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ERRATA
p 108 last para. line 3: “CBIR" for “CBI".
ADDENDUM

p iii para 3, line 5: Insert “of the six colour spaces evaluated,” after “It also shows that”.

p iii para 4. line 4: Add at the end of the sentence “among the methods evaluated”.

p iv para 2, line 3: Delete “eyeMap is the best way of” and add “cyeMap is a better

method than the traditional methods for™.

p 154: Add at the-end of para 1

“One possible theoretical explanation for the increased performance is as follows.
Visual perception requires two types of processing: first, visual system for receiving
stimulus; and second, further neural processing to actively select which stimuli to attend
to {attention) [1}. Attention dirccts the visual system to stimuli we want to perceive
and affects how the information is processed. Consequently, attention can enhance the
perception of stimuli we are paying attention to and decrease the perception of stimuli
being ignored. The increased performance of eyeMap suggests it is inore sympathetic to
this phenomencn. Images in eyeMap were organised in such a way that locations which
were more likely to contain target images atiracted more attention, thus enhancing
users’ perception of images in those areas. For this reason, users could find target

images faster using cyeMap than +~ing the traditional display.”
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1] E B Goldstein. Sensation and Perception. Wadsworth, Wadsworth-Thomson

Learning, 2002.
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Abstract

The large volume of digital iinage databases challenges the usefulness of the classical
means of manual image annotation and demands a more efficient and effective way
to generate feature vectors and retrieve images. This need inspires the research into
image retrieval using feature vectors generated from the content of the images rather
than their annotation, hence the name content-based image retrieval (CBIR). It has
been an active research area for over a decade but to date has not been widely used in

real world applications.

This thesis aims to make CBIR more useful in real world applications by using
innovative approaches to (1) evaluate the suitability of colour spaces for colour-based
CBIR (2) develop a new feature extraction method to generate feature vectors for colour
images (3) formulate a framework for facilitating intuitive and effective image browsing
ang retrieval (4) evaluate the performance of this framework for image browsing and

retriceval.

To improve the retrieval effectiveness and efficiency for retrieving colour images,
this research first resolves which colour space is most suitable for colour-based CBIR
by evaluating the suitability of six colour spaces. This is crucial because it justifies
the choice of colour space and provides insights into why some colour spaces are more
suitable than others. It also shows that HSV colour space is most suitable for colour-
based CBIR as it is at least as effective as but more efficient than any of the other

colour spaces.

Further, this research determines how to best use the spatial relationships of colours
for retrieving colour images. It proposes a new feature extraction method, I-autocorrelo-
gram (I-auto), for colour images and compares it against contemporary methods. I-auto

is found to be. overall, the most preferred method.
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It addition. to facilitate intuitive and effective image retrieval. this research first
formulates eyeMap, an image browsing framework for large image databases which can
be integrated into a CBIR system. eyeMap not only provides users an overview of all
images in the database, but also helps them to select an appropriate sample image to
start the query-by-example retrieval process. This research, then develaps colour-based
eyeMap for browsing colour image databases and integrates it into a colour-based CBIR

system developed using [-auto for retrieving colour images.
L]

Significantly, when colour-based eyeMap and traditional methods were tested on
users, colour-based eyeMap was found to be more effective, efficient and most preferred.
It thus shows that eyeMap is the best way of interacting with CBIR systems in the real

world. This research finally demonstrates how eyeMap can be used with texture iiage

databases by creating texture-based eyeMap.
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MPEG........ Moving Picture Experts Group  An International Standard Organi- 3 Chapter 1

sation (ISO) connnittee.

MPEG-7...... also known as "Multimedia Content Description Interface”. It is an

ISO/IEC standard developed by MPEG for providing a set of tools

Introduction

which describe multimedia content including still images.

LGk e s e

PCA.......... Principal Component Analysis A multivariate statistical method

which is often used for dimension reduction. PCA linearly transform

feature vectors from high dimension to low dimension. See also MDS. j
4 1.1 Background
PCD.......... Proprietary Colour Database A database of 10,112 natural colour The birth of digital devices for capturing data and the low cost. of electronic storage saw
hinages used by the multimedia research group at Monash University, r* an explosive increase in the volume of archived data. The first stage of this revolution
Gippsland School of Computing and Information Technology. was marked by the storage of textual documents and, later, other media such as audio,

TBD ... Texture Browsing Descriptor A texture descriptor defined in the video and still images. Research in text retrieval for the iasi thirty years has made

MPEG-7 standard for browsing texture images. the retrieval of textual data a breeze; thus, images are often annotated with text,

thereby transformning the problem of image retrieval to text retrieval. However, text

TRD.......... Texture Retrieval Descriptor A texture descriptor defined in the o . . . s .
P P ed annotation is tedious, expensive, and for image databases it is also inaccurate because

MPEG-7 standard for retrieving texture images. e e . o .
¢ © s & of the subjectivity and difficulty of describing the visual features; consequently, the rate

3 of successful retrieval is low {42, 74).

Another approach to image retrieva! is to automatically generate feature vectors

I L T

B from the content of images so that retrieval can be perforined by sesrching the feature
: vectors; hence, the name content-based image retrieval (CBIR). CBIR differs from
the traditional text-based systems in two ways: generating of feature vectors (feature
ﬁ extraction) and initiating a query. In tenns of feature extraction, text-based systems
% can directly use the content of a document to build the feature vector. In contrast,

CBIR cannot directly use the cbntent of an image to build the feature vector as images
are made up of pixel arrays which are meaningless; image feature extraction can only
be achieved by extracting useful features from the raw data. The retrieval effectiveness
largely relies on feature extraction, and this has been the research focus in CBIR for the

last decade (3, 34, 71, 142, 155, 162]. Because object recognition is highly unreliable,

1




2 Intioduction

feature extraction has been and still is limited to low level features such as colours.
shapes, textures, or combinations of these, and in most cases, this is acceptable given

that similar objects tend to have similar low level features.

The second difference between CBIR, and text-based systems lies in how to initiate
a query. The input into text-based systems is obviously text whilst for CBIR. it is no
longer as straightforward. This issue receives far less attention than feature extraction,
for it has always been assumed that users must first issue a text query, and once they
have a sample image, then they issue a visual query, that is, by supplying a sample
image to retrieve a set of relevant images. In the absence of text annotation or a sample
image, users are assumed to be capable of sketching a sample image. This expectation is
unrealistic as it requires users not only to sketch, but also to have an intimate knowledge
of the system’s use of the feature in order to sketch successfully. This problem, the
problem of initiating a visual query without a sample image. is known as the Page 0

problem.

1.2 Objectives

To date, CBIR systems have had little practical use mainly because of low retrieval
effectiveness, poor efficiency and the Page 0 problem. The main objective of the re-
search in this thesis is to bring CBIR systems one step closer to real world applications
by improving the effectiveness and efficiency of colour-based feature vectors and image
retrieval, and solving the Page 0 problem. The framework developed for solving the
Page 0 problemn is useful for browsing and searching large collections of different image
database types. A colour-based implementation of this framework is suitable for use
with large general colour image databases i.e. commercial photo stock libraries, per-
sonal photographs and digital art collections, whereas a texture-based implementation

is appropriate for texture images in the real world i.e. textiles, carpets and wallpapers.
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1.3 Contributions of Thesis

The research contributions of this thesis can be divided into six major sections:

1. evaluating the suitability of colour spaces for colour-based CBIR;

2. improving the effectiveness of colour-based feature vectors;

3. formulating eyeMap, a framework for browsing large image databases;
4. developing colotuc-based eyeMap for colour images;

evaluating the usability of colour-based eyeMap; and

ol |

6. creating texture-based eyeMap for texture images.

1.3.1 Evaluating Suitability of Colour Spaces for Colour-Based CBIR.

A colour is described in at least three coordinates and a collection of all colours in
the coordinate system is called a colour space. Evaluating the suitability of colour
spaces is important because colour-based features remain popular for describing the
content of general colour images, and the use of any colour-based features requires
the selection of a colour space. However, there has been no comprehensive study on
how to select a suitable colour space. The research in this thesis comprehensively
studied the effectiveness and efficiency of the most commonly used colour spaces (that
is, RGB. LUV and LAB in Cartesian co-ordinates as well as HSV, LUV and LAB in
polar coordinates) for colour-based CBIR. This study is important because it justifies
the choice of colour space and provides insights into why some colour spaces are more
suitable than others. We found that HSV is most suitable for colour-based CBIR

because it is both effective and efficient, and reported the results in [62}.

1.3.2 Improving Effectiveness of Colour-Based Feature Vectors

More recent colour-based feature vectors have incorporated the rich information pro-

vided by the spatial relationships of colours previously ignored. In this thesis, we




4 Introduction

studied autocorrelogram, a well known and promising feature vector, which incorpo-
rates the spatial relationships of colours. The findings acquired from the study led
us to the discovery of I-autocorrelogram (I-suto), an even more effective and efficient
feature vector. I-auto was then evaluated against other contemporary feature vectors
and was found to be most preferred. The findings related to the research in feature

vectors incorporating colours spatial relationships are published in [63. 64].

1.3.3 Formulating eyeMap, a Framework for Browsing Large Image

Databases

Research in CBIR is mostly restricted to retrieval but browsing is equally important,
as it allows users to have an overall view of the entire database and to more casily
find a sample image to initiate a visual query, practically solving the Page 0 problem.
Browsing a large scale image database is difficult because the area required to display
ail images easily exceeds the available screen area. The requirements of browsing are
different from those of retrieval. For browsing. the browser must display all images in
the database so that users have an overview of its content. The relationships between
images must also be clear to users so they can decide where to browse next. These
relationships can only be established if the display or layout is contextually meaningful;
that is, the display reflects the perceptual differences and similarities of the images: a

random display does not facilitate browsing.

The development of the browsing frammework in this thesis, eyeMap, took u more
holistic approuch to solving the issutes related to browsing large image databases. We
investigated techniques for handling large amounts of data and adapted these tech-
niques so that they are suitable for browsing large image databases. These techniques
are generic, 50 they can be used for other image database types. eyeMap differs from
existing image browsing frameworks in that it facilitates the display of a large image
collection at any one time and allows users to intuitively focus on the area of interest.
The implementation of eyeMap provides a powerful browsing tool and, when it is inte-

grated with a CBIR system, it is a useful tool for finding a sample image to initiate a

S AT E et et e e o
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visual query. thus sclving the Page () problem.

1.3.4 Developing Colour-Based eyeMap for Colour Images

Because eyeMap is a browsing framework which can be used for browsing any types
of image databases, we first explored the use of eyeMap for browsing colour image
databases by creating colour-based eyeMap. To illustrate why eyeMap is useful for
browsing, Fig. 1.1 on the following page shows a layout of a general colour image
database produced by colour-based eyeMap. The images are grouped by visual simi-
larity, so users can direct their attention to the area of interest by moving the ellipse.
The ellipse identifies the area of interest (focal region), and users can clearly see all im-
ages within the ellipse because the images are enlarged and any image overlapping can
be removed. In order to ensure that layouts of images are meaningful, we established
which colour feature, among several, was more suitable for browsing. It was found
that a cumulative histogram colour feature is more suitable for browsing general colour
images. The work related to the development of colour-based cyeMap was published

in [65).

1.3.5 Usability Study of Colour-Based eyeMap

This usability study pioneers the evaluation of image browsing systems. The purpose of
the study was to show that eyeMap is useful for browsing and solving the Page 0 problem
by comparing colour-based eyeMap against traditional linear browsing methods. The
study establishes that eyeMap is the best framework, as the systems developed based
on eyeMap are most effective, efficient and preferred by users. In addition, this study
provides insights into how humans search for images, so the findings are also useful for

designers of any image browsing or search applications.
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Figure 1.1: A screen shot of an image layout produced by colour-based eyeMap, an imple-
mentation of the proposed browsing framework, showing an overview of a general colour image
database.

1.3.6 Creating Texture-Based eyeMap for Texture Images

eyeMap is a browsing framework and can be used for browsing other types of images,
such as texture images in the real world i.e. textiles, carpets and wall papers. In this
thesis, we demonstrate how to use eyeMap for browsing texture images by selecting
appropriate texture feature; this implementation of eyeMap is known as texture-based
eyeMap. This research is more than just an evalustion study because it also shows how
to use existing texture features for browsing. This study conciudes that the texture
feature proposed by MPEG-7 for retrieval is most suitable for browsing. The findings
related to this study are published in [61].
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1.4 Research Overview

A visual sminmary of the research is given in the concept map in Fig. 1.2. It describes
the scope of the research and the relationships between the research activities. The
white boxes relate to strategic points in the research and contain nouns. The relation-
ships between these boxes are defined by the arrows labelled with verbs. This makes
the map easy to read as wme can easily construct a sentence using the nouns and verbs
by following the arrows. A concept map, theoretically, has no starting point and can
bz read from any point. One way to read this concept map is by starting from the

green box i.e. users, for example,

MW images 2> visval query} by searching from,, imagigd d;t:gase

GSers) " mage L foyehap 2 {sample mage ]2 O > Trages P> ficual query

The purple boxes are the rescarch questions and therefore are the research contribu-

tions of this thesis.

How to improve colour features for image retrieval?
How to improve browsing method?
Is the browsing method |usability study
effective? 1\
evaluated using Which colour features are
scale image databases? colour images?
image database [— using —> eyeMap [€—— impacts on ——————— layout
How 1o use eyeMap ’
for browsing texture images?
firwd
browse determines
. ; image database
users —have—=>>| sarnple image fealure veclors
search for by searcFing from \
used by using—3{ visual query generates
> feature extraction
Which colour space is more methods | muw i:rn“s;mvoioolour-b;sad
: 16 vectors incorporating
suitable for CBIR? spatial relationships?

Figure 1.2: A concept map setting out the scope of the research and the relationships between
research activities. The purple boxes are the research questions.
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1.5 Structure of Thesis

Chapter 2 contains an overview of existing CBIR techniques which use colours, textures,
shapes and combinations of these. The aim of this chapter is to review and analyse the

strengths and limitations of relevant work in CBIR by reviewing the current literature.

Chapter 3 presents the results of experiments in different colour spaces. The pui-
pose of this chapter is to identify which colour space is most suitable for colour-based
CBIR and to explain why some are more suitable than others by conducting retrivval

experiments in different colour spaces.

Chapter 4 describes the studies related to colour-based feature vectors which in-
corporate colours spatial relationships. The objective of this chapter is to demonstrate

how to improve the effectiveness and efficiency of these feature vectors.

Chapter 5 focuses on browsing large image databases. The purpose of this chapter
is to solve the problems associated with browsing large image databases by formulating

eyeMap, a new image browsing framework.,

Chapter 6 discusses the use of eyeMap for browsing general colour images, and
this implementation of eyeMap is known as colour-based eyeMap. In order to imple-
ment colour-based eyeMap, we demonstrate which colour features are more suitable for

browsing colour images by evaluating different colour features.

Chapter 7 aims to determine whether eyeMap is useful for browsing and solving
the Page 0 problem by having users test colour-based eyeMap and traditional methods.
This study also provides insights into how humans search for images and the findings

are useful for designing any image browsing or search method.

Chapter 8 describes texture-based eyeMap. This chapter shows how to use eyeMap
for browsing homogeneous texture images by investigating different texture descriptors.
The purpose of the study is to demonstrate how to visualise texture images and to

determine which texture descriptor is more suitable for browsing.

Chapter 9 summarises the main findings and provides potential future directions.

Chapter 2

A Review of Content-Based

Image Retrieval

When computers were first used to store a large volume of textual digital documents,
searching for a specific document was challenging. The solution to this problem was the
use of automatic feature extraction to generate feature vectors to facilitate retrieval.
This marked the birth of information retrieval. The need for a good search engine is
more important than ever as the volume of documents will only increase. With cheaper
and higher storage capacity, we can now even store large quantity of digitised multime-
dia data, such as still images. Searching for images presents research communities with
an even bigger challenge because extracting features from text docwnents is straight-
forward as the words in the documents can be directly used as the feature vectors; but,

for images. what aspects could be used as feature vectors?

Traditionally, each hmage is manualiy annotated and users search the annotation to
find the desired images. However, manual annotation is expensive, time consuming and
subjective. For example, Furnes et al. reported that the probability of two people using
the same words to describe the same objects varies between 7%-18% depending on the
objects [42]. The effectiveness of the search engine is largely influenced by the degree
of agreement between the anrotator and users; as a result, searching annotated images
remains ineffective. Another approach to image retrieval is to extract feature vectors
using the content of images so that they can be retrieved by searching from these feature
vectors, hence the name content-based image retrieval (CBIR). It is a simple concept

but extremely difficult to implement accurately because automatic image and object

9
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recognition is a very difficult task. The alternative is to extract the low level features
such as colours, textures and shapes. This is acceptable under most circumstances

because visually similar images or objects tend to have similar low level features.

This chapter contains a review of feature extraction methods, and a taxonomy
of these methods is given in Fig. 2.1. Colour-based methods are normally used for
general colour images; texture-based methods for homogeneous texture images such as
textiles, carpets, wall papers and finger prints; and shape-based methods for bi-level
shape images i.e. images which have only black and white pixels such as logos. This
literature review also covers feature extraction methods which generate feature vectors

by integrating several low level features.

(Feature Extraction Methods 1

Colour Shape Texture Integrated
General Colour Images Bi-Leve] Images Homegenous Texture  General Colour Images
(black and white)

Figure 2.1: Taxonomy of feature extraction methods used in CBIR.

2.1 Colour-Based Methods

All colour-based methods are proposed based on the observation that similar images
tend to have similar colour content. So, all these methods evolve around how best to
describe the colour content of the images so that similar images will have similar colour
descriptions and dissimilar images will have dissimilar colour descriptions. Colours are
described using at least three coordinates, and a collection of sl colours in a coordinate
system is called a colour space. The very first decision in extracting colour-based feature
vectors is to choose a colour space to describe the colours. (The methodology of colour
space selection is beyond this chapter; it is an objective to be studied in Chapter 3).

Computers can differentiate over 2 miilion colours but human eyes can differentiate
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substantially fewer colours. To describe the colour content effectively. all colour-based
methods massively rednce the number of colours either by guantising the colour space
or describing only their statistical properties. Colour space quantisation can be written
formally as follows [124]. Let C be a colour space. Let P be a quantisation space
(a subset of C) and P = {¢1,¢2, ... Ci: o Cn | 65 € C.n K} C ||} where n is the bin
size, the number of groups of colours. The groups of colours are generated by using a

quantisation function @, which maps each colour in C to P, and it is defined as:

Q:C—P

Colour-based feaiure extraction methods can be broadly classified into colour dis-
tribution and colour spatial methods based on whether they capture only colour dis-
tribution or the spatial relationships of colours. The colour distribution methods are
further classified into three classes i.c. globally quantised colours, locally quantised
colours and no quantisation, depending on whether they use any quantisation function.

and if they do, the nature of the quantised colours.

The second main category of feature extraction methods is colour spatial methods.
Unlike the colour distribution methods, which capture only the distribution of colours,
these methods capture the spatial relationships of colours. These methods can be
further divided into two types ie. pixel-based or block-based depending on whether
they operate at pixel level or groups of pixels (block-based) level. Pixel-based methods
can be further classified into two main classes: pixel classification and spatial descriptors
based on how the spatial information among colours are captured. The taxonomy of
colour-based feature extraction methods can be found in Fig. 2.2 on the following page.

The following sections describe all of these methods.

2.1.1 Colour Distribution

Colour distribution methods capture the distribution of colours in an image. The

methods in this category are further classified into three classes: globuliy quantised
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LColour-Bascd Feature Extraction Methods J

Colour Colour Spatial
Distribution P
Global) No .

Quantised Cglours Colour Quantisation Pixel-Based Block-Based
Colour Histogram, Colour Moments. Vector Quantisation.
Cumulative Fistogram,

QBIC’s Colour Feawre,
Perceptually Weighted
Histogram,
Locall Pixel Spati
; : . al
Quantised Colours Classification Dcs[::ariptors
m&;gﬁgtgg?om Region Partitioning. Autocorrelogram.

Colour Coherency Vectors, MPEG-7 Colour
Structure Descriptor.
Layered Colour Indexing.

Figure 2.2: Taxonemy of colour-based feature exvraction methods.

colours, locally quantised colours and no quantisation. The methods using globally
quantised colours use the same quantised colours to describe the colour distribution
of any image. Examples of such methods are colour histogram, cumulative histogram,
QBIC’s colour feature extraction and perceptually weighted histogram. In contrast,
methods using locally quantised colours generate a new set of quantised colours for each
image, and examples of these methods include variations of dominant colour descriptors.
At the other extreme of the colour quantisation spectrum, the last type of colour

distribution methods does not use any quantised colours. An example of this method

is colour moment.

All colour distribution methods generate feature vectors which are rotation and
translation invariant; however, only methods using globally quantised colours and meth-

ods using no quantised colours can generate the feature vectors more efficiently.

§2.1 Colour-Based Methods 13

2.1.1.1 Globally Quantised Colours

This sectior -lescribes four feature extraction methods using globally quantised colours:
colour histogram, cumulative histogram, QBIC’s colour feature and percepiually weighted

histogram.

Colour Histogram

In the early nineties, Swain and Ballard proposed an algorithm which recognises
objects by measuring the colour distribution of the image in which the object is
present {141]. This algorithm is known as colour histogram, which is simply a couxt of
pixels of the quantised colours in the image. The histograin feature vector for an image
Zis (hf,...,hL,) where h; is the count of pixels for bin ¢ and M is the number of bins.

The distance between feature vectors for image @ and Z is calculated using histogram

intersection: \ o
M min(h®, k)
dn=1- =2 i h;’ L (2.1)
=1 "%

If the total count of both histograms are equal, or normalised to one, then dn is equiv-

alent to the L1 dissimilarity metric {142]:

Af
dy =) |h® ~ kil (2:2)
=1

Colour histograin has since been extended from cbject recognition to itmage recognition.

The nain weaknesses of the simple histogram are that:

1. it is highly sensitive to the number of quantised colours;

2. it ignores the contribution of colours in the neighbouring bins which could be of

perceptually similar colours; and

3. it ignores the spatial relationships of colours.
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Several methods have been proposed to solve these problems. Stricker and Orengo
overcame the first problem by proposing the cumulative histogram method with which
they claimed to have reduced the effect of quantisation intervals {139]. Faloutsos et
al. (34] and Lu and Phillips [67] addressed the second problem by considering the
contribution of pixels in the neighbouring bins. The last problem was overcome by
methods which incorporate colours spatial relationships, and these methods belong
with the colour spatial methods (see Fig. 2.2). This section discusses the methods
which attempt to solve the first two problems. and discussions on the methods for

overcoriing the last problem will be covered in Section 2.1.2.

Cumulative Histogram

The cumulative histogram method first constructs a histogram feature vector, then
it accumulates the value from the previous hin to the next bin [139]. This process can
be illustrated with the following simple example. Suppose ail colours are guantised
into four bins and the histogram feature vector of an image is normalised to one:
(0.25, 0.75, 0, 0). The cumulative histogram for the same feature vector is derived by
adding the value of bin 0 to bin 1. and then from bin 1 to bin 2, so the cumulative
histogram for the same image is now (0.25, 1, 1, 1). The L1 dissimilarity metric used

for colour histogram can also be used for cumulative histogram.

QBIC’s Colour Feature Extraction

The QBIC’s colour feature method quantises the colonr space into Af number of
bins using agglomerative clustering. Then, a representative colour is chosen for each
bin {34}. Finally, a histogram is constructed by counting the number of pixels closest to
vach representative colour. To also include the contribution of pixels in neighbouring
bins, a correlation matrix is constructed “r the quantised colour space. This correlation

matrix is supposed to capture the colours correlation of perceptual similarity among
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different bins. The difference between feature vectors for image & and I is defined as:

FRI)=(Q- DAQ-T)= > Y ai;(h® - )R -1F)  (23)

J=cMieM

where Af is the number of bins and the dissimilarity matrix A contains q;; entries.

which describe the perceptual similarity of colour ¢ and colour j.

This method is less cfficient than the traditional histogram method for two reasons.
First. during feature extraction, it has to find the closest representative colour for each
pixel. Second, the uss of a correlation matrix A increases the computational cost during
retrieval. It is unclear if the additional processing time is justified, as there has been

no comparative study.

Perceptually Weighted Histogram (PWH)

PWH is another feature vector which considers the contribution of pixels in neigh-
bouring bins {67]. Like the colour feature in QBIC, it finds M representative colours
by clustering the colour space. The difference between PWH and QBIC is in feature
extraction. PWH finds ten closest bins tc a pixel and calculates the pixel's colour dis-
tance to each representative colour of the ten bins. It then assigns the weights to each
bin in inverse proportion to the colour distance. The weight for bin ¢ is caluilated as:

_ 1/d;
- 1/d1 +1/da+...+ 1/dy

W (2.4)

where d; is the colour distance of the pixel to the i** closest representative colour.

The distance between two feature vectors is calculated using the L1 dissimilarity
metric. During feature extraction, PWH is more computationally expensive compared
to QBIC's colour featare; however, it is more efficient during retrieval, as the distance
between two bins is calculated only once. In QBIC, to consider the contribution of
neighbouring bins, the calculations between two bins takes place more than once, and

the number of calculation is dictated by the size of the correlation matrix.
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2.1.1.2 Locally Quantised Colours

It is argued that using globally quantised colours is inflexible as the retrieval effective-
ness is dictated by the quantisation intervals granularity [154). A coarse quantisation
has lower effectiveness than fine quantisation but it is more efficient; however, increasing
the number of quantisation intervals does not necessarily guarantee higher effectiveness.
The level of quantisation is a complex issue, as it is not only an issue of balancing effec-
tiveness and efficiency bu? there also seems to exist an optimum number of quantisation
intervals. This issue receives little attention within the CBIR community, and it is an

objective to be studied in Chapter 3.

To overcome the inflexability of global colour quantisation, dominant colour feature
extraction methods generate a new set of quantised colours for each image. The dom-
inant colour featurc vector for an image is (c1.M.--- ,car. har). where ¢; is dominant
colour 1, %, is the histogram of dominant colour i, and M is the munber of dominant
colours (the value of M is variable). A quantised colour is considered dominant if
its number of pixels exceed a predefined threshold. Each feature vector not only has
its own dominant colours but also a different number of dominant colours. For these
reasons, the similarity or dissimilarity metrics need to (1) consider the dissimilarity
of dominant colowurs including their histograins and (2) deal with feature vectors with
different number of dominant colours. In fact, the main difference between dominant

colour feature extraction methods lies in the types of metrics.

Rubner et al. used Earth Mover’s Distance (EMD) as their dissimilarity metric [105,
117, 118, 119}. This dissimilariiy metric will be used in Chapters 6 and 8, so it is
discussed here in detail. The EMD is based on a problem in uperations research more
commonly known as the transportation problem, in which the goal is to optimise the
cost, of transporting goods from a set of sources to a set, of destinations. The amount of
goods and routes for transporting the goods is defined by the flow F = [f;;], where f;;
is the amount of goods to be transported from source i to destination j. To use EMD
for image retrieval, Rubner et al. redefined the cost of transporting goods from sources

to destinations into trensforming one feature vector to another {119]. To calculate the
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distance botween two adaptive feature vectors  and Z, the optimal F for transforming
Q into Z is found. Once the optimal F is found, the distance between the two feature

vectors is calculated using EMD:

Q 1
S S di x S
Me AT

demp(Q,I) = (2.5)

where d;; is the dista: .- hetween colours i and j, f;; is the amount of colours to be
transformed from colours i to j, M9 is the number of dominant colours in @ and M z
is the number of dominant colours in Z. The dj; is also known as the ground distance.
Rubner showed how EMD could be used for other feature vectors, such as texture
feature vectors, by simply changing the ground distance {118}, thus demonstrating the
flexibiity of this metric. In fact, in Chapter 8, we use EMD to measure the distance

between two texture feature vectors by simply changing the ground distance.

Another approach to calculating the distance between two dominant colour feature
vectors is by using a weighted correlation wy; of colours 7 and j in the dissimilarity
metric. Variations of this dissimilarity metric can be found in the work of Leow and

Li, Kankahalli et sl. and Ohm et al. [52, 58, §7].

Dominant co'~ir feature vectors have the advantage of having & smaller size com-
pared to feature vectors using globally quantised colouss, as these feature vectors de-
scribe only about eight to nine colours. The smaller size, howsver, comes at the cost
of effectiveness: it is even less effective thap the traditional histograms [58, 113, 119).
The solution to this problem would be to increase the number of dominant colours in
each image, but unfortunately, doing so will increase the computational cost during
feature extraction, as the clustering process is computationally expensive {117). Tt also
increases the computational cost during retrieval because even the most efficient metric
is computationally expensive; for example, the complexity of Leow and Li’s distance
metric is O(M© x M%), where M2 an¢ M are the number of dominant colours in

feature vectors @ and I respectively.
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2.1.1.3 No Colour Quantisation

All colour feature extraction methods described above require colour quantisation.
Colour moments is a feature extraction method which requires no colour guantisa-
tion. This method will be used to generate feature vectors in Chapter 6, so it will be
described in detail here. Stricker and Grengo proposed colour moments as a means of
capturing the statistical contents of the colours in an image [139]. The colour moments
are the average, the standard deviation and the skewness of colours in an image and

they are defined as:

1 1
: N R

N N 7

i = %Z:we o; = %fz (pij — )| . si= “Al?Z(Pij — i) (2.6)
i=1 i=1 j=1

where  is the colour channel, j is the pixel number and N is the total nnber of pixels

in the image. So p;; is the value of pixels number j for channel i. They used HSV

colour space, so there are three colour channels: H. § and V; therefore. the feature

vector of an image is (py,On, SH, 145, 08, 83. ftv, Oy, Sv ). The distance between two

feature vectors @ and T is defined as:

C
dmom = Zwi,ul#? - Pﬂ + ws’alo}? - Ut:rl + wisls? - 3?' (2.7)

i=1
where wy > 0is the weight for channel ¢ and statistical measure ! {either s, o or s), and
C is the number of colour channels, which is normally 3. Stricker and Orengo proposed
three different sets of wy; but found their effect on retrieval effectiveness is negligible.

One set of the recommended wy; is:

H S V
gl 2 1
il 2 1
s|1 2 1

Based on the table sbove, the weight for channel H and statistical measure g (wgy,) is

1, and the weight, for channel 5 and statistical measure g (wg,)is 2.
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Compared to dominant colour feature vectors, the size of colour moments feature
vectors is even smaller. The main weakness of this method is that it extracts informa-
tion from each colour channel separately, and as a consequence, perceptually different
colours can have exactly the same feature vectors. This defect, of course, has a neg-
ative impact on retrieval effectiveness. Colours are described by combinations of at
least three colour channels, but by describing each channel sepurately, colour moments
treats the colours as though they can be described independently. Figure 2.3 illustrates
this problem. It shows thiee bi-colour images, including their HSV values and their
colour mavment feature vectors in HSV colour space. Of these three images, image (b)
is visually most different from (a) but they both have exactly the same colour moments
feature vectors. In contrast, image (c) is visually most similar to image (a} but they
have different featurc vectors. If we use these feature vectors to retrieve one image
most siwnilar to (a). then (b), which is least similar to (a}, will be retrieved. This is why
why extracting the information from eaci: colour channel independently has a negative

impact on retrieval effectiveness.

Image Colour Moment Feature Vectors
B S V By ©Ou Sy Hg Os Ss By Oy Sy
30, 40, 50 6 35 0 7 30 0 75 25 0
100,100,100
Fre 30,100,100 65 35 0 70 30 0 75 25 0
<100, 40, 50
© 30, 40, 50 66 36 0 70 30 0 75 2 0
02,100,100

Figure 2.3: The main weakness of colour moments feature ex-traction. The arrows point to
the HSV values of each coloar in each image. Image (b) is visually most different to (a} but
iheir feature vectors are exactly the same. On the other hand, image(c) is visually most similar
to {a) but they have differcnt feature vectors.

2.1.2 Spatial Relationships of Colours

All feature extraction methods discussed above can only extract information about
the distributions of colours (that is. the quantily of colours) in an image, not the

spatial relationships between colours. As a result, an image where the pixels have been
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scrambied will have exactly the same feature vectors as the original even though they partitioning. The second pixel classification criterion is based on the coherency of the
are visually very different. As an example, Fig. 2.4 shows three bi-colour images. The quantised colour a pixel belongs to. The methods using this criterion include colour
ranking of the other two images in terms of visual similarity to image (a) should be coherency vectors and Spectrally Layered Colour Indexing (LCI).
(b) followed by (c¢); however. by using histogram feature vectors, it is impossible to

After classifying the pixels into different categories, these methods then extract
differentiate image (c¢) from (b) because the quantity of each colour in each image is

features from each category to form the feature vector F' = (fy, f2.--« , fn), where f;
cxactly the same. Although the example uses the colour histogram method, the use

is the feature vector for category i, and n is the number of categories; f generally
of any other methods described earlier will result in exactly the same ranking. This

includes one of the colour distribution methods described earlier. By describing the
problem can be rectified by incorporating the spatial relationships of colours.

colour distribution of each category separately, these methods thus capture the spatial

colour histoQuery Image relationships of colours. The main drawback of these methods is that they are highly
d 0 2m
) ot 23 . . . . . )
¢ vellow  0.75 inefficient because the size of their feature vectors is large i.e. n x sizeof(f).
Other Images
colour  histogram L! ) . . . ) . .
® g 0.25 0 The three methods using pixel classification are described in the following sections.
.yellow 0.75 6.
N RN
(c) £ooired 9.25 0.0
o " angyellow 075 Region Partitioning
N Figure 2.4: These three images arve perceptually very different but they have exactly the same

histograms.

