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Introduction

Consider a family of smooth ^-dimensional hypersurfaces - {T, satisfying

dt
xeT, (MCF)

for all t > 0 where Hr is the mean curvature vector of Tt. Then we say that

94. = {Tt }Qit<T is a mean curvature flow. The mean curvature flow of a hypersurface will

decrease surface area in the most efficient way. In some physical phenomena such as the
evolution of the interface between two liquid pure metals, the energy of the interface is
proportional to the surface area of the interface. If we ignore additional energy arising
from momentum, pressure, gravitation, etc., then the evolution of the interface can be
accurately modelled by (MCF). Weak versions of (MCF) have been widely used to model
crystal growth (see, for example, [ATW], [AW], [NP], and [WJE]) and have had a heavy
focus on numerical techniques.

However, tliere are certain physical situations where the additional energy cannot be
ignored, for example magnetised liquid crystals (called ferronemetics). In this case, the
additional energy terms involving pressure and magnetic energy are important aspects to
the physical model that should not be ignored [ZTj. These additional terms are important
for explaining and understanding certain patterns in so-called zebra rocks that contain
both magnetic and neutral clay (see figure 1).

Figure 1 (Photo: Dr. E. Mattievich, converted to digital by Ms. S. Mattievich)

Ferronemetics evolve according to (MCF) plus additional forces (see [ZTJ). These
additional forces could be If on the surface (see Appendix). Therefore we will consider
the evolution of w-dimensional hypersurfaces 94 - {Tt }0<l<T given by

a*
dt

(fMCF)
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for all / > 0. We will call this a. forced mean curvature flow. Such flows have previously
been studied in [DER] where g is constant.

As with (MCF), even some of the simplest examples will develop a singularity in finite
time. Take for example a sphere of unit radius and g(t) given by

8(0 =
fl-f 0<f<l

0 t>\

Then the family 9rf - {S2
 r (0) }^ , R is a forced mean curvature flow and vhe flow

J l vl—2f-/ 0sf<—l+vz

becomes singular at t — -1+V2 .

We would like to define the forced mean curvature flow after the onset of singularities.
To do this, we will use an approach similar to Brakke's geometric measure theoretic
method [B].

Figure 2. Two possible Brakke flows out of a cross.

In Brakke's approach, one considers the evolution of a surface by studying how an n-
varifold evolves according to an equation describing a weak evolution by mean curvature,
called the Brakke flow. The flow is designed to "jump" when a singularity develops.
However, this jumping gives rise to non-uniqueness and suddenly vanishing. For
example, the flow out of a cross could evolve in either of two directions (figure 2), and a
homothetic spoon will evolve until it becomes a half line, at which point it vanishes
instantaneously (figure 3).

I V

Figure 3. The homothetic spoon.

In 1994, Dmanen showed existence of Brakke flows using an especially elegant method
called elliptic regularisation. This was inspired by a similar method used by Evans &
Spruck for the level set flow [ES]. The idea is to turn the parabolic problem into an
elliptic problem and study the elliptic solutions. The elliptic solutions turn out to be
translative soliton solutions and approximate the space time track of a weak evolution of
a specified initial hypersurface by its mean curvature. Making the approximation more
accurate, one obtains a solution to the weak mean curvature flow (level set flow or
Brakke flow).

The first regularity result for the Brakke flow was obtained by Brakke [BJ. Under an
assumption of unit density, he was able to prove that at almost-every time during a weak
motion a varifold by its mean curvature is smooth almost-everywhere. Using this
powerful result, Umanen proved that, if a level set flow doesn't fatten, then, the flow is
smooth almost-everywhere at almost every time [12]. Such fattening occurs in the
example depicted in figure 2. Instantaneously, the level set flow becomes the region
bounded by the dotted lines and evolves outwards.

An alternate approach to regularity has been used in [E], [13], and [Wl.,2]. There one
obtains a regularity theory for smooth curvature flows that develop a singularity at some
time. The theory uses a quantity called the gaussian density which, for a smooth mean
curvature flow 9vl = {1" }Oil<T, is given by

y, T) := lim \pyT (x,t) d?C (x)

where
-]x-y\2/4(T-l)

\nl2

If the gaussian density at a point is sufficiently close to unity, then the surface is smooth
near the point. This is a parabolic analogue of Allard's regularity theorem [A].

The organisation of this thesis is as follows. In Part I, §1 introduces some notation and
some basic geometric measure theory which will be used throughout the thesis. Notation
and conventions can be found after the Appendix. In §2, we introduce the Brakke flow by
motivating it for a smooth eternal flow 94. = {Tt }t>0. We also list some interesting results
relating to the Brakke flow, such as the compactness theorem for Brakke flows (Theorem



2.3) proved by Dmanen in [12]. Analogues will be proved for forced BrakJce flows later in
the thesis. An outline of the elliptic regularisation method is *hen given in §3. There we
include some properties of the minimisers to Fs.

Part II begins by defining gejieral Brakke functionals and general Brakke flows in §4.
These are defined with a minimal number of assumptions required to obtain a
compactness theorem (Theorem 5.1) which we prove in §5. The compactness theorem
allows for the possibility of the sequences being general Brakke flows not necessarily
satisfying the same equation, but rather allowing for the possibility that Che general
Brakke flows are defined by a sequence of general Brakke functionals. Tliis is accessary
aspect required later in the thesis, not merely a matter of art for art's sake (as ws shall
shortly expand upon). In §4, we also give some examples of general Brakke flows
including White's K-almost Brakkeflows [Wl] and forced Brakke flown, a weak version
of (fMCF). The forced Brakke flow is the main subject of this thesis.

Next, in Part HI, we adapt the method of elliptic regularisation to the forced Brakke flow.
This presents its own problems not found in the Brakke flow since the forcing term is
only assumed to be If at best. In fact, the problems encountered are still relevant in even
the simplest extension where the forcing term is C" • As with the Brakke flow, we begin

in §6 by defining a related elliptic problem, namely some prescribed mean curvature
problem related to the forcing term in (fMCF). This reflects an underlying principle:
when using elliptic regularisation, one should choose an elliptic problem that reflects
the parabolic problem.

Unlike the Brakke flow, the elliptic solutions turn out to satisfy a forced Brakke flow that
only approximate the forced Brakke flow we would like to solve (see equation (8.1).
Incidentally, if the forcing term were a constant as in [DER], existence would follow by
an easy adaptation of the arguments in [12]). The method developed here extends the
standard elliptic regularisation argument by using the compactness theorem from §5. This
illustrates the necessity for proving a compactness theorem that allows for the possibility
that the general Brakke flows are defined by a sequence of general Brakke functionals.
This method could be used to prove existence of a weak volume preserving mean
curvature flow (see, for example, [H2] and [Ath]) if one could properly define the
average mean curvature.

As a slight interlude, we prove a cylindrical monotonicity formula (Lemma 7.1) in §7.
This is applicable to the solutions from §6 and those used for the Brakke flow in §3 [12].
We use the cylindrical monotonicity formula to obtain a nice geometric property relating
the height of the minimisers from §6 over an (n + l)-dimensional plane S x R in Rn+2

(Lemma 7.5). This could point the way to a new method for obtaining Brakke's regularity
theorem [B 6.12] by using the methods from [S §§20-22].

In order to apply the compactness theorem, in §8 we must obtain local mass estimates for
the solutions to the elliptic problem defined in §6 (Lemma 8.6). Due to the forcing terms,
the local mass estimates require further extensions to their counterparts used for the
Brakke flow. The local mass bounds are then used in §9 together with an alternate
version of the compactness theorem that links the approximate forced Brakke flow

(equation (8.1)) to the forced Brakke flow (Theorem 9.3) to obtain existence of forced
Brakke flows (Theorem 9.6).

In §10, we prove some properties of forced Brakke flows obtained using elliptic
regularisation. These include some lemmata that characterise the area-ratio and tilt-excess
in terms of similar quantities for the miniraisers from §6 for certain forced Brakke flows
obtained using the elliptic regularisation methods in §§6-9.

Finally, Part IV is dedicated to a regularity theory for the forced Brakke flow. We begin
in §11 by proving a monotonicity formula (Lemma 11.2) analogous to Huisken's famous
monotonicity formula [HI] for smooth mean curvature flows M = {r, }Oit<a.:

This is used to show existence of a localised version of the gaussian density for a forced
Brakke flow (Proposition 11.4). A version of Brakke's clearing out lemma [B] is also
obtained (Proposition 11.6). § 12 concludes with a proof of a local regularity theorem for
the singular time of a smooth forced mean curvature flow (Theorem 12.1). In the
subsequent Appendices, we consider a model of the aforementioned ferronemetics and a
model of "biased" search patterns.

VI Vll
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Part I - Introduction

This part is devoted to the background material. We first introduce some notation and
basic geometric measure theory for which the standard texts are [FJ and [S]. See also
[Mo] for a beautiful introduction. The remaining sections form an overview of the
Brakke flow (see [B] and [12]) and elliptic regularisation (see [12]). These are used as
motivation for Parts JJ and HI.

1 Notation and Preliminaries

To study the evolution of a surface after the onset of singularities we use the language
of geometric measure theory. We will always denote an evolution by ftf and smooth
evolutions will be written {T, },e/ (= !M) where / is an interval in R.

Radon Measures: A Borel regular measure on R"+* is an (outer) measure on R"+*
such that all Borel sets (all open sets and all closed sets on Rn+*) are measurable and
•every set A c Rn+* is contained in some Borel set B of equal measure. A Radon
measure on Rn+* is a Borel measure for which compact sets have finite measure. We
denote the space of all Radon measures by 9tf(R"*k). Radon measures will be
denoted by ji. Special examples are the d-dimensional Hausdorff measure, denoted by
ttd, and the Lebesgue measure, written £"**.

Let Ad Rn+*. We define the restriction of ju to A by

whenever BcR"+* and denote the mass of fi by

Let q> be locally ̂ -integrable. Then define iA-<p by

whers B c R

If the limit

n+k

0" (M, a.) := lima;1 p-"M(Bp (a))

exists, the we call it the n-dimensional density of // at a e Rn+*

Topology of Radon Measures: Let / /^ f^(Rn+1) and define

Vlll



where <pE C°(R"+*,R). The topology on f7WT(Rn+i) is given by the condition that

jut -> ju if and only if //, (.V) -» K<P) for any q> e C° (Rn+*, R) .

Approximate Tangent plane: Define the Radon measure /JaA by

Let 5 be an n-dirnensional plane in R"+* containing 0 (i.e. an n-dimensional vector,

subspace of R"+*), and 6 > 0. If, for any <pG C° (Rn+*, R ) ,

\imjuaA

then we say that 5 is the n-dimensional approximate tangent plane of n at a with

multiplicity 0. We write this as Tafi. If' M c Rn+*, then we define the n-dimensional

approximate tangent plane of Mat a by

if it exists.

Rectifiable sets: Let X c Rn+* and suppose

XcCoudJc,.),
121

where j7/*"(C0) = 0 and each C, is an embedded C1 n-dimensional submanifold.

Then we call X countably h-rectifiable. If X has finite 9{n -measure on compact sets,
then we say that X is locally n-rectifiable.

If Xis locally n-rectifiable and '//"-measurable, then ToX exists Hn\X -a.e.

Rectifiable Radon Measures: Let X c R"+* be 9in -measurable and let
6: R"+t -> N be locally 0in -integrable such that X = {6 > 0} ttn-a.e. Define the
Radon measure u(X,0) by

We say that n is an n-rectifiable Radon measure if either
(i) fi has an n-dimensional tangent plane fi-a.e., or

(ii) fj. = fi(X,6) for some ^"-measurable, countably n-rectifiable set X, and some
locally ^"-integrable function 6: Rn+t -> [0 ,~) .

We denote the space of n-rectifiable Radon measures on R"+* by Mn (Rn+*).

We say that fi is an integer n-rectifiable Radon measure if either
(i) p. has an n-dimens\onal tangent plane fi-a.e. with positive integer multiplicity, or

(ii) n = fi(X,ff) for some ^"-measurable, countably n-rectifiable set X, and some
locally 'Kn -integrable function 6: Rn+* -> N .

We denote the space of integer n-rectifiable Radon measures on Rn+* by

General Varifolds: Define grassmanian by

Gn (R
n+*) := {(x, S): x e Rn + i , S is an n - plane in R"+* with 0 e S}.

Let F b e a Radon measure on G n (R" f i ) . Then V is called a general n-varifold on

R"+*. We denote the space of all general n-varifolds on R"+* by Vn (R"+i) and give

it the topology of Radon measure convergence. Let q>& C°(Gn(Rn+*),R). Then write

V(<?):=j(p(x>S)dV(x,S).

Let V G Vn (R ) and define the Radon measure /iy by

where n: Gn (R"+i) -> R"+' ., .1 ^ e Cc°(R"+* ,R) . Likewise, if juG Mn (R"+i)., then

associated to p. is the n-varifold Vu defined by

for any <pE C°(t?n(R"+ t),R). This makes sense since r , / / exists p.-a.e. We caO

varifolds of this form integer rectifiable n-varifolds whenever JUE I^fn(R
n+k), and

denote the space of integer rectifiable n-varifolds by IVn (R"+*).

The First Variation of a Varifold: Let 5 be an n-dimensional subspace of R"+*. We
also use S to denote projection onto S.

Let V G Vn(Rn+*). Let 0>: RK+i -> Rn+* be a diffeomorphism and define the push-

forward £>#(V) by

for any <pe C"(Gn(R"+*),R). Here J j O ^ i s rhsJacobian and equals



Let {$, }_£<,<$ be a family of compactly supported diffeomorphisms on R"+*
satisfying

and —
dt »=o

for some C\ vectorfield X on Rn+A. Then it is a straight forward exercise to show that

l/=0

where divsX(x):=trace(V5X(A:)) and Vs is the covariant derivative on 5.
Consequently,

l/=0

We call SV the first variation of V.

When pi e Mn (R
n+*) we will write

5VM(X) = Jdi ) <*//(*),

and when /* = fi(M,G) for some .9/*" -measurable, countably «-rectifiable set M, and
some locally ^"-inlegrable function 0: Rn+* —> [0,°°), we will write

Let C/ c R be open. Define the total first variation of V by

If
dV&s

\SV\(U):=suv{SV(X):XeCl(U,Rn+k),\X\<l}.

), the Riesz representation theorem implies that we may decompose

where H is a locally //v -integrable vectorfield and juv (spt<5K.ing) = 0.

Theorem 1.1 (Compactness theorem for if^n(R
n+*) [A]): Let {//,},>, be a

sequence in /f7^n(R"+*) with

for any K c c RM+*. Then there exists a fie 194.n(R
n+*) and a subsequence {fif

(i)

(n)

(Hi)

(iv)

Currents: Denote the set of n-vectors on R"+t by AnR"+*, and the set of n-forms by
A"Rn+i. We denote the space of all differential n-forms by ©n(Rn+*). If T is a
continuous linear functional on 2)"(R"+*), then we say that Tis an n-current. We
write tDn (R"+*) for the space of all n-currents on R"+* and equip it with the topology
given by , . - ,

for any ae <D"(Rn+*). Define the mass measure of Thy

MU)--=sup{T(a):ae<Dn(U),\a\<l},

where f /cR"+ i is open. The mass of T is given by

If fa is finite on compact sets, then we say that T has locally finite mass. Note that if

T, ->r in£> n(R n + t) then

i—»•»

n+1for all J : c c R

Suppose T has locally finite mass. Then JUJ- is a Radon measure and, by the Riesz

representation theorem we can find a locally jUj -integrable £ E AnR
n+i

T(a) =

where < •,• > is the dual pairing.

x)



Now, suppose JU = fi(M,9) is an integer n-rectifiable Radon measure and assume
TXM =span{r,(x),...,rn(x)} (whenever it exists). Let £ G AnR"+* be given so that,
for//-a.e. x,

then we call £ an orientation for TXM .

Define the current by

= J dju(x),

where ore (Dn(R"*k). We call such a current a locally integer rectifiable n-current

and denote the space of all such currents by ^0 C(Rn +*).

