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Introduction

Consider a family of smooth n-dimensional hypersurfaces M = {1}, satisfying

—2—:— =Hp (x), xeT, MCF)

for all ¢+ > O where ﬁn is the mean curvature vector of I,. Then we say that

M =T, }oeer 18 amean curvature flow. The mean curvature flow of a hypersurface will

decrease suriace area in the most efficient way. In some physical phenomena such as the
evolution of the interface between two liquid pure metals, the energy of the interface is
proportional to the surface area of the interface.  we ignore additional energy arising
from momez.tum, pressure, gravitation, etc., then the evolution of the interface can be
accurately modelled by (MCF). Weak versions of (MCF) have been widely nsed to model
crystal growth (sce, for example, [ATW), [AW], [NP], and [WJE}) and have had a heavy
focus on numerical techniques. '

FHowever, there are certain physical sitvations where the additional energy cannot be
ignored, for example magnetised liquid crystals (called ferronemetics). In this case, the
additional energy terms involving pressure and magnetic energy are important aspects to
the physical model that should not be ignored [ZI]. These additional terms are important
for explaining and understanding certain patterns in so-called zebra rocks that contain
both magnetic and neutral clay (see figure 1).

Figure 1 (Photo: Dr. E. Mattievich, converted to digital by Ms. §. Mattievich)

Ferronemetics evolve according to (MCF) plus additional forces (see [ZI]). These
addiiional forces could be L? on the surface (see Appendix). Therefore we will consider
the evolution of n-dimensional hypersurfaces M ={T } ., given by

-g-;ﬁ = A (x}+ §(x.0), x€T, (fMCF)

it




for al} + > 0. We will call this a forced mean curvature flow. Such flows have previously
been studied in [IDER] where g is constant.

" As with (MCF), even some of the simplest examples will develop a singularity in finite
time. Take for example a sphere of unit radius and g(¢) given by

)= 1-t (=<1
89%%  s>1

Then the family M = [Sj—_—— (0)}yq.., 7 is & forced mean curvature flow and the flow

1~2t=¢

becomes singular at r = -1+ V2.

We would like to define the forced mean curvature flow after the onset of singularities.
To do this, we will use an approach similar to Brakke’s geometric measure theoretic

method [B].

Figure 2. Two possible Brakke flows out of a cross.

* In Brakke’s approach, one considers the evolution of a surface by studying how an n-
varifold evolves according to an equation describing a weak evolution by mean curvature,
called the Brakke flow. The flow is designed to “jump” when a singularity develops.
However, this jumping gives rise to non-uniqueness and suddenly vanishing. For
example, the flow out of a cross could evolve in either of two directions (figure 2), and a
homothstic spoon will evolve until it becomes a half line, at which point it vanishes
instantancously (figure 3).

iv

Figure 3. The homothetic-spoon.

In 1994, lmanen showed existence of Brakke flows using an especially elegant method
called ellipric regularisation. This was inspired by a similar method used by Evans &
Spruck for the level set flow [ES]. The idea is to turn the parabolic problem into an
elliptic problem and study the elliptic solutions. The elliptic solutions turn ot to be
translative soliton solutions and approximaie the space time irack of 2 weak evolution of
a specified initial hypersurface by its mean curvature. Making tire approximation more
accurate, one obtains a solution to the weak mean curvature flow (level set flow or
Brakke flow).

The first regularity result for the Brakke flow was obtained by Brakke [B). Under an
assumption of unit density, he was able to prove that at almost-every time during a weak
motion a varifold by its mean curvature is smooth almost-everywhere. Using this
powerful result, Ilmanen proved that, if a level set flow doesn’t fatten, then the flow is
smooth almost-everywhere at aimost every time [I2]. Such fattening occurs in tire
example depicted in figure 2. Instantaneously, the level set flow becomes the region
bounded by the dotted lines and evolves outwards.

An alternate approach to regularity has been used in [E), {I3], and {W1.2]. There one
obtains a regularity theory for smooth curvature flows that develop a singularity at some
time. The theory uses a quantity called the gaussian density which, for a smooth mean

curvature flow M ={T, },.,.r - is given by

OBy ) =l | £y (o) A" ()

Whel‘e
2
=le=y* 14T =1} ]

ST

If the gaussian density at a point is sufficiently close to unity, thern: the surface is smooth
near the point. This is a parabolic analogue of Allard's regularity theorem [A].

The organisation of this thesis is as follows. In Part I, §1 introduces some notation and
some basic geometric measure theory which will be used throughout the thesis. Notation
and conventions can be found after the Appendix. In §2, we introduce the Brakke flow by
motivating it for a smooth eternal flow M ={T, } ,,. We also list some interesting resuits

relating to the Brakke flow, such as the compactness theorem for Brakke flows (Thecrem




2.3) proved by Iimanen in [12]. Analogues will be proved for forced Braklke flows laterin
the thesis. An outline of the elliptic regularisation method is then given in §3. There we

include some properties of the minimisersto F°.

Part II begins by defining general Brakke functionals and general Brakke flows in §4.
These are defined with a minimal number of assumptions requited to obtain a
compactness theorem {Theorern 5.1) which we prove in §5. The compaciness theorem
allows for the possibility of the sequences being general Brakke flows not necessarily
satisfying the same equation, but rather aliowing for the possibility that the general
Brakke flows are defined by a sequence of general Brakke functionals. This is antecessary
aspect required later in the thesis, not merely a matter of art for art's sake (as we shall

shortly expand upcn). In §4, we also give some examples of general Brakke finws .

including White's K-almost Brakke fiows (W] and forced Brakke flows, a weak versicn
of (fMCF). The forced Brakke flow is the main subject of this thegis.

Next, in Part III, we adapt the method of ellintic regularisation to the forced Brakke flow.
This presents its own problems not found in the Brakke flow since the forcing term is
only assumed to be L7 at best. In fact, the problems encountered are still relevant in even
the simplest extension where the forcing term is C”. As with the Brakke flow, we begin

in §6 by defining a related elliptic problem, namely some prescribed mean curvature
problem related to the forcing term in (fMCF). This reflects an underlying principle:
when using elliptic regularisation, one should choose an elliptic problem that reflects
the parabolic probiem.

Unlike the Brakke flow, the elliptic solutions turn out to satisfy a forced Brakke flow that
only approximate the forced Brakke flow we would like to solve (see equation (8.1).
Incidentally, if the forcing term were a constant as in [DER], existence would follow by
an easy adaptation of the arguments in [12]). The method developed here exiends the
standard elliptic regularisation argument by using the comnpactniess theorem from §5. This
illustrates the necessity for proving a compactness theorem that allows for the possibility
that the general Brakke flows are defined by a sequence of general Brakke functionals.
This method could be used to prove existence of a weak volume preserving mean
curvature flow (see, for example, [H2] and [Ath]) if one could properly define the
average mean curvature.

As a slight interlude, we prove a cylindrical monotonicity formula (Lemma 7.1) in §7.
This is applicable to the solutions from §6 and those used for the Brakke flow in §3 [12).
We use the cylindrical monotonicity formula to obtain a nice geometric property relating
the height of the minimisers from §5 over an (# + 1)-dimensional plane S xR in R™?
(Lemma 7.5). This could point the way to a new method for obtaining Brakke’s regularity
theorem {B 6.12] by using the methods from [S §§20-22].

In order to apply the compactness theorem, in §8 we must obtain local mass estimates for
the solutions to the elliptic problem defined in §6 (Lemma 8.6). Due to the forcing terms,
the local mass estimates require further extensions to their counterparts used for the
Brakke fiow. The local mass bounds are then used in §9 together with an alternate
version of the compacmess theorem that links the approximate forced Brakke flow

(equation (8.1)) to the forced Brakke flow (Theorem 9. 3) to obtain existence of forced
Brakke flows (Theorcm 9.6). .

In §10, we prove some properties of forced Brakke flows obtained using elliptic
regularisation. These include some lemmata that characterise the area-ratio and tilt-excess
in terms of similar quantities for the miniraisers from §6 for certain forced Brakke flows
obtained using the elliptic regularisation methods in §§6-9.

Finally, Part IV is dedicated to a regularity theory for the forced Brakke flow. We begin

in §11 by proving a monotonicity formula (LLemma 11.2) anralogous to Huisken's famons
monotonicity formula {H1] for smooth mean curvature flows M = {T’ },, .-

—-Ip,r(x,r)dﬂ“(x)-—flﬂ ()+(2(T”)| P2 (x8) dF" (x)

This is used to show existence of a localised version of the gaussian density for a forced
Brakke flow (Proposition 11.4). A version of Brakke's clearing out lemma [B] is also
obtained (Proposition 11.6). §12 concludes with a proof of a local regulasity theorem for
the singular time of a smooth forced mean curvature flow (Theorem 12.1). In the
subsequent Appendices, we consider a model of the afcrementioned ferronemetics and a
model of “biased” search patterns.
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Part I - Introduction

This part is devoted to the background material. We first introduce some notation and
basic geometric measure theory for which the standard texts are [F] and [S]. See also
[Mo] for a beautiful introduction. The remaining sections form an overview of the
Brakke flow (see [B] and [12]) and elliptic regularisation (see [12]). These are used as
motivation for Parts IT and ITI.

1 Notation and Preliminaries

To study the evolution of a surface after the onset of singularities we use the language
of geometric measure theory. We will always denote an evolution by A and smooth

evolutions will be written (T} },., (= M) where I is an interval in R.

Radon Measures: A Borel regular measure on R™* is an (outer) measure on R™*
such that all Borel sets (all open sets and all closed sets on R™*) are measurable and

-every set AC R™* is contained in some Borel set B of equal measure. A Radon

measure on R™ is a Borel measure for which compact sets have finite measure. We
denote the space of all Radon measures by M(R™*). Radon measures will be
denoted by u. Special examples are the d-dimensional Hausdorff measure, denoted by
H“, and the Lebesgue measure, written £** .

Let A < R™ . We define the restriction of 1t to A by
(48X B) = y(ANB),

whenever B < R™* and denote the mass of i by

M(u) = p(R™).
Let ¢ be locally ,u-iﬁtégrable. Then deﬁne p.o by

(L o)(B) = [(x) du(x),
¥:)
whers B R™ .
If the limit
0" (4, a)=lima," p™" 1B, (@)

exists, the we ball it the n-dimensional densityof yat ae R™ .

Topology of Radon Measures: Let = M(R™') and define




@)= [o(x) du(x),

where pe C(R™*,R). The topology on M(R™) is given by the condition that
2, —  if and only if (@) = u(g) forany ge CI(R™,R).

Approximate Tangent plane: Define the Radon measure #, ; by

aua,,{ (A) A’-nau(/lA + a)

Let S be an n-dimensional plane in R™* containing 0 (i.e. an n-dimensional vector.

subspace of R™), and 8> 0. If, for any e CJ(R™,R),

lim #,.1(9) = 6(a) ! @(x) d* (%),

thenr we say that § is the n-dimensional approximate tangent plane of i at a with

multiplicity §. We write thisas T, u. X M < R™ | then we define the n-dimensional

approximate tangent plane of M at a by
M=T,(H" M),

if it exists.

Rectifiable sets: Let X  R™* and suppose

X cGud JC).,
izl

where H"(C,)=0 and each C, is an embedded C' n-dimensional submanifold.

Then we call X countably n-rectifiable. If X has finite 7{" -measure on compact sets,
then we say that X is locally n-rectifiable.

If X is locally n-rectifiable and J{"-measurable, then 7,X exists H"LX -a.e.

Rectifiable Radon Measures: lLet X cR™ be # "-measurable and let

@:R"™ - N be locally #"-integrable such that X ={6 >0} H "-a.e. Define the
Radon measure u(X.8) by

wW(X,0)=H"L8.

We say that i is an n-recrzﬁable Radon measure if either
(i} x bas an n-dimensional tangent plane u-a.e., or
(ii) 2 = p(X,9) for some F"-measurable, countably n-rectifiable set X, and some

locally " -integrable function @ :R™* — [0,0).

We denote the space of n-rectifiable Radon measures on R™* by M, (R™*),
We say that 1 is an integer n-rectifiable Radon measure if either ;
(i) uhas an n-dimens.onal tangent plane t-a.e. with positive integer mulupllcny, 0or
(i) p = pX,0) for some H "-measurable, countably n-rectifiable set X, and some
locally " -integrable function 8: R™ — N,

We denote the space of integer n-rectifiable Radon measures on R™ by
IM; (Rn+k) .

General Varifolds: Define grassmanian by
G,(R™ Y= {(x,5): x& R™, S isann- planein R"* with0e S).

Let V be 2 Radon measure on G,(R"*). Then V is called a general n-varifold on
R™* . We denote the space of all general n-varifolds on R™* by V, (R™*) and give
it the topology of Radon measure convergence. Let p& C; (G, (R™*),R) . Then write

Vig)=[o(x.5) dV(x,5).
Let V € V,(R"™) and define the Radon measure 4, by
Hy (@) = | (9o2)(%.5) dV (x,5),

where 7: G (R™)— R"™ . .1 pe C*(R™ R). Likewise, if ge M, (R™), then
associated to 4 is the n-varifold V, defined by

V()= [ o(x T ) dux),

for any e C2(G,(R"™),R). This makes sense since 7,;¢ exists u-a.e. We call
varifolds of this form integer rectifiable n-varifolds whenever ue IM, (R™), and
denote the space of integer rectifiable n-varifolds by IV, (R™).

The First Variation of a Varifold: Let S be an n-dimensional subspace of R"**. We
also use $ to denote projection onto S.

Let Ve V,(R™). Let ®:R*™ — R™ be a diffcomorphism and define the push-
Jorward ©4(V) by

D, (V)@) = [ @(x, )T O(x) dV(x,5),

for any ¢ Cf(G" (RM ), R). Here J,®(x)is the Jacobian and equals




J,®(x) = Jdet(d®(x) |5) (dB(x) |5) -

Let {®,) s5qes be a family of compactly supported diffeomorphisms on R™
satisfying

P, (x)=x and _8_’ b, (x) = X(x),
Ot,q

for some C? vectorfield X on R™*. Then it is a straight forward exercise to show that

-a-l J @, (x) = div X (x),
a't =0

where  div X (x) = trace(V°X(x)) and V° is the covariant derivative on S.
Consequently,

SV(X) :=%’ (@), (V)R™) = [diveX () Vv (.5).
1=0

We call 8V the first variation of V.

When ue M, (R™) we will write
OV, (X)= j div, X (x) du(x) = jdiva(x) du(xy,

and when u = u(M,0) for some;i S{" -measurable, countably rn-rectifiable set M, and
some locally H " -intcgrable function 8:R™ — [0,5), we will write

&V, (X) = j div ,, X (x) du(x).

Let U  R™ be open. Define the toral first variation of V by

|8V |U) =sup{V(X): X € C'(U,R™),| X [£1).

If | 6V | M(R™"), the Riesz representation theorem implies that we may decompose
oV as

NV(X)=~|H-Xdu, +6V, (X)

sing

where H is alocally , -integrable vectorfield and £, (sptéV, ) =0.

sing

Theorem 1.1 (Compactness theorem for IM,(R™) [A]: Let {4}, be a
sequence in IM_(R™™) with

sup(s, (K &V, |(K)) <o

for any K cc R™ ., Then there exists a pe IM, (R™) and a subsequence | Mooy
such that
(l) p“i' S H,
(ii) V#r -V,
(iii) &V, —&V,,
(iv) |8V, |(K)<liminf]dV,, | (K).

Currents: Denote the set of n-vectors on R"* by A R"™*, and the set of n-forms by
A"R™ | We denote the space of all differential n-forms by D"(R™). If T is a
continuous linear functional on D"(R™*), then we say that T is an n-current. We
write D, (R"*) for the space of all n-currents on R™* and equip it with the topology
given by : - ' '

T{a) > T(a),
for any e D" (R™*). Define the mass measure of T by
pp(U) =sup{T(@):ae D" U),ja|s1},

where U < R™* is open. The mass of T'is given by

M(T) = i, R™).

If u, is finite on compact sets, then we say that T has locally finite mass. Note that if
7, —» T in D,(R"*) then

pr (K) S lipinf g1 (K),

forall K cc R™.

Su_ppose T has locally finite mass. Then 4, is a Radon measure and, by the Riesz
representation theorem we can find a locally z,-integrable £& A R™* -

T(@)= < a(x),{(x) > dutr (x),

where <-,-> isthe dual pairing.




Now, suppose # = u#(M,9) is an integer n-rectifiable Radon measure and assume
T.M = span{z,(x),...,7,(x)} (whenever it exists). Let £ A,R™" be given so that,
for y-a.e. x,

Ex) =1, (A AT, (X),
then we call & an orientation for T M .

Define the cumrent 7(M,8,£) by
oM, 6,6)(@) = [<a(x),£(x) > du(x),

\:;{here xe D*(R™). We call such a current a locally integer rectifiable n-current
and denote the space of all such currents by R, (R™").

If M is an oriented smooth submanifold, then we can associate to it a locally integral
current, [M], by

[M](@)=7(M, 2y vy N)

where v,, is the unit normal tc M.
Boundary of a Current: By Stoke’s theorem, we have that, for any o€ D" (R"*),

I da= Io:,

D w
for some domain D. We use this as an analogy to define the boundary of a curmrent
Te D,(R™) as the current 9T € D,_, (R™*) given by

T (@)=T(da)

for any e D"(R™).
We call T a cycle if oT -—:O.

If Te R*(R™) and a7 € R " (R™*), then we say that T is a locally integral n-

current and denote the space of such currents by I”°(R™*), Note that the boundary
of a locally rectifiable n-current may wriggle so much that it doesn’t even have locally
finite mass (see figure 4). So I*°(R™*) is a proper subspace of R > (R™*).

M

5

<"
o
7

Figure 4. Cantor-like construction by removing squares.

Theorem 1.2 (Compactness theorem for 1”°(R™) [FI): Let {T,},, be a sequence -

in I (R™*) satisfying
S_‘:P(ﬂ-r, (K) + iy, (K)) < o0

Jor any K CCR™ . Then there is a Te I7°(R™) and a subsequence (T, };, such
that T. - T.

Slicing a Current: Let T e D, (R™). Define the restriction of Tto AcC R™* by
(TLAX@) =T(4],)

for each ae D" (R™"). We define the slice of T with respect to f:R™ SR at
re R by

<T,f,r>=0TUYf>r)-0TL{f >r}.

We will often be slicing TeI“ (R™ xR) with 0T € I*(R™ x{0}) at height
z€ R. Define

T, = ¢(TL(R™ X[z,0)).

We have the following useful result:

Lemma 1.3 (Co-Area formula [S 28.1]): Let Te 1% (R™ XR). Then, for any
compactly supported, i.-integrable function g on R™' xR, we have

g s




[etn 20" (2| dity (.2 = [ [ o (x.2) dptr, () 2

where @' (x,z) is the projection of e,,, onto T, ,p;. Moreover, for a.e. z& R, we

have that

T, =<T, 7",z > I (R™ x{z})

Parabolic norms: We will be using C**, C** and W>” norms of a smooth
evolution M={[}},, at a point (x,7)eM. These will be denoted

K, ,(M,x,0), K, (M, x,2) and J, ,(M,x,¢) (respectively).

Suppose that (0,0)€ M and that we can rotate M to get a new set M for which the -
intersection

M N (B, (0)x(~1,1) C graphu
for some function «: B'(0)x (~1,1) = R whose parabolic C** norm

D73,y u(x,)) =D’ (@3,) u(y.5)|
sup  juGeD|+ D sup | : IR
(x.)EBy (0pd(-1,1) 42582 () (Y8 B (O-LIJ(#(.5) (max{l x=Yy |' I ¢S ] D ’ #

is no greater than 1. Then we will say that

Koo (M, x,0) = K, ,(M0,0) <1,

Otherwise K, (,0,0)>1.

