magnetic fields) offer a poteutially interesting cxtension to the current
problem. However, evaluating the efficiency of p-to-slow mode conversion in non-vertical
magnetic fields, with a simple yet reasonable stratification, is the purpose of this exploratory
iuvestigation.

Returning to the magnetised complete polytrope, we now define the length scate, L, to be
the depth into the cotnplete polytrope where the Allvén speed, C4, equals the scund speed,
Cg, ie.,

mf2
Calz) = gk (_E) , and Cs(2)= ij_l_ (3.6}
m z m

Deterimination of the solar parameters p,, p,, ¢ and L is deferred to §3.7.2.

Following the approach of CBZ, without loss of gencrality, we assume Re (&) > 0 through-
out the remsainder of our analyzsis (i.e., travelling waves propagate i the positive z-direction).
We focus on the spatial evolution of the free lincar oscillations, lience, we calculate complex
wavenumber eigenvalues, k, for specified real angular frequencies, o, and angle, 8. In this
case, it is appropriate to adopt the sane nondimengionalisation as CBZ,

2
. Kk=2L and u?=”‘°;[‘

This transformation is singular in the non-magnetic limit (L — 0), but this is of no concern as

F= -

3.7)

il L1

5As the model of Christensen-Dalsgaard, Proffitt, and Thompson (1993) is for quiet Sun, it is unclear how
accurately this model represents the interior of a sunspot. Unfortunately, the sunspot minbral core models M,
L and E of Maltby et al. (1986) are not tabulated to large depths below the photosphere.
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the non-magnetic limit is itself singular (i.e., the second order non-magnetic p-mode equation
does not provide a uniform asymptotic approxitnation to the true solution of the fourth order
MAG wave egunation in the weak field limit). The nondimensionalised governing equations
with ¢ = 0 are then

- d? lIL‘2‘ ) “2
*) & .-lrl — vl E—— 2 -
cos- 03 [ds"’ 7| Ec+ (v i s) &
Cd2 K2 ic{ d
= e ~m | & R e Mg . ,
= ginfcosf s = 4]£,+ 5 [¢d3+rn] £, (3.8)
& K? d? d
a2 - o . — 2
sin* fs T ' £, + [bds"’ +(m+1) =ty ] &,
L e [ & “rc2 ik [ d
= ginfcosds H-—-—ds? T ] &+ 0} [sd—-s + l] £z, (3.9)

where £, = ( is the component of the displacement in the r-direction. The decoupled Alfvén
wave equation (second order in n) will not be discussed further. As discussed above, from
now on we restrict our attention exclusively to the case m = 3/2.

3.3 The lower boundary

The lower boundary, s = oo (z = ~00), is an intrinsically irregular singular point of the
goveruing equations (3.8) and (3.9). Imposing the appropriate boundary conditions requires
knowledge of the asymptotic behaviour of the solutions of the governing equations as s = co
{z = ~0o0). The method of dominant balance {(e.g., Bender and Orszag, 1978, Chapter 3)
is the standard approach for determining the asymptotic behaviour of solutions of linear
ordinary differential equations {(ODEs) of arbitrary order in the vicinity of irregular singu-
las points. The method of dominant balance for a system of coupled ODEs is much more
complicated. When the background magnetic field is exactly vertical (€ = 0), the governiug
equations (3.8) and (3.9) can be simplified and the resultant system {CBZ, their eqgs. [2.8]-
[2.10}) can be readily analysed using the method of dominant balance. The simplification is
not valid for the non-vertical field case, subsequently, application of the method of dominant
balance alone to the governing equations (3.8) and (3.9} is troublesoine.

However, the physical nature of the solutions in the vicinity of the lower boundary {where
C4 &« Cg) is well known {c.g., Zhugzhda and Dzhalilov 1982, 1984a.b,c; Zhugzhda 1984;
Spruit and Bogdan 1992; CB93; CBZ; BC97; Bogdan 2000; Cally 2001a; Rosenthal ef al.
2002; Zhukov 2002). When the sound speed, Cg, and the Alfvén speed, Cj, differ greatly
(i.e., Cq € Cs, as s — 00) the fast and slow MAG waves (and the Alfvén waves in the ¢ # 1
case) decouple. The reason for this is the large difference between the vertical wavelengths
of the fast and slow MAG waves. Hence, in the region where C, &« Cs we can addioss
cach mode of oscillation separately. In this region, the fast MAG wave is asymptotically an




evanescent acoustic wave (compressive and longitudinally polarised), with a vertical wave-
length comparable to the local density scale height. The propagation of the fast MAG wave
is asymptotically unaffected by the presence of the magnetic ficld. Ou the other hand, the
slow MAG wave is strongly affected by the presence of the magnetic field. The slow MAG
wave is asymptotically a travelling Alfvén wave (incompressive and transversely polarised),
with a vertical wavelongth very nruch smaller than the local density scale height.

The phiysical characteristics of each mode, combined with the method of dominant bal-
ance, guide us to consistent asymptotic behaviours for the fast and slow MAG waves. The
details are outlined in the next two scebsections.

3.3.1 Fast MAG wave asymptotics

Asymptotically, as s ~ 00 (2 —+ —o0) where €y € Cg, the fast MAG waves are unaffected
by the magnetic field. For the fast MAG wave solution, this characteristic motivates the
assumption that, in the governing cquations {3.8) and (3.9), the magnetic terms (i.e., terms
multiplicd by the squared Alfvén speed, C4 o s~™) are dominated by the non-magnetic
terms. This assumption must be checked later. Neglecting the magnetic terms in governing
cquations (3.8) and (3.9) leaves

d2 d h'.2 2 a
[3;1;5 +m;i:;] Er ~ (“&—S - )Ex, L A I (\.10)
dt,  in
_d.T - '-"2-63 ;, 8=/ 00, (311)

Asyuptotic relation (3.11) imnplies that the displacement associated with the fast MAG waves
is asymptotically irrotational. Asynptotic relation (3.10) results from climinating &, from
equation {3.9) and the derivative of eguation {3.8), then seiting the magnetic terms to zero.
For the non-magnetic p-imodes (see Appendix A for details), the asymptotic relations (3.1)
and (3.11) are equalities.

The method of dominant balance applied to relation (3.10) yields the two controlling
factors & ~ exp{£§s). It can be easily verified, by substituting the controlling factors
into equations (3.8) and (3.9), that the wagnetic terms are dominated {asymptotically) by
the non-magnetic terms. Consequently, the initial assumption characterising the fast MAG
wave solution, is self-consistent. We imp ise the boundary condition that evanescent modes
be decreasing -~ retaining the exponentially decaying solution and discarding the exponen-
tially increasing solution, This boundary condition is equivalent to that ermaployed by CB93,
CBZ and BC97 for vertical field. Further developing the exponentially decaying asymptotic
solution we find

£, ~ s(71R)~m/D) oy [*%’s] Us(s), s-»00, (3.12)
&y ~ _is(¥Pix)=(m/2) exp [—-g-s] Wi(s), s-ro00, (3.13)

where the coefficients Uy and W, are both asymptotic to unity as s = oo, and we have
assumed that Re (k) > 0. The leading behaviours (3.12) and (3.13) are, in fact, the consistent
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asymptotic behaviours for the fast MAG wave solution of the governing equntions (3.8) and
(3.9) with the magnetic terms included. For complex &, the asymptotic behaviour of the
fast MAG wave is somewhat wave-like. However, it can be verified that the associated wave
energy finx vanishes as s — 00, so our choice of branch (Re (k) > 0) is valid (wave cnergy
flux is discussed in more detail in §4.5).

For m = 3/2, in a similar fashion to CB93, the coeflicients Uy and Wy may be expanded
in asymptotic power series in non-positive hall integer powoers of s. The details of the series
expansions can be found in Appendix C.1. As an indication of their gencral nature, the first
few terms of the series are

.2
Usp(s)~ 1~ -j‘f': (20 —1)s™ 1 ~ g—:-i,-(cosﬂ +isin®)2s™ ™24, (3.14)
Wi(s)~1- _‘f_(% -5)s7! - -‘Ec-z-(cosﬂ +isin@)?s7%2 4 | (3.15)
A 25 602 R

whete ¢ = (3/4) - (#?/x). The fast MAG wave is asymptotically a trapped acoustic wave at
sufficient depth. The asymptotic leading behaviour of equations (3.12) and (3.13} is exactly
that of the trapped non-magnetic p-mode (for details see Appendix A). In fact, the first
two non-zero terms of the scries Uy (eq. {3.14]) are identical to the non-magnetic p-mode
(see eq. [A.4]), and only differ at and above correction terms of order s7%2, Sensitivity
to the magnetic field inclination also enters the asymptotic scries at terms of order s~3/2.
Asymptotically the fast MAG wave is unaffected by the magnetic field and, as expected, the
field inclination. Hence, the initial assumption for the fast MAG wave solution, that magnetic
terms are insignificant relative to the non-magnetic terms, is self-consistent. For & = 0 the
asymptotic leading orders (eqs. [3.12] and [3.13]) and the asymptotic series (egs. [3.14] and
{3.15]) reproduce the vertical field result (CBZ, their cq. [2.12]). It is also worth noting
that in the case of exactly horizontal ficld (8 = 90°) the fast MAG wave asymptotic leading
orders (egs. [3.12] and {3.13]) are well behaved, and yield a valid solution to the second order
horizontal field problem.

3.3.2 Slow MAG wave asymptotics

Asymptotically, as s — 0o where C4 < Cs, the slow MAG waves are Alfvénic in nature with
a vertical wavelength that is very much smaller than the local density scale height. There-
fore, in this limit, the propagation of the slow MAG waves is unaffected by the gravitational
stratification. For the slow MAG wave solution, this motivates the assumption th-t the grav-
itational acceleration vanishes (i.e., ¢ = 0) and, therefore, the atmosphere is homogeneous.
This assumption must be checked later. In an unstratified atmosphere, we can assume that
all perturbed quantities depend on the vertical spatial coordinate, z, according to exp (ik,z).
Cousequently, the governing differential equations ($.2)~(3.4}, with ¢ # 0 for the moment,
reduce to a set of three lincar algebraic equations for the three {unknown) components of the
displacement vector, & Nontrivial solutions exist only for specific cnoices of the frequency,
w, (or phase speed), these are the solutions of the ¢quation
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[w2 ~C2% (cos ¢ sinBk + cos Ok, )2]
x|t~ (G4 +CB) (k2 + k) w?
+C2C3 (cos ¢ sin@k + cos O &,)° (k2+k§)] =0. (3.16)

Equation (3.16) is equivalent to the well known dispersion relation for magnetoacoustic and
Alfvén waves propagating in a homogeneous magnetofluid (e.g., Ferraro and Plumpton, 1966,
pp. 66-89; Priest, 1982, pp. 153-188), except we are using the coordinate system outlined
earlier where the z-axis is aligned with the gravitational acceleration (although g = 0 in the
homogencous case), the magnetic field vector, B, lies in the (z, z)-plane, and the (lateral)
wave-vector, K, lies in the (z,y)-plane (see Fig. 3.1).

The three solutions of equation (3.16) are

2
=5 (c‘i +Ch+\JCL T CE+203CH (1 - 2cos21,b)) (3.17)
w? = K2C% cos ¢ {3.18)

where K2 = k% + k2 is ihe squared magnitude of the total wave-vector, K = k + &,&,, and ¢
(defined by cosy = (cos¢ sin@k + cos@4;) /K) is the anrle between K and the background
magunetic field, B. It is conventional to refer to higher frequency solution of equation (3.17) as
the fast magnetoacoustic wave and the lower frequency solution as the slow magnetoacoustic
wave. The frequency of solution {3.18) lies between the fast and slow waves and is called
the Alfvén wave. In the two-dimensional problem (i.e., ¢ = 0), the Alivén waves decouple.
However, in the three-dimensional problem (i.e., ¢ # 0, see Chapter 4), the Alfvén waves are
required. Therefore, in this subsection, we consider ¢ # 0. We briefly discuss the important
properties of the three oscillation modes.

The phase velocity, v, = (w/K)K, for the three oscillation modes is easily derived from
equations (3.17) and (3.18). The group velocity for the Alfvén waves is

v, = £CuB, (3.19)
which indicates that energy propagates along the magnetic field lines at the Alfvén speed. 1t
can be shown that the resultant displacement eigenvector for the Alfvén wave solution is

£, = —k,B) +k &, (3.20)

where B = cos@é, — sin#é, is the unit vector perpendicular to the background magnetic
field, k. = K-B, = cos ¢ cos @ k—sin@k, is the wavenumber in direction perpendicular to the
field, and k,, = sin ¢ & is the wavenumber in the y-direction. The displacement eigenvector, £,
is perpendicular to both the equilibrium magnetic field, B, and the wave-vector, K, therefore,
Alfvén waves are transversely polarised. Alfvén waves are incompressive (i.e., V- £, = 0},
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and propagate without perturbing the gas or magnetic pressure. The restoring force driving
the Alfvén waves is tension along the magnetic field lines.
For the fast and slow magnctoaconstic waves the group velocity is

Ow 2 ow
Vg '(';)-EI-I'B +- ale + -a—’;;ey,

where by = K- B = cos¢ sin0k + cos@k; is the wavenumber in direction parallel to the
magnetic field, and

w ki (w/K)
Oks K [2(w/K)* - (G +cB)]

Ow ky (w/K) |
Oky K[Q(w/I{) -5+’

and
ow  hifwrKy-cicE]
ok [2 (W/K)Y: - (C2 + Cg)] '

The displacement eigenvector for the magnetoacoustic waves is

Ccos (29) ~ C% + \/C4 + C4 - 203C% cos (29) Jhin Ky

s 2C%hy +xaBLt g

where the displacement vectors £, £_ and §, are mutually orthogonal.

For the stratified atmosphere we are interested in the asymptotic behaviour of the slow
magnetoacoustic wave in the region where C4 <« Cgs. In this limit, we can expand the slow
wave solution {(eq. {3.17]) as a Taylor series

w? = K?C% (cos Y +0 (32)) . {3.21)

Consequently, in the C,; <« Cg regime, the group velocity for the siow magnetoacoustic waves
is

illustrating that energy propagates along the magnetic field lines at the Alfvén speed. For
slow waves, it can be shown that,

K-£ = (-g%) , (3.23)




indicating that slow waves are transversely polarised and ineowmpressive in the limit Cy4 < Cs.
Also in this limit, it can be shown that the displacement eigenvector, £_, is perpendicular to
the cquilibrium magnetic field. The dominant termn of equation (3.21) and the corresponding
group velocity {eq. [3.22]) arc identical to the Alfvén wave solution (eq. [3.18) aud [3.19),
respectively), therefore, in maguctofluids with ¢4 <« Cyg the slow magnetoacoustic waves
are said to be Alfvénic in nature (incompressive oscillations, driven by tension along the
magnetic field lines, with displacement eigenvector transverse to the background magnetic
field). It is known from §3.3.1 that the vertical wavelength of the fast MAG waves is of
similar order to the local density scale height. Therefore, the fast magnetoacoustic wave
solution {eq. {3.17]} is not applicab’e to the stratified atmosphere. The dispersion relation
for the slow magunetoacoustic waves in a homogeneous magnetofiuid (eq. [3.21]) is valid for
a gravitationally stratified atmosphere, where Cy < Csg, if the vertical wavelength of the
oscillations is very much smaller than the local density scale height.

We assume the vertical wavelength of the slow waves is very much smaller than the local
density scale height (this must be justified later). With ¢ = 0, the asymptotic relation for
the slow magnetoacoustic-gravity (MAG) waves in a gravitationally stratified atmosphere,
consistent with the dispersion relation (3.21), is

2
Cc? cos()ad-; + iksinﬂ] & (2) ~ —w?t(2), 22— —00,

which is derived by inverting the exp (ik,z) transformation. For convenience, we have chosen
£, to be the dependent variable, but any component of the displacement vector would suffice.
Adopting the Alfvén speed (eq. [3.6]) and nondimensionalisation {egs. [3.7]), the asymptotic
relation for the slow MAG waves in the complete polytrope is then

[cos2 Gs~™ ;;2- —iksin@ cosfs™™ &d;] £:(s)

2
~ (%— sin?@s™™ — V2) £x(s), s—00. (3.24)

Applying the method of dominant balance to equation {3.24) yields the two controlling fac-
tors £; ~ exp (£2ivsecds(™+2/2/ (m + 2)). The appropriate boundary condition in this
case requires that wave-like disturbances be outgoing - retaining the outgoing solution and
discarding the incoming solution. This boundary condition is equivalent to that employed by
CB93, CBZ and BC97 for vertical field. Further developing the outgoing wave asymptotic
solution for equation (3.24) we find

. 0
& ~ 57 exp [tanG %C- s +secf ;—;%_V—Qs(mlz)"'l] , §=00. (3.25)

Unsurprisingly, it can be shown that the exponential part of solution (3.25) is identical
to that for a disturbance advecting downward zlong the magnetic field lines at the Alfvén
speed. Asymptotically the vertical wavelength of the stow MAG waves, corresponding to
solution (3.25), is
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Aox &y ((ii&:) ~ s, s o0, (3.26)

and the local density scale-height is

-1
H=-p (-{-i-;) = —_, (327)

Consequently, the initial assumption that the atmosphere is homogeneous with respect to the
slow MAG waves (i.e., the vertical wavelength is very much smaller than the local density
scale height) is self-consistent at sufficient depth. This strategy is used only to calculate the
leading order terms. For incompressive oscillations,

df, ik

mw"é—{l"l 3"—)&1

ds

hence, for the leading order above (eq. [3.25]), the slow MAG waves require

£, ~ cos 0%3“"‘1251, 8= 00. (3.28)

Applying the leading behaviours for &, and £, (eqs. [3.25] and [3.28], respectively) to the
governing equations (3.8) and (3.9), we further develop the asymptotic behaviour for the
downward-travelling slow MAG wave:

€, ~ 5B exp [tan{?%‘:s + sec @ ;,'w;?/-i] Uy(s), s— o0, (3.29)

2u

where the coefficients U, and W, are both asymptotic to unity as s — 0o, and we have
specialised to the m = 3/2 polytrope. For the slow MAG waves the group velocity, and
hence the direction of energy propagation, is directed along the magnetic field lines. It may
be confirmed that asymptotically, as s — oo, the wave-energy flux along the field lines is
constant (sec §4.5 for details). Due to fast-to-slow mode conversion in the region where
Ca = Cg, oscillations (asymptotically composed of fast and slow MAG waves) decay as they
propagate in the positive z-direction {Re (k) > 0). Therefore, for 6 > 0 (8 < 0), slow MAG
waves travelling along deeper field lines are excited by less (more) energetic waves in the
conversion region. Hence, for complex x, the asymptotic behaviour of the slow MAG wave
is exponentially decaying (growing) with increasing depth. For complex x and 8 = 0, the
asymptotic behaviour of the slow MAG wave is purely oscillatory.

For m = 3/2, in a similar fashion to CB93, the coefficients U; and W, may be expanded
in asymptotic power series in non-positive quarter integer powers of s. The details of the
series expansions can be found in Appendix C.2. As an indication of their general nature,
the first few terins of the series are:

. . B 4
&y ~cost £ /8 exp [tanﬂ-ﬁ—}s + secd ?ius”"] Wy{s), s— 00, (3.30)
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W,(s)~1 - (Brcosd - div?sind) s34 ...

The asymptotic behaviour of the slow MAG wave (egs. [3.29] and [3.30]) is dramatically
affected by the presence of the non-vertical magnetic field. Both the leading orders (eqgs. [3.29)
and [3.30]) and the series U and W, are highly seunsitive to the field inclination {the sccond
term being absent when the field is vertical). The vertical field stow MAG waves (see CBZ,
their eq. {2.11]) can be reproduced by setting 8 = 0. As expected the asymptotic behaviour
of the slow MAG wave {cgs. {3.29] and [3.30]) breaks down in the horizontal field, singular
limit (8 — £90°).

3.4 The top boundary

At the surface of the complete polytrope, s = 0 (z = 0), the density, gas pressure and
sound speed vanish whereas the Alfvén speed diverges (i.e.,, Cy » Cg). There, the two
boundary conditions are that both components of the displacement vector, &, should have
a finite magnitnde (i.e., the Lagrangian pressure perturbation must vanish at the surface of
the atmosphere), and that the magnetic field perturbations match smoothly onto a vacuum
potential magnetic field {see Appendix B) that vanishes as s = ~00 (z = 00), i.c.,

dE_L - E _ .
—-J; = 2($L al s= 0: ('3‘31)

where £; = cos 8§, — sinf&; is the component of the digplacement in the direction perpen-
dicular to the equilibriuin magnetic field. For complex k, the solulions of equation (3.31)
are somewhat wave-like. However, it can be verified that the associated wave energy flux
vanishes as s — —00, so our choice of branch (Re (k) > 0) is valid.

These boundary conditions, the natural choice for the complete polytrope, ignore the
possibility of energy escape through the top of the sunspot atmosphere. In their vertical
field study CBZ (see also Cally, 1995; Hindman, Zweibel, and Cally, 1996; Lites et al., 1998)
relax these boundary conditions. CBZ truncate the polytropic stratification at a finite density
(corresponding to optical depth unity), and append an overlying atmosphere consisting of the
umbra! core model M of Maltby et al. (1986} with an isothermal “corona”. For frequencics
below the acoustic cutoff frequency in the chromosphere (frequency =~ 4 mHz, v =~ 1.1},
the fast and slow MAG waves are evanescent in the overlying atmosphere. In this case,
CBZ found the eigenvalues were almost identical to those of the complete polytrope. On
the other hand, for frequencies beyond the acoustic cutoff frequency in the temperature
minimum (frequency = § mHz, v = 1.6), the eigenvalues differ greatly, with the upward- and
downward-cscaping slow MAG waves removing comparable levels of wave energy. At these
higher frequencies the complete polytrope is no longer a reasonable approximation for the full
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atmosphere®. However, in light of the exploratory nature of this investigation, the complete
polytrope should suffice to indicate the basic features we would expect of a more realistic
model atmosphere.

The point s = 0 is an irregular singular point of the governing equations (3.8) and {3.9).
However, for 7n = 3/2, in terms of the independent variable o = s!/2, the governing cquations
are

d? 1d .
(‘0829[@“;%-50]&4'0 (4 5202)&.:
& 1d 4, sl od ,
=sin0 cosf [daz-—;a;—n a]{z-{-ma {aa;-l-d] €2, (3.32)
and
s [d2 1 d 4 d
12 . _— - -
sin‘ 0 o T de ]53 +a° [ + +4u ]{..
& 1d d
= sinf cos O [do&_;;.__n a]£3+1ha [cr;l—(;—}-Z] &, (3.33)

and the point ¢ = 0 is a regular singular poini. Substituting the Frobenius series expansions

4] o
£e(0) =D uno™", and & (o) =) weo™, (3.34)
n=0 n=0
into equations (3.32) and (3.33) yields four linearly independent solutions. Two solutions
have r = @, one solution has » = 2 and one solution has r = —~3. Despite these differing
by an integer aud containing a double root it may be verified that no logarithmic term is
introduced. In the expansions {3.34), r is the same for both &, and &, therefore, linearly
indcpendent solutions can have the same r but the termns in the series will differ.

The r = —3 solution is unphysical (as dp # 0 at & = 0) and is discarded: Labelling the
remaining three finite, linearly independent solutions a, ¢, and d, the general solution may
be written & = Afy, + C&;, + D&, and similarly for £,. At this stage, the coefficients A, C
and D are arbitrary. Devcloping the series (see Appendix C.3 for details) and imposing the
remaining boundary condition (3.31), it may be shown that

D= — (5}.-}— 2tanf (m - 22 tanﬂ))A

+11—0- tan @ (3ixtan9 - 4% — 5&:) C.

The physically acceptable solution is then

SRecent observations using phase-sensitive holography indicate that the photosphere of active regions,
including sunspots, significantly reflects p-modes with frequencies above the acoustic cutoff frequency (Braun
and Lindsey, 2000a,b). The origin of this apparent discrepancy is unclear.
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where, reverting to the variable s, the leading terms of cach series are:

{zp =1+ i}ﬁ (5n + 2itan 0 — 42 tan®0) s +. ..,
£y = % (in — 22 tan @) s +... ; (3.36)

and

1 L)
bre = i-(—)tanﬂ (3intand - 4v® ~Bx)s+...,

520=1+;~6(3intm)6 o LR (3.37)

and A and C are the remaining arbitrary constants. The first non-integer powers to appear
in these expansions are s7/2 in £;, and &, and %2 iu £, and £&,,. The vertical field
series can be reproduced by setting & = 0, in this case the first term in the &, expansion
in equation {3.37) is 3iks™/2/35 (for details see CB93, their eqs. [3.2] and [3.3]). The series
expansions (3.36) and (3.37) break down in the horizontal field, singular limit (¢ — £90°),
hence for highly inclined fields the solutions will become unreliable. We discuss the conver-
gence properties of the series expansions (3.36) and (3.37) in the next section, §3.5.

3.5 Single fourth order equation

The pair of second order differential cquations (3.8) and {3.9) can be written as a single
fourth order differential equation,

& +p3 () €L +p2 (D€L +p1 () €L +po ()61 =0, (3.38)
where the coefficients of the derivatives are
1-m K2
= - . 5 —istand N
pals) 8 sk? —~ 402 8in° @ + 2Umk sin 6 cosd ntan

po(s) = {Sisinﬁ cos’ 8 (1 + m)ke? + Bicos J sind (ms'*™ 4 25in? ) w12
+2c0s% 8 (27 Mx%0? —5in?8 (2 (m — 2y mn? + 5% - 655707 + B11))

+cos’ @52 (4m + s (402 - s#?)) +sin® 0 (sk® ~ 40°) (43“’"‘.'/2 +sin @

x (4? - sx%) ) }/ (4cos® 0 3 (sx? ~ 4sin? 612 + 2imrsing cos 0 ),
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m (8) = {41/23’“ (1 (2im (1 + m)sin@cas @ -+ msx) - 4 (1 +m) sin® )
+ cos 8 i? (n(2i cos?0 (m ~ 1) msind + cos@ms (1 — 25in’ @) &
+ik28infd %) - 4sin? @ (cos@ (m —~ 1) + issinf k) :,fz) }

/ (4c0s®0 s (ss? — 42 sin* @ + 2imising cos0)) ,

and

p(s) = {ﬁz( (352 — 22) sin® 0 - 16ir1? sin® 0 cos  — 4x? cos' @ (m + s1?)
—2ixsind cos® ¢ (1r;-t3:~;2 + 42 (1 + m)) + cos? @ sin* @ (4mr;2 (m-—2)
+ (a2 —~ 4?) )) — 45™p? (rc? (sk% + 2msind (25ind +incosfs))

~45 (2i (1 + m)sing cosé + ks (1 +sin®0)) v + 160! 511120)}
/ (16c0s? 0 s (k% ~ 4v%5in? @ + 2imnsind cos8)) .

The analysis of a single ordinary differential equation is somewhat simpler than that for a
coupled system. For example, the asymptotic behaviours of the solutions of equation (3.38),
as s — 00, can be derived in the usual way by the method of dominant balaace (Bender and
Orszag, 1978, Chapter 3). It can be confirmed that these are identical to fast and slow MAG
wave solutions derived in §3.3. Asymptotic solutions are not unique (c.g., Bender and Orszag,
1978). Using equation (3.358) we have also pursued the possibility of an improved asymptotic
solution for the slow MAG waves (e.g., BCY7, their eq. [4.201). especially in highly inclined
fields, but without success.
In addition to s = 0 and s = 00, equation (3.38) has a singular point at
2 1
$=8,= 4—'_'—;—sin20-— g’—fr-{siuﬂ cosf,
K K

which is only present if the field is non-vertical (¢ # 0), and in general, is not on the
real s-axis. This singular point may be a critical layer —~ where the oscillation frequency
coincides with a natural frequency of the medium and across which the wave energy flux is
discontinuous, The possibility of critical layers in non-vertical magnetic fields has been a
point of controversy in the past (c.g., Adam, 1977; Schwartz ana Bel, 1984b; Zhugzhda and
Dzhalilov, 1984a; Kamp, 1989). Goossens, Poedts, and Hermans (1985) consider the special
case of a gravitationally stratified atmosphere permeated by a straight, uniform, non-vertical
maguetic field, and conchude that no critical layers (continuous spectra) are present in the
two-dimenstonal case. We must determine the nature of the solutions about s = s, in order
to establish whether the singularity is a critical layer.
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The point s = & is an irrogular singular point of the equation (3.38). However, for
m = 3/2, in terms of the independent variable g, the point g, = s};/ ‘isa regular singular

point of cquation {3.38). Substituting the Frobenus serics expansion

&u(0) =) anlo - o)™,

n=0

into equation (3.38) yields the indicial equation,

r{ir-1)(r-2)(r-4)=0,

which has four distinct roots. These differ by an integer, therefore, one of the solutions may
contain a logarithmic term. Further developing each solution, the leading terms of each series
are:

Eralo)=(0—a)' +Cilo —0)” +...
Eiolo) = (o~ cr.:)2 +Co (o~ o)+ ...
fl,l (C’) = (U"‘(Tc)-i'cl (0‘-—-00)31-...

E10(0) =1+ C{o~ar)* +...

where ) . is the series corresponding to the root 7, ap == 1 has been assumed in each case and
the coefficients C; are constants (depending on v, 8 aud &, not shown). The four Frobenius
series solutions {about o = a;) are linearly independent and distinct, and none contain a
logarithmic term. All four series solutions (about o = .} are analytic at o, as all the roots
of the indicial equation are positive and there is no logarithinic term. Therefore, despite being
a singular point of the ODE, the solutions are not singular at o.. The implications of this are
twofold. Firstly, the energy flux is continwous across o = o, hence, there is no critical layer
(in line with the analysis of Goossens, Poedis, and Hermans, 1985). Secondly, the Frobenius
series (3.36) and (3.37) about o = 0 {s = 0) have infinite radius of convergence’. We only
use the series (3.36) and (3.37) to start the munerical integrations in the neighbourhood of
s = 0. In some cascs, the series solutions {with full details in Appendix C.3) are applied
much deeper. If the numerically evaluated series solution is sufficiently accurate then it can
be applied directly at the matching point (s = s,,). This avoids integrating from s = 0 to
5= 8.

"The radius of convergence is at least the distance to the nearest singular point of the ODE, otherwise,
it is either infinite or the distance to another singular point. The radius of convergence will coincide with a
singularity of the solution itseif.




3.6 Bidirectional shooting method

The complex fourth order boundary value problem, consisting of the fourth order system
of differential equations (3.8) and (3.9) and the four boundary conditions, is solved using a
bidirectional shooting method. For specified dimensiouless frequency, v, and inclination, 8,
the eigenfunction is the linear combination of the four solutions that satisfy the boundary
conditions. Tho associated eigenvalue is the value of the dimensionless wavenumber, x, for
which the linear combination exists. Hence, lor given v, 8 and an initial guess for x, the two
Frobenius series solntions {eqs. [3.36] and [3.37]) are independently integrated from s = 0 to
some matching point s,,. Simitarly, the fast and slow MAG wave solutions {egs. [3.12] and
[3.13}, and eqs. [3.29} and [3.30], respectively) are integrated from some depth, at which the
asymiptotic solutions are sufficiently accuvate, to sp,. The displacements, &, and &,, and their
vertical derivatives, £ and £, must be continuous at s,,. In general, we must iteratively
adjust x, and re-integrate the solutions, until the resultant linear combination satisfies the
cotitinuity requirement.

In the upper regions of the complete polytrope we express the full {physically acceptable)
-oltttion as a linear combination of the two Frobenius scrics solutions (sce eq. {3.35]). On
the other hand, in the lower regions of the complete polytrope the full solution is a linear
combination of the fast and slow MAG wave solutions, i.c.,

{I,l EIC,’ H g q
(£I)= ﬂA(fu )+ﬁc(‘f=c )’ e < om,

£ ﬂs(g:)+ﬁf(§z;),ifs>8m-

Then the matching condition, that &;, £,, & and & are all continuous at sy, can be expressed
in matrix forin as

(3.39)

~§zq ~8zc Gz, &1y B4
"fz,t “&zc §:, 5-‘:; Be
_£;,4 "‘gfrc .!r, ‘s.’r f ﬁs
= ;al 4 ::.'C E:r:q f‘:f ﬁf
where all of the displacements and their derivatives in equation (3.40) are evaluated at s = sp,.
The boundary conditions arc homogeuneous, therefore, we can scale the full solution (3.39)
arbitrarily. For simplicity we set 84 = 1. Equation (3.40) is now over-specified, being four
equations in three unknowns., Solutions exist only if the delerminant of the 4 X 4 matrix
in equation (3.40) (i.e., the Wronskian of the four solutions) vanishes. Hence, one way to
proceed is use a root finder to search for eigenvalues such that the Wronskian vanishes. In
practise, we adopt a slightly different but equivalent strategy.
Given v, 8 and an initial guess for &, we calculate the four solutions at s = s,,, then solve
the first three rows of equation (3.40) for the 8’s:

=0, (3.40)

“"f-xc- f:r, fr f ﬁC fx A
“£=0 gz, 5:; .H.s = Ez,;
*ﬁfxc 6;.',, ;'.'f ﬁf / g':-'.-‘l
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With these determined, the remaining equation,

F (k)= ~€L, ~ o€l + BeEl, + BrEL,

must be zero if & is an cigenvalue, but in genceral is not. Hence, & must be iteratively adjusted
until F{x) = 0 is satisfied to an adequate tolerance. For this purpose we employ Miiller’s
method to iterate to convergence. We use an adaptive Runge-Kutta numerical ODE solver
(e.g., Press et al., 1992, Chapter 16) to perform the integrations of the solutions from the
boundaries to the matching point.

3.7 Results and discussion

As explained in §3.6 we calculate complex dimensionless wavenumber eigenvalues, %, for
specified real dimensionless freqnency, 12, and field iuclination, 8. In the vertical field studies
(e.g., CBZ) eigencurves or “ridges” were built up in (v, x)-space {sequences of cigenvalues,
K, as a function of dimensionless frequency, »). For non-vertical magnetic fields we have the
extra parameter @, the inclination of the ficld. Therefore, we build up ecigensurfaces of &
over the (v, #)-plane. For the sake of brevity and for direct comparison with the vertical
field results, we also take slices through the (v, #)-plane, holding @ constant and varying v
to build up eigencurves in a similar fashion to CBZ. Conversely, we also take slices holding v
constant and varying 6. Our numerical results suggest that the eigenvalue, %, depends on the
inclination, €, but not on the sign of 4 (i.c., x is the same for & and —@ at a given frequency,
v, whereas the eigenfunctions differ). We have not been able to prove this is generally the
case, but do not have a counterexample. Asswming the hypothesis is true, the parameter
space search, therefore, only needs to focus on the region v > 0, 0 < 8 < 90°, Re(s) > 0 and
Im(x) > 0.

3.7.1 Eigenvalue topology

Figure 3.3 shows the variation of the real and imaginary parts of £ as a funchion of dimen-
sionless frequency, v, when the equilibrium magnetic field is exactly vertical (6 = 0) for the
first nine (n = 0, ..., 8) modes - here n = 0 represents the f-mode. This is a reproduc-
tion of the results of CBZ (their Figure 1}. In the non-maguetic imit (L — 0, i.e,, v = (),
& — 0 sce eq. [3.7]), the cigenvalues of the magnetised complete polytrope can be approx-
imated by the eigenvalues of the unmagnetised complete polytrope. In the unmagnetised
{(m = 3/2) cumplete polytrope the p-modes satisfy the dispersion relation % = (r + 3/4) &,
wheren = 0,1,2,... (e.g, Lamb, 1910, see also eq. [A.7]). The resultant eigenvalues are plot-
ted in Figure 3.3 as light dashed lines. 1t is clear from Figure 3.3(a} that, in the low frequency
regime, the magnetic and non-magnetic ridges (eigencurves) are virtually indistinguishable.
Our results indicate this is also true when the equilibrium magnetic field is non-vertical. With
this in mind, in the graphs presented here, ridges are labelled n = 0,1,2,... such that n is
the radial order of the non-magnetic p,-mode whose ridge matches the ridge of the magnetic
mode in the low frequency (non-magnetic) regime. It should be noted that # cannot be
regarded as the nuinber of nodes in the displacetnent eigenfunction as in the non-magnetic
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case. This is because, in general, the eigenfunctions of the magnetic atmosphere arc complex
and have no nodes. The ridges presented here are generated by stepping {romn low frequencies
to high frequencies. To initiate the stepping procedure we start in the non-magnetic (low
frequency) regime, where the cigenvalues of non-magnetic p-inodes can be used as an initial
guess.

7
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& o} E
. !
1 !
. [
Figure 3.3: (a) Real part of eigenvalue x as a function of dimensionless frequency » for then = 0, ..., 8 modes

(from top to bottom, near the origin). At low frequencies these approach the eigencurves of the non-magnetic
p-modes, & = v?/ (n+ 3) (light dashed lines). (b) Imaginary part of x as a function of v, corresponding to
the real part shown on the left. For both of these graphs the equilibrivin magnetic field is exactly vertical
(0 =10).

We reiterate the hnportant features of Figure 3.3 (see CBZ for more complete discussion).
In general, especially for v < 1, for a given frequency along a ridge both the real and
imaginary parts of the eigenvalue are largest for the n = 0 mode and decrease as n increascs.
As explained above, at low frequencies (v « 1) the real part of the eigenvalues (Fig. 3.3(a))
are essentially indistinguishable from their non-magnetic counterparts. At higher frequencies
the magnetic field has a greater impact; there the ridges diverge from their non-magnetic
counterparts. The real part of the cigenvalue still increases monotonically with v (except for
the n = 0, 3, and 8 inodes) but with a greater horizontal phase speed {(x #/Re (x)). For the
n =0, 3, and 8 modes the real parts of the cigenvalues do not increase monotonically with v
but turn over and terminate at Re (k) = 0. At the frequencies where Re {s) = 0 the waves are
no longer travelling in the z-direction, but purely decaying, forming a horizontaily evanescent
mode. Also at these frequencies Im (s} and, hence, the horizontal spatial decay rate of the
oscillation is at a maximum. For all modes at low frequencies, Im (x) increases rapidly with
increasing frequency. At moderate frequencies (v = 1.0—1.5), with the exception of the n = 0
mode, Im (x) reaches a lorsd maximum and turns over — this occurs at least once for each
mode in the v-domain presented in Figure 3.3. The sharp troughs, where Im (k) = 0 (and
Bs = 0), are frequencies where the m-mode is a trapped normal mode. Al these frequencies
the slow MAG wave is completely decoupled - no energy escapes down the field lines and the
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oscillition propagates through the vertically magnetised atmosphere undamped. Away from
the sharp troughs there is a non-trivial amount of horizontal spatial decay {i.c., Im(s) #
0) as a resull of energy being carried down the field lines by the downward-escaping slow
MAG waves. For this reason the w-modes are generally referred to as psendo-modes. For
frequencies of observational intevest (v S 2, depending on the choice of solar parameter : ~ see
§3.7.) IMigure 3.3(b) shows that fast-to-slow MAG wave conversion in vertical field becomnes
increasi:. ;ly inefficient with increasing n (radial oider). Numerical simulations of p-to-slow
mode conversion {e.g., Cally and Bogdan, 1997; Cally, 2000; Rosenthal and Julien, 2000)
confirm that this is the case for vertical field mounoliths in general.

