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Ling 2
Line 5
Line 12
Line 1
Line 6
Line
Line 10

para 3

add “method” afier “analytical”
replace “into” with “in™

replace “into” with “in”

replace “NFLEA™ with “NLFEA™
Line 6 omit “was”

renlace “crack” with “cracked™
replace “affect” with “effect”

Equation 4.4.1 should read F =1/J: -, ~{e=0

add the following statement to after point 2.

“Condition 2 applicd to all analyses presented in this thesis.  In
addition to this, inspection of the state of stress and strain in all cases
revealed phenomena such as yiclding of stirrups and plasticised
concrete in the compression region and cracking of concrete that
were consistent with the failure mechanisms that were displayed by
the experimental specimens. A detailed discussion of the relevant
characteristics of the maodels at the failure load is discussed in
Chapter 8.7
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ABSTRACT

This thesis presents an examination into the cffectiveness of the flange of a web
reinforced RC T-beam subjected to a concentrated point load in the resistance of shear
forces. The rescarch implemented three methods of investigation of this effect. Two
stages of experimental work were implemented, and an investigation into the capability
of nonlinear finite element analysis to predict the results of experimental work was also

implemented.

The first of the two stages of experimental work presented is an investigation into
the effect of the variation of flange proportions on the shear strength of three series” of
point loaded web reinforced RC T-beams. The second of the two stages presented in this
thesis outlines the development, verification, and implementation of an experimental
method and accompanying analytical technique capabie of calculating the magnitude of

the shear force that is resisted by the flange of web reinforced RC T-beam.

The implementation of nonlinear finite element analysis (NLFEA) presented in
this thesis firstly determines the optimum combination of material models as well as
displacement increments in the application of this solution scheme. This scheme was
then used to determine the capability of NLFEA to predict the peak loads, measured
strains, crack patterns and failurc mechanisms of the experimental specimens, and was

further implemented to a serics of specimens with constant material propertics.

The results showed that increasing the flange proportions of a web reinforced RC
T-beam subjected to a point load produces an accompanying increase in the shear
strength of that specimen. Increases in the flange width were found to have more effect
in increasing shear capacity than increases in flange depth. It was observad that two

failure mechanisms were exhibited by experimental specimens; one corresponding to the
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classical mechanism of shear failure (lermed the beam shear failure mechanism), and a
failure mechanism associated with the method of application of the load (termed the
punching shear failure mechanism). The increases in _shcar strength with increases in
flange width prevailed while the beam shear mechanism formed. When the flange width
was wide enough for the punching shear mechanism to form, this trend of increasing
shear strength with increasing flange width ceased. This rescarch suggests that the
formation of the punching shear mechanism in a web reinforced T-beam provides the

upper bound to the trend of increasing shear strength with increasing flange wadth.

The propagation of shear forces into the flange of a T-beam specimen was found
to be a major contributor to the increase in shear strength associated with increascs in the
flange width. Shear stresses were forced into the flanges as a result of the redistribution
of longitudinal strains in the flange that prevailed to accommodate the formation of the
failure mechanism. Flange contributions of greater than 20% were calculated during the
experimental work. This flange contribution 10 the resistance of shear was found to

significantly increase on formations of stages of the failure mechanism.

NLFEA was found tc be capable of predicting ultimate strengths and failure
mechanisms of the majonty of the specimens wsed in comparison with experimental
work. The shortcoming found with this solution scheme is the inability to predict these

parameters in specimens with wide and thin {langes.




R i e

STATEMENT

This thesis contains only original material none of which has been previously
submitted for any other degree or diploma at any other University. To the best of my
knowledge all material in this thesis i1s original unless due reference has been made to the

relevant authors in the text.

CRAIG GIACCIO

:;’,{;‘—////c»g

i

b T

Aol ek R,




ACKNOWLEDGEMENTS

] would like to gratefully acknowledge the contributions of my project
supervisors, Dr Riadh Al-Mahaidi, and Dr. Geoff Taplin. Riadh has consistently
provided excellent technical advice throughout the project. and has provided much useful
advice regarding project direction. Geoff has consistently provided quality assistance and
critiques of the techniques and resuits that are presented in this thesis as well as sound
guidance on the presentation of these to the scientific community both through this thesis,
and through the publications that have arisen from this work. My colicague Tuan Kuan
Lee has also provided me with good assistance throughout the project in the form of

technical discussions and debates and assistance in the laboratory. For this ! am grateful.

1 wish also to acknowledge the support of VicRoads Australia. As the industry
partner to this project, they provided some financial support, and also valuablic input to

the relevance of the resuits to the engingering community.
1 would like also to like to thank my partier Donna Hazelman and my family for

their help along the way especially when it was required to put in the extra hours required

to complete this project.

v

ratt

R ST AT B e Sl G om0




TABLE OF CONTENTS

ABSTRALT ettt st r st ast e e snstesse s baeassse ehe e eseeesse b sas e b ansessaaensserbes i
STATEMENT Lottt st et e arre e st st e s e smse st s saassen sesaneeresneseene 1
ACKNOWLEDGEMENTS ... ot reenein cesee st sasa st s sb st sesnasasnnpecones v
TABLE OF CONTENT S ..t seeetas st see s saaes s eaaer e estaassnssassesesennen v
LISTOF FIGURES ..ottt et eresceseesa sevnaeseve e rbeersera e esnarnsesass e e nas IX
LISTOF TABLES. ...ttt ce st ees e s sttt e v se s ens Xv
LISTOFSYMBOLS ... et st ren e XVi
CHAPTER 1 INTRODUCTION LL.oiitiiiiiiiiecires o cvae e s ete e steneresesis b sanes srebeasssees srassesessnssnenan 1
Lol IFOAUCHON (oo et e e e ettt en e s mse s e e reabas 1
1.2 Aims of the Research.. ... e ea e 3
1.3 Outhne Of the TRESIS....oviviiiiei et et en e ers e 4
1.3.1  Experimental Work ...t ese s e S
1.3.2  Finite Elements Analysis.......ocoeiiiininimio oot s eeseasee e 6
CHAPTER 2 LITERATURE REVIEW ..ottt ittt se e sve et a et ba s e sescsss e i e 9
2.0 INTOAUCTION Lo.eiiiiiiiiiieiiic ettt et e s eae s arareaess et mtere s st eereessassbrnnan 9
2.2 The Mechanisms of Shear ResiStance.......oovvvvviivcivieiieer e e 9
2.3 Investigations Relating to the Shear Strength of T-Beams ...........coevv v, 11
2.3.1  Expenmental Investigations into the Shear Strength of T-beams............. 12

2.3.2  Expenmental Investigations Including the Effect of Flange Proportions on
the Shear Strength of RC T-beams ..o ettt e, 14

2.3.3  Analytical Investigations Including the Effect of Flange Proportions on the
Shear Strength of RC T-DEAMS ...coveiiiiceeieeccee et et ees et 20
2.4 State of the Art Research Methods for Calculation of Shear Capacity ............, 24
2.4.1  The Disturbed Stress Field Model ..., 24
2.4.2  Compressive Force Path Theory ........ccocovieieei oot 27
24.3  Softened Truss MOAEIS.......ooiiienreiiiiirie e e er e 28
2.4.4  Other Methods of Predicting Shear Capacity ... vt reeeenn 29
2.5 How effective is the Flange of an RC T-beam in the Rc.szstancc of Shear .30
2.6  Objectives of This Research ........ooveecvevieeeeieeeaenn et a e bt e e 32

e




CHAPTER 3 EXPERIMENTAL PROGRAM ..o ieveeeeireeeeeseeeeresaeasenssenesssnasssannnnsnssseres 34

E 3.1 Introduction .. eteuereareresaerssenaseasasssareranseeaarnranrescens SO
- 3.2 Procedure for Stage i Expenmemal Work ........................................................ 35
3.2.1  The Reference Rectangular Beami..........c.ccoocevieveeiineiveieceeiee e vennns 35
3 3.2.2  Flange Propottions Investigated.........coooeveiemievennrieccinscsecnnesrecsie s 36
3.2.3  Flange Reinforcing Amngements OO UURUUPORIPOURURRRRRRURRR. 1.
324 Loading... rebery easeareataereaesaiteteritnstansennsestanensarrsnreasnsesnsiraererenssesenas B0

3.2.5 Material Propemeq ................................................................................... 41
3 2.6 Measurement... v RSSO U TR URSUURUSRIUTOTORRE - ¥
3.3 Procedure for Stage 2 Expenmental Work ........................................................ 43

3.3.1  Application of Equilibiium Principles to Determine the Shear Force in the
Flange of @ T-Beami ...t cene et eereereareesneneens 43
3.3.2  Specimen OQULHNC ..ot neneceenrers it searea et ersssenssses sres s eseaeans 56
3.3.3  Details of the InStrumentation ............cueecevrerecrenreirriernnsinensrereseseconnesene 58

CHAPTER 4 NUMERICAL MODELLING USING NON LINEAR FINITE ELEMENT ANALYSIS .. 65

A1 ETOGUCHION ot ci it ettt e sr et e s st st b eras e 65
4.2 Qbjectives of the Implementation of Non-Linear Finite Element Analysis ....... 66
4.3 The Physical Model ...t v 67
4 4.3.1  Model Geometry and Boundary Conditions............ce.ieieeeienesrseeesrienenne 67
& 4.3.2  EIEMENt SCIECHOM cvoveeeeeieeeeer et ettt ettt s en v esaresr s oreeesnseseenan 69
44 Material Models. ... ..o ittt 73
4.4.1  Concrete Model.......ocooviiiimiiiiiiniiii e e e 73
4.4.2 SRl MOdC.. ... oot ear e 79
4.5 The Iteration Scheme and CONVEIZENCE .....oovirviiiniiiiiiiiii e i 80
4.5.1  The Heration SChemE .......covov ittt e se e ens 80
4.5.2  Numerical Convergence Critera ... .covvieitireeeieeiinieeimrecenrsreersarares enseases 31
4.5.3  Definition of Failure.......cooiieiiiiiiii e e 81
4.6 The Parametric STUAY ...ccooviimiiiiieien e e e v ae s rae s er e e seaea sresreees 82
4.6.1  The Material Model Parametric Study ....ooeveiiviiiniicnncine e 82
4.6.2  The Displacement Step Size Parametric Study ................. s 84
47 Modelling PN ...ttt e 85 ]
CHAPTER 5 FLANGE PROPORTIONS, ULTIMATE STRENGTH AND FAILURE MECHANISMS . 89
5.1 TIIFOAUCKION «overee e crere e ae e s s er e nr et st sreasases e sessseasnensanenennees 89
5.2 Normalisation of Ultimate Strength Results ...oovviveciniiiniiiinieni e 90
52.1  An Assumption Regarding Stirrup Contribution..............cccoeeeeeviiriennnne 92
5.2.2  Normalisation With Respect to Concrete Strength......cvveieiiieinencnes 94
5.3 Failure Mechanisms Exhibited by Stage 1 Specimens.........ccccccoovinneen 95
53.1  The Beam Shear Mechanism.........c..ccvvviovenvemie e cericrsenieneneseeconn 95
5.3.2  The Punching Shear MechaniSmi........co.ccoioieiiieveninmienencernacsenseeneeces 97
5.4  Effect of the Flange Proportions on the Concrete Contribution of Stage 1
SPECIMICIIS 1.ttt ettt e er vt esate st eba e sbesasea st e erseressenssressenarennsesansoson 09
54.1  Variation of Normalised Concrete Contribution With the Width Ratio for
Series 1 Specimens (dr=0.33).......cocerirrcriirire s e e ersesereresasa et sraer e 99
5.4.2  Variation of Normalised Concrete Contribution With the Width Ratio for
Series 2 Specimens (Ar=0.25)...........ccccrerrrimereirrecorermrerenriserasssresnnsserenseosssuenoense 100
4
vi e
g




-

T g T £l ey

.

543 Variation of Normalised Concrete Contribution With the Width Ratio for

Series 3 Specimens (dr=0.17}... . 101
5.44  Vanation of the Normallscd Concrete Contnbu 01 erh thc Dcpth Ra 10
104

5.5 The Effect of Lateral Reinforcing Bars on the Ultimate Shear Strength.......... 105
5.5.1  Effect of Lateral Reinforcing on Series 3 Ultimate Strength Results..... 105
5.5.2  Anomalies i1 Series 1 and Series 2 Results......o.ocooiinviiniiinicnninn 105

5.6 Conclusions from Stage ! Experimental Work.......ccovviinniicrcccnincceen.. 106

CHAPTER 6 VALIDATION OF THE EXPERIMENTAL ANALYSIS METHOD...c.cccvveveveeeene... 108

6.1 INTOAUCTION .evvticereeirieeiee st e seesenre e snreaaseneeenare st e sarecesrasseasanen stmeansnaseeanne 108
6.2 Outline of Validation Procedure ........ccoooimiieeimieniiie vt 109
6.3 Spectmen Details ... eteestneneaernseeseansseeriransisesaesensssnsnessiansens 110
6.3.1  Specimen Geomctry and Loadmg .......................................................... 110
6.3.2  Specimen INSrumMEntation . ......ccccoitvvrrireeriecere et imee s e 111
6.4 Analytical Considerations for Data Analysis.......coccconcvirvnmionicnincncncinnenn. 113
6.4.1  Extrapolation of SITaiis. ..o iiriiecii e e e 113
6.4.2  Calculation of Concrete Slicsses From Strains .......occvvvveevvevevvenccveninnnn. 113
6.4.3  Calculation of Resultant Forces From Stress Distribution ..........c......... 114
6.4.4  Calculation of Sectional ACHIONS.........o.vvecrtiricnvrmeiiecerieerecnsenieenenes 116
6.5 Results From the EXperiments . ....cooovviiiiriiearinier oo cssssiesenaeen. 117
6.5.1  UMIMALe Load .coocvieieiiiiiine ittt e e s 118
6.5.2  Results From Strain Galges .....covvvuiviiiiereecinieicresenrenieseninesesessane sone 118
6.6 Resuits of Calculations Using Prescribed Analytical Procedure...................... 119
6.6.1  Results From the Calculation of Axial Forces.......occociniinnineninnnn 121
6.6.2  Results From the Calculation of Scctional Bending Moments............... 124
6.6.3  Results From the Calculation of Shear Force ... 125
6.7 Discussion of Experimental Resulls ..o PRSI 127
6.8 Conclusions From Vaiidation EXPeriments .......c.cooivvmmieiiicniicinmian 128

CHAPTER 7 THE CONTRIBUTION OF THE FLANGE TO THE ULTIMATE SHEAR STRENGTI OF A

POINT LOADED RC T-BEAM ..ooiicrieieeanrenrrrceceenerensscsneeesaass e ssesrsrmmerenessensmsersaonses srons 130
Tl INPOUCTION ..o sttt e e et e e s et et e st asbne s or e asasabesanes 130
7.2 Specimen B16 Analysis ... et 131

7.2.1  Ultimate Strength and Failure Mechanism......cviieniii 132
7.2.2  Range of Caiculation of Shear Forces.....ocoovevienviniicninviniiienenn 134
7.2.3  Results of the Calculation of Shear Lag Forces....oovvvnvrevvvinienninienenn, 134
7.2.4  Results of the Calculation of Interface Shear Forces ..o, 136
7.2.5  Flange Effectivencss of Spectmen B16.......ooooeriieiciiiiieiiiinenciienn 136
7.3 Specimen B17 AnalysiS ..ottt svene e 143
7.3.1  Ultimate Strength and Failure Mechanism........ccoeviieniincn e 143
7.3.2  Range of Calculation of Shear Forces . .....ooooiiiievnnnciiici 145
7.3.3  Resalts of the Calculation of Shear Lag Forces......ovveniinincinininnn 146
734  Results of the Calculation of Interface Shear Forees......ovvinviivvvnnnn. 148
7.3.5  Results of the Calculation of Sectional Shear Forces......c..oo.oeeiennennnne, 149
73.6  Flange Effectiveness of Specimen B17 .o 152
7.4 A Further Examination of Stage 1 Failure Mechanisms ...c........cocooveevinnneannee 154

T3 COMCIISIONIS 1evee it ree et eeseeeereeeeeteaeeeeesessssesveeas aereen s moeaessesesaseeeesoroesenssvesn 157

L el el

Ml b s,




CHAPTER 8 RESULTS OF THE FINITE ELEMENT STUDY .orvioviviveeivnvevimeirreesteeiesieeressssnseess 1 39

8.1 Introduction .. Freetreaeiarteteaieesieerearsteearnteenesteneesansisnensanecsanaes } OO
8.2 Stagel-The Parametnc Studv cerrrereeeeerteesteasseseerneessenseessnsrsacasesessaeens 1 60
8.2.1  Material Model Sty .......ooeereiiiie e rer e sensnrsvanecnsecnrens 100
8.2.2  Load Step S1z€ SIUAY «..oceeviicer ittt 169
8.3  Stage 1 — The Specimci SIAY.....ocooo e iiniicencae e rerearrers e e eseeesereee 170
8.3.1  Ultimate SIength ... snsressareen e 1 70
8.3.2  Load Deflection ReSPONSE .....covouiiiuieeiiiieieectiirereeseeceteracevenessnesenesseeeves 171
B.3.3  Crack Patliims cooceiiiii ettt sttt s b 173
8.3.4  Reinforcing Strains .. ceeretrreseraentes srarsaresesaseessreseersacensensrsereesasenessreens | 19
8.3.5 Specimens B12 and BIB cerrrererarnsessesraressensensennenes 180
8.3.6  Failure Mechanisms as Predicted by NLFEA ........................................ 181
8.3.7  Prediction of Longitudinal Flange SIrains........cc.ooovevivierncevnrecreiicevesonens 184
8.3.8  Estimation of the Flange Contribution to Shear Resistance ................... 194
8.3.9  Discussion of the Results of Stage I NLFEA ..o 195
8.4 Stage HI - Flange Geometry StUdy .o eveniiiiiiii i 196
84T UMaLe SIrength cooeeri vt v e aese e s senne 197
8.4.2  Load Deflection RESPONSE .oovvvevieeirrere v e e cercneisree e e ves seasnne 198
8.4.3  Discussion Of Results ......civeieniiiieirieciiie e e e v 202

85 Conclusions From the Finite Element Study .....cocovvvveincniiniiieiecennineennn. 202

CHAPTER 9 CONCLUSIONS AND RECOMMENDATIONS L...oeteeneetteee e eeeretnseenaaasesieaneersnsenss 205
9.1 Overview of the Research Undertaken ..o e 205
0.2  Conclusions Fromt This ReSCarch cooooovoieiviveeeereieirnvescininsriene e crssessssesensaen 206
9.3 Suggestions for Future Work ...t 208

R E R EINCES oo oiiveieeeieist e eeseee s aess e eeassuses s aiestsaesconnessesssssrensssseesstestressateoseesnasssnnnns 210

APPENDIX B LONGITUDINAL FLANGE STRAINS, REDISTRIBUTIONS AND THE FAILURE OF
SPECIMEN B LG oottt it ieireteeeta s siessec e ssasssess e ottnesmnsssessesssnsasessntnrsetessensennssassnns B-1

APPENDIX C LONGITUDINAL FLANGE STRAINS, REDISTRIBUTIONS AND THEE FAILURE OF

S P E CIMEN B T triiiiiiiiiiiiriie s eeser s eeesssssmraserastassersststssesssosssssaseanste st sonsnseesstesesssesnssrnsnns C-1

APPENDIX D RESULTS OF CHECKS ON THE CALCULATION OF INDIVIDUAL BLOCK SHEARS

....................................................................................................................................... D-1

APPENDIXE LOAD vS. DEFLECTION PRERICTIONS FroM  NLFEA rFOR  THE

EX PERIMENT AL SPECIMENS 1. et ieetteeereset s essestetsssesesssesesssssssssssssssssrssesssassssssssensssesessns E-1

APPENDIX F EXAMPLE CALCULATION OF THE FLANGE CONTRIBUTION ..oovvveeveeiereenens F-1

APPENDIX G PUBLICATIONS ARISING FROM THIS RESEARCH. .....vvvieereieeeeesoersvrensnnesenns G-1 ;
viii




LIST OF FIGURES

Figure 1.3-1 Schematic of experimental set up to examine overall affect of variation of
flange area on uitimate shear strength of a T-beam ... 5

Figure 1.3-2 Instrumentation for the calculation of the magnitude of shear force in the

Flange 0f @ T-DeaM ...e ot et e et st esr s a s sre senenas 0
Figure 1.3-3 Qutput of crack distribution obtained from NLFEA ... 8
Figure 2.2-1 Four contributions to shear resistance .......cc.oovvvievivinniiveinirisenmrec e 10

Figure 2.3-1 Variation of shear strength with flange width from Placas and Regan
1T e et sttt et st b e e st en e st be e 2ot R s eaes i5

Figure 2.3-2 Illustration of loading ledge used by Fok (1972) ... 16
Figure 2.3-3 Results from Chong (1980) for RC T-beams without shear reinforcing ... 18

Figure 2.3-4 Variation of shear strength with flange width in Taplin & Al-Mahaidi

(20000 ..o ce et et eb ket e s s tr st e ma et et st ae s 19
Figure 2.3-5 Inclined plane considered in formulation of theory of Placas and Regan

(TOT2Y oot ettt e be v s e r et s e st et ese 2 s e 21
Figure 2.3-6 T-beam failure mechanism assumed by Hoang (1997} ....coveveveeincnenn 22

Figure 2.3-7 Hoang (1997) assumptions of compressive strain distribution throughout

WIATR OF flANEE .. .ottt e e bea e e n s et nas et ae 23
Figure 2.4-1 Planc stress state by tests for constitutive relations in the MCFT.............. 26
Figure 2.4-2 lHustration of the concept of the compressive force path ..........ocoevene.... 27

F sure 3.2-1 Elevation of reference rectangularbeam...........co.oocoveeciiivcvcciie . 36
Figure 3.2-2  Cross section of reference rectangular beam .............cocovvecvriorccvrree .. 36

Figure 3.2-3 Cross section of specimen B8 showing flange reinforcement details for
SEIIES 2 BEANTS 1. cciiniiiiiiiie ittt ettt se et e b e bt et e s e av eae e s seotresenns 39

X




Figure 3.2-4 Plan of specimen B12 showing typical arrangement of flange reinforcing
for Series 3 Beams. ..o e e 39

Figure 3.2-5 Load and support arrangement for specimens ........cccoeevevvevinricininennnns 40
Figure 3.2-6 Schematic of second endtest ... 41
Figure 3.2-7 Strain gauging arrangement for Series 1 and 2 beams..........ccocceiieee. 43
Figure 3.3-1 A shear critical T-beam ..........ooeeoviiioniniiiiiii st 45

Tigure 3.3-2  Shear critical region of T-beam showing approximate size of disturbed
region and region considered for calculations.........occveeveivevinieinecicnincccniennnn 43

Figure 3.3-3 Region under consideration..........c..ov i oiioeniienmiinececeeeeneeineeonses 46

Figure 3.3-4 Discretisation of block of T-beam showing forces acting along the lerigth
of the span on COMPONENT TCZIONS ....eereuvrrrrerr e e sierrrerererarserensesseesscoraessmsseeess e onesre 40

Figure 3.3-5 Stresses on an arbitrary body in the cartesian coordinate system .............. 47

Figure 3.3-6 Stress distribution on arbitrary flange block after application of
BSSUNMIPLIONS L.t ivecriieeiircesiiiees ereeraesaen et b aresn e aesbebasansvasesnstesesstesssaneasesrnsssnss 4O

Figure 3.3-7 Detail of flange block 02 showing all forces that cause moment about the

ZBXTS ittt e e e s e s s s b L e e sh e e as e s s e e a s i ear e sein e s e e e e e et 49
Figure 3.3-8 Elevation of flange block 02 .......c.oooviierioiiiiicne e 49
Figure 3.3-9  Arbitrary stress strain and force distribution on a flange block................. 53
Figure 3.3-10 Discretisation of flange throughout the width only ... 56

Figure 3.3-11  Cross section of specimens used in Stage 2 of the experimental work ... 57
Figure 3.3-12 Schematic layout of longitudinal gauges.........ccooveeiiericenicn e, 60

Figure 3.3-13  Schematic of lateral gauging system used for stage 2 experimental work.

................................................................................................................................. 62
Figure 3.3-14 Location of embedded instrumentation with reference to load and support

................................................................................................................................. 63
Figure 3.3-15  Photo of embedded gauge system showing longitudinal and lateral gauges

................................................................................................................................. 63
Figure 3.3-16 Photo of specimen B19 showing top surface gauges..........c.ooccoveeinnne. 64

Figure 3.3-17 Close up photo of top surface strain gauging system on specimen Bi9 .. 64




Figurz 4.3-1 Elevation of dimensions used in the FE model......cc.occoo i 68

Figure 4.3-2 Modelling of the T-beam cross-section ...t 68
Figure 4.3-3 Details of the finite element mesh ..., 12
Figure 4.4-1 Linear tension sOftening response ..o cevvecrvnneiiiniicisnnnieiinee e 18
Figure 44-2 lllustration of the nonlinear tension softening curve ... 79
Figure 4.6-1 Schematic of the levels used in the parametric study ... 83

Figure 5.2-1 Mechanisms of resistance of shear by an RC beam with shear reinforcing92

Figure 5.2-2 Typical stirrup strain vs. applied load for a stirrup which was intersected by

B CTACK. ettt et tes sttt r e e a e s ste s se st eana ses s san s enessearensn et nesens B
Figure 5.3-1 Typical beam shear crack patterns exhibited by Specimen B4.................. 96
Figure 5.3-2 Beam shear failure mechanisin cracks exhibited by Specimen Bl 1. 96

Figure 5.3-3 Typical punching shear cracks on the underside of the flange of specimen

Figure 5.3-4 Typical crack pattem for punching shear mechanism on the top of the

flange of specimen BE2 ..o e e 98
Figure 5.4-1 Normalised concrete contribution vs. width ratio for series 1 specimens 0
Figure 54-2 Normalised concrete contribution vs. width ratio for series 2 specimens 101
Figurc 5.4-3 Normalised concrete contribution vs. width ratio for series 3 specimens 102 i
Figure 5.4-4 Comparison of average concrete contribution for series 3 with 1 and 2

stirrups considered effective for Specimens B12and B14.... ..o, 102
Figure 5.4-5 Ultimate strength vs. width ratio for series 3 specinuns ......o.occcveivveeneene. 103
Figure 5.4-6 Average normalised concrete contribution COmMparison.........oceeeveecevirnnane 104
Figure 6.3-1 Plan of specimens S1 and SZ.......oovooiiiiiiiiieneeiee e itl
Figure 6.3-2 Elevation of specimen geomelry and loading.........ccocovvviicrcrioiinnnn, 111
Figure 6.3-3 Plan of surface gauging arrangement .......cccovvvivvieerenrerieniesiesenveeseneencen 112 d
Figure 6.3-4 Elevation of strain gauging arrangement ........c.cvevvecenarenneereererrennens 112
Figure 6.4-1 Profiles assumed for calculation of sectional forces.........cocccevevviveernennn, 115 :

Xi




Figure 6.4-2 F.ce body of region enclosed by strain gauges.........ccovicvenvniiininciene 117

Figure 6.5-1 Average concrete strains produced at the three layers of gauging on section
1O SIab SToeiie vt et nsccr e eennscsmee e essaseresennesnsssnsns § 1D

Figure 6.6-1  Variation of strain distribution of section 1 on Slab S| throughout loading
RIS OEY 1o ettt eee it ie et e e s eae e te e e vabe em e a e res e e ereteare creebbae s a e s e s bb ettt tee e s s 120

Figure 6.6-2 Slab 1 axial forces on section | .........cccoooiiiiininiciincninineonen 123

Figure 6.6-3 Slab 1 axial forces on section 2 ... e 123
Figure 6.6-4 Slab 2 axial forces on seCtion I ..o e 123
Figure 6.6-5 Slab 2 axial forces on section 2 ......c.ccooviivmiiiieniiniinniiee e 123

Figure 6.6-6 Slab 1 bending moments on section 1 .........covviiicniiininiiiiincnnnn. 126

Figure 6.6-7 Slab 1 bending moments on S€Ction 2 .........ccccovvviiiiecin e 126
Figure 6.6-§ Slab 2 bending moments on section 1 ..., 126
Figure 6.6-9 Slab 2 bending moments on SeCion 2 ... vrviecomcrinciininnneeeccnoen. 126
Figure 6.6-10 Shear force on slab I from equilibrium and sectional analysis.............. 127
Figure 6.6-11 Shear force on slab 2 from equilibrium and sectional analysis.............. 127
Figure 7.1-1 Identification of Section A and Scction B, 131
Figure 7.1-2 Notation used for location of flange bIOCKS....cccocovvviiviviiiniicne e 131
Figure 7.2-1 Photo of B16 fatlure mechanism ... 132
Figure 7.2-2  Specimen B16 Load Deflection Curve. .o, 133
Figure 7.2-3 Shear lag distribution at 20kN load increments for specimen Bl6......... 135

Figure 7.2-4 Variatio~ s of Shear Lag with Applied Load calculated for Specimen B16
............................................................................................................................... 136

Figure 7.2-5 Distribution of interface shear throughout the width of the flange at 20kN
intervals for specimen BEO ..o e 137

Figure 7.2-6 Variation in interface shear with applied load as calculated for specimen

BEO oo et bt s e e ek e sa se s e 138
Figure 7.2-7 Distribution of sectional shear throughout the width of the flange as
calculated for specimen B16.........cccrvrieriiiniein e et cesreene e ranr e 139
xii

oy R e

i i e S

Al LB AL



Figure 7.2-8 Variation of percentage of total sectional shear in flanges for specimen B16

Figure 7.2-9 Variation of shear in cach layer at 20kN intervals for specimen B16...... 140

Figure 7.3-1 Specimen B17 failure mechanism ..., 144
Figure 7.3-2 Specimen B17 load deflection curve ..o, 144
Figure 7.3-3 Shear lag distribution at 20kN increments for specimen B17................. 147
Figure 7.3-4 Variations of shear lag with applied load for specimen B17 ... 147
Figure 7.3-5 Distribution of interface shear throughout the width of the flange at 20kN
intervals for specimen B17 ... e e et s e i50
Figure 7.3-6 Variation of interface shear with applied load at rows ... 150

Figure 7.3-7 Distribution of sectional shear throughout the width of the flange as
calculated for specimen Bl7 . ..o e 151

Figure 7.3-8 Variation of percentage of total sectional shear in flanges for specimen BI6
vevinereenrienees 132

Figure 7.3-9 Variation of shear in each layer at 20kN intervals for specimen B17......152
Figure 7.4-1 Cracks on specitnens Bl (punching shear fatlure mechanism) at failure. 155
Figure 7.4-2 Cracks on specimen BS at failure (beam shear mechanism).................. 155
Figure 7.4-3  Cracks on specimen B3 at failure {(beam shear failure) ... 156

Figure 8.2-1 Comparison of load deflection plot for varying values of P} and varying
constitutive model combinations for Specimen B2, 162

Figure 8.2-2 Comparison of load deflection plot for varying valucs of B and varying

constitutive model comibinations for Specimen BS.......ccooviiiven i, 163
Figure 8.2-3 Crack pattern obtained for B2 using B=0.1: TSM-L.....ccccoooeiivievrenna, 168
Figure 8.2-4 Crack patiern obtained for BS using B=0.1: TSM-L.......cccvvervvrveen.... 168
Figure 8.2-5 Comparison of load displacement plots for different increments of

AISPlACEMENT ..ot e st eseessr st brereaen e e | 09
Figure 8.3-1 Comparison of two load-deflection curves for series 2 specimens.......... 171
Figure 8.3-2 Comparison of two load-deflection curves for series 3 specimens.......... 172

Xiik




Figure 8.3-3 Comparison of load-defiection behaviour obtained from NLFEA for series
1 SPECIINICI ..t ecee e ert e eece st esec e e snee e sre e ese s ote st e aen s s net ssmecsntsssesssntssracneossasnneesess | 1D

Figure 8.3-4 Comparison of predicted crack strains and exhibited on specimen B2
AUIINE EXPETIMCIL ... .eietiiiieeereriemirenese e ceraeeeceme s etsssrmermssstsarserrescesnriatesasmtnesesenns 176

Figure 8.3-5 Comparison of predicted crack strains and exhibited on specimen BS
JUIINEZ EXPETIMEII ..ottt et rebe s r e smssa e e s s bt sesosene e et e nenes s 177

Figure 8.3-6 Comparnison of predicted crack strains and exhibited on specimen B2
dUTING EXPETIMENL 1oieiriiieiirieaiieieriaarereoreee stosrneresecrsiestonsrassssescosmissesosnsesroasassrasses § 10

Figure 8.3-7 Notation used for comparison of strain gauge resudts.........ccocovveveiieene. 179
Figure 8.3-8 Load - deflection curves for specimens B12 and B13 ... 181

Figure 8.3-9 Failure mechanism predicted for specimen B3 ... 183

Figure 8.3-10 Notation used for description of gauge location.........ccvvvvvvvviecrninnnees 185
Figure 8.3-11 Comparison of longitudinal strains in specimen B16 section A............. 186
Figure 8.3-12 Comparison of longitudinal strains in specimen B16 scction................ 188
Figure 8.3-13 Comparison of longitudinal strains at section A in specimen B17 at
locatinns in the flange................... ... 190
Figure 8.3-14 Comparison of longitudinal strains at sectior: B in specimen B17 at
locations i the flange ... e e 192

Figure 8.4-1 Variations in the ultimate strength with width ratio predicted by NLFEA

for Stage HEINLFEA L. et et e ses e s e 199
Figure 8.4-2 Load deflection curves for all specimens in series | of the Flange

GEOMELTY STUAY wveioieveierieer et e et et eaa e sr et e e e esae e eaeaane arens 199
Figure 8.4-3 Load deflection curves for all specimens in series 2 of the Flange

GEOMEITY SIIAY c.ceeiviviriiicieieeeecr ettt e ee e e e ae e re sesenn e 200
Figure 8.4-4 Load deflection curves for all specimens in series 3 of the Flunge

GEOMEBITY STUAY oot et ettt es oot bt aer e e et aeasomn 201

Xitv

e




LIST OF TABLES

Table 3.2-1 Series 1-3 Beam Tags and Flange Proportions............ccceeviiveneiiciicernniecrenans 37
Table 3.2-2 Material propertics for €ach SIS c..v.iviiieiiviiiireir e e cenr sares e ereene 42
Table 4.7-1 Specimen numbers and material properties for stage 2 numerical modelling .....87
Table 4.7-2 Specimen numbers and matenial propertics for stage 3 numerical modelling .....88
Table 5.2-1 Ultimate shear strengths recorded for Stage 1 experimental work........o.oii 91
Table 5.2-2 Total force carried by stirrups in each specimen series for stage 1 experiments.94
Table 6.5-1. Ultimate loads and failure mechanisms of specimens........ccconicvneinnnneenn, 118
Table 8.2-1 B2 peak load comparison (Pg= 181.0KN) ..o e 165
Table 8.2-2 BS peak joad comparison (PE= 15FKN).cc..ciioiiicei e e 166
Table 8.3-1 Comparison of peak loads obtained from experimental work and NFLEA....... 172
Table 8.3-2 Comparison of stirrups strains at the peak load (Positive strains are tension)... 180
Table 8.3-3 Comparison of flexural reinforcing strains at the peak load.....c..c.cococnne 182
Table 8.3-4 Comparison of failure mechanisms from experimental and NLFEA work ........ 184
Table 8.4-1 Comparison of peak loads produced from the flange geometry study .............. 198

v




LIST OF SYMBOLS

ay Shear span
br Width of flange of T-beam
br Ratio of flanze width to web width ( = by by)
by Width of web of T-beam
Cag Compression force acting on section A of block j in layer o
D Total beam depth (= dr+ by)
dr Total depth of flange of T-beam
do Effective depth of a beam for shear. Distance from top of beam to centroid
of bottom layer of reinforcement (depth of shear resistance region in web)
dr Ratio of flange depth to total beam depth ( = d¢/ d,,) ;
dw Total depth of web of T-beam :
E. Y oungs modulus for concrete
. Ultimate cylinder strength of concrete
fer Cracking stress
fe1 Principal tensile stress
feo Principal compressive stress
fu Uitimate strength of fongitudinal reinforcing
fuv Ultimate strength of shear reinforcing
fya Yicld strength of longitudinal reinforcing
fyv Yicld strength of shear reinforcing
G Shear modulus
G¢ Fracture energy
h Crack bandwidth '!
I First invariant of stress 1
I Second invariant of the deviatoric stress c
I3 Third invariant of the deviatoric stress
Lo Lever arm of compression force acting on section A of block j in layer o

XVvi




Py Peak load carried by a specimen
PNiFEA Peak ioad estimated by NLFEA

Pe Peak load carried by a specimen during experiment
Va Contribution from aggregate interlock across a crack in a beam toward the
ultimate shear strength
V. Contribution from the concrete in the compression region of a beam toward
the ultimate shear strength
V4 Contribution from resistance of a flexural reinforcing bar in a beam toward
the ultimate shear strength
Vs Contribution from the stirrups of a beam toward the ultimate shear strength
Vy Shear acling on the critical section at the peak load of a shear critical beam
Vo Shear lag on flange block j in layer o
Vi interface Shear lag on flange block j
A Sectional shear on block j in layer «
i Shear retention factor :
£ Principal tensile strain ?
€, Principal compressive strain ]
Eor Cracking strain
& Strain at peak compressive stress
£, Ulimate strain
Y Equivalent stress block factor
¢ Friction angle
Dilatancy angle
X Cohesion
gl Plastic strain
£° Crack strain i
St Lateral or perpendicular tensile strain
o Crack stress i
G, Compression stress !
Oy Normal stress in the x-direction
Tuy Shearing stress on the xy plane ;
K Hardening parameter
Vv Poissons ratio
Xvii

1
l‘”-\-qu et e }



Chapter1 INTRODUCTION

1.1 Introduction

Reinforced concrete has had a rapid clevation over the past 140 Years. Hsu (1998)
outlines that this material was first patented in 1867 by Joseph Monier. Since this date, the
practical simplicity of construction using this material, and the low cost in production has lead
to this material being rivalled by only structural steel in its prevalence in construction in

Australia, and the world.

The challenge that has faced researchers and engineers since its discovery has been to
try and quantify its behaviour in a sufficient manner to facilitate its use in construction. This
has historically followed along the lines of adapting the weli understood fundamentals of solid
mechanics, and to some extent, linear elastic models. It has been only recently that the
mathematical fundamentals of solid mechanics developed by Navier have been able to be
investigated with the development of computer hardware, and accompanying algorithms
capable of solution of these indeterminate relations. Even though chese algorithms are capable
of solving these equations for some materials, it is the challenges associated with material
nonlincarities, heterogeneous materials and fracture that are now posing a challenge to
researchers in the determination of suitable methods of modelling the behaviour of a

reinforced concrete solid.

Regardless of the lack of a unified method of predicting strength of reinforced concrete
solids and structures, engineers have nonetheless been able to produce some remarkable
structures with this material. These structures range from the taliest buildings in the world,
The Petronas Twin Towers in Kuala Lumpur, to the newly constructed Bolte Bridge in

Melbourne. These structurcs have been possible through the tircless efforts of researchers and
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engineers over the past 100 years to develop relations based on the phenomenological
observations of overall behaviour of structural elements formed with reinforced concrete. The
relations that are developed have improved over time with the development of more precise
experimental equipment, data acquisition systems that increase in capacity, and the general

improvement in the understanding of the material that is developed over timie.

What is becoming a great concemn with the existing, old reinforced concrete structures
can be summarised with the following questions; How safe is a reinforced concrete structure
that was constructed nearly a century ago, when the understanding of the behaviour of
reinforced concrete was very basic? Furthermore, what happens to this structure if it is

subjected to loads that increase over time?

There are many instances that exist where this is a significant issue, this discussion wili
focus only on one particular type of structure. Al-Mahaidi and Taplin (1998) have identified a
Jarge number of reinforced concrete bridge structures that comprise of girders with a T-shaped
cross section (T-beams) on the rural roads in Victoria, Australia, that were built prior to 1950,
one of these was buiit in 1905. Their research demonstrated that within this period. the
allowable loading on these roads increased from 15.24 tonne, to a truck of weight 160 tonnes
as required by the Australia Bridge Design Code (Austroads (1999)). Rudimentary anaiysis of
the deck of these structures in accordance with the Australian Concrete Code of practice
(AS3600 (2001)) quite often yields that these structures are deficient. These structures are

deficient in both shear and flexure.

Assessment of the shear strength of a bridge deck as prescribed in this code of practice
{and by all others concrete codes of practice) is undertaken by estimation of the shear force
that acts on one girder on the span, and then calculation of the shear capacity of this girder by
assuming a rectangular cross section. This approach is a great simplification in behaviour of
the deck of the structure in shear, as it does not allow for the contribution of the deck to be
considered. Darwish et al. (2000) recently acknowledged this and commented that many
concrete structures comprise of beams that are cast monofithically with a slab element,

therefore forming a T-shaped cross section for the purpose of analysis,




Theoretical evaluation of the shear strength of a rectangular RC beam that forms this
type of structure using any of the codes around the world is predicted using an analytical
developed by Ritter (1899) and Morsch (1906). The research using this model over the last
century has been mostiy focussed on the determination of empirical relations that describe the
effect of the variables of material properties and geometry on the shear strength. Since the
application of finite element analysis to reinforced concrete structuses was first undertaken in
1969, a huge research efiort has been applied to this field, in particular the determinsiion of

constitutive relations that witl allow the accurate implementation of this solutions schemns.

It is apparent that there is insufficient understanding of the mfluence of the flange of an
RC T-beam on the shear strength of an RC T-beam. The rescarch presented in this thesis
examines the effect of the flange dimensions on the shear strength of a web reinforeed RC T-
beam, and the contribution of the flange to the resistance of shear by experimental
determination of the shear force that is resisted by the flange. In addition to this, the ability of

NLFEA to predict the shear strength, and flange contribution is also examined.

1.2 Aims of the Research

The primary aim of this investigation is to determine the effect of changing the
dimensions of the flange (in the compression zone) of 2 reinforced concrete T-beam on the
shear strength of the specimen. To achieve this overall aim, the research was broken into two

components; an experimental component, &ud 4 component of nurcrical analysis.
The experimental component had the following aims,
1. Determine experimentally if the change in flange proportions of a series of
specimens with identical web and rewnforcing arrangement produces a

corresponding change in the shear strength.

2. Develop and inmiplement an experimental technique capable of calculating the

amount of shear force that is present in the flange of a T-beam. This allowed

laﬁaﬁn&.-nm&"m.n..m:- T L e 0 58 md mtaol te Ft d  rd




1.3

quantification of the contribution of the flange to the resistance of an applied shear

to an RC T-beam specimen.

The numerical anatysis component had the: following aims.

1. Determine the performance of common concrete constitutive models in the
prediction of shear strength. This allowed selection of the most suitabie model to

perform numerical simulations on series of T-beams.

2. Determine the capability of the selected combination of constitutive models to
capture the significant results of the experimental work. These were deemed to be
prediction of peak load, load-deflection behaviour, crack pattems, and strains (both

concrete and reinforcing).

3. Apply the solution scheme to a series of specimens that did not have any
variations in material propertics. The material property variations in the above
series of analysis were introduced as a result of the requiremient to break the

specimens into four series for the purpose of testing.

Qutline of the Thesis

The general structure of this thesis is as follows.

o A survey of previous experimental and analytical work that is related to this
research.
o The methods adopted in this thesis
o Methods of experimental work
o Methods of finite element (numerical) analysis,
¢ The results of the work presented in this thesis
o Results from the expenimental work

o Results from finite element analysis




e A series of conclusions and recommendations that have arisen from this work.

The experimental work was divided into two stages, and the numerical analysis was

divided into three stages. These arc summarised below.

1.3.1 Experimental Work

The methods and results of the experimental work are presented into two sections. An

outline of these two stages is presented below.

1.3.1.1 Stage 1 Experimental Work

Stage one of the experimental work examined the variation on the shear strength of
three individual series of specimens of RC T-beams produced by varying the dimensions of
the flange. Within each series, the flange depth remained constant, and the flange width
varied. There was also a variation in the flange depth between each series to investigate this
aspect of changing the area of concrete above the neutral axis. Figurc 1.3-1 below shows

schematically the test setup used in this work.