More generaily, we let
K, ,(M0,0) = sup{A >0: K, ,(3,,0,0) < 1},
where My, ={TAV},_, is given by I} :=Zl")_.1f.
Finally, define :
K, oM, x,t) = K, ,(M~(x,1),0,0).
The norms X, ,(M,x,t) and J, (M, x,¢) are similarly defined. . :

2 The Brakke flow

The Brakke flow is an integral form of the mean curvature flow and is obtained by
integration by parts over test-functions. We begin by considering a smooth eternal
mean curvature flow M ={T},., as a model for our definition of the Brakke flow.

Recall that the area element dy, = d(#"LT,) satisfies the evolution equation (see
[H1}) '

d
"a}'daur =—H l?‘, dﬂ,

This implies the well-known area decay formula:
2 37Ty = - HE (0 dp, ().
dt f 3 t

The Brakke flow will be motivated by the local version of this formula.

In order to study the local version of the area decay formula, we need to first
understand how the first variation of the functional F, given by

F,(M)= [p(x)dH"(x),

where @€ C2(R”"). Recall the formula for the first variafion of an n-rectifiable
Radon measure u = u(M,8): -

&V, (X)=jdijX(x) du(x).

Fix a C! vectorfield X compactly supported in R™ —9M and let {®,} ;.,.; be a
family of diffeomorphisms satisfying

P,(x)==x, D, (x)=X(x).

|r=0
Then we have

OF,(M)(X) = %l IQD(‘D, Ny, ) dp(x)
t=l}
= [(Dg-X +@div, X) du

=J‘(div,,,(¢aX)+v*¢-X) du
=&V, (@X)+ [Vig-X du.

If | &V, |<< gy, (which is true for a smooth hypersurface), then (0V, ), =0 and




SF,(MYX) = [ (-9 +V*0)- Xdpty @.1)

for any C! vectorfield X compactly supported in R ~0M . If M is a smooth
hypersurface, we may smoothly extend the mean curvature vector off M and choose
X = smooth extension of H,, as our vectorfield giving

SF (M)A, )= [ (~pH}; +Vi@-H,)dp, .

For our smooth mean curvature fiow A we have

d

EFg(F,)=6F,(R)(ﬁn),

or
d 2 A1 r T n
s H"=i(- +Vig-HYdH", 2.2
d!]l:(ad J,”OH 9 H) 2.2)

for any pe C>(R™).

This will be our starting point for our definition of a weak version of the mean
curvature flow. It will be useful to think of the (weak) evolution as a family of Radon
measures rather than hypersurfaces. We begin by taking care to define the right hand
side of (2.2) for general Radon measures:

Definition (B(y; ¢)): Let e M(R™) and assume @& C2(R™,{0,%0)). If one of
the following cases holds, set B(y; @) = —oo:

(i) wlg>0}e M, (R™),

(i) |6V [L{g>0}e M({@>0}) where V=V {p>0},

(iii) OV, Lig>0}=0,
() [oH du=cs.

Otherwise, we define
B(u,p) = [(-gH" + V- H) du.

Remark: We will call C2(R™,[0,0)) the space of admissible test-functions on
Rn-i-l‘

Here are some properties of B(u; ¢):

Lemma 2.1 (properties of B(u; ¢) [B 3.4) [12 7.3]): Let uc M(R™)Y and let ¢ be a
test-function. Then
(i) Bls@)<c@)lg >0} <o
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(i) if u(@)S ¢ and B(u; @)= —c, then j oH 2dp < F(c,@) <o,
(iti} if {4} &5 a sequence of Radon measures converging to y, then
lml sup B(u,;0) < B, @) .
(iv) if {#4,}n is a sequence in IM (R™) satisfying
inf B(u; )2 -C, S!:Pﬂi([@’* >0psC,
then there is a subsequence {i'},, and a p€ IM, (R™), measure such that
>0 >, Vg =V,

Remark: By applying the Cauchy-Schwarz inequality and using (ii), it is easy to see
that if (@) < c and By, 9) 2 —c, then we actually have | &V, | (U) £ C(c,p,U).

There may be times during the (weak) flow where the derivative isn’t defined, for
example when the flow must jump in the case B(y,;@) =—. To take care of such
casss, we use the upper derivative, which is always well defined:

Definition (upper derivative): Lez f :R = R. Then

D,fty)= limsup———-———~f(r) _':c(r“) ,

£ty t—t,
is called the upper derivative of fat t,.

Finally, we define our Brakke flow. Taking into account the upper-semicontinuity of
By, 9) Lemma 2.1 (iii)), we make the following definition so that the flow will have
nice compactness properties:

Definition (Brakke flow, integer Brakke flow): Ler M={u,},., be a family of
Redon measures on R™. If

D,u, @) < Bu,.0),

for any test-function ¢ on R™, then we call M ={u,},, a Brakke flow. If
M€ IM (R™) fora.e t >0, thenwe call M ={u },,, an integer Brakke flow.

Note that it is straightiorward to generalise the definition to include the possibility
that the ambient space is a general (2 + k)-dimensional differentiable manifold [I1].
The subsequent analysis will also apply in that case.

Lemma 2.2 (some properﬁes of Brakke flows [B 3.7, 3.10, 4.18], [12 6.8]): Ler
M ={u },, be a Brakke flow. Let ¢ be a test-function on R, Then,

(i) if j" M(g,) ds <==,121, then M()SM(4, ).



(if) if f(R™ ~ B, (@) =0, then u, (R"™ - T O =0 for allt>0,
Assume p1,(K) <o, K cC R™ for all t > 0. Then,
(iii) the left and right limits always exist and satisfy
. o1
limu, (p) 2 4, (@) 2 lim 4, (@),
(iv) D,u(p)>— forae 120,
(v) ueMR"™) forae 20,

We e!so have a compactness theorem for integer Brakke flows which was proved
using ideas from [B):

Theorem 2.3 (compactness theorem {I2 7.1]): Suppose M* ={t]}r5,i=12,... is a
sequence of integer Brakke flows satisfying

sup 4 (K) S c(K) < oo,
ir

for any K < R™. Then
(i) there is a subsequence M ={ ﬂf Voo F =12,... and an integer Brakke flow

M = {1} 50 suchthat ui — y, for every 1 >0,
(ii) there is a further subsequence (also denoted i') M = [,u," Yoo 8 =12,...
(depending on t) such that V i V, foraet>0.

This is the most important ingredient in the proof of existence by elliptic
regularisation.
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3 Elliptic Regularisation for the Brakke flow

Here we give an outline of the proof for existence of integer Brakke flows using the
method of Elliptic Regularisation. This is a summary of the first chapter in [J2] for the

special case where the ambient space is R*™. We will be adapting the main ideas
from this method to prove existence of weak solutions to the forced mean curvature

Slow.

Definition (Initiai surface): Assume M, I,,"""(R"‘”l x{0}) is a cycle of finite mass.
Then we say that M, is an initial surface and we call j,, the initial data.

We new aim to turn the parabolic problem of existence of an integer Brakke flow
with initial data 4, into a fixed boundary elliptic problem ir a higher dimensional
ambient space. The idea is to try to approximate the (stretched out) space time track of
the Brakke flow by a locally integral n-current M mininising an appropriate
functional. Since the minimiser is approximating the (stretched) space time track, we
hope that 4, . will be a downward translating soliton solution for the Brakke flow.

Therefore, we would like M © to satisfy the Euler-Lagrange equation

where @ =e,,,.

Consider the functional given by
FE(M) = %J'e-z“ du, (x,2), (x,00€ R™ xR,

for any M e I” (R™ xR) with boundary in I“(R™ x{0}). Then, whenever

-+

|6V, k<4, wehave, by (2.1),
8P MYX) =~ [ (B, +- k) Xe™ day (2,

for any C!-vectorfield X compactly supported in R™' x (R —{0})).

Lemma 3.1 (Euler-Lagrange equation {12 2.6]): Suppose M eI (R™'xR) a
stationary point for F*. Then, for each C.-vectorfield X compactly supported in
R™x (R~ {oh)
= 1
0=[(A, +—£m;).x du, »
and

(i) Hi =H, +i-m; =0, y, -ae.,
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B 1
(i) |H, |S‘E'ﬂ.u —ae.,

(iti) Hi =H,, i, ~ae.,
(iv) 1=e*HL+|w), |, u, —ae..

The existence of F*-minimisers can be proved using a standard argument.

Lemma 3.2 (existence of F ¢ -minimisers [I2 3.21): Let M, & 1" (R™ x{0}) be an
initial surface. There exisis M* &1 (R™ xR) minimising F* with dM° =M,
and so that,

(i) sptM® © R™ X[C,s),

(ij F*(M®)<M(M,),

Now, define the family of locally integral n-currents {M °(#)},,, by
M*(t)=(0_, ) (M"),

where ©_,,(x,2)=(x,z—t/¢). Note that each M*®(z) is F’-minimising in
R™ %(0,00) with (M ° ()L(R™ x[0,))) = M/,,. Otherwise, we could deform M ¢
to decrease F*.

Fix t > 0. Then, on the set
Weé:={(xz,8):z2>—s5/€,520}
we have, for any test-function ¢ on R™ xR such that sptgx{t} cW*,

d e 1
E”&:‘(a)(@ - I(—'Q’H +Vie)- (_Ew) Uy

= g(ﬂnl(‘) ;¢) »

by Lemma 3.1 (i). Hence M° ={ *"'u'(:)}fé-ﬂ is an integer Brakke flow on W*, that is

i, isa translative soliton solution to the Brakke flow.

Note that, since e™*'* dies off so quick’y fore << 1, M ¢ will be very tall (of order 1/
¢). In other words, M “ will be close to a cylinder in any fixed finite region. So, for ¢
very small,

HM‘ zHM:QJuMc —a ..
I

Thus, when ¢ is small, the motion of M ¢ by — i@ nearly produces motion of M by
its mean curvature. This motivates us to send £ — 0.
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Recalling Theorem 2.3, we know that in order to send £ — 0 we need area bounds of
the form

S}lpﬂu,'[r)(K)<°°,
o+

where &, J- 0. For this we have:

Lemma 3.3 (Local inass bound [[2 5.1)): Ler A C R be measurable. Then
MM LR™ x A)) < (L (A) + ©M(M ).

To motivate this, assume for the moment that T is the space tire track of a smooth
evolution M =T, },., . By the co-area formula (Lemma 1.3) we have,

. t+& 1
y{nﬂ n+l - " .
(T V(R™ %1, +6))) j ! mIVf(x,s)ldﬂ (x)ds

where 7(x,t)=1t. If dw is a line element pointing in the direction of fastest time
increase, we have '

r%i=%:i=J(dx!dr)2 +1=VH? +1,

by Pythagoras’ theorem. Using the area decay formula

HA T+ [ [H? aolds = 3T, G.1)
or,

we have
+8

H™N T AR™M % (1,1 +6)) = ”JH2+1d.'I-["ds
t F

{

<1+ 885" (T).

(@ +1dH ds T}( "(T,)ds
T, t

¥

Oy ¥ Ry

It is possible to derive an estimate analogous to (3.1) so that one will obtain Lemma
3.3. The estimate is:

Lemma 3.4 {12 4.5]: For a.e. ab with 0 < a < b, we have

_[|a)T [ gty + J'ah’zdyw Sjla)T |du,. SF (M )SM(M,).

R"*'x(a.b)




Thus, for all ¢ > 0,

Hygeiy R™X(r, ) € (s =1+ EMM,), (3.2)

and hence, for any K < R™ xR we can find a constant ¢ such that

sup ﬂ“,m(K) L e(K) <om,

rz0,e>0

Therefore, we can find a sequence & 0 and an integer Brakke flow 9 = J 178 T
such that g, . = — 4, foreach?>0.

We now use H to define a Brakke flow M ={g,},,, with initial data g, = sz, .

According to Lemma 2.2 (iv),(v), the f#, are (vertically) translationally invariant for
all but countably many 7 > 0. Fix a 6& C?((0,%),[0,<)) such that {@dz=1 and
define {4, },., DY

K (p) = 12,09),
for any test-function ¢ on R™.

Defining M in this way, one may show that, whenever £, is translationally invariant,
o= x L (f, = p, x LL0,00) if t = 0) and

B(p,: ) = B(,;09) -
Therefore H is an integer Brakke flow.

Finally one must show that A has initial data x4, =4, . On one hand one has
M{u, ) <M(M,) by (3.2). While on the other hand, it can be shown that x, = x,, .
So we in fact have y, = 4,, . We have outlined the proof of:

Theorem 3.5 (Existence of integer Brakke flows [12 8.1]): Ler M, € I¥*(R™) be
an initial surface. Then there exists an integer Brakke flow M ={,},., and a current
M e 1% (R™) such that
(i) oM =M,,
(i) M, (M) << L (B) foreach K cR™ BcR,
(i) fy =ty 14 Z My,
(i) M(4,) <M, (),
where M, = d(ML[t,)).
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This motivates the following definition:

Definition (Enhanced motion, overflow, undercurrent): Zet M, € I*(R™) be an
initial surface. Suppose M ={1,},,, is an integer Brakke flow and M & 1" (R"™?)
so that the conclusions of Theorem 3.4 are satisfied. Then we call the pair (M, M) an
enhanced motion with initial condition M. We also say that M is the overflow and

M is the undercurrent.

Whensver the discrepancy between g, and g,  is zero, we then say the enhanced
motion is a matching motion:

Definition (Matching metion): Ler M, € I**(R™) be an initial surface. We call a
current M € I' . (R™*) a matching motion for M, if

(i) oM =M,, and

(it} the family of measures given by y, = H,, is a Brakke flow.

Timanen has proved the following interesting fact about enhanced motions:

Lemma 3.5 (Existence of matching motions [12 9.2]): M, € I*(R"") be an initial
surface. Suppose every enhanced motion with initiagl condition M, has the same
loc (R™*). Then M is a matching motion for M,,.

n+l

undercurrent M el
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Part IT — General Compactness theorem

In this part we ’~fine a generalised version of the Brakke flow before proving a
compactness thvorem for the generalised flow. This will allow us to use elliptic
regularisation for a wide range of evolution equations, in particular a Brakke flow
with forcing term.

4 General Brakke flows

We now define a general Brakke flow M ={4,},,, of Radon measures on R"*'. This

is done in such a way that the compactuess theorem for the flow may be proved with a
minimum number of assumptions on the flow. We make the ansatz that the flow takes
the form

D, (9)< G4, 90,
for any test function ¢.

Firstly, for any fixed test function ¢ we assume that G( -,) is upper-semicontinuous,

since continuity would be too strong an assumption. Furthermore, assuming
continuity would exclude the Brakke flow.

- Since the family {4, },., are Radon measures, the proof of the compactness theorem
would rely on Theorem 1.1. Thus we require, in addition to upper-semicontinuity, that
|GUu.@) ke implies i{p>0}e M,(R™), |&V|Lig>0je M,(R™), and
|6V | L{g >0} < o=, where V =V, . These form the basis of the singular conditions.

Finally, we would like the general Brakke flow to jump down rather than up when
({9 >0}) < e=. So we assume G(4, @) < Cl@, u({g > 0});G) where C satisfies

o >0 Le, = Clp. p({ep>0)):,6) 2C(@.¢;;G) 4.1)

and the third parameter (written as §) indicates constants that depend on global
- properties of G such as forcing terms, etc. For example, if we were considering the
Brakke flow, the third parameter would be zero as the Brakke flow is purely local. We
will illustrate this with a few examples. As we shall see in Lemma 4.1,
G(u,9) < C(g, u({@ > 0}):G) will imply certain continuity properties of the flow

other than no sudden increases in mass.

Thus we define:

Definition (general Brakke functional): Lez ¢ be a test function on R™ . Suppose
G : M(R")XC?(R"™;[0,00)) = [—o9,0]
satisfies the following conditions:
(i) if i@ >0 M (R™), then —oo =G (1, ),
(ii)) if |6V |Lig>0}e M({p>0)), then —oo=G(u,p), where V=V l{p >0},
(iii) if |V |L{p >0} is singudar, then — oo =G(u, ), where V.=V Lo >0},
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(v} G(-,p) is upper-semicontinuous,
(v) G, @) < Clp u({@ > 0));G) where the constant C satisfies (4.1).
Then we call G a general Brakke functional.

Remark: If we were considering, say, area maximising hypersurfaces, then the
inequality would be reversed, the upper-semicontinuity condition would be replaced
with a lower-semicontinuity condition, and the upper bound would be a lower bound.
Such considerations might be made if one were looking at fiow by mean curvature on
a Loreniz manifold (see [Ba]) or flow by inverse mean curvature (see [HI]).

Examples: In the following examples, ¢ is a test-function on R™, U CR™ is
bounded, and (li{g >0} M (R™) satisfies none of the singular conditions ((i)-(iii)

in the definition) and the additional singular condition I oH *dut < oo,

(i} The Brakke functional B of §2 is a general Brakke functional.
(i) B. White’s K-almost Brakke flows [Wli, §11] have a functional with the same
singular cenditions as ‘B, and

Gl @) = [(~pH™ + D*@-H)du + K [|~¢H + D*p | du

is a general Brakke functional. In this case, the global parameter in the constant
C from part (v) of the definition will depend on K, i.e. C = C(p,u({p>0})K).

(iii} Fixp>2, and suppose g € L (y). Then with the same singular conditions as ‘b,
Gt 9) = [(~gH* + D @-H)du+[| g | -¢H + D*p | du

is a general Brakke functional. In this case, the global parameter in the constant
from part (v} will depend on n, p, and g, ie. C=C(p,u{{p>0)np.g).
Later, in §9 we will call this the forced Brakke functional.

The K-almost Brakke flow comes from some natural generalisations of the Brakke
flow, such as flow on a sphere or volume preserving mean curvature flow (as in [H2]
and [Ath]). However, the K-almost Brakke flow assumes the additional forcing terms
remain uniformly bounded, which, unfortunately, may rule out the volume preserving
mean curvature flow because the average mean curvature may blow up when
singularities arise, as in the rotationally symmetric case [Ath]}. It is an open question
whether the average mean curvature does blow up at the onset of singularities.

The forced Brakke functional relaxes the assumption of uniformly bounded forcing
terms. If g is bounded by K, then the forced Brakke functional becomes the geneial
Brakke functional from exampie (ii). So, K-almost Brakke flows are forced Brakke
SJlows with p = . Although the K-almost Brakke flow arises in some very natural
geometric situations, the forced Brakke flow arises in some very natural physical
situations (as mentioned in the introduction to this thesis).
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Definition (general Brakke flow, general integer Brakke flow): Let M ={y,},
be' a family of Radon measures on R™ and suppose G is a General Brakke
SJunctional, If '

D u (@) <Gy,

Jor any testfunction ¢ on R™, then we call M a general Brakke flow. If
4, € IM, (R™) for a.e. t 20, then we call M a general integer Brakke flow.

In the next section we will prove 4 compactness theorem for general integer Brakke
flows.