If M is an oriented smooth submanifold, then we can associate to it a locally integral
current, [M], by

where vM is the unit normal to M.

Boundary of a Current: By Stoke's theorem, we have that, for any ae £>" (Rn+k),

dD

for some domain D. We use this as an analogy to define the boundary of a current
T G £>„ (Rn+*) as the current dT e £>„_, (R"+*) given by

for any ere 2)n(Rn+*).

WecallTacycteif dT = O.

If Te^'n
0C(Rn+k) and dT e ^_c, (Rn+*), then we say that 7 is a Zocatfy integral n-

current and denote the space of such currents by lJ)
0C(Rn+*). Note that the boundary

of a locally rectifiable n-current may wriggle so much that it doesn't even have locally
finite mass (see figure 4). So i f (Rn+k) is a proper subspace of Q'°c (Rn+k).

Figure 4. Cantor-like construction by removing squares.

Theorem 1.2 (Compactness theorem for l|,0C(Rn+i) {¥]): Let {r(}fel be a sequence

in l|,0C(Rn+i) satisfying

for any K c c Rn+*. Then there is a Te l|,0C(Rn+i) and a subsequence {7>}ra such

that 7> -» T.

Slicing a Current: Let T e <Dn (R
n+*). Define the restriction of T to A c R"+* by

for each a e £>n(R"+*). We define the slice of T with respect to / : Rn+* -> R at
r e R by

We will often be slicing T G I^,(Rn+J xR) with dTel^c(Rn+1x{0}) at height
. Define

We have the following useful result:

Lemma 1.3 (Co-Area formula [S 28.1]): Let rGl^ , (R" + I xR) . Then, for any

compactly supported, fa-integrable function g on Rn+1 xR, we have



Jg(x,z) I cor (x,z) I djiij. (x,z) = (x) dz

where CO1(x,z) is the projection of cn+2 onto T{xz)fij.. Moreover, for a.e.

have that

Parabolic norms: We will be using C la r, C2'a and W2'p norms of a smooth

evolution M = {T,}t<s at a point {x,t)tM. These will be denoted

Kha(M,x,t),K2,a(M,x,t) and J2p(fM,x,t) (respectively).

Suppose that (0,0) e 94. and that we can rotate fWTto get a new set M for which the

intersection

M n (5, (0) x (-1,1) c graphw

for some function w:5 , n (0)x( - l , l ) -»R whose parabolic C2lOr norm

sup S UP
\Dj<jdt)

ku(x,t)-DJ(d,)ku(y,S)\
' T n't \ll2wa

is no greater than 1. Then we will say that

Otherwise ii:, _ (f^,0,0) > 1.

More generally, we let

K2a(M,0,0) = supU > 0 ,0,0) < 1},

where fMj, = {T^om }r<0 is given by r ^ ° > : = ^ .

Finally, define

K2a {94., x, t) = K2a {94 - {x, t ),0,0).

The norms K,a(9d,x,t) and J2 (M,x,t) are similarly defined

2 The Brakke flow

The Brakke flow is an mtegral form of the mean curvature flow and is obtained by
integration by parts over test-functions. We begin by considering a smooth eternal
mean curvature flow 9A. - {Tt },j.o as a model for our definition of the Brakke flow.

Recall that the area element djut := d{HnLTt) satisfies the evolution equation (see

[HI])

This implies the well-known area decay formula:

d „,

The Brakke flow will be motivated by the local version of this formula.

In order to study the local version of the area decay formula, we need to first
understand how the first variation of the functional Fp given by

At

where q>E Cc
2(Rn+1). Recall the formula for the first variation of an n-rectifiable

Radon measure fi = /<M, 6):

Fix a C] vectorfield X compactly supported in R"+1 -dM and let {$>t}-S<t<s be a

family of diffeomorphisms satisfying

d

"' Jt f=0

Then we have

d/i.

If | SV | « nM (which is true for a smooth hypersurface), then (8V )sing = 0 and



(2.1)

for any C\ vectorfield X compactly supported in Rn+1 -dM . If M is a smooth

hypersurface, we may smoothly extend the mean curvature vector off M and choose

X = smooth extension of HM as our vectorfield giving

6FV(M)(HM ) = J{-(pill + V > • Hu ) djUM .

For our smooth mean curvature flow iWwe have

at

or

—
dt

\<pdH" = l(-<pH2+Vx(p-H)dH
r, r,

(2.2)

forany

This will be our starting point for our definition of a weak version of the mean
curvature flow. It will be useful to think of the (weak) evolution as a family of Radon
measures rather than hypersurfaces. We begin by taking care to define the right hand
side of (2.2) for general Radon measures:

Definition (%p\ (p))\ Let / / e i7Vf(Rn+1) and assume ^6Cc
2(R"+ 1 ,[0,~)). If one of

the following cases holds, set (B(/i;g)) = -<=° :

d) Mo}eKn+1

> 0},(ii) | SV | l{<p > 0}£ M({<p > 0}) where V :=

(Hi) SVsingL{<p>0}±0,

(iv) \<pH2dju = °°.

Otherwise, we define

Remark: We will call C^(R ,[0,<*>)) the space of admissible test-functions on

Rn+1.

Here are some properties of *B(jx\ cp):

Lemma 2.1 (properties of $(//; <p) [B 3.4] [12 7.3]): Let jue
test-function. TJien
(i)

10

and let (pbea

|

i
3

i

(ii) if n{<p) £ c and (BQr, <p)>-c, then \ <pH 2dju <c(c,<p)<°°,

(Hi) if {//,. }fe, is a sequence of Radon measures converging toju, then

lim sup $(fi,; <p) < <B(fi; <p).

(iv) if {/*,},•# is a sequence in lMn(R
n+*) satisfying

then there is a subsequence {i'}^ and a fj. e lMn (Rn+1), measure such that

Remark: By applying the Cauchy-Schwarz inequality and using (ii), it is easy to see
that if ju(<p) < c and $(JJ\ (p)>-c, then we actually have \ SVM \ (U) < C(c, <p,U).

There may be times during the (weak) flow where the derivative isn't defined, for
example when the flow must jump in the case tB(jit; <p) = - °° , To take care of such
casss, we use the upper derivative, which is always well defined:

Definition (upper derivative): Let f : R —> R . Then

is called the upper derivative off at t0.

Finally, we define our Brakkeflow. Taking into account the upper-semicontinuity of
#(u; <p) (Lemma 2.1 (iii)), we make the following definition so that the flow will have
nice compactness properties:

Definition (Brakke flow, integer Brakke flow): Let 94 = {jut }tiD be a family of

Radon measures on Rn+1. If

Dtjut(tp)<'B(jil;(p),

for any test-function (p on R"+1, then we call 94 = {/Jt}ti0 a Brakke flow. If

//, G I94n (R
n+1) for a.e. t > 0, then we call 94 = {jut },20 an integer Brakkeflow.

Note that it is straightforward to generalise the definition to include the possibility
that the ambient space is a general (n + &)-dimensional differentiate manifold [II].
The subsequent analysis will also apply in that case.

Lemma 2.2 (some properties of Brakke flows [B 3.7, 3.10, 4.18], [12 6.8]): Let
94 = {jut }tk0 be a Brakkeflow. Let tpbea test-function on Rn+1. Then,

(i) if JT M(/is )ds<~,t>t0 then M(//,) < M(/ / ,D ) ,

11



(ii) if //0(Rn+1 -BR(0)) = 0, then //,(Rn+1 - B ^ ^ ( 0 ) ) = 0 for all t > 0,

Assume jit (K) < <*>, K cc R"+1/or a//1 > 0. 77je/i,

(m) the left and right limits always exist and satisfy
lira jut (<p) > M, (?) * lim jus ((?),

(iv) D,jut (<p) > -oo far a.e. t > 0,

(v) /i, e Mn (R
fl+1) for a.e. t > 0,

We also have a compactness theorem for integer Brakke flows which was proved
using ideas from [B]:

Theorem 2.3 (compactness theorem [12 7.1]): Suppose M' = {/// },i0, i = 1,2,... is a

sequence of integer Brakke flows satisfying

u

for any K <zcz Rn+1. Then
(i) there is a subsequence !M' ={/i't }t>0,i

f = 1,2,... and an integer Brakke flow

M = {//, }/S0 such that fif
t —> jut for every t>0,

(ii) there is a further subsequence (also denoted i') 9vC ={ju't }r20, i' = 1,2,...

(depending on t) such that V ,• —> Vft for a.e. t> 0.

This is the most important ingredient in the proof of existence by elliptic
regularisation.

3 Elliptic Regularisation for the Brakke flow

Here we give an outline of the proof for existence of integer Brakke flows using the
method of Elliptic Regularisation. This is a summary of the first chapter in [12] for the
special case where the ambient space is R"+1. We will be adapting the main ideas
from this method to prove existence of weak solutions to the forced mean curvature
flow.

Definition (Initial surface): Assume MQ e lJ,oc(R"+1 x{0}) is a cycle of finite mass.

Then we say chat Mo is an initial surface and we call /iMo the initial data.

We new aim to turn the parabolic problem of existence of an integer Brakke flow
with initial data ju0 into a fixed boundary elliptic problem in a higher dimensional
ambient space. The idea is to try to approximate the (stretched out) space time track of
the Brakke flow by a locally integral n-current Me minimising an appropriate
functional. Since the minimiser is approximating the (stretched) space time track, we
hope that juM, will be a downward translating soliton solution for the Brakke flow.

Therefore, we would like M s to satisfy the Euler-Lagrange equation

HMt=--a>±,
M £

where CO := en+2*

Consider the functional given by

FE(M) ~- xR,

for any M G I ^ , ( R " + 1 X R ) with boundary in

M we have, by (2.1),

. Then, whenever

SFe(M)(X) = - - f (HM + - < ) • Xe'zl£djuM (x,z),
eJ e

for any C]-vectorfield Xcompactly supported in Rn+1 x (R - {0}).

Lemma 3.1 (Euler-Lagrange equation [12 2.6]): Suppose M E I^,(Rn+1 x R ) a

stationary point for FE. Then, for each C^-vectorfield X compactly supported in

and

(i) ^:=H w +i< = 0, fiM - a.e.r
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(ii) \HM\<-,/iM-a.e.,

(Hi) H^

(iv) \ =

The existence of Fc-minimisers can be proved using a standard argument.

Lemma 3.2 (existence of F'-minimisers [12 3.2]): Let Mo £ I^R"*1 x{0}) be an
initial surface. There exists M£ € I^R"*1 xR) minimising Fs with dM£=M0

and so that,
(i) sptMf cRn+Ix[0,oo),

(ii) FS(M£)<M(MO),

Now, define the family of locally integral n-currents {M£(t)}tiSj by

where cr_t/£(x,z) = (x,z-t/s). Note that each M£(t) is F£-minimising in

Rn+1 x(0,~) with d(M£(t)L(Rn+i x[0,°°))) = Me
tlE. Otherwise, we could deform Ms

to decrease Fe.

Fix t > 0. Then, on the set

W£ :={(x,z,s):z>-s/£,s>0}

we have, for any test-function <p on R xR such that spt<px{t} c W ,

- JH

by Lemma 3.1 (i). Hence 5tff = {/v(f)l,>o i s a n integer Brakke flow on Ws, that is

//M, is a translative soliton solution to the Brakke flow.

Note that, since e~zl£ dies off so quicV'y for e « 1, Mc will be very tall (of order 1/
s). In other words, M £ will be close to a cylinder in any fixed finite region. So, for s
very small,

Thus, when s is small, the motion of M£ by -±co nearly produces motion of M£ by
its mean curvature. This motivates us to send e —> 0.

14

Recalling Theorem 2.3, we know that in order to send f - ) 0 w e need area bounds of
the form

where et i 0. For this we have:

Lemma 3.3 (Local mass bound [12 5.1]): Let A c R be measurable. Then

M(MffL(Rn+1 x A)) < (X1 (A) + e)M(M0).

To motivate this, assume for the moment that T is the space time track of a smooth
evolution M = {F, }f>0. By the co-area formula (Lemma 1.3) we have,

•Tfa^f'tf-w*-
where r(x,f) = r. If rfw is a line element pointing in the direction of fastest time
increase, we have

dw

by Pythagoras' theorem. Using the area decay formula

(3.1)
or.

we have
i+S

tT,

t+S

or,

It is possible to derive an estimate analogous to (3.1) so that one will obtain Lemma
3.3. The estimate is:

Lemma 3.4 [12 4.5]: For a.e. a,b with 0<a<b,we have

\\a)T \dfiul + \sH2dvM. <l\a>r\djuM, <F£(M£)<M(M0).

15



Thus, for all t > 0,

>n+1 - (s- (3-2)

and hence, for any K c c R x R we can find a constant c such that

S UP Mu.
M

tzoTherefore, we can find a sequence e( 10 and an integer Brakke flow fM = {//,}

such that MM'0) -* At f o r e a c n f ^ °-

We now use fA/ to define a Brakke flow M = {//, } t i 0 with initial data //0 = fiM .

According to Lemma 2.2 (iv),(v), the Jut are (vertically) translationally invariant for

all but countably many t > 0. Fix a 6 6 C2((0,«>), [(),«>)) such that J&& = 1 and

define {/i, },*, by

for any test-function p on R" .

Defining 9vCin this way, one may show that, whenever p.t is translationally invariant,

A = //, xX1 (/i, = ju, xZ^LCO.oo) if f = 0) and

Therefore f^is an integer Brakke flow.

Finally one must show that M has initial data /z0 = juMo. On one hand one has

M(jut) <M(M 0 ) by (3.2). While on the other hand, it can be shown that jut >MM, •

So we in fact have ju0 = fiUo. We have outlined the proof of:

Theorem 3.5 (Existence of integer Brakke flows [12 8.1]): Let Mo e l';c(Rn+1) be

an initial surface. Then there exists an integer Brakkeflow 94. - {fj,t } t i 0 and a current

M e I ^ ( R " + 2 ) such that

(i) dM=M0,

(ii) MKxB (M)« X1 (B) for each K c Rn+1, B c R,

(Hi) ju0=;iMo,Mt>MMl'

(iv) MK(jut)<MK(ju0),

where M, := d(ML[t, <>=)).

16

This motivates the following definition:

Definition (Enhanced motion, overflow, undercurrent): Let MQ e Ij,0C(Rn+1) be an

initial surface. Suppose ^i = {fit}m is an integer Brakkeflow and M e I^,(R"+2)

so that the conclusions of Theorem 3.4 are satisfied. Then we call the pair (M,94.) an

enhanced motion with initial condition Mo. We also say that Otfis the overflow and

M is the undercurrent.

Whenever the discrepancy between //, and juM is zero, we then say the enhanced

motion is a matching motion:

Definition (Matching motion): Let Mo e l'°c(Rn+1) be an initial surface. We call a

current M e I ^ ( R " + 2 ) a matching motion for Mo if

(i) dM=M0,and

(ii) the family of measures given by //, = juM is a Brakkeflow.

Emanen has proved the following interesting fact about enhanced motions:

Lemma 3.5 (Existence of matching motions [12 9.2]): MQ e I^C(R"41) be an initial

surface. Suppose every enhanced motion with initial condition Mo has the same

undercurrent M E I^,(R"+ 2) . Then M is a matching motion for Mo .

17



Part II - General Compactness theorem

In this part we rbfine a generalised version of the Brakke flow before proving a
compactness theorem for the generalised flow. This will allow us to use elliptic
regularisation for a wide range of evolution equations, in particular a Brakke flow
with forcing term.

4 General Brakke flows

We now define a general Brakke flow M = {/it }/S0 of Radon measures on R"+1. This

is done in such a way that the compactness theorem for the flow may be proved with a
minimum number of assumptions on the flow. We make the ansatz that the flow takes
the form

for any test function <p.

Firstly, for any fixed test function <p we assume that g(-,(p) is upper-semicontinuous,

since continuity would be too strong an assumption. Furthermore, assuming
continuity would exclude the Brakke flow.

