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SUMMARY

The research described in this thesis is concerned with the development of compressive membrane

action in reinforced concrete slabs. Compressive membrane action develops in reinforced concrete

slabs because of the formation of cracks, and because of the existence of horizontal translational end

restraint for the slab. In this thesis, the restraint stiffness that exists in typical beam-and-slab

structures is investigated.

The experimental work in this thesis demonstrated the behaviour of slabs under compressive

membrane action. The slabs where compressive membrane action existed exhibited a significant

increase in ultimate strength and stiffness over that given by conventional flexural theory. The

importance of the boundary conditions of the slab was also demonstrated in the experimental

program. In particular, the stiffness of the restraint had a significant effect on the magnitude of the

compressive membrane forces that existed in the slab.

Non-linear finite element modelling of the slabs was undertaken and it was shown that the behaviour

of slabs where compressive membrane action exists could be accurately modelled using finite element

analysis. Two-dimensional finite element models were created and suitable constitutive models for

the concrete in both tension and compression were adopted. The importance of the end restraint

stiffness (both rotational and horizontal translational) was demonstrated in the finite element models.

A design method for evaluating the increase in strength due to compressive membrane action was

developed. The method uses a beam model of the slab/beam system, with the gross cross-sectional

properties of the surrounds. A linear-elastic analysis is then used to determine the restraint stiffness.

Once an estimate of the horizontal translational restraint stiffness is obtained, the method developed

by Rankin and Long (1997) is used to determine the load carried by the slab due to compressive

membrane action. Although cracking and other non-linearities are not taken into account when

determining the restraint stiffness, this design method was found to give good predictions of the

experimental results.

The use of this design method allows a more accurate assessment of the strength of reinforced

concrete beam-and-slab bridge decks to be made. The results indicate that significant levels of

compressive membrane action can be expected to develop in the slabs of these bridges. If

compressive membrane forces are taken into account, a reinforced concrete slab can be expected to

have a significantly higher strength than that given by flexural theory. This can lead to more cost-

efficient designs of new bridges or reduce the need to replace existing bridge decks that have been

shown, according to flexural theory, to be deficient in strength.
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NOTATION

Except where stated in the text, the following notation applies throughout this thesis.

a

A .

Asc

As,

b

bcr

c

d

di

D

e

fc

Icm

fc

f.

G

Gf

Distance from load to nearest support (used to determine effective width of slab)

Area of cross-section

Cross-sectional area of compression reinforcement

Cross-sectional area of tension reinforcement

Width of cross-section (bb for edge beam width)

Effective width of loaded slab area

Cohesion parameter

Effective depth of cross-section

Depth available for arching (used in Rankin and Long's method)

Overall depth of cross-section (Db for overall edge beam depth)

Eccentricity of horizontal translational end restraint

Modulus of elasticity of concrete

Modulus of elasticity of steel reinforcement

Distance from the extreme compressive fibre of the concrete to the centroid of the

compressive reinforcement

Yield function

Peak stress on the stress-strain curve of a typical concrete specimen in compression

Mean value of the compressive strength of concrete at the relevant age

Characteristic compressive cylinder strength of concrete at 28 days

Yield strength of reinforcing steel

Peak stress on the stress-strain curve of a typical concrete specimen in tension

Shear modulus

Fracture energy
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I

J

kr

k,

L

Lc

Lr

M r

Ma

Mu

N

P

Pc

P

Pa

Pb

Pt

R

X

y

a

P

A

Second moment of area of cross-section

Torsional constant

Rotational restraint stiffness

Horizontal translational restraint stiffness

Centre-to-centre distance between supports of a member (Lb for edge beam span)

Half span of elastically restrained slab (used in Rankin and Long's method)

Half span of equivalent rigidly restrained slab (used in Rankin and Long's method)

Arching moment ratio (used in Rankin and Long's method)

Arching moment capacity for rigid restraint (used in Rankin and Long's method)

Arching moment capacity for elastic restraint (used in Rankin and Long's method)

Moment capacity of a cross-section

Compressive membrane force

Reinforcement ratio (tension reinforcement)

Reinforcement ratio (compression reinforcement)

Applied load

Load carried by arching (compressive membrane action)

Load carried in bending

Total ultimate load, due to arching and bending

Geometric and material property parameter for arching (used in Rankin and Long's

method)

Width of loaded area

Distance from one end of edge beam to location of loaded area

Distance from other end of edge beam to location of loaded area

Length of loaded area

Tension softening parameter

Shear retention factor

Central vertical deflection



Plastic concrete strain

I si, e2 ,63

r

K

f V

I e

I Pc

I
1 cri, o2, a3

I V

Principal strains

Yield strain of reinforcing steel

Friction angle

Curvature

Poisson's ratio

Rotation at slab ends

Effective reinforcement ratio

failures)

Principal stresses

Dilatancy angle
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Introduction

1 INTRODUCTION

This thesis is concerned with the behaviour of reinforced concrete slabs that are subjected to vertical

loads and in-plane translational end restraints. The end restraints induce in-plane compressive forces

within the slab. This is referred to as compressive membrane action (or arching action) and it

significantly enhances the stiffness and load-carrying capacity of the slabs.

This thesis proposes a design method for calculating the load enhancement that exists through the

presence of end restraints. The stiffness of the end restraint (in both translation and rotation) is

evaluated and the enhancement due to compressive membrane action determined using a method

developed by Rankin and Long (1997).

This thesis contributes to the knowledge that currently exists in this field and leads to greater

confidence in the prediction of the load-carrying capacity of reinforced concrete slabs where end

restraints are present. This has obvious applications in the strength assessment of bridge decks and

building floor systems.

1.1 Background

In design and assessment codes, the flexural strength of reinforced concrete slabs is usually

determined using an elastic analysis and the ultimate strength of the cross-section. The yield-line

theory developed by Johansen (1962) can also be used to determine the ultimate strength of a

reinforced concrete slab. These theories have a common limitation in that compressive membrane

action within the slab cannot be taken into account. When present, compressive membrane action can

considerably increase the load-carrying capacity of the slab.

This effect has been recognised for many decades now, but its obvious benefits are not fully utilised

in design and assessment codes. The first edition of the Ontario Highway Bridge Design Code

(OHBDC) in 1979 recognised the beneficial effects of compressive membrane action. This code (and

later editions of it in 1982 and 1991) contained an empirical deck slab design method for slab on

girder bridges that reduced the amount of reinforcing steel required in concrete deck slabs. The code

allowed this to be done only if certain restrictions on span length, slab thickness, detailing of

diaphragms and shear connectors were met. This was an acknowledgement of the presence of

compressive membrane action.

The implementation of provisions such as those in the OHBDC has led to financial benefits in the

design of new concrete bridge decks but generally does not assist in the strength assessment of

existing bridges. For example, the OHBDC contains a section for evaluating the strength of concrete
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deck slabs allowing for compressive membrane action, but only if the slabs satisfy the same

requirements as for the empirical deck slab design method. This illustrates the main problem that

arises when trying to include the effects of compressive membrane action in assessment methods,

which is the difficulty in quantifying the surround conditions and assessing the stiffness of the end

restraints. During the development of the deck slab design method in the OHBDC, researchers made

use of an empirical restraint factor (which varied from 0 for simple supports to 1 for full edge

restraint) to account for the stiffness of the edge restraint. Other researchers (eg. Rankin et al. (1991))

have also used empirical factors to account for the restraint stiffness. However, because of the

uncertainty in the restraint stiffness found in practical situations, the values chosen for the restraint

factor have generally been conservative to ensure that the load capacity was not overestimated.