!
| T ',ﬁ |—'v ‘—"-——:’7-’* y‘—,IZ/"/' r4 lO I
ol S /// Py 10°

Sl e

-1

A\
NN

S
N

7 1 £ 10™
72N 10 ®
\ 107®
\ \\ -
56 7 B 1078
% Y
(a) (b)

Figure 3.4: Same as Figure 3.3, except § = 5°.

Figure 3.4 shows the variation of the real and imaginary parts of x as a function of
dimensionless frequency, -, when @ = 5° for the first nine (n == 0, ..., 8) modes. In comparison
to the vertical field case (Fig, 3.3}, Figure 3.4 shows that at smnall inclinations there are some
important structural changes 1o the ridges. The real parts of the eigenvalues (Fig. 3.4(a))
are egsentially unchanged except that the n = 7 mode turns over instead of the n = §
moede (which turns over when 8 = 0). In contrast, the imaginary part of the eigenvalues
(Fig. 3.4(b)) change rather significantly. In particular, when & # 0 the t>apped modes vanish
~ the sharp troughs (where Imn{x) = 0) are not present in non-vertical ficlds even for very
small inclinations. The troughs are still appareat in noan-vertical field but only pinch off to
Im (k) = 0 in the linit of exactly vertical field (verified by numerical experiment but not
pictured). The oscillations in non-vertical magnetic fizld can no longer arrange themsclves to
decouple from the escaping slow MAG waves. In vertical field CB93, CBZ and BC97 employ a
numbering systemn for labelling the trapped normal modes according to the number of nodes
in their displacement eigenfunction. The disappearance of the trapped modes implies the
numbering system is inappropriate in non-vertical magnetic fields. At frequencies away from
the trapped modes of the vertical field case, the magnitude of Im () is essentially unaffected
by a small inclination in the equilibrium magnetic field. Hence, the efficiency of p-to-slow
mode conversion in slightly non-vertical field is basically unchanged in comparison to vertical
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field. At the frequencies of the vertical field trapped modes, mode conversion is significantly
enhianced, however, the enhancement iy inconscquential as these frequencies are too sparse.

10!

Im[x)m

(a) (b)

Figure 3.5: (a) Real part of the eigenvalue, s, as a function of field inclination, # {in degrees), and dimensionicss
frequency, v, for the n = 0 mode. (b) Iinaginary part of x as 2 function of # and », corresponding to the
real part shown ou the left. The domain for both plots is 1 € » < 1.89, 5° < & <€ 45°. The shading of the
eigensurfaces is used to highlight contrast only and does not indicate the height of the cigenvalue.

Figure 3.5 shows the variation of the real and imaginary parts of k as a function of
both inclination, 8, and dimensionless frequency, v, for the n = 0 mode. Each point on the
eigensurface has been generated starting with the # = ¢ vertical ficld mode (e.g., Fig. 3.3)
then stepping from 6 = 0 to @ = 45° whilst holding the frequency constant, To clarify,
the n = 0 ridge of Figure 3.4 could be derived from Figure 3.5 by slicing along 8 = 5°. It
should be noted that the shading of the eigensurfaces is used to highlight contrast only and
does not indicate the height of the eigenvalue. Figure 3.5 shows that for small to moderate
inclinations {(5° < 8 < 20°) the eigenvalue is essentially unalected by the inclination of the
magnetic field (both Re () and Lin (s} are essentially constant in the 8-direction). In fact,
Im (x) (Fig. 3.5(b)) decreases slightly as 6 increases, At larger inclinations (8 2 25°) and
lower frequencies {v < 1.4), Re(x) (Fig. 3.5(a}) increases slightly with increasing 0, whereas
Iin(x) decreases. The most striking feature of Figure 3.5 occurs in the region v 2 1.4 and
@ 2 25°. There the eigensurface undergoes a significant topological transition with a sequence
of discontinuities or “cuts” appearing (in decreasing increments of ). Tt turns out that these
cuts match onto cuts on the surfaces of the higher order modes.

Figure 3.6 shows the variation of the real and imaginary parts of s as a function of both
inclination, €, and dimensionless frequency, v, for the n = 1 mode. Figure 3.6 is the same
as Figure 3.5, except the eigenvalues of the n = 1 mode arc plotted and the point of view
has shifted. The domain in these plots has been truncated at § = 5° in order to avoid the
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Figure 3.6: Same as Figure 3.5 but for n = 1 and the point of view has been shifted.

sharp troughs of the vertical field trapped modces {n > 1). Close inspection of Figure 3.5
and Figure 3.6 reveals that the cnt with smallest frequency (1 = 1.46) on the n = 0 surface
(Fig. 3.5) matches onto the single cut on the n = 1 surface (Fig. 3.6). There are no further
cuts in the n = 1 surface outside the pictured domain. It turns out that subsequent cuts
in the n = 0 surface (Fig. 3.5) match onto cuts in the surfaces in each of the subsequent
overtones (not pictured). At higher frequencies (v 2 1.85) the cuts in the n = 0 surface are
not fully resolved in Figure 3.5, but numerical experiments confirm their presence up to at
least n = 8. This unexpected result reveals that, over the (v, 8)-planc, the eigenvalues of all
the overtones lic on the same surface. The surface displays a bizarre topology (something
like a sequence of connected spirals perhaps reminiscent of multivalued functions above the
complex plane) which we explore somewhat further shortly. The vertices of the cuts occur
at the saine location for both the real and imaginary paris of the eigenvalue. Hence, at the
vertex of cach cut, the eigenvalue exactly coincides with the eigenvalue of another overtone
(i.e., a “crossing”). This suggests that labelling of modes is somewhat ambiguous. Certainly,
given an atmosphere with field inclination, 8, we can calenlate eigenvalues and label modes
in the traditional sense (outlined above). However, tracking the changes to a particular mode
as @ varies is not strictly possible. The location of the vertices does not coincide with a
singularity in any of the cocfhicients of the governing cquations (3.8)-(3.9), as would be the
case when a branch cut connects Riemann sheets. The location of the vertices does, however,
depend on the boundary conditions (and perhaps other factors such as n, not confirmmed).
For example, we have run cases (results not displayed) where the polytrope is truncated at
some depth and a rigid lid boundary condition is imposed. In this case, the location of the
vertices {and the cuts themselves) is highly sensitive to the depth at which the rigid lid is
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We now address the important features of Figure 3.6. Figure 3.6(a) shows that for small
to moderate inclinations (5° < 0 S 25°) Re (k) ig essentially unaffected by the inclination of
the magnetic field. For larger inclinations and frequencies less than that of the cut, Re (k) is
also essentially unaffected by the inclination, whereas for frequencies beyond the cut, Re (k)
increases slightly with increasing @ (Re (k) is “bumped up” on the higher frequency side of
the cut). The inclination of the ficld has a more significant affect on Im (x) (Fig. 3.6(b)). For
inclinations less than thatl of the vertex, Im (k) increases significantly (more than an order
of magnitude) with increasing #. The imaginary part has a local maximum at v =~ 1.46 and
8 == 25° coinciding wilh the vertex of the cut. Then for larger inclinations {including those not
pictured), Im () decreases menotonically (and rapidly) with increasing 8. This behaviour is
indicative of the higher order modes in the domain: 1 < v < 1.89,5° < @ £ 45°. In particular,
mode conversion becomes increasingly efficient for moderate inclinations, reaches a maximun,
then becomes increasingly inefficient for larger inclinations. For inclinations approaching
horizontal, mode conversion is effectively negligible for all overtones at all frequencies.

(a) (b)

Figure 3.7: Same as Figure 3.5 but for n = 3 and the domain is 1 € v < 4, 5° < 8 < 45°.

Figure 3.7 shows the variation of the real and imaginary parts of & as a function of
both inclination, #, and dimensionless frequency, &, for the n = 3 mode. The v-domain in
Figure 3.7 is 1 € v < 4 (larger than Figs. 3.5 and 3.6). For the lower frequency region of
Figure 3.7 the eigensurface shows similar characteristics to n = 1 (Fig. 3.6): the surface has
a single cut in this region {at v =~ 1.75) that matches onto the third cut on the n = 0 sutace
(Fig. 3.5). On the higher frequency side of the cut Re(x) is bumped up, and at the vertex
of the cut Im (k) attains a local maximum. For the higher [requency region of Figure 3.7,
where the real part has turned over in the v-direction (at lower inclinations), the eigensurface
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shows similar characteristics to n = 0, in particular, the sequence of cuts, The vertices of
the cuts are situated at @ = 20° (slightly less than those in Fig. 3.5). In a similar fashion
to Figure 3.5 these match onto cuts in the cigensurfaces of the higher order modes. The
sequence of cuts is a characteristic of the vertical ield horizontally evanescent mmodes when
gencralised to non-vertical field. When the ficld is vertical Figure 3.3 shows that then =0, 3,
and 8 modes are horizontally evancscent modes. It has been confirtned that the eigensurface
corresponding to n = 8 in Figure 3.3 {not pictured) shows analogous behaviour (evident, for
example, as the swapping ~f the horizontally evanescent mode fromn =8 Fig. 3.3ton =17
in Fig. 3.4}). Siuce th~ . .= 3 sequence is connected to the n = 0 sequence via the cut at
v = 1.75, and similarly to the n = 8 sequence, we arc inspired to visualise the shape of the
overall eigensurface as a “sequence of connected spirals”.

(a) {b)

Figure 2.8: Same as Figure 3.7 but for » = 4 and the point of view has been shifted.

Figure 3.8 shows the variation of the real and imaginary parts of & as a function of both
inclination, €, and dimensionless frequency, v, for the n = 4 mode. The eigensurface in
Figure 3.8 has two cuts. The lower frequency cut {(at v == 1.82) matches onto the fourth
cut on the n = 0 horizontally evanescent mode (Fig. 3.5). The higher frequency cut (at
v 2= 3.4} matches onto the sccond cut (the first in the high » group) on the n = 3 horizontally
evanescent mode (Fig. 3.7). In the neighbourbood of each cut, Figure 3.8 shows similar
characteristics to the n = 1 surface (Fig. 3.6): on the higher frequency side of the cut Re(x)
is bumped ntp, and at the vertex of each cut Im (x) attains a local maximum. Figure 38 is
indicative of higher order modes (n = §, 6, and 7). All the cuts on the individual cigensurfaces
(Figures 3.5-3.8 and those not shown) match onto corresponding cuts on one of the other
available eigensurfaces. In the region v > 0, 0 < 8 < 90°, Re(x) > 0, and Im(s) > 0, it is
thercfore apparent that the overall eigensurface is completely filled, and no eigenvalues have




been missed.

Our results quantify the cfficiency of fast-to-slow MAG wave conversion in non-vertical
field. The efficiency of p-to-slow mode conversiou is a twuch more complicated process to
quantify, invelving matching oscillations across the interface between the non-magnetic and
magnetic regions (e.g., Bogdan and Cally, 1995; Barnes and Cally, 2000), In vertcal field
studies, eigenvalue analyses (e.g., CB393, CBZ and BC97) agree well with numerical siinulation
(e.g., Cally and Bogdan, 1997; Rusenthal and Julien, 2000). For this reason we loosely refer
to fast-to-slow MAG wave conversion as p-to-slow mode conversion. However, when the ficld
is non-vertical our results show that labelling of modes in the magnetised atmosphere may
be more subtle {e.g., Figures 3.5-3.8). The extent to which these results apply to more
complicated field geownetries, such as spreading field sunspots {e.g., Bogdan, 1999; Cally,
2000), is limited. If these results are valid then matching oscillations across non-vertical
sunspot boundaries could be an even more complicated task than anticipated.
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Figure 2.9: Same as Figure 3.3, except ¢ = 30°.

For purposes of completeness we present two further graphs showing k as a function of
dimensionless frequency, v, with § constant. Figure 3.9 shows the variation of the real and
imaginary parts of £ as a function of dimensionless frequency, v, when & = 30° for the first
nine (n = 0, ..., 8) modes. The distinctive cuts in Figures 3.5 — 3.8 are not evident in
Figure 3.9, thig is because the ridges in Figure 3.9 have been generated by stepping from low
frequencies {using the non-magnetic modes as initial guess) to high frequencies, holding 8
counstant (in the same way as Figures 3.3 and 3.4). For example, the ridge labelled = = 0 in
Figure 3.9 could be derived from the » = 0 and n = 1 surfaces (Fig. 3.5 and 3.6 respectively)
by slicing along 6 = 30°. For frequencies less than the cut connecting the two surfaces the
7 = 0 ridge (in Fig. 3.9) lies on the n = 0 surface (Fig. 3.5), whereas for frequencies greater
than the cut, the n = 0 ridge lies on the n = 1 surface (Fig. 3.6). Similar obscrvations apply
to the higher order modes, so all the ridges in Figure 3.9 appear continuous.

The main features of Figure 3.9 are indicative of the ridges at inclinations near 30°. In
particular, the horizontally evanescent modes (which turn over and terminate at Re () = 0)




vanish for ¢ 2 30°, In these cases, Re (k) (Fig. 3.9(a}) increases nonotonically with increasing
v, and at any given frequency Re(x) decrcases with increasing n. Correspoundingly, Tin (x)
(Fig. 3.9(b)) increases rapidly with increasing v for lew frequencies, and the ridges become
almost horizontal for intermedinte and higher frequencies. Tn general, the decoupling troughs
of Im {&) in the vertical field case fade away as € increases, fortning the nearly herizontal curve
evident in Figure 3.9(b). This can also be seen on the surfaces in Figures 3.5 - 3.8. The
sequence of Iin (k) ridges in Figure 3.9(b) form a tightly packed bunch. Hence, at inclinations
near the vertex of the cuts (corresponding to a local maximum in Im(x}), the variation of
Im {x) with = is at a minhmum (8 = 25°). In the interval 8 22 20° — 30° the horizontal section
of each ridge (evident in Figure 3.9) reaches a maximum level (Im () & 0.1) before decreasing
for larger inclinations 8 > 30°.
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Figure 8.10: Same as Figure 3.3, except 8 = 60° and the n=8 mode has been omitted.

Figure 3.10 shows the variation of the real and imaginary parts of £ as a function of
dimensionless frequency, v, when @ = 60° for the first eight (» = 0, ..., 7) modes. In
Figure 3.10 sotne of the ridges terminate prematurely and the n = 8 ridge is omitted. The
combination of high frequency and large inclination makes the integration of the highly
oscillatory slow MAG wave solution very difficult. The possibility of an improved asymutotic
solution for the slow MAG waves (e.g., BC97, their eq. [4.20]) has been briefly pursued without
success. The eigencurves presented in Figure 3.10 are reliable in the observable frequency
range. The main features of Figure 3.10 are indicative of the ridges at angles neaxr 60°. For
angles above @ =~ 30° there is little variation in Re (k) ridges as a function of 8. There is a
strong similarity between the real parts of the ridges of Figure 3.9(a) and Figure 3.10(a), the
only difference is a small decrease in phasc speed as # increases. In contrast, the imaginary
parts of the eigenvalues vary more dramatically as ¢ increases. Above 8 = 30° the bunch of
ridges starts to disperse, increasingly so as 8 increases, and the variation of Im (&)} with n
increases. This featnre is obvious when comparing the Im{x} ridges between Figure 3.9(b)
and Figure 3.10(b). Figure 3.10{b} also illustrates the fact that, above § = 45°, Iin(x)
ridges no longer intercept ridges of different n {at least in the range of frequencies covered
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here). Hence, for any given frequenty, Im () deercases with increasing n, For the highor
order modes, Figure 3.10(b) shows that Iin {x) reaches a maximun, and thereafter decrenses
with increasing ©. This {eature is more dramatic for ridges at greater inclinations (0 2 60°,
graphs not shown). The most jmportant feature of the Im (s} ridges {(e.g., Fig. 3.10(b}) at
greater inclinations is the ranid decrease of Im (x) as the maghetic field inclination approaches
horizontal.

3.7.2 Extinction length

We define the extinction length L/Im (x) = 1/Im (2&) as the distance {in the g-direction) over
which the wave energy density decrcases by a factor of ¢ (§4.5 provides a detailed discussion
of wave-energy flux). To characterise the solar convection zone, we use g = 274 m 72 and
L =400 km*, so at z = —L the sound speed and the Alfvén speed coincide at 8.55 km s~1.
There is some uncertainty in this characterisation. However, in sunspot core models M,
L, and E of Maltby et al. {1986) the layers where Cs = 8.55 km s™! correspond to p ~
(1.2 — 2.0) x 1073 kg m~® and field strengths in the range 3400 — 4200 G. which is consistent
with expectations for subsurface sunspot umbrae.

Figure 3.11 shows the variation of the extinction length as a function of fielu inclination,
@, for the first nine (n = 0, ..., 8) modes at four different (fixed) frequen:ies (a} o mHz (b)
4 mHz (c) 5 mHz and (d} 6 mHz. These four frequencies have been chose as they fall inside
the region of observational interest, and they do not coincide with the veitical field trapped
modes. The corresponding graphs of the horizontal wavenumber, Re (k) = Re (k) /2L, are not
shown because the variation with 8 is only small (as shown in Figures 3.3 - 3.10). It should be
noted that the ridge crossings shown in Figure 3.11 are not actual crossings of the eigenvalue.
The ridges in Figure 3.11 may be derived by taking constant frequency slices (parallel to the
cuts) through the surfaces of Figures 3.5 - 3.8. At all four frequencies Figure 3.11 shows the
extinction Iength of the = = 0 mode increases (monotonically) with iucreasing inclination.
This implies that the n = 0 mode is most efficiently damped by vertical (or near vertical)
field. At all frequencies and & < 20°, the extinction length of the n = 0 mode is relatively
short (= 0.1 — 5 Mm) and, consequently, will be significantly daiped within a sunspot sized
region (=~ 10 Mm). For higher field inclinations the efficiency of n = 0 mode conversion
becomes increasing weak (more rapidly for the higher frequencies). In fact for all modes at
all frequencies of observational interest, Figurc 3.11 shows that mode conversion becomes
increasingly inefficient (extinction length tends to infinity) as the field approaches horizontal
{e.g., all modes in field with @ 2> 70° will show no appreciable damping). This trend is also
evident in surfaces in Figures 3.5 — 3.8. Our results are not reliable for inclinations ciose to
the horizontal field singular limijt. For inclinations approaching horizontal, the trend evident
in Figure 3.11 must be viewed with caution. In the isothermal case, Kamp {1989) suggests 3
singular behaviour will arise for angles only very close to horizontal. For modes withn > 1, [
the extinction length initially decreases with increasing inclination, reaching a minimum near
# = 20° - 60°, before increasing for laxvger #. For the lower frequencies {e.g., Fig. 3.11(a)
and 3.11(b)), the minimum is at ¢ =~ 40° — 60°, whereas, for the higher frequencies (e.g.,

*Recent calculations by Cally, Crouch, and Braun {2003, sec Appendix F) find the models in best agreement !
with observations have L = 600 — 800 km.
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Figure 3.11: Extinction length, L/Im ()}, as a function of angle @ for the n = 0, ..., 8 modes. (a) Top left:
the frequency is constant at 3 mHz. {(b) Top right: 4 mHz. (c) Boitom left: 5 mHz. (d) Botiom right: 6 mHz.

Fig. 3.11{¢) and 3.11{d)), the minimum is at more acute inclinations 8 =~ 20° - 40°. The
minimumn roughly coincides with the vertices of the cuts in the corresponding eigensurfaces
(e.g., Figs. 3.5 - 3.8). At these inclinations the efficiency of mode conversion (for = > 1) is at
a maxitnum. In comparison to vertical field (6 = 0), the enhancement is largest (up to two
orders of magnitude) for the higher frequencies (e.g., Fig. 3.11(c) and 3.11{d)). Consequently,
w-modes {(with 1 < 7 X 4 and frequencies = 5 — 6 mHz) propagating through field inclined

at @ = 20° — 40° will be damped significantly within a sunspot sized region 8.

3.7.3 Eigenfunctions

Figures 3.12 and 3.13 show the displacement eigenfunctions as a function of ditnensionless
depth, s, corresponding to eigenvalues of the n = 1 mnde wilh dimensionless frequency

f At frequencies near 5 mHz, obscrvations using Hankel analysis Braun (1993) show a remarkable drop in the
absarption of p-modes by sunspots. However, using acoustic holography Lindsey and Braun {1399) conclude
this is not a property of sunspots, but rather an enhanced emission of p-modes in regions surrounding spous.
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Figure 3.12: Displacement ecigenfunctions as « function of dimensionless depth, 9, for ¥ = 147 and n = 1.
The full curve is £, and the dashed curve is €. On both sides the fop prnel shows the imaginary parts
of the displacement and the bottom panel shows the real parts. The vertical scaling is arbitrary. DBoth
of the eigenfunctions have eigenvalues, %, on the n = 1 eigensutface (Fig. 3.6) and the n = 1 ridge in
Figure 3.11(c) (¥ = 1.47 corresponds to 5 mHz for ike choice of parameters above - see §3.7.2). (a) # = 0 and
& = 1.258 + 0.039%i. (b) 6 = 70° and x = 1.932 + 0.013i.

v = 1.47 {see Figure 3.6 or the n = 1 ridge wm Figure 3.11{c)}, v = 1.47 corresponds to 5 mHz
for the choice of parameters above — see §3.7.2). Figure 3.12{a) shows the displacement
eigenfunction for exactly vertical field (6 = 0), Figure 3.12(b) for 6 = 70°, Figure 3.13(a)
for = 25°, and Figure 3.13(b) for 8 = —25°. As outlined earlier, tbe cigenfunctions in
Figure 3.13 have the same cigenvalue but the resultant displacements are different. Fig-
ure 3.13(a) shows that for & > 0 the slow mode component of the displacement decays
exponentially with depth, whereas for 8 < 0 (Fig. 3.13(b)) it grows exponentially with depth;
see equations {3.29) aund (3.30) for details. Also evident in Figure 3.13 is that the two com-
ponents of the displacement £) {full curve} and £ {dashed curve) arc in phase for 8 > 0, but
180° out of phase for # < 0. In Figure 3.13, In(x) is close to optimal, with a magnitude
approximately seven times larger than in Figure 3.12(a). Qualitatively, this is evident as
the displacement eigenfunctions in Figure 3.13 clearly have a large (highly oscillatory) slow
mode component, whereas in Figure 3.12 the slow mode amplitude is less pronounced. There
are two further obvious differences between the displacements at different inclinations that
are worth discussing. The first is the decrease of the vertical wavelength of the slow mede
component as 8 increases — this can be interpreted from the asymptotics (eq. {3.26]). The
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Figure 8.13: Same as Figure 3.12 except for different inclinations. (a) 8 = 25°. (b) 8 = —25°. Both
cigenfunctions have identical eigenvalues, x == 1.386 + 0.20i.

second is the near surface behaviour, the contrast is particularly drastic when comparing
displacements in vertical field (Fig. 3.12(a)} with those in highly inclined field {Fig. 3.12(b)).
The component of the displacement aligned parallel and perpendicular to the fiets wo:: be
derived from the Frobenius series expansions about s = 0 (egs. (3.36] and [3.37]). The first
two terms of cach of them are:

1
£ = sind + m {2insecd — 4v% tan 8 scc9+5.‘csin9) S+,

&) =cosﬂ(l+gs) N T

and

1 .
& = cosd + msec0(3intan9-4v2-—Snsinzﬂ)s+... ,

Elz-sin9(1+gs)+....

Thus, it can be verified that field aligned motions, £, dominate the displacement near the
surface when the field is highly inclined. In fact the second terms of both series for & diverge
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in the horizcontal field limit (¢ = 90°). The Lorentz force has no component in the direction
along the field, As the magnetic field tips over the influence of gravity parallel to the field
diminishes, therefore, large wotions are permitied and exhibited near the surface (s = 0) in
Figures 3.12 and 3.13. This is a fenture of the complete polytrope, and will not oceur to the
same extent in the solar convection zone as oscillations there are coupled to oscillations in
the chromosphere (and corong).

3.8 Conclusions

We investigated the two dimensional (¢ = 0) propagation of oscillations in a complete poly-
trope permeated by a straight, uniform, non-vertical magnetic ficld. In particular, we quan-
tified the efficiency of fast-to-slow MAG wave conversion, and subsequent horizontal spatial
decay of the oscillation. For modes with z > 1, we found mode conversion is significantly en-
hanced (by up to two orders of magnitude) in comparison to vertical field. The enhancement
otcurs in moderately inclined ficlds (@ = 20° - 60°, depending on the mode and frequency),
and is most significant at higher frequencies. At lower frequencies the enhancement is gener-
ally negligible. The enhancement appears to be roughly sufficient to explain both the observed
p-mode absorption by sunspots (e.g., Braun, 1995; Lindsey and Braun, 1999, see overview
in Chapter 1), and the simulated absorption of higher order p-modes by a spreading field
sunspot (Cally, 2000). Indeed, recent calculations using the results of this chapter (Cally,
Crouch, and Braun, 2003, see Appendix F) indicate the absorption exhibited by non-vertical
field is ample to explain the observations, We defer the discussion of these calculations to
Chapter 6. However, it should be noted that we adopted L = 400 km in this chapter, but
Cally, Crouch, and Braun {2003) find the models in best agreement with observations have
L = 600 ~ 800 km, in which case, the frequencies quoted in §3.7.2 wounld be slightly lower
(eqn. [3.7]). For the n = 0 mode, fast-to-slow MAG wave conversion is most efficient in
vertical field (and slightly non-vertical field). For all modes at all frequencies, highly inclined
fields (@ 2 70°) show very inefficient fast-to-slow MAG wave conversion. However, under
the assumption that ¢ = 0, it is not rcasonable to conclude that highly inclined field {e.g.,
Hat canopy field in sunspot penumbrae) does not absorb pmodes. For example, the reso-
nant damping of p-modes by horizontal {canopy) field overlying the convection zone (c.g.,
Vanlommel et al., 2002, and references therein) may also play an important role in p-mode
absorption by sunspot penambrae. In fact, the extent to which thiese results apply 10 more
complicated geometries (e.g., Bogdan, 1999} is an open question.

Clearly, p-to-slow modec conversion is implicated in the absorption of p-modes by sunspots,
our simple two dimensional models are roughly consistent with the observations. In Chapter 4,
we shall investigate the effects of propagation in three dimensions (¢ # 0). In that case, the
Alfvén waves are coupled to the MAG waves, raising the possibility of even further absorption.
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Chapter 4

Mode conversion of solar p-modes
in non-vertical magnetic fields:
Three-dimensional model

In this chapter, we investigate another promising absorption mechanism - the leakage of
energy by Alfvén waves travelling down the field lines. The Alfvén waves decouple in two-
dimenstonal propagation (¢ = 0, see Chapter 3). We calculate the efliciency of mode con-
version in non-vertical field with three-dimensional propagaiion (i.c., ¢ # 0), where fast and
slow magnetoacoustic-gravity waves and AMvén waves are coupled. We calculate the resul-
tant decay rates {extinction lengths) and determine the contribution by the slow MAG waves
and the Alfvén waves.

4.1 The governing equations

As in Chapter 3, the model atmosphere is taken as a complete isentropic polytrope (egs. [3.5]
and [3.6]), and we adopt the usual nondimensionalisation {cq. {3.7]). The nondimensionalised
governing equations with ¢ £ 0 are then

5™ [cnbzﬂ—c—ﬂ—- ~ (cos? 8 +sin® ¢ sin? ) — ] ¢+ (u - '—;—2-3) ¢

. & in N (| K2
—-sin@s™" [coscf) €088 —— + — sin® ¢ sind — - cos ¢ cosf —1 £,

ds? 2 ds 4
in| d L -
3 [qu +m] £, = 7 sing sinds™" Dyn, (4.1)
[ 5™ D} + 1] 5 = ~sing sinf ™™D [\"f.g] , (4.2)

sinzos“'"‘[:i cos® ¢ ]5~ {d2+(1n+1)——+v]§
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. 12 d x?
~gin@s™" [tmqb CO8 8 ==z 7 ~=5 + 2 2 sin? ) Sul()I —cos ¢ ('0%9 ¢
K ) d _ m dn .
= [ 0 + 1] sing sinfs™" Dy [de} (4.3)

whoere D % oos b sind ~ cos @ £ is the nondimensionalised directional derivative alon
= 2 d=

the ficld lines, and V- £ = "‘( iji is the nondimnensionalised divergence of the displace-
ment veetor. With ¢ # 0, the system of differential equations (4.1)-(4.3) is sixth order and
completely describes the propagation and linear interaction of all types of MAG waves - the
fast and slow MAG waves and the Alfvén waves (where the distinction is valid). In the case
of propagation parallel to the z-axis (i.c., ¢ = 0), equations (4.1} and (4.3} reproduce the
fourth order problem {eqs. [3.8] and {3.9], respectively), whereas equation (4.2) decouples and
describes the propagation of the Alfvén waves in non-vertical ficld.

As in Chapter 3, without loss of generality, we assume Re(x) > 0 throughout the re-
mainder of our analysis (i.e., travelling waves propagate in the positive k-direction). We
calculate complex wavenumber eigenvalues, x, for specified real dimensionless frequencies, v,
inclination, @, and propagation direction ¢. Again, we restrict our attention exclusively to
the case m = 3/2,

4.2 'The lower boundary

‘The lower boundary, 8 = o0, is an intrinsically irregular siugular point of the governing
equations {4.1)-(4.3). Imposing the appropriate boundary conditions requires knowledge of
the asymptotic behaviour of the solutions of governing equations as s —» co. The analysis is
very similar to §3.3, except ¢ # 0, therefore, the Alfvén waves must be included. To avoid
repetition some details may be omitted.

As discussed in §3.3, when the sound speed, Cg, and the Alfvén speed C, differ greatly
(i.e.,, Ca € Cg, as s — o0} the fast and slow MAG waves and the Alfvén waves decouple.
Hence, in the region where Cy « Cyg, we can address the three oscillation modes separately.
As in the fourth order case, at great depth, as 8 — oo, the fast MAG wave is asymptotically
an evanescent acoustic wave {(compressive and longitudinally polarised), with a vertical wave-
length comparable to the local density scale height, The propagation of the fast MAG wave
is asymptotically unaffected by the presence of the magnetic field. On the other hand, the
slow MAG wave and the Alfvén wave are strongly affected by the presence of the magnetic
field. The slow MAG wave is asymptotically a travelling Alfvén wave (incompressive and
transversely polarised), with a vertical wavelength very much smaller than the local density
scale height. The physical characteristics of each mode, combined with the method of domi-
nant balance {e.g., Bender and Orszag, 1978, Chapter 3), guide us to consistent asymptotic
behaviours for the fast and slow MAG waves and the Alfvén waves,

4.2.1 Fast MAG wave asymptotics

Asymptotically, as 3 = oo where Cy &« Cy, the fast MAG waves are unaflected by the
magnetic field. For the fast MAG wave solution, this property motivates the assumption
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that, in the governing equations (4.1)- (4.3), the magnetic torms are dominated by the non-
magnetic terms, We mmst check this assumption later. Neglecting the maguetic terms in
equations (4.1)-(4.3) leaves

[ lz"’"" ]C ( s—-v)(, 8- 00, (4.4)
{ K
-:—i-g-w ——E'Ez, S — 00, (4'5)

and 7 is very small relative to both  and &;, i.e.,

lim -+ = 0, and lim 1 =o. (4.6)

8400 ( =00 €,

For the non-magnetic p-modes {see Appendix A for details), the asymptotic relations {4.4)
and (4.5) are equalities and » (cq. [4.6]) vanishes exactly.

The method of dominant balance applied to relation (4.4) yiclds the two controlling
factors ¢ ~ exp (%%s). As in §3.3.1, we impose the boundary condition that evancscent
modes decrease. Further developing the exponentially decaying asymptotic solution we find:

¢, ~ S /x)—(m/2) oxp [-— g.s] Ur(s), s—o00, 4.7}

n, ~ singsind (1 - %n_i) (cos ¢ sind —~ icos &}
x s(V2/8)~(Bm/2)-I exp [ngs] Vi{s), s—=oo, (4.8)
&, ~ —ig(vi/R)=tm/2) oy [—-gs] Wi(s), s-— o0, (4.9)

where the coeflicients Uy, Vy and Wy are all asymptotic to unity as s — oo, and Re (s} > 0 is
assumed. The leading behaviour for 5 (eq. [4.8], resulting from eq. [4.2]) clearly shows that n
is very much smaller than both ¢ and £;, as s — co, (consistent with eq. [4.6]). In addition,
it can be easily verified, by substituting the leading behaviours (4.7)~(4.9) into the governing
equations (4.1)-(4.3), that the magnetic terms are dominated by the non-magnetic terms
at sufficient depth. Consequently, the initial assumption for the fast MAG wave solution is
self-consistent. As in §3.3.1, for complex &, the asymptotic behaviour of the fast MAG wave
is sornewhat wave-like. However, for Re (k) > 0, it can be verified that the associated wave
energy flux vanishes as s = oo,

For m = 3/2, in a similar fashion to CBY3 and §3.3.1, the coefficients Uy, V; and W, may
be expanded in asymptotic power sevies in non-positive half integer powers of s. The details
of the series expaunsions are presented in Appendix D.1. The first few terms of the series are:

2
a -1 @K . . s 2 -3/2
U;(3)~1—§';(2a-—1)s -E'—}—,:;(cosﬂ +icospsin®)? s V24, (4.10)
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(6 + 1) {(2a -~ Tyeos 8 +14(2a — 3) cos ¢ sinf} 1

Vi) ~ 1- 26 {cos@ +icon¢ sind)
2 + +
—--i*g;:z (2a + 3) {cos @ +icos¢ sin(?)zs“‘/? +..., (4.11)
Wi ()~ 1= & 20 ~5) s~ = 25 (cosh 4 ing)? s~/ (4.12)
f(S)“ —ﬁ(a-—-a)s —E;;.;((.na +icos¢dsind)’ s e R .

whare ¢ = (3/4) - (V?/K). Unsurprisingly, the asymptotic leading behaviour for the fast
MAG wave (eq. [4.7]-[4.9]), and the first two non-zero terms of the series Uy (eq. {4.10)), are
exactly that of the trapped non-magnetic p-mode (sce Appendix A}. Asymptotically, the fast
MAG wave is unaffected by the magnetic field strength and inclination, 8, and, as expected,
the propagation direction, ¢. Dependence on both 8 and ¢ enter the asymptotic behaviours
for ¢ and ¢, in the series Uy and W, respectively, at terms of order s73/2, The leading order
for n (cq. [4.8]) itself explicitly depends on @ and ¢, though it is asymptotically dominated
by ¢ and &.. For ¢ = 0, 5y = 0 for alt s, and the asymptotic leading orders (eqs. (4.7} and
[4.9]) and the asymptotic serics (cqs. {4.10] and [4.12]) reproduce the fourth order non-vertical
field result (eqs. [3.12]-[3.13} and cqs. [3.14]-[3.15], vespectively). For 0 < ¢ < 7 and exactly
horizontal field (¢ = 90°}) the fast MAG wave asymptotic leading orders {eqgs. [4.7]-[4.9]) are
well behaved, and yicld a valid solution to the second order (¢ # 0) horizontal ficld problem.
With 8 = 0, these fast MAG wave solutions reproduce the vertical field solutions (sce CBZ,
their eq. {2.12]).

4.2.2 Slow MAG wave and Alfvén wave asymptotics

Asymptotically, as s — oo (where €4 €« Cg), both the slow MAG waves and the Alfvén
waves are transversely polarised, incompressive modes with a vertical wavelength that is very
much smaller than the local density scale height (for the sake of conciseness, in the vicinity
of the lower boundary, we sometimes refer to both the slow MAG waves and Alfvén waves as
the “incompressive modes”; the distinction between the slow MAG waves and Alfvén waves
is fully described at the end of this subsection). In the limit where Cq € Cs, the propagation
of the incompressive modes is unaffected by the gravitational stratification. It is therefore
reasonable to assume that the atmosphere, as experienced by the incompressive modes at
sufficient depth, is homogeneous (i.c., ¢ = 0). This assumption mwist be checked later. The
complete solutions for magnetoacoustic and Alfvén waves propagating in a homogencous
magnetofiuid with ¢ # 0 were derived in §3.3.2.

In the limit where C4 < Cg, the dispersion relations for the slow maguetoacoustic wave
and the Alfvén wave in a homogeneous maguetofluid are identical (sce egs. [3.18] and {3.21)),

w? = K2C% cos® . (4.13)

Assuniing the vertical wavelength of the incompressive modes is very much smnaller than the
local density scale height, the asymptotic relation for both the slow MAG waves and Alfvén
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waves in a gravitationilly stratified atinosphere, eonsistent with the dispersion relation (4.13),
ig

2
) d . , :
Cc3 [cosﬂ-&; + ik cos ¢ sm()] x{(2) ~ =ty (z), 22— -o00,
where y is the dominant component of the displacement vector, &, for each mode. We leave

this genceral {or the moment. The asymptotic relation for the incompressive modes in the
complete polyirope (cgs. {3.6] and {3.7]) is then

. 2 {
[(:osz s ™ ;—;}- ~ixkcos P sinf cosfua™™ ‘-:,-;-] x (%)
2
~ (%- cos? g sin® @™ ~ u2) x(s), 8- o00. (4.14)

Applying the method of dominant balance to equation (4.14) yields the two controlling factors
X ~ exp (F2ivsec@sM2/2 ] (i + 2)). As in §3.3.2, we require that wave-like disturbances
be outgoing. Further developing the outgoing wave asymptotic solution for equation {4.14}
we find

N 2iv
w s7" N axp Jcos ¢ tand = s + secd s 5o 00 4.15
for both the slow MAG waves and Alfvén waves, Asyraptotically the vertical wavelength of
the incompressive modes, corresponding to solution (4.15), is

-1
Ay (%) ~ E(—)S—g-s“"‘n, § = 00.