The simplest way to incorporate the spatial relationships of colours is by parti-

The methods which incorporate spatial relationships of colours can be broadly cat-

RO W ) bv;«;'é;fw.ﬁﬁr‘: i

tioning an image into sub-images (regions) [130, 138), so each region constitutes one

. ) ) ) at r. Figure 2.5 shows several methods of partitionitig, and each region could be
egorised into two classes: pixel-based and block-based. Pixel-based methods operate category. tig o Slows p g: gl

. ) i ing or rerlapping. F -overlappi rtitioning, a pixel
at the pixel level, while block-based methods operate at the block-of-pixels level. This either overlapping or non-overlapping. For non-overlapping partitioning, a pixel can

, . . . hilst lappi itioning, a pixel can belong t
section first describes the pixel-based methods, then discusses the block-based metli- only belong to one category whilst for overlapping portitioning, & p ¢ elong to
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ods. The pixel-based methods are further divided into pixel classification and spatial
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more than one category.

descriptors, depending on how they capture the spatial relationships of colours.
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2.1.2.1 Pixel-Based: Pixel Classification

The feature extraction methods which derive spatial relationships using pixel classifica-

Figure 2.5: Several methods of partitioning an image.

tion perform two operations. First, they classify every pixel in the image into different

Smith and Natsev partitioned an image into 18 non-overlapping regions [130],
categories using either one of t'e two following classification criteria. The first clas-

thereby creating 16 categories. The feature vector of this method is Fregion = (f1.-... f1s).
sification criterion is the location of the pixel in the image. The use of this criterion

and f; is the colour histogram, texture and edges of pixels in category . Stricker and
implies that the image is partitioned into sub-images (regions) and each region con-

Dimai partitioned an image into five overlapping regions, and the importance of each
stitutes a category. The methods using this criterion are collectively known as region

region is indicated by its weight - the region in the centre has the highest weight [138].
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The feature vector of this method is Fiegion1 = (fi1,...,f5), and to reduce the size
of feature vector F, they used colour moments for f. Feature vectors of overlapping
regions are relatively more robust when subject to translation, rotation or both than
those of non-overlapping regions. The level of robustness depends on the degree of over-
lapping, and it is most robust with & 100% overlapping; however, such a high degree of

overlapping makes it equivalent to the colour distribution methods.

Colour Coherent Vectors (CCV)

CCV was proposed based on the observation that the spatial relationships of pixels
are either coherent (clustered together) or incoherent (spread far apart) [101]. A pixel
is classified as coherent if it is part of a region, which is a group of similar-coloured
pixels of which the number exceeds a predefined threshold. The number of categories
in CCV is two i.e. coherent and incoherent. and Foeov = (fi, f2), where f is the

histogram for coherent pixels and f; is the histogram for incoherent pixels.

Spectrally Layered Colour Indexing (LCI)

The two methods described above classify pixels in the spatial domain. Qiu and
Lam proposed LCI, which classifies pixels in the frequency domain [107]. In the spatial
domain, the measurement revolves around the value of a particular pixel at column z
and row y in an image but in the frequency domain, it revolves around the frequency of
pixels in an image. An image is said to have a high frequency if the pixel values change

rapidly and it has a low frequency if the pixel values change slowly, as seen in Fig. 2.6.

(@ ®)

Figure 2.€: The pixel values of image (a) in the vertical direction change more frequently than
that of irnage (b}, so image () is said to have a higher frequency than image (b).
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The frequency domain is often used in digital signal processing as it allows one
to perforim frequency analysis or to analyse the physical properties of a signal. An
image can be viewed as a series of digital signals where the rate of change of the
signal is indicated by the rate of change of the pixel values; therefore, a high frequency
signal can be associated with a high variation in pixels which may indicate object
boundaries, while a low frequency signal can be associated with a smooth area. By
classifying pixels into different frequencies, LCI effectively separate coherent pixels
from less coherent ones. LCI classifies the pixels into four levels of frequency, so the
feature vector Frer = (fi, -+ . fa), where f; is the histogram of colours at frequency

lavel 1.

2.1.2.2 Pixel Based: Spatial Descriptors

All colour spatial feature extractionn methods described earlier are based on pixei clas-
sification. As mentioned before, these methods ave highly inefficient because the si-2 of
the feature vector F = (f1,.--, fy) i 'nvee ie. n X sizeof(f;), where n is the number
of categories and f; is the featuce +vveor for category i. Spatial descriptors are much
more efficient because they captu.v i -patial relationships of colours by calculating
numerical values to capture the cohereucy of colours in the image. The methods which
use spatial descriptors include colour autocorrelogram and MPEG-7 Colour Structure

Descriptor {CSD).

Colour Autocorrelogram

Huang et al. propose using colour autocorrelogram to describe the spatial rela-
tionships of colours in images [49, 48]. Among all feature extraction méthods which
incorporate spatial relationships, colour autocorcelogram is the most well known and
is cited more frecuently in the CBIR literature than any of the other methods [106,
107, 121, 124, 130, 145]. We found a weakness with autocorrelogram which adversely
affects its retrieval effectiveness, and propose a method to improve its effectiveness, and

to a certain extent, its efficiency. The proposed method is known as I-autocorreiogram
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(I-auto) and will be described in Chapter 4.

MPEG-7 Colour Structure Descriptor (CSD)

The CSD method is defined in the MPEG-7 standard. To capture the spatial
relationships of colours, CSD uses a histogram-like method as follows. An 8x8 pixel
mask visits each pixel in the image at least once and when a particulat colour appears in
the mask, the count for the corresponding bin is incremented by one. Afier incrementing
the count of the corresponding bins within the mask, the mask moves by one pixel. The
spatial relationships of colours are described by the histogram because given the same
number of pixels, coherent colours will have higher histogram count than incoherent
ones. CSD will be described in more detail in Chapter 4 where it is compared with

I-auto.

2.1.2.3 Block-based: Vector Quantisation (VQ)

The feature extraction methods described above operate at pixel level, while VQ oper-
ates at group of pixels (block) level. The VQ methods are, in principle. most similar to
colour histogram but instead of counting the occurrence of each quantised colour in an
image, it counts the occurrence of each block pattern in an image. The block patterns
are stored in a codebook. The first step in using VQ is, therefore, the generation of
a codebook; an entry in the codebook stores the pattern of a block of pixels and the
spatial relationships of colours are captured within the block. The VQ feature vector
is defined as {(h;, - - , hps), where A; is the histogram count of .-k pattern i and M is

the size of the codebook.

The use of VQ for extracting features and retrieving images was first proposed by
Idris and Panchanathan {50] for grey level images, and later, by Teng and Lu, Qiu,
and Zhu for colour images (106, 149, 163]. Zhu treated each entry in the codebook as a
keyblock and extended the spatial relationships of the keyblock to two blocks (bi-block)
and three blocks (tri-block) hoping that the feature vector could capture more spatial

information, and consequently, increase the overall retrieval effectiveness. Surprisingly,

§2.2 Texture-Based Methods 25

the use of bi-block and tri-block did not result in increased effectiveness [163)].

The main shortcoming of VQ methods is that the codebook is daiabase dependent.,
so a codebook must be genecrated for every image database. Also, a new codebook
needs to be regenerated as new images are added to the database. Apart from being
database dependent. the size of the feature vector based on VQ is large. Zhu reported
that retrieval cffectiveness is highly dependent on the quality of the codebook, wi-ich is
proportional to the number of codewords [163]. Unfortuaately, a good quality codebook
requires large number of codewords - the minimum recommended size of a codeboo::
is 1024 codewords [149]. These two problems (database dependence and large feature

vector size) may make the use of VQ methods for real world applications less practical.

2.2 Texture-Based Methods

The previous sccticis discuss feature extraction methods which extract colour features
from colour images. This section covers methods which extract texture features from

homogeneous texture images.

Texture is hard to define but we often know what it is when we see it: ‘he patiern
of fabrics, barks, grass and sand. It is important to accurately define whai texture is
because the definition dictates the type of information to be extracted. Unfortunately,
there is no universally accepted definition for texture except to say that it is the rep-
etition of perceptually similar patterns over a region {98]. The type of information to
be extracted was cventually determined in several psychophysics experiments, aud it
includes repetitiveness (periodicity), directionality, granularity, complexity, coarseness,
contrast, busyness and texture strength {34, 39]. A texture descriptor therefore must

capture some, if not all, of these features, and ideally, be rotation and scale invariant.

Extraction of texture features was initially restricted to grey-scale texture images,
and later, some researchers extracted colour texture features from colour texture im-
ages [79, 80, 106]. When colours are involved, the measure of similarity depends on

who makes the judgement. In the textile industry. textile designers consider sitnilar-
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ity of textures to be more important than similarity of colours; on the other hand,
the novice considers similarity of colours is more important [37]. Feature extraction
methods found in the literature include coloured pattern appearance model, fractal
dimensions, Wold model, Gabor filters and wavelet filters [66, 71, 73, 79, 80, 104, 105,
117, 118, 151, 155, 160, 163].

Although texture feature extraction is not the focus of this fesearch_. in Chapter 8,
we will describe Gabor filters and illustrate how this method can be used to generate
a layout suitable for browsing. The description of texture feature extraction is now
complete, and the next section covers methods which extract shape features from shape

images.

2.3 Shape-Based Methods

Methods which extract shape features normally work on bi-level images, that is, images
which have only black and white pixels, so images which are not already in black and
white require some preprocessing. Shape images can be broadly classified inio two
types: contour and region. Contour shapes have no information within the boundary
but region shapes do (see Fig. 2.7). Methods for extracting shape features, similarly,
can be classified into contour and region methods; however, some contour methods are

generic enough and can also be used to extract meaningful features from region shapes.

(a) Contour (b) Region
Figure 2.7: Two types of shepes. Contour shapes have no information within the boundary

but region shapes do.

For contour shapes, Fourier descriptors are most popular. To use Fourier descrip-
tors, it is necessary to first extract the contour shapes’ properties, which could be the

pcrition of the boundary from ite centroid, distance of the boundary from its centroid,
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chord length, cumulative angular function, curvature signature and area. To achieve
rotational invariance, the extracted properties are then transformed into the frequency
domain using one dimensional discrete Fourier transform (hence, the name Fourier

descriptors):

N-1
an = % > ut)e PN, n=0.1,... ,N-1 (2.8)
=0

where u(t) is the value of the measurement sampled at ¢ and N is the number of
samples taken. If the shape is described using distance of boundaries from the centroid,
then u(t) is the distance sampied at {. Traditional Fourier descriptors are sensitive
to affine transformation i.e. transformation where parallel lines remain parallel, but

contemporary Fourier descriptors are insensitive to affine transformation [4, 5).

Other contour shape descriptors include contour scale space descriptor (CSSD),
anglogram, grid descriptor and generic Fourier descriptor (GFD) (7. 69, 86, 87, 144,
161]. The main disadvantage of CSSD is that it cannot capture shallow concavities
of shapes correctly. and as a result, two shapes with very different concavities are
considered similar. The enhanced CSSD is more sensitive to concavities, and therefore,

can represent the shapes more faithfully (3].

Capturing the information in region shapes. the second type of shape image, is
more complex than that for contour shapes because of the additional region informa-
tion within the boundary. Of all contour shape methods mentioned above, only GFD
and grid descriptor can capture region information [159, 161]. Other region shapes
feature extraction methods include geometric moment descriptor and Zernike monsent

descriptor [10, 31, 85, 103, 147].

2.4 Integrated Methods

The previous sections contain a survey of methods which extract colour features from
general colour images, texture features from homogeneous texture images and shape

features from shape images. This section discusses ii:.egrated methods, that is methods
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which use combinations of these three features to describe the content of general colour

images.

To use either texture or shape features for CBIR, it is better to segment the iimages
first because texture features are meaningful only if the texture is homogeneous and
shape features are useful only if the objects have been segmented. Most integrated
methods in the literature automatically segment the images into regions where each
region is a section of the image with uniform colours or textures or both. Others create
the regions by simply partitioning the images {134]. Each region is then described by

its colours, textures, shapes or combinations of these.

“Blobworld” is the first true region-based CBIR, and later, many others were pro-
posed [13, 14, 15, 20, 22, 36, 53, 78, 127, 145, 155]. It was found that the retrieval
effectiveness of region-based CBIR is high only if the image has a distinct object and if
the object can be successfully segmented froin the background [14, 124, 163]. Another
problem facing region-based inethods is the issue of over segmentation. To address this
problem, Chen [20] and Wang [155] employed fuzzy matching which matches a region in
the query image with multiple regions in another image, but it is unclear how effective

this method is in overcoming the problem because there was no comparative study.

Because the use of either texture or shape features requires image segmentation,
which is inaccurate when automated [124] and time consuming when segmented either
manually or semi-manually, colour-based feature extraction methods remain popular

for generating the feature vectors from general coluur images.

2.5 Concliusions

In traditional image databases, each image is manually annotated and retrieval is per-
formed by searching the annotation; however, manual annotation is expensive, time
consuming and highly subjective. Content-based image retrieval (CBIR)} systems auto-
matically generate feature vectors from the content of images. Because it is impossible

to accurately extract semantic information from images, current CBIR systems only
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extract low level features such as colours, textures and shapes. This chapter reviewed

existing feature extraction methods in the literature.

The texture or shape features extracted from general colour images will be more
meaningful if the images are segmented first, but s automatic image segmentation still
remains an open question, colour features remain popular for describing the content
of general colour images. Because all colour-based methods require a colour space.
the choice of colour space is an important decision. The focus of the next chapter is
to evaluate which colour space is most suitable for colour-based CBIR. Once we have
determined the most suitable colour space, it is appropriate to imnprove the effectiveness
of colour-based feature extraction methods which incorporate spatial relationships of

colours {Chapter 4).
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Chapter 3

Evaluating Suitability of

Different Colour Spaces for

Colour-Based CBIR

Colour is » very distinct feature of images. As discussed in the previous chapter, it is
widely used for extracting fentures from general colour images. A colour is described
in at least shree co-ordinates and a collection of all colours in the co-ordinate system is
called & cplour space. A plethora. of colour spaces cxist in the colour science literature
where Moye than ten been reviewed [32, 33, 38, 125). The more commonly used ones
for colour-pased CBIR include RGB, HSV, LUV and LAB {12, 29, 47, 99, 100, 108, 110,
129, 130, 135, 142]. Although the choice of colour space is fundamental to any colour-
based feagyre extraction method, to date, very little research has been undertaken on
evaluating the suitability of colour spaces for colour-based CBIR. The research reported
in this chapter addresses that gap. The purpose of this chapter is to establish which
colour Space is more suitable for colour-based CBIR by using different colour spaces to
extract Colour features and conducting retrieval experiments. This study is important
because it justifies the choice of colour space and provides insights into why some colour

spaces Are more suitable than others.

Previgys work by Tan et al. [143] and Mathias and Conci [76] on this issue is
incomplete; hence, the findings remain inconclusive. The main problem with their
studies is that they used very small image databases which had only about two hundred

images, 8o the results could be biased towards a certain colour space. To reduce the
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bias, a large database (5,000 or mors images of wide varieties) should be used instead.
To further reduce the bias, more than one database should be used whenever possible.
The research in this chapter reduces the bias by using two databases and each database

has at least 5,000 images.

This chapter is divided into three main sections. It starts by describing the eval-
uation method and experimental design. then it identifies the characteristics and ex-
perimental parameters of the colour spaces to be evaluated. Finally, it presents the

experimental results and analysis.

3.1 Evaluation Method and Experimental Design

The colour spaces evaluated in this study were RGB, LUV and LAB in Cartesian co-
ordinates, as well as HSV, LUV and LAB in polar co-ordinates. To resolve which colour
space is more suitable for colour-based CBIR, we first generated colour histogram fea-
ture vectors from two iimage databases using uniform colour quantisation. The distance
between any two feature vectors were calculated using (2.2). the L1 dissimilarity. Then,
after performing retrieval experiments, we compared the suitability of the colour spaces

for colour-based CBIR using the evaluation criteria described in Section 3.1.1.

To evaluate the suitability of the colour spaces. one could use any colour-based
feature extraction method as long as the same method is used throughout the experi-
ment. In this study, the uniform colour quantisation histogram method was chosen for
two ressons. First, we could gain more insights by using colour distribution methods
because any differences could then be attributed to the differences of the colour spaces,
and not due te any inaccurate spatial information of the method. Second, among colour
distribution methods. there is no conclusive result which proves that other methods are

much better than the simple uniform quantisation histogram.

The following sections discuss other issues related to the evaluation method such as

the evaluation criteria, image databases and software used for retrieval.
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3.1.1 Ewvaluation Criteria

The suitability of a colour space was established by comparing the retrieval effectiveness

and cfficiency of the feature vectors generated in that colour space.

3.1.1.1 Retrieval Effectiveness

The first cvaluation criterion was retrieval effectiveness, which was determined using

precision and recall graphs (PR graphs). A PR graph is defined as:

r T
P-—-—*ﬁ&lld R-—-'T—‘ (31)

where r is the number of relevant images retrieved. N is the number of images retrieved,
and TR is the total numnber of relevant images in the database. In evaluating the
effectiveness of two feature extraction methods, the more effective one has a higher
precision value at the same recall value; in the graphs, this curve is further away from
the origin as illustrated in Fig. 3.1. The main purpose of this evaluation criterion was

to establish which colour space. regardless of feature vector sizes, is most effective.

PR Graphs
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Figure 3.1: Comparing two feature extraction methods A and B using PR graphs - A is more
effective than B,
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3.1.1.2 Retrieval Efficiency

The second evaluation criterion was the retrieval efficiency of the colour spaces which

was measured using two methods:

1. by comparing the size of feature vectors at their most effective quantisation in-

tervals; and

2, by comparing the effectiveness of feature vectors of similar size.

The first method simply measures the feature vector size i.e. given two feature vectors,
the shorter one is more efficient. In contrast, the second method measures the effec-
tiveness of feature vectors of similar size. Although the second efficiency measurement
compares retrieval effectiveness, it serves a different purpose than the first evaluation
criterion described earlier. The second measurement was necessary because in practice,
due to the issue of efficiency, we may not be able to use the most effective quantisation
option. In order to find the most effective quantisation option at an acceptable feature
vector size. it was essential to compare the effectiveness of the colour spaces quantised
to the same size. More specifically, it was used to find a compromise between retrieval

effectiveness and efficiency.

3.1.2 Image Databases

Most studies in CBIR are restricted to only one image database. Unless there is a
standard database commonly used by most CBIR researchers for evaluating the effec-
tiveness of feature vectors, more than one database should be used to reduce the bias
towards any colour space. Because there is no standard database yet, retrieval experi-
ments should be conducted using more than one database. All retrieval experiments in
this chapter and Chapter 4 were tested on two databases: MPEG-7 Common Colour
Database (CCD) and Proprietary Colour Database (PCD).

CCD is a database compiled by the MPEG-7 committee, and it is used widely
within the MPEG-7 group {72]. It has 5466 images and established ground truths
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making up the 50 Common Colour Queries (CCQ) with defined relevant images. PCD
is a proprietary database of 10,112 images used within our research group. and it aiso
has established ground truths. There are 32 queries in PCD, and the relevant images for
each query were established from a subject test. In the study. 29 volunteers identified
the relevant images, and these were then divided into four levels of agreement: 20%.
30%. 50% and 70% [148]. If the level of agreement is 20%. then at least 20% of the

pearticipants selected the hnages as relevant to the query image.

The main difference between CCD and PCD is in how the relevant images were
obtained. In CCD, the relevaut images for each query are often generated from a se-
quence of video shots and only images from the same video sequences are considered
relevant. For this reason, the relevant images in CCD have no different levels of agree-
ment. On the other hand, in PCD, the relevant images for each query were established
from a subject test, and because the similarity judgement was subjective, they were
divided into several levels of agreement. In short, the relevant images in PCD are more

subjective compared to those of CCD.

3.1.3 Retrieval Software

A CBIR system is made up of three components: (1) building of feature vectors using
feature extraction methods, (2) ranking of retrieval results using a similarity or dis-
similarity metric and (3) displaying of ranked retrieval resuits. Research in CBIR is
mostly conducted using a specially written software in which all three components are
rewritten each time; hence, productive time and effort are spent on developing software
irrelevant to research questions. To speed up software development, several researchers
in CBIR produced open frameworks which allow component reuse; for instance, Gun-
ther and Beretta developed BIRDS-I and Miiller et al. developed GIFT [43, 44). Both
BIRDS-I and GIFT provide the second and third components of a CBIR system i.e.
the ranking and display components. so experimenters only need to build feature vec-
tors and provide a similarity or dissimilarity metric to the ranking component. The

frameworks thus cut down software development time and effort.
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Both GIFT and BIRDS-I run in client and server mode, where the server stores
the feature vectors and performs the retrieval whilst the client queries the server and
displays the ranked retrieval results. GIFT, however, is more flexible because its server
can be installed locally. For this reason, all retrieval experiments in this thesis were
conducted using GIFT, Note that GIFT is only a framework: experimenters must
build the feature vectors, then develop and link the dissimilarity metrics to GIFT as
plug-ins [43, 89, 90, 91, 92, 93). We, therefore, implemented all the feature extraction
methods and dissimilarity metrics, and linked the dissimilarity metrics to GIFT as

plug-ins.

3.2 The Six Colour Spaces Evaluated

The purpose of this siudy was to evaluate the suvitability of six commonly used colour
spaces for colour-based CBIR: RGB, LUV and LAB in Cartesian co-ordinates, as well
as HSV, LUV and LAj! in polar co-ordinates. The following sections describe the char-
acteristics of the six colour spaces (Section 3.2.1) and explain how they were quantised

(Section 3.2.2).

3.2.1 Characteristics of Six Colour Spaces

This section describes the characteristics of the six colour spaces and their relationships
with each other. It is necessary to know their characteristics because the quantisation
parameters of each colour space in Section 3.2.2 depend on the characteristics of the

L]

colour space,

3.2.1.1 Characteristics of EGB

The RGB colour space is used in CRT monitors. A colour is described by the values of
Red, Green and Blue. A display device capable of differentiating 256 intervals for each

R, G and B channel has a colour depth of 24 bits and can show about sixieen million

colours.
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3.2.1.2 Characteristics of HSV

RGB is hardware oriented, and can be easily used by monitors but not by humans.
HSV is a user oriented colour space proposed in 1978 [128], and it is more intuitive to

use because the description of colours corresponds to how humans describe colours:

e hue (H) describes the colourness or tint - such as red, green, yellow;

¢ saturation (S} describes the intensity or colourfulness - less saturated colours are

equivalent to adding white to water colours; and

e brightness (V for value) describes the darkness or brightness.

The shape of the HSV colour space is a hexcone, The H axis is in polar co-ordinates
specified from 0° to 360°, S from 0 to 1, and V from 0 to 1. A cross section of HSV
at V = 1 is the same as viewing the RGB cube from the main diagonal axis from
achromatic white to black (see Fig. 3.2(a) and (b)}. A cross section of HSV at V < 1is
a view of the RGB subcube in the same direction (see Fig. 3.2(c))}. When each subcube

is viewed in the sane direction, the result is a single-hexcone (see Fig. 3.2(d)).

v
bl Lyan blu cyan
chite
magen green %
blackH
cllow yellow o
(2} )] (c) )

Figure 3.2: (a) RGB cube and a subcube. (b) RGB cube viewed from achromatic diagonal
when V =1 (¢) when V < 1. (d) Single-hexcone HSV colour model.
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Figure 3.3 shows the HSV colour space when taken at V' = 0.1 through to 1.
Although the size of the nexagon is smaller as the value of V' is smaller, the range for

the value of § is constant. The algorithm for transforming RGB into HSV is given

by [38]:

max = MAX(r .S.b)
min = MIN(r,.g,b)
v = gax

if max I= {
8 = (max-min) / max}
alse
5 = ()
endif
if (s = 0)
h = UNDLFINED
recurn
endif

del*= = max-min
if (r = max)

h = (g-b)/delta
else if (g = max)

h =2+ (b-r)/delta
elsa if (b = max)

h = 4 + {r-g)/delta
endif
h *= 60
1t (h < 0)

h+= 360
endii

§=1 8=

v=0.7 v=0.8 v=0.9 v=]
Figure 3.3: Display of HSV colour space for V=0.1 through to 1.
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3.2.1.3 Characteristics of LUV and LAB in Cartesian Co-ordinates

In 1976, Commission Internationale de I'Eclairage (CIE} introduced LUV and LAB
colour spaces. L specifics the lightness (like V' in HSV), while v* and v* as well as ¢”
and b* are the opponent colour axes: approximately red-green versus yellow-blue, that
is u* versus v* and a* versus b*. In LUV, changes in u* or v* axes result in changes
of hue and chroma. Sumilarly, in LAB, changes in a* or 5* axes result in changes of
hue and chroma. Chroma is similar to saturation in that it defines the intensity or
colourfulness of a colour. However, there is some technical difference between chroma
and saturation. Chroma is the colourfulness of a stimulus “relative to the brightness
of a similarly iluminated white”, whereas saturation is “the colourfulness of stimuius
relative to its own brightness” [33]. In this study, this difference is subtle enough to be
ignored because we are not concerned with how chroma or saturation is obtained, but
rather how chroma or saturation is quantised. Irom this point onward, saturation also

means chroma. More discussion on opponent axes colour theory can be found in {120).

It is important to note that the valid ranges of u* and v* fluctuate as illustrated in
Fig. 3.4, which shows the LUV colour space when L=0.1 through to L=1. Consequently,
the geometrical shape of the LUV colour space is irregular. The implication of this
irregular shape is that during uniforra quantisation in Section 3.2.2, some bins will

always be empty.

Vmin

L=06 L=0.7 L=08

Figure 3.4: Display of LUV colour space when L = 0.1 through to 1. Note that the valid
ranges of u* and v* fluctuate, so the ge.metrical shape of LUV is irregular.
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Like LUV, the LAB colour space also has irregular geometrical shapes because the
valid ranges of ¢* and b* also fluctuate (Fig. 3.5 shows the LAB colour space when
L=0.1 through to L=1). So. the implication is similar as in LUV: some bine will always

be empty during uniform quantisation.
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Figure 3.5: Display of LAB colour space when L = 0.1 through to 1. The valid ranges of a*
and b* fluctuate, so like LUV, the geometrical shape of LAB is also irregular.

Both LUV and LAB are supposed to be perceptually uniform, that is, if the Eu-
clidean distance between colours ¢; and ¢; is d, and if the Euclidean distance of colours
¢; and ¢ is also d, then ¢; and c¢; should look as different as ¢; and ¢;. However. it has

been found that this property is true only for smail colour differences {120].

3.2.1.4 Characteristics of LUV and LAB in Polar Co-ordinates (pLUV and
pLAB)

The CIE also describes both LUV and LAB in perceptual properties of hue, chroma,

and lightness or darkness by using polar co-ordinates {120, 156). The transformation

e g aema g y
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of LUV into polar co-ordinates is given as:

He = tan™? (:i—) (3.2)
Cppw = Vu'24o*? (3.3)
Lu = L (3.4)

where Hy, is hue. Cy, is chroma and L., is lightness or darkness. For couvenience,
LUV in the polar co-ordinates from now on will be known as pLUV, where p stands
for polar. Cy, in this co-ordinate system is similar to saturation or S in HSV, and Ly,

is similar to the V axis in HSV,

Unlike the transformation of RGB into HSV. where the geometrical shape of the
colour space is transformed from a cube into a single hexcone, the transformation from
LUV into pLUV does not change the geometrical shape of the colour space: both
LUV and pLUV have the same geometrical shape. This is because (3.2) and (3.3) isa
transformation in R? from Cartesian co-ordinates into polar co-ordinates, which does
not change the positions of the points being transformed. As an iltustration, a simple
example involving a transformation of point p in R? from the Cartesian co-ordinates
into the polar co-ordinates is given in Fig. 3.6. Because Cy, is directly derived from u*
and v*, for which valid values fluctuate, valid ranges of C,,, also fluctuate. So, during

uniform quantisation, some bins will always be empty.

(6.7, 38.65%
(5.4

— ) W e La

T5345673

Figure 3.6: Transforming point p from the Cartesian co-ordinates (x, y) into polar co-ordinates
(r,6). Although the values of p's polar co-ordinates are different from those of the Cartesian, p
remains at the same physical location.

The description of LAB in the perceptual properties of hue, chroma, and fightness,

similarly, only requires a transformation from Cartesian co-ordinates into polar co-




e e ey

42  Ewalnating Suitability of Different Colour Spaces for Colour-Based CBIR

ordinates [120, 156]:

bsr
Hy = tan™! (;) (3.5)
Cap = +/a*?+b2 (3.6)
Ly = L (3.7)

For convenience, LAB in the polar co-ordinates from now on will be known as pLAB,
where p stands for polar. In this transformation, the geometrical shape of pLAB re-
mains the same as in LAB for the same reason asin pLUV. Similar t0 Cyy, Cap is directly
derived from a* and b*. and the valid ranges for both a* and #* fluctuate; consequently,

the valid ranges for Cy; also fluctuate. This means during uniform quantisation some

bins will always be empty.

The description of the colour spaces is now complete and the next section explains

how they were quantised.

3.2.2 Parameters for Colour Space Quantisations

To perform uniform quantisation, each axis in & colour space is quantised into uniform
intervals, and this results in grouping the colours into bins. To itlustrate this process,
Fig. 3.7 on the following page shows the quantisation of RGB where each axis is quan-
tised into four intervals. With uniform quantisation for all colour spaces, it is hoped
that perceptually similar colours are quantised into the same bin, and perceptually
different colours are quantised into different bins. These two conditions ensure that
each bin contains only perceptually similar colours, and the colours in each bin are
visually distinct from other bins. The effectiveness of a colour-based CBIR system is
strongly influenced by how well these two conditions are adhered to. In this study,
these two conditions are useful for explaining why some colour spaces are more suitable

for colour-based CBIR than others.

The number of quantisation intervals for each axis depends on the importance of an

axis, which in turn, relies on the naturc of the axis. Hue is the most important property
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bin0 binl bin2

Figure 3.7: Uniform quantisation in RGB when each axis is quantised into four intervals.
Each bin contains a group of colours.

of a colour because changes in hue have more effect on the perception of colours than
changes in saturation or luminance; for example, peopl: with normal colour vision
would agree that yellow and blue are more different compared with yellow and light
yellow. For this reason. the axis that controls hue is considered most important, and
it should be quantised more finely than the axis that controls saturation or luminance.
Besides this, saturation and lumimmo.e are easily affected by lights or shadows. To

reduce this effect, they should be quantised more coarsely than hue.

The upper bound on the number of quantisation intervals for each axis was de-
teriined by slowly incrementing the number of quantisation intervals until there was
no further noticeable difference in retrieval efiectiveness. This method inakes it possi-
ble to observe the effect of quantisation on each axis and to obtain the most effective

quantisation option for each colour space.

3.2.2.1 Colour Space Quantisations in Cartesian Co-ordinates

Quantisation Parameters for RGB

In RGB, all three axes control the hues of colours. As a result, all axes are equally
iinportant, so they were quantised into the same number of intervals. The axes were
quantised ranging from four intervals for each R, G and B axis to 28 intervals (from
RGB4 x 4 x 4 to RGB 28 x 28 x 28) with an increment of two, four or eight numbers

of intervals, which gives a total of 64 to 21952 bins.
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Quantisation Parameters for LUV

In LUV, L controls the luminance of colours while both u* and v* control the hue
and saturation. The separation of luminance makes it possible to quantise luminance
independently of hue and saturation. It was mentioned earlier that changes in hue have
the largest effect on the perception of colours. and it should be quantised more finely.
Thus, both u* and v* were quantised more finely than L. L was quantised into threc
intervals, while u* and v* were quantised from four to 40 intervals (from LUV3 x4x4
to LUV 3 x 40 x 40) with an increment of four or eight numbers of intervals, giving
a total of 48 to 4800 bins. As mentioned earlier, the geometrical shape of LUV is
irregular; hence, some bins will always be empty. Out of 48 bins, for example, only
36 bins are effective because 12 bins are always empty, and out of 4800 bins only 2167

bins are effective.

Furthermore, to study the effect of quantisation on the L axis, L was quantised
into two, three, four and five intervals, while u* and v* were quantised into 20 intervals
(LUV 2 x 20 x 20 to LUV 5 x 20 x 20). This approach keeps the number of PR graphs

to a minimum without risking the quality of this study.