When assessing the strength of existing reinforced concrete bridge deck slabs, many researchers

(including Fullarton and Edmonds (1978), Wright (1982), Phillips (1985) and Ricketts and Low

(1993)) have found that the failure loads far exceed the loads for which the deck slabs were designed,

and that they are also greater than current design codes predictions. They have found that a

significant portion of the load-carrying capacity cannot be explained using conventional design and

assessment methods, and researchers such as Buckle et al. (1985) and Ricketts and Low (1993) have

attributed the remaining load-carrying capacity to compressive membrane action due to the presence

of horizontal translational end restraints. However, as previously mentioned, not enough is known

about the end conditions that exist in practice to accurately assess the increased load-carrying capacity

of existing structures due to compressive membrane action.

1.2 Basic theory

This section describes the behaviour of slabs (or beams) in terms of the development of compressive

membrane action. Linear finite element models have been used to illustrate the stress distributions

and neutral axis positions of various slabs. Each of the figures shown in the following sub-sections

shows a half-model of a slab, with mid-span on the right of the figure. To model the symmetry of the

slab, rotational and horizontal translational restraint is applied at mid-span. A vertical point load has

been applied at mid-span acting downwards. Tensile stresses are shown in red and compressive

stresses are in blue. Also, in the following discussion, a slab that is described as having fully fixed

ends has full rotational and horizontal translational restraint at its ends.

1.2.1 Homogenous uniform cross-sections

Figure 1.1 shows the stress distribution of a simply supported slab of uniform cross-section. The slab

material is homogeneous, isotropic and has the same properties in tension and compression.
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Figure I.I: Stress distribution and neutral axis position for simply supported slab

It can be seen that the neutral axis position at mid-span is at mid-depth. The upper half of the slab is

in compression and the bottom half is in tension. The region of the slab near its end no longer follows

Bernoulli's bending theory, so the stresses in this vicinity have been disregarded in this discussion.

Because the neutral axis position is at mid-depth and the slab material has the same properties in

tension and compression, the net axial force in the section is zero. There are no membrane forces in

the slab.

A condition for the development of membrane action in the slab is that some form of horizontal

restraint must exist. However, its presence alone does not allow membrane forces to develop. Figure

1.2 shows the stress distribution for the same slab as in Figure 1.1 but with horizontal restraint at mid-

depth at the slab end. It can be seen that the neutral axis position at mid-span is once again at mid-

depth, and there are no membrane forces in the slab. The horizontal translational restraint is at the

same position as the neutral axis, where there is no horizontal expansion in the slab (the net strain

along the middle fibre is zero). Therefore, the presence of the restraint has no effect on the slab's

behaviour.

From Figure 1.1, it can be seen that any longitudinal fibre along the slab length that is above the

neutral axis position has a net compressive strain, while any fibre below the neutral axis has a net

tensile strain. Therefore, if a horizontal restraint was provided at a position anywhere but the neutral

axis, strain compatibility requires that a net axial force develop in the section.
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Figure 1.2: Stress distribution and neutral axis position for slab with horizontal end restraint at mid-
depth

Figure 1.3 shows the stress distribution for the same slab as in Figure 1.2, but with the restraint below

the mid-depth at the slab end. The net longitudinal strain along a fibre at the height of the horizontal

restraint would be tensile if the horizontal restraint did not exist. However, the restraint forces the

total strain to be zero and an axial compressive force must develop to satisfy this requirement. The

presence of this compressive force can be seen at mid-span where the neutral axis is below mid-depth

and more of the section is in compression than tension. Since the material has the same properties in

tension and compression, there must be a net in-plane compressive force in the section.
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Figure 1.3: Stress distrihu'i-.n a.id neutral axis position for slab with horizontal end restraint below
mid-depth

To illustrate the stress distru-.uon at the slab ends, the eccentric restraint can be converted to a

restraint at mid-depth and an accompanying moment (Figure 1.4).

P due to axial
restraint

A

Figure 1.4: Equivalent end actions for eccentric restraint

The stresses in the top and bottom fibre can be determined as follows (note: e is positive in the

upwards direction in Figure 1.4 and tensile stress is positive):

P +6Pe
""bd 'bd 7

The Bernoulli stress distribution at the slab end is shown in Figure 1.5.
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Figure 1.5: Stress distribution at slab end -with eccentric restraint

From this figure, it can be deduced that the net force at the slab end is compressive (since e is

positive), and compressive membrane forces exist in the slab. The centroid of the compressive force

is below mid-depth at the slab end, and above mid-depth at mid-span. This allows a compressive strut

to develop between the compressive stress blocks. The resultant forces for half of the slab are shown

in Figure 1.6.

Tensile force

Compressive force

Compressive force

Tensile force

Slab end Mid-span

Figure 1.6: Resultant forces for half <.- sL:o (where net compressive force exists)

The opposite situation occurs if the horizontal restraint is above mid-depth. For this case, strain

compatibility requires the development of an axial tension force in the section. The strains along a

fibre at the height of the restraint would be compressive if there was no horizontal restraint Figure

1.1). However, the restraint forces the total strain to be zero, hence a tensile force must develop in the

section. The stress distribution for this situation is shown in Figure i .7. There is a net tensile force in

this section, and using similar calculations as for the slab with eccentric restraint below mid-depth, it

can be found that the resultant forces are as shown in Figure 1.8.
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Figure 1.7: Stress distribution and neutral axis position for slab with horizontal end restraint above
mid-depth

Tensile force

Compressive force

Slab half

Compressive force

Tensile force
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Figure 1.8: Resultant forces for half of slab (where net tension force exists)

The next case to be considered is the same homogeneous slab of uniform cross-section, but with fully

fixed ends (rotational and horizontal translational restraint). For this case horizontal restraint exists

for the slab, however membrane forces do not develop (Figure 1.9). This is because along a fibre at

any depth in this slab, the total longitudinal strain is already zero without any horizontal restraint.

This is illustrated in Figure 1.10. As a result, axial forces do not have to develop to satisfy the strain

compatibility requirements of the structure.
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M

Bending moment diagram
for half of span.

L/4

= M/EI

L/4

Curvature diagram for half of
span

e = KX(D/2)

L/4

Strain along top fibre for half
of span (D/2 is distance to top
fibre from neutral axis)

The total strain along the top fibre equals the total area of the two triangles. Because of
the symmetry, the areas of the two triangles are equal and the total strain is zero. This is
true of a fibre at any depth in the section because the slab is uniform and homogeneous.

Figure 1.10: Total strain along top fibre in slab with fully fixed ends

1.2.2 Non-uniform cross-sections

A different example of a situation where the strain along a longitudinal fibre is non-zero is when the

cross-section of the slab is non-uniform. Figure 1.11 shows the stress distribution for a slab with non-

uniform cross-section (a thin notch exists at mid-span). The end of the slab is fixed against rotation

but free to translate. At mid-span and at the slab end, the neutral axis is at mid-depth. This must be

the case because the net axial force is zero (there is no horizontal translational end restraint).
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Figure 1.11: Stress distribution for slab with non-uniform cross-section and rotational restraint

A net tensile strain can be seen along the mid-depth fibre in Figure 1.11. From the end of the slab to

the point of contraflexure, the total strain along the mid-depth fibre is zero, because the neutral axis is

also at mid-depth. In the remainder of the slab, the mid-depth fibre is in tension since the neutral axis

moves up to quarter-depth to satisfy the condition of zero net force in the cross-section. Therefore,

the mid-depth fibre must clearly have a net tensile strain.