Reaction Frame

4

Loading Jack

Test Specimen

Figure 1.3-1 Schematic of experimental set up to examine overall affect of variation of flange

area on ultimate shear strength of a T-beam

The method used in impleimenting stage one is outlined in Chapter 3, and the results

that were obtained for the variation in the shear strength are discussed in Chapter 5.

5
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1.3.1.2 Stage 2 Experimental Work

The second stage of the experimental work developed and implemented an
instrumentation technique capabie of calculating the magnitude of shear force that was carried
in the flange of a T-beam. The implementation was limited to two specimens owing to the
large cost of imstrumentation. A photograph iliustrating the instrumentation used in the
technique is shown below i Figure 1.3-2. The experimental method in the implementation of
this method, including a summary of the analytical component is outlined in Chapter 3, and
the results of the implementation are outlined in Chapter 7. In an effort to determine the
suitability of this method to calculate sectional shearing forces, trial experuments were

undertaken. These are discussed in Chapter 6, as well as the validity of the technique.

Figure 1.3-2  Instrumentation for the calculation of the magnitude of shear force in the flange

of a T-beam

1.3.2  Finite Elements Analysis

The finite element analysis work is presented into two sections in this thesis. An

outiine of these two stages is presented below.




1.3.2.1 Stage 1 Numerical Analysis

The capability of NFLEA to reproduce results of the experimental work was examined

in this work and is presented as stage 1 numerical analysis.

Finite element analysis of reinforced concrete structures is sensitive to many
parameters, most of all constitutive models selected, displacement increment applied to the
solution scheme and the mesh density. The work presented below uses results of previous
analysis reported in literature to select a fixed mesh density was and uses this to examine the
effect of constitutive models of the concrete and displacement increment. The optimal
combination of constituve models and displacement increments are used consistently

throughout the following two stages of work.

1.3.2.2 Stage 2 Numerical Analysis

Having selected the optimal combination of constitutive modeis to describe the
behaviour of the concrete, the most time efficient displacement increment, based on the fixed
mesh density, the procedure was. applied to experimiental specimens to determine the

capability of the procedure to replicate the peak load recorded in the experiments.

Several parameters were used for comparison, these included peak loads, joad
deflection response, reinforcing strains, and crack patterns (an example of the finite element

output of crack pattems can be seen in Figure 1.3-3), and conscequently failure mechanisms.

1.3.2.3 Stage 3 Numerical Analysis

The limitation of laboratory space required four separate castings of specimens, which
resulted in some significant variations in material properties throughout the work. This final
stage of the finite element analysis presented in this thesis is a numerical investigation into the
effect on the ultimate strength and failure mechanisms of this typc of specimen with all other

variables (including material properties) being constant.
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Chapter 2 LITERATURE REVIEW

2.1 Introduction

This chapter is intended to give the reader a description of the previous research info
the shear strength of RC T-beams. As outlined in Chapter 1, the particular focus of this
research is the contribution of the flanges to the shear strength of an RC T-beam; theretore
significant attention is given to previous investigations that have included this effect.
Experimental investigations that have been undertaken as well as formulation of strength

prediction equations are discussed.

There are some general theories of the prediction of shear capacity that have been
formulated that are capable of predicting some influence on the shear strength that arise with
variations in the flange geometry. The basis of these methods is discussed in this section, and
the ability that these methods have for the prediction of shear strength of this type of structural
element is discussed. These theories are seen as indicative of the general approach that is
being followed in shear theory in the current state of the art methods of analysis. This
approach is examined to determiae the validity of extrapolating beam theory concepts to this
type of structural element that no longer has the general cross section upon which much of the

shear theory has been cstablished.

22  The Mechanisms of Shear Resistance

This discussion defines the four components of shear resistance that are commonly
accepted amongst researchers of reinforced concrete, This brief discussion is by no means

intended to completely summarise the current knowledge of the shear resistance mechanism




but to define these individual contributions and the way they will be referred to for the

remainder of this thesis,

Figure 2.2-1 illustrates the internal mechanisms of reinforced concrete outlined in
Wamer et al. (1993) that resist an applied shear. It is noted that this figure illustrates the
mechanisms as they are after the formation of the diagonal tension crack in the web of an RC

beam.
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Figure 2.2-1 Four contributions to shear resistance

Idealisation of an RC beam subjected to shear is most generally approached by
assuming that crack reinforced concrete behaves in a similar fashion to a truss. This has been
the basis for all code methods of describing this behaviour, and also forms the basis for two of
the most prominent theories for prediction of the shear strength that are in development. This

idealisation was developed over 100 years ago by Ritter (1899) and Morsch (1906).

The concrete in compression has a capacity to resist shear and is considered to be part
of the mechanism at failure of an RC beam. The contribution will be referred to as the
concrete contribution and is denoted here as V.. Tension forces that arise in the shear
reinforcing assist in the resistance of shear. This contribution will be referred to as the stirrup
contribution, and will be denoted V;. It has been shown that there is relative movement of the

two bodies of concrete that are bounded by the diagonal crack. With the interpenetration of
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the aggregates between these two bodies, these relative movements will initiate frictional
resistance on the surface of the crack. This contribution is known as the aggregate interlock
contribution, and will be denoted here as V.. As this relative movement becomes significant,
a downward force is induced on the flexural reinforcing. A resistive force is induced through
the dowel like action of the flexural reinforcing group. This will be referred to as dowel

action, and will be denoted V.

Agreement is yet to be reached on the relative contributions of each of the above
components of the resistance of an RC beam to shear, and has been the subject of much
ongoing debate in literature. For examiple, Pang and Hsu (1996) present a mathematical proof
based on a series of assumptions which precludes the concrete contribution from the shear
resistance mechanism, whereas Kotsovos {1988) presented experimental evidence to suggest
that aggregate interlock does not form part of the mechanism, and that the mechanism is
simply the sum of the concrete and stirrup contributions. The Modified Compression Field
Theory (MCFT) of calculating shear capacity (discussed in Section 2.4) neglects dowel action,

and implicitly includes in its formulation the remaining three components.

23  Investigations Relating to the Shear Strength of T-Beams

Presented below is a discussion of the previous research that is relevant to this
investigation. Some comparison is required between investigations, and to keep the results
analysis consistent, the following is implemented: all ultimate strengths that are reported
below are normalised with respect to the square root of the concrete strength, as well as the
web area, i.e. Vy/(bdVf,) is presented. The relative proportions of the web and flange affect
the strength, so dimensionless parameters, br {(=byb,,) and dr (=dy/d,) will be used for
discussion. The quantity d, is the effective depth for shear taken by the Australia Standard
AS3600 (2001); it is the distance from the compression surface of a beam to the centroid of

the outermost layer of reinforcing.
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2.3.1 Experimental Investigations into the Shear Strength of T-beams

Shear strength of T-beams has been the subject of some investigations in the past.
Much of the early research such as that undertaken by Swamy (1969}, Swamy and Qureshi
(1971), and Al-Alusi (1957) has focussed on the behaviour of T-beams subject to variations in
variables similar to those examined in rectangular beams. Other aspects of the behaviour of T-
beams have been examined in literature, and a summary of the major variables, and the results

that are relevant to this investigation are discussed below.

Swamy and Qureshi (1971) investigated the cracking and deformation behaviour that
is exhibited by specimens with a T-shaped cross section as well as the ultimate load of this
type of specimen. The variables of the investigation were the percentage of shear reinforcing,
as well as aggregate size, and scaling. The authors made several conclusions from their
experimental investigation, and many significant aspects of the scaling and the effect of
scaling aggregates were made. Swamy (1969) discussed experimental work by Adepegba
(1966). The focus of the discussion was the difference in post cracking behaviour of RC beam
with and without shear reinforcing. T-beams were included in this discussion, but only for the
purpose of validating the above comments. Al-Alusi (1957) tested 25 T-beams to determine
the effect of varying the shear span on the shear strength of RC T-beams. Some were inverted
and tested in negative bending, and some varied the percentage of compression reinforcing in
the flange. None of these specimens that were tested in this investigation had shear

reinforcing.

An investigation by Kotsovos ¢t al. (1987) into the shear strength of RC T-beams
without web reinforcing indicated that for a given a/d ratio for a beam subject to four point
loading, a significant increase in ultimate shear strength (up to 200%) can be attained with the
addition of a flange. 1t is noted that the loading on the flange surface is applied over the entire
width of the flange, further discussion of this will be provided later. Kotsovos et al. (1987a)
concluded that the shear resistance of a T-beam is at least in part provided by the flange of a
T-beam and not simply the web. These authors noted that a common assumption in the
consideration of shear resistance is that only the web provides the shearing capacity of a T-

beam. In this paper it is noted that the shear strength of a T-beam is significantly higher than
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that of a rectangular beam with similar web geometry. The considerable increase in shear
strength is atiributed to the triaxial siress state in the area adjacent to the load point. This
triaxial stress is made up by the presence of the load, the longitudinal compressive forces
induced by bending and the hypothesised confining action of the flange. The confining action
may have resulted from the influence of the load point, as this was a line load over the entire

width of the flange.

Seraj et al. (1992) carried out detailed three-dimensional nonlinear finite element
analysis (NLFEA) of T-beams. The purpose of this research was to provide a finite element
model capable of predicting the ultimate strength of T-beams constructed with both high and
low strength concrete. Unfortunately, no comment on the affect of the triaxial stresses in the
region of failure on the load capacity of a T-beam was made. This paper mainly fou.uses on

the economical three-dimensional modelling of this type of structural element.

The response of T-beams in shear sulacted to negative bending was the subject of an
investigation undertaken by Rodrigues and Darwin (1987). The purpose of this investigation
was to determine the contribution from both stirrups and concrete to shear resistance provided
in negative moment by a T-beam. The results essentially illustrated that ACI 318 (1999)
values for shear design in these regions were conservative, and that the stirrup contribution is

in fact higher than that allowed for in this concrete code.

A more unique investigation was conducted by El-Niema (1988). This investigation
was aimed at determining the effect of a haunch at a support on the shear strength of a beam.
No spectfic atteation was paid to the effect of the flange in the development of the theoretical
model proposed in this paper. The main focus was to decipher the effect of additional depth at

the support when considering a web crushing type shear failure.

The above examples of the investigations that have been carried out are not intended to

summarise all experimental work on shear that has included T-beams. It shows that in most

cases, the flange is not considered in the investigations, and the study of variables that affect
the shear strength of T-beams is usually kept to those that are routinely studied for rectangular

heams. In the above examples of previous research only that of Kotsovos et al. (1987a) shows
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consideration of the contribution of the flange to the shear strength of an RC T-beam
specimen. This investigation only gives a comment to the fact that the flange had made a
significant contribution in the experiment that was reported, no detailed study of the effect of
the dimensions was undertaken. In fact, only four significant investigations that isolate the
variation of the geometric propottions of the flange as the sole variable in a series of

experiments have been performed. These are discussed in the following section.

2.3.2 Experimental Investigations Inciuding the Effect of Flange Proportions
on the Shear Strength of RC T-beams

Placas and Regan (1971} undertook an analytical and experimental investigation into
the shear strength of T-, I-, and rectangular shaped beams. This study formed a very
exhaustive experimental study, and covered many variables including material properties,
reinforcing percentages, and loading arrangements. While some specimens did not include
shear reinforcing, the focus of the discussion in this paper, as weli as this discussion, will be
on T-beams with shear reinforcing. Within this study, ultimate strengths for four spectinens
can be used to investigate the effect of the variations of the flange dimensions on the shear
strength of a series of specimens. These four specimens included a rectangular beam, and
three T-shaped cross sections, each with an equal amount of reinforcing, shear span to
effective depth ratio (a.,/d) of 5.4 (which corresponded to a central load), equal web width of
152 mm, and equal effective depth of 254mm. The three T-shaped cross sections varied in
flange width, and included flange widths of b=305mm, 610mm, and 1067mm corresponding
to br=2.0, 4.0, and 7.0. The flange depth remained constant for these T-shaped cross sections
at 76mm. Small variations in the concrete strength were present in the results presented, but
the aforementioned normalization procedure eliminates the effect of this variation on the
ultimate strength. The loading arrangement was noted to be a point load; no reference was
made to the size of the loading point. Apart from the small material variations, the only

variable in the above specimens is the width of the flange.

Figure 2.3-1 presents the results of the normalized ultimate strength results against the
width ratio obtained from this study. Klein and Popovic (1985) were the first to identify this

trend from the resuits of the experimental work of Placas and Regan (1971). The specimen
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with the largest width ratio of br=7.0 does not display a normalized shear strength higher
substantially than that of the beam with a width ratio of b1=2.01. The intermediate point, with
br=4.0, has a higher ultimate shear strength than either of these. These results show a
maximum increase in the normalized shear strength resulting from the variation in the width

ratio of 26%; however, the trend of this increase is not clear in these results.

Fok (1972) aiso presents a study, which included an experimental study that was
focused on the effect of all major variables on the shear strength of concrete beams. Like the
study of Placas and Regan (1971), the effect of the flange proportions on the ultimate shear
strength was isolated for only one portion of the study. These specimens had a constant total
depth (240mm), effective depth (200mm), as well as a constant web width (100mm) and
percentage of flexural reinforcing. Within this series of tests, there was a sub-series of tests
that had a constant shear span to effective depth ratio. Each specimen was point loaded with a
line across the width of the flange at the location of the point load. At the location on the
flange where the load was applied, the web was widened locally; the width of this widening
was almost equal to the width of the flange. This formed a “ledge” that was provided to each
specimen in an effort to ensure a uwhiform distribution of load across the width of the flange.

This is illustrated in Figure 2.3-2.
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Figure 2.3-1 Variation of shear strength with flange width from Placas and Regan (1971)
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For each constant shear span to effective depth ratio, information regarding the effect

of the flange proportions on the shear strength was examined. For each shear span to depth

ratio, three different flange depths of 40mm, 60mm, and 80mm were investigated, and for
each different flange depth, a variation in flange widths was studied (the flange width was
300mm, 400mm, or 500mm, a rectangular beam was also studied for each shear span to depth
ratio). Tests of each end of the specimens were undertaken to ensure that both shear spans
failed. One end of each of these specimens was provided with shear reinforcing. The
percentage of longitudinal tensile steel remained the same throughout the duration of this

series of tests.

Line of loading ledge below R
\

]
|
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_ L {
P - rt : * I
p / Lo l \ | Edge of {lange
Support L - -

Line of wcé below 1< / Edge of wcb
Loading ledge beyend

o |

Plan of Flange Section 1-1

Figure 2.3-2 llustration of loading ledge used by Fok (1972)

Based on the results of the above series of specimens, and other correlation of some
results from other senies, the author concluded that the variation of flange width did not affect
the shear strength, but variations of the flange depth did have sonmie affect. Close exarnination
of the results of ultimate strength and failure mechanisms indicate that in most cases, the ends
to which shear reinforcing were provided failed in flexure, and those without this reinforcing
failed in shear. The former of the two points from this research regarding cross section

geometry is in direct conflict with the results of Placas and Regan (1971).

Placas and Regan (1971) include in their formulation the fact that the failure of the

compression region signifies the faiture of a specimen in shear. In the study of Fok (1972),
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the lcading ledge iliustrated in Figure 2.3-2 is positioned directly underneath the load point.
This is a significant change to the cross section in this region. The alteration of the critical
cross section to this extent is thought to render these results unrepresentative of the trends that
may occur in a specimen that is not subject to such an extreme geometry change. It is noted
that the above statement regarding to the effect of the flange width on the ultimate shear

strength is only valid for the specimens tested without shear reinforcing as those with shear
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reinforcing generally failed in flexure, and therefore no true trend for the specimens with shear

reinforcing could be deduced from these results.

Chong {1980) undertook an experimental investigation similar to that of Fok (1972)
above. This study diffei2d in that the applied loading fto all specimens was a line load along
the centreline of each specimen. As part of this series of beams, 10 bear:+ were tested to
investigate the variables of flange width and flange depth and their effect on the shear strength

of reinforced concrete T-beams without shear reinforcing.

Three different flange depths (d=40mm, 60mm, and 80mm) were examined, and for
cach of these separate flange depths, three flange widths (b=300mm, 400mm, and 500mm)

were tested. A rectangular beam with identical web properties to the T-beams was also tested.

All specimens tested in this investigation were reported to fail in shear. To determine
the effect that the flange was having on the ultimate shear strength, the author normalized the
vesuits of uitimate shear stress (over the web area) with the cracking shear stress (again, over
the web area). The results produced from this process indicate that any variation in flange

proportions in a reinforced concrete T-beam without shear reinforcing produced no variation

on the ultimiate strength of that specimen.

To provide a consistent set of data for the varying arrangements of load that have been
tested by Chong (1980), the process of normalizing the ultimate shear value with concrete
strength and web dimensions (as described in Section 2.3) was applied to the results obtained
in this study. This is shown in Figure 2.3-3. This normalization procedure shows that as a

series of specimens is given an increasing flange width, the trend is upwards in the normalized
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shear strength. Similarly, this process shows that for a series of specimens with an increasing

* flange depth, there is an increasing trend in the result of the normalized shear strength.

The above results directly contradict the statement made by Chong (1980) regarding
the effect of the variations in flange proportions of the ultimate shear strength of a reinforced

concrete T-beam without shear reinforcing. The analysis performed by the author normalizes

the ultimate shear strength with the cracking shear strength, but not with the cylinder sfrength.
The cracking shear strength has been shown to be highly variable in many publications

including Vecchio and Collins (1986). It is suggested that variability in the results that ts

introduced by normalisation with respect to the cracking shear strength has hidden the trend of
the increasing shear strength with flange proportions.
: k
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Figure 2,3-3 Results from Chong (1980) for RC T-beams without shear reinforcing

Taplin and Al-Mahaidi (2000) reported on an experimental investigation into the

ultimate shear strength of T-beams. Five of the 21 beams tested as part of the investigation

were tested solely to determine the variation in shear strength that arises from varying the

flange width. No variation in the flange depth was used throughout this experimental

5 i T Ve St TR e b

investigation. These beams contained shear reinforcing, with a percentage equal to the

minimum that is required by the Australian Star:dard AS3600 (2001). The web width of these
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specimens was 140mm. The flange dimensions were scaled from typical dimensions of
E existing T-beam bridges in Victoria, Australia. The flange depth remained constant at 75mm
. (corresponding to dr=0.25), the flange width varied from a rectangular beam to a flange width
of 600mm. The value of the width ratio that this encompassed was br=1.0, 1.61, 2.64, 3.46,
and 4.29. Loading was applied to these specimens as a line load across the width of the flange
at a constant shear span to depth ratic of 3.0. The effective depth of these specimens was
E 260mm; all reinforcing ratios were constant at 3.3% percent for flexural reinforcing, and

0.13% for shear reinforcing.

Figure 2.3-4 shows the variation in the normalized concrete strength with the variation
in the width ratio br. Similar to the results presented for Placas and Regan {1971) and Chong
(1980), the results shown in this figure indicate that the normalized shear strength increases
'? %) the flange width of a T-beam with all other material and geometric properties constant.
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Figure 2.3-4 Variation of shear strength with flange width in Taplin & Ai-Mahaidi (2000)

This figure illustrates that the shear strength does increase with the width of the flange.

“he experimental point at a flange width of 485mm (br=3.46) does not appear to fit a trend as
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it produces a shear strength lower than that of the 310mm flange beam (br=2.64). The shear !

3

3 strengths for specimens with a 225mm wide flange (br=1.61) and the rectangular beam are the g
i
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same. It is noted at this stage that these results correspond only to one test point; repeatability
was not tested as part of these experiments. Given the scatter in these results, the trend cannot

be assumed to be definitive.

2.3.3 Analytical Investigations Including the Effect of Flange Proportions on
the Shear Strength of RC T-beams

Given the scarcity of experimental data that isolates the effect of the flange width on
the shear strength of an RC T-beam, it is no surprise that only two analytical investigations

acknowledge this effect in their formulation.

Placas and Regan (1972) developed relationships to calculate shear capacity of RC
beams based on failure mechanisms, To do this equilibriumn conditions were established on
the inclined surface of the shear crack as shown in Figure 2.3-5. Dowel action is neglected in
this formulation based on results of a study undertaken by Baumann (1968), and aggregate
interlock is ignored in this formulation based on crack inclinations from the experimental
work showing flat cracks (hence little aggregate mterlock) for T-beams. It was assumed for
the purpose of the formulation that the concrete contribution was complete over the width of
the flange, and that at failure, a ‘shearing’ failure of the compression concrete would occur.
This assumption renders this formulation only applicable to specimens that exhibit this type of

failure mechanism.

As the authors removed the dowel action and aggregate interlock component from
consideration, the shear strength was taken as the sum of the stirrup and compression concrete
contributions. The assumption that the failure of the compression concrete is shear facilitated
the use of Coulomb relations for describing the failure surface of the concrete. The authors
noted that the arca of concrete available is a product of the depth to the neutral axis, and the
effective width of the flange resisting the shear. In their application of the relations tiiat were
developed in this work, Placas and Regan (1972) had to determine an effective width of flange
for the application of these relations to a given set of specimens. This was taken as 150mm
greater than the width of the web (and is noted only to be relevant to the specimens which they

considered). The detail of the formulation will not be given in this summary of the
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formulation of the relationships, but the result of the above can be seen in Equation 2.3.1.

This equation is in SI units.

172
1004
V.=1.03 00 “Ef'c bd 2.3.1
i bd M
These authors also considered the case of a T-beam where the neutral axis is located
outside the flange. This results in a modification to the term describing the area of the

compressive concrete.

A simplification of Equation 2.3.1 was introduced by the authors. Théy suggested that
since cracks do not appear on the underside of the flange until near the failure load, then the
longitudinal strain on the underside of the flange was small, so that the maximum shearing
stress on the underside of the flange can be considered to be approximately equal to the tensile
stresses on the soffit of the flange. Equation 2.3.2 introduces both this and the effective flange
width in to the formulation for the concrete contribution ferm. This equation is written in Si

units.

Iw

Figure 2.3-5 Inclined plane considered in formulation of theory of Placas and Regan (1972)

v, =0.906(1.)"d,(b+6) 2.3.2

To calculate the shear capacity of a beam, these authors simply summed this concrete

contribution to the stirrun contribution.
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Hoang (1997) developed relationships for calculation of the shear strength of an RC T-
beam without shear reinforcing based on plasticity relationships. The failure mechanism
assumed to formulate the relations is illustrated in Figure 2.3-6 below. The failure mechanism
considers points a and b are points of rotation. Then, if part 11l of this figure does not move,
part 11 is assumed to rotate about b, and part | rotates about a at an angle which is equal and
opposite to that at which part 1 rotates about b. The net movement is then vertical movement

of part 1 relative to part 111,

To include the contribution of ‘Part 11’ from Figure 2.3-6 into the calculation of shear
resistance, Hoang (1997) had to assume a width of flange that is cffective in the resistance of
shear. The formulation considered only point loaded T-beams, and the calculation of the
effective flange width considered two cases of point loading the surface of a T-beam. These
are line loading across the full width of the flange, and a point load that covers only the wzb

region.

Tension cracking on top of

flange Crushing under load point
// on top of flange

a;———/'ll""”'—lb

1 / il

Figure 2.3-6 T-beam failure mechanism assumed by Hoang (1997)

AN

Figure 2.3-7 shows part of a T-beam as seen on top of the flange, and demonstrates the
assumptions used by Hoang (1997) in the calculation of the effective flange width for shear.
Two load cases on the top surface of the fiange are considered, namely, a point load across the
width of the web, and a line load across the entire width of the flange. This shows the linear
distribution of compressive stress throughout the top surface of the flange used in Hoang

(1997) assumption. The author assumed that the compressive stresses propagate laterally
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across the width of the flange at an angle corresponding to tana=3/2. In the formulation, it

was considered that the compressive stress distritution must be the width of the web at the

intersection of the web crack and the flange crack direction below point a in Figure 2.3-6.
These two conditions were used to produce the equivaient linear compressive stress
distribution stress distribution as shown in Figure 2.3-7.

i

o ot

Point load across width of web Line load across width of flange

SR SR
/ |

e
/

Intersection of flange crack
and web crack

Intersection of flange crack
and web crack

Effective Flange Width for a Effective Flange Width for a
Point Leaded T-beam Line Loaded Flange

Figure 2.3-7 Hoang (1597) assumptions of compressive strain distribution throughout width

of flange

Hoang (1997) was able to incorporate this assumed effective width of flange in the
resistance of shear to complete a plasticity based formulation to be used for the calculation of
the shear strength of RC T-beams without shear reinforcing. The author presents results of
implementation of the theory and uses it to predict the influence of variation in the depth ratio
(dr) as well as with the effective flange width to web width (effective width ratio, b.,). The ‘
conclusions are that a linear variation in the shear resistance with the depth ratio prevails, and
that differing variations in the shear resistance effective width ratio prevail depending on the
loading conditions. Direct comparison with a series of tests that has only the flange
proportions as a variable was not performed for the case of a line load across the width of the
flange, and was not possible in the case of a point foad equal to the width of the web owing to

a lack of experimental results of this type.
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24 State of the Art Research Methods for Calcuiation of Shear
Capacity

Research into shear strength of reinforced and unreinforced concrete beams has been
prevalent in literature since the early 1900’s. A recent publication of the Joumal of Structural
Engineering (ACI-ASCE Committee 445 (1998)) was devoted to research on shear capacity.
Ramirez (1998) attribuied recent interest in the behaviour of reinforced concrete elements
subjected to shear to the failure of a warehuuse roof at Wilkinson Airforce in 1955. The
failure was deemed to be instigated by a deficiency of shear capacity in one location in the
roof. It was found that throughout the roof structure, inadequate shear resistance was provided
by the concrete frame even though it was designed iti accordance with the current concrete
standard of the time. This failure has lead to the fundamental question of the shear resistance

mechanism being questioned, and hence much research in this area that is still ongoing.

The purpuse of this section is to give a brief overview of the current state of the art
methods of determining shear capacity available in literature. The methods that are considered
in this section are those that are capable of accounting for variations of part of the geometry of
a cross section (such as the flange width and depth of a T-beam). No consideration is given to
those methods that have been developed for and applicable only to rectangular beams. A
discussion in ASCE-AC! Committee 445 {1998) outlines many deterministic methods that are

capable of calculating shear strength of RC rectangular beams.

2.4.1 The Disturbed Stress Field Model

Collins (1978) and Collins and Mitchell (1980) proposed the Diagonal Comnression
Field Theory in an attempt to adapt fundamental elements of Wagners Diagonal Tension Field
Theory (1929) for steel to concrete. The similarity in these two theories comes about from the
post local failure shear resistance mechanism. In Wagner’s theory, it is assumed that shearing
forces are carried by a field of diagonal tension after the web of a steel beam has buckled.
Collins (1978) assumed that after cracking has occurred in concrete, the resistance to shear is
provided by a field of diagonal compression. The formulation of this theory assumes that a

truss type mechanism carries the applied shear to the supports.
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Mechanisms such as aggregate interlock and steel stresses across cracks did not appear
in the original formulation. It was Vecchio and Collins (1986) that furthered the original
theory to incorporate these effects and calied it the Modified Compression Field Theory. A
thorough outline of the evolution of the MCFT and its applications can e {ound in Vecchio
and Collins (1988), Vecchio (1989), Vecchio (1990), Vecchio aud Selby (1991), Stevens et al.
(1991), Vecchio and Collins (1993), Selby (1993), Selby and Vecchio (1996), Collins (1998a),
and Collins (1998b).

The experimental work to enable formulation of the constitutive relations for the
theoiy was developed using a purpose built rig, Collins et al. (1985), which enabled the
interaction between axial forces and shear on a two-dimensional plane stress type element to
be observed and modelled. A schematic of the plane stress element used in the experimental
formulation is shown in Figure 2.4-1. This enabled many important facets of the behaviour of
reinforced concrete to be modelled, such as the softening in compression arising from a
coexistent perpendicular tensile force. The unique approach given by this theory is that
constitutive relations used in conjunction with the computational technique were derived for
reinforced concrete. This enables reinforced concrete to be treated as a unique material with

its own stress-strain characteristics.

Calculation of the strength of a specimen requires assumption of a strain distribution
throughout the depth of a specimen, and a calculation of the corresponding stresses and
internal actions. Discr.tisation throughout the depth of a specimen makes the application of
this theory capable of estimating the effect of dimensional changes such as those of flange

proportions.

Selby (1993) extended the MCFT into three dimensions by observing that a confining
force existing in a third dimension will enhance the concrete strength. This was predicted by
incorporating a failure surface that originated from work undertaken by Hseih (1979). Effects
of transverse tension are also accounted for by using this failure surface. The results of

merging of the MCFT with this fatlure surface proved successtul in terms of replication of

25

\ﬁn‘r&ﬁ.‘.:-’.:n;-.-.'..—;:n'.‘ e % e st o A b e e it



ultimate strength of structures, although the prediction of iateral stresses were noted by the

author to require further work.

The meost recent development in the theory has come about following comments by
Hsu (1998) and Lee and Hsu (2000). The comments suggested that the imposition of certain
conditions relating to the amount of shearing stress transmitted across a crack put errors in the
theory. They also suggested that the method of decomposing the local and average stress
conditions was in error. Vecchio (2000), Vecchio (2001), and Vecchio et al. (2001) developed
the Disturbed Stress Field Model (DSFM) which utilises constitutive relations of the MCFT
but considers rigid body movements in the vicinity of crack locations so that a continuum
strain can be used in the calculation of stresses and strains, and rigid body movements can be
used in the calculation of shearing stresses across a crack. Scme examples of the
implementation of this thcory into NLFEA have shown promise for the theory, but as yet a
testing of the theory is not complete enough for a conclusive judgment to be made with regard

to the validity of the theory.
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Figure 2.4-1 Plane stress state by tests for constitutive relations in the MCFT
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242 Compressive Force Path Theory

Kotsovos (1987b) suggests that at the ultimate load of a reinforced concrete beam, the
compressive force in a beam is transmitted to the supports from the application of load along a
bilinear path. A schematic of this is shown in Figure 2.4-2. This bilinear path is the flow of
compressive stresses from an applied load point back to the supports. This is conceived as the
mechanism of load resistance in an RC beam, tensile stresses exist to keep the element in

equilibrium.

Region of concrete
carrying the compressive
force back to support

pa
P e S

1| [\l

Figure 2.4-2 Tilustration of the concept of the compressive force path

In this theory, Kotsovos (1988) hypothesizes that the failure of a beam in shear is
caused by the propagation of tensile stresses into the region carrying the compressive force
through the length of the beam. The theory incorporates four reasons for which tensile
stresses may enter the region in which compressive force are being transferred. These include
change in direction of compressive force path, variations in compressive stress intensity, the

presence of inclined cracks, and bond failure.

Kotsovos and Bobrowski (1993) describe the application of the theory of the
compressive force path. This procedure is quite simple. The design actions on a beam are
calculated, and nominal triaxial considerations are given to the compression zone so that the
enhancement of strength from this stress state can be incorporated. Transverse {or vertical)

tensile forces are calculated and reinforcing is proportioned given this force.
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Kotsovos et al. (1987a) and Kotsovos and Lefas (1990) show that application of this
theory can lead to safe and efficient designs for RC T-beams. Unfortunately, their test
specimens are not representative of specimens that would be found 1n service, so some degree
of reservation in the theory should be exercised until further comparison with specimens of

real size is undertaken.

2.4.3 Softened Truss Models

A similar idealisation of reinforced concrete to the MCFT 1s considered in the
formulation of this theory. The development of the sofiened truss model was intended to
eliminate some assumptions that lic in the MCFT by adopting a slightly different theoretical
approach. There are two approaches that have been developed in the formulation of softened
truss models, both of these are attributable to work carried out at the Umversity of Houston.
The Fixed Angle Softened Truss Model, Pang and Hsu (1996), allows for a difference in the
principal angle of stress and the principal angle of strain while keeping the crack angle
constant, while the Rotating-Angle Softened Truss Model, Hsu (1988), considers the crack

angle changing with the principal angles of stress. Each of these is discussed below.

2.4.3.1 Rotating-Angle Softened Truss Model (RA STM)
The Rotating Angle Softened Truss Model outlined by Hsu (1988) bears much

resemblance to the MCFT. Constitutive refations relating to the behaviour of reinforced
concrete subjected to normal and shearing plane stresses are similar to those from the work of
Vecchio and Collins (1986) and are incorporated into this theory. The difference between the
RA STM and the MCFT is the treatment of local conditions at cracks, and the calculation of

reinforcement stresses at these crack Jocations.

While the MCFT considers equilibrium between the cracked section and a section of
unicracked concrete that can be considered to represent an average condition, the RA STM
considers only the average stresses. As described in Pang and Hsu (1995), the RA STM

imtroduces a method of calculating the steel stresses, hence local conditions at a crack based on
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the average stress. This does not require assumption of an equilibrium state to determine the

local stresses in reinforcing at the location of a crack as is required in the DSFM.

Hsu et al (1987) and Hs»: {1988) implemented algorithms to solve the equations, which
arise from the above theory to analyse small concrete specimens. The comparisons to
experimental results given are to push off tests. Results from this collaboration show that the
theory can produce good results for the simple type of test undertaken. Pang and Hsu (1995)

compare this thecry with 13 full-size RC panels, again this theory compares wel.

2.4.3.2 Fixed-Angle Softened Truss Model (FA STM)

Pang and Hsu (1995) noted that the RA STM could not accurately predict the concrete
contribution as it allows for rotation of a crack throughout the loading history. The extension

of this theory, the Fixed-Angle Softened Truss Model FA STM, attempted to incorporate this.

This method was developed to include the concrete contribution that was outlined by
the author to arise solely from the aggregate interlock contribution, the crack angle is assumed
to remain constant after cracking. This angle is assumed to be the initial angle of the crack
(i.e. perpendicular to the principal tensile stress). A constitutive law is introduced into the
formulation relating the shearing stress to the shearing strain. This allows the concrete
contribution to be introduced into the formulation as well as eliminating the assumption that

the principal angle of stress and principal angle of strain are coincident.

Pang and Hsu (1996) developed an efficient algorithm capable of solving the set of
equations that are produced from the above considerations. This study reported a reasonable
correlation with experimental results, and was able to provide an estimate of the concrete

contribution term that this theory attributes solely to aggregate interlock.

244 Other Methods of Predicting Shear Capacity

Plasticity theory has been applied recently to shear design, for example Ibell et al.

(1997) has undertaken a very ambitious program to determine the mechanisms that could be
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found on T-beam bridge decks. At the current stage of development, the theory requires
determination of a failure mechanism that requires the least energy of all possible failure
mechanisms. The task of finding these mechanisms is quite tedious, and mostly suited to
computational application. !t is noted that all possible failure mechanisms must be
investigated for a true prediction of failure load to be found. Averbuch and Buhan (1999)
implemented a linear programming function to calculate shear capacity using an upper bound

and a lower bound approach.

Nonlinear Finite Element Analysis has been applied on many occasions to the
prediction of shear capacity of structures {c.g. Seraj et al. (1992), Giacico et. al. (2000)). The
main draw back in the application of this approach to the structures is the uncertainty in many
aspects of the procedure. No one unified constitutive relation for concrete has been found; in
fact many of the current constitutive models are simple extensions of linear clastic theory or
plasticity theory, neither of which truly depict the behaviour of concrete. Size of load step,
and the effect of stress distribution following cracking are aspects of the modelling that effect
the stability, as well as the final result output from the scheme. The latter is attributable to the

path dependent nature of concrete and the solution scheme.

Loov (2000) proposed a theory for prediction of shear sirength in which elements of
plate tectonics were used. This approach assumes that the weakest plane through which shear
must be transferred is a cracked plane, and that the resistance across this plane is provided by
shear friction. Reibcz (1999) used the numerical techniques of multiple regression,
dimensional analysis and interpolation in an attempt to fit equations of shear sirength to a

large pool of shear strength data.

2.5 How effective is the Flange of an RC T-beam in the Resistance
of Shear?

The above discussion in Section 2.3 outlines that a very flimited number of
experimental investigations have isolated the effect of the proportions the flange of a T-beam

on the strength of RC specimens that fail by exhibiting a mechanism of shear. 1t is interesting
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to note that an investigation by Dei Foli et al. (1990} noted that the effect of the compression
flanges had to be ignored in the formulation of an aggregate interlock model owing to the

‘uncertainties of the effective flange width’.

In the investigations that have been performed, the loading arrangement is not identical
between each of these investigations. Taplin and Al-Mahaidi (2000) and Fok (1972) loaded
the surface of the flange with a line load that spanned the width of the flange, Chong (1980)
subjected specimens to a line load along the length of the span, and no indication of the
loading arrangement in the investigation by Placas & Regan (1971) could be found in

literature.

It is thought that the application of a point load to an RC T-beam specimen across the
width of the flange results in a greater flange effectiveness than might be the case if the same
load were applied as a concentrated point load. In some cases, a T-beam that is representative
of an element from a real structure may be subjected to this type of concentrated point load.
An example of this is a girder from a T-beam bridge deck. The load from the wheels of a
truck will be applied as a concentrated point load. In the experimental investigations
undertaken to date that investigate the effect of flange geometry on the shear strength of an RC
T-beam, this loading arrangement has not been investigated. Specimens that are loaded with a
concentrated point load may not exhibit the failure mechanism that is assumed for specimens
that are loaded over the entire width of the flange or the same trend in the increase in the shear

strength with the flange proportions.

The prediction of the shear capacity of T-beams using analytical procedures is
currently possible through two types of formuiation. The first form is the use of formulations
that are specific for RC T-beamis (those by Placas and Regan (1971) and Hoang (1997)).
These both assume that the failure mechanism of such a specimen is essentially an extension
of that of a point loaded rectangular beam. The second category are those by those that are
iterative procedures (DSFM and STM). Although they are fundamentally sound in the
formulation and can predict the distributions of strain vertically at a section including the
effect of cracking, the distribution in the lateral direction is inherently assumed as constant as

a function of the discretisation procedure that these formulations require. This may not be the
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case in the consideration of an RC T-beam subjected to a concentrated point load. In addition

to the above, there is the CFP method; this agaih neglects to include the failure mechanism

that is exhibited by this type of specimen.

The investigations that do exhibit a trend of increase in the shear strength with the
flange proportions do not comment on the source of the increased shear strength. The
variation of flange proportions could affect any component of the shear resistance mechanism.
The lack of agreement in the individual contribution, of cach component make this imnpossible
to estimate using theoretical approaches. It is thought in this research that the majority of the
contribution arises from the propagation of shearing stresses into the flange. This is suggested
to be a necessary result of the compatibility of the flange and the web. It is unknown what

proportion of the shear forces are resisted by the flange.

The investigation by Seraj et al. (1992) appears to be the only significant investigation
into the capability of NLFEA to model the behaviour of a shear critical RC T-beam. This
study only examined the degree of mesh refinement that was required to predict the crack
pattern, stiffness and peak load of this type of structural clement. No consideration was given

to the state of stress in the flange, and the contribution that it made to the failure mechanism

and to the peak load. In addition to this, no study to date has examined the capability of

NLFEA to predict the effect of the flange proportions on the shear strength of an RC T-beam.
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: 2.6  Objectives of This Research

.;_

“ In light of the above comments relating to existing studies that have directly included the
effect of flange proportions on the shear strength of an RC T-beam, as well as current state of

the art analytical methods that have the capacity to predict such an effect, several outstanding

g i

issues are to be addressed in this research.

. Produce experimental results that specifically isolate the effect on the ultimate

strength of variations in the flange width and flange depth of an RC T-beam with
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shear reinforcing that is loaded with concentrated point {oad that has a width equal

to the width of the web.

Examine the failure mechanisms assoctated with this type of load arrangement, and
determine if the assumptions used in the formulation of the failure mechanisms of
T-beams are representative for specimens with the considered type of loading

arrangement.

Investigate the existence of an upper bound to the effect that the flange width has
on the shear strength of an RC T-beam for the given type of specimen to be
studied.

Formulate an experimental method capable of determining the magnitude, and

distribution of shear forces in the flange of an RC T-beam.

Use the above results to quantify the effectiveness of the flange in relation to the

actual shear force that it carries in relation to that in the web.
Determine suitable FE wmodelling procedures that allow extrapolation of
experimental results to determine the effect of subtle changes in flange geometry

on tae uitimate strength of an RC T-beam.

Determine the capability of NLFEA to predict the flange contribution by

comparison with the value obtained from the experimental work.
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Chapter3 EXPERIMENTAL PROGRAM

3.1 Introduction

Achieving the objectives of this research that are outlined in Section 2.6 required two
stages of experimental work. The first stage of the experimental work was dedicated to the
determination of the effect of the variation of Mange proportions on the shear strength of a
series of RC T-beams with shear reinforcing subjected to a point load applicd over the width
of the web. The determination of the existence of an upper bound to the cftectiveness of the
flange on the ultimate strength can also be explored with this set of experiments. The second
stage of the experimental work required detailed instrumentation of specimens to determine

the shearing stresses in the flange both throughout the width and the depth.

This chapter describes the experimental procedure that was implemented for both of
the above stages. Selection of the variable flange proportions, and fixed values of reinforcing
percentages, material properties, loading arrangements, as well as instrumentation are
considered in this section for the first stage of experimental work. This stage of experimental
work will be referred to from hercon as stage 1 experimental work. These parameters are
discussed in light of isolating flange proportions as the only variation in effecting the ultimate
strength throughout specimens cast in this stage. The discussion of the second stage of
experiments requires detailing the analysis procedure used io determine shearing stresses in
the flange from measured strains. This stage will be referred to from hereon as stage 2
expenimental work. This section outlines this, as well as detailing the specimens, and the

instrumentation required for implementation of this analytical procedure.
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3.2  Procedure for Stage 1 Experimental Work

To examine the effect of the variations of flange proportions on the shear strength of
an RC T-beam, a rectangular beam was chosen as a control specimen. The methodology
chosen for determining the effect of variations in the flange proportions was similar to that of
Chong (1980) whereby three flange depths were tested. For each flange depth, five different
flange widths were tested. The ultimate strength results of T-beam specimens were compared
to that of the rectangular beam, thereby allowing the effect of flange width and depth to be

observed.

This section firstly outlines the reference rectangular beam, then proceeds to detail the
flange geometries that were used in this part of the experimental program. A discussion of

material properties, and loading arrangements follows.

3.2.1 The Reference Rectangular Beam

The reference rectangular beam was designed as a shear critical specimen. The MCFT
was used to predict the shear capacity, and an algorithm suggested in Darvall (1987) was
adopted to calculate fiexural capacity. The difference in load calculated to cause flexural
failure compared to that estimated to cause shear failure gave confidence that the specimen
would fail by exhibiting a shear mechanism. The details of this beam are given in Figure
3.2-1 and Figure 3.2-2. Cover to the bottom longitudinal bars was 16mm, giving an effective
depth to the centroid of the reinforcing group (d=) 26 1mm, and a depth to the centroid of outer

most layer of tensile reinforcing (d,=) 279mm.

This specimen was cast as part of series 1 specimens. [dentification of series and
specimen numbers are presented below in Section 3.2.2. The 28 day cylinder strength for this
series of specimens was 36MPa, the yield strength of the flexural reinforcing was 300MPa,
and the yield strength of the 6.5mm diameter bars (stirrups and longitudinal compression

reinforcing) was 398MPa.

The overall dimmensions, reinforcing percentages and the width of this specimen were

chosen after considering Taplin and Al-Mahaidi (2000). This research suggested dimensions
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as representative of those used in typical T-beam biidge decks on Victorian roads in Australia.

These are half scale of those dimensions.
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Figure 3.2-2  Cross section of reference rectangular beam
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3.2.2 Fiange Proportions Investigated
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The publication of Taplin and Al-Mahaidi (2000) suggested that at this scale, a typical
flange width in use on T-beam bridge decks in Victoria is 620mm. This drove the selection of
the flange widths. 1t was considered to study width variations on flange widths proportioned

on these dimensions as a base for scaling.

) it asm.w\.ﬂhfuumu PO

Limitations of laboratory spusce required no more than six beams could be cast at a

time. It was decided that each series of six specimens should have a different flange depth,

LT
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and within each series of beams, the flange width would be varied. For the purpose of this
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investigation, three flange depths were used. A summary of beam identifications is given in

Table 3.2-1.