Consequently, the initial assumption that the atmosphere is homogencous with respect to the
incompressive modes (i.e., the vertical wavelength is very much smaller than the local density
scale height, eq. [3.27]) is self-consistent. The assuinption that the attaosphere is homegeneous
is used only to calculate the leading order termns. For incompressive oscillations,

df; ik
';i‘;"‘\-'":"- §— 00,

hence, for the leading order above {cq. [4.15}), the slow MAG waves and Alfvén waves require
£, ~ COS t??‘—""—;)3‘“”“’2(1 5= 00. (4.16)
Applying the leading bebaviours ¢ ~ x, # ~ x and &; ~ cos 09’-‘;-,3""/2)( to the governing

cquations (4.1)~-{4.3) we further develop the resultant asymptotic solutions. Two independent
modes can be identified:

¢, ~ s Bexp [cosqb tan@ %E s+ secl %ivsm] U (s), s—00, (4.17)
J
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sing sind

LA 6';'—"‘" (4?:!}2 CO8 ¢ tan ! - 3“) 8:..!)/3
o 4.
X exp [cos ¢ tan () T + sec ) s Vo), s 00, (1.18)

: i "
£, ~cosd %3”9/8 exp [cosqb tangd %: s +secd -?-,ius"/"] Wils), s-ro0, (4.19)
for the downward-travelling slow MAG wave (with the displacement dominated by ¢), and

sing sinf

¢, ~ o (4iU2 cos ¢ tanf -+ 3&) g8
}
i 4. 7 ‘
x exp |cos ¢ tan0 P + see Fivs Us(s), s =00, {4.20)
~3/8 W 4. 1
7, ~ 8 exp |cos ¢ tzmﬂ—-2—3 + secl Fivs M v(s), s— oo, (4.21)

sin¢ sinf x (

£oo ~ 902 (4iv? cos ¢ sin0 + 3k cos 0) g 1978
K 4. 2
X oxp jcos ¢ tan8 7 s + secd Zivs'/ Wols) , s = oo, (4.22)

for the downward-travelling Alfvén wave {with the displacement dominated by n). Al the
cocflicients U, Vi, Ws, Us, Vo and W, are asymptotic to unity as s = oo, and we have
specialised to the m = 3/2 polytrope. The slow MAG waves {cqs. {4.17]-{4.19]) can be
distinguished from the Alfvén waves (cqs. [4.20]-(4.22}) by the direction of the displacement
vector (i.c., the polarisation). The group velocity for both the Alfvén waves (eq. [3.19))
and the slow MAG waves (cq. [3.22]), and hence the direclion of cnergy propagation, is
divected along the magnetic field lines. It may be confirmed that asymptotically, as .. - oo,
the wave-cnergy Hux along the field lines is constant (see §4.5 for details). Due to mode
conversion in the region where Cy = Cs, oscillations (asymptotically composed of fast and
slow MAG waves and Alfvén waves) deeay as thoy propagate in the direction parallel to k
{for Re (k) > 0). Therefore, for 0 €8 < /2 and 0 € ¢ < 7f2 (7/2 < ¢ < 7), slow MAG
waves and Alivén waves travelling along deeper fieid lines are excited by less (inore) energetic
waves in the conversion region. Heunce, for complex s, the asymptotic behaviours of both the
slow MAG wave and the Alfvén wave are exponentially decaying (growing) with increasing
depth. For complex 5, 0 < 0 < 7/2 and ¢ = 7/2, the asymptotic behaviours of both the
slow MAG wave and the Alfvén wave are purely oscillatory. Likewise if the field is exactly
vertical {6 = 0).

For m = 3/2, in a similar fashion to CB93 and §3.3.2, the coeflicients U,, V; and W,
may be expanded in asymptotic power series in non-positive quarter integer powers of s, and

67




I
Ve
LS
. 31,
ey
&
o
Lr
b
)
w,
o
by
i
M
g3
fts
X
L1
1
I
]
i
-
|
B
)
&
.
T
L
)
R
i
i
X
&
i
-)'.-.
i
o
Ay
A
R
E
E‘LI
g
?‘1,:
it

LT

likewise for the AHvén wave solution, U,, V, and W,. The details of the sories expansions
can be found in Appendix D.2. The first few terins of th: series are:

Us(s) ~ 1~ %wcoq ¢ sinf tan@s~¥ ...,

Vi (s) ~1 = socfa ¥
124802 c08 8 + cos ¢ sind (9n? cos? & + 160 sin? 6)

120 (3xncos 0 — iv? cos ¢ sind) to
t
Wa(S)wl-M(.}ncoqﬂ + dip? cos ¢ sind) s

G

for the slow MAG wave solution, and

Ua () ~ 1+
12ix12 cos 20 + cos ¢ sin @ (lﬁv sin0 tanf — 9x%cos0) RV
12c (3x cos & + 4ir? cos @ sin ) 7

Va(s) ~ 1~ §£u3i112¢ sinf tanfs™3 4 ..

Wa () ~ 1+ { {12in0? (cos20 — 2c0s? ¢ sin? 6)
+cosé sind (16v%sing tan@ — 27%° cos8) }/
(12v (3kcos @ + 4ir® cos ¢ sin)) }3“3/" +.en,

for the Alfvén wave solution. The asymptotic behaviours of the siow MAG waves and the
Alfvén waves are strongly influenced by both the presence of the non-vertical magnetic field
and the propagation direction. The leading orders (eqs. [4.17}-(4.19] and eqgs. {4.20]~[4.22],
for the slow MAG waves and the Alfvén waves, respectively) and the associated asymptotic
series arc highly sensitive to the field inclination, @, and the propagation direction, ¢. When
¢ = 0, the Alfvén waves decouple, {, = £;, = 0 (eqs. [4.20] and [4.22]) and 9, = 5, = 0
(egs. [4.8] and {4.18]) for all s. In this case, the first term (after unity) in the series V, is
~33icos@s™7/ 1/224u. In fact, for ¢ = 0, ¥, may be expanded as an asymptotic power series
in non-positive integer powers of s°/*. Also, when ¢ = 0, the slow MAG wave solutions
(eqs. {4.17] and [4.19]) reduce to the fourth order solutions (egs. {3.29} ard [3.30]). When
¢ = 90°, the first term (after unity) in both of the series Us and W, is —x%s~%/2 /802, and
the first f-dependent term (in both series) is of order s~7/1. With 8 =  cquations (4.17) and
(4.19), and the series Us and Wi, reproduce the vertical field slow MAG wave solution {see
CBZ, their eq. [2.11]). As expected, for § € ¢ < 7, the asymptotic behaviours for b, the
slow MAG waves (eqs. [4.77]-[4.19]) and the Alfvén waves (egs. {4.20]-{4.22]) break down in
the horizontal field, singular limit (8 — 90°).
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4.3 The top boundary

As in Chapter 3, the boundary conditions at the surface of the complete polytrope, s = 0,
are that all components of the displacement vector, £, have a finite magnitude, and that the
magnetic field perturbations match smoothly onto a vacuuin potential magnetic ficld (see
Appendix B) that vanishes as s — —o00. The relevant equations in the ¢ # 0 case are then:

‘fli:.-_—.gu at s=0, (4.23)
and
Dy + sing sinfV.£=0 at s=0, (4.24)

where &, = co88({ — cos¢ sinf¢; is the component of the displacement perpendicular to the
magnetic ficld, B, and parallel to the propagation direction, k. When ¢ = 0, condition (4.23)
reproduces the boundary condition imposed in the fourth order case (eq. [3.31)), and con-
dition (4.24) recovers the boundary condition that would be imposed on the Alfvén waves
(ie., Dyn = 0 at s = 0, sce BCY7 for the vertical field case). An interesting implication of
condition (4.24) is that 7, the incompressive component of the displacenient vector, is coupled
to the fluid compressibility, V - £ = ix(/2 - £, at 8 = 0, except where the feld is exactly
vertical (8 =0) or ¢ = U.

In terms of the independent variable g = st/2

, the (m = 3/2) governing equations are

2
[0082 0 (—(-{—- - ~1--‘£- - 5202) ~ sin® ¢ sin® 9&202] ¢

. ) d
+0° (40° ~ k%0?) { - ino® [UE.; + 3] £

. d2 i d 2 9 . .2 . d
~siné [co:)gé cos @ (;?-0—2- —=as Ko ) + ixsin ¢ smﬁ‘a-{—l—&] £,

=txsing sinfo [cosﬂ:% - 1K 08 ¢ sin()cr] 7, (4.25)

{00329 (-E—Q— - -1-—(—{-) + 4»265] 3

do?  odo
—ikcos ¢ sinfo [2 "’039'(’%.‘ — iR o8 ¢ sinGrf] 7
- . d . .
= ixksing sinfo cosﬂa; —incos g sinBo(

~sin¢ sin @ [cosﬂ% —~ {incos ¢ sinfo® + cos0) 1] 5] (4.26)
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~sind [cns ¢ cos @ ( & _ld h‘zﬂ'z) + insin® @ mea—i—] ¢

E do?  odo do

* = —sin¢ sinf [coso 4 (in cos ¢ sinfo? + cos0) l] il (1.27)
&1 da do’

4 and the point ¢ = 0 (s = 0) is a regular singular point (as in §3.4). Substituting the Frobenius
3 series expansions

oa o0 00
Al (o) = Z u o™, q(o) = z o™, and & (o) = z wya™t", (4.28)
n=0

3 n=0 n=0

into equations (4.25)-(4.27) yields six linearly independent solutions, none of which contain
a logarithm. Three solutions have r = 0, two solutions have r = 2 and one (unphysical)
sclution has r = -3,

Labelling the five finite, Hinearly independent solutions a, b, ¢, d and e, the general solution
may be written { = A(, + B¢, + C(, + D¢, + EC,, and similarly for 57 and &, (where A, B, C,
D, and E arc arbitrary constants). Developing the serics (see Appendix D.3 {for details) and
imposing the two remaining boandary conditions (4.23) and (4.24), it may be shown that

D= — (5n+2w.s¢> tan@ (in — 208 cos ¢ tand)) A
+-§V cos ¢ sin¢ tan’@ B
1 <~ cos ¢ tan® (Jikcos tand — 4v? - on) C,

10

and

, 1
E = o tand { sing (dcos ¢ tanf v? + 3in) A
+ (Bircos ¢ - 42 sin? ¢ tanﬁ) B
+sing (42 - Sicos § 1an) C}.

The phyvsically acceptable resulting solution is then

noi=Al o |+Bl 1 |+C| ne (4.29)
§: / fz,a $ip fzc
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whiere the leading terms of each serics, in terms of s, are:

C, =14 Tlﬁ (65 + 2cos ¢ tan O (ix — 202 cos b tand))s+...,
Ny = Tl(—}-simp tan 0 (dcosd tan 01?4+ Bin) s+ ..., (4.30)

1, :
€y = 3 (i ~2coad tanfv?) s + ... ;

2 . -
Cp = 3"’2 cos ¢ singp tan®fs 4 ...,

n, =1+ -]%tano (5£rccos¢ —~ 4 sin’ ¢ tan()}s +..0y {(4.31)
§1p = %vzsintﬁ tan@s+...;

and

(o = -1-1-6(:03(1; tan g (31’5(203@‘) tand — 4v? —-Sn)s-}- cen s

N, = -1—1-0- sing tan@ (41:2 — Jincos ¢ tanﬂ) a4+ ..., (4.32)

PPNt KRN ot e

1o =14 ilﬁ (3incos ¢ tand — 41/2) S+...;
and A, B and C are the remaining arbitrary constants. The first non-integer powers to appear
i these expansions are s712 in ¢, ny and ., and %2 ing 438240 G Sz Mo ad &5 When
¢ = 0, the Alfvén waves decouple, ¢, = £;, = 0 (cq. [4.31]) and 5, = 5, = 0 {eqs. {4.30]
and [4.32]) for all s. Also, when ¢ = 0, ¢, and &, (eq. [4.30]) and ¢, and &, (eq. [4.32}])
reproduce the fourth order solutions {eqs. [3.36] and [3.37]). When ¢ = 90°, the first term
in the ¢, expansion (eq. [4.31}) is 2ix? sec® 0tan 0 $9/2/105, and the first term in the e
expansion (eq. [4.32)) is 3insec?0s7/2/35. For 0 < ¢ < 7, as in the fourth order case, the
series expansions (4.30)-(4.32) break down in the horizontal field, singular limit (6 — 90°).
The system of differential equations (4.1)-(4.3) has singularities only at s = 0 and s = oo.
Therefore, the Frobenius series (4.30)-(4.32) have infinite radius of convergence. However,
as in the fourth order case, the series (4.30)-(4.32) are only used to start the numerical
integrations in the neighbourhood of s = 0.

4.4 Bidirectional shooting method

The complex sixth order boundary value problem, consisting of the sixth order system of dif-
fereniial cqnations (4.1}-(4.3) aund the six boundary conditions, is solved using a bidirectional
shooting method in exactly the same fashion as §3.6. For specified dimeusionless frequency,
v, mclination, @, and propagation direction, ¢, the eigenfunction is the linear combination
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of the six solutions that satisfy the boundary conditions. The cigenvalue i the vatue of the
dinensionless wavenumber, &, for which the linear combination exists.
Throughout the complete polytrope, s € [0, 0o}, we express the full, physically acceptable
% solution as
.. ( CA CB ¢:3
¢ Ba{ ma | +8n| ne | +Bc| % |, ifs<sm,
: £3,1. Ezn 53(‘.‘
a 7 = ﬁ (4.33)
Bl o, Y+Ba) o JHB ) v | ils>8m,
5 A\ Ez, 52;. 62]
where sy, is the matching point. The matching conditions, that ¢, 1, &, ¢', ' and & are all
contintious at s, can then be expressed in matrix form as
‘. ( ﬁCA *CB '—.CC-' Cs Ca CI \ ( ﬁ;l
,’; - 7?.-1 - ﬂ Fi - " [ ”.l ” e n f ﬁ I
3 "E:,.; _gzn 'Ez(' ‘fz. f:a fz! ﬁc
i ' ' Y Y I i =0, 4.34)
S A AR AR ‘
—_ — —Y o !
7i A yi a8 ‘: c cl;s fia Ti ¥ \ ﬁa
’ \ ""EzA "{zn _ﬁz(; Y2, 5::“ 2y ) ﬁf
, where all of the displacements and their derivatives in equation (4.34) are evaluated at 5 = s,
As in §3.6, the boundary conditions are homogeneous, therefore, we can set 3,4 = 1 for
L convenience, Given v, 8, ¢, and an initial guess for £, we calculate the gix solutions at s = s,
i then solve the first five rows of equation (4.34) for the f’s:
1 “Cy ~Ce G Ca C; An €.\
J e "Me N T Ny Be R
: s §Zﬂ ﬁ'f&'(,‘ EZ; 62“ {:f ﬁ_g = EZA
":1 — t — ! 1 ? ! ]
& Lo L G G )| B ;‘
~ty ~fe MW, U, 7, By 7
With these determined, the remaining conation,
} F{x) = —Efm - ﬁﬂgiu - ﬁC&;C + ﬁs'ﬁ':, + ﬁuE;u + ﬂffif
must be zero if & is an eigenvalue, but in general is not. Hence, x must be iteratively adjusted

until £ () = 0 is satisficd to an adequate tolerance.

4.5 Wave energy flux

The oscillations (7-modes) lose energy as a result of the slow MAG waves and/or the Alfvén
waves travelling out of the bottom of the atniosphere. An interesting question is what fraction
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of the energy loss is a conseqguence of slow MAG waves as distinet from the Alfvén waves. To
answer this we calculate the wave energy fiux of each mode as 2 - —o0.

"The instantancous wave energy flux associnted with the linearised MHD equations is (e,
Bray and Louglihead, 1974, p. 252)

F= (p] " iB.B,)v--‘-(Bl v} B, (4.35)
Hp by

whore B is the background magnetic field (eq. [3.1]), 1 = Re {py (z) exp[i (k- r — wi)]} is the
Bulerian pressure perturbation, By = Re { B (z)expli (k- r ~ wt)]} is the BEulerian magnetic

field perturbation, v = —Re {iw (2) exp [i (k- r — wt)]} is the velocity (for convenience, the
tilde notation is not used for the Fourier transformed displaccment vector, £(z) = ((2) k +
n(z)ky +&: (=) é;), and p, denotes the magnetic permeability.

The time-averaged wave energy flux, of an individual mode (overtone) at an individual
frequency, is defined as

w ®jw
(F) == — Fdt.
2 —-nfw

The uet flux can be calculated by swiming (F} over all modes and iutegrating over all
frequencies. The time-averaged wave energy flux corresponding to equation (4.35) i

W . 1 . . b fs . . aL ,
(F) = 5 Rte [a (pl + ;;-B-B;).f - (Bl £ )B] wcp(—?lm(k.)k-r) . (4.36)

To calculate the energy carried off by the slow MAG waves and the Alfvén waves it is sufficient
to evaluate equation (4.36) asymptotically for = — —o0. The amplitude of the fast MAG
wave component of the m-modes decreases exponentially with depth, and so the fast MAG
waves do not contribute to the asymptotic energy flux. In a homogeneous magnetofluid,
the Alfvén wave Eulerian gas and magnetic pressure perturbations vanish identically. On
the other hand, for the slow magnetoacoustic waves in a homogeneous magnetofluid, with
Oy € Cg, the gas and nagnetic pressine perturbations are out of phase and caucel. In the
stratified atmosplere the situation is similar, theugh to gain a complete understanding the
leading orders (eqs. [4.17]-{4.19] for the slow MAG waves and eqs. [4.20]-]4.22] for the Alfvén
waves) and the associated asympiotic series must he employed. For the slow MAG waves the
amplitude of the gas pressure perturbation,

1 2]

2, . :
-C-. ~ gwpogcm-:r‘b sin@s¥, 5 o,
L)
and the magnetic pressure perturbation,
LB.B
by 71 ~ —?—iv,a gcos ¢ sinf s>t 5 - oo
C 3 0 . 1] t
L}

both increase with depth. However, these leading behaviours are out of phase and partially
cancel. The resuliant total pressure perturbation associated with the slow MAG waves,
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decreases with depth. Likewise, for the Alfvén waves. The amplitude of the gas pressure
perturbation,

~ pogtose sind cos@s™', s = o0,

-

2 * 3 L]
Pt =310l sing sin®sM s o0,

o

and the magnetic pressure perturbation,

—=-B-B)

Hy

~ gi"Po.’I sing sinf a1, s 900,
/A

both increase with depth, but the resultant total pressure perturbation,
b+ ;‘;B ‘B,

. ~ —p,g8in¢ sinf cos@s™!, s o0,
a

decreases with depth. Counsequently, for the slow MAG waves and the Alfvén waves, only the
third term of equation {4.36) contrilmtes to the wave energy Hux at great depth.
Rewriting the third term of equation (4.36) onc obtains

(F) ~ -%-132— Re [i (C’OHC + 0O + € — l;’ﬁV . E)] exp (—2 Im (k) k- r) B,

By
z - ~o0, (4.37)

where § = sinf ¢, +cos ¢ is the component of the displacement parallel to the background
magnetic field. Equation (4.37) indicates that, asymptotically as z = —oo, the direction of
the wave energy flux is parallel to the background magretic ficld, This was to be expected as
the group velocities for both the Alfvén waves (eq. {3.19]) and the slow MAG waves (eq. [3.22))
arc directed along the magnetic field. .

It is convenient to consider the distance, in the z-direction, from the magnetic field line
that passes through the origin. This is given by

¥ =r—-tanfz.
Hence, two points lying on the same field line have the same z'-coordinate (and y-coordinate).

In the asymptotic limit 2 =& —o0, it can be shown that equation (4.37) yields a wave energy
flux that is constant along the magnetic field,

zﬁgloo(F) = —Fo (18,)* + |Ba}?) ¥* exp [~2Im (k) (cos pz’ +singy)| B, (4.38)
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whore Fy = 212373232 1-1/2,  and B, nnd B, are the complex amplitudes arising from
the matching procedure (see eq. [4.33]). The contributions to the asywptotic wave cnergy
flux by the stow MAG waves (o [3,]%) and the Alfvén waves (o [£4]*) are casily identified
from equation (4.38). For 8 = 0 or ¢ = 0 the Alfvén waves decouple (i.e, 8y = 0) and,
therefore, do not contribute to the cnergy flux. The slow MAG waves and the Alfvén waves
are asymptotically independent (non-interacting) wodes of oscillation, hence, equation (4.38)
coutaing ho cross terms,

For Im (&) # 0, the n-modes lose energy as they propagate through the atimosphere due
to the slow MAG waves and/or the Alfvén waves travelling down the field lines, Couservation
of encrgy, thercfore, requires that the (time-averaged) wave energy density of the w-modes
declines in accordance with equation (4.38). The extinction length 1/Im (2k) = L/Im (x) is
the distance in the (x,y)-plane (at fixed depth) over which the wave energy density decays
by a factor e. The extinction length is a measure of the energy loss suffered by a m-mode as
it travels through the atmosphere. If Im (k) = 0, there is no energy loss (neither the slow
MAG waves nor the Alfvén waves are not excited), and consequently, the extinction length
is infinite, On the other hand, for Im (k) # 0, the extinction length is finite, and shorter
extinetion lengths are associated with oscillations that lose energy more rapidly than those
with longer extiaction lengths. The extinction length, for ¢ = 0, was discussed in §3.7.2,

The fractional contributions by the slow MAG waves and the Alfvén waves to the asymnp-
totic wave encrgy flux (eq. [4.38]) are

_ s 1B 2
JACRNTA AT+ 1B

respectively, Obviously Fg + F, = 1, so it is straightiorward to derive one of I, or F, from
the other. In §4.6 we present the eigenvalues, x, along with the contribution by the Alfvin
waves to asymptotic wave energy flux F,.

and F, =

Fy

4.6 Results and discussion

As explained in §4.4 we calculate complex dimensionless wavenumber eigenvalues, &, for
specified real dimensionless frequency, v, field inclination, 8, and propagation direction, ¢.
For propagation parallel to the z-axis (¢ = 0) in non-vertical ficld {# # 0), eigensurfaces
were built up over the (v, #)-plane {see §3.7). For propagation in directions not parallel to
the z-axis (i.c., ¢ # 0), the eigenvalues depend on three independent variables: v, 8, and ¢,
and an additional dependent variable: the contribution by the Alfvén waves to asymptotic
wave energy flux, Fy, must also be considered. Firstly, in §4.6.1, we survey the variation of
s and F, over the (¢, 8)-plane at several fixed frequencies. In §4.6.2, for direct comparison
with the two-dimensional non-vertical field results, we present eigensurfaces of x over the (v,
#)-plane at fixed ¢, in a similar fashion to Figures 3.5 ~ 3.8. We also show “traditional” plots
of k (and F,) as a function of v with fixed 8 and ¢. The extinction lengths are examined in
84.6.5. Some additional results are supplied in Appendix D.4. Without loss of generality, the
parameter space search ouly needs to focus on the region » >0, 0 <8 < 90°, 0 < ¢ < 180°,
Re(k) 2 0 and Im (&) > 0.
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4.6.1 Eigenvalue topology: variation with both field inclination and prop-
agation direction

Figure 4.1 shows the variation of Re{x), Im (x), and F, as a function of both field inclination,
8, and propagation dircction, ¢, at fixed dimensionless frequency, v = 0.5, for two different
modes, » = 0 (Fig. 4.1(a)) and » = 1 (Fig. 4.1(b)). Each point on these eigensurfaces has
been generated starting from the corresponding vertical field mode (ie., 8 = 0 and ¢ = 0,
see Fig, 3.3) then stepping from 8 = 0 to ¢ = 85° whilst holding the frequency (¢ = 0.5) and
the propagation direction constant. The shading of the cigensurfaces (upper two panels) is
used to highlight contrast only and does not indicate the height of the eigenvalue. For the
contour-density plots of F,,, dark areas indicate regions where the asymptotic wave energy flux
is dominated by the Alfvén waves, whereas light arcas indicate regions where the asymptolic
flux is dominated by the stow MAG waves. In an analogous fashion, Figures D.1(a), D.1{b),
D.2(a), and D.2{b) show Re(k), Im (x}, and F, as a function of both ¢ and ¢ forn = 2, 3, 4,
and 5, respectively (with » = 0.5). In addition, Figures 4.2 - 4.3 and Figures D.3 - D.6 show
the variation of Re (s}, Im (), and F, as a function of both ¢ and ¢ at scveral other fixed
frequencies. Figuves 4.2(a), 4.2(b), D.3(a}, 0.3(b}, D.4(n), and D.4(b) for v = 1.5 md n = 0,
1, 2, 3, 4, and 5, respectively. Figures 4.3(a), 4.3(b), D.5(a), D.5(b), D.6(a), and D.6(b) for
v=3and n=1,2, 3,4, 5, and 6, respectively (note: the n = 0 vertical fiekl mode does not
exist for » 2 2.5, e.g., Fig. 3.3).

The symmetry of x about ¢ = 90° is clearly evident in the upper two panels of each of
Figures 4.1 - 4.3 and Figures D.1 - D.6, with the eigenvalues in the region 0 < ¢ < 90°
a mirror image of those in 90° € ¢ < 180° (ie, n(v, 8, ¢) = (v, 0, 180° — ¢)). This
property is consistent with the fourth order results (§3.7). We have not been able to prove
the symmetry is generally the case, but do not have a counterexample. On the other hand,
F, (bottom panels}) is generally not symmetric about ¢ = 90°. Subsegnently, in what follows,
we often refer to the eigenvalues only in the region 0 < ¢ < 90°, in these cases it is implied
that the reference applics identically to the region 90° < ¢ < 180° (by the symnetry & (@) =
Kk { 180° - ¢)).

For each mode, n, the behaviour of the cigenvalues over the {8, ¢)}-plane when v = 0.5
{(Figs. 4.1, D.1, and D.2, upper two panels) is typical of low frequencics in general (v < 1).
Likewise, for lower frequencies, the behaviour of the n = 1 eigensurface is typical of the
higher order modes n > 2. Hence, we concentrate on the n = 0 and n = 1 modes and
only refer to the higher order modes (see Appendix D.4) where significant differences exist
(e.g., in the variation of Fy). For all modes with v < 1, Re {x) increases monotonicaily with
increasing ¢ in the interval 0 < ¢ < 90°. This is true for all & > (), but is most pronounced
for larger inclinations, For the n = 0 mode at fixed propagation direction ¢ = 90°, Re(x)
increases monotonically with field inclination; whereas for ¢ = 0, Re (k) decrcases with 8, to
a minimum at § = 40° — 70° (depending on v), and increases with @ for larger inclinations.
For modes with n > 1 at all fixed propagation directions, Re («x) decreases with increasing 8,
to a minimum at 8 = 60° — 75° (depending on v and n, the decrease is greatest for ¢ = 0), for
larger inclinations Re (k) varies only slightly with 8. The middle panels of Figures 4.1 show
that the variation of Im (x) with ¢ is effectively negligible for & < 70°. In contrast, for highly
inclined field {@ 2 70°), the variation of Im {x) with ¢ is much greater (relatively speaking).
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Figure {.1: Eigenvalues, x, and the contribution by the Alfvén waves to asymptotic wave energy flux, F,, as a
function of of field inclination, 8, and propagation direction, ¢ {augles are in degrees). On both sides the top
panel shows the real part of s as a function of 8 and ¢ and the middle panel shows the comesponding imaginary
part of x. The shading of the eigensurfaces is used to highlight contrast only and does not indicate the height
of the eigenvalue. The bottom pancl shows F, as a function of # and ¢, corresponding to the eigenvalues
shown in tke upper two panels. The contours are of Fa = 0.1,0.2,...,0.9, with the lightest shading indicating
0 < Fa < 0.1 (ie., an asymptotic flux dominated by the slow MAG waves) and the darkest 0.9 < F, < 1
(dominated by the Alfvén waves). The domain for these plots is 0 € # < 85°, 0 < ¢ < 180°. For all of these
plots the fraquency is fixedat » = 0.5, (a)n=0. (W) n = 1.
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In the region € > 70°, Iin (x) has a maxinuti at ¢ = 45° - soveral ovders of magnitude greater
thau the ¢ = ( case for the largest inclinations, and a minimwm ot ¢ = 90° - also greater
than tho ¢ = 0 level for the largest inclinations. For the n = 0 mode, Im(x) decreases
monotonically and rapidly with 8 for all ixed ¢, For modes with n > 1, exeept for the
n = 1 mode when ¢ = 90° (where Im (x) decreases monotonically with 8), Im (x) grows
with increasing @ to maximum at 0 & 20° -- 0°, up to several orders of tnagnitude greater
than the corresponding vertical ficld case (nost obvions for the higher order modes, o0..,
Figs. D.1 - 1.2); for larger inclinations lm (&) decreases rapidly with 0, Therefore, despite
the enhancenent in the ¢adivection in highly inclined fiedd (8 2 70°), Im(x) is largest in
vertical ficld for the n = 0 modo and moderately inclined field (@ &~ 20° ~ 60°) for modes with
n 2 1, for all propagation directions — a very similar conclusion was reached in the fourth
order case, §3.7.

For the n = 0 and n = 1 cigensurfoces, over the (@, ¢)-plane, a dramatic topological
transition takes place at frequencies in the interval 1 € v € 1.5, This is evident in Figare 4.2
with a cut appearing in both the n = 0 and n = 1 cigensurfaces along ¢ = 30° (with vertex
at 0 == 30°). Across the cut, the n = 0 surface (Fig. 4.2(a)) matches onto the n = 1 surface
(Fig. 4.2(b)), forming a single sheet. The vertex of the cut vccurs at the same location for
Re{k), Im{x}, and F,. Hence, the vertex represents a “crossing”. where the eigenvalues of
the two overtones coincide. This type of bhehaviour was also found in the fourth order case
{over the (#,0)-plane, see §3.7). The eigenvalues for the higher order modes {n > 2, eg.,
Fig. D.3 - D.4) do not exhibiv this complicated topology. Their behaviour is very similar to
the corresponding modes at lower frequencies {e.g., Fig. D.1 - D.2, discussed above), except
for small inclinations (8 < 20°), where Re (x) decreases monotonically with ¢ for modes with
n 2> 1 in the interval 0 < ¢ < 90°. For the nn = 0 and n = | modes (Fig. 4.2(a) and 4.2(b),
respectively) with propagation directions greater than the cut {(30° < ¢ < 150°), the variation
of both Re (x) and Im (&) is broadly similar to the corresponding miodes at lower frequencies
(e.g., Fig. 4.1, upper two panels), Though there are some exceptions. For the n = ) mode
(with 30° < ¢ < 150°), Im () still decreases monotonically with @ though less rapidly than
at lower [requeuncies - giving the impression that Iin {x) plateaus at larger inclinations (e.g.,
Fig. 4.2(a), middle panel). For the n = | mode, In () does not vary significantly with ¢ less
than the cut, except in highly inclined fields, where I (&) actually increases slightly with ¢
for propagation directions in the range ¢ = 20° — 25° (this also occurs on the n == 0 surfacc
for ¢ = 30° ~ 45°). Also for the n = 1 mode (Fig. 4.2(b}, middle pancl), the imagivary part
attains a locel maximum in the neighbourhood of the vertex of the cut (@ = 25°, ¢ = 30°),
though the peak is not significantly greater than the ¢ = 0 case; for 30° £ ¢ £ 90° this Im (x)
peak diminishes gradually with increasing ¢.

In the interval 1.5 < v < 3, the topology of the eigensurfaces over the (8, ¢)-plane
continues to vary - due the behaviour of the n = 0 eigenmode (i.e., the sequence of cuts
connecting all eigeninodes, as seen in Fig. 3.5). We do not concern ourselves with the fine
details of this here (the topology over the (v, 8)-plane is considered in detail in the next
subsection). When v = 3, the n = {) vertical field mode does not exist, and each of the
n =1, 2, and 3 cigensurfaces possess two cuts (along ¢ =~ 42" and ¢ == 138°, with vertices
at @ =~ 45° forn = 1, and at @ =~ 20° for n = 2 and 3). For 20° < 0 < 40°, the n = 2
and n = 3 surfaces match across both sides of the cut. For larger inclinations (¢ < 45°) the
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Figure {.2: Same as Figure 4.1 except v =1.5. {(a) n=0. (b)n= 1.

matching is more complicated. The low ¢ side of the cut in the n = 1 surface (Fig. 4.3(a))
matches onto the high ¢ side of the cut in the n == 3 surface, the low ¢ side of the cut in
n = 2 (Fig. 4.3(b)) matches onto the high ¢ side of the cut in n = 1, and the low ¢ side
of the cut in n = 3 (Fig. D.5(a)) matches onto the high ¢ side of the cut in n = 2. Hence
a single surface is formed by the three eigensurfaces. The topology aside, there are several
changes to the variation of the eigenvalues {over the (6, ¢)-plane) when v = 3 that warrant
discussion. For ¢ less than the cut in the n = 1 surface (Fig. 4.3(a)) and above the cut in
the n = 3 surface (Fig. D.5{a)}, at lower inclinations the imaginary parts of the eigenvalues
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Figure {.3: Same as Figure 4.1 except ¥ = 3 and the domains are different. (3} » = 1. The domain is
0<H<TH, 0< ¢ <180° (b) n =2 Thedomainis 0 <4< 81° 0< ¢<180°.

increase with increasing € in the usual manner {in the n = 1 case a local maximuin is attained
at the vertex of the cut), but for larger inclinations the imaginary parts tend to plateau (as
exhibited by the n = 0 and n = 1 surfaces when v = 1.5, Fig. 4.2). This is accompanied by
the rapid growth of Re (k) with increasing inclination at fixed ¢ (as was also the case when
v = 1.5, Fig. 4.2); this is most pronounced at ¢ = 90° for n = 3 (Fig. D.5(a)). In all other
cases, Im{x) varics in the same fashion as it does at lower frequencies. On the other hand,
for the higher order modes (n > 4), the variation of Re {x) with inclination is quite ditferent
to that at lower frequencies. When v = 3 for all (fixed) propagation directions, Re (k) grows

80




L e Tt 2 {2 Dt

A

A R e

capidly with increasing inclination to a maximum at 8 = 30°, and decreases gradually for
larger fuclinations.

There are two cases where the Alfvén waves decouple (i.e., 8 = 0 and 8, = 0, and hience

F, = 0): when the magnetic field is exactly vertical (8 = 0), and when the propagation
direction is exactly parallel to the r-axis (¢ = 0). Consequently, the bottom panels of
Figures 4.1 - 4.3 and Figures D.1 - D.6 show, in the neighbourhood of 8 = 0, ¢ = 0, and
¢ = 180°, that the Alfvén wave contribution to the asymptotic wave energy flux is weak
(i.e., Fq £ 0.1). When the magnetic ficld is exactly horizontal {§ = 90°) the slow MAG
waves and Alfvép waves do not propagate — resulting in the build up of energy at critical
layers (as discussed in §3.1.2, the second order governing equation gencrally possesses two
singularities associated with the Alfvén and cusp resonances). We therefore expect the slow
MAG waves and Alfvén waves to decouple as the field inclination approaches horizontal. This
does indeed appear to be the case - all of Im (&), Ba, and B, drop off rapidiy as the inclination
approaches horizontal. Though our numerical method is severely limited for ¢ > 85° -
restricting a complete study of the behaviours in highly inclined field. In horizontal field
when the propagation direction jis exactly perpendicular to the z-axis (¢ = 90°), the field
aligned component of the displacement, 7, is completely decoupled - noune of the restoring
forces: compressibility, the Lorentz force, or gravity, influence this component. Hence, 1 =0
when 8 = 90° and ¢ = 90°. In highly inclined ficld when ¢ = 90° it is expected that solutions
with dominant  comporents (i.e., the series [4.31) and the Alfvén waves, eqgs. {4.20] - [4.22})
will be greatly suppressed (i.e., 8g = 0 and 8, = 0). Indeed, all of Figures 4.1 ~ 4.3 and
Figures D.1 - D.6 show that F, < 0.1 {i.e., 8, = 0 and B, = 0, but |8,] < {B;]) when the
field is highly inclined and ¢ = 90° ~ though the extent varies with both frequency and radial
order. It is also evident that 8z =~ 0 {and {8p] < min(1,|8¢|)) in this regime (not displayed).
Broadly speaking, for a given mode n, the range of {0, ¢)-space over which the Alfvén
waves contribute substantially to the asymptotic energy flux increases with frequency .
Likewise, for a given frequency v, the range over which the Alfvén waves contribute increases
with radial order n. In general, there is not a strong correlation between the variation of the
x and Fo over the (8, ¢)-plane - we give three examples. Firstly, the absence of symmetry
in ¥, about ¢ = 90°. Secondly, in vertical and moderately inclined field (0 < 70°), there
are regions where Fy > 0.9, suggesting the Alfvén waves are dominating the asymptotic flux.
However, in these regions (¢ < 70°) the middle panels of Figures 4.1 - 4.3 and Figures D.1 ~
D.6 show that Im (x) does not vary in the same manner - in fact Iin(x) is approximately
constant in the ¢-direction in this regime. Thirdly, for all frequencies and all modes when the
propagation direction is in the ranges ) < ¢ < 45° and 135° < 4 < 180°, the Alfvén waves
dominate the asymptotic flux in highly inclined fields (& = 70°); though at fixed propagation
direction and 8 2 60°, F, fluctuates greatly. However, the middle panels of Figures 4.1 -- 4.3
and Fignres D.1 - D.6 show that, in highly inclined field (¢ 2 70°), Im (x) is gencrally several
orders of magnitude less than in vertical and moderately inclined field (¢ < 60°, depending on
the mode and frequency) -~ indicating that both the Alfvén waves and the slow MAG waves
arc only very weakly excited in highly inclined field. Therefore, regions where F, > 0.9 in
highly inclined field do not represent a greatly iacreased Alfvén wave energy flux, but rather

almost complete decoupling of the slow MAG waves.

For propagation directions not parallel to the z-axis, it is clearly evident from Figures 4.1 ~
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4.3 and Figures D.1 ~ D.G, that the Alfvén waves play a significant role in leaking energy
from the 7-1nodes in non-vertical field. Generally speaking, except in highly inclined fickl,
the horizoutal spatial decay rate of the m-maodes varies little with the propagation direction,
although the nature of the mode conversion does vary substantially. Hence, rather than
radiating great quantities of additional energy, the Alfvén waves tend to compensate in regions
of the parameter space where the slow MAG waves are only weakly coupled, and visa versa,
keeping the overall damping rate roughly unchanged.
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4.6.2 Eigenvalue topology: variation with both frequency and field incli-
nation

Figure 4.4 shows the variation of Re(x), Im(x), and F; as a function of dimensionless fre-
quency, v, for the first nine (n =0, ..., 8) modes when 8 = 5° for two different propagation
directions, ¢ = 45° (Fig. 4.4(a)) and ¢ = 90° {Fig. 4.4(b)). The eigenvalues for the p-modes
of the unmagnetised complete polytrope, £ = v2/ (n + 3/4), where n = 0,1,2,..., and n = 0
represents the f-mode (e.g., Lamb, 1910, see also eq. [A.7]), are plotted in Figure 4.4 as light
dashed lines. The top panels of Figure 4.4 show that in the low frequency regime (v < 1),
as in the ¢ = 0 case (sce Figs. 3.3, 3.4, 3.9, and 3.10), the magnetic and non-magnetic ridges
(eigencurves) are indistinguishable. Hence, we use the mode labelling system that was em-
ployed in §3.7, where ridges are labelled n = 0,1,2,... such that n is the radial order of the
non-magrietic py-mode whose ridge matches the ridge of the magnetic mode in the low fre-
guency {non-magnetic) regime. The upper two panels of Figure 4.4(a) and (b), respectively,
are the same as Figure 3.4, cxcept the direction of propagation is not parallel to the » -axis.
_ The two propagation directions, ¢ = 45° and ¢ = 90° (and ¢ = 135°), arc seleci=d because
these cases provide a reasonable sample of the variations observed over a broader range of ¢
: values (sce §4.6.1). It is also worth noting that the # = 5° case is typical of slightly inclined
fields (@ < 5°) in general.