When the slab end is fixed against horizontal displacement, the strain along any fibre must be zero to

satisfy strain compatibility along the length of the slab. To do this, a net compressive force develops

in the slab to reduce the total strain along the length of the slab back to zero. Figure 1.12 shows the

stress distribution and neutral axis positions for the same slab as in Figure 1.11, but with the end fixed

against horizontal displacements. It can be seen that a net compressive force now exists in the

section. Conversely, a net tensile force develops if the notch at mid-span is in the top half of the slab

(Figure 1.13).

10
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Figure 1.13: Net tensile force due to non-uniform cross-section

1.2.3 Non-homogeneous slab material

Another case where non-zero longitudinal strains develop in the slab is if the material is non-

homogeneous. This behaviour is described in Figure 1.14 for the case of a slab without horizontal

restraint (only rotational restraint) and the slab material being stiffer in compression than tension. To
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satisfy the requirement that the slope at the end and at mid-span is zero, the curvature diagram must

be symmetric as shown in Figure 1.14, with the point of contraflexure at quarter-span.

M

Bending moment diagram
for half of span

L/4

K = M/EI

L/4

Curvature diagram for half of
span

Because the material is stiffer
in compression than tension,
the neutral axis must be below
mid-depth at the slab ends and
above mid-depth at midspan
for the net force in the section
to be zero.

Stress profile at slab end Stress profile at midspurt

T

L/4

By examining the strain along
the top fibre, it can be seen that
the total strain (area of the two
triangles) must be tensile. This
is because the distance from
the neutral axis to the extreme
tensile fibre is greater than the
distance to the extreme
compression fibre.

Figure 1.14: Strain along longitudinal fibre in a slab with non-homogeneous material
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Therefore, if horizontal translational restraint exists for the slab, strain compatibility requires a

compressive force to develop in the slab so the strains along any longitudinal fibre will be zero. This

is seen in Figure 1.15, which shows the stresses in a finite element model of a slab with fully fixed

ends where the elastic modulus of the slab material is twice as high in compression (50000MPa) than

tension (25000MPa). The net compressive force in the slab is illustrated by the length of slab that is

in compression throughout its depth. At the slab ends, the neutral axis is below mid-depth, indicating

that more of the section is in tension than compression. However, since the slab is much stiffer in

compression than tension, the overall force is compressive.

Figure 1.16 shows the opposite situation, where the material is stiffer in tension than compression. It

can be seen that a net tensile force exists in this slab.

FEMGV S.1-D2 : Monash University 26-NOV-2G02 ID.-15 cma
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Figure 1.15: Stress distribution for slab with fullyfixed ends and material that is stiffer in
compression than tension
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Figure 1.16: Stress distribution for slab with fully fixed ends and material that is stiffer in tension
than compression

1.2.4 Unreinforced concrete

Concrete is an example of a non-homogeneous material. It is much stronger in compression than

tension. Therefore, in a concrete slab, cracks will develop in regions where the tensile stress has

exceeded the tensile capacity of the concrete. In a vertically loaded slab with rotational end restraint,

this is in the bottom half of the slab at mid-span, and in the top half at the slab ends. The cracking can

be idealised as notches at mid-span and the end (see Figure 1.17), just as the notch in Figure 1.12 can

represent a single crack at mid-span. Similar to the slab in Figure 1.12, a net tensile strain can clearly

be seen in the mid-depth fibre of the slab if horizontal restraint is not present in the slab (Figure 1.17).

Near mid-span and the slab end, the mid-depth fibre is in tension, while in the remainder of the slab,

the strain is zero at mid-depth because the neutral axis is also located there.

When horizontal translational restraint is introduced to the slab, the total change in length along any

fibre must be zero, hence the development of an axial compressive force to satisfy this condition.

Figure 1.18 shows the net compressive force in the section for the same slab as Figure 1.17 but with

horizontal restraint introduced. A net axial compressive force can clearly be seen in this slab.

14
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Figure 1.18: Stresses in slab with fully fixed ends and with notches to represent cracks

1.2.5 Reinforced concrete

The influence of reinforcement on the development of membrane action in uncracked reinforced

concrete (ie. a homogeneous material) is dependent on how the reinforcement is distributed. If the

15
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reinforcement is uniformly distributed along the slab's length (Figure 1.19a), membrane forces will

not exist in the slab. This is essentially the same situation as seen in Figure 1.9 and the reasons why

compressive membrane forces do not develop in that slab also applies to the slab in Figure 1.19a.

However, if the reinforcement is not uniformly distributed (Figure 1.19b), the varying stiffnesses in

tension and compression due to the reinforcement wil) cause membrane forces to develop (similar to

the situation described in Section 1.2.3).
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Figure 1.19: Slabs with (a) uniform reinforcement and (b) non-uniform reinforcement

Once the reinforced concrete has cracked, there is a secondary effect in that the presence of

reinforcing steel has an effect on the magnitude of the compressive membrane forces that exist in the

slab. Referring to Figure 1.20a, if there is no top reinforcement at the slab end, once the concrete

cracks there is little material in the tension region to carry tensile forces. Therefore, the net

compressive force in the section is very high. However, the presence of top steel at the slab ends

reduces the net compressive force in the section because the top steel is capable of carrying tensile

force after the concrete has cracked (Figure 1.20b). As a result, the net compressive force in the slab

is reduced. A similar situation occurs if bottom steel exists at mid-span.
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Figure 1.20: Influence of top reinforcement at slab ends

1.2.6 Summary

From this discussion, it can be seen that there are two requirements for membrane action to develop in

the slab. Firstly, horizontal translationa! end restraint must be provided for the slab. However, this

condition alone is not sufficient. As shown previously for a slab with homogeneous material, uniform

cross-section and with horizontal restraint at the neutral axis (Figure 1.2) or with fully fixed ends

(Figure 1.9) membrane forces did not develop.

The other condition is related to the strain compatibility along a fibre in the longitudinal direction of

the slab. For membrane forces to develop in a slab with horizontal restraint, the total strain along a

longitudinal fibre at the depth of the horizontal restraint must be non-zero if the restraint did not exist.

Non-zero longitudinal strains will occur in most situations. For example, all simply supported slabs

will have net tensile strains below the neutral axis and net compressive strains above the neutral axis.

For slabs with rotational end restraint, non-homogeneous slab materials and non-uniform cross-

sections will cause the total strain to be non-zero throughout the depth of the section. Membrane

forces will then develop in these slabs if horizontal restraint exists and forces the net longitudinal

strain to be zero. This is the strain compatibility condition.
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It is only the rare cases where membrane forces will not develop in a slab with horizontal restraint.

For example, slabs with fully fixed ends, uniform cross-section and homogeneous material will not

develop membrane forces. Also, a slab where the horizontal restraint only exists at the neutral axis of

the slab will not develop membrane forces.