Table 3.2-1 shows that series 1 and 2 beams included a specimen with flange width of
930mm. After series | testing was complete; it became clear that a specimen with a flange
width of 930mm and a flange depth of 50mm would have provided a redundant ultimate
strength result; therefore, a specimen with a flange of this width was precluded from series 3.
A detailed discussion of failure mechanisms exhibited by specimens that drove this decision is

presented in Chapter 5.

Table 3.2-1 Series 1-3 Beam Tags and Flange Proportions

Series Beam Tag by dt br dr
Number (mm) (mm)
Bl 930 100 6.64
B2 820 100 4.43
| B3 465 100 332 0.35
B4 20 100 2.21
B5 225 100 1.61
B6 Reference rectangular specimen detailed in Section 3.2.1
B7 930 75 6.64
B8 75 4.43
620
2 BO 465 75 332 0.26
B10 310 75 2.21
Bl1 225 75 1.61
Bi2 620 30 4.43
B13 4635 50 3.32
3 0.17
B14 310 50 2.21
B15 225 30 1.61

As stated earlier, the intent of this stage of experimental work was to examine the
ultimate strength of specimens with identical web geometry and reinforcing arrangement, but

with varying flange dimensions. Therefore, the arrangement of flexural, shear, and top
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longitudinal web reinforcing in these specimens was identical to that of the rectangular beam
discussed above in Section 3.2.1. Figure 3.2-3 shows a cross section that was typical for T-

beam specimens cast throughout this stage of festing.

3.2.3 Flange Reinforcing Arrangements

In an attempt to scale typical bridge beams, it was required that both lateral and
longitudinal reinforcing be provided in the flange of the specimens. The lateral reinforcing
across the width of the flange is representative of flexura! steel in a bridge deck slab to allow
the deck to span laterally across the width of a bridge between beams. Figure 3.2-3 shows a
cross section of specimen B8. This cross section outlines the arrangement of flange
reinforcing that was provided. It is noted that the lateral reinforcing across the width of the

flange was provided only for series 2 beams, and part of series 3 beams.

Figure 3.2-4 shows an elevation of specimen Bi2 from series 3 of this stage o1

experimental work. This illustration shows the arrangement of lateral flange reinforcing that
was typical to alt series 3 specimens. The lateral flange reinforcing was positioned in such a
way that the test with the longer total span had a shear span that contained the lateral flange
reinforcing. The test of the second end with the shorter total span had no lateral flange
reinforcing within the shear span. The purpose of this was to determine the influence of the
lateral flange reinforcing on the ultimate strength and failure mechanisims displayed within a

series of beams.

It was the intention of the experimental work to keep the area of longitudinal flange
reinforcing relative to flange area constant throughout cach series of specimens. However,
consistent spacing of these flange bars (as shown in Figure 3.2-3) was difficult to achieve in
specimens of narrower flange widths (particularly 255mm and 3 {0mm wide flange). Spacing
of the bars in the specimens with 225mm wide flange was approximately 40mm (govemned by
the width of the flange overhang), the spacing of these bars in the 310mm was selected to be

the same as this.
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Figure 3.2-4 Plan of specimen B12 showing typical arrangement of flange reinforcing for Series 3 beams
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3.24 Loading
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As discussed in Section 2.6, the application of load in this series of experiments was a

point load applied to the top of the flange in such a way that the width of the flange is equal to

the width of the web (145mm was used to ensure that the load would still cover the width of

the flange in the case of a specimen that was positioned slightly off centre). The location of
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the load was established by trying to ensure that specimens would not fail in flexure. Using
design tools such as the MCFT (computer code implemented by Al-Mahaidi et al. (2000)), the
Australia Standard AS3600 (2001), and with information from existing research (Taplin and
Al-Mahaidi (2000), Kotsovos et al. (1987)), a shear span to effective depth (a/d) of 3.0
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coupled with the high flexural reinforcing percentage was deemed likely to ensure that

flexural failure would not occur.
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Figure 3.2-5 Load and support arrangement for specimens

Figure 3.2-5 above shows the loading and reaction system used to test the specimens.
The specimen length was chosen to be 4.0m, and the span used for testing was 3.0m (these
dimensions made the specimens representative of clements from real structures scaled at

approximately 50%). The shear span to effective depth ratio of 3.0 produced a shear span of

s e b st R R e P I b e
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800mm. The longer of the two shear spans was proportioned in an attempt to ensure that it
was not damaged from the test of the shorter shear span. In all but one case this occurred, no
cracks were formed in the longer shear span. It was therefore decided that testing of this
second end of the beam should be undertaken to examine repeatability of ultimate strength
results. The span for the second end test was shortened so that the damaged shear span from
testing of the first end was completely precluded from the test. The magnitude of the second
test shear span was 800mm as for the first end test. A schematic of the testing of the second

end can be seen below in Figure 3.2-6.

Applied Displacement Existing crack from
testing of first end

T 'a
T o= T Ty,

- A

R
+ 40y
i i

=R O

Figure 3.2-6 Schematic of second end test

Application of the point load was via a controlled displacement. The rate of
displacement was 0.009mmy/sec. The load at the applied displacement was mcasured using a
load cell at the load point (and could be cross checked with the reactions). The application of
load using displacement control allowed observation of the formation of the failure

mechanism as well as an examination of post peak response.

3.2.5 Material Properties

Material properties were not an intended variable in this stage of the experimental
work, but the requirement of breaking this stage of the experiments into three series of
specimens led to variation in the properties of both the concrete and the reinforcing steel that

were supplied by the respective manufacturers,

Testing of three samples of every bar type used in each of the three specimens gave the

yield and ultimate strengths of the reinforcing bars. Concrete properties were determined by
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cylinder tests after the concrete was placed. The material properties for each series cast for

this part of the testing program are shown below in Table 3.2-2.

Table 3.2-2 Material properties for each series

Series Shear Reinforcing Flexural Reinforcing fcom
Number fyv (MPa) fuv (MPa) fy.: (MPa) fu1 (MPa) (MPa)
1 435 340 500 36.0
308
2 308 405" 340 500 30.8
3 440 510 34¢ 500 334

* Denotes that 10mm diameter Yateral lange reinforcing in series 2 had identical propertics 1o the 6mmm diameter bar.

It is clear from this table that there were indeed some considerable variations in
material properties. This is particularly noticeable with the yield stress of scries 3 shear
reinforcing being 42% higher than that of series 2. There was a maximum 19% variation in

the concrete cylinder strength throughout the three series.

3.2.6 Measurement

At the point of application of the measured controlled displacement, a load cell was
positioned so that the applied load could also be measured at this point. In addition to this, the
reactions were measured from load cells at the support points. Stringpots were attached to the
soffit of the beam directly undereath the load point, and at the position of mid span of the
specimen. The stringpot attached directly undemeath the load point was a consequence of the
measured displacement of the loading actuator included the extension of the reaction frame.

The displacement obtained from the stringpot was used for the load displacement curves.

In addition to the applied load, reactions, and displacements, strain gauging was
provided on specimens in series | and 2 to determine the strain in the stirrups, and the flexural
reinforcing. Figure 3.2-7 shows a schematic of the placement of strain gauges for these series
of beams. It should be noted that the gauges on the shear reinforcing shown in this figure are

applied to both legs of the shear stirups (on the outside of the leg). Two gauges were
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provided to the flexural reinforcing in the position shown below, these were attached to the

outer two bars in the lowest layer of reinforcing (see Figure 3.2-3).

End anchorage region Applied Displacement
\ |

\ 80
Y <

(L A

! i
Strain gauges/ Gauge positioned to be 10mm
below u/side of flange

Figure 3.2-7 Strain gauging arrangement for Series | and 2 beams

The gauges on the shear reinforcing were located by examination of specimens tested
by Taplin and Al-Mahaidi (2000). These were a similar series of tests, so it was possible to
estimate the orientation of web cracks for this stage of experimental work from these
specimens, which had already been tested. The location of the web crack from these beams
was determined, and this was used to estimate the distance from the soffit of the beam at
which the crack would be when it intersected the shear reinforcing. The gauges on the
flexural steel underneath the point load correspond to the location of the maximum bending

moment, hence the maximum tensile strain in flexural reinforcing.

3.3  Procedure for Stage 2 Experimental Work

As aforementioned in Section 3.1, the aim of this stage of experimental work is to
provide an experimentally determined value of the magnitude of the shearing force in the

flange of a T-beam. This was achieved in these experiments by providing a system of

instrumentation to two specimens.

Selection of strain gauges to directly determine the shearing strain proved to be
impossible given the required gauge length. Theiefore, a method of calculating the stress or
force at various locations in the flange was required. This section outlines the equilibrium

considerations and constitutive relations used for the determination of shearing forces in the
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flange of a T-beam. A discussion is also provided on the cross section used for the application
of the instrumentation for implementation of the method. Some additional gauging was
provided to these specimens in order to determine lateral strains across the width of the flange.

This instrumentation system will also be discussed in this section.

3.3.1 Application of Equilibrium Principles to Determine the Shear Force in the
Flange of a T-Beam

To apply equilibrium to calculate the shearing force distribution throughout the width
and depth of the flange of a T-beam, the flange overhang needs to be considered as a series of
component volumes. Each of theses component volumes will be examined to determine the

stress state so that the equilibrium of each of these component volumes can be considered.

3.3.1.1 Discretisation of Flange

It is an implicit and logical assumption of this research that the majority of the flange
contribution arises from an increase in the concrete contribution term as outlined in Chapter 2.
Based on the mechanism given in Figure 2.2-1, the required location for calculation of this
concrete contribution term i1s next to the load point. Close to the load point and close to the
support, strain profiles will be disturbed as a result of localisations from the applied external
forces. The following application of equilibrium conditions must be applied outside of these

regions where the strain profiles are not disturbed by these external forces.

Consider a shear cnitical point loaded T-beam as illustrated in Figure 3.3-1, with the
region where failure will be instigated shown as clouded. The strain distribution in this shear
critical region near the load point, but outside of the disturbed region is the region to which
instrumentation in the flange will be provided to determine the magnitude of shear force in the
flange. This region is illustrated in Figure 3.3-2. Consider now the short portion of this beam
that is the instrumented region; Figure 3.3-3 shows this region with the predominant sectional
forces that act on it. This illustration also shows a series of dashed lines that are outlines of

the discretised component volumes of the flange, referred to here as ‘flange blocks’, used for
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dual sectional analysis. In Figure 3.3-3, a positive moment is in the direction that causes the

beam in Figure 3 3-2 to sag. The direction of the positive shear force cormesponds to this.

Shear critical
region illustrated

belo‘xﬁf . Load point
¢ 8.

F\ ) I
e

Figure 3.3-1 A shear critical T-beam

Instrumented region Disturbed region

=

N GQection B Section A

Figure 3.3-2  Shear critical region of T-beam showing approximate size of disturbed region

and region considered for calculations

An illustration of the separation of the flange into these flange blocks is shown in
Figure 3.3-4. Along with the flange blocks, Figure 3.3-4 also shows some forces that act on
each surface. For the sake of clarity, the forces considered in this illustration are only those
forces that act along the length of the span. Consideration of forces in the other directions will
be considered shortly. Assuming that all of the flange is in compression, and that the web is in
tension (which is the convention that will be used for discussion), the forces acting on each
block (along the length of the span) are a normal compression force, a shear lag force (the
shear force acting on the surface scparating rows), and the interface shear force (the shear

force on the surface that separates the layers) produced from the discretisation procedure
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throughout the depth. In the discretisation shown in Figure 3.3-3 and Figure 3.3-4, the flange

blocks in the flange overhang are considered to have equal volume and surface area (the
surface area is measured on a cross section of the specimen). In Figure 3.3-4, a posttive
normal force is considered to be in the direction that causes compression; a shear force on a
plane is considered positive if the outward norinal to the plane is in the negative direction of
the coordinaie axis, and the shear acts in a positive direction of the coordinate axes {the

converse to this also applies). This is illustrated in Figure 3.3-5.

Section B Section A

Figure 3.3-3 Region under consideration

Shear lag forces
Normal compression & {
forces 5»-@@—
Q X
Interface shear forces @
==

= e Sa

—_— "'""”"
—- _..._..
Net tension force NN Layer o
from reinforcin — =
and concrete N —e =
’ Section A AN Layer B
Section B

Nole:@ Denotes Row |

Figure 3.3-4 Discretisation of block of T-beam showing forces acting along the length of the

span on component l‘CgiOI'lS

These figures also show the notation that applies to each individual block that will be
used for the remainder of this discussion. Section A is the section closest to the load point,

and Section B is a short distance away from this closer to the support. The flange overhangs
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are discretised into six rows across the width, three in each overhang, therefore there are seven
rows in total across the widihk of the whole flange including the web region, which are
numbered 1-7 (row numbers are indicated in Figure 3.3-4 below). There are two layers
throughout the depth, layer o is the top half of the flange, and layer B is the bottom half of the
flange. Layer ocand 3 are of equal depths corresponding to half of the flange depth.

3.3.1.2 Stresses Acting on an Arbitrary Flange Block

Figure 3.3-5 shows the stresses acting on an arbitrary body in the cartesian coordinate
system. Consideration of individual blocks of flange for application of equilibrium conditions
requires consideration of the action of all of these stresses. The orientation of the coordinate
axis system in this discussion aligns with that given above for the discussion of forces acting

on flange blocks.

y I
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Tue| Toxt ~
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Figure 3.3-5 Stresses on an arbitrary body in the cartesian coordinate system

Consider firstly that the discretisation of Figure 3.3-4 divides the flange into two layers
throughout the depth. This eliminates normal stresses in the y-direction on the top of layer o
and the bottom of layer 3, and the shear stresses Ty, and 1, on these surfaces of the flange, as
they are free surfaces. Since the equilibrium equations will only be applied to Bernoulli
regions (outside of the disturbed region in Figure 3.3-2), the normal stress in the vertical
direction (oy) is assumed to be zero throughout the specimen. Therefore the stress in this

direction will be zero at the interface between the two layers of flange blocks.

47

B L T o T P ot PUPL I g T Y Sy



The shear forces acting at Section A and Section B in Figure 3.3-3 are considered to be
equal as self weight of the beam in the region under consideration produces negligible effect
on the shear force between these two sections. To simplify equilibrium considerations,
assume that the vertical shearing stresses (T,y in Figure 3.3-5) in the flange blocks are equal at

Section A and Section B.

Consider a block at the edge of the flange that does not have any stress acting on the
free surface (such as the far surface on the flange block shown in Figure 3.3-5). This
corresponds to climination of T, and T,y in Figure 3.3-5 (which are on the free surface which
is hidden by the orientation of the block, this surface is on the yz-plane). Considering the
above assumptions that the force produced by oy is zero, and that the forces corresponding to
Txy shearing stresses are equal and opposite, then the summation of forces in the vertical
direction requires that the shear stress, T, is equal to zero. Repeated application of the
summation of forces in the vertical direction leaves this. stress equal to zero for all flange

blocks. This leaves the stress distribution as shown below in Figure 3.3-6.

-""T;_;_
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Figure 3.3-6 Stress distribution on arbitrary flange block after application of assumptions

3.3.1.3 Equilibrium Relations to Determine Shear Force on an Isolated Block of the
Flange

Figure 3.3-7 shows the above stress distribution applied to flange block o2. The

* location of the section A and B are shown on this figure, and can be seen to be the same as that

in Figure 3.3-3. Note that the only forces shown are those, which will cause a moment about
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the z-axis. The shear lag forces are noted as Vi where the subscript s denotes a shear lag
force, the subscn‘pt o, denotes that it acts on layer o, and the subscript j denotes which rows it
acts between. For the flange block o2 j=2 (or row 2) shown in Figure 3.3-7, V.« represents a
shear lag force that acts between rows 2 and 3. Note that the shear lag for V. shown on this

figure is equal and opposite to the shear lag force produced on flange block «].

y Section B Section A

Figure 3.3-7 Detail of flange block o2 showing all forces that cause momeng about the z-axis

Section B Section A

Figure 3.3-8 Elevation of flange block o2

Figure 3.3-8 shows an elesation of the flange block shown in Figure 3.3-7, again with
only external forces that cause rotasion about the z-axis being shown on the jilustration, Note
that V, is the vetical shear force acting on row 2 in layer «. The convention shown on this
figure as a pOsitive vertical shear force corresponds to a shear force that is positive in the dual
section shown in Figure 3.3-3. Assuming that no reinforcement is placed in this block, the
only surface forces acting (that cause moment about the z-axis) are the compression forces on
either side of the block, the interface shear, shear lag, and the vertical shear, Assume that the

shear lag forCe that is shown in this elevation is evenly distributed throughout the depth so that
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the line of action from the force is at the centre of depth of the iayer. Equation 3.3.2 shows the
result of summation of moments about point X, where X is at the line of action of the force
Caoz in Figure 3.3-8. In this figure the line of action of the shear lag forces, and the
compression force at section B are shown as centrelines so that the locations relative to the
line of action of the compression force at section A are shown. It should be noted that
inclusion of reinforcement in this formulation produces another compression force on both
section A and B that can easily be included in the summation of moments shown in this

equation.

V. = — (O'Sd - LOia?. )Vsm + (O-Sd — L(‘Aa! )Vs.arz - (Lomz - Lc‘aaz )Cuaz + (d - Luaz )V.'z 331
a2 T b . )

The subscripts on the lever arm terms (L) in the above equation indicate which force
they refer to with reference to the top of the layer (eg Loaw is the lever arm of force Cawo
measured from the top of block 02). Equation 3.3.2 shows that if all of the forces acting
horizontally on this block can be calculated, then the shear force on this block can be

calculated.

Application of the above procedure to all flange blocks within the flange overhang
produces similar relationships to those shown above for flange block 02. These relationships
are shown below in Equation 3.3.2 in general terms for any block ¢§° throughout the width of

the flange in layer o.

Vo= "(0°5d "Lc,q@- )VSr:p'-l +(0-5d'£’(‘,m' )‘/Saj "'(L(‘Baj "L(‘Aaj k‘.qm‘ + (d - Lcwm }Vu 332
= 5 3.

3.3.1.4 Calculation Of Normal Forces and Lever Arms From Experimental Data

To calculate the shearing force throughout the flange using Equation 3.3.2, the normal,
shear lag force, and interface shear force are required. This section describes the calculation
of stresses and forces from measured strains using available constitutive relations. For the

purpose of this discussion, the reader should note that specimens that this technique was
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applied to were provided with adequate instrumentation to determine the strain at a number of

locations throughout the width and depth of the flange.

Calculation of the stresses from strains requires the implementation of constitutive
relations. Given the stress state that was produced from the experiments described below, the
relations of the MCFT {Vecchio and Collins (1986)) were considered appropriate to calculate
compressive stresses. It is acknowledged that these relations have been updated since the
formulation of the MCFT (by Vecchio and Collins (1993)) which was implemented into this
procedure, however an examination of the old and new relations showed that, in general, there
was little change in the calculated values of compressive stress for low to intermediate values
of strain, such as those that were obtained from the experiments discussed in Sections 1.3.2
and 1.3.3. In addition to this, the relations of the MCFT are based on the Hognestead (1951)
formulation for uniaxial concrete. This formulation is generally accepted in the description of
the uniaxial response of concrete as was approximately obtained from these experiments.
Another difference between the 1986 and 1992 formulations is the calculation of the softening
of the compression response of concrete that arises from co-existing perpendicular tensile
stresses. The 1993 formulation is based on more experimental data, and is more accurate in
the predicticr: of this effect. It is this approach that is implemented for consideration of the
value of perpendicular strain to produce softening in the compression concrete.  An analysis of
the compression softening parameter and its effect on the calculation of the stresses from
strains in these specimens in light of the differences in these formulations is presented in

Appendix A.

The formulations that were used for the calculation of compressive stress from
compressive strain in the principal directions are given in Equations 3.3.3 - 3.3.4.
Underpinning the implementation of these equations is that fact that the principal compressive
direction is along the length of the specimen, and the perpendicular tensiie direction is across
the width of the flange (when tensile stresses arise in this direction). Given that the
predominant actions produced by the applied load are bending and shear, this is easily

justified.
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Calculation of tensile stresses from tensile strains is given below in Equationis 3.3.5 - 3.3.6.

E. ¢, £ <€

o

L-I = _'£“'__ E >¢€ 335
1442008,

o

where the cracking stress is taken as from the relationship 11 AS3600 (2001) as:

f. =047 33.6

Application of these relations to strains obtained from experimental work produces
point stresses. Consider now that the strain gauging was located at six points across the width
of the flange and at the centre of the web in such a manner that three point strains throughout
the depth (at the same lateral location) were obtained during the experimental program. The
above relations can be used to determine compressive forces throughout the width and depth
of the flange. The details of location of the gauges throughout the width and depth of the

flange can be found in Section 3.3.3.

It is required that the strain measurements are located so that equal sized blocks can be
used for implementation of the calculation procedure, and so that the strain measured inside
the concrete is at the centre of the depth of the flange. The location of flange reinforcing made

it impossible to locate internal gauges in the positions corresponding to flange blocks used for
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the calculation procedure. Linear interpolation was used to determine strains at exact
locations required. These locations were, laterally, the centre of width of the each flange
block (refer Figure 3.3-4), and vertically. the top, centre of depth and bottom of the flange.
This linear interpolation procedure was considered acceptable for the low level of strain that
was produced during the experiments (Appendices B & C outline these results). Note that the
stress in the tension zone is higher at the strain of €., than at the soffit of the slab as tension
sofiening effects increase throughout the depth of the slab. These are accounted for

analytically in Equation 3.3.5.

Strain Stress Force

Figure 3.3-9 Arbitrary stress strain and force distribution on a flange block

Consider an arbitrary flange block with known strain profile from experiments, and
stress profile calculated from the method prescribed above. Figure 3.3-9 above shows the
strain, stress and force distributions for this arbitrary block. To implement the procedure
outlined in Section 3.3.1.3, calculation of the forces and lever arms on each flange block are
required. In this figure, it is assumed the tensile strain on the bottom face of the arbitrary
block is greater than the cracking strain, hence tension softening will have occurred as is

shown n the stress distribution.

Implementation of the MCFT to the experimental results produced required
consideration of three stress states as shown in the above relations; compression stress, elastic
tension stress, and the tension Stress associated with the post cracking strength of concrete
(termed ‘softened’ tension stress), Equations 3.3.4 - 3.3.6 summarise the calculation of the

three components of force from stresses that are considered in the above formulation of the

constitutive relations.
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The calculation of the force requires calculation of the area of the stress distribation in
each of the regions. These regions are the compression region (which gives calculation of the
force C in Figure 3.3-9), the region with linear elastic tension response (which gives rise to
force Tg in Figure 3.3-9), and the tension softening zone (which gives rise to force Ts, in
Figure 3.3-9). The fact that the peak strains were small (peak compressive sirain of
approximately 700ue) was again used in this calculation. The values of strain that were
produced were in the regions of response where the assumption of a lincar distribution of
stress was valid. This was true for the tension region as well as the compression region (peak
tensile strain of approximately 120ue). The area of the tension softening region was
calculated based on the value of stress at the cracking strain given by Equation 3.3.5. The
values of the lever arms were also calculated by finding the centre of area of the distributions

by ase:ming this linear distribution of stress.

3.3.1.5 Calculation Of Shear Lag and Interface Shear Forces

The normal forces, and lever arms of these forces for implementation of the
equilibrium procedure outlined in Equation 3.3.1 have now been developed. Implementation
of the relationship in this equation for the determination of the shear force in a flange block
now requires calculation of the shear lag force, the interface shear force and the lever arms of

these two forces.

Assuming that the shear lag force in the two layers in each row is equal, that is Vg, =
Vo + Va2 (for layer 2), the notation Vg is now used to represent the shear lag force that acts
on row } of the flange calculated throughout the entire depth of the flange. Consider the
discretisation of the flange of a T-beam into rows that extend for the full depth of the flange.
This is shown in Figure 3.3-10. In this figure, the notation Ca; represents the compression
force acting on row 1 of section A. This is simply the sum of Ca; = Cam + Capr. This is
easily calculated from the results of strain gauging. Summation of forces in the X-direction at

row | yields Equation 3.3.7.

Cb’l _CAI + V.rl =0 337
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Since Cyy and Cp are known, it is then routine to calcalate the shear lag force Vg.
Similar applications of equilibrium on each row throughout the width of the flange yield all

longitudinal shearing stresses required.

If it is assumed that the shear lag stress is uniform throughout the entire depth of the
flange, the magnitude of the shear lag force in Figure 3.3-8 is half of the value calculated
above from Equation 3.3.7. Summation of forces in the X-direction on the flange block shown

in Figure 3.3-8 yields Equation 3.3.8.

+V
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Vi1 and Ve are calculated using the above procedure, so the only unknown in the
above equation is Vi2. This again is routinely calculated for each block throughout the width

of the flange.

The location of application of the interface shear is known to be either at the top or
bottom of the flange block (depending on whether a block in layer o or 8 is being considered
for application of equilibrium conditions). Given the assumption of the uniform distribution
of the shear lag stresses, the locatton of the lever arm of the shear lag force on each individual
flange block is the centre of depth of the flange block. With the interface shears and the shear
lag forces and lever arms known, application of Equation 3.3.2 allows for simple calculation
of the vertical shearing force on any flange biock, V,; (where a is the layer number, either ¢ or

B, and j is the row nuinber).

In the above free body diagrams, the longitudinal flange reinforcement was not
considered for clarity of the illustrations. Inclusion of the longitudinal reinforcing into the
above formulation requires only knowledge of the strain at the location of the reinforcing; this
can be converted into a force, and simply included in the equilibrium considerations. Strain in
the longitudinal flange bars for the series of experiments discussed below was calculated by

linearly interpolating strain values measured on the concrete.
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3.3.2 Specimen Outline

Selection of the number of specimens was governed by the cost of the instrumentation
required for the measurement of the number of strains needed for the implementation of the
above equilibrium procedure. Given this cost, two specimens of equal flange width and

varying flange depth were chosen.
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Figure 3.3-10 Discretisation of flange throughout the width only

The flange proportions used in this stage of experimental work were selected after the
completion of stage 1 experiments. To investigate the distribution of shearing forces in the
flange, specimens from stage 1 work that exhibited significant results in the trend of shear
strength versus flange proportions variation were used for experimentation. The discussion in
Chapter 5 describes the significance of the specimens with flange width 465mm and flange
depths 75mm and 100mm in terms of the failure mechanisms that were obtained throughout
stage one of the experimental work. This fact led to seclection of these specimens for
implementation of the instrumentation and equilibrium procedures for determination of the
flange contribution. The reader will gain a greater understanding of this choice once the above
section describing the failure mechanisms for the experiments in stage one is examined. A

cross section of the specimens used in stage 2 can be seen below in Figure 3.3-11.
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Material propetties were intended to be similar to those used for the experimental work
in stage 1; however, variations in materials supplied were again prevalent. The yield strength
of the flexural bars used in this stage was, f,;=340MPa, the yield strength of the stirrups was
f,,=300MPa, and the concrete cylinder strength was £:=50MPa. These specimens were cast
together, therefore only a small volume of concrete was required. This proved difficuit for the
supplier of the concrete to measure exact quantities for the small quantity required using the

measurement system available to them; therefore, the concrete strength was higher than

anticipated.
. 465 , . 463 .
| l [} |
1% 7 v 3 =
] AT ) 100
6.5mm Diameter 40 6.5mm Diameter
longitudinal flange 54 longitudinal flange
bars at 75mm centres \ bats at 75mim cenires 205
6.5mm Diameter J
Sglgrups @ ! 6.5mm Diameter
$x20mm Diamter ,.._140_.1 225mm crs. 5x20mm Diamier L. 14 Stirrups
Longitudinal Bars Longitudinal Bars @225mm crs.
Beam 16 | Beam 17

Figure 3.3-11 Cross section of specimens used in Stage 2 of the experimental work

The loading and geometry of these two specimens was identical to the arrangements
used for these variables in stage 1 of the experimental work. The shear span to depth ratio was
again 3.0, and the total span was again 3.0m. Figure 3.2-1 and Figure 3.2-5 shows these facets

of the specimens.

Measurements that were taken throughout this stage of tests were primarily focussed
on the strain measurements required to implement the above equilibrium procedure. The
strain measurements taken for this are described below in Section 3.3.3. In addition to this the
load, midspan deflection, and deflection under the load point, and the support reactions were
measured. These were measured using the methods used for stage 1 experimental work

described in Section 3.2.6.
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3.3.3 Details of the Instrumentation

For the implementation of the equilibrium procedure detailed in Section 3.3.1, it was
required that this stage of experimental work produce the longitudinal strain profiles
throughout the depth at seven points across the width of the flange (including the centreline of
the web). For practical reasons, measurement of the strain at three points throughout the depth
of the flange (top surface, mid depth, and bottom surface} was considered appropriate. In
addition to this, implementation of the constitutive relations of the MCFT and DSFM require
that the strain laterally across the width need to be calculated. The latter also requires a

distribution throughout the depth.

This section outlines the type of gauges used, estimation of the length of the disturbed
region outlined in Section 3.3.1.1, as well as the location of the longitudinal and lateral gauges
throughout the width and depth of the flange. The positioning of the gauges longitudinally
and laterally throughout the flange is discussed separately for clarity. It should be noted that
these were positioned at the same depth at each location throughout the depth, photographs at
the end of the section in Figuwre 3.3-14 -Figure 2.3-17 show the method of location used to

achieved this.

3.3.3.1 Details of The Strairi Gauges

The instrumentation that is described below combines concrete surface gauges,
embedded concrete gauges, as well as steel gauges to measure the strain profile at three points
across the deph of the flange at 12 separate locations, The ‘mixing’ of these gauges

introduces & poiential source of error in the use of different length gauges.

Several authors (eg. Kotsovos (1995)) suggest that an ‘average’ homogeneous
response of concrete is attained when strains are measured over a length of at least three times
the maximum aggregate diameter. The concrete mix used in these experiments contained a
nominal maximum aggregate diameter of 14mm, so the minimum length of concrete gauge
that could be used was 42mm. The concrete gauges used had a length of 60mm, the

embedded gauges had a gauge length of 100mm, and the sicel gauges had a length of 10mm.
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The use of steel gauges to determine strains in the concrete arose from the limited
space available for instrumentation within the depth of the flange. [f perfect bond between the
steel and the concrete is achieved, the strain in the steel is equal to the strain in the concrete;
therefore the gauge accurately records the concrete strain. These gauges were shown to
measure only small strain, so an assumption of perfect bond between the concrete and the

reinforcing is valid.

To determine the accuracy of the results obtained from mixing gauges of different
tengths, the longitudinal gauging system outlined in Section 3.3.3.3 was implemented into two
trial slabs. Internal bending moment and shear forces were calculated using dual sectional
analysis and equilibrium. A detailed description of this is outlined in Chapter 6, and can also
be found in Giaccio et al. (2000).

3.3.3.2 Calculation of the Length of the Disturbed Region

With reference to Figure 3.3-2, it was required to estimate the distance from the load
point at which the strain profile was to be linear throughout the depth (i.e. not influenced by
the load point). The method selected to achieve this was to perform three dimensional linear
finite element analysis using solid elements and examine the strain profile produced. The
region considered appropriate for instrumentation was the region at which the longitudinal

strain profile was linear throughout the depth of the beam.

Observation from stage | experimental work indicated that specimens failing in shear
did not exhibit any crushing of concrete in the compression zone, and that ultimate load of the
specimen was reached in a brittle fashion so that no significant amount of plastic deformation
occurred in the specimen. Using this observation, it was assumed that the curvature of the
specimen remained constant throughout the duration of the test. Based on this assumption, it
is valid to calculate the distance of the strain gauges from the loading point using results from

the linear finite clement analysis.

This procedure of analysing the strain profile indicated that at a distance of i 50mm

away from the centre of the load point, the strain profiles were undisturbzd by the application
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of loading. This distarice of 150mm from the centre of the load point requires that the nearest
strain gauge be at least 77.5mm from the edge of the load point (the loading plate diameter
used was 145mm). This distance of 150mm is close to half the total depth of the specimen. A
schematic illustration showing the distance of the gauges from the edge of the load point is

shown in Figure 3.3-12,

3.3.3.3 Flange Gauging in the Longitudinal Direction

The strain profile required for implementation of the calculation procedure outlined in
Section 3.3.1 required determination of the longitudinal strains in the flange of the specimen.
Strain gauging was also provided in the lateral direction along the width of the flange with the
purpose of determining the effect of fensile strains across the width of the flange on the
compression response of the concrete in the longitudinal direction. The arrangement of this

lateral flange gauging will be discussed in Section 3.3.3.4.

The procedure to calculate shearing forces in the flange required gauges at two
sections along the length of the specimen as shown in Figure 3.3-12. Each of the locations
that were instrumented across the width of the flange was also provided with three gauges
throughout the depth, which aligned vertically. This can also be seen schematically in Figure
3.3-12.

Longitudinai surface gauges. Support bars for Surface gauges.

Load embedded gauges.

/ UUEEN NI

2t .
il ——

-t .
-

[
1
]
1
!
]
]
¥
4
1
!
L}
|
1
1
1
1
1
1
1
]
]
1
1
L}
1
¥
i
1
]
]
]
]
1
T
1
]
1
1
@,
1
1
1
™

Embedded
concrete gauges,

Line of stirrup
beyond.

I
P

110mm to surface
gauges, R0mm to
embeddable gaupzes

Ve
Line of support.

Figure 3.3-12 Schematic layout of longitudinal gauges
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In addition to this, the centreline of the web was instrumented. Although results of this
instrumentation were not used in the implementation of the equilibrium procedure, they
completed the distribution of strains across the width of the flange of the specimens. It can be
seen in Figure 3.3-12 that an additional gauge was provided in the web below the bottom of
the flange. This was provided to ensure that the location of the neutral axis in the flange could
be established throughout the duration of the experiment at all load levels. Photos of the

instrumentation used can be seen in Figure 3.3-14 - Figure 3.3-17.

The position of these longitudinal gauges was dictated by the location of the embedded
gauges. These gauges were bulky because of the protective coating, and ensuring that these
gauges were all clear of reinforcing bars, and at the same depth limited the positioning of the
gauges. The depth of the gauges within the flange was dictated by the penetration of the
stirrup into the flange, and the location across the width was determined by the position of the

longitudinal flange reinforcing bars.

The gauge pattern shown above in Figure 3.3-12 was identical on the top and bottom
surfaces, as well as within the flange. The centrelines of the embedded gauges were
approximately 25mm from the top surface of the concrete for specimen B16, and 25mm from

the top for specimen B17.

3.3.3.4 Flange Gauging in the Lateral Direction

In Equation 3.3.4 in Section 3.3.1.4, the terin B depends on the principal tensile strain ¢,.
The physical significance of this term is to soften the compression response of concrete with
significant perpendicular tensile strains. The strain gauges discussed below which are aligned

across the width of the flange measure this perpendicular tensile strain.

To determine the distribution of these lateral strains across the width of the flange,
instrumentation was provided at as many points as practically possible at locations as near as
could be achieved to the longitudinal gauges. A schematic of the gauging system showing

only the lateral gauges is shown in Figure 3.3-(3.
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The decision to locate strain gauges at three points across the width and depth of the
flange was based on the physical limitation of the intemal gauges. The use of any more rows
of gauging would have made it very difficult to fit all gauges and leadwires internally to the
specimens. To ensure that the three gauges provided aligned vertically throughout the depth,
it was required that some longitudinal and lateral gauges were in contact. The use of a low
voltage excitation unit ensured that strain readings were not influenced by heat transfer
between gauges, and advice from the strain gauge manufacturer suggested that providing the
gauge had not yielded during installation, the slight physical deformation arising from this

contact was nsignificant in the output of the gauge.

Sieel gauge on longitudinal gauge
support bar aligned in lateral direction.
Three pauges applied to this bar across
the width of the flange,

Lateral surface gauges. Load

---------- ' I O .4? Anchors at the end of the' _‘:- o \
/ ! supprt bars to prevent stip. [ ¢

>
Line of suppon.

EX

Lateral surface gauges.

Figure 3.3-13 Schematic of lateral gauging system used for stage 2 experimental work.

To allow sufficient space for all instrumentation to be located within the same region,
the lateral strains within the depth of the flange were measured using gauges on the
reinforcing bars used to support the embedded longitudinal gauges. The location of this
system with reference to the load and support is shown in Figure 3.3-14. To ensure no ship
between these reinforcing bars and the concrete, these were anchored at a position near the
centre of the web. These support bars did not align vertically with the surface gauges,
therefore four bars were instrumented and linear interpolation was used to calculate the strain

in the required location. This set up can be seen in Figure 3.3-15.

62

T L N TN




'im”_a'{t_t‘ Tocation of suppért. y

v

Figure 3.3-15  Photo of embedded gauge system showing longitudinal and lateral gauges




Figure 3.3-17  Close up photo of top surface strain gauging system on specimen BIY
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Chapter4 NUMERICAL MODELLING USING
NON LINEAR FINITE ELEMENT
ANALYSIS

4.1 Introduction

Numerical modelling using NLFEA was adopied in this investigation as it has proven
to be very powerful in the prediction of overall behaviour and peak load of reinforced concrete

structural elements since the first application by Ngo and Scordelis (1967).

This chapter describes the implementation of NLFEA to the specimens of stage 1 and
stage 2 experimental work, and the extrapolation of this method to predict the shear strength of
a series of specimens without variations in material properties. The aim is to replicate the
experimental results therefore allowing determination of the trend of the variation in shear
strength with flange proportions. This aim includes the application of the procedure to a series
of specimens (of identical geometric proportions to those in stage 1 experimental work)
without the maierial property variations. Successful modelling using this technique allows for
prediction of the stiffness, ultimate ioad, reinforcement behaviour, and concrete stresses and
would produce much more detailed results than those that can be obtained from experimental

specimens. The software package DIANA (1998) was used for this analysis.

This chapter presents firstly the objectives of the implementation of NLFEA.
Secondly, the development of the physical model, its geometry and simplifications is
described. Following this, various relationships to describe the behaviour of the materials are

described. A parametric study using these relationships was performed and the details of this
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are given in this section. A discussion of the iteration scheme, and the mechanisms used to

detect failure is given. Finally, the modelling procedure is described.

42 Objestives of the implementation of Non-Linear Finite Element
Aralysis

Numerical modelling (NLFEA) was employed in this investigation to predict the effect
of variations in the flange geometry on the strength of a shear critical point loaded RC T-
beam. This includes the effect of the variation of the stirrup effectiveness, crack patterns,
load-deflection response, and the peak loads that arise from changes in the geometry of the

flange.

To ensure that the procedure produced satisfactory results, the specimens used in
experimental work were modelled with this procedure. The following additional objectives
were set to ensure that NFLEA performed satisfactorily in predicting the response of point

loaded shear critical RC T-beams:

1. Determining the capability of NLFEA to predict the peak load of the experimental

specimens.

2. Determining the capability of NLFEA to predict the stiffness of the specimens as

measured from the gradient of the load deflection response.

3. Determining the capability of NLFEA to predict the effectiveness of the stirrups in

the resistance of an applied shear.

4. Determining the capabiiity of NLFEA to predict the pattern of cracking at the peak
load.

5. Determining the capability of NLFEA to capture the redistributions of stress that

occur throughout loading of the specimens.
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6. Determine the capability of NLFEA to predict the level of shear force that is
carried by the flange.

43  The Physical Model

The physical modelling required selection of an adequate representation of the
structure, selection of a satisfactory representative loading and support scheme (boundary
conditions), and selection of element sizes that were appropriate for the model. This section
discusses these aspects of the modelling procedure. It should be noted that these parameters
were fixed throughout the modelling procedure and were not investigated as part of the

parametric study outlined in Section 4.6.

4.3.1 Model Geometry and Boundary Conditions

Figure 4.3-1 and Figure 4.3-2 show the simplifications used in the modelling of the
specimen to allow for efficient solution. Figure 4.3-1 shows the reduction in overall length of
the specimen that was used in the modelling procedure. The full length of the specimen
overhangs at the supports were not critical in the analysis, hence were not modelled. Some
overhang was kept as this was found to be required for numerical stability of the solution with
the boundary conditions employed. This resulted in a reduction in overall length from
4000mm to 3500mm. The dimensions of both of the shezr spans and the reinforcing quantities
used in the analysis remained the same as that in the experimental work. The total span that is
shown in this figure is 3000mm, this is the same as the span used in the tests of the first end of
the stage 1 experiments, and comparison will be made only to the experimental results of this
end. Figure 4.3-2 shows half of width of the cross section of the specimen was used in

modelling using the symmetry of the cross section about the centre of width.
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Figure 4.3-2 Modelling of the T-beam cross-section

The boundary conditions that were applied to each model were the applied loading,
and the support conditions (including the support required by the symmetric condition that
was used). The pin support shown in Figure 4.3-1 was applied as a point support at a node to
prevent translation in the x, y, and z (out of the page) direciion. The roller support in this
figure is also a point support at a node that prevented translation in the y direction. The
elements that were used in this modei had only translational degrees of freedom; therefore, the

nodes at the centre of width of the web were only restrained in the z direction (the roller
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The loading was applied to experimental specimens via controlled displacement. The
controlled displacement that was applied in the experimental work was distributed over a
145mm diameter plate. This was simulated in the numerical modelling by application of a
controlled displacement of nodes that were situated over the width of the web region. This
was only applied to one row of elements in the direction of the span as it was found that
forcing the displacement of elements along the length of the span to have equal displacement
resulted in localisations of stress during the solution that bought about divergence of the
numerical scheme. Figure 4.3-2 shows a schematic of the application of the load to a cross
section. This load was not applied to midside nodes of the elements (these were 20 noded

solid elements as will be discussed later).

4.3.2 Element Selection

To predict the behaviour and effectiveness of the flange of an RC T-beam, the models
that were developed required distributions of stresses and strains to be produced in each of the
orthogonal directions in the flange. Preliminary studies using plane siress, and shell elements
revealed that the simplification of a 3D with these 2D elements produced results that were not
consistent with the experimental work. 20 noded solid brick elements were adopted to avoid
these problems. The details of these clements, and the reinforcing elements that were

provided are discussed in this section.

4.3.2.1 Concrete Elements

The concrete was represented with 20 noded solid brick elements. These elements
have a node at each comer, as well as a midside node that is located at half of the length of
cach side of the element. A 2x2x2 integration scheme was emplcyed. This has been shown

DIANA (1998) to be efficient in the calculation of stress profiles within a group of these

elements.

This element is embedded within the DIANA sofiware, and has shape functions of the

following characteristics.
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¢} The strain £y varies linearly in the x-direction, and quadratically in the y

and z direction.

(2) The strain €,y varies linearly in the y-direction, and quadratically in the x

and z direction.

(3) The strain ¢, varies linearly in the z-direction, and quadratically in the x

and y direction.

Seraj (1992) conducted an investigation into the variation in ultimate strength and
stiffness (as measured by the slope of the load deflection curve) that was produced with
varying element sizes. The results from this study indicated that element sizes up to 260mm
produced satisfactory stiffness and ultimate load resuits for shear spans and total specimen
dimensions comparable to the ones that were implemented in this study (note that these were
20 noded brick elements, therefore midside nodes were provided on each edge). Although this
was the case from this study, for determination of the stress distribution throughout the depth
of the flange, an adequate number of nodes throughout the depth of the flange were required.
This was coupled with the fact that the aspect rativ of the element (ratio of two sides of the
element) was limited to 2.5. The resulting mesh that was used had 192 elements in the web
region in the critical shear span, and the following criteria for the flange overhangs (an

illustration of a typical mesh is shown beiow in Figure 4.3-3).

(1 Two elements throughout the depth of the flange for all specimens.

2) Distance between nodes of as close as possible to 25mm. A closer

spacing was used when this was not achievable.

3) Alignment in the longitudinal direction with the web elements.