In comparison to the ¢ = 0 case (Fig. 3.4), Figure 4.4 shows that, at small field iuclina-
tions, the variation of the eigenvalues with propagation direction ¢ is only subtle. The real
parts of the cigenvalues (Fig. 4.4, top panels) are essentially unchanged and the imaginary
parts only vary slightly. We briefly discuss the important features of Figure 4.4, some of which
were discussed previously in §3.7. In general, especially for v £ 1, for a given frequency along
a ridge both the real and imaginary parts of the eigenvalue are largest for the n = 0 mode and
decrease as n increases. As explained above, at low frequencies { < 1} the real parts of the
eigenvalues (Fig. 4.4, top panels} are indistinguishable from their non-magnetic counterparts.
For v 2 1, the influence of the magnetic field causes Ke (x) to deviate from the non-magnetic
ridges. The real parts of the eigenvalues still increase monotonically with v (except for the
n =0, 3, and 7 modes) but less rapidly than the non-tnaguctic eigenvalues - corresponding
to an increased horizontal phase speed (o< v/Re (x)). For the n = 0, 3, and 7 modes the real
parts of the eigenvalues do not increase monotonically with  but turn over and terminate
at Re (k) = 0, forming a horizontally evanescent mode. At the frequencies where Re{x) = 0,
the imaginary part of the cigenvalue and, hence, the rate of horizontal spatial decay of the
m-mode is at & maximum. For all modes at low frequencies, Im (x) increases rapidly with
increasing frequency.
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Figure {.4: Eigenvalues, &, and the contribution by the Alfvén waves to asymptotic wave energy flux, Fa, as a
function of dimensionless frequency v for the n = 0, ..., 8 modes. On both sides the top penel shows the real
part of k as a function of ©. At Jow frequencies these approach the eigencurves of the non-magnetic p-modes,
n = v/ {n+3) (light doshed lines). The middle panel shows the imaginary part of x as a function of v,
corresponding to the real part shown in the top panel. The bottom panel shows the fractional contribution by
the Alfvén waves to the asyrptotic wave energy flux, F,, as a function of v, corresponding to the eigenvalues
displayed in the upper two panels. For all of these graphs the magnetic field inclination is fixed at § = 5°.
The graphs in the upper two panels are the same as Figure 3.4, except the direction of propagation is not
parallel to the z-axis. {a)} The propagation direction is fixed at ¢ = 45°. {b) ¢ = 90°.

When the magnetic field is exactly vertical, UBZ found that focr modes w'th n > 1
there exists a discrete set of frequencies where the r-modes are trapped normal modes (i.e.,
Im(x) = 0 and B, = 0), evident as the sharp troughs in Figure 3.3(b). When ¢ = 0,
Figure 3.4(b) showed that the trapped normal modes are not present in non-vertical fields
even for very small inclinations. The middle pancls of Figure 4.4 show this is also the case
for oblique propagation (¢ # 0) in nou-vertical fields. However, the Im (k) troughs, in the

neighbourhood of the vertical ficld trapped normal modes, are slightly deeper (and sharper)
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when ¢ # 0. In fact, for fixed inclination (0 < 5°), the depth (and sharpness) of the troughs
increases as ¢ approaches 90° (verificd by numerical experiment but not pictured). This
feature is most obvious in the middle pancl of Figure 4.4(b), where the troughs at higher
frequencies (which are fully resolved) are quite sharp. It is also apparent in the bottom panel
of Figure 4.4yn), where ¥, is sharply peaked at the frequencies of the vertical field teapped
normal modes. These F,, peaks (Fig. 4.4(b), bottom panel) are due to the slow MAG waves
decoupling not an enhanced Alfvén wave encrgy flux {i.e., B; = 0 and |Bs] < |B4]). For
¢ = 45° (Fig. 4.4(a), lower panel) the F, peaks are smaller and more rounded, especially at
higher frequencies (i.e., 85 & 0 but |8} = |8,}). This is also the case for ¢ = 135° (Fig. 4.5),
where the eigenvalues are the same as those displayed in the upper two panels of Figure 4.4{a)},
but the eigenfunctions, and hence F,, are different. The increased magnitude and sharpness
of the F, peaks (and Im (k) troughs) when ¢ = 90° suggests that propagation perpendicular
to the x-axis is, at some frequencies, least efficient at exciting the slow MAG waves — we
explore this possibility later.
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Figure 4.5: The contribution by the Alfvén waves to asymptotic wave energy flux, ¥,, as a function of
dimensionless frequency v for the n = 0, ..., 8 modes when 8 = 5° and ¢ = 135°, In this case, tie
corresponding cigenvalues are the same as those in the ¢ = 45° case (Fig. 4.4(a), vpper two panels).

Away from tie frequencies of the vertical field trapped normal modes, the m-modes suffer
a non-frivial amount of horizontal spatial decay (i.e., Im(x) # 0), the amount varies only
slightly with propagation direction, ¢, at the low inclinations (e.g., 8 = 5°, Fig. 4.4, also
evident at low inclinations in the middle panels of Figs. 4.1 - 4.3 and Figs. D.1 - D.G). It
is also true, away from the frequencies of the vertical field trapped normal modes, that F,
varies only slightly with ¢ at the low inclinations \see also Figs. 4.1 - 4.3 and Figs. D.1 - D.§,
bottom panels). For frequencies of obscrvational interest v < 2 {depending on the choice of
solar parameters, see §3.7.2 for discussion}, the middle panels of Figure 4.4 show that mode
conversion becomes increasingly ineflicient with increasing radial order n. This is usually true
for all field inclinations and all propagation directions, though there are exceptions which we
point out later. In a similar fashion, F, (bottom panels of Fig. 4.4, and Fig. 4.5} tends to
increase with n at low frequencies. Anothes intcresting feature evident in the lower panels of
Figure 4.4 is that for oblique propagation the energy flux responsible for ihe highly damped,
horizontally evaunescent modes {where Re (k) = 0) is dominated by the slow MAG waves -
at thesc {requencies, Fy is of order a few percetit and increases gradually as ¢ approaches
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90° (verified by numerical experiment but not pictured). It is generally the case, for low
inclinations, that the energy flux is dominated by the stow MAG waves (i.c., Fo < 1), except
in the neighbourhood of the vertical field trapped normal modes.

Figure 4.6 shows the variation of Re (x), I (s), and F, as a function of both dimensionless
frequency, v, and inclination, 8, for the » = 0 mode for two different propagation directions,
¢ = 45° (Fig. 4.6(a)) and ¢ = 90° (Fig. 4.6(b)). Each of Figures 4.6(a) and (b) are the
three-dimensional propagation equivalent of Figure 3.5, allowing direct comparison, though
the displayed domains are diflferent. Each point on these eigensurfaces has been generated
starting with the n = 0 vertical ficld mode (e.g., Fig. 3.3, note ¢-dependence vanishes from
the problem when 8 = 0) then stepping from € = 0 to 8 = 60° whilst holding the [requency
and the propagation dircction coustant. To clarify, the n = 0 ridges in Figures 4.4(a) (or
(b)) could be derived from Figures 4.6(a) (or (b)) by slicing along ¢ = 5°. In an analogous
fashion, Figures 4.8, 4.10, 4.12 and 4.14 show Re(x), Im(x), and F, as a function of both
# and v for n = 1, 2, 3, and 4, respectively. In ecach case, the results for two propagation
directions are displayed, ¢ = 45° (Figs. 4.8(a), 4.10(a), 4.12(a), and 4.14(a)) and ¢ = 90°
(Figs. 4.8(b), 4.10(b), 4.12(b), and 4.14(b)). Apart from the wnode plotted, Figures 4.8, 4.10,
4.12 and 4.14 are the same as Figure 4.6, except the point of view is shifted and the v-domain
is larger. These graphs are can be compared with the ¢ = 0 cases, though in the ¢ = 0 case
the modes n = 0 (Fig. 3.5), » = 1 (Fig. 3.6), n = 3 (Fig. 3.7), and n = 4 (Fig. 3.8) are
shown, and the displayed domains are generally larger in both the @ and ¢ directions in the
¢ # 0 cases. Figures 4.7, 4.9, 4.11, 4.13, and 4.15 show the variation of F, as a function
of v and @ when ¢ = 135° for n = 0, 1, 2, 3, and 4, respectivcly. As mentioned above,
when ¢ = 135° the cigenvalucs are identical to those when ¢ = 45° {upper two panels of
Figs. 4.6(a), 4.8(a), 4.10(a), 4.12(a), and 4.14(a), respectively), but the eigenfunctions, and
hence F,, are different.

The topology of the eigensurfaces over the (v, 8)-plane is complicated. We discuss the
details separately for each of the two displayed propagation directions. When ¢ = 45°, in
the region » 2 1.5 and @ 2 25°, the n = 0 cigensurface (Fig. 4.6(a)) possesses a sequence
of cuts {in decreasing increments of v). These cuts match onto cuts in the surfaces of the
higher order modes, in an analogous fashion to the ¢ = 0 case (Fig. 3.5). When ¢ = 0, the
n = 1 surface (Fig. 3.6) and the n = 2 surface (not pictured) each possess only a single cut (at
v = 1.46 and v = 1.65, respectively). When ¢ = 45°, the n = 1 surface (Fig. 4.8{a)) possesses
two cuts (at ¥ = 1.56 and v = 2.64), and the n = 2 surface {Fig. 4.10(a)) possesses three cuts
(at v = 1.76, v = 2.64, and v = 2.98). In general, we refer to the lowest frequency cut in a
given surface as the “first” cul, and cuts at successively greater frequencies are referred to as
the second, third, etc. As mentioned above, the first cut in the n = 0 surface (Fig. 4.6(a})
matches onto the first cut in the » = 1 surface {Fig. 4.8(a}), the sr.ond cut in the n = 0
surface matches onto the first cut in the n = 2 surface (Fig. 4.10(a}), the third cut in the
n = 0 surface matches onto the first cut in the n = 3 surface (Fig. 4.12(a)), and so on up
to at least » = 8 (at higher frequencies the cuts on the n = 0 surface are not fully resolved
in Fig. 4.6(a), but numerical experiments confirm their existence up to at least n = 8). This
is also the case when ¢ == 0 {(as discussed in §3.7). The second cut on the n = 1 surface
(Fig. 4.8(a)) mat<hes onto the second cut in the n = 2 surface (Fig. 4.10(a)). The tlird cut
in ihe n = 2 surface matches onto the second cut in the n = 3 surface (Fig. 4.12(a)). When
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Figure {.6: Eigenvalues, x, and the contribution by the Alfvén waves to asymptotic wave energy flux, Fq, as
a function of dimensionless frequency, », and field inclination, # (in degrees), for the n = 0 mode. On bhoth
sides the top penel shows the real part of x as a function of v and 9 the middle panel shows the corresponding
imaginary part of x. The shading of the eigensurfaces is used to hughlight contrast only and does not indicate
the height of the eigenvalne. The bottomn panel shows F, as a function of v and 8, corresponding to the
eigenvalues shown in the upper two panels. The contours are of F, = 0.1,0.2,...,0.9, with the lightest
shading indicating 0 < Fq < 0.1 and the darkest .9 < F, < 1. Dark areas indicate regions where the
asymptotic Hux is dominated by the Alfvén waves, whereas light areas indicate regions where the asvmptotic
fux is dominated by the slow MAG waves. The graphs in the upper two pancls are th2 same as Figure 3.5,
except the direction of propagation is not paraliel to the z-axis. (a) The propagation direction is fixed at
¢ = 45°. The domain is 1 < v <1.94,0<8<60°. (b) ¢ =90". The domainis 1 <v <2, 0<8<60°.

¢ = 0, the n = 3 surface (Fig. 3.7} has onc low frequency cut and a sequence of cuts at higher
frequencies. When ¢ = 45°, the n = 3 surface (Fig. 4.12(a)) possesses two low frequency
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Figure {.7: The contribution by the Alfvén waves to asymptotic wave energy flux, Fq, as a function of
dimensionless trequency, v, aud field inclination, 8, for the n = @ mode. The propagation direction is fixed
at ¢ = 135°. The domainis 1 £ v < 194, 0 £ 8 < 60”. In this case, the corresponding eigenvalues are the
same as those when ¢ == 45° (Fig. 4.6(a), upper two panels). The contours are the same as those described in
Figure 4.6.

cuts {(at v = 1.84 and v = 2,98, with matchings outlined above) and, for v 2 3.8, a sequence
of cuts (not pictured, but sce Fig. 3.7 for similar behaviour). These cuts match onto cuts
in the surfaces of the higher order modes, n = 5. When ¢ = 0 the n = 4 surface (Fig. 3.8)
has two cuts, one matches onto the n = 0 surface (Fig. 3.5) and the other matches onto the
n = 3 surface (Fig. 3.7). When ¢ = 45° the n = 4 surface (Fig. 4.14(a)) only has a single
cut (at ¥ = 1.89), in the domain v < 8, that matches onto the n = 0 surface (as outlined
above). For higher frequencies the n = 4 surface possesses no further cuts, and lience, does
not match onto the n = 3 surface (or any other surface). In all cases, the vertices of the
cuts occur at the same location for Re{(x), Im(x), and F,. Hence, the vertex of each cut
represents a “crossing”, where the eigenvalues of two different overtones coincide. However,
as in the ¢ = 0 case, the location of the vertices do not coincide with a singularity in the
coefficients of the governing equations (4.1)-(4.3).

When ¢ = 90° the topology is completely different. For example, the n = 0 surface
(Fig. 4.3(b)) docs not appear to possess a sequence of cuts. However, very close scrutiny
reveals that the sequence of cuts is present in the interval 1.89 < v < 2.03. Practically, this
interval is too small to resolve and so the sequence of cuts is not visibie in Figure 4.6(b).
The n = 1 surface (Fig. 4.8(b}) has no cuts (this has been verified numerically up to v = 8),
indicating that when ¢ = 90° the » = 1 eigensurface is completely disconnected (nutnerical
experiments suggest this is the case for the » = 1 mode in the interval 75° £ ¢ < 105°). The
n = 2 surface (Fig. 4.10(b)) has two cuts {(at v = 2 and v = 2.91), ard the n = 3 surface
{Fig. 4.12(b)) has two cuts in the displayed domain {at ¥ = 2 and v = 2.61). When ¢ = 0 and
$ = 45°, we employed the term “watch” to imply that the two surfaces match across both
sides of the cut. The matching is identical when ¢ = 90°. However, due to the very close
separation of the cuts in the n = 0 surface, the matching appears to be slightly different.
At low inclinations (0 < 25°) and frequencies in the interval 2 < p < 2.5, the n = 0 surface
(Fig. 4.6(b)) terminates as a horizontally evanescent mode (where Re (x) = 0). For § > 30°
and v = 2, the n = 0 surface (Fig. 4.6(b)) matches onto the high frequency side of the first cut
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Figure 4.8: Same as Figure 4.6, except for n = 1. (a) The propagation di- “icn is constant, ¢ = 45°. (b)
¢ = 90°. The domain for both propagation directions is 1 <v <4.5,06< 8

in the n = 2 surface {Fig. 4.10(b)), the low frequency side of the first cut in the n = 2 surface
matches onto the high frequency side of the first cut in the n = 3 surface (Fig. 4.12(b)), the
low frequency side of the first cut in the n = 3 surface matches onto the high frequency side
of the single cut in the n = 4 surface (¥ig. 4.14(b)) and 20 on up to at least n = 8 {verified by
numerical experiment). Hence, the spiral-type topology persists at ¢ = 90°, but each cut, in
the sequence on the n = 0 surface, cccurs at approximately the same frequency. The second
cut in the n = 2 surface (at v = 2.91, Fig. 4.10(b)) matches (both sides) onto the second
cut in the n = 3 surface. When ¢ = 90°, the n = 3 surface (Fig. 4.12(b}) possesses two low
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Figure 4.9: Same as Figure 4.7, except for 1 = 1. The corrcsponding eigenvalues are the sime as those when
¢ = 45° (Fig. 4.8{a), uppor two panels).

frequency cuts (with matchings outlincd above)} and, for v 2 4,25, a sequence of cuts (not
displayed). Thesc cuts mateh onto cuts onr the surfaces of the higher order modes, n > 7.
When ¢ = 0 cach of the surfaces n = 4 (Fig. 3.8) and n = 5 and 6 (not pictured) have two
cuts, in cach case one wmatches onto the n = 0 surface (Fig. 3.5) and the other matches onto
the n = 3 surface (Fig. 3.7). When ¢ = 90° the = 4 (Fig. 4.14(b)) and n = 5 and 6 surfaces
(not pictured) only have a single cut each {verified numerically for » < 8) that wmatches onto
the n == 0 surface (as ontlined above). For higher frequencies these surface: possess no further
cuts, and hence, do not match onto the n = 3 surface (or any other surface).

Clearly, the topology of the eigensurfaces varics dramatically with propagatinn direction.
Figures 4.6 - 4.13 and Figures 4.14 - 4.15 (and Figures 3.5 — 3.8} provide only a snaprhot
of this variation. For example, both the location and the length of the cuts depend on
¢. We have run cases (results not displayed) for propagation directions other tha' those
displayed. The results suggest that, qualitatively, the eigensurfaces of all nodes vary only
slightly with ¢ in the interval ¢ < ¢ < 30°; topologically any cigensuiface in this interval 13
indistinguishable from its ¢ = 0 counterpart (with the samne radial order ), When $ x 40°
a significant topological transiticn ocenrs for all eigeusurfaces with n > 1. This is evident
when comparing the ¢ = 45° case {e.g., Figs. 4.6{a), 4.8{a), 4.10{a), 4.12(a), and 4.14{a})}
to the ¢ = 0 case (e.g., Figs. 3.5 - 3.8) - the ecigensurfaces with 1 < » < 3 possess severa!
additional cuts, whereas the n = 4 eigensurface (Fig. 4.14(a)) possesses one less cut than in
the ¢ = 0 case (Fig. 3.8). In the interval 40° < ¢ < 90°, 1he topology varies considerably
with ¢ for eigensurfaces with 0 < n < 3. For exanple, the distance between the two cuts
in the n = 1 surface (evident in Fig. 4.8(a) when ¢ = 45°) decreases and the length of the
second cul grows (i.e., the vertex of the cut moves to lower v) as ¢ increases. In the interval
70° < ¢ < 75°, these two cuts collide, and hence, for 75° < ¢ < 105°, the ~ = 1 surface has
no cuts, as pictured in Figure 4.8(b). A similar type of behaviour is evident for the n = 2
surface (Fig. 4.10), with the second cut (evident in Fig. 4.10(a) when ¢ = 45°) migrating to
lower frequencies as ¢ increases. In the interval 70° < ¢ < 75°, the frst and second cuts in
the n == 2 surface collide, leaving a single cut at v == 2 when ¢ = 90° (Fig. 4.10(b)). As for
the n = 0 mode, the ¢ = 45° case (Fig. 4.6(a)) is qualitatively very similar to the ¢ = 0
case (Fig. 3.5). In particular, both surfaces possess the sequence of cuts; which, evidently,
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Figure {.10: Same as Figure 4.6 except for n = 2. (a) The propagation direction is constant, ¢ = 45°. {b)
¢ = 90°. The domain for both propagation directions is 1 € v < 4.5, 0 € 8 < 60°.

are characteristic of the vertical field horizontally evanescent modes when generalised to non-
vertical field (the existence of the sequence of cuts has been confirmed numerically for the
n = 0 and n = 3 eigensurfaces for 0 < ¢ < 180°, but only for n = 8 in a limited domain,
not displayed). In the interval 45° < ¢ < 90°, each cut in the sequence on the n = 0 surface
migrates toward » = 2, and the distance between the cuts decreases as ¢ increases — to the
extent where the sequence is effectively absent for 75° < ¢ < 105° (e.q., Fig. 4.6(b)). The
spiral-type topology is present for ail propagation directions. Hence, for ¢ < 75° (¢ 2 105°),
the eigenvalues of all overtones, plotted as a function of v and € at constant ¢, lie on the
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Figure 4.11: Same as Figure 4.7, except for n = 2. The corresponding cigenvalues are the same as those when
¢ = 45° (Fig. 4.10(a), upper two pancls).

same surface, which has a qualitatively similar shape to that described in the ¢ = 0 case
(i.e., a sequence of connected spirals, see §3.7). For 75° < ¢ < 105°, the n = 1 eigensurface
disconnects completely, the sequence of connected spirals remains, but not all cigenvalues lie
on the same surface in these cases. As is evident when comparing Figures 4.12(a) and 4.12(b),
the topology of the n = 3 surface {over the displayed domain) does not evolve dramatically
over the interval 45° < ¢ < 90°. However, the sequence of cuts (not pictured but evident for
v 2 3 in Fig. 3.7), does vary significantly with ¢, in an analogous fashion to n = 0 sequence.
As was outlined above, depending on the propagation direction, some of the higher order
modes disconnect from the sequence of cuts in the n = 3 eigensurface, For example, the
n = 4 swrface (Fig. 4.14) is not connected to the n = 3 surface for propagation directions
in the range 45° < ¢ S 135°. Evidently the topology of the n = 4 surface does not vary
dramatically over this range either. For the sake of brevity, we do not discuss the topology
of higher order modes in further detail.

We now turn turn to matters of a quantitative nature. The top panels of Figures 4.6, 4.8,
4.10, 4.12, and 4.14 show that for small to moderate inclinations {0 < 8 < 25°) Re(«) is only
weakly affected by the inclination of the magnetic field and the propagation direction (as
indicated by numerical experiments over a range of ¢, not pictured, see also Figs. 4.1-4.3 and
Figs. D.1-D.6}. For larger inclinations and frequencies less than that of the fivst cut in each
case, Re (k) is also essentially unaffected by the inclination of the magnetic field. Broadly
speaking, for general propagation dircctions, at frequencies less than that of the first cut in
each case, Re (s} grows slightly with increasing inclination for the n = 0 mode; whereas for
modes with n > 1 (including those not displayed), Re (k) decreases slightly (in each case this
affect is of order a few percent, and is also evident in the top panels of Figs. 4.1, D.1-D.2).
For higher frequencics (beyond the first cut in each case), the behaviour of Re(x) is more
complicated. For the n = 0 mode, Re(x) geunerally increases slightly with inclination (at
fixed frequency), and is “bumped down” on the higher frequency side of cach cut. For modes
with n > 1, Re{x) also increases slightly with inclination, and is “bumped up” on the higher
frequency side of the first cut in each case; except, of course, in cases where there are no cuts,
such as the n = 1 surface when ¢ = 90° (Fig. 4.8(b)).

As in the ¢ = 0 case, the middle panels of Figures 4.6, 4.8, 4.10, 4.12, and 4.14 show
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Figure {.12: Same as Figure 4.6 except for n = 3. (a)} The propagation direction is constant, ¢ = 45°, The
domainis 1 v <38,0<0<60°. (b) ¢=90°. The domainis 1 <» <4.2,0<8<60°

that the inclination has a significant effect on the imaginary part of the eigenvalues. For the
n = 0 mode at fixed frequency, Im(x) decreases with increasing 8. This is generally true
for all frequencies and all propagation directions (see also Figs. 4.1(a) and 4.2(a), middle
panels), except when ¢ 2 90° at the higher displayed frequencies (e.g., Fig. 4.6(b)). For
modes with n > 1, at all displayed frequencies {the effect is less dramatic at low frequencies)
and inclinations less than the cuts (¢ < 30° depending on v), Im (k) grows significantly (by
more than an order of magnitude) with increasing & (see also the n > 1 modes in Figs. 4.1 ~
4.3 and D.1 - D.6, middle panels}. In each case, with n > 1, the imaginary parts attam a
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Figure §.13: Same as Figure 4.7, except for n = 3. The corresponding eigenvalues are the same as those when
¢ = 45° (Fig. 4.12(a}, upper two panels).

local maximum {over the (v, 8)-plane) at the veriex of the first cut (including the n =1
mode when ¢ = 90°, Fig. 4.8(b), at the location corresponding to vertices in cases with
¢ S 75° e.g., Fig. 4.8(a)). This is also true to some extent for Im {x) about the vertex of the
second and third cuts at higher frecuencies, where they exist (including the n = 4 surface
when ¢ = 45°, Fig. 4.14(a), at the location corresponding to vertex of the second cut in
cases with ¢ < 45°, e.g., Fig. 3.8). In general, for inclinations greater than the vertices of
the cuts, Im (x) decreases significantly with increasing @ at fixed frequency and propagation
direction. This type of decrease was also found when ¢ = 0. However, the decrease of Im (x)
with @ (for larger inclinations) is less rapid than in the ¢ = 0 case — the rate of decreese
is least when ¢ = 45° and moderate when ¢ = 90° (see also Figs. 4.1 ~ 4.3 and D.1 - D.G,
middle pa’.ely). We re-address this point later, when considering the extinction lengths. The
middle panels of Figures 4.6, 4.8, 4.10, and 4.12 also reveal the existence of an special case,
where Im (%) does not drop off rapidly with increasing inclination, but appears to remain
approximately constant (the behaviour of Re{x) in these cases is equally distinctive). This
occurs for frequencies below the first cut in Figures 4.6(a) and (b), between the first and
second cuts in Figure 4.8(a), between the second and third cuts in Figure 4.10(a), between
the first and second cuts in Figure 4.10(b), and above the second cut in both Figures 4.12(a)
and (b} (see also Figs. 4.2(a} and D.5(a), middle panels). Clearly one mode is suffering
significantly enhanced damping in comparison to both the corresponding vertical field case
(6 = 0} and the ¢ = 0 case (at the same v).

In the middle panels of Figures 4.8, 4.10, 4.12, and 4.14, at inclinations near vertical
(0 == 0), sharp troughs in Im (k) are evident ~ these arc associated with the vertical field
trapped normal modes (as discussed previously in reference to Figs. 4.4 and 4.5 when 8 = 5°).
Consequently, at lower inclinations (€ ~ 0) for modes with n > 1, F, is sharply peaked at
the frequencies of the vertical field trapped normal modes — this is particularly evident in
the bottom panels of Figures 4.8, 4.10, 4.12, and 4.14 {¢ = 45° and ¢ = 90°) but less so in
Figures 4.9, 4.11, 4.13, and 4.15 (¢ = 135°). As discussed earlier (in reference to Fig. 4.4),
the Fq peaks are due to the stow MAG waves decoupling, rather than an enhanced Alfvén
wave encrgy {lnx (the total flux radiated at these frequencies is negligible). Interestingly, for
the n = 4 mode at low iuclinations when ¢ = 45° and ¢ = 135° (bottom pane! of Fig. 4.14(a)
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Figure 4.14: Same as Figure 4.6 except for n = 4, (a) The propagaticn direction is constant, ¢ = 45°. (b}
¢ = 90°. The domain for both propagation directions is 1 <v < 8, 0 <89 < 55°.

and Fig. 4.15, respectively) there is no peak in F, at the location of the high frequency
vertical field trapped normal mode (v = 7.33) - this is because the Alfvén waves decouple at
this frequency (i.c., Se = 0 and |B4| < |Bs]). For small to moderate inclinations (8 < 30°),
at the frequencies of the vertical field trapped normal modes, the peaks in F, are moderate
(Fo £0.7) when ¢ = 45° (and ¢ = 135°), but much larger (0.9 < F, < 1) when ¢ = 90°. This
feature was discussed earlier (in reference to the 8 = 5° case, Figs. 4.4 and 4.5) and suggests
that the slow MAG waves are only weakly coupled at these frequencies when ¢ ~ 90° and
0 < 30°.
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Figure 4.15: Same as Figure 4.7, except for n = 4. The corresponding cigenvalues are the same as those when
¢ = 45° (Fig. 4.14(a), upper two pancls).

The Alfvén waves decouple when 8 = 0 or ¢ = 0 (i.e, F, = 0). Hence, away from the
frequencies of the vertical field trapped normal modes, the boitom panels of Figures 4.6, 4.8,
4.10, 4.12, and 4.14 along with Figurcs 4.9, 4.11, 4.13, and 4.15 show, for small inclinations
(0 £ 15°), that F, < 0.1 and varies only slightly with inclination and propagation direction -
indicating the Alfvén waves arc only weakly excited in these regions (see also Figs. 4.1 - 4.3
and D.1 - D.G, bottoin panels).

In general, for ¢ = 45° and ¢ = 90°, the peaks emanating from the frequencics of the
vertical field trapped normal modes dominate the variation of F; over the (v, 8)-plane -
with the peaks migrating to lower frequencies as 8 increases (especially prominent in the
n = 4 case: Fig. 4.14, bottom panel). On the other hand, when ¢ = 135° the peaks in F,
are more diffuse - this type of asymmetry in Fq, about ¢ = 90°, was also observed in the
bottom panels of Fignres 4.1 - 4.3 and D.1 - D.6. For ¢ = 90° and n = 4 (Fig. 4.14(b))
there appears to be a striking correlation between the variations of F, and Im () over the
extended (1, 6)-plane. However, the topologies of Im (s) and F, are generally not strongly
correlated (Figs. 4.8 ~ 4.14, lower two panels). For example, the local maximum in Im{«)
(associated with the vertex of the cuts in the eigensurfaces for n > 1) docs not coincide with
any similarly distinctive behaviour in F,. As concluded in §4.6.1, the Alfvén waves play a
significant role in #-mode damping in non-vertical field when propagation is not parallel to
the z-axis. However, regions of the parameter space where the Allvén waves dominate (i.e.,
F, 2 0.9) are generally not associated with significantly enhanced horizontal spatial decay
dates (i.e., Im (x)).

Figure 4.16 shows the variation of Re (s}, Im(x), and F,; as a function of dimensionless
frequency, v, for the first nine (n =0, ..., 8) modes when 8 = 30° for two different propa-
gation directions, ¢ = 45° (Fig. 4.16(a))} and ¢ = 90° (Fig. 4.16(b)). The upper two panels
of Figures 4.16(a) and (b), respectively, are equivalent to Figure 3.9, except the propagation
direction is not paralle! to the z-axis. The inclination @ = 30° is indicative of the behaviour
at moderate inclinations (8 = 30°); it also roughly corresponds to the location where Im (k)
attains a local maximum over the (v, 8)-plane (i.e., the vertex of the cuts in Figs. 4.6 — 4.14).
The distinctive cuts seen in Figures 4.6, 4.8, 4.10, 4.12, and 4.14 are not present in Fig-
ure 4.16, this is because the ridges in Figure 4.16 have been generated by stepping from low
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Figure {.16: Same as Figure 4.4, except 8 = 30°.(a) ¢ = 45°. (b) ¢ = 90°.

frequencies {using the non-magnetic modes as initial guess) to high frequencies, holding 0 and
¢ constant (in the same way as Fig. 4.4 and Figs. 3.3 — 3.10). For example, for v < 4 (and
¢ = 45°) the ridge labelled n = 1 in Figure 4.16(a) may be derived from the n = 1, n = 0,
n =2, and n = 3 surfaces (Figs. 4.8{a), 4.6(a), 4.10(a), 4.12(a), respectively) by slicing along
f = 30° in the prescribed order. Likewise, the ridge labelled » = 0 in Figure 4.16(b) may be
derived from the n = 0, n = 2, and n = 3 surfaces (in order, Figs. 4.6(b), 4.10(b), 4.12(b),
respectively). The ridges of the other modes may be derived in a similar manner, though the
matching between surfaces must be carefully considered (details described above). Hence, all
the ridges in Figure 4.16 appear continuous.

Two distinctive features of the ridges in Figure 4.16 can also be observed on the constituent
surfaces (Figs. 4.6, 4.8, 4.10, 4.12, and 4.14): the undulations of the real parts exhibited by
n = 1 in Figure 4.16(a) and » = 0 in Figure 4.16(b) - in the neighbourhood of the cuts in
the surfaces; and the enhanced imaginary partsforn =0 (1 Sv <25) andn=1 (v 2 2.5)
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in Figure 4.16(a) and n = 0 in Figure 4.16(b). The latter feature is most prouounced for
n = 0 in Figure 4.16(b) and was also noted in the discussion of the eigenvalue topology
over both the (v, 0)-plane {e.g., Figs. 4.8, 4.10, 4.12, and 4.14) and the (¢, ¢)-plane (e.g.,
Figs. 4.1 - 4.3 and D.1 - D.6). In these cases a peculiar solution (eigensurface) was found
where Im (%) does not decrease rapidly with increasing ¢ at larger inclinations, as is usually
the case. Interestingly, F, does not show any distinctive behaviour for n = 1 when ¢ = 45°
(Figure 4.16(a), bottom panel) or ¢ = 135° (Fig. 4.17). On the other hand, for n = 0 when
¢ = 90° (Fig. 4.16(b), bottom panel) I, does behave slightly differently to the other inodes,
indicating the damping of this mode is due mainly to slow MAG wave leakage.

a
O - W e D DD D

Figure 4.17: Same as Figure 4.5, except § = 30°. The corresponding eigenvalues are the same as those when
¢ = 45° (Fig. 4.16(a), upper two panels).

In the ¢ = 0 case {Fig. 3.9) the variation of Im {x} with n is approximately at a minimum
- this is not true when ¢ # 0 as one of the ridges deviates substantially {rom the general
trend in each case (» = 1 in Fig. 4.16(a}) and = = 0 in Fig. 4.16(b}). Apart from this,

. however, the behaviour of the eigencurves is very similar to Figure 3.9. Namely, there arc

no surfaces modes in the displayed domain ~ for all modes, except the » = 0 mode in
Figure 4.16(b), Re(x) increases monotonically with frequency. For the most part, the real
parts of the eigenvalues are only weakly affected by the propagation direction. For both
displayed propagation directions at low frequencies {v < 1.5), Im {x) increases rapidly with
v in the usual fashion (e.g., Fig. 3.9 and Fig. 4.4). For intermediate and higher frequencies,
when ¢ = 45° (Fig. 4.16(a)), the Im () ridges are almost horizontal, some gradually decline
with » - this behaviour is analogous to the ¢ = 0 case when @ = 30° (Fig. 3.9(b)). On
the other hand, when ¢ = 90° {Fig. 4.16(b}, middle panel), Im () attains a maximum at
v = 1.5 — 2 and decreases with v~ for higher frequencies. With the exception of n = 1 when
¢ = 45° (Fig. 4.16(a}, middle panel) and n = 0 when ¢ = 90° (Fig. 4.16(b), middle panel),
the sequence of Im {x) ridges at both dispiayed propagation directions form a tightly packed
bundle when # = 30° - again, this was the case for all modes when ¢ = 0 (Fig. 3.9(b)).

At higher frequencies (v 2 5.5) when ¢ = 90°, the Im{x) ridges of the modes n = 1,
2, 3, and 4 each possess a moderately sharp trough (Fig. 4.16(b), middle panel). In the
neighbourhood of the troughs, both the slow MAG waves and the Alfvén waves partially
deconple - [f,] = @ and |8,] = 0 and therefore Im (k) = 0. However, the decoupling of
the slow MAG waves and the Alfvén waves does not occur at the exactly same frequency.
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This evident in the bottom panel on Figure 4.16(b), where F, has a peak slightly to ene
side of the Im (k) trough (i.e., |8s] = 0 and |B;] = 0 but |84} 2 |Bs] and hence Fy = 1)
and a trough slightly to the other side (L.e., |8;] = 0 and }|8,| = 0 but |8s] 2 |8s| and
lence Fy = 0) The sharp transition of F, characterises locations where both the slow MAG
waves and the Alfvén waves decouple. These types of decouplings were also found at higher
frequencies when 8 = 5° and ¢ == 90° {Fig. 4.4(b)), in this case the sharp troughs in Imn (x)
are due to the slow MAG waves decoupling (the Allvén waves are only very weakly coupled
at low inclinations). Similarly, Im () troughs accompanicd by sharp transitions in F, ave
also evident when ¢ = 90° at higher frequencies and 8 = 30° on the n = 4 eigensurface
(over the extended (1, 8)-plane, Fig, 4.14(b}, lower panels). On the other hand, when ¢ =0
(Fig. 3.9(b)), ¢ = 45° (Fig. 4.16(a)) and ¢ = 135° (Fig. 4.17) there no sharp troughs in Im (x)
at any frequency. This feature, where the decoupling of the slow MAG waves and the Alfvén
waves occurs aé a very similar frequency, appears to be a characteristic of the ¢ = 90° case.

At moderate inclinations (8 = 30°), F, is highly dependent on frequency. Mode conversion
fluctuates from dominant fast-to-slow mode conversion (F; ~ 0) to dominant fast-to-Alfvén
mode conversion (F, = 1} on several occasions in the displayed domain (Fig. 4.16, bottom
panels), though the ftuctuation is relatively subdued when ¢ = 135° (Fig. 4.17). Both of
these features are also evident when taking slices, at 8 = 30°, through the surfaces in the
bottom panels of Figures 4.6, 4.8, 4.10, 4.12, and 4.14 and in Figures 4.7, 4.9, 4.11 1.13,
and 4.15. For all propagation directions at low frequencies, the contribution by the A'fvén
waves to the asymptotic energy flux, F,, increases with iucreasing radial order n — this
variation is most pronounced when ¢ = 90° {Fig. 4.16(b)), sce also the 8 = 5° case (Figs. 4.4
and 4.5). At moderate inclinations (§ = 3J°), the Alfvén waves clearly make a significant
contribution the n-mode damping when the direction of propagation is not parallel to the
z-axis (¢ # 0). However, as concluded carlier, rather than radiating vast quantities of
additional energy, which wonld iesult in a significantly enhaunced Im (x), the Alfvén waves
generally compensate at frequencies where the slow MAG waves zre only weakly excited
(i.e., Fq = 1}, and visa versa for the slow MAG waves where the Alfvén waves decouple
(i.e., Fo = 0). Consequently, Im (k) does not generally fluctuate in the same manner as F,.
Though there some are exceptions, for instance, the frequencies where both the slow MAG
waves and the Alfvén waves are almost completely decoupled and consequently Im (k) = 0
(as discussed above).

4.6.3 A singular limit

Before proceeding further, it is instructive to consider a special case. When the magnetic field
is exactly horizontal {8 = 90°), the governing equations {4.1)~(4.3) reduce to a second order
differential equation that generally possesses two singularities or critical layers — associated
with the Alfvén and cusp resonances (as discussed in §3.1.2). However, there is a special case
where both critical layers vanish: when the propagation direction is exactly perpendicular to
the z-axis (¢ = 90°, see e.g., Vanlommel and Goossens, 1999). In this case, the solutions,
and hence the displacements, energy fluxes, and other physical quantities are continuous in
the interval 0 < s < oo. The governing equation can be written as
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425 (s +8) Y () + 42 [(m +2) s — ms™™] Y’ (s)
+ [m?'re'zs_"‘ - av? (r;2 (s +3s) - 4u2)] Y (s)=0, (4.39)

whore Y(s) = V- € = %C — d€, /ds is the nondimensionalised divergence of the displacement
vector. As usual we concentrate on the m = 3/2 case. The components of the displacement
vector in the ¢- and z-directions subsequently follow {rom:

2in [(40% (1 + $5/%) = 155%2) Y () - 6 (1 + s5/2) Y'(s)]

K|
$3/2 (952 ~ 16¢1) ’ (4.40)

§y(s) = ({s) =

and

2 [(3% (1 + s%/2) — 200253/2) Y (s} - 8% (1 + s%/2) Y'(5)]

- {8) = - 44
£ () 2 (952 - 160) (4.41)

vespectively. As discussed previously, when & = 90° and ¢ = 90°, the component of the
displacement in the z-direction vanishes {(i.e., &, = —n =0).