These requirements are illustrated in Figure 1.21, which shows a cross-section of a beam-and-slab

bridge deck. Compressive membrane action develops transversely in the slab because cracks develop

at mid-span and at the slab ends. This causes an extension in the longitudinal fibres of the slab, which

is restricted by the horizontal restraint. In this case, the concrete in the surrounding beams and

adjacent slabs provides the horizontal restraint. Therefore, the two conditions necessary for

compressive membrane action to develop are satisfied.

Figure 1.21: Compressive membrane action in a beam-and-slab bridge deck

1.2.7 Tensile membrane action

The discussions in the previous section are concerned with small deflections in the slab. For

reinforced concrete slabs at small deflections, compressive membrane action exists due to the fact that

concrete is stronger in compression than tension. However, at large deflections, it is also possible for

tensile membrane action to develop in a reinforced concrete slab. For tensile membrane action to

occur sufficient reinforcement must be provided and it must be adequately anchored to the surrounds.

This thesis does not deal with tensile membrane action.

1.2.8 Factors that influence the development of compressive membrane action

The amount of compressive membrane action that develops is determined by a number of factors.

These are discussed below.

1.2.8.1 Magnitude of longitudinal strains

As previously mentioned, one of the requirements for membrane forces to develop is that the strains

along a longitudinal fibre of the slab must be non-zero when horizontal restraint does not exist.



Introduction

Obviously, the magnitude of these strains has an effect on the magnitude of the restraining force

required to satisfy the strain compatibility in the slab when the horizontal restraint exists. A simple

example of this is for the slabs with horizontal restraint (Figure 1.3). If the restraint did not exist (a

simply supported slab), the largest net tensile strain would occur along the bottom fibre of the slab.

Therefore, the largest restraining force required to satisfy strain compatibility would occur if the

horizontal restraint was located at the bottom surface. The magnitude of the required restraining force

decreases as the restraint moves closer to the neutral axis at mid-depth.

The magnitude of the longitudinal strains can depend on a number of factors:

• Position along the depth of the slab. This is obvious for the case of simply supported slabs.

• The non-homogeneity of the slab material. As the difference in the tension stiffness and

compression stiffness increases, the magnitude of the net longitudinal strain also increases.

• The non-uniformity of the cross-section. From Figure 1.11, it can be deduced that the net tensile

strain at mid-depth would decrease if the notch was shorter. This is because the neutral axis

would not have to deviate as much to be at mid-depth of the slab thickness at mid-span.

Therefore, the distance between the neutral axis (at mid-span) and mid-depth is smaller and the

total strain along the mid-depth fibre must also be less.

1.2.8.2 Axial stiffness of slab and surrounds

The magnitude of the compressive membrane force that develops in a slab depends on the combined

in-plane stiffness of both the restraint and the slab. The combined in-plane stiffness can be

determined using Equation 1.1.

— = 1 Equation 1.1
r s

where S is the combined axial stiffness of the slab and the horizontal restraint

Sr is the axial stiffness of the restraint

Ss is the axial stiffness of the slab

To illustrate the combined effect of both the surround stiffness and slab stiffness, it can be seen that if

the slab material is much stiffer than the horizontal restraints, then the specimen will essentially act as

a simply supported slab and minimal in-plane forces will develop. However, once the stiffness of the

restraints increase in comparison with the stiffness of the slab material, the expansion of the slab

below the neutral axis becomes more restricted and compressive forces can develop. Obviously, the
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stiffer the horizontal restraint is, the more the expansion is restrained and the higher the compressive

membrane forces.

1.2.8.3 Horizontal support

A horizontal support at the slab end essentially acts as a fully fixed end without top reinforcement that

has cracked. This is because the section is only capable of transmitting a compressive force through

the horizontal support (Figure 1.22). No tensile forces can be transmitted. As a result the net

compressive force that exists in the section can be very high.

Horizontal support

Restraining force

Reinforcement

Vertical support

Figure 1.22: Influence of horizontal support

1.2.9 Behaviour of reinforced concrete slabs subjected to in-plane restraint

The solid line in Figure 1.23 shows a typical load-defiection curve for a reinforced concrete one-way

slab where membrane forces are present. This figure shows that from A to B, the stiffness of the slab

is greater than for an identical slab where compressive membrane action is not present (shown by the

dashed line in Figure 1.23). For an under-reinforced slab, the tension steel will yield somewhere

between points A and B. At point B the cracks in the slab associated with the yield-line pattern have

developed and the load carried by the slab is at a maximum. As the deflection increases past point B,

the load carried decreases due to the crushing of the concrete. The maximum compressive membrane

force occurs in the descending portion (between B and C) of the load-deflection curve (Eyre (1990)).

This is followed by the failure of the compressive membrane mechanism. At C, there are no

membrane forces in the slab, and the load is carried purely in bending. Past C, the membrane forces

become tensile and cracking extends through the depth of the slab. From C to D, the load is almost

entirely carried by the reinforcement acting as a tensile membrane. At D, the reinforcement fractures

and the slab completely collapses. The load at D will be higher than B when there is a moderately

high reinforcement content. Tensile membrane action is generally only considered in catastrophic

failures of structures and can only occur if the reinforcement is adequately anchored to the surrounds.
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This thesis is not concerned with tensile membrane action and is only concerned with the behaviour

up to point B in Figure 1.2.3.

Applied ^
loading I

I ) Slab with compressive
membrane forces

Slab without compressive
membrane forces

Figure 1.23: Load-deflection curve for slab with membrane forces (Rankin et al. (1991))

In general, the behaviour described above occurs for a slab subjected to uniform loading. When

subjected to concentrated loads (as in bridge loading) the slab often fails in punching before the peak

(point B) is reached.

The dashed line in Figure 1.23 shows a typical load-deflection curve for a slab where membrane

action does not exist. If the slab is under-reinforced (as is generally the case), the tension steel will

yield early on and cracks will develop in the slab. Eventually the concrete will crush and the slab will

fail. By comparing the two load-deflection curves in Figure 1.23, it can be seen that a noticeable

change in behaviour occurs when the slab is restrained and compressive membrane forces exist. A

significant increase in stiffness and load-carrying capacity can be achieved in the presence of end

restraints.

1.2.10 Compressive membrane action in reinforced concrete beam-and-slab bridge decks

Many investigations have been conducted on compressive membrane action where the in-plane

displacements at the boundaries have been prevented with very stiff surrounding frames. This is an

idealised condition and does not occur in practical situations. However, it is known that considerable

compressive membrane forces can develop in practical situations such as bridge decks. Compressive

membrane forces can develop transversely across the interior slabs in a T-beam bridge deck due to the

presence of the surrounding beams and adjacent panels (see Figure 1.24). When {he load is applied,

the edges of the interior panel tend to move outward. This movement is restricted by the presence of

the adjacent panels and the stiffness of the beams in horizontal bending. This induces a compressive

force in the plane of the interior panel and increases this panel's stiffness and load-carrying capacity.

When looking at this process, the horizontal bending stiffness of the beams, the in-plane stiffness of
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the adjacent panels and the details of the connection between the end diaphragm and the beams are

important considerations. As previously mentioned, these factors will influence the development of

the compressive membrane forces since they affect the end restraint stiffness that exists for the slab.
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Figure 1.24: Plan and cross-section of forces and deformations in a beam-and-slab bridge deck
(exaggerated)

Compressive membrane action can also develop in the longitudinal girders of a reinforced concrete

bridge. For this to occur, in-plane restraint for the beam-ends must be provided at the girder supports.