Since the family {jut }f>0 are Radon measures, the proof of the compactness theorem

would rely on Theorem 1.1. Thus we require, in addition to upper-semicontinuity, that

\g(/i,<p)\<oo implies / l{^>0}ef^ n(R n + 1) , \SV\L{<p>0}eMn(R
n^), and

| SV | L{g> > 0} < °°, where V := VM. These form the basis of the singular conditions.

Finally, we would like the general Brakke flow to jump down rather than up when
ju({<p > 0}) < °°. So we assume g(fi,q)) < C{(p,ju{{g) > 0});£) where C satisfies

(4.1)

and the third parameter (written as 0 indicates constants that depend on global
properties of g such as forcing terms, etc. For example, if we were considering the
Brakke flow, the third parameter would be zero as the Brakke flow is purely local. We
will illustrate this with a few examples. As we shall see in Lemma 4.1,
g(ju,<p)<C(<p,ju({(p>Q}y,g) will imply certain continuity properties of the flow

other than no sudden increases in mass.

Thus we define:

Definition (general Brakke functional): L<et cpbe a test function on Rr+1. Suppose

satisfies the following conditions:

(i) if pL{<p >0}eMn (Rn+1), then - «> =

(ii) if\SV\L{<p>0}£ M{{(p>0}), then -°° = £(//,q>), where V := VMl{(p > 0},

(Hi) if j SV | l{<p > 0} is singular, then - °o = g{ju, <p), where V := VML{(p > 0},
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(iv) Q{ -, q>) is upper-semicontinuous,

(v) g(ju, q>) < C(<p, ju({<p > 0}); Q) where the constant C satisfies (4.1).

Tlien we call Q a general Brakke functional.

Remark: If we were considering, say, area maximising hypersurfaces, then the
inequality would be reversed, the upper-semicontinuity condition would be replaced
with a \ower-semicontinuity condition, and the upper bound would be a lower bound.
Such considerations might be made if one were looking at flow by mean curvature on
a Lorentz manifold (see [BaJ) or flow by inverse mean curvature (see [HI]).

Examples: In the following examples, <p is a test-function on R"+\ U C Rn+1 is
bounded, and [A\(p > 0} e 9A.n (R

n+1) satisfies none of the singular conditions ((i)-(iii)

in the definition) and the additional singular condition \ (pH 2dju < °=>.

(i) The Brakke functional $ of §2 is a general Brakke functional,
(ii) B. Wliite's .ST-almost Brakke flows [Wl, §11] have a functional with the same

singular conditions as % and

g(ji,<p) := \{-(pH2 + Dl<p- H)dfi + KJ\-<pH + Dx<p\d£i

is a general Brakke functional. In this case, the global parameter in the constant
Cfrom part (v) of the definition will depend on K, i.e, C = C(<p,jU({<p > 0}); K).

(Hi) Fixp > 2, and suppose ge If (p). Then with the same singular conditions as %

is a general Brakke functional. In this case, the global parameter in the constant
from part (v) will depend on n, p, and g, i.e. C = C((p, ju({(p > Q))\n, p,g).
Later, in §9 we will call this the forced Brakke functional.

The ^-almost Brakke flow comes from some natural generalisations of the Brakke
flow, such as flow on a sphere or volume preserving mean curvature flow (as in [H2]
and [Ath]). However, the .^-almost Brakke flow assumes the additional forcing terms
remain uniformly bounded, which, unfortunately, may rule out the volume preserving
mean curvature flow because the average mean curvature may blow up when
singularities arise, as in the rotationally symmetric case [Ath]. It is an open question
whether the average mean curvature does blow up at the onset of singularities.

The forced Brakke functional relaxes the assumption of uniformly bounded forcing
terms. If g is bounded by K, then the forced Brakke functional becomes the general
Brakke functional from example (ii). So, AT-almost Brakke flows are forced Brakke
flows with p = oo. Although the ^-almost Brakke flow arises in some very natural
geometric situations, the forced Brakke flow arises in some very natural physical
situations (as mentioned in the introduction to this thesis).
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Definition (general Brakke flow, general integer Brakke flow): Let M = {jut }(20

be a family of Radon measures on Rn+1 and suppose § is a General Brakke
functional If

for any test-function <p on Rn+1, then we call M a general Brakke flow. If

fit e IfAfn(R
n+i) for a.e. t>0, then we call M a general integer Brakke flow.

In the next section we will prove a compactness theorem for general integer Brakke
flows.

Lemma 4.1 (Some continuity properties of general Brakke flows): Let cp be a test-
function on Rn+1. Let Qbea general Brakke functional and suppose 9A. - {jut } t i 0 is a
general Brakke flow satisfying

for all t>0. Then

(0 M, (<P) ~ C(<p, c1({<p> 0}); g)t is non-increasing at each t > 0,

(ii) the limits \\m/is{<p) and Ximjus(<p) exist and satisfy the inequality

lim//, (<p) > jut (<p) Z lim//, (<p) for each t > 0,

(in) there is a co-countable set % of time where jUt is continuous at each t E %,

(iv) there is a full measure set T2 of time (i.e. the complement of T2 has zero

measure) where Dt/it ((p) > -<=° at each tE^,

(v) fit E Mn(R
n+1) for a.e.t>0.

Remark: Note that (ii) does not imply decrease of mass under a general Brakke flow.
It does however say that the mass can never locally jump up (an artefact of the
definition of the general Brakke flow). Wlienever jut is continuous, it could be
possible for the mass to increase, unlike the Brakke flow.

Proof of Lemma 4.1: Since £7 is a General Brakke functional, we have

from which (i) follows.

Let s >t. By (i) we have

Jus(<p)<jut(<p)-C((p,cl({<p>O}y,gXt-s)

Likewise for JT < t we have

and (ii) follows.
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The arguments for (iii) and (iv) are similar. For (iii), we let ¥ be a countable dense
subset of Cc

2(Rn+1;[O,°°)). Since {i,(<p)-C((p,cl({p>0});§)t is non-increasing for
all t > 0 it follows that, for any j i f eY.we may find a co-countable set (that is, the
complement of a countable set) of times CTV where (.1, (t/f) is continuous. Otherwise,

we could find a compact set of times (wlog assumed to be the interval [0,1]) on
which, for any s > 0,

- //, (p) \> e or | lim//, fljr) - //, (iff) |

for infinitely many times (wlog we consider only the case I \\vt\/iAy/)-ptAy/)|> e).

Let {f,},s, be a decreasing sequence of such times. Since this is a bounded sequence,

there is a time t0 < 1 and a subsequence such that tf \-10. By (ii), there is an £0 such

that, for any eQ > 0 we can find an Af> 1 such that

Fix £0 > 0. Then, for any s > 0, we can find an N > 1 such that

eo+1 ^0 - l i p / / , (iff) |>|
sir
lip
sir,

- lip//,

a contradiction. Thus our assertion that T^ is co-countable is valid.

Define T, := f\Ty • Then A,(^) *s continuous for any j ceY at all te eT1. For

general test-functions g>, the property follows by uniform approximation of cp by
sequences in *?.

By (iii), for any ^ e T w e can find a full measure set of times for which (iv) is true.

Denoting this set by T^ we define T2 := [\T^ • Let q> be a test-function on R"+1, and

<p})\ Q),

choose j / e T s o that y > (p. Then, for all t £ T2,

,//, ( ^ - <p) < Dtnt (cp) + C(y/ - <p, c,

by (i). Hence (iv) is true for any test-function on Rn+1 and (v) follows from (iv) and
the definition of G. ^
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5 The compactness theorem for general integer Brakke flows

The advantage of proving compactness for the general class of flows defined in the
previous section is that we need only prove upper-semicontinuity and boundedness
for any Brakke-type flow. The other conditions on (7 are singular conditions.

Theorem 5.1 (compactness theorem): Suppose {G1}^ is a sequence of general
Brakke functionals and assume there is a general Brakke functional G such that, for
any Radon measure fi and any test-fitnction q>,

1' (//, <p) < g(tu, <p).

Suppose Ml = {//,' },20, i = 1,2,... is a sequence of general integer Brakke flows (with

general Brakke functional G') satisfying

sup M',(K)<Cl(K)< 00,
ij

for any K c c Rs+1. Then
(i) there is a subsequence 9A.X, 1 = 1,2,... and a general integer Brakke flow

94. = {M, }f>o (with general Brakke functional G) such that ji\ -* M, for oil t
>0,

(ii) there is a further subsequence ftC , 1 =• 1,2,... (also written 1 but depending

on t) such that if Gl (//; <p) > -C =>| 5VM | (K) < C(C, (p, K) for each i > 1, then

Vj -»VA fora.e.t>0.

Proof: The proof is similar to the proof of Theorem 2.3 by Ilmanen [12] and is in four
parts.

Part 1: Let B be a countable dense set of times. For every t e B, the bound

together with the compactness theorem for Radon measures (Theorem 1.1 (i) without
the assumption of bounded first variation) allow us to find a subsequence {/'} of {i}

and M, e 75Wn(R
n+1) so that

ft -»Mt

weakly in f7^(R"+1). Doing this for all t e B and diagonalising, we can find a single
subsequence (also written {/'}) such that
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weakly in

Note that the condition limsup^' (ju,<p) < §(jU,(p) and Lemma 4.1(i) implies that, for

all sufficiently large x and any test-function q>,

is non-increasing for all t e B independent of i '. Sending i' -»°° we find that, for all
teB,

is non- increasing.

Part 2: Let rg B be some fixed time. Let [i") be any convergent subsequence

(depending on i) of {i'}. Define

ju, -lira//,1

at t. Then jut is defined for all time.

Now apply Part 1 to 3 u { / } for each t&B. Then

is non-increasing for all t > 0.

By Lemma 4.1 (iii), we may find a co-countable set of times T, on which //; is

continuous. For such times, /it is uniquely determined regardless of the subsequence

chosen for t. Hence the full sequence converges on %. In the complement of % we

define fj. in a similar manner as before: we define jiit := limju', on [0,°°)-1l with

{i'} depending on t. For such f, replace the previous values of jut with these new

ones.

Thus we have constructed a family 94. = {//, },20 of integral Radon measures such that,

foral lr>0,

/f -» /*, weakly in %((Rn+1),

and
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Part 3: We now show that the family ^constructed in Part 2 is a general integer
Brakke flow.

Fix tQ > 0 and let <p be a fixed test-function on R"+l. For any function / : R -» R
define

D;/(fo):=limsup / ( O / ( 'o

and
f(t)-f(t0)

t-tn

Since

Dtf(t0) = max{D,+/(r0),D,-/(r0)}..

it suffices to show that £Vf satisfies

The proof for D~ fit (cp) is similar.

(5.1)

Assume wlog -<»<D f
+^,o(^). Then we may find a sequence {tg}qil descending to

f0, and a sequence {/3q }?21 descending to 0, such that

For any q, we may select an iq from the sequence {:'} (assume iq —> °o with q) such

that

By Lemma 4.1, D,ju's" {<p) < Ciig?,^({#> > 0};^) is L1 - measurable. So,

*r\

It follows that there is at least one point t0 < s < t such that
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Again, by the compactness theorem for Radon measures (Theorem 1.1 (i) without the
assumption of bounded first variation), we may find a subsequence {q} and a

fi e VMn ({<p > 0}) such that $Mq> > 0} -> n weakly on {q> > 0}.

For any fixed #' > 1, we have by hypothesis,

while on the other hand, for any j > 1,

Therefore, by diagonalising we have

lim sup g'1

Consequently we have

D > (p) < l imsup£ v (/i,•;, p) <

Thus we need to show /i = Ht}-{<p > 0}.

(5.2)

Let y/ be a test-function on {9) > 0} with y/<<p. Using the same trick as in the proof of
Lemma 4.1 (iv),

So -°°<D*/uh(y/) and therefore

lim^f

Fix ^ > t0. For sufficiently large q , to<sq. <s. Since jjCt (<p) - C{<p, c, ({(p > 0});

is non-increasing for all f > 0, we have, increasing q' if necessary,
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Therefore, sending g' —> <=°,

for any s > tQ. Thus, sending 5 I tQ

ju,o (iff) >

{̂ , c, ({^ > 0});§)(t0 - s)

) > ju,0 (V) •

Therefore // = JU^W > °J • H e n c e M,o satisfies (5.1).

Part 4: We now show that we have varifold convergence under the hypothesis that

Assume t is a time when D,jut to) > -00 for a test-function (p. Then, by (5.2) we can

find a further subsequence {i*},^ (depending on t) such that

where C=C(t,<p). Therefore, by Allard's compactness theorem 1.1 and the hypothesis,
we can find a further subsequence (labelled {i'}f^) such that (ii) follows. H

Corollary 5.2: Let g be a general Brakke functional. Suppose

9A! = {ju't }r20, i = 1,2,... is a sequence of general integer Brakke flows satisfying

for any K c c Rn+1. Then

(i) there is a subsequence 9*C , i' = l,2,... and a general integer Brakke flow

M = {/it }f20 such that tf ~»jut for all t > 0,

(ii) there is a further subsequence 9d', z' = l,2,... (also written 1 but depending

on t) such that if g{pL\(p) > -C =>| SVM \ (K) < C(C,(p,K) for each i > 1, then

Vj-^Vji, fora.e.t>0.

Proof: Since any fixed general Brakke functional satisfies the hypothesis

lim sup g(fi, q>) < g{^i, (p)

this is a trivial consequence of Theorem 5.1. m
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Part IH - Forced Brakke flows

We will first consider an appropriate elliptic problem to apply elliptic regularisation to
the examples given in §4. In particular, we would like to study the equation

• i

with appropriate singular conditions. In §9 we call this a forced Brakke flow. The
solutions to the related elliptic problem turn out to be translating soliton solutions to a
forced Brakke flow that only approximates (*). To prove existence of solutions, we
require local mass bounds for the solutions to the elliptic problem so that we may apply
the compactness theorem 5.1. Then, for given initial data, we will construct a solution to
(*) using the solutions obtained for the related elliptic problem.

Existence for Brakke flows with a forcing term has never been proved before. In [Wl
§11], White indicates that the existence of 2£-almost Brakke flows (see example (ii) of
§4) should follow from minor modifications to Bmanen's existence proof for Brakke
flows. This claim is furhter substantiated in this part (in particular the remark on page 30
preceedmg Lemma 6.1 and the remark on page 46 preceeding Lemma 8.1). However, the
existence proof for forced Brakke flows doesn't follow as easily. Although the methods
here are baserl on elliptic regularisation, the application of elliptic regularisation gives
riiie to the need for forced Btakke flows approximating (*). In the case of the Brakke flow
and JT-almost Brakke flow, the elliptic solutions translate vertically according to the
Brakke flow or j£-almost Brakke flow (respectively).

6 The elliptic problem

The elliptic problem related to (*) is a prescribed mean curvature problem for the metric

giving the functional used in §3: namely Fe (M) := — f e~ilEdpiu (x, z). This problem has

been extensively studied for the standard metric on R"+1. The following is by no means
an exhaustive list of contributions: [DF], [DS1], [DS2], [Fu]7 [Gi], [GMT], and [Ma].

The functional will be defined on currents MeI^,(R"+ 1xR) with

aAfsi;oc(R"+Ix{0)). Fix Qoel^CR^xfO}) so that d£lo=dM. We let

Q £ V°l2 (R"+1 x R) be the (unique) (n + 2) - current satisfying dQ. - M + Qo.

The "forcing" term in (*) will define the prescribed mean-curvature for our elliptic
problem. Let J7cRn+1 have finite measure and suppose g :R"+I x[0,°°)-»[0,°o)
satisfies g( x ,t) = 0 \/xg U,

for all t > 0, aod
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for some r e (0,°°).

From the next section onwards we will also use; the following "time-like" continuity
assumption: for any t > 0,

lim,g(x,s) = g(x,t)a.e.xe U.
S-H

This assumption is not required for existence.

Define g£ : Rn+1 x[0,°=>) -»[0,°°) by

_(g(x,£z),z>0
g {x,z).-^ z < Q .