Equation (4.39) cannot be solved in terms of tabulated functions, but it may be solved
numerically with the assistance of the standard techniques of local analysis. Equation (4.39)
has only two singularitics: an irregular singularity at s = oo and a regular singularity at
o = 0 (where s = ¢2). At the surface, a stress-free boundary condition is enforced (i.e.,
Y = 0 at s = 0). This condition is consistent with the boundary condition imposed in the
fourth and sixth order cases (eqs. [4.23]-{4.24)]). The leading terms of the appropriate series
solution are

9x?2 K2 81x°
Y(S):‘Eisf2""WS7/2+§§(1+W)39/2"85”.. (4‘12)

Subsequently, it can be shown that both components of the displacement (eqgs. [4.40] and
[4.41]) are finite (and non-zero) at the surface. As s — oo, the decaying exponential solution
is selected,

Y(s) ~ s(”gz")_("‘/"’)“lcxp [,_ gs] U(s), s-— o0, (4.43)

where the coefficient U is asymptotic to unity as s — oo (and may be expanded in asymptotic
power series in non-positive half integer powers of s). The asymptotic leading order {4.435)
is identical to the fast MAG waves in non-vertical field (eqs. {4.7]-[4.9]). In this special case
(6@ = 90° and ¢ = 90°), the oscillations are trapped norinal modes - propagating without
energy loss. Consequently, the eigenvalues, «, are real. The second order two point boundary
value problem is solved numerically in an analogous fashion to the fourth order and sixth
order problems (outlined above, §3.6 and §1.4, respectively).

Figure 4.18 shows the variation of the eigenvalues, &, us function of dimensionless fre-
quency, v, when 8 = 30° and ¢ = 90°. Evidently, two classes of solution exist — separated by
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Figure {.18: {a) Eigenvalue x as a funclion of dimensionless frequency v for the case where the magnetic fiek]
is exactly horizontal (i.e., & = 90°) and the propagation direction is exactly perpendicular to the r-axis (i.e,,
¢ = 90°). Evidently, two classes of solution exist - labelled the w-modes (low wavenumbers) and y-modes (high
wavenumbers). For cach set the modes with n = 1, ..., & are plotted. The eigencurves of the non-magnetic
p-modes are plotted as light dashed lines. (b) Same as (a) except for the domain 0 £ ¥ € 1 and a logarithmic
scale is used on the vertical axis.

the ridge of the non-magnetic f-mode: a low wavenumber set with eigenvalues that match
onto the non-magnetic p,-mode ridges at low frequencies, numbered accordingly n = 1, 2,
3,..., and labelled the w-modes (i.e., p-modes modified by the magnetic field); and a high
wavenumber set with no non-magnetic counterparts, also numbered n = 1, 2, 3,..., and la-
belled the y-modes. The expressions for the two components of the displacement (eqs. [4.40]
and {4.41]) are singular if & = 42/3. This condition coincides cxactly with the dispersion
relation for the non-magnetic f-mode. Figure 4.18 clearly shows that none of the eigencurves
intercept the non-magnetic f-mode ridge. Hence, equations (4.40) and (4.41} are valid for
all frequencies. In fact, the f-mode, being incompressive in the non-magnetic case, is not
described by equation (4.39).

For the m-modes, the displacement eigenfunctions behave very much like the non-magnetic
p-modes ~ three examples are shown in Figure 4.19(a). For the n;-mode, both components
of the displacement eigenfunction have one vertical node. The w3z-eigenfunction has three
vertical nodes and the 7s-eigenfunction has five vertical nodes. The 7-mode numbering system
is identical to that of the non-magnetic p-modes. Figure 4.19(a} shows, for fixed frequency,
that the depth of the lower turning point increases (and the horizontal wavenumber decreases,
Fig. 4.18) with increasing radial order n. At the surface (s = 0), the m-mode displacements
are dominated by the vertical component. £; (dashed curves in Fig. 4.19(a)).

For the y-modes, the numbering system is again identical to the non-maguetic p-modes
(the radial order n corresponds to the number of vertical nodes in both components of the
displacement eigenfunction). In contrast to the p- and m-modes, the depth of the lower turning
peint for the y-modes decreases (and the horizontal wavenumber increases, Fig. 4.18) with
increasing radial order n, at fixed frequency. Roughly speaking, the y-mode lower turning
points are located at s = 1 (i.e., in the neighbourhood of the equipartition depth). At the
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surface, the y-mode displacements are dominated by the Jateral component, €, {full curves in
Fig. 4.19(b}). The normalisation adopted in Figure 4.19 requires &, = 1 at s = 0. It follows,
from equations (4.40), {4.41), and (4.42), that —i€, == 3x/4v*. This expression again reveals
the importance of the non-magnetic f-mode dispersion relation, & = 412 /3, in scparating the
two classes of solution - the y-modes (x5 3> 40%/3) and the r-modes (k € 40%/3).
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Figure 4.19: Displacement eigenfunctions as a function of dimensionless depth, s, for » = 0.5 for a selection of
w- and y-modes. The full curve is —i€, and the dashed curve is £;. The normalisation has been chosen such
that §; = 1 at s = 0. On both sides the top pane! shows the n = 1 mode, the middle panel shows the n = 3
mode, and the bottom panel shows the n = 5 mode. In each case, the corresponding eigenvalues can be read
off from Figure 4.18. (a) m-mirde eigenfunctions. {b) y-mode eigenfunctions.
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Figure 4.20: Same as Figure 4.4, except 8 = 60°.(a) ¢ = 45°. (b) ¢ = 90°, alsc in this case the first y-mode
is included (n = 1),

4.6.4 Highly inclined magnetic field cases

Returning to the cases where 8 # 90°, Figure 4.20 shows the variation of Re (), In (x), and
F, as a function of dimensiounless {requency, v, for the first nine (n = 0, ..., 8) m-modes
when ¢ = 60° for two different propagation directions, ¢ = 45° (Fig. 4.20(a)) and ¢ = 90°
(Fig. 4.20(b)). The upper two panels of Figure 4.20 are the three-dimensional generalisations
of Figure 3.10. In the ¢ = 90° case (Fig. 4.20(b)), the ridge for the first y-mode (n = 1) is also
shown. Numerical experiments suggest that the y-modes only exist in highly inclined field
(@ 2 50°) for ¢ = 90°, and the higher order y-modes exist over smaller range of inclinations
than do the lower order modes. Hence, at & = 60° only the «;-mode is present. Figure 4.21
shows the variation of Re (x), Im (%), and Fq as a function of dimensionless frequency, v,
when @ = 80°, Figure 4.21(a) shows the results for the first nine (n = 0, ..., 8) m1nodes
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when ¢ = 48°, Figure 4.21(b) shows the results for the first nine w-modes and the first three

(n =1, ..., 3) y-modes when ¢ = 90°. Unfortunately, the numerical integration of the -
mode solutions is troublesome, due to a combination of large inclination, increasing frequeuncy,
i and large Im (k). Consequently, the v-mode ridges terminate prematurely in Figures 4.20(b)
and 4.21(b), note this is the case generally for all types of solutions in highly inclined field
(e.g., 6 = 80°, Fig. 4.21). TFor the y-nodes, it is evidenl that Re (k) decreases rapidly with
decreasing inclination (away from ¢ = 90°). Hence, when plotted as a function of frequency,
the real parts of the y-mode ridges become obscured in some cases (Figs. 4.20(b)} and 4.21(b),

3 top panels).
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Figure 4.21: Same as Figure 4.4, except § = 80°.(a) ¢ = 45°. (b) ¢ = 90°, also in this case the first three
k +-modes are included {n =1, . ... 3).
L%
i The special case: € = 90° and ¢ = 10°, is a singular limit ~ the second order governing
% equation (4.39) does not provide a uniform asymptotic approximation to the truc solution
of the sixth order MAG wave equations (4.1)-(4.3) in the horizontal field limit, § — 90°,
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when ¢ = 90°. However, as the inclination of the magnetic field approaches horizontal {when
¢ = 90°), the real parts of the eigenvalues converge to those of the ¢ = 90° case (Fig. 4.18).
For exainple, when overlaid, the real parts of the eigenvalues for a-modes with n > 1 when

= 4()°, shown in the top panels of Figures 4.20(b) and 4.21(b) when ¢ = 60° and 0 = 80°,
respectively, are indistinguishablie from those of the corresponding n-modes in Figure 4.18
{as was shown previously for the w-modes, Re{x) varies only slightly with inclination, for
6 2 60°).

On the other hand, the real parts of cigenvalues for the y-modes vary significantly with
inclination. This is obvious when comparing the y,-mode at the two displayed inclinations.
When @ = 80°, Re (x) for the v~ and yz-modes overlap. When 6 = 60°, the ;- and y3-modes
do not exist, and Re (k) for 4 is so small that its ridge is obscured by the crowd of w-mode
ridges. It appears that the imaginary parts of the v-mode eigenvalues are less affected by the
inclination. However, as the field inclination approaches horizontal the imaginary parts are
expected to vanish. Numerically verifying the behaviour in this limit is very difficult. In the
singular limit, when & = 90° and ¢ = 90°, the depth of the lower turning point for the y-mode
cigenfunctions is generally very shallow {near s = 1), and decreases with increasing radial
order (as shown in Fig. 4.19(b)). In simple terms, this indicates that a significant fraction
of the energy in 4-modes lies in the neighbourhood of the mode conversion region (where
Cs = Cj). Therefore, in highly inclined field, the y-modes would be expected to undergn
very efficient mode conversion. This is indeed the case, the damwping rates for the y-modes
{proportional to Im (x)) are several orders of magnitude greater than those for the m-modes
(evident in both Figs. 4.20(h) and 4.21(b), middle panels). In addition, the y-mode damping
rates appear to increase with radial order n (see Fig. 4.21(b), middle panel). The bottom
panel of Figures 4.20(b) and 4.2i{b) show that the y-mode damping is due to both the slow
MAG waves and the Alfvén waves in roughly equal proportions (at least for the displayed
frequencies).

In comparison to the ¢ = 0 case (Fig. 3.10), Figure 4.20 shows that three-dimensional
propagation in highly inclined field has a significant influence on the eigenvalues of the =-
modes, especially the imaginary parts (middle panels). In a similar fashion to Figure 4.16,
one of the modes {(n = 0) in cach case behaves dramatically differently (as observed over the
(v, 0)-planc in Figs. 4.6, 4.8, 1.10, and 4.12). For modes with » > 1, the real parts of &, in the
top panels of both Figures 4.20(a) and {b), are basically identical to those in Figure 3.10(a).
Though comparatively small, the variation of Re (x) with ¢ is greatest when € = 30°, which
roughly coincides with the vertices of the cuts in the surfaces over the (1, 8)-plane (Fig. 4.6,
4.8, 4.10, 4.12, and 4.14), where Re (x) is “bumped”.

On the other hand, the imaginary parts of x {Fig. 4.20, middle panels), for 7-modes with
n > 1, are significantly different to those in the corresponding ¢ = 0 case (Fig. 3.10(b)). In
particular, in the middle panels of both Figures 4.20(a) and (b), the ridges (with n > 1) tend
to remain bunched up, and do not exhibit the rapid decrease with # (and n) that is evident
in Figures 3.10(b) (and in the extinction length plots of Fig. 3.11). In fact, for n > 1, at fixed
inclination (8 ~ 60°), the Im (k) ridges increase rapidly with ¢ reach a maximum at ¢ =~ 45°
{several orders of magnitude above the ¢ = 0 level) and decrease to a minimum at ¢ = 90°
(this minimum is above the ¢ = 0 level}. Comparing the middle panels of Figures 4.16{a) and
4,20(a), it is evident that the Im (x) ridges arc at a similar magnitude, suggesting Im (x) is
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does not vary significantly with inclination (in the interval 30° < 0 < 60°) when ¢ = 45°, This
is not the case when ¢ = 90° (Figa. 4.16(b) and 4.20{b}), where for a fixed frequency, Im ()
decreases by at least an order of magnitude in the interval 30° < 8 < 60°, In the ¢ =~ 45°
case (Fig. 4.20(a)), I (k) generally increases monotonically with v, though the » = 1 mode
does decrease for higher frequencies. In the ¢ = 90° case (Fig. 4.20(b}), the Im (x) ridges
peak at low to moderate {1--auencies {depending on n, but not n = 0) and decrease with v for
higher frequencics. For toe ;. = 0 mode in both cases, Im {k) increases monotonically with
v, most rapidly for »» £ 2. It also evident in Figures 3.10 and 4.20 that Im (x) for the » = 0
mode increases with ¢ to a maximuin at ¢ = 90° (Figure 4.20(b), middle panel). This is also
apparent in the eigensurface plots (over the (v, 0)-plane) shown in Figures 4.6, 4.8, 4.10, and
4.12.

F
R T - I -
vt = . v

[~}
[
]
L
e b
[+.]
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-
o

Figure §.22: Same as Figure 4.5, except & = 60°. The corresponding eigenvalues are the same as those when
¢ = 45° (Fig. 4.20(a}, upper two panels).

For all propagation directions when & = 60°, F, is highly dependent on frequency, but less
so than in the & = 30° case (Fig. 4.16, lower panels, and Fig. 4.17). For ¢ = 45° (Fig. 4.20(a),
lower panel), all modes, including the highly damped n = 0 #-mode, show a very similar
frequency depeandence (this is also the case when @ = 30° and 8 = 80°, lower pancls of
Figs. 4.16(a) and 4.21{a), respectively), fluctuating rapidly for low frequencics. For higher
frequencies, the fluctuations decrease to a level where the contribution by slow MAG wave
conversion and Alfvén wave conversion are roughly equal (i.e., F, = 0.5). This is also th
case when ¢ = 135° (Fig. 4.22), and especially so when # = 80° and ¢ = 45° (Fig. 4.21(a;,
lower panel}. For ¢ = 90° (Fig. 4.20(b), lower panel}, ¥, = 0 at higher frequencies suggesting
Alfvén wave conversion is completely overpowered by slow MAG wave conversion in this
regime (sce also Fig. 4.21(b}, lower panel}). This bchaviour of F, is also evident at larger
inclinations on the eigensurfaces shown in bottom panels Figures 4.6, 4.8, 4.10, 4.12, and
4.14. Again when ¢ = 90°, the almost simultancous decoupling of the slow MAG waves and
the Alfvén waves is evident in the lower panel of Figure 4.20(b). Iun this case, the decoupling
- characterised by a Im (s} trough and a sharp transition in Fy - occurs at lower frequencies
and is most pronounced for the higher order modes (n 2 4).
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4.6.5 Extinction length

In this subsection, we examine the varjation of the extinction length as a function of both
the propagation direction, ¢, and the inclination, 8. For the sake of brevity, we focus solely
on the m-mode extinction lengths.

Figure 4.23 shows the variation of the extinction length and I, as a function of propa-
gation direction, ¢, for the w~modes with n = 0, ..., 8, at fixed ficld inclination 8 == 30°,
and for four different (fixed) frequencies (a) 3 mHz (b) 4 mHz (¢) 5 mHz and (d) 6 mHa.
The characterisation of the solar convection zone is identical to that discussed in §3.7.2 (i.e.,
L =400 km*, and g = 274 m s72). The inclination 8 = 30° roughly coincides with location
where mode conversion is most efficient, as seen on the surfaces Figures 4.6, 4.8, 4.10, 4.12,
and 4.14. Figure 4.23 confirms and clarifies some of the conclusions that were drawn earlier.
Firstly, the variation of the w-mode horizontal spatial decay rates with ¢ is effectively negli-
gible at moderate field inclinations (8 &~ 30°). For some of the higher order modes at higher
frequencies the extinction length decreases slightly as ¢ approaches 90°. Sccondly, broadly
speaking, the contribution by the Alfvén waves to asymptotic wave energy flux, F,, increases
with ¢ to a maximum at ¢ = 90°. However, this is not accompanied by a significant decrease
of the extinction length, rather the extinction length remains effectively unchanged.

Figure 4.24 shows the variation of the extinction length and F, as a function of propa-
gation direction, ¢, for the n-modes with n = 0, ..., 8, at fixed field inclination 8 = 80°,
and for four different {fixed) frequencies (a) 3 mHz (b) 4 mHz (¢) 5 mHz and (d) 6 mHa.
Like Figure 4.23, Figure 4.24 confirms several points that were discussed previously, and
shows that the pattern is very similar for higher order modes generally. In highly inclined
field, there is a significant variation of the extinction length (i.c., Im(x)) as a function ¢.
For ¢ = 0 {or ¢ = 180°}, the Alfvén waves decouple (Fq = 0), and in highly inclined fickl
the slow MAG waves are essentially decoupled (the extinction length increases rapidly with
inclination, see Fig. 3.11). For all modes at all frequencies, the extinction tength decreases
with ¢ to a minimum at ¢ =~ 45° (the location depends on the radial order), and increases
to a local maximum at ¢ = 90°. For all cases, the extinction length minimum at ¢ =~ 45°
is generally not short enough to have consequences for p-mode absorption, except for the
mode with the shortest extinction length (n = 0 in the low frequency cases, and n = 1 in
the high frequency cases). Figurc 4.24 also shows that, in highly inclined field, the behaviour
of F, at all frequencies is very similar for all inodes. For ¢ = 0 (or ¢ = 180°), F, = 0 but
rapidly increases to Fo = 0.9 near ¢ = 10° —20°. The Alfvén wave contribution to asymptotic
energy flux then steadily decreases to Fq ~ 0 at ¢ = 90° indicating that the Alfvén waves
are essentially decoupled in highly inclined field when ¢ = 90° (as discussed previously).

Figure 4.25 shows the variation of the extinction length as a function of field inclination,
6, when ¢ = 45° for the first nine (n =0, ..., 8} v-modes at four different {fixed) frequencies
() 3 mHz (b) 4 mHz {c) 5 mHz and (d) 6 wnHz. Again, the characterisation of the solar
convection zone is identical to that discussed in §3.7.2. Therefore, Figure 4.25 is the same
as Figure 3.11, except ¢ = 45°. The striking contrast between Figures 3.11 and 4.25 is
the behaviour of the extinction length in highly inclined field. When ¢ = 0, Figure 3.11

“As noted in §3.7.2, recent calculations by Cally, Crouch, and Braun (2003, see Appendix F) find the
models in best agreement with observations have L = 600 — 800 km.
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Figure §.23: Extinction length, L/Im (x), and the contribution by the Alfvén waves to asymptotic wave energy
Alux, Fq, as a function of propagation direction, ¢, for the m-modes with n = 0, ..., 8. This figure is broken
into four panels (a) Top left: the frequency is constant at 3 mHz. (b) Top right: 4 mHz. (c) Bottom left:
5 inHlz. (d) Botiom right: 6 mHz. Within cach of the panels, the top graph shows the extinction length as
a function of ¢, the bottom graph displays the corresponding variation of F,. For all of these plots the ficld
inclination is fixed at § = 30°.
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Figure {.24: Same as Figure 4.23, except 8 = 80°,

shows that mode conversion becomes increasingly inefficient (the extinction length tends to
infinity) as the field approaches horizontal. In contrast, Figure 4.25 shows that, when ¢ = 45°,
the extinction lengths appear to remain finite as 8 = 90°, for most modes at all displayed
frequencies. As the horizontal field singular limit is approached, the numerical integrations




becomne increasingly unreliable, though Figure 4,25 shows the numerical method is reasonably
robust in the neighbourhood of 8 = 90°. Nevertheless, the results obtained in highly inclined
KHeld should be viewed with caution. In particular, the apparent trend shown in Figure 4.25 is
probably misleading, but does indicate that solutions of the (¢ — 90°) perturbation problem
(e.g., Kamp, 1989, 1990; Zhukov, 1988, 1989a,b, 1990) could be very useful. Unfortunately,
such an approach is beyond the scope of this thesis. As in the ¢ = 0 case (Fig. 3.11), at
all four frequencies Figure 4.25 shows the extinction length of the n = 0 mode increases
with increasing inclination, though the incre- se is much less in magnitude, except in highly
inclined field where an apparent, slight « - ise is evident at lower frequencies. Also as in
the ¢ = 0 case (Fig. 3.11), for modes with n > 1, the extinction length initially dccreases
with increasing inclination, reaching a minimum in the range 8 = 20° - 60° (depending on
the frequency and the radial order), before increasing for larger 8; though some lower order
modes show a slight decrease in highly inclined field at the larger displayed frequencies.

Figure 4.25 shows (the well established result) that in exactly vertical field (# = 0), the
Alfvén waves decouple {F, = 0) and all the energy lost is carried by the slow MAG waves.
Figure 4.25 also shows that at inclinations approaching horizontal, the contribution by the
Alfvén waves and the slow MAG waves to asymptotic wave energy flux is roughly equal (i.c.,
Fa — 0.5 as 8 — 90°) for all modes at all frequencies. At intermediate inclinations, F,
changes substantially as # varies. It is worth noting that F, = 0.5 at the locations of the
extinction length minima (top graphs in cach panel), indicating that Alfvén wave and slow
MAG wave leakage contribute to the maximal damping rate in roughly equal proportions,
when ¢ = 45°. Broadly speaking, the behaviour of Fg, when ¢ = 135° (Fig. 4.26), is very
similar to the case where ¢ = 45°.

Figure 4.27 shows the variation of the extinction length as a function of field inclination,
@, when ¢ = 90° for the first nine (n == 0, ..., B) m-modes at four different (fixed) frequencies
(a) 3 mHz (b) 4 mHz {c) 5 mliz and (d) 6 mHz. Figure 4.27 is the same as Figure 4.25, except
¢ = 90°. The behaviour of the extinction length when ¢ = 90° {Fig. 4.25} is very similar
to that displayed when ¢ = 0 (Fig. 3.11). In particular, as 8 ~ 90°, the extinction lengths
increase toward infinity. Also, for modes with n > 1, the extinction length initially decreases
with increasing inclination, reaching a minimum near 8 ~ 20° — 60°, before increasing for
larger 6. For the lower frequencies (e.g., Fig. 4.27{a) and 4.27{b)), the minimum is at & =
40° — 60°, whereas, for the higher frequencies (e.g., Fig. 4.27(c) and 4.27(d)), the minimum is
at more acute inclinations 8 & 20° — 40°. In contrast to the ¢ = 0 case (Fig. 3.11}, at all four
frequencies Figure 4.27 shows the extinction length of the n = ( mnode is essentially unaffected
by the inclination, except at inclinations approaching horizontal where the extinction length
of the n = 0 mode grows rapidly with increasing inclination. This contrasting behaviour is
most pronounced at higher frequencies (e.g., Fig. 4.27(c) and 4.27(d)).

As usual, Figure 4.27 shows that F, = 0 when 8 = 0 (and ¢ = 90°). Figure 4.27 shows that
F, essentially vanishes in highly inclined when ¢ = 90°, for all modes at all frequencies (due
to the suppression of the displacement component, 7, as discussed earlier). When ¢ = 90°,
Figure 4.27 shows that F, attains a maximumn (that is largest for the higher order modes) at
the inclinations where the extinction length (top graphs in cach panel) attains a minimum.
For the higher order modes, this suggests that the Alfvén waves are primarily responsible for
the damping exhibited in this region (in contrast to the case where ¢ = 45°, Fig. 4.25).
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Figure §.25: Extinction length, L/Im (%}, and the contribution by the Alfvén waves to asymptotic wave energy
flux, F,, as a function of field inclination, &, for the 7-modes withn =0, ..., 8. Ths figure is braken into four
panels (a} Top left: the frequency is constant at 3 mHz. (b) Top right: 4 mHz. (¢) Bottom left: § mHz. {d)
Bottom right: 6 1nFlz. Within each of the panels, the top graph shows the extinction length as a {unction of 8,
the bottom graph displays the corresponding variation of F,. For all of these plots the propagation direction
is fixed at ¢ = 45°. This figure is the same as Figure 3.11, except ¢ = 45°.
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Figure 4.26: Same as Figure 4.25, except ¢ = 135°. In this case, the extinction lengths are the same as those
in Figure 4.25 (i.c., ¢ = 45°).

4,7 Conclusions

In this chapter, we investigated the three-dimensional (¢ # 0) propagation of ascillations
in a complete polytrope permeated by a straight, uniform, non-vertical magnetic field. We
calculated the eigenvalues, &, and the corresponding contribution by the Alfvén waves to
asymptotic wave energy flux, F,. Scveral different but complementary approaches were em-
ployed in order to gain a complete understanding of the variation of & and F, as a function
of the three parameters v, @, and ¢. Owr findings can be smnmarised as follows:

s Broadly speaking, except in highly inclined field, the horizontal spatial decay rate of
the m-modes (proportional to Im (x)) varies little with the propagation direction, ¢.
However, the nature of the mode conversion (inferred from F,) does vary substantially.
In general, rather than radiating great nuantities of additional energy, the Alfvén waves
tend to compensate in regions of the parameter space where the slow MAG waves
are only weakly coupled, and visa versa, keeping the overall damping rate effectively
constant,

e In highly inclined field (@ 2 TC") at constant frequency, the decay rate has a substan-
tial local maximum at ¢ =~ 45°. However, this enhancement is still several orders of
magnitude less than the values exhibited at lower inclinations with the same ¢.

e The complicated topology over the (v, 6)-plane seen in the two-dimensional case (Chap-
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ter 3) persists for three-dimensional propagation. Indeed, the topology itself varies
dramatically with ¢.

We found a new type of highly damped solution, the y-modes, which mainly exist
in highly inclined field. Unfortunately, limitations of the mumerical method in the
highly inclined ficld regime prevented a complete exploratiou of the y-mode solutions.
In general, our vesult tend to suggest highly inclined fields (approaching horizontal)
warrant more detailed analysis.

The horizontal spatial decay rate of the m-modes varies substantially with both fre-
guency and inclination. Ir comparison to vertical field, we found that m-inodes with
n > 1 undergo significantly enhancedd mode conversion in moderately inclined fields
(0 ~ 20° - 60°, depending on the mode and frequency). As was found in the two-
dimensional case (Chapter 3), the enhancement is most pronounced at higher frequen-
ctes. For the f-mode (r = 0}, damping is most efficient in vertical field though in some
cases the variation with inclination is weak.
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Chapter 5

The contribution by thin magnetic
flux tubes to p-mode line widths

In the previous two chapters we investigated the fate of oscillations propagating through a
slab of uniform, non-vertical magnetic field. In this chapter we focus on highly non-uniform
field ~ an atmosphere threaded by numerous widely spaced, thin magnetic flux tubes. The
plasina-8 inside the tubes is assumed to be independent of depth. Consequently, conversion
of p-modes to tube modes may occur over the entire length of the sub-photospheric tube. We
calculate the contribution to p-mode damping resulting fromn tube modes escaping down into
the solar interior and up into the upper solar aimosphere.

5.1 Model and method

In this section we describe each of the components which constitute the model. Firstly, we
discuss the model for the non-magnetic convection zone in which the flux tube is embedded,
and the oscillations it supports (the p-modes). We then discuss the thin flux tnbe - both it’s
static equilibrivm configuration and the oscillations it supports (the tube modes, which are
driven by the p-modes). The upper boundary condition is discussed in detail, accounting for
a previously neglected physical process — the loss of energy to the upper solar atmosphere by
the excitation of waves in the chromosphere and corona. Finally, we calculate the p-mode
damping rates resulting from the excitation of the tube modes.

5.1.1 Truncated polytrope

The equilibrium structure of the non-magnetic convection zone in which the thin flux tube
is embedded is modelled as a plane-parallel, truncated, isentropic polytrope with index m.
The vertical variation for the density and pressure have the familiar form:

z m > m+l
p@=n(-2) wi p@=n(-2)

o zO
where p, = p,92,/ (m + 1) and m = 1/ (y — 1), the subscript “e” refers to quantities external
to the tube, whereas unsubscripted quantities are internal. The truncation depth, z = ~z,,
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taken as the surface of the model convection zone, is assumed to coincide with the 7, = 1
level of the photospheric reference model provided in Table 11 of Maltby ef ol (1986). So
p, =278 x 1074 kg w3, p, = 1.21 x 10" kg m~ 1572, and g = 2.775 x 10° m 52 arc adopted
as the characteristic physical scales at the model photospherit surface. The validity of this
model atmosphere was discussed in detail in §3.2.

5.1.2 Oscillations of the truncated polytrope

The solar p-modes are modelled as the acoustic oscillations of the truncated polytrope. The
acoustic oscillations are assumed to be linear, adiabatic, steady-state and monochromatic
with an angular frequency w (real and non-negative). A detailed discussion of the vscillations
supported by a truncated polytrope can be found in Bogdan and Cally (1995). We reiterate
the features vital to our investigation,

The acoustic oscillations of the truncated polytrope are assumed to be adiabatic, therefore,
the perturbed flaid density, dp(x,t), pressure, §p(x,t), and the displacement of the fluid
element from its rest position, £(z, ¢), may be derived from a velocity potential &(z, t):

2
& =Ve, dp=-py, amd Gp=-L07 (5.1

where Cy = (—g2/m)"/? is the adiabatic sound speed. The velocity potential satisfies the
partial differential equation {Lamb, 1945, p. 548)

P : 0%

=5 = CaV*® — g—. 5.2

2 =S 982 (5:2)
Subject to the boundary conditions; that evanescent modes decrease at the lower boundary
{i.e., ® — 0, as z = —o0o), and the Lagrangian pressure perturbations vanish at the snrface

{ie, V-£ — 0,25 2 = —z"); it may be verified that

2
b (x,s,t) = Ans‘m“‘meﬂ (—SE—) cos (k,x — wt) (5.3)
n
is the relevant solution of equation (5.2), where it is assumed (without loss of generality) that
travelling waves propagate in the positive z-direction (i.c., &, > 0). In equation (5.3), s =
-2/z, is the dimensionless depth, ¥ = mw?z, /g is the squared dimensionless frequency, k, =
V2 25,2, is the (real) horizontal wavenumber, Wy, ,, is the Whittaker function (Abramowitz
and Stegun, 1964, Chapter 13}, u4 = (m — 1)/2 characterises the stratification, and A,, is the
mode amplitude (which is arbitrary but may be specified by some appropriate normalisation).
The parameter &, is constrained to take on a discrete set of values, being the solutions of

b‘2
Wongert () =0. (5.4)

n

Equation (5.4) is just the requirement that V-£&, — 0, as z = —z (see Bogdan and Cally,
1995}.




The acoustic oscillations satisfy a wave cuergy conservation law (e.g., Eckart, 1960, Chap-
ter 4},
J 1
ot

which is the sum of three terms: the first is the kinetic energy associated with the oscillations
(¢ pe |08./04)%), the sccond is the internal energy (o |8pe)?), and the third is the wave
encrgy flux carried by the perturbations (o ép.(9€,/6t)). The time-average p-mode encrgy
underlying a surface area 4wR% (where Rg is the solar radius) is then

nlw p-zq 1 859 | 9
(En) = (lﬂ-ROQ"T/w,w,/ ( . gﬁlﬁpel dzdt

- 2 pnqv Aan ’ (55)

d£e

ot at

IJpeI?} + V. [t?pf-as"] =1,

where

0 14+2p ) 2
N, = { ( 1 + __l__) w2 ) + w (Ef% [w—lfzmuw,‘mn(w)]) }dw. (5.6}

12 fKq 4ry Kn

{€,) quantifies the amount of p-mode energy available to excite oscillations in the sub-
photospheric magnetic flux tube.

5.1.3 Thin magnetic flux tubes

The flux tube embedded in the truncated polytrope is modelled as a thin magnetic flux tube
(e.g., Defouw, 1976; Roberts and Webb, 1978; Spruit, 1981; Ferriz-Mas and Schiissler, 1989).
This means that the radius of the flux tube, R(z), is everywhere small compared to the
local density scale height, H(z) = |z} /m, and the characteristic length scale of the p-mode
forcing, A1 = g/w?. The thin flux tube approximation is reasonable for the small-scale intense
flux tubes which populate the solar photosphere. These small-scale intense flux tubes have
diameters of about 100 ki (ec.g., Stenflo, 1978) and are embedded in an atmosphere with a
density scale height of order a few hundred kilometres. Likewise, the horizontal wavelength of
the p-modes is of order several hundred kilometres or more. However, above the photosphere
the approximation is unreliable {(see BHCC), the model we adopt there is discussed later
(§5.1.5). We also assume that the flux tubes are sufficiently separated that the interaction
between neighbouring tubes (e.g., multiple scattering) can be neglected. This assumption
is reasonable for the solar photosphere, where the surface magnetic filling factor is of order
0.01.

Under the thin flux tube approximation it is possible to neglect the variation of any
physical quantity across the lateral extent of the tube. Therefore, the total pressure (gas +
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magnetic) is constant across the tube, aud so for the tube to be in mechanical equilibrium
with its surroundings, we must have (e.g., Roberts and Webb, 1078)

pe(z) = pl2) + 5}-92 (), (5.7)

where B (2) &, is the magnetic field inside the tube.

We also assmine that the magnetic flux tube is in thermal equilibrium with its surround-
ings, Te (2) = T(2). We discuss the validity of this assumption shortly, It then follows (by
combining eq. [5.7] with the equations for hydrostatic equilibrium, dp/dz = ~pg, inside and
outside the tube) that the plasma-g, delined as

_ 2u,p(2)
8= --——-—B’g' o

is independent of depth for a tube in an atmosphere of arbitrary vertical stratification (e.g.,
Roberts and Webb, 1978). For the sub-photospheric flux tube, embedded in the truncated
polytrope, the density, gas pressure, and magnetic field strength inside the tube, respectively,
are given by:

P =57p @) P =Fgre(), ad B = \/Zep (o).

Therefore, the stratification inside the flux tube is also an adiabatically stratified polytrops
of index m, with a density and gas pressure reduced everywhere by the constant factor
Bl (B+1).

We have assumed that a sufficiently thin maguetic flux tube will quickly be brought into
thermal equilibrium with its surroundings by radiative diffusion. Below the pliotosphere the
radiative diffusion time-scale for a flux tube is

R2(2)
riz) '’

where & = 160,73/ (3¢,p?R) is the thermal diffusivity (o, = 5.67 x 1078 kg s~3 K~* is the
Stefan-Boltzmann constant, ¢ = YR/ (v~ 1) ¢ is the specific heat of the gas at constant
pressure, R = 8.214 x 10% m? s=2 K~! is the universal gas constant, sy = 0.6 is assumed,
and & is the opacity). The radius of the sub-photospheric constant-8 flux tube varies as
R*(z) x B™!{2), and we take R (—2z,) = 150 kms. Therefore, for the thin flux tube embedded
in the truncated polytrope {with m = 3/2),

~13/4
z
7(2) =1, (—';') s
¢

where 7, = 643 scconds, and we have employed Kramers’ opacity law, & o pT~2, with
R{(—2z) = 107! m? kg~!. Near the photosphere 7 is of order several minutes. Below the
photosphere r decreases rapidly with depth, to values of order a few seconds at z = -5z, =
2 Mm. The observed lifetimes of the flux tubes populating the solar photosphere vary from a

T(2) =
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few lours to a few days. For example, the clements ([lux tubes) of moving magnetic features,
in the vicinity of sunspots, have average lifetimes 4 hours (Zhang, Solauki, and Wang, 2003),
intranctwork magnetic elements have average lifetimes of 2 hours (Zhang et of., 1998), and
magnetic network elements have average lifetimes of 50 hours (Liu et al, 1994). As the
lifetimes of the flux tubes greatly exceed the radiative diffusion time-scale, the assumption
that flux tube is in thermal equilibrivum with its surroundings is plausible.

5.1.4 Oscillations of the thin magnetic flux tube

Spruit (1981) showed that the steady-state, lincar oscillations of an isolated, thin, untwisted
magnetic flux tube can be completely described by transverse, &) (z,1), and longitudinal,
&) (2,t), displecements, In the literature, these flux tube oscillations are commonly referred
to as kink and sausage modes, respectively. We consider the oscillations of the thin maguetic
flux tube (the sausage and kink modes) to be driven by fluctuations associated with incident p-
modes. The sausage modes are generated by fluctuations in pressure, whereas the kink modes
are produced by lateral velocity shears (i.e., magnetic tension associated with curvature of the
flux tube). Figure 5.1 provides a simplified illustration of the tube mode excitation process
(for the kink modes). As the flux tube is much thinner than the horizontal wavelength of the
p-modes, the tube modes are a result of the temporal driving by the p-modes (i.e., the tube
responds to the p-mode frequency, rather than the wavelength).

For a constant-g flux tube embedded in an isentropic polytrope of index m, the PDEs
governing the sausage and kink mode displacements, respectively, arc:

& N 29z o? glm+1) 9 & = (m+1)(B+1) & (5.8)
O 2m+ Blm+1)022  2m+Bm+1) 0z} VT 2m+ Blm + 1) 82082 ‘
&? 29z 32 g @ 1+ ) &P
["Jﬁ* m+ D +20) 92 (132805 br= 1+ 28 0xo2’ (59)

where ® is the potential associated with the incident p-mode (eq. [5.3]) evaluated along
the equilibrium location of the flux tube axis (taken as x = 0). The derivation of the
governing PDEs (5.8) and (5.9) is outlined in BHCC (their Appendix A, but see also Defouw,
1976; Ryutov and Ryutova, 1976; Roberts and Webb, 1978, 1979; Spruit, 1981; Ryutova and
Priest, 1993a; Hasan, 1997). In the limit of vanishing magnetic field, § — oo, the spatial
derivatives on left-hand sides of the PDEs (5.8) and (5.9} vanish, which then implies § = V®,
consistent with the Auid displacements associated with the p-modes (eq. [5.1]). Hence, finite 8
effects (i.e., non-zero magnetic ficlds) cause the motions of the flux tube to deviate from that
associated with the p-modes, which then causes the p-modes to be scattered and absorbed
by the flux tube.

The coefficients of the gov rning PDEs (5.8) and (5.9} are independent of time, . There-
fore, it is reasonable to use the inethod of separation of variables and assume the displacements
have the form:

".':l] (3, f-) = Re [6-" (s) e"i‘”t] and & (3, t) =Im [él (s) c—iw!] .
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Figure 5.1: A sketch of a thin magnetic flux tube being buffeted by p-modes. The undisturbed surface of
the truncated polytrope is indicated by the horizontal dashed line, and the undisturbed position of the flux
tube is represented by the vertical dot-dashed line (x = 0). This sketch emphasises the excitation of the kink
modes on the tube, induced by lateral velocity shears in the sutroundings. Above z = ~z, the thin flux tube
approximation breaks down. Hence, the extension of the tube above this level serves as an illustration only.

Reproduced courtesy of BHCC.