Lemima 4.1 (Some continuity properties of general Brakke flows): Let ¢ be a rest-
function on R™. Let G be a general Brakke functional and suppose M = { Mo s a
general Brakke flow satisfying
#(K) S ¢, (K),
Jor allt > 0. Then ‘
(1) 1, (@)= C(o,c,({9 > 0}):.G) is non-increasing at each t > 0,

(ii)  the limits 11%1 2P and liﬁ‘l 1 (@) exist and satisfy the inequality

limp (@) 2 p (@) 21im p, () for each 120,
(iii)  there is a co-countable set ‘I, of time where g, is continuous at cach 1€ T;,
(iv)  there is a full measure set ‘T, of time (i.e. the complement of I, has zero
measure) where D, pi,(¢) > — at each t€ T,,
(v} peMR"™) foraet>0

Remark: Noze that (ii) does not imply decreasé of mass under a general Brakke flow.
It does however say that the mass can never locally jump up (an artefact of the
definition of the general Brakke flow). Whenever it is continuous, it could be

_ possible for the mass to increase, unlike the Brakke flow.

Proof of Lemma 4.1: Since G is a General Brakke functional, we have
D, p1,(9) < G(u,, ) S U@, 1, (> 0} G) S Tl 6, ({9 > 01 5

from which () follows.

Let s >t By (i) we have

H (@) = 1 (@) - Clg,c,({@ > 015Xt - 5).
Likewise for s <t we have-

u (@) 2 1 (9)—Clo,c, ({9 > 016X -5)

and (ii) follows.




The arguments for (iii) and (iv) are similar. For (iii), we let ¥ be a countable dense
subset of C?(R™;[0,20)). Since 4, (@)~ C(@,c,({@>0}); G} is non-increasing for
all £ > O it follows that, for any € ¥, we may find a co-countable set (that is, the
complement of a countable set) of ttmes 7, where g (i) is continuous. Otherwise,

we could find a compact set of times (wlog assumed to be the interval {0,1]) on
which, for any £ >0,

i, @)~ 4, W) > € or |limp, (@) - 4, W) > £

for infinitely many times (wlog we consider only the case }likm H) =-p, 0 ).
¥

Let {¢,}.., be a decreasing sequence of such times. Since this is a bounded sequence,
there is a time 7, <1 and a subsequence such that ¢, { ;. By (ii), there is an £, such
that, for any &£, >0 we can find an N > 1 such that

'2N=|p, @)-L<&.
Fix &, > 0. Then, for any £ > 0, we can find an N > 1 such that
F2N = e+ ~limu, ) Rl u, ) -lipu ) e
a contradiction. Thus our assertion that 7, is co-countable is valid.

Define 7, = n‘fy . Then w4, (%) is continuous for any ye ¥ at all re 7. For
we¥

general test-functions ¢, the property follows by uniform approximation of ¢ by
sequences in Y. _

By (iii), for any e ¥ we can ﬁnd a full measure set of times for which (iv) is true.
Denoting this set by ‘T; we define T, = ﬂ‘T; . Let ¢ be a test-function on R*"', and
Wy

choose e ¥ so that i > ¢. Then, for all te T,
-0 < D, (W) S D, 1, (@) + D pt, @ — ) < D, g, (@) + Cw - @,c, iy > 91 G)

by (i). Hence (iv) is true for any test-function on R™ and (v) follows from (iv) and
the definitionof G.
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5 The compactness theorem for general integer Brakke flows

The advantage of proving compaciness for the general class of flows defined in the
previous section is that we need only prove upper-semicontinuity and boundedness
for any Brakke-type flow. The other conditions on G are singular conditions.

Theorem 5.1 (compactness theorem): Sup;pp.:e {Cj‘*],21 is a sequence of general

Brakke functionals and assume there is a general Brakke functional G such thas, for
any Radon mecsure it and any test-function g,

limsupG ‘e SGlu,p).

Suppose M’ ={4} 0, i =1,2,... is a sequence of general integer Brakke flows (with
general Brakke functional G') satisfying

sup 4/ (K) < ¢ (K) < oo,
it

Jor any K cc R™. Then
(i) there is a subseguence M ,i'=12,... and a general integer Brakke flow

M ={p,},., (with general Brekke functional G) such that ,uf ~> U, forall t
=0,

(ii)  there is a further subsequence M", i =12,... (also written i’ but depending
on t) such that if G' (1,9} 2~C =\ 6V, | (K) < C(C,¢,K) for each i > 1, then
V;-a" -V, forae t=0.

Proof: The proof is similar to the proof of Theorem 2.3 by Ilmanen {I2] and is in four
parts.

Part 1: Let B be a countable dense set of times. For every ¢ € B, the bound

sup @ {(K)<c,(K) <o
[

together with the compactness theorem for Radon measures (Theorem 1.1 (i) without
the assumption of bounded first variation) allow us io find a subsequence {i'} of {i}

and g, € IM_ (R*") so that

#-op,

weakly in M(R"'). Doing this for all € B and diagonalising, we can find a single
subsequence (also written {i’} ) such that

-, VteB
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weakly in M(R"™).

Note that the condition limsup G’ (4, p) < G(4,¢) and Lemma 4.1(i) implies that, for
=y

all sufficiently large i and any test-function ¢,
1l ()~ Clo.e({o > 0% Gt

is non-increasing for all 1€ B independent of i’. Sending i’ — == we find that, for afl
te B,

#(9) - Clg.c,({@ >0]):G)

is non- increasing.
Part 2: Let t¢ B be some fixed time. Let {i"} be any convergent subsequence
(depending on ) of {i’}. Define
H, = lim 1]

at ¢. Then g, is defined for all time.
Now apply Part 1 t6 BU{t} fureach ¢t B . Then

49)-Clo.e, (o> 0.6
is non-increasing for all ¢ > 0.

By Lemma 4.1 (jii), we may find a co-countable set of times 7, on which x, is
continuous. For such times, 4, is uniquely determined regardless of the subsequence
chosen for t. Hence the full sequence converges on 7. In the complement of 7, we
define z, in a similar manner as before: we define g, = ‘I,I_IB ,af' on [0,20) =7, with
{i"} depending on #. For such 7, replace the previous values of #, with these new
ones.

Thus we have constructed a family M = {4, },., of integral Radon measures such that,
forall¢>0,

4 — p weakly in M(R™),
and
H @)= Clp.o,({e>0})G0 2 u (@) - Clp.e ({9 > 0}):G)s
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Part 3: We now show that the family M constructed in Part 2 is a general integer
Brakke flow.

Fix 1,20 and let ¢ be a fixed test-function on R™". For any function f:R — R
define

D} f(t,) :=lim supw
[N ~1,
and
D; f(ty)=1im SUPM .
£ty 11,
Since

D, £ (to) = max{D} £ (). D; f (&)},
it suffices to show thai A satisfies
D} i, (9SGt @) - | 5.1)
The proof for D; 4, (@) is similar.

Assume wilog —~ee< D/ 4, (@) . Then we may find a sequence {2}, descending to
%,, and a sequence {f, } ., descending to 0, such that

4 (@)~ 1, (P)

t, -1,

D:ﬂro (Q’) - ﬁq S

For any g, we may select an i, from the sequence {i’} (assume i, — oo with g) such
that

B (@)~ 1 (@)

1,1

Dip (¢)-28, <

By Lemma 4.1, D, (¢) < C{(@.c,({g > 0};G) is L' - measurable. So,

Dlu,@)-26, s —
q

[ Dut (p)ds < C(@.c, (19> 01 ).
0

It follows tusat there is at least one poini 7, S5, S ¢, such that
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[J
D} p,(@)-28, S ;—%—;—I D, (@)ds < D, (D S G 9).

q 0

Again, by the compactness theorem for Radon measures (Theorem 1.1(1) wi’thout the
assumption of bounded first variation), we may find a subsequence {g'} and a

1 e IM, ({@ > 0}) such that ;t::,'L[qo >0} — u weakly on {p > 0}.
For any fixed ¢” > 1, we have by hypothesis,

limsupg’ AR TIANOP
while on the other hand, for any j > 1,

limsupg’ (. 9) S G (£2.0).
Therefore, by diagonalising we have

limsup G (147, @3} S G4, 0).

L
Consequently we have

D} 1, (¢) S limsupG™ (17 ,0) S G (14, 9) - S )
q ==

Thus we need to show x =4, L{gp>0}.

Let i be a test-function on {@ > 0} with y < ¢. Using the same trick as in the proof of
TLemma 4.1 (iv),

—o< Dl (P DI p, W)+ CW,e({@>¥)G).
So —ee <Dy, () and ther:foe

H W) Slimp, ().

Fix s > t,. For sufficiently large q°, 1, < s, < 5. Since ,u," (@ —-Clo,c,({p > 0}):; G
is non-increasing for all ¢ > 0, we have, increasing ¢~ if necessary,

B+ CQne(w > 06Xy —16) 2 1 W)
2 ul @)+ CW.e,({y > 016X s, —5).
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Therefore, sending " — o,
M, (W) 2 p(@) 2 p, (W) + O e, ((w > 016Xt - 5),s
for any s > t,. Thus, sending s 4 ¢,
Wz uy)z 1333 sz p ).

Therefore p =y, L{@>0}.Hence x, satisfies (5.1).
Part 4: We now show that we have varifold convergence under the hypothesis that

GUsp)z-C=ldV, [(K)SCIC,0.K) Vizl.

Assume ¢ is a time when 5,;:, (@) > —o» for a test-function ¢. Then, by (5.2) we can
find a farther subsequence {i”}.,, {depending on £ such that

G (U p)=—C

where C=C(t,¢). Therefore, by Allard’s compactness theorem 1.1 and the hypothesis,
we can find a further subsequence (labelled {i'} ¢21) such that (ii) follows. gy

Corollary 52: Let G be a general Brakke functional. Suppose
M = {14 }o0» i =1,2,.... is a sequence of general integer Brakke flows satisfying

sup 4/ (K) £ ¢,(K) <0,
is

forany K cc R™. Then
(i)  there is a subsequence M, V¥=12,.. and a general integer Brakke flow

M ={u, ) suchthat 1ff —> u, forall 120,

(ii)  there is a further subsequence M¥, i’ =12,... (also written i’ but depending
on 1) such that if GQu;9) = -C = 6Vﬂ [(K)YS C(C,9,K) foreachi > 1, then
V”:. =V, forae 120, ’

Proof: Since any fixed general Brakke functional satisfies the hypothesis

limsupG (1, @) £ G, @)

[

this is a rivial consequence of Theorem 5.1. o
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Part II — Forced Brakke flows

We will first consider an appropriate elliptic problem to apply elliptic regularisation to
the examples given fu §4. In particular, we would like to study the equation’

D,u, () < J-pH* + V- H)dy, + [ g | -0l + V0| dy, *)

with appropriate singular conditions. In §9 we call this a forced Brakke flow. The
solutions to the related elliptic problem turn out to be translating soliton solutions toa
forced Brakke flow that only approximates (*). To prove existence of solutions, we
require local mass bounds for the solutions to the elliptic problem so that we may 2pply
the compactness theorem 5.1. Then, for given initial data, we will construct a solution to
(*) using the solutions obtained for the related eHliptic problem. '

Existence for Brakke flows with a forcing term has never been proved before. In {W1
§11], White indicates that the existence of X-almost Brakke flows (see exampie (ii) of
§4} should follow from minor modifications to Ylmanen’s existence proof for Brakke
flows. This claim is furhter substantiated in this part (in particular the remark on page 30
prececding Lemma 6.1 and the remark on page 46 preceeding Lemma 8.1). However, the
existence proof for forced Brakke flows doesn’t follow as easily. Although the methods
here are based on elliptic regularisation, the application of elliptic regularisation gives
rise to the need for forced B:akke flows approximating (*). In the case of the Brakke flow
and K-almost Brakk: flow, the elliptic solutions translate vertically according to the
Brakke flow or K-almost Brakke flow (respectively).

6 The elliptic problem

The elliptic problizm related to (*) is a prescribed mean curvature problem for the metric
giving the functional used in §3: namely F (M) = %J- e *'*du,, (x,z). This problem has

been extensively studied for the standard metric on R™. The following is by no means
an exhaustive list of contributions: [DF], [DS1], [DS2], [Fu). {Gi], [GMT], and [Ma].

The functional will be defined on cumrents M eI’ (R™XR) with
M e TR x{0}). Fix Q,e I’ (R*™x{0}) so that 0Q, =oM . We et

n+l

$ae I (R X R) be the (unique) (n + 2) - current satisfying 0Q = M + Q.

The “forcing” term in {*} will define the prescribed mean-curvature for our elliptic
problem. Let ¥ ¢ R™ have finite measure and suppose g:R™ x[0,c0) —[0,o0)
satisfies g(x,0)=0 Vxe U,

g(-.tye L'U)

for all ¢ > 0, and
g{x,n)=0 Vvezr,




for some 7% (0,00).

From the next section onwards we will also use the following “time-like” continuity
assumption: for any 7 > 0, -

lirl:\g(x.s)= g(x,DaexclU.

This assumption is not required for existence.
Define g : R™ x[0,00) — [0,00) by

g(x,&2),z20

£ -m .
g (x,2): {0, £<0

Remark: In the case of K-clmost Brakke flows, we would have g < K and we would .

choose g° tobe givenby g°(x,z) = K . As we shall point out later, this implies that the
solutions obtained here will translate vertically according to the K-almost Brakke flow.

Let X cc R™ (not to be confused with the K from the definition of K-almost Brakke
flows). We consider the functional given by

£ 1 -2lE 1 £ ~ZIE
G, (M)y=— Ie g, (x,2)-= Ig (x, 2)e” *dpg (x,2) .
€ kxr £ pm

Stationary points for this functional will have prescribed mean curvature given by
~(gf +w-v/e) (Lemma6.1).

We will now consider the first variation of G. Let X be a C.-vectorfield compactly
supported in KX(R —{0}) and let {® } ;s be a family of compactly supported
diffeomorphisms mapping R™? — R™? and satisfying

D, (x,2) = (x, z),i‘ ¢ =X.
aS s={)

Let fe C] (U X[0,%),[0,00)) . Then
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d

s Ifq);(f 0@,)8-@,-015“”&1 = I (leXf‘i‘Bf X —%Q.Xf)e-zfadﬂn

=0 KxR xR

+ jfv,, -Xe ™ du,,
KxR

= f(div(fe™' X)dpg + [ fva - Xeeap,,
KExR KxR

= j fvy - Xe V' du,,
K«

Therefore, by approximating g“by a sequence of C. (U x[0,0),[0,0)) functions
f; £ g° wehave

; |
d-{ J' JO (g o® )™  du, = jg‘vM -Xe™'*du,,

5520 kxR KxR

since J &°Vy - Xe™**du,, <oo.Hence, whenever |8V, |<< u,,,wehave
KxR

1

LX) =~ [ (B 420t +5%,)- X" du, ,

KxR

for any C! - vectorfield X compactly supported in K X (R ~{0}). Therefore we have:

Lemma 6.1 (Euler-Lagrange equation): Ler X ccR™ and suppose
M e 1% (R™ x R) is a stationary point for G& with fixed boundary in K. Then, for any

"4l

C! - vectorfield X compactly supported in Kx(R -{0}),

0= ‘f (H, +%w*+g‘v,,,)-Xe""dﬂM
KxR

and
() A =17, +-i:af- =—g*v,,, ty ~ae. in (K -3K)R,
(ii) H, =H,,, 4 ~ae. in (K—8K)xR, and

1= |H, +gv, | +|@" |

(iii) Moo
<&?QH, (B, +gv,)+(g5))+ |0 F, 4y, ~ae in (K -9K)xR

Recall the definition of an initial surface from §3:

Definition (Initial surface); Assume M, € 12 (R™ x{0}) is a cycle of finite mass. Then
we say that M, is an initial surface and we call u,, the initial data.

The following is the analogue to Lemma 3.2 for cycles of locally finite mass:
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Lemma 6.2 (Existence of minimisers): Let K cc R™ , let M, € I'* (R™ x{0}) bea
cycle of locally finite mass and let Qg € 17, (R™ %{0}) denote the (unique) current with
QLK =M LK. Then there exists an M* e 1%, (R"™ xR) minimising Gy with
OM LK =M LK and so that,

(i) sptM * N (K XR)C K x[0,0),

(i) GL(M*®)SMM LK)~ -‘};“-g(.t,&)e"”dﬂgcdz, and
oK
(i) F(M UK XR)SMMLK) + 500 [ 800 gy,
Remarks: As in [Ma], existence only requires g(-,-)e L, (R™). If we let
g( ., & LY (U) for somep > 1, then it is easy to see that g(-,r)€ L'(U). Later we will

be looking at regularitywhenp>n. If g(-, - )& L™ (R™?) then the resulting flow will be
a version of the K-Brakke flow (see [W1,2]).

One could considzr geometric assumptions such as those considered in [Fu] and [DF].

In (Fu] the prescribed mean curvature satisfies || g || puy,, < (n+ 1O and one

minimises M{BQ)-Ig dug, in the class of Caccioppoli sets. The upper bound on
| 8 || jery, cOmes from the application of the isoperimetric inequality. The related version

for our circumstances will be mentior:ed in the following proof. The problem explored in
[DF] is the higher co-dimensional case.

Note that, since

Igg (x,2)e™*'* dug(x,2) < _[ g (x,2)e™ dLM (x,2) < e0
v

it follows that G; is bounded from below. Contrast this with capillary surfaces where
there is no such lower bound,

Proof of Lemma 6.2: Define
S={8e I (R™):95L(KxR)=MLK}.
Then M, %{(0,%0)]€ S and
inf G (5) < Gy (M X{(0,2)])

= M(M LK) —%j [ e(x 06 dg, (x)dz
(L. 4

<M(M LK),
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since g > 0. Therefore, if M ¢ exists,
0K

> F (M°LK) -.él-j [ ereea.r oz

0 Knl7

2 F‘(M"LK)-SLI‘? (.00

Lwy’
where QF is the (unique) (z + 2) — current satisfying
IQLEXR) =(M* +Q,)L(KxR).

We will briefly digress to explore an alternate, more geometric approach to obtaining an
upper bound on F*(M °LK):
At this point one could bave used the isoperimetric inequality to obtain

M(M (LK) _
> F8 (M 8LK) _ ((n +1)—l—lfnw—lfn 1-l/p sup " g( . ,I) "L’(U) Fg(M'gLK)(l-UP](H-lM)’
20

n+l1

where p > 1. ¥ p <n + 1, we could therefore find a constant such that
FAM LUK XR) S c(MM LK), n, p,g) <o

because 0< (1+1/n)(1-1/ p) <1 and x—ax® < ¢ implies 0 < x < ¢(c, a,5) whenever
< 1 (if 6 > 1 then there is no upper tound on x).

Likewise, if we were to assume || g(+,0)|| i, <+ D@}, the isoperimetric

inequality would imply
M(M LK) 2 F(M ‘LK)~ (n+ 1) iy sup | g+ 1) [l F‘(M ‘LK) >0
and again we could find a constant such that
FA(ML(EXR)Sc(MM LK), n,g) <eo.
This case gives a similar result to [Fu].
Returning to the proof of the lemma, It {S,},,, be a sequence in § satisfying

GE(S) L inf G2 (5).




This implies that we can obtain local mass estimates for the §, and therefore, by applying
the compactness theorem, we can find a subsequence {i’} andan M € S such that

S, - M
and, by approximating g° by C? functions,
G (M) < liminf G§(5,) = inf G5 (5).

Hence M minimises G, in §and satisfies (ii) and (iii).
Suppose 4, (R™ X (=e2,0)) > 0. Then

GE (M) = G (MLR™! X (—o0,00)) + G (MLR™ x(0,)))
= F* (ML(K X (—2,0])) + G5 (ML(R™ % (0,9)))
>Gy(my (M),

where 7z*(x,z) = (»,max{z,0}) . Hence M satisfies (i). pg

For the remainder of this thesis we will concentrate on minimisers M ° of the functional
1 1 -
GEM)=—{e ¥ du,, (x,2)-=| g°(x,2)e**du, (x,z
()= —fe " dpy (n2)=— [ 8" (v D™ dpia (5.2

satisfying oM © =M ,, where M, is a given initial surface. For a given initial surface the

existence of a solution, M ©, is guaranteed by Lemma 6.2.