Quantisation Parameters for LAB

In LAB, L controls the luminance of colours while both a* and 5* control the hue
and saturation of colours. For the same reason as in LUV, L was quantised more
coarsely than ¢* and 6*. L was quantised into three intervals while o* and b* were
quantised from four to 40 intervals (from: LAB 3 x 4 x 4 to LAB 3 x 40 x 40) with an
increment of four or eight numbers of intervals, which results in a total of 48 to 4800
bins. Recall that the geometrical shape LAB is irregular; hence, £ wae bins will always
be empty. So, out of 48 bins, only 39 bins are effective because 9 bins are always empty,

and out of 4800 bins only 2410 bins are cffective.

In addition, to study the effect of quantisation on the L axis, by using the same
approach as in LUV, L was quantised into two, three, four and five intervals, while a*

and b* were quantised into 20 intervals (from LAB2 x 20 x 20 to LAB5 x 20 x 20).
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This keeps the number of PR graphs to a minimum without affecting the quality of the

study.

3.2.2.2 Colour Space Quantisations in Polar Co-ordinates

Quantisation Parameters for HSV

As described in Section 3.2.1.2, each axis in HSV describes a different aspect of a
colour. V controls the luminance, and in this regard is similar to L in LUV or LAB.
However, unlike LUV or LAB, hue and saturation are described in two independent
axes: H for hue and S for saturation. H was quantised from nine to 30 intervals with
an increment of three or six numbers of intervals, while § and V were quantised into
three intervals (from HSV9 x 3 x 3 to HSV 30 x 3 x 3), giving a total of 81 to 270
bins. To study the effect of quantisation on the § and V axes, they were guantised
into two, three, four and five intervals, and H was quantised into 18 intervals (from

HSV 18 x 2 x 2 to HSV 18 x § x 5).

Quartisation Parameters for pLUV

For the same reasen as in HSV, H,, was quantised into more number of intervals
than Cyy (chroma) and L, (luminance). Hy, was quantised from nine to 30 intervals
with an increment of three or six numbers of intervals, while Cy,, and L., were quantised
into three intervals (from pLUV 9 x 3 x 3 to pLUV 30 x 3 x 3), giving a total of 81 to 270
bins. As mentioned before, the valid ranges of Cy,,, vary; therefore, some bins are always
empty. Out of 81 bins, only 59 bins are effective because 22 bins are always empty, and
out of 270 bins, only 175 bins are effective. Although the geometrical shapes of pLUV
and LUV are the same, two of the three axes which control the quantisation process
differ: in LUV, it is controlled by «* and v* axes whilst in pLUV, it is controlled by
Cuv and Hy,, axes. To illustrate this difference, Fig. 3.8 on the following page shows a
slice of LUV at L = 0.7 and pLUV at L, = 0.7 when quantised uniformly (note that
Lyy = L).
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(a) LUV (b) pLUV
Figure 3.8: A visual description of the quantisation process in LUV and pLUV at L=0.7 (note
that Ly, = L).

To study the effect of quantisation on Cy, and L., axes, they were quantised into
two, three, four and five intervals, and H,, was quantised into 18 intervals (pLUV 18 x
2x 2 topLUV 18 x 5 x 5). As mentioned carlier, the valid ranges of C,, vary: hence,
quantising the saturation axis (Cyy) in pLUV into three intervals is actually coarser
than that (S) for HSV: the geometrical shape of LUV in Fig. 3.4 reveals more colours
are quantised into lower values of C,, than for higher values of Cy,. This suggests
that pLUV 18 x 3 x 3 may be less effective than HSV 18 x 3 x 3. If this is true,
then increasing the number of quantisation intervals of Cy, may also increase retrieval
effectiveness. For this reason, we were interested to see the offect of quantisation on
Cuv, S0 it was also quantised from five to 11 intervals with an increment of two number
of intervals, while fixing H,, at 18 intervals and L., at three intervals (PLUV 18x5x3
to pLUV 18 x 11 x 3).

Quantisation Parameters for pLAB

For the same reason as in HSV and pLUV, H,, was quantised into finer intervals
than Cyp (saturation) and Lgs (luminance). Hy, was quantised from nine intervals to
30 intervals with an increment of three or six numbers of intervals, while Cpp, and Lgp
were quantised into three intervals (from pLAB9 x 3 x 3 to pLAB 30 x 3 x 3). giving
a total of 81 to 270 birs. Because the valid ranges of Cy vary, some bins are always
empty. Out of 81 bins, only 64 bins are effective because 17 bins are always empty, and

out of 270 bins, only 193 bins are effective.
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Like pLUV and for the same reason, Cpp, and Ly, axes were also quantised into two,
three, four and five intervals; and H,y, was quantised into 18 intervals (from pLAB 18 x
2 x 2 to pLAB 18 x 5 x 5}). Also, quantising the saturation axis (Cy) in pLAB into
three intervals is coarser than that (S) for HSV. Therefore, Cyp was quantised from
five to 11 intervals with an increment of two number of intervals, while fixing Hyy at

18 intervals and Lgy at three intervals {from pLAB 18 x 5 x 3 to pLAB 18 x 11 x 3).

3.3 Results and Discussion

To evaluate the suitability of colour spaces for colour-based CBIR, we first generated
colour histogram feature vectors from two image databases (CCD and PCD) using
uniform colour quantisation. In total, twelve sets of feature vectors were built using
six colour spaces, one set of feature vectors for each colour space in each database.
We then conducted retrieval experiments in each database using GIFT, and calculated
the distance of two feature vectors with (2.2), the L1 dissimilarity metric. All queries
have predefined relevant images: 50 query images for CCD and 32 query images for
PCD. The PR graphs for a database presented here (please see Section 3.1.1.1 for the
definition of a PR graph) were generated by averaging the PR graphs from the queries
in that database; that is, a PR graph in CCD is the average of 50 PR graphs and
a PR graph in PCD is the average of 32 PR graphs. In PCD. because the relevant
images were divided into four levels of agreement, the PR graphs for PCD were also
divided into four levels of agreement i.e. PCD 20%, PCD 30%, PCD 50% and PCD
70%. Finally, we analysed the results using the two evaluation criteria described in

Section 3.1.1, that is retrieval effectiveness and retrieval efficiency.

3.3.1 Retrieval Effectiveness

We first analysed the retrieval effectiveness, regardless of retrieval efficiency. of each
colour space starting from those in Cartesian co-ordinates followed by those in polar

co-ordinates, then compared the effectiveness of all six colour spaces.
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3.3.1.1 Effectiveness of Each Colour Space in Cartesian Co-ordinates

Figure 3.9 on the following page shows the PR graphs for CCD and PCD 20%. For
LUV and LAB, the number of quantisation intervals of u* and v*, as well as g* and b*
varies, but the number of quantisation intervals of I axes for LUV and LAB are fixed
at three. Figure 3.10 on the following page shows the PR graphs of LUV and LAB
when the numbers of quantisation intervals of the L axes for LUV and LAB vary. For
PCD. as the trend for all levels of agreement is similar, only the graphs from the 20%
level of agreement are presented. The graphs for all levels of agreement can be found

in Appendix B.1.

Effectiveness of RGB

As shown in Fig. 3.9 on the following page, it is clear that the effectiveness of RGB
increases in proportion to the number of quantisation intervals, with RGB4 x 4 x 4
being the worst. It was mentioned earlier that retrieval effectiveness depends on whether
perceptually similar colours are quantised into the same bin, and perceptually different
colours are quantised into different bins; therefore, the retrieval trend can be explained
by observing the colours in each bin from RGB 4 x 4 x 4. In RGB, we found that
perceptually different colours are quantised into the same bin; for example, bin 21 in
Fig. 3.11{a) on the following page has orange, yellow, green. cyan, blue, purple and
red. As the number of quantisation intervals increases, fewer bins have perceptually
different colours; therefore, the effectiveness increases. However, up to a certain number
of quantisation intervals (RGB 16 X 18 x 16), no meaningful improvement is observed.
In fact, at RGB 28 x 28 x 28, the effectivencss starts declining. We suspect this is

because perceptually similar colours are quantised into different bins.

Effectiveness of LUV

From Fig. 3.9 on the following page, we can see that the eflectiveness of LUV 3x4 x4

is the worst. Up to a certain number of quantisation intervals, retrieval effectiveness

increases as the number of quantisation intervals increases. This happened for the same
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Figure 3.9: Performance of RGB, LUV and LAB colour spaces at different quantisation options
in CCD and PCD.
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Figure 3.10: Performance of LUV and LAB colour spaces in CCD and PCD when the number
of quantisation intervals of T, and Ly varies.

reason as in RGB; that is, some bins have perceptually different colours. An example
of this is given in bin 38 of LUV 3 x 4 x 4 (see Fig. 3.11(b) on the following page). As
the number of quantisation intervals increases, fewer bins have perceptually different
colours; therefore, the effectiveness increases. At very fine quantisation, perceptually
similar colours are quantised into different bins and the effectiveness decreases: the
effectiveness starts declining at LUV 3 x 40 x 40. Thus, the finding for RGB is also
true for LUV in that higher effectiveness can be gained by having finer quantisation

but only up to a certain number of quantisation intervals.

From Fig. 3.10, it appears that quantising L finer than three intervals has little
impact on retrieval effectiveness. In CCD, incrementing the number of quantisation in-

tervals of L from two to three results in a noticeable increase in retrieval effectiveness,
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{a) RGB4 x 4 x 4 bin 21 (b) LUV3 x 4 x4 bin 38 (¢) LAB3 x 4 x 4 bin 41.

Figure 3.11: Perceptually different colours are quantised into the same bin.

and the effect of quantising L beyond three intervals is negligible. This observation
confirms the statement made at the start of Section 3.2.2 that lwiminance only needs to
be quantised coarsely. It also appears that quantising L at three intervals is optimum.
Upon reaching the optimum number of quantisation intervals for L, to achieve more
cffective retrieval, we must increase the number of quantisation intervals of »* and v*
axes. Hence, to achieve higher effectiveness than LUV 3 x 20 x 20, instead of incre-
menting L. we incremented u* and v* from 20 to 36 intervals (from LUV 3 x 20 x 20
to LUV 3 x 36 x 36). As shown in Fig. 3.10, in CCD, LUV 3 x 36 x 36 is more effective
than LUV 3 x 20 x 20 and LUV 5 x 20 x 20. From Fig. 3.10, in PCD 20%, we can also
sce LUV 3 x 36 x 36 is most effective. To sum up, the retrieval results of LUV in CCD
and PCD establish that L should be quantised coarsely, and the optimum number of

quantisation intervals for L is three.

Effectiveness of LAB

As shown in Fig. 3.9, the finding for RGB and LUV colour spaces is also true for
LAB. that higher effectiveness can be gained from having finer quantisation, but only
up to a certain number of quantisation intervals. For the same reasons as in RGB and
LUV, this is because some bins have perceptually different colours. An example of this
can be found in bin 41 of LUV 3 x 4 x 4 (see Fig. 3.11(c})). As the number of quanti-

sation intervals increases, fewer bins have perceptually different colours; therefore, the
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effectiveness inc . .., However, up to a certain number of quantisation intervals, the

effectiveness declines ; .. the same reason as in RGB and LUV the effectiveness starts

declining at LAB3 x 40 x 40.

With reference to Fig. 3.10, the most effective quantisation uption for LAB in
CCD is the same as those for LUV in CCD, that is 3 x 36 x 36 is mosi effective.
Likewise, it appears that quantising L at three intervale is optimum. To achieve Better
retrieval effectiveness, we must further quantise a* and b* when reaching the optimum
quantisation of L. For PCD in Fig. 3.10, the most effective quantisation option is the
same as those for LUV in PCD, that is 3 x 36 x 36 is most effective. In summary, the
retrieval results of LAB in CCD and PCD suggest that L should be quantised coarsely,

and the optimum number of quantisation intervals for L is three.

3.3.1.2 Effectiveness of Each Colour Space in Polar Co-ordinates

Figure 3.12t0 3.14 on the following pages show the PR graphs for the three colour spaces
in polar co-ordinates HSV, pLUV and pLAB. where only the number of quantisation
intervals in hue varies, and later, when the number of quantisation intervals in hue
was fixed whilst the numbers of quantisation intervals in other axes vary. The graphs
show that increasing the number of quantisation intervals for saturation and brightness
increases the effectiveness of all colour spaces. The trend is similar in all levels of

agreement in PCD, and the complete results for PCD can be found in Appendix B.2
(Fig. B.4 and B.5).

Effectiveness of HSV

From Fig. 3.12(a) on the following page, we can see that HSV 24 x 3 x 3 is most
effective, and the gain in effectiveness from 9 x 3% 3 to 18 x 3 x 3 is most noticeable. In
this respect, HSV is less sensitive to the number of quantisation intervals, and therefore
more robust. As shown in Fig. 3.12(b}, increasing the number of quantisation intervals
of S or V increases retrieval effectiveness, and the increase is most noticeable when

changing the number of quantisation intervals of § and V from two to three,
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{b) Varying the number of quantisation intervals of § and V

Figure 3.12: Performance of HSV quantised at different number of intervals for H, S and V
in CCD and PCD.

Effectiveness of pLUV

it can be seen from Fig 3.13(a) on the following page that pLUV at 9 x 3 x 3 is least
effective, and increasing the number of quantisation intervals results in higher effective-
ness. Increasing the number of quantisation intervals for hue affects the effectiveness
of pLUV more significantly than that of HSV. From Fig. 3.13(b), it is obvious that
increasing the number of quantisation intervals of Cy, and L., also increases retrieval
effectiveness; for example, pLUV 18 x 5 x 5 is more effective than pLUV 18 x 3 x 3.
Likewise, increasing the number of quantisation intervals of C,,,, from three to five (from

pLUV 18 x 3 x 3 to pLUV 18 x 5 x 3) also increases retrieval effectiveness.
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Figure 3.13: Performance of pLUV quantised at different number of intervals for 4

and Ly, or only C,, in CCD and PCD.

Cartesian co-ordinates.

Effectiveness of pLAB

Tl i i ; - .
1e analysis on pLUV in Section 3.2.2.9 suggests that quantising saturation into From Fig. 3.14(a) on the following page, it can be seen that like HSV and pLUV,

three inter i ot
ntervals for pLUV results in coarser quantisation than that for HSV; as a result, pLAB9 x 3 x 3 is least effective. As the number of quantisation intervals increases. the

pLUV 18x3x 3 is less effecti o T - . 3
Hective than HSV 18x3x3 (see Fig: 3. 13(8))- So, quantising Cy ’- effectiveness increases as well. Changing the number of quantisation intervals affects

ing inter i : P . -
into greater number of intervals may increase retrieval effectiveness. The PR graphs ‘ the effectiveness of pLAB more than HSV. From Fig. 3.14(b), it is clear that like pLUV.

from Fig. 3.13(b) sl i i POT ST
g (b} show that increasing the number of quantisation intervals of C,, increasing the number of quantisation intervals of C,;, and L, also increase the retrieval

when fixing the number of quantisation intervals of Lyy at three results in increasing Fecti

effectiveness.
PLUV’s effectiveness: the effectiveness of pLUV 18 x 11 x 3 is very close to that of
HSV 18 x 3 x 3. This result seems to support the analysis made carlier. Like pLUV, the analysis on pLAB in Section 3.2.2.2 suggests that quantising satu-
ration into three intervals for pLAB results in coarser quantisation than that for HSV,

Because pL i ; . - .
ause p UV30 X3 x 3is more eﬂectlve th&n pLUV I8 x 3 x 3, 1t was mteresting ' 80 pLAB 18 x 3 X 3 iS leSS eﬁ,'ective th&n HSV 18 % 3 X 3 (Se'e Fig. 3.14(3))- We rec-

to see if finer quantisation of C,,, and Loy, or Cyy only when H,, is quantised at 30 in-

ommended that increasing the number of quantisation intervals of Cpp when fixing the
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(b) Varying the number of quantisation intervals of Cob and L.y, and C,s only

Figure 3.14: Performance of pLAB i i i
quantised at different number of intervals f
and L, or only C,p in CCD and PCD. or Habe Cas

number of quantisation intervals of Lgy at three may improve retrieval effectivencss.
The PR graphs in Fig. 3.14(b) show that the effectiveness of PLAB18 x 11 x 3 is now

very close to that of HSV 18 x 3 x 3. The result appears to support the analysis made

earlier.

Similarly, like pLUV. the quantisation option 30 x 3 x 3 is more efective than

18 x 3 x 3. To find out if finer quantisation of Cyp and Ly, axes, or only the Cp

axis will increase the effectivencss, the Cap and Ly, axes were quantised finer. The

same approach used in pLUV was also used here; that is C, and Lay were quantised
into two, three, four and five intervals (from pLAB30 x 2 x 2 to pLAB 30 x 5 x &)

and C wes quantised into five, seven, nine and 11 intervals (from pLAB30 x 3 x 3 to
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pLAB 30 x 11 x 3). The complete results can be found in Fig. B.6 of Appendix B.2.

For CCD, there are several gquantisation options which are most effective, and
pLAB 30 x 11 x 3 is one of them; for PCD, the most effective one is pLAB30 x 11 x 3.
For this reason, pLAB 30 > 11 x 3 was chosen because it is at least as effective as others.
So, pLAB 30 x 11 x 3 was compared with pLAB 18 x z x z as given in Fig 3.14. It
appears that for CCD, pLAB 30 x 11 x 3 is only as cffective as pLAB18 x 11 x 3, the
most effective quantisaticn option when H was quantised into 18 intervals. For PCD.
it is slightly more effective than pLAB 18 x 11 x 3 at recall value of 0.1. This obser-

vation is consistent with the observation made in other colour spaces that much finer

quantisation does not always guarantee higher effectiveness.

3.3.1.3 Cocmparing Retrieval Effectiveness of Six Colour Spaces

The previous sections showed the analysis on retrievai effectiveness of each colour space.
whereas this section contains the comparison of retrieval effectiveness of all colour
spaces. Figure 3.15 on the following page shows the PR graphs for each colour space at
their most effective quantisation options. It can be seen that the retrieval effectiveness
for the colour spaces are quite similar, and that only the difference between the best and
the worst colour spaces is noticeable. It appears that with the appropriate quentisation
options, the effectiveness of all colour spaces are reasonably close. The trend for PCD
is the same for all levels of agreement, so only the results for PCD 20% is presented

here. The complete results for PCD are given in Appendix B.3.

Discussion and Analysis

From the PR graphs, it is clear that for the CCD images, HSV is the most effective
colour space followed closely by LUV and LAB, and lastly, pLUV, pLAB and RGB.
For PCD 20%, RGB and HSV are equally effective, followed closely by LUV and LAB,
and finally pLUV and pLAB. It is only at PCD 70% that HSV is more effective than
RGB {sec Appendix B.3). With RGB, although it is impossible to quantise either hue,

brightuness, or saturation independently, it is still effective with very high mumber of
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Figure 3.15: PR graphs of RGB, LUV, LAB, HSV, pLUV and pLAB colour spaces at the
highest effectiveness in CCD and PCD.

quantisation intervals: RGB16 x 16 x 16 at 4096 bins,

Recent studies find that LAB is more uniform than LUV. even recommending LUV
not be used at all {33]. Any differences between the two colour spaces appear to have
no meaningful impact on the effectiveness of colour-based CBIR. This is because both
LUV and LAB were created for a very different application in mind. In colour re-
lated industries, small colour differences are important, whereas in colour-based CBIR,

small colour differences are muc) less important and colours with small differences are

considered the same.

This completes the analysis on the effectiveness of the colour spaces. and we con-
clude that HSV is, overall, most effective because it is at least as effective as other colour

spaces. The next section evaluates the efficiency of the colour spaces for colour-based

CBIR.

3.3.2 Retrievil Efficiency

As mentioned before, there are two methods for evaluating the efficiency of the colour
spaces: (1) by comparing the size of feature vectors with most similar effectiveness and
(2) by comparing the effectiveness of feature vectors with similar size. The evaluetions

using these two methods are discussed as follows.
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3.3.2.1 Method one: comparing the size of feature vectors

The quantisation options given in Fig. 3.15 in the previous section {Section 3.3.1.3)
have the most similar retrieval effectiveness, and therefore, they were used for this
comparison. As mentioned earlier, given two feature vectors, the one having fewer

number of bins is considered more efficient.

Discussion and Analysis

Table 3.1 lists the number of bins for each colour space, sorted in ascending order
of number of bins. It is clear that HSV is most efficient given that it has the least
number of bins at 450, followed by pLUV at 525. pLAR at 560, LUV at 1759, LAB at
1950, and lastly, RGB at 4096. HSV, in addition to being the most efficient, is also
the most effective one. In PCD, the effectivencss of HSV and RGB are very similar,
but the size of the RGB feature vector is nearly ten times that of HSV. In other words.

HSV is nearly ten times more efficient than RGB.

Colour spaces and their number of quantisation intervals | no. of bins
HSVi8 x 5 x5 450
“pLUV 30 x 11 x 3 525
'pLAB30x 11 x 3 560
“"LUV3 x 36 x 36 1759
“LAB3 x 36 x 36 1950
RGB16 x 16 x 18 4096

Table 3.1: Evaluating the efficiency of the colour spaces by compasring the number of bins
of the colour spaces at their most effective quantisation options. “'number of effective bins as
some bins are always empty (see Sections 3.2.2.1 or 3.2.2.2 for the definition of effective bins).

3.3.2.2 Method two: comparing the effectiveness

The purpose of this comparison is to find a compromise between effectiveness and
efficiency. Figure 3.16 on the following page shows the PR graphs of the six colour
spaces quantised so that they have about the same number of bins as HSV 18 x 3x 3 (162
bins) - the complete results for PCD can be found in Appendix B.4. The quantisation

at 18 X 3 x J intervals is not the best quantisation option for HSV, but it was chosen
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as a trade off between effectiveness and efficiency. For RGB. the quantisation option
closest to 162 bins was chosen, that is RGB6 x 6 x 6 at 216 bins. For LUV, LAB,
pLUV and pLAB, the quantisation options with the number of effective bing closest
to 162 were chosen (see Sections 3.2.2.1 or 3.2.2.2 for the definition of effective bin).
LUV3 x 10 x 10 has 170 effective bins, LAB3 x 9 x 9 has 157 effective bins, pLUV
18 x 5 x 3 has 164 effective bins, and pLAB 18 x 5 x 3 has 177 effective bins.
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Figure 3.16: Effectiveness of RGB, LUV, LAB, HSV, pLUV and pLAB colour spaces having
similar number of bins in CCD and PCD.

Discussion and Analysis

In CCD, it is clear that for the same number of bins, HSV is the most effective,
followed by pLUV, pLAB, RGB then LUV, and lastly, LAB. In PCD, HSV and RGB
are most effective at 20%, 30% and 50% levels of agreement; it is only at PCD 70%
that 8V is clearly more effective than RGB (see Appendix B.4). Surprisingly, pLUV
and pLAB were found to be now less effective than RGB. It appears that RGB is more
effective in PCD than in CCD. This could be because PCD is a more subjective database
than CCD, and some images which have different colours are considered similar. These
different colours then happened to be quantised into the same bin in RGB. This would
also explain why only in the 70% level of agreement that HSV clearly outperformms
RGB. At the 70% level of agreement, only images which are visually very similar have

been chosen to be relevant. These images are often the rotation or translation of their

original, and therefore they have very similar colours. This is why HSV is clearly far
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more effective than RGB in PCD 70%. For the same reason, pLUV and pLAB are
more effective than RGB in PCD 70%.

Note that for sbont the same number of bins, pLUV and pi.AB are more effective
than LUV and LAB. This is because colour quantisation in polar co-ordinates is more
efficient: H, the axis which contributes more to colour differences perceptually was
quantiged into fincr intervals independent of other axes. In their Cartesian co-ordinates,
both hue and saturation are controlied by a* and b* as well as u* and v*, so to achicve

fine quantisation of hue both axes were quantised finely.

The literature in colour sciences [33, 120, 156] describes LUV, LAB, pLUV and
pLAB as perceptually uniform colour spaces, so in comparison with HSV, why do they
require higher number of quantisation intervals? For LUV and LAB, the reason is
because the opponent colour axes (u* and v*, as well as a* and b*) control both the
hue and the saturstion of a colour; consequently, it is impossible to quantise hue more
finely without quantising saturation. Unless they are quantised very finely. perceptually
different colours will be quantised into the same bin as demonstrated in Fig. 3.11. For
pLUV, the separation of hue from the saturation axis has made it much more efficient

than LUV but it is still less efficient than HSV.

To explain why pLUV is less efficieni than HSV, we observed the visnal differences
between these two colour spaces (see Fig. 3.3 for HSV and Fig. 3.4 for pLUV; note that
LUV and pLUV have the same geometrical shape). One noticeable difference between
both colour spaces is the arrangement of hue and saturation. For HSV when V =1
{brightest), the colours forming the complete spectrum of hue from yellow, green, blue
and so on are clearly visible. In addition, the complete range of saturation for different,
hues is visible when the value of V is high enough; for example, we can see the complete
range of saturation for blue when V = 1. For pLUV when L = 1.0, hardly any colours
are visible. When L = 0.9, more colours are visible but only colours perceived as
bright are visible, and as L decreases, darker colours are visible. As an example, fully
saturated blue which is perceived to be darker than fully saturated yellow is only visible

at lower values of L. Also, we fail to see the complete range of saturation for different




62  Evalvating Suitability of Different Colour Spaces for Colour-Based CBIR

hues at any value of L; for example, less saturated blue is only visible at higher values of
L and fully saturated blue is only visible at lower values of L. In sununary. pLUV does
not show the complete spectrum of hue and saturation for a given value of Z. It could
be these differences of colour arrangement which cause pLUV to be less efficient. It
seems that HSV arrangement of hue and saturation are more suitable for colour-based
CBIR. The same observation with pLUV can also be seen in pLAB. so this would alse

explain why pLAB is, relatively, less efficient than HSV.

From the above analysis, we conclude that HSV is, overall, the most efficient colour
space for colour-based CBIR. We, however, do not conclude that LUV, LAB, pLUV
and pLAB are less useful than HSV, bi- only suggest that they may be more suitable

for other applications.

3.4 Conclusions

This chapter resolved which colour space is most suitable for colour-based CBIR. by
conducting retrieval experitrents and by comparing the effectiveness and efficiency of
six colour spaces: RGB, LUV and LAB in Car..ian co-ordinates. as well as HSV, LUV
and LAB in polar co-ordinates (pLUV and pLAB). This study also provides insights
into why some colour spaces are more suitable than others, and concludes with the

following main findings.

With the appropriate number of quantisation intervals, there is little variation be-
tween the effectiveness of one colour space over the next best effective one, so only the
difference between the most and least effective colour spaces is noticeable. It means
that while it is difficult to rank the effactiveness of each colour space individually, it is
possible to identify the more effective ones. In both CCD and PCD, HSV is at least
as effective as all the other colour spaces; therefore, it is, overall, more effective. In
practice, it may not always be possible to use the best quantisation option because
of the efficiency issue. For this reason, it is necessary to find a compromise between

effectiveness and efficiency. The recommended colour space for colour-based CBIR, if
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cfficiency is an issue, is HSV at the quantisation intervals of 18 X 3 x 3 as the best
compromise between effectiveness and efficiency. This study finds that HSV is, overall,
most suitable for colour-based CBIR because it is at least as effective as and more

efficient than any of the other colour spaces.

By analysing the results from this study, we found that colour space quantisation in
polar co-ordinates is more efficient than in Cartestan co-ordinates because it is possible
to quantise hue, the most important axis, independently of other axes. The quantisation
of hue in Cartesian co-ordinates requires at least two axes: u™ and v* in LUV, o’ and
b* in LAB, and all three axes in RGB. In addition, an investigation of the results also
suggested that among the polar coordinate colour spaces, pLUV and pLAB ere different
from HSV in terms of saturation axis quantisation. The saturatiocn axis in pLUV and
pLAB needs to be quantised into finer intervals than that for HSV because the valid

ranges for pLUV and pLAB are variable, whereas the valid range for HSV is constant.

Further analysis on LAB and LUV suggested that any difference between LAB and
LUV has negligible impact in colour-based CBIR despite recent studies in colour science
which favour LAB and suggest that LUV should not be used at all. This is because the
colour science focuses on small colour differences, whereas colour-based CBIR focuses

on large colour differences for reasons of effectiveness and efficiency.

Having resolved that HSV is the most suitable colour space for colour-based CBIR,
we now can move forward to improving the effectiveness of colour-based CBIR. As
mentioned in the previous chapter, the main problem of basic colour-based CBIR is
that they ignore the richness of information provided in the spatial relationships of
colours. In fact, the shape and texture features fotind in an image are provided by these
relationships. Unfortunately, the use of these two features requires image segmentation
which, to date, is inaccurate when automated and is time consuming when seginented
either manuanlly or semi-manuaily. By incorporating spatial relationships into colour-
based feature vectors, we can still harness the richness of the spatial information without
performing image segmentation. The next chapter focuses on colour-based feature

vectors which incorporate spatial relationships of colours.
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Chapter 4

Spatial Information for Image

Feature Extraction

The main problem: with feature extraction methods based on colour distribution is
they ignore the rich information provided by the spatial relationships of colours in the
image. As a result, their retrieval effectiveness tends to be low because feature vectors
of images with similar colour content but different spatial distributions are considered
similar although, visually, they can be very different. To address this problem, more
recent methods incorporate these spatial relationships and their retrieval effectiveness

tends to be higher compared to that of colour distribution methods.

The purpose of the work covered in this chapter is to improve the effectiveness and.
to a certain extent, the efficiency of colour-based feature extraction methods which
incorporate spatial relationships of colours by first analysing colour autocorrelogram,
one of the most promising existing methods, and then proposing a new method. We

then compare the proposed method with two other contemporary methods.

4.1 Colour Autocorrelogram

Huang et al. [47] proposed the colour autocorrelogram method to capture the spatial
relationships of colours in images. A colour correlogram “expresses how the spatial
correlation of pairs of colours changes with distance” [47]. A colour autocorrelogram is

concerned with how the spatial correlations of similar colours change with distance.

65
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4.1.1 Feature Extraction

Let T be an image of n x n pixels. A colour correlogram is calculated as [47):

®)
. @
YTy = =4

= AT <ok (1)

where I‘g? (Z) is the count of colour i when it is at k pixel away from colour j. k € [d),
[d] is the set of pixel distances to be considered, and A4;(Z) x 8% is the maximum number
of neighbours A; can have. Thus, when A; is 1 and % is 1, the maximum munber of
neighbours it can have is 8 and when & is 2, the maximum number of neighbours it can
haveis 16. A correlogram considers the spatial relationships between any pair of colours,
whereas an autocorrelogram considers the relationships between two similar colours (i
= j). The feature vector of image Q using an autocorrelogram with [d] = {1,2} and

M bins is ('leI, 7{92 .- .’yﬁl,'yﬁ?). The size of an autocorrelogram feature vector is

therefore d x M.

4.1.2 Distance Calculation for Retrieval

The distance between two autocorrelogram feature vectors is defined by the Canberra

dissimilarity metric [28]:

Qk _ Tk
Canberra(auto—correlogram) = Z e =2

oL Tk (4.2)
iepiireia € HIE ATt

where c is a constant > 0, to prevent division by 0. The distance can also be measured

using L1:

Ll{autocorrelogram) = E v — ~FR| (4.3)
i€ (M) keld)
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4.1.3 Analysis

Huang et al. observed that a colour histogram describes the probability of colours
i occurring in an image by measuring the count of colours i occurring in image I.
Autocorrelogram, in contrast, describes the coherency of colours by measuring the
probability of pickiag colour ¢ in image 7 at k pixels away. From (4.1), it can be seen
that the value of v depends on A and . For a fixed value of A4, v could be high or low
depending on I'. This property is useful because v can be used to differentiate coherent
pixels from incoherent ones. A high value of 4; indicates that colour ¢ is highly coherent
and a low value of 4; indicates that colour { is less coherent {49]. Likewise, for a fixed
value of ', v could be high or low depending on A. This property is also useful because

a colour with the same I but different 4 (pixel count) will be visually different.

The main problem with autocorrelogram is that v reaches infinity when A; = 0.
Traditionally, in spatial statistics, this is not a problem because there is no need to
compare non-existent data. However, when used for CBIR, the dissimilarity metrics
defined in (4.2 and 4.3) require a comparison even though A; = 0. Therefore, it is
necessary to assign a nunber to + when it reaches infinity as it is meaningless to

compare any number to infinity. Huang et al assigned it to 0 [49].