This could be due to the presence of bearing restraint forces or the influence of the abutments and

other support conditions. The development of compressive membrane action in the longitudinal

girders is harder to predict than the development of membrane action in the deck slab. This is due to

the large variability in bridge support conditions that are found in practice. Compressive membrane
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action that develops in the beam is not the focus of this research, although it will be mentioned in the

literature review. This thesis is concerned with the development of compressive membrane action in

the transverse direction in bridge deck slabs (as seen in Figure 1.24).

1.3 Reasons for undertaking study

The research in this thesis developed from a need to more accurately assess the strength of existing

reinforced concrete T-beam bridges on the roads in Victoria, Australia. Most of these bridges were

constructed prior to 1939 to superseded design codes (Country Roads Board (1926), Country Roads

Board of Victoria (1936)) and are now aging and deteriorating. Increased traffic demands place these

bridges under further danger. Comparing the design codes used in Victoria in 1926 (Specification for

Design of Bridges and Culverts, Country Roads Board) and a recent code (Australian Bridge Design

Code, SAA HB77: 1996, Standards Australia), it can be seen that the design loads have significantly

increased. Figure 1.25 illustrates typical design vehicles used in each of these codes and it is evident

that the increase over the years has been substantial.

The obvious consequence is the implementation of expensive bridge replacement or strengthening

programs. These problems are not limited to Australia, with many other countries throughout the

world experiencing the same difficulties.

This problem has lead to a research program at Monash University to investigate issues affecting the

strength assessment of the reinforced concrete T-beam bridges on Victoria's roads. The research is

being carried out in association with the Victorian state road authority and has included extensive

field and laboratory testing as well as advanced numerical methods to assess the strength of these

bridges. The majority of the previous research has focussed on the shear capacity of these bridges

because it was believed that these bridges were deficient in shear strength. However, it has been

found (Taplin and Al-Mahaidi (1997a), Taplin and Al-Mahaidi (1997b)) that the shear capacity of

these bridges is significantly higher than current Australian Bridge Design Code predictions. Because

of this higher shear capacity, it was thought that the strength of these bridges may be governed by

other failure modes, such as flexure. As a result, this thesis was undertaken to more accurately assess

the flexural capacity of reinforced concrete T-beam bridges. During the course of the research, the

topic was focussed onto the behaviour of the deck slabs, rather than the global behaviour of the

bridge. Therefore, this thesis is concerned with the local failure of the bridge deck slabs.
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Figure 1.25: Comparison of design loads between current design code and 1926 code

1.4 Thesis organisation

Chapter 2 contains a literature review of three topics that are of particular importance to this research.

Firstly, a review of relevant bridge tests that have been previously carried out will be discussed. This

illustrates the conservativeness of current design and assessment methods for these structures and

discusses some of the possible reasons for this discrepancy. Secondly, the research that has

previously been carried out into compressive membrane action will be reviewed. This will show how
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the compressive membrane action theories have developed over time and how previous researchers

have investigated this phenomenon. Finally, some literature concerning the application of finite

element modelling to compressive membrane action and to the analysis of bridges will be reviewed

Chapter 3 describes the experimental program undertaken to investigate compressive membrane

action in one-way slabs subjected to horizontal translational restraint from a stiff reaction frame. The

results are presented in Chapter 4 and the finite element modelling of these slabs is discussed in

Chapter 5. These chapters provide a better understanding into the compressive membrane mechanism

and the behaviour of slabs that are subjected to membrane forces.

Chapter 6 describes the experimental program for a series of tests on slabs with edge beams. The

results of these tests are shown in Chapter 7. The results from this chapter provide a better

understanding of the end restraints that occur in practice and how the surround stiffness can affect the

development of compressive membrane action in a slab.

The development of a design method to include compressive membrane action in design and

assessment codes is presented in Chapter 8. This includes the theory behind the development, the

development process and the presentation of the method. Verification of the design method is also

shown in this chapter.

The main conclusions and a summary of the research are presented in Chapter 9. Recommendations

for further work are also given in this chapter.

I
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2 LITERATURE REVIEW

This literature review is divided into three main sections. Firstly, a review of the literature concerning

the strength of reinforced concrete T-beam bridges will be carried out (Section 2.1). This includes a

review of field tests that have been carried out on existing bridges and illustrates the need for more

accurate strength assessment methods for these bridges. The second section (Section 2.2) is a review

of the research into compressive membrane action in reinforced concrete structures. This describes

the theories that have been developed for the analysis of compressive membrane action and the

experimental work that has been carried out that shows its enhancing effects. Finally, Section 2.3

briefly reviews the application of finite element modelling to the analysis of compressive membrane

action and to the analysis of bridges.

2.1 Ultimate strength of bridge decks

Many researchers have previously investigated the strength of reinforced concrete bridges, with field-

tests of existing bridges being extensively carried out in the past to study their behaviour. These

investigations have increasingly become more important as the bridges in the world become older and

traffic loads increase. Through these tests, it has generally been found that reinforced concrete

bridges can carry a greater load than what they were designed for and what current assessment

methods predict they should carry. The utilisation of compressive membrane action in design and

assessment methods for bridges has also been researched and a number of developments have been

made in this area.

2.1.1 The need for more accurate assessment methods

The problem of aging, deteriorating bridges and increased traffic loads is occurring throughout the

world. Azizinamini et al. (1994) described the problem in the United States, where many of the

existing bridge inventory were designed for the AASHTO HI 5 truck loads, but are now required to

carry heavier loads such as the HS20 truck load. Therefore, when rated, many of these bridges

exhibited insufficient capacity to carry the modern traffic loads and bridge replacement, strengthening

or load posting may be required. However, they noted that field-testing results indicated there are

significant reserves of strength in most bridges that are not accounted for in current rating procedures.

Azizinamini et al. referred to the AASHTO Manual for Maintenance Inspection of Bridges (1983) as

a common guide to the rating of bridges in the United States that did not take into account the

significant strength reserves. Therefore, bridges that are assessed to be structurally deficient may

actually possess sufficient strength. To verify this, the authors carried out load tests on six bridges

and it was concluded that old concrete slab bridges do possess significant strength reserves.
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The financial benefits of utilising more accurate assessment methods are huge. Aktan et al. (1993)

stated that in 1987, the national bridge inventory in the US consisted of 98,777 reinforced concrete

slab and T-beam bridges. Of these bridges, 15,519 had a sufficiency rating (SR) less than 50 and

57,331 had an SR between 50 and 80 (an SR between 50 and 80 classifies a bridge as functionally or

structurally deficient, while an SR less than 50 indicates the bridge is eligible for replacement). The

replacement or strengthening of all of these bridges would obviously require a huge amount of

money. In 1993, Dunker and Rabbat (1993) estimated that the cost to remedy all deficient bridges on

America's roads was at least $90 billion. This cost can be reduced if more accurate assessment

methods are used, but only if these methods are shown to be reliable.

2.1.2 Bridge testing and the limitations of simple assessment methods

Many researchers have carried out field tests on existing bridges and these have shown that many

bridges can carry a higher load than expected. Some of these tests and their findings are summarised

below.

Oshiro and Hamada (1979) investigated the structural performance of deteriorated concrete bridges.