The case where the initial surface has locally finite mass is an easy extension of the
ensuing analysis making use of Lemma 6.2 where necessary. The more general
assumption of local finiteness clutters the main ideas and doesn't provide any additional
insight.

7 Cylindrical Monotonicity

In this section we derive a cylindrical monotonicity formula and some consequences for
(n + 1)-dimensional currents M € I (R*! xR) satisfying

G JIAP e du,)? <A
g Cr(0)

where C,(0) = B,’;“ XR. By Lemma 6.1, minimisers of G* satisfy this conditisi:.

In a private conversation, Ilmanen has told me that DeGiorgi has suggested that one
could use elliptic regularisation to prove a version of Brakke’s regularity theorem. It may
be possible to apply the formula obtained here to the methods in §§20-22 of [S] to obtain
a Brakke regularity theorem for flows arising from elliptic regularisation.

We finish by proving a “height” lemma for the minimisers of G*.

Lemma 7.1 (cylindrical monotonicity formula): Suppose M € I (R"™ xR) satisfies
|6V, |<< 4y . Then in the sense of distributions we have, for any a€ R™ and all
p>0,

d  _.1 _ d 1
—[p7~ le¥du, 1= p™" —= ||V*r]® e¥*du
dp= ¢ C,'[a) " dp & c,,'[a) "
=(n+]} l

I (divx—n)e™*'*du,, ,

€ ot

+p
+p_(ﬂ+l) __]_“_ Iﬁ '(x_a)e-?.fsd‘aM
£ el

where C,(a)=B," (a)xR.

Proof: Let {:R —[0,) be C! and set r=|x|, X ={(r)x. Then, for any (n + 1)-
dimensional plane § =span{z,,---,7,,,}»

divyX ={(r)divx+{(Hr|Vir .
Writing S* for the line orthogonal to S, we find
rE'O+nl () =rl (| VS rP =L )divex—n+ A -x)

. n+l . : '
a.e. in R™ xR since |8V, [<<u,, .
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Fix © >0 and consider a cut-off function @ :R — [0,1] satisfying
@'(t) <0,0(r) =1 on (—eo,3], P(r) = 0on (1,¢0).

Assuming £(r) = @(r/ p), we have
, r ., d
rg'(N=—¢'(r/ p)=~p5=0lrl p),
o 0

and
I(p?ﬂ—ntp)e"ﬂsdﬂu =I(p§£|vlr|z +e(dive—n+ H -x)e ' dy,, ,
30 o

~-(n+l)

or, multiplying through by 0 ,

d - -2/E — R d’ L A 1
-‘5[;0 f@e‘ dp, . 1=p EZMIV r|® e du, .

+ o j p(divi—n+H -x)e™'*du,. .
Sending ¢to %, .., . We obtain the lemma. pg

Lemma 7.2: Let R,A€ (0,) andp > n. Suppose M € I, (R™ xR) satisfies

& [LA P e dp, )" <A,
ecn(o)

Then, in the sense of distributions we huve that, for any ae€ By (0) and all
o€ (O,R-|al)
() Osi[epml--w;(p—u)p-—nl Ie—zfsdﬁ”‘ ]Up.
ap Cpla)
In particular, forall 0<7< p,

(il) (T-nl Ie-zfsdﬂu)lfp+__A_Tl—n1p S(p-ni Ie_z”dﬂM)”p+ A pl_m.p.
Ecr(ﬂ) p—-n 86}(0) p-—n

X .1 - L
Remark: Note that, whenever M *© is smooth, E_qu " " Ie 2 *du,,. =0. This presents
C,(a)

significant problems if one were to apply the arguments from $§§20-22 in [S] because
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1

- Ie""d,uw =0 indicates a upper limit on the amount of “resolution”

C, ()
available for the Lipschitz approximation argument.

lim o™
v P

Proof: We assume wlog a = 0. By Lemra 7.1 we have

Lo e du,12-p™ (|8 | du,
dp C, (0 €, (0) | .1

>-p7"A( j’e-usdﬂM )l-lfp.
C,(0)

Therefore

d -n —zle | - — a4 d -n -zle |
d_[p Je 2/ dﬂM]”P:"'-(p J-e Ié‘dﬁu)l!pl__[p Ie ) dﬂM]
Y (@ P C,(0) ap Co () (7.2)

Z-i,\-p"“"’.
P

* fp-n)

Multiplying by the integrating factor ¢ gives (i).

Finally, integrating (7.2) completes the proof. g

The following version of the monotonicity formula is of some interest, especially if one
were to use covering arguments for the G° -minimisers.

Lemma 7.3 (truncated cylindrical monotonicity formulae): Ler M ¢ 15 (R™ xR)
and suppose | &V, << p,,. Then, in the sense of distributions we have that, for any
ae R™, andall p and o> 0,
3 ol —zf - a 1 12 ,-z/
—_— 4] — e ZiE d - n —— V e i E d
551 [e au1=p e [Ivirf e au,,

Co(a) 3 (a)

+ p‘(n+l) __l__ .[(di\’x - n)e—:a"edﬂu

Ca(a)

-p 91 JrVr -Vse™'*du,,
aasqm .

+p-(n+l)}_ Iﬁ .(x_a)e-zfsdﬂM

Cy ()

where CJ{(a) =B, (m(a)x(®-a-0,0-a+0).
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Furthermore, let R,A€ (0,50) and p > n. Suppose M € L%, (R™ xR) satisfies
& [IAP e edu, y'* <A.

€ e

Then, in the sense of distributions we have, for any a€ Cr(0) and all p€ (O,R~|a}),

P K p- -nl ~zlE
() OSZ[en g7 e g, 1.

Cha)
In particular, forall 0 <t <p,

A I ST AL
(ii) (,‘.-n}_ Je-z:edﬂM )np PRELLIS 1) <{p _E Ie “"""dﬂM)”" +--——p' r

— —n
ci@ p-n 2 a) p

Proof: Consider variations by the vectorfield given by X = {(r) f{(s)x where
r=|x|,s = z]and {, f € C!(R;[0,0)).
Then, for any (n + 1) — dimensional plane S,
divgX = (rC(D | VPP +(Mdivex) () + L) f(5)V s x
Fix & >0 and consider a cut-off function %: R —[0,1] satisfying
K () <0, h(t) =1 on(—2,1], h(t) =00n(l,).

Assuming f(s) = h(s/o), we have
)= Las1o)=-F 2.
f(s)= ah(s/a)—- S aah(sla)

and consequently

s
div X =(r L' ()| Vr P +;(r)divsx)h(sfa)—o((r)a%h(s/a)-v-s-"’l-x (1.3)

Replacing rl’(r) |V r | +{(r)divgx with (7.3) and then using the same methods as
those used for Lemma 7.1 and letting » become %..,, , the truncated Monotonicity

formula follows.

Note that,
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[ J'rVr-Vse"“"dyM I<p Ile e *du,, .

Cota) Cim
Therefore.

d ~cle ) - 0 e
—p—-—a’- Ie e dﬂM S'a——' I?‘VT'VSG zwdﬂu Spg-o_- jlmT]e ! dp,, .

€2 (ay O csta €3 (o)

Finally, if we use

d __.1 d | 1 :
—‘—'[,0 n * e-:redﬂ ‘]=_ [0. " e-—z!sdﬂ ‘+p-n_ e—-:fed# ‘]
dp & C;:a) M 801 ,e, £ c;;[a) M £ C:-[a) ud
we have
d -n ~zlE -n [f | o2
(—i—-[p _[e “du,1z~p I|H|e “du,,
o CL (o) C2£(0)
> “p-nA( j‘e—zladﬂM )l-llp_
cL(o)

The proof is completed by using this in place of (7.1) and following the proof of Lemma
72. =

We present the following technical lemma analogous to [S 19.5]. This will be used to
obtain a height lemma for the minimisers of G*.

Lemma 7.4: Let R,A€(0;), £,8€(0,]) and p > n. Suppose M eI (R™ xR)
satisfies -

G [IAP e edu,)” <A
N

and assume AR"™? <1-n/p. Let a,be Cr(0)NsptM satisfy
[Z(a-b)[= AR/2, and|e,, -(@-b)> | n(a~b)]|.

If 6€(0,208R/4] is chosen so that

1 -
n<w’ o™ — je “du,., E=aorb,
Catd)

Jorsome n >0, then




27 S (1+cARYVP)(A~ B) ™" R™ -;— [ dp,,

Cr)

+ f -—(m-I)R-n e zf:d
c(¢h) e _“ n+l| Hu

Cr{l)
where c =c(n, p).

Proof: We consider the vectorfield X := i(x,z)¢(r)x where h is a non-negative, C!
function. Then

divy X = h(x, )[r () |V r P +$(Ndivx)+ (r)ViR(x,2) - x

for any {(n + 1) —- dimensional plane S. So, keeping A fixed and applying the proof of
Lemma 7.1, we obtain (with =] x - 7(£)1, )

- - dl L2 —zle
[ " e fduy 1= p" —— |R|Vr| e du,
& C'[JJ 8 dp EC;L) ﬂ
+ p-‘"*“ [ (divx—nyhe"*dp,,
5c ©
+ p'('”'” j’ (x~7(E)) - (b +VINe ™' *du,,
€c®

ol = _y
z—p™= [(r|H|+|5(Vh) e " dp,,
Cp(}

the inequality following from the fact that

| [G-m) - Vhe ™ dp,, < p [|2(VR) | dp,, .
C, () Co(8)

Now since

il IhIHle ..\"Edﬂu A( Ihe—zfgdﬂ‘" )1-lfp
C (3] Cold)

we have, again as in the proof of Lemma 7.2,

_d_[ pAp“"".-‘(p—n)p—n Ihe z.-'sd’u ]Up = epAp’ ""’f(p-n) - I]?Z(Vh)le"”dﬂ”
dp Ec® JEc 65}
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‘Thus, whenever 0 <7< p,
- 1 — balp__l-ni - _- -
T H_E Ik z!sdﬂ <ept\(p P Pyip u} n jhe ziedﬂM
) T

1 A2
- ~nf —_ _[ - - _ —
+e PACTY P pmn) _.{0. nem\a' 2 K p-n) J‘IE(Vh)le zlsdﬂMdo.
€% Cal®)

I=n? -nf - - 1 -
$6"M(p PPy p n)p a2 jhe z!sd‘uM
€e

1 —-n =nip o -nip _— -
+=7 AP I f]yz(Vk)Ie " du,, .
X

Suppose h(x,z) = f(e,, ' (x—£)) where

ro=1i s LR, po =il p X, | £ 018 32 ve20

where 0< £, £ <1,R>0 are fixed for the moment. For any (n + 1)-dimensional plane S,
we have,

|2V (e,., - (x=EN [ 2, |

Define the set P, ={(x,z)€ R™ xR:|e,,, -(x-&)|< ¢8R/ 4}. Then,

1 lentp_d=nt 1
~n -zle PA(O ™V PN R p-n) . —-n -zl
T - Ie du, <e £ — Ie di,,

Ecio & Co(E)P;
4 —C PP P P i pn) 1 T ygmHegy
¢ 7 p— I en+l | € nuM
LR £
Co(8)

By Lemma 7.2 (ii) we have, forany 0 <o <7,

4]




o-"'_l_ je-zled‘uu < pAr‘""”(p-n)[ pA(,O"""-f"""')’(P‘H) -n 2 J'e :fsdﬂM
€co® £ C B
c v-rip_ t-ni oy 1 T -y
e PRI P HPE Ilen-l-l |e™*“du,,
fm C (6}
1P g ooy . —p 1 -
=epA’a' e n)p n L Ie z!sdﬂM
€¢ («f)npg
€ one” K p-n) pn | ~21 g
o€ p Iemi € Hm
£6R £
2pA 4 | e
<(l+ 14 Rlnfp)pn__ J‘e h”dﬂM
p-n € e bn

p_ | n+ |ezled#
fﬁR J@ ‘ !

if AR™? <1-n/p.
let r={AR/4and p =(1- B)R . Then we obtain

il Ie—zfed (1+ 2P Rl—m’p)(l ﬂ)—n R—n 1 }‘e-—zwdﬂu
P-

€ C (‘:) € CU p}R(f)ﬁP" (7 4)

+ c(eﬁ)—(n+l) R _]; Il e:ﬂ |e-zfedpu
Cu-pya(d)

Let a,be C(0) satisfy | z(a—b) p AR/ 2and|e,,, -(a—b) > ] z(a—b)|. Then
Com2 (@ N Cppeyy(B) =9
and
Cu-pr (@O Cy_pgr (B € Cp(0).
Note that |e,,, -(a~b)|~£AR/2> 0 and dist(F,,F,) 2|e,,, -(a—b)|-¢fR/2> 0. Hence

(Copp (@ NPIN(CoprNPY=D.

Therefore, combining the expressions for (7.4) when ¢ is @ and b, we find
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T TR e I e g2

ol Ie"’ fdiey, +07" 1 Ie“""dﬂM

C(a) Co(b)

2pA

SQ+ZESRI- B R [ i, 4R flel |6 du,
p-

Ca ) Cr(B)

whenever a,b€ Cg(0),|m(a~b) |2 ARI2,]e,, -(@a=b)[>£|m(a~b)]| and o < (BR/A, as
required. g

Before we present the height lemma, we need a few definitions first.

Definition ((,a) - unstacked about a@): Fix R > 0 and (e (0O1). Let
M e I (R™ xR) and let ae R™. Suppose that we can find an 7 >0 and ac (0,1)
that

"‘R"' | e"’sdp,,, <2m-a)

€ crta
Then we say that M is (1,@) - unstacked about a.

This definition just says that, for sufficiently small z# > 0, M doesn’t have more than one
layer over a vertical plane anywhere inside C,(a) (see figure 5). On the other hand, M

can stack up in multiple layers over R™! x{0} . This corresponds to the resulting Brakke
flow (after elliptic regularisation) moving through a given region several times.

Bearing in mind the fact that our cyliﬁdrical monotonicity formula is cxpressed inside
cylinders, we define the F° -analogue of the tilt excess (see, for example, [S 22.11 and

[HS 1.4]). In this case, because the F*-minimisers will become very tall, we need to take
special care of the .vertical direction. So, we consider (n + 1)-dimensional subspaces

containing @

Definition (6-Tilt-Excess over C, (a) relative to S): Let M € I, (R™ xR), >0, and
let S be an (n + 1)-dimensional plane coniaining @. Define the &Tilt-Excess over C, (@)
relative to S by

. .1 ate
E*(a,p,8)=p"" [IVi P e eap,

Cy(n)

where v is a unit normal to S. We will also write E=E°(0O,R,{x-¢e,, =0}) for
simplicity.
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Hardt and Simon have used a cylidrical tilt-excess to study boundary regularity for the
oriented Platean problem. There the boundary of an absolutely area-minimising locally

rectifiable current is assumed to be C*. The cylindrical tilt-excess is used to control the
excess of the swrface in a neighborhood of the boundary. One should expect a similar
result to hold for the minimisers of F*.

We now prove an interesting height estimate for (77,&) - unstacked G*-minimisers M *.

Lemma 7.5: Let R > 0, £€(0,)), aeR™ and let § be an n-dimensional plane

containing . Suppose M°* is (n,a) - unstacked about a for some >0 and a€ (0,1).
There exists a € (0,1} such that if we can find a o € (0,8R/4] such that

g -l -
(I)HIO' n L Ie z”dﬂur >7
feiw

Jorall £€ C(a)NsptM © then

Vs (a=&) [<EE(@,R.S)"™R,
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forall £€ C(a) NsptM ®, where & = E(n,a).

Proof: We assume wlog thata = 0 and S ={x"¢,,, =0}. Let S (0,]). To begin with
we assume that, for some & > 0, E<d® and wrte £=(52E)"™* <1. Take
a,b € sptM * N Cg(0). Then, by Lemma 4.4,

p<(l +cAR""’P)(1—‘;3)"”R'“§ Ie"""edﬂw +c(.eﬁ)“"“)R“ﬂ_1_' _“ el e du
£

Cr(®) Cr(0) _ u
< 2(1+ CARI‘--MP)”(I__Q,)(I - ﬂ)—n +Cﬂ“2(1- a)lf2(£ﬁ)-(n+l) EII2
- 2(1+ cARl—nlp)?’(l_a)(l_ﬂ)—n +CvIIZ(I_a)IIZ‘gHZﬂ-(nH)

Choosing J, f# appropriately, we obtain a contradiction. Thus,
|y - (@—b)|[<LARI2=CEV®*DR (7.5)

Va,be Cg(0)MsptM* satisfying | #(a ~b) > AR/ 2.
In particular, choosing b = 0, we have,

| e,,, -alc CEVCPR
Va € (C(0) = C gy, (0)) M SptM ° . Bootstrapping this gives

le,,, -als cEV IR
Vae (CRr(0)-C,(0) NsptM .
Suppose ae CJ(0) ~sptM °. Then we trivially have

le,.,  -alStARIALEEVO™DR

where ¢ is the constant from (7.5). ﬁeﬁcc the lemma is true whenever E <J°. .

On the other hand, if 6* < E, then the inequality is trivial with & chosen sufficiently
large. m
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8 Local mass bounds

Here we derive local mass bounds for the minimisers of G*. We begin by motivating the
need for such bounds by showing that the minimisers are a translating soliton so]unon to
a forced Brakke flow approximating the flow given by

D @< [(-pH* + V' - H)dA, + [ ex.0)|-PH + V7 | dE,

with appropriate singular conditions. We then use Lemma 6.1 to obtain the local mass
bounds.

Note that the minimisers M © of G* satisfy an approximate forced Brakke flow. Indeed,
define the mapping o_,,,(x,z) = (x,z—t/£) and consider the currents given by -

PE(t)=(0_,,)s(M").

For any >0, P?(¢) isjust the current M “ translated vertically downby #/¢.Fix >0
and let @ be a test-function on R™? with

sptFx{t) C{(x,2,5): 2 >-§, s>1).

Then, since (spt@P*(Nx{t)N{(x,2,5):z>—s/&,521} =D, we have

d dp_
E';‘ﬂpl‘(r] (@ = E;I ¢d(a-l‘f£ )# (”M‘ )

- = 1
= j (~gH +v*¢‘a)-(—;fo) Afde,, 8.1)

<[PH*+V'P H+g(xa+n)|-PA+V'Fdu,. , -

This and the condition that spt@ x {t} € {(x,z,5): 2> —s/&, s 2 ¢} saysthat {4 .. © s 152
forced Brakke flow on the set W* = {(x,z,t):z2>--t/&,t 20}.

Remark: If we were considering K-almost Brakke flows (see example (ii) in §4 and, in
particular, the remark preceeding Lemma 6.1), then instead of (8.1) we would have

d _
@S <[-pH*+V'F -H+K|-pH+V'P) du,.,, .

Therefore, the family {#4,c,, 1o world be a K-almost Brakke flow, simplifying the proof

considerably.

As in §3, we aim to pass to the limit ¢ | 0. To do this, we Imuét show that the P°(;) have
locally bounded mass. Then the compactness theorem and the “time-like” continuity of g
will show that the limit 4. = — 7, exists for each ¢ > 0 and satisfies

1'5,;7,@:)5_{(- *+V'p-Aydg, + [g(x0)| -PH + V7| d,

(with the appropriate singular conditions given in §4). The family {7, },,, will then be
used to define a forced integer Brakke flow with initial data 4, = &,, .