It can then be shown that the governing PDEs (5.8) and (5.9) for the longitudinal and
transverse oscillations reduce to the same inhomogeneous ordinary difierential equation,

d%€ -+ 1, e, -
E.‘: +! lEﬂ + sa{a"‘:ja(s)’

ds?® s ds
where o denotes cither || or L,

2m + B{m + 1)
€ =
y 2m

_ (m+1)(1 +28)

and €, o

and

| z .
frwy = -t N6+ Y p 18 [::-l/’«’-nwn,.,,. (’;—)]

2mz, n

is the driving term for the sausage modes, and
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f_j_(S) = z(m + 1)(ﬁ t l)V4A1|3'"3/2'”11WK:|Jl (:'q_l{“)

2z Ky Kn

is the driving term for the kink modes.

The displacement associated with the sausage and kink modes is required to satisfy bound-
ary conditions at the top (z = ~z,) and the bottom {z — —o0) of the flux tube. At the
bottom of the flux tube an putward radiation condition is imposed. At the top of the flux tube
both upward- and downward-propagating tube modes are required - an upward-propagating
tube mode will partially couple onto waves in the overlying atimosphere, which themselves
may be subject to reflection within the chromosphere or corona, or from the transition region.
In the case of the kink modes we will consider three distinct models of the corona.

Expressions for the free oscillations of the sub-photospheric flux tube (ie., ey. [5.10]
with f, = 0}, satisfying one or other of the bottom and top boundary conditions, are re-
quired in constructing the Green’s function for the driven tube. We represent the solution
satisfying the bottom (outgoing wave) condition by , and 4 (horizontal aud vertical dis-
placements), and that satisfying the top (as yet unspecified) condition by displacements ¢
and ¢). These can be expressed concisely in terms of Bessel functions (Abramowitz and
Stegun, 1964, eq. {9.1.53]),

Po(s) = s 2HM (0 /653) , (5.11)
and
als) = s~H/2 [H},21 (v /E5) + A HEY (20 /e55) ] , (5.12)

where H,{,') and II,{;?) denote the Hankel functions of the first and second kind, respectively.

At the bottom of thie flux tube the homogencous solution ¥, (eq. {5.11]) represents a
downward-propagating tube mode, as s = 00, satisfying the outgoing radiation condition. At
the top of the flux tube, s = 1, the homogeneous solution @, (eq. [5.12]) satisfies the condition
that both upward- and downward-propagating tube modes be present. The inclusion of
the complex parameter, A, (Hindman, 1997), allows a range of boundary conditions to be
imposed at the top of the thin maguetic fiux tube. The specific form of A, is calculated
by matching the particular solution onto upward- and downward-propagating waves in the
overlying atmosphere. The details of this matching and the model of the overlying atmosphere
wi'l be addressed later (§5.1.5). Provided m is not an odd integer, the Wronskian of the two
homogeneous solutions (5.11) and (5.12) is non-zero within the domain of the truncated
polytrope. So the two homogeneous solutions are linearly independent for any value of the
parameter ),, and the particular solution for the driven tube,

()= =390 ) [ P00 0 Jo ()dr = Foo ) [ e 1) fo ),

is constructed using a Green’s function formulation.
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5.1.5 Upper boundary conditions

BHCC deliberately neglect tho presence of the overlying atinosphere by imposing the stress-
free boundary condition at the photosphere. For the sausage modes this requires that the
dilation vanishes (i, V& = 0 at s = 1}, andd for the kink modes the magnetic tension
(o 826 /02%) wust vanish. The stress-free boundary condition consvrains the form of the
complex pavmneters, Ay, for the sausage and kink mode vespectively,

. ~(1+mQ+BHP (QU\/G—) L (Qvﬁ)
" e n D () togg Hf.‘.h (2vvm)
(21/1{)“%“.:1( )(I(ll))

B ) 5.13
e+ A (o) ol (o)
_ w/aHD o) - 1+ p) HE), (v er)
= ~v JferHE (2v /e + (14 4) H;(xl-l?l (21/\/’6:)
(2¢/ (70 /7)) W,‘M”( ) (I“)) -

v\/“H“) (v} + (1 + ;:)Hﬂl (20 /E7)

where Ii(l” and Iil) are defined as

-— ry 4
l(ln_/ D (20, /5) & [ oy, (M)] dr, (5.15)

1 '

(1) > —1f2-1/2 5(1) ”’
V=1 r HY 20 f€7) Weul — o dr. (5.16)
1

n

In this investigation, we simulate the overlying solar atmosphere with a simple two layer
model : chromosphere and corona. The transition region is actually very thia in comparison
with the vertical length scales associated with the oscillations involved, so treating it as
a discontinuity is reasonable. The chromosphere is modelied as an isothermally stratified
layer, with temperature T4 = 10 K, and with a thickness of ten density scale heights (i.e.,
Zeor — 2oh = 10H oy, where Hyy, is the density scale height in the chromoesphere, 2z, = —2z, and
zcor are the locations of the base of the chromosphere and corona, respectively). The density
and pressure inside the flux tube have the familiar form:

_ B Po 2o (z(‘h - 7—) R B Zeh — &
P e T ma s\ Ty ) PO =g T )

for z < 2 < zeops
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where Hy, = RTo/ (1y9), R is the gay constant and gy is the wiean particle weight, and
the pressure is continuous across the temperature discontinuitics. The corona is modelled
as an infinite layer with temperature T = 2 x 108 K (asswwing g, = 0.6 throughout
the atmosphere). We investigate both sausage and kink modes assuming an isothermally
stratified corona, with density and pressure inside the flux tube:

- B Poy -10 Beor < & _ Iy T Leor — X
PE) = Ty DAL P\ T, ) PE =gk o\ T )

for z 2 zcors

where Heor = RTeor [ {1194) is the density scale height in the corona. The Alfvén waves are
totally reflected in aa itifinite, isothermally stratified corona (see c.g., Cally, 1983; An et al.,
1989}, so for the kink modes we also consider the case where the corona is howmogencous
and the Allvén waves propagate freely. In this case tiie deunsity and pressure (inside the flux
tube),

it

AT STy

)

ey

=B kP 10 — -10
P B¥ 1R " YT E+IP®
' are constant.

Above the photosphere the magnetic flux tube can no longer be modelled as thin. At
the photosphere-chromoesphere interface the sausage modes couple onto MAG waves, and the
kink modes couple onte Alfvén waves. Cally (1983) studied the propagation of MAG and
Alfvén waves in a similar chromosphere-corona system, and found that the energy flux of
Alfvén waves propagating into the corona is highly sensitive to the degree of spread of the
magnuetic field lines of force, whereas the encrgy flux of MAG waves is not (see also Schwartz,
Cally, »ud Bel, 1984). Consequently, we are justified in neglecting the field spread when

discussing MAG waves, i.e,,
2u 5
B= \[ [;ii;"ez , for 2> zg4.

For the Alfvén waves, however, the magnetic field must be treated carefully - we allow it to
spread open with height. In the chromosphere the vertical component decreases exponentially

with height,
f2 : Zeh — 7N . .
B = -é-i%g- exp (‘—2%'1'{":;) €, for zen <z 20r, {5.18)

where o is a free parameter. We take a = 1.2, so that the Alfvén speed in the chromosphere
increases much less rapidly than the uniform field case. It is asswined that the radial com-
ponent of the ficld is negligible. In the corona we consider the magnetic field to be either
straight, uniform and vertical,

for z2 zeor, (5.17)
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or straight and radiad {see Cally, 1983),

21 /o Teor\? .

whiere reor = R (2cor) / sin by, (@, is the angle at which the field lines are spreading), r is the
distance along the ficld lines, and &, is the unit vector in the radial direction.

Across the interlace at s = 1, where the sub-photospheric thin magnetic flux tube matches
onto the essentinlly vertical chromospheric magnetic field, the vertical component of the
magnetic field is continuous. It is reasonable to neglect the horizontal component of the
sub-photospheric magnetic field since the fiux tube is thin, and thercfore, the horizontal com-
pouent is negligible. Across the transition region, for the cases where the coronal magnetic
field is straight, uniform and vertical, the direction and magnitude of the magnetic field are
continuous. For the Alfvén waves at the transition region, where the essentially vertical chro-
mospheric magnetic field matches onta the straight and radial maguetic field in the corona,
the direction of the magnetic ficld changes discontinuously, This treatment is not entirely
sclf-consistent, and it is possible that this sinsplification will fead to unphysical Alfvén wave
reflection at the transition region, It would be desirable to have a continuous, spreading mag-
netic field permeating the entire atmosphere (e.g., Bogdan, 1999); however, the complications
of such a configuration are not addressed in this simple investigation.

The equations governing the vertically propagating waves in the overlying atmosphere
arc just equations {(3.2)-(3.4) with exactly vertical field (¢ = 0) and & = 0. In this case, the
system (3.2)-(3.4) reduces to three uncoupled equations. The two equations governing the
transverse displacements (eqs. [3.2]-{3.3]) are

lorid 2 { = U ’ (5‘19)

where £; = ( or 5. Equation (5.19) suggests, in addition to the usnal Alfvén wave with
displacement nk 1, there is a second Alfvénic solution with dispiacement (k. The equation
governing the longitudinal displacement (eq. [(3.4}) is

g & d ]
CS}'{'z’ ~ 9 +w’|§ =0, (5.20)

where §) = ;. Equation (5.20) is just the equation for a vertically propagating sound wave.
This is the slew MAG wave solution, for the remainder of this chapter we refer to it simply
as the MAG wave solution.

The boundary condition at the photosphere, 2 = —2p = 2., is imposed by matching the
sausage (kink) modes onto upward- and downward-propagating MAG (Alfvén) waves in the
chromosphere, which in turn match onto only wpward-propagating MAG (Alfvén) waves in
the corona {e.g., Appendix B of CBZ). An outward radiation condition is impused as z — 0.
The matching at each temperature discontinuity (z = z.;, and the transition region z = z,,

ensures that the displacement and its vertical derivative are continuous {Leroy and Schwartz,
1982).
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In the isotherimal siratified chromoyphere, the solution of equation {5.20) representing the
upward- and downward-propagating waves is

4 = (1 -0'") (522

. y L~ Z, .
+ Byexp [(1 -1 (w?h - 1)112) (":‘ZHC::’I)] , lor zgy 2L Zeors ‘(5.21)

where @y, = w/we, = 2(Hen/ (2, (m + 1)))"% v is the frequency in units of 1 - chromospheric
acoustic cutoff frequency wey, = Cg/2Hq,. In the isothermal stratified corona, the upward-
propagating MAG wave solution is

~ . y Z = Zeor
4l (z) = C)exp [(1 42 (wfor - 1)112) (_2_?};_’_:1_)] , for z2 zr- (5.22)

where weor = 2{Heor/ (2, (m + 1]))” 2y, We restrict our attention to the frequency range
where 2, > 1. The MAG wave solutions of equations (3.2)-(3.4) with exactly vertical
field, sothermal strarification, and k # 0 are well developed: CBZ developed a Frobenius
series solution, whercas Cally (2001a, see also Zhgzhda and Dzhalilov, 1982) found an exact
analytic solution. The first terin in the rapidly convergent series solultions match the &k =0
solutions above (cqgs.[5.21}-{5.22)).

For an isothermal atmosphere the solutions of equation (5.19) can be written in terms of
Bessei functions of the first and second kind, Jy and Yy (e.g.. Ferraro and Plumpton, 1958;
Hollweg, 1978; Thomas, 1978; Leroy, 1981; Leroy and Schwartz, 1982; An et ol 1989). In
the isothermal stratified chromosphere, the solution representing upward- and downward-
propagating Alfvén waves is

> 2whon Zeh — z) [%Lch (zd, - z)
= z , B\ Y, l— \ 5.23
£1(z)= A dy { T, P ( T ] +B,1Yy T "\ I (5.23)

¥

for zep € 2 £ Zeor,

where Ly = aHgf{a—1), and Cyen = (QQHch/ﬁ)l/ 2 is the Alivén speed at the base of
the chromosphere (as z — z}). In the chromosphere, we have asstmed that the vertical
component of the magnetic field decrcases exponentially with height (eq. [5.18]). Therefore
the radial component of the field is non-zero, and the method of separation of variables
(used to derive egs. (3.2]-[3.4]) is not valid. Consequently, the solution {5.23) is only a first
approximation, which is reasonable for the exploratory purposes ot this investigation. In
the homogeneous corona, with uriforin vertical ficld, the upward-propagating Alfvén wave
solution (eq. [3.18]) is

&1 (2} =Crexp [z‘w(

Z ~ Zegr

CA Lor

)]s for 22 zeor,
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where Cacor = (2gHorexp[~10(1 - a) /a] /ﬁ)lﬂ is the Alfvén speed at the base of the
corona (as z = z} ). In the isothermal stratified corona, with imiform veriical field, the %
physical soiution for the Alfvén waves is

€1 (z) = Crdp [20}1{“’" exp (zm - z)] y for z2 zeor.

c.rl,cor 2Hcor

In this case, the Alfvén waves are totally reflected in the infinite corona. Consequently no
cnergy is lost out the top of the tube. In the homogensous corona, with straight and radial
ficld, Cally (1983) found that the Alfvén wave solutions can be expressed in terms of the

Bessel functions Jy /6 and J_; ;. The outward radiating Alfvén wave solution is 3;
3/2 _ 3 %
= r (1) | Wreor T
£ (r)=Cy (-——-—) H —-—»—-—-n(---) , for 7 27ve.
( ) Teor Mo 3CA,mr Teor or 1

The boundary conditions (ensw .ng continuity of the displacement and its vertical deriva-
tive at z = zp and 2 = 2 ) completely constrain the particular solution for the displaceient
throughout the entire flux tube by fixing the parameter A, and the amplitudes of the MAG :
and Alfvén waves in the overlying atmosphere A,, B,, and C,. The exact form of the complex ¥
parameter A, and the amplitudes of the waves in the overlying atmosphere, 4, and B, are ]
not particularly illuminating to this discussion, and are therefore not included. The matching ¥
coefficients A, and G are, however, required for the calculation of the energy fluxes escaping
out of the top and the bottom of the Anx tube. Expressions for C); and )| can be found in .
Appendix E.1. Expressions for £ and Ay, for the three distinct models of the corona, can 3
be found in Appendix E.2 (hoinogeneous corona, with uniform vertical ficld), Appendix E.3
{(isothermal stratified corona, with uniform vertical ficld), and Appendix E.4 (homogencous
corona, with straight and radial field).

5.1.6 Mode damping

The power carried by the waves radiating out of the top and the bottom of the tube can |'
be calculated in an identical fashion to BHCC (see their §5 for details). Asymptotically, as
z = —00, a constant time-averaged power is carried off by the sausage and kink modes, 3

. rfw 3
(E]) = Jim [-—-ﬂ'Rz (2)é.- -;—- F;dt] . !

L

where F; is the wave energy flux of the sausage and kink modes {which can calculated using
eq. (4.35] and the particular solution for the displacements). Likewise, as z — o0, the MAG
and Alfvén waves carry a constant time-averaged power,

w ®fwr

2=

(E+y = lim [ﬂRz (z)é;- F:dt] ,

ET_ —-%jw
where ¥ is the wave energy flux of the MAG and Alfvén waves {eq. [4.35]).
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The oscillations of the flux tube are a dircct result of the p-mode forcing, and therefore
energy conservation requires that the p-mode onergy decline accordingly. This loss of encrgy

transtates into a p-mode line width contribution, defined ag

L (B)

Py (w) = —7%
n (W) 7 (En) !

where (€,) is the time averaged p-inode energy underlying the model solar photosphere
{cq. [5.5]). For the longitudinal and transverse components the p-mode line width contribu-
tions are, respectively,

(2) ([
A+ ym ey |17+ x|

F“a“ (w) = waTn (21"' + ﬂ('"?. + 1)) " N'n + F+“ (w) 3 (5-24)
| 2 m|?
+1m +1) ot {1 A
st o e AP )

where Ny is the p-mode energy normalisation integral (eq. [5.6]), and f = w3 /4w RS, is the
surface magpetic filling factor (2 is the radius of the flux tube at z = —z,). The integrals

I!(lm and If) are defined similarly to Il(‘l) and I} () (see eqgs. [5.15) and {5.16]), with the Hj o

replaced by H 52) . The upward radiation boundary conditions coustrain the parameter A,,
and the contributions I‘* 0 and l"" - In that case, the texms I'F M and T’} | correspond to the
line width contr 1but10m rom the MAG and Alfvén waves escaping h1gh into the corona.
The expressions (5.24) and (5.25) are valid for any boundary condition at the top of the
photosphere. For the stress-free boundary condition A, take the form of equations {5.13) and
(5.14}, and F N and F+ | arc both zero. For the upward radiation boundary conditions, the

line width Lontrlbutmns, I"".a, are given in Appendix E

5.2 Results

The key results of this iuvestigation are smmmnarised in Figures 5.2-5.4. In these figures, the
ratio I'/w divided by the maguctic filling factor f is plotted as a function of dimensionless
squared frequency ¥? = mw?z,/g for polytropic index m = 1.5 aud two different values of
the plasma-#. The true p-mode Irequency, w/2m, is indicated along the upper axis of each
figure. For each figure the line width contribution due to the excitation of the downward-
escaping sausage or kink modes alone is plotted as a full curve; the contribution due to the
excitation of the upward-escaping MAG or Alfvén waves alone is plotted as a dashed curve,
For purposes of comparison the results of BHCC, with the stress-free boundary condition
imposed, are also presented {dotted curve).

5.2.1 General Comments

The distinctive feature of Figures 5.2-5.4 is the resonances along the line width curves - a
property common to the sausage and kink mode results. The line width contribution of the
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upward-radiating MAG and Alfvén waves shows the behaviour expected for standing waves
setting up resonance in the chromospheric cavity (e.g., Schwartz and Leroy, 1982; Cally,
1983; Schwartz, Cally, and Bel, 1984; Cally, Bogdan, and Zweibel, 1994). The line width
contributions for the downward-radiating sausage and kink modes also exhibiz resonances
~ evident as the sharp troughs. At these frequencies, the downward-radinting tube modes
(partially) decouple from the p-mode forcing. Both line width contributions from the upward-
and downward-radiating waves exhibit similar frequency variation. Such frequency variation
is not evident when the stress-free boundary coudition is inposed, where the curves tend to
flatten out with increasing frequency (see BHCC).

The tmportant result for this investigation is that the line width contribution of tube
modes escaping out of the bottom of the tube is more significant {except at decoupling
frequencies) than the MAG and Alfvén waves escaping out of the top of the tube. This
suggests that modifying the boundary condition at the top of the photosphere has done little
to increase the ability of the tube to absorh p-mode energy. In some cases, however, the
line width contribution of tube modes escaping out of the bottom of the tube is substantially
increased {except at decoupling frequencies) in comparison to the corresponding BHCC result.
This somewhat surprising result is explained in detail in the last subsection, §5.2.4.

Overall, the f-mode is damped more than the p-modes, and low order p-maodes are damped
more than high order ones. This is in qualitative agreciment with the observations of Korzen-
nik (1990) and was also clear in the results of BHCC.

Firstly, we cxamine the sausage and kink modes separately. The important common
results, including the reason for the decoupling troughs, are distussed last.

5.2.2 Sausage Modes

Consider first the axisymmoetric (sausage) modes {(Fig. 5.2). Clearly the f-mode line width is
significantly enhanced when the radiation boundary condition is imposed. This is also true
for the case with plasma-8 = 0.1 (not pictured). It should be noted that in the cases with
the weaker stratification {m = 1.5} and stress-free boundary condition imposed (BHCC),
the sausage mode excitation by the f-mode was particularly weak, decreasing for large fre-
quencics. In cases with stronger stratification (c.g., n = 3.85) and the radiation boundary
condition imposed, the enhancement over the BHCC result is less impressive.

The py-mode line width is indicative of the p-modces of higher radial order n. It can be
seen that the contribution from the upward-escaping MAG waves is at most just above the
BHCC result, and the peaks of the contribution from the downward-escaping sausage modes
is almost an order of magnitude greater than the BHCC result. For the plasma-8 = 0.1 {not
pictured) the sansage mode results are very similar, but the MAG wave contribution is even
less significant. The behaviour of the line widths seen here is indicative of the situation with
different polytropic stratification (e.g., m = 3.85, not pictured).

In all cases the: sausage mode results with the radiation coundition imposed show similar
variation with radial order n to the results of BHCC. For the 8 = 1 case, the variation of
the line width with radial order is moderate, and for the § = 0.1 it is very weak. For both
values of plasma-£, the troughs for the f-mode occur at frequencies differeut to those for the
p-modes; this is clear in Figure 5.2. The frequency of the MAG wave resonances show no
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Figure 5.2: Variation of the f- and pi-mode line wilth T as a function of ditnensionless squared freguency
¥? = mwlz, /g due to the excivation of the savsage modes on thin magnetic flux tubes having a magnetic
filling factor f. The dashed curve shows the line width conteibution due to the MAG wave excitation alone
{wave fAlux cut the top), the full curve shows the line width contribution due to the sausage modes alone (wave
flux out the bottom). Note the sharps troughs are not fully resolved. The cotted curve shows the line width
contribution due to the sausage modes with the stress-free boundary condition imposed (BHCC). Along the
upper horizontal axis the actual p-mode frequency, w/2n, is indicated. For this plot the polytropic index
m = 1.5 and the plasma-8 within the (photospheric) flux tube is unity. The chromosphere and corona are
taken as isothermally stratified, permeated by a straight, uniform, vertical magnetic field. (a) The f-mode
(n =0}, and (b) the py-mode (n=1).

variation with radial order. In the case of the kink modes, the frequencies of the resonances
also show no variation with radial order.

o 3 T L i T AT S R




5.2.3 Kink Modces

Figurea 5.3 and 5.4 show the key results for the excited transverse modes : kink modes
and Alfvén waves. Each plot has a ditferent coronal model. Figures 5.3(a) and 5.4(a) show
the results for the homogencous corona permeated by a straight, uniform, vertical magnetic
field. Figures 5.3(L) and 5.4(b) show the results for the isothermally stratificd corona with a
straight, uniform, vertical magnetic field; in this case there is no cnergy fhux of Alfvin waves
as z —» oo because of total reflection in the infinite isothermal corona, This has been realised
clsewhere (e.g., Cally, 1983; An et al., 1989). Figures 5.3(c) and 5.4(¢} show the results for
the homogencous corona permeated by a straight, radial magnetic fickl; the field lines are
spreading at an angle of 30° to the vertical, and the radius of the thin magnetic flux tube
at the top of the photosphere, 2 = —z;, is 100 km, in rough agrecinent with observations
(c.g., Stenflo, 1978). In both cases where the corona is assumed lhomogeneous, the Alfvén
waves propagate upward without reflection, as z = oo. In cach cnse the chrowmosphere is
isothermally stratified, and the vertical component of the magnetic field decreases exponen-
tially with height. [t was found that the variation of the chromospheric maguetic field had
little effcct on the overall damping, and only changed the {requency of the resonances. The
frequency of the resonances changes becavse changing the amnbient magnetic feld strength
changes the wavelength of the Alfvén waves. Variation of the chromospheric field had a small
effect on the upward encrgy loss, but this is inconsequential since the upward energy losses
are so smalj relative to their downward counterparts. In each case the pj-mode result is
plotted since it is indicative of the behaviour exhibited by the modes of higher radial order.
It turns out that, relative to the BHCC result, the f-mode damping is slightly suppressed in
the case of plasima-# = 0.1, and is hardly changed (except for the resonance behaviour) for
plasma-8 = 1.

Figures 5.3 and 5.4 show that in all cases the line width contribution of upward-radiating
Alfvén waves is insignificant (by several orders of magnitude) compared with the contribution
of downward-escaping kink modes. 1t should be noted that this is highly dependent on the
temperature of the corona — if the temperature of the model corona is decreased (to perhaps
unrealistically low values), the energy Hux of upward-propagating waves (both MAG and
Alfvén waves) does increase. The interesting result from Figures 5.3 and 5.4 is the similarity in
the results for flux tubes with different coronal models. This indicates that the coronal model
is relatively insignificant and it is the coupling onto the chromospheric Alfvén waves which
is important. It should be noted that in the case of the isothermal corona (Figures 5.3(b)
and 5.4(b)) there are extra (weaker) decoupling frequencies due to the total reflection in
the corona {sce discussion in the next subsection). Figure 5.4 shows that for the tube with
# = 0.1, the kink mode line width contribution is virtually identical to the BHCC result
except at decoupling frequencies. For the tube with 8 = 1 (Fig. 5.3), the peaks of the kink
mode line width contribution are significantly greater (above an order of magnitude) than the
BHCC results. For this case (8 = 1), the p-mode excitation of the kink modes is comparable
to the sausage modes. The multiple decoupling resonances evident for the sausage modes
and the kink modes with 8 = 1 are not in the considered frequency range for the kink
modes with £ = (.1. This is a result of the dependence of the Alfvén wavelength on ambient
magnetic field strength. The (stronger) decoupling {requencies are the same for both cases
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Figure 5.8 Variation of the pi-mode (n = 1) line width ' as a function of dimensionless squared {requency
v? = mw?z, /g due to the excitation of the kink modes on thin magnetic flux tubes having a magnetic filling
factor f and a plasma-3 of unity. The dashed curve shows the line width contribution due to the Alfvén
wave excitation alone (wave flux out the top), and the full curve shows the line width contribution due to the
kink modes alone {wave flux out the bottom). The dotted curve shows the line width contribution due to the
kink modes with the stress-frce bonndary condition imposed (BHCC). Along the upper horizontal axis the
actual p-mode frequency, w/2%, is indicated. For these plots the polytropic index m = 1.5. (a)} The corona
is modelled as homogeneous {unstratified) and penneated by a straight, uniform, vertical magnetic field. (b}
The coroua is modelled as isothermally stratified, the magnetic field is straight, uniform and vertical. There
is no contribution from upward-escaping Alfvén waves in this case due to complete reflection in the infinite
torona. {¢) The coronal magnetic field is modelled as radial and straight (spreading at 30° to the vertical),
the corona is homogeneous {unstratified). Note in each of the cases a, b, and ¢, the BHCC resvlt {dotted
curve) is identical.
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Figure 5.4: Same as Figure 5.3 but for plasma-g = 0.1 inside the (photospheric) thin magnetic fiux tube.

with coronal maguetic field straight, uniform and vertical (Figs. 5.3(a) and (b), and 5.4(a)
and (b)). In the case with the coronal maguetic field straight and radial (Figs. 5.3(c) and
5.4(c)}, the decoupling frequencies are shifted becanse ot the Alfvén wavelength changing with
the character of the magnetic field. Also in the case with the coronal magnetic field straight
and radial, the simplification that the magnetic ficld direction changes discontinuously at the
transition region has negligible effect on the results (verified by numerical experiments with
the temperature discontinuity removed). For the kink modes, the dependence of the line
width on radial order n is weak for the case 8§ = 0.1, but quite strong for 8 = 1, as in BHCC.
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5.2.4 OQOverall Picture

Allowing wave propugation in the overlying atmosphere has changed how the entire thin
maguetic flux tube responds to p-mode {orcing. In particular, the aplitude of the downward-
escaping tube modes has been drasticalty allected by the boundary condition at the top of
the photosphere. Within the flux tube thero are upward- and downward-propagating waves.
The downward-propagating waves may be a result of reflections at the top of the photosphere
or at the transition region, and alto tube modes that propagate downward initialy. It iy the
interaction (intorference) of all the waves everywhere inside the flux tube that determine the
amplitude of the radiating tube modes, along with the correlation between the p-mode forcing
(the Whittaker function) and the fiux tube response (the Hankel functions). Mathematically,
the presence of the integrals c(,') and I and the parameter Ay in equations (5.24) and
{5.25) quantify these interactions. The interference of the various tube modes depends on
the relative phase of cach individual wave - this is highly dependent on the effect that the
reflections at the top of the photosphere and the transition region have on the downward-
propagating waves. The decoupling troughs are a direct result of the high reflection at the
transition region temperature discontinuity; when the discontinuity is removed, the troughs
disappear (verified by numerical experiments). The reflected waves are phase shifted relative
to the other propagating tube modes. Ior some frequencies the interference of the waves
is destructive, decreasing the amplitude of the downward-radiating tube mode (hence the
troughs). In other cases the interference will be constructive {hence the peaks). Evidently the
phase shift depends on the properties of the overlying atmospliere; for example, temperature,
maguetic field strength, and thickness of the chromospheric cavity.

Refiections at the top of the photosphere {(z = ~2,) also have a significant effect on the
tube mode excitation. It turus out (verified by numerical experiments) that for the 8 = 1 case
with the stress-free boundary condition imposed, the upward- and downward-propagating
kiuk mnodes interfere almost completely destructively for the p-modes (less severely for the
f-mode), Henee, the kink mode excitation is suppressed considerably in comparison to the
tube with the radiation boundary condition where the interference is constructive (away
froin decoupling resonances). This is also the case for sausage f-mode with m = 1.5 (see
Fig. 5.2(a)). For the sansage f-mode, when the stress-free boundary condition is imposed
upward and downward waves interfere destructively; hence, the line width contribution is
strongly suppressed. For the kink modes with 2 = 0.1 and the stress-free boundary condition
imposed, the interference between upward- and dowuward-propagating tube modes is is rel-
atively small. Hence, the contrast with the results of the tube with the radiation boundary
condition is less pronounced.

The observations of Korzennik (1990) are presented in BHCC (see their Fig. 9) and need
not be reproduced here. This graph plots the ratio of the line width I' divided by the
angular frequency  for the f-mode and the p-modes of radial orders n = 1 — 5 (with degree
[ == 100 - 600). Broadly speaking, for all modes within the frequency range v 2 2 — 5 mHz
the ratio I'/w lies in the range 5 x 107% — & x 1073, For each mode, the ratio I'/w forms a
ridge; along each ridge, I'/w increases with frequency. For any given frequency, I'/w is largest
for the f-mode and decreases as the radial order n of the p-modes increases. The theoretical
results of BHCC fall well short of the observations by an order of maguitude or more.
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The tolal line width contribution will be & result of damping due to both sansage and
kink modes propagating along the magnetic fibril,

Tp (w) = Pn,ﬂ (w) + Fat (w)

whero Ty, ) and [y, ¢ are defined by equations (5.24) and {5.25), respeclively. In all cases the
upward-cscaping MAG and Alfvén wavis have little siguificance on p-mode dawmping. The
kink mode line width contribution is significantly enhanced in one instance (m = 1.5 and 8 =
1). But this is not the case that gives closest agreement with the observations of Korzennik
(1990), which is m = 1.5 and 8 = (.1, with magnetic filling factor f = 10~% (see Fig. 9 of
BHCC). We are certainly limited by the frequency ranges of the observations. Figures 5.2 -
5.4 extend above 8 mHz which is substantially beyond the domain of the observations -
truncated at approximately 5 mHz, The observations of Korzennik (1990) show no evidenco
of the resonance behavionr exhibited by line widths in this investigation. It would be expected
that the many tubes populating the solar surface would have diffcrent properties, for example
plasma-g; and differont flux tubes would be subject to different conditions - in reality the
overlying solar atmosphere would be non-uniform, having a temiperature and chromospheric
depth which vary over the solar surface. Therelore, resonances from individual tubes would
be smeared out and not resolvable. For the p-modes the total line width contribution shows
only weak dependence upon radial order » - a result which was presented by BHCC and i
evident in the observations of Korzennik (1990). Some of the general behaviour seen here is
consistent with observations, but quantitatively the results full far short of the observational
results (Korzennik, 1990). In the favourable cases, the theoretical total line width calculated
here (not pictured) can account for only a few percent of the obsarved line width.

5.3 Conclusions

We investigated the contribution of tube n.ode oscillations on thin magnetic flux tubes to
p-mode line widths. In particular, the cffect of the upper solar atmosphere was examined.
We found that allowing wave propagation in the upper solar atmosphere certainly affects
the response of the thin magnetic flux tube to p-mode forcing. However, the effect is not
enough to account for an unmodelled component of p-mode damping, Alone, the line width
contributions of MAG and Alfvén waves radiating out of the top of the flux tube are very
small, depending on the extent of the temperature discontinuity at the transition region.
The tube mode oscillations radiating out of the bottom of the flux tube are more effective
at removing cnergy from the driving p-modes. In some cases the contribution of downward-
radiating tube modes is significantly increased relative to the BHCC result, but not in the
case in best agreement with observations (Korzennik, 1990).

The simplificd models of the upper solar atmosphere may pose litnitations on the results
presented in this chapter. However, the essential physics has been retained, and the mecha-
nisms at work have been recovered; in addition, the results do not seem to depend strongly
on the exact nature of the model. The simnple models of this investigation give a gnod insight
into the possibilitins of more complicated modcls of the finx tube above the photosphere. One
approach would be to employ the flat canopy approxitnation for the flux tube beyond the
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vhotosphere (c.g., Bogdan, 1999}. However, as indicated by the results of this investigation,
stroug reflection at the temperature discontinuity of the transition region weuld nost likely
retard large upward energy fluxvs. It would be interesting to sce if there was a dvanatic
change in the downward energy fluxes of the tube modes.

Recently, Rosenthal et al. (2002) have performed numerical simulations of waves propa-
gating through magnetic structures in the solar atmosphere. Their models for the magncetic
ficld in the upper atmosphere are much more sophisticated than those used in this chap-
ter. Rosenthal et el. consider the propagation of waves (generated at the atmospheric base)
through both open and closed field structures, and chromospheric network and internetwork
regions. The results of Rosenthal et al. provide many important physical insights. Of particu-
lar consequence to this chapter, their results indicate that to model the overlring atmosphere
properly nonlinear wave propagation must be taken into account.

The recent observations by Komm, Howe, and Hill (2000) found that from solar minimun
to solar maximunn, the p-mode line widths increase by about 7% on average. The results
presented in the previous section and also those of BHCC are less than, but comparable in
magnitude to, this amount. This strongly indicates that the origin of the variation found by
Komm, Howe, and Hill is magnetic in nature, though we do not perform a detailed comparison
here.

Clearly, the mechanism responsible for the damping of p-modes remains unidentified. In
the case of damping by small-scale intense magnetic flux tubes, many candidates are yet to
be investigated. Dissipative effects such as radiative damping and resonant absorption are
also mechanisms that are known to increase the energy absorption from incident p-modes. A
dissipation mechanism in the overlying atmosphere would remove some of the energy from the
waves reflected within the chromosphere — which could also contribute to the chromosphere’s
energy budget. To what extent these suggestions could affect p-mode line widths is an open
question,

e i e R e A o

vt e e e 1w

7= T Ly e g i o ] A g b

i o RV b e e e




Chapter 6

Discussion and Conclusions

This thesis examined the interaction of solar p-tnodes with two distinct types of magnetic
flux concentration. The first type, a semi-infinite slab of non-vertical ficld, is applicable to
large scale structures such as sunspots and complex active regions. The second type, an
isolated thin magnetic flux tube, is a valid approximation to the plethora of widely-spaced,
small-scale intense magnetic flux tubes which account for roughly 90% of the magnetic flux
threading the solar photosphere.

6.1 Summary

¢ Ty - TR T gt < e e e e R U o e T e . 1 e e T At L At o e

In Chapters 3 and 4 we caleulated the efficiency of mode conversion in non-vertical magnetic
ficld. Alone this problem is rather complicated. We broke the problem down into two parts.
Firstly, in Chapter 3, we considered two-dimensional propagation where the Alfvén waves
are decoupled, and calculated the efficiency of fast-to-slow mode conversion. Secondly, in
Chapter 4, with the insight gained in Chapter 3, we extended our attention to the case of
three-dimensional propagation. In this case, mode conversion occurs between all three types
of waves: fast and slow MAG waves, and Alfvén waves. We calculated the resultant damping
rates along with the respective contributions made by the slow MAG waves and Alfvén waves
leaking down the magnetic field lines.

In Chapter 3, we investigated the two-dimensional {¢ = 0) propagation of oscillations
in a compiete polytrope permeated by a straight, uniform, non-vertical magnetic field. In
particular, we calculated the efficiency of fast-to-slow MAG wave conversion, and subsequent
horizontal spatial decay of the 7-modes. For modes with n > 1, we found mode conversion
is significantly enhanced (by up to two orders of magnitude) in comparison to vertical field.
The ecnhancement occurs in moderately inclined fields (8 = 20° — 60°, depending on the
mode and frequency), and is most significant at aigher frequencies. At lower frequencies
the enhancement is generally negligible. For the f-mode (n = 0), fast-to-slow MAG wave
conversion is most efficient in vertical field {and slightly non-vertical field). For all modes at
all frequencies, highly inclined felds (8 2 70°) show very inefficient fast-to-slow MAG wave
conversion.

In Chapter 4, we investigated the three-dimensional {¢ # 0) propagation of oscillations in
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a complete polytrope permueated by a straight, uniform, non-veriies! magnetic fiold. Broadly
speaking, the results for the m-modes are very similar to those of the two-dimensional (¢ =
0) case, For w-modes with o > 1, we found mode conversion is significancly enhanced in i
modcrately inclived ficlds (0 ~ 20° — 60°, depending on the mode and frequency}, especially
at higher frequencics. For the f-mode {n = 0), damping is most efficient in vertical field !
though in some cases the variation with inclination is weak. In general, the m-mode Jamping
rates depend only weakly on the propagation direction ¢, especially for low to morderate )
inclinations. In highly inclined field, a substantial enhancement is found centred on ¢ == 45°,
but this enhancement is insignificant in comparison to damping rates at moderate inclinations
(with the same ¢). Broadly speaking, when the direction of propagation is not paraliel to
the z-axis, both the Alfvén waves and the slow MAG waves make a similar contiibution to
ihe m-morle damping. However, the relative contributions vary significantly with frequency,
inclination, and to a lesser extent propagation direction. In addition, a new type of highly
damped solution {the y-modes), that mainly exists in highly inclined ficld, was found. The -
modes will probably have a significant influence on the absorption of p-mnodes in the penumbra
of sunspoty {where the field is highly inclined).

The existence of the y-modes suggests that highly inclined field is worthwhile examining
in closer detail. The numerical integrations employed in Chapter 4 become increasingly
unrcliable as the horizontal field singular case is approached. We found reliable numerical
solutions in the singular case when ¢ = 90° (propagation exactly perpendicular to the z-axis).
Solutions for the cases wheve ¢ # 90° are significantly more complicated and beyond the scope
of this thesis. For example, the resonant damping of p-inodes by horizontal (canopy) field
overlying the convection zone has been investigated by Vanlommel et al. {2002) and may also
play an important role in p-mode absorption by sunspot penumnbrae. Our results suggest
that the (@ — 90°) perturbation problem may indeed be worth addressing (e.g., Kamp, 1989,
1990; Zhukov, 1988, 1989a,b, 1990).