The replacement of infinity with zero means that the intended meaning of v no
longer holds; one can no longer assume that a low value of v is an indication of inco-
herency. This problem is best illustrated visually using Fig. 4.1 on the following page.
which shows four images of 8x8 pixels. Note that the ~,.4 of both image (a) and (¢).
printed in red, is 0 although image {(c} has no red pixels. It also shows their histogram
features and autocorrelogram features at {d] = {1} and [d] = {1,2} as well as the L1
distance between these features from image (a). If image (a) is the query image and L1
is the dissimilarity metric, then the ranking of retrieval results with autocorrelogram
using L1 when [d] = {1} is (c). followed by (b) and, lastly, (d). This ranking is incorrect
given that (b) is visually closer to (a). Even when using autocorrelogram feature with

[d} = {1.2}, the ranking remains unchanged. In the next section, we develop a feature

vector for overcoming the weakness in autocorrelogram.
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Query Image
auto-correlogram
hist. atk=1 atk=2
(a) red 0.125 o0 025
- yeliow | 0.875 073 053
Other Images
. aitocorrelogram dy (autocorrelogram) | d, {hist.)
ist. atk=1 atk=2 {d)={1) [d}=[1.2}
B
(b red 0.125 | 013 00 0.16 0.42 0.0

yellow (0.875 | 0.76 054

; red 0.0 o0 00 0.09 . 2
(c) yellow | 1.0 082 057 0.38 025

red 0125 | 05 0.125
(d yellow [0.875 | 08 0.55

0.57 0.715 0.0

Figure 4.1: Four images with their histogram values and autocorrelogram values when|d] = {1}

and [d] = {1.2} for illustrating the weaknesses and strengths of autocorrelogram and histogram
methods.

4.2 Improving Autocorrelogram

In the previous section, we showed that the spatial description of autocorrelogram is
sometimes inaccurate. This problem can be partially solved with the colour histogram
which can identify that it is image (b), not (c), that is closer to the query image. We
said it partially solves the problem because the histogram method ignores the spatial
relationships of colours, and consequently, the distance between images (b) and (d) to
image (a} is the same i.e. 0, even though image (b) is visually more similar to (a). On
the other hand, autocorrelogram which considers the spatial relationships of colours

can correctly identify the distance between image (b) and (d) to image (a).

In summeary, colour histogram describes pixel counts and autocorrelogram considers
the spatial relationships, 0 a combination of these two methods can be potentially effec-

tive. If [d] = {1,2}, the feature vector of image Q is now: (h?, 7?1,1{22, cey h? . 7%1,7%

}.
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The distance between any two feature vectors is defined as:
un * dis(autocorrelogram) 4 wy * Li(histogram) (4.4)

where w1 4+ wp = 1.0, and dis could be Canberra (4.2) or L1 (4.3).

We then conducted retrieval experiments to show that the proposed method is more
effective than the colour histogram or autocorrelogram alone. As both features have
different physical meanings, it is also necessary to determine the value of wn and provide
an explanation as to why the value is optimum. Theoretically, the sum of a normalised
histogram is 1.0 and the maximum L1 distance between two normalised histograms
L1{histogram) is 2. On the other hand, the sum of s in an autocorrelogram approaches
M, where M is the number of bins - from (4.1}, we know that the value of v approaches
1. We also know that the upper bound distance between two autocorrelograms is when
one feature vector has -’g bins of maximum coherency and the other feature vector
has the other %‘- bins of maximum coherency. In other words, the upper bound of
L1{autocorrelogram) approaches M. If wy is used to control the contribution of each
type of feature vector such that the maximum distance for Ll(autocorrelogram) is
equal to the maximun distance for Li{histogram) i.e. 2, then the value of wy is U‘?lﬁf;
however, because the maximum distance between two feature vectors in real images
for both Ll{autocorrelogram) and L1(histogram) does not normally reach this upper
bound, the value of w; must be determined empirically. This analysis, however, suggests
that w; should be set at a much lower value than wo, and we will investigate if this
analysis is correct. If wy is set to 0, the feature vector is the same as colour Listogram
and if it is set to 1.0, the feature vector is the same as colour autocorrelogram. When
0.0 > w; < 1.0, the feature vector is known as I-autocorrelogram (I-auto), standing for

improved autocorrelograri.

To illustrate why I-auto is potentially more effective than either histogram or au-
tocorrelogram, we recalculated the distance between the query image with the other
three images in Fig. 4.1 {the distance calculation was based on the disshinilarity metric

in {4.4), where dis is L1, wy = 0.2 and wp = 0.8):
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o distance between image (a) and (b) is now 0.032;

e distance between image {a} and (c¢) is 0.218; and

o distance between image (a) and (d) is 0.114.

Consequently, the ranking of retrieval is now (b), then (d), followed by (c): the results

now conform to visual similarity of the four images.

4.3 Experimental Parameters

There are three main purposes of the experiments: (1) to show if the proposed method
is more effective, (2) to determine the value of w; and (3) to explain why this value is

optimuin. Besides this, there arc other issues which need to be addressed and they will

be described as follows.

Huang et al suggested using RGB colour space with uniform quantisation of four
intervals of R, G and B, which gives 64 bins, and the Canberra dissimilarity metric
with c=1 and [d] = {1.3,5,7} [47]. However, no experiment was carried out to test
how these parameters influence the effectiveness of autocorrelogram. The justification
for studying the effect of the dissimilarity metric, the choice of [d] and colour space is

explained next,

4.3.1 Dissimilarity Metric

L1 is used widely in CBIR to measure the dissimilarity between two feature vectors, so
we are interested to know if it can also be used for autocorrelogram. We set ¢ in the

Canberra dissimilarity metric to 1.0 as recommended by Huang et al [49} and evaluated

the effect of both metrics.

g
E:
:
't
4
]
"y
3

S SPRPEE A R AR S

PPIE TSI TR LY PR

84.3 [Experimental Parameters 71

4.3.2 Choice of [d]

Huaug et al. recommended using {d] = {1,3,5.7}. but the influence of [d} on the
effectiveness was never studied. Note that as the number of d increases. the sive of
the feature vector also increases therefore reducing efficiency. Nevertheless, the choice
of [d] was never justiﬁéd. In this experiment, we also studied the effectiveness of
autocorrelogram at different levels of d, that is when [d] = {1}, [d] = {1.3}, |d] =
{1,3,5} and [d] = {1,3,5,7}. The purpose of studying this parameter is to justify the

choice of [d].

4.3.3 Colour Space

Huang et al. also recommended using autocorrelogram in RGB with quantisation inter-
vals of 4 x 4 x 4. It was established in Chapter 3 that the effectiveness of colour-based
CBIR with uniform quantisation is highly dependent on the colour space and gquaanti-
sation intervals. We found that RGB 4 x 4 x 4 is less effective than the recommended
colour space at the recommended quantisation intervals i.e. HSV 18 x 3 x 3. To be
complete, we first evaluated autocorrelogram in RGB 4 x 4 x 4 and HSV 18 x 3 x 3.
Then, for a fair comparison, we also evaluated RGB 6 x 6 x 6, which has a similar

number of bins to HSV 18 x 3 x 3. .

4.3.4 Weighting of w,

‘The optimum value of wy was obtained empirically by varying the value of w,, starting
from w; = 0.0 with an increment of 0.05, 0.1 or 0.2 until w; = 1.0. If there is an
optimum dissimilarity metric and choice of [d}, then we only need to vary the value of
w) at the optimum dissimilarity metric and [d]. However, it is necessary to evaluate
w; at RGB 4 x 4 x 4 and RGB 5 x 6 x 6 as well as HSV 18 x 3 x 3 in order to explain

why there is an optimum valus for w,.
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4.4 Experimental Setup and Evaluation Criteria

The experiment setup and evaluation criteria were the same as defined in Section 3.1,
but for the evaluation of efficiency, only method one will be used since we are not making
any recommendation on quantisation option. To recap, the retrieval experiment was
conducted in GIFT using PCD and CCD. The effectiveness was evaluated using PR
graphs and the efficiency was evaluated using only method one, that is by comparing
the size of feature v:ctors. Like the previous chapter, in PCD, 50 images were used as
queries and in CCD, 32 images were u~ed as queries. The PR graphs for each database

are made up of the average PR graphs from all queries in each database.

4.5 Results and Discussion

This saction examines the effect of four parameters: the dissimilarity metric. ld], colour

spaces and the values of w;.

4.5.1 Effect of Dissimilarity Metric

Figure 4.2 on. the following page shows the PR graphs with CCD using RGB 4 x 4 x 4
at different values of d using L1 and the Canberra dissimilarity metrics. It is clear
that the difference between the two dissimilarity metrics at all values of d is negligible.
This observation is also true with CCD in HSV 18 x 3x 3, PCD in RGB 4 x 4 x 4 and
HSV 18 x 3x 3 (all graphs can be found in Appendix C.1). The remaining exp(;riments

therefore use only the L1 dissimilarity metric, as it is simpler.

4.5.2 Effect of [d]

Figure 4.3 on the following page shows the PR graphs when w; = 1.0 for CCD and
PCD 20% in RGB and HSV colour spaces. As mentioned before, when w; = 1.0, the

feature vector is the same as the autocorrelogram. With CCD in RGB and HSV, there

was cnly a slight difference at recall value of 0.1 and, later, at recall value of 0.7. With
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Figure 4.2: Autocorrelogram at [d} = {1}, [d] = {1.3},(d] = {1.3,5} and d= {1,3,5,7} using
L1 and Canberra dissimilarity metric,

PCD 20% in RGB, the size of [d] had some effect at recall value of 0.1 and 0.3, but
in HSV, there was an aimost negligible effect (the results with PCD at all levels of
agreement can be found in Appendix C.2). To summarise, the effect of the size of [d]

on the effectiveness is negligible.

This finding is significant becauvse the size of the feature vector when [d] = {1,3,5,7}
is four times the size of the feature vector when [d] = {1}, yet they both have similar ef-
fectiveness. Theoretically, small values of & capture spatial relationships in small blocks

and large values of &k capture spatial relationships in large blocks, so higher values of
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Figure 4.3: PR graphs with CCD and PCD 20% in RGB and HSV colour space at diffevent
[d] for autocorrelogram () = 1.0).
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k can better capture overall colour relationships. In practice. when autocorrelogram is
used for CBIR, the majority of spatial relationships arc¢ already captured when k=1,
so the contribution of k£ when it is large is negligible. Figure 4.4 shows two images of
5 by 10 pixels. The spatial relationships of red in both images are different and this
differenca, to a certain extent, is already captured by autocorrelogram when k=1. Al-
though the difference can iso be captured when & = 2 and k£ = 3, what can be captured
at higher values of k is already captured at k=1. This means that in most cases, using
a higher value of k has little effect on retrieval effectiveness. In the remaining sections,

we will only study the results for [d] = {1}.

autocorrelogram
at k=1 ot k=2 at k=3

(a} red 0.56 0.19 0.0
yellow 564 041 0.28

{ red 0.72 0.42 0.23
yellow  g.s59 0.3 0.14

Figure 4.4: Two images at different values of k. The spatial relationships of the colours, to a
certain extent, is already captured by autocorrelegram when k=1.

4.5.3 Effect of Colour Space

Figure 4.5 on the following page shows the PR graphs when w; = 1.0 with CCD and
PCD 20% in RGB 4 x4 x4, RGB 6 x 6 x 6 and HSV 18 x 3 x 3 (the complete results
with PCD can be found in Appendix C.3). With CCD using RGB, autccorrelogram in
both quantisation levels is more effective than the colour histogram. In Chapter 3, we
showed that in RGB 4 x4 x 4, many perceptually different colours are quantised into the
same bin. In colour histograin, the probability of perceptually different colours having a
similar histogramn count is high; therefore, the retrieval effectiveness of colour histogram
is low. On the other hand, with autocorrelegram, the probability of perceptually differ-
ent colours having similar correlation is lower than that of colour histogram; therefore,

autocorrelogram is more effective than the colour histogram. For HSV18 x 3 x 3, it is
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hard to say if autocorrelogram or the colour histogram is more effective, as they are

more effective than the other at different recall ~ralues.

CCD[d] = {1} PCD 20% [d] = {1}
1p- 1=
—{5~ RGB 4xdxd w,=0.0
os L 08 —R— RGB dndxd wy=1.0
k &= —{&— RGB Bx6x6 wy=0.0
w-@— RGE Bx6xf wyel.0
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Tigure 4.3: PR graphs with CCD and PCD when {d} = {1} for colour histograin (w; = 0.0)
and autocorrelogram {w; = 1.0}.

With PCD using RGB. autocoirelogram RGB 4 x 4 x 4 is more effective than the
corresponding histogram. On the other hand, with RGB6 x 6 x 6, it is only at PCD
70% that autocorrelogram is more effective (sec Appendix C.3). With PCD 20%, 30%
and 50%, it appears that the histogram is more effective. One possible explanation is
that because PCD is a more subjective database, it could be that some images have
similar colour count but different spatial correlations. This would also explain why only
at the 70% level of agreement that autocorrelogram outperforms histogram. This is
because at such a high level of agreement, only images which are visually very similar
have been chosen to be relevant, so the colours are more likely to have similar spatial

correlations.

At H5V 18 x3x 3, surprisingly, the histogram is more effective than autocorrelogram.
Perhaps in HSV 18 x 3 x 3, the spatial descriptor ¥ reaches infinity more often than
both RGB 4 x4 x4 and RGB 6 x 6 x4. The results of autocorrelogram in HSV18x 3x 3
using CCD and PCD show the importance of testing a new feature vector using several
colour spaces. When autocorrelogram was first proposed, the comparison was made

only in RGB4 x 4 x 4, and as a result, it seemed that autocorrelogram was always
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better than the colour histogram, but our study shows otherwise.

4.5.4 Weighting of w,

The value of wy; was tested using the dissimilarity metrics L1 with [d] at 1 because L1
is just as good as the Canberra dissimilarity tnetric, and the effect when [d] > 1 is
negligible. The PR graphsin RG34x4x 4. RGB6x6x6and HSV 18 x3x 3 +*4
both CCD and PCD 20% are given in Fig. 4.6 on the following page (the complete
results with PCD can be found in Appendix C.4).

Tt can be seen from the graphs that the optimal value of wy for RGB 4x 4 x4 is
0.2; the optimal value of w) for RGB 6 x 6 x § is 0.1; and the optimal value of w; for
HSV 18 x 3 x 3 is {0.05,0.1} (i.e. the results when wy = 0.05 or when w; = 0.1 is
very similar). In Section 4.2, we predivted that the value of uy should be kept much
lower than w; and the empirical study confirmed this. The reason that the w; of RGB
6 x 6 x 6 is lower than that of RGB 4 x 4 x 4 is because there are more bins in RGB
6% 6x6 (216 bins) than in RGB 4 x4 x4 (64 bins). The sum of 4s in an autocorrelogram
with a greater numbc: of bins will be higher than a feature vector with a fewer numnber

of bins, so w; can also be viewed as the normalising factor.

The discussion on the parameters of I-auto is now complete. The next section

compares [-auto at the appropriate value of wj; with autocorrelogram.

4.5.5 Effectiveness of New Feature Extraction Method (I-auto)

Figure 4.7 on the following page compares the effecsiveness of the I-auto at the ap-
propriate value of wy with autocorrelogram. To make the discussion easier, all I-auto
feature vectors calculated at their optimum w, are indicated with an asterisk (*); for
exanmple, *HSV 18 x 3 x 3 means I-auto calculated in HSV 18 x 3 x 3 where un = 0.05.
It is clear that for the same colour space in the same quantisation level, I-auto is al-
ways better than autocorrelogram. In Section 4.5.3, we found that for HSV 18 x 3 x 3,

histogram is, overall, more effective than autocoriciogram. It is interesting to see how
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Figure 4.6: PR grapbs of the I-auto at different weight for the autocorrelogram in RGB
4 X 4 % 4 using CCD and PCD,
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I-auto performs against histogram for HSV 18 x 3 x 3. Figure 4.7 clearly shows that

*HIV 18 x 3 x 3 is more effective than HSV 18 x 3 x 3 in both CCD and PCD, so it

means that J-auto is more stable than the autocorrelogram.

With CCD, *HSV 18 x 3 x 3 is most effective. With PCD 20%, *RGB 6 x 6 x 6
and *HSV 18 % 3 x 3 are the top two most effective feature vectors with the RGB being
slightly better than the HSV; however, *HSV 18 x 3 x 3 is slightly more «ffective than
*RGB 6x6x6 at PCD 70% (sece Appendix C.5). We, therefore, cannot conclude whether
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*HSV 18 x 3 x 3 is better or worse than *RGB 6 x 6 x 6 but we can confidently conclude
that given the same colour space and the same number of quantisation intervals, I-auto

is always more cffective than the histogram or autocorrelogram alone.
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Figure 4.7: PR graphs of CCD and PCD 20% when [d] = {1} and different values of w,.

This section completes the analysis on I-auto and the comparison of I-auto with
histogram and autocorrelogram. The next section discusses the evaluation of -auto

against contemporary methods.
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4.6 Evaluating I-auto Against Contemporary Feature Ex~

traction Methods

To show the strength of [-auto, we compared I-auto against other contemporary feature
extraction methods which incorporate the spatial relationships of colours i.e. Spectrally
Layered Colour Indexing (LCT) and MPEG-7's Colour Structure Descriptor (CSD). The

reason for choosing these two methods is as follows.

Autocorrelogram is one of the best colour-based feature extraction methods us-
ing uniform quantisation which incorporate spatial relatiouships of colours and is of-
ten compared against other contemporary methods such as colour anglograms and
LCI [107, 145]. Tao and Grosky found that the colour anglograms method is more ef-
fective than autocorrelogram, and Qiu and Lam found that LCI is more effective than
autocorrelograin. In this research, however, we only compare LCI with I-auto. The
colour anglograms method was not used because it requires image segmentation and
the procedure for segmenting the images appears quite specialised. It appears that the
segmentation metlod will only work for colour iinages which have distinct large objects

with uniform colours.

The other methed compared with I-auto is Colour Structure Descriptor (CSD), one
of the colour feature extraction methods defined in the (MPEG-7) standard. It was
singled out for the comparative study because it is the most effective MPEG-7 colour-
based feature extraction method {72]. The next sections describe LCI and CSD in more

details.

4.6.1 Spectrally Layered Colour Indexing (LCI)

LCI was reviewed in Chapter 2. It belongs to pixel-based classification m»ethods which
capture the spatial relationships of colours by classifying pixels intc different categories.
LCI classifies the pixels into four categories, and aftcr categorising the pixels, it then ex-
tracts the colour feature at each category using colour histograim [107). The LCI feature

vector for an image is the aggregation of the histogram at each category: (fi,---, fa),
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where f; is the histogram of colours at frequency level i. To categorise each pixel into
four levels of frequency, we need three thresholds: T3, 7T» and T5. In this experiment,
we used the threshold values specified by Qiu and Lam {1} = 6, T, = 12 and T3 = 18).
The histogram for each layer was then extracted using HSV 18 x 3 x 3. Qiu and Lam
also used the Conberra dissimilarity metric (4.2) to calculate the distance between any
two LCI feature vectors [107]. To be complete, we also performed the experiment using

L1 dissimilarity metric.

4.6.2 MPEG-7 Colour Structure Descriptor (CSD)

CSD captures the colour distribution as well as the spatial distribution in images; it is
histogram-like with the additional spatial information. The extraction of CSD feature

vectors is described below with the aid of Fig. 4.8:

1. An element of 4 x 4 pixels which must always be within the image visits every

pixel in the image at least once.

2. If the quantised colour is within the element, the histogram of the corresponding

bin is incremented by 1.

colour bin value

(8) € b} +1
< Wl w2) +1
colour bin value
(b} € (1) +i
© 2}

Figure 4.8: Extraction of the CSD feature vector.

For example, in Fig. 4.8(a), both quantised colours are in the element, so the his-
togram count of both colours are incremented by one. The element is then shifted by
one pixel to the rizht as seen in Fig. 4.8(b), and only the histogram count of yellow
colour is incrememid because the element contains only yellow pixels. If a colour is

coherent, then the histogram count of the corresponding bin will be high, since it will
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be found within the element more frequently. On the other hand, if a cclour is incoher-
ent, then the histogram count of the colour will be low. The example uses a mask of
4 x 4 pixels to simplify the discussion, but the actual implementation uses an element

of 8 x 8 pixels, as recommended by the MPEG-7 standard.

The amplitude of the histogram is then normalised to the range [0.1) and non-
uniformly quantised into eight bits - the MPEG-7 group obtained the quantisation
option from an empirical study. It is believed that the nonlinearity of the quantisation
“givels] the small values greater weight in the similarity measure than they would
otherwise have” [72]. The distance between any two CSD feature vectors is calculated
using the L1 dissimilarity metric. CSD uses the HMMD (Hue — Max — Min — Dif f)
colour space proposed by the MPEG-7 group [72]. It was claimed that HMMD is “closer
to a more perceptually uniform colour space” [72], but it is not widely used even within
the MPEG-7 community. The HMMD colour space is then non-uniformly quantised
into 32, 64, 128 or 256 bins, with 256 bins being the most effective. For this reason, we

used the quantisation option of 256 bins in this study.

4.6.3 Experimental Setup and Evaluation Criteria

To evaluate which feature extraction method is more effective, several retrieval exper-
iments were conducted in CSD, LCI, and I-auto HSV 18 x 3 x 3 (vy = 0.05). The

experiment setup and evaluation criteria were the sane as in Section 4.4.

4.6.4 Results and Discussion

Figure 4.9 on the following page shows the PR graphs with CCD and PCD 20%. The
trend using PCD is similar at all levels of agreement, and the complete results can
be found in Appendix C.6. With CCD, it can be seen that I-auto and CSD are most
effective, followed by LCI It is also clear that in LCI, there is not much difference
between using L1 or the Canberra dissimilarity metric. With PCD 20%, I-auto and
LCI are most effective followed by CSD. The next sections wiil analyse the results of

comparing I-auto with CSD and then with LCL.
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Figure 4.9: PR graphs for LCI, CSD and I-auto with CCD and PCD.

4.6.4.1 Analysing Results of I-auto and CSD

Figure 4.9 shows that CSD is slightly more effective than I-auto in CCD but less effective
than I-auto in PCD. CSD was tested using CCD and the parameters ¢tir» ~uantisation
intervals of HMMD and the normalisation of the histogram amplii*-1-} were selected to
maximise its effectiveness. It could be that the parameters are ti.ou . only CCD, so
when it is used to extract feature vectors from a different database, tue recommended
parameters are no longer optimum. Having to customise the parameters makes the use
of CSD iu real world applications less practical because these parameters have to be
recalculated for each database, and “hey may change as new images are added to the
database. In contrast, the parameters in I-auto (the number of quantisation intervals
of HSV and the value of w;) are generic, so the same parameters can be used for other

databases. For this reason, I-auto is preferred over CSD.

4.6.4.2 Analysing Results of I-auto and LCI

With CCD, I-auto is more effective than LCI because I-auto's spatial measurement is
more accurate than that of LCI. LCI uses a pixel classification method which can be
viewed as a quantisation of the spatial correlation. In contrast, I-auto captures the exact

spatial correlation, so it can retrieve more relevant images. LCI, which quantises the
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spatial correlation, uses the same quentisation level to describe many more images, and,
as a result, it retrieved more irrelevant images. With PCD. 1-auto is just as effective as
LCI. Recall that the relevant images in PCD are obtained using a subjective *rst. so
relevant images may have different spatial relationships. Because of this, the use of LCI

is sufficient and the advantage of a more accurate spatial description is less evident.

In terms of efficiency, LCI captures the relationships of colnrrs by pixel classification,
and the methods using this approach is highly inefficient. In contrast, I-auto captures
the spatial relationships using a spatial descriptor, which is a more efficient approach

than pixel classification: the size of I-auto is half the size of LCI.

In summary, I-aute is, averall, more effective than LCI. Given that the size of I-auto

is half the size of LI, it is therefore also more efficient than LCIL.

4.7 Summary

To show that I-auto - the proposed method - is most preferred, we compared I-auto
with two contemporary methods which incorporate spatial relationships of colours (CSD
and LCI) by conducting retrieval experiments. It was found that I-auto is preferred
over CSD because I-auto’s parameters are more generic those of CSD, and therefore,
they can be used for other image databases. The parameters for CSD, that is the
quantisation for the colour space and normalisation of amplitude, not only have to be
customised for each database but they also need to be recalculated as new immages are
added to the database. This study also found that I-auto is at least as effective as LCt
but twice as efficient. We, therefore conclude that I-auto is preferred over CSD and

LCI for extracting colour features incorporating spatial relationships,

4.8 Conclusions

An analysis of avtocorrelogram suggests that colour histogram and autocorrelogram

complement each ctner, so it is natural to use both methods to extract features from an
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image. Because both features have different physical meanings and ranges of values, it
is necessary to control the contribution of each feature to the overall dissimilarity using
a weighting factor in the dissimilarity metric. The value of this factor was determined
empirically. by carrying out retrieval experiments. We found thai there is an optimum
value for this factor and explained why. The proposed method is known as I-auto,.
standing for improved autocorrelogram. Experiimental results showed that l-auto is

more effective than the autocorrelogram and colour histogram.

I-auto is then evaluated against LCI and CSD, two contemporary colour-based fea-
ture extraction methods which incorporate spatial relationships of colours, by carrying
out retrieval experiments. This study found that I-auto is preferred over CSD because
I-auto is more generic than CSD. It also found that I-auto is at least as effective as
LCI but twice as efficient. LCi captures the relationships of colours by pixel classifi-
cation, which is a highly inefficient approach. In contrast, I-auto captures the spatial
relationshipe using a spatial descriptor. which is a more efficient approach than pixel
classification. We thus conclude that I-auto s preferred over CSD and 1LCI for extract-

ing colour features incorporating spatial relationships.

This chapter concludes the research on feature extraction. The rest of the thesis

will now focus on browsing large scale image databases.
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Chapter 5

Browsing Large Scale Image

Databases

The research in the previous chapters is concerned with image retrieval, that is, given
a sample image, find a set of similar ones. Unlike image retrieval, where we lock for
specific sets of images, when browsing, we “examine in a casual way” [26]. The notion
of browsing is that viewers inspect large collections of objects, hoping to discover items
of interest. People browse in their daily life i.e. in shops, supermarkets and libraries.
In these places, the items are arranged systematically so that shoppers or visitors can
find what they want with relative ease. Browsing also implies interaction; for example,

if an item is partially obscured, it is possible to shift or remove the offending item.

Image browsing is far less understood than image retrieval, so we need to establish
what it means. In this thesis, it is similar to browsing in daily life. A computer
program which facilitates image browsing must replicate the two functions that enable
browsing in daily day life i.e. systematic arrangement and interaction. One systematic
arrangement of images is to group them by visual similarity, A program which displays
images in such a layout enables users to visualise the database, that is, to obtaiu a
quick overview of the content of the entire database. The program must also provide
a set of tools so that users can interact with (navigate) the database. In surmmary,
image browsing in this thesis refers to the ability to visualise and navigete image
databases. Browsing is another search mode, and it is an important natural complement
to retrieval. In fact, their roles are so complementary that they can be integrated to

support one another. However, the research in image browsing is relatively mew in
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comparison to image retrieval.

The aim of the research described in this chapter is to formulate an image brows-
ing framework appropriate for browsing large image databases by providing users an
averview of the entire database and intuitive navigation tools. To be successful, the
framework must enable users to transfer their daily browsing behaviour into browsing
images. A review of current work finds that no existing system supports browsing.
The proposed framework not only supperts browsing but also allows users to find an
appropriate sample image to initiate a visual query. In a visual query, users submit a

sample image in order to retrieve a set of relevant images {query-by-example).

5.1 Previous Work

The visualisation of image databases is made possible by proximity visualisation in
which the location of itnages are dictated by their visual similarities and dissimilarities.
Faloutsos and Lin were the first to describe image database visualisation [35]. They

first proposed “FastMap”,. an algorithm for reducing high dimensional feature vectors

into two or three dimensions (2D or 3D). Then, they plotted the reduced feature vectors

as points, not images, into a 2D or 3D space. The purpose for creating the visnalisation
display was to reveal potential clusters and other features useful for data-mining. not

to support browsing.

More recent systems attempted to support browsing by displaying the iinages [18,
46, 117, 118, 119, 121, 122]. Some of these systems can display only several hundred
images, for instance, Santini and Jain described the El Nifio system, which displays
images in proximity visualisation {121, 122}. They report that “for practical reasons,
an interface can't present more than a small fraction of the images in the database”
[122]. El Nifio displays at most 300 images, so it clearly does not support browsing of
a complete image database. Other researchers claimed that their systems can display
thousands of images but unfortunately, the images in most of these systemns are overlap-

ping, very small or both, so it is impossible to view them properly. Hence, the systems
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are less useful than what they could be [115}. In trying to make the systems more useful,
some researchers rearranged the layouts to reduce or even eliminate the overlapping,

while attempting to preserve the mental map of the original layouts [84, i. 7, 150].

Rodden et al; eliminated all overlapping by using a proximity grid to restrict the
location of the images to regular grids [115]. Figure 5.1 illustrates the difference between
a proximity visualisation and a proximity grid [115]. Although the proximity grid is
effective in removing overlapping, it is less efficient in terms of screen real estate usage.
As a result. only a small number of images, in the order of 100, can be effectively

displayed.

{a} Proximity visualisation. {b} Proximity grid.

Figure 5.1: An example of using proximity grid to eliminate overlapping.

Moghaddam et al. reduced the overlapping using an algorithm they described
as “optimised PCA splat” [84, 82, 83]. It is a non-linear constrained optimisation
algorithm: the goal is to reduce overlapping and the constraint is to preserve the
mental map of the layout. An example of a layout generated using the “optimised
PCA splat” is given in Fig. 5.2 on the following page; note that to further reduce the
overlapping. the images in the optimised PCA splat layout are smaller than those of

the original [ayout.

Reorganisation of layouts to reduce or remove node overlapping but still maintain-




90 Browsing Large Scale Inage Databases

Relevant Tmages —

{a) Original layout. {b) “Optimised PCA splat™.

Figure 5.2: An cexample of using “optimised PCA splat” to reduce image overlapping,

ing the layouts’ mental inap is an active research area in graph layout {55. 75. 81]. The
contemporary algorithm for solving this problein is QUAD. proposed by Marriott et
al. [75]). However, neither overlapping reduction nor removal is an ideal solution for
solving the overlapping problem because as the number of images increases. the size of
the images to be displaved must further decrease; it is meaningless if the images are
too small to be useful to users. To demonstrate this, we requested Prof. Marriott’s
QUAD source code and used it to optimise a layout of 472 images we had generated.
The original layout and the QUAD optimised layvout are given in Fig. 5.3 on the fol-
lowing page. As expected. fitting the optimised layout into the screen results in some
overlapping and to reduce all overlapping. the images have to be even smaller. It is
clear that image overlapping removal is not the optimal solution for displaying large

databases.

To manage large databases, other researchers use tree or pyramid structures which
have multiple hidden levels. At each level, a parent node points to a small munber of
child nodes. and the number of parent nodes at cach level is restricted to 100 [19. 51. 77}
Initially. the systens display only the top most parent nodes. At first. such an approach
seems intuitive as it is similar to the divide and conquer technique so often employed
when dealing with large amounts of data. In the context of visualisation, however. this
approach is inappropriate for two reasons. First. such systems fail to provide an overall

view of the entire database; therefore, it does not support effective browsing. Secoud,

§5.1 Previous Work g1

(a) Original

(b) Optimised by QUAD
Figure 5.3: Visualisation of 472 images.
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navigation is confusing as users have to backtrack if they wish to visit the children a

different parent.

The system proposed by Pe¢enovié et al. is by far the most complete and power-
ful [102), as it can display more than several hundred images at a time {Figure 5.4
shows two screen shots of their system). This system has two windows: one for vi-
sualisation (in the green box)} and another for displaying the selected images in the
visualisation window. Users are expected to navigate the database by using the red
box in the visualisation window. The images within the red box are then displayed in a
separate window and users can zoom in to see the immages in more detail. Yet, this sys-
tem remains unsatisfactory for browsing for the following three reasons. First, it uses
a tree structure and the use of this structure is unsuitable for the reasons given above.
Second, the images in the visualisation view are too small to be useful for browsing.
The use of such a view is common in image editing programns for panning an image,
such as in Gimp or ImageMagick [1, 2]. However, it is less appropriate to use this
technique for visualisation because the images are too sinall for navigation. Third, it
is a multi window system which lacks an overall context because there is no continuity

between windows [131].
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Figure 5.4: Screen shots of the system described by Peéenovié et al. Users can zoom and pan
to see the images in more details. However, the images in the visualisation view (in green box)
are too small to be useful.
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5.2 Towards Browsing Large Scale Image Databases

Existing systems are clearly inadequate for browsing large image databases. They
all fail because of the degree of overlapping and the techniques used to resolve the
overlapping are undesirable for browsing. The design of a visualisation system suitable
for browsing large databases requires a more systematic approach, which could be

divided into three steps:

1. The use of an algorithm for generating layouts for image databases (Section 5.3).

2. The selection of image features to generate a suitable layout. This is important to
ensure that the generated layout is useful for browsing because a random display

of images does not facilitate browsing.