Lemma 8.1: Let & be Lipschitz with spt& cc [0,e0). Then
dg 1 -y fE £ ~iE
I(Ez—lwT [ = dp,,. =[gév-we™ dp,, .

Proof: Suppose the lemma is true forany f e C;([0,=0)} . Approximate £by C}([0,o<))
functions f; satisfying :

fisé ——)fumformly, f} dfweakly-*in L.

Then terms linear in £, converge and, by Lemma 1.3,
d§ Tz —zic _ T df T —iiE
[0 P e, —!d—zj'lw e dp,, dz,

so terms linear in df, /dz converge since I |@" |e**dp,,, is an L' function of z.

Therefore, the lemma holds for Lipschitz ¢ if it is true for f € C.([0,)).

We assume f € C2([0,0)) and wlog 0 & sptM °. Choose o, € C!(R™,[0,1}) satisfying
0, =1in By(0), 6, = 00ff B, (0),| Do, | %.
Let X(x,2) =0, (x)f(2)@. Then, by Lemma 6.1, we have

0= I (divX j-la)- X-gv-Xye™ du,,

-I(fVa' ‘w+o (df]w [> - f-fg”fv-w)e“"‘dpu,.
Note that
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bt 413 28 3 £
|[V0e e dp,, s —sup| £ | F* (M) <=,

whichis a fixed L' function (by assumption on g ). Thus we may send R — o to obtain,
_ if_-_ T2 _ l ot . -iie
O_I(dzlm | sf gifv-wye"du,,

by dominated convergence. Hence the lemma is true whenever fe€ Cl({0,o2)), as
required. g

Corollary 8.2: Let & be Lipschitz with spté € [0,20). Then

. _f85, 1p_1 12
d Y7 4
-_—I(_‘§|wT > ~e£|H+gv|)du,,. .
dz
Proof: The first equality follows by replacing &by £ ~*'¢ in Lemma 8.1. The second is an
application of Lemma 6.1 (i). g

We now apply Lemma 8.1 and Corollary 8.2 to two choices of £ These applications will
give us an estimate analogous to the formula

}["(1“,)+in,._ (Hyp +g) dH"ds = H{"(T,)
or

which is valid for a smooth forced mean curvature flow M ={T, },, .

Lemma 8.3: For any § > 0, we have
a+d

1 wzig £oaxe a+ £ ~zle
3.— Ie d jl(.‘()T IdﬂH:JSSF (M LR l){(a,oo))—f-jg le |e ’ dﬂu'a.(n”*‘x(a,-.)

and in particular

a+d

. 1 -zfE T atl L =
o5 J e 10 | dpy ds S FF M LR™ x(@,0) + [ g [ @ [ Al gy

Proof: Let L > 0 and define & by
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re g e h

0 0€z<a
£(D)=41 z=a+d
0 a+8+L<z<oo

and linearly interpolated between. By Lemma 8.1, we compute

a+é

1 - 1M8+L—:s 1 _
E Ie ’ IIwT‘d#Hfds=}: -[ge J IleldﬂMfdg+I§(E+gev.m)e Utdﬂu'

& el L=zt
S+ DF (M LR™ X(a,0) + [ 10" €%ty gy -
Since, by Lemma 6.2, F*(M ) < o=, itfollowsthat (1 + £/ L)F* (M *) — F (M ) when
L — oo. Therefore

a+d

1% _ ; : b
: fe s [l |dp,  ds < FE M LR™ x(a,000) + [ g° | @* { ™ *dtt o gom

mla,)
a

and, since the right hand side is finite, we have in particular

a+é

- 1 -£lE E £ R+ £ ot €. 3
551_1333 ae g I|w‘|dﬂu:dssF (M LR ‘x(a,oo))-!-fg [t | €7 At oo

completing the proof. g
Now consider the Lipschitz function £ given by

0 0£z<a
()=l a+S<z<b
0 b+d<z<oe

and linearly interpolated between. Applying Lemma 1.3 and Corollary 8.2 we find

ejfl H+gtvldu,, +I£g‘w-v du,,.

1 1
=E.“ (()T Iz d‘uH'L(R“'x(a.a+5)) “EJII wT 12 dﬂ”"—(ﬂ"'x(b,b+é‘)) (8.2)

atd 1

5
.”' o' Idﬂu,’d‘s"gbjﬂ o' |dﬂM:ds.
. b

1
o
We will write

s

f5@=5 [[10 1du,ds.
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Lemma 8.4: For any measurable set A

,[ | ‘DT Iz dﬂM‘L(R""xA)
(P M)+ [ |0t | e dpt,, + [ 850 Wil o ong iy )2 (A

in particular fs(0)SF (M ")+ I g¢ |t e du,, + I 8@ Wiy genygoay -

Proof: By Lemma 1.3 and (8.2) we have that, for any sufficiently small open interval
(a,a+6),

Il 0)7 I2 d‘uH’L(R""x(a.aﬂ?) - 5‘[ @ am ¢ mﬂuf S JII wT Iz dﬂu"un'“x(ﬁ.&)
where £is the function from (8.2) with (a,b) replaced by (0,a) . Therefore

T2
,{ ‘w I dﬂM'L(R'“)o(a.ai»é‘)

£ £ £ L -zfz £ (83)
LOF'M )+J-g [w le dauw + Ig - Mdluw‘l.(n""x(o.suwh))]

by Lemma 8.3.

If A were open, then we could decompose it into many small intervals and use (8.3) to
obtain

: I] o’ Iz d‘“M"L(R""M)

SFEMY+ [ |0t | e dp,,, + [ 8@ Wt oo sapiy Y2 (A)

Therefore it is true for any measurable set A. The estimate for f;(0) is obtained by
setting A=(0,8).

Therefore, by combining Lemmas 8.3 and 8.4 with (8.2) we find:

Lemma 8.5 (area estimate): There is a full measure set Z such thai, for any
a,beZ,asb,

T 7 = T ‘
II o'\ dg,, +aj| H+g VI iy ponny —_[[a) e --Ig OVl ey
SF’(M‘)-I-Ig‘ |t | +e)du, ,

Proof: By (8.2) we have
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LT~

= ety e

Ss(2} S f(0)+ I glw- v, LR™'(0,245))

- 1 ¢ T £
- 3‘—.([ .{ |" | dpy . ds + .[ 8" OV riioasy
S¢<oo

where ¢ is independent of 4.

By the Lebesgue differentiation theorem we can find a full measure set Z such that
lim f(2) = [| @ |dg,, ,
for any z € Z. Therefcre, by Lemmas 8.3 and 8.4 we have

T F7 £
.[I @ Idﬂ.u: +EII H+g%v I2 d‘“M'L(R"“x(a,b)) = _“ o' 'dﬁM: _Ig w: VdﬂM‘L(n“‘x(a,b))
SF M)+ [ |0 e dp,,. +jgfm-m;¢u,

SF M)+ [gf |0t [Q+e™ )du,,
as desired. g

Before proceeding we present a technical lemma:

Lemma 8.6: For any p > 1, if supll g(-.0)||,,,, <o then there is a constant
=20

N
C=C(p,g) such that
J;(g):=j(g‘)deM, <C<oo,

Remark: If the functional G is solved in the setting of Cacciopoli sets, then the
constant C is sup || g (- .0 [}, -
20

Proof: We may assume wlog that g #0 a.e. Suppose the lemma is false. Then, we may
find a sequence €, 4 0 such that

T (g)2i.

Let N° :=7m,(M ‘L(R" x(0,7/€&))) where z(x,z)=x. By the “time-like”
continuity assumption we have

limJ; () = lim | (¢ (x.0) dit, (2).

By passing to a subsequence we may consider the following two cases:
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Case 1: Suppose N% e I"*'(R" x{0}) forall i > 1. Then

lgC.0ll ra,, }S ess sup9M,,,_(R...x(0.,, - | gC.0 ",_p (U)S Cc<oo,
This is independent of i otherwise F%(M %) >M(M,)+sup| g(-.0) |, for some .
120
Therefore, for sufficiently large i > 1,

i<Jo(g)<c

a contradiction.

Case 2: Suppose N% eI’ (R™ x{0}) for all i > 1. Then @" =0 a.e. insptM .
Therefore, by Lemma 6.1 it follows that g% is a constant a.e., violating the “time-like”
continuity assumptionand g #0. g

By combining Lemmas 6.1, 8.4, and 8.5 we have
Lemma 8.7: For any measurable set AC R, there is a constant ¢, =c,(g) such that
MM “LR™ x A)) € (L'(A) + XM (M) +c,), |
Proof: By Lemma 6.1 (iii) we have
MM LR™ < AN <[] B + gV dtt, o ooy + [1 97 [P dlhyye ooy -
By Lemma 8.5 we have
(|8 +g°V [ dityyy qooey < e(FE M)+ [ g™ +D 0" |dp,.)
and by Lemma 8.4 we have
[1007 1 bty gony SE M)+ [ (€7 + D | @* i, )L ().
Combining these we have

MM “LR™ X A) S(L () + EXF M) + [ g* |w* |1 +e7)dp, )
< (L (A + E)F (M *)+c(g))) 8.4
LAY+ EXMM )+ 59D | (- ¢y, (&)

by Lemmas 6.2 and 8.6. g
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Remark: As noted in the proof of Lemma 6.2, one could use the Holder inequality to
obtain

MM ‘LR™ x A))
SCLA+ENF (M )+ (I (eNP(F(M Y7 + M(M LR™ x A))™7)) .

If p > 1, this leads to an equation of the form x—rbx® <rc where § < 1 and
r =L (A)+¢. Hence we can find a constant C = C(L (A),n, p,g,M(M,)) such that

M(MLR™ xA) <C.
Now, consider the equation x—rbx’ < rc where § < 1. Dividing throughby o< 1, gives

(rl ez (x/o)—(r! 6)bx°
> (x/ o) - (r! o)(x/ 6)°.

Therefore, the constant C satisfies

oC(L (A)/o,n, p, g, M(M)) < C(L (A),n, p,g,M(M,))
foranyo< 1.
The following lemuma will be used to obtain an undercurrent (cf. §3):

Lemma 8.8: Let x,(x,2) = (x,&). Define T* :=(x,),(M*) . Then, for any measurable
set BCR, '

MTLR™ x B (L (BY+ )+ (LB +H' MM ) +¢,).

Remark: If one were to use the same method outlined in the remark after the proof of
Lemma 8.7, then one would obtain an estimate of the form

MTLR™ xB)<C

where C =C(L(B),n, p,g.M(M,)). Furthermore, the constant C will vanish with
L(B).

- Incidentally, prior to avery productive discussion with Maria Athanassenas, these were

the original estimates I had for Lemmas 8.7 and 8.8.
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Proof of Lemma 8.8: Firstly,
M(T°L(R™ x B)) = ]' JK Al o arogre
= I‘JI Iz I2 +&? |a’T l2 dﬂM‘L(R""xBIE)

5‘[(]75‘!' E)dﬂurun"'xms)

where z(x, z) = x. Note that
1=} JGd) P Iz +| o' [
80, by Lemma 6.1 (iii),
|JxP=&" |Hy +8°vy | 1y —ac.
Therefore, by Lemma 8.7 we cun find a constant ¢ depending only on g such that

[Tty gt ey S (EMEM LR X BIED)'? -

.(gj[ Hy + 8%V Pdlyyn qensprey)
SL B+ MM y) +¢, ) -
(&[| By + 8V Pl ocarey)

142

(8.5)

142

By Lemma 8.6 we have
[l A + g VI ity gogrey SF M)+ [ g5 Are™ )dp. .
Combining this with (8.5) and using (8.4) we have

[ T4ty ey < (L (BY + EYMM )+, ) (FE (M )+ [ g5 (L ™ )dpt,, )2
S(L(B)+£7)"* MM, ) +c,).

Therefore we obtain

M(TL(R™ x B)) < (L1 (B) + £%) + (L (B)+ &))" )M(M,) + ¢, ).

from which the lemma follows. g
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0 Existence of forced Brakke flows

We now construct a solution to the most general example of a forced Brakke flow given
in §4. We begin by taking care to define the flow. Since we will be using Cauchy’s

inequality to obtain certain bounds, we will require g € I?(I/). As noted in the remark
after Lemma 6.2, we easily have || g || , ., <l & |l 2., (L' (U))? < o0, so the results from

§§6-8 still hold.

Definition: Ler ye M(R™) and assume g is a test function. If one of the following
cases holds, set G(u;p) =—oo:

(i) Mip>0ye M (R™),

(ii) |6V |L{@ > 0}e M({p > 0}) where V=v,{e>0},
(it} OV, L{g>0}#0,

() [oH du=-co.

Othervise, we define
Gp)= | (~pH? +V'@-H) du+[g|-gf V'g|dn,

where g 1 R™ — [0,0) satisfies g(x) =0 forany xe U < R"! (Uwith finite measure),
and ge L*(y) for all pe M, (R™).

Remark: The assumption g€ L* (1) forall ue M (R™) impliesthat ¢ € L*(U) and
dim, {x& U :| g |= oo} < n. For example,

2(x) = Ix|[™*, x& By(0)
0 , otherwise

satisfies g & [*(u) forall pe M (R™).

Lemma 9.1: G is a general Brakke functional.

Proof: We need only show that conditions (iv) and (v) in the definition of a general
Brakke functional (§4) are satisfied.

To show that G(-,@) is upper-semicontinuous, we let {z'}_, be a sequence of Radon
measures on {@ >0} converging to a Radon measure x and that sup &' {@ >0} £ C, < 0.
=l

K lim supG(u'; @) = —o> then we are done. Otherwise we may assume, by taking a

oy

subsequence if necessary, ;im(j (1 ;@) exists and is finite. We begin by showing that

this implies that we may assume V i) > V,, (after relabelling).

55



By Cauchy’s inequality we have

1 i 1 3 ¢l Dg|?
G(ﬂ',w)S-zj'q:H‘ du +Ejgz¢dy‘+zj__l :I du'

and hence
[oH?du’ < C(Cy,pin,8)- ©.1)

Thus, by Cauchy-Schwarz we have, for any K cc {@ > 0},

|8V, [(K) S C(Cyp.King). 02)

Hence the compactness theorem 1.1 implies V — V,, after relabelling.

H#Le=0}

The proof of upper-semicontinuity for the first two parts of Gisexactly as it is presented
in [I2] since it is the Brakke functional. We izclude it here for completeness.

Lei wyeCl({p>0),00,0)) Then, by (9.1) and (9.2) both IwH *dy’ and
| IV*yf -H dy' | are bounded independent of i. We next show tiat IwH 2ded is lower-

semicontinuous.

By approximation by C. vectors we have
([H dpy" =sup{[w"?A -X du: || X ;=1 X e Cl(lp > 01}
Since y € C? we have

IWIIZET X dﬂ = _Wp(wlaqX)
=~liméV, """ X)
____]:i-{n-[wlﬂg X dﬂ‘

Sﬁrgi_{lf(_l'wzdﬂi)m(jl X |2 dﬂf)uz
Sliléﬂ_i_ﬂf(jwﬁzdﬂi)m

from which it follows that
[wardp < timint [yrdu’ .

Now we concentrate on the second term of the Brakke functional. We may find an
Xe C‘;({qv > 0}) such that
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V4w -X ;< 6.

Therefore, by the bound on I yH?dy' and lower-semicontinuity, we have

1 - , o B,

SV B du-tim vty B ap P [V -%)- A dp
|V, (0 -limov,, COF +lim| [ (Vy-X)- 7 dp' [
<§? sup-l-Iq?H’dy

{0} @
1

"o gtupl e vy X '
<S&C(n.p.g.0.p) <.
Sending 6—0 gives
jv*w- 7du= }Ejv*w-ﬁ du’
and consequently, using the lower-semicontinuity proved above, we have
J‘—sz +Viy. Bdus lir?iupj-yﬂz +Viy. Biu',
forany pe Cf ({@ > 0},[0,)).

Let {¥,} », € C2({¢ > 0},[0,c0)) be chosen so that y,<@and p, — ¢ in C*. By the
dominated convergence theorem we have that, :

H 2 — 2
}%_[%H dﬂ—j@H du.
Furthermore, since I¢H *dpu<oe and y; — @ in C?

Dy, -Dp|*
IW}"@,

lgggjw»ﬁdy—jw-ﬁdmsg;ngj' duflw, -@|Hdpu=0.

Consequently we have

[-oH?*+v'o-B dp:}i_in;j'—wJHz +Viy, 8 du.

Since the same argument applies with g replaccd'by ' we have
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llrnsup{B(ﬂ a;o)—-llmsuphmﬁB(ﬂ ;) I(—¢H2+V‘¢-ﬁ)dp+jg(' f)|-¢ﬁ+vl¢|dy

=
10g, 1|Dco1
29

lD ID 2

S}gn_hr‘niupﬂ(ﬁ ) <I( | H -
<limB(u,y,) = B(.9) '

2 [ (95” le——"’l’)dy

lD 2
Yy + = I(Q,g +o ¢?|H ‘?’Iz IID‘?’I

Now we tum to the remainder of G. Since we are assuming limG(u'; ) exists and is
G i <sup| Dz¢|ﬂ{¢’> 0} +Esup lo il ez,

finite, by (9.1) we have that I @H*dy'  is bounded independent of i. Then, by lower-

semicontinuity of I‘?’H *du we have I‘?zH *dp <o and which is non-decreasing in 2#{¢ > 0}. Hence G is a general Brakke functional. N
N 2 21y2 Dol d : In order to define our forced Brakke flows, we will need the following version of G,
I gl-oH +Vigldus< < 2, .[ t;’)? du+~ I g Hdp+ .[ |Dol" du i which is a general Brakke functional by Lemma 9.1:
> ' .
__" 2%, +lj¢3H 2.:;"u+%J'| Do|* du Definition: Let t > 0, ue M(R™) and assume ¢ is a test function. If one of the
4 Jollowing cases holds, set G,(it; @) =—oo:
which is finite. Hence g | —-gH +V'pE L}“ and, for any 6 > 0, we can findan f € Cf (i) ule>0}e M R™), _
such that (i) |V |L{e>0}e M({p>0)) where V =V, L{p>0},
(iii) OV, Up>0)=0,
7 L1
lgl-oH+Vp|-fll,<6 () [odp=co.
Therefore . - Otherwise, we define
: (s o Ot N el oL
i‘l'g]-@ﬁ+vl¢9ldﬂ—1imjg|—qoﬁi+Vl¢)|dp‘| G, (. 9) = [(~pH* + Vo - By du+ [ g(- 0| -0 +V*pldu,
| I(g | -¢H + V| —f)du|+| Ifdﬂ -EE}Ifdﬂ‘ | . where g :R™ x[0,0) — [0,0) satisfies
. ~ i _ ) e(x,0=0frany xeU cR™ and all t >0,
+|lim | (g |-¢H, + Vo |-fHdy' | : 2 J
|;..j 4 f -- (vi} foranyt>0, limg(x,s)=g(xt) forae xelU,
S 2 S=3
(vii)  g(-,0€ L’ (W) forall pe M, R™),
since ' — u . Finally, send 6—0 to obtain (vi_z'i) ig? F{ER3] pan<® and
: _ _ . ; (ix} forsome € (0,%), g(-,0)=0 Vizr,
’ IE |-of +V'g|du= !LIEIS | -¢H, + V- p|du ) where U has finite measure.

Definition (forced Brakke flow, forced integer Brakke flow): Ler {4, },., be a family

whenever sup u'{@ > 0} <« and none of the singular conditions on G are satistied.
= of Radon measures on R™ and suppose G, is as defined above. If

Hence G is upper-semicontinuous.