Remark: In the case of K-almost Brakke flows, we would have g <_K and we would
choose g£ to be given by g£(x,z) = K. As we shall point out later, this implies that the
solutions obtained here will translate vertically according to the K-almost Brakkeflow.

Let K c c Rn+1 (not to be confused with the AT from the definition of AT-almost Brakke
flows). We consider the functional given by

Ge
K(M):=- \e-zl£djUM(x,z)-- fg*(jc,

ATxR

Stationary points for this functional will have prescribed mean curvature given by
-(g£ +co-v/e) (Lemma6.1).

We will now consider the first variation of Ge
K. Let X be a C'-vectorfield compactly

supported in ATx(R-{0}) and let {Q>S}.B<S<S be a family of compactly supported

diffeomorphisms mapping R"+2—>Rn+2 and satisfying

Let / e C" (U x [0,«), [0, °°)). Then
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s=0 KxR A'xR e

ATxR

A'xR ATxR

XxR

Therefore, by approximating gsby a sequence of C"(C/x[0,°o),[0,oo)) functions

fi< ge we have

<H=0A'xR KxR

since Jg e v M • Xe~zledfj.M < ~ . Hence, whenever | SVMu | « /iM , we have
A'xR

= ~i J {EM^(o^g£vuy
KxR

for any C] - vectorfield X compactly supported in K x(R - {0}). Therefore we have:

Lemma 6.1 (Euler-Lagrange equation): Let K c c R"+1 and suppose
M (= I^,(R"+1 xR) is a stationary point for GE

K with fixed boundary in K. Then, for any

C\ - vectorfield X compactly supported in

0= J
A'xR

and

(ii) HM = HM, piM - a.e. in (K - dK)xR, and

(i) H£
M := Hu +-0)1 = -g£vM, MM ~a.e. in (K -dK)xR,

Recall the definition of an initial surface from §3:

Definition (Initial surface): Assume Mo e iJ^CR"*1 x{0}) is a cycle of finite mass. Then

we say that Mo is an initial surface and we call juM the initial data.

The following is the analogue to Lemma 3.2 for cycles of locally finite mass:
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Lemma 6.2 (Existence of minimisers): Let K cza R"+1, letM0 e i f (Rn+1 x{0}) be a

cycle of locally finite mass and let Qo e I j£, (R"+I x {0}) denote the (unique) current with

dQ0LK = M0LK. Then there exists an Me G l';+
c,(Rn+1xR) minimising G£

K with

dM eLK = M0LK and so that,

(i) sptMf n(KxR) dKx[0,oo),

(ii) Ge
K(M£) <M(M0LK)—J\g(x, , and

OK

(Hi) F£(M £L(KxR)) < M(M0LK) + sup || g( • ,t) |U .
nono

Remarks: As in [Ma], existence only requires g(- ,•)& L)or(Rn+2). If we let

g( • ,0 G IF (JJ) for some p > 1, then it is easy to see that g(-,t)e I) (U). Later we will

be looking at regularity when p> n. If g (•, •) G L" (R"+2) then the resulting flow will be

a version of the K-Brakkeflow (see [Wl,2]).

One could consider geometric assumptions such as those considered in [Fu] and[DFJ.
In [Fu] the prescribed mean curvature satisfies || g \\L^iU)<(n + l)col'^+l) and one

minimises M ( 3 Q ) - J g d/za in the class of Caccioppoli sets. TJie upper bound on

|| g || ,+I comes from the application of the isoperimetric inequality. The related version

for our circumstances will be mentioned in the following proof. The problem explored in
[DFJ is the higher co-dimensional case.

Note that, since

djua(x,z)<jge(x,z)e'il£

it follows that Ge
K is bounded from below. Contrast this with capillary surfaces where

there is no such lower bound.

Proof of Lemma 6.2: Define

S := {S G I™ (Rn + 2): dSl(Kx R) = MolK}.

Then Mo x[(0,°°)]e 5 and

SeS

= M(M0LK) —

<M(MOIK),
OK
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since g > 0. Therefore, if Mc exists,

M(M0UQ C (x)dz
OK

- - J \g(x,ez)e-*edLn{x)dz
OKnU

>F£(MsLK)-sup\\g(-,t)\\
/20

where Q,£ is the (unique) (n + 2) - current satisfying

d&£L(K x R) = (Me + Q0)l(K x R ) .

We will briefly digress to explore an alternate, more geometric approach to obtaining an

upper bound on F£(M £VK):
At this point one could have used the isoperimetric inequality to obtain

M(M0UQ

>F£(M£LK)-((n ,t)\\

where p > 1. If p < n + 1, we could therefore find a constant such that

F£(MeL(KxR))<c(M(M0LK),n,p,g)<°°

because 0 < (1 +1 / n)(l - 1 / p) < 1 and x - axs < c implies 0 < x < c(c, a, 5) whenever 5
< 1 (if S > 1 then there is no upper bound on x).

Likewise, if we were to assume \\ g(- ,t)\\L^

inequality would imply

, the isoperimetric

fSO
,O||r+1 F£(M£lK)>0

and again we could find a constant such that

F£(M£L(KxR))<c(M(MolK),n,g)<~.

This case gives a similar result to [Fu].

Returning to the proof of the lemma, let {5, },->, be a sequence in 5 satisfying
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This implies that we can obtain local mass estimates for the 5, and therefore, by applying

the compactness theorem, we can find a subsequence {/'} and an M e S such that

and, by approximating g£ by C° functions,

G£
K(M)< liminf G£

K (S,) = inf G£
K (S)

Hence Mminimises G£
K in Sand satisfies (ii) and (iii).

Suppose (iM (Rn+1 x (-oo,0)) > 0. Then

G£
K(M) = G£

K (ML(R"+1 x (

= F£(ML(K x

G£
K (ML(Rn+1 x (0,oo)))

£
K (ML(Rn+1 x (0,««)))

where 7t* (x, z) = (x, max{z,0}). Hence M satisfies (i). gg

For the remainder of this thesis we will concentrate on minimisers M£ of the functional

7 Cylindrical Monotonicity

In this section we derive a cylindrical monotonicity formula and some consequences for
(n + l)-dimensional currents M e I^j (Rn+1 xR) satisfying

£ CK(0)

where C^ (0) = Bf1 x R . By Lemma 6.1, minimisers of GE satisfy this condition.

In a private conversation, Ilmanen has told me that DeGiorgi has suggested that one
could use elliptic regularisation to prove a version of Brakke's regularity theorem. It may
be possible to apply the formula obtained here to the methods in §§20-22 of [S] to obtain
a Brakke regularity theorem for flows arising from elliptic regularisation.

We finish by proving a "height" lemma for the minimisers of Ge.

Lemma 7.1 (cylindrical monotonicity formula): Suppose M e iJ^R"*1 xR) satisfies

| SVMt/ | « fiM. Then in the sense of distributions we have, for any a E R"+1 and all

p>0,

satisfying BM£ = M0, where Mo is a given initial surface. For a given initial surface the

existence of a solution, M £, is guaranteed by Lemma 6.2.

The case where the initial surface has locally finite mass is an easy extension of the
ensuing analysis making use of Lemma 6.2 where necessary. The more general
assumption of local finiteness clutters the main ideas and doesn't provide any additional
insight.

r I
8
 C"AO)

where Cp(a):= Bn/(a)xR.

M

CA")

CAa)

Proof: Let ^:R-^[0

dimensional plane S =

be C\ and set r =| x |, X = C(r)x. Then, for any (n + 1)-

Writing S1 for the line orthogonal to S, we find

Xr) + n£(r) = r£\r) \ VsV |2 -^(r)(divsJC- n + H-x)

a.e. in R x R since 15V \«MM •

34 35



Fix p > 0 and consider a cut-off function (p: R -> [0,1] satisfying

'(f) < 0, <z?(f) = 1 on (-°°,il, <z>(0 = 0 on (1,

Assuming £"(r) = cp{rl p), we have

> ) = L<P\r/p) = -
dp

and

|2W |

or, multiplying through by p ',

Sending (p to ^r(_»(1], we obtain the lemma,

Lemma 7.2: Let R,Ae (0,°°) and/? > n. Suppose M e rn
o+,(R xR) satisfies

C«(0)

pe(0,R-\a\)
of distributions we have that, for any a £ B^+1 (0) and all

In particular, for all 0 < r < p,

(a) (r-i
Cr(n) p-n p-n

\-nl p

Remark: Note that, whenever Me is smooth, \\mp "— \e zledju = 0. This presents
/P-»0 £

significant problems if one were to apply the arguments from §§20-22 in [S] because
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~n\imp~n— \e zll!dju t = 0 indicates a upper limit on the amount of "resolution"
p—»o s

available for the Lipschitz approximation argument.

Proof: We assume wlog a = 0. By Lemma 7.1 we have

dp
[p~

Cp(0)

C.(0)
Therefore

M

i-i iP

CA0)

(7.1)

(7.2)

Multiplying by the integrating factor eApl "''l{p n) gives (i).

Finally, integrating (7.2) completes the proof. ^

The following version of the monotonicity formula is of some interest, especially if one
were to use covering arguments for the Gc-minimisers.

Lemma 7.3 (truncated cylindrical monotonicity formulae): Let M e I^(R"+1 xR)

and suppose \ SVMu | « jiM. Then, in the sense of distributions we have that, for any

a £ R"+2, and all p and a>0,

>-1 \e-«'dpM ] = p- i - i J| W |2 e-"'dM§t
F •> nn F JCUa)

£

da £
CUa)

where CZ(a):= B"+1 (n(a))x(a)a-cr,a>a

37



Furthermore, let R,Ae (0,°°) andp > n. Suppose M e >n+l xR) satisfies

CR(0)

Then, in the sense of distributions we have, for any aeCR (0) and all p e (0,R- \ a |),

(i) 0<A-[e^"lFl^n)p-n- \e-iledjUMC]Up.
dP *

In particular, for allO<r<p,

(ii) <(p~n-

Proof: Consider variations by the vectorfield given by X := £(r)f(s)x where

r=\x\,s=\z\andC,feCl(R;[O,°°)).

Then, for any (n + 1) - dimensional plane 5,

div5X = 5r |2V 5 r

Fix cr > 0 and consider a cut-off function /z: R —> [0,1] satisfying

h\t)<0, h(t) = 1 on (-oo.i],

Assuming / (^ ) = h(s/cr), we have

cr da

and consequently

divsX=(rr(r)|Wf x (7.3)

Replacing r£"(r) | V 5 r |2 +^(r)div sx with (7.3) and then using the same methods as

those used for Lemma 7.1 and letting h become X{-~ &)» t n e truncated Monotonicity

formula follows.

Note that,
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Therefore.

Finally, if we use

\a=p CUa)

we have

>-/?""A(

The proof is completed by using this in place of (7.1) and following the proof of Lemma
7.2. .

We present the following technical lemma analogous to [S 19.5]. This will be used to
obtain a height lemma for the minimisers of GE.

Lemma 7.4: Let i?,Ae(0,oo), £,J8E (0,1) and p > n. Suppose M E I ^ ( R " + 1 X R )

satisfies

I \\H > e->

andassume AR1 n/p <\-nlp. Let a,be C^(0)nsptM satisfy

\x(a-b)\>j3R/2,and\en+l'(a-b)\>£\n(a-b)\.

Ifo~e(0Jj3R/ 4] is chosen so that

;lcr-n

for some 7] > 0, then
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27?£
. - 1

C«(0)

c = c(n, /?).

Proof: We consider the vectorfield X := h(x, z)C(r)x where ft is a non-negative, C\

function. Then

sr\2
divsX =h(x,z)[rC'(r)\Vsr\

for any {n + 1) - dimensional plane 5. So, keeping h fixed and applying the proof of
Lemma 7.1, we obtain (with r :=| x-iz{J;) \,)

,-» d j _

1
CAS)

-n 1

M

e-zl£dju,

the inequality following from the fact that

M '

Now since

s CAS)

we have, again as in the proof of Lemma 7.2,

J_r pKp'-1" l(p-n) -«J_ C

dp CAS) CAS)
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Thus, whenever 0 < r < p,

CAS) CAS)

CAS)

M
CAS)

CAS)

Suppose h(x,z) = /(en+1 • (x-g)) where

4 tpK

where 0 < t,j3 < l,R > 0 are fixed for the moment. For any (n + l)-dimensional plane 5,
we have,

s
I—I & n + l

Define the set P^ = {(x,z) e Rn+1 xR :| en+1 • (x-$) |< i /R/4}. Then,

*/R

M

By Lemma 7.2 (ii) we have, for any 0 < cr < z,
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C-tf)

M

if

Let r = ̂ SR/4and/> = (1 - p)R. Then we obtain

.-» 1

(7.4)

Let a,be C«,(0) satisfy | ^ (a -6) |> J3R/2arid|en+1 -(a-b)\>e\x(a-b)\. Then

and

and dist(Pa,F4)>|eB+1 •(a-b)\-ej3R/2>0.B.tnce

Therefore, combining the expressions for (7.4) when £ is a and b, we find
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p-n

whenever a, b e C^ (0), | n{a - b) |>
required, mm

CR(Q)

(a-b)\>£\ n{a -b) j and a < ifiR/4, as

Before we present the height lemma, we need a few definitions first.

Definition ((tj,a) - unstacked about a): Fix R > 0 anrf £6(0,1). Let
M e In« (R"+1 xR) and let ae R"+1. Suppose that we can find an TJ>0 and ae (0,1)
that

CO.

Then we say that M is (rj,a) - unstacked about a.

This definition just says that, for sufficiently small n>0,M doesn't have more than one
layer over a vertical plane anywhere inside CR(a) (see figure 5). On the other hand, M
can stack up in multiple layers over Rn+1 x{0}. This corresponds to the resulting Brakke
flow (after elliptic regularisation) moving through a given region several times.

Bearing in mind the fact that our cylindrical monotonicity formula is expressed inside
cylinders, we define the Fs analogue of the tilt excess (see, for example, [S 22.1] and
[HS 1.4]). In this case, because the Fe -minimisers will become very tall, we need to take
special care of the vertical direction. So, we consider (n + l)-dimensional subspaces
containing ax

Definition (^-Tilt-Excess over Cp (a) relative to 5): Let M e 1^, (Rn+1 x R), p > 0, and

let S be an (n + l)-dimensional plane containing CO. Define the 6-Tilt-Excess over Cp (a)

relative to S by

Ee(a,p,S):=p-n-
£ CAa)

where vs is a unit normal to S. We will also write E = Ee (0,R,{x • en+1 =0}) for
simplicity.
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Me

Figure 5.

Hardt and Simon have used a cylidrical tilt-excess to study boundary regularity for the
oriented Plateau problem. There the boundary of an absolutely area-minimising locally
rectifiable current is assumed to be Cla. The cylindrical tilt-excess is used to control the
excess of the surface in a neighborhood of the boundary. One should expect a similar
result to hold for the minimisers of Fe.

We now prove an interesting height estimate for (jj,a) - unstacked G£ -minimisers Me.

Lemma 7.5: Let R > 0, £e (0,1), a6R"+ 1 and let S be an n-dimensional plane

containing co. Suppose ME is (?j,a)- unstacked about a for some Tj > 0 and O.E (0,1).

Tliere exists a /?e (0,1) such that if we can find a ere (0,£j3R/4-] such that

col

for all (a) n sptMe then

44

for all geCh (a) nsptME, where c=c(n,a).

Proof: We assume wlog that a = 0 and S = [x-en+1 = 0}. Let J3e (0,1). To begin with

we assume that, for some 5 > 0, E<S2 and write £ = (S~2E)m"+2) <1. Take

a,b e sptAf £ n C^ (0). Then, by Lemma 4.4,

1 p-» *• f IR 7 Jl'
CR(0)

E

CR(0)

1/2

= 2(1 ?n
cr?n (1 - or)1'2

Choosing 5, fi appropriately, we obtain a contradiction. Thus,

Va , JeCj , (0 )nsp tM e satisfying |n{a-b) \> J3R12.