3. The introduction of innovative techniques to support browsing of large image

databases (Section 5.4).

The first step can be completed using readily available algorithms, whereas the second
and third steps are previously unanswered research questions, and therefore, are the
research contributions of this thesis. The research into feature selection in the second
step is dependent on the type of images (such as colour or texture images), and because
we are formulating a browsing framework which must be independent of the type of
images, feature selection will only be discussed in Chapter 6 for browsing general colour
image databases and Chapter 8 for browsing grey-scale texture image databases. This
chapter only concentrates on the first and third step, and it is assumed that a suitable

feature for browsing already exists.

5.3 Proximity Visualisation

The very first task to visualise an image database is to select an algorithin for generating

a layout required for visualisation. The following sections describe how to achieve this.
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5.3.1 Basic Concept "
&
As mentioned earlier, proximity visualisation is the core of image database visualisation. o® c
.
This section explains this concept in more detail. Proximity visusi ation, in general, is oD
a type of display in which the proximity of objects is dictated by their similarities and i . of

dissimilarities. To use proximity visualisation, the objects must first be represented Figure 5.5: A map of point A-F.

in feature vectors so that the distances between the feature vectors can be calculated

. e . . . ) . ) ) ) : A |B |C D |E
using a dissimilarity metric. The distance between two objects in the display is their 10
; .
Euclidean distance, and it should reflect the dissimilarity of the objects they represent. 201! 1.0

25| 15|06
2512413234
25115131025

After selecting the features and dissimilarity metric, it is possible to generate a layout

mEOOWE

for the objects using dimension reduction algorithms such as Multidimensional Scal-

ing (MDS), Principal Component Analysis (PCA), or optimisation algorithins such as i Table 5.1: The distances between all points in Fig, 5.5

genetic algorithms. They all are equally valid choices [9], but in this rescarch we used

MDS algorithms because they are more versatile [34, 157, 158]. in [25]):

(6.1)

2 g(dis ~ 9;'3')2} 12

Stress = [
s

5.3.2 Deriving Layouts for Proximity Visualisation Using Multidi-

mensional Scaling (MDS) where di; is the distance between objects i and j in the original dimension and g;; is
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the Euclidean distance between point 7 and j in the layout. Stress measures how well
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The use of MDS algorithms can be described using the following example. Figure 5.5 the layout in the low dimension represents the distances between objects in the high

b o
[ iEtrom,

on the following page shows the location of six points (A to F) on & two dimensional dimension. A lower value of Stress is more desirable. with the ideal value being 0 which

map; finding the distances between all points is easy. Using a ruler, Table 5.1, which
lists the distance between any two points, can be easily produced. However, if the
question is reversed, given the distances between all points find the layout of the points,
the task is no longer easy. MDS algorithms are used to answer such a question, and
the layout it produces can then be used to draw a map similar to that of Fig. 5.5,
a proximity visualisation. We say similar because the generated layout may have a
different orientation to the map in Fig. 5.5 but the relationships of all points in the

generated layout are the same as the points in the map.

MDS algorithms find a layout by minimising Stress. Several definitions of Stress
have been given in the literature [9, 25, 28, 88, 117, but in this thesis, it is defined as

A Ty A

indicates a perfect representation. Stress as defined in (5.1) penalises mismatches
of objects with short distances more heavily than mismnatches of objects with long
distances. In other words, it is more important to represent objects with short distances
more faithfully than objects which are far apart. On the choice of the MDS algorithm,
classical MDS is effective but has high complexity i.e. in the order of O(N3). More
recent MDS algorithms are incremental and therefore more efficient [25, 88]. In this
research, we used the hybrid method described by Morrison et al. which has an overall
complexity of O(N) [88].

In the hypothetical example given above, the distances between the features (the

points in the table) are in high dimension, while the distances between the points on
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the map or layout are in low dimension. This means the number of dimensions for
the points in the high and low dimensions happens to be the same, so it is possible to
generate a layout which can faithfully represent the distances between all points. In
real world applications, the number of dimensions for the features are often higher than
those in the layouts, so it is impossible to represent the distances faithfully in the layout,
as illustresed in the following example. If there are only three equidistance objects, they
can be represented in a two dimension layout but if there are four equidistance objects,
it is impossible to represent the distances faithfully in two dimensions: at lexst three
dimensions are needed. This problem is not unique to MDS aigorithms; it is common
to all dimension reduction algorithms. The more important issue is how to select a
suitable set of features so that the MDS algorithm can generate a meaningful layout.
The choice of thie right features is therefore of prime importance in determining the

usefulness of the display.

Because feature sele-t2 m is dependent on the type of image databases and we are a
proposing a framework independent of the type of iinage databases, the issues related
to feature selection will be explored in Chapter 6 for browsing general colour image
databases and Chapter 8 for browsing grey-scale texture image databases. For now,
we assume that a feature suitable for browsing an image database already exists and a
layout has been generated using the process described above. In the next section, we

investigate techniques suitable for browsing large scale image databases.

5.4 eyeMap, an Image Browsing Framework for Large Im-

age Databases

Browsing large scale image databases are challenging for two reasons. First, many
images need to be drawn on a limited screen area, thereby introducing more image
overlapping. Second, the system’s response time is proportional to the number of im-
ages: the more images, the longer response time. For users to feel that their actions

have direct impact, the system must respond within 100 ms {126). Previously developed
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systems mainly displayed only a small number of images. about 200, so image over-
lapping and response time were not major issues. Other systems that do display more
images provide no useful visualisation because either there is too much overlapping or

the images are too small, only several pixels wide.

The central principle of Shueiderman’s visual design guidelines is “overview first,
zoom and filter. then details on demand” [126]. The proposed image browsing frame-
work, eyeMap, is designed with this guideline in mind to ensure that it is usefu} for
browsing large scale image databases. It is possible to address the two problems de-

scribed above and still adhere to the guideline by:

¢ clustering the images vo reduce the number of images to be displayed at any one

time;
e removing image overlappiitg; and

¢ allowing users to hide images which are definitely not the target image.

The following sections describe each strategy in detail. The approach taken in
eyeMap for dealing with large numbers of imeages is innovative because it is cfficient in

using screen real estate and intuitive for users to manipulate.

5.4.1 Image Clustering

To facilitate the browsing of large scale image databases, eyeMap reduces the number
of images to be displayed at any one time by clustering the images. The image closest
to the centroid of the cluster is considered the representative image, and initially only
these images are displayed. Note that this approach is different from the tree or dynamic
structures which use multiple hidden levels. eyeMap uses only one hidden level, and
the user interface described in the next section makes eyeMap easy and intuitive to use.

In summary, the steps for producing the final visual layout are:

1, Extract feature vectors from images.
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2. Cluster the images using the k-means clustering algorithm.

3. Find the representative image of each cluster (the image closest to the cluster’s

centroid).
-..-.s a visual layout for the representative images.

- Find the visual layout for non-representative images for each cluster. These im-

ages are simply placed around the representative image of each cluster.

Initially, eyeMap only displays the represcntative images and, only if the represen-
tative images are in the area of interest {(focal region) it displays the corresponding
non-representative images. Users can intuitively specify the focal region using Distor-

tion Oriented Displays. which will be explained in the next section.

5.4.2 Removal of Image Overlapping

The second strategy to enable browsing of large scale image databases is to provide
intuitive tocls s0 that users can remove image overlapping. This section describes how
eyeMap can effectively remove the image overlapping and still maintain efficient use
of screen real estate using two related approaches: using Distortion Oriented Displays
(DOD) and displaying a small number of images linearly in a separate window, with

the help of DOD.

5.4.2.1 Distortion Oriented Displays (DOD)

Apart from removing image overlapping, DOD allows users to look at the trees without
losing the sight of the forest by displaying different levels of detail on the same screen
using the concept of focal and context regions. The focal region is the area of interest;
it is the focus or the trees, and therefore shows more detail. The context region is the
overview; it is the context or the forest, and therefore shows less detail. A typical use
of DOD is in geographical information systems (a research area involving electronic

maps), where the spectrum of details fromn the overview to the focus region progresses
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from state boundaries, then town boundaries and, finally, street boundaries as shown
in Fig. 5.6 [131]. To adapt DOD for eyeMap., we modified this spectrum of details
to progress from the display of representative images in smaller size to the display of

corresponding non-representative images in bigger size.

Figure 5.6: A sample of a geographical information system showing the map of Australia. In
the context region, only the state boundaries are visible, whereas in the focal region (within
the circle), town and street boundaries are visible.

Spence and Apperley proposed the first DOD system using the one dimensional
bifocal display in 1982 for interactive computer applications. It was one dimensional
because the view could only be magnified or demagnified in one dimension {132]. Fig-
ure 5.7 on the following page shows a circle data set (a) undistorted and (b} distorted
using a bifocal display with a distorticon factor of four. The red cross is the focal point,
which is simply the cenire of a focal region; the region within the red rectangle is the
focal region; and the region outside the rectangle is the context region. A distortion
factor of four means that the distances between the circles in the focal region are now
four times as far as they would normally be had they been undistorted. For a prede-
fined window size, the magnification in the focal region forces demagnification in the
context region to maintain the same overall size. Since the focal region is magnified, it

is now possible to show more detail, which in this case simply means bigger circles.

Leung extended the bifocal display into two dimensions for displaying the London

underground map [59], and an example of 2D bifocal display using the circle dataset
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Figure 5.8: The circle dataset in (a} 2D bifocal (b} fisheye and (¢) frustum.

is shown in Fig. 5.8(a). The area within the red rectangle is the focal region, and
the circles within this area are bigger than the circles outside. Unfortunately, this
distortion alse magnifies the context region. The context region to the east and west of
the focal region is magnified in the Y axis, while the region to the north and south of the
focal region is magnified in the X axis. This contradicts the idea behind DOD because
the purposc of the context region is to provide an overview, and any magnification
wastes screen real estate. Because of this unnecessary magnification, it is difficult to
maintain a useful context when using bifocal display. In eyeMap, it is important to
use 8 DOD technique which can maintain a meaningful context because when the size
of the database is large, many images will overlap and a high distortion factor (up to

sixty) is needed to reduce the overlapping.

Other DOD techniques in the literature include fisheye and its many variations, frus-

tum, perspective wall, document lens, table lens and hyperbolic browser {41, 56, 70, 109,
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112, 123, 173]. Leung and Apperley provide a detailed review of DOD techniques [60].
Of all these techniques, fisheye is most popular but it has a major problem: its context
region cannot maintain a useful overview with large distortion factors, typically ten or
over [131]. This problem arises because in fisheye, there is no clear distinction of when
the focal region ends and when the context region starts. As a result, even areas which
are not of interest to users are unnecessarily expanded, so the context region becomes
very small. An example of the fisheye display with a distortion factor of four can be
seen in Fig. 5.8(b). which was implemented in polar coordinates by transforming (r, 6}
into (v, &) [123]:

, (d+1)=—=

T Tmes g T (52)

Fmax

where r is the original distance from the focal point, ' is the transformed distance from
the focal point, d is the distortion factor, and 7y, is the maximum possible value of »

in the direction of 8. Note that the value of # remains unchanged, §' = §.

Another type of DOD in the literature is the frustum technique. The display of
the same dataset and same distortion factor in frustum is given in Fig. 5.8(c). Unlike
fisheye and 2D bifocal, in frustum only the focal region is magnified. The calculation of
the frustum transformation is in polar coordinates, and the transformation from (r,8)

to (', &) is expressed as:

[ r.M - if r < R, focal region
o= i & (5.3)
{ R.Mg;+ (r — R)Mp, otherwise, context region
[
g if » € R, focal region
9’ = 4 T’ (5.4)
‘ m otherwise, context region

where
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R = focal area radius

Mgy = focal area magnification

Mg, = context area demagnification

r = original radial distance to the focal point

' = transformed radial distance to the focal point

Unlike fisheye, frustum distinctly separates the focal region from the context region, so
the context region still provides a useful overview even at a very high distortion factor

(up to one hundred) [131].

The original frustum projects the dataset onto a square display but monitors are
not square, so some screen real estate is wasted. To efficiently use screen real estate, the
display is scaled, and as a result, the focal region is now elliptical rather than circular

as shown in Fig. 5.9.

aaaaaa

Figure 5.9: A frustum display of the circle dataset scaled to make full use of the screen real
estate.

Most image formats are not scalable: the size of the decoded image is the same as
the size of the coded image. To obtain a smaller image, it is necessary to subsample
after a complete decoding. This means that the processing time is longer if we require
a smaller image size than the one coded. JPEG 2000 is a scalable image format: the
size of the decoded image may differ from the size of the coded image. If we require a
smaller image, then we decode only u;i to the required size [146]. In other words, the
proc&esihg time is now proportional to the required image size. For this reason, it is

recommended an implementation of eyeMap uses the JPEG 2000 image format.
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5.4.2.2 Linear Display

The second method of removing image overlapping is by displaying a small number
of images linearly. The use of frustum has another advantage. Because it distinctly
separates the focal region from the context region. it is possible to display all the images
in the focal region linearly in a separate window with the overlapping removed. In this
window, users can also enlarge an image so that they can see the image in full size.
The number of images displayed in this window is relatively small in comparison to the
size of the entire database, so users only need to linearly search from a small number
of images. For this reason, displaying these images linearly should have no effect on

browsing, search effectiveness and efficiency.

54.3 Searching for a Target Image by Elimination

The last strategy used by eyeMap to deal with large scale image databases is to allow
users eliminate irrelevant images. Users can hide the itnages they have seen and display
the hidden images again if necessary. By eliminating images they have seen, users can
reduce the number of images to be displayed and avoid looking at images which they
have inspected; therefore, this functionality helps them to further narrow down their

area of search.

5.4.4 Summary of eyeMap Specification

The specification for eyeMap is now complete and includes the following:

¢ Cluster images based on visual similarity; each cluster has a representative image.

» Calculate a layout for all representative images, then assign the positions of non-

representative images based on the coordinates of their representative images.
e Display the images based on the layout using DOD.

¢ Remove overlapping by either changing the distortion factor of the DOD or by

opening a separate window.




104 Browsing Large Scale Image Databases

¢ Hide and unhide images.

5.5 Applications of eyeMap

This section describes two potential applications for eyeMap: browsing and initiating a
visual query. Because eyeMap is a browsing framework, it may be difficult to imagine
why an implementation of eyeMap is suitable for these two tasks. It is, at this stage,
appropriate to show a layout generated using an implementation of eyeMap for general
colour images developed in Chapter 6 (see Fig. 5.10 on the following page). It can be
seen from the layout that the arrangement of images is systematic, in that they are
grouped by colour similarity. We can also see that the context region displays only
the representative images in smaller size, whereas the focal region (within the ellipse}
displays the representative and the corresponding non-representative images in bigger

size,

5.5.1 Browsing

The use of eyeMap for browsing is obvious. eyeMap can display the whole database
and users simply browse through the collection by going directly to the area of interest.
As they browse, they can change the distortion factor to remove the overlapping in the
focal region or display all images in the focal region linearly without any overlapping at
all. Of course, there is a limit to the size of the image database that can be displayed;
for instance, it would be difficult to display all images in the Internet. In fact, when
it comes to searching images on the Internet, it is a great challenge even for image

retrieval.

eyeMap can also be useful for displaying search results where historical text anno-
tations are already available. It is a practice within the concept-based image retrieval
community to coarsely anuotate the images and to then issue textual queries [6, 74].
Because of the coarse categorisation, a query is likely to return many images which are

often displayed linearly; thus, browsing is inefficient. To facilitate efficient browsing,
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Figure 5.10: A visualisation of the CCD database using frustum display with a distortion
factor of 52. Images within the focal region, the red ellipse, are displayed in more detail
{larger). This layout is generated by colour-based eyeMap.
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the images could be displayed using eyeMap. Note that some systems reviewed earlier,
such as the one described by Rodden et al., can also be used for this purpose but be-
cause of the inefficient use of screen real estete, the number of images to be displayed
at a time is limited to at most one hundred [115]. With eyeMap, the only limitation is
the time takeu to find a layout. The efficiency issue is beyond the scope of this thesis
but the research conducted in Chapter 6 and Chapter 8, to a certain extent. contribute

to speeding up this process.

The implementation of eyeMap is a powerful browsing tool but it can also be in-
tegrated with a CBIR: eyeMap as the browsing engine and the CBIR as the retrieval
engine. The application of eyeMap is then to find a sanple image to initiate a visual

query. The next section illustrates this application.

5.5.2 Finding a Sample Image to Initiate a Visual Query

As previously stated, CBIR has been an active research area in computer vision for
more than a decade yet it has been of little practical use mainly because there is no

convenient way of initiating a query. It is also known as the Page 0 problem.

Existing methods of initiating a query include text searching of annotated images,
specifying the colours {and the percentage of each colour), sketching and query-by-
exaniple (QBE) [11, 153]. They fail for the following obvious reasons. Annotating the
images defeats the purpose of a CBIR system. Specifying the mix of colours is most
unnatural as that is not how humans remember images. Sketching a query is impractical
as users are not only expected to sketch but also have an intimate knowledge of the
internal functions of the system, including the feature extraction algorithms, to sketch
successfully. QBE is by far the most accurate and popular method but is useless when
users do not have a sample image. Locating a sample image is time consuming as users
have to go through the images in the database either linearly or randomly until a target

image is found.

The design of eyeMap is modular in that both the browsing and retrieval engines are

independent of each other, so the retrieval engine can be added or even changed without
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affecting the browsing engine. Integrating eyeMap with a CBIR system means we can
now solve the Page O problem because users can first browse the area of interest, and
then issue a visual query using the sample image they found. The following scenario

illustrates how eyeMap could be used for solving the Page 0 problem.

Alice is looking for an image and she has a pretty good idea what type of image
she wants. She starts using eyeMap which shows a proximity visualisation display of
the database. Now, Alice has an idea what the database looks like, and can use the
display like a map. The hmages are small (though visible enough) and are overlapping,
but she can still eliminate areas which lock totally different from the image she has
in mind. So, she moves the focal region away from those areas and starts exploring
areas which look more promising. When the representative image is in the focal region,
it is enlarged and other images in the cluster are displayed as well. To remove the
overlapping, Alice increases the distortion factor or opeus up another window which
will display all images in the area she is interested in with the overlapping removed.
Alice is sure that the image she is interested in is not there, so she hides them. She
continues exploring and “bingo”, that’s it. Alice sees the image she wants and several
similar images nearby, To find out if there are more similar ones, she issues a visual

query using the image she has found as an example.

The above scenaric was written based on a real user’s experience when looking for

an image in the MPEG-7 CCD of 5466 images using eyeMap integrated with a CBIR.

5.6 Conclusions

In this chapter, we proposed and formulated eyeMap - an image browsing framework
- for browsing large image databascs. The philosophy behind the design of eyeMap
was to enable users to transfer their browsing behaviour in daily life, such as browsing
merchandise items, into browsing images. Daily browsing activities are possible and, to
a certain extent, enjoyable because someone has organised the items systematically and

shoppers can access the items. The development of eyeMap closely followed this daily
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browsing paradigm which dictates that the items must be organised systematically and

the embedded interaction is intuitive.

To satisfy the first requirement of this paradigim, it is essential to ensure that the
images are organised systematically by studying the layouts generated. The evaluation
of the layout depends on the type of image databases but because eyeMap is a browsing
framework independent of the type of image databases, it will be covered later in
this thesis. In this chapter, however, we describe Multidimensional Scaling (MDS), a
technique useful for deriving a layout for browsing. Chapter 6 discusses the evaluation
of colour features to establish which one is more suitable for browsing colour image
databases, while Chapter 8 establishes which texture descriptor is more suitable for

browsing grey-scale texture image databases.

The second reguirement in the paradigm demands that users can interact with
the images intuitively. To comply with this requirement, we first solve the problems
associated with browsing large image databases by clustering the images. Then, with
an intuitive user interface, users can access all images by using a8 DOD technique known
as the frustum display. DOD ensures that users can look at the trees without losing
the sight of the forest by displaying the images of interest in the focal region and other
images in the context region (overview). In addition, by using the focal region. users
can select some images to be displayed linearly (with the overlapping removed) in a

separate window or to be hidden.

The specification for eyeMap is complete and an implementation of eyeMap will
result in a fully functional system. A complete implementation of eyeMap is a powerful
browsing tool, but when integrated with a CBI system, it can be used to solve the Page 0
problem i.e. the problem of initiating a visual query without a sample image. The next
chapter discusses an implementation of eyeMap for browsing colour image databases

(colour-based eyeMap) including the selection of a feature suitable for browsing.
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Chapter 6

Colour-Based eyeMap: Browsing

Colour Image Databases

The previous chapter describes eyeMap as a concept for browsing any type of large
scale image databases on the assumption that suitable layouts for the image daiabases
already exist. As mentioned in the previous chapter, the issue of finding a suitable
feature for browsing image databases is unresolved and this is the contribution of the
research in this chapter. The purpose of this chapter is to establish which colour feature
is suitable for browsing general colour images by evaluating several colour features.
After resolving which features are more suitable for browsing, we develop a colour-
based eyeMap, a full implementation of eyeMap for browsing large scale colour image
databases. The colour-based eyeMap is integrated with a CBIR system so it can also

be used to find a sample image to initiate & visual query.

6.1 Feature Selection: Evaluation Method and Design

In generating layouts for colour image databases, it is essential that they are meaningful
to users because a random display does not promote browsing. As defined in the
previous chapter, browsing is made up of two parts: visualisation and navigation.
Visualisation is the part of browsing responsible for the layout of the images. The
purpose of this section is to determine which feature is more suitable for visualisation
by studying the layouts generated from different features using objective and subjective

evaluations. All layouts studied in this chapter were generated using the MDS algorithm
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as described in the previous chapter.

General colour images could be described using their colour, shape and texture
features; however, the use of shapes or texture requires iniage segmentation which is
usireliable when automated and time consuming when segmented cither manusally or
semi-manually. As mentioned in Chapter 2. colour-based feature extraction methods
can effectively extract useful features from an image without image segmentation, and
for this reason they remain popular. Rogowitz also found that colour features are often
sufficient to capture semantic information of images [116]. It was found in Chapter 4
that T-auto, a feature vector which incorporates the spatial relationships of colours, is
more effective than colour distribution methods. Nevertheless, the experiments in this
section were restricted to colour distribution features. I-auto is a complex feature vector
made up of more basic feature vectors, so the findings fromn the experiments usivrg basic
feature vectors were used as a guide for deciding whether to use more sophisticated

feature vectors.

Unlike previous chapters, all experiments in this chapter were conducted in only
CCD. This is not a disadvantage because the research from previous chapters suggest

that most results in CCI) can be generalised to PCM.

6.1.1 Evaluation Criteria

A layout is useful for visualisation if perceptually similar or relevant images are located
close to each other and perceptually different ones are located far apart. The first
condition can be measured using a variation of PR graphs called spatial PR graphs but
the second one can only be evaluated qualitatively by visual inspection. In retrieval,
the effectiveness of a feature only requires a comparison of PR graphs. In visualisation,

evaluation includes spatial PR graphs and a visual inspection.

Stress (5.1) is the function that the MDS algorithm optimises, so at first it seems
ideal to use Stress as another objective measurement. Often, it is used to measure
the quality of two layouts {25], but for this study it must not be used, as Stress is

only appropriate for measuring the quality of layouts generated by different algorithms
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using the same feature. This study evaluated layouts generated using different features,

so a comparison of Stress values is meaningless.

6.1.1.1 Spatial Precision and Recall Graphs (Spatial! PR Graphs)

PR graphs described in Chapter 3 are frequently used to measure the retrieval effec-
tiveness of a CBIR system and can be adapted to measure how closely relevant images
are clustered in the two dimensional (2D) layout [57, 114]. The adaptation process
involves first of all, generating a linear ranking from the 2D layout by calculating the
Euclidean distance between all images to the reference image, which is eqguivalent to a
query image in retrieval. Then, the images are sorted with increasing distance from the
reference image. Finally, the precision at each recall value is calculatec: it is now the
same as calculating PR graphs (3.1). To differentiate these graphs from the traditional
ones, they are called spatial PR graphs.

The interpretation of spatial PR graphs for visualisation is similar to that of PR
graphs for retrieval in that the feature with the higher precision at thie same recall
value is more desirable. Because of this, initially it would seem that the feature with
the highest retrieval effectiveness is the most suitable one for visualisation. The validity
of this assumption vsas evaluated by comparing the spatial PR graphs and PR graphs
generated using the 50 images (same as the previous chapters) and all their relevant

images as references or queries respectively, in total 387 images.

The reason for using all 387 images is that spatiel PR graphs are very sensitive to
the location of the reference image, as illustrated in Fig. 6.1 on the following page. Both
displays have exactly the same layout, and differ only in the reference image: image
1 is the reference image in layout A, but image 3 is the reference image of layout B.
However, the values of the spatial precision at the same recall for both layouts are very
different; for example, when recall is 0.5, the spatial precision for layout A is % but, for
layout B, it is %—. This problem can be avoided by using vach relevant image in turn as
the reference image, so the spatial PR graphs must include all the relevant imagces as

references. Because of this, the PR graphs must also include these images as queries.
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Two same layouts with different query image. e Reference image

4 * e ® Relevant image
i & Irmrelevant image
Recall Spatial Precision
Layout A | Layout B
T3] 3
075 | & &

(a) Layout A (b) Layowt B
Figure 6.1: The spatial PR graphs are highly sensitive to the location of the reference image.

6.1.1.2 Visual Inspection

Research in proximity visualisation often requires a visual inspection to find out if the
generated layout has a meaningful interpretation [9, 88]. Spatial PR graphs can only
capture how relevant images are organised, but not how the irrelevant or dissimilar
ones are organised. To visualise a collection of images, it is equally important to see
how dissimilar images are organised; however, this information can only be gathered
-using visual inspection. A layout has a meaningful interpretation if it is not random.
Because the feature vectors capture colour content, the generated layout is not random
only if it, overall, conveys useful information on the colour arrangement. It means that
given two layouts, the one which appears less random is considered more contextually

meaningful. therefore, more suitable for visualisation.

6.1.2 Generating Layouts: Colour Features and Their Parameters

To determine which colour feature is more suitable for visualisation, we evaluated
four colour features: colour histogram, colour moments, EMD-based colour signature
(EMDcs) and cumulative histogram. (Please see Chapter 2 for a description of these
features.) All except cumulative histogram have been used for visualisation - EMDcs
in [117], colour moments in [84, 102, 122] and colour histograms in [46, 102, 113]. The
evaluation of histogram has another importance because it indirectly indicates if I-auto
is suitable for visualisation: I-auto also uses histogram. Because the size and complex-

ity of cumulative histogram is comparable to that of histogram, it was interesting to
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see if cumulative histogram could be used to generate a meaningful layout.

In database visualisation, the layouts will mostly be generated off-line but it was
interesting to see if it is possible to generate a layout more efficiently without sac-
rificing the quality. EMDcs has been extensively studied in {117], and it was found
that the computational cost of this feature prohibits its use for generating the layout
on-line. Finding a layout is a computationally expensive process because the MDS
algorithm requires many iterations and a single iteration involves ‘i\"—(‘%:—l-l evaluations

of the dissimilarity metric, where N is the number of images.

All colour features were implemented in the HSV colour space. For histogram and
cumulative histogram, the colour space was quantised into 162 bins (18 x 3 x 3) as
recommended in Chapter 3. For colour moments, no quantisation is necessary and the

weight used was the one described in Chapter 2.

6.2 Results and Discussion

To determine which colour features are more suitable for visualisaticn, this section
discusses the results of the four layouts using the two evaluation criteria: spatial PR

graphs and visual inspection.

6.2.1 Spatial PR Graphs

The spatial PR graphs of the four layouts are given in Fig. 6.2 on the following page.
To show that the image arrangements in all layouts were not organised by chance, they

were also compared with a randomly generated layout., We can clearly see that the

image arrangements in these four layouts did not happen by chance, as they all have

higher spatial precision than the randomly generated layout. We can also see that that
cumnulative histogram and colour moments are most effective i.e. more relevant images

are located closer to each other.

As stated earlier, it seems fair to assume that features rated highly in the spatial PR
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Spatial PR Graphs of CCD
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Figure 6.2: The spatial PR graphs of the four colour features on CCD and a randomly
generated layout.

graphs should also be rated highly in the PR graphs. Figure 6.3 shows the PR graphs
of the four features. Surprisingly, cumulative histogram and colour moments were rated
poorly in the PR graphs. This shows that the assumption is untrue: it appears that
the advantage offered by colour histogram during retrieval is not transferred to the 2D
layout. The conclusion above is counter intuitive but we can explain it by discussing

the relationships between PR graphs and spatial PR graphs,

PR Graphs of CCD
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0 0102 03 04 05 06 07 0.8 09 1
Recall

Figure 6.3: The PR graphs of the four colour features on CCD.

6.2.2 Relationships between PR Graphs and Spatial PR Graphs

The relationships between both types of graphs can be established by understanding the

similarities and differences of retrieval and visualisation (see Table 6.1 below). Their
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Similarities

The feature vectors of the images are the same.
The distances between the feature vectors are calculated using the same dis-

similarity metric.

Differences

Retrieval

Visualisation

Purpose

To retrieve n most rclevant images,
where n << N.

Process

The retrieval engine only needs to cal-
culate the distance between the query
image to every other image in the
database. It is a one to many relation-

To browse A (all) images.

The MDS algorithm needs to calcu-
late the distance between every image
in the database with every other im-
age in the databese. It is a many to

ship and the degree of relationship is | many relationship and the degree of
N -1 relationship is £8r12

3. Information

The retrieval engine only needs to | The MDS algorithm needs to know
know how similar two images are and | how similar two images are and if they
if the images are different it is imma- | are different, how big the difference is.
terial how different they are.

Table 6.1: Similarities and Differences of Retrieval and Visualisation.

similarities are obvious and, on the surface, they indicate that results from the PR
graphs should correspond to the spatial PR graphs. However, experimental results

show otherwise. This finding is explained by examining their differences.

In a layout, the degree of relationships for an image with other images in a database
is defined as ’\—r{-‘\%l-l (many-to-many). Because spatial PR graphs are calculated by
transforming the 2D distances in a layout into a linear ranking, the implication of
a many-to-many relationship is that spatial PR graphs are influenced by not only the
distance between the reference image to other images but also by the distances between
every image to every other image. In contrast. in retrieval, the degree of relationships
for an image to other images in a database is defined as A’ — 1 (one-to-many)}. Thus,

PR graphs are only influenced by the relationships of a query image to every other




116 Colour-Based eveMap: Browsiug Colour Image Databases

image in the database. This explains why the results from traditional PR graphs arc

not directly translated into spatial PR graphs.

6.2.3 Visual Inspection

Figures 6.4(a) to (d) on the following pages show the layouts gencrated using the four
colour features. For colour histogram, the layout appears random in many arcas; for
example, green images are found in several parts of the layout. Besides that, the display

also appears cluttered around the centrel region.

For colour moment (see Fig. 6.4(b)). the layout appears somewhat random; for
example, blue images can be found on the top right and across the centre of the display.
It is interesting ‘o nute that colour moment is rated highly in the spatial PR graphs.
This confirms the observation made earlier that spatial PR graphs do not capture all

information about contextual imeaningfulness.

For EMDcs (see Fig. 6.4(c}). the layout appears less random; dark blue images are
concentrated mainly in one corner, green images in another corner. It is also more
spread out compared to colour histogram but the centre of the display has a big hcle,

thus wasting screen real cstate,

For cumulative histogram (see Fig. 6.4(d}), the layout appears less random than the
histogramn and colour moments. However, when compared with EMDecs. it appears a
little cluttered. In short. the layouts generated from EMDes and cumulative histogram

are less random.

Visually inspecting a layout generated from large databases is less than ideal because
the degree of overlapping is so great that most images are invisible. This problem can
b avoided by also inspecting layouts generated using a small subset of the database.
To ensure that there is a wide range of images with enough visual similarity, the 387
images used for generating the spatial PR graphs are used for generating another four
layouts (one using each feature). These four layouts are shown in Fig. 6.5 on the

following pages.

g
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(a) colour histogram .

(b) colour moments

Figure 6.4: Generated layouts using all images in CCD - 5466 images
page.

...continued on next
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(c) EMDcs

(d) cumulative histogram

Figure 6.4: ... continued from previous page.
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IT:;) colour histogram — CCD subset T

Figure 6.5: Generated layouts using a subset of CCD tade up of the 50 CCQ and all the
relevant hinages - 387 images. . . continued on next page.
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{d} cumulative histogram -
CCD subset

Figure 6.5: ...continued from previous page.
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For colour histogram in Fig. 6.5(a) and colour moment in Fig. 6.5(b), the layouts
still appear somewhat random. In colour histogram, predominantly blue, green and red
images can be found in many sections of the display. In colour moment, predominantly

blue, green and red images can be found in almost every quadrant of the Jayout.