D < ;
Finally, assume G(4;¢) > —eo. Then 4, (P) S G, (4,39)

for any test-function ¢ on R™!, then we call {4}, a forced Brakke flow. If
u, € IM, (R™) for a.e. t >0, then we call {1, },5, aforced integer Brakke flow.
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Before proceeding with the existence proof, we need to prove a consequence 9f the
Compactness Theorem 5.1 that will be used in the proof. ‘this will require a simple
lemma concerning the relationship between G, and the following functional:

Definition: Let t > 0, e M(R™?) and assume @& CH(R™?,[0,20)). If one of the
following cases holds, set G (U, @) =—oo:

(i) Mi@>0je M, (R™),
(i) |OV |L{F >0)e M > 0}) where V =V L{F >0},

(iti) 6V, U7 >0}=0,
(v} [pHdp=oo.
Othenvise, we define

Gr (@) = [(-PH? +V P - Eydu+ [g°(- .z +1/6)| PR +V'F | du,

where g° is defined by

. _ g(x,e2),z=0
8 (x%2)= 0 £<0

where g satisfies conditions (v)-(ix) in the definition of G, .

Lemma 9.2: For any ¢ > 0 and any t > 0, G is a general Brakke functional.
Furthermore, if ¢, 10, then !1;111{;’," (&, P) =G, (&, @) for any t > 0 and any Radon

measure L.

Proof: By Lemma 9.1 we see that §;° is a general Brakke functional and the continuity
HmG? (1, P) = G, (4, P) follows from the continuity of g. g
fden

By using Lemunas 8.7 and 9.2 and (8.1) we have:

Theorem 9.3: There exists a sequence {£;},,, be a descending to zero and an integer

forced Brakke flow M = {72, };zo Such that
ﬂp’l’ ) - ﬁ: and V(.upts (,)) - V(ﬁr)
and I, (R™ x(a,b)) S b-a)M(M ) +c,).

Proof: By (8.1) we know that, forany i > 1, M5 ={ Mooy im0 152 general Brakke flow

with G as the general Brakke functional. Therefore, we may use Lemmas 8.6 and 9.2
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together with Theorem 5.1(i) to find an integer forced Brakke flow # = | A} suchthat
M P - tﬁt *

By using the same argument leading to (9.2) we have
5 (19) 2 —C, =) oV, |(K)YSC(C,,3,.K) Vizl
for all £ > 0. Combining this with Theorem 5.1 (ii) completes the proof. g

The next step in showing existence is to show that the forced Brakke flow obtained in
Theorem 9.3 is translationaly invariant for a.e. # 0. Then we will show that, for any

fe C2(R) satisfying fe(z)dz =1, the family {4,),,, given by

k(@) =F0p) YoeCIR™,[0,)
is an integer forced Brakke flow with initial data given by y#, = u,, .
Lemma 9.4: Ler ¢ > 0. Then
©W(@)=F VYreR
Jorall te T,, where o (x,2)=(x,z+7) and T, is the set from Lemma 4.1.
Proof: Let @& CZ(R™ x(~t/&,0),[0,0)) andlet 7> 0. Deﬁne

P(x,z—7) ifz-7T>t/¢
0 otherwise

P (x,2) :={

Then, forany e>0, u,, (‘)(Zﬁ") = Hpe ey (P) - ByLemmas 4.1 and 8.7, there is a constant
such that

H P () @) - C(fﬁ, ngh

is non-increasing. Fix s > ¢ and pass to the limit as & L0 to find that, for any
P CIR™ xR,[0,)),

B@)-C@ngh2 B @ )-C@.ngn2E @) -C@.n.g)s,
by Theorem 9.3. Therefore, sending s | ¢, we have

A @)z2R(@)2lima (D). (4
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Similarly, whenever £<0 and¢ >0,

E@)SB(@T)SImA (). (9.5)

Finally, by Lemma 4.1 (iii) we can find a co-countable set 7, of times such that equality
holds in both (9.4) and (9.5), thatis (0,),(%,) =X, forall 7e R, as desired. gy

Lemma 9.5: Let jie M(R™ x(z,,0)) and suppose that, for each
@& CO(R™ x(z,,29),[0,2%)) and each t>0, F satisfies

@) =L@,
where.
g(x,z-7) fz—~T>1/¢

0 otherwise

7 (x2) =={

Let @& Cf ((z4,°°)) be chosen so that I 8(z)dz =1. Then

(i) the Radon measure given by (@) =71(0@) for any pe C°(R™,[0,00)) is
independent of the choice of @ and TI = ux L1(z,,%),
(i) e M, (R™ x(z,,%0)) implies pe M,(R™), and T IM, ,(R™ X(z,,))
implies ue IM (R™), and
(iii) if @€ C ((zy,9°)) then

g: (l—l’%) = gr(ﬂs @)’
forany pe C2(R™,[0,0)) and any t > 0.

Proof: By extending 7f to a translation-invariant measure on all of R**' xR , we assume
7, =~ . The proofs of (i) and (ii) are in [12). We include them here for completeness.

The proof of (iti) is similar to the proof of [12 8.5 (jii)].

Let K ={8¢ C*(R) :Iﬁiz =1}.Foreach @€ K ,let K(@) be the set of all finite convex

combinations _
#=%ab", Ya =1 a20.

Since [ is translationally invariant, Z(&') = I(&'¢) for any 8',8" < K(&). Any two
fixed functions &,,8, € K can be approximated uniformly and arbitrarily closely by
6.6, K (@) for some sufficiently tall, narrow de K . Therefore

H(B,@) = A(6,p),
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forany pe CJ(R™,[0,0)). Therefore, for any #& C°(R,[0,)),
E(O9) = w(@) L (D)
ie. T=uxL.

Assume Ze M, ,,(R™?). Note that we T, A H-ae.. Otherwise, by the rectifiability

of 7z we could find (x, z) and a small C' (n + 1)-submanifold C transverse to @
containing (x, z) but so that Z(C) > 0. However, by the translational invariance of H,we
could translate C along the z-axis to contradict the local finiteness of 7.

Since 77 is rectifiable, we have, for any @e C?(R™,[0,%0)) and Z-a.e. (x,z)€ U xR

l}ﬂ;‘ﬂ;g (@)= l}Iﬁ'ﬁu.z)x (6gp)
=0;(%2) [O(D@x)dH ™ (x,2)
T
=8;(x2) [@()dH ™ (x)
Tix-ﬂ)‘-‘

since we T, .

y# . Therefore p& M, (R™) and T, , . i =T, 1 @ spanw for p-a.e. x.

For (iii), note that, vy (i), u{p >0}e M (R™) iff FA((p>0}xR)e M, (R™%).
Suppose this is the case. Let XeC!({p>O0}xR) and define
X (x) = J'T(x_z) (X (x,2))dz . Then we have

- V(X = [aiv, ([ T (X (v, 2P)d2)ap
= [div,T,, 40X (x, D)) dpad
= jdiv X (x,2)did
= éVﬁ (X)
since Zi = ux L and T, T =T, u®spanew p-a.e. Hence

Vl({lg >0}xR) =&V Lo >0 x L

and consequently the singutsr conditions on G, hold for A {p >0} iff they hold for
AL({@ > 0} xR). Furthermore, for p-a.e. x& {¢ >0} and all z, .F?p {(x)= I?ﬁ(x, z) and
w; =0 (since we T, ,, 7). Hence, if G, (%, 6¢) > —oo, we have




G.(Z.60) = [ (~6pH} + V*(09)- H)dE + [ g(x.1) | -0¢H ; + V* (6p} | a7
=[0G, (n,p)dz + [ 9B - A dpt
= gf @)

as desired. g

Theorem 9.6 (Existence of forced integer Brakke flows): Ler M, &€ I (R}’*' ) bean
initial surface. Then there exists a M & 15, (R™ x[0,%0)) and a forced integer Brakke

Slow M ={u,},,, suchthat
G) M =M,
(i) MMLR™ X A)) < (L (A) + L (A" )MM,) +c,), and
(Gi)  fh, S By Ho = Hyy,s M) SM(Mo)+c,
where M, = 0(ML{R™ x[¢,°))).

Proof: The existence of {4, },,, follows from Lemmas 9.3, 9.4, and 9.5 by defining

#(9) =1, (6p),

for ali t > 0.

Define T° = (x,),(M ) where x,(x, z) = (x,&) . By Lemmas 6.2 and 8.8 we have, by
the compactness theorem 1.2, that there exists a sequence {¢;},, and a current
M e 1" (R™ x[0,c<)) such that

M=M,andT% > M.

Furthermore, Lemma 8.8 implies (ii).
Now, fix t > 0 and let g C°(R™,[0,)). Let § > 0 and choose a cut-off function
ne C7(R,[0,1]) such that

n=0o0n (—e,t — 5], 7=10n[t,%).

For all 7 and any e D,,,(R™?) we have, by Lemma 8.8,

| M (na)— l[_i_’rgT"L(R““ X[+ £,7,°))a) |
= M(ne) -lmT *LR™ X[t + £7,2)(n) |
g M(na) - HmT“ (@) |+ | m T “LR™ x[0,2 + £2)(7) |

Smax|a|(F+&F +(F+€2)HMM) +c,) <o,

Sending & — 0 we obtain

TELR™ X[t +£,7,00)) — MLR™ x[t,0)) ,
in particular, ‘
T0.— M, and liminf 1., 2y, .

t+ET 4
5T
Therefore

#(p) =7, (6p)
= %‘E‘B ”p‘{ 03] (9‘:?’)

b T
2 liminf IG(ala) | det

= liminf -'[ GI P ALy s uge ey P2

= liminf ;['ej ¢ dp,, d

=Ii1in“inf:j9_“ 9 dpty, di

141F

trzey

2 [Otimint 1, (p)dz
2 My (@) -
Also, approximating @ by step functions and using Lemma 9.3, we have

M(,::z,)SM(JM'(,)Mr

where ¢, is the constant from Lemma 8.7. Finally we show that gim i, (69)= 1y, (9).
By Lemma 6.2 we have

£ £ __];- -zie 1 i ~zlE
FQM) SM(M,) -~ 'J; [stx e dﬂnodz+—£—.!.[g(x,éz)e dptgedz . (9.6)

Furthermore, Lemma 8.7 and the isoperimetric inequality provide local mass bounds to
ensure (passing to a subsequence if necessary) the existence of some

Qe I, (R™ x{0,%)) such that

n

QF 5>Qand IQ=Q,+M,

where M =limM % . Now, by lowe r-semicontinuity of mass we have, for any fixedj> 1,

f—poo




. 1 * -2ilE l T -zf:,
liminf — | | g(x,6,2)e™" 'dp . dz S — | g(x,6;,2)e ~ ' duy dz.
g 'c['[ j = € 'EI
Let fe C}({0,0)) . Then

HO -'i:f e f(dz H [ @z S £sup| £ 0,
0 0

SO

lim-L ™% f(23dz = FO) Vf e C([0,%)).

J—”‘Sj 0

Therefore, approximating u € L) _([0,%0)) by C, functions, we have

lim— [ ™ u(2)dz = u(0). ©.7)
=g,
0
Hence, for any fixed i > 1,
. 1 T =zl -
!{ﬂz_‘[_[g(x, £;2)e dpnzﬁ = _[ g(x,0)dug, .

By diagonalising we obtain

P 1 T -218

llgnﬂf S—i-{[jg(x, £;2)e d,uQ:, dz < I g(x,,0)duy, -
Since 4,,,L8 = p, forany 8 C2((0,%9)) satisfying [@dz =1, we have

.17 ~2/¢,
M(y) SM(M,) - lim = | [ g (x,8,2)e ™" dpin, dz
i0
P —zte
+liminf — \E:2)e " di, dz
imin P lfg(x 2)e " dpg,
<SM(M,).
However, since 4, 2 i, weactually have equality. g

Definition (enhanced forced motion): If :he pair (M ,M) satisfies the conclusions of
Theorem 8.6, then we call tieem an enhanced forced motion with initial condition M. We

also say that M is the undercurrent and M is the forced overflow.
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As with the Brakke flow, we may restart enhanced forced motions {12, 8.4):

Lemma 9.7 (vestartability): Let M, e I (R"*')_ be an initial surface and suppose
(M, M) is an enhanced forced motion with initial condition M o- Then, forallt>0, M,
is an initial surface and {M },,, is weakly continuous. |

Proof: By Theorem 9.6 (iit) we have
M(M,) SM(k,) SM(M,) +c, <o (9.8)

Furthermore, by Theorem 9.8 (it), {M, } ., is continuous in the weak topology. Therefore,

by the compactness theorem 1.2 and (9.8), M, € I, (R™" x{¢}) . Hence, forallt >0, M,
is an initial surface. pg




10 Some properties of enhanced forced motions

Recall that in an enhanced forced motion we have the discrepency between 4, and w4, .
Suppose we have an enhanced forced motion (M,M) with initial condition M,
satisfying 4, > 4, at some time ¢ > 0. Define M ()= (o), ML(R™ x(t,%0)) and
M@ ={p, )5 where g € M for all s > r. Because of the equality 4, = &, required
in the definition for enhanced forced motions, the pair (M (r), M(r)) will not be an
enhanced forced motion. In the special case when we have equality 4, = u,, for all time,

then we will say that the enhanced forced motion is a forced matching motion. We begin
by proving existence of forced matching motions under the hypothesis of uniqueness of
the undercurrent. We will conclude with some lemmata characterising the area ratio and
tilt-excess for forced matching motions obtained using elliptic regularisation.

As in [12 9.1] we formally define a forced matching motion as follows:

Definition (forced matching motion): Letr M, € I°*(R"™) be an initial surface. We call
a current M € I, (R™ x[0,%0)) a forced matching motion for M, if
(i) oM=M,,
(i) M@MLR™ xA) < (L(A)+ L(A)*)M(M,) +c,), and
(iii)) M= {#44, hizo is a forced Brakke flow.

Suppose every enhanced forced motion (M ,M) with initial surface M, has the same
undercurrent. Then we will say that M is the unigue undercurrent for M. If we assume
such uniqueness, we have:

Lemma 10.1 (existence of forced matching motions): Let M, € I*(R™) be an initial
surface and suppose that M € I (R™ x[0,5)) is the unique undercurrent for M,.
Then M is a forced matching motion for M .

Proof: The most vital ingredient for the proof is Theorem 8.6 (ifi). With that, the proof
runs almost identically to the proof of Lernma 3.5 [12, 9.2].

We must show that {£,, },, is a forced Brakke flow. Let § > 0. We first construct an

enhanced forced motion (M, M?) satisfying
M(ul) <M ) +6,

for all ¢+ > 0. Then we will use the compactness theorem for general Brakke flows to
obtain a sequence &, | 0 and a forced Brakke flow M ={u’},,, such that

K= ) and g =

However, since M(#)<M(M,)+ &, we will then have M(z') <M(M,) for all > 0,
ie. y4 =p, forallr>0.

Define the set T;:={r20:M(y)2M(M,)+38}. If T;=@, then set u’=yp.
Otherwise, let 1, =inf T;. By Lemma 8.7, {M, },,, is weakly continuous. By Lemma 4.1
(iii), we have ]:llran( #,)=M(g, ). Therefore

M(M,,)+ 8 <liminf M(M,) + & <HmM(z) SM(x, ),

ie. t,€Ty5.

Now, by Lemma 8.7, we may restart the flow at ¢, with M ,, as the initial surface. Then

Theorem 8.6 ensures the existence of an enhanced forced motion (M, M) satisfying

MelL},

(R™ X[t,,%0)), oM =M W My =Hy, -

We define the pair (M,5) by

- ) . ~ <
M =M_ML(RH+1 X[fo,m))'l'M , ﬁr ={{fg O—I‘(ID
n t,<t

and show that (AZI ,9% is an enhanced motion for M.

Firstly, note that

OM = 3M - J(ML(R™ x[z,,°))) + OM
=M,~-M,_+M, =M, '
Since
‘ M(ML(R™ x A) < (L (A) + L (AY*Y MM ) +c,)
and

M(MLR™ x A) < (L' (A) + L' (A" YMM,) +¢,)

it follows that M(ML(R™' x A) < (£ (A) + £ (A)"*)(M(M,) + ¢, ). Likewise we have
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M(2,) SM(M,) + e,

by (8.8). We also trivially have g, <4,, f, = #,, . So all that remains to be checked is
that M = {44, },5 is a forced Brakke flow, which is clear whenever ¢ # £, and whenever
t L 1,. Therefore we show that, for any @& C2(R"™,[0,0))

D:ﬁ:o (¢) S‘ g;, (ﬁrn '?) r
where

f(to)"f'(t) .
4

—

Dy f(ty) =limsup

ey ro

Since we have
ﬂ'o = lu:n = auM,o £ Ju:o '

we may assume wlog that Z, (@) = u, (9) (otherwise DS &, (p)=—==). Then
D @) =D p (PG, W, . 0=G, A .0.
Hence M = {4, )5, is a forced Brakke flow.

By assumption we have that M is the unique undercurrent, so M=M. As before, we
have

mM(Z,) SM(@,) = M(M,,) < liminf M(M,),

that is, we have increased inf 7;. Moreover
M2, )=MM, )<M(g,)-d<M(M)+c, -6

Therefore, if we repeat the above process, it will terminate after no more than
[(M(M,)+c¢,)/ d] iterations. Thus, after iterating the above process we will be left with

an enhanced forced motion (M, M?) satisfying

M) <MM )+ 6,
forallz>0.

Finally, as outlined above we may apply the compactness theorem for general Brakke
flows to find a sequence &, J O and a forced Brakke flow M ={ 1} 50 Such that
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P> pand 42 gy,
However, since M(zz°) < M(M,)+ & for each 6 > 0, we in fact have
M) <MM,),

forall 1> 0,i.e. 4 =pu, forall t20. Hence M ={,, },, is a forced Brakke flow, that
is, M is a forced matching motion. gy

We now turn our attention to some geometric properties of forced matching motions. To
do this, we will need to construct a new family of M ©’s.

Suppose M € 1%, (R™?) is a forced matching motion for the initial surface M. Let?>0

and define the functional
P 1¢ i 1 -
Gy (M) =~ [e*au, (x,z>—;jg‘.(x,z—a>e g (x,2).

By Lemma 6.2 there exists a G, -minimiser M °(¢) with initial surface M,. So we
definine the family of G, -minimisers {M “{£)}.;:

Definition: Let M, &1 (R™) be an initial surface and suppose M € I (R™?) is a
matching motion for M. For each t > 0, we define M °(r) 1o be a G/ - minimiser with
initial surface M.

Now for some observations.

Lemma 10.2: Suppose p,,., ., — 4, x LL(0,%0). Then
: 1 —zig
}L@ﬂu“(:)l‘(?e )=H,
i

Remark: If we have the convergence lim i,
o

o (”L(El—e"‘”‘ )= 4, it follows that

i

M, (K) < liminf 1 j e du

- M @)
& kdo)
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by lower-semicontinuity of mass. On the other hand, we have

lim_sup-l— Je“"‘dpu 0y S H(K)

=y £ i Kx(0,=)

by Lerma 6.2(ii) and (9.7) as computed in the proof of Theorem 9.6. Therefore,
whenever , , = > M, X L]L(0,0) it follows that

1.
lim— [e™"dp, ., =#(K).

[=pr g ; Kx(0.)