In particular, choosing b = 0, we have,

\en+1-a\<cE1K2n+2)R

Va E (C^ (0) - Cmn (0)) n sptM f . Bootstrapping this gives

(7.5)

Suppose (0)nsptM e . Then we trivially have

where c is the constant from (7.5). Hence the lemma is true whenever E <S2.

On the other hand, if S2 < E, then the inequality is trivial with c chosen sufficiently
large. u
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8 Local mass bounds

Here we derive local mass bounds for the minimisers of G£. We begin by motivating the
need for such bounds by showing that the minimisers are a translating soliton solution to
a forced Brakke flow approximating the flow given by

with appropriate singular conditions. We then use Lemma 6.1 to obtain the local mass
bounds.

Note that the minimisers Me of Ge satisfy an approximate forced Brakke flow. Indeed,
define the mapping a_l/£ (x, z) := (x, z -11 e) and consider the currents given by

For any t > 0, Ps (t) is just the current M s translated vertically down by tie. Fix t > 0

and let Ip be a test-function on R"+2 with

spt#>x{t} d{(x,z,s):z> — , s > t}.
£

Then, since (spt(&P£ (r)) x {t}) n {(x, z, s): z > -s I £, s > t} = 0 , we have

d_

dt

^1¥X~
(8.1)

r(0

V | ) djup.(t) .

This and the condition that spt^7 x {t} c {(x, z, s): z > -s I £, s > t} says that {jupC }J2O is a

forced Brakke flow on the set W e := {(x, z, t): z > -t I £, t > 0}.

Remark: If we were considering K-almost Brakke flows (see example (ii) in §4 and, in
particular, the remark preceeding Lemma 6.1), then instead of (8.1) we would have

X ^ - H + K\-qM

Therefore, the family {^pt.t)}ti0 would be a K-almost Brakke flow, simplifying the proof

considerably.
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As in §3, we aim to pass to the limit e 10. To do this, we must show that the PE (?) have
locally bounded mass. Then the compactness theorem and the "time-like" continuity of g
will show that the limit fipC(t) -> J2t exists for each t > 0 and satisfies

(with the appropriate singular conditions given in §4). The family {/Z, }

used to define a forced integer Brakke flow with initial data JI0 = /iM .

Lemma 8.1: Let £ be Lipschitz with spt£ ca [0,°°). Then

will then be

Proof: Suppose the lemma is true for any feC] ([0, <»)). Approximate <f by C] ([0,

functions ft satisfying

/ , < # , / , - > ^ uniformly, £L-*2£. weakly - * in L~
dz dz

Then terms linear in / , converge and, by Lemma 1.3,

so terms linear in dfjdz converge since \\cor \e~z/sdjUM, is an L1 function of z.

Therefore, the lemma holds for Lipschitz £ if it is true for / e C\ ([0, =»)).

We assume/£ C]([0,°o)) and wlog 0 e sptM e. Choose aR e C](Rn+1,[0,l]) satisfying

<rR = 1 in BR (0), <r* = 0 off B2R (0), | DaR |<

Let X(x, z) = <yR {x)f(z)co. Then, by Lemma 6.1, we have

0 = J (divX - -co • X - g v • X)e~zl£d{iM,
G

Note that

R
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and

dz

which is a fixed L1 function (by assumption on # £). Thus we may send R —»• oo to obtain,

0 =

by dominated convergence. Hence the lemma is true whenever / e C]([0,°o)), as

required, n

Corollary 8.2: Let ^ be Lipschitzwith spt^ c c [0, °°).

Proof: The first equality follows by replacing £ by t;e~U£ in Lemma 8.1. The second is an
application of Lemma 6.1 (i). ^

We now apply Lemma 8.1 and Corollary 8.2 to two choices of if. These applications will
give us an estimate analogous to the formula

or,

which is valid for a smooth forced mean curvature flow 94. = {Tt

Lemma 8.3: For any 5 > 0, we have

a+S

}

and in particular

a.-)

Proof: Let L > 0 and define if by
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0 0 < z < a

1 z=a+5

0

and linearly interpolated between. By Lemma 8.1, we compute

a+5

j
a+S

x( f l f

Since, by Lemma 6.2, F*(M*)<°°, itfollows that (l + £ / L ) F £ ( M £ ) - ^ f ( M f ) when
L —> oo. Therefore

-

and, since the right hand side is finite, we have in particular

i a+5

completing the proof. ^

Now consider the Lipschitz function ^ given by

0 0 < z < a

and linearly interpolated between. Applying Lemma 1.3 and Corollary 8.2 we find

= I J | ft;T
~\\ cor |2

b+S

We will write
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Lemma 8.4: For any measurable set A

>

*)+JV K \e-'"dMu.

inparticular MO)<F£(M£) + \ge \(OX | «-*"<

Proof: By Lemma 1.3 and (8.2) we have that, for any sufficiently small open interval

where £is the function from (8.2) with (a,b) replaced by (0,a). Therefore

(8.3)

by Lemma 8.3.

If A were open, then we could decompose it into many small intervals and use (8.3) to
obtain

Jl °>"
+JV

Therefore it is true for any measurable set A. The estimate for fs (0) is obtained by
setting A = (0, S). ^

Therefore, by combining Lemmas 8.3 and 8.4 with (8.2) we find:

Lemma 8.5 (area estimate): There is a full measure set Z such that, for any
a,be Z,a<b,

Proof: By (8.2) we have
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1 *= - J J| co" | ^ . d i + Jg*co•

< C <<»

where c is independent of <5.

By the Lebesgue differentiation theorem we can find a full measure set Z such that

for any z&Z. Therefore, by Lemmas 8.3 and 8.4 we have

"+Ix(ai.))

as desired. H

Before proceeding we present a technical lemma:

Lemma 8.6: For any p > 1, i/ sup||g(-,r)| | <<» then there is a constant

C = C(p,g) such that

Remark: If the functional G£ is solved in the setting of Cacciopoli sets, then the
constant C is sup || g( • ,f) ||L,(£/).

Proof: We may assume wlog that g £ 0 a.e. Suppose the lemma is false. Then, we may

find a sequence et X 0 such that

Let N£ := 7T#(M
 ffL(Rn+1 x ( 0 , r / 5 ) ) ) where

continuity assumption we have

lim/J (g) = lim

z) = ^. By the "time-like"

By passing to a subsequence we may consider the following two cases:
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Case 1: Suppose Ne' e x{0}) for all i > 1. Then

e s s " c

This is independent of i otherwise F£'(MS')> M(M0) + sup || g( •, t) ||L,(t/) for some i.

Therefore, for sufficiently large /> 1,

a contradiction.

Case 2: Suppose Ns' e l"0C(Rn+x x{0}) for all i > 1. Then a1 =0a.e. insptAtf*'.
Therefore, by Lemma 6.1 it follows that gs' is a constant a.e., violating the "time-like"
continuity assumption and g # 0. n

By combining Lemmas 6.1, 8.4, and 8.5 »ve have

Lemma 8.7: For any measurable set A C R, there is a constant cg = cg (g) such that

M(MEL(R"+1 x A)) < (L1 (A) + e)(M(M0) + cg),

Proof: By Lemma 6.1 (iii) we have

1 xA)) < 52 J| ff + g'v J| co"

By Lemma 8.5 we have

and by Lemma 8.4 we have

Combining these we have

(8.4)

< (£(A) + e)(M(M0) + sup ,r || ,

by Lemmas 6.2 and 8.6.

52

Remark: A^ noted in the proof of Lemma 6.2, one could use the Holder inequality to
obtain

M(MfL(Rn+1xA))

If p > 1, this leads to an equation of the form x-rbxs <rc where S < 1 and
r = £}(A) + e. Hence we can find a constant C = C(£ (A), n, p,g,M(M0 )) such that

M(Me"L(R"+1xA))<C.

Now, consider the equation x — rbx5 < re where 5<\. Dividing through bya<\, gives

(r/a)c>(x/cr)-(r/a)bxJ

>(xl&)-{rla)b(xla)s.

Therefore, the constant C satisfies '.

oC(L\A)/a,n,pygM(M0))<C(£\A),n,p,gM(M0))

for any a < 1.

The following lemma will be used to obtain an undercurrent (cf. §3):

Lemma 8.8: Let KE{x,z) = (x,£z). Define TE := (tc£)s{Me). Then, for any measurable
setBcR,

Remark: If one were to use the same method outlined in the remark after the proof of
Lemma 8.7, then one would obtain an estimate of the form

M(TeL(Rn+1xB))<C

where C = C(X}(B),n,p,g,M(M0)). Furthermore, the constant C will vanish with

L\B).

Incidentally, prior to a very productive discussion with Maria Athanassenas, these were
the original estimates I had for Lemmas 8.7 and 8.8.

53



Proof of Lemma 8.8: Firstly,

where 7t(x, z) = x. Note that

J |2

so, by Lemma 6.1 (iii),

\j7r\2=e2\HM +gevM \2,/iM-a.e.

Therefore, by Lemma 8.7 we can find a constant c depending only on g such that

(8.5)

By Lemma 8.6 we have

Combining this with (8.5) and using (8.4) we have

J ,1/2

Therefore we obtain

'L(Rn+1 xB)) < ((X1 (B) + f2) + (£?(B) + f 2)1/2)1/2)(M(M0) + cg

from which the lemma follows.
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9 Existence of forced Brakke flows

We now construct a solution to the most general example of a forced Brakke flow given
in §4. We begin by taking care to define the flow. Since we will be using Cauchy's
inequality to obtain certain bounds, we will require g e L2(U). As noted in the remark
after Lemma 6.2, we easily have || g |!L>(y)<|| g ||Ll(y) 0 (U))V2 < <*>, so the results from
§§6-8 still hold.

Definition: Let /ie fW(Rn+1) and assume cp is a test function. If one of the following

cases holds, set §(fi; (p) = -«>:
(i) / £ { ^ > 0 } £ ^ ( R " + 1 ) ,

(ii) | SV | l{(p > 0} g !W({^ > 0}) w/zere V. := VJJ^qt > 0},

Otherwise, we define

where g : Rn+1 —> [0,°o) satisfies g(x) = 0 for any xE U C Rn+1 (V with finite measure),

and geL2 (ji) for all ^ieMn (Rn+1).

Remark: The assumption geL2 (ju) for all jueMn (Rn+1) implies that # E L2 (U) and

U :\g\=°°)<n. For example,

[0 , otherwise

satisfies geL2 {pi) for all n ( R n + 1 ) .

Lemma 9.1: Q is a general Brakke functional.

Proof: We need only show that conditions (iv) and (v) in the definition of a general
Brakke functional (§4) are satisfied.

To show that Q{ • ,<p) is upper-semicontinuous, we let {//},-,, be a sequence of Radon

measures on {<p > 0} converging to a Radon measure// and that sup ju' {q> > 0} < Co < °°.
121

If lim sup (7 (//';#?) = -00 then we are done. Otherwise we may assume, by taking a
/-»•"•

subsequence if necessary, \vmG(ju' ;<p) exists and is finite. We begin by showing that

this implies that we may assume V ,L —» V̂  (after relabelling).
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By Cauchy's inequality we have

and hence

\(pH2dfi'<C{CQ,(p\n,g).

Thus, by Cauchy-Schwarz we have, for any K c c {<p > 0},

\SVM,\(K)<C(C0,(p,K;n,g).

(9.1)

(9.2)

Hence the compactness theorem 1.1 implies V^,
^,

after relabelling.

The proof of upper-semicontinuity for the first two parts of £ is exactly as it is presented
in [12] since it is the Brakke functional. We include it here for completeness.

Lei ^eC2({?>>0},[0,°°)) Then, by (9.1) and (9.2) both \y/H2dfi' and

j J Wxy/ - H dju' | are bounded independent of i. We next show tiiat J y/H zdfi' is lower-

semicontinuous.

By approximation by C] vectors we have

X dju: || X ||L, = 1, Xe

Since y/eC2 we have

j > 1 / 2 # • X dju = -

-limSV ,(y/v2X)
I-»oo M

<liminf (

<liminf(f

X

v l /2

from which it follows that

J y/H 2dju < liminf J y/H 2dju'

Now we concentrate on the second term of the Brakke functional. We may find an
^ such that
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Therefore, by the bound on jy/H2dju' and lower-semicontinuity, we have

<82 swp — \q)H2d/2

+ sup —sup f <pH2d{i' lim fl V >

<S2C(n,p,g,<p,yr)<oo.

2 j . . i |2- X I2 dju

Sending 8—»0 gives

and consequently, using the lower-semicontinuity proved above, we have

f-yM2 + V V • Sdfi<limsup f-yOi2 + V > • Hd/i',

for any y/ e C2 {{<p > 0},[0, oo)).

Let {¥} }ya c= C2 {{(p > 0},[0, oo)) be chosen so that y/j < (p and y/j -> <p in C2. By the

dominated convergence theorem we have that,

lwi\ysiH
2du= [<pH2du.

Furthermore, since \<pH2d/i < °° and yrj —> q> in C2

lim > . -^ rf//- fv>-^ dp|< lim r ' D ^ ~
y/.-(p\

_(p\H2d = Q

Consequently we have

[-(pH2+Vx<p-H dp = \im\-y/i dju.

Since the same argument applies with JJ. replaced by //' we have
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limsup#(//',<p) = l i p

< lim lim sup 25(//', ^ , )

Now we turn to the remainder of G. Since we are assuming lim £(//';#?) exists and is

finite, by (9.1) we have that \(pH2d/u' is bounded independent of i. Then, by lower-

semicontinuity of \(pH2dfi we have \<p2H2dfi<°° and

2
dju

which is finite. Hence g | -0H + V V |E L)OC and, for any 5 > 0, we can find an / e C°

such that

Therefore

<2S

since / / ' - > / / . Finally, send (5->0 to obtain

f g | -p/T + V 1 ^ | dpi = lim f g | -p#,. + V-1^ | <///' (9.3)

whenever sup/^'{<^ > 0} <°o and none of the singular conditions on G are satisfied.

Hence G is upper-semicontinuous.

Finally, assume G(ju;<p) > - °° . Then
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2 4 (p

2 <p 2 <p

which is non-decreasing in ju{<p > 0}. Hence Q is a general Brakke functional. u

In order to define our forced Brakke flows, we will need the following version of Q,
which is a general Brakke functional by Lemma 9.1:

Definition: Let t > 0, JUG ̂ (R" + 1 ) and assume (p is a test function. If one of the
following cases holds, set Gt (/i; qj) = -<x>:

(i) /A-{<P>0}£Mn(R
n+1),

(ii) | SV | L{<p > 0} £ 9A.{{(p > 0}) where V := VMl{<p > 0},

(iv) \<

Otherwise, we define

where g : Rn+1 x[0,oo) -> [0,oo) satisfies

(v) 9(x,0 = 0 for any xeU a Rn+1 and all t > 0,

(vi) foranyt>0, limg(x,s) = g(x,t) fora.e. xeU,
S-M

(vii) g(-,t)e L\ju)forall fie Mn(R.n*),

(viii) sup || g( •,/) || < oo, and

(ix) for some r e (0,°°), g(-,t) = O Vf>r ,
where U has finite measure.

Definition (forced Brakke flow, forced integer Brakke flow): Let {ju, }ra) be a family

of Radon measures on Rn+1 and suppose Gt is as defined above. If

Dtnt{(p)<Gt{jit\q>)

for any test-Junction (p on R"+1, then we call {/^f},20 a forced Brakke flow. If

jut s I!Mn (R
n+1) for a.e. t>0, then we call {jnt } t ^ a forced integer Brakke flow.