The study by Seraj (1992) does show some variation in the resuits of the ultimate
strength with variation of the mesh size. The variations were mostly with the ultimate strengih

value, the stiffness remained essentially constant with these variations. These variations in
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ultimate load with mesh size decreased as the mesh density increased, and the lower of the two
values peak load for the analyses considered in this paper with the greatest mesh density were
close. The latter was used to retain a reasonably constant mesh density between all specimens
analysed and examine the ability of NLFEA to determine the peak loads, crack pattems,
reinforcing response, failure mechanisms, and concrete strains in comparison to experimental

work.,

4.3.2.2 Steel Elements

The element called ‘embedded reinforcement” in DIANA (1998) was used to simulate
the reinforcement. This reinforcing element is produced in DIANA by specifiing the start anid
end point of the reinforcing bar. The software package then considers the clements that this
line crosses are ‘mother’ elements to the reinforcing elements. The reinforcing elements
themselves do not have any degrees of freedom, and the strains at the integration points of
these clements are calculated from interpolation of the strains at the int-gration points of the
mother element. The interpolation of concrete strains in the mother ¢ie 1ent to the reinforcing
element implies that a perfect bond exists in these models betweer the concrete and the
embedded reinforcing steel. The only geometry required by DTANA (apart from the location)

was the cross section area.

The location of the reinforcing throughout the length of the span of each specimen
analysed was identical to that used in the experimental work (outlined in Chapter 3). Figure
4.3-2 shows the location within a cross section of the model. The stirrups were located at the
nominated cover distance (15mm) from the edge of the concrete surface, and the longitudinal
reinforcing was located throughout the depthb of the model identically to that in the
experiment. The cross sectional areas associated to the Jongitudinal reinforcing elements
reflected the arrangement shown in Figure 4.3-2, i.c. the bar at the centre of the width was

assigned only half of the area of the cther longitudinal bars.
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4.4 Material Models

Aspects of the material behaviour were obtained from the tensile tests on steel samples
and the concrete cylinders. Instrumentation of beam specimens provided information
regarding the stirrup strains, and the strain state in the flange of the specimen, ¢herefore,
providing information into criteria required for a suitable constitutive model. This section

summarises the material models that were used in the solution scheme based on these results.

4.4.1 Concrete Model

DIANA provides several constitutive models that are appropriate in modelling the
compressive response of concrete. These are divided into two categories, the plasticity based
formulations, and the total strain formulations. [t assumes that the tenstle response of concrete
is elastic prior to cracking, but offers a variety of constitutive modelling approaches to the
postcracking response of tension concrete. These models can also be divided into two

categortes, linear tension softening models, and nonlinear tension softening models.

The posteracking shear stiffness of an element in DIANA is given by a reduction
factor, {3 that is applied to the shear modulus, G. Kotsovos (1995) implemented a similar
method of reducing the postcracking shear stiffness. The study suggested that the value of §
should never be zero, as numerical instabilities result, and recommended a minimum value of
postcracking shear modulus of 5% of the initial value. The value that is selected for this term
implies the amount of shear transfer that can be achieved across a cracked element; this is

analogous to aggregate interlock.

Owing to the lack of agreement of the constitutive relations in literature that exist
describing the compressive and tensile response of concrete, and also the lack of agreement on
the contribution of aggregate interlock to the resistance of shear, a parametric study of the

above variables was performed as part of this research, The variables of the parametric study
are outlined below.

73




1. The value of B is assigned values of 5%, 10%, 15%, and 20%.

2. One of the plasticity formulations, and one of the total strain (representative of
nonlinear compressive concrete constitutive model) formulations is used for the

compressive concrete response.

3. One of the linear softening and one of the nonlinear relations is used for the

tension softening response.

Further details of the implementation of the parametric study are outlined in Section
4.6. The remainder of this secthion describes theoretical aspects of the constitutive models that

were implemented.

1t should be noted that in both tension softening models, the smeared crack approach
developed by Litton (1974) was used to model the cracking that developed at the tensile

strength of the concrete.

4.4.1.1 The Drucker — Prager Modei

The Drucker — Prager model was chosen as a representative model for the capability of
the plasticity models to predict the response of the compression concrete. This model
describes the yield surface for plain concrete in terms of the first normal invariant of stress
(1), the second deviatoric invariant of stress (J2), and the hardening parameter (x). The
general form of the failure surface is given in Equation 4.4,1. The condition F=0 represents
failure of concrete. It is noted that associative plasticity was considered in this
implementation of the modelling so that the intemal angle of friction (¢) is equal to the

dilatancy angle (y).

F = J2 -afll—-ﬁczo 4.4.1
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The coefficient o is a scalar quantity that is dependent on the internal angle of friction
(this angle is dependent on the hardening parameter, i e. §(x)) and is given in Equation 4.4 2.
The coefficient { is also a scalar quantity that is dependent on the initial angle of intemal

friction (¢.), it is shown in Equation 4.4.2. The parameter c is the cohesion and is defined in

Equation 4.4.3.
_ 2sing(x) . _ 6cosg, 442
F 3—sing(x) 3—sing, T

Strain hardening is included in the model by the relation of the cohesion to the
equivalent plastic strain, k. DIANA makes this relation within the software. This requires
relation of the effective cohesion, and the equivalent plastic strain to a level of applied strain.
The implementation of this requires an assumption regarding the stress strain response of the
concrete.  For the purpose of this analysis, it is assumed that the Thorenfeldt (1987) uniaxial
curve describes the compressive response of all elements within a spectimen. Application of
this assumption yields the relation given in Equation 4.4.3 between the cohesion and the

uniaxial compressive concrete stress (Oc).

1 - a"
= G‘c - 443
¢
Assuming that the friction angle (¢) and the dilatancy angle (y) remain constant for afl
states of stress, and equal to the initial values (¢, and y,), a relation of the equivalent plastic

straiil to the uniaxial plastic stress can be made. This is shown in Equation 4.4.4.

. x/l +20 .
K==————gf 44.4
1 -,

75




In this equation, X is equal to the scalar quantity uy (this is since associative plasticity

is assumed), and the strain €3” is the plastic component of the principal compressive strain.

4.4.1.2 Crack Model Based on Total Strain

DIANA uses a model called the Crack Model Based on Total Strain to calculate the
compressive response of concrete. This is a hypo-elastic model that is modified to include
secant unloading rather than nonlinear elastic unloading. It is this constitutive model that was

used as the nonlinear elastic model in this investigation.

The model was based on the modelling approach implemented by Selby (1993). The
implementation into DIANA uses a base compressive response curve that is given by
Thorenfeldt (1987) and modified using relations by Vecchio and Collins (1993) that account
for sofiening of the compressive response as a result of perpendicular tensile stresses. These

relations are shown in Equation 4.4.5.

In this equation, Geonp 1S the compressive stress, Ecomp is the compressive strain, f, is the
peak stress, f°; is the cylinder strength, €, is the strain at °¢, € is the perpendicular principal

strain, o is a factor that reduces the peak compressive stress in the presence of perpendicular

tensile strain, and n and k are as shown.

The above equation accounts for softening of the compressive response of the
compression concrete in the principal direction. To account for favourable compressive
stresses in the perpendicular directions, the failure surface of Hseih et al. (1979) is

implemented. This failure surface is shown in Equation 4.4.6.

In this equation, J; is the second deviatoric invartant of stress, 1 is the first hydrostatic
invariant of stress, and f; is the maximum of the three normal stress acting at an arbitrary
point. The condition F=0 represents failure of the concrete. The Crack Model Based on Total
Strain determines the stresses acting at a point, then iterates the principal compressive stress

until the conditioa F=0 is true (or, the concrete fails). This results in a factor (identical to the
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Bs in Equation 4.4.5 that is applied to f'c to produce a peak stress f, that is the maximum stress

that the concrete can sustain under the given triaxial stress condition.

( \
£ M
o = — comp :
oorip fp 80 8. nk
n—1+} =%
\ & J )
where , _ 445
I 1 if 0>e>¢,
n=0'80+77_; k= 0.67+££— if €<eg,
621
f:”zﬁdf'c ; ﬁo= P S]'O
1+0.27(-—’5‘L—-0.37)
8(}
g,
F=2.0108-;<2-5+0.9714J._' +o1412 e p02312- 0 =0 44.6

4.4.1.3 Linear Tension Softening

The linear tension softening of concrete that was implemented inte this modelling
scheme was a simple formulation that relies only on knowledge of the cracking stress (fc;), and
vitimate strain (g,). The total tensile response of concrete using this model is shown below in
Figure 4.4-1. By highlighting previous research Stevens et al. (1991) demonstrated that
cracked reinforced concrete can sustain tension forces beyond the yield stress of the steel, for
the purpose of this model, the ultimate concrete tensile strain is calculated as the yield strain of

the steel.

4.4.1.4 Non - Linear Tension Softening

The nonlinear tension softening model that was implemented into this modelling
strategy was that of Reinhardt (1984). This is shown diagrammatically in Figure 4.4-1. In this
figure, the horizontal axis is labelled with the strain present after cracking (€%). This is the

difference between the total strain and the cracking strain (€ - €,). The vertical axis is labelled
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with the stress present after cracking (6°); this is the value of stress associated with €°. The

relations are described in Equation 4.4.7.

L4y

0.3
. E': . ¢ -
¢ Y S <& <(g —¢&
——j = 1 ( J {f ( I “'cr 4.4.7

{‘f‘ gc _>- (gll' - 8{,‘!‘ )

DIANA calculates the ultimate strain (€,) more exactly than that given above for the

lingar tension softening, the relation in Equation 4.4.8 is used.

Gf
e, =4226 448

or

in this method of calculating the ultimate strain, Gyis the fracture energy, h is the crack
bandwidth, and f;, is the cracking strength of concrete. The crack bandwidth is assumed for
the purpose of this anaiysis to be equal to the average dimensions of the side of the elements.

This is approximately 42mm. The method of calculating Gy is given in the following section.
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Figure 4.4-2 |llustration of the nonlinear tension softening curve

4.4.1.5 Material Properties

The 28 day svlinder strength for each concrete batch was obfained as part of the testing
program. From this value, the Youngs Modulus (E;), and the fracture energy (Gg). was
calculated using the CEB-FIP (1990) Model Code for concrete. The tensile strength of
concrete (fy) was calculated using Equation 4.4.9 which is the method given in the Australian
concrete code of practice, AS3600 (3600). Poissons ratio was assumed to remain constant at
v=0.2. Thesc values of material propertics were considered constant throughout the analysis

procedure.

f, =041, 449

4.4.2 Steel Model

Results from instrumentation on the stirrups throughout the experimental work, as well
as results of tensile tests on samples of the reinforcing batches indicated that if any reinforcing
element had yielded, the strain on it was not enough to produce significant hardening. This
allowed the use of an clastic perfectly plastic constitutive model to be used that simulates a
bilincar stress-strain curve. The Von Mises relation was considered appropriate to model

these reinforcing clements. Since this constitutive model is very accurate in the prediction of
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the bilinear stress strain curve, any variations in this model were not considered in the
parametric study. The Poissons ratio for stee! was assumed to remain constant throughout the

analysis at a value of v=0.3.

45  The iteration Scheme and Cenvergence

To account for the nonlinear response of the specimens to load, the NLFEA solution
procedure uses an incremental scheme. This scheme requires applying incremental
displacements to the specimen, and within each increment of displacoment, iterating to ensure
that the internal and external forces balance. Section 4.6.2 outlines the method used to
determine the magnitude of the increment of displacement, this section outlines the iterations

within each displacement increment.

4.5.1 The lteration Scheme

Section 4.6.2 outlines the displacement increments that were investigated during the
implementation of this numerical model. Within each increment of displacement, the sofution

was iterated until satisfactory convergence was achieved.

Through preliminary analysis, it was found that the Constant Stiffncss Iteration
procedure was the most stable prior to the peak load for this implementation. At cach
increment of displacement, the increment of exiernal load is calculated using a valuc of
stiffness equal to the initial stiffness (the matrix [K]) of the previous load step. This stiffness
is used to calculate the increment of applied extemal force (AE.«) corresponding to the applied
displacement increment (Au). Application of the shape functions leads to values of strain at
the Gauss points which can be used to calculate the increment of stress, hence the increment of
intcrnal force (AFy). The relative cnergy calculated from these quantitics (described in
Section 4.5.2 below) is used to determine if a correct estimate of the internal forces, hence

stress field has been achieved.

80




4.5.2 Numerical Convergence Criteria

DIANA has three choices of criteria for checking convergence. These are the force
norm method, the displacement norm method, and the energy norm method. The former of
these two criteria check only the force convergence. and displacement convergence
respectively. The latter of the options checks a combination of the both (as energy is the
preduct of force and displacement), and was considgered to be a stricter, hence more accurate

means of checking convergence; therefore, the latter was adopted.

DIANA calculates the value of the energy norm ratio using Equation 4.5.1. In this
equation, the numerator of the ratio is the average relative energy variation between the
current and previous iterates, and the denominator is (he average relative cnergy of the
previous two load steps. In the analysis, the required value of the energy norm ratio was set at

1x107, but values less than 1x10™ were considered acceptable in the anatysis of the results.

8 u.’[f +f ]]
TEA ~intiel - inti

&uT(f +f )
TEL ~iml ~ ink

Energy Norm Ratio =

4.5.1

4.5.3 Definition of Failure

Failure of the nuimerical scheme, and hence the specimen was deemed to have occurred

at the first of the following two items.

1. Divergence of the convergence criteria, t.e. excessive values of the energy norm.

2. The appearance of a large difference between the loads recorded at the point of

applied displacement, and the sum of the reactions.

81

i

o T L

b

Mol gt e e e



4.6  The Parametric Study

The variables of the parametric study are of two types. Firstly the concrete materiai
properties variables as outlined in Section 4.4.1, and the size of the load step. This division
broke up the parametric study on these variables into two parts. Firstly, the material model
variations were examined, and secondly, the size of the load step was examined. This section

discusses methodology of these two studies.

It was considered that 1l cxperimental specimens that were chosen for the purpose of
comparison with the vesults of this parametric study should have the failure mechanisms that
were obtained throughout the experimental work. For the purpose of determining the effect of
the flange geometry on the shear strength of an RC T-beam specimen, there were in general
two failure mechanisms that were exhibited in varying the flange width throughout a series.
These are discussed in detail in Chapter 5, but for the purpose of this discussion, # is noted

that specimens B2 and BS5 failed by displaving mechanisms that were illustrative of this.

4.6.1 The Material Model Parametric Study

The material model variations outlined in Section 4.4.1 are outlined below.
1. The valuc of [} is assigned values of 5%, 10%, 15%, and 20%.

2. The Drucker - Prager (denoted DP) material model, and the Crack Model
Based on Tota! Strain (denoted TSM) were used for the compressive concrete

responsc.

3. The linear tension softening (denoted as LS) and the nonfinear tension

softening (denoted as NLS) relations by Reinhardt (1984) were used for the

tension softening response.
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[ B=0.05 (5% |

LS

DP |TSM|LD] { TSM |

Figure 4.6-1 Schematic of the levels used in the parametric study

Figure 4.6-1 shows a schematic of the method used in implementing the parametnc
study on material models, The implementation considered firstly the value of f3, secondly, the
type of concrete tension softening was considered, and finally, the concrete compressive
material model was considered. The lowest level in this figure inciudes all of the variables
that were included in the analysis and was the level at which the analysis was mun.  For
example, in the figure below, the analysis run for the Icfl hand block on the bottom row uscs
Drucker - Prager material model, combined with the linear tension softening response with a
value of $=5%. The third block from the left aiso impicments the Drucker — Prager material

model, this time combined with the nonlinear tension softening response with a value of
B=5%.

The following notation will be introduced for the purpose of results analysis in Chapter
8. The left hand block on the bottom row which uses Drucker — Prager material model,
combined with the linear tension softening response with a value of $=5% will be denoted

B=0.05:DP-LS. This shorthand notation summariscs all of the material property variations in

this part of the parametric study.

Each value of B was associated with an analysis scheme as illustrated in Figure 4.6-1.

This resulted in 16 analyses performed on the variables for cach of the two experimental

specimens used for comparative purposes (B2 & BS5).
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4.6.2 The Displacement Step Size Parametric Study

It was found during the parametric study that the analysis with matenal properties
B=0.15:TSM-LS produced a load deflection response that was close to that in the expenment,
as well as predicting a value of peak load close to that in the experiment. This combination of
material models was used to determine the effect of the step size on the stiffness and ultimate

load predictions.

The initial condition in determining the step size was to ensure that cracking did not
occur in the first step of the analysis. Displacement steps of 0.2, 0.4, 0.5 and 1.0mm did not
cause this to occur. The size of the subsequent steps was govemned by twe issues; firstly, the
size had t¢ be reduced as cracking influenced the results, and if this was not done solutions
schemies were found to be unstable; secondly, the ratio between the initial step size when the
specimen is uncracked, and that when the specimen ts cracked could not be too large. Trial
and error in preliminary analysis indicated that halving the displacement increment at a
displacement before the cracking load resulted in a stable solution scheme. This was

implemented into this parametric study.

In summary, for each specimen, B2 and BS, there were four displaccment steps

investigated for this parametric study. These are as follows:

1. Initial increment of displacement {Dy)=0.2mm, and subsequent increment

(Ds)=0.1mm (after two load steps).

2. Di=0.4mm, and D~0.2Zmm.

3. D=0.5mm, and D=0.25mm.

4, D=1.0mm, and D=0.5mm.

The following notation will be introduced for the purpose of results analysis in Chapter

8. For material models $=0.05:DP-LS, a code for the mitial applied displacement will be
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appended to this. An analysis with initial displacement increment of 0.2mm, and subsequent
displacement increment of 0.1mm, this code will be Di=0.2, resulting in a description of

B=0.05:DP-LS; D;=0.2 for this model.

4.7 Modelling Plan

As stated in the objectives in Section 4.2, this research used NLFEA to examine the
resuits of ultimate strength of specimens with variable flange proportions without the
unintended matertal property variations that arose in the expermmental work using a constant
mesh density for all models. To do this, three stages of modelling were implemented as

described below,

The first stage of the modelling was the application of the solution scheme using the
material models and incremental scheme found to be best suited using the parametric study
outlined in Section 4.6 to representative specimens of the experimental work to determine the

best combination of material models as well as the best increment of displacement.

in the second stage of the modelling, the optimumm combination of the above model
charactenistics was applied to the experimental specimens to determine the capability of
NLFEA to predict the results. 1n this thesis, stage 1 experimental specimens are to compare
the peak load, load-deflection response, crack pattems, and reinforcing strains. Stage 2
experimental specimens are used to compare the concrete strains, and the ability of NLFEA to
predict the contribution of the flange to the resistance of shear as measured by a percentage

contribution at the peak load.

The third and final stage of modelling implemented the optimum modelling scheme
determined in stage 2 specimens of the same geometry used in the experiments but with
concrete material properties of sertes 1 of stage I, and stecl material properties of series 2 of

stage 1 experimental work.
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The specimens in the stage two of the analysis (the experimental specimens) will be
labelled with the same identifying mark that was used in the experimental work; ¢.g. Specimen
B1 is the specimen of flange proportions 930x100 with f=36.0MPa, f,,=340MPa, and
f,,=398MPa. The specimen in the stage three of the analysis (those modelled without the
unintended variations in the material propertics) will be given the same tags, but these will be
preceded with the letters CMP to designate that they have constant material properties
throughout the analysis procedure. For Example, Specimen CMP-B1{ is the specimen with
flange proportions 310x75 and has the material properties of £°.=36.0MPa, f,=340MPa, and
f.+=300MPa. Results of the second stage of the analysis will be presented for flange
geometries identical to those in the experimental work. This is summarised below in table

format for both of these stages in Table 4.7-1 & Table 4.7-2.
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Table 4.7-1 Specimen numbers and material properties for stage 2 numerical modelling

Specimen | Flange Propertions | . fua foy
Number (bexdr (mm)) (MPa) | (MPa) | (MPa)
Bl 930x100
B2 620x100
B3 465x100
36.0 340 398
B4 310x100
BS 225x100
Bé Rectangular
B7 930x75
B8 620x75
B9 465x75 30.8 340 308
~BIO 310x75
B1i 225x75
B12 620x50
B13 465x50
334 340 440
Bl4 310x50
Bl15 225x50
B16 46575
30 340 300
B17 465x100
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Table 4.7-2 Specimen numbers and material properties for stage 3 numerical modelling

Specimen | Flange Proportions | . fuu foy

Number (bixds (mm)) (MPa) | (MPa) | (MPa)
CMP-BI 930x100
CMP-B2 620x 100
CMP-B3 465x100

36.0 | 340 | 398
CMP-B4 310x100
CMP-B3 225x100
CMP-B6 Rectangular
CMP-B7 930x75
CMP-BS 620x75

5 CMP-B9 465x75 36.0 | 340 | 398
CMP-BI0 310x75
CMP-Bi | 225x75
CMP-B12 620x50
CMP-B13 265x50

; 36.0 | 340 | 398
CMP-B14 310x50
CMP-BI 225x50
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Chapter5 FLANGE PROPORTIONS,
ULTIMATE STRENGTH AND
FAILURE MECHANISMS

5.1 Introduction

This chapter presents the results of stage 1 experimental work, and subsequent analysis
of these results. The primary focus of this discussion is to isolate the effect of the flange

proportions on the ultimate strength and failure mechanisims of the specimens tested in this

stage.

To ensure an accurate summary of the effect of varying the flange proportions of a T-
beam on the shear strength of the considered specimens, the analysis of experimental results is
broken up into two parts. Firstly, the ultimate strength results are normalised with respect to
material properties so that results between specimen series ¢an be compared. This allows the
effect of variation of the depth ratio (dr=dyd,) on the ultimate shear strength to be examined.
Secondly, failure mechanisms that were exhibited by he specimens throughout the testing
iegime are examined. Al specimens failed exhibiting a shear mechanism, there were two
distinct types of shear failure exhibited. A comparison of these failure mechanisms with the
ultimate shear strength results enables determination of an upper bound for the effectiveness

of the flange in the resistance of shear. Finally, the trend in the variation of the ultimate shear

strength (V) with width ratio (br=byby,) is discussed.
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Consideration is also given to the variations in the flange reinforcing that was placed
continuously across the width of the flange. The variations in the ultimate shear strength in

the specimens that were provided with this reinforcing are discussed.

5.2  Normaiisation of Ultimate Strength Results

To ascertain the effect that the flange proportions have on the shear strength, it is
necessary that any affect on specimen strength from the presence of variations in material
properties be eliminated. Since web geometry, and reinforcing percentage are cqual for all
specimens (except where noted otherwisc), a group of results can be produced that has only
variable flange proportions. This is achieved by normmalising the uitimate strength results as

outlined below. The ultimate strength results are shown in Table 5.2-1.

As discussed in Section 2.2, the mechanism of shear resistance in a beam is widely
accepted as being the sum of four contributions. These can be seen in Figure 5.2-1. These are
the axial forces in the stirrups (V). the shear resistance of the compression concrete (V. ), the
frictional resistance arising from aggregate intertock on the rough surface of a shear crack
(Va), and the shear resistance perpendicular to the span of the longitudinal bars resulting from
the tendency for them to behave in a dowel like manner (Vy). Each of these components

interacts to provide the ultimate shear strength (V) as shown in Equation 5.2.1.

Vu=Ve+Vi+ VY, +Vy 5.2.1

Consider now the approach implied in many codes of practice such as the American
concrete code of practice (AC! 318-99 (1999)) and the Australian Standard, AS3600 (2001)
whereby the total concrete contribution (denoted here as V.) is a summation of the dowel

action, aggregate interlock, and concrete contributions. This leads to Equation 5.2.2.

VU:VC+V‘S




—

Table 5.2-1 Ultimate shear strengths recorded for Stage | experimental work

Flange End 1 Shear End 2 Shear
Proportions | Strength (kN) Strength (kN)
930x100 132.5 *
620x100 132.5 134.9
P 465x100 122.5 124.7
% 310x100 116.0 124.6
@ 225x100 115.2 116.1
Rectangular 80.8 98.0
930x75 123.4 129.8
~ 620x75 145.1 115.4
§ 465x75 98.76 107.5
& 310x75 105.8 102.4
225x75 83.3 92.75
620x50 105.6 91.6
P 4635x50 1122 110.9
% 310x50 90.8 86.8
@ 225%50 101.4 101.1

* Denotes that the peak load for this specimen was influence by the first end test and therefore was disrepanded

This equation simply considers the ultimate strength of an RC beam as the sum of the
steel and concrete contributions. Given the semi-¢mpirical nature of the code formulations,
the concrete contribution term within this equation implicitly includes all components of the
concrete contribution (aggregate interlock, compression concrete contribution, and dowel
action). Therefore, this ¢quation is exhaustive in the consideration of the mechanisms of shear
resistance and is appropriate for use in the examination of the shear strength by considering
individual components of resistance. For the purpose of this work, Equation 5.2.2 gives a
simple relationship by which variations in material properties can be separated and eliminated.
The following sections outline the assumptions and process that are used to develop a term

that eliminates material variations in the consideration of the strength of the specimens tested.
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Figure 5.2-1 Mechanisms of resistance of shear by an RC beam with shear reinforcing

5.2.1 An Assumption Regarding Stirrup Contribution

The location of the strain gauges on the stirrups did not always correspond to the
position of the shear crack. The results of this mstrumentation did however indicate that if the
critical shear crack did pass through a stirrup, then this stirrup cither yiekled, or was so close
to yielding that the force in that stirrup was very close to the force attained by yielding that
stirrup. it is noted that the critical diagonai web crack was well developed at the peak load in
all specimens. The typical strain response of a stirrup that was intersected by a crack

throughout the duration of an experiment can be seen in Figure 5.2.2.

Figure 5.2-2 shows an important feature of the stirrup behaviour, The appearance of
the shear crack on the surface of the web was at approximately the same level of load that a
stirrup that intersected the crack began to become effective. It is assumed that stirrups become

effective at the appearance of a critical web crack by which they are intersected.

In addition to the above assumption, it will also bc assumed that a stircup is fully
effective (reaches yield) if it is intersected by a crack in the web region of the beam. A stirrup

was not considered effective if the crack passed below the level of the top most flexural
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reinforcing bar. By superimposing the stirrup focations on the failed specimen, and using the
above assumptions, it was found that in general two stirrups were intersected by a crack. This
was not true for specimens B12 and B14. The crack came close to these stirrups but did not

intersect them. Section 5.4.3 provides further discussion of this.
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Figure 5.2-2  Typical stirrup strain vs. applied load for a stirrup which was intersected by a

crack.

Comparison of the maximum strain recorded during the beam tests with the stress-
strain results produced from tensile tests on the batch samples of the stirrup reinforcing
indicate that negligible force additional to the yield force in the siirrup is produced by strain

hardening in the bars.

From the above statements, it is assumed that the critical shear crack passes through
two stirrups for each beam test. At failure these two stirrups give rise (o a resistive force equal
to the force produced at yield. Therefore, using the yield strength shown in Table 3.3-2 in
Chapter 3, the average bar diameter determined from batch samples of 6.39mm, and the fact
that each stirrup that is intersected by the crack has two legs in cross section, the stirrup

contribution is calculated to be those values shown in Table 5.2-2.
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Table 5.2-2 Total force carried by stirrups in each specimen series for stage 1 expenments

Series Stirrup Contribution (V)
Number (kN)
] 25.6
2 19.8
3 28.3

5.2.2 Normalisation With Respect to Concrete Strength

Knowing the stirrup coniribution from Table 5.2-2, Equation 5.2.2 now provides a
means of determining the total concrete contribution, V., for cach specimen, as shown in

Equation 5.2.3.

VQ = VU - V_q 5-2.3

Table 3.3-2 in Chapter 3 shows that there is still a variation in concrete strength
between series of specimens that needs to be accounted for so that the results between each of
these series can be compared. Many concrete codes of practice such as the Canadian Code,
CSA A23.3-94 (1994) and the Australian Standard, AS3600 (2001) suggest that the total
concrete contribution 1s a product of the web area and the square root of the concrete cylinder

strength as shown in Equation 5.2.4.

Ve=cbdovf'e 524

in Equation 5.2.4, b,, is the effective web width, d, is the effective depth of the beam
for shear, and quantity ¢ is a constant {magnitude 1) having units of YMPa. Substituting this
equation into Equation 5.2.3 results in Equation 5.2.5. The result of this equation is a term
that is the concrete contribution that has been normalized with respect to the cylinder strength

of the concrete. This term will be used for the examination of ultimate strength results as it
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eliminates the effect of vanations in concrete from the ultimate strength. This term will be

referred to as the normalized concrete contribution of the specimen.
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Since an equal stirrup contribution is assumed for all specimens within each series, any
change in the normalised concrete contribution directly follows from a change in the shear
strength of the specimen under consideration. The results of experimental work shown below
present this normalised concrete contribution against the width ratio {(bebw) for each depth
ratio (d¢d,). Any change in the normalised concrete contribution with the width ratio for a
given dzpth ratio shows that the shear strength of that specimen is varying with the width of
the flange only. Conversely, any change in the normalised concrete contribution for a given
width ratio corresponding to a change in depth ratio shows that the shear strength of that

specimen 15 varying with the change in the flange depth only.

53  Failure Mechanisms Exhibited by Stage 1 Specimens

The majority of specimens that are described in Chapter 3 failed exhibiting a
mechanism of shear. Of the specimens that failed in shear, two distinct mechanisms were

displayed. This section discusses these mechanisms, and the range of conditions under which

they were produced.

5.3.1 The Beam Shear Mechanism

The beam shear mechanism displayed by specimens was identical to the typical failure
mechanism used for shear analysis of RC rectangular beams. The diagonal tension crack that
formed in the web extended to the longitudinal bars where it began running along the length of
these bars instigating dowel action. The other tip of the crack extended to the flange-web
interface. At failure, these specimens exhibited a crack on the edge of the flange. This crack

appeared to correspond to a diagonal tension splitting of the flange. This type of mechanism
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is shown in Figure 5.3-1. The crack on the edge of the flange continued on the underside of

the flange to meet with the diagonal tension crack at the flange-web interfuce as one

continuous crack.
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H
I addition (o the above cracking pattern. specimens exhibited cracking laterally across 4

the top surface of the flange similar to that shown in Figure 5.3-2. This photo of specimen BS

e i

shows that at failure, the erack on the top surtace of the flange penetrated the entire width of

the flange. Not all specimens exhibited a erack that was continuous over the top surface as

|
shown in this picture, but all specimens did display cracking in the {ateral direction on the top ;
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surface of the flange. This suggests that the beam shear mechanism that is described above is

similar to the mechanism proposed by Hoang (1997) discussed in Section 2.2.3

5.3.2 The Punching Shear Mechanism

Formation of the punching shear mechanism began in a similar fashion to the
aforementioned beam shear mechanism. The lower tip of the diagonal tension crack in the
web continued through to the longitudinal reinforcing where #t propagated as a dowel crack.
The other tip met with the flange-web interface. As the load approached the ultimate load. the
crack at the flange-web mterface started to propagate into the underside of the flange at an
angle that was inclined to the transverse directions of the beam. At the failure load, this crack
on the underside of the flange continued along the length of the span. In addition to this,
cracking appeared on the top surface of the flange. These crack pattems are shown in Figure
5.3-3-. 1t can be clearly seen from these photos that the cracking corresponds to the tendency

of the load point to punch through the flange.

i’ underside of flange + " "Location'of pport

“defining punching region N = -
"". : ) ) -" . ‘N?

Figure 5.3-3 Typical punching shear cracks on the underside of _I lange of spccine 15

Series 1 and series 2 specimens exhibited the beam shear mechanism for specimens
with width ratio byby<3.32.  Other specimens in cach of these series (byby=4.43.6.64)

exhibited punching shear failure mechanisms. Although scries 3 displayed the same bounds as
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series 1 and 2 beams, 1t is noted that the specimen with width ratio byb,=3.32 began to display

cracking on the underside of the flange consisient with the aforementioned punching shear

cracks. However, the beam shear cracks were predominant on this specimen at failure.

Figllre5.—4 Typical crack pattern for punching shear mechanism on the top of the ﬂa1ge of

specimen B12

[t can be seen in that there were cracks that propagated lateratly across the width of
the flange in this mechanism. In the above photo, the crack is not continuous over the entire
width, but 1s present over almost half the width of the flange. These cracks did not form part

of the failure mechanism, but it is noted for later discussion that they were present on all

specimens that displayed the punching shear mechanism.




s4  Effect of the Flange Proportions on the Concrete Contribution
of Stage 1 Specimens

The effect of the flange proportions on the ultimate shear strength of the experimental
specimens is examined in this section. In each of the three series of specimens cast in this
stage of work, the material properties, web geometry, reinforcing percentages and flange depth
were identical for each specimen. The enly variable in each series was the flange width. The
ultimate strength values obtained from the series are used to examine the effect of varying the

flange width of a T-beam on the ultimate sirength of this type of element.

Examination of the effect of variations in the flange depth requires comparison of
results between series. Since there are varying material properties between beam series, the
normalised concrete contribution is used in an ¢ffort to ensure that material property variations

do not affect the results.

5.4.1 Variation of Normalised Concrete Contribution With the Width Ratio for
Series 1 Specimens (dr=0.33)

As shown in Figure 5.4-1, .the ultimate strength of series 1 results show a sharp
increase in the normalised concrete contribution (24% in the average vesult) for a small
increase in the width ratio from byb,=1.0 to beb,=1.61. Beyond this, the gradient of the
increase in normalised concrete contribution decreases, and is fairly constant up to a width
ratio of byb.=4.43. Beyond this, the increase in the width ratio can be scen to have little

contribution to the normalised concrete contribution.

It is noted that the result corresponding to a width ratio of bby,=6.64 could not be
repeated, as testing of the first end damaged the shear span of the second end. The result that

is presented for the upper, average and lower results is that of the first end test only.

The width ratio at which the increase in ultimate shear strength ceases is br=4.43. This
corresponds to the change of failure mechanisins from beam shear to punching shear as

described above in Section 5.3.
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Figure 5.4-1 Normalised concrete contribution vs. width ratio for series | specimens

54.2 Variation of Normalise:f Concrete Contribution With the Width Ratio for
Series 2 Specimens (dr=0.25)

Figure 5.4-2 shows the variation of the normalised concrete contribution of series 2
specimens with the width ratio of the specimens. This figure shows a significant increase in
the nonnalised concrete contribution (81% in the average result) from a web ratio of bgby=1.0
(the rectangular beam) to b¢byw=2.21. The trend in the results from this point up to a web ratio
of byb,=4.43 is for a steady increase in normalised concrete contribution. The last two

average values suggest that no increase in concrete contribution is displayed after by'b,—4.43.

1 As for series one results, the width ratio at which the increase in ultimate shear strength

ceases is br=4.43. This corresponds to the change of failure mechanism from beam shear to

E punching shear as described above in Section 5.3,
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54.3 Variation of Normalised Concrete Contribution With the Width Ratio for
Series 3 Specimens (dr=0.17)

Figure 5.4-3 shows the variation of the normalised concrete contribution of series 3
specimens with the width ratio of the specimens. This figure shows variability in the
normalised concrete contribution (and hence shear strength) of the specimens with the flange
width. it can be noticed that the values of normalised concrete contribution for specimens
with width ratio 2.21 and 4.43 (B14 and B12 respectively) are lower than the values of the

specimen with smaller flange widths.
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Figure 5.4-2 Normalised concrete contribution vs. width ratio for series 2 specimens

The failure mechanisms were such that all specimens with the exception of those with
width ratio 4.43 failed in beam shear. The latter specimen failed by exhibiting the punching
shear mechanism. These results suggest that the presence and increase in width of the thin
flange in this series of specimens did not provide the significant increases observed in the

above two series.

Section 3.2 outlined that the critical diagonal web crack in specimens with width ratio
of 4.43 and 2.2] (Specimens B12 and B14 respectively) intersected only one stirrup above the

level of the top of the flexural reinforcing. A second stirrup was not intersected in these two
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specimens, but the critical shear crack did pass very close to this stirrup. For comparison
P_ J purpos2s, the average values of concrete contribution with one stirrup and two stirrups are
' ’ prescrtzd in Figure 5.4-4,
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Figure 5.4-3 Normalised concrete contribution vs. width ratio for series 3 specimens
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Figure 5.4-4 Comparison of average concrete contribution for series 3 with 1 and 2 stirrups

considered effective for Specimens B12 and B14
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It can be seen that a significant difference in the concrete contribution is produced
when only one stirrup is considered effective in this series. It is thought that a significant
contribution by the second stirrup would be made to the shear strength, as the critical crack
was so close to the stirrup. The true trend in normalised concrete contribution would therefore
be closer to the lower of the two lines. It is noted in general an upward trend in the normalised
concrete contribution is observed when combining these average results. For the purpose of
comparison with the two other beam series, the normalised concrete contribution with two

stirrups considered effective will be used.

To further identify the flange contribution to the shear strength in this series, the values
of shear strength obtained are presented in Figure 5.4-5 below against width ratio. These are
the values shown in Table 5.2-1. This figure shows the presence and increasing width of the
thin flange in this series is not making the significant contribution as seen in series 1 and series
2 specimens. This would further suggest that the flange contribution would have remained

fairly constant throughout this series.
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Figure 5.4-5 Ultimate strength vs. width ratio for series 3 specimens
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5.4.4 Variation of the Normalised Concrete Contribution With the Depth Ratio

To determine the effect of the variation of the depth ratio (dy/d,), the average results of
the normalised concrete contribution against width ratio are presented in Figure 5.4-6. Series
1 (did,=0.33) and series 2 (d¢/d,=0.25) results display a very similar trend in this comparison
until the width ratio of byb,=4.43, or the onset of the punching mechanism. This suggests that
the increase in ultimate shear strength of specimens failing by a beam shear mechanism in
these two sertes is comparable. As aforementioned, sertes 3 results show no consistent
variation in the normalised concrete contribution with the width ratio. It is concluded here that
there is a minimum value of flange depth that is required for the flange to contribute to the
resistance of shear. A series of specimens with a flange depth less than this will display no
increase in normalised concrete contribution, and hence shear resistance, with an increase in
flange width. For spectmens that fail in beam shear, any change in width for a flange deeper
than this critical value, will yield a similar change in ultimate strength results (and in

normalised concrete contribution) regardless of the flange depth.
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Figure 5.4-6 Average normalised concrete contribution comparison
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s5 The Effect of Lateral Reinforcing Bars on the Ultimate Shear
Strength

As discussed in Chapter 3, lateral reinforcing bars that were placed continuously
throughout the width of the flange across the web region were included in series 1, and on one
end of the series 3 specimens. This section will discuss what effect the inclusion of this
reinforcing had on the ultimate strength of the specimens to which they were provided.
Firsily, the results of series 3 experiments will be discussed, and then anomalies in the series |

and series 2 experimental results will be discussed.

5.5.1 Effect of Lateral Reinforcing on Series 3 Ultimate Strength Results

With reference to Figure 5.4-3, the results of ultimate strength for specimens of this
series only show a large variation between the shear at ultimate strength for the two end tests
for spectimens with br=1.0 and br=4.43. The former of these two is the specimen of
rectangular cross section, the variation in these results will not discussed in this section as 1t is
of different geometry to those which are being considered. The lower results in this graph are

from the second end test, and the upper results are from the first end test.

In specimens of T-beam geometry, the specimens which display the beam shear failure
mechanism do not display a significant scatter in the ultimate strength results, but it is only the
specimen with width ratto br=4.43 that exhibits a significant difference in the shear at vitimate

strength. This specimen failed by displaying a punching shear mechanism,

5.5.2 Anomalies in Series 1 and Series 2 Results

Referring to Figure 5.4-6, it can be seen that the difference in average shear strength
between series 1 and series 2 specimens is not significant where the beam shear mechanism
causes failure. Where the punching shear mechanism brings about failure of the specimens
(width ratios of br=4.43 and 6.64), it can be scen that there is a significant difference between

the average ultimate strengths of series 1 and series 2 specimens.
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The specimens in series 2 contain lateral reinforcing continuous across the width of the
flange, and the specimens of series 1 do not. It is suggested here that the influence of the
lateral reinforcing is tc increase the strength of the specimens only when they fail with a

punching shear mechanism,

5.6 Conclusions from Stage 1 Experimental Work

The above is a presentation of trends in the ncrmalised concrete contribution results
calculated from the ultimate shear strength for stage 1 experimental work. Normalised
concrete contribution results of each series have been presented together to determine the
variations in shear strength that arises from an increasing flange width. To ascertain the effect
of increasing the flange depth, the average normalised concrete contribution for cach series

was compared.

Several facets of the behaviour of this type of specimen as well as the trend in ultimate
strength of this type of specimen can be concluded from this stage of experimental work, and

normalisation procedure. These are outlined below.

1. A shear critical point loaded RC T-beam that is web reinforced will fail by either
one of two mechanisms. The first is a beam shear mechanism in which a diagonai
tension crack continues from the web and into the flange. The second is a
punching shear mechanism whereby the applied load punches through the flange

and the web separates from the flange.

2. The effectiveness of the ratio of flange width to web width (bfbw) on the shear
strength of a point loaded RC T-beam is dependent on the ratio of flange depth to
the effective depth for shear (d¢'d,).

3. The flange width is the most significant parameter in increasing the shear strength

of a T-bea:n specimen. In the results presented in this chapter, the flange depth has

an insignificant effect on the shear strength of a T-beam.
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4. The flange width appears only to have discernable influence on the shear strength

of a T-beam when the depth ratio of the specimen is above a certain value. In the

three series presented above, this depth ration is dr=0.16.

The upper bound to the beam shear failure mechanism is provided by the punching
capacity of the flange. Once the bgb. raiio is large enough the punching shear
mechanism will occur, and the load point will punch through the flange. The
shearing resistance of the specimen is suggested to be the sum of the punching
capacity of the flange in addition to the shearing capacity of the web. Any further

increase in the flange width will not produce an increase in the shear resistance.

If the flange of a specimen is wide enough to allow a punching shear failure fo
occur, the presence of reinforcing running laterally across the width of the flange
(continuous over the web) will increase the punching resistance of the flange,

hence increasing the overall capacity of the specimen.
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Chapter 6 VALIDATION OF THE

EXPERIMENTAL ANALYSIS
METHOD

6.1 Introduction

The instrumentation system described in Chapter 3 outlines the use of different types
of strain gauges to measure strains at different points throughout the width and depth of the
flange of an RC T-beam specimen. The intent of measuring the strains at the locattons

discussed is to calculate stresses, forces, and lever arms for equilibrium considerations.

The use of this instrumentation is prone to many problems. Orthogonal alignment of
the gauge in all directions is difficuit to achieve, any deviation from the orthogonal direction
would result in a reading that is not the strain required. The misalignment of the gauges could
be through placing, but also, the location of the embedded gauges could possibly be disturbed

through vibration of the concrete after pouring.

The embedded gauges are coated with a material that has a roughened surface. An
accurate reading of strain from this type of gauge requires adhesion of the placed concrete to
this roughened surface. [t can be easily envisaged that vibration in the vicinity of the gauge
may not achieve the required adhesion between the concrete and the gauge, perhaps voids may

form around the gauge resulting in a strain reading that does not correspond to the strain in the

concrete at that location.
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It can be seen from Chapter 3 that the strain gauges that were used had slightly
different lengths. The surface gauges were approximately 40mim shorter than those that were
embedded with in the concrete. The measurcment of strain that is recorded from a gauge can
be thought of as an ‘average’ of the measurement over the entire length of the gauge.
Although this is not entirely accurate, this analogy illustrates that the difference in lengths of

the gauges may have an effect on the reading that is output.

The final concern that arises in the implementation of the procedure i. Chapter 3 is the
capability of the constitutive relations of the MCFT that are to be implemented to calculate
stresses from the strain distributions that were obtained from the experiments. Although these
relations have been formulated from experimental work, the combination of the compressive
and tensile response in these relationships has not been proven on an experimental basis in any

previous work.

For the above reasons, it was decided that a procedure for validation of the
instrumentation system be developed, and the system tested. This chapter describes the
validation procedure used as well as the resuits that were obtained from the validation

experiments.

62  Outline of Validation Procedure

To validate the instrumentation system described in Chapter 3, an identical system to
that applied to T-beam flanges was applied to two small stabs prior to the experiments on T-
beams being performed. Two slabs were used for validation in order to determine the level of
confidence that can be had in the system given the potential sources of experimental error in

the system cutlined above.