For EMDecs (see Fig. 6.5(c)), the layout appears less random because predominantly
blue, green and red images each are concentrated only in a section of the display.
However, notice that the two castle images indicated in the red polygons arc located
quite far apart from each other. This is because it is often impossible to represent the
distances faithfully in the low dimension, therefore some images appear to have been
misplaced (see Section 5.3 for more details). However, the number of misplaced images

is so few that EMDcs is, overall, still contextually meaningful.

For cumulative histogram (sce Fig. 6.5(d)), the findings for EMDcs are also appli-
cable: the display appears less random and some similar images are located quite far
apart. It can be seen that some predominantly red images indicated by the red pol,-
gons are located in two parts of the display but it is unfair to conclude that it is more
random than EMDcs because the castle images indicated by the green polygen which
were misplaced in the EMDcs are correctly placed here. In short, like EMDcs, the

number of misplaced images are so few that it is, overall, still contextually meaningful.

Cumulative histogram, however, has an advantage over EMDecs because it is more
efficient than EMDecs: it is simpler and faster to generate and evaluate. On an Intel
P4, 1.4GHz PC running Linux, extracting a cumulative feature vectors takes 130 ms,
and calculating the distance between two feature vectors necds a negligible 0.004 ms.
Extracting features from the same image in EMDcs requires 620ms, and calculating
the distance between two feature vectors takes between 0.5ms to 6 ms. This means

that the use of cumulative histogram will speed up the time taken to find a layout.

6.2.4 Further Discussions on Contextual Meaningfulness

In this scction. further analysis on each colour feature and the Stress fuaction reveals

why some colour features are more contextually meaningful or Jess contextually mean-
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ingful than others. Colour moment is less contextually meaningful because extracting
colour features in each colour channel independently compromises the eccuracy of the
colour description (see Section 2.1.1.3). The feature vectors, therefore, may not reflect

perceptual similarity of colours when there is more than one colour in an image.

From Section 5.3, we know that the MDS algerithms find a layout by optimising
the Stress function (5.1). Stress measures how well the layout in the low dimension
represents the distances between objects in the high dimension, therefore smaller values
are niore desirable. Colour histogram is less contextually meaningful because it only
captures the similarities and dissimilarities of corresponding bins, not of different bins.
It was established earlier that contextual meaningfulness depends on how dissimilar
images are organised in the layout, so an MDS algorithm has to know how big the
differences are between two dissimilar images so that these differences can be reflected
in (5.1), the function it tries to optimise. For this reason, it is also important to know
the differences between diiferent bins, otherwise thie MDS algorithm fails to correctly
arrange the visually dissimilar images. Here is a very simple example to illustrate this

problem.

If we give the colour histogram feature vectors of four aifferent single-coloured
images to MDS to find a layout, then, the MDS optimises the value of Stress. and it
will eventually converge to a layout with the lowest value of Stress. This, however,
does not imply this laycut is contextually meaningful. Figure 6.6 on the following page
shows two layouts with four single colour images: (a) red, (b) dark red, (c) green and (d)
dark green. The colour in each image belongs to different bins, so the distance between
any two images is at its maximum i.e. 2. These original distances are reflected well in
the generated layout but not in the preferred layout; however, the generated layout is
less contextually meaningful compared to the preferred layout. In the preferred layout,
dark red is closer to red than it is to green or dark green: the arrangement is more

cuntextually meaningful than the generated layout. -

The EMDecs feature, unlike histogram, can capture information from different colours.

For this reason, its luyout is more contextually meaningfui. For cumulative histogram,
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d. b. i.f
a. c. : €

Generated layout  Preferred layout
Figure 6.8: The problem of using colour histogram feature for proximity visualisation. The
preferred layout is more contextually meaningful than the generated layout.

although it is very similar to histogram, the layout generated using cumulative his-
togram is less random than colour histogram. This occurs because cumulative his-
togram considers the perceptual similarities of colours as explained in the following
simple example. Figure 6.7 shows the feature vectors of three single colour imsges;
in cumulative histogram, the distance between the red and magenta images is 1 and
the distance between the red and cyan images is 3. In colour histogram, the distances
between all colour images would be 2. The layout generated using the cumulative
histogram feature is, therefore, less random than the layout generated using colour
histogram.

Normal Histogram g
Cumulative Hislogrameasssesammem 1 sz

Figure 6.7: In cumulative histogram, the distances between the feature vectors reflect the
perceptual similarity of colours; the distance between red and magenta imeges is one while the
distance between red and cyan images is three. In histogram, the distances between all images
are two.

To test the validity of the hypothesis that it is important to capture dissimilarities
from different colours, artificial colour images were created and three layouts were
generated based on histogram, EMDecs and cumulative histogram. Each colour image
contains only one colour so that it is easier to compare the randomness of the layouts.
The hue {(H)} was varied from 0 to 360 in increments of 5 degrees, the saturation (S5}
and brightness (darkness or V) were each given values of 0.3, 0.6 and 1 giving a total

of 657 images. Three layouts were then generated using each colour feature and the

i A
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results are given in Fig. 6.8 on the following page.

(a) colour histogram {b} EMDcs (¢} cumulative histogram

Figure 6.8: Proximity visualisation using artificial inages. The layout generated using colour
histogram is random. while the other two layouts are contextually meaningful.

It is clear that the layout generated using histogram appears random while others
appear less random. The artificial images in the layout generated using EMDcs are
organised into several sets of circles. and each circle is made up of images of different
hues having the same saturation and brightness. The layout from cumulative bi=*gram
appears to suffer from two problems. First, it has only one dimension and second.
the most perceptually similar colours are at both ends of the line: the cumulative
histogram fails to capture the circular nature of hue. Because of these two preblems.
mitially. it appears that cumulative histogram is unsuitable for visualisation; however,
these problems are unnoticeable when used for real colour images as shown in previous
sections. In this display. it bas ouly one dimension because there is only one colour
in each image. General colour images use more than one colour, and as a result, the

layouts for general colour images are comparable to those generated using EMDes.

6.3 Implementations of Colour-Based eyeMap

Having established a suitable feature for browsing colour images. it is now possibie
to implement colour-based eyeMap. eyeMap specification in Chapter 5 requires the
imagus to be clustered first before generating the layout. The question is which feature
should be used for clustering? In Section 6.2, we demonstrated that the more effective

feature veetor for retrieval may not be the most suitable one for visualisation, but in

'
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clustering. we should use such a feature vector since it is more likely for the relevant
inmages to be in the same cluster. To solve these two conflicting requircments, we use

two feature vectors: I-auto for clustering and cumulative histogram for visualisation.

Colour-based eyeMap was fully implemented on a GNU/Linux Debian using C++4
and FLTK graphical user interfece {133]. Also, as recommended in the previous chapter,
the image format used in colour-based eyeMap is JPEG 2000. Screen shots of colour-
based cyeMap can be seen in Fig. 6.9 on the following page. The arrangement of
images is systematic because they are grouped by colour similarity. The context region
displays only the representative images in smaller size, whereas the focal region (within
the ellipse) displays all images in bigger size. Users can also display all images within
the focal region linearly without any overlapping in a separate window as demonstrated
in Fig. 6.9(b). Colour-based eyeMap is also integrated with a retrieval engine developed

using I-auto. which was deseribed in Chapter 4.
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(b) With linear display

Figure 6.9: Screen shots of colour-based eyeMap. Images in the focal region, within the red
ellipse (a), can be displayed linearly in a separate window (b).
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6.4 Conclusions

It is important to evaluate the suitability of colour features for visualisation because
random display of images does not facilitate browsing. In this chapter. we established
which colour feature is more suitable for browsing colour image databases by evaluat-
ing four colour features for visualising colour imay, databases: colour histogram, colour
moments, EMDes and cumulative histogram. Experimental results showed that cumu-
lative histogram is most appropriate for visualisation because the location of relevant
images are close to each other and the layout is contextually meaningful. In addition,
the distance calculation between any two cumulative histograms is efficient, so using

this feature will speed up the process of finding a suitable layout for browsing.

This research also showed that the feature most suitable for retrieval may not be
suitable for visualisation. This finding has three implications. First, [-auto, aithough
found to be mwore effective for retrieval. is unsuitable for visualisation because it is
based on the colour histograin technique. Second, in the implementation of colour-based
eyeMap, I-auto was used for clustering the images whilst cumulative histogram was used
for generating the layout. The final impiication is the retrieval engine integrated with
colour-based eyeMap should be built using I-auto because it has the highest retrieval

cffectiveness.

Colour-based eyeMap has been implemented and is a fully functional system. Initial
experience, as described in the previous chapter, shows that eyeMap is promising as a
tool for browsing and solving the Page 0 problem. Its usefulness for these two tasks was
confirmed by evaluating an implementation of eyeMap against existing systems. The

next chapter discusses this evaluation of colour-based eyeMap against existing systems.
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Chapter 7

Usability Study of Colour-Based

eyeMap

Research in visualisation lhas largely centred on the development of new techniques. It
was only recently that the evaluation of the techniques was considered important [17].
The usability study undertaken in this research pioneers the evaluation of visualisation
for image browsing. Rodden and Combs et al. {26, 115] did not, strictly speaking, eval-
uate image visualisation systems because visualisation implies displaying large amounts
of data and in relation to image databases, large numbers of images. They evaluated
systems which display only one hundred or at most two hundred fifty images, while
eyeMap displays thousands of images. Thus, the main contribution of this chapter is

the testing of large image databases which has never been done before.

This chapter describes the evaluation of colour-based eyeMap and existing systems
for browsing and solving the Page 0 problem. The purpose of the study is to show
if eyeMap is better at solving the problems it is designed for,' by comparing the per-
formance of colour-based eyeMap and existing systems in a usability study. Recall
that eyeMap is a browsing concept, so only the implementations of eyeMap (such as
colour-based eyeMap) can be tested and the success of the implementation indicates
the success of eyeMap. As mentioned in the previous chapter, the philesophy behind
the design of eyeMap as a concept for image browsing is to enable users to transfer
their daily browsing activity into image browsing; therefore, if eyeMap is better, then
users have successfully transferred that experience into image browsing. In addition,

the study provides insights into how humans search for images, and the findings are
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useful for designers of any image browsing or search programs.

7.1 Evaluation Methods and Design

Figure 7.1 on the following page shows different types of usability evaluation methods
and technigues [8]. Only some of these methods require users’ participation, and they
include direct and indirect field studies; observation, attitudinal, and experimental
methods in & laboratory setting; and collection of log files and market performance
for statistical analysis. Qther methods are conducted without users’ participations
and they include cognitive walkthrough, heuristic, and predictive models. To evaluate
eyeMap, we conducted & usability study on colour-based eyeMap using the attitudinal

and experimental methods (printed in blue).

For the attitudinal method (see Fig. 7.1), we collected users’ attitude towards the
programs whilst in the experimental method, we collected their performance in using
the programs. The instructions for the evaluations were carefully controlled to ensure
that all volunteers received the same description by reading the instructions from a
written manuscript. The next sections describe the evaluation criteria, the systems

tested (existing ones and colour-based cyeMap) and the experimental design.

7.1.1 Evaluation Criteria

To evaluate if a program is useful for solving the Page 0 problem. we asked users to
search for a target image using the program. A program is considered useful for solving

the Page 0 problem if users:

e can find the target image and;
¢ find it quickly;
¢ rate the program highly; and

e like to use the program.
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Usability Evaluation

Methods and Techniques
Empirical o Amalyeal
User involvement Non user involvement
Field Laboratory Statistical Inspection Theoritical
user subject | usage expert model
based based based based based
1
——1 [ ]
: indirect market predictive
direct |} ecording) log-files performance models
concurrent, restropective,
observations, interviews,
e - ]
contextual, non/participative P
cognitive -~
walkthrough heuristic

I 1 1

lab observation attitudinal experimental
concurrent, restropective, guestionnaire, rating, benchmarking,
think aloud interviews, surveys physiological data

Figure 7.1: Different types of evaluation methods and techniques. Techniques and methods
printed in blue were used for evaluating eyeMap.

The first two criteria measure participants’ performance in using a program, while
the last two criteria measure participants’ perception of the program. The data for the
last two criteria was collected from a post experiment questionnaire, and a sample of
the questionnaire can be found in Appendix D. More discussion on the questionnaire
will be given in Section 7.1.3.1 when we cover the experimental procedures. The above
four evaluation criteria are also appropriate for measuring the usefulness of eyeMap for

browsing, so the same criteria will be used for that purpose as well.

To properly evaluate eyeMap, four programs were developed: two were based on
eyeMap and two were based on the traditional linear display. One eyeMap program did
not have visual query facility but the other one did. To use the visual query facility,

users perfoermed a query-by-examnple by submitting a sample immage to retrieve other
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k1

images; this type of query is more commonly known as a visual query. The other
two programs developed for this study were based on the traditional linear display.
One program in this display did not have visual query whilst the other one did. The
taxonomy of these four programs are given in Fig, 7.2. The programs using lincar
layout, that is P1 and P2, are the existing methods for browsing and for finding a
sample image to initiate a visual query. The only difference between P1 and P2 is P2
has visual query. The other two programs, '3 and P4, are based on eyeMap, and the
difference between these two programs is P4 has visual query. These programs ate the
combinations of two factors: layout (eyeMwp or linear) and existence of visual query

{with or without).

Programs
Linear display Visualisation display
Existing methods eyeMap

o~ <

Without Query [ With Query Without QueryJ [ With Query ]

\ 7 \

PI j [ 2 | [ P4
\_Program | Progam2 ) Prog@m3 Program 4

Figure 7.2: Four programs developed to carry out the usability study. Two programs use
linear display (P1 and P2) and two programs use eyeMap (P3 and P4).

To resolve which systems are better for either of the two tasks, we compared which
factor is more useful in helping users in completing the tasks, and performed a statistical
test to establish if the differences were statistically significant. It means that for the
Page 0 problem, if P3 and P4 are found to be more useful, and if only the layout factor
is significant, then P3 is better than P1, and P4 is better than P2. This means eyeMap
with or without visual query is the best system for solving the Page 0 problem. If both
factors are significant, then only P4, eyeMap with visual query, is the best system for

solving the Page O problem.
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The same principles were also used for browsing. that is if P3 and P4 are found
to be more usecful and if only the layout factor is significant, eyeMap with or without
visual query is the best system for orowsing. If boch factors are significant, then only

P4, eyeMap with visual query, is useful for browsing.

‘The description of the evaluation criteria is now complete. The next sections de-

scribe the functionalities of each program.

7.1.2 Descriptions of Existing Methods and Colour-Based eyeMaps

Tie Pregram - P1

A screen shot of P1 is given in Fig. 7.3 on the following page. The width and
height of the display covers the entire viewing area, and one screenful contains 108
thumbnail images of 64 by 64 pixels. The images are displayed linearly, one after the
other, and their order in the display is random. To view more images, users simply use
the scroll bar located on the display’s right hand side; alternatively, they may use the
scroll wheel coimmonly found in the more modern mouse input device. They can also
view the images one at a time in full size by clicking on it and ﬁ separate window will

display the image in full size as seen in Fig. 7.3(b).

The Program - P2

As mentioned earlier, P2 is P1 with an additional visual query function, so apart
from the visual query, it is exactly the same as P1. To use the visual query, users
choose a sample image by clicking on one of the thumbnails. Then, to activate the
visual query, they select the visual query function using either a mouse to click on the
pull-down menu or a keyboard stroke as the shortcut. Figure 7.4 on the following page
shows screen shots of P2 before and after the visual query. Initially, the visual query
function returns 40 most relevant images to the query image but at any time, users can
modify the number of images to be displayed easily by using the pull down menu or a

keyboard stroke.
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(b} After visual guery

Figure 7.3: Snapshots of 1°1. The images are displayed one after the other, and the order of

. : . . Figure 7.4: Snapshots of P2, It is exactly the same as P1 but it has a visual query function.
the images is random. Users scroll the display to see more images. & ! ) ey
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The Program - P3

The functions of this piogram were described in the previous chapter, and the
screen shots for this program can be seen in Fig. 6.9 on page 126. Like P1 and P2,

the display also covers the entire viewing area. In summary, the functions and their

implementations are given as follow:

¢ Visualisation display with focal ai:d context regions, and the images are grouped.
For each group of images, a representative image is selected. In the context region,
the size of the images is 32 by 32 pixels and only the representative images are
displayed. In she focal region, the size of the images is 64 by 64 pixels, and the
non-representative images are displayed as well. In this study, the focal region
is initially located at the centre of the screen and none of the target images is

within this focal region.

¢ Moving the focal point to the area of interest with the mouse either progressively
by dragging, that is left or right press and move the mouse, or directly by clicking

on the area of interest.
¢ Removing of image overlepping can be done by:

— changing the distortion factor in either of two ways: firstly, by rolling the
mouse-wheel, then & small window pops up for two seconds to display the

current distortion factor; and secondly, by using the pull down menu.

— displaying the images in the focal region in a separate window (sce Fig. 6.9(b)
on page 126). Users can also hide all images in this window so that they
will not be shown in the visualisation display. To show these images in the
display again, they click on an option in the menu bar. Similar to P1 and
P2, in this window they can view the images in full size one at a time by

clicking on the thumbnail.

e Showing hidden images. Show all images which have been hidden.
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The Program - P4

P4 is an enhancement of P3, as it has all the functionalities in P3 as well as the
visual query function. This function is accessible from a separate window which displays
images in the focal region linearly. The screen shots for this program can be seen in
Fig. 7.5 on the following page. This figure shows the linear window before visual query
and after visual query. Like P2, the visual query function initially returns the 40 most
relevant images to the query image but users have the freedom to change this number
in the same way as in P2, that is, by either using the pulldown menu or a keyboard

stroke.

Summary of Programs

P1 is the simplest as it has the least number of functions. In contrast, P4 is the
miost complex as it has the most number of functions and most unfaiiliar user interface.
Another way of looking at these programs is that a given program is the enhancement
of another. The programs can be enhanced in two ways, in terms of the image layout or
the visual query function. In other words, P3 is the visual enhancement of P1, while P4
of P2; likewise, P2 is the functionality enhancement of P1, while P4 of P3. These two
enhancements constitute the following two factors: image layout (eyeMap or linear)

and existence of visual query (with or without).

7.1.3 Experimental Design

The experimental design is Latin square or within-subjects, meaning that all partic-
ipants use all four programs to search for the same set of images. The independent
variables, variables fixed by experimenters, are target images and the sequence of the
programs. The randomisation of these two variables are given in Table 7.1 on the fol-
lowing page in which each row is unique. Programs are coded from P1 to P4 and target
images in letters, so P1p means use P1 (program 1} to practice, Pla means use P1 to
search for image (a). The arrongement of images for all programs and target images

were generated off-line to ensure that all participants who use the same program to
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search for the same image see exactly the same image layout. All target images are
given iv Fig. 7.6: (p) is the target image for practising and (a) to (d) are the four
target images for the tasks. The four target images (a) to (d} were chosen to ensure
that they have different characteristics such as dark or bright colours, objects. animals
or humans. To choose these four images. we first randomly selected n nmumber of im-
ages from both CCD and PCD. Then. we chose the four images out of these randomly

selected images to satisfy the eriteria mentioned above.

Sequence of Programs and Target Images

Program and imaye sequence | Program and image sequence —|

1 PipPita P2pP2b P3pP3c P4pPdd | 13 P3pP3c  PlpPla P2pP2b P4pPdd
2 PlpPlb P2pP2c P4pP4a P3pP3d | 14 P3pP3d PlpPlb P4pP4a  P2pl2c
3 PlpPle P3pP3a P2pP2d P4pP4b { 15 P3pP3a P2pP2d PlpPle PipP4b
4 PipPid P3pP3L P4pP4c P2pP2a | 16 P3pP3b P2pP2a P4pP4c PlpPld
5 PipPla P4pP4d P2pP2b P3pP3c | 17 P3pP3c P4pP4d PlpPla DP2pP2b
6 PipPlb P4pP4a P3pP3d P2pP2c | 18 P3pP3d PdpP4a P2pP2c PlpPlb
7 P2pP2d PlpPlc P3pP3a P4pP4b j 19 DP4pPdb PlpPle P2pP2d P3pP3a
8 P2pP2 TPIlpPld PdpP4c P3pP3b | 20 P4pPde PlpPld P3pP3b P2pP2a
9 P2pP2Lh P3p PR PipPla Pa4pPdd | 21 P4pPad P2pP2 PipPla PipPie
10 P2pP2c P3pP3d P4pP4a PlpPlb | 22 P4pPda P2pP2¢ P3pP3d PlpPlb
11 P2pP2d P4pP4b PlpPle P3pP3a | 23 P4pP4b P3pP3a PlpPle P2pP2d
12 P2pP2a P4pPdc PipPib PipPld t 24 P4pPdc PIpP3b P2pP2a  PipPid

Table 7.1: Programs are coded in munbers and target images in letters: p - practice. a to d
- the four target images (see Fig. 7.6). Plp means use P1 (pregram 1) to practice, Pla means
use P1 to search for image (a), that is fruits and flowers.

K

& i,

R

, {p} garlic (a) fruits and {b) fireman
iﬁ‘ flovers

Figure 7.6: The target image used in the experiments. {p) is only used in the practice trials
and (a) to (d) arc used in the experimental trials. The names of the images are to aid discussions
only, participants were unaware of them during the experiment.
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(1) After visual query

Figure 7.5: Snapshots of P4. The only difference between P38 and P4 is that P4 lias a visual
query function,
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7.1.3.1 Procedure

The experiment was conducted using a 17 inch CRT monitor. The task in the exper-
iment was to use the four programs to search for four target images after viewing the
images for ten seconds. By showing the target image for ten seconds, we hoped to sim-
ulate long term image memory [94, 136, 137]). The volunteers in this study used each
program once to search for a different target image. The reason for conducting only
one search in each program was to keep the total experimental time to about an hour,
because searching for two target images could take about two and a half hours. This
would not only discourage participation but would also affect the results due to fatigue.
The sample size was increased by using a better alternative, that is by involving more
volunteers. We decided that 24 participants were sufficient as each image would have
been searched for at least six times using each program. It was also adequate to ensure
that any variability between the imeges was averaged out. Note that 24 participants is
a large sample size compared to most usability studies [96, 111, 115, 116, 140]. Another
aspect that requires consideration is the manner il-] which the instruction is given to

participants.

Participants in software usability studies often fee! that their abilities are being
judged and are consequently nervous [95]. To reduce this side effect in this study, we
decided to aliow users to perform the task as long as they wanted to and to be able to
give up at any time. In eddition, they were also told that while they were performing
the task, they were not being visually observed. To further increase their confidence,
they were told that the purpose of the study was (o evaluate the software programs,

not their abilities in using the programs.

At the start of each search, the target image was at first simultaneously displayed
for ten seconds in full size (256 by 256 pixels) and in thumbnail (64 by 64 pixels) because
participants, in general, prefer to look at target images in full sizes and ir thumbnails

before searching [113]. The data collected included:

¢ the number of successful searches;
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o the time taken to find the target image or the time taken befcre they gave up in

case they did not find the target image; and

e all functions’ usage, including the tinie at which they were invoked.

All participants received the same instruction, tried each function and had equal vppor-
tunity to practise. Nevertheless, there were some differences in the search techniques
or strategies because they were told to use the programs in any way they liked, that

there was no right or wrong way.

After finishing all trials, they completed a questionnaire and had the opportunity
to give further clarification verbally. A sample of the questionnaire can be found in
Appendix D. The answers to the questionnaire and comments are both quantitative
and qualitative. The quantitative data is useful for evaluating users’ perception of the
programs and the qualitative data for explaining the quantitative results. The ques-
tionnaire includes questions such as how they performed the search, program ratings
using a five point Likert scale ranging from “strongly agree” to “strongly disagree”,
differences in images and, lastly, the preferred searching method if there was any. The
last question was carefully phrased so that no one felt there had to be a preferred

method.

To evaluate the usefulness of eyeMap for browsing and solving the Page 0 problem,
the participants only needed to complete one task, that is, to find the target image.
The evaluation for browsing differed only in the definition of successful search and the
time taken to complete the successful search. For the Page 0 problem, successful search
meant being able to find the target image, and the search time was the time taken to
find the imnage. For browsing, on the other hand, successful search meant being able
to find an image similar to the target. and the search time was the time taken to find
the similar image. The programs logged all functions and the time when each function
we invoked, so after the experiment, we checked which images they had looked at to

determine if they he. ‘uund a similar image and when.

The description of the experimental design and procedures is now comnplete. The
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next section describes how to obtain the sets of images for performing the experiments.

7.1.3.2 Image Sets

The results from this experiment are meaningful only if the mumber of images is large
enough so that a manual search is tedious; however, there is no guideline or how many
is sufficient due to the lack of research in this area. Ideally, one would use a huge image
database of at least half a million images, but this is impractical because a large image
collection is not readily accessible to the majority of CBIR researchers. Collecting
images from the Internet is infeasible, for they are either copyrighted or too small to

be useful.

The combined size of the two image databases introduced in Chapter 3 i.e. CCD
and PCD, is about 16.000 images, and although bigger than most research in CBIR, it is
still too low for this experiment for the following reason. To ensure that no participant
is advantaged from being familiar with the images, it is essential that the image set is
unique for all trials, including the practice trial. With five trials, one practice trial and
four experimental trials, five image sets are required. This means that each image set
will have only 3,200 images. As a tradeoff between uniqueness and image set size, the

number of images for each set was increased to 5,000 using the following approach,

First, we reserved 7,50C imnages so that each set had 1,500 unique images. Then,
the remaining images were distributed across all five sets until each set reached 5,000
images. This distribution scheme ensures that each image in the database is used at
least once and no image appears in all sets. The munber of images taken from each
database, unique and repeated, is proportional to the size of the database; for example,
PCD is about twice the size of CCD, and therefore, the number of unique images
drawn from PCD is sbout twice the number drawn from CCD. Finally, after creating

the image sets, the images in CCD require some preprocessing for the following reason.

The images in CCD are of different sizes, and they could be any of the following:
240 x 320, 256 x 384, 320 x 240, 352 x 288 or 384 x 256 pixels. On the other hand, the

size of all images in PCD are 256 x 256 pixels. To guarantee that users search behaviour
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is independent of the image size, the images in CCD were cropped to the size of images
in PCD as follows. It is fair to assume that the most important information is at the
centre; hence, the edges were removed as illustrated in Fig. 7.7. The width of the
horizontal edges to be cropped = ma:n(x;:?@, 0) and the height of the vertical edges to
be cropped = mam(ki-zég, 0), where X is the width of the original image and Y is its
height. The final image sizes are now either the same or very close to those of PCD i.e.
256 x 256, or for images which are only 240 pixels wide or high: 256 x 240 or 240 x 256

pixels - these images are slightly smaller but the differences are unimportant because

they are visually undetectable.

spxid 967

X © 256 pixels

Figure 7.7: An example of image cropping in CCD.

7.1.3.3 Pilot Study

Prior to the experiment proper, we conducted a pilot study involving four computer
literate students but ignorant as far as CBIR is concerned. The aims of the pilot study
were to:

o test if the instructions were clear;
e test if the questionnaire was properly designed;

¢ determine the number of images to be used in the experiment because the results
from the experiment are meaningful only if the task of looking for the target

image manually using P1 is difficult; and

¢ uncover any unforeseen problems.

The results from the pilot study suggested that searching from 5,000 images is

sufficient for the study. The average searching time using P1 is 11 minutes 53 seconds
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compared to P4 at 6 minutes 15 seconds: using P1 is nearly twice as slow. The task
using P1 was also rated at 4.5 (with 5 being the most unreasonable task) compared to
P4 at 1.25. Also, two different participants gave up searching for the target image, one

when using P1 and the other when using P2.

As a result of the pilot study, three changes were necessary. First, the instructions
were reworded with jargon removed. Second, the questionnaire was modified slightly
because in the pilot study. the participants were confused when asked if the task was
realistic. We had to explain that “realistic” means if it is tedious, whether it is a
reasonable task, semnething that they would like to do; therefore, realistic was changed
to reasonable to better reflect the intended meaning. The final change was to allow
participants to look at the target images whenever required because two participants
had forgotten what the two targets looked like (87.5% recall rate). Research in humnan
memory shows that human visual memory is unlimited but it is not 100% (94, 137).
This experiment requires a simulation of long term image memory, but not testing the

memory. It is thus reasonable to allow them to view the target images again.

7.1.3.4 Participants

Twenty four volunteers participated in this study. All of them were undergraduate
students or recent graduates from Monash University at the Gippsland Campus, with
the following demography: 25% female, 75% male, 67% Computing and 33% non-
Computing {Arts, Psychology, Business and Applied Sciences). The recruitment cam-
paign was campus wide but the respondents were mainly computing students. Two of
the participants have worked briefly on CBIR systems but were unaware of this project
before they were recruited. All participants had normal or corrected to normal vision
and normal colour vision (self reported). They were awarded with $8.00 meal vouchers
for participating in this study, and to avoid any bias, they were told we had developed

all four programs.

e L

D G s, T

§87.2 Results and Discussion 145

P

S

o)

i N O IR

o ey i TR

Py

T

s T

7.2 Results and Discussion

The following sections present the results and analysis using the four criteria deseribed
in Section 7.1.1. The participants are labelled from 01 to 24, and any refersnces made

to their comments will be indicated using these labels.

7.2.1 Successful Search

As mentioned earlier, cyeMap could be used for solving the Page 0 problem and brows-
ing. This section discusses the experimental results on the rate of successful search of
all four programs: two programs based on traditional linear display (P1 and P2) and
two programs based on eyeMap (P3 and P4). We will first discuss the results related

to solving the Page 0 problem, then results related to browsing.

7.2.1.1 1In Solving Page ¢ Problen

Table 7.2 provides a summary of the numbers of both successful and unsuccessful

searches for each program using each image - in total, the unsuccessful search rate was

24% (t;t";]‘“n;“’o?‘{sg:::h = §2). The profile plots in Fig. 7.8 on ihe following page show
the average successful search rate for each program - a higher successful search rate is
more desirable. They are useful for visual comparison because we can clearly see which
programs are better. It is obvious that having the visual query increases the chance
of finding the target images, that is, P2 is better than P1, and P4 is better than P3.
Similarly, having the visnalisation layout also increases the chance of finding the trrget

images, that is, P3 is better than P1, and P4 is better than P2. This means eyeMap is

better than the traditiooal systemns.

Numbeus of Failed and Successful Searches

Pl P2 pPs P4
fail  success | fail  success | il success | il success
fruits and flowers 1 5 2 4 1 ] ] 6
firaman 3 4 t] 6 h 1 2 4
mnonkey 1 5 0 6 1 o 0 6
girl ! 1 3 3 0 6 il 6
Total it 15 5 19 7 17 2 22

Table 7.2: A search is unsuccessful if the participant failed to find the target image (in red) -
the total failed or unsuccessful rate is 23.9%.
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s

Rate of Successful Search - Page 0 problem

."..Ef Profile Plots
g 4
§ 0.9 ¢
~§ 0.8 xP2
g 07 +P3
2 06 | 1P1 :
o : Linear Visualisation
£ Layout
5 = Without Visual Query
X = With Visual Query

Figure 7.8: Profile plois for comparing the average successful search rate of P1, P2, P3 and
P4 in searching for exact imnages, which is the task for testing the programs in solving the Page
0 problem.

The analysis is then followed by hypothesis testing using a two factor Analysis of
Variance (ANOVA), as shown in Table 7.3, with the first factor being the type of image
layout (linear or visualisation), and the second being the existence of query function
(without or with). P1 and P2 are both displayed in linear layout but P2 has visual
query. On the other hand, P3 and P4 are displayed in visualisation layout but P4 has
visual query. The null hypoilicsis, H,, is that both factors do not significantly affect

the successful search rate. The importance of using hypothesis testing is as follows.

Rate of Successful Search - Page 0 problem
Results of Hypothesis Testing
Factor P
1 Type of Image Layout *0.083

2 Existence of Visual Query *0.057
* indicates significance at 0.1.

Table 7.3: Results of two factor ANOVA hypothesis testing.

In any study, two types of errors can occur: type I error for rejecting the H, when it
is true and type 11 error for accepting the H, when it is false. The P-value indicates the
probability of type 1 error occurring because “the P-value conveys much information
about the strength of evidence against H," {30, p309). Rejecting an H, at P-value of
0.05, therefore. means that th re is a 5% chance of type I error occurring. The accepted
P-value is normally set at 0.05 to 0.1, depending on the seriousness of committing a type

I error. The purpose of conducting a hypothesis test, in this case, is to evaluate if the
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differences of the successful search rate are statistically significant. More specifically,
it is to confirm that the differences do not happen by chance but are strongly backed
by statistically significant evidence. The results of the test are given in Table. 7.3: the
P-values for the layout factor is 0.083 and for the visual query function is 0.057. This
indicates that H, was rejected at 0.1 confidence level. This means P4, eyeMap with

visual query, is significantly better than all the other programs.