In Chapter 5, we calculated the contribution to p-mode line widths froin the excitation
of tube mode oscillations on an individual isclated magnetic fibril. An idealised model of the
fibril within the convection zone was employed, consisting of a vertical, thin magnetic flux
tube embedded in a truncated polytrope. BHCC considered a similar model, but imposed
a stress-free boundary condition at the top of the convection zone which acts to completely
reflect any upward propagating tube waves back down into the tube. The stress-free boundary
condition nerlects a possibly important physical process — the loss of energy to the upper
solar atmosphere by the excitation of waves in the chromosphere and corona. Using simple
models of the solar chromosphere and corona we explored the consequences of applying various i
boundary conditions. The resultant upward energy fluxes are not large, but surprisingly the
more realistic upper boundary conditions lead to a significant increase in kink mode flux out
the bottom of the tube. Nevertheless, the sausage mode remains dominant in cases in best
agreement with observations, and is essentially unaffected by the more realistic boundary
conditions. Consequently, the resultant total p-mode line width computed in Chapter 5 can
account for only a few percent of thie observed line width. This amount, though relatively
small, is roughly consistent with the p-mode line width variation over the Jolar cycle (from
solar minimun to maximum) recently observed by Komm, Howe, and Hill {2000). This tends
to suggest that the observed solar cycle variation is indeed magnetic in hature, though further

e A, bt 1 At . g b nw

136

E
n
!
i
:
i
:
i




investigation is required to confirm this hypothesis.

6.2 Comparison with observations

Recent calculations by Cally, Crouch, and Braun (2003) using the results of Chapter 3 have
proved to be extremely promising. For the benefit of the veader, their paper is included
in Appendix F. Cally, Crouch, and Braun construct a simplified modcl for the interaction
between @ sunspot and its surroundings, and use the two-dimensional results of this thesis
(Chapter 3). They consider two types of models. The first model is a uniform sunspot where
the damping parametier Im{k) and the wavenumber Re(x) apply globally throughout the
entire spot (single shell model). The second model is composed of a nested set of piecewise
uniform shells (multiple shell model) approximately accounting for the range of inclinations
present in real sunspots. Cally, Crouch, and Braun compare their results with the absorption
and phase shift data for a real sunspot (NOAA 5254), observed using Hankel analysis by
Braun (1995), sec Figures 1.4 and 1.5, respectively.

Plotted as a function of azimuthal order m and {requency, Cally, Crouch, and Braun
(2003) find excellent agreement between their model and the phase shift observations when
0 = 30° and the equipartition depth L = 0.8 Mm for radial orders 1 < n < 7. This is also the
case for the multiple shell model they present. The absorption produced by their model is
generally consistent with observations up to some moderate frequency, dependent on radial
order. Thereatter, the absorption is too large, assuming absorbing regions comparable in size
to the inferred phase shifting region. Interestingly, both the single and multiple shell models
produce a minimum in absorption tliat coincides approximately with the dip observed by
Braun (1995, sce also Figure 1.4) at around 5 mHz (depending on radial order). This tends
to suggest that the absorption minima observed using Hankel analysis (Braun, 1995) are real.
However, the dip docs not extend to zero in non-vertical field models. Which indicates that
the emission generated by acoustic glories {Donea, Lindsey, and Braun, 2000) still plays a
role in the immediate surroundings of sunspots (as suggested by Lindscy and Braun, 1999),
though perhaps slightly less significant than originally anticipated.

The excellent agreement of the phase shift predictions with the observations (along with
the location of the absorption minimun) allows some degree of probing of subsurface field
strengths. Cally, Crouch, and Braun (2003) find the best agrcement for L = 0.6 — 0.8 Mm
which corresponds to magnetic field strengths of 3.6 — 4.8 kG. These are consistent with
expectations for subsurface sunspot umbrae. It should be noted that the optimal equipartition
depths found by Cally, Crouch, and Braun are somewhat larger than those used to plot the
extinction lengths in §3.7.2 and 84.6.5 (see Fig. 3.11, and Figs. 4.23 - 4.26). If the graphs of
the extinction lengths were replotted using the the values found by Cally, Crouch, and Braun
the resultant frequencies would decrease slightly and the corresponding extinction lengths
would increase.

Most importantly, Cally, Crouch, and Braun (2003} have confirmed that (slow) mode
conversion appears to be the predominant mechanism responsible for the observed absorption
and phase shifts exhibited by sunspots. And in particular, non-vertical magnetic fields are
necessary for the pro:ess to work.




6.3 Future directions

For such a crude model, the ngreement between the results of Cally, Crouch, and Braun (2003,
sce Appendix F) and the observed p-mode phase shift and absorption data is remarkable.
With this in mind, and with a view to cventually perform quantitative inversions, there
are geveral possible extensions to the current model that warrant consideration, Somne are
relatively minor increments on the present state of knowledge, others are more significant
and pose a considerable - yet likely fruitful ~ challenge.

The results of Chapter 4 (thrce-dimensional model) were not incorporated into the Cally,
Crouch, and Braun model. Cally, Crouch, and Braun noted that the results of the three-
dimensional model (Chapter 4) are generally not substantially different to those of the two-
dimensional model (Chapter 3). This is especially true for the w-modes in the cases that arve in
best agreement with the observations (i.e., # = 30°). Hence, for the sake of simplicity, Cally,
Crouch, and Braun just use the data from two-diinensional model (Chapter 3). However,
there are soine exceptions.

To correctly model the interaction of the p-modes with magnetic flux concentrations
the oscillations must match (i.e., total pressure and radial velocity must be continuous)
across the boundary between the non-magnetic and magnetic regions. This can be done in a
straight-forward fashion for thin magnetic flux tubes (see Chapter 5}. On the other hand, for
significantly larger magnetic features, such as sunspots, the matching is non-trivinl. Because
the vertical dependences of the internal and external eigenfunctions are not identical, there
will be some degree of mode-mixing {where an incident p-mode with azimuthal and radial
orders . and x, will match onto internal - and y-moedes with the same temporal frequency
but differcnt 7 and/or n). In addition, to perfectly match across the interface the horizortally
cvanescent jacket modes must be incorporated into the model {(e.g., Bogdan and Cally, 1995;
Barnes and Cally, 2000). The matching employed by Cally, Crouch, and Braun is only a
first a approximation and ignores these complications. For vertical field, this 1s well justified
as the cigenvalue analyses agree very well with the results of numerical simulations (e.g.,
Cally and Bogdan, 1997; Rosenthal and Julien, 2000), which do adequately account for the
matching across the interface. For non-vertical field, the consequences of the approximation
utilised by Cally, Crouch, and Braun are less certain. In particular, the oscillations in non-
vertical magnetic fields are more complicated than originally anticipated. For example, the
labelling of modes is ambiguous, and in Chapter 4 we found an unexpected set of solutions,
the y-modes which are present only in highly inclined field. It would be very interesting,
though mathematically very difficult, to incorporate the y-modes into the Cally, Crouch, and
Braun multiple shell models. The «-modes will be especially important in the outer-most
shells where the field is highly inclined in real sunspots (i.e., the penumbra).

Relating to the model atmosphere there are two concerns that should be addressed.
Firsily, as discussed in §3.2, the polytrope is only a very crude approximation of the so-
lar convection zone (see Fig. 3.2). Ideally it would be useful to recalculate the eigenvalues of
Chapters 3 and 4 for a realistic solar model and then reapply the methods employed by Cally,
Crouch, and Braun {(2003). However, this is not trivial. The eigenvalue problem is solved
numerically, but the eigenvalues depend crucially on the treatment of the lower boundary.
The derivation of the asymptotic solutions for large depth, using the method of dominant
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balance, relies on the stratification being expressed analytically. It is unclear iow to do this
for a general (tabulated) model. One approach would be to replace the solar model with a
polytrope below some depth (in his doctoral thesis, Hunter used this approach in the vertical
field case). This approach itself has limitations. The best solar mnodels currently available
are for quiet Sun (e.g., Christensen-Dalsgaard, Proffitt, and Thompson, 1993; Chrisiensen-
Dalsgaard et al.,, 1996; Christensen-Dalsgaard, 1997). It is unclear how accurately such a
model represents the interior of a sunspot. Unfortunately, the sunspot umbral core models
M, L and E of Maltby et al. (1986) are not tabulated to sufficiently large depths below the
photosphere.

The second issue with regards to the model atmosphere is the top boundary condition.
The boundary conditions employed at the surface in Chapters 3 and 4 are the natural choice
for the complete polytrope (for which the density vanishes at the surface). These boundary
conditions provide a trustworthy approximation for frequencies below the acoustic cutoff
frequency {CBZ). For higher frequencies, it is necessary to account for waves propagating
into the upper solar atmosphere. The approach would quite likely be very similar to the work
done in Chapter 5 where an upper atmosphere, consisting of an isothermal chromosphere and
corona, was appended to a truncated polytrope (see also CBZ; Cally 1995; Hindman, Zweibel,
and Cally 1996; Lites et al. 1998 who employed a similar approach for vertical field sunspot
models). In the vertical field case, for frequencies below the acoustic cutoff frequency, CBZ
found the eigenvalues were almost identical to those of the complete polytrope. On the other
hand, for frequencies beyond the acoustic cutoff frequency in the temperature minimun,
the eigenvalues differ greatly, with the upward- and downward-escaping slow MAG waves
removing comparable levels of wave energy. Cally (2001a) recently found that the governing
equations for an isothermmal atmosphere permeated by vertical field can be solved exactly
in terms of hypergeometric functions, which arc much easier to compute in practice than
the Mcijer G-function solutions found by Zhugzhda and Dzhalilov (1982). In preliminary
calculations for the two-dimensional case, we have verified that the governing equations for
an isotherinal atmosphere permeated by non-vertical field can also be solved in terms of
hyporgeomnetric functions in an analogous fashion to Cally (2001a). Such exact analviic
solutions allow modelling of the overlying atmosphere to be done with relative case. The
three-dimensioaal isothermal problem, however, cannot be solved exactly and, therefore,
series solutions would need to be employed (see Zhugzhda and Dzhalilov, 1984a). The precise
consequences of relaxing the top boundary condition in the non-vertical field cases remnains
an open question.

Another obvious limitation of the current model is the magnetic field geonietry. In real
ity, the magnetic field strength is not uniform but varies with depth. The task of calculating
eigenvalues for more complex magnetic field geometries is mathematically very difficult -
complicated by the presence of both vertical and radial gradients. Bogdan (1999) has pro-
posed a method ior solving the equations governing the lincar. axisymmetric oscillations of
a gencral, axisymmnetric, potential, magnetostatic equilibrium. Such a model naturally in-
corporates the flaring of the magnetic field lines with height, and the concentration of the
ficld with depth. It also naturally accounts for the variation of the field inclination in the
radial direction ~ something which the muitiple shell models of Cally, Crouch, and Braun
(2003) handle only in a highly simplitied fashion. The method outlined by Bogdan (1999)
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has not been put into practice, though Cally (2000) has run numerical simulations of a very
similar model. For advanced forward and inverse modelling to be performed, caleulations
employing a wodel similar to that of Bogdan (1999) must be¢ developed. Perhaps a useful
first step toward understanding Bogdan’s move realistic model would be a simpler problem
that accounts for both mode conversion and local resonant abisorplion, in the presence of
gravitational stratification. The combined effect needs to be clarified.

A further complication associated with the magnetic lield structure resides in our lack
of knowledge of even the basic make up of sunspol magnetic field sub-photosphere, This
brings us back to one of the ultimate goals of sunspot scismology {as stated in Chapter 1),
nainely to discriminate between the monolithic field model and the spaghetti field model
(proposed originally by Parker, 1979). To this end, the work done in Chapter 5 may play a
vital role. In Chapter 5, the absorption by a single isolated magnetic fibril is computed. An
obvious extension of this work is to calculate the scattering phase shifts induced on a p-mode
incident upon the thin flux tube. And ultimately, to calculate the effects of multiple scattering
from a bundle of closely spaced fibrils, namely Parker’s spaghetti model. The recent work
by Tirry (2000) showed that resonant frequencies (including multiple scatiering resonances
exhibited by bundles of closely spaced tubes, see Bogdan and Fox, 1991; Keppens, Bogdan,
and Gouossens, 1994) are absent in an unstratified cavity when one end of the flux tube is open
to wave leakage. Therefore, it would be expected that multiple effects introduced by bundling
a collection of fibrils would not show significant enhancements over the simple summation: of
their respective individual effects. However, as noted by Tirry (20600), the effects of mode
mixing (and the jacket modes) and the shielding of the internal tubes from the incident
p-modes by the external tubes when gravity is present remain unclear. Nevertheless, it is
important to ascertain if such a structure possesses an observable signature that is different
from that of the monolithic sunspots.
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Appendix A

Non-magnetic p-modes

The equations governing the linear oscillations of a noun-magunetic, isentropic polytrope, '

&’ d :
qué_?'+mde.+u —-——-S]C 0, (A.1) s
d¢ _ _ix _ ‘ l
R 25::; n=090, (A2)

follow from equations (4.1)-(4.3) by neglecting the magnetic terms (i.e., terms multiplied
by the squared Alfvén speed, C? « s™™). Equation (A.2) indicates that the displacement
associated with the oscillations is tirotational {and may be derived from a potential). The
procedure for solving equation {A.1) depends on whether the polytrope is complete {e.g.,
Lamnb, 1945, pp. 545-554) or truncated {c.g., Bogdan and Cally, 1995), however, these only
affect the treatment of the top boundary.

A.1 Lower boundary

Here we consider the asymptotic behaviour of the oscillations in the vicinity of the lower
boundary (s = 00). The method of dominant balance applied to equation (A.1) yields the
two controlling factors { ~ exp (£%s) , as s = co. We impose the usual boundary condition
that evanescent modes be decreasing. Further developing the exponentially decaying solution
we find '

C i s(v2/u)—-(mf2) t})\p ["'"2:3] Up (5) L] (A‘S)

where U, (s) is asymptotic to 1 as s — oo, and may be expanded in an asymptotic power
series in negative integer powers of s,

0
Up (s) s E ’H".‘i*n y
=0

where 1g = 1. The first few terms of the (m = 3/2) series arc
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-2 20 -1 s
Up(s) ~ 1= 5= (20— 1)s

+-§(—’:§-(a+1)(20—-1)(2(34—1).9"2-{-..._. (A.4)

where a = (m/2) — (¥¥/x). In fact, the general solution for the coefficients wu, is

= (_i)" (a), (1+a-—m), ‘ (A.5)

K n!

where (@), = 1, (a), =ale+1)...{a +n ~ 1) is the Pochhammer symbol.

This physically acceptable solution for the p-mndes at the lower boundary (s = o0) is
well established (e.g., Lamb, 1945; Bogdan and Cally, 1995) and can be written in terms of
confluent hypergeometric functions {providea m is not a negative integer),

¢ = Cyexp [—--g-s] Uf{a,m,s5),

where U is Kummer’s function and C), is an arbitrary constant. It can be easily verified that
the asymptotic behaviour of {p, as s — oo (Abramowitz and Stegun, 1964, eq. {13.5.2]), is
exactly that described above (eqs. [A.3] and [A.5]).

A.2 Solutions for the complete polytrope

In terms of the independent variable t = s, equation (A.1) can be written

d? d
[Eﬁﬂm-—t)d—t- ]y=o, (A6)

where y (s) = exp (52—3) ¢ (s). Equation (A.6) is Kummer’s equation (Abramowitz and Stegun,
1964, eq. [13.1.1]) and can be solved in terms of the confluent hypergeometric functions
(provided m is not a negative integer). The complete solution is

y{t) = AarM (a,m,t) + ApU {a,m, t) ,

where Ay and Ay are arbitrary constauts.

At the surface of the complete polytrope (s = 0) the boundary condition requires that
all coraponents of the displacement vector, £, have 2 finite magnitude (i.e., the Lagrangian
pressure perturbation must vanish at the surface of the atmosphere). This conaition selects
Ay =0 and

G = Aprexp l-%;s] M (a,m,sk) .

-t

The free modes of oscillation of the atinosphere are associated with the special values of
the wavennmber, &, where the two solutions, ¢y and ¢, are identical up to a multiplicative
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constant independent of 5. In othier words the free oscillations are associated with the zeroes
of the Wrouskian of the two solutions {Abramowitz and Stogun, 1964, eq. [13.1.22]),

" (m) (s6) ™" exp (sK)

I'(a)

W M (a,m,s8),U (a,m,81)} =

The Wronskian of thie two solutions will vanish only if the argument of the Gamma function
in the destominator is a non-positive integer i.c.,

12
K=
n+mf2’

Equation (A.7) was first published by Lawmb (1910), it shows that oscillations of a given
frequency, r, are constrained to propagate with a discrete set of dimensionless horizoutal
wavenumbers, £, where n = 0 can be identified with the fundamental or f-mode, n = 1 with
the pi-mode and so ou.

n=0,123,.... (AT

t
1
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Appendix B a

Vacuum potential magnetic field

From the lnearised induction eqaation, the Eulerian magnetic field perturbation is
Bl = v X (£ X B) N

It can be shown thiat the three components of V x B, in divections k, k1, and &,, respectively
} 1: I '

are:
(VxBy) k=-B (Rd; [8n +sing sinHV‘{])cxp[i (k- r~wi), (B.1) ]
: 2

(V X Bl) -k, =8B ([zi“::; - ’\.2] «Eu) exXp [‘i (k «r— wt)] ) {BE}

(VxBy)-&, =ikB (O +singsin@V - E)expli (k- r—wt)) . (B.3)

For the total magnetic field to be potential the three comnponcuty (B.1) - (B.3) must vanish.




Appendix C

Mode conversion: Two-dimensional
model

C.1 Fast MAG wave asymptotic series

The functions Uy and W} (eqs. [3.12] and [3.13]) may be expanded as asymptotic power series
(in non-positive half integer powers of s):

o0 no
Up (8) ~ Zuns"“ﬂ, and Wy (s) ~ Z w2,

n=0 n=0

where (setting a = (2v2/k) - 3/2 = —24)

w=uwg=1, wu=w =0,

o o
) = —— (a+1 wy = ——— (@ + 5} ,
2= -i(atl), w=-7(at5)
ﬁ'f‘\‘? .. 9
U3 = w; -——1—2—!—’3((:039 +isinf)°

_(la=2)(a~Dala+1) _le=2a(a+ ) {a+7)
= 32K2 v W= 30K2 ’

iy

and so on. In general, the coefficients u, and wy can be calculated from the recwrrences:

+ 2a
64npt

Wy =

{(3+n+a) (2&(3-&-20)((11 -4~ a)u,.o

—2(n—3)wn_2) +2(n-—-7-—a)((4~n+-a)(3+2a)wﬂ_4
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+8ind (9-n+a) (3 +2a)(5in@w,.0 — ico8@upg)
~k(cosb (n~ 5~ a) — 2isind (3 + 2a)) (cos Q7 -+ ininf wp_7) ))
+25° (2».: {cos@ +isin®) (3 — n + o) (cosOu,.a 4 iginGw,_3)

+(5—-n+aq) (siu @ (6inf (3 ~n+ o) +icos® (3 + 3n+ @) w5

—~cosf ({(cos@ +isin@)(3-n+a) ~2c080 (34+n+ a))u,.ﬂs,))} ;

and

Uy, = wy, + 35 cosf (n~9—oa){n~7—-q){cosBu,_g + isinfw, o)
1
+E{ (3+2a)uu2+(n—-5-a)w,2
+2cosf {(n —~ 7 - a) (cosGup_7 + isinfuwy,_7) } .

where, for the first nine coefficients in particular, coefficients with a negative index are zero
(i.e.,, up = wy =0 for n < 0).

Bender and Orszag (1978, Chaplers 3 and 8) provides a good diacussion of the issaes
involving gaining an optimal approximation iromn general asymptotic series. For optimal
results, the scries are truncated at around their minimumn term (in absolute value). In
practise the terms in the series tend to jump around wildly in magnitude as n is increased,
though with a general downward trend until a minimum is reached and thereafter upward.
Therefore, it is important to keep track of the enveiope when deciding when the minimumn
is recached. For the fast mode series we examine successive packets of four terms, taking the
maximum in ecach, and truncating the series when one such maximum cxceeds its predecessor.

C.2 Slow MAG wave asymptotic series

The functions U, and W, (eqs {3.29] and [3.30]) may be expanded as asymptotic power series
(in non-positive quarter integer powers of s):

o0 e o]
U, (s) ~ Z""S‘n/d , and W;(s) ~ ans""/" .

n=0 n=0

where

ug=wg =1,

vy =w =uy =wy =10,
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t3 = ~—-§-iusinl9 tan@, 1ws= —sind (;iu tan + 2%) ,

for the first four terms. For terms n > 4 we may use the following recurrences:

Uy = {Bmz{ cos@ (2n - 23) {cos 0 (2n — 31) {xsinOw, 20 — 2Vup-17)

+8iksind (2vup—13 — K sindwy,_)g) } + 1652 (2, _g — KsinBw,-12) }

+256x1° sin@ (3ixcos @ w,_3 + (408 sing — inn cos0) (2up—3 - wa-3))
~16sin6 £® (4812 sin@ — ik cosd (3 + 2n)) wp—o + 8r co3
x (16i2 (sin? 0 (2n —~ 17) + 2n ~ 20) -+ Ksinfcos § (2n — 17) (3 + 2n))

X {20y 10 — K8inGwy,3) — 32&211{ {in cos§ (2n (1 ~4sin®8) ~ 15)
+16v7sin 0 (1 + 2sin” 6) }'wn_s + (ixcos@ (3 + 2n) — 4807 sin @) uﬂ_s}

+8vcos @ (3x cos @ (4n? — 24n —~ 17) + 64iv? sin 8 (n ~ 7))
X (20,7 — ksinfwy_10) + cos? @ (incosﬂ (3 + 2n) — 1647 sinG)

x (425 — 84n + 4n?) (2vuy—14 ~ KSiNOwy_17) }/ (512irv® cosOn) |

and

Wy = Up + {{32éu cos® (n —11) 2vu,—1) — Ksin@w,—14)

+{2n — 25) { c0s20 (2n — 33) {x 5in O w2, — 2wup_13)
+8ikcos @ sin@ {2vup_14 — Ksinfwy,_17) }

~4k (ikcos@ (2n — 17) w7 + 160 8in (wn—_7 — 2up_7)} + 1657

X (20 (up10 — 2sin? Bwy_1p) ~ KsiNG (wWn_13 + Wa-3), }/ (32x%) } ,

where, for the first twenty-one coefficients in particular, coefficients with a negative index
are zero (ie., u, = v, = wy = 0 for n < 0). As for the fast modes the terms in the serics
tend 1o jump around wildly in magnitude as n is increased. We track the slow mode series
in successive packets of twelve terms, truncating the series when the maximum (in a packet)
exceeds its predecessor.
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C.3 TFrobenius series

At the regular singular point 0 = 0 (s = 0) the displacements may be expanded as Frobenius
series, i.e.,

00 o0
o) =) uno™, and &(0) = ) wao™,

n=0 n=0

where the coefficients u, and w, for cach of the three finite linearly independent solutions,
labelled a, ¢ and d, are:
Solution a:

r=0, w=1l, ww=uy=w =u =0,

wy = % (ix — 2% tan ) ;
Solution c:

r=0, wy=1, uw=u =w =uy =0,

1 ) 2
we = o5 (3irtang — 4v?) ;
Solution d:

r=2, w=1, wy=uy=w =0,

g = -;—tanﬂ (ik - 1 tan 9) ,

we = -,]; (in — p? tanﬂ) ;

for the first two terms. For terms with n > 3 we may use the following recurrences:

Wy = { (-ir: (n+7r)— 42 tanﬁ) Up-2 + K> tan @ tp_4
+(in(ntr+1)tand = 42 wpz}/ (n+7)(n+7+3),

and

u, = tanfw, + {{n2 (un-.; -~ tanfu,_s + 58(329‘&“_.9)

-4 sec? Quy_q +iksec’ (n+r—~Dwy 7}/ ((R+7-2)(n+71)) } )

where, for the first nine coefficients in particular, coefficients with a negative index are zero
(i.e, up = w, =0 for n < 0).




Appendix D

Mode conversion:
Three-dimensional model

D.1 Fast MAG wave asymptotic series

The functions Uy, V; and W; (eqgs. [4.7]-[4.9]) may be expanded as asymptotic power series
{(in non-positive half integer powers of s):

- e — — L i —  ——_

oc cQ oo
U (s} ~ E Ups~ ™2, Vi (s}~ Zvns“"/2 , and Wj(s)~ Z w,s~™M?,

n=0 n=0 n=0

where (setting a = (2v%/x) — 3/2 = ~2q)

w=vw=w=1, uy=vy=w =0,

(4 (44
u2=—gg(0r+l), w2=~;4—n(a+5],

_(a—2){{a+7)cos8 +i(a+3)cos¢sind }
4k (cos@ +icos ¢ sinf)

U =

¥

=w3 = o (cos @ + icos ¢ sinf)?
Uy =uw3 = 1202 ’ .5
v3=-i~2—£;-2-(a—3) (cos® +icos¢@sind)?® 1

_(e=2)(a—Dalatl) _{(a=2)a(c+1}(a+7T) !
B 32r72 T 3242 ‘

g
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+9)cos® +i{a+ 1)cos ¢ sind

v = (@ —4) (=~ 2} (@ +3) 32k2 (cos O +icos ¢ sind)

and so on. In general, the coefficients wg, vy, and wy, can be caleulated from the recurrences:

Wa = ey {52{4 sin? psin® 0 (cos® +% cos ¢ sind)a

x{?cos& B+a){b-n+a)r,_10— (cos@ +icos¢ sing)

x (28 +a)rvp-g+{(3+n+a)(3+ 20) vp_10) }

+2(3 + 20) (sinf) (sin2 psing (2-n-a)(3+n+a)
+(b-n+a)(sinf (3—nt+a)+icosgd cosd (3+3n +a)))'w,,._5

-—((:039 (cos@ +icosgsinB)(I—n+a)(b-n+a)

~@B+nt+a)(2 cos’ @ (5 —n 4 a) +sin® ¢ sin® 9 (3 + 2a)) )‘Hn—s

—2n(si110 (nsin® ¢ sin@ + (sin@ —icosd cos8) (3 —n + a)) wya ~
(sin2 ¢ sin®6 (3 + @) +cosf (cos@ +icos¢ sinb) (3 —n+ @)) z;n_3)) }

+(3+n+a)(3+2a){2(3+2a)n((n——4~—a)u“_.2 ’

—2(n~3) wn_g) +(n-7-0q) (4(1: sin ¢ sin’ @ (cos@ + i cos ¢ sin 6)
X (cos® (9 - n + @) vy_1q — (2080 +icos ¢ sin ) Kvp_y2)
+2sinf (9 — n + a) (3 4+ 20) (5in@ wy—g — £ cos P o088 up_g)
+2n(sin9 (tcos¢ cos® (5 —n -+ a) ~2sin8 (3 + 2a)) wy~7

+ (cos?8 (5—n + o) +sin8 (2icos ¢ cos@ +sin’ ¢ sind) (3 + 2¢))

xun—':)+2(4—n+a)(3+ga)wn_4)}},

Uy = Wy + %cosQ m—9—a)(n—-7-aqa)(cosBup.g+ icos ¢ sinfw,_q)
1
+sin? ¢ sin® @ (wn_s — up_s) + ;{ B+2a)up—o+{(n-5-a)w,_2
+{n—-7-a) (sinﬁ' (2icos ¢ cos @ +sin® ¢ sin8 w7
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+2 cos? 91;,,..7) } + 532- sin® ¢ sin® @ {cos@ + ¢ cos¢ sind)

% (€088 {(n ~ 7 ~ @) vy—y2 + (cos O + icos ¢ sinf) svg_i0)

and

vy = { (cos@ +icos ¢ sinf) (cos @ sin® ¢ sin®0 (n - 5 — @) Kvn_10

4w
4+ (cos @ +icos ¢ sing) x? (sin2 ¢ sin®Qv,_g - 'v,,_a)

~25cos0 (n — ) v"_.,r,) ~c05%0 (n—2~a)(n-a) 1:,,_.7}

20K
~(3icos ¢ sind +cos® (n+ 3 — a)) K,

~cos@{n—-2—-a)(n—a) w,,‘g}/(cosf) + 1 cos P sinf))}

+-—-1-—{{{(c030 (n+3+a)+icosdsing (34 20)) sny,

+{n—-5~a) (cose (n—T7-a){cosfup_7 +icos ¢ sinfwy.7)

4+ (2cos® Qup—g + sin6 (2icos @ cos@ + sin® p sind ) wn_s) )

+ sin? ¢ sin® 8 ? (wa_g — tn-3) } )

where, for the first fourteen coefficients in particular, coefficients with a negative index are
zero (i.e., up = vy = wy, = 0 for n < 0). As for the two-dimnensional fast modes (Ap-
pendix C.1) the terms in the series tend to jump around wildly in magnitude as n is in-
creased. We track the three-dimensional fast mode series in successive packets of four terms,
truncating the series when the maximum in a packet exceeds its predecessor.

D.2 Slow MAG wave and Alfvén wave asymptotic series

In practise, for the incompressive solutions (the slow MAG wave and the Alfvén wave), we
apply the leadtiig behaviours { ~ x, n ~ x and &, ~ cos 92%3'"‘/2)( (egs. [4.15] and {4.16)),
ie.,

; 4
¢~ s Bexp [cos¢ tanﬂ%is-l-seca §£u37’/4] Uls), s-—oco,

K 4
n~ 5~ exp [cos(b tan %3 s+ secf -,;-,-ius”“] Vi(s), s-— o0,

~9/8

K
£; ~cosf —s
2v

X exp {cosci- tan()?s-f-secﬂ;iusm] Wi{s), s-— o0,
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where the functions U, V and W may be expanded as asymplotic power series (in non-positive
quarter integer powers of s):

00 o0 -~
U (8) ~ ZHnS“ﬂN , V (.'i) ~ Z‘v,;s"nﬂl' and W (3) ~ Z wns-n/'l .

n~i) n=0 n={

At this stage the series U, V and W arve not necessarily asymptotic to nnity.

Applying these leading behaviours to the governing equations (4.1)-(4.3) we find two
independent solutions:
Slow MAG wave solution:

ug=wp=1, wv=0,
Y= =w =tuy=vn=uy =0,

2. .
u3 = — g cos? ¢ sinf tané,

9 )
v3 = sin ¢ sin§ (aivcosqb tand — -é%) ,

2 -
w3 = — cos ¢gsind (—S—iucosoé tand + -5—;—}) ;

Alfvén wave solution:

. . kK 2,
U3 =sin¢ sinf (5;4- §wcosgbtan6) ,

2
vy = ---§iusin2 ¢ sinf tané,

. . K 2,
w3 =sin¢ siné (EE + 3wcosq6 tanﬁ) ,

for the Arst four terms. For terms n > 4 we may use the following recurrences (which are
identical for both the slow MAG wave and Alfvén wave solutions):




Uy = {256&1}2 sin @ { (311& cosd — dr¥cos sinO) {5in P vp—g + o8 Py —3)

+2¢08 ¢ (‘flu2 cos ¢ sinf - ixn cos ) up—g -+ i6n cO8 ¢ cosGw,,._a}
—16sin 953{16:/2 sin@ (cos? @ 4 cos? ¢ (2 + cos? ¢ sin®))

~1K cOS ¢ cosf (ccrs2 g (3+2n)+ 12+ cos® ¢ (2n — 9)) sin® 9) }wn_g

—16%v cos @ {2 {2n — 17)sin ¢ sin@ {3xcos @ -+ 4iv* cos ¢ sin@) vu_1o
—{162‘u2 (cos® ¢ sin? @ (2n ~ 17) + 2(n ~ 10) (cos? 0 + cos® ¢ sin®@))
+5cos ¢ sind cos 8 (2n — 17) (3 + 2n} }un_m} + (cos® 8 + cos® sin 9)

><8rw{ cos§ (2n - 23) {cosB (2n = 31) (xcos ¢ sin@w, o0 — 2vUp—17)

+dirsind (2v (2¢os puy-13 ~ sing vy, 03) ~ 6 (1+cos® ¢ ) sin@w,_1¢) }
+16k (28011, ~ V2 sin P $inB vy — &£* cos ¢ sinBw,_12) } :
+8vcos8 (3kcos® (11 +4{n ~7) (1 +n)) + 64iv° cos ¢ sinf (n — 7))

X (2vtt,,_7 — KOS § SinBw,_1g) — 32n2u{{z‘n cos @ (cos20 (2n — 15)
~3sin? 6 (4 + cos® ¢ (1 +2n)) ) + 1612 cos ¢ sin 8 (1 + 2 cos? ¢ sin® 6) }
X W6 + {in cos 6 (cos?6 (3 + 2n) + (12 + cos® ¢ (2n — 9)) sin’ 0)

— 1612 cos ¢ sin @ (1 + 2 (cos® @ + cos” ¢ sin® )) }?.ln._e} — 8x%sin@ cos
x{ ({1 + cos? ¢} (2n — 17) sin?@ + 4 (n — 10) (cos? @ + cos? ¢ sin0))

x8iv? cos ¢ + ksind cosf (2n — 17) (6 + cos® ¢ (2r - 3)) }‘wn—m
+c0s’ @ (425 - 84n + 4n?) (ikcos @ (3 + 2n) — 160 cos § sind)

BT

X (2rup_14 — Kcos ¢ sinfwy_y7) }/ (512i:w3 cos 8 n) ,

vy = {nc032 ) (33 - 28n + 4n2) (20rvp-7 + ksin ¢ sin@wy..1p)

—2sin¢ sin@ {32iu2 cos8 (n - 7) (2vuy~7 — Kcos ¢ sin 8wy _1g)
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+rcosf (2n - 17) { cos 8 (2n -- 25) {k cos ¢ sindwy..17 — 2rup.-14)
+4ixsind (21 (2¢08 Pun-10 — sin pvy—10) = K (1 + cos® ¢) sin wn-13) }
-—25:2{sinﬁi 116 (1 + cos® ¢ ) sin@v® ~ ixcos cosd (2n — 3)) wng
48Ky cos ¢ sin@wp..g — 16V2un_3} + 4Ry (ir: cos @ (9 + 2n) wy-3

+ (32112 cos P sinf — ixcos8 (2n — 3)) Upy3 — 16L2 8in @

x {sin @ vn-3 + cos pwp_3) ) } }f (64ir? cosBn) ,

and

uy, = tg -+ {{322’:} cos§ (n — 11} (2vup gy — K cos ¢ sin@w, - 14)

+ (2n — 25) {ccm2 0 (2n — 33) (xcos @ sin@uy oy ~ 201, 13)
+4tk cos @ sin (2:/ (2c08 1,14 — SinPrn_yy)

~k(l+ cos? ¢) sinﬂwn_.l-,-)} ~ 4K (in s (2n — 17 wy_7
+16% sin 9 (sin P vn_7 + 08 P wy_7 ~ 208 qbu,,._-;))

+16x2 (2:} (tn-10 — (1 + cos® ¢ ) sin? G wn_10)

—kcos ¢ sinf {wp_13 + Wn-3) ) }/ (32};20) } R

where, for the first twenty-one coefficients in particular, coeflicients with a negative index
are zero (i.e, u, = vy = wy, = 0 for n < 0}. It should be noted that for the slow MAG
wave solution U (s) ~ 1 and W (s) ~ 1, as ¢ — 0o, whercas for the Alfvén wave solution
V (s) ~ 1, as s = oo. Hence, for a given solution (either the slow MAG wave or the Alfvén
wave) to have the coefficients U, V' and W all asymptotic to unity, the appropriate factors
must be shifted from the series above to the leading orders. The resultant leading orders are
presented in equations (4.17)-(4.19) for the slow niodes, and equations {4.20)-(4.22) for the
Alfvén modes.

As for the fast modes the terms in the series tend to jump around wildly in magnitude
as n is increased. We track both the slow MAG wave and Alfvén wave scries in successive
packets of twelve terms, truncating the series when the maximum in a packet exceeds its
predecessor.

D.3 Frobenius series expansions

At the regular singular point ¢ = 0 (s = 0) the displacements may be expanded as Frobenius
series, i.e.,




)
A
)
B3

oo o0 (& w]
{ (o) = Z ™", (o) = E o™t and € (o) = Z w1,
n=0

n=0 n=0

where the coefficients uy, vy, and w,, for cach of the five finite linearly independent solutions
labelled a, b, ¢, d and e, ave:
Solution a:

r=0, =1, yw=w=wy=vy=w =u =t =0,

wy = = (in — 20% cos $ tand) ;

ot =

Solution b:

r=0, v=1, w=wp=wyy=vy=wy =t =vy=0,

wy = =12 sing tan b,

T b

Solution c:

r=0, w=1, w=p=uy=y=wy=uw=r=0,

wy == i% (3ikcos ¢ tan 6 — 4v?) ;

Solution d:

r=2 w=1, wmpw=w=u =v,=mw =0,

1 .
up = -fcosq’) tan @ (ix — % cos ¢ tand) ,

1 .
vy = 7% sing tan @ (3m + 4 cos ¢ tan 0) ,

Wy = -']é-(b‘i '—U2 COS¢ tanﬁ‘) )

Solution e:
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1 .
ug = i-gsiuqﬁ tan @ (7ix -+ 4v° cos ¢ tan0) ,

1 .
Vg = 1a tan g (Tm cosd — 2v% sin? ¢ tau 0) ,

we = z¥sing tan 8,

for the first two terins. For terins with n > 3 we may use the following recurrences:

Wy = { (ic(n+r)- 4 cosd tan @) up_g + 4% sing tanfv,.p

+ (ic(n+r+1)cosg tand ~ 4u2) Wy g + K% cOs P tan 91&,1_4}/
{(n+r)(n+r+3)),

U, = cos ¢ tan w, + {{n2 (1 +sin? ¢ tan?0) up—g ~ 4% sec® Oz

+r2cos ¢ tand (sing tonfv,_g - wa_g) +82sec? Qupyg
+in(n + r - 2)sin¢ tan 8{v, _2 + sing tun@wy—z)

+insec® 0 (n+ 7~ Dwa_7}/ ((n+7-2) (n+7)) } '

and

v, = —sin¢g tanw, + {{R2 cos ¢ tan® @ {sin ¢ u,..q4 + cOSPvy-4)
+ik(n+r—2)tané (sindun—o + 2¢os vy + sin P cos ¢ tanfw,_9)
—4v%sec? Qv _; }/((n + 1 —2)(n + r))} ,

wheie, for the first nine coeflicients in particular, coeflicients with a negative index are zero
(ie., un = vy = wp = 0 for n < 0).




D.4 Additional Results
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Figure D.1: Same as Figure 4.1, v = 0.5, but for (a) n=2and (b) n=3.
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Figure D.2: Same as Figure 4.1, v = 0.5, but for (a} n = 4 and (b) n = 5.
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Figure D.3: Same as Figure 4.2, v = 1.5, but for (a)n=2and (b) n=3.
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Figure D.{: Same as Figure 4.2, » = 1.5, but for (a) n=4 and {b) n = 5.




Figure D.5: Same as Figure 4.3, v = 3, but for (@) n =3 with domain 0 €9 <72°,0< 6 < 180°; and (b)
n = 4 with domain 0 < 8 < 81°, 0 < ¢ < 180°; and the point of view has been shifted for the real parts of
n =4 (b, top panel).