Application of this system to a slab allows for determination of the strain distribution
throughout the depth and width of the specimens. The measurement of the distribution
throughout the depth allows for calculation of stress distributions, therefore sectional forces

and lever arms, and hence total sectional bending moments and shearing forces.
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Validation of the instrumentation system and associated analyrical procedure can be
achicved through analysis of the results that are obtained from this calculation procedure. The
comparison of sectional tension and compression forces calculated from measured strains and
MCFT relations indicate two things, the accuracy of the measured strains, as well as the ability
of the relations in the MCFT to produce accurate restlts of the axial sectional forces acting on
the section of the slab. Comparison of the sectional bending moments calculated using this
procedure with equilibrium bending moments indicate the accuracy of the calculation of the
lever arm. The results of shear force give an indication of the level of confidence that can be
adopted in the system, as well as the accuracy that can be expected when this instrumentation

system is applied to the flange of the T-beams.

6.3  Specimen Details

To ensure that the validation produced results that could be compared with known
equilibrium values, it was required that the specimens tested had two characteristics. Firstly, a
minimum amount of reinforcement ensures that minimum instrumentation is required to
determine sectional forces using this procedure. Secondly, the specimens were required to be

beam type specimens to ensure that sectional actions could be calculated using equilibrium.

This section outlines firstly the specimens that were designed, as well as the
instrumentation system that was adopted. The instrumentation system is based on that
outlined for use in T-beam flanges, but slight adaptaiions were required to suit the geometry of

the specimens tested in this validation exercise.

6.3.1 Specimen Geometry and Loading

To ensure that the specimens were of simple nature as required in this procedure, small
stabs were used. These were provided only with flexural tension reinforcing. The details of
these specimens are illustrated in Figure 6.3-1 - Figure 6.3-2. Both of these specimens were
tested under three point loading. The load P in Figure 6.3-2 is a line load over the entire width

of the slab. The load P was applied via a controlled displacement of 0.0 1mm/sec.
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The ultimate strength of the specimens in flexure was estimated using Australian
Standard AS3600 (2001), and the shear capacity by the MCFT. The estimated ultimate loads
were P=59kN for shear failure, and P=79kN for flexural failure.
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Figure 6.3-1 Plan of specimens S1 and S2
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Figure 6.3-2 Elevation of specimen geometry and loading

6.3.2 Specimen Instrumentaiion

To keep the instrumentation in this series similar to that intended for use in the T-beam
flanges, strain gauging was applied at two sections along the span of the slab. At each these
cross sections, three gauges were placed on the top surface, three at the centre of depth, and
three on the underside of the slab. Figure 6.3-3 - Figure 6.3-4 illustrate the layout of the strain

gauges.

Each row of gauges was placed directly underneath the above layer. This ensured that
a profile of strain was measured at three points across the width and two points along the span
and three locations throughout the depth. The measurement of strain at two locations along

the length of the span allows use of dual section analysis to calculate shearing forces.
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The reinforcing bars were not instrumented. This was as a result of concern of the influence
on the concrete strain resuits arising from loss of bond in the region of the reinforcing strain
gauge. Strains in the reinforcing bars were calculated using concrete strains as discussed

below. These calculations assume a perfect bond between the concrete and reinforcing bar.

The gauges positioned at the centre of the concrete cross section were concrete
embedment gauges. These are long gauges cast into an epoxy material that had a roughened
surface to allow adhesion to the surrounding concrete. The insulating material ensures that the
gauge is waterproof. The gauge coating had a Youngs Modulus of 2750MPa. This is much

lower than that of concrete and ensures that the gauge does not causc a local stiffening effect.
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Figure 6.3-3 Plan of surface gauging arrangement
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Figure 6.3-4 Elevation of strain gauging arrangement
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6.4 Analytical Considerations for Data Analysis

The pro..cdure prescribed for the T-beam flanges needs to be implemented here for the
calculation of sectional actions for th= slab specimens used in this validation procedure. This
adaptation of the system to these slabs introduces some unique aspects that require
consideration in this formulation. The most critical of these is the introduction of significant
tension forces in the flexural tension reinforcing. This section discusses the above issue of
calculating reinforcement tension forces, as well as the implementation of the MCFT and

equilibrium relations to calculate sectional actions for the slab specimens.

64.1 Extrapolation of Strains

Using the Bernoulli assumption that plane sections remain plane after bending, a linear
strain gradiznt can be awvswined throughout the depth of the section. The curvature (strain
gradient throughout the depth) was calculated by considering the difference in strain of the top
surface (compression) gauges, and the gauges placed at mid depth. The strain in the
reinforcing bar was found by simply extrapolating this gradient to the bar and calculating the

strain Lased on tae strain on the top surface.

Extrapelation of top surface strain and strain at mid depth was also used to calculate
the strain on the underside of the slab. This was due to the fact that strain results on the
underside of the slab were unduly affected by the presence of cracking. Results from the
experiments that demonsirate this are shown in Section 6.5.2. Validation of the assumption of
a linear elastic strain gradient throughout the test (until failure of gauge on the soffit of the

slab) is presented in Section 6.6.

6.4.2 Calculation of Concrete Stresses From Strains

As previously stated, the constitutive relations of MCFT were used to transform the
strain distributions measured from the experiments into stress distributions which can be used
to calculate sectional actions. These relations are re-iterated in Equations 6.4.1 -~ 6.4.2.

Equation 6.4.2 accounts for tension stiffening of the concrete between cracks. Owing to the
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long length of strain gauge required for concrete, inclusion of tension stiffening was
considered appropriate in order to calculate the average stress from the average strain

measured over the length of the gauge.

In these equations, the nomenclature used in Chapier 3 ts adopted here. The second
part of the compression response equation shows the relations to be used for calculating the
response after the strain corresponding to the softened response. For the purpose of
calculation of the stress distribution, the tension strain on the bottom surface of the slab was
evaluated using the strain gradient calculated by the top surface and mid depth gauges using

the same method as for the reinforcing bar.

6.4.1
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6.4.3 Calculation of Resultant Forces From Stress Distribution

Figure 6.4-1 shows a schematic illustration of the strain, stress and force profiles at a
section of the slab. This figure is rcpresentative of the distribution obtained from the
experiment for these two specimens. The difference in the strains measured for these
specimens than those outlined in Chapter 3 was that a much higher levels of both tension and
compression strains were reached in the specimen. These significant values of strain were
well beyond the values of those for which linear interpolation was used to calculate force in

the formulation in Chapter 3.
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From the stress distributions calculated above, the resultant tension and compression

R

forces acting on each section where the gauging is applied can be calculated via integration of

e Aot T

the MCFT relations to the neutral axis. The relationships used in the implementation of this

procedure are shown below in Equations 6.4.3 - 6.4.5.
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The lever arm of the forces above was found by calculating the centre of area of the
stress distribution in the vertical direction. The formulations used for this (as calculated from

the top surface of the specimen) are given below in Equations 6.4.6 - 6.4.8.
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As discussed in Section 6.4.1, the reinforcing strains were calculated by interpolating
the strain gradient obtained from top surface and embedded gauges. The resultant tension
force Tr is simply calculated from this, and the location of this was measured before pouring

of concrete for these specimens.

6.4.4 Calculation of Sectional Actions

As strain gauges were positioned at two sections along the span, calculation of the sectional
forces at these two sections was enabled. A complete check of equilibrium, including the use
of dual section analysis to calculate the shearing force was undertaken. Figure 6.4-2 shows a
free body diagram of the fegion enclosed by the two sections to which the instruinentation was
applied. The length b shown in this figure was 120mm. This was controlled by the length of

the embedment gauges.

Sectional bending moments (M, and M3 in the above figure) were calculated by summation of

moments about the line of action of the compression force. This is illustrated as point X in
Figure 6.4-2.

To calculate the shearing force, it is firsily assumed that the self weight of the slab over
the region being considered is negligible. The magnitude of the sectional shearing force based
on this assumption was calculated using dual section analysis. That is, rotational equilibrium

of the region above (which includes both sections) was considered by summation of moments
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about point A. The resulting formulation of the equation for shearing force is shown

Equation 6.4.9.
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Figure 6.4-2 Free body of region enclosed by strain gauges
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6.5 Results From the Experiments

Apart from the strain measurements from the instrumentation system outlined above,
measurements of the load and midspan displacement were also recorded throughout the

experiment. This section discusses some of the trends in these results that are applicable for

b

the following discussion.

The strains that are to be discussed from hereon are the average strain for each row of
gauges. That is, the strain on the top surface at section | is the average of the strain recorded

for the three gauges used over the width. This was required as one of embedded strain gauges

was found to be faulty at the time of testing.
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6.5.1 Ultimate Load

Table 6.5-1 shows the ultimate loads of slabs S1 and S2. It also describes the failure
mechanism observed at the ultimate load. The result of ultimate strength is almost identical in
each specimen, but the failure mechanism displayed at the ultimate load was different.
Although specimen S1 did exhibit a crushing of concrete on the top surface, diagonal shear
cracks were present at the ultimate load. This indicates that formation of the shear mechanism

was underway when the slab failed in flexural compression.

Table 6.5-1 Ultimate loads and failure mechanisms of specimens

Specimen | Ultimate Load Failure Mechanism
(kN)
Slab Sl 69.8 Flexural compression
Slab §2 69.3 Shear

The crushing of the concrete on the surface of siab S1 associated with the flexural
compression failure influenced the top surface strain measurement. This is evident in the

strain gauge results shown in the following section.

6.5.2 Results From Strain Gauges

Figure 6.5-1 shows the results obtained from the average of the strain gauges across
the width at section |1 on Slab S1 at each location throughout the depth. Slab S2 displayed
very similar results for the gauges present at each section. Results discussed in this section are

for section 1 of Slab S1. Thesc are typical of the sectional response of all sections.

1t can be seen that at a level of applied load of approximately 63kN, the average
compressive strain response of the gauges on the top surface reaches the value of the crushing
stram of concrete (2200 pe) and begins to increase at a highly non uniform rate. This
corresponds to the flexural compression failure mechanism discussed in the proceeding

section.
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Figure 6.6-1 shows the variation of strain gradient throughout the loading history. This
indicates that the strain gradient in the lower half of the slab becomes greater than that of the
top layer as the load increases beyond SOkN. This increase with load illustrates that as

cracking becomes more excessive, the strain on the bottom is over predicted according to

Bernoulli theory.

_________________ -

. mecofﬁaplh_--_-i
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4\ |
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Figure 6.5-1 Average concrete strains produced at the three layers of gauging on section 1 of
Stab Si

One other feature of this figure is the linearity of the strain gradient until the level of
load at which cracking influences results. This validates the assumption in Section 6.4.1 that a
Bernoulli strain distribution is present within the system. It also instils a level of confidence in

the instrumentation system to provide compatible resuits throughout the depth of the

specimen,

6.6 Results of Calculations Using Prescribed Analytical Procedure

The above results show a linear distribution of the strain throughout the loading history
of the slabs, with the exception of the latter loading stages where cracking has excessive
influence on the strain on the bottom surface of the slabs. It has been aforementioned that the

above fact influences the decision to use only the strains produced from the two layers of

119

e n e _ A

L e et tp L m et iarmar Ll ln




o o g L o Tt e TR A
T o S WM G TP B P GV VR T SR R TP i 0o LT AP b A ¥ 1

LE i e o i

SRR )

THAS TR

{2055

i
s

AR b b A FmiSeich

S

i

i H:,F;

5 4

gauges (top surface and mid depth), coupled with Bemoulli’s assumption of a linear strain

distribution. This assumption is used to apply the results obtained from the strain gauges to

check sectional equilibrium.

-2000  -1000 0 1000 be) 2000 3000 4000 5000

Distznice from top surface
(i)

e P=10k N —e— P=20kN - P=30kN semaBbmee P=40kN
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Figure 6.6-1  Varation of strain distribution of section 1 on Slab S} throughout loading

history

In the results analysis given below, strain results between level of applied load of 10kN
and 63kN are considered. Between the levels of applied load of OkN and 10kN, the noise in
the system produced a large unrealistic variation in the values of sectional forces that have
been calculated. As has already been noted in Section 6.5, Slab S1 exhibited crushing on the
top surface near failure. This crushing was deemed to adversely affect the results of strain,
hence the calculated values of sectional actions at a level of applied load of 63kN. The results
from both specimens were only calculated to this point. 1t is noted that when this technique

was applied to the flange of T-beams, this was not required as tensile strains on the underside

of the flange were never high enough to fail the gauges.
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6.6.1 Results From the Calculation of Axial Forces

Figure 6.6-2 — 6.6.5 show the resuits of calculation of the sectional forces for each
specimen at both sections. The figures show that the increase in tension and compression
forces follows the same trend for each specimen throughout the duration of the loading and

that the actual values are very close.

Consider here that the error in these results can be quantified by considering the ratio
of the absolute values of the tension and compression forces. For the purpose of analysis in
this section, consideration will be given to the average value of this error term throughout the
loading history within the bounds considered, as well as value of this error term at the

maximum load that was considered (P=63kN).

6.6.1.1 Specimen Slab S1

The results of the calculation of the axial sectional forces for this specimen can be seen
in Figure 6.6-2 — 6.6.3. The average value of this error term within the bounds of load
considered for this specimen is 8% at section 1 and 23% at section 2. The value of this error
term for each of these sections at the maximum applied load considered for discussion
(P=63kN) is 7% for section 1 and 16% at section 2. The value of error indicates that the
values calculated for the tension and compression force are close at both sections throughout
the duration of loading. The plots of the sectional forces indicate that the trend in the variation

in these values throughout the duration of the loading is close.

6.6.1.2 Specimen Slab S2

The results of calculation of the axial sectional forces for specimen S2 can be seen in
Figure 6.6-4 — 6.6.5. The average value of this error term within the bounds of applied load
considered for specimen S1 is 20% at section 1 and 5% at section 2. The value of this error

term for each of these sections at the maximum load is 11% for section 1 and 1 1% at section 2.

These figures again illustrate that the calculation of the sectional forces using the

strains measured throughout the experiment coupled with the constitutive relations of the
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MCFT produce values of sectional force that are within a reasonable bounds of error. The
trend of the variation for these values throughout the loading history again illustrates an almost

identical development of the sectional tension and compression forces throughout the duratior

of the loading.
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6.6.2 Resuits From the Calculation of Sectional Bending Moments

Figure 6.6-6 — 6.6.9 show ccmparisons of the bending moments calculated using the
instrumentation and analytical technique under scrutiny with those calculated using

equilibrium consideration throughout the loading history considered.

It is clear from these figures that the bending moments caiculated from this technique
are in close agreement with those from equilibrium considerations. For the purpose of further
analysis of these results, the error considered for this action would be the ratio of bending
moment calculated from the instrumentation and analysis technique to the value calculated

from equilibrium. Again, the average of this error term throughout the loading duration

considered will be used for discussion here.

6.6.2.1 Specimen Slab S1

The results of calculation of the sectional bending moments for specimen S1 can be
seen in Figure 6.6-6 — 6.6.8. The average value of the error term within the bounds that are
being considered is 2% at section 1 and 9% at section 2. At the maximum load considered

(P=63kN), the e:ror is 2% at section 1 and 9% at section 2.

The trend of the variation of the bending moment throughout the loading history at
both sections is in close agreement with the linear trend obtained from equilibrium
considerations. The values and trend produced from the implementation of this procedure has

produced results of bending moment for this specimen that are in excellent agreement with

equilibrium values.

6.6.2.2 Specimen Slab S2

The results of calculation of the sectional bending moments for specimen S1 can be

seen m Figure 6.6-8 — 6.6.9. The average value of the error term within the bounds that are
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being considered is 21% at section 1 and 22% at section 2. At the maximum load considered

(P=63kN), the error is 1 1% at section 1 and 6% at section 2.

The trend of the variation of the bending moment throughout the loading history at
both sections is again in close agreement with the linear trend obtained from equilibrium
considerations. It is noted that the magnitude of the error has increased somewhat in the
calculation of these results for specimen S2. It is suggested that for this specimen, the

introduction of the lever arm into the analysis has magnified the error term for this specimen.

6.6.3 Results From the Calculation of Shear Force

Figure 6.6-10 — 6.6.11 show a comparison for both slabs of the shear force obtained
using dual section analysis to calculate shear force compared with the sectional shear force
obtained from equilibrium. Given the nature of the dual section analysis used to produce these
results, the potential error that is introdiced into these calculations from the combination of

error terms is very high. This is a result of the summation and multiplication of error terms.

In the analysis of these results, consider an error term similar to that used in the
analysis of the bending moment results. That is, the error is a ratie of the value calculated
using the procedure under scrutiny with the shear force calculated at the midpoint of that of

the body considered for dual sectional anaiysis.

The results for slab 1 show that the average error throughout the loading history
considered is 22% with the error at the load of 63kN being 16%. The trend of calculated
results does follow that of the equilibrivm results, but the accumulation of error that is

mtroduced in the implementation of dual sectional analysis is evident it thesc results.

The results for slab ! show that the average error tiiroughout the loading history
considered is 12% with the error at the load of 63kN being 16%. The trend of calculated
results is much closer for this specimen that those of speciivien St and provide a good estimate

of the shearing force at a section using this technique.
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Figure 6.6-8 Slab 2 bending moments on section 1 Figure 6.6-9 Slab 2 bending moments on secction 2
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Figure 6.6-1G Shear force on slab 1 from equilibrium and sectional analysis
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Figure 6.6-11 Shear force on slab 2 from equilibrium and sectional analysis

6.7 Discussion of Experimental Results

The above results indicate that equilibrium actions calculated at each section from the

application of the constitutive relations of the MCFT to the strain measurements obtained from
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the described technique of instrumentation compare reasonably well to those that are

calculated from equilibrium considerations.

This suggests two things. Firstly, if the calculation of sectional net axial force and
bending moments are correct, then the method of calculating individual forces and lever arms
are correct. This means that the application of Equations 6.4.1 - 6.4.2 are acceptable in the

calculation of concrete stresses from strains.

Secondly, for the constitutive relations to be correct in their application, the variable
within these relations (axial strain) must be correct. Since the strain on the top surface and at
mid depth were used, then it is true that these strains were measured satisfactorily by the
instrumentation technique, and that the application of Bernoulli’s assumption was an

acceptable means of estimating strain in the reinforcing, and on the bottom surface of the siab.

The results of the shear force show that the trend of the equilibrium shear is generally
followed throughout the loading duration considered. This dual section analysis procedure as
applied to the experimental results introduces many potential sources of error in multiplying
and adding esrors from all measured results. The technique can be seen to provide results that
are capable of producing trends of sectional shear that are consistent with those obtained from

equilibrium considerations, and within a r¢asonable error.

6.8 Conclusions From Validation Experiments

It can be seen from the results that have been presented that an acceptable correlation
between the sectional forces calculated from measured strains and equilibrium forces has been

achieved using the strain gauging technigue described, and constitutive relations of the MCFT.
Given the accuracy of the results that have been obtained from these experiments, the

following comments can be made on the issues that were raised in the introduction to this

chapter.
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The location of the gauges in the direction parallel to the span of the of the slab in
these experiments was achieved satisfactorily using avaiiable tools, and that vibration

of the concrete appeared not to misalign embedded gauges.

It appears that good adhesion between the embedded gauges and the concrete was
achieved, as the distribution of strain throughout the depth produced from this system
was linear until cracking on the tension surface of the specimen affected the gauge

reading.

The difference in length of the surface and embedded gauges has produced no
significant errors into the results. This is again obvious from the linearity of the strain
gradient throughout the depth until cracking affected the recorded measurements on

the gauge on the tension surface.

The constitutive relations of the MCFT have proven to produce axial forces on each
section that are comparable throughout. This suggests that the tension and

compression relations that have been applicd were compatible when applied to these

specimens.

Given that each of the issues that have been identified as potential sources of

introduction of error in this system have been proven to only effect results to a degree of error
that is tolerable, this instrumentation system and the accompanying analytical procedure are

deemed adequate in reproducing sectional actions for reinforced concrete elements.
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Chapter7 THE CONTRIBUTION OF THE
FLANGE TO THE L. TIMATE
SHEAR STRENGTH OF A POINT
LOADED RC T-BEAM

7.1 Introduction

The results of the experimentation of stage 2 are discussed in this chapter. These
results are discussed here based on the outcomes of the validation experiments discussed in
Chapter 6. In line with the findings of the previous chapter, it is accepted here that the results
of strain, and the caiculations of all forces, lever arms, and sectional actions resulting from the

strain distribution obtained experimentally are valid to discuss trends and relative proportions

of quantities.

The two specimens from stage two displayed different failure mechanisms at the
ultimate load. As a result of this, the discussion the results of the two specimens will be
undertaken individually. The calcul:ited quantities of shear lag, interface shear and the

sectional shear will be discussed.

Some reference is made to Appendix B and C. These appendices present a detailed
summary of the results of the instrumentation, including the distributions of strain, neutral
axis, and stress across the flange throughout the loading range considered. Although this
chapter attempts to remain independent of these appendices, they do provide information that

assists with the understanding of some of the aspects of the specimen behaviour outlined
below.
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Of the measured and calculated guantities discussed in this chapter, several of these are
sectional values (i.e. measured or calculated at the two sections to which instrumentation was
provided), and some are quantities that are assumed constant throughout the region
instrumented (such as the calculated shears). For the sectional quantities, the notation used in
Chapter 3 will be used to discuss the resuits. The two sections of instrumentation will again
be referred to as section A and section B. Figure 7.1-1 shows this notation for section labels.
Figure 7.1-2 revises the notation used in Chapter 3 to describe rows of gauging across the
width and positions throughout the depth of the flange at each section. This notation will be

used extensively throughout this chapter.

Instrumented region Section B Scction A §0aded Area

Figure 7.1-1 ldentification of Section A and Section B

Row Numbers
112]3] 4 Ilslé 7

A=t b~ —
L. 1| i1

Layer o
Layer 3

Figure 7.1-2 Notation used for location of flange blocks

7.2 Specimen B16 Analysis

This section presents the results of the overall behaviour of specimen B16, as well as

the results of the calculation of the shear lag, interface shear, and the sectional shear in the
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region of calculation discussed in Chapter 3. in the determination of the effect of the
development of the failure mechanism on the above results presented in this section, some
consideration of the longitudinal strain profiles throughout the width and depth of the flange of
the specimen. and the variation that they displaved throughout the duration of the loading
applied to the specimen was required.  These results are presented in Appendix B, Duce

reference is made to these results in the following discussion where appropriate.

7.2.1  Ultimate Strength and Failure Mechanisin

The mechanism displayed by specimen B16 at the ultimate load was a punching shear
mcchamsm. Figure 7.2-2 shows a photo of the failure mechanism, and Figure 7.2-2 shows the
foad deflection curve that was obtained from the experiment of this specimen.  On rcaching
peak load. the specimen exhibited a non-ductile response. The formation of the punching
shear mechanism was sudden. as was the resulting loss in load carryving capacity associated
with the development of this mechanism.  This failure mechanism was displayed at a peak
Joad of P,=212kN which corresponds to a peak apphied shear of V,=155.3kN,

| Lateral crack across top

Punching cone

R :
= Well developed - diagonal

T

Figure 7.2-1 Photo of B16 failure mechanism

Figure 7.2-2 shows the load deflection curve that was produced by this specimen.

“hree stages of the development of the failure mechanism are identifted on this plot. These
Three stages of the development of the tail } lentifted on this plot. Tl

R T T
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are identified to assist in the analysis of the results of the various shear forces that were

I e T e

calculated from the results of the instrumentation of this specimen.
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Figure 7.2-2 Specimen B16 Load Deflection Curve

i

Stage I ; This stage is bo-aded by a level of appiied load of 85kN and 91kN. At these
levels of load, two diagonal web cracks {nrmed. The crack that formed at a
level of applied load of 91kN was obscrved to forin part of the failure

mechanism at peak load.

Stage If : This stage is bounded by levels of applied load of 91kN and 10SkN. Within
these bounds of loads, the stirrups became effective followis g the formation -‘_ ,
3 of the two diagonal web cracks outlined above. It is thought that as this
stage develops the stirrups become effective after some slip along the surface --,:.".
occurred during Stage L. ﬁ
7
:- Stage 11l : This stage corresponds to an applied load of 140kN. Tigure B.2-3 in ';:1

Appendix B shows that it is at aroroximately at this level of applied load
that the rate of increase oV cor:pressive strain on the top suifa~e of the flange

reverses. This eventually: results in the development of a crack acros: the

top of the flange.
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Figure B.2-3 Appendix B also illustrates that the tensile strains on the top surface
displayed a magnitude corresnonding to that of the cracking strain of concrete at a level of
apptied lo~d of 170kN. This crack can oe seen i1 the Figure 7.2-1 of the failure mechanism.
It is noted that the failure mechanism exhibited is very similar to the idealisation presented by
Hoang (1997). This level of applied load marks a sudden small increase in the deflection of
the specimen as shown in the above figure. Throughout the remainder of this test, this crack
on the top surface of the flange, and that of the critical diagonal web crack developed, until the

peak load of 212kN when the cracks associated with the punching shear mechanism appeared.

7.2.2 Range of Calculation of Shear Forces

To ensure the accuracy of the results of calculations, checks of equilibrium were
performed where possible. Appendix D shows the details of these checks. These checked
sectional shear forces by summation of moments about a second point. Comparison of the
sectional shear force as calculated by summation of moments about two separate points shows
that equilibrium was only satisfied until a magnitude of applied load of 175kN. it has been
shown in Chapter 6 that strain gauge readings are in some cases not reliable afier the
formation of cracks, and it is suggested that the formation of the crack on the top surface

(which begins at approximately this load level) has influenced these readings enough to

influence the calculations of sectional shear.

Since all checks are not satisfied beyond a level of applied load of 175kN, the
discussion below only considers the calculation range of applied load of 0-175kN. All other

results are disregarded for the discussion of the calculated shears for this specimen.

7.2.3 Results of the Calculation of Shear Lag Forces

Figure 7.2-3 shows the distribution of shear lag forces at each row of instrumentation
at 20kN increments. Figure 7.2-4 show variations of the shear lag at each gauge location with

load throughout the loading range considered in this discussion (0-175kN), the individual plots
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of this figure correspond to one of the flange overhangs. The shear lag preseited in these

figures is a force calculated over the entire depth of the flange.

H""A’

The distribution across the width illustrated by Figure 7.2-3 indicates that in each

flange overhang, the maximum magnitude of the shear lag is at the location nearest to the

T i S e

flange, this magnitude decreases the further away from the flange the shear lag is calculated.

This figure also shows that the magnitude of the shear lag force is much higher in the right
g; . : : 3 1
¥ side flange overhang than that of the left side flange overhang. A uniform increase in this
trend can be seen ia this figure, with the exception of rows 1 and 2 on the left side flange
overhang. These decreased in magnitude of the duration of the last load increment considered.
Throughout all stages of the experiment, the shear lag in the right side flange overhang was
significantly greater than that in the left side flange overhang.
r;_.?

5

Shear Lag (kN)

4
Interface Location

—+—20kN  —a—40kN —a—60kN —@—80kN —e—100kN
~8— 120kN —a—140KN e~ 160kN ~~— 175kN

g

Figure 7.2-3 Shear lag distribution at 20kN load increments for specimen B16

The results shown in Figure 7.2-4 include the stages within the calculation range at

which components of the failure mechanism formed. Rows 3, 5, 6, and 7 display a change in

gradient of shear lag with applied load at a level of applied load just below that of the start of

Stage . This illustration shows that in Stage 1, an increase in gradient of the response of the

shear lag with applied load occurred at rows 1 and 2. Only show a small change in gradient of
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the response associated with the onset of the stirrup contribution at other rows. Rows 1 and 2
displayed a small reversal in the shear at a level of applied load approximately equal to that of
the end of this stage. At rows 3-7, the reversal of strains on the top of the flange at section B
at Stage 1l do not produce a discernable affect on the response of the shear lag. The gradient
of the response remains essentially constant after this has occurred. The response of the shear
lag at rows | and 2 to this strain reversal at section B appears to be a small reduction in

magnitude. This was also noted in the discussion of Figure 7.2-3.

[C——3 -Stage |l I i -Stagell —ee—me-— - Stage 3

Row7 Row 6 Row 5

¢ 5§ 10 15 20 26 30 35
Shear Lag Force (kN) Shear Lag Force (kN}

(a) Left side flange overhang (b) Right side flange overhang
Figure 7.2-4 Variations of Shear Lag with Applied Load calculated for Specimen B16

7.2.4 Resuits of the Calculation of Interface Shear Forces

The interface shear that acts between layer o and layer P is shown below in Figure
7.2-5 and Figure 7.2-6. The first of these figures shows the distribution across the width of the
flange in each overhang at increments of 20kN. Figure 7.2-6 shows the variation of the shear

lag force at each row throughout the duration of loading considered, as well as the stages of

development of the failure mechanism.

It can be seen from Figure 7.2-5 that the distribution of the interface shear force
throughout the width of the flange overhangs is essentially constant and of low magnitude
throughout until a level of load of 80kN, the load increment immediately preceding the

formation of the critical diagonal web crack. Beyond this level of load, the right side flange
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overhang carries a higher magnitude of the interface shear force after the formation of the
critical web crack. This is consistent with the distribution of the shear lag force.
Corresponding to this is the fact that the magnitude of the interface shear forces in the right
side flange overhang are significantly greater in the right side flange overhang than in the left
side flange overhang. It can also be seen in this figure that a significant increase in the

magnitude of the shear fag force occurs between the ranges of load of 140-160kN.

Interface Shear (kN)

4
Interface Location

——20kN ——40kN ——60kN ——-80kN —e— 100kN
08— 120kN —&— 140kN ¢ 160kN -——175kN

Figure 7.2-5 Distribution of interface shear throughout the width of the flange at 20kN

intervals for specimen B16

Figure 7.2-6 illustrates that the formation of the diagonal web cracks in Stage 1 initiates
an increase in gradient of the response of the interface shear with the applied load at all rows.
Stage 1I, however, produces a reversal in the gradient of the interface in Stage Il at rows 3 and
5. All other rows across the width of the specimen are not affected within Stage 1. The
reversal of strain on the top surface of the specimen at section B produces a large increase in
the magnitude and in the gradient of the interface shear response at the majority of rows across
the width of the flange. Beyond this level of applied load at Stage 111, the gradient of the
interface shear with the applied load increased significantly. This trend remained constant

until the caiculation procedure was terminated.
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Figure 7.2-6 Variation in interface shear with applied load as calculated for specimen B16

Figure 7.2-8 shows the variation of the percentage of shear force in the flange
(Ve Vapstica €xpressed as a percentage)} with the applied load. This figure shows the maximum
percentage of shear force in the flange is 27.5% that occurs at the maximum load considered
(P=175kN). This figure shows within Stage I, the proportion of the total sectional shear being
carried by the flange significantly increased. This corresponds to the level of applied load at
which the two diagonal cracks formed on the web. In Stage 1}, the contribution of the flange
decreased. This stage has been associated with the onset of stirrup effectiveness. The other
change in the trend shown in this figure occurred immediately after Stage IIl. A sudden
decrease in the magnitude of the gradient of the percentage of sectional shear resisted by the
flanges with applied load occurred. Stage Il corresponds to the level of applied load at which

the strains on the top surface at section B began to reverse.

It can be seen in Figure 7.2-8 that at a level of applied load of 10kN. the variations in
the results were significant, This is attributed to the electrical noise in the instrumentation
system at these low stages of load. It was considered that this noise was too significant for the
results below a level of applied load of 10kN to be reliable. Therefore, results analysis was

not considered until after a level of applied load of 10kN.
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Total Shear in Flange (kN)

Row Number

——20kN —o—40kN -—w—60kN ——80kN —e— 100kN
~—8— 120kN —gg— 140kN v~ 150kN —— 175kN
Figure 7.2-7 Dastribution of sectional shear throughout the width of the flange as calculated

for specimen B16

Figure 7.2-9 shows the distribution of sectional shear force across the width of the
flange as calculated in each the two layers of the flange considered. The behaviour of both
layers of the flange at all rows considered is identical to the behaviour of the flange throughout

the entire depth (shown in Figure 7.2-7). This graph also shows that the magnitude of the

sectional shear force that is carried in each layer is similar.

1.2.5 Flange Effectiveness of Specimen B16

As each component of the failure mechanism formed, the percentage of the total shear
force resisted by the flange increased. This illustrated in Figurc 7.2-8. This is a result of the
development of each stage of the failure mechanism requiring redistribution of the

longitudinal compression stresses to accommodate their formation.
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Figure 7.2-8 Variation of percentage of total sectional shear in flanges for specimen B16
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Layer o Shear (kN)
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Layer B Shear (kN)
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Row Row
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(a) Layer o (b) LayerP

Figure 7.2-9 Variation of shear in each layer at 20kN intervals for specimen Bl 6

The formation of the critical diagonal web crack at stage 1, a significant relocation of
the neutral axis across the width of the flange at section A. This can be seen in Figure B.3-1 in ]
Appendix B. Following the initiation of this crack, the neutral axis peneirated deep into the
web.  The longitudinal stress distribution throughout the width of the specimen remained
essentially constant, with the magnitude in the flange overhangs and the web being close to

equal (again, refer Figure B.3-1 in Appendix B). Since the depth of the neutral axis decreased
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in the web, and the compression stress remained constant throughout the width of the
specimen, it is suggested that the specimen ‘shed’ compressive force into the flanges

following the formation of the critical diagonal web crack.

This is reiterated in the results of the shear lag shown in Figure 7.2-4. It is through this
action of shear lag that the compression force is ‘transported’ form the web to the flange. The
significant change in the gradient of the shear lag with applied load shown in Figure 7.2-4 is in
the vicinity of Stage | that corresponds to formation of the critical web crack. This increase in
shear lag not only shows this redistribution across the width of the flange, but as a result of the
dependence of this quantity on the difference in compression forces between sections, this
increase in gradient signifies an increase in the difference in net compression force acting on

the flanges between the section A and B.

The onset of the stirrup effectiveness marked a significant decrease in the interface
shear at rows 3 and 5 (shown in Figure 7.2-6), a significant increase in the gradient of the
shear lag with the applied load (shown in Figure 7.2-4), and a slight decrease in the magnitude
of the percentage of shear resisted by the flanges (shown in Figure 7.2-8). These phenomena
occurred within Stage 1], indicating a gradual onset of stirrup effectiveness, or a lag in the full
response of the stirrups. This lag is associated with slip between the concrete and the plain
round bars that were used for stirrups. Once the stinups were fully effective (when the slip
between concrete and stirrups ceased), the percentage of sectional shear resisted by the flanges
increased, but the rate at which this increased with applied load was not as high as that during
the formation of the diagonal web cracks in Stage I. This is a result of the greater web shear

stiffness with the full effect of the stirrups. This is illustrated in Figure 7.2-8.

The formation of the tensile crack on the top surface of the flange started with a
reversal of strain recorded by the gauges at section B at a load level of P=140kN. This is
outlined in the discussion in Appendix B. The discussion in this appendix also shows that the
compression strains are transferred downward throughout the depth of the flange beyond this
level of applied load. This is required of sectional equilibrium to ensure that the magnitude of

the total compression force at section B equals the magnitude of the tension force at this

section.
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Corresponding to this, the magnitude of the interface shear can be seen 1o have
significantly increased following this redistribution. 1t is through this action that the
compression forces are ‘transported’ throughout the depth of the flange following the reversal
of strains on the top of the flange. Through equilibrium between section A and B, the
interface shear is dependant on the difference in compression force acting on a flange block, as
well as the difference in shear lag acting on either side of the block. The increase in gradient
of the shear lag was relatively insignificant following the load level of 140kN in comparison
to the interface shear. The difference in compression forces acting on the flange blocks within

this load level was high resulting in a large gradient of the interface shear.

Through equilibrium, the sectional shear was calculated using the shear lag, interface
shear, and the compression force acting on each side of a flange block. Through the
equilibrium relations, an increase in the rate of increase of the percentage of sectional shear
resisted by the flange was found to occur at Stage 111, and a subsequent increase in the gradient
of this quantity with applied load was found to occur uatil the upper limit of the load range

considered.

The formation of the cracks that defined the failure surface of this specimen
throughout the duration of loading required redistributions of longitudinal strain, hence
stresses throughout the width and depth of the flange to accommodate their development. The
shear lag and interface shear were the actions through which the required redistributions took
place. The change in flange compression gradient (between the sections considered) that
resulted from these redistributions that occurred to accommodate the failure mechanism,
increased significantly. [t is the increase in compression gradient, and compression forces
acting on the flange that result in the greater flange effectiveness for this specimen until the

maximum loading value considered.
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7.3  Specimen B17 Analysis

This section presents the results of the overall behaviour of specimen Bi7, as well as
the results of the calculation of the shear lag, interface shear, and the sectional shear in the
stage of calculation discussed in Chapter 3. In the determination of the effect of the formation
of components of the failure mechanism on the results presented in this seciion, some
consideration of the longitudinal strain profiles throughout the width and depth of the flange of
the specimen, and the variation that they displayed throughout the duration of the loading
applied to the specimen is required. These results are presented in Appendix C, due reference

is made to these results in the following discussion where appropriate.

7.3.1 Ultimate Strength and Failure Mechanism

Specimen B17 exhibited a ductile flexural compression failure. Figure 7.3-2 shows a
photo of the failure mechanism and Figure 7.3-2 shows the load deflection curve that was
obtained from the experiment from this specimen. This curve shows that on reaching the peak
load, the specimen exhibited very large plastic deflections. On exhausting all load carrying
capacity, the concrete on the top surface of the specimen crushed, and the strength of the
specimen decrcased sharply. The peak load reached by the specimen was P,=238kN as
indicated on the figure. This corresponded to a sectional shear at the peak load of
Vu=174.4kN.

Figure 7.3-2 defines four stages on the load deflection curve. These correspond to key
magnitudes of applied load at which stages of the failure mechanism formed throughout the

experiment. These are categorised below.

Stage 1 : This stage is bounded by a level of applied load of 78kN and 86kN. At each
of these levels of load, a diagonal web cracks formed. Neither of these
cracks became part of the shear mechanism that formed. It is noted that this

mechanism was not exhausted at the end of the experiment.
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Figure 7.3-2  Specimen B17 load deflection curve

Stage 11 This stage is bounded by a level of applied load of 120kN and 140kN.

Between these levels of applied load. the gradient of increase in strain on the

underside of the fNlange reversed.  Prior to this level of applied load. the
straing on these rows increased in tensile magnitude, within the load level, a
redistribution of strain prevailed that saw  this trend reverse. Thas s

associated with the initiation of a shear compression that did not fully
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develop throughout the experiment, as the flexural capacity was not high
enough to allow this to occur. This was evident from examination of the
longitudinal strain gradients. An analysis of these results is presented in
Section C.2.1 in Appendix C. A small discontinuity in the load defléction
curve is evident within this stage.

Stage HI : This stage corresponds to an applied load of 180kN at which the neutral axis
at section B moved to é location outside the underside of the flange at all
rows in the flange overhangs. At the location of the centre of width of the
web, the neutral axis remained within the depth of the flanges at all levels of
applied load. A detailed analysis of the distribution of the neutral axis depth
across the width of the specimen is given in Section C.3 Appendix C.

Stage 1V : This stage corresponds to the level of applied load at which a significant
diagonal web crack formed (212kN). Aithough this specimen failed in
flexural compression, the formation of this crack coupled with the strain
distribution formed in Stage Il developed a shear compression mechanism.
This mechanism did not develop to cause failure. A small discontinuity of

the load deflection curve occurred at this level of load.

Although Stage 11 produced a discortinuity in the load deflection curve, there was no
physical attribute in the test that could be attributed to the formation of this. Stage 11I does not
cause any change to the load deflection curve, but it will become clear throughout the
discussion in this chapter that the movement of the neutral axis outside of the flange
overhangs produced significant influence on the effectiveness of the flange in the resistance of
the applied sectional shear. As stated in their classifications, these reason for changes in the
load deflection curve and flange effectiveness plots at these levels of applied load were
deduced from the longitudinal strain distributions. A discussion of this is presented in

Appendix C.

7.3.2 Range of Calculation of Shear Forces

The checks on tae calculations of the shear forces briefly described in Section 7.2.2

were also undertaken for specimen B17. These can be seen in Appendix D. The checks of the

145

3
5
t
R
i




interface shear, and the sectional shear force calculated using the results of the iongitudinal
gauges indicated that the calculations satisfied equilibrium checks throughout the entire range
of ioading. Therefore, the results of the analysis of the quantities of shear lag, interface shear,
and sectional shear are considered up to the value of peak load of 237.8kN illustrated in Figure
7.3-2.

7.3.3 Results of the Calculation of Shear Lag Forces

Figure 7.3-3 - 7.3-3 show the variz+*~n of the shear lag force displayed by specimen
B17 throughout the duration of applied .+ -, zure 7.3-3 shows the variation of the shear lag
force at each instrumented location across the width of the flange of the specimen at 20kN
intervals, and Figure 7.3-4 shows the variation of the shear lag with applied load displayed by
the specimen at each of the locations to which instrumentation was applied. Each part of the
latter figure shows the variation of shear lag in one of the flange overhangs. The Figure 7.3-4
also shows the stages and points that were significant in the formation of the failure

mechanism as outlined in Section 7.3.1 above,

The results of the distribution of the shear lag across the width of the flange shown in
Figure 7.3-3 indicate that the profile across the width of the flange remained essentially
constant throughout the duration of foading. This distribution always displayed a maximum
magnitude at the rows closest to the flange-web interface, and these values decreased as the
distance from the flange-web interface increased. This distribution showed an increasing

trend with the load increments illustrated.

Figure 7.3-4 shows that the shear lag as calculated at all instrumented rows is affected
by the formation of diagonal web cracks in Stage I. This is evident from the change in
gradient of the shear lag with applied load that occurs at all rows within this stage. The
initiation of the shear compression mechanism that occurs in Stage 1l causes a shift in the
shear lag distribution at rows 1, 2, 3, 6 and 7. Aﬁer this shift, there is a change in gradient of
the shear lag distribution at these rows with the exception of row 3. The gradient of the shear
lag with applied load at rows 3 and 5 is largely unaffected by the redistribution, as is the
magnitude of the shear lag at row 5.
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Figure 7.3-3 Shear lag distribution at 20kN increments for specimen B17
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Figure 7.3-4 Vanations of shear lag with applied load for specimen B17

It can also be seen from these figures that the appearance of the diagonal web crack at
Stage 1V (a level of applied load of 212kN) produces some variations in the response of the
shear lag. The gradient of the response with the applied load remains essentially constant at
each gauge location corresponding to the formation of this crack, but some discontinuity in the

response can be seen in the figures.
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7.3.4 Results of the Calculation of Interface Shear Forces.

The results of the calculation of the interface shear that acts between layer « and layer
B are shown below in Figure 7.3-5 — 7.3-5. The first of these figures shows the distribution of
the calculated value of interface shear across the width of the flange at each gauge location in
the flange overhangs. Figure 7.3-6 show the variation of the interface shear with the applied
load at each gauge location. Each part of the latter figure shows results in one flange
overhang. Figure 7.3-6 also shows the stages that were significant in the formation of the

failure mechanism as outlined in Section 7.3.1 above.

Figure 7.3-5 shows that at all rows in the left side flange overhang, the distribution of
the interface shear throughout the width remained essentially constant across the width of the
flange. There are some small variations in the value of interface shear that occurred in this
overhang at some load levels, but thesc considered insignificant in this discussion given the
level of error that may be produced in the results. The right side flange overhang also shows
an even distribution of the interface shear force at each row at low levels of applied load. Ata
level of applied load of 120kN a significant change in the distribution of the interface shear
occurs in this overhang. Beyond this level of load, the value of the interface shear at the row
nearest the flange-web interface decreases slightly moves to became a local nvinimum in this
overhang, and remained so for the remainder of the loading history. The general trend at the
remaining two rows is for the magnitude of the interiace shear to increase with distance from

the flange-web interface.