Proof of Lemma 10.2: We assume wlog ¢ = 0. As indicated in the remark, the mass
bound G* (M *) <G* (M, x[[0,20)}) and (9.7) implies

limsup—l—- (10.1)

{3

je"""dpm <y, (K)
8‘ Kx(),=2)
On the other hand,

Iimnf dp, . 2dpy, d (L'L(0, )

by the assumption 4, = — 4, x LL(0,) and lower-semicontinuity of mass. So, for

any @€ C2(R™ %(0,0)) and for any j >0,

[ e pdu,, dL < liminf Ligedp,, .
£ gy

Thus, by diagonalising,
@) =1 I 1 2 17!
nuMo p)= j__mm 6‘; ¢’dﬂm

£ lim liminf i_[(ae"‘“’ du,,.,

e fampoo 8}

= liminf - I g™ du .,

Joes 2§ gj
_1. 1 -zfz,d
=lim—|gpe " "du .,

joe g
&

since, for each j,
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by definition. Hence

. 1 -
< el 2/ E;
ﬂM, - Eﬂ‘ua‘!" L(S e )

and equality holds by (10.1). g

We now introduce some new terminology to indicate when we are looking at a flow
constructed using elliptic regularisation.

Definition (Regularised enhanced motion): If an enhanced forced motion has been
obtained using the metheds of §§6-9, then we say that it is a regularised enhanced forced
motion. ' "

Lemma 10.3: Suppose M € I (R™?) is a regularised forced matching motion. Then,
forae 120,
() Hyay = 4, X LL(0,), and

. . a
(ii) there is a subsequence {i’} such that Vpﬁm -—)VM X0 "

Remark: This is really a version of the area continuity hypothesis ]i;rvfl M, = I, restated
. £

Jor a regularised forced matching motion.

Proof of Lemma 10.3: By Lemma 4.1, g, is continuous at ¢ and D, (@) > —o, for all

te T, where 7, is the set from Lemma 4.1. We assume ¢ is such a time. Let s > 0 and
define

P(s,0)=(0_,,. ), (M @DL(R™ X (5,0))

where o_,,.(x,2) =(x,z— s/ &) . Then, by Lemma 9.4,

-$1E

By Vs x L1.(0,0)

whenever v, is continuous at s. However v, = 4, and P*(0,) =M “(z) for each £ > 0.
Thus, by the continuity of x4, atz, we have 4, .. . — 4, X LL(0,%0).

Furthermore, since -D_, M, (@) > ~oo, the definition of a general Brakke flow and (i) imply

-V

M7 #,20L(0.=) as desired. =

the existence of a subsequence such that V',
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iCombining Lemmas 10.2 and 10.3 we find:

Corollary 10.4: Suppose M € I, (R™?) is a regularised forced matching motion with
initial surface M . Then, forae. t >0,

01 | Y
(i) %1-’“'3”““"’['(5_,6 ay= y

(ii) there is a subsequence {i’} such that imV, L(—}-—e'z“" y=V,,and

i :
fdow (PRI} 8.*

aes . . . 1 T - T2
(iii) in particular }Lm“: I|v5 Fe ""dyu,?(‘): I|v$ |* du, ,

U Cular) B (a)

whenever S is an n-dimensional subspace in R™ x{0} and a, — a.

Remark: Note that (iii) says that the tilt-excess of p, over B} (a) is the limit of the &-
tilt excess from §7:

Wl
E@p,8)=p" = IVl e dityeq,.

Cpla)

Proof of Corollary 10.4: The fisst and second consequence follow by applying Lemmas
10.2 and 10.3.

Let yre C)(G™ (R™?)). Then, by Lemma 7.2 we can find a subsequence {i’} such that,
ata.e 120,

Y7 L(—l—e"" “y>p andV, SV

M E. M (1) #ANLO=)
¥
Therefore, by diagonalising,

.1 -
,111_23 ZIW((x’ z)’T(x.z)ﬂM‘-‘ 3 e e dﬂMfr ) = J‘W((xa Z), Txﬂt x'[‘l )dﬂr
=V, %)
Let a, € B;"'(a). Then
fvitdp < [IviP da,

Ra(a) B3ti(a)

and

(Vi du < (IVIF dn,

83+ (a) 8% ap)

Therefore, sending J—0, we obtain

[IviF aw, =tim [ivi P ap,

B3 () B;*(a)
Likewise, foreach k> 1,
_i_ ,VT |2 e—zf&'gd‘u - lim—1~ |VT |2 -—zls,d
$ MEW T (e o sl € Hya gy
k B;ﬂ(a) k B;ﬂ(a‘)

Hence using (iii) and diagonalising we obtain (iv). gy

75




Part IV — Regularity

In this part we prove a monotonicity formula related to the flow. This is the forced
Brakke flow analogue to Huisken's monotonicity formula (H1). The aim is to obtain some
resuits conceming the Caussian densify of the forced Brakke flow. We then use methods
from [E], [13], and [W2] to obtain a local regularity result in §12.

11 Another monotonicity formula

In [H1] Huisken proved the well known monotonicity formula for the mean curvature
flow:

d 5o (x— )’)‘L 2
dt'l-p'“ luf Jl 2(3___:) I py.s #,
for all # < s and where
-yl 1ais-1)

Ous D= =y

In [E], [I3], and [W2] this has been used to obtain a local reqularity theorem similar to
Allard's regularity theorem [A], [S]. Together with Brakke's clearing out lemma [B 6.3],
the local regularity theorem has been used in [E] and [13] to prove a version of Brakke's
famous regularity theorem [B 6.12].

Recall from the introduction that we call M = {T }., 2 smooth forced mean curvature
flow if

%f-:ﬁn (x)+g(x, vy (), x€T,.

We have the following lemma for smooth forced mean curvature flows:

Lemma 11.1: Let 5 < oo, Suppose M ={T, },.,., isasmoothforced mean curvature flow.
Then, for any R > 0, there are constants ¢, =¢,(p, 8,s,R) and ¢, > 0 such that

H" (T, By (0P SB(H" (T, N By (0))*'7 + ¢ R (1 - €7 P )4/ 7T
JSor all t [0, min{s, R’ /8n}].

Remark: Suppose we have the uniform bound

sup sup H"(T, N B(x))R™ S A.

2R B2t




Then Lemma 11.1 implies

sup sup(H" (T, N By ()P R2Y < c(Aun, p)(1 + ¢ s.up(}e2 i p (gless PR' _ 1y))

xR™ Rzl

= C(Asns p) 8, s) ]
for all ¢e [0, min{s,R?/8nr}].

Hence Lemma 11.1 allows us to make the uniform assumption

supsup sup  H"(T, NB(xHR™" S 4.

+<T eR"™ Rzmax{tf2n5}

We will follow Ecker’s lead [E] and call this the area condition. More generally, if we
have M ={T, },.; for some bounded interval 1 C R, the area condition is

sup sup sup H" ([, "B, (x))R™" < 4,

el zeR"* RzR,

Jorsome R, <eo.

Proof: Define
@yap(®1) == x~y [ +2n(s ~HR™),

where (2), = max{0, a}. Note that, for any n-dimensional subspace S and any time s

a .
(a_:— diviD)@, . <0.

Then we have

d ron . a¢ . .,
-I ¢" SR dj{ = I (H + g)(_H + D ¢Jf.s.k " V‘, ‘?}.J.R )(DI.S.R d,‘?{ + .[ t;t : d}[
I-‘l'

L,
< [(~H?+g(~H + Do, 1 VI 0,, )P, dH"

T,

1 1 "
< J.("EHZ +‘532 +g| Do, » U‘?’y.s.n YPy.r dH
T :

1 n
< I(_EHZ + 32+I Dq?y.s.R I2 IQ)?‘J.R )(py.s.ﬂd'q{

Ly

1 nyl H"
s__J'sz}[ + Emax| D’g, . |_{¢'y.:.x d
T,

+ sup e(.0) "f!(rns,(y)) (I @y asry-ve

Let u(t) = J'rp,‘s_Ra'.‘}{ " . Then
L

» -
u'-cu' 2‘”"—czuso,

where ¢, —S“P (F{ 3] "

ransoy 4 ¢ =R’max | D@, |/2515. Using the

—~&ayf

mtegratmg factor e we have

A, et 2ty 2 L 2
___(e l.‘gfu)Z.f;- S“"Cle Zeqt ! pR ,

or

" c -
e chfpu(r)za'p S u(o)pr +R2 _‘I_(l_e ZcI:JpR’ ) .
P
Therefore, setting ¢ = ¢, /¢, we have

Hr (I, N By (Y))zfp < B(H" (Lo B, ();))2”’ +cR? Q- e~2c;tfpk‘ ))eZc,HpR’ ,

forall ¢ € [0,min{s, R* /8n}] as desired. g

In this Part, we will be considering forced Brakke flows givenby M = {4, },.. . Existence
is guaranteed by Theorem 9.6.

Lemma 11.2 (monotonicity formula): Let y e R™ and s€ R. Suppose M ={4,},, is
a forced integer Brakke flow satisfying the area condition. Then, whenever |s—t|< R
and ¢ is a test-function satisfying

@=1in B,(¥), p=00ff B,z(y), and R|Dp|+R*|D*p|<c,,
we have (in the distributional sense)

4 g G-nt
— [0, du <=1 A + T

+A(I¢py.s d‘u‘)l-ﬂp + R32 ?

I* o, du,

where ¢, =c¢,(n,c,, A) and A = sup H8C DD s, on € P @R Im)™7 12

Remark: Other similar monotonicity formulas for weak curvature flows include
Iimanen’s local version of Huisken’s monotonicity formula (with g =0, see {I3 Lemma

7]), and White s monotonicity formula for K-almost Brakke flows (where g = K < oo, see
[W1 §11]). This version is the parabolic counterpart of the classic monotonicity formula
Jor varifolds [S §17].

Proof: Wlog we consider only (y,5) = (0,0) and write p = p,,. For the proof we will
require the identity
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) ) S"p 2
—£—+d1vst+|——-—;—-|—-=0 (11.1)

which is valid for any n - dimensional hyperplane S. This can be computed as follows:

A S S S |
p (4”)114'2 2(_4).1!24»1 4(__1,)1112‘\2 (_r)nfz 4f
4IxT lz 4| xJ. IZ
ni2 2 + ni2 2]
0""dn° )" 4)

0 .
—a‘-f—+dwst+

=0,

Now, suppose p is a time-varying test-function and assume wlog D, i, (@) > —oo. Thenit
is easy to see that

D,u, (@) < G, (1, ) + 1,(P,, ),

where ¢,, = —aﬁ

ot

Let @ =1in B,(y), ¢ =0 off B,,(y),and R|{ D@|+R*| D*@|< ¢, . Then,in the sense of
distributions, we have

d _
— o0, di, <[ o0, H* + B V(90,0 dp,
+[gl~gp, B +V* (g0, )| 4zt

+I%(¢?p,,,) du,

. Vip
s-{|1& ~—2=F op,., du

P8

+I(¢ ¥ -gH-V'p, +p, H-V'p)dy,
».:
1, V'o,, Vgl
+J‘gz¢py.s dﬂ,'l'-'-‘[(iH— > 12 ¢py.s+p)'-sl Q’I )dﬂ‘
Py 9
ap,,
I( Pra+9=222) di

x=-y* 1
Jl H+ (2(3 yr) I (Dpy,s dJur +§J.32¢py.s d.ut

_ vip,, I
NPt 2 f.V'p,, APl

7.t
a
+[(0,, 50 div (p,.,V*@)wy.,!D o) dy,

1 [C20 00
< IIH+ ol ¢pdﬂ,+—fg op,, du,

+J'py,, —-chv . Do+2| D |) du,
+[plD%p,, |du,
where we have used the Cauchy-Schwarz inequatity.

Now, for any n — dimensional hyperplane S we have

dg . 5 . 4c
L div,.Dg+ 2| D2pls —2
ot sH@ l (DI R2

Furthermore, we have

l ~RY g
sup P, S—————— X 0
bt 00 (dm(s—1))™?

It is easy to compute that

1 -E (s-1) o 1 -n12
—_— S """, 11.2
@z(s- r))"” ¢ (82:2° /n)"’2 ( )

Therefore, by the area condition we have

dAc,

0P 2
IPyJ(“g;‘d‘Vp,D¢’+21D o) dy, Sm- (11.3)
Simiiarly, we have that
1 2 R2
sup |D?*p, . I e TN ——
S 1D 6o ooy’

which can easily shown to be bounded by (4z)™*(R*/c¢,)™*'e™> where

C, = %(n +2+J(n+6)(n+2)). Therefore, again by the area condition, we have
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ni2+l _-t,
Ac, "€ (11.4)

2
J‘QID p}’-l Id‘ut s (4”)1112}22 *

Finally, using (11.2) and the Holder inequality, we have

ngq’pw < (I?Py.sgP)m(jﬂoy,,)]_m

<(J@0,.)"™" sup [P, )7 ( [£7)*"]
Bre(y) By}

< ZA(Jquy.‘)I-ZIP .

Combining this with {11.3) and (11.4) completes the proof. g

Corollary 11.3: Let ye R™ and se R. Suppose M ={u,},., is a forced integer
Brakke flow satisfying the area condition. Let ¢ be a test-function satisfying

@=1in Bp(y), ¢ =00ff B,;(¥), and R]| Dp|+R* | D*p|< c,.

Then {I o0, ,du, + }%32_ O ad +%(s —1t) is a non-increasing function of t on the
interval [s — R, s).

Proof: By Lemma 11.2 we have, in the sense of distributions,
d - c
ZI 90, A1, — M| 9o, dpt, Y -5 <0

whenever 1€ [s-R%,s).

Therefore
d €3  _ y2fp 2A
E[j- Q?’py,sdﬂ: + P— (s~-0}"'* < —"—-p

sincer<s. o

Recall the function from the proof of Lemma 11.1:

@ysn (6t} =U=(x=y[ +2n(s =RY,
where (a), =max{0,a}. We will write
@, (1) =0, R (0P, (51)

D o (X, 1) = @4 05 (%210, (%,1) -
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The following definition essentially says that the point (y,s)e R™ xR isin the support
of M.

Definition: Let s€ R, ye R™, and suppose M ={T, }ic; s @ smooth forced mean
curvature flow. Suppose there exist sequences t, Ts and {x,}., with xel, and

X, = y. Then we say that M reaches y at time s.

Proposition 11.4: Let ye R™' and se R. Suppose M ={u ), is a forced integer
Brakke flow satisfying the area condition. Then the gaussian density

O, 3,5)=lim [, (x,)dt, (x)

exists and is upper-semicontinuaus. Moreover, if M ={T, )<, is a smooth forced Brakke
flow that reaches y at time s, then O(M, y,s) 21 . ‘

Proof: Existence follows from Corollary 11.3.
For upper-semicontinuity, we wish to show that if (x,,t,) = (y,5) then |

(M, y,s) 2 limsupO(M, x,,2,) .

i—por

Let 7 < s be fixed. Let N be chosen so that 7 <¢, <t for i > N. Then, Corollary 11.3
mplies _

Xidli

(M, x,,1,)¥? S[_[(D 2 (60du, (X) + ;R (¢, -0)° +-—2—‘E(t,. -1,
p

for any 7 <#;. By the continuity of gp,, we have 905, —> 9P, Hence, taking limsup
on both sides we have
fmpor

limsupO(M X8 yr < [ICD v 1A, (x) + R (s-0]"" + %(3 -~1).
P

Sending # T s on the right hand side we obtain the upper-semicontinuity.
Suppose M = {I} },., is a smooth forced mean curvature flow that reaches y at time s.
Assume that M is smooth near y. Consider the rescaling x= A% +y and t = Az +s
where 5 >0 and A > 0. Then the family 347, = T/}  given by
| B 1 T
L3 —-I( zl’ﬂ-s—y)

is a smooth forced mean curvature flow.
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Since M is smooth near y we have

: A9 o
I}QI‘, =T,T,.

In general, the limit defines the tangent flow to M at (y, s). More on this in §12.

Note that
O, (7 0) =0, (A (x-9) A1 =5)

=Q m-_ g (x.8)
from which it follows

J @, xed, (3 = [@ 1 ()duF O (x).
Therefore, for every r< 0,
OM, 7,5) = i [ @ 1, (XU (0) = [ PogIAH" () =1.
T
Now, let
1={ye R™ : Mreaches yats, O(M, y,s) <1}.

By the upper-semicontinuity of the gaussian density, it follows that A is relatively openin
the set {Mreachesyats}. So if A# D it follows that z_(A)>0. Bat, since M is

smooth, @(M, y,s)=1 for a.e. y that Mreaches ats. Hence A=QJ. g

Corollary 11.5: Ler ye R" and s € R. Suppose M = (T, },., is asmooth forced mean
curvature flow that reaches y at time s and satisfies the aree condition. If A(s—£) < p/4

then

le2f p - c )
: e g s ')(Iq)_v.s.ﬂ‘ (x,t)dﬂ,(x)'f'"z'iIﬁ;XR 2)

is @ non-increasing function of t on the interval [s-mR%s] where

m:=min{l,c;' 277"},
Proof: By Corollary 11.3 and Lemma 11.4 we have

[®, .00 dit, (x) 2 A= 2M(s =)/ p)*'* = ;R (s -1).

Therefore, if ['(s~1) < p/4 and if c,(s—-)RZ <27F2,
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[®y, 0ty dpt, (1) 2277 =, R (s 1)

22702

Applying this to Lemma 11.2 we have

d - +
- [®,0n(xt) dpt ()~ c,R? 2! 2’_?qu>y.,'ﬂ(x, N du,(x)<0.

Multiplying through by the integrating factor ¢?™ "4~ completes the proof. gy

Propositior 11.6 (clearing out): Let s€ R and suppose M ={T,},., is asmooth forced

mean curvature flow satisfying the area condition. Suppose Mreaches y at time 5. Then,
Jor any 0 < f <1/2n there exists @ 0 < 8 = 6n,B) < 1 such that for all

A-2n5)7" < p<(pHAAS)'"?,

—HPARR g Cy

e - A>0

B, 4 (B, ()2 TN .
o" , A=0

Equivalently, if for some Q < 8 <1/2n and some pe (1-2n8)"2,(p/(AAS)"?]

—phratp W " C3
e Go" - , A>0

Ko g (B (YN < I ,
Go" , A=90

then there exists a 6> 0 such that u,(B;(y))=0 forall te (s ~82,5).

Remarks: Note that the interval ((1=2nB8)""2,(p HAAP)Y?) is non-empty iff
B < p(4A +2np). In the case when A = 0 this just says § <1/2n.

Suppose M is the volume preserving mean ct .vature flow of a sphere. Then we trivially
have

)
21+2! P A ’

ﬂ-“'ﬁﬂz (B.o (> C!)np" > e-z’*"r,\ﬂ,olapn _

Joranyp>0andall yec S".

Proof of Lemma 11.6: We assume A # 0 since that is the case for the mean- cuwatulje'
flow (see [E] for details). By Coroliary 11.4 we have that

T

CEr
Cn




161l 4ol ¢ B
1< g2 TAG ndq;y_hﬂ(.r,t)dﬂ,(x)+§T?TA‘R R

warepcsy (1 + (5= DRZY €3 p-2
< O e oy B OV g g R

whenever A(s—1)< p/4.Leta> 0 and set ¢ =s—aR®. Then

a2ie p a2 (4?1'9.') n___ Cy
ﬂt (Bmk (y)) 2 e . m 21+7JPA ¥

since R> 1. Set p =+1+2naR and aR® = fp* to obtain

s

‘2'.2”W n_
ﬂs_.‘qoz (Bp(y))ze 9p 21+ZIPA

for some O < 8 = 0(nf) < 1. The fact that p must be in the interval

(A—2n)7"2,(p H4AS))Y?} can be seen as follows:
Firstly 14 2na = (1-2n8)"", so the condition A(s —1) £ p/4 is satisfied iff

P> Apo?
2 Bo

or
P (PIAABY"?.