7.2.1.2 In Browsing

The second type of application for eyeMap is in browsing, which will be analysed as
follows. From Table 7.2, we observed that in P3, most participants gave up on fireman
and only one each gave up on fruits and flowers and monkey. In tne questionnaire,
three out of five participants who gave up searching for fireman said that they could
see at least one image similar to the target. The participants in this study normally
enlarged the images to check if they had found the target; hence, we checked the
function logs to see which images had been enlarged to find out which similar images

they had found.

We found that all five participants who gave up on fireman found either visually
or semantically similar images, some of which are given in Fig. 7.9. So, from that point
of view, P3 did help them to find fireman. To be fair, we also checked the function
logs in P1 and P4 - there is no need to check for P2, because all participants who had
to find this image using P2 found the target image. For both Pl and P4, only one

participant found a similar image.

{a} Target (b) Visually similar (¢} Semantically
similar
Figu.e 7.9: In P3, five participants gave up searching for image (a) but all five found other

similar images like (b) or (c).
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If the task was to be relaxed, that is users were only required to find a similar b when the target images were not at the expected location, they were disappointed,
. . . ) . 5
image instead of the exact one, then it becomes a browsing task, and as mentioned _ therefore, were more likely to give up. We mentioned in the previous chapter that it
in the previous chapter, it is a more suitable task for P3. By redefining the task, the E is not always poss.ile to place all images at the correct location. For P4, they could
number of unsuccessful searches using P1 is now eight, P2 remains the same at five, issue visual queries using the sample images found, so they did not have to iy on the
P3 has two and P4 has one. The data was then reanalysed for this relaxed task, and g visual arrangement alone. Consequently, P4 is the best for either browsing or finding
3
the profile plots are given in Fig. 7.10 and the results of hypothesis test are given in ; the exact image. From this analysis, we conclude that (1) eyeMap with visual query
Table 7.4. The P-value for the layout factor is now 0.002 and for the visual query increases the chance of finding the exact image and (2) eyeMap with or without visual
factor, it is 0.328. Thus, the H, for the layout factor was rejected at 0.005 confidence *; query increases the chance of finding similar images.
level, but the H, for the visual query factor must be accepted. i
; % This completes the analysis on the effect of the two factors on the rate of successful
Rate of Successful Search - Browsin g _
£ % search. The next section describes the analysis of the effect of the two factors on
g Profile Plots [ . , . ,
k- efficiency of search by analysing the time taken to fi:id target images.
-g x4
g 09 3
2 o08fF xe2 e
0.7 ; 7.2.2 Search Efficiency
@\ 0.6 -1 L H
= Linear Leyout Visualisation 5 :
= . Without Vieusl @ 7 The raw data of the search timme sorted by program and target image can be found
= Without Visual Query
X = With Visual Query % in Table 7.5 on the following page. To analyse the search efficiency, the response or
Figure 7.10: Profile plots for comparing the average successful search rate of P1, P2, P3 and ﬁ dependent variable is obviously the time taken to find the target image. What is less
P4 in searching for similar images, the task for testing the usefulness of programs for browsing.
4 obvious is how to treat the data when the participants did not find the target image.
4
Rate of Successful Search - Browsing "i We considered three options in treating such data but used only one. The first option
Results of Hypothesis Testin
P Factor g B ; is to naively analyse those data with the assumption that it would take at least as long
1 :
1 Type of Image Layout **%0.002 '-3 as the time at which they gave up the search for the target image. The problem with
2 Emsf;f(fe d(;f \:'131191 ?ﬁuer} 501 0.328 5 this approach is that these two times have different meanings. If a participant gave up
g indicates significance at 0.01.
‘ Table 7.4: Results of two £ ANOVA hvooth quickly, it indicates that the program failed to keep them i~ ‘erested in the task, so a
e 7.4: Results of two tactor ypothesis testing.
§ : short give up time is undesirable. On the other hand, if a participant finds the target
It is now clear that for browsing, arranging images in the visualisation layout is image quickly, it indicates that the program helps them in completing the task. so a
]' more useful than using the visual query; however, when looking for the exact image 1 short search time is desirable. It is clear that this option is unsuitable for analysing
the visual query function is essential. Searching for the exact image in P3, which has . search efficiency.
no visual query function. is difficult because when users found images similar to the é The second option for treating the missing data was obtained by consulting two
targets in P3, they expected that the target images would be around the images they % cognitive scientists from the Centre of Bionics Studies at Monash University, Dr Barry

oy

had found. When they failed to see the target images at the expected location or Richardson and Dr. Dianne Wuillemin. They suggested that the data should be con-
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Search Time sorted by target image and program

Pi P2 P3 P4

fruits and flowers 2in 1.54 Im 247  Om 57.99 Om 19.30
2m 3.16 6m 26.45 Im 1.28 Om 27.57

2n 8.89  Gmin 41,03 1m 22.19 Om 35.46

B T A L R TETRS 3m 40.11 im 29.30

S5m 22.09 ety Tap fs A 2m 13.63

14m 19.82 2Im 39.77  10m 7.5 2m 26.33

firemen SIS 1m 2292  1m 26.95 3m 21.03
7m 5i.8B3 Jin 28.66 TS 3m 46.15

Bm 11.72 Gm 12.83 Ty oo 10m 24.43

S TP SLAN L 6m 44.01 RN TR ELEE AU TR TS

1"Tm24.28 Tm35.79 LU~ 7i 0 13m 11.29

24m 5.78 8m 3341 S Y b g TS

woenkey 1m 35.77 Om 17.99 1m 50.98 1m 5.15
2mn10.53 O0m 2286  3m 27.47 2m 15.85

2m 47.81 Om 3487 5m 10.03 3m 7.81

4m 3.81 Im 16.22 om0 5m 1.21

TR lm 27.57 8m 53.74 7m 4.46

T 3.17 2m 3851 19m 5207 18m 13.56

girl SNt S HEe Om 36.20 Om 37.84
NHTIREEN 6m 36.99  1m 49.40 1m 25.26

Sm 42.15 s feen? 3m 56,74 2m 0.51

Floer2on 12m 25100 5m 10.37 2m 51.1%

HETITRR VR ST I A Tm 2.95 8m 40.84

ESTRHEIAT 16m 2.13  8m 47.89 21m 30

Table 7.5: The time taken to find a target image or give up (in red).
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sidered as missing and be replaced by the average searching time of all participants
of that program because it is an accepted and commonly used approach by cognitive
scientists and experimental psychologists. This function is also available as an option
in the SPSS statistical package, so it is fair to assume it is also a widely used practice
in the research community. Nevertheless, we still had reservatious about the use of the

almost blind average replacement.

Woe used the third option for treating the missing data, that is, to replace the missing
data with the maximum time taken in that program to find the target image. This
option is the most conservative approach compared to the other two. The justification
for using this option is as follows. In experiments involving humans in which they have
to complete a difficult task and the response variable is the time taken to complete
the task, it is comunon to set a maximum time. When a participant fails to complete
the task. the value of the response variable is the maximum time set. Because we did
not set the maximum time, we could not use this approach, but we could predict the
maximunn tolerable time in completing the task. The maximum tolerable time was
the maximum time taken to find an image using the program. Using this approach to
analyse the search efficiency is extremely conservative considering that a good program
is one that can keep users interested in the task. In spite of this, we decided to take

this approach because it is more justifiable than any of the other options.

Using the rule defined above, when a participant failed to find a target image, the
search time was replaced with the longest time taken in that program to find the target
image. From Table 7.5, it can be seen that for P1 the longest time taken was 24 minutes,
for P2 it was 21 minutes 40 seconds, and for P4 it was 21 minutes 30 seconds. These
choices exceeded the longest time in unsuccessful search within the same program. For
P3, the time used to replace the missing data was 19 minutes 52 seconds, the second
longest time. The reason for not using the longest time is as follows. The longest
search time in P3 was 35 minutes from an unsuccessful search by participant 24, and
it is ncarly 15 minutes longer than the second longest, which was used to replace the

unsuceessful search. Participant 24 used a most unusual search technique: instead of
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moving to the area where the image is most likely to be located. she moved to the
area where the image is least likely to be and started hiding the images. Such a search
technique is logical but highly inefficient. This is evident given that the second longest
search time from another participant using the same program took only 19 minutes 52

seconds; although it is nearly fifteen minutes shorter, he found the target image.

For P4. the longest time was from participant 21 who refused to practise before
performing the task, even though she was strongly enconraged to. After the experiment.
she indicated that she could not remember some of the functions, so did not use all
the available functions. This is why it took her much longer than other participants
to find the target. In this way, she was very different from most participants, so using

this search tinie to replace the missing data represents a very conservative approach.

The following sections first discuss the analysis of the results of the four programs
in solving the Page 0 Problem, theu in browsing. The nature of analysis on search
efficiency is quantitative, which is useful to objectively establish which program is
better. This type of analysis, however, reveals nothing about why some systems are
better than others. This explanation can only be obtained using the qualitative data
collected from the post experiment questionnaires and interviews. In this section, the

qualitative analysis will follow the quantitative analysis.

7.2.2.1 In Solving Page 0 Problem

The average search time taken for each program is given in the profile plots in Fig. 7.11
on the following page. It is clear that 2 performs better than P1, P4 better than P2
and P3. and P3 better than P1. Next, we performed a hypothesis test using a two
factor ANOVA. The H, is that both factors do not affect the secarch time. The results
of the test can be found in Table 7.6 on the following page. The P-value for the type
of image layout is 0.009; hence, we rejected the H, for the type of image layout. The
P-value for the existence of visual query is 0.106. Because this value is very close to
0.01. so we also rejected the H, for the existence of visual query. This means P4 is

significantly better than P1, P2 and P3, while both P2 and P3 are significantly better
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Search Efficiency - Page 0 Problem

w Profile Plots
2
+P1
g 750
'aE'a' 650
= 550 xp2 +P3
8 a0 -
) P4
; 350 Li;'laar Visualisation
< Layout
+ = Without Visual Query
X = With Visual Query

Figure 7.11: Profile plots for comparing the scarch efficiency of P1, P2, P3 and P4 in searching
for exact images, the task used for testing the usefulness of programs for solving the Page
Problem.

Search Efficiency - Page 0 Problem
Results of Hypothesis Testing

Factor P
1 Type of limage Layout **%0.009
2 Existence of Visual Query *0.106

*** indicates significance at 0.01 whilst * indicates significance close to 0.1.

Table 7.6: Results of two factor ANOVA hypothesis testing.

than P1. The results suggest that to search an image from a collection of 5,000 images,
(1) the use of visual query function tends to be faster but the improvement is not as
significant as using visualisation layout (eyeMap-based), and (2} eyeMap is significantly

better than existing systems.

7.2.2.2 In Browsing

As in the analysis of the rate of successful search in the previous section, we were also
interested in how each program performs if the task is relaxed, so that it becomes a
browsing task. Recall that the programs logged not only the functions used but also
the titne at which the functions were used; so, we recovered the time at which a similar
image was viewed - the search time is then from the time when such image was first
viewed. The treatment for unsuccessful search is the same as before but because of
the redefinition, the maximumn time for P1 was now 18 minutes 30 seconds - it was 24

minutes. The maximum search times for other programs remain the same.
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The data was then reanalysed using this relaxed rule. The profile plots are given in
Fig. 7.12 and the results of hypothesis testing are given in Table 7.7. From the profile
plots, it is clear that the relationships of the programs’ performance remain the same,
but the difference between the existence of the visual query factor is now smaller. The
P-value for the type of layout is now 0.012, and for visual query is 0.669. The H, for
the type of layout is rejected with 0.05 level of confidence. but the H, for the visual
query must be accepted. Thus, for browsing a collection of 5,000 images, the use of
visualisation layout is more efficient than visual query; that is, P3 is significantly better
than P1, and P4 is significantly better than both P1 and P2. From this analysis, we
conclude that eyeMap is significantly faster than existing systems for finding the exact

images and for browsing.

Search Efficiency - Browsing

@‘ 2rofile Plots

=4

g 800

L 700

% 600 -1

-

g 500 2

@ 400 4

8 300 l—u NS

= Linear Visualksation

< Layout
+ = Without Visual Query
X = With Visual Query

Figure 7.12: Profile plots for comparing the search efficiency of P1, P2, P3 and P4 in searching
for similar images, the task used for testing the usefulness of programs for browsing.

Search Efficiency - Browsing
Results of Hypothesis Testing

Factor P
1 Type of Image Layout **0.012
2 Exdstence of Visual Query 0.669

** indicates significance at 0.05.

Table 7.7: Results of two factor ANOVA hypothesis testing.

Contrary to our expectation, the use of visual query does not significantly increase
the search efficiency and ouly visualisation layout does. The hypothesis test above
can only indicate the strength of evidence against H,, but cannot explain why. Such

answers can only be revealed by analysing the qualitative date from post experiment
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questionnaires and interviews. We analysed two components which may have influ-
enced the search time. The first component was the usefulness of the visual query
and visualisation layout, and the second one was the search strategy used. These two

components are discussed in the next sections.

7.2.2.3 Usefulness of Visual Query and Visualisation Layout

Participants in the experiment had mixed feelings about the usefulness of visual query.
Ten of them thought this function was useful and expressed that the task seemed casier
because they only needed to find visually similar images instead of the exact one. On
the other hand. when the visual query did not return the expected image, they became

irritated. The conunents from participant 03, 12 and 13 are given in the following:

03  With query, (I) expect that it would be easier but when I can’t find the target

tmage, it becomes irritating.

12 ...when doing a query, lots of similar images appear bui not the one I am

looking for. So, it can be hard fo searck as well.

13 I thought it would be easy with the query tool but it wasn’t. I am not sure why.

The truth of these statements can be seen in the search time for fruits and.
flowers: the average search time in P2, excluding the failed search was almost nine
minutes compared to five minutes in P1 (nearly twice as long). We believe that the
search time was longer because of the over-reliance on visual query to find the target
image. As a consequence, when the visual query fails to return the expected image
because of the differences between low level features and human’s perception {(semantic
gap). the search time becomes even longer than for a manual search. On the other
hand, with P4, the visual query was not the only tool, the image layout was available
too. So, when the visual query does not return the expected results, users can fall back
on the image layout. From this point of view, the visualisation layout is also useful
for bridging the semantic gap. In fact, the visualisation layout is so attractive that

nearly all participants, 83% or 20 out of 24, indicated that the image layout in the
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visualisation view was useful:

01 ...moved the “ellipse” in the actual image set to a region I felt had o similar
colour composition to the set image. ... allowed quick search where we could

move straight to a region.
04 Scrolled around a similar colour then slowly looked through.

06 1 used the focal point to get the images that looked the same then went into
linear view and then if the target image was not there I used hide image then

used the focal point again.
09 I just go to the same colour region and find it.

15 Firsily, according to the target picture to locate one area and then use the mouse

wheel to clarify the picture.

23 When looking for fruits and flowers, can go directly io the red section.

ifowever, grouping the images based on visual similarity can be a double-edged
sword: while it makes it casy to narrow down a search. it sometimes makes it harder

to find the target image among similar ones:

05 I was unsuccessful in this program. The colour grouping made it easy to pick
where to begin looking. I found MANY similar pictures using this program but
could not find the target image.

13 Same colour in many pictures.

This explains why searching for monkey took longer in P3 and P4 than in Pl or P2.
In P3 and P4, the target was surrounded by many images with similar colours, so the
participants found it hard to find. In P1, the images were not displayed by similarity
of colours and monkey was surrounded by images with different colours, so it stood out;
however, being able to narrow down the search area was more important because it,

overall, significantly reduces the search tine.
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7.2.2.4 Differences in Search Strategies

Although all participants received the same treatment and had equal opportunity to
practice, there was some variability in the search strategies, which would influence the
search time. The strategy employed depends on several elements among which are
personal preference. programs and the functions of the program that users remember.
Because the functions provided in P1 aud P2 are more similar compared to '3 and P4,

it is fair to analyse P1 and P2 together, then P3 and P4.

For P1 and P2, the difference in the search technique appeared to rely on whether
users could extract salient features of the images. Those who could tended to scroll
quickly and their search techniques appeared to be more efficient. Nine participants
indicated that in P1 or P2, they scrolled down fast and looked for the salient features

which could be colours or shapes (eight of them indicated it was colours):

06 ... I used the scroll bar to scan the images. I looked for a similar overall colours
in the picture; for example, if the target image was a picture of a golf ball, I

would look for a white image.

07 Lookec at the basic colour features of the target image and manually searched

the database for the corresponding image.

14 Remember the main feature of the image; for example, the curve of the water
then check one by one but not very carefully but just very quickly. When there
is a picture with similar curve, then I looked more carefully; for ezample, the

waterfall has the curve then I looked more carefully.
15 Look at whether it is bright or not and look more detailed later. ..

Those who did not utilise the significance of salient features reported that it was
very hard to coucentrate on an image in the presence of many. Also, they preferred to

process.a small nmuber of images at a time:
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02 Too many tmages on the screen. Can only concentrate on about a third of the
screen. (The)} best way to scan is to take tn a small chunk so the program should

allow people to take in a small chunk al g time.

;% I scrolled through the images and tried to find images of similar colour and
terture. As there were so many pictures this was difficult as there was no way

to single out or group similar images.

23 Scroll doun fast but can not remember anything. Can not pay attention.

Their comments suggest that instead of looking for the salient features, they processed
the details of the images. Also, pariicipants who could only process a small number
of images at a time suggested a page up or down function to bring a fresh set of
images each time. These observatioi s suggest that there are differences in how humans
process iimage collections and the differences Lave an effect on the choice of tools, so
designers of image browsing or search software prograin must take these differences into
consideration. This completes the analysis on search strategies in P1 and P2. The rest

of this section discusses the search strategies in P3 and P4.

P3 and P4 had the most functions and their user interface was less familiar; con-
sequently, some participants only realised how the functions might be used after they

had started the task:

08 Setting the magnification factor lo 4 is very important since there is no query.

It is important to get as many pictures as possible in the linear view.

11  Only realise how it might be useq at the end that I could use hide images to

narrow things doum. So it only get used towards the end.

13 When I realised I could use the linear view,. .. I tried to get . . . as many pictures

as possible in the focal region and used the linear view to search for it

17 It then occurred to me that pictures which did not fit could be hidden cway. . ..
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21 Did not realise I can change the distortion factor . .. tried grouping lots of images

al once.

This shows that the learning curve for P3 and P4 was relatively higher than for P1
and P2. but it paid off. as users could find the images faster. The comments from
participants 08, 13 and 21 suggest that when searching from a small nmmber of images,
scarching from linear view is more efficient and a smaller distortion factor (four to eight,
as indicated in the function log) is more useful than a high distortion factor - a smaller

distortion factor means that they can view more images linearly.

This completes the analysis on users’ performance using each programn. The next

two sections provide the analysis on how uscrs perceive the prograins.

7.2.3 Program Ratings

Table 7.8 on the following page shows the average rating of each program using a five
point Likert scale, with one being “strongly agree” and five being “strongly disagree”
- lower values are more desirable. In total, there are 10 statements: statements one to
seven are relevant to all programs; statement cight is relevant only to programs having
the visual query function, P2 and P4; and statements nine and ten are relevant only to

programs with the visualisation display, P3 and P4.

The resings for the first seven statements were subjected to a two factor ANQVA,
while the ratings for the last three were subjected to a single factor ANOVA. The H,
for the first seven statements, H} 7, is that both factors have no effect on the ratings;
the HS is that the layout factor has no cffect on the ratings; and the H3-10 is that
the query factor has no effect on the ratings. The column PI%™¥ shows the P-value
of the query factor. If HI“*"Y is rejected, then the differences between P1 vs P2, and
P3 vs P4 are significant. Likewise, the column Plovout ghows the P-value of the layout
factor. If HV** is rejected. then the differences between P1 vs P3, and P2 vs P4 are

significant.
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in this ranking. it appears that only the query factor is statistically significant. which

Statements P1| Pz| P3| Py Ppwenw| playout _ | .
means that having the query function makes the task perceived to be easier. The results
1 The task was reasonable 2.75 1 1.92 | 2.21 | 1.75 | ***0.006 0.141 3 _ ) ked
suggest that searching from 5,000 images is sufficient for the study because P1 is ranke
2  The program was easy to use 275 [ 2.08 | 2.67 | 1.79 | ***0.006 0.487 . Inined ab o Pt I for
_ st. In addition, the participants also complained about using 0 searc
3  The program was enjoyable to use | 3.67 | 2.42 | 2.50 | 1.83 0.0 | **%0.003 the lowe
4 The image layout helps me in decid- | 442 | 3.42 | 1.83 | 1.75 | ***0.004 | ***0.00 an Inage:
ing where to start searchin .
g g 08 I don't like Program 1. Ii makes me feel tired.
5 The program made it easy to find { 4.58 [ 2.75 | 2.71 | 1.87 | ***0.00 | ***0.00

the target image

H s very tedious. Took four passes to find the target image.
6 The magnificaticn tool was useful | 2.58 [ 2.08 | 1.79 [ 1.79 | **0.031 | ***0.005 T Itis very te Jour pas

7 The magnification tool was easy to | 200 | 1.71 | 1.50 | 1.58 0.285 *0.053

use 24 The task was reasonable: being asked to find an image is a reasonable task but

8 Integration of visual query to brows- - | 1.71 -} 1.50 0.233 - it is actually very hard to find an tmage from so many images.

ing query was useful ) .
3 The rating for P1 has considerably improved from that in the pilot study. It was

9  The focal/context view was useful - -1204| 179 - 0.110 ‘ .
> now rated at 2.75 instead of 4.5. An interview with the participants revealed that

10 Being able to hide images was useful - - 1.88 | 221 - 0.224

they interpreted the statement differently: six participants gave a rating of one which
Table 7.8: A summary of the questionnaire using five point Likert scale, with one being 1 . . et b ot beonise
strongly agree with the given statement and five being strongly disagree (** indicates signifi- suggests they strongly agree with the statement but it may not reflect the tru

ok . ‘
e DR end T o) half of them gave up. Onc of them said that if she had enough time she would have
found it, so from her point of view it was a reasonable task. Note that there is no

Statement 1: The task was reasonable. N "
maximum time limit to perform the task but she was unwilling to spend more than she

The first statement is to gauge if the task was reasonable. It is one of the three already had. Others thought that it was the image they had to search for that made

criteria for establishing if manually searching an image from 5,000 images is sufficient 3 the task appear reasonable:
to conduct the experiments. The other two are concerned with the rate of successful 3 05 it a reasonable task to do given more time.
search and search time, which were discussed and analysed in the previous sections.

3 ] ] to look at eve
We mentioned earlier that the experiments are sensible only if manually searching the 3 13 The picture was easy to find because of the colour I did not have to loo TY _

images are unreasonable but therc is no guideline as to how many images would be picture I just needed to locate the colour.

sufficient. The pilot study and the analysis of participants’ performance using each
11 ... I only had io look for a green background.

program in the previous sections indicate that 5,000 is sufficient for this study but we

were also interested to know if other users also felt the same.

Statement 2: The program was easy to use.
In the experiment proper, P4 had the best rating at 1.75, followed by P2 at 1.92,
P3 at 2.21 and finally P1 at 2.75. Coincidentally, this ranking is consistent with the The second statement evaluates how easy it is to use the programs. P3 and P4

rastking of the rate of succossful search when searching for the exact images; however, have more functions than P1 or P2, and Distortion Oriented Displays {DOD) is still




162 Usability Study of Colour-Based eyeMap

an uncommon user interface. We expected that P3 and P4 would be rated harder to
use than P1 or P2. Surprisingly, P4 had the best rating at 1.79, followed by P2. then
P3 and, lastly, P1. It turned out that the participants also interpreted this statement
differently. They rated the programs based on how vseful the programs were in helping

them to complete the task, or how much they liked the function or the type of display:

06 There isn't any tools to make the task easier. Not getting any help from the
computer. The user interface is easy to use but the ease of use is rated low

because it is not a very useful program.

08 The program is not helpful so it’s perceived to be more difficult to use. Looking

at so many images is difficult.

11 Secrolling through heaps of thumbnail is difficult especially after playing with the

ellipse.

Accordingly, the ratings were very similar to that of the first staterent, and only the

query factor is statistically significant.

There was only one participant who expressed that P4 is difficult to use and rated

P4 at four, but rated P1 and P2 at one:

03  With query, ezpect that it would be easier but when I can’t find the target image,

it becomes irritating and there are a lot of functions and it is confusing.

Although mo< participants interpreted the statement differently from what we in-
tended, it is still fair to conclude that most of them did not have any problems with the

user interface of P3 or P4, because if they did they would not have found the programs

useful and would have given them low ratings.

Statement 3: The program was enjoyable to use.

The third statement finds out how much they liked or disliked the programs. Again,

P4 was ranked highest. followed by P2, then P3 and, lastly, P1. Unlike the previous two
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statements, the differences in the ratings are now significant for both factors. We also
observed that the ratings for P2 and P3 were now very close, so it is fair to conclude

that the visualisation layout is just as attractive to users as the visual query.

Statement 4: The image layout helps me in deciding where to start search-

ing.

The fourth question establishes if users make use of image arrangement based on
visual similarity. As expected, P4 was ranked the highest. followed by P3, then P2, and.
lastly, P1. The effect of the layout factor was extremely <trong given that Pleyout jg
very small. This ranking is also reflected in users’ comments: as mentioned earlier, 83%
of the participants indicated that they used the arrangement of the colours to narrow
down their search. Surprisingly, the query factor was also statistically significant: the
value of PV i5 (0.004. The participants’ comments reveal that it was the layout of

the query results that helped them in searching.
02 The query results layout helps me to concentrate betier.

10 It does and it doesn’t. I can look for an image with similar colour content and

then use the visual query.

18 The layout from the query results window is useful.

Statement 5: The program made it easy to find the target image.

The fifth statement quantifies how useful the programs were, overall, in helping them
to complete the task. Again, P4 was ranked the highest, then P3, followed closely by
P2 and, finally, P1. Also, both factors are statistically significant. The participants felt
that the visualisation layout was just as useful as the visual query function in helping

them to look for the target image.
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Statements 6: The magnification tool was useful.

The purpose of asking the sixth statement is to find out how useful the magnification
tool is. This question is important because the images are displayed in thunmbnails. It
is even worse in P3 and P4, because in the context region, the images are only half the
size of the thumbnails in P1 and P2. The participants thought the magnification tools
were equally useful for P3 and P4, followed by P2 then P1. Again, both factors were

statistically significant.

The reason that the tool is more useful in P2 than in P1 is bocause the search
strategy in P2 is slightly different from in P1. In P1, participants simply relied on
colours to search and only used the tool to check if they had found the target. In P2,

they tended to view the images in full size before issuing queries.

08 Use magnification tool to inspect the images more carefully because I need to

select one which has similar colour properties to do the visual query.

09 Use content to search for P2 but for P1 rely on colours no need enlargement

tool.

16 (P1}Didn’t use it a lot, not useful.

Statements 7: The magnification tool was easy to use.

The sev-1:th statement finds out how easy it is to use the magnification tool. This
question is important for the same reasons as in statement G, that is, the images are
initially displayed in thumbnails. Its case of use in P3 and P4 was the highest, followed
by P2 and P1. This time, only the layout factor was significant. We are unsure why
the layout would make the tool easier or harder to use; it could be that, like the first

and second statements, the participants rated the ease of use based on how useful the

tool was.

R oo i
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Statement 8: Integration of visual query to browsing query was useful.

The eighth statement measures how useful the visual query function is in P2 and
P4. P4 was ranked higher but the difference between the two is not significant. This
means that visual query is perccived to be as useful whether it is in the linear layout

or visualisation layout.

Statement 9: The focal/context view was useful

The ninth statement evaluates if the functions specific to DOD are used differently
when the query function exists. The focal view was perceived to be more useful in P4
than in P3 because the search behaviour is slightly different when the query function

exists:

6 With P4, usc the focal point to find a sample image. But for P3, mainly use the

linear view.

This difference, however, is only nearly significant at 0.1.

Statement 10: Being able to hide images was useful.

Similar to the previous statement, the purpose of this statement is to evaluate
if the functions specific to DOD are used differently when the query function exists.
Participants found that being able to hide images in P3 was more important than in
P4, but this difference is statistically insignificant. Some of thein thought it was useful
but had forgoiten about it until towards the end of the search. One participant did

not use it at all until the next search, which was a P3:

11 Only realise how it might be used at the end thet I could use hide images to

narrow things down. So it only get used towards the end.

21 Doesn't use it much.
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Summary of Program Ratings

From the program ratings, it is clear that most participants benefited from the visual-
isation layout and enjoyed using such a program. They also liked the visual query and
expected that it would make their task easier but in reality this was not necessarily
true. An analysis of the successful search rate and search cfficiency indicates that the
visual layout is, overall, the more important factor. The results show the importance of
verifying what users said against their performance. Some usability studies only asked
users what they felt without measuring their performance [152]; nonetheless. measur-
ing their performance only is insufficient because the information gathered from post
experiment questionnaires or interviews or both (as in this section) is much richer, for

it provides insights into users’ thoughts.

7.2.4 Preferred Program

‘The last question asked was if the participants have any preference for any method,
and if they have, which one. This question was carcfully phrased so that users would
not think that they must have a preference. For this reason also, they were not asked to
rank the programs; nevertheless, it was still possible to gauge whether P3 was suitable
for browsing, because P3 is simply a P4 without the visual query: a preference for P4

would also mean a preference of P3 over P1.

It was found that twenty participants preferred P4, one each for P2 and P3. and two
had no preference. There were two participants who could not find the target image
using P4, and one of them had no preference for any method while the other preferred
P4. We found it intriguing that he preferred a program in which he failed to find the

target image, so we asked him why. His reply was:

18 Buven if I can not find the image using the software, there are still some functions

that I can use. . .

Sometimes, users found the target image faster using another program, yet they still

preferred P4. Some of them suggested that they felt P4 helped them to find a sample

RO il
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image to start a visual query; for instance, participant 08 found the target image faster

in P2 than in P4, yet he still preferred P4. We asked him why and he replied:

08 The target image in P2 is very bright so it is easy to find a sample image. The

target image in P4 is not so obvious but the program helps me to find an image

to start querying.

The users’ preference could also be explained in that they found the program enter-
taining thus did not feel that it took them longer. A recent study in psychology found
the cstimation of time taken to perform a task is affected by the type of task and

scientifically proved that “time flies when you are having fun” [16}.

The participant who preferred P2 did not like the image overlapping in P4. In fact,
several participants expressed their dislike of the overlap but they found that existing

tools helped them to tolerate it, and they still gained from the colour chart provided

in eyeMap.

17 Dislike the overlapping but having the query counter the cffect of overlapping.

22 Much more scarching required than in Program 4. A series of linear searches
were performed and the iinages hidden to make navigation using the ellipse
easter. Searching maindy colour based with the ellipse. The target was eventually
located inside a linear search.

Participant 21 is the only one who preferred P3. She used P4 before P3 and when
using P4, she did not practice it on her own; as a result, she did not remember all the

functions in the program and only realised this when using P3. This explained why she

preferred P3 over P4.

7.3 Conclusions

In this chapter, we showed that eyeMap is the best system for browsing and solving the
Page 0 problem by conducting a usability study on colour-based cyeMap and existing

systems. The study confirms that users can successfully transfer their daily browsing
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experience into image browsing using eyeMap because eycMap has the (1) highest rate
of successful searches, (2) shortest successful search time, (3) highest program rating
and (4) highest preference. The first two criteria indicate participants’ performance in
using eyeMap whilst the last two indicate their attitunde towards eyeMap. From the
analysis of these criteria, it is appropriate to conclude that eyeMap is the best system
for browsing and solving the Page 0 problem. Also, eyeMap is useful for bridging the
semantic gap between human and computer because when the visual query fails to
return the expected image, users can explore the images using eyeMap to find visually

similar ones.

In addition, the evaluation study also provides insights into how Iunans process
images. We discovered that there are at least two different ways humans process images.
Some lovk for the salient features in the images and can process many images at a time.
Others look at the details of the images and can only process a small number of images
at a time; they also prefer to display a new set of images at one time instead of scrolli ng
to the next row of images. Further, we found that when scarching from a small number
of images. linear search is most efficient but when searching from a large number of
images, users value grouping by visual similarity. as it helps them to narrow down their
search. These findings are important for the design of any image browsing and search

method,

eyeMap is a browsing concept suitable for use with other types of images as long
as the correct feature descriptor is selected: for example, it can be used for brows-
ing texture databases by selecting appropriate texture descriptors. The next chapter
demonstrates how to use eyeMap for texture hnages by focussing on how to use existing

texture descriptors for browsing, thus creating texture-based eyeMap.

e

Chapter 8

Texture-Based eyeMap:

Browsing Texture Image

Databases

The last two chapters concentrated on browsing general colour imuge databases, and
rescarch showed that cycMap is the best system for browsing and solving the Page 0
problem. The prime reuson behind eyeMap's success is that it enables users to transfer
their daily browsing behaviour into browsing image databases; therefore, image brows-
ing in eyeMap is intuitive. For this reason, the eyeMap framework can be used for
browsing not only general colour image databases but also other image database types

in the real world, such as those for texture i.e. textiles, carpets and wall papers.