Figure 7.3-6 shows that this specimen displayed a very complex response of the
interface shear to the formation of the components of the mechanism that developed
throughout the loading history. It is evident from the longitudinal strain profiles that tensile
stresses in the web at the level of the underside of the flange were at values equivalent to the
cracking strain on concrete at levels of applied load of approximately SOKN. As can be
observed from the figure below, all rows experienced a significant increase in the gradient of
the interface shear with applied load resulting from the development of these cracking strains,
The formation of the diagonal web cracks in Stage | can be seen to have decreased this

gradient a small amount in the rows on the left side flange overhang, but had very little effect
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on the rows on the right side flange overhang. Stage 11 produced a reversal in the gradient of
interface shear with applicd load at all rows in the lefl side flange overhang, and also at row 5.
Interface shear values at rows 6 and 7 locally increased in magnitude as a result of the
redistributions in Stage 1I. The gradients at all rows displayed at the end of Stage Il can be
seen to have reverted back the value that they were prior to Stage 11. The appearance of the
critical diagonal web crack at Stage 1V caused a local increase in magnitude of the interface
shear at all rows. The gradient of the interface shear with applied load displayed by all rows

following the formation of this crack remained essentizlly constant afier this shift.

7.3.5 Results of the Calculation of Sectional Shear Forces

Figure 7.3-7 shows the distribution of sectional shear forces calculated throughout the
entire depth of the flange at each row in the flange overhangs. These resuits show a
distribution that was essentially constant distribution across the width of the flange until a
level of applied load of 120kN. Beyond this applied load, the specimen appears to have
redistributed more shear force into the flange overhangs, resuiting in a magnitude of shear at
the in the flange blocks closest to the web being a minimum in both overhangs, and the
magnitude increasing as the distance from this interface increases. This distribution remained
essentially constant throughout the test on this specimen. An increase can be seen at each row
with the increasing load for the most of the experiment. This is not the case at the increment

of 120kN, and in the right side flange over hang at a level of applied load of 237.8kN.

Figure 7.3-8 shows the variation of the percentage of total shear force in the flanges
(Vi Vappiica) with the level of applied load. The maximum contribution of the flange to the
resistance of the applied sectional shear occurred at the peak load. This corresponded to a
percentage of the sectional shear force resisted by the flanges of 24.0%. Line A on this figure
represents the value of applied load which is the lower bound of applied load at which results
of percentage of sectional shear resisted by the flanges were considered. At levels of oad
below this line, the electrical noise in the system produced variations in results that rendered

the calculated values as inaccurate.
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Figure 7.3-5 Distribution of intcrface shear throughout the width of the flange at 20kN
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Figure 7.3-6 Variation of interface shear with applied load at rows

The gradient of the percentage of sectional shear resisted by the flanges with applied
load remains essentially constant from 30kN until Stage 1. The formation of the diagonal web
cracks in Stage | produced a decrease in the percentage of sectional shear resisted by the

flanges. Beyond this stage, the gradient of this quantity with applied load was less than that
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prior to Stage 1. Stage I1 marks a significant reduction in the percentage of shear carried by
the flanges. Throughout this stage, the magnitude of this quantity decreased at a uniform rate
with the applied load. This occurred in both layers, but is most prominent in layer &. Beyond
this stage, the contribution of the flange to the resistance of shear remained constant until
Stage 111. This point marked the level of applied load at which the neutral axis at section B
moved outside of the flange. The appearance of the critical diagonal web crack caused a
sudden, local, and significant increase in the percentage of shear carried by the flanges at stage

1V. Beyond this point, the rate of increase of this quantity with the applied load increased at a

slow rate.
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Figure 7.3-7 Distribution of sectional shear throughout the width of the flange as calculated

for specimen B17

Figure 7.3-9 shows the distribution of shear force across the width of the flange that
was calculated in each layer of the flange. In considering the total sectional shear force
carried by each layer, layer o has a magnitude of sectional shear force smaller than layer B
from the level of applied load of 30kN until the formation of the critical diagonal web crack at
21ZkN. Beyond this level of applied load, the rows in layer [} resist more of the total shear

than those in layer o. The magnitudes of the each row in the figure below reflect this,
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Figure 7.3-8 Variation of percentage of total sectional shear in flanges for specimen B16
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Figure 7.3-9 Varation of shear in each layer at 20kN intervals for specimen B17

1.3.6 Flange Effectiveness of Specimen B17

From the nitial level of applied load at which results of the calculations were
considered (at P=30kN), the contribution of the flange (as indicated by the percentage of the
total shear force carried by the flange) increases at a uniform and sharp rate. The formation of :
the first two diagonal web cracks in Stage I (range of applied load of 78-86kN) marked the

end of this trend. Figure C.3-2 Appendix C shows that within this stage, the neutral axis
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position at all rows in section B moved closer to the top surface of the specimen at a rapid rate.
An increase in shear lag at all rows shown in Figure 7.34 was calculated, and a slight
decrease in the interface shear shown in Figure 7.3-6 at all rows can be observed. As shown in
Figure 7.3-8, the flange effectiveness decreased in this stage. the reason suggested for this is
the onset of the stirrup effectiveness, and some slip between the concrete and the stirrups as

the diagonal web cracks form.

Stage [l saw a strain redistribution at both sections that is associated with the formation
of a shear compression mechanism. Figure 7.3-5 shows that it is within this stage that a local
increase in the shear lag was calculated at rows 1, 2, 6, and 7. This local increase in the shear
lag indicates that compression forces were ‘carried’ from the web to the flange within this
stage, and also that there was an increase in the compression gradient between the two sections

at these rows.

Figure 7.3-6 shows a reversal of gradient in the interface shear calculated at rows 1, 2,
3, and 5. In addition to this, a local increase in the interface shear was calculated at rows 6
and 7, with these rows resuming the same gradient of increase with applied load following this

local increase.

The net resuit of the above changes in the distributions of shear lag and interface shear
produce an accompanying decrease in the percentage of sectional shear resisted by the flanges.
The trend at which this decreases is consistent with that of the interface shear, showing the

heavy reliance of the sectional shear on the interface shear.

As stated earlier, Stage Il (applied load of 180kN) marked the level of applied load at
which the neutral axis in the flange overhangs of section B moved to a depth greater than that
of the flange depth. The steady increase in the compression force at this section increased the
gradient of the compression force between section A and section B as the load progressed.
This steady increase in the compression gradient between the sections produced an
accompanying increase in the gradient of the percentage of the shear force resisted by the
flanges with the applied load. The cause of the increase in the neutral axis depth at this

section was the reduction in strains on the top surface similar to that of specimen B16. It is
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apparent that the reversal of strain associated with the formation of a crack across the width of
the flange had been initiated during this experiment, but the flexural capacity of the specimen

was exhausted before the crack could fully form.

This steady increase in gradient of the flange effectiveness continued throughout the
remainder of the experiment until the peak load. This is shown in Figure 7.3-8. The only
other significant influence on the percentage of shear carried by the flanges was the
appearance of the critical diagonal web crack at Stage 1V. The results in Appendix C show
that the appearance of this crack produced an accompanying sharp decrease in the strains on
the top surface of the flanges at all rows, and increased the magnitude of the compressive
strain on the underside of the flange at all rows. An increase in the difference in the
compression force carried by each section is noted to have occurred as a result of the

formation of this diagonal web crack.

Figure 7.3-6 shows that the interface shear increased locally at Stage 1V as a result of
the appearance of this critical diagonal web crack. This indicates that an increase in the
magnitude of compression force ‘carricd’ from layer o to layer B resulted from the appearance
of this diagonal web crack. This is further reflected in Figure 7.3-9 where the distribution of
shear in layer 3 shows values of greater magnitude of shear resisted than those in layer o.
Therefore, the appearance of the diagonal web crack forced a redistribution of sectional shear

forces throughout the depth of the flange.

74 A Further Examination of Stage 1 Failure Mechanisms

Examination of the above variation of the flange effectiveness of both specimens with
applied load coupled with the discussion in Appendix B and C tllustrates that as the shear
failure mechanism develops, the flange becomes more effective. This effectiveness has been
calculated at above 25%, and is therefore very significant in the shear resistance mechanism.

it is now pertinent to examine the results of Stage 1 in light of these findings.
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The discussion in Scction 5.3 outlines the two fatlure mechanisms that were exhibited

B in Stage 1 of the experimental work. These failure mechanisms were the beam shear failure
mechanism and the punching shear failure mechanism. Further examples of these can be scen

below in Figure 7.4-1 - Figure 7 4-3

The pictures in these figures. illustrate that both the beam shear failure mechanisms

and the punching shear faillure mechanism exhibit the key stages of the development of the
shear failure mechanism that were outlined in this chapter to be correlated with significant

increases in the gradient of increase in flange cffectiveness with applied load. These are the

appearance of the critical diagonal web crack and the reversal of the compressive strains on
the top surface. Note that the later is observed from the presence of the lateral crack on the

top surface of the flange.

(@) Cracks on top surface of flange (b) Cracks on web and underside 01 flange

Figure 7.4-1  Cracks on specimens Bt (punching shear faiture mechanism) at failure

Lateral

.. ﬂang‘-‘ 3

crack on t0p of
flange

Figure 7.4-2 Cracks on specimen BS at failure (beam shear mechanism)




"

E—— Latenal flange crack s
on top of flange

\ Critical  diagonal

web crack

Figure 7.4-3  Cracks on specimen B3 at failure (beam shear failure)

It is the significant incrcase in the gradient of the increase in flange effectiveness that
has been shown in Scctions 7.2.5 and 7.2.6. and the identical development of the failure
mechanism displayed in all specimens i Stage 1 that suggests that the increase in shear
strength with the flange proportions of stage 1 specimens s highly dependent on the

propagation of shear forces into the flange of the specimen.

Stage 1T experimental work has indicated that approximately 25% of shear force s
resisted by the flange.  This was true for specimen B16 at termination of the calculation
procedure at 75% of the peak load (showing a trend for increase beyond ths level of applied
load). and for specimen B17 that failed by exhibiting a flexural compression mechanism. 1 is
suggested that these figures are indicative of a minimum value of the flange etfectiveness of a
point toaded RC T-beany specimen with web reinforcing subjected to a point load. This value
would therefore be a minimum contribution to the shear resistance in stage 1 experiments
where a significant increase in shear strength is observed. The thin ditieasion of the flange in
specimens of series 3 in stage | experimental work is thought to limit the propagation of shear
forces in the flange. thercfore resulting in minimal increasing shear strength through this

redistribution,
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7.5  Conclusions

The above pre-zisis rasults of the application of the instrumentation technigue and

accompanying analysis piocedure developed in Chapter 3 to the flanges to two point loaded

RC T-beain specimens. Confidence in the results that are discussed in this section is drawn

from the validation work discussed in Chapter 6.

The most important conclusion from these two tests is that the increase in contribution

1o the resistance of shear that arises from the presence of the flange on a web reinforced RC T-

beams subjected to a concentrated point load is at least partly due to propagation of shear

stresses mto the flange.

Conclusions regarding the nature of this and the redistributions of this are outlined

below.

The proportion of the shear force resisted by the flange increases throughout
loading suggesting that shear stresses are redistributed from the web of an RC T-
beam specimen to the flange. The maximum percentages of the total shear resisted
by the flange calculated using this procedure were 27.5% in specimen B16 at 75%
of the peak load (which was the termination point of the calculation procedure),

and 24.0% in specimen B17. The latter was calculated at the peak load.

The development of the shear failure mechanism throughout the tests outlined
above significantly increases the contribution of the flange to the resistance of

shear.

After the full development shear failure mechanism, the contribution of the flange
increases throughout the application of the loading to these specimens, such that
the peak contribution is at either the peak load or the maximum load at which the

calculations were performed (the figures in point 1 above demonstrate this).
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The significant value of the contribution of the flange at the termination of the
calculation procedure is associated with the redistribution of the longitudinal
strains that occur as the specimen accommodates the individual stages of the failure

mechanism.

The redistribution of the shear forces throughout the width and depth of the flange

is achieved through the actions of the shear lag and the interface shear forces.

Since specimens in stage t and 2 in series | experimental work exhibited identical
development of the shear failure mechanism, the significant increase in the shear

strength can be at least in part attributed to the contribution of the flange.

The negligible increase in shear strength in series 3 of stage 1 experimental work is
attributed to the depth of the flange to be too small to allow propagation of shear
forces into this region, therefore allowing for no increase in shear strength from the

flange contribution.

The increase in the contribution of the flange is associated with the redistribution
of longitudinal strains that occur as the specimen accommodates the failure
mechanism. The transportation of the shear stresses across the width of the flange
is achieved by the action of the shear lag, and the transportation of the shear

throughout the depth is achieved by the action of the interface shear.
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Chapter8 RESULTS OF THE FINITE

ELEMENT STUDY

8.1 Introduction

This chapter presents the results of the finite element study that was outlined in Chapter 4.

The finite element study was performed in three stages as follows.

1. Stagel

Implement modelling aspects such as mesh size and optimum solution scheme
that have already been established by previous investigations (outlined in
Section 4.6), and examine the ¢ffect of the selection of material models, and
size of displacement increment on the typical specimens that represent those of

stage | experiments.

2. Stageli

Determine the ability of the selected material model combination and step
increment to predict the peak loads, load deflection behaviour, crack patterns,
reinforcing stains at peak load, and failure mechanisms of the three series of
specimens tested in stage one experimental work.

Determine the ability of the solution scheme to predict longitudinal strains in
the experimental work.

Calculate the percentage of the shear force predicted to be in the flange of the

spectmens for comparison with experimental values.
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3. Stagelll
¢ Knowing the limitations of the modelling strategy determine the predicted
values of peak loads, and the load deflection response of three series of beams

that with constant material properties, with variable flange geometry.

This chapter presents the implementation of the finite element procedure to examine

the above.

82  Stage | - The Parametric Study

This study was applied to two specimens from series | of stage 1 experimental work.
These are specimens B2 and B5. These specimens displayed the two different types of failure
mechanism that were observed throughout the experimental work; the beam shear and

punching shear mechanisms.

8.2.1 Material Model Study

To determine the most suitable combmation of material models to describe the

behaviour of the concrete within the specimen, the following comparisons were made.
. Comparison of the load vs. displacement plots obtained for cach of the Drucker-
Prager and Crack Model Based on Total Strain models with those produced in the

experimental work. These models are outlined in Section 4.4.1.

2. Comparison of peak load from experimental work (P;) with the peak load obtained
from NLFEA (PNLFEA)»

3. Comparison of the crack pattems from the experiments with those obtained from

the finite element analysis.
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It would be useful to compare the stirrup contribution (measured in terms of the
number of stirrups that were at yield at the peak load), however, the results from the
experimental work only gave strains at one point on two stirrups within the shear span. It was
highly possible that the locations instrumented did not correspond to a location on a stirrup
that was at yield. Since it is the number of stirrups at yield that indicate the stirrup
contribution, and no direct comparison can be made of this, it was decided that this would not
be considered in the parametric study. The results of the stirrup (and flexural tension)
reinforcing strains will be discussed later in the application of the procedure to individual

specimens.

8.2.1.1 Comparison of Load-Defiection Response

The load deflection response of each of the combinations of the constitutive models
that were considered in this study was compared with the load deflection curve obtained from
the experimenta! »-ork. The results of this are presented belew in Figure 8.2-1 - Figure 8.2-2.
These figures show the variation in the load deflection response of the four combinations of
constitutive models investigated in this parametric study for ¢ach value of the shear retention

factor ([3).

Some values are not shown on these plots for specimens that diverged early as a result

of numerical instability. Table 8.2-1 and Table 8.2-2 outline which specimens this applies to.

It is clear from Figure 8.2-1 and Figure 8.2-2 above that the Crack Mode! Based on
Total Strain produces a significantly better prediction of the load deflection behaviour than the
Drucker — Prager model. This is the case regardless of the value of B. In all cases, the
Drucker — Prager model predicts a ductile response beyond the peak load and does not
produce any overall softening, whereas, the TSM model predicts a softening afier the peak

load. The sofiening in the latter case is brittle for specimen B2, and smooth for specimen BS.

161




o o o
ﬂll_nllﬂ.;ﬂlm..mll._.lrt_ b CTTTTTTTTITATTR T - M
t | ] .E_ 1 ] 1 1 v 1 vDa.“ [l ' m
I [ ) ' 1 1 1 1 1 I __._.__ i ;
1 1 | ] 1 | 1 1 | ] ] t “ ” m
NIRA A £
."..ll ."‘ b1 g1 - -1 w -t + 4 -== mw &)
0 + § ! 1 ! D.._ 1 __ __ ” __ %
D " " _" " D_ ( 1 ] 1 |
" [ 1 bl o I I ' _I.__ muu.
(- I I ' 1 ! &
I EER TR o TP AN e 2
| | h {0 m t ' H 1 m o
i 1 i +y—
" " | T" ..m- ] 1 " _Tl_~ ..m\ ..nla.
(] A _ 3 c ' _.._ t t - =
=~ oWy -5 © 8 B Y ¢ 2 © 8 5
+ o . 1 o g | ! T m
D 1 he 1 > W “ “ ° 2
. h
Lo % s L% °
"||1".1.L_.| L N a [ T N 4 < o @
1 1 1 ! 1 | ] i 1
1 ] 1 1 1 1 1 [} 1 0
1 1 1 1 “ " “ m
USRI | L LY 2
] [ t 1 1 1 1
oINS o NN £
" H " ” ] | 1 ” 1 " | _ " m
' ] ] Ll 1 1 . 1 1 1
At © ————t—t—t— S
o o O o oo o o o o O [#1)]
S 22g¢g 8 o 238888 o
@ ™M N = = — Lo I o' B oV N i o~ .m
() peOT poyddy T (N) peoT payddy T ¢
o
o ..m
iy S
- - o
e =
[24]
&
=
[+
PPTTiTTig T S e B R e Ty = >
! 1 1 1 1 : 1 1 1 o
1 1 1 1T ) i & ) R
1 1 1 1 1 ) ( 5 1 Wa
1 ] 1 ] 1 1 b_ 1
|.—.|| 1 1 1 |_ o ...\_.||“.ll o W
A SR - =+ . 2
" " " " o—# e _
l ) ) 1 1 1 - ;
t 1 1 1 ) ( R=} .
RN TAk (R T S © o e __
I 1 1 1 m 1 : m o ]
TN . E L £ k5 :
= 1 ' p 1 1t P k7] M
1 B 1 1 i-l., a3 3
W i _ e g Mr\v © 2 = :
: © ] 3] Q .
1 1 1 1] 1 e 1 d .
[ ; ( ) = W 1 m :
ERERAY 2 i = g ;
I T J < rlln.nl <t Q g
t ] t ] 1 ¥ A
’ et
S . Vo A\ o
] ] ] i 1 i ...,.... c
IR " XN\ 3
re-r--r--71- /nns_ ™ r-=-e-- LA .“ o~ .m
1 1 ] | ] 1 1 ] I ] ¥
i i i | | 1 1 1 | 1 [ ¥ f=
1 1 1 1 1 1 l ' 1 ‘ [ 1 t
AR\ § A\ &
i t } } } } i © H } { t } { (I~ 2y C
o O 0 O Q0 o O o 0O 0 9 o O b1
Q0 O 0 o N "y o v o 0 o W (] vy,
0 N N -~ - ot O N 0 = o _— ﬁ/..
A = : .
(N%) peon pajddy T (N%) peo payddy 2r § o !
=1 PE a ¢
_— — .@ :
3, L i




{N3) peo payddy

-t
3 i 1 ] 1 L]
__.—m._. 1 1 1 1
1 1 1 1
1 / 1 ; 1
1 1 ] 1
1 1 1
[ -
1 1
1 1
1 1
1 1
1 1
I |
T
1 1 1
1 1 H\l.v |
' ] M 1
1 ] 1
2]
| 1
1 t _..l "
' o -
t 1
I t 1
I 1
e ' '
Q
o SYAN 3
_.d- ] 1
_Ul [ 1
] 1
2 T \ _
I [ 'Y 1
§ 1 9 1
m. |||||| J__.—.rl.ﬂ a ]
W | 1
1 1
I 1
1 1
1 1
I "
T
j=
o
~

150 + - TSMm

(N¥) peon peyddy

10

Deflection (mm)

Deflection {mm)

(a) B=0.05

1=-=-==-=—=

T DP-NUDPA """

- IL llllllllllllllll
1 | 1 ] 1

1 = H ] 1

1 1 ' 1

1 1 ] ’ i

1 i . ]
AN 4/
r bl ek, -] =
1 1

' s |

3 | 1

| 1

1 |

I 1

J .

1 1

1 |

i 1

i |

| 1

[ i

1 1

1 1

1

=

(N

Q- N\ -
= _.

= .

1t )

2 h

_D
P 3 -
1 1 ] i -

1 1 ] | i

1 1 ) i

] 1 ' [ 1N
1 1 1 1 1

| | 1 ] ]

¥ T T ol T
o o o (= e
0o o u o o
o [nY] Lo —

{NM) peoq payddy

Defiection {mm)

Deflection (mm)

(d) B=0.20

(c) B=0.15

Figure 8.2-2 Comparison of load deflection plot for varying values of B and varying constitutive model combinations for Specimen B35
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For each value of §§ that was investigated, it is clear that combining the Drucker —
Prager material model with a linear or nonlinear tension sofiening model only makes a slight
difference to the overall load deflection response. The combination of the Total Strain Based
Crack Model however shows that for specimen B2, the use of a nonlinear fension softening
model predicts a higher deflection at peak load when compared to resuits that incorporate the
linear tension sofiening model. The results of specimen B5 indicate that the use of the
nonlinear tension softening model produces a more ductile post peak response (the actual

specimen was brittle in failure) than the linear response model.

8.2.1.2 Comparison of Peak Loads

The comparison of the peak loads obtained from each analysis {PnLrea) between the
experimental results is given below in Table 8.2-1 for Specimen B2, and in Table 8.2-2 for
Specimen B5. These tables show the effect of the value of the Shear Retention factor (B) as
well as the combination of the constitutive modeis considered on the two specimens used for
the parametric study. It was considered appropriate that the combination of material
behaviour models was discussed rather than each tension and compression model in isolation
because of the effect of tension response on the compression response that is particularly
apparent in the Crack Model Based on Total Strain. The peak load presented in this table, and

from this point onward is the sum of the reactions obtained from the solution.

Both of these tables above show a consistent and significant over estimate of the peak
load by the Drucker ~ Prager material model. This overestimate is true for both specimens,

and is independent of the value of  and tension response model.

The prediction of the peak load for the constitutive model combinations that involve
the use of the Crack Model based on .. >l Strain are significantly better than those predicted
by material model combinations that include the Drucker — Prager model. Table 8.2-1 and
Table 8.2-2 show that the increase in the value of B generally increases the peak load. In
addition to this, the use of the nonlinear tension softening model in combination with this

compression model generally increases the peak load.
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Table 8.2-1 B2 peak load comparison (Pe= 181.0kN)

Shear Retention Constitutive Model | Peak Load (Pnirea) (PnLrea/Pe)
Factor () Combination (kN)
DP-L 252 1.39
TSM-L 165 0.91
0.05
DP-NL : NA
TSM-NL * NA
DP-L 253 1.40
TSM-L 175 0.97
0.10
DP-NL 251 1.39
TSM-NL 175 0.97
DP-L 254 1.40
TSM-L 185 1.02
0.15
DP-NL 254 .40
TSM-NL t *
DP-L 254 1.40
TSM-L 188 1.04
0.20
DP-NL 251 1.39
TSM-NL 188 1.04

* . These specimens diverged early, The combination of constitutive models that produced divergence were not presented as it is apparent
from the load deflection comparisons thal this divergence was nurnerical rather than an exhaustion of capacity of the specimen. These results
are therefore redundant in this discussion.

As noted below the Table 8.2-1, specimens marked * displayed exceptionally high
relative energies, and sudden divergence for both compression models considered. The results
of peak load corresponding to this divergence were not consistent with the experimental
results nor with those of the other numerical analyses. It is thought this is a problem with the
numerical solution scheme. Since this is the case, the combination of nonlinear tension
softening with the Crack Model Based on Total Strain will be disregarded owing to potential

numerical instabilities; ihe linear tension softening model was adopted.
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Table 8.2-2 BS5 peak load comparison (Pg= 159kN)

Shear Retention Constitutive Mode! Peak Load (kN) (PrLrealPe)
Factor (B) Combination
DP-L 230kN 1.45

TSM-L 127 0.80

0.05
DP-NL 230 1.45

TSM-NL 108 0.68

DP-L 236 1.48

TSM-L 151 0.95 ;

0.10
DP-NL 233 1.47 ]

TSM-NL 140 0.88

DP-L 236 1.48 __

TSM-L 145 0.91% !

0.15
DP-NL 235 1.48

TSM-NL 165 1.04

DP-L 237 1.49

TSM-L 163 1.03 g

0.20
DP-NL 235 1.48

TSM-NL 175 111

Either a value of 8 of 0.10 or 0.15 produce ultimate strength results that are close to
those obtained experimentally. The ultimate strength result for specimen B5 with the
constitutive model combination of TSM-L and p=0.15 (marked with a superscript *) went
against the general trend that was pioduced in the ultimate strengths obtained from this
constitutive model combination both for this specimen and specimen B2. This inconsistency
led to the use of the value of B=0.10. The constitutive model combination used in the ensuing

analysis is summarised by $=0.10: TSM-L.

8.2.1.3 Crack Patterns Produced From the Analysis

Figure 8.2-3 and Figure 8.2-4 below show the crack patterns that were predicted by the

NLFEA procedure for the two specimens examined in this parametric study. To verify that

166 |




R T

the modelling procedure is capable of predicting results that are representative of those
produced in the experiment, it was required that the crack pattern represent those that form the

mechanisms by which the specimens failed in the experimental work.

In the experiment, specimen B2 failed by the mechanism of punching shear. The crack
pattern predicted by the NLFEA procedure shown below in Figure 8.2-3 shows a crack pattern
of similar characteristics to the punching shear mechanism. A diagonal web crack is formed,
and there is the presence of local cracks in the vicinity of the load point consistent with the

punching mechanism.

Specimen BS failed by exhibiting a beam shear mechanism in the experimental work.
Figure 8.2-4 shows the crack pattem predicted by NLFEA for this specimen. [t shows that a
diagonal web crack is present, and predicts this crack will extend along the underside of the
flange to meet with a crack on the edge of the flange at failure. This crack was then predicted
to continue to the centreline of the specimen. This pattern of cracking is consistent with the

beam shear crack pattern obtained from the experiment.

The two types of failure mechanism observed in the experimental work are produced
by the NLFEA solution scheme, and are predicted to occur on the corresponding specimens in
this study. This combination of materiai models is decmed sufficient in predicting the crack

pattems for the experimental specimens.
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8.2.2 Load Step Size Study

Using the combination of the crack model based on total strain and the linear tension
softening for the description of the behavieur of concrete, it was deemed necessary to
determine the influence of the step size on the load deflection behaviour. This was to ensure
that the step increment did not over step the values of applied load that result in the formation

of the failure mechanisms. This study was performed on specimen BS.

The displacement increments that were selected are (as outlined in Chapter 4); an
initial displacement increment of Di=0.2mm for two steps followed by 0.1mm thereafter, an
initial displacement increment of Di=0.4mm for two steps followed by 0.2mm thereafier, an
initial displacement increment of Di=0.5mm for two steps followed by 0.25mm thereafter, an
initial displacement increment of Di=1.0mm for two steps followed by 0.5mm thereafier. A

comparison of the load deflection plots for these specimens is shown in Figure 8.2-5.

200 " ________ B I j======== r===-==-=- i Bl | \
160 4o onnn L e e S N :

2 120 4------ R ™ o -\ |
2 : \ l
a3 80 A R
%0 " : -i ‘. E

0 : | | | i 4
0 2 4 6 8 10 12

Displacement (mm)
Di=0.2 e Di=0.4 Di=0.5 Di=1.0 ewe—— Experimental

Figure 8.2-5 Comparison of load displacement plots for different increments of displacement

Figure 8.2-5 shows that at early stages of loading, the analyses performed with higher
increments  of displacement (Di=0.5mm, and Di=1.0mm) produce comparable load-
displacement curves as the lower values of this increment (Di=0.2mm, and Di=0.4mm).

However, as cracking starts to influence the behaviour of this specimen (at a level of applied
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displacement of approximately 4.0mm), the sensitivity of the response to cracking is seen in

this figure to reduce as the increment of displacement increases.

The two smaller displacement increments displayed a trend of load defiection similar
to that of the experimental curve, particularly in reference to siope changes with cracking. Of
these two analyses, the analysis performed with Di=0.4mm produced a peak load that was
close to that given in the experiment. As this was the case, a displacement increment of

0.4mm for the first two steps, and then 0.2mm was used in the ensuing analysis.

8.3  Stage N - The Specimen Study

Application of the combination of the Crack Model based on Total Strain in
combination with the linear tension softening model and an increment of initial displacement
of Di=0.4mm (and subsequent displacement increment of 0.2mm) was applied for numerical
modelling of all experimental specimens. These models included exact properties of both
materials as calculated from cylinder tests and tensile tests results. This section presents a
comparison between the NLFEA results and those obtained from the expenmental work. In
line with the objectives outlined in Section 4.2, the results of ultimate strength, load-deflection
response, crack patterns, and reinforcing strains at the peak load are compared with stage 1
experimental work, and an examination of the predicted fatlure mechanisms. In addition to
this, concrete strains and -the flange contribution to the shear resistance is compared to stage 2

experimental work.

8.3.1 Ultimate Strength

Table 8.3-1 below shows the comparison between the peak loads obtained from
experimental work with those obtained from numerical analysis as well as the relative error
between these. In general, the NLFEA procedure has predicted values of the peak load with

an average ratio of the numerical to peak loads of 1.01, and a standard deviation of 0.13.

NLFEA significantly over predicted the peak load of specimens B9, B12, and BI3.

The remainder of this section outlines the load deflection response, crack pattems, reinforcing

170

I

k'ﬁm T Ly L L heiatn L q gk e L AT e



T P T T LT T, Tt s

=

strains, and failure mechanisms. The overestimates are dependant on ihe failure mechanisms,
and this over prediction is discussed in Section 8.3.5 that outlines all failure mechanisms

observed throughout the numerical modelling implementation.

8.3.2 Load Deflection Response

For the purpose of this discussion, only two load deflection curve comparisons from
each series of specimens will be presented in this section. Load deflection curves for all
specimens are presented in Appendix E. The comparisons are shown below in Figure 8.3-1 -
Figure 8.3-2. Note again that the load presented in the finite clement resuits is the sum of the

reactions.

In general NLFEA has produced results of the load-deflection response that display the
trend of the experimental results. The results of all specimens shown above indicate that the
slope of the load-deflection curve from the NLFEA procedure is very close to that of the
experiments, and is an overprediction of this slope when compared to the experimental curves
particularly at the early stages of loading. In some instances (such as B11, B12 and Bl14
above), the onset of cracking reduces the stiffess to well below that observed experimentally.
The results for specimens B2 and B7 obtained from the finite element study show that the
reactions suddenly decrease when the peak load is reached. The other load-deflection curves

presented show that the reactions decrease smoothly once the peak load has been reached.

- 200 - 160 T-------- - Curve rom MLFEA _ _
€ 160 4 g | : |
g 5120 1o e el R !
g 120 1 I g . . X
= : -4 80 ---; ? e v ST 1
£ : 2 i e
& 40 - [<% { 1 - 1
< i ; < : ‘ ‘
0 . . 0 ; : —
0 4 8 12 0 4 8 12
Deflection (mm) Deflection {mm)
(@) Comparison of load-deflection (b) Comparison of load-defiection
curves for specimen B7 curves for specimen Bl11

Figure 8.3-1 Comparison of two load-deflection curves for series 2 specimens

171

LJ‘&A’.;LI‘.;H"..:‘.;.;-_-'_“;-.MJ—‘_..._ e



g, a-

Table 8.3-1 Comparison of peak loads obtained from experimental work and NFLEA

200 -
160 1
120

Applied Load (kN)
=]
<

o

-y
o
1

SPECIMEN Pe PnLrEA Prirea/Pe
(kN) (kN)
Bl 180.8 177.2 0.98
B2 180.7 175.5 0.97
o B3 167.0 172.2 1.03
E?: B4 158.2 177.6 1.12
’ BS 159.8 150.6 0.94
B6 110.2 113.6 1.03
B7 168.3 152.7 0.91
- B8 185.0 148.6 0.80
g B9 134.8 171.0 1.27
»| BIO 144.2 135.1 0.94
Bl 145.8 121.6 0.83
BI2 138.3 166.8 1.21
@l B13 153.0 180.6 1.18
%) Bl 153.0 148.8 0.97
"1 Bis 138.0 130.9 0.95
Average 1.01
Standard Deviation 0.13
Il e S R 00 I O i ol
P LD REETLTEEE toeee E 120 t--no-- ey B, -
VAV SCT T NN /
‘ : : < 0 ' Exparmontal Cuve,
0 4 8 12 16 20 0 4 8 12
Deflection {mm) Defleciion (mm)

(a) Comparison of load-deflection

curves for specimen B12

(b) Comparison of load-deflection

curves for specimen B14

Figure 8.3-2 Comparison of two load-deflection curves for series 3 specimens
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Figure 8.3-3 below shows the load deflection curves for all specimens in series 1. It
can be seen that this type of sudden decrease in the magnitude of the reactions noted above is
seen in specimens Bl (br=6.64), B2 (br=4.43), B3 (br=3.32), and B4 (br=2.21). The other two
specimens in this series show the smooth decrease in the magnitude of the reactions beyond
the peak load. It is noted that the results of series 2 specimens show that specimens with
flange width br=6.64, br=4.43, and br=3.32 show the sudden decrease in reaction magnitude at
failure. No specimens from the series 3 analysis displayed this trend in load-deflection

behaviour.

e =1.0
— hr=1.61
br=2.21
e Dr=3.32
e hr=4,43

e r=6.64

Deflection {mm)

Figure 8.3-3 Comparison of load-deflection behaviour obtained from NLFEA for series 1

specimen

8.3.3 Crack Patterns

Crack visualisation in DIANA can be achieved through a number of methods. For the
purpose of presentation, the method used here was to calculate the ultimate crack strain (i.e.
the strain corresponding to the point where a concrete element has exhausted capacity to resist
any applied stress). If the maximum principal tensile strain was greater than this value, the
element was considered cracked. These values are shown as a contour plot in the ensuing
figures; where the crack strain is shown to be higher than the ultimate strain and a contour is

displayed, the following discussion will simply refer to a crack at the given location. The
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recommendation in the DIANA manuai for the value of the ultimate strain of a concrete

element in tensiocn is given in Equation 8.3.1.

2G
A S 83.1

E, =€ +E =—t—-
u u Ec ﬁ,h

The values of the symbols in this equation are the same as those defined in Chapter 4.

NLFEA predicted different types of crack patterns throughout this series of analysis.
These are shown at the end of this section in Figure 8.3-4 - Figure 8.3-6 along with the

corresponding crack patterns obtained from experimental work for these specimens.

Figure 8.3-4 shows that for specimen B2, NLFEA predicted that there were cracks or
the web of the specimen from the underside of the flange at the point of the applied load to a
point at the bottom of the web close to the support. These cracks are representative of the web
crack shown in the experimental specimen. The method also predicted cracks in this specimen
that run vertically from the bottom of the web to the underside of the flange; these are
consistent with flexural cracks obtained in the experiments. On the underside of the flange,
the diagonal web cracks were predicted to continue laterally along the width of the flange of
the edge to the flange (from this specimen). This crack formation is also seen on the
experimental specimen that is shown. On the top surface of the flange, there is a localised
region of cracking in the vicinity of the region at which the controlled displacement was
applied. The crack pattern shown from the experiment shows some cracking on the top

surface of the flange, but this is not as localised as the NLFEA results predicted.

Figure 8.3-5 shows that for specimen BS the NLFEA procedure prodicted a similar
pattern of diagonal web (and vertical web) cracks at the peak load as desciibed above for
specimen B2. The procedure predicted that the on the underside of the flange for specimen
B5, cracks propagated from the intersection of those on the web to the edge of the flange; the
crack on the edge of the flange visible in the photo of the experimental specimen joined with
the diagonal web crack through a crack of this type on the underside of the flange. The

NLFEA procedure predicted that a crack on the top surface of the flange was present in the
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region of the point of applied displacement, but for this specimen, the crack was not localised,
but propagated laterally along the top surface of the flange and intersected with the with the
crack on the edge of the flange. It can be seen from the photo of the experimental specimen
that a crack propagated on the top surface of the flange; this crack intersected with the cracks

on the edges of the flange.

Figure 8.3-6 shows the crack pattern predicted by NLFEA on specimen B12 is similar
to that of B2 shown above, but an additional crack was present that propagated along the edge
of the web on the top and bottom surface of the flange within the shear span. This crack was
great significance on the prediction of the ultimate strength from the NLFEA analysis. The
prediction of this crack on this specimen (as well as a similar crack on specimen B13) were
observed to produce significant errors in the prediction of the peak load as will be discussed in
Section 8.3.5.
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8.3.4 Reinforcing Strains

Strain gauges were provided on series 1 and series 2 specimens on locations on the
stirups and on the main tensile reinforcing. Figure 8.3-7 illustrates these locations. This
figure also outlines the notation used to compare the results of the strains output from the
NLFEA procedure with those obtained in the experiments. This comparison is shown below
in Table 8.3-2 for the stirrups and in Table 8.3-3 for the longitudinal bars. Note that at these
locations, both legs of the stirrups of the experimental specimens were instrumented and two
longitudinal reinforcing bars were instrumented. The subscripts 1 and 2 shown in Figure 8.3-7
are used in order to show the results from both strain gauges from the experiment. In this
table, ‘NA’ is used in the instance of faulty gauges or a gauge that has failed during the

experiment.

Load Point

===

<

—
Gauge é Cauge G2 Ga\uge L Gauge G2 Gauge G2

Elevation Section at Gauge G2

Figure 8.3-7 Notation used for comparison of strain gauge resuits

The comparison between stirrup strains at the peak load is shown in Table 83-2. In
most cases, at least one gauge reading from the experiment indicated that a stirrup had failed
during the experiments, but the NLFEA showed that in all except one analysis, the stirrups did
not yield at the location where the gauges were provided during the experiments. NLFEA did
predict that at least one stirrup on each specimen would reach yield strain during the loading.
For series 1 and 2 specimens, it generally predicted one stirrup at yield if a punching
mechanism formed, and two at yield if a beam shear mechanism formed. This generalisation

could not be made for series 3 predictions.

The results below in Table 8.3-3 show that with the exception of specimen B4, the

NLFEA solution scheme was able to predict that at the location of maximiin moment,
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significant flexural tensile strains developed in series 1 specimen, but they did not yield. In

series 2, this was also the case, one anomaly on specimen B9 was observed. NLFEA

predicted a very high peak load for this specimen, and it is thought that this high value of

strain cotresponds to the relative increase in the number of steps taken to achieve this

overestimate of load. The comparison of the results of the flexural tensile strains indicates that

NLFEA has significantly better capacity to predict strains on the flexural tenstle reinforcing

than those on the stirrups.

Table 8.3-2 Comparison of stirrups strains at the peak load (Positive strains are tension)

€q+ From Experiment (E)

£q.r From NLFEA (u¢)

Specimen | Gauge Gy | Gauge G1; | Gauge G2; | Gauge G2; | Gauge Gl | Gauge G2
B1 NA NA 2436 3085 832 1386
B2 1214 486 3053 7018 878 1247
—| B3 NA NA 2503 -992 1375 1628
§ B4 634 NA (>gy,) 903 3370 1374 1628
B5 5623 3307 651 700 1140 1290
B6 3259 3744 326 283 660 275
B7 3977 NA 866 643 7 1345
o B8 5799 5512 3184 NA 1092 1337
§ B9 NA (>gyv) NA 310 300 2090 958
% [BI0 NA NA 238 NA 1025 1432
Bl11 2285 2619 110 207 1078 1478

*+£, p denotes sticrup sain ae failure
Serics | stirups yield g,,=1990pe
Series 2 stisrups yicld €,,=1500y€

8.3.5 Specimens B12 and B13

NLFEA has been shown above to overpredict the peak load of specimens B12 and B13

as well as predict a crack along the web flange interface that forms part of the failure

mechanism of these specimens. This crack is predicted only for these specimens.
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Figure 8.3-8 shows the load deflection curve for these two specimens. On both of
these figures, an X is marked. This point is the level of applied displacement 2t which a
sudden decrease in stiffness of the specimens can be observed. It is thought that at this point,
the influence of the longitudinal crack along the web flange interface influerices the stiffness
of the structure producing the softer structure that is evident in the load defiection rasponse
presented below. The peak load that is predicted is also a result of the change of failure
mechanism. The mechanism that is predicted with this crack ulong the web flange interface

has a higher capacity than an ordinary beam or punching shear mechanism.
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Figure 8.3-8 Load - deflection curves for specimens B12 and B13

These specimens have very wide flanges in proportion to their depth (byd=12.4 for
specimen B12 and bi/d=9.3 for specimen B13). These ratios of flange width to flange depth
are suggested to be representative of specimens with thin wide fianges. The results of these
two specimens suggest that the NLFEA strategy that is employed may require special attention

for these two specimens, and more generally for specimens with thin wide flanges.

8.3.6 Failure Mechanisms as Predicted by NLFEA

The NLFEA always predicted that at least one stirrup would produce yield by peak
load, and in general, longitudinal bars were generally not predicted to yield. Along with the

crack pattems presenied above, the results always suggest a shear failure mechanism.
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Table 8.3-3 Comparison of flexural reinforcing strains at the peak load

g at From Experiment (l€) £ s at From
NLFEA (ug)
Specimen Gauge L Gauge L, Gauge L
Bl 1501 1594 1225
BZ NA NA 1405
- B3 1525 NA 1465
E‘, B4 1203 1395 1715
B5 1434 NA 1615
B6 975 1061 1065
B7 1437 1413 1250
o Bg NA 1697 1265
8 B9 1108 1097 1710
@ T BI0 1310 1284 1660
B11 957 NA 1230

xg¢ denotes flexyval reinforcing bar strain at failure
Flexural reinforcing wield g, =1700pr

in line with the observation in Section 8.3.3, thosc specimens that failed in a similar
manner to specimen B2 all dispiayed a sharp decrease in the sum of the reactions at the peak
load. in series 1, this failure mechanism was displayed by specimen Bi, B2, B3, and B4; in
series 2, this failure mechanism was displayed by specimens B7, B8, and B9. All other
specimens in these series’ displayed crack patterns illustrated in Figure 8.3-5 above. The
crack pattern of specimen B2 and the corresponding sudden decrease in the sum of the
reactions is associated with a prediction by NLFEA of the formation of a punching shear
mechanism. The crack pattemns of the remainder of the specimens are consistent with the beam
shear mechanism. The over prediction of peak load of specimen B9 is attributed to the
NLFEA scheme predicting a punching shear mechanism at failure rather than the beam shear

failure exhibited d.ring the experiment.

In series 3, specimen B12 displayed a similar crack pattern to that for specimen B2.

Figure 8.3-6 shows that this type of crack pattemn was indicative of a punching shear type
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{ailure. but showed the formation of a crack that propagated along the cdge of the web
throughout the shear span.  The other two specimens in this series failed by the beam shear
mechanism as outhned above. The crack pattem for specimen B13 shows a similar facet to
that predicted for specimen B12: a crack propagates along the length of the span at the flange

web nterface.
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Figure 8.3-9  Failure mechanism predicted for specimen Bi3

As the width ratio decreased throughout series 1 and 2 specimens, the predicted failure
mechanism changed from a punching shear to a beam shear mechanism. The first specimen to
display the beam shear mechanism had a peak load higher than the punching shear
mechanisms. 1t is apparent that the NLFEA solution scheme has over predicted the strength of
these specimens. The prediction of the strength of specimens failing in beam shear improved

as the width ratio decreased.

A summary of the comparison of failure mechanisms exhibited by the experiment and
NLFEA are given below in Table 8.3-4. It is scen that in general NLFEA predicts the faiture

mechanism well, but there are instances where it is incorreetly predicted.
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Table 8.3-4 Comparison of failure mechanisms from experimental and NLFEA work

Specimen | Experiment | NLFEA [ Specimen | Experiment | NLFEA

B1 Punching Punching B9 Beam Punching
B2 Punching Punching B1Q Beam Beam
B3 Beam Punching Bl1 Beam Beam
B4 Beam Punching B12 Punching | Punching*
B5 Beam Beam B14 Beam Beam*
B6 Beam Beam Bl4 Beam Beam
B7 Punching Punching B15 Beam Beam
B8 Punching Punching

* Indicates that crack along the length of the span was shown in the NLFEA results as outlined in Section 8.3.5

The failure mechanism of specimens B9, B12, and B13 were incorrectly predicted by
NLFEA. Specimen B9 is incorrectly predicted as a punching mechanism, and the mechanisms
predicted for B12 and B13 are inconsistent with the remainder of the mechanisms for the other
specimens as outlined above in Section 8.3.5. It is these incorrect predictions of the failure
mechanisms which is attributed to the over prediction in peak load by NLFEA. The latter

cracking is associated to form only on two specimens with thin wide flanges.