The lower bound follows from p=+1+2naR and 14+2ra=(1-2n8)". g
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12Local regularity

Recall the C'*, C** and W** norms of a smooth mean curvature flow M = (T}} . at.
apoint (x,0)e M: K, ,(M,x,0,K, (M, x,t) and J iP (M, x,t) (respectively) as defined
at the end of §1.

In this section we prove the following local regularity theorem:

Theorem 12.1: Let p € [2,00) N (n,00). There existsa &, >0 anda C,, > O suchthat for
any (y,5)€ R™ xR and any smooth forced mean curvature flow M = (T } __ satisfying,

Jorsome p>0

Iq)x.:.n du, <1+,
forall (x,r)€ B,(y)X(s—p*,s) and all 7€ (t - p*,1), then, forany 0< o< p,

o sup sup  [J,, (M, x,0)+ K, (M x,)]<C,(1+ p°A)

tE[s—( -0 5) 2B, _, (YINT,

where A=supll g0 in oy € @R INY P [2< 00 and @ =1-n/p.
res -

This is similar to [W2 6.1]. There, White defines what he calls a Brakke operator to act
as a forcing term. For a given flow 74, if the mean curvature vector exists at x at time ¢,

the Brakke operator S(M): U x(—o0,5)XG,(U) = R™ is defined by
B(M)(x,1,8) = v(x, 1)~ H(x,1),

where G, (U) is the Grassmanian on the set I/ (see §1) and v is the normal velocity of the

flow at x. Examples (from [W2 §4]) include:
(i) The Brakke operator for a compact embedded hypersurface M moving by the
gradient flow for the functional (area — volume) is S(M)(x,t,T.M,) = Vi, (%),

where v,, (x) is the outward pointing unit normal to the surface at time 7.
(ii) The mean curvature flow on the unit sphere has S(M)(x,¢,5) = nx forits Brakke
operator, where S is an n-dimensional subspace.

Concentrating on regularity, White doesn’t prove existence for flows with non-zero
Brakke operator.

Since the smooth forced mean curvature flow is the gradient flow for the functional (area
- I g dL™ ), where Q denotes the tegion enclosed by the evolving hypersurface, the
2 _

Brakke operator for the smooth forced mean curvature flow is
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B(x,1,5) = g (x,0)v5(x)

for any n~dimensional subspace S. This requires an orientation or: the flow and therefore
isn’t applicable to varifolds, unlike the more general approuch we’ve taken so far.
Furthermore, only the case g & L™ is treated in [W2 6.1], corresponding to a X-almost
Brakke flow [W1 §11] with '
K =supsup | g(x,].
I 3

As a slight interlude, we will first prove an interesting property of the iangent flows used
in the proof of Proposition 11.4. To do this, we formally define the tangent flow as

follows:
Let M ={u,},., be a forced Brakke flow. Let (x,,4,) & R™ X(~s0,5) and let 1> 0.

Set t=A27+1, and y = Ax+x,. Define M7 ={u}*") , where

[ £r2) it o (3= o [ SO e 5d A2 =10)) i ).

Note that
p()’, T) = Poo (;‘.'-] (x - xo), /1-2 (t -1 ))
= Pros, (o8
from which it follows
[ P dtt, = [ p = (12.1)

Therefore, for every <0,

%Ipdﬂ:'(kh) =@(Mxosro) .

Now, by Theorem 5.1, we can find a sequence 4, 40 and a forced Brakke flow
M ={u.},., such that

» L ) r
:‘ (%o t0 —3 ﬂ")
forany ¢ < 0. We call M a tangent flow to M at (55,t,) .

Lemma 12.2: Let p > n and let M={u,),, be a forced Brakke flow. Let
(%552, )€ R™! X (—o0, 5}, Then any sangent flow to 2 at (r.,1,) is a Brakke flow.
Proof: Forany A >0, M, = {ul®"}_, is aforced Brakse flow with forcing term
given by

g‘z (y,7) = Ag(Ay -!-xo,/?.z?.'-l- 1) -

Now, suppose wlog (x,,£,) = (0,0}. We have
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" t? A ( Y T) "y(ﬂ‘f'(bﬂ)) = /1(/{-0! g('r'! Azr)P dﬂ;‘;r (x))" P
=AT gL B

L’U‘A’r)

< Ai=nlp .
—,1 s};?“ g( ’t)“f.'(ﬂ,) *

Since p > n, we therefore have g? — & in L”. Consequently, any tangent flow to A at
(x4:%,) is a Brakke flow. g

We recall the following local regularity result for smooth mean curvature flow which is,
of course, valid for tangent flows to forced Brakke flows:

Theorem 12,3[W2 3.1): For 0 <a< 1, there exists a d, >0 anda C, >0 suchthat for

any (v,5)€ R™ xR and any smooth mean curvature Sflow M =({T},., satisfying
O(M, y,5)<1+6,.

Taen, there exist; a p > 0 such that, for any O< o < p,

2

o’ sup sup K, (M, x,1)<C,.
tels-{ o0} 5) 7B, ., ()N,

Now 1o the proof of Theorem 12.1:

- Proofof Theorem 12.1: We may assume the flow is smooth up to time 0, since we conld

first prove the theorer: for s xeplaced by s — &* and then let § — 0. We assume wlog that
{¥,5) = {0,0) and that W reaches 0 at time 0. By Morrey’s lemma ([G) or [GT}), we need
only sliow the estimate

o sap sup  J, (M, xS Co(l1+ p°A)
w[s-(p-0) s} 38T, (}T,

is trae.
Now, suppose the thecrem is false. Then, for any i > 1, we can find a smooth forced
Brakke flow M’ ={I}_ ard p, >0 such that

1

1< (@, du, S1++,
{

for all {x,2)e B pi.(O)x (-p?.0)and all z€ (¢ - p?,:) but so that, for some 0< &, < p, |

J, (M x,t
sup sup ——2*‘-’—&————-——-)—2 i

. (12.2)
€[00, ) xeB, o (T 1+ OFA,
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We can find times — (0, — ¢,)? <1, <0 and points x, € B =0, O) O 1‘: such that

52 2 M oxp4)

TN e
Note that, )
2 I, (M, x,t
g sup sip =2 70 ¢ . ) <n?
4 (00,12 0B, o 0T L+ PPN,
which gives

sup sup J,‘P(:M’,x,t)IS4JZ'p(£M’,x,.,rf).

‘E[—(ﬂ-al “2)’ .U) e Bp‘-q 43 (o)nr:

Now, since #, 2~(p, —0,)* 207 /4-(p, ~0,/2)" and since x,€ B, _, (0) wehave

2
o, oy —
L= "i_ Z~(p,~ ?‘)2 and B, ,,(x;) C B,. 0

so that
sup sup  J,, (M, x,N<4T, (M, x,1,).

Kl e, 12 4,) [ By 1 (33T}

Let 4, =I!,f.]2_’ (M, x,,1,) and define

1o
].-‘3 = Z(rgﬂ": '-x,)

for se [—o}2 /(442),0]. Note that it is possible for A, tovemain finite when we send i —
o $O what we obtain after sending i — o0 won’t necessarily be a tangent flow. With this
definition we have that, forall i> 1, M' = {f': } is a smooth forced mean curvature flow

satisfying

0efy,,, @ ,00)=1
and

sup sup  J, (M, x,5)<4,
el~(0, 124 Y D) 22 By, 13 (%30T

forall i> 1.

Since oA 27} 2i it follows that, for every R > 0, we can find an N, =1 such that

sup  sup J,, (M, xs5)<4, (12.3)

sef=R3.0) 5 Bg (0T

for all i 2 N . Furthermore, by (12.1) we have

1< [®,dp} <1 ey (12.4)
1

90

for all se (~p24;2.0).

By the compactness theoremn we can find a subsequence and ainteger forced Brakke flow |
M ={F},, such that - '
M — M

and, by the Arzela-Ascoli theorem [W2 2.6],
Iy, (M, x,5)<4 and J,,(M0,0)=1. (12.5)

We now show that l!irzl:l A, = 0. this is the case, thenLemma$.1 and (12.4) implies that

Misa homothetically shinking mean curvature flow. The convergence is easily shown
as follows: :

2
AR 42y (12.6)
Gy B

L

by (12.2) and (12.3). This calculation wouldn’t be possible if the right hand side of the
estimate in the conclusion of the theorem was Cy(1+A).

By Morey's Lemma and (12.5), it follows that K, (H,x?)<e where
o =1-n/pe (0,1) . However, since M isa homothetically shrinking mean curvature
flow smooth up to s =0, it follows that f'_, is a hyperplane. Therefore X, (ﬁ'{, %) =0
forall xand all #.

Using the definition of the parabolic C** norm and the C'* convergence, wecanfinda
sequence r, — oo and functions u, : B] (0)x (-r%,r})— R such that

graphu, = M' N (B, (O)x{~, 17D

and so that || «; ||, ,— 0. The u, are weak solutions to

where
n Dou D u
¥ it Saaf 2t
Lm Y —————D.Dou. .
f; ZIIIDu‘IZ FEORT

hk=t

Since || g, ||, — 0 and || £, ||,— 0 by (12.6) and the C** convergence (respectively), we
have, by [GT 9.12}, that || &, ||, ,— 0. By the definitionof J, , (M, 5,0) , this contradicts
(125). o
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Corollary 12.4: Let p€ [2,09) " (n,o). There exist constants 6, >0 anda C, > 0 such
that for any (y,s)e R"™ XR and any smooth mean curvature flow M ={[},_, there
exists a p>0 such that if

O(M,y,s)<1+4,
then, forany 0< o< p,

o®  sup sup  [J,, (M, x,0)+ K, (M, 2,01 Cy(1+ p*A),

E[I-(p—d)zd) -NE3p-¢(J')ﬁF_-
where ¢ =1—-nlp.

Proef: We begin by showing that (M, y,s) 1+ &, implies the existence ofa p >0
such that the hypotheses of Theorem 12.1 are satisfied. We assume y and s are 0.

Suppose M satisfies ©(M,0,0)<1+5,. Then, by the existence of the limit
O(M,0,0) = li%%le‘zim’“‘ I@Rdﬂ, ,wecanfinda p, >0 such that
¢

ezt“”w‘[QR d#—p: SI+'§_§O‘

The continuity of the map {y,s)+> I(I) y,,.xdﬂ_,,g implies that there existsa 0 < g, < g,
such that, for all (y,s)e B, (0)X(~54,0)

12T p 4 a2 5
e’ "”"Igew(m_kpy,, du_, Sl+§60.

By reducing o, if necessary we may assume (s — o, s) & (—0¢,0) and, reducing o, if
necessary, we may also assume Apg < p/4. This, together with the assumption
(s—0Z,5)C(—pZ 0),implies A(s—-£)< p/4 forall te (s-07,5).

By Corollary 11.5 we have

A E A (ser) s -2
€ ’ (Jqp(rJ).prJ dﬂ, + AM2Ip o R™)

e A L5 02) Cy -2
se (_[99(5'..1).!«"0).: dﬂ-—p.f + 9l¥2lp A R™)

Cs
21+2! P A

R

S ezhnpm(l-[-gé‘o + e:li-:!pnp:

for all 7€ [s - o7, 5]. Rewriting this we obtain
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C3
21+2e‘pA

R_z (e:toupw _1))

e pr 5
JP0npys dte s A+30, +

for all (y,s)€ B, (0)x(-07,0) and all 7€ [s-02,s]. Further reduction of p, (if
necessary) gives

I Pir.rePys G, S1+26,
forall (y,5)€ B, (0)x(-0,.,0) and all 7€ (s—~02,5]. Sucha p, exists since

3
21+2IPA

R__z(ezmww _1) S %50

has a positive solution for any &, > 0.

We complete the proof by applying Theorem 12.1.
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Appendix A: Ferronematics

In [ZI], Zubarev & Iskakova consider an initially flat layer (say of depth d) of a liquid
crystal containing ferromagnetic particles, called a ferronematic (see figure A). The
surfaceis M, = [R?x{0}] which is locally finite. The applied magnetic field is assvved

1o be in the vertical direction. The ferromagnetic particles in the crystal produve a
magnetic field i = ke, that adds vectorially with the external magnetic field. This is

called the demagnetisation of the ferronematic.

To model this, we will construct an evolution of M,. We make the simplifying

assumption that the layer is infinitely deep. Pre viously, the demagnetisation vector has
been assumed to be smooth [ZI, p187).

=
o,

Figure A

Let 2:U — R, U c R?, be the magnetic potential ¢f & . By Maxwell's equations we

have
) 2
pas 2% o,
dz*
where 4% 21. By [GT 9.13] we have that if e LP(U) then e W*?(K"), for any
K’ cc U . Therefore, for any K’ cc U, b, e WY (X") if @e LP(U). If we make the

reasonable physical assumption are L? (U) then our demagnetisation vector is W*? .

If the external magnetic field is sufficiently soong, the demagnetisation alligns itself with
the external magnetic field. Thus, as time progresses, a family of demagnetisation vectors
h,(x,y,2) = h(x, y,2,t) is produced. There exists a time when the demagnetising vector

will be equal to the external magnetic field mge; .

95




We consider the forcing term given by
m,
x‘ 4 -,r = — x\) ’Z!I ]
£§ ¥ 50 20113( y )

where ¢ is the co-efficient of the surface tension, and m, is the strength of the external
magnetic field.

Let T =inf{r > 0:h; =mje,}. We will call this the drying time.
Let 6 > 0. We redefine g as
my
—h(x,y,z2,t), t=T
glx,y,z,0) = 2ah’( »oh)
0, t2T+6

and linearly interpolated (a.e.) between.

Lemma Al: There exists an enhanced forced motion (M {4, }oeor) (8 ferronematic
flow. if you will) with initial surface M.

Proof: As outlined above, we know that g(-,1)€ L* (U) and that sup || g(-.5){l,, <>
20

Also, since the demagnetising vector is vertical, we also have g(-,t)e L* () for all
He M, (R?). Since h, changes (in time) at the constant rate m,, the forcing term is
continuous in time a.¢. Therefore we casi find an enhanced forced motion (M, {#, },.,) ,
in particular (M, {4, }os) is an enhanced forced motion. yy

Remark: The theory in [Z1] is closely related to the zebra rocks (figure 1) [M+]. So, it
may be possible to construct a model for the zebra rocks using a forced Brakke flow. This
would probably be best achieved by including a volume preserving term in the equations
and evolving the interface between magnetic and neutral regions. However, it isn't clear
apriori if such aterm is in bounded up until the drying time (see the discussion after the
examples in §4).
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Appendix B: Biased search patterns

This application was inspired by a conference seminar given by Justin Beck on 2™ May,
2002 at the Defence Operations Analysis Symposium in Adelaide. Hellman [He] has
considered the problem of the optimal search for a target moving randomly in a region
U cR". This problem is relevant in a wide number of cases ranging from anti-
submarine warfare and airborne early warning, to, say, pest control and swatting a fiy.

Let u,:R” — R be the initial probability density function vanishing outside U. The
search pattern is given by a PDE, for example the diffusion equation, though the equation
need not include any spacial derivatives. One might use the diffusion equation if the
target were moving randomly. In general, the probability density of a moving target
satisfies

—g—l:-(x, 1) = L(x,r,u),

where L is a linear operator independent of time [He].

If at a later time f a search is made in some region by an operator and the target is not
found, then the probability density at time ¢ would be altered to inctude this knowledge.
That is, in order to include active searching, one would introduce a forcing term to the
equations:

%lri(x,r)= Lix,t,u)+ g{x,1) .

The solution u allows one to calculate the effectiveness of the search.

One drawback to using the diffusion equation is that it tends to “smear” any information
on the whereabouts of the target, tantamount to assuming the target is constantly on the
move. That is, the method assumes the target’s motion is limited in complexity.
Furthermore, suppose the operator were biased in their thinking that an initial guess to the
location of the target was “pretty close” (as we are loath to accept total control by a
computer). Then, in the mind of the operator, the shape of the probability density should
be preserved for as long as possible.

Consider the case where

DuD;u

L=Ay—-——— ;
| Dulf

u.

This gives rise to a forced mean curvature flow of the graph of u. This is chosen because
the mean curvature flow preserves the overall shape of the probability density better than
a Laplacian. This shape preservation could be interpreted as a representation of the
aforementioned bias in an operator that the initial probability density was a good
approximation to the location of the target.




Let g be the active search pattern as controlled by an operator. Qur assumptions in §8 on

the forcing term can be interpreted as follows:
@) l}_l;frl g{-,s5)=g(-,t)ae says that the search cannot be instantly changed

everywhere, _ _
(ii) the condition that g vanishes after some time is a restriction on the amount of time

that can be spent actively searching for the target, and
(iiiy the L conditions are restrictions on how much effort can be spept on an active
search: a violation is equivalent to an intense search that would be likely to use

more energy than is available to the operator.

If an active search pattern satisfies the assumptions of §8 we say it is a pragmatic search.

Lemma Bl: Let g be a pragmatic search and assume u,:R" — R is an initial

probability density function vanishing outside U < R". Then there exists an enhanced
forced motion (M, {ft,)oe5) (a biased search pattern) with initial surface

M, =[graphu,].

-..people who can change and change again are
so much more reliable and happier than those
who can't.

Stephen Fry
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Notation and Convention

Notation/ Page
Convention
M(R") Space of Radon measures on R™* 1
M (R™) Space of n-rectifiable Radon measures on R™* 3
IM, (R™) Space of integer n-rectifiable Radon measures on R™* 3
V, (R™F) Space of n-Varifolds on R"* 3
IV (R™) Space of integer rectifiable n-Varifolds on R™* 3
D_(R™) Space of n-Currents on R"* 5.
I’ (R™*) Space of locally integral n-Currents on R™* 7
A R™ Space of n-vectors on R™* 5
A'R™ Space of a-forms on R"* 5
D (R™) Space of differential n-forms on R"* 5
i3 Radon measure 1
ulA Restriction of a Radon measure to A 1
M) Mass of i 1
8" (u,a) n-dimensional density of a Radon measure 1
T u Approximate tangent plane of a Radon measure 2
M Approximate tangent plane of M < R"# 2
v, Varifold, varifold associated with a Radon measure 3
Dy(V) Push forward of a varifold by a diffeororphism 3
ov First variation of a varifold 4
[V | First variation measure of a varifold 4
e Mass measure of a current 5
M(T) Mass of a carrent T 5
ar Boundary of a current 6
A Restriction of a current to A 7
<T,f.,r> Slice of a current by the function f 7
T, Slice of a current at height z 7
x Projection onto R x{0}
@ elM»Z
I Smooth hypersusface
S n-dimensional subspace of R™ (also represent projection

outo the subspace)
Sw), v' vt Projection of the vector vonto S, T, 1, (T, )™ (resp.)
J®(x) Jacobian of a diffeomorphism relative to the plane § at x 3
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D, D
vi, v, vt
.divs,div,,

K],,a: (Ms x! r)
K, (M, x,1)
‘Iz,p (Ms X, t)

Covariant derivative on R™, R™ xR (resp.)
Covariant derivative on §, T, ¢, (T, u)*
Divergence on S, u (resp.)

Parabolic C** norm of a curvature flow
Parabolic C*® norm of a curvature flow
Parabolic W ? norm of a curvature flow

[A]
[ATW]
[AW]
[Ath]
[Ba)
1

[DER]

[DF]
[DS1]
(DS2]

[E]

- [ES]

[Fa]

[G)
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