The aim of this chapter is to show how eyeMap can be used for browsing texture
databases by cvaluating two types of texture descriptors defined in the MPEG-7 stan-
dard. These two descriptors are Texture Retrieval Descriptor (TRD) for retrieval and
Texture Browsing Descriptor (TBD) for browsing. The purpose of the evaluation is to
establish which texture descriptor is more suitable for browsing. The research described
in this chapter is more than just an evaluation study; it also shows how to use TBD for
browsing, and then questions thie validity of TBD as a feature for browsing. To date,

there has been no research which investigates how to use TBD for browsing.
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8.1 How to Browse a Texture Image Database

From Chapter 6, it is clear that the quality of the layout generated for display depends
on the input into the MDS algorithm. So, to browse texture images. the input into
the algorithm is texture features (descriptors). The MPEG-7 standard defines two
types of texture descriptors: TRD for retrieval and TBD for browsing. Using TRD for
retrieval is straightforward but using TBD for browsing is less straightforward because
the browsing process is undefined. This section demonstrates how to extract TRD :und
TBD from texture images and to generate layouts for browsing using these features.
We then studied the layouts to establish which one is more suitable for browsing using
the two cvaluation criteria described in Section 6.1.1: the spatial PR graphs and visual
inspection. For convenience, from this point onwards in this chapter, unless specified

otherwise, database means texture image database.

8.1.1 Texture Retrieval Descriptor (TRD)

8.1.1.1 Feature Extraction

TRD is generated from the following process which consists of two steps. The first step
in this process is to convolve an image I(z, y) with a set of Gabor filters:

K-1K-1

Dalmy) =Y S Iz - s,y = )g}, uls,t) (8.1)

s=0 =0

where I;',,‘_,, is the filtered image at scale m, orientation n, K is the filter mask size, and

Gm.r, 18 the complex conjugate of:
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where W is the modulation frequency. The filter for scale m and orientation n is

obtained from:

gm.ﬂ(m!y) = 4a g(:-f:*g}
Z = a ™(xcosd + ysind)

a~ ™ (-zsind + ycosh)

L4
I

where a > 1 and € = §7. The frequency response of the texture at different scale and

orientation is captured by filters at different m and 6. The variables above are defined

as:
1
. = (yﬁ) M-1
Ui
Wan = a™U
(a+1)v/2in2
Temn = Gram{a— 1)U,

1

Oyamn = ——
e - 7 ) U,;: _ 1 )2
*tar{ag )\ 3z ~ \Zronmmn

where A and N are the maximum number of scale and orientation. The values of the

constants are: Uy =0.05, Up, =0.4, K =60, M =4and N = 6.

The secone step for generating TRD involves calculating the energy of the filtered
image at scale m and orientation n. The energy is simply the sum of magnitude of the
filtered image:

P-1Q-1

Emn= Z Z I‘r:n.n(m? y)l (8.2)

z=0 y=0
where P and Q are the image width and height. The response of the texture at each
scale and orientation can be summarised as the ratio of the energy at each scale and

orientation to the s of energy at all scales and orientations (8.3), and the feature
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vector is (8.3) at different scales and orientations (8.4).

E
% B, —— (8.3)
" St Tnd B
frrp = %Epo.....%Ess (8.4)

The distance between two TRD feature vectors is calculated using a dissimilarity metric
such as L1 or Earth Mover's Distance (EMD) proposed by Rubner [117). The next

section describes how to derive a layout using TRD.

8.1.1.2 Deriving a Layout Using MDS

With any MDS algorithm, it is possible to derive a layout if the distance between any
two objects are known. As described in the previous scction, it is possible to calculate
the distance between two textures using TRD, so it is possible to derive a layout using
TRD. As in Chapter 6. the MDS algorithm used is the one defined in (88]. In TRD,
there are three options used for generating a layout using MDS and w+ studied all
three options in this experiment. The first option for generating a layout is by using
the EMD dissimilarity metric to calculate the distance between TRD feature vectors
@ and Z. Rubner suggested that EMD can be used to calculate two texture feature

vectors by redefining the ground distance dyj as [117);

d((m®,n9), (m%,n%)) = Am-+An
Am = im® - m7
An = min(|n® - nf|,N -~ [n€ - nT})

where m© and m? are the m scales from feature vectors Q and 7 respectively, while

n? and n¥ are the n orientation from feature vectors Q and T respectively.

The second option for generating a layout is by using the L1 dissimilarity metric
instead of EMD. The problem with EMD is that it is computationally expensive. Cal-
culating the distance between two feature vectors using EMD on an Intel P4, 1.4 GHz

PC running Linux 2.4 takes 0.28 ms. Using L1, it takes a negligible 1e~7 ms. If we are
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calculating only two feature vectors, the speed gained by using L1 is unimportant but
. . NN=1) ,.

the MDS algorithmns need to calculate the distances many times (—L—-Q——l times), and

this needs to be done iteratively until a suitable layout is found. In this case, using L1

will speed up the process of finding a suitable layout.

The third option for generating a layout is by modifying %E,, »(8.3). The reason
for investigating this option is because in Chapter 6, the colour histogram does not
capture the differences across different bins, and conscquently, the generated layout
appears random. For this reason, TRD potentially has the same problem if it fails to
capture the differences of energy across different scale and orientation. This problem
can be illustrated with the following sitnple example. Assume that the feature vectors
are gencrated from filters of two scales and two orientations, so the feature vector is
(%Eo0.%Ey), %Er.0,%E)1). Also assume that all three texture images (A, B and
C) respond to only one filter; thus, ffs, = (1.0.0,0); f2,, = (0,1,00); and fSrp =
(0,0,0.1). The distances between A and the other two images are L1(.A, B) is 2 and
L1(.A,C} is also 2; however, differences of encrgy from the same scale and orientation
{between A and B) should be less than differences from different scale or orientation
(between A and C). EMD, unlike L1. can correctly differentiate dissimilarities of en-
ergy from the same scale and orientation to those from different scale or orientation:
EMD{A.B)is 1 and EMD{A,C() is 2. Unfortunately, it is computationally expensive;

thus an alternative solution should be considered.

One alternative is by accumulating %E in the same way we have accumulated the
colour histogram (see Section 2.1.1.1 on cumulative histogram). This texture feature
vector is known as fcrrp where ¢ stands for cumulative. By using ¢TRD, the feature
vectors now become fipp = (1.1.1,1); fZzp = (0,1.1,1); and fSpp = (0,0,0,1). The
L1 dissimilarity metric can now capture the differences between the feature vectors

more accurately: L1{A,B) is 1 and L1(A,C) is 3.
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8.1.2 Texture Browsing Descriptor (TBD)

The previous section discussed three options for using TRD to generate layouts for
browsing. This section describes the relationship between TRD and TBD, and explains

how to use this feature for browsing.

TBD is also extracted from the convolution of the image with Gabor filters as de-
scribed in Section 8.1.1.1. The relationships between both features are given in Fig, 8.1
on the following page; for a detailed description of TBD, please see [72){p214-223). The
TBD feature extractor transforms a set of filtered images into feature vectors under-
stood by human, by extracting three texture properties: regularity or structuredness.

coarseness, and directionality. TBD is formaily defined as:

frep = [v1,v2, v3, 24, v5) (8.5)

v € {1,...,4}: four classes of texture which describe the regularity or structuredness

of the texture with higher value being more regular or structured.

if there is only one dominant direction. TBD was derived from Gabor filters with

6 orientations, so the maximum value of vg and v is 6.

v4,05 € {1,...,4}: quantised dominant scales of the texture along the two main domi-

nant directions with higher value being coarser.

Although the browsing feature is defined in the MPEG-7 standard, the browsing
process is undefined in the standard, so it is unclear how to use TBD to browse a
database because the monitor is a two dimensional medium and TBD is a five dimen-
sional feature vector. To display the images on a two dimensional medium, the vectors
must be reduced to two dimensions as well. This can be done either by using MDS or

by selecting only the more meaningful features. These two techniques are described in

the next sections.
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Figure 8.1: Relationship of TRD and TBD.

8.1.2.1 Deriving a Layout Using MDS

The input to the MDS algorithm is TBD. The distance between any two TBD feature

vectors A and B is L1(A4, B) with some modification for vo and v3 to take into account

the circular nature of orientation:

Li(vg', 08} = min(7 - v — o[, jvf' —25)) (8.6)
Li(v,v8) = min(7 ~ |v3' — o8| |v3' — V) (8.7

8.1.2.2 Deriving a Layout by Feature Selection

Another possible method of reducing the number of dimensions is to use only the
more meaningful features. The dominant directions {v2 and v3) can be discarded for
three reasons. First, unstructured textures do not have dominant directions. Second,
perceptually similar textures which have been rotated would have different dominant
directions, and they would have been considered different which is incorrect. Third,
the structuredness measure, v, to a certain extent already encodes information about
directionality. The scale information, v4 and vs, can be reduced to a single value

by adding them up. Eventually, the feature vectors are in two dimensions: v; and

scale = vq4 + vs.

The values of v1, v4, and vs given in (8.5) are obtained from a very coarse quan-
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tisation process, so if these values are used. then the maximum possible number of
combinations is only 28 i.e, 4 levels of regularity x 7 scales (2....,8). Using the quan-
tised values is clearly insufficient for browsing, so we used the values before guantisation
with scale being the z axis and v; being the y axis. where a higher value of z means

the texture is coarser, and a higher value of y means the texture is more structured.

We impleimented TRD and used the program in [72] to extract TBD, and generated
five layouts to determine which feature is more suitable for browsing. The next section

describes the experiment set up and evaluation criteria.

8.2 Experimental Setup and Evaluation Criteria

A summary of the layouts studied in this chapter is given in Fig. 8.2. In total, five
layouts were generated: three using TRD and two using TBD. All three TRD layouts
(MDS-EMD, MDS-L1 and MDS-Cum) and one TBD layout (MDS-TBD) are generated
using MDS. Note that there is no need to generate the layout for TBD when we select
only the meaningful features because the feature vectors are already in two dimensions
- this layout is called 2D-TBD. For TRD, the feature vector is rotationally normalised
using the circular shift algorithm described by Zhang et al. [160]. Because the TBD
feature itself was derived from Gabor filters, to ensure that all parameters are the same,
we nodified the filter mask size (K) to 60 as opposed to 80 as defined by the MPEG-7
standard. A detailed study on the choice of filter mask size (X). number of scale (M)

and orientation (V) is given in [21].

Muliidimensional Scaling .
(MDS) Featere Selection
Textre Retrieval Descriptor | | Texture Browsing Descriplor
(TRD) (TBD) (20-T8D)

M-Cu@ (TMbsTep)

Figure 8.2: The five layouts studied in this chapter. Three layouts were generated using TRD
and two using TBD. One layout from TBD was generated using MDS and the other one by
selecting only the more meaningful features.
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The experiments were conducted on the Brodatz texture database. which contains
1852 images, cotumonly used by the texture retrieval comununity {117, 71, 160]. The
images in the database were derived as follows. Initially, there were 112 images of
512x512 pixels; then, each image was partitioned into 16 sub-images of equal size. In
addition, 60 images were created by rotating existing images. The sub-images from
the same original texture form the relevant images, and their names have the format of
dxxx-xx. The first letter is common to all images, and the first three digits indicate the
texture type numbered from 1 to 112 - relevant images have the same number. The last

two digits indicate the sub-images ranging from 00 to 16, and sub-images numbered 16

are rotated textures.

The two evaluation criteria described in Section 6.1.1 are alsc applicable here. To
recap. they are spatial PR graphs and visual inspection. For visual inspection, instead
of looking for arrangement of colours, we would be looking for the arrangement of

textural properties such as scale, directions and structuredness.

8.3 Results and Discussion

This section compares each layout using the two evaluation criteria i.e. spatial PR

graphs and visual inspection.

8.3.1 Spatial PR Graphs

Figure 8.3 on the following page shows the spatial PR graphs of the five layouts. To
show that the five layouts generated were not arranged by chance, we compared their
spatial PR graphs with the PR graph of a randomly generated layout. It is clear
that the five gencrated layouts were not arranged by chance as they all have higher
spatial precision than the randomly generated layout. It is also clear that both MDS-
EMD and MDS-L1 have much higher spatial precision, indicating that in both layouts
relevant images are located closer to each other. The graphs also suggest that although

the spatial precisions of MDS-TBD and 2D-TBD are very low, they are not random




8.3.2 Visual Inspection

The previous section contains the comparison of each layout using
spatial PR graphs. In this scetion, we compare the performnance
of the layouts by visually inspecting each layout. Figures 8.4 to
8.8 on the following pages show the layouts of the Brodatz tex-
ture images in MDS-EMD, MDS-Li, MDS-Cam, MDS-TBD, and

2D-TBD. Each layout will be discussed in the following sections.

8.3.2.1 MDS-EMD Layout

For MDS-EMD (see Fig. 8.4), the layout appears meaningful. MDS
does not identify which are the axes nor what they mean, so to
understand the layout better, we added some “virtual axes” by in-
specting the layout. We use dashed lines to plot the virtual axes in
order to differentiate them from the real axes used in 2D-TBD. The
layout appears meaningful because textures made up of fine tex-
tons are located correctly as identified by the scale axis, where the

larger value of scales means coarser texture. The other axis secms

to indicate the strength of dominant direction(s), and the value
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increases in the direction of the arrow. When the value is small,
the textures have only one very clear daninast direction, and as
the value increases, the second direction, though not strong, starts
appearing i.e. bricks texture. When the value is large, the textures
have two very strong dominant directions. In between the two ox-
tremes, the textures do not have a clear single dominant direction:
they are unstructured. This observation is true except for some in-
correctly placed textures (outliers}), which are enclosed within the
dotted polygon. The outliers are so few that the layout is, overall,
contextually meaningful. After visually inspecting all layouts, in
Scefion 8.3.2.6 we cxplain why this group of textures are placed

incorrectly.

8.3.2.2 MDS-L1 Layout

For MDS-L1, in Fig. 8.5, the layout also appears less random.
It could cven be argued that it is better than MDS-EMD as it is

more spread out. Also note that the group of problematic textures
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in EMD arc also located i «worrectly in this layout, and this will also

be analysed in Section 8.3.2.6 after visually inspecting all layouts.

The use of L1 for TRD appears to have no adversce cffect on the
layout and this could be explained as follows. The example given in
Section 8.1.1.2 which illustrates the problem of using L1 for TRD,
is an extreme ease a8 it is assumed that cach texture responds to
only one filter. In reality, a homogeneous texture convolved with
filters of four scales and six orientations responds to more than one
filter, so it has a different physical meaning to that of colour his-
togram. Colour histogram measures how many pixels cach bin has,
and %E measures how strong the response of the texture is at each

scale and orientation.

8.3.2.3 MDS-Cum Layout

For camulative %E in Fig. 8.6, it is only possible to assign meaning
to one axis i.e. the scale, and it is unclear what meaning the other
axis conveys. Overall, this layout is less contextually meaningful

compared to MDS-EMD and MDS-L1. It is less contextually mean-

8.3.2.5 2D-TBD Layout

For 2D-TBD (see Fig. 8.8), the z axis is the scale and the y axis is
the structuredness of the texture (the values of both £ and y ax2s
increase in the direction of the arrows). The bottom left quadrant
of the layout is meaningful in that it consists of small scale and
structured textures. As the texture becomes unstructured, the lay-
out loses its meaningfulness; for example, on the top left, several
images look rather coarse yet they are located in close proximity to

textures which are very fine. In fact, the top half of the layout does

not conform with visual perception at all: it is contextually mean-

mgful than MDS-L1 because, as explained earlier, %E has different
physical meaning to that of colour histogram. Consequently, accu-
mulating the energy to the next scale and orientation destroys the

oricutation inforination.

8.3.2.4 MDS-TBD Layout

For MDS-TBD (see Fig. 8.7), it is difficult to extract any meaning
from the display as the images seem to be placed randomly. We
hypothesise that this happened hecause the dominant directions, as
mentioned carlier, are sometimes meaningless: both vy and v are
meaningless if the texture is unstructured, and v; is meaningless
if the texture has only oue dowminant direction. If this hypothe-
sis is true, it means that in 2D-TBD, the layout of textures which
have two dominant directions will be meaningful. The truth of this

hypothesis is examined by visually inspecting the 2D-TBD layout.

ingless and similar textures appear scattered. However, compared
to MDS-TBD in Fig. 8.7, 2D-TBD is more contextually meaning-
ful. It appears that removing the dominant. directions has slightly
improved the layout. This confirms the hypothesis that the domi-
nant directions which are sometimes meaningless cause the display
to appear random. The scale estimation algorithm relies or the
correct detection of the two priucipal directions to estimate the
value of scale. Because unstructured texture does not any have
principal dircction, as mentioned in Section 8.1.2, the cstimated

scale is unreliable.

081

sasuquiRn(g afdvui] amixay, Suismolg drjyoso pasvg-amyxay,

¢'88

UOISSUIST(T PUw SINSIY



}

LI

i
L
i

dep\o40 pasvg-2nINaT,

.
-

g

.

Sursmor

SosuqRIR(] 9Fetl] aINIXAT,

Figure 8.4: MDS-EMD and this layout. appears contextnally meaningful. The two axes are wirtual because they are not identified by the MDS
algorithm; we identified the axcs after a visual inspection.

d puv sjusey  £'8§

3

Horssn

€81

Figure 8.5: MDS-L1. Likc MDS-EMD, the two axcs arc also virtuel The textuze also appears contextually mcaningful




Figure 8.6: MDS-Cum. It is only possible to assign meaning for one axis, scale.

Figure 8.7: MDS-TBD, the lack of contextua) meaningfulness is cvident as the display appears random.
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R8.3.2.6 Outliers in MDS-EMD and MDS-L1

The previous sections discuss the comparisons of the five layouts us-
ing visual inspection. We found that both MDS-EMD and MDS-L1
are, overall, more contextually meaningful; however, a small num-
ber of textures in MDS-EMD amd MDS-L1 are placed incorrectly.

This section explains why these textures are placed incorrectly.

The group of textures placed incorrectly, outliers, in MDS-EMD
and MDS-L1 within the polygous (see Fig. 8.4 and 8.5), belong to
texture type d50. This happened because Gabor filters sometimes
fail to accurately capture texture properties, hence visually dissim-
ilar textures sometimes have similar feature vectors. This means
that occasionally, visually dissimilar textures are considered more
similar than visually similar textures regardless of which dissimi-

larity inetrics are used.

To demonstrate this problem, Table 8.1 on the following page
shows the EMD distances of sll 17 textures belonging to texture
type d50. Although they belong to the same texture type, their
distances are non-uniform; for example EMD(01,02) is only 0.08

but EMD(01,00) is 1.18. To highlight the distances >= 0.9, they

arc printed in red. The EMD distances between the outlicrs in

the MDS-EMD layout (that is, 01, 02, 03, 06, 07, 11, 13, 14, 15)

and texture 00 arc all >= 0.9. Yei, the EMD distances between
these outliers and their nearby textures in the layout, which are
visually different, are < (.7 (see Table 8.2). As EMD{d50-01,
d20-11) < EMD(da50-01, d50-00), hased on the feature wectors,
ds0-01 is considered more similar to d20-11 than it is to 450-00.
Thus, MDS placed it close to d20-11. The same observation can

be made for the other outlicrs as well,

The outliers in MDS-L1 (see Fig. 8.5) were placed incorrectly
for the same reason as above. The L1 distances between the outliers
(that is, 01, 02, 03, 06, 07, 11, 13, 14, 15) and texture 00 are all
> 0.6, and they are highlighted in red in Table 8.3. Like their
EMD distances, although they belong to the same texture type,
the L1 distances are also non-uniform: £1(01,02) is ouly 0.07 but
L1(01,00) is 0.98. However, the distances between 01 and nearby
textures in the MDS-L1 layout, which are visually dissimilar, are
all < 0.6 as given in Table 8.4. As in EMD, L1(d50-01,d20-11)
< L1{(d50-01,d50-00) so judging from the feature vectors, 450-01
is more similar to d20-11 than it is to d50-00. Therefore, MDS
placed d50-01 close to d20-11. The same can be said for the rest

of the outliers.
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8.3.3 Summary and Implications

Based on both evaluation criteria, TRD using EMD and L1 (MDS-EMD and MDS-L1)
are most suitable for browsing becanse they have the highest spatial precisions and
their layouts are most contextually meaningful. This finding is interesting because it

shows that TBD, which is designed for browsing, is less suitable for browsing than

TRD.

Another way of looking at the TBD feature extraction method is that it is a type of
dimension reduction technique, much like MDS algorithins, but it is a very specialised
one. It reduces the original data in the high dimensions into low dimensions which
have defined meanings. Other types of dimension reduction techniques, such as MDS
algorithms, are generic in that they reduce the original data into a set of low dimensions
without knowing the meanings of the low dimensions (generic). It turns out that this
generic approach is more useful than the TBD feature extraction method because it

successfully discovers prominent texture features.

8.4 Conclusions

This chapter extends the use of eyeMap to browsing texture image databases by evalu-
ating the layouts generated using different texture features. It described two methods
for generating layouts for texture images using two texture descriptors defined in the
MPEG-7 standard: Texture Retrieval Descriptor {TRD) and Texture Browsing De-
scriptor (TBD). The layouts were theit subject to quantitative and qualitasive evalua-
tions. This study is more than just an evaluation because it also demonstrated how to

use TBD for browsing and questions the validity of using TBD for browsing.

We conclude that TRD is more suitable than TBD for browsing. Because the phys-
ical meaning of energy is different from that of histogram, TRD can be used without
accumulating the energy of each scale and orientation. In fact. doing so destroys the
orientation information. Both EMD and L1 are valid distance metrics for MDS al-

gorithims as the qualities of the generated layouts are comparable. It could even be
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argued that the layout generated using L1 is better than that of EMD because it is
niore sp- ead out. However, if speed is a concern, L1 should be used because EMD is

more computationally expensive.

The study also found that the dominant directions features in TBD are inappropri-
ate for browsing. and only the scale and structuredness features are useful for browsing.
By removing the dominant directions, TBD is good for browsing only if the textures
are structured. The implication of these findings is that MDS, a generic dimension
reduction technique, is more accurate than the TBD feature extraction method. a
specialised dimension reduction technique, for discovering texture features because it

succeeds where the TBD feature method fails.
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Chapter 9

Conclusions

9.1 Summary of Main Findings

The rescarch reported in this thesis aimed to bring CBIR systems one step closer to
real world applications by improving the effectiveness and efficiency of colour-based
feature extraction methods, as well as by improving retrieval inethods by formulating
a framework to facilitate users for browsing and finding a sample image to initiate a

visual query. This section summarises the research that contributes to this goal.

The research for improving the effectiveness and efficiency of colour-based feature
extraction methods started in Chapter 3. In this chapter. we answered the most fun-
damental question, that is which colour space is most suitable for colour-based CBIR
by evaluating six colour spaces: RGB, LUV and LAB in Cartesian coordinates. as well
as HSV. LUV and LAB in polar coordinates (pLUV and pLAB). A colour space is
considered suitable for CBIR if the feature vectors generated from its quantised space
are both effective and efficient. We conclude that HSV colour space is, overall, most
suitable for colour-based CBIR because it is at least as effective as but more efficient
than any of the other colour spaces. The recommended quantisation option for H5V
is quantising the hue axis into 18 'ntervals, the saturation and value axes int> three
intervals, as the best compromise between effectiveness and efficiency. The finding that
HSV is the most suitable colour space for colour-based CBIR is significant because it
has always been assumed that perceptually uniform colour spaces proposed by colour
scientists (LUV, LAB, pLUV and pLAB) are more suitable for colour-based CBIR.

Qur findings suggest that such an assumption is untrue because those colour spaces
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have different purposes from CBIR. In colour science, even small colour differences are
important whereas in CBIR, the small colour differences are less important, which is

why in CEIR colour quantisation is necessary.

We then progressed to improving the effectiveness of colour-based feature extraction
methods in Chapter 4 by making use of spatial relationships of colours. The findings in
the colour space studies enable us to make informed decision about the choice of colour
space and quantisation parameters. In this chapter. we proposed I-autocorrelogram
(I-auto} which describes the distribution of colours and their spatial relationships. An
evaluation of I-auto in comparison with other contemporary techniques establishes that

it is most preferred.

CBIR systems are mainly used for immage retrieval and the most intuitive method
for this task is by using query-by-example. The main problem with this process is that
users do not always have a sample image to initiate a query (the Page 0 problem). In
Chapter 5, we formulated the specification of eyeMap. an image browsing framework,
by using the paradigm of daily browsing behaviour in shops or libraries so that users
can transfer that behaviour into image browsing. This paradigm demands that all
Images in a database are arranged systematicaily to enable users to visualise the content
of the database. It also requires that users can navigete the database. To support
visualisation. eyeMap displays the content of the entire database systematically so that
users have a quick overview of the database. Systematic arrangement in eyeMap is
achieved by carefully selecting a suitable feature in evaluation studies; for example. in
Chapter 6. to implement a colour-based eyeMap. we evaluated several colour features.
To support navigation, eyeMap provides a user interface for interactive navigation,
Because eyeMap is capable of displaying large numbers of images, it can also be used

to find a sample image to initiate a visual query. thus solving the Page 0 problem.

In chapter 6, as mentioned before, we determined which colour feature. among
several, is more suitable for browsing. The colour features evaluated were colour his-

togram, colour moments, EMD-based colour signature and cumulative histogram. It

was found that cumulative histogram is most suitable for browsing colour images be-
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cause the layouts generated using this feature have high spatial precision and contextual
meaningfulness. We then implemented colour-based eyeMap, a fully functional image
browser for large scale general colour image databases. eyeMap was integrated with a

CBIR system developed using I-auto, so it can be used to solve the Page 0 problem.

In Chapter 7. we showed that eyeMap is useful for browsing and solving the Page 0
problem by conducting a usability study. In ‘:i- study, the participants had a very
specific task, that is, to find a target image using systems developed based on traditional
lincar methods and the eycMap framework. An analysis of their performance in and
perception of each system determined that cyeMap is the most cffective. efficient and
preferred method for browsing and solving the Page 0 problem; thus. the research
cstablishes that eyeMap is the best approach for performing these two tasks. These
positive results are indications that cyeMap has successfully enabled users to transfer

their daily browsing behaviour into image browsing.

As cyeMap is an image browsing framework. it can be used for browsing other
databases such as textures (textiles, carpets or wallpapers) by using a suitable feature:
this version of eyeMap is known as texture-based eyeMap. To show how to use eyeMap
for texture images, we investigated two tixnure descriptors in Chapter 8. These two
texture descriptors are defined in the MPEG-7 standard: Texture Retrieval Descriptor
(TRD) and Texture Browsing Descriptor {TBD). We found that layouts generated
using TRD are more suitable for browsing, and L1 and EMD are equally valid choices
for calculating the distance between any two TRD feature vectors. Because L1 is more
efficient than EMD, L1 should be used instead of EMD if the speed of generating a

layout is & cohcern.

By improving the efficiency and effectiveness of colour-based CBIR, formulating a
powerful image browsing framework (eyeMap), then developing fully functional pro-
grams based on eyeMap, and then evaluating eyeMap by comparing the developed
programs agamst traditional methods, this thesis, therefore, has brought CBIR sys-

tems one step closer to real world applications.
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9.2 Potential Future Research Directions

Potential future research directions as a result of the studies conducted in this thesis
fall into two main categories: on eyeMap itself and on the evaluation of eyeMap in a
different environment. The specification of eyeMap is complete and any implementation
from this specification will result in a fully functional system; nonetheless, additional
features for the retrieval engine such as relevance feedback, efficient search techniques
and data structures |23, 24, 27, 45, 68. 134, 135] will make eyeMap even more useful
for expert users. The relevance feedback is useful not enly for the retrieval engine but
also for the browsing engine during the generation of layouts. The implementation of
these additional features must be done with care to ensure the programs remain usable

for the novice.

Colour-based and texture-based eyeMap are fully working systems and useful for
browsing and retrieving general colour and texture images; however, the image search-
ing task described in this thesis is simulated in that users were asked to find target
images in a laboratory setting. It will be interesting to evaluate eyeMap in a field
study which involves real users in their working environment. To date. field studies
of image retrieval are only found in concept-based retrieval not content-based [6, 40].

Unlike content-based retrieval, concept-based retrieval uses only text annotation.
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Figure B.1: PR graphs in PCD at 20%, 30%, 50% and 70% levels of agreement using RGB,
LUV and LAB colour spaces at different numbers of quantisation intervals. . . continued on next
page.
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Figure B.3: PR graphs of LAB colour space in PCD when the value of L is varied.
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Figure B.4: PR graphs for PCD at 20%, 30%, 50% and 70% levels of agreement in HSV, LUV
polar and LAB polar colour spaces at different numbers of quantisation intervals ... continued

on next page.
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Figure B.6: PR graphs for CCD and PCD at 20%, 30%. 50% and 70% levels of agreement in
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intervals. . . continued on next page.
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Figure B.6: ...continued from previous page.
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Figure C.1: PR graphs of autocorrelogram in CCD and PCD at different d with L1 and
Canberra dissimilarity metrics using RGB and HSV colour spaces. . . continued on next page.
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Figure C.1: ...continued from previous page.
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Figure C.2: The PR graphs of the autocorrelogram at different d using RGB colour space in
PCD. Figure C.3: PR graphs in PCD using RGB 4 x 4 x 4 and RGB 6 x 6 x 6 when {d} = {1} for
histogram (uy = 0.0) and autocorrelogram (w, = 1.0).
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Figure C.8: PR graphs of LCI with L1 and Canberra dissimilarity metrics, CSD and I-auto
in PCD using the HSV colour space.
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Appendix D

Post Experiment Questionnaire
of Usability Study Presented in
Chapter 7

Each participant fill in a four page questionnaire after completing the task. To assist
the participants in completing the questionnaire, the sequence for questions two and
three are modified according to the order of programs and images being presented.
They are also unaware of the names given to the target images on the last page of the

questionnaire when performing the task.
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E

S R

Post Experiment Questions

i 2. Please iick to answer the following questions
1.Please describe how you performad the search? (e.g. how did you decide whete (o search) ;% Strongly Strongly
Program A }.t Agree Disagree
§ o Program A
¥ 2). The 1ask was reasonuhle o) O O3 04 OS
: 82 The program was casy 1o use Oy G2 0Oy 04 0Os
23, The program was enjoyable 10 usc oF Or O3y 04 05
a4, The image tayout helps me in deciding wherctostanisearching  O1 02 ©3 D4 05
25. The program made it easy 10 find the target image O 2 O3 D04 0Os
Program 8 26, The magnification tool was useful OO o2 O3 04 O
a7, The magnification tool was ecasy 10 use O 02 3 O4 Q5
Swongly Stroagly
Agree Disagree
b. Program B
bl. The task was reasonzhie ar m» O3 D4 08
Progam b2. The program was easy Lo use Or B9 O3 o4 0O
b3. The program was enjoysble o use O Or O3 O4 Os
B4, The image tayout helps me indeciding where tasanseaching 01 2 013 04 O8 '
; bS. The progesn made it easy to find the target image O 2 0Oy o4 OS5
bb. The magnification tool was useful on 0O O3 04 OS5
b2. The magnification ool was casy lo use O 02 D3 L4 0O5
Program D b8. Integration of visual query to browsing was uselul O 2 O3 D4 Qs
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Suongly Strongly
Agree Disagree 3. Are some images casicr (o scarch than others? IF so, which ones are easy and which oncs arc difficult and why?
¢, Program C i
cl. The task was reasoneble on o2 D3 D4 DS
2. The Program was casy [0 use 0F O D3 0O4 DOs :
3. The program was enjoyable 1o use Ol O O3 D4 DS - fruits & fowers fireman gk
¢4, The image tayout helps me indeciding where 1o startsearching 31 02 03 O4  0OS :
¢5. The program made it easy 1o find the target image O G2 O3 BOs 0Os
26. The focalicontext view was useful o 0O D3 D4 DS
1 <. Being able 1o hide images was useful O 02 D3 04 DS
8. The magnification 1col was useful o 02 03 O4 Os
9. The magnification 1001 was easy 10 use O 02 Q3 04 0Os
4. Did you have a preference for any method? If so, which one, end why?
Strongly Suongly
Agree Disagree
d. Program D
dl. The task was reasonable Oor O Dy o4 0O5
d2. The program was easy [0 use il D O3 04 DS
d3. The program was enjoyable 10 use OF O D3 D4 DS
d4. The imnage layout helps me in deciding where tostansearching 0O1 02 03 04 DS
d$. The program made it easy (o find the target image O B2 03 P4 Os
d6. The focalicomext view was useful oDF o2 O3 @4 O 3. Any other comments:
d7. Being able 1o hide images was useful O 2 Dy C4 05
d8. The magnification wol was usefu] O 0r 03 D4 Os
d9. The magnification too) was casy to use Op 0O D3 04 D5
d10. Integration of visual query 1o browsing was useibl O 0O O3 DOsa 05
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