8.3.7 Prediction of Longitudinal Flange Strains

The solution scheme predicted that specimen B16 would fail by a punching shear
mechanism, and that Bl17 would fail by a ductile flexural compression failure, NLFEA
estimated that B16 would reach a peak load of 229kN (compared with 212kN from
experiment), and that B17 would reach a peak load of 234kN {compared with 238kN from the

experiment). The load deflection comparison can be seen in Appendix E.

Comparison of the longitudinal strains in the flange predicted by the NLFEA
procedure with the results obtained from the experimental work of stage 2 are described in this

section. To identify the locations within the flanges at which this comparison is undertaken,
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Figure 8.3-10 is shown. Gauges are described as being in layers; there is a top layer of gauges
(TL), and middle layer of gauges (ML), and a lower layer of gauges (LL). To be consistent
with the convention used in Chapter 3, section A is the section closest 10 the load point, and
section B is the section of gauges farthest from the load. The numbering system can be seen
in the figure below. For the purpose of the ensuing discussion, compressive strains are shown

as positive.

Longitudinal surface gauges
considered in comparison

TLI TL2TL3
TL4== == TLI| M TML3
M= M2 M7

| Hineofsupport. Thgz= ==TL3 . A
/ / ‘ 2 TLT T2 T
________________ Section2of  Section1of LOAD | L

gauges gauges

PLAN OF SHEAR SPAN HALF SECTION AT
GAUGED SECTION |

Figure 8.3-10 Notation used for description of gauge location

8.3.7.1 Specimen B16

Figure 8.3-11 shows the comparison of the results of the longitudinal strains at section
A gauge locations. The results for gauges TL2-3 initially show a close correlation between the
NLFEA and experimental results. This correlation remains close until the reversal of strain on
the top surface of the flange recorded during the experiment. The NLFEA solution procedure
does not predict this; however, it is interesting to note that at the reversal of strain at gauge
TLI, the NLFEA predicts a range of load where there is little increase in strain, and at the
other two gauge locations on the top surface NLFEA predicts an increase in the strain gradient

at approximately the levetl of load at the strain reversal.
The results of the comparison between the experimental results and NLFEA at the

middle layer of gauges (shown in Figure 8.3-11) show very similar characteristics to the

above. The difference between this layer and the above is that the strain reversal occurs at a
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higher load on these gauges, and is much less severe. This leads to a much better correlation

between results at these locations.

2

[ e Tealintiie Ml e

I ) ' | ‘-B

[} t : ]

1 1 L 1

] ] = 1

s, [} : 1 o

IR SRR -
- w

1

t " m

¥ | ' I

1 1 1

i I 1 o

-—--- —_——m—-—F O

| | .”. 1 s

i H ]

)

1 B

L1 I L i 5

] H : m

r=%-—-T-- =TT

i i . ] o

1 1 1

1 ] 1

1 i b t

) L] - ] 3

Tt <

o (=] [= T = | = O

[Te BN = Ty B = BT

N4 N -

(N%) peory
_..||_|||_||r_||1,|1.i
1 1 1 1 .

1 ' 1 1
i L] i
i 1 1
| il i s Tl B
1 1 1
' 1
' '
] 1
LR R L Dl el I i et o
1
]
1
1
1 :
]
1
1
1
1
I -
1 m. 3 P
1 1 i 1
1 1 1 ] .
1 &_ 1 1 v
3 Il 1 1 .
r T T T T T
o O O o o O
iH o v o W
N N T
(NY) peo

600

t
i
1
t
I
|
1

.
ue
(d) MLI
HE
(f) ML3

100 200 300 400 500 @00

100 200 300 400 500

0

0

200 1

186

1000
500 600

400

1
L]
I
I
]
1
I
1

800

300

NLFEA

600
Ue

(&) ML2
Figure 8.3-11 Comparison of longitudinal strains in specimen B16 section A
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Figure 8.3-11 Continued

The results of the NFLEA at the lower gauge layer are comparable to the experimental
results in that the propagation of the neutral axis into the flange developing a reversal of
strains at the early stages of loading is predicted by NLFEA. However, NLFEA did not
predict the reversal of strain corresponding to the formation of the failure mechanism on the

underside of the flange.

Figure 8.3-12 shows the comparison between strains at section B measured from the
experiments and predicted by the NLFEA solution scheme. The results from TL4-6 show that
the NLFEA solution predicts the strains well at the early stages of oad, but did not predict the

tensile strains that developed during the experiment. Some discontinuity in the trend of the 'j
strain increase in the NFLEA results is present at a level of applied load close to that
corresponding to the beginning of the reversal.  This is also true for the gauges at the middle
layer; gauges MLA-6. Large increases in compressive strain were predicted at the location of
gauges ML5 and ML6.

;
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Figure 8.3-12 Continued

The results of strain on the lower layer at this section from the NLFEA procedure are
in general agreement with the trend recorded from the experimental results. They show a low
level of compression strain at the low levels of load, then an increase in the gradient of this
response at a level of applied ioad close to that which occurred at failure in the experiment.
NLFEA predicted that the strain corresponding to gauge location LL6 reversed close to the

peak load.

8.3.7.2 Specimen B17

Figure 8.3-13 shows the comparison between the strains predicted by NLFEA and the
results of strain gauges from the experiments at Jocations at section A in the flange. The
results of strain from NLFEA at locattons on the top surface siiow good correlation with the
trend of increasing compressive strain on the top surface of the flange. Discontinuities in the
trend displayed in the experiment resulting in a decrease in the strain increase gradient are not

predicted by the NLFEA procedure.

The predictions from the NFLEA solution scheme of strains at the middle layer of the
specimzn are close to those measured in the experiment. The general trend is well predicted,
and the magnitudes are close. The NLFEA procedure did not detect some discontinuities

displayed in the experimentai results.
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Figuie 8.3-13 Continued

The NLFEA solution procedure predicted the trend and magnitudes of strain at the
lower layer of gauges at low levels of load. However, at higher levels of load, the results were
not well predicted. There is no general correlation between the strains produced from each set

of data at this location.

Figure 8.3-14 shows the comparison of strains from the NLFEA solution scheme with
those measured in the experiment of section 2 on specimen B17. The results of the gauges on
the top surface are well predicted by NLFEA at this section, including the reversal of strain
that occurs. This strain reversal corresponds to Stage il as discussed in Chapter 7. The
magnitude of the compression strains before the reversal was lower in the NFLEA prediction
than in the experiment. The sudden decrease in strain corresponding to the formation of tix

diagonal web crack at 212kN was not predicted by NLFEA.

The results of strain from the NFLEA procedure at locations at the middle layer of
gauges again show very close agreement with those values measured in the experiment. The
level of applied load of discontinuities in the trend of the increase in strain measured in the
experimént is well predicted by NLFEA; however, the nature of these discontinuities was not
well predicted. The reversal of strain at gauge ML6 close to the peak load is not predicted by
the NLFEA solution scheme. Again, sudden reversals in strain observed throughout the
experimental work at the formation of the diagonal web crack at 212kN were not predicted by

NLFEA, aithough some discontinuity in the trend of the NLFEA was observed at

approximately this load.
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Figure 8.3-14 Comparison of longitudinal strains at section B in specimen B17 at locations in

the flange
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Load (kN)

Figure 8.3-14 Continued

The trend of the variation of strains on the Tower layer of gauges is well estimated by
the NLFEA procedure, with peak values of strain predicted by the scheme being very close to
those recorded in the experiment. The NLFEA scheme did not predict any tension on the
underside of the flange. This was shown in the experiments. In addition to this, a reversal of

strain at location LL6 was predicted by NFLEA that did not occur in the experiment,

8.3.7.3 NLFEA and the Prediction of Longitudinal Strains in the Flange of an RC T-
beam

The strains predicted in the flange using the NLFEA solution show in general the
capacity to replicate the trends that were apparent from the experimental work, at low levels of
load. The above results show that the prediction of longitudinal strains in the flange using the
NLFEA procedure were generally more accurate in both the prediction of trends for specimen

B17 than for specimen B16. Specimen B17 failed in flexure, and specimen B16 failed in
punching shear.

In the prediction of the strains in B17, the NLFEA procedure was able to capture the
discontinuities in the trend of the increase in strains that prevailed throughout the loading.
These were decreases in the gradient of the strain response with the applied load throughout
the experiment on the top and middle layers of the specimen. Also, the increase in the strain
response on the lower layer at section B was captured by NLFEA. The solution scheme

predicted high values of strain on the lower layer of the flange at section A where they did not
occur.
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Specimen B16 displayed reversals of strain at a late stage of loading in the experiment.
These prevailed to accommodate the formation of the failure mechanism. NLFEA did not
predict these sharp changes in strain at this Jocation. In the instances where they did not occur

(at the middle layer at section 1), the NFLEA procedure was able to predict these trernas.

8.3.8 Estimation of the Flange Contribution to Shear Resistance

The application of the instrumentation and accompanying analytical technique to
cvaluate the sectional shear in the flange of the beam specimens presented m Chapters 3 and 7
zbove require the difference in compression force on a small element of the concrete along the
length of the span. Strain gauges were provided at two scctions along the iength of the span.
For comparison with the NLFE model, the calculated shear force was interpreted to be at a

point equidistant from the centre of the two rows of gauges.

As the above region over which averaging was performed in the experiments
corresponded to two elements along the length of the span in the finite element model, an
average of the sectional shears in these two clements over the width of the flange was taken to

obtain a value that was representative of that calculated from the experimental work.

Implementing the above, a value of the sectional shear was calculated from the results
of the models on the two corresponding experimental specimens for which this result was
obtained. The load at which this was taken was the load from the experimental work at which
the last calculation was performed. For specimens B16, this was a level of applied load of
175kN (83% of the peak load), and for specimen B17, the last calculation was made at the
peak load of 238kN. Note that as the NLFEA estimate of the peak oad of specimen B17 was
lower than obtained from the experiment, the value at the estimated peak load was obtained
for comparison. The valies of the shear in the flange are presented below as percentages of

the total shear as this value is representative of the flange contribution.

At a level of applied load of 175kN in specimen B16, the implementation of the

instrumentation and analytical technique into the experimental work estimated a flange
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contribution of 27.5%; NLFEA estimated a flange contribution of 10.6%. At a peak load of

specimen B17, the implementation of the instrumentation and anaiytical technique into the

experimental work estimated a flange contribution of 24.0%; NLFEA estimated a flange

contribution of 22.1%.

8.3.9

Discussion of the Results of Stage | NLFEA

The above examination of the results of NLFEA from modelling of the specimens

tested during of the experimental work in this research indicate the following:

]o

NLFEA predicts a significant increase in the shear strength of a web reinforced
RC T-beam specimen that from increasing the width of the flange. No significant

increase in strength is produced from increase the flange depth.

The peak load predicted by the solution scheme is in close agreement with the
values obtained from the experimental work in series 1 and series 2 results. The
best values of peak load are obtained for specimens that are predicted to fail in
punching shear. The ability of NLFEA to predict the peak load of specimens in
series 3 with thin wide flange appears limited, and seems to require mesh

refinement.

The NLFEA solution scheme predicts tess deflection for an applied load on

each specimen. That is, the specimens are predicted to be stiffer using NLFEA

than they were when tested.

Crack pattems predicted from the solution scheme are indicative of those
assoctated with the failure mechanisms described in Chapter 5. Some influence of
the web on the failure mechanism is series 3 specimens resulted in over prediction
of ultimate strength. This was noted to occur when cracks were predicted along the

length of the span at the flange web interface.
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5.

NLFEA displayed the ability to predict the magnitude of the strains on the
flexural tenstle reinforcing in the region of maximum moment on these specimens.
It did not show the same ability to determine the strain in the stirrups. Kit is
thought that the inability 1o predict the precise location and path of propagation of
the crack This is a result of the smeared cracking procedure implemented into
NLFEA.

The NLFEA solution procedure has shown recasonable correlation in the
prediction of the strains on the flange of the specimens of stage 2 experimental
work, more so when predicting the flexural failure mechanism that was exhibited
by specimen B17, than that of the shear mechanism exhibited by specimen B16. It
is noted that a punching shear mechanism was recorded for this specimen in the
experiment, and NLFEA also predicted a punching shear mechanism. The high
localisation of the punching area predicted by the NLFEA 1s thought to prevent the
redistributions of strain into the region instrumented in the experimental work thus

limiting the solution schemne to predict the strain reversals in this region.

The output of the sectional shear from NLFEA showed that this procedure
predicted that the flange resisted a significant percentage of the shear force. The
prediction of the level of shear in the flange was much more accurate for specimen
B17 (predicted flange contribution of 22.1%) than that of specimen B16 (predicted
flange contribution of 10.6%). It 1s again thought that the prediction of the
localisation of the punching shear failure mechanism as predicted by NLFEA
solution scheme led to predicted values of the flange contribution to the shear
resistance that were lower for specimen B16 than those calculated from

experimental work.

Stage Il - Flange Geometry Study

Since comparative trends of the load deflection response predicted by NLFEA with

that of the ultimate strength and load-deflection response were obtained in the proceeding
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section, the solution scheme was applied to specimens identical to those of the experiments
without any variation in material properties. This study investigates the predicted variation of
applied loads with the flange proportions and the failure mechanisms predicted by NLFEA for
this set of specimens using the material models and displacement increment scheme outlined

in Section 8.2, and material properties outlined in Section 4.7.

8.4.1 Ultimate Strength

The results of the ultimate strength predicted for each specimen with the width ratio
are presented below in Table 8.4-1. This table also indicates the values of the width ratio, br,

for each specimen, the values of the depth ratio, dr, are given at the bottom of the table.

NLFEA predicted that the first four specimens of series 1 (specimens CMP-B1 - CMP-
B4) had almost identical peak loads. Specimens CMP-B3, and CMP-B4 are slightly higher in
magnitude. The remaining two values in this series decrease in magnitude with the width
ratio. As the depth ratio was decreased in series 2, NLFEA predicted that specimens CMP-B7
-~ CMP-B9 have values of peak strength that are approximately equal. The value of the peak
strength for specimen CMP-B9 was predicted to be a little higher than the other two of these
specimens. The remainder of this series showed a decrease in the peak strength with the width
ratio. As the depth ratio was again decreased further, NLFEA predicted that specimens CMP-
B12 CMP-B14 have a peak load that is equal, with this value of peak load decreasing with the
width ratio from specimen CMP-B15. It is noted that these values for series 3 are higher in all
cases (with the exception of CMP-BIS) than specimens with deeper flanges. This will be
further discussed in Section 8.4.2.3.

Figure 8.4-1 shows the above trend graphically. It can be seen that the peak load for
each value of dr for the value of br is corresponding to the peak strength increase is
approximately equal. 1t is also predicts that the peak strength for dr=0.33 is higher for values
of br=3.32 and 2.21 than those specimens in the same series with a higher width ratio.
Similarly, the value of peak strength predicted for series 2 (dr=0.25) specimen with br=3.32 is

higher than those with a higher width ratio.
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Table 8.4-1 Comparison of peak loads produced from the flange geometry study

SPECIMEN br Pe
(KN)

CMP-B1 6.6 176
CMP-B2 4.43 176

= | CMP-B3 3.32 188
% CMP-B4 2.21 185
“| cmp-Bs 1.61 150
CMP-B6 1.00 101
CMP-B7 6.64 184

| CmP-B8 443 183
2| cmp-B9 3.32 199
Al cmp-BIO | 2.21 154
CMP-B11 1.61 143
CMP-B12 4.43 187.6
E CMP-B13 3.32 187.6
=| CMP-B14 2.21 184.3
“1 cmp-Bis 1.61 140.0

Note:  Series 1; dr=0.33
Series 2; di=0.25
Scries 3 dr=016

8.4.2 Load Deflection Response

As e¢stablished in Section 8.3.5, the load-deflection curves give an indication of the
failure mechanism that is predicted by impiementation of the NLFEA procedure. This section

wili extrapolate this to the Flange Geometry Study to correlate the peak loads and the failure

mechamsms.

8.4.2.1 Series 1

Figure 8.4-2 shows the load-deflection curves that were obtained from the NLFEA
procedure for all specimens in series 1 of this study. These results show that the specimens

with br=6.64, 4.43, and 3.32 all exhibit the sharp loss of capacity at the peak load. Using the
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above correlation between failure mechanisms, it is noted that these NLFEA predicted the

punching shear for these specimens.
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Figure 8.4-1 Variations in the ultimate strength with width ratio predicted by NLFEA for
Stage 111 NLFEA
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Figure 8.4-2 Load deflection curves for ail specimens in series 1 of the Flange Geometry
Study




Specimens with br=2.21, 1.61 and 1.0 all exhibited a smooth reduction in the sum of
the reactions once the peak load was reached. Using the above correlation between failure
mechanism and the load-deflection curve, these specimens all failed by exhibiting a beam

shear mechanism.

8.4.2.2 Series 2

Figure 8.4-3 shows the load-deflection curves that were obtained from the NLFEA
procedure for all specimens in series 2 of this study. These results show that the specimens
with br=6.64 and 4.43 exhibited the sharp loss of capacity at the peak load. Using the above
correlation between failure mechanisms, it is noted that these NLFEA predicted are punching

shear failure mechanism for these specimens.
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Deflection (mm)

Figure 8.4-3 Load deflection curves for all specimens in series 2 of the Flange Geometry
Study

Specimens with br=3.32, 2.21, 1.61 and 1.0 all exhibited a smooth reduction in the sum
of the reactions once the peak load was reached. Using the above correlation between failure
mechanism and the load-deflection curve, these specimens all failed by exhibiting a beam

shear mechanism.
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8.4.2.3 Series 3

Figure 8.4-4 shows the load-deflection curves that were obtained from the NLFEA
procedure for all specimens in series 3 of this study. These results show that all specimens
exhibited a smooth reduction in the sum of the reactions once the peak load was reached.
Using the fatlure mechanisms outlined in Scction 8.3.5, it was found that the solution scheme
predicted that specimen B12 wouid fail by exhibiting a punching shear mechanism, specimen
B13 would fail by beam shear. Both of these two specimens were predicted to have
longitudinal cracks at the flange web interface similar to those shown in Figure 8.3-6 and

Figure 8.3-9. Specimens B14 and B15 were predicted to fail with a beam shear mechanism as

determined by the crack patterns produced.

200 7 -
160 1 — br=1.0
g 120 e =1, 61
T br=2.21
g 8o
. e br=3.32
A + -t s T | e by 24,43

Deflection {mm)

Figure 8.4-4  Load deflection curves for all specimens in series 3 of the Flange Geometry
Study

The trend shows by this series of specimens is dissimilar to that of the experimental
work. The outstanding issue is the high value of load predicted by specimens CMPBI2 and
CMPBI13 (br=4.43 and 3.32 respectively), these values are higher than those predicted for
series | and 2 specimens that have deeper flanges. Simiiar to Stage 11 experimental work, it is

appatent that for a fixed mesh density, the NLFEA is having difficulty predicting the peak
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strength consistently for specimens these specimens that are thought to be representative of

wide and thin flanges.

8.4.3 Discussion of Results

The above study shows that the NLFEA solution procedure predicted an increase in the
shear capacity of a series of T-beams that anises fiom increases in the proportions of the flange

of an RC T-beam that is subjected to a concentrated point load without any variations in the

matertal properties.

The predicted peak loads are estimated for specimens that were predicted to fail by the
punching shear mechanism are essentially constant, and are estimated to be independent of the
flange depth (as shown from the results between series | and series 2). As the flange width
ratio decreasc in series | and series 2, the beam shear mechanism became the mode of
failure. The results for these series indicate that the predicted peak load for the specimen with
the highest width ratio failing with a beam shear mechanism is higher than those predicted for
specimens predicted to fail by punching. The peak load of two specimens that have wide thin
flanges is higher than specimens that have identical flange widths but deeper flanges. This isa

result of longitudinal cracks along the flange web interface being predicted by the solution

scheme.

The solution procedure does not predict any significant variation in the peak load for
specimens that display the punching shear mechanism regardless of the width ratio or the
depth ratio. As the beam shear mechanisms began to prevail, NLFEA predicts that a higher
strength is attained for specimens with greater flange proportions. The solution scheme
predicts a higher dependency on the flange width than the flange depth in the increase in peak

load with the flange proportions. The latter was also predicted from experiments.

8.5 Conclusions From the Finite Element Study

The above presents a threc stage investigation into the ability of NLFEA to replicate
experimental results and further predict the influence of the flange on the shear capacity of a

web reinforced RC T-beam. The study examined the sensitivity of the solution scheme to
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combinations of material models that described the tension and compression response of
concrete, as well as the ebffect of the displacement increment on the solution obtained. Once
the optimum combination of these was established, the procedure was implemented to
investigate the accuracy of predicting peak strengths, load-deflection response, reinforcing
strains, failure mechanisms, concrete strains and flange contribution to shear resistance as
compared with the experimental work. A fixed mesh density was used throughout for
consistency. Once the capabilities and limitations of the scheme were established, it was
applied to a set of specimens with only flange proportions as the variables. The following was

concluded from this study.

1. The accuracy of the scheme, and the prediction of the load deflection response
if highly dependent on the choice of the compression response of the concrete. It is
concluded that a concrete compression model that explicitly includes the effect on
the compressive response from co-existing perpendicular tensile strains is most
suited to this type of specimen. It is suggested that this would be the case in

general for shear critical members.

2. The ultimate strength results predicted from NLFE modeiling of the
experimental specimens are in general in close agreement with those recorded
during the experimental work. The exception to this is specimens B12 and B13, It
is suggested that analysis of web rcinforced T-beam specimens using NLFEA
requires particular attention to mesh density in the region of the load point as well

as the increment of applied displacement.

3. NLFEA predicted crack pattemns at failure consistent with those that are
displayed by the two failure mechanisms displayed during the experimental work

with the exception of specimens B12 and B13.

4. NLFEA has reasonable prediction of longitudinal strains in the flange. This
was particularly the case for specimen B17 that failed in flexure. [t appears that the
prediction of the wrong failure mechanism by the NLFEA solution scheme has led

to an inaccurate estimate of the redistribution of the strains in the flange at failure,
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3.

NLFEA predicts that the width ratio and the depth ratio of a flange has a

significant bearing on the shear strength of a shear critical, web reinforced T-beam

subjected to a concentrated point load.

NLFEA has shown that flange contribution to the resistance to shear is
significant. Excellent correlation of this result with the experimental work was
produced for specimen B17. The result was not as good for specimen B16; it is
again thought that the prediction of the wrong fatlure mechanism resulted in an

inaccurate estimate for the flange contribution.

NLFEA nredicts that the width ratio has a much more significant effect on the

shear strength of an RC T-beam specimen subjected to a concentrated point load
than the depth ratio.

el i i Lz

g
3



TR T

Chapter9 CONCLUSIONS AND
RECOMMENDATIONS

9.1 Overview of the Research Undertaken

The research presented in this thesis implemented strategies to ecxamine the
contribution of the flange of a web reinforced RC T-beam subjected to a concentrated point
load tn the resistance of shear. This task was undertaken in three tiers of work, these were as

follows.

¢ Dectermination of the variation in peak load and failure mechanisms obtained from
a group of 15 specimens with varying flange width and depth, but constant overall

depth and reinforcing ratio to examine the overall behaviour.

¢ Evaluation of the contribution of the flange to the resistance of shear by
development of an experimentai technique, and associated analytical relations that
enable calculation of the sectional shear in the flange of a T-beam. This technique

was applied to two specimens.

¢ Implementation of the NLFEA procedure to predict both the failure loads, load-
deflection behaviour, crack patterns, strains (both concrete and steel strains), and

percentage of total shear force in the flange.

The main conclusion drawn from this research is that increasing the flange proportions of a
web reinforced RC T-beam subjected to a concentrated load will increase the shear resistance

of that specimen. A significant contributing factor to this increase in shear capacity is the

205

T P

FIIERPUS Ay PSP RPNE L -

e F i



redistribution of shear stresscs into the flange from the web associated with the formation of

‘ the faiture mechanism.

9.2 Conclusions From This Research

It is the purpose of this section to draw general conclusions from this research. The
? conclusions specific to cach of the three tiers of the work are presented at the end of the

relevant section. These general conclusions are as follows.

Failure mechanisms of web reinforced RC T-beams subjected to a concentrated
ponit load

A web reinforced RC T-beam subjected to a concentrated point load will fail by either

T

onc of two mechanisims., Firstly, a beam shear mechanism which is a similar
mechanism to that observed in rectangular beams, and sccondly a punching shear
mechanism whereby the load point tries to punch through the flange of the T-beam.

The latter is a local phenomenon and arises from the concentration of the applied load

over the width of the web during the experiments outlined above.

K
I "

Ultimate strength of web reinforced RC T-beams subjected to a concentrated
ponit load

Within a series of specimens that has an increasing flange width from a rectangular
specimen upward, the shear strength will continue to increase until the punching shear
mechanism forms. Once the flange is wide enough for the punching mechanism to
| form, any further increase in the flange width will not result in an increase in the shear

strength.

Significant geometric variations in flange proportions

Of the two geometrical proportions of the flange, variations in the flange width results
in much more significant variations in the shear strength of these specimens failing in
beam shear than that of the flange depth. Results of the experimental work indicated

that a thin flange may not provide any additional capacity to shear resistance.
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The role of the flange in the resistance of shear

The significant increase in the shear strength of an RC T-beam with flange width is a
result of the propagation of shearing stresses into the flange. The development of the
failure mechanism (i.e. formation of the cracks that make up the failure mechanism at
failure) results in redistributions of longitudinal strain in the flange that are required to
accommodate the failure mechanism. It is these redistributions that necessitate a
higher contribution of the flange to the resistance of shear. The full development of

the failure mechanism results in a high effectiveness of the flange.

Implementation of the NLFEA solution scheme

Implementation of the NLFEA solution scheme with solid elements, a nonlinear elastic
constifutive compression model with secant unloading for the concrete, and a linear
tension softening has shown the ability to predict the above, This tool is suitable for
the investigation of more subtle variations of the ultimate shear strength of a web
reinforced RC T-beam specimen subjected to a concentrated point load with flange
width. This is the case for specimens with flange proportions similar to that of series 1
and series 2 outlined in this study. The relative flange depths of these specimens are
representative of those common in structural engincering application. The solution

scheme appears to have difficulty in predicting the peak strength of specimens with
thin wide flanges.

Amendment of provisions in current concrete codes of practice
The current codes of practice for the assessment of the shear strength of a T-beam are
inadequate. Some provision should be made for the increase in the shear strength of a

T-beam with increases in the flange proportions particularly for the purpose of

evaluating existing structures.
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Suggestions for Future Work

The work undertaken in this thesis has drawn attention to several areas that require

further attention. These are as follows.

Failures resulting from localisation of load on wide flanged T-beam specimens

This research has shown that a concentrated load on a wide flanged T-beam produce a
punching mechanism as a result of the localisation of the load. Consideration of the
nature of the localisation (i.e. size and shape of load point, width of web, width and
depth of flange) and the effect of this on the formation of the punching mechanism
should be the major focus of such a study. The possibility of a beam shear failure
mechanism being a subset of the punching shear failure mechanism should aiso be

given special attention.

Elimination of unintended variations in material properties

The experimental work presented in this thesis required a normalisation procedure as
ultimate strength results included unintended material properties that arose from the
need to separate experimental work nto thre¢ specimens. The examination of the
experimental work for the effect of the flange depth required use of these procedures.
It is suggested that the flange depth be investigated as a primary variable of an
investigation, with experimcnts prepared in such a way that the same concrete and steel
batches are used for cach specimen to eliminate as many potential variations as

possible.

T-beams without web reinforcing

There is some discrepancy between results obtained from previous investigations at the
University of Glasgow (Fok (1972) and Chong (1980)) and the results of this and
numerous other investigations. A normalisation procedure outlined above has
indicated that the method of precluding variations in material properties used in the
Glasgow studies may have hidden the increase in shear strength with increase in flange

proportions. It is suggested that this statement should be validated by further
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experimental work. This should particularly be the case for a specimen with a

concentrated point load similar to that used in this investigation.

The contributions to the shear resistance of an RC beam

The adaptaticn of the instrumentation technique and the accompanying analytical
technique to rectangular beams is suggested.  This coupled with sufficient
instrumentation on the stirrups could also be used to indirectly quantify the joint

combination of aggregate interlock and dowel action.

Finite element analysis of these specimens

Although the NLFEA did adequately predict the strength of the specimens, it s
thought that implementation of more sophisticated constitutive models may prove
more successful in the prediction of the critical value of the flange width at which the
punching mechanism forms. The inadequacy of NLFEA to predict the peak strength ¢

beams with thin wide flaiges should also be given further attention.

Insite T-beams in parallel

Structures such as a T-beam bridge deck comprise of a series of T-beams (of similar
proportions to those tested in this research) in paraliel. As one girder (which is a T-
beam} is subjected to a point lcad from a truck, it may be such that the effective flange
width for resistance of shear of this girder overtaps with the adjacem girder. This
could significantly increase the shear strength of the deck further, and is suggested that

this effect be the subject of detailed investigation.

Effects or: other components of the shear mechanism from the increase in flange
proportions

The above research has proven a contribution of the flange to the resistance of shear.
An investigation into the effect that the increase in the flange proportions on the effect

of dowel action and aggregate interlock should also be undertaken.
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Appendix A COMPRESSION SOFTENING DUE
TO PERPENDICULAR TENSILE

STRAINS IN SPECIMENS B16 AND
B17

A.1  Introduction

Softening of the compressive response resulting from perpendicular tensile strain 3= a
characteristic of the response of concrete that has only received attention in the last twenty
years. The original formulation of the MCFT involved testing of 30 reinforced concrete
panels to determine the stress-strain characteristics of such an element. The resulting
constitutive relations that were bome from that siudy were the first to attempt to quantify this
phenomenon. The authors of the MCFT then embarked on a large testing program that
isolated this phenomenon and attempted to describe its behaviour more accurately. The
discussion on this paper that followed by Beiarbi and Hsu (1995) indicated many
shortcomings that exist in the determination of the influence of tension strains on the
compressive response, including a lack of generally agreed upon method to measure tensile
strains of concrete with large cracks. The authors of this discussion had proposed their own
set of equations to predict the compressive response of concrete subject to large perpendicular
tensile strains prior to this publication in Pang and Hsu (1995) (note that these relations were
formulated by Belarbi and Hsu in July 1991 in a departmental publication at the University of
Houston). Other authors have given treatment to this problem, but as it is not a major focus of

this research, only a representative model will be considered for this discussion.
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The research above has not determined an agreed upon method of calculating the
influence of the perpendicular strains on the corapressive response of concrete. In the
examination of the potential effect of this phenomenon on the calculation of compression
forces in the flange of an RC T-beam, the relationships determined by Vecchio and Collins
(1993) are used, as the pool of data used for the determination of these relations is the largest.

It is thought that the large data pool should yield the most statistically reliable results.

A2 Determination of the Influence of Perpendicular Tensile
Strains Using DSFM

As outlined in Chapter 3 the DSFM requires calculation of the softening parameter

using the relationship in Equation A.A.2.1.

—<10 A2l

The parameter Cs is a parameter that accounts for the relative reinforcing percentages
in the two directions in plane stress. Vecchio and Collins (1993) suggest a value of 0.55
where equal reinforcing is provided in both orthogonal directions, or a value of 1.0 otherwise.
Given the arrangement of reinforcing in the flanges of the specimens tested, the value of C; is
taken as 1.0 for this procedure. The parameter Cy is the parameter that takes into account the
effect of the tensile strain perpendicular to the principal compressive direction. The DSFM
considers two methods of calculation of the value of this parameter. These are shown in
Equations A.2.2 and A.2.3.

C,=027%-¢, /e, —037) A22

C,=035(-¢,/€,, -028)" A23
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Equation A.2.2 relates the parameter Cq to the value of the principal tensile strain (g),
and the strain at the peak cylinder stress (€,). Using the value of €, recommended by the CEB-
FIP Model Code (£,=0.0022}, this equation yields a value of principal tensile strain of 814pe
zc the minimum magnitude of tensile strain that is required to be present in the direction
perperdicular to the principal compressive strain.  The authors recommend this equation for
use in design procedures when the level of compressive strain is unknown. This formulation
implicitly assumes that the concrete has reached the peak stress in the principal compressive
direction. During stage 2 tests, the concrete at the location of the gauges did not crush, nor did

the perpendicular tensile strain reach 814pe.

Equation A.2.3 depends on the ratio of the principal tensile strain to the principal
compressive strain (€;). A discussion of the value of the softening parameter calculated using
this formulation, as well as the vaiues of compressive stress calculated using this value is

given in the following section.

A.3  Results of the Calculation of the Softening Coefficient

The lateral and longitudinal surface gauges in specimens Bl 6 and B17 were coincident
at the locations where lateral gauges were applied. Within the depth of the flange, the lateral
gauges were offset half of one embedded gauge thickness. This is considered negligible for
the purpose of the calculations presented below. Therefore, at any given location where lateral
and longitudinal gauges are coincident, ) in Equation A.2.3 is the result of the gauge in the
lateral direction, and the term g is the result of the gauge in the longitudinal direction. For

the purpose of this discussion, Equation A.2.3 is only valid if €., is a compressive strain.

The gauges were coincident at three locations across the width of the specimen. With
reference to Figure 7.1-2 in Chapter 7, these are at row 2, 4, and 6. Row 4 results are not
relevant to this discussion because this row is in the web and not considered in these
caiculations. The effect of the softening coefficient as calculated at row 2 and row 6 is

considered in this discussion.
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Figure A. 3-3 — A.34 presented at the end of this appendix show the variation of the
stresses calculated at row 2 ad row 6 with the applied load. These figures present the results
of stresses both with and without the inclusion of the softening coefficient. These figures
show that {with the exception of results of specimen B17 gauges at row 2 embedded in the
flange at section A and section B) consideration of softening does not influence the value of

the calculated stress.
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Considering the ratio of calculated stresses (stress calculated with softening
. considered/stress calculate without suftening considered) expressed as a percentage, it is found
that the maximum variation at section A, row 2 is 2.0%, and at section B row 2 is 3.5%.
These values are small and negligible in the use of these stresses to calculate force over the
: arca of one flange block in specimen B17. Based on these results, the effect of softening is
¢ ignored in the discussion of the calculation of flange stresses hereon.
;
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Appendix B LONGITUDINAL STRAINS,
REDISTRIBUTIONS AND THE
FAILURE MECHANI!ISM OF
SFECIMEN B16

B.1 Introduction

This appendix is intended to take the reader through the process of analysis of
longitudinal strain results that was undertaken in an effort to determine the redistributions of
strain that cccurred throughout the loading history, and the cffect that these redistributions had
on the distribution of compression throughout the width of the flange. Several stages of the
development of the fatlure mechanism were discussed for this specimen in Chapter 7, this
appendix shows the relationship of these stages with the longitudinal strain distributions

obtained from the experimental procedure,
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This appendix presents the results of the strain gauges, results of the calculation of
neutral axis depth and top fibre stress, as well as a discussion of the stages of strain
redistribution associated with the formation of the failure mechanism that significantly
influenced the effectiveness of the flange in the resistance of shear. This appendix uses some

notation that was defined in Chapter 3. Figure B. 1-1 outlines the relevant definitions.

B.2  Distribution of Longitudinal Strains

The results of strain gauging in the longitudinal direction at the two sections can be
seen in Figure B. 2-1 — B.2-3. The results of sirain gauging are presented as distributions
throughout the width and depth. Figure B. 2-1 shows the distributions of strain across the
width of the flange at three locations throughout the depth at section A, Figure B. 2-2 shows
the same distributions at section B, and Figure B. 2-3 shows the shows the distribution of
strain throughout the depth of the flange at section A and B in the web (row 4), and at one
location that is representative of the behaviour exhibited at each row in the flange (row 2).
The tllustrations in Figure B. 2-1 and Figure B. 2-2 show distributions of strain across the
width of the flange on the top surface of the flange, at the centre of the depth of the flange, and
at the underside of the flange. Linear interpolation was used to produce results at exactly the
centre of the depth of the flange. In all of the illustrations, the convention of compression as

positive is used for stresses and strains.

B.2.1 Section A

Figure B. 2-1 (a) — (h) show that the distribution of compressive strain on the top
surface of the specimen remains uniform until a level of load of 140kN. This distribution is
essentially constant throughout the width, with the strain in the flange overhangs being equal
to that at the centre of the width of the web. Beyond this level of applied load, the magnitude
of strain in the right side flange overhang can be seen to be higher than that in the left side

flange overhang as is shown in part (i) — (§) of Figure B. 2-1.

Examination of Figure B. 2-3 (a) shows that the rate of increase of the compressive
strain on the top surface of the flange overhangs remained essentially constant until a level of

load of 91kN. This level of applied load marked the appearance of the critical diagonal web
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crack. Beyond this level of applied load, the gradient of increase in the compressive strain
with applied load increased until a level of 140kN. This level of applied load marked the
beginning of a reversal of strain on the top suirface of the flange, with the decrease in
magnitude beginning at a Jevel of applied load of 160kN. Beyond this level of applied load, a
uniform decrease in the compressive strain on the top surface of the flange prevailed.
Although difficult to see in part (b) of this figure due to the large tensile strains that formed,
this trend was generally reflected by the strain gauges located at the centre of the width of the

web of the specimen.

The strain on the underside of the flange can be seen to be in compression and small in
magnitude between applied loads of 0-60kN at this section as shown in Figure B. 2-1 (a) — {c).
Comparison of strains on the underside of the flange at a load level of 60kN and 80kN (Figure
B. 2-1 (¢) and (d)} show that the development of strain within these load increments is not
consistent with the development from previous load stages. Between these load increments,
the magnitude of the compression strains generally decreases within this range; this is thought
to be associated with the redistribution required for the formation of the critical diagonal web
crack. Beyond a load level of 91kN, the strains on the underside of the flange at sechon A
become tensile, and increase in magnitude until a level of joad of 140kN as indicated by
Figure B. 2-1 (e)-(g). Beyond this level of load, the magnitude of the tensile strains begins to
decrease, as can be seen by Figure B. 2-1 (g) — (h). This trend is continued until a level of
applied load of 170kN. Beyond this level of load, there is a trend for the strains on the

underside to become small compressive strains as is shown in part (i) and (j) of this figure.

All results at the centre of depth indicate that in the flanges, the strain is compressive
and increasing until failure. However, the gauge that was embedded at the centre of the width
of the web indicates that a tensile strain develops from an applied of load of 160kN onward.

This can be seen in Figure B. 2-1 (h)-()).
The results from the strain gauges on the underside of the flange and those embedded

within the flange indicate that only the web exhibits significant tensile strains. As the

specimen approaches failure the crack that initiates failure does not penctrate the edges of the
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flange within the range of loading considered in these plots at section A, it only penetrates the

web region of the specimen.

The results at section A show that in general, if gauges show compression throughout
the entire width of the flange, the right hand flange overhang has a higher level of
compression than the left hand overhang. It can also be seen from these figures that re-
distributions corresponding to the formation of the critical cracks outlined above shed more

strain to the over hang on the right hand side of the flange.
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B.22 Section B

From the initial loading stage until a level of applied load of 141kN, the strain on the
top surface of the flange at section A can be seen to increase uniformly in magnitude of
compressive strain. This is shown for the distribution in Figure B. 2-2 (a) — (g} 1s well as for
the individual gauges in Figure B. 2-3. Beyond this level of load, a reversal of top surface
strains begins. Figure B. 2-3 shows that this reversal of strain produces tensile strains on the
top surface at a level of load of approximately 175kN. Figure B. 2-2 (i) and (j) show that
tensile strains were displayed at all rows across the width of the specimen with the exception
of row 2. Strains of magnitude significant enough to produce crack were reached at a level of

load of approximately 180kN.

At the early stages of loading on section B, the strain on the underside of the flange is
small in magnitude and compressive. This remains so until a level of applied load of 91kN,
and is shown in Figure B. 2-2 (a) - (d} and in Figure B. 2-3. Beyond this level of applied load,
a reversal in the trend in the magnitude of the strain with the applied load, culminating in the
development tensile strains on the underside of the flange at a level of applied load of
approximately [00kN (this varied row to row). Figure B. 2-3 shows that the strain on this
surface again remains fairly low in magnitude on the flange overhangs, but decreases in
magnitude af a slow rate at the centre of width of the web. This trend continued until a level
of applied load of 140kN. The variations throughout the width of the specimen showing the
local maximum at the centre of the width of the web are shown in Figure B. 2-2 (f) - (g).
Beyond a level of applied load of 140kN, the strain on this surface becomes compressive
throughout the width of the flange and continues to increase in magnitude until the end of the
loading range considered in this discussion. As is shown in Figure B. 2-2 (k) — (j), and in
Figure B. 2-3, compressive strains develop throughout the entire width of the specimen on this

surface (including at the centre of the width of the web).

It is noted here that as the crack on the top surface (shown in Section 7.2) begins to
penetrate the depth of the flange, the compressive strains on the underside of the flange

increase. This indicates some vertical redistribution of compressive strains throughout the




depth of the flange corresponding to the failure mechanism that exhausts the strength of the

spectmen.

Figure B. 2-3 shows that the strain at the centre of depth of the flange at section B
remained in compression throughout the duration of the loading and increased essentially
uniformly throughout the experiment until a level of applied load of 140kN. The magnitude of
the strain is small only slightly exceeding 200ue in the figures shown below. Beyond this
level of load, the magnitude of the compressive strain in the flange overhangs can be seen to
have decreased, and the strain at the centre of the width of the web can be seen to have
increased in compressive magnitude with applied load at a slower rate that prior to this leve) of
applied load. The results shown in Figure B. 2-2 reflect the above distributions across the

width of the specimen.

The results from the gauge at row 2 (second row from the left hand edge) on the iop
surface of the specimen at section B is inconsistent with the other results that are produced.
The results from this gauge do not exceed 100ue. In the early stages of the loading history, it
can be seen that the results from this gauge are much lower than the rest at this section.
Results from section A, and the remainder of the gauges at section B indicate that the
distribution should be constant throughout the width at a low level of load. Since this is not
the case, it is assumed that this gauge failed prior to the commencement of th: test. The
calculations of the shearing forces throughout the width of the flange use a value of strain at

this point that is linearly interpolated from adjacent gauges.
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B.23 Comparison of Results Between Sections

As the specimen approaches failure, a crack develops on the top surface. The crack
intersected the majority of the gauges positioned at section B on this specimen. The formation
of this crack is inline with observations made by Hoang (1997) for reinforced concrete, shear
critical beams without web reinforcing (as outlined in Section 2.2.3). As this ciack develops,
the longitudinal compressive strains are redistributed vertically throughout the depth of the

flange in this section.

Similarly, the level of strain on the top surface of section A can also be scen to
decrease after the initiation of the failure mechanism. This section also shows some
redistribution of strain throughout the depth with the gauges on the underside of the flange
displaying compressive results after the formation of the crack on the top surface. However, at
this section, the level of tensile strain at the centre of the width of the web at the location of
the underside of the flange is high. Since this specimen failed in punching shear, the excessive

cracking in the web is though to be associated with the formation of the punching cone.
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Figure B. 2-3 Variations of distribution of strain throughout the depth of specimen B16 with applied Joad
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B.3 Distribution of Neutral Axis Location and Top Fibre Stresses

Figure B. 3-1 - B. 3-2 show results of calculations of the neutral axis depth, as well as
the calculation of the stress on the top surface using the DSFM relations at 20kN intervals.
These results are presented at each row throughout the width of the flange in an effort to show
the effect that redistributions of strain associated with the formation of the failure mechanism

have on the location of the neutral axis within the flange and the web.