Figure D.6: Same as Figure 4.3, v = 3, but for (a} n = § and (b} n = 6; and the point of view has been shifted
for the real parts in both cases (lop panels). The domain for both modes is 0 < 8 < 81°, 0 < ¢ < 180°.




Appendix E

Thin magnetic flux tubes

E.1 Sausage modes

For the sausage modes the matching coefficients are

““al+1 (21/‘/‘—) — agH (2D\/€—ﬁ)

N L () )

and

Cy = —4, 1 v (m+1)(B+1) (@2 ~ )1/2
" H 2mzy fEj (GIH‘H (2;,‘/—) + agHY! (211\/_))

for convenience, we have defined a; and a» as

a = [(1 +1i (wgor - 1)'/2) g-‘_’!. - l] sin@ - (w?,, - 1)"2(:039,

cor

and

Zy 2 He ]
2H,~_hv‘/e—“{ [w':h Heor (1 +1 ( @eor 1) )] sinf

H
+ H::. (1+z( cor"l)l/)(wch 1)],‘2(:039}’

az =

wheref =5 (wf_h -1) 2 The line width contribution from the upward escaping MAG waves
is

2
9788 (B + 1) (m + 1)? (@2, - 1)'/* (w2, l 1) 1

v ey Rlcor ’“lHu-!-l (2:/@) + agH§ (2V\/€_ll)|2 |

I‘:"( w) =wf
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E.2 Kink modes — homogeneous corona with straight, uni-
form, and vertical magnetic field

For the kink modes, with a homogeneous (unstratified) corona permeated by straight, uni-
form, and vertical magnetic fiold, the matching coufficients are

AL = bibs — baby
byby — bobs’
and
CL=C\1,

where

[aa]

I=[" s @ 1,

1
and

m _ bibg — bsbs

Ot = Bby by

for convenience, b, by, by, by, bs, and bg are defined as:

by = zady (21) HY (20 fe1) - Jo (1) B, (2v/eD)

23 $C.A ch ]
bo = —ou J " - 1 J .
o ~ T9T3 [ i (T120) (mzc““mr) o {z122)

by = Jo (zr22) HV (20 /€T)

2i 7w by
b4 - _FJO (:Bl) + 23:3

(Yo (z1} Jo (z12) = Jo (21) Yo (21%2))

bs = Jo (1) HE, (20 /6D) - 2t (21) H (2 /D)

bs = —Jo (z122) H{D (2v4/eT)

where ) = 2wl /Cach, T2 = exp[5(1 —a) /o], and 23 = zw/ (u‘/eICA,ch). The line
width contribution from the uwwvard escaping Alfvén waves is

2 2
2 2.5 ') I(l)l
N [_1_ [g pm+ 1) (B+1)v I *LI L
Fn.J. (LIJ) = &Jf 1471_ mz, pog‘mnﬁ CA,cor exp (5/&) Nﬂ 7

where p is the constant density in the corona {(eq. [5.17]).
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E.3 Kink modes — isothermal corona with straight, uniform,
and vertical magnetic field

For the kink modes, with an isothermal stratificd corona permeated by straight, uniforin,
and vertical magnetic field, the matching cocfficients are

€4Cs — C2Ch
Ap = ———-—,
C1€y — C2C3
and
C.L = C.LI‘D
where

ére o G166 = C3Cs
L=
€164 — €2€3

where, for convenience, ¢y, ¢2, 3, ¢4, €3, and ¢g are defined as:

o1 = zady (z1) HY (20 /eT) = Jo (21) HY, (2v4/ED)

2 ( Cach

c2 == ——Tox3 | Jo (xa) ) (T2} ~
w ( $2CA,cor

) Ji(za) Jo (1'1332)] :

ea = Jo (z122) HY (20 /6T

L) C2
2:1‘3

4 = '*%E:Jo {(z1) Jo (z4) + (Yo (zy) Jo (z122) = Jy (z1) Yo (z129))

¢s = Jo (1) H, (v /€D) —~ 23y (m) HP (2v/6T)

cs = —Jo (z122) HD (2v/€7)

where x4 = 2wH . /Ca cor- In this case, the Alfvén waves are totally reflected in the infinite
corona. Hence, there is no line width contribution, I‘:‘ 1 (w)=0.




E.4 Kink modes — homogeneous corona with straight and ra-
dial magnetic field

For the kink modes, with a homogeneous (unstratified) corona perineated by straight and
radial magnetic field, the matching coeflicients are

_ d.;ds - dz(ls

’\l‘ - d1d4 -—_ dgd;; ’
and |
|
Cy=Cy1,
where :
. didg ~ dsds 5

L= T, |

for convenience, d, ds, dy, d4, ds, and dg are defined as:

dy = 231 (21) HP (20 /e7) ~ Jo (1) HSY), (20 /6T)

24 (1) . Cach (1) (m
dy = ~— 2% [Jl (2122) Hy g {25) - (:BQWM Jo (z12z) (231/5 (x5) — 3zs Hy (ﬂfs)) ,

dy = Jo(zrz2) HY (201/€7)

o1y (Yo (21) Jo (z122) — Jo (21) Yo (122))

L% (1)
di = —-_;r-Jo (1) Hl/s (rs) + 5%s

dg = Jo (z1) HE), (20/€T) = 23; (1) HP (v /D),

de = —Jo (z122) HD (20 /€])

where 15 = Wreor/3CA,cor. The line width contribution from the upward escaping Alfvén
waves 18
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ABSTRACT

Longstanding observations of incoming and ouigoing f- and p-modes in
annuli around sunspots reveal that the spots partially absorb and sub-
stantially shift the phase of waves incident upon them. The commonly
favoured absorption mechanisui is partial conversion to slow magneto-
acoustic waves which disappear into the solar interior channelled by
the sunspot’s magnetic field. However, up tilt now, only f-mode ab-
sorption couid he accounted for quantitatively by this means. Based
on vertical magnetic field models, the absorption of p-modes was insuf-
ficient. In this paper, we use the new calculations of Crouch & Cally
(2003a) for inclined fields, and a simplifiet model of the interaction
between spot interior and exterior. We find' excellent agreement with
phase shift data assuming field angles from the vertical in excess of 30°
and Alfvén/acoustic equipartition depths of around 600-800 km. The
absorption of f-modes produced by such models is considerably larger
than is obscrved, but consistent with mumerical simulations. On the
other hand, p-mode absorption is generally consistent with observed val-
nes, up to some moderate frequency dependent on radial order. There-
after, it too is too large, assuming absorbing regions comparable in size
to the inferred phase shifting region. The excess absorption produced
by the models is in stark contrast to previous calculations based on
vertical magnetic field, and is probably due to finite mode lifetimes and
excess emission in acoustic glories. The excellent agrecinent of phase
shift predictions with observational data allows some degree of probing
of subsurface field strengths, and opens up the possibility of more ac-
curate inversions using improved models. Most importantly though, we
have confirmed that slow mode conversion is a viable, and indeed the
likely, cause of the observed absorption and phase shifts.

Key words: Sun: magnetic fields — sunspots — Sun: helioseismology

1 INTRODUCTION concentrations was developed by Braun, Duvall &
LaBonte (1987) (see also Bogdan et al 1993; Braun
et al. 1992; Braun 1995; Zhang 1997), who observed
ingoing and outgoing waves in annuli surrounding
spots and plage. This has come to be called Han-
v Eemail paul.cally@sci hedu.ms kel analysis, because of the decon:position into in-
4 l_: ::::] ;‘;ﬁé;:'rﬁucﬁtgmgflﬁ.rﬁm:::; edw.au going and’outgoin.g.ﬂankel fuflction: used in most
t E-mail: dbraun@cora.owra.com cases, Their unanticipated finding was that sunspots
§ The National Center for Atmospheric Research is spon-

sored by the National Science Foundation.

One method of determining how solar usciilations
interact with sunspots and other magnetic field
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absord up to half of the incident p-mode power at
favoured frequencies and horizoutad wavenuwubers.

More recently, new local holioseismic techniques
have been used to probe sunspots and their sur-
roundings. For example, acoustic linlography has
confirmed the Hankel analysis results (Lindsey &
Braun 1989; Braun and Lindscy 2000a; Chou 2000},
adding in particular fascinating information about
enhanced acoustic emission in regions surround-
ing sunspots (acoustit glories) (Donea, Lindsey &
Braun 2000; Jain & Haber 2002). Acoustic tomog-
raphy, also known as time-distance helioseismology,
has similarly been very successful at imaging sub-
spot regions, {see the well-known “coffee mug” im-
age from the SOHO-9 workshop; Kosovichev, Du-
vall & Scherver 2000, Fig. 8). Unlike Hankel anal-
ysis, tomography and holography dispensc with a
mnodal description altogether in favour of ray or op-
tics formalisins, and are very adept at directly imag-
ing subsurface thermal and flow features. However,
despite some progress (Kosovichev & Duvall 1997,
Kosovichev, Duvall & Scherrer 2000, 2001), as yet
neither holography nor tomography ireats magnetic
fields cntirely satisfactorily. For example, ouly the
fast magnetoacoustic wave is retained in Kosovichev
& Duvall (1997), §2.3, and Kosovichev, Duvall &
Scherrer (2000), §2.4, and despite the theoretical
possivility of disentangling suund and Alfvén speeds,
only their sum has so far been reliably raoeasured.
(Further questions aboit the trentment of the acous-
tic cutoff and Brunmt-Viisila [roguencies in the ray
approach are discussed by Barnes §& Cally 2001).

Indeed, tomography’s assumption of a single ray
speeding up or slowing down as it reeets various fea-
tures is not appropriate to the mode conversion pro-
cess commonly envisaged as the cause of wave ab-
sorption in sunspots. As first suggested by Spruit
(1991) and Spruit & Bogdan (1992), and developed
by Cally & Bogdan (1993}, Cally, Bogdan & Zweibel
{1994), Bogdan & Cally (1997), and Cally (2000),
when a p-mode encounters magnetic field concen-
tratiens characteristic of sunspots, it splits into ‘fast’
and ‘slow’ waves which are quite different in nature.
indeed, this coupling is expected to be strongest
where the sound speed ¢ and Alivén speed a are com-
parable, in which case the distinction between fast
and slow is small. Below this shallow depth though,
the sound speed greatly exceeds the Alfvén speed
and the two modes decouple. They are then ciearly
distinguishable: the fast wave is essentially acous-
tic, and behaves very much like the p-mode (it is
termed the n-mode by Cally & Bogdan 1993}, and
the slow mode is nearly irausverse, has a wavelength
which decreases with depth, and behaves much like
an Alfvén wave. This scenario is depicted schemati-
cally in Fig. 1.

Although the vertical field model predicts that
f-mades are substantially absorbed {(Cally, Bogdan
& Zweibel 1994), p-modes of increasing radial order
are progressively too weakly affected to account for
observations. Based on twe dimensional Cartesiau
simulations, Cally (2000) suggested that spreading

.-p::O
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Figure 1. Schematic diagram showing an acoustic wave
incident on a vertical magnetic field concentration from
the left, and heing partially trangnitied. and partially
converted to slow-modes which travel down the magnetic
fickd lines. In reality, there will alse be some reftection
and scattering. The depth at which the sound and Alfvén
speedls coincide is denoted by L. In the simple polytropic
mndel adopted in this paper, the density vanishes at Lhe
surfate.

magnetic field, as found in sunspots, might be more
cffective. However, it was unclear whether it was the
spreading of the fiekt that had the desired effect, or
merely its inclination away from the vertical. To ex-
plore this questicn, Crouch & Cally {(2003a) calcu-
lated the eigenfunctions and complex eigenvalues of
oscillations in an adiabatic polytropic model of in-
dex m, = 1.5 (i.e,, ¥ = 5/3) with uniform inclined
magnetic ficld, and found that indeed substantial en-
hancements in absorption were found as the field was
rotat «d away from the vertical, with a peak effect at
around 390°.

It is the purpose of this paper to explore the ex-
tent to which the inclined field results of Crouch &
Cally (2003a) can quantitatively explain the Han-
kel observations. To that end, we shall compate
with the absorption and phase shift results presented
in Braun (1993), which still represents the highest
quality data set of its type. Two sunspot groups,
NOAAS254 and NOAAS229 are examined in -detail
in that refcrence, each using long data sets coliected
at the South Pole in 1988 (Braun et al. 1992). The
former contaius a large nearly circular spot with um-
brat radius 9 Mm and penumbral radius 18 Min. The
primary spot in NOAAS229 is slightly smaller and
less regular, Since the absorption and phase shift
results for each are very similar, we shall focus on
NOAA5254 here. The annulus used for the Hankel
analysis had an inner radius of 30 Mm and an outer
racius of 243 Mm. The absorption coefficient o for
NOAAS5254 is plotted against frequency in Fig. 2,
illustrating the points that

(i)} o rises from zero at low frequency to & maxi-
mum value, and then dips to zero before apparently
rising again (see n = 3-5 in particular);

(ii) peak absorption diminishes with iucreasing
radial order;

(iii) the frequency of the absorption dip is around
5 mHz at larger radial order, but is lower at lower
n.

© B0DC RAS, MNRAS 000, 000-000
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Figure 2. Abserptinn coefficient o versus lrequency for
the f- and p-moties in the spot NOAAS254 {or different
radial order n. The f-mode corresponds to n = 0. This
figure is a replotting of Fig. 4 of Braun (1993), though
against frequency rather than spherical degree €.

Any successful model should reproduce these fea-
{ures.

2 MOUDEL

Tables resulting froun the model of Crouch & Cally
{2003a) present the complex eigenvalues x against
real dimeansionless frequency v in a complete adi-
abatic polytrope of index m, = 1.5 with magnetic
inclination angle & = 0°,5°,10°%, ..., 55 and p-mode
radial index n = 0,1,...,8 {higher angles are also
available, but are not complete in n). Here

w M
g
where g is the gravitational acceleration, I is the
depth at which the sound and Alfvén speeds co-
incide, and x = 2kL is a dimensionless horizontal
wavenumber. In Cartesian geometry, we have as-
sured an exp{i{kz — wt)] dependence on horizontal
position z and time ¢. Although the eigenvalue tables
of Crouch & Cally (2003a) are calculated for a uni-
forin field distribution without bounds, the essence
of the model we develop in this paper is to adopt
the eigenvalues x globdally, i.e., to assume that the
damping parameter Im{x) and the local wavenum-
ber Re{x) given by these calculations applies (at
least on average) to the spot as a whole, though the
field is of course not uniform throughout. (In §3.1
we shall indeed adopt a single value of inclination
angle # and equipartition depth L to be representa-
tive of the whole spot, but in §3.2 we relax this by
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allowing {or a nested set of piecowise uniform shells.
Experience with a 2D numerical code (Cally 2000)
indicates that absorption and phase shifting aro lo-
calized over a shallow depth of less than about 1 Mm
Leneath the spot, and so variation of 8 with depth
ia not important.)

For vertical ficld, the same equations (and solu-
tions) as ure addressed in Cally & Bogdan (1993)
and Cally, Bogdan & Zweibel {1994} also result
from a cylindrical decomposition in which the three
compoucuts of veloeity take the form (Schever &
Thomas 1981)

w = U() {kzm+1(kr) - lgz:n(kr)] (2)
x expli(mn? - wt)]

w = ~i::acf(z)§%5ﬂ explifmd —wt)]  (3)

#: = —ikiWV(2)Zm(kr) expli(md - wt)],

where Z represents a Bessel function or linear combi-
nation of them (J, ¥, or the Hankel functions H"?")
as appropriate.

In Cartesian geometry, it is assumed that the
inclination 8 of the uniform maguetic field lies in
the #-z plane {the ‘fourth-order’ problem, because
the Alfvén wave decouples in this case leaving a
fourth-order system of governing differential equa-
tions). Extension to full thyee-dimensionality (the
‘sixth-order’ problem), where B makes an angle ¢
with this plane, reveals that the dependence of & on
¢ is generally weak compared to that on @ {Crouch
& Cally 2003b), and we shall ignore it in the sim-
ple mode! presented here. To illustrate the point,
Fig. 3 shows the rcal and imaginary parts of the
eigenvalue & against dbuensionless frequency » for
the case @ = 30° (where .. i:ticn is approximately
maximal} and various values of ¢. It turns out that
we are mainly interested in the behaviour for » < 3,
where indecd ¢ makes little difference, apart from
the case of Re(x} for the pi-mode (¢ = 45°) and the
f-mode (¢ = 90°}. Since the observational data {or
F-mode phase shifts is too noisy to be useful, this
Re{r) dependence on ¢ does not affect any com-
parisons we shall make involving the fundamentai
mode. It inay have more effect on p; at intermediate
¢ though.

The cylindrical geometry analogue strictly
would be a straight-field conical structure (Cally
1983), where # increases lincarly with r, and with
only radial (m = (!} vscillations in the 2D case. How-
ever, in the spirit of exploration, {and since this is
a very difficult problemn to solve), we assume a uni-
formn # throughout the magnetic region, or piecewise
uniform in cylindrical shells, and simply adopt the &
eigenvalues from Crouch & Caliy (2003a). The essen-
tial idea is that & is a global property of a cylindrical
spot, to be read from tables, under the assymption
that equs.(4) are valid. The magnetic field plays no
other role thar to supply these k.

In the inner shefl, Z,, must be the J,, DBessel
function for the solution to be bounded at r = 0,
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Figure 3. The real {loft panels) and imaginary (right
panels) parts of the cigenvalues x agaiust nondimen-
sional frequency ¥ for the complete my == 1.5 adiabatic
polytrope with uniform magnetic Geld av angle § = 30°
and ¢ = 0° (top panels), ¢ = 15° (middle panels), and
¢ = 90° (bottom panels). In the left panels, the dashed
lines represent the nonmagnetic case, and correspond to
the f, p1, ..., pa modes respectively, from left to right.

whilst in the outer uon-maguetic region, it is a lincar
combination

Zalkr) = AHY (kr) + HD (k)

corresponding to outgoing and incoming waves re-
spectively. An arbitrary normalization has been ap-
plied in which the amplitude of the incoming wave
is unity. In any intervening shells, Z,n is an arbi-
trary ~ombination of Jia and Y;,. Each shell has its
own complex X, read from tables. The total pressure
and the radial velocity is matched across each shell
boundary r = R, (0 < Ry < ... < Ry = R), ic.,
Zwm(kr) and dZn(kr)/dr respectively. This allows
all the coeflicients in the Bessel linear combinations
to be determined. Then, from A, we calculate the
ahsorption coefficient o and phase shift § using

a=t- AP, §=—arg(d), (4)

An advance in phase (8 > 0) represents an increase
in phase speed through the spot. Note that if the
internal wavenumber k is the same as that in the
external region, kg (real), then A =landa=d=10
as expected.

Limitations of the model are

(i) the magnetic field geometry has been simpli-
fied to be piecewise uniform;

(ii) magnetic ficld variation with depth is not in-
cluded;

(lii) dependence of & on the angle ¢ s ighored,

(iv) scattoring across radial order n has been ate-
glected (see the discussions in Braun 1995; Barnes
& Cally 2000);

(v} the acoustic jacket hax been ignored (Bogdan
& Cally 1995; Barnes & Cally 2000);

{vi) ans my, = 1.5 planar polytrope has been used
to calculate the complex &, though we partinlly cor-
rect for it through the p-mode ridge adjustment pro-
cedure discussed later in this section;

(vit) thedifference in thermal structure inside and
outside the spot has not been explicitly incuded;

{viii) dnmping of acoustic emission in sunspots,
ond enhanced emission in acoustic glories surround-
ing them, are ignored;

{ix) flows are neglectedd,

(x} no overling atmosphere has been included.

Experience with (Cartesinn) numerical simulations
suggests that none of these is fatal. To some extent,
the proof of the puddiug will be in the cating; despite
these limitations, can Braun’s observational Hankel
data be adequately matched using the model?

Several of these points warrant further discus-
sion. Regarding Point (ii}, our only measure of mag-
netic field strength is L, the depth in uniferm field
at which a = ¢ (see Fig. 4). In reality, we expect the
magnetic field to concentrate with depth. The effect
of this is that the best it to phase shift § and absorp-
tion coefficient o may not occur for the same L and
shell radius R. The reason is that phase speed of p
or 7t modes is determined predominantly at the hn-
mediate subsurface layers (where the sound speed
is lowest), whereas ahserption (conversion to slow
modes) occurs somewhat lower, presumably around
L. Consequently, the magnetic field strength that 6
and & ‘see’ may well be different. Compounding this
difference is the observational result from Hankel
analysis (Braun 1995} that plage absorbs but does
not scatter p-modes,’ suggesting that the absorb-
ing region may extend beyvond the scattering region.
This point is addressed further in §3.2,

Points (iv) and (v) are related. Because the ver-
tical dependences of the internal and external eigen-
functions U(2) and W{z) are not identical, there
must in reality be some degree of scattering across p-
mode ridges. Our model neglects this, and by match-
ing both u, and total pressure, actuaily allows for re-
flection and transmission at ¥ = R, When the eigen-
function mismatch is taken into account though, it
turns ont that it is not possible to match the interior
and exterior oscillations using just the discrete sets
of f- and p-modes of the given frequency in both
regions, Bogdan & Cally (1995) show that a con-
tinuous spectrum of horizontally evanescent ‘jacket
modes’ must also be invoked. These supply the ‘glue’
necessary to perfect the match.

! However, holgraphy suggests otherwise (Braun and
Lindscy 2000b). The reasen for the discrepancy is un-
clear.
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Figure 4. Magnetic ficld atrength B against equipar-
tition depth L for a uniform field in (i} full curve: the
realistic solar model fgoug.15bi.d. 15 from the Aarhus adi-
abatic pulsation package {Christensen-Dalsgaard 1997),
and (i} dashed curve: a complete adiabatic polytrope
of Index m, = 1.5, assuming a density at 1 Mm taken
from the Aarhus model. The right hand axis shows the
sourd and Allvén speeds at this equipartition depih in
the Aarhus model only.

Point (x} is probably unimportant below the
chromospheric acoustic cutoff frequency { ~ 5 mHz),
but above it a more sophisticated model should allow
waves to disappear upwards as wetl as downwards
{Cally, Dogdan & Zweibel 1994).

For the single shell model, assuming ko > 1
and Ak = Re(k) — ko € R™', where ko is the (real)
wavenumber in the outer nonmagnetic region and
k that inside the spot corresponding to the saine
frequency and p-node ridge, the boundary matching
yields

d= ~-2 Re(AR)R. (5)
For the adiabatic polytrope for example,
ko = myw’ (20 + my)g. (6)

From the inclined field eigenvalues (see Crouch &
Cally 2003a, Figs. la, 2a, 7a, and 8a), Re{Ak) is
nearly always negative, though for 8 < 30° it can
be slightly positive at low frequency. So 4 > 0, and
it initially grows linearly with Re{(Ak) as frequency
increases, Since kg increases cuadratically with fre-
quency f = 2rw whilst Re(k) increases only linearly,
we expect a superlinear increase in & with f. This
is consistent with the Hankel data (Braun 1995).
Equation (5) is also consistent with our basic un-
derstanding that an increased phase speed in the
spot (decrcased wavenumber) gives rise to a posi-
tive phase shift when it reemerges. Figure 3 shows
the Crouch & Cally (2003a) cigenvalnes for 8 = 30°,
showing that indeed Re(Ak) is negative.

However, there is a complication arising from
Poiat (vi) above. Although the polytrupic index has
little cffect on the calculated eigenvalues (see Hunter
1999, for the vertical field case), giving some reassur-
ance about the applicability of the Crouch & Cally
(2003a) model to the real sun, it does noticeably
affect the location of the p-mode ridges in the f-
{ ptanc. If we apply eqn. (6) for a given frequency
f = 2mw, there results a considerable distortion in
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f. Instend, we proceed as follows: to caleulate tho
model e and § for a given frequency f, p-mode ridge
1, and equipartition depth L, we first dotermine the
corresponding ¢ fromn the roul quiet sun f-f curves,
and hence caleulate ko = /€(0 + 1)/Ro. Then we
apply equ. {6} to find the “polytrope-ceffective” fre-
quency, «nd thence # through eqn. (1}, The Crouch
& Cally tables are then consulted to find . In this
wiy, we compensate for the discrepancy between
ridge positious. Our preference for € rather than f
as the fundamental quantity allows us to more accu-
rately compare the frequeney depeundence of o and &
with observations, If we do not apply the correction,
similar resnlts are obtained, though for larger L.

3 RESULTS
3.1 Single Shell Models

The radius of the scattering region is most directly
probed using a range of azimuthal degree m. The
impact parameter mRy/+/€(f -+ 1) is a measure of
how directly or glancingly the wave meets the spot.
As this approaches the radius of the scattering re-
gion, we expect § to drop towards zeru.

To teduce ervor, Braun {1995) combined phase
shift and absorption resuMs into bins in ¢ centered
on £ = 61, 82, 102, 123, 1 i4, 164, 185, 205, 226, 246,
267, 288, 308, 329, 349, 370, 390, 411, 432, 452, 473,
493, 514, 534, 555, 576, 596, 617, 637, 658, 678, £;99,
and 720. The quality of the data varies considerably
across this range, with perhaps the best results at
around ¢ = 288, corresponding to a horizonta! wave-
length of 15.2 Mm. Figure 3 displays the predicted
phase shifts at £ = 288 for a singlr <h~!! > el with
L =08 Mm, B = 27.5 Mm, a4 [eld iuclination
¢ = 30°. The comparison with the :NOAA5234 data
is impressive. Neighbouring values of L (0.6 Mm and
1 Mm) and R (20 Mm and 35 Mm) produce notice-
ably inferior fits, with 25 < R < 30 Mm being best
(c.f., Fan, Braun & Chou 1995}, For the most part,
we shall fix on R = 27.3 Mm from now on.

Models with inclination angles 8 below 30" yield
very poor results because of the negative phase shifts
they produce at some frequencies {see the discussion
associated with eqn. (5)). On the other hand, the
fit degrades comparatively slewly with increasing &
above 30° {-ee Fig. 6). Though # = 30° is clearly
best, 40° may be judged acceptable. Of course, a real
sunspot has a wide range of field inclinations, and
attempting to model this with a single 8 is. bound to
introduce inaccuracies.

Dependence on € is addressed in Figs. 7 and
8, with € = 203 and 411 respectively. At the lower
£, the fit is still quite good, and in particular the
decrease in & with decreasing ¢ is well modelled. At
the larger £, the errors in the obscrvational data are
much Jarger, leaving very few ‘reliable’ points. There
also appeers to be more scatter, most notably at
a = 2, which may reflect the highly spiky behaviour
seen in the model curve, or may simply indicate that
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the data is highly unreliable. On the other hand,
these higher € modes may be scattering off smaller
scale features in the spot.

Whereas modelling § against 7n is fit best with
L 2 0.8 Mm, fits of axisymmetric modes against fre-
quency are optimized for somewhat smaller equipar-
tition depths {and slightly larger 8, though this is
less significant). Figure 9 depicts phase shift ver-
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Figure 9. Phaso shift § (curve) as a function of fre-
quency for the single shell model with L = 0.58 Mm,
R = 27.3 Mm, # = 35°, and for axisymmetric oscitla-
tlons (m = 0). The black curve corresponds to the f-
made, cyan to the pi-made, etc. The plotted polnts of
the correapending colours aro the m-averaged values for
NOAA5254 (Braun 1995), with only those polnti plotted
which have estimated error bounds o5 £ 30°. There are
no f-mode points of this accuracy. Given the elected val-
ues of # and R, the chosien I represente the least aquares
best fit to the NOAAS2H phase ehift data for p-modes
L TP . X

sus frequency for m = 0 ond the model I = 0.58
Mm, £ = 27.5 Mm, ¢ = 353", compared with the m-
averaged § for NOAAS254. As discussed in Braun
(1995), & is averaged over a small range of m about
( in order to reduce errors and seatter. The m range
variea, but is chosen so &5 to not intrude far into
the ‘shoulders’ scen in previous figures. Given the
limitations of the model discussed earlier, the qual-
itative agrecment in behaviour is plessing. Better
agreement with individual p-mode ridges can be ob-
tained by slightly varying parameters; e.z., reducing
L to 0.55 Mm brings the ;i ridge into elmest per-
fect agreemcnt, though at the expense of the accu-
racy of the n 2 4 curves. On the other hand, raising
L to 0.8 Mm as in previous figures produces com-
paratively poar remults for lower n. Specifically, the
ridges are shifted too far to the left (recall that fre-
quency scales as L-1/%), though their slopes remain
approximately carrect. This is clearly a residual of-
foet of the mis-positioning of the p-mode ridges by
the polytropic model. It is anticipated that mov-
ing to a model based on realistic solar structure in-
stead of a polytrope would improve the match sig-
nificantly.

Previous attempts to model p-mode absorption
in synspots based on slow-mode conversion and ver-
tical magnetic fields have foundered on the seeming
imposgibility of obtaining suffident absorption be-
yond the f- and perhaps zn-modea. However, with
inclined field, absorption is ample! Figure 10 shows «
as a function of mfor thecase L = 0.8 Mm, B = 27.5
Mm, # = 40°. Plotting o as a function of frequency
(Fig. 11) reveals a similar picture. Correspondence
of the model curves with the dip at 5 mHz may be
improved by increasing L (see Fig. 12).

Several pointa should be made abeut Figs. 11
and 12. First, there is a minimum in a correspond.
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Figure 11. Absorption cefficient a vemusn frequency
for the case of Fig. 9. Agaic the comparison is with m-
averaged Ilankel data. Frror bars have been auppressed
in the interesta of clarity, but anly those poimts with 0. <
0.15 have been retained.

Figure 12, Absorption coefficient & versua frequency for
6 = 35", L = 0.85 Mm, and t = 9 Mm.
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ing to the first dip in the Tmn(r) onvves (soe Fig, 3).
Although this dip does not extend to zero for # £ 0
asg it does in the vertical ficld case (Cally, Bogdan &
Zweibel 1994), it is nonetheless substantial (note the
logarithmic scale in the figure). At these frequencies,
the coupling of fast aud slow mocles is weak, espe-
cially at high radial order. Since f oc v/ VI, the dip
may be moved around in frequency by varying L. 1f
it is believed that the «ip in absorption in the Han-
kel data is actually due to this effect, this gives us
o means of fixing L. This is how L was chosen for
Fig, 12. Indeed, the teudency tor the dip to occur at
lower frequency for low radial ovders n (inost clearly
seen in Fig, 2) is matched here.

However, evidence from acoustic holography
suggests that the 5 mHz dip mnay instead be due
to an enhancement of emission in this frequency
band in a region (the acoustic glory) surronnding the
spot (Donea, Lindscy & Braun 2000; Jain & Haber
2002). Nevertheless, the correspondence between the
5 mHz dip and the Im(x} dip at just about the right
L seems too great a coincidence to ignore, and we
might be lead to believe that hoth mechanisms are
at work here.

Even with the Im({x) dip though, the absorption
produced by the model at higher frequencies and
low radial order is far too great. A much smaller
absorbing radius R can partially rectify this (see
Fig. 12), though the discrepancy at low n and large f
is still problematic. Cally, Bogdan & Zweibel (1994)
argued, in the case of the f-mode, that dissipative
mechanisms operate at these frequencies (associated
with interaction between the wave and convection)
which causc high frequency modes to be local rather
than global in nature. The ‘memory’ of the nearby
absorbing spot is therefore rapidly dissipated. The
presence of the acoustic glory only amplifies this ef-
fect. These mechanisms are not casily modelled at
the fundamental level, but reasonable ad hoc pre-
scriptions appear capable of substantially reducing
the excess absorption. Another possible cause is our
neglect of the dependence of fm{k) on the angle ¢
at which the waves meets the vertical plane contain-
ing the magnetic field vector B. Although as men-
tioned earlier, our model assumes no dependence on
¢, in reality Jm(x) does noticeably decrease with
frequency for p-modes in field with ¢ ~ 30° and
¢ == 90°, contrary to its behaviour at ¢ = 0° (Fig. 3).

A final possible reason for the cxcess absorp-
tion in the modes, and possibly the most important
one, is that absorption peaks rather sharply around
& = 30° in the Crouch & Cally (2003a) results (see
Fig. 9 of that paper, noting the logarithmic scale),
whereas phase shift {i.e., Re(x)) varies more grad-
ually. Consequently, whilst an average phase shift
associated with 8 = 30° does a good job of repre-
senting the whole spot, applying this angle every-
where substantially overestitnates absorption, which
in reality occurs predominantly in regions with that
field inclination. This would explain why the absorp-
tion vs. frequency curves are too high for parameters

optimized to fit phase shift data, despite having the
right general shape.

The oscillations particularly evident in the
Plyooypa curves o Fig. 11 are due to leaky reso-
nances in the spot, i.e., partial reflections at r = R,
Sinee real sunspots mny not have such sharp bound-
aries, this effect may be smmeared in practice,

3.2 Multiple Shell Models

The impact parameter shoulder in the o versus m
Haukel data (Fig. 10) is far less clear than it is in
é. This suggests that the absorbing region is actu-
ally more extended in radius than is the phase shift
region. This is consistent with tho result that plage
produces a measurable absorption but effectively no
phase shift in the Hankel data (Braun 1995). Con-
sequently, we might expect the diffuse magnetic cl-
ements surrounding sunspots to continue absorbing
beyond the scattering region.

The tendency for § to be negative for low fre-
quencies when 8 < 30°, mentioned in §2, suggests
that the winbral core, where the field is presumably
close to vertical, should show up as a dip in the &
vs. m graphs at low impact parameter, i.e., low m.
Although there is some hint of this in the cohser-
vationnl Hanke! data for individual m, the scatter
makes it unclear whether the effect is really there.
Similar comments can be made about a, since it too
is greatly reduced in vertical field.

On the one hand, the lack uf a shoulder in the o
vs, m Hankel data suggests that the absorbing region
is large, but on the other, a vs. frequency graphs
(Fig. 12) produce best results for R small! Seem-
ingly, one way around this conundrum is to suppose
that absotption occurs predominantly in a compar-
atively thin shell ay large radius, thereby presenting
a wide target to incoming waves whilst at the same
time not absorbing them too much. Alternatively,
acoustic glories and finite mode liftime effects may
bring the absorption graphs into line with observa-
tions without the need to reduce R,

With that point in miud, Fig. 13 displays § for
¢ = 288 and a five shell model consisting of a range
of L and @ values. The dips created by the ‘um-
bra’ are evident in the model curves. Unfortunately,
the quality of the Hankel data is insufficient to use-
fully probe the umbra in this way. Nevertheless, this
somewhat arbitrary model indicates some of the fea-
tures of a multishell scenario. Figures 13-16 further
illustrate the character of this particular five shell
model. Overall, it yiclds a goed fit to the phase shift
data, and at least a qualitatively correct fit to the
absorption data, though as usual a is a little too
high and the a shoulder too narrow in m. It would
seem that the NOAA5254 spot’s absorbing area ex-
ceeds 35 Mm, which takes it well into the Hankel
annulus.
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Figure 13. Phase ghift § versus azimuthal order m
for various radizl orders n for the multishell model
L = {1,1,0.8,0.6,04} Mm, R = {6,9,18,25,35) M,
and ¢ = {0%,20%,30°,40°, 35°}, and waves with degree
£ =288,

4 CONCLUSIONS

In this paper, we have explored the consequences
of modelling sunspot absorption and phase shift
in a erude way using the tabulated cigenvalues of
Crouch & Cally (2003a). Overall, given the simpli-
fications made, the correspondence botween obser-
vational Hankel data and the models is very im-
pressive, especially for &, Indeed, it is remarimble
that the phase shift data can be fitted so well us-
ing just magnetic effects, without including inter-
nal/externat thermal differences. From tomographi-
cal inversions, Kosovichev, Duvail & Scherrer {2000)
report a typical 0.3-1 kms~! increase in ray-speed
in a region as broad as the surface apot and some
10 Mm deep beneath it. As a comparison, the quiet
sun sound spoed is around 20 kms™! at 4 Mm deep,
and 37 kms™" at 10 M. They cannot distinguish
between sound and fast mode speed, but estimate
that it would correspond to a field strength of 19
kG if the increase were entirely magnetic. Given the
total sunspot surface magnetic flux though, an 18
kG field at these depths should not il such a broad
region, so we may assume the effect is mostly ther-
mal, But also, judging from their Fig. 8, there is a
wave speed decrease in the first 2-3 Mm beneath
the spot. This iz difficult to reconcile with the pos-
itive phase shifts found by Hanke! analysis, though
withort more detailed data than can be read from
their figure, it is hard to be definitive about this. In
any case, we tentatively conclude from our excellent
agreement with the Hankel data that the effect on
p-mode ppeeds is predominantly due to magnetoa-
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coustic coupling at shallow depths (less than 1 Min)
rather than deop thermal perturbations.
Absorption « in our models i3 consistently
somewhnt high for values of the parusneters L, 8,
and R which produce good phase shift its, though
atitative behaviour is & good mateh, The discrep-
ancy could be due to several caunses, most notably

s inappropriately applying a @ & 29° model, for
which absorption is strongly penked, everywhere in
the spot;

s the neglect of convective mode dissipation, de-
pressed acoustic emission inside spots, and enhanced
acoustic emission surrounding spots;

® duc to sunspot feld not being uniform as in
the model, the cffective magnetic field strength at
deptha whe e phase shifting and absorpiion happen
may be quite different, meaning that diffevent pa-
rameters may be required in modelling cach of the
two effects.

Typically, good results are obtained with ecquiparti-
tion depth L between 600 and 800 km roughly, cor-
respouding to Alfvén and sound speeds at 2 = =1,
of aronnd 10-11 ks~ ', or magnetic field strengths
of 3.6-4.8 kG. These are very reasonable munbers,

Indeed, overal], we have been very successful in
addressing the list of points to explain set out at
the end of §1, as welt as others relating to variation
with m. However, the polytropic model adopted hiere
is ton crude to warrant detailed comparisons with a
view to quantitative inversions. It partienlarly af-
focts the horizontal positioning of curves represent-
ing o or & against frequency. It would be useful to
recalculate the Crouch & Cally tables for a realistic
solar model, and reapply the procedures developed
here to them. However, this is not trivial. Although
the eigenvalue ditferential cqnations ave solved nu-
merically using a shooting method, the cigeuvalues
rely crucially on the analytic asvmptotic solution of
the equations for large depth and to high vrder. This
is done using a dominant balance method (which
incidentally relics on 4m, being an integer), and
it is not clear how to carry this over to a general
(tabulated) model. In practice, replacing the solar
model by a polytrope below some depth is prob-
ably the best way to proceed. Even with a realis-
tic solar model though, the neglect of field strength
variation with depth, and thermal differences iuside
the spot, could preclude exact comparison. Unforiu.
nately, the task of calculating eigenvalues for more
complex magunetic geometries is inathematically ex-
tremnely difhcult.

Perhaps the most pe. tinent lesson to be drawn
from our results is that slow mode conversion does
indeed scem to be the predominant mechanism re-
sponsible for the observed absorpiior and phase
shifts. And in particular, tuclined magnetic feld is
necessary to muke the process work.
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