59



Before proceeding with the existence proof, we need to prove a consequence of the
Compactness Theorem 5.1 that will be used in the proof. This will require a simple
lemma concerning the relationship between Gt and the following functional:

Definition: Lett>0, fie f^(Rn+2) and assume ^ e Cc
2(Rfl+2,[0,°o)). If one of the

following cases holds, set Gf(ju\<p) = -«° :

(i) M.{^>0}g^ n + 1 (R n + 2 ) ,

(ii) | SV | L{? > 0}£ M({v > 0}) where V := VML{v > 0},

(Hi)

(iv)

Otherwise, we define

where g£ is defined by

\g(x,£z),Z>0

lO, z < 0

where g satisfies conditions (v)-(ix) in the definition of Gf.

Lemma 9.2: For any e > 0 and any t > 0, Gf is a general Brakke functional.

Furthermore, if £{ 10, then limGf' (fijp) = Gt(/*•,Ip) for any t>0 and any Radon

measure ju.

Proof: By Lemma 9.1 we see that GE
t is a general Brakke functional and the continuity

limGe' (//,^) = Gt (ju,qP) follows from the continuity of g. g
I—>oo

By using Lemmas 8.7 and 9.2 and (8.1) we have:

Theorem 9.3: There exists a sequence {£{ }&1 be a descending to zero and an integer

forced Brakke flow 94. — {/7, },^0 such that

P" (0

and ju,(Rn+lx(a,b)) < (b-a){M(M0)

Proof: By (8.1) we know that, for any i > 1, Me' = {}iptl (/) }liQ is a general Brakke flow

with Gf' as the general Brakke functional. Therefore, we may use Lemmas 8.6 and 9.2
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together with Theorem 5.1 (i) to find an integer forced Brakke flow W = {jut },s0 such that

By using the same argument leading to (9.2) we have

for all t > 0. Combining this with Theorem 5.1 (ii) completes the proof. m

The next step in showing existence is to show that the forced Brakke flow obtained in
Theorem 9.3 is translationaly invariant for a.e. t >0. Then we will show that, for any
9e CC

2(R) satisfying J9(z)dz = 1, the family {//, },>0 given by

is an integer forced Brakke flow with initial data given by //0 =

Lemma 9.4: Lett>0. Then

(<jT)n(Jit) = Jlt V r e R

for all t&%, where crT (x, z) = (x,z + r) and % is the set from Lemma 4.1.

Proof: Let Ip E C) (Rn+1 x (-t I s, ~ ) , [0,«,)) and let r > 0. Define

_ r \(p(x,Z-T) if Z~T>t/£
(p \x, z)'.— \

[0 otherwise

Then, for any e> 0, // /> t ( f )(^ r) = MP.(t+er:>(p) • By Lemmas 4.1 and 8.7, there is a constant

such mat

is non-increasing. Fix s > t and pass to the limit as £t 1 0 to find that, for any

M,(<P)-C((p,n,g)t>JIt(v>T)-C(p,n,g)t>fIs(v)-C(p,n,g)s,

by Theorem 9.3. Therefore, sending s 11, we have

sit
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Similarly, whenever r < 0 and t > 0,

27, (#0 < 27, (^ f ) < lim 27, (9.5)

Finally, by Lemma 4.1 (iii) we can find a co-countable set % of times such that equality

holds in both (9.4) and (9.5), that is (aT)# (27,) = 27, for all r e R , as desired. m

Lemma 9.5: Let /7e ^f(Rn+1x(z0,oo)) and suppose that, for each

pe C°(Rn+ ' x(z0,°o),[0,oo)) and each r > 0, 27 satisfies

M(<P ) ~ M
where

<pT(x,z):=
0

if Z~T>tl£

otherwise

Let 0e C°((zo,°°)) be chosen so that \0(z)dz = 1. Then

(i) the Radon measure given by fi(<p) := Ji(0<p) for any ^ 6 C°(R"+1,[0,oo)) is

independent of the choice ofO and Ji = ^x/JL(zo,°°),

(ii) 27G flCi(Rn+I x(*o>~)) implies jue S^CR"*1), fl«J 27s /f^+1(R"+1 x(z0?oo))

implies fie. lMn(R
n+1), and

(iii) if0eCc
2((zo,°°)) then

for any (p e C* (Rn+1,[0,~)) and any t > 0.

Proof: By extending 27 to a translation-invariant measure on all of R"+1 x R, we assume

z0 = -°° • The proofs of (i) and (ii) are in [12]. We include them here for completeness.

The proof of (iii) is similar to the proof of [12 8.5 (iii)].

Let K := {0 e C° (R) : f Odz -1}. For each 0 s K, let K{0) be the set of all finite convex

combinations

flr=L aT>0.

Since 27 is translationally invariant, Jl(0'(p) = Jt(0*<p) for any 0',0"e K{0). Any two

fixed functions 0v02e K can be approximated uniformly and arbitrarily closely by

0[,0'2 e K{0) for some sufficiently tall, narrow 0e K. Therefore
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for any <ps C°(Rn+\[0,oo)). Therefore, for any tf e Cf°(R,[0,oo)),

i.e. fi-

Assume /J. G Mn+1 (Rn + 2) . Note that a) e T(XZ)J2 ju - a.e.. Otherwise, by the rectifiability

of 27 we could find (x, z) and a small C1 (n + l)-submanifold C transverse to co

containing (x, z) but so that ju(C) > 0. However, by the translational invariance of J2, we

could translate C along the z-axis to contradict the local fmiteness of 77.

Since 27 is rectifiable, we have, for any <pe Cc°(Rn+1,[0,oo)) and ju-a.e. (x,z)eUxR

= Txjj®spana) forfi-a.e. x.since cot T{xz)Ji. Therefore /ie X ( R " + 1 )

For (iii), note that, ty (ii), /£{<p>0}e f^(R n + 1) iff 27L((^>O}xR)e

Suppose this is the case. Let X s Cl({<p>0}xR) and define

X (x) := JT{xz)/i(X(x, z))dz. Then we have

= Jdiv MT(x<z)M(X(x,z))djudz

= jdiv-X(x,z)d/Z

since J2 = pixj2 and T(JCz)27 = Txfx® spano jW-fl.e. Hence

0} xR) = 0} xL1

and consequently the singular conditions on Qt hold for /L{ip > 0} iff they hold for

27L({^>O}xR). Furthermore, forp-a.e. xe{<p>0} and allz, HM(x) = H-(x,z) and

co± = 0 (since co e T(x z )/7). Hence, if ^, (Z7, % ) > -oo, we have
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t (//, <p)dz

as desired. ^

Theorem 9.6 (Existence of forced integer Brakke flows): Let MQ e ll°c (Rn+1) be an

initial surface. Then there exists a M E I^+
C,(R"+1 x[0,oo)) and a forced integer Brakke

flow 94. = {jut }tZ0 such that

(i) dM=Mor

(Hi) fiu < //,, ju0 = jUMo, M(//,) < M(M0) + cg

where M, :=a(M.(Rn+1 x [?,«))).

Proof: The existence of {//, }rso follows from Lemmas 9.3, 9.4, and 9.5 by defining

forallf>0.

Define TE :=(/r£.)#(M5) where Ke{x,z):=(x,ez). By Lemmas 6.2 and 8.8 we have, by

the compactness theorem 1.2, that there exists a sequence {£,-},->, and a current

M E l£,(R"+1 x[0,oo)) such that

dM = Mo and Te> -> M .

Furthermore, Lemma 8.8 implies (ii).

Now, fix t > 0 and let ye Cc°(Rn+1,[0,°°)). Let 5 > 0 and choose a cut-off function

77eC~(R,[O,l]) such that

77 = Oon (-°°,t -&], 77 = 1 on [t,°o).

For all T and any ae (Dn+l (Rn+2) we have, by Lemma 8.8,

IM (rja) - limT*1 L(Rn+1 x [t + £{v, °°))(a) \

=| M(rja) -limr£'L(Rn+1 x[t + e(r,

1 limrf'L(Rn+1 x[O,r
i—»•

< max I a \ (S + f,2 + (S + ef)xn)(M(M0) + c ) < » .
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Sending <5 —* 0 we obtain

rr'L(Rn+1 x[t + e,rt ML(R"+1 x [*,«»)),
in particular,

Therefore

, and liminf // >
I—»<«> '>+t|r

> liminf f ̂  | O)J \ dju „

= liminf f^[97 d/i., dz
I*" J J MI-*"

00

= lim inf f 6 f q> dutl dz

00

> f^liminf//

Also, approximating 6 by step functions and using Lemma 9.3, we have

where cg is the constant from Lemma 8.7. Finally we show that lim /*A/r, (60) = /tMg (0).

By Lemma 6.2 we have

'(Me) < M(M0) — J J g(x,e
1 ~

- f \g(x, ,dz . (9.6)

Furthermore, Lemma 8.7 and the isoperimetric inequality provide local mass bounds to
ensure (passing to a subsequence if necessary) the existence of some

£2 (R
n+1 x [0,00)) i;uch that

-> Q. and dQ = Q,o + M ,

where M = lim M£ l . Now, by lower-semiconrinuity of mass we have, for any fixed; > 1,
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liminf—? f g(x,ejZ)e-zl£ldiiatidz < — f f g{x,e}z)e-zlejdfiadz

Let/6C^([0,oo)).Then

) ^ H ]e-°£f\z)dz |< fsup | /'|-» 0,

so

lim— f e-zl£'f{z)dz = /(0) V/ e C^([0,oo)).

Therefore, approximating we ^oc([0,°°)) by C^ functions, we have

lim—
i o

Hence, for any fixed i > 1,

lim- J
By diagonalising we obtain

liminf— f f g(x,ejz)e-zle'duCldz < \g(x,,0)djuQ .

Since /z^,, L^ -> //0 for any ^G Cc
2((0,°°)) satisfying j 6Wz = 1, we have

M ( / / 0 ) < M ( M 0 ) - l i m —

+ liminf — \\ g(x,^,;

(9.7)

< M ( M 0 ) .

However, since fiQ > juMo we actually have equality, H

Definition (enhanced forced motion): If the pair (M,M) satisfies the conclusions of

Theorem 8.6, then we call them an enhancedforced motion with initial condition MQ.We

also say that M is the undercurrent and 9vtis the forced overflow.
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As with the Brakke flow, we may restart enhanced forced motions [12, 8.4]:

Lemma 9.7 (restartability): Let Mo e 1^ (Rn+1) be an initial surface and suppose

(M, M) is an enhancedforced motion with initial condition Mo. Then, for allt>Q, Mt

is an initial surface and {Mt }tz0 is weakly continuous.

Proof: By Theorem 9.6 (iii) we have

M(Mt)<M(jut)<M(M0) (9.8)

Furthermore, by Theorem 9.8 (ii), {Mt }lk0 is continuous in the weak topology. Therefore,

by the compactness theorem 1.2 and (9,8), M, G lJ,0C(Rn+1 x{t}) .Hence, for all t>0, M,

is an initial surface. m
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10 Some properties of enhanced forced motions

Recall that in an enhanced forced motion we have the discrepency between jut and MM, .

Suppose we have an enhanced forced motion (M,M) with initial condition Mo

satisfying jut > MM, at some time t > 0. Define M(0:=(<7_,)#M.(R"+1x(*,«?)) a n ( j

9A.{t) := {jus } s i t , where juseiM for all s > t. Because of the equality ju0 = JUMQ required

in the definition for enhanced forced motions, the pair (M(t),M{t)) will not be an

enhanced forced motion. In the special case when we have equality Mt = MM, f° r a*l u m e»

then we will say that the enhanced forced motion is a forced matching motion. We begin
by proving existence of forced matching motions under the hypothesis of uniqueness of
the undercurrent. We will conclude with some lemmata characterising the area ratio and
tilt-excess for forced matching motions obtained using elliptic regularisation.

As in [12 9.1] we formally define a forced matching motion as follows:

Definition (forced matching motion): Let Mo e Î OC(R"+1) be an initial surface. We call

a current M £ I^,(Rn+1 x[0,°°)) a forced matching motion for Mo if

(i) dM=M0,

(ii) M(ML(R"+1 xA))<(X1 (A) + Ll(A)1/2)(M(M0) + cg), and

(Hi) $4. - {MMI },>O is a forced Brakkeflow.

Suppose every enhanced forced motion (M,!M) with initial surface MQ has the same

undercurrent. Then we will say that M is the unique undercurrent for Mo. If we assume

such uniqueness, we have:

Lemma 10.1 (existence of forced matching motions): Let MQ e l{l
oc(R'l+1) be an initial

surface and suppose that M e I^1(R"+1 x[0,°°)) is the unique undercurrent for Mo.

Then M is a forced matching motion for Mo.

Proof: The most vital ingredient for the proof is Theorem 8.6 (iii). With that, the proof
runs almost identically to the proof of Lemma 3.5 [12, 9.2].

We must show that {MMI },><, is a forced Brakke flow. Let 8 > 0. We first construct an

enhanced forced motion (M,MS) satisfying

M(M?)<M(M,) + S,

for all t > 0. Then we will use the compactness theorem for general Brakke flows to
obtain a sequence 8( -I 0 and a forced Brakke flow 9vC = { '̂},>0 such that

Mf1 -^M' and M',> MM,-

However, since MQif) < M(M,) + S, we will then have M(M') ^ M(M,) for all t > 0,

i.e. M\ = MM,
 f o r a ^ t > 0.

Define the set Ts :={t>0:M(//,)>M(M,) + <?}. If 7 > = 0 , then set M,=M<-

Otherwise, let t0 := inf Ts. By Lemma 8.7, {M, } /so is weakly continuous. By Lemma 4.1

(iii), we have limM(//,) < M(M,O ) . Therefore

M(M,o) + S < liminf M(M,) + 8 < li

i.e. t0eT5.

Now, by Lemma 8.7, we may restart the flow at t0 with M,o as the initial surface. Then

Theorem 8.6 ensures the existence of an enhanced forced motion (M,M) satisfying

,,<»)), dM=M., It. = MM

We define the pair (M,5V/) by

and show that (M,M) is an enhanced motion for Mo

Firstly, note that

dM=dM- 8(ML(Rn+1 x [t0 ,<

= M0-M.
'o

=M0

Since

and

M(ML(R"+1 x A) < (Ll (A) + L1 (A)1'2 )(M(M0) + cg)

M(ML(R"+1 x A) < (X1 (A) + L1(A)ll2)(M(M0) + cg)

it follows that M(M.(R"+1 x A) < (Ll (A) + £ (A)1'2)(M(M0) + c ) . Likewise we have
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by (8.8). We also trivially have fiM< < //,, fiQ = MM0 •
 S o a11 t n a l remains to be checked is

that 9^.- {//, },a0 is a forced Brakke flow, which is clear whenever t & t0 and whenever

tit0. Therefore we show that, for any <pe C2(Rn+1 ,[0,«>))

where

f (to)-

'o->

Since we have

we may assume wlog that fitg (<p) = ju,o (fp) (otherwise Dt julo (<p) = -<*>). Then

z>f- Ao (<P)=A"X M * gh (M,0 , ̂ ) = gh (Ao. ^) •

Hence f7Qf = {/if }r50 is a forced Brakke flow.

By assumption we have that M is the unique undercurrent, so M = M . As before, we
have

limM(A ) < M(A ) = M(M,o) < liminf M(M,),

that is, we have increased inf Ts. Moreover

Therefore, if we repeat the above process, it will terminate after no more than
[(M(M0) + cg)/S] iterations. Thus, after iterating the above process we will be left with

an enhanced forced motion (M, $/Cs) satisfying

M(juf)<M(Mt)
forall?>0.

Finally, as outlined above we may apply the compactness theorem for general Brakke

flows to find a sequence 8% -10 and a forced Brakke flow 9vC = {/*,'},;>0
 s u c n t n a t
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However, since M(//f) < M(M,) + S for each 8 > 0, we in fact have

for all / > 0, i.e. //;' = //M( for all t > 0. Hence H = {juM },s0 is a forced Brakke flow, that

is, M is a forced matching motion. ^

We now turn our attention to some geometric properties of forced matching motions. To
do this, we will need to construct a new family of M E 's.