The neutral axis depth was calculated using linear interpolation of the results of the
strain at the top and bottom surface of the flange to calculate the depth at which the strain was
zero. In positions where gauges failed as a result of cracking at that location, the strain at
location of the embedded gauge was used to calculate the location. At the centre of the web,
the embedded gauge at the location of the flange web interface was used for this calculation.
Values of stress on the top surface of the flange were calculated using the relations of the

DSFM as discussed in Sectiont 3.3.1.

B.3.1 Section A

The movements of the neutral axis at section A throughout the loading history
considered is consistent with linear elastic theory until the formation of the critical diagonal
web crack at an applied load of 91kN. This is shown in Figure B. 3-1 (a)-(d). Prior to this
level of load, the trend is for a lower neutral axis depth at the centre of the web, and the
remainder of the neutral axis positions at the section (in the flange) are at locations closer to
the top surface of the flange. The stress -distribution on the top surface at this section until this

applied load is in general constant across the width of the flange.

At the level of applied load of 90kN, the neutral axis position suddenly moved up
throughout the width of the flange to become closer to the top surface of the concrete. This is
reflected by the significant difference in the distributions shown in part (d) and (e) of Figure
B. 3-1. Parts (e) — (h) show that as the loading progressed up to a level of load at which the
crack on the top surface of the flange formed (approximately 180kN), the level of the neutral

axis in the flange remained constant, whereas the depth decreased at the centre of the width of
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the web. The levels of stress within this range of applied load increased at a fairly uniform
rate, and the distribution of compressive stress across the width of the flange did not remain
uniform as for previous loading stages, the magnitude of the stresse at rows on the right hand
flange overhang were higher than that on the left side flange overhang, but of similar

magnitude to those at the centre of width of the web.
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Figure B. 3-1 Distributions of neutral axis and top fibre stress on section A of specimen B16

at 20kN intervals
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Figure B. 3-1 Continued

B.3.2 Section B

The distributions of the neutral axis across the width of the flange at section B
illustrated in Figure B. 3-2 show similar features to the distributions of section A. The
maximum depth of neutral axis is at the location of the centre of width of the web until a level
of load of 90kN, with the appearance of the critical web crack producing a sharp decrease in
the depth of the neutral axis. The latter can be seen by comparison of Figure B. 3-2 (d) and
(e). The distribution of compressive stresses on the top surface of the flange throughout this

loading range is constant throughout the entire width.

At a level of load of 140kN, the neutral axis depth throughout the entire width of the
flange is poorly predicted by the linear interpolation between strains on the top and bottom
surface of the concrete, Beyond this loading range, a vertical re-distribution of strains is
apparent throughout this section. The tension surface is in the process of switching from being
the underside of the flange to being the top of the flange. As this occurs the entire flange is in
compression for some ranges of load at which stage the interpolation of strains produces

unrealistic results of the depth of the neutral axis. This is seen in Figure B. 3-2 (h).
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Figure B. 3-2 (i) shows the neutral axis location with the stresses on the top surface of
the flange being mostly in tension. This is not the case at the location of the gauge on the
outer left hand edge of the specimen, as the tension strains had yet to reach this point in the
test. Figure B. 3-2 (j) shows that distribution o.” the neutral axis depth corresponding to the
entire specimen being in tension on the top surtace across the width of the flange. The levels
of tension stress on the top surface of the specimen at a load level of 200kN are shown to be
small in magnitude. This is fairly uniform at high levels of tension strain as the softening limb

of the tension stress-strain response described by the DSFM relations is quite gradual.
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Figure B. 3-2 Distributions of neutral axis on section A of specimen B16 at 20kN intervals
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Figure B. 3-2 Continued

B.3.3 Comparison of Results Between Sections

It is apparent from the above analysis that the formation of the failure mechanism
results in substantial redistributions of compressive stress throughout the specimen at section ;4
A. After the formation of the critical diagonal web crack, the depth of the neutral axis at this ;
section decreased at the centre of width of the specimen while the distribution of compressive
stresses across the width of the flange remained fairly constant. This suggests that the flange
region is carrying more compression force than the web region. Therefore, there is a lateral
redistribution of compressive stresses into the flange following the formation of the critical

shear crack.
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As discussed in section B.2.3, the formation of the lateral crack on the top surface of
the - flange also initiates a redistribution of stresses. This redistribution is a vertical
redistribution with the compressive stresses of the flange at this section moving from being on

the top surface of the flange to being the bottom surface of the flange.
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Appendix. C LONGITUDINAL STRAINS,
REDISTRIBUTIONS AND THE
FAILURE MECHANISM OF
SPECIMEN B17

(oR | introduction

This appendix i intended to show the process of analysis of longitudinal strain resuits
that was undertaken to determine the redistributions of strain that occurred throughout the
loading history, and the effect that these redistributions had on the distribution of compression
actions throughout the width of the flange. Several stages of the failure mechanism have been
outlined for this specimen in Chapter 7, this appendix shows the relationship of these stages

with the longitudir- ° stvain distributions obtained from the experimental procedure.

This appendix presents the results of the sirain gauges, results of the calculation ot
neutral axis depth and top fibre stress, as well as a discussion of the stages of strain
redistribution associated with the formation of the failure mechanism that significantly
influenced the effectiveness of the flange in the resistance of shear. This appendix uses some

notation that was defined in Chapter 3. Figure C. 2-1 outlines the relevant definitions.

¢2 Distribution of Longitudinal Strains

The resulis oi strair. gauging in the longitudinal divection at two sections can be seen in

Figure C. 2-2 - C.24. Tuese results are presenied as distributions of sirain throughout the
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width and depth of the flange. Figure C. 2-2 shows the distribution of strains across the width
of the flange at three locations throughout the depth at section A, Figure C. 2-3 shows the
same distributions at section B, and Figure C. 2-4 shows the distribution of strain throughout
the depth of the flange at section A and B in the web (row 4), and at one location in the flange
that is representative of the behaviour exhibited at each row in the flange of the specimen (row
2). The illustrations in Figure C. 2-2 — C.2-2 show the distribution of strain across the width
of the flange at 20kN load increments at the top of the flange, centre of depth of the flange,
and on the underside of the flange. Lincar interpolation was used to generate results that are
equidistant across the width of the flange, and also to generate strams er-ictly at the centre of
the depth. The process of the linear interpolation ased is outlined in Appendix F. The
convention of a positive strain representing a compression strain is again used in the analysis

of this specimen.

Instrumented region Section B Section A | gaded Area
N .
NN
RN
I e
1| ~.
[ -
j
N
P e
N

Figure C. 2-1 ldentification of Section A and Section B

These resulis have becn shown at 20kN increments to be consistent the analysis of
specimen B16. The discussion that follows will focus on the redistribution of longitudinal
strain profiles throughout the width and the depth of the flange, the movement of the neutral
axis throughout the application of load to the specimen, and the variations in stress on the top
surface of the specimen throughout the experiment. All strain gauges remained intact
throughout the entire duration of the fest, allowing analysis of strains and calculated stresses
and neutral axis positions to be considered at all levels of load. This discussion considers
strain gauging results, and subsequent calculations, until the peak load of P=238kN. The

notation of sections used in these figures is similar to that in Chapter
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C.2.1 Section A

The strain distribution on the top surface of the flange shown in Figure C. 2-2
remained essentially uniform across the width of the flange until a level of applied load of
140kN (refer part (a) — (g) of this figure). Beyond this level of load, it is apparent that more
compressive strain was in the right side flange overhang. PartS (k) and (1) of Figure C. 2-2
indicate that a significant reduction in the magnitude of the strain occurred at the centre of the

web, relative to the flanges, as the load on the specimen approached the peak load.

The rate of increase in the magnitude of the compressive strains on this surface was
uniform until a load level of 120kN as illustrated in Figure C. 2-4 {a) and (b). At a level of
applied load of 120kN, a sudden small decrease in the magnitude of the strain on this surface
occurred. This decrease was sudden, and was followed by a redistribution that prevailed
within a load range of 120-140kN as shown in this figure. Beyond this value of load, the rate
of increase again continued at a constant rate, but a lesser rate than before this load level. The
increase continued until a level of load of 212kN when another sharp decrease occurred,

accompanying the formation of the critical diagonal web crack.

The first two load increments in Figure C. 2-2 shows that an even distribution across
the width of the flange of compression strain at the centre of the depth prevailed. Between
levels of applied load of 60-200kN, the strain at the centre of width of the flange was lower
than that in the flanges. This is most likely due to the influence of a flexural crack that was at
this location in the web. This distribution across the width of the flange was consistent until
near the peak load. Parts (k) and (I) of Figure C. 2-2 show an even distribution across the

entire width of the specimen followed the formation of the critical diagonal web crack.

Figure C. 2-4 shows that the rate of increase of compressive strain in row 2, and at row
4 with the applied load was constant until a level of applied load of 120kN. Between levels of
applied load of 120-140kN, there was a redistribution of strain throughout the depth of the
flange that caused a sudden drop in the magnitude of the strain at the centre of depth of the

flange. As shown in Figure C. 2-4 (a) and (b), this was most significant in the web region (at
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row 4). Beyond the level of lvad of 140kN, the rate of increase of the compressive strain at

each location remained constant.

The strains on the underside of the flange at this section remained close to zero until a
level of applied load of 44kN. From this level of load until a level of applied load of 120kN,
tension strains developed on this row of gauges, increasing at a uniform rate with the loading,
with the maximum tension strain being at the centre of the web. This is illustrated in part (¢)-
(f) of Figure C. 2-2. The distribution of these strains across the width of the specimen was
constant in the flanges, and at a maximum tensile magnitude in the web. At a level of load of
212kN, the strains in the flange rapidly reduced to magnitude of approximately zero, and the

strain in the web became compressive.

The distribution of strain throughout the depth shown in Figure C. 2-4 (a} — (b) shows
that a constant increase in the magnitude of the tensile strain in the flanges and the web
prevailed until a magnitude of applied load of 120kN, At a level of applied load of 120kN, a
sudden reversal of trend of strain increase with load or the underside of the flange occurred.
This reversal occurred between levels of applied load of 120-140kN. Foilowing this sudden
reversal, the specimen, as shown in this figure, displayed a uniformy decrease in magnitude of
the tension strain. This uniform rate of decrease continued until a level of applied load of
212kN, when a sudden decrease in magnitude of the tensile strain on the underside of the
flange occurred, resulting in small compression strains at this row of gauges. This sudden

reversal accompanied the sudden appearance of the diagonal web crack.
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Figure C. 2-2 Distnibutions of longitudinal strain on section A of specimen B17 at 20kN intervals
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C.2.2 SectionB

Figure C. 2-3 shows that the distribution of compression strains across the width of the
flange at section B is similar to that of section A. The distribution remains essentially uniform
across the width of the flange until a level of applied load of 140kN (refer part (a) — (g) of this
figure). Beyond this level of load, it is apparent that more compressive strain was in the right
side flange overhang. Part (k) and (1) of Figure C. 2-3 indicates that a significant reduction in
the magnitude of the strain occurred at the centre of the web, relative to the flanges, as the load
on the specimen approached the peak load. This reduction in strain occurred at a level of

applied load of 212kN, corresponding to the formation of the critical diagonal web crack.

The variation throughout the depth of the top surface strain with the applied Joad was
also similar at section B to that at section A. Figure C. 2-4 (c) and (d) shows that the rate of
increase in the magnitude of the compressive strains on this surface was uniform until a load
level of 120kN. At a level of applied lond of 120kN, a sudden small decrease in the
magnitude of the strain on this surface occurred. This decrcase was followed by a
redistribution that occurred between applied load levels of 120-140kN as shown in these
figures. Beyond this value of load, the rate of increase again continued at a constant rate, this
was at a much lower rate than that preceding the redistribution, almost constant. The increase
continued until a level of load of 212kN when another sharp decrease occurred, accompanying

the formation of the critical diagonal web crack.

Figure C. 2-3 shows an even distribution of compression strain at the centre of depth of
the flange across the width of the tflange until a level of applied load of 85kN, this is reflected
in past (a) —(d) of this figure. Beyond this level of applied load, the strain at the centre of the
web decreased slightly, most probably due to the influence of flexural cracking m the

specimen. This distribution across the width essentially remained constant until failure.

Figure C. 2-4 (¢} and (d) shows that the rate of increase of compressive strain in row 2
and at row 4 with the applied load is constant until a level of applicd load of 120kN. A very
small redistribution of strains that occurred between levels of applied load of 120-140kN is

evident in these figures. This was much less significant than that at section A, but did occur.
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Beyond the level of load of 140kN, the rate of increase of the compressive strain at each
location remained constant, and equal in gradient to that prior to the redistribution. There was
a sudden decrease in the magnitude of the strain at the rentre of the depth of the flange at a
level of applied load of 235kN. This can be most ¢learly seen by comparing Figure C. 2-3 (k)
and (1).

The strains on the underside of the flange at this section remained close to zero until a
level of applied load of 67kN. Beyond this level of applied load (as shown in Figure C. 2-3
(d) — (k)). the strain at the centre of the web became tensile, and increased in magnitude, while
the strains on the underside of the flange remained close to zero. This trend remained constant
until a level of applied load of 212kN, where a sudden shift in the strains throughout the entire
width on this surface occurred. The strain on the soffit of the flange became compressive, and
the magnitude of the tensile strain at the centre of the web decreased sharply. This is

illustrated in part (k)-(1} of Figure C. 2-3.

The distribution of strain throughout the depth shown in Figure C. 24 (¢) ~ (d)
indicates that a constant increase in the magnitude of the tensile strain in the flanges, and the
web prevailed with a range of applied load of 67 - 120kN. At a level of applied load of
120kN, a sudden reversal of trend in strain increase on the underside of the flange occurred.
This reversal occurred between levels of applied load of 120-140kN. Following this sudden
reversal, the specimen, as shown in this figure, displayed a uniforin decrease in magnitude of
the tension strain. This uniform rate of decrease continued until a level of applied load of
212kN, when a sudden decrease in magnitude of the tensile strain on the underside of the
flange occurred, resulting in compression strains at this row of gauges. This sudden reversal
accompanied the sudden appearance of the diagonal web crack. It is noted that compression
strains on the underside of the flange developed at a level of load of 173kN as shown in Figure
C.2-4 (c).
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Figure C. 2-3 Distributions of longitudinal strain on section B of specimen B17 at 20kN interval
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(h) Section B at 160kN
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c.3 Distribution of Neutral Axis Location

Figure C. 3-1- C. 31-4 show results of calculations of the neutral axis depth, as well as
the calculation of the stress on the top surface using the DSFM relations at 20kN intervals.
These results are presented at each row throughout the width of the flange in an effort to show
that effect that redistributions of strain associated with the formation of components of the

failure mechanism have on the location of the neutral axis within the flange and the web.

The neutral axis depth was calculated using linear interpolation of the results of the
strain at the top and bottom surface of the flange to calculate the depth from the top surface of
the specimen at which the strain was zero. At the centre of the web, the embedded gauge at
the location of the flange web interface was used for this calculation. Values of stress on the
top surface of the flange were calculated using the relations of the DSFM as stated i = { :nter
3.

C.3.1 Section A

Figure C. 3-1 (a) shows a distribution of neutral axis that is consistent with that given
by linear elastic theory. This profile was consistent from the start of the loading on the
specimen until a level of load of 30kN. Between applied load levels of 30kN and 86kN, the
neutral axis decreased in depth throughout the entire width of the specimen, including at the
centre of width of the web. Figure C. 3-1 (b)-(d) show this trend. The applicd load of 86kN

marked the appearance of the second diagonal web crack.

From a level of applied load of 86kN, and until 120kN (corresponding to the reversal
of strain on the bottom surface of the flange), the rate of decrease of the depth of the neutrai
axis with applied load decreased significantly. This is shown in Figure C. 3-1 (e)~(f). The
level of applied load of 120kN marked a reversal of the movement of the neutral axis. With
the reversa! of the stram gradient on the underside of the flange, the neutra) axis began to
move away from the top of the flange of the specimen at a slow rate (this can be seen in Figure

C. 3-1 (D-(3)). At a level of applied load of 212kN (the load level at which the critical
C-i4
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diagonal web crack formed), this trend ceased, and the position of the neutral axis sharply
moved away from the top surface of the flange. An iudication of the magnitude of this
movement is given by comparing Figure C. 3-1 (j) and (k). Beyond the level of applied load
of 212kN, and afier this sudden shift, the neutral axis continued its movement deeper into the

flange of the specimen.

The distribution of stresses across the top surface of the flange remained essentially
constant throughout the range of loading until a level of applied load of 212kN. It is noted
that similar to the strain distribution, the level of compressive stress is higher in the right side
flange overhang beyond a level of applied load of 140kN. Following the formation of the
critical diagonal web crack, the stress at the centre of the width of the web was significantly

lower in magnitude than that in the flange overhangs.

Coupled with the effect of a deeper neutral axis in the flange than in the web, the fact
that the stresses are higher in the flanges than in the web indicates that as the failure
mechanism formed, there was a tendency for the specimen to shed compressive forces into the
flange region. These redistributions are highlighted by components of the mechanism forming

as the load progressed.
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Figure C. 3-1 Distributions of neutral axis on section A of specimen B17 at 20kN intervals
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C.3.2 SectionB

From the start of the test, and until a level of applied load of 78kN (corresponding to
the formation of the first diagonal web crack), the position of the neutral axis remained
constant at the centre of the width of the web of the specimen. This is illustrated by Figure C.
3-2 (a)-(c). Throughout firis range of applicd load, the depth of the neutral axis in the flanges
decreased at a uniform rate. The depth of the axis at the centre of the width of the web was the

minimuin value throughout this duration of loading.

At a level of applied load of 78kN (corresponding to the formation of the first of the
diagonal web cracks), the neutral axis suddenly shifted to a location within the depth of the
flange. Between this load level and that of 86kN, the neutral axis throughout the entire with of
the specimen shified closer to the top surface of the specimen. Beyond this level of applied
load of 86kN (the load corresponding to the appearance of the second diagonal web crack), the
neutral axis moved at a very slow rate toward the top of the specimen, remaining almost
constant in depth at the centre of the web. This trend ceased at a level of applied load of
P=120kN, and is illustrated in Figure C. 3-2 (e) - {f). Between this level of load and that of
P=212kN, the neutral axis position at the centre of the web moved very slowly away from the
top surface of the flange, remaining almost constant in position, whilst the location of the axis
in the flange moved deeper into the flange at a much faster rate. This can be scen in part (g)-

(j) in the figure below.
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Beyond this level of load (and following the formation of the critical diagonal web
crack), the strain profiles showed compression throughout the width of the flanges. This is
reflected in Figure C. 3-2 (k)-(1) with exceptionaily tow vaiues of neutral axis depth calculated
at most locations in the flanges. These figures also show a movement away of the neutral axis
at the centre of the width of the web away from the top surface of the specimen. It is noted
that the neutral axis at section B moved out of the flange at a level of load of approximately
180kN.

The distribution of stress again remained constant throughout the width of the
specimen at the early stages of loading. At a level of applied load of 120kN, the magnitude of
the stress at the centre of the web decreased relative to that in the flanges. The stress was
minimum at the centre of the width of the web was displayed by the specimen between levels
of applied load of 120-180kN, as can be seen in Figure C. 3-2 (f) ~ (1). As the neutral axis
began to move out of the flange overhangs (beginning at a level of applied load of 173kNj, the
distribution of stress across the width of the flange favoured the left side flange overhang, and
the maximum compressive stress was at the centre of width of the web. This remained until
the appearance of the critical diagonal web crack at a level of applied load of 212kN, at which
load the distribution of stress that favoured the right side flange overhang, and a minimum
magnitude at the centre of width of the web prevailed.
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Figure C. 3-2  Distributions of neutral axis on section A of specimen B17 at 20kN intervals
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C4 The Relationship of the Failure Mechanism and the

Longitudinal Strains

The formation of the failure mechanism of this specimen forced redistributions of

strain within the flange during the application of the controlled displacement.

The formation of two diagonal web cracks at levels of load of 78kN and 86kN
produced a difference in neutral axis position in the flange overhangs relative to that in the
web. At both sections, the position of the neutral axis at the centre of the width of the web
was closer to the top surface of the specimen after the formation of these cracks. Each of
these sections also produced a compressive stress distribution on the top surface of the flange
that had a minimum stress at the centre of the width of the web. Coupling these two facts
together suggests a greater magnitude of compression force in the flanges than in the web.
Therefore, the formation of the mechanism throughout the application of the controlled
displacement forces a redistribution of compressive forces away from the web toward the

flange overhangs.

The level of applied load of 120kN marked the beginning of a redistribution of
compression strain throughout the flange. The tensile strains on the underside of the flange
began to decrease tn magnitude, and the compression strains on the top surface of the flange
also decreased to maintain equilibrium throughout this redistribution. This redistribution was
prevalent between an applied load of 120-140kN. Beyond this level of load, the gradient of

increase in strain on both surfaces increased at a slower rate than prior to the redistribution.
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This redistribution marks the initiation of a strain profile within the compression region of the

specimen that appears to be consistent with a shear compression failure.

The tensile strains on the underside of the flange became compressive at section B at a
level of load of approximately 180kN. This was only the case at locaiions within the flange.
The position of the neutral axis in the web region at this level of load was still about 35mm
from the top surface of the flange. The propagation of compression forces from the applied

load to the support was therefore heavily reliant on the flange overhangs at section B.

The formation of the critical diagonal web crack at a level of applied load of 212kN
marked a significant redistribution of strain throughout the width and depth of the flange.
Strains in both flange overhangs were significantly higher than those in the web at section B,
while the strains at section A shifted closer to zero, becoming compressive strains throughout
the width of the specimen. Both sections were in compression throughout the entire depth of

the flange, and the compressive strain was at a minimum at the centre of the web.

All of the above are critical redistributions m the consideration of the variation of
flange effectiveness throughout the loading of the specimen. The definitions given in Chapter
7 are summarised again below. Given the above discussion, these can now be related to the
effect that the formation of the failure mechanism has on the distribution of strain in the flange

overhangs of spccimen B17.

e Stagel: Load Range 78-86kN, the formation of two diagonal web cracks.

o Stagell: Load Range 120-140kN, the redistribution within the flange associated
with the reversal of strain on the underside of the flange. This is also
the initiation of the strain profile associated with the shear
compression mechanism.

e Stage lll 1 l.oad Level of 180kN, corresponding to the movement of the neutral
axis out of the flanges at section B.

o StagelV: Load level 212kN, the level of load at which the critical diagonal web

crack formed.
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Appendix D RESULTS OF CHECKS ON THE
CALCULATION OF THE
INDIVIDUAL BLOCK SHEARS

D.t  Introduction

The calculation of the shear forces in Chapter 7 throughout the width and the depth of the
flange required the calculation of shear forces in cach block. The required distributions could

be obtained from these values.

To check that the results of the calculations were correct, the summation of moments
required to calculate the shear force acting on an individual flange point in Equation 3.3.1 in
Chapter 3 was taken about a second point to determine if the normal forces that were
calculated produced a consistent estimate of the shear force by following the procedure in this

chapter. This appendix summarnses these results.

D.1.1 The Methodology

The second point about which moments were taken to check the value of the shear
acting on the flange block was point O shown in Figure D. 1-1. To be consistent with the
notation used in this figure, the following notation is used in the presentation of the results

below.

1. *V from ZM,’ is used to denote ihat sectional shear acting on a flange block as

calculated from summation of momentis about point ‘O’ in Figure D. 1-1.
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2.V from ZMy’ is used to denote that sectional shear acting on a flange block as

calculated from summation of moments about point *X” in Figure D. i-1.

Y

Section B Section A
1§~x d
z V«:I * _{,\}“2
S s Ceow
V;rz.
v_—"'?
— 5 -

Figure D. 1-1 Elevation of flange block showing the points considered in moment

equilibrium for the caiculation of the sectional shear on the flange block’

D.2 Results for Specimen B16

The comparison of the shear calculated from summation about points O and X for
specimen B10 at each flange block throughout the loading range are shown below in Figure D.
2-1. The range of applied load of 2(4%:N was the cut off load for consideration of these results
as this corresponded to the load at which gauges began to fail as a result of high tensile strains

from cracking.

These results show that the check of equilibrium was satisfied for most of the loading
range. However, at the final stage of load, these checks were not satisfied, and the results of
the shear as calculated from summation about the two points diverge at most locations. Part
(d) and (i) of this figure (corresponding to the flange blocks in layer o and B at row 5) show
the lowest level of applied load at which divergence begins. This is at a level of applied load
of 175kN. The results for the calculation of shear in each flange block are not considered

above this level of applied load.

e L R AT

i Al s




ST T el I R R e R R T Lt R e o i S

SR, —— -
it i I [
]
............ i el S e
|||||||||||| - . ; M TRECTTEFIE T 1 =000
il m \ -t ._ k“ | vm: | “
uw
| S-S T a L8 o o R [T o
=l &4 r I V__ b
g S iyt s Z w2 8 THIUTY s &
= o I i ! ! w & 5 ol m | m_ 1 o = e
“. - [ERUEE S T —c ol = -l A= -
~ O @ N o~ [
§ 2 D : 2 ~ 5 B AN : 3
2 @ i @ 2 @ Fop\iotesE @
~ [} 1) o w ] [ W =i [ o~ [ 5]
x &N L i (=11 iy N oo ooV ox [=T1)
8 = 1 _m.w v - g c - M = h T - -m o
2 & &8\ [ & 3B e § | \::|_&8 82
=~ T Lo (&5 - & i o .
i | b 3 1 1 1
I T S [ rod__L-Q_a__l W
5 TN s o € NP 2
r o “__ t—t—t =] o I / : ! o °
B 28888 ° 3 883 88¢° 288 88~° —_
o~ NN e = NN - - m
{N) peon payddy {1} peoq poyiddy {N¥} peo) payddy =
Q
=
‘0
2.
|175] 1_.J
T
R - - & a
= 1 1 1 ™
. C 5 o ) £
H._- o R TR © M||..“|||_T|u0n” |||||| " o =
...... g la 5 Lz SN\ o S
g i S mwiveitt e =i o - £
. M | il ) | 1
> |||m__..|._|| P - 1 b i ! bl m, = ) o ..lm
1 | F @] rm .—‘l_!l PR F3 o o = > = —
T = = SNy v N = A = ..m
b oLl e T = _/ S T NO§ @ T o =
o Noo® Mm i 1 B i o 8 [*] .nnu rE) N g [ ] .m
' | 2 5 [ TTrTator 2 o B [»] 2 9 o
-t ol Ny @ ol | ' 1 1 h oy ™~ o ~ @D o O
|/ o n m [ o w B as] nw na) = —
SN Ll ez & rRYTUTES g 0 g 0z & ©
. R = o i g ~ o - 8 = 2
. “N M 1 - |_..:|_|;-1.% m o2 m & 0 “U
TTTEWCAT T R Lo o - D 5 - D 2
] 1 |
R, N.o. | w 1|41V_!I.|._|,.|Mvo. — —_ w —_—
18 = B ” ; ) h 0 2 = zm\b
. !
— ) 1 o S hd o -
© (=] ) ) 1 o
TEEE 3EEER S . N :
2 o O o o o dd
(N) peoT] payddy (N%) peo poyddy S 88 8 8 {N%} peo payjddy °
[t ] o™ ™~ — m
(N%) peo paliddy B
&




250 7 T t Vimmik, 1 . 250 - 1 1 )
F H I ' 1 1 I ) z [ 1 1 h ) 1
Z 00 frobortoses b oSNk ol o = 200 Lo -
- L] 1 : T T | 1 -

g1501 | | Yo 8 150 S
ol h « P17 t V from EMs - 1 o VimomIM
WOt -ty - mpe oo sy T 100 | t ) 1
- 1 i 1 1 L} ' ] - i ] 1
o Lo R R R RS TR
o ot
0 05 1 15 2 285 3 35 4 [ 1 2 3 4 5 6

Block 3P Shear (kN} Block SP Shaar (kN)

(i) Flange Block 3 (jy Flange Block 58
i
_ _ I el st el - _V_{'PT." ,““
3 300 I U S :
F 3 :
8 LI At an i i ;
= ]
2 2 100 - oot L _iPrieew
% 1 ] | ] 1 =n f | 1
E: : N R B
| I ] ] + ]
T T 23 0 T T T 3 1
0 05 1 5 2 25 3 35 4 0 05 1 15 2

Block 6 Shear (kN) Block 7§} Shear (kN}

(i) Flange Block 6 B () Flange Block 78

Figure D. 2-1 Continued
D.3 Results for specimen B17

Figure D. 3-1 shows the results of the checks of equilibrium that were applied to
specimen B17. The results show no variation between the results that were calculated from
summation of moments about the two points (O and X) throughout the entire loading range on
this specimen. The results of the calculation of the shears on each individual flange block are

therefore considered throughout the entire range of load on this specimen.
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Figure D. 3-1 Results of equitibrium check fo- specimen B16
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Figure D. 3-1 Continued
D4 Concluding Remark

It is noted here that the fevel of calculation at which the equilibrium checks ceased to
be satisfied on specimien B16 coirespondea to the formation of strains on the top surface of the
flange that were in the vicinity of the cracking strain of concrete. Although specimen B17
displayed a reversal of strain that corresponded to the formation of this component of the shear

failure mechanism, this level of strain was not apparent in this specimen.
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Appendix E LOAD VS. DEFLECTION
PREDICTIONS FROM NLFEA

E.1 introduction

The aim of this appendix is to give the reader a complete comparison of the load-
deflection behaviour of cach specimen in stage onc expernimental work with the predicted
behaviour as calculated using the NLFEA solution scheme. To give a full demonstration of
the NLFEA results, predictions of the load-deflection response for each series will also be
presented. No discussion is provided in this appendix as the relevant discussion has been

presented in Chapter 8.

E2 Comparison of NLFEA Load-Deflection Response With the

Experimental Response
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Figure E. 2-1 Comparison of predicted load deflection curves from NLFEA with

experimental work
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E3 Comparison of Predicted Load-Defiection Curves Within Each

Series
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Appendix F EXAMPLE CALCULATION OF THE
FLANGE CONTRIBUTION

F.1 introduction

This appendix presents an example of the procedure to calculate the flange
contribution as outlined in Chapter 3 and implemented in Chapter 7. The values of
interpolated strain for specimen B16 at a level of applied load of 100kN are operated on with
the procedure outlined in Chapter 3 to calculate the flange contribution at this level of applied
load. The interpolated value is used in this discussion in an effort to minimisc the volume of
calculations presented. It is noted however that these values are found by firstly linearly
interpolating the measured strain values to determine the strains at the centre of depth of the
flange (that is the strains ai the bottom of the layer o flange block throughout the width of the
flange). Once these values were obtained, they were used with the measured values on the top
and underside of the flange to determine the values of the strain at the centre of width of each
flange block on the top surface, the underside of the flange, and at the bottom of the layer o
blocks. Note that the preceding calculations do not include values for strain, stress, force etc.
for row 4 as this is the web of the specimen. None of the quantities calculated in this row are

used in the calculations of the flange contribution.
Ilustration of the calculation procedure requires the notations outlines in Chapter 3 for

the sections, rows and layers used throughout the procedure. The necessary notation for the

purpose of this appendix is outlined below in Figure F. 1-1 - Figure F. 1-2,
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Instrumented region Section B SIQ'C“O“ A Loaded Area

v

Figure F. 1-1 Identification of Section A and Section B

Row Numbers
112131 4 [s5lsl7
Layer o R bdm b o
Layer 8 i | L

Figure F. 1-2 Notation Used for Location of Flange Blocks

F.2 Calculation Procedure

Figure F. 2-1 shows the value of the interpolated strains calculated for specimen Bl 6 at
a level of applied load of 100kN. A positive strain in this figure is a compression strain. This
figure also shows a series of dashed lines that are the boundaries to cach of the flange blocks.

Each flange block has the following geometry.

Flange block width, by = 54.2mm
Flange block depth, dg, = 37.5mm

The matenal properties obtained for this experiment were

f'c = S0MPa (E; = 41,000 MPa (calculated using CEB-FIP model code 1990))
f,.=300MPa




f,1= 350MPa
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Figure F. 2-1 Interpolated strains for specimen B16 at applied ioad of 100kN

CALCULATION OF STRESS FROM STRAIN

Using the MCFT relations

1

= <10:C,=035(-£. /¢, -0.28)""
1+C.C, a eales )

£ <€,

Jor

-+ 200¢,

£ >E,

From the CEB-FIP Model Code (1990), the tensile strength of concrete in uniaxial
tension 15 f, = 4.6MPa, using the Youngs Modulus of E=39000MPa, the cracking strain is

B calculated as:

Ea = 4.6/41000 = 1120
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Atrow 1 on section A:

The top layer stress is 50(2(275/2000)- (275/2000)%) = 12.8 MPa (Compressive)
Centre of depth stress is 50(2(130.4/2000)- (130.4/2000)%) = 6.3 MPa (Compressive)
Stress on underside of slab is 41000x51.6 = 2.35 MPa (Tensile)

The strains in Figure F. 2-1 are all less than this, so in this example, only the linear
elastic part of the tensile response of concrete needs to be considered. The following values of

stress are obtained at each flange block:

Table F. 2-1 Siresses at the centre of width of each flange block (on the top and bottom of

eacb flange block)
Row Section A Stresses (MPa) Section B Stresses (MPa)
Number Layer o Layer Layer o Layer
Top Bottom Top Bottom Top Bottom Top Bottom
1 12.8 6.3 6.3 -2.4 8.8 5.9 5.9 -04
2 12.8 6.3 6.3 -2.1 8.8 54 5.4 -0.3
3 13.3 7.8 7.8 0.1 9.1 5.6 5.6 1.3
5 14.2 7.1 7.1 -1.4 8.7 51 5.1 0.7
6 14.1 7.0 7.0 -1.4 8.7 52 52 -0.3
7 14.2 7.0 7.0 -1.4 8.7 53 53 -1.5

Nuote: Comnpressive stresses are positive.

LOCATION OF NEUTRAL AXIS IN EACH ROW

Calculate the location of the neutral axis by assuming that a linear stiain gradient exists
over the depth of the flange of the specimen, using the straiu at the top of the flange and the

strain on the underside of the flange.
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where £, is the strain on the top surface of the flange block , €poom 15 the strain on the
underside of the flange, and dr is the depth of the flange (=75mm). The expression above

calculates the depth of the neutral axis from the top surface of the flange.

In row i

dy=275/((275-(-53.6))/75) = 62 .8mm

Applying this approach to all other rows at the two sections of flange results in the

following:

Table F. 2-2 Location of the neutral axis in each flange block

Row Section A Neutral Section B Neutral
Number | Axis Depth (mm) Axis Depth (mm)

1 ' 62.8 72.8

2 63.6 72.8

3 754 84.9

5 68.3 80.1

6 67.7 70.0

7 67.1 65.5

CALCULATE THE FORCE IN EACH FLLANGE BL.OCK

The tension and compression forces are calculated in cach flange block. This
calculation assumes a linear stress distribution throughout the depth of the flange in each
flange block as shown in Figure F. 2-2. In this figure, Gy, is the stress at the top of the Bange
block, Guotom 15 the stress at the bottom of the flange block. Using the values of stress in Table
F. 2-1, the locations of the neutral axes in each layer in Table F. 2-2, and the dimensions of

each flange block, the following forces are obtained in each flange block:




Tensile stresses | Compressive stresses
--—-————-——&

Top of flange block

Chep
i T I 7

dtb dn.ib dleh;

R4

Chonom

doump

Figure F. 2-2  Linear Stress Distribution Throughout the Depth of a Flange Block

For this distribution of stress, the longitudinal forces are calculated as:

.. o
[ k- - fop
] 3 F:wmp - d}bbﬂw( 3 J

F:‘(m- = (dﬂ' - d:r._ﬂ' y)ﬂ? ( O-IN;(”" )

where d, g is the distance from the top of the flange block to the neutral axis. The
distribution of stress is not always as above, and some modifications need to be made to this

formulation to calculate the longitudinal forces.

For flange block 1o
FCOII‘IP = 37.5*54.2*(4.5*'(12.80‘4,5)/2) = ]94kN
Fiens= (75 — 62.76)*54.2%(0/2) = OkN

1 The latter is logical as the neutral axis lies outside of the flange, hence there will be no
i tensile force acting throughout the depth of the flange.
1




Using the values of stress in Table F. 2-1, the locations of the neutral axes in each layer
in Table F. 2-2, and the dimensions of each flange block, the following forces are obtained in

for the remainder of the flange blocks.

Table F. 2-3 Forces in Each Flange Block

Row | Section A Flange Block Forces (kN) | Section B Flange Block Forces (kN})
Number Layer o Layer 3 lLayer o Layer B

Comp. Tens. | Comp. Tens. Comp. Tens. Comp. Tens.

] 19.4 0.0 4.5 0.8 14.9 0.0 5.7 0.0

2 19.4 0.0 4.7 0.7 14.4 0.0 5.2 0.0

3 214 0.0 8.0 0.0 14.9 0.0 7.0 6.0

5 21.6 0.0 6.1 0.3 14.0 0.0 5.8 0.0

6 21.5 0.0 6.0 0.3 14.1 0.0 4.6 0.1

7 21.5 0.0 58 0.3 14.2 0.0 3.0 0.4

Conyp. Denotes the magnitude of the compressive forces in the Yayer
Tens, Denotes the magnitude of the ension forees in the layer

CALCULATE THE LEVER ARMS OF THE FORCES IN EACH FLANGE BLOCK

To perform the summation of moments required to calculate the shear force acting on a
block, the lever arm of each longitudinal force is located. For the stress distribution shown
above, the lever arms of the forces measured from the top of the flange block are calculated

using:

]

comp 3 nfh

2
dlm.t = dﬂ. g + g (d_;‘h - dﬂ._ﬂ) )

where deony and diws are the lever arms of the compression and tension forces,

respectively, measured from the top of the flange block as defined above in Figure F. 2-2.




Table F. 2-4 Lever arms of longitudinal forces in flange blocks

Row Section A Lever Arms (mm) Section B Lever Arms (mm)
Number Layer « Layer Layer o Layer B

deomp- iens deomp. dicns deonp- iens deomp- dicns

1 16.6 0.0 8.8 33.8 17.5 0.0 11.8 36.8

2 16.6 0.0 9.1 34.1 17.3 0.0 1.8 36.8

3 17.1 0.0 2.6 0.0 17.3 0.0 14.8 0.0

5 16.7 0.0 10.7 35.7 17.1 0.0 13.9 0.0

6 16.7 0.0 104 354 17.2 0.0 10.8 35.8

7 16.6 0.0 10.2 35.2 17.2 0.0 9.3 34.3

CALCULATE THE FORCE IN THE LONGITUDINAI, REINFORCING BARS

The reinforcing was located at the centre of the flange in the specimens. Assuming
perfect bond between the steel and the concrete, the strain in the reinforcing is equal to the

interpolated strain shown above in Figure F, 2-1.

The maximum of the strains above (€=163.2u€) results in a maximum value of

compressive force equal to

F

reinf e

= AeE = Z(6.51(163.2x10° 20000 _ ) iy
4 1000

In this case, this is very small and will have an insignificant affect on the outcome of
the shear force, and is therefore not considered in the ensuing calculations. This quantity is

not ignored in the calculations in the main text.

CALCULATE THE SBEAR LAG

Equation 3.3.7 in Chapter 3 infers that given the full depth flange block shown below

in Figure F. 2-3, the shear lag is given by the equation
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AC+ AV,=0

where AC is the difference in the compression forces acting on each layer (it was found
in general that the net longitudinal force acting on a row of the flange was compressive), and
AV, is the difference in shear lag forces acting on the faces of the flange block. The shear lag

forces are those calculated throughout the full depth of the flange.

Section B Section A

Vi
CB__ - L-——— CAi

Note Vs on far face
of flange biock

Figure F. 2-3 Full Depth Flange Block Showing Longitudinal Forces Acting

As stated in Section 3.3.1.5, the shear lag forces are assumed to be distributed equally

throughout the two layers in the flange, so the flange block shear lag force is haif of the above.

Referring to the values in Table F. 2-3, the shear lag force on row 1 is calculated as

follows:

Row 1:Ca=19.4+4.5-0.8 = 23.2kN
Cp=14.9+5.7-0.0 = 20.6kN
AC =23.2-20.6 = 2.6kN

Vi) = OkN (as this is the free surface on the edge of the flange)

Therefore,

Vg =-2.6kN
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Note that the negative sign indicates that the shear lag force is acting in a direction

opposing the longitudinal force on Section A,

Therefore the shear lag on the two layzrs throughout the depth at row 1 is as follows

Va1 = Ve = 2.6/2 = 1.3kN

Applying this to each row throughout the width of the flange yields the following
magnitudes of shear lag throughout the depth of the flange.

Table F. 2-5 Shear lag on flange blocks

Row Shear Lag (kN) Shear Lag Acting on Each
Number | (Calculated throughout the Layer Throughout the Depth
depth of the flange) of the Flange {kN)

1 2.6 1.3
2 6.6 33
3 14.3 7.15
5 12.8 6.4
6 15.0 7.5

7 10.2 5.1

Note that a positive shear lag is assunwd (0 oppose a compressive foree on Section A,

CALCULATE THE INTERFACE SHEAR ACTING BETWEEN LAYERS THROUGHOUT THE

DEPTH OF THE FLANGE

Using Equation 3.3.8, the interface shear on any flange block in layer o is calculated as

foliows:

Vi=—Coar +Cra ¥V =V

2

Considering the longitudinal forces and the shear lag acting on flange block 1o shown

below in Figure F. 2-4.
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L s

Free surface at edge of flange
therefore zero shear lag

CBa1=14.93 kN /
\ i\ Section B
Vsou=)).27 kN | Section A
T !

T —
T T ] Ca=19.42kN

Figure F. 2-4 Longitudinal Forces and Shear Lag Forces Acting on Flange Block 1o

A positive interface shear is assumed to act in the direction opposing a compression

force on Section A. Application of the above equilibrium equation yields:

Vi = 3.2kN

Note that the interface shear acting on flange block 1B will be cqual and oppsite to this
value, therefore only requiring consideration of the flange blocks in layer o flange blocks to

calculate interface shear. Repeated application of this procedure results in the following

values of the interface shear for the remainder of the flange blocks in the flange.

Table F. 2-6 Shear lag on flange blocks

Row Interface Shear
Number (Vi(kN))

1 3.2

3.1
3 2.8
5 3.8
6 3.1
7 23
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CALCULATE THE SECTIONAL SHEAR ON EACH FLANGE BLOCK

Using Equation 3.3.2, the sectional shear force on a flange block in any row j, in layer

o {oshown in Figure F. 1-2) is calculated using the following:

oo (O'Sd » Lo )V Sai-1 ¥ [O-Sd » " Loy )V s T (L(‘Hq' ~ L )C et T (d Loy )Vij

v b

Y

Section B Section A
L»x d '

z V\‘;a{j'l) + } Vaj

Sl .,
Vaj

Figure F. 2-5 Forces Acting on an Flange Block in Row j Layer o

It is noted that in Figure F. 2-5, the shear lag force Vg is acting on the surface on the

back of the block which is not shown.

The following values have been obtained throughout the calculation procedure thus far

for layer 1a.

Caol = 19.4kN
Cho =14.9kN
Lol = 16.6mm
Lego =17.5mm
Vst = 1.4KN
Vit = 3.1kN
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Substituting these values inte the above equation yields:

Vo = 0.7kN

Repeating this procedure for all other flange blocks vields the following:

Table F. 2-7 Shear lag on flange blocks

Row Layer o Shear Laye;' B Shear
Number(j) {Vaj (kKN)) (Vi (kN))
1 0.7 0.6
2 0.6 0.6
3 0.5 0.6
5 0.8 0.8
6 0.7 0.6
7 0.6 0.2

CALCULATE THE FLANGE CONTRIBUTION

The sum of the individual flange block shears above yields the total magnitude of shear

force in the flange at this leve! of applied load:

Sum of flange block shears = 7.6kN

The specimen is loaded and supported as shown in Figure F. 2-6.

Therefore, for an applied load of 100kN, the shear at this section is:
V =(2.2/3)x100 = 73.3kN
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Figure F. 2-6 Schematic of Loading Applied to Specimen

Flange contribution = 7.6/73.3x100

Flange contribution = 10.4%
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