They performed field tests on the bridges, as well as tests on isolated beams that were cut out of the

bridge. From the test results, it was concluded that the stiffness of a beam that is part of an existing

bridge is much higher than the stiffness of an isolated beam. They believe contributions from railings,

curbs, pavements and end beam restraints were the reasons for this greater stiffness. Although not

stated in the paper, the development of compressive membrane forces in the bridge due to the above

contributions can explain the higher stiffness in the bridge than in the isolated beams. These findings

indicate that design and assessment codes should consider the influence of surround conditions since

these significantly enhance a structure's stiffness and load-carrying capacity. A number of other

researchers (including Bakht (1981)) have also performed numerous tests on bridges in Canada and

confirmed that the load-carrying capacity of a bridge depended substantially on the interaction

between the various bridge components. Bakht mentioned the enhanced punching shear capacity of

the deck slab due to the presence of in-plane forces.

The Ministry of Works and Development (MWD) carried out destructive tests on three redundant

reinforced concrete T-beam bridges in New Zealand during the 1970s and 1980s. The reports by

Fullarton and Edmonds (1978), Wright (1982) and Phillips (1985) describe these tests. The following

summarises the tests that were carried out on the deck slabs of these bridges.

Fullarton and Edmonds (1978) described the destructive testing of the Mangateweka Stream Bridge in

New Zealand. This bridge had been made redundant following a highway realignment and was a two-

lane bridge with a 9.6m span. One of the tests that was carried out was to determine the maximum
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wheel loading that a typical bridge deck could carry. A simulated wheel load was applied to the

203mm thick deck slab by applying a hydraulic jack through a 25mm thick steel plate and a neoprene

pad. The loaded area was 500mm x 200mm and represented the contact area for a HN wheel load. A

description of the HN wheel load can be seen in the 1973 Highway Design Brief produced by the

Ministry of Works and Development (MWD) in New Zealand. The maximum applied load was

350kN, which is about 6 times the HN wheel load (60kN). Loading was stopped because the failure

load for the reaction beam had been reached. At this load level, little permanent distress was noted in

the deck slab. Despite the presence of substantial pre-test cracking in the slab soffit, crack widths in

excess of the maximum allowed of 0.38mm were not achieved until the load had reached 4 times the

HN wheel load. These results indicated a substantially stronger and stiffer deck slab than expected,

and that a significant reserve of strength existed in these bridge deck slabs.

Similarly, Wright (1982) conducted destructive tests on the Karaka Creek Bridge, which had also

become redundant due to a highway realignment. This bridge was also a two-lane reinforced concrete

T-beam bridge and it had a span of nine metres. The deck slab had a thickness of 8-!0 inches (203-

254mm). The load was applied in a similar way to the test on the deck slab of the Mangateweka

Stream Bridge, but the contact area was only 300mm x 250mm. Therefore, this loading case is more

severe than for the test on the Mangateweka Stream Bridge. This deck slab sustained a load of 680kN

without significant distress before the reaction beam failed. Wright noted that subsequent tests

(Phillips (1985)) showed that punching shear was the usual failure mode for this type of bridge deck

and that the estimated failure load was 1123kN. Wright also referred to the research carried out b>

the Ontario Ministry of Transportation, which had found that the deck slab strength was governed by

compressive membrane action, not the flexural strength. It was concluded that the deck slab rating

techniques used at the time were unduly conservative and that any deck slab with more than 0.3%

steel could safely withstand the loads that would be applied to it. It was also stated that reinforcement

percentages should probably be based on temperature and shrinkage induced stresses rather than

vehicle-induced stresses.

The third bridge that was tested was Barkers Bridge (Phillips (1985)). Four tests were performed on

the 7-inch thick (178mm) deck slab, using a 500mm by 200mm loaded area. In all four tests, the slab

failed in punching shear, with loads ranging from 646kN to 794kN. A failure load of 646kN

represented 10.8 times a HN wheel load. This confirmed that the failure mode of these bridge decks

was punching shear and verified the research carried out by the Ontario Ministry of Transportation.

The work suggested that the allowable wheel loads on bridge decks in New Zealand were

conservative.
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The results from the tests on these three bridges were also presented by Buckle et al. (1985). This

paper described the tests on the entire bridge structure, rather than the deck slab tests that are

mentioned above. These tests consisted of simulating an axle load at mid-span of the bridge, with one

wheel load directly above each longitudinal beam. The simulated wheel loads were applied using

hydraulic jacks. The purpose of the tests was to determine the ultimate capacity of these bridges and

to demonstrate experimentally that these types of bridges have substantial reserves of strength, even

though they may be aging and appear to be deteriorated. Table 2.1 summarises the theoretical

ultimate load and the observed failure load for the three bridges.

Table 2.1: Ultimate loads for three reinforced concrete bridges in New Zealand
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Each of these bridges had different degrees of end fixity. The Mangateweka Bridge was supported on

buttressed abutment walls and the beam steel was well tied into the walls. This was expected to

provide a substantial degree of end rotational restraint. The Karaka Creek Bridge had similar end

conditions to the Mangateweka Bridge, except the beam steel was only nominally tied into the walls.

Therefore, a lesser degree of end rotational restraint was expected. Barkers Bridge comprised a

simply supported main span and two approach spans. The piles supporting the pier caps were

specifically detailed to release flexure and so it was assumed that the main span was simply supported
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(ie. there was no end rotational restraint for the main span). The additional load-carrying capacity of

each of these bridges, due to end rotational restraint, is shown in Table 2.1.

Buckle et al. (1985) concluded that analyses based on conventional ultimate strength theory can only

account for approximately two-thirds of the ultimate load and only if second-order effects (end

rotational restraint, lateral load distribution) are included. They believed that the remaining load-

carrying capacity was caused by the development of compressive membrane action, induced by

horizontal translational restraint to the slab and abutment. A non-linear finite element analysis was

made of one of these bridges and an excellent prediction of the ultimate load was made. The authors

believed this accuracy was achieved because compressive membrane action was automatically

modelled in a finite element analysis and this resulted in an accurate prediction. From this fact, they

also concluded that compressive membrane action played a significant role in the enhancement of the

load-carrying capacity. The authors believed that more sophisticated bridge assessment methods,

such as the use of finite element methods, were necessary to accurately determine the ultimate

strength of these bridges. This would provide more realistic estimates of the actual strength of these

bridges and reduce the need for bridge strengthening and replacement.

Bakht and Jaeger (1990) noted that the methods of bridge assessment that are commonly used can be

incorrect in a number of ways and there are usually significant aspects of bridge behaviour that are

ignored in the strength evaluation of a bridge. They arrived at this conclusion through the testing of

many bridges in Ontario. These tests showed the bridges were able to safely sustain much larger

loads than their estimated capacities. The authors believed the discrepancy between calculated and

actual capacities was caused by limitations in the mathematical models used to determine the strength

of the structure. According to the authors, one of the main causes for the unexpectedly high ultimate

loads in slab-on-girder bridges is that the flexural stiffness of these bridges is much greater than

predicted by calculations. This is due to the interaction of the girders with other components of the

bridge as well as the development of bearing restraint forces. It was found that even girders resting on

elastomeric bearings could develop enough restraint force to significantly reduce the mid-span

moments when a load is applied.