Suppose M G l°lx (R"+-) is a forced matching motion for the initial surface M 0 . Let t > 0
and define the functional

By Lemma 6.2 there exists a Ge
t -minimiser ME(t) with initial surface Mt. So we

definine the family of Gs
t -minimisers {M E(t)},20:

Definition: Let Mo e lJ1
0C(Rn+1) be an initial surface and suppose M e I^j(Rn+2) is a

matching motion for MQ. For each t>0, we define M e (f) to be a Ge
x - minimiser with

initial surface Mt.

Now for some observations.

Lemma 10.2: Suppose ju c -^jut xl}L(0,°°). Then

"

~Remark: If we have the convergence lim jut4C. L(—e~zUi ) = U., it follows thatm jut4C.

Mt(K)<\immf-
I—»oo g f < 0
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by lower-semicontinuity of mass. On the other hand, we have

limsup—

by Lerr.ma 6.2(ii) and (9.7) as computed in the proof of Theorem 9.6. Therefore,
whenever ns{£ -> M, X-^L(O,«=) it follows that

Proof of Lemma 10.2: We assume wlog t ~ 0. As indicated in the remark, the mass
bound GB(ME)<Ge(M0 x[[0,~)]) and (9.7)implies

l i m s u p - (10.1)

On the other hand,
liminf rf//, >djuMd(LlL(0,°o))

by the assumption JUMC. t -* jut xX}L(0,°°) and lower-semicontinuity of mass. So, for

any <pe Cc°(R"+1x(0,~)) and for any;>0,

j—e~z'e'<pdJuModL1<\immf—j<pe~z/ejdjUMCi .

Thus, by diagonalising,

< lim liminf — f (pe~z> e> dju

= liminf—\(pe~z le idnMCi

,. 1 r -lie, j

= hm— \(pe 'djUrj

since, for each j ,
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«w es

by definition. Hence

and equality holds by (10.1). H

We now introduce some new terminology to indicate when we are looking at a flow
constructed using elliptic regularisation.

Definition (Regularised enhanced motion): If an enhanced forced motion has been
obtained using the methods of §§6-9, then we say that it is a regularised enhanced forced
motion.

Lemma 10.3: Suppose M e I ^ , ( R " + 2 ) is a regularised forced matching motion. Then,
fora.e.t>0,

—» u. x £,'1(0, oo) t and

(ii) there is a subsequence {i'} such that V
'•Mv0)

V ,

Remark: This is really a version of the area continuity hypothesis lim/^ =//, restated

for a regularised forced matching motion.

Proof of Lemma 10.3: By Lemma 4.1, jut is continuous at t and Dtjnt (/p) >-°°, for all

te%
define
t e T-j where T2 is the set from Lemma 4.1. We assume t is such a time. Let s > 0 and

Pe(s,t):=

where a_Ue(x,z) = (x,z-s/e). Then, by Lemma 9.4,

whenever v5 is continuous at s. However v0 =// , and Pe(0,t) - Me(t) for each e > 0.

Thus, by the continuity of /z, at t, we have //M, ( l ) - » Mt xX?L(0,«»).

Furthermore, since £>,//, (̂ 7) > -°° , the definition of a general Brakke flow and (i) imply

the existence of a subsequence such that Vu —> V , as desired. H
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Combining Lemmas 10.2 and 10.3 we find:

Corollary 10.4: Suppose M e I^,(R"+2) is a regularised forced matching motion with

initial surface Mo. Then, for a.e. t>0,

!->«•

(ii) there is a subsequence {*'} such that limV^ t L(— e z'ei") = VPi, and

(iii) in particular lim— f| VS
T j2 £

whenever S is an n-dimensional subspace in R"+1 x {0} and a( —> a.

Remark: Note that (iii) says that the tilt-excess of jut over Bn
p (a) is the limit of the s-

tilt excess from §7:

_ _n 1

Proof of Corollary 10.4: The first and second consequence follow by applying Lemmas
10.2 and 10.3.

Let y/e Cc°(Gn+1(R'I+2)). Then, by Lemma 7.2 we can find a subsequence {/'} such that,

at a.e. t>0,

~

Therefore, by diagonalising,

and Vu

Let ai

and
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Therefore, sending ^-+0, we obtain

Likewise, for each A: > 1,

T ^
2 « -

f"(0

Hence using (iii) and diagonalising we obtain (iv).

75



Part IV-Regularity

In this part we prove a monotonicity formula related to the flow. This is the forced
Brakke flow analogue to Huisken's monotonicity formula [HI]. The aim is to obtain some
results concerning the Gaussian density of the forced Brakke flow. We then use methods
from [E], [13], and [W2] to obtain a local regularity result iri §12.

11 Another monotonicity formula

In [HI] Huisken proved the well known monotonicity formula for the mean curvature
flow:

; = - \]H +
2(5-0

IV,y.s

for all t < s and where

p (x,t):= 1
(4n(s~t)) nil

In [E], [13], and [W2] this has been used to obtain a local regularity theorem similar to
Allard's regularity theorem [A], [S]. Together with Brakke'i clearing out lemma [B 6.3],
the local regularity theorem has been used in [E] and [D] to prove a version of Brakke's
famous regularity theorem [B 6.12].

Recall from the introduction that we call 94. — {Tt }0St<s a smooth forced mean curvature
flow if

dx
-— = Hr (x) + g (x, t)vr (x), x e T,.
ot

We have the following lemma for smooth forced mean curvature flows:

Lemma 11.1: Let s<°°. Suppose V\i = {T, }0^l<1 is a smooth forced mean curvature flow.

Then, for any R>0, there are constants c1 = c1 (p,g,s,R) and c2>0 such that

tfn(Tt nBRn(y))2lp <

for all tE[0,rmn{s,R2 /8n}].

Remark: Suppose we have the uniform bound

sup sup 5 f (r0 n BR (x))R'n < A.
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Tfien Lemma 11.1 implies

sup sup(#" (T, n i^ / 2 W)2/pR-2nlp) < c(A,n,p)(JL + c, supC*2"2""(e2^"*' -1)))

for all re[0,min{5,2?2/8n}].

Hence Lemma lid allows us to make the uniform assumption

sup sup sup 9(n (T, n BR (x))R~n < A^.

We will follow Ecker's lead [E] and call this the area condition. More generally, if we
have CM. = {Tl}teI for some bounded interval / c R , the area condition is

for some Rt <°°.

Proof: Define

sup sup sup^"(r, nBR(x))R

(x t)-=(l-(\x-

where (a)+ = max{0, a}. Note that, for any /i-dimensional subspace 5 and any time s

Then we have

j , -v/<Py,,R))<Py,.R
r,

l

fi-max|

/<r

Let u(t) := j<pysRd!rfn . Then
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where c, = sup | | g(-,t)\\
t<s

M'-C,« 1 " 2 / / ' -C 2 M<0,

and c2 = 7?2 max | D2q)ysR | / 2 < 15. Using the

integrating factor e~Cjf we have

—

or

<u(0) 2lp

Therefore, setting c = c1/c2 we have

"(T, n 5R/2
n (ro n i?x()0)2/;) + cR2((1 - ))e

2c*"pRl

for all / 6 [0,min{s, R2 /Sn}] as desired.

In this Part, we will be considering forced Brakke flows given by M = {jut } t < s . Existence

is guaranteed by Theorem 9.6.

Lemma 11.2(monotonicity formula):Let y G Rn+1 and s e R. Suppose CM = {//, }f<J is

a forced integer Brakkeflow satisfying the area condition. Then, whenever \ s — t \< R

and (p is a test-function satisfying

,<p = 0ojfB2R(y),andR\D<p\+R2\D2<p\<c0,

we have (in the distributional sense)

where c3 = cx(n,c0, A) and A = sup || g( •,t) |j
t<s

ln)-nlp 12.

Remark: Other similar monotonicity formulas for weak curvature flows include
Ilmanen's local version ofHuisken's monotonicity formula (with g = 0, see [13 Lemma
7]), and White's monotonicityformula for K-almostBrakkeflows (where g=K <°°, see
[Wl §11]). This version is the parabolic counterpart of the classic monotonicity formula
for varifolds [S §17].

Proof: Wlog we consider only (y,s) = (0,0) and write p = p00. For the proof we will

require the identity
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dt
(11.1)

which is valid for any n - dimensional hyperplane S. This can be computed as follows:

dt 2(-/)n/2+! 4 H r ' v (•
^ 4|xT|2 ^ 4 | ^ | 2

n/2(4f)2(-0n/2(4f)
= 0.

Now, suppose <p is a time-varying test-function and assume wlog Dtjut (tp) > - ° ° . Then it

is easy to see that

D,//, (07) < ^, (//,, (p) + JU, ((p,, ) ,

where q>,. = —2-.
9f

Let ?̂ = 1 in Bfi (y), $? = 0 off B2R (y), and i? | Dp | +/?2 | D V |< c0. Then, in the sense of

distributions, we have

~\<PPy, dM,

<P
><*/«,
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where we have used the Cauchy-Schwarz inequality.

Now, for any n - dimensional hyperplane S we have

Furthermore, we have

sup pys<

It is easy to compute that

nn- t))

Therefore, by the area condition we have

Similarly, we have that

-n/2

;£ i?2 lri)nl2 (11.2)

(11.3)

sup \D2pyJ<

which can easily shown to be bounded by (4x) (R Icn)
 n e~c" where

cn =—(n + 2 + ^/(n + 6)(n + 2)). Therefore, again by the area condition, we have
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(11.4)

Finally, using (11.2) and the Holder inequality, we have

Combining this with (11.3) and (11.4) completes the proof, gg

Corollary 11.3: Let ye Rn+1 and seR. Suppose 9vi-{fit}t<s is a forced integer

Brakkeflow satisfying the area condition. Let cp be a test-function satisfying

<p = linBR(y),<p = 0ojfB2K(y),andR\D<p\+R2\D2(p\<c0.

Then [\^)pysd/Lit +-\{s-t)fp + (s-t) is a non-increasing function oft on the
* ' R p

interval [s-R2,s].

Proof: By Lemma 11.2 we have, in the sense of distributions,

whenever t £ [s - R2, s].

Therefore

since t < s. m

Recall the function from the proof of Lemma 11.1:

(pysR (x, 0 := (1 - (| x - y |2 +2n(s -t))R~2 )l

where (a)+ = max{0,a}. We will write

and
y.s.R (X> 0 := <Py,s,R (^. t)Py.s (X> 0

(x, t) := <p0 iOi/? (x, f )/?o.o (^. 0 •
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The following definition essentially says that the point (y, s) e R"+1 x R is in the support

Definition: Let s e R, ye Rn+1, and suppose M = {r, }t<s is a smooth forced mean

curvature flow. Suppose there exist sequences tt T s and {xt }(ii with x-t e Tt and

x{ ->y. Tlien we say that breaches y at time s.

Proposition 11.4: Let ye Rn+1 and sell. Suppose M = {fit}t<s is a forced integer

Brakkeflow satisfying the area condition. Then the gaussian density

S(M,y,s) :=\im

exists and is upper-semicontinuous. Moreover, ifM = {Tt }t<s is a smooth forcedBrakke

flow that reaches y at time s, then Q(M, y, s) > 1 .

Proof: Existence follows from Corollary 11.3.

For upper-semicontinuity, we wish to show that if (xt, tt) -»(y , s) then

Q(M, y,s) > li

Let T < s be fixed. Let N be chosen so that r < tt <t for i > N. Then, Corollary 11.3
implies

l -2(ti -t)]21" +Q.(t, -t),

for any t<tr By the continuity of cppyi we have

on both sides we have

-»<ppys. Hence, taking limsup

<[\<&ysR{.x,t)dfit(x) + c3R-2(s-t))2/p +^(s-t).J ' p

Sending / T s on the right hand side we obtain the upper-semicontinuity.

Supposed = {F, }t<s is a smooth forced mean curvature flow that reaches y at time s.

Assume that f7Wis smooth near y. Consider the rescaling x = J6c + y and t = Xt + s

where s > 0 and X > 0. Then the family M* = {T^y's) }r<0 given by

X

is a smooth forced mean curvature flow.
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Since £7VTis smooth near y we have

In general, the limit defines the tangent flow to Mat (y, s). More on this in §12.

Note that
3>.... (*,r) = <D , (/I"1 (x - y),X2{t - s))

from which it follows

^X>(X)

Therefore, for every r < 0,

}-iy-s)(x)= \ p^ =1

Now, let
.4 := {y e Rn+1 : breaches y at s, ®(M, y, s) < 1}

By the upper-semicontinuity of the gaussian density, it follows that A is relatively open in
the set {Mreachesyats}. So if A*0 it follows that jus(A)>0. But, since Mis

smooth, @(M, y, s) = 1 for a.e. y that breaches at s. Hence A = 0 . m

Corollary 11.5: Lef y e Rn+1 and s e R. Suppose M = {F, }/<a w a smooth forced mean
curvature flow that reaches y at time s and satisfies the area condition. IfA(s — t)<p/4
then

is a non-increasing function of t on the interval [s — mR2,s] where

Proof: By Corollary 11.3 and Lemma 11.4 we have

-t)lp)"12

Therefore, if T(s-t) < p/4 and if c3(s-t)R~2 < I'1'"'2,
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Applying this to Lemma 11.2 we have

,t) dMt(x)<0.

Multiplying through by the integrating factor C
2<*2"A('-') completes the proof. m

Proposition 11.6 (clearing out): Let s e R and suppose 94. = {Tt }t<J is a smooth forced

mean curvature flow satisfying the area condition. Suppose Mreaches y at time s. Then,
for any 0 < p <l/2n there exists a 0 < 6 - 0(^6) < 1 such that for all
(X-2nj3)-ln<p<(p/(4A]3))U2,

, A=O

Equivalent^, if for some 0 <fi<l/2n andsome p<= ( ( l -

2 1 + 2 / p A
, A>0

>
, A = 0

then there exists aS>0 such that //, (BS (y)) = 0 for all ts(s-S2,s).

Remarks: Note that the interval ((l-2«/?)"1/2,(p/(4A/?))1/2] is non-empty iff

(3 < p(4A + 2;i/>)-1. In the case when A = 0 this just says /? <l/2«.

Suppose Mis the volume preserving mean cv ,-vature flow of a sphere. Then we trivially
have

21+2/ 'A'

for any p > 0 and all y€ S".

Proof of Lemma 11.6: We assume A £ 0 since that is the case for the mean-curvature
flow (see [E] for details). By Corollary 11.4 we have that



<

-2\3

2H2lpA

whenever A(s - / ) < pi 4. Let a > 0 and set t = s-aR2. Then

_£
21 + 2"A'

since i? > 1. Set p = ~Jl + 2naR and oft" = # r to obtain

- f 2 . + 2 / P A

for some 0 < 0 = Q(n,P) < 1. The fact that p must be in the interval
((1 - 2np)'V2, (p/(4AJ3))1'2} can be seen as follows:
Firstly 1 + 2na = (1 - 2nj3)~i, so the condition A(.s -t)<p!4 is satisfied iff

or
p<(p/(4Ap)) 1/2

The lower bound follows from p = -Jl + 2naR and 1 + 2na = (1 - 2n/?)- i
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12 Local regularity

Recall the CXa', C2>° and W2'p nonns of a smooth mean curvature flow 94. - {T, }l<s at
a point CM) 6 M: KUa(fM,xrt) ,K2a(M,x,t) and JZp(M,x,t) (respectively) as defined
at the end of §1.

In this section we prove the following local regularity theorem:

Theorem 12.1: Let p e [2,<~) n (n,<*>). There exists aSQ>0 and a C0 > 0 such that for

any (y,s)e Rn+1 xR and any smooth forced mean curvature flow 94. = {T, }l<s satisfying,

for some p>0

for all (x,t)e Bp(y)x(s-p2,s) and all Te(t~p2,t),then,foranyO<cr<p,

a2 sup sup

where ^ = sup |J g(- ,t)\\
t<s

,x,0 + KUa(i94:,x,t)]<C0(l

e-nlp(8nR2lnynlp 12< ~ and a = l-nlp

This is similar to [W2 6.1]. There, White defines what he calls a Brakke operator to act
as a forcing term. For a given flow 9i, if the mean curvature vector exists at x at time t,
the Brakke operator fi(M): U x (-°o, s) x Gn (U) -> Rn+1 is defined by

t, S) = v(x,t) -H(x,t),

where Gn (JJ) is the Grassmanian on the set U (see § 1) and v is the normal velocity of the
flow at x. Examples (from [W2 §4]) include:
(i) The Brakke operator for a compact embedded hypersurface M moving by the

gradient flow for the functional (area - volume) is /3(94)(x,t,TxM,) = vMr (x),

where vM< (x) is the outward pointing unit normal to the surface at time t.
(ii) The mean curvature flow on the unit sphere has fi(M)(x, t, S) = nx for its Brakke

operator, where S is an /i-dimensional subspace.