The presence of bearing restraint forces was also mentioned by Bakht and Jaeger (1992). They

carried out an ultimate load test of a slab-on-girder bridge (the Stoney Creek bridge in Ontario,

Canada) and concluded that bearing restraint forces act at the interface of the bottom flange of the

girders and the surface on which it rests. These forces were caused by friction between the two

surfaces or by restraint to in-plane movement of the girder by close fitting ballast walls. The bearing

restraint forces were found to reduce the applied moments by at least 11%. These papers by Bakht
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and Jaeger illustrate the effect of end restraint on the girders, leading to the development of

compressive membrane action longitudinally along the bridge.

Ricketts and Low (1993) carried out ultimate load tests on a reinforced beam-and-slab bridge at

Dornie in Scotland. A test on a deck slab was performed by applying a 1200mm long line load (in the

transverse direction) to one of the slabs on the bridge. The load was applied in lOOkN increments,

with the first cracks appearing at a load of 600kN. The slab finally failed at a punching load of

2900kN, with a roughly rectangular hole being punched out at the loaded area. According to BD

44/90 (a British Standard for assessing concrete highway bridges and structures), the failure load

based on yield-line analysis was 1250kN. An estimate using the method derived by Rankin et al.

(1991) that took into account compressive membrane action gave a failure load of 2572kN. This

indicates that an analysis that includes the effects of compressive membrane action gives a much more

accurate prediction of the failure load than an analysis that does not take into account compressive

membrane action. Tests were also performed on one of the bridge's crossbeams and on the main

beams and a number of conclusions were drawn from these tests. It was found that the span that was

tested was capable of supporting loads much greater than the full assessment loads. Despite their

deteriorated appearance, the main structural elements had considerable reserves of strength that were

not taken into account in the usual assessment methods. This reserve in strength was attributed to end

restraints, structural interaction between elements and reserves of reinforcement strength. The effects

of compressive membrane action were noted, and the paper by Rankin et al. (1991) was quoted, which

recognised the fact that no rationally based design methods that make use of the enhancing effects of

compressive membrane action had gained acceptance among practicing engineers. They believed a

reason for this is the difficulty in quantifying the end restraints that exist in a bridge. They also

believed that the reserve in strength due to the presence of end restraint could be very economically

beneficial.

Aktan et al. (1993) tested a 38-year-old decommissioned bridge to failure and found it could

withstand 22 rating trucks before failure. The three-span, reinforced concrete slab skew bridge had

been decommissioned because of its age and deteriorated appearance. Cores showed that the concrete

in some regions was severely deteriorated and the cover over a large number of bars had been lost. A

one-lane, one-trailer load was simulated using four hydraulic jacks. Test results indicated that none of

the reinforcement in critical regions had yielded before the load had reached 20 truck loads, which

was four times the load that the bridge had been rated for. There were no signs of major distress at

this load level. At a load level of 22 rating trucks, the bridge failed in a brittle manner, which was

triggered by a diagonal tension failure at the edge of the pier slab interface. Aktan et al. (1993) used a

non-linear finite element analysis to predict the behaviour of the bridge but concluded that it was not
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possible to accurately predict the capacity because the analysis was sensitive to many parameters

(such as the properties of the deteriorated concrete) that could not be established with confidence.

Miller et al. (1994) conducted a destructive test on a 38-year-old deteriorated reinforced concrete slab

bridge. The bridge was severely deteriorated in the shoulder regions, where the top reinforcing bars

were exposed. The deterioration extended throughout the depth of the siab and many of the bars were

badly rusted. As a result, the bridge was rated as deficient and decommissioned. A hydraulic loading

system was used to simulate the loading of an HS-20-44 truck, with the load applied in one lane on an

end span. The first indication of failure occurred at a load of 2200kN, when strain gauges at certain

locations showed an increase in the rate of strain. Eventually, a load of 3200kN (the equivalent of 22

HS-20-44 trucks) was reached before the loaded slab failed in punching shear. The results indicated

that even a deteriorated bridge deck could possibly withstand loads far greater than what design and

assessment codes predict they would be able to. Miller et al. stated that the simplified methods of

designing RC slab bridges, such as considering the structure as a series of strips, do not consider other

load-carrying mechanisms (such as the interaction between adjacent strips and membrane action).

They also found that non-linear finite element analysis could be used to provide a more accurate

prediction because it could take into account load redistribution, effects of geometry and other load-

carrying mechanisms. However, they also stated that the effects of local deterioration on the

structural response of the bridge were difficult to understand and to incorporate into an analysis of the

structure.

2.1.3 Use of compressive membrane action in bridge design

A method for utilising compressive membrane action in the design of bridge deck slabs was

developed by the Ontario Ministry of Transportation and Communications. The following section

details the tests that were carried out to develop and verify the empirical deck slab design method that

was incorporated into OHBDC (1979). The utilisation of compressive membrane action in the design

of steel-free bridge decks is also discussed in this section.

Hewitt and Batchelor (1975) carried out research into the punching shear strength of restrained

concrete slabs (the details of this research are reviewed in Section 2.2.6). One of their outcomes was

a new design method for concrete deck slabs that incorporated compressive membrane action, and

hence reduced the amount of reinforcing steel required.

The Ontario Ministry of Transportation and Communications designed and tested a prototype bridge

(the Conestogo River Bridge) to determine the validity of the empirical deck slab design method and

the results were presented in a paper by Dorton et al. (1977). For the test program, the properties of

the panels of the deck slab were varied, with different slab thicknesses (178mm, 191mm and 203mm)
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and reinforcement percentages (0.95%, 0.6%, 0.3% and 0.2%). A value of 0.95% was required if the

deck was designed for transverse bending according to the AASHTO working stress method, while

0.2% was based on Hewitt and Batchelor's theory that incorporated compressive membrane action.

Preliminary tests on model slabs were also carried out to justify the use of 0.2% steel. The slabs in

these preliminary tests were wedged against a circular steel restraining ring, which provided the in-

plane restraint. The degree of in-plane restraint could be determined from the hoop stresses that were

measured on the circular ring. The tests on the deck slab of the Conestogo River Bridge showed all

panels could safely withstand the weight of a 43-ton (430kN) truck and that their behaviour remained

in the elastic range. In addition, the bottom reinforcing steel stresses were well below those predicted

by flexural theory. These tests confirmed the research carried out by Hewitt and Batchelor (1975) that

deck slabs carry load through membrane action as well as through flexure.

Csagoly et al. (1978) field tested a number of existing bridge decks to verify that bridge slabs have a

significant reserve in punching shear strength due to the presence of boundary restraints that induce

compressive membrane action within the slab. They subjected many existing decks to a concentrated

wheel load of 445kN (this was five times greater than the maximum measured wheel loads in Ontario

at that time) and found no deterioration in the decks. They also investigated the degree of restraint

provided by different types of bridges, including concrete beam-and-slab bridges. They found for

non-composite decks, a restraint factor (Rf) of 0.25 could be safely assumed for the design of deck

slabs. This is the same restraint factor used by Hewitt and Batchelor (1975) and varies between 0 for

simple supports to 1 for fully fixed supports. Their results confirmed the fact that the ultimate

capacity of these decks is far greater than that predicted by flexural methods and that many bridges at

the time were overdesigned.

The research carried out by these authors lead to the development of a provision in OHBDC (1979)

that allowed deck slabs to be designed with lower reinforcement content than standard design

methods. This was in recognition of the beneficial effects of compressive membrane action. This

empirical method allowed the use of a reinforcement ratio of 0.003, provided the following conditions

were met:

• The thickness of the slab had to be greater than 225mm, with an additional 10mm at the top

surface to provide for wear.