Concentrating on regularity, White doesn't prove existence for flows with non-zero
Brakke operator.

Since the smooth forced mean curvature flow is the gradient flow for the functional (area
- \g dL"+}), where Q. denotes the region enclosed by the evolving hypersurface, the

a
Brakke operator for the smooth forced mean curvature flow is
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P(x,t,S):=g(x,t)vs(x)

for any n-dimensional subspace S. This requires an orientation on the flow and therefore
isn't applicable to varifolds, unlike the more general approach we've taken so far.
Furthermore, only the case ge L" is treated in [W2 6.1], corresponding to a iST-almost
Brakke flow [Wl §11] with

K =supsup\ g(x,t)\.

As a slight interlude, we will first prove an interesting property of the tangent flows used
in the proof of Proposition 11.4. To do this, we formally define the tangent flow as
follows:
Let M = {fit }t<3 be a forced Brakke flow. Let (xo,fo)s R"+1 x(~«>,s) and let A>0.

Set t = A2T +10 and y = Ax + x0. Define M^o = { / ^ ^ }r<0 where

Note that

from which it follows

p(y,r) :=

(12.1)

Therefore, for every r < 0,

Now, by Theorem 5.1, we can find a sequence At 10 and a forced Brakke flow

{/"r}r<o such that

* fa
for any r < 0. We call 94! a tangent flow to Mat (xo,to).

Lemma 12.2: Let p > n and let 9d = {/j,t}t<s be a forced Brakke flow. Let

(xQ, t0) e Rn+1 x (-oo, s). Then any tangent flow to ?*iat (r^, t0) is a Brakke flow.

Proof: For any A > 0, fTlf̂  fo - {pt*-{x°''°) }r<0 is a forced Brak*e flow with forcing term

given by
gA(y,T) = Ag(Ay + xo,Z

zT+to).

Now, suppose wlog (x0,t0) ••• (0,0). We have
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Sincep > n, we therefore have gx -> 0 in Lp. Consequently, any tangent flow to
(x0,t0) is a Brakke flow. H

We recall the following local regularity result for smooth mean curvature flow which is,
of course, valid for tangent flows to forced Brakke flows:

Theorem 12.3 [W2 3.1]: For 0 < a < 1, there exists a S0>0 and a Co > 0 such that for

(y,s)<= Rn+1xR and any smooth mean curvature flow M = {Tt}t<s satisfying

Then, there exists a p > 0 mch that, for any 0<a<p,

a2 sup sup K2a(M,x,t)<C0.

Now to the proof of Theorem 12.1:

Proof of Theorem 12.1 i We may assume the flow is smooth up to time 0, since we could
first prove the theorem for s replaced by s - S2 and then let S -> 0. We assume wlog that
(v, s) ~ (0,0) and that breaches 0 at time 0. By Morrey's lemma ([G] or [GT]), we need
only show the estimate

cr2 sup sup J2 (M,x,t)<CaQ. + p2

is true.

Now, suppose ths thecrem is false. Then, for any i > 1, we can find a smooth forced
Brakke flow Ml = {T't }/s.G and pi > 0 such that

for all (A-, t) E BPi (0)x(-/?:
2,0) and all te(t-p2,i) but so that, for some 0 < ai < p.

r)2:=:a2 sup sup — 2
(„,_„, (o)nr; 1 + /?,A,. > (12.2)
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We can find times - (p, - cr.)2 < r, < 0 and points x, e BPI_CI (0) n F,' such that

P,2A,
Note that,

which gives

—— sup sup
4 K=I~(/\~<T, /2) 1 .0)xeB^.^ ,i(O)nlV

/2p(Stf,*,f)

sup sup /2>p (M
l ,x,t)< 4/2 i P (fW, x,, f,)

Now, since tt >-(/?,. - cr.)2 > cr2 / 4 -(p ( -ai 12) and since xt E £A_ff| (0) we have

(J;<(-^-(/>,-y)
so that

sup sup

Let /I. =ll^J2p(M,xi,ti) and define

for J G [-<r,2 / (4i2 ),0]. Note that it is possible for A. to remain finite when we send i —*•

oo so what we obtain after sending / —> oo won't necessarily be a tangent flow. With this

definition we have that, for all i > 1, Ml = {Tl
s} is a smooth forced mean curvature flow

satisfying

and

for all / > 1.

sup sup _72p(i^'',j:,5)<4,

Since erf A: > rjr > i it follows that, for every R > 0, we can find an NR > 1 such that

sup sup J2p($C,x,s)<4-, (12.3)

for all i>NR. Furthermore, by (12.1) we have

(12.4)
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for all se(.-p?X?,0).

By the compactness theorem we can find a subsequence and a integer forced Brakke flow

fAf={f,},<0 such that

and, by the Arzela-Ascoli theorem [W2 2.6],

(12.5)

We now show that lim A, = 0 . If this is the case, then Lemma 9.1 and (12.4) implies that

9vi is a homothetically shinking mean curvature flow. The convergence is easily shown
as follows:

i±^L<jU1^0 (12.6)
err

by (12.2) and (12.3). This calculation wouldn't be possible if the right hand side of the
estimate in the conclusion of the theorem was Co (1 + A).

By Morrey's Lemma and (12.5), it follows that Kia(ffr{,x,t)<°° where

a = l — n/pe (0,1). However, since M is a homothetically shrinking mean curvature

flow smooth up to s = 0, it follows that F_, is a hyperplane. Therefore Kla (iAf, x, r) = 0

for all x and all t.

Using the definition of the parabolic Cha norm and the Cla convergence, we can find a
sequence rt ->=» and functions u{ :Br"(0)x(-r;.2,A;.2)—> R such that

graph«, =

and so that || ut \\ha—> 0. The «,. are weak solutions to

3M,

where

Ji :~~

Since || g, \\p-^ 0 and || / , | |p-» 0 by (12.6) and the C'a convergence (respectively), we

have, by [GT 9.12], that || ut ||2 p -> 0 . By the definition of J2p {&, J,0), this contradicts

(12.5). .
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Corollary 12.4: Let pe [2, °°) n (n, °°). There exist constants So > 0 and a Co > 0 such

that for any (y,s)e R"+1 x R and any smooth mean curvature flow M = {Tt}t<s there

exists a p > 0 such that if

then, for any 0 < a < p,

sup sup ,x,t) + Kla(M,x,t)]<C0(l+p2A),

where a = l-n/ p.

Proof: We begin by showing that S(fM, y,s)<l + SQ implies the existence of a p > 0

such that the hypotheses of Theorem 12.1 are satisfied. We assume y and s are 0.

Suppose 9A. satisfies 0(5Vf 0,0)<l + SQ. Then, by the existence of the limit

A > we can find a A> > ° such mat
lim

3

The continuity of the map {y, s)h> f ̂ > Rdju_ 2 implies that there exists a 0 < <T0 < p0

such that, for all (y,s)e BGo (0) x (-<J0
2 ,0)

By reducing cr0 if necessary we may assume (s -<TQ, S) a (-pi, 0) and, reducing p0 if

necessary, we may also assume Apl <p/4. This, together with the assumption

(s-al,s)(z(-pl,0), implies A(s-t)<p/4 for all re (J-O-Q.J).

By Corollary 11.5 we have

e2 "Hs r)(^(p{ys)RpysdfiT

<e2

21+2/pA

for all T£ [s - a\, s]. Rewriting this we obtain
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-1))

foraU (y,s)eBcrD(O)x(-a2,O) and all r e [ s - a 2 , s ] . Further reduction of p0 (if
necessary) gives

for all (y,s)e Bag(0)x(-or2,0) and all r e [s - &1 ,s]. Such a />o exists since

21+2/pA v

has a positive solution for any 50 > 0.

We complete the proof by applying Theorem 12.1.
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Appendix A: Ferronematics

In [23], Zubarev & Iskakova consider an initially flat layer (say of depth d) of a liquid
crystal containing ferromagnetic particles, called a ferronematic (see figure A). The
surface is Mo = [R2 x {0}] which is locally finite. The applied magnetic field is assumed
to be in the vertical direction. The ferromagnetic particles in the crystal produce a
magnetic field h = hiei that adds vectorially with the external magnetic field. Tliis is
called the demagnetisation of the ferronematic.

To model this, we will construct an evolution of M o . We make the simplifying

assumption that the layer is infinitely deep. Pre viously, the demagnetisation vector has
been assumed to be smooth [23, pi87].

h

Figure A

Let a: U -» R , U c R3 , be the magnetic potential cf h . By Maxwell's equations we
have

^ 0,
az"

where A2 > 1 . By [GT 9.13] we have that if ae L"(U) then ae W2'P(K'), for any

K' c c U . Therefore, for any K'aaU, ht e WUp (Kf) if ae U (U). If we make the

reasonable physical assumption ore LP(U) then our demagnetisation vector is Wlp.

If the external magnetic field is sufficiently strong, the demagnetisation alligns itself with
the external magnetic field. Thus, as time progresses, a family of demagnetisation vectors
h, (x, y, z) = h(x, y, z, t) is produced. There exists a time when the demagnetising vector
will be equal to the external magnetic field mQe3.
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We consider the. forcing term given by

, . mn
g(x,y, z,t) = —h3(x, y, z,t),

2a

where a is the co-efficient of the surface tension, and m0 is the strength of the external

magnetic field.

Let T = inf {t >0:li3 = m0e3}. We will call this the drying time.

Let 5 > 0. We redefine g as

,z,r), t<T

and linearly interpolated (a.e.) between.

Lemma Al: There exists an enhanced forced motion (M, {fXt }0<,<r ) (a ferronematic

flow, if you will) with initial surface Mo.

Proof: As outlined above, we know that g( • ,t) e If(U) and that sup || g( • ,t) ||
ISO

Also, since the demagnetising vector is vertical, we also have g(- ,t)e Lp(ju) for all

fiE i ^ ( R 3 ) . Since h^ changes (in time) at the constant rate m0, the forcing term is

continuous in time a.e. Therefore we caw find an enhanced forced motion (M,{//, },20),

in particular (M, {//, }0<t^r ) is an enhanced forced motion. ^

Remark: The theory in [71] is closely related to the zebra rocks (figure 1) [M+J. So, it
may be possible to construct a model for the zebra rocks using a forced Brakke flow. This
would probably be best achieved by including a volume preserving term in the equations
and evolving the interface between magnetic and neutral regions. However, it isn 't clear
a priori if such a term is in bounded up until the drying time (see the discussion after the
examples in §4).
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Appendix B: Biased search patterns

This application was inspired by a conference seminar given by Justin Beck on 2 May,
2002 at the Defence Operations Analysis Symposium in Adelaide. Hellman [He] has
considered the problem of the optimal search for a target moving randomly in a region
£ / c R ° . This problem is relevant in a wide number of cases ranging from anti-
submarine warfare and airborne early warning, to, say, pest control and swatting a fly.

Let u0 : R" —> R be the initial probability density function vanishing outside U. The

search pattern is given by a PDE, for example the diffusion equation, though the equation
need not include any spacial derivatives. One might use the diffusion equation if the
target were moving randomly. In general, the probability density of a moving target
satisfies

—(xt) = I(xtu)
dt

where L is a linear operator independent of time [He].

If at a later time t a search is made in some region by an operator and the target is not
found, then the probability density at time t would be altered to include this knowledge.
That is, in order to include active searching, one would introduce a forcing term to the
equations:

—
dt

The solution u allows one to calculate the effectiveness of the search.

One drawback to using the diffusion equation is that it tends to "smear" any information
on the whereabouts of the target, tantamount to assuming the target is constantly on the
move. That is, the method assumes the target's motion is limited in complexity.
Furthermore, suppose the operator were biased in their thinking that an initial guess to the
location of the target was "pretty close" (as we are loath to accept total control by a
computer). Then, in the mind of the operator, the shape of the probability density should
be preserved for as long as possible.

Consider the case where

= A M -
l+\Du\

-D(DjU.

This gives rise to a forced mean curvature flow of the graph of u. This is chosen because
the mean curvature flow preserves the overall shape of the probability density better than
a Laplacian. This shape preservation could be interpreted as a representation of the
aforementioned bias in an operator that the initial probability density was a good
approximation to the location of the target.
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Let g be the active search pattern as controlled by an operator. Our assumptions in §8 on
the forcing term can be interpreted as follows:
(i) \img(-,s) = g(- ,t)a.e. says that the search cannot be instantly changed

S-H

(ii)

(iii)

everywhere,
the condition that g vanishes after some time is a restriction on the amount of time
that can be spent actively searching for the target, and
the LP conditions are restrictions on how much effort can be spent on an active
search: a violation is equivalent to an intense search that would be likely to use
more energy than is available to the operator.

If an active search pattern satisfies the assumptions of §8 we say it is ̂ pragmatic search.

Lemma Bl : Let g be a pragmatic search and assume «0 : R" —» R is an initial

probability density function vanishing outside U C R". Then there exists an enhanced

forced motion (M ,{A, }(K/<r) (a biased search pattern) with initial surface

Afo=[graphiio].

.. .people who can change and change again are
so much more reliable and liappier than those
who can't

Stephen Fry
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Notation and Convention

Notation/
Convention
S\{(Rn+k)

Mn(Rn+k)

Vn(Rn + i)

IV^R"**)

£>n(R"+*)
xloc /n n+k \

AnR"+*

A"Rn+*
©"(R"*)

/ilA
M(ju)

©n(/z,a)

TaM

v,vM

O#(V)

sv
\6V\

Mr
M(T)
dT
TLA

<T,f,r>

Tz

K

CO

r
5

S(y), v V 1

Js<t>(x)

Space of Radon measures on Rn+*

Space of n-rectifiable Radon measures on Rn+*

Space of integer n-rectifiable Radon measures on Rn+*

Spaceofn-Vari foidson Rn+*

Space of integer rectifiable n-Varifolds on Rn+*

Space of n-Currents on R"+*

Space of locally integral n-Currents on R n + t

Space of n-vectors on Rn+*

Space of n-forms on Rn+*
Space of differential n-forms on Rn+*

Radon measure
Restriction of a Radon measure to A
Mass of fi
n-dimensional density of a Radon measure

Approximate tangent plane of a Radon measure

Approximate tangent plane of M c R"+*

Varifold, varifold associated with a Radon measure

Push forward of a varifold by a diffeomorphism
First variation of a varifold
First variation measure of a varifold

Mass measure of a current

Mass of a current T
Boundary of a current
Restriction of a current to A
Slice of a current by the funct ion/
Slice of a current at height z

Projection onto R"+1 x{0}

en+2

Smooth hypersurface
n-dimensional subspace of R n + t (also represent projection
onto the subspace)
Projection of the vector v onto S, Ta/i, (Xa^)~ (resp.)

Jacobian of a diffeomorphism relative to the plane S at x

Page

1

3

3

3

3

5

7

5

5
5

1
1
1
1

2

2

3

3
4
4

5

5
6
7
7
7

3
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D,D
V s , V, Vx

K2<a(M,x,t)

Covariant derivative on Rn+1, Rn+1xR (resp.)

Covariant derivative on S, Taju, (Ta/i)
x

Divergence on 5, // (resp.)

Parabolic CllCr norm of a curvature flow

Parabolic C2'a norm of a curvature flow

Parabolic W2'p norm of a curvature flow

8

8

8
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