• There had to be at least three longitudinal girders.

• Diaphragms had to extend throughout the cross-section of the bridge deck. The diaphragms had

to be provided at least at support lines, and for bridges with steel girders, the maximum centre-to-

centre distance between diaphragms was 8m.
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• TU centre-to-centre spacing of supports (perpendicular to traffic flow) could not exceed 3.7m.

The ratio of the centre-to-centre spacing of supports to slab thickness could not exceed 15.

• For external panels, a lm overhang or a curb integral with the slab had to be provided.

• The spacing of the isotropic reinforcement could not exceed 300mm.

• For slabs with a skew angle greater than 20°, the exterior regions of the slab required a

reinforcement ratio of 0.006. This provision was deleted in later editions of the code.

The need for intermediate diaphragms in bridges with concrete girders was investigated by Holowka

and Csagoly (1980). They concluded that intermediate diaphragms were not required for these bridge

types because the end diaphragms and the horizontal bending stiffness of the concrete beams were

enough to induce considerable compressive membrane forces in the slab. As previously mentioned,

intermediate diaphragms are required in bridges with steel girders. The influence of diaphragms was

also examined by Jackson (1990), who investigated the effect of an end diaphragm on the behaviour

of bridge deck slabs. However, definite conclusions could not be drawn from his investigation

because the specimen with diaphragms had considerably weaker concrete and less steel. However, it

was concluded that global moments had a considerable influence on the behaviour of the bridge.

The implementation of the empirical method in OHBDC (1979) has resulted in significant savings in

the cost of constructing bridges where the deck was designed using this method.

Another application of compressive membrane action in bridge decks was demonstrated by Mufti et

al. (1993), who investigated the possibility of designing slab on girder bridge decks without internal

steel reinforcement. The load was carried by compressive membrane action where the in-plane

restraint was provided by external steel reinforcement (in the form of steel straps connected between

the top flange of the girders). Cracks caused by temperature changes and shrinkage of the concrete

were controlled by the use of polypropylene fibres in the concrete. Tests carried out by the authors on

model specimens confirmed the development of compressive membrane action in the slabs. The

failure load of the deck, when converted to the equivalent load on a full-scale bridge deck, was over 4

times greater than the minimum required resistance. This research lead to the construction of a fibre

reinforced deck slab on the Salmon River Bridge in Canada, which relied on compressive membrane

action to carry loads in the deck. Extensive analytical and experimental work was carried out to

ensure the validity of the design. Papers by Bakht and Mufti (1996), Newhook and Mufti (1996) and

Newhook et al. (1997) summarise this work. In addition, Eyre (2000) has derived a method for

calculating the load capacity of plain (unreinforced) concrete slabs under membrane action. The

method was similar to the one he derived in an earlier paper (Eyre (1997)) for reinforced concrete

slabs under membrane action.
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2.1.4 Summary

The works of these researchers illustrate a number of points:

• The cost of replacement or strengthening bridges rated as deficient represents a vast amount of

money. More accurate strength assessment methods are needed since it is known that many of

these bridges have reserves of strength that are generally not considered. This can lead to

significant cost savings.

• The load-carrying capacity of existing bridges is generally significantly underestimated. Reasons

for this include the fact that the interaction between bridge components and the effect of support

conditions is not taken into account. These factors allow in-plane forces to develop within the

structure, increasing its ultimate strength. If these factors are taken into account in analysis

methods, a more accurate assessment of the strength of bridges is achievable.

• The tests carried out in Ontario, Canada and the development of a design method in OHBDC

(1979) demonstrate the feasibility of using compressive membrane action in the design of bridges.

This has lead to the construction of significantly more economical structures. Also, the

development of bridge decks without internal steel reinforcement demonstrates the capacity for

bridge decks to carry loads through compressive membrane forces.

2.2 Compressive membrane action

The literature review concerning compressive membrane action is divided into eleven sections.

Section 2.2.1 is a brief review of the literature prior to 1955. During that year, Ockleston (1955)

carried out load tests on reinforced concrete slabs in a building in South Africa. As described in

Section 2.2.2, due to compressive membrane action, the slabs displayed a significantly higher ultimate

strength than expected.

These results gained the interest of a number of researchers, who sought to explain this behaviour.

Initially, the theoretical formulations focussed on slabs with rigid restraint, since this was the simplest

situation to analyse (Section 2.2.3). However, rigid restraints never occur in practice, so the effect of

elastic restraints had to be considered in later formulations, increasing their complexity. These are

reviewed in Section 2.2.4. Formulations where the elastic restraint was provided by edge beams have

also been derived and these are reviewed in Section 2.2.5. These have the greatest similarity to the

situation found in a bridge deck slab.

Along with the theoretical formulations, a great deal of experimental work has also been carried out,

and these have verified the enhanced load-carrying capacity of slabs under membrane action. The

earliest experimental work involved slabs where the in-plane restraint was provided by a stiff,
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artificial frame (steel beams were commonly used). To better approximate conditions found in a

bridge deck, slabs with edge beams have been tested and these have shown that the presence of edge

beams are enough for membrane action to develop. Scaled bridge decks, as well as field tests on

existing bridges (see Section 2.1.2) have also been carried out and these all verify the existence of

compressive membrane action and its benefits to the load-carrying capacity of a slab. The major

aspects of the experimental work involving compressive membrane action in bridge decks will be

discussed in Section 2.2.6.

Section 2.2.7 describes some other experimental work that has been carried out involving compressive

membrane action in reinforced concrete slabs. Since the research in this section didn't include any

theoretical formulations, they were included in this separate section of the review. Section 2.2.8 is a

summary of the various approaches to the application of plasticity theory to the analysis of

compressive membrane action in reinforced concrete structures, and Section 2.2.9 describes

simplified formulations that have been developed to encourage the use of compressive membrane

action in simple design and assessment methods. A detailed description of a simplified method

developed by Rankin and Long (1997), which has been utilized in this thesis, is presented in Section

2.2.10. Finally, the literature review concerning compressive membrane action is summarised in

Section 2.2.11.

It should be noted that practical applications of compressive membrane action discussed in the

following sections are concentrated on bridge decks and slab/beam floors. However, researchers have

shown that compressive membrane action can also exist in other situations:

• McDowell et al. (1956) investigated compressive membrane action in masonry walls.

• Krauthammer et al. (1986) utiiised compressive membrane action in the design and analysis of

box culverts.

• The punching shear strength of interior slab-column connections was found by Rankin and Long

(1987) to be enhanced by the presence of compressive membrane forces.

• Peel-Cross et al. (1997) studied compressive membrane action in composite metal

decking/concrete slabs before and after fire.

However, a review of the literature has shown that the majority of the practical applications of

compressive membrane action involved bridge decks and slab/beam floors. Therefore, the following

literature review will focus on these applications.
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Braestrup (1980) and Desayi and Kulkarni (1977b) have published literature reviews on compressive

membrane action. The papers by these authors summarise much of the research that has been carried

out in this field (up to the date that the papers were published).

2.2.1 Research prior to 1955

The enhancing effect of compressive membrane action on the ultimate strength of reinforced concrete

slabs has been known since the first half of the 20th century. Braestrup (1980) conducted an historical

review of compressive membrane action and he cited the published works of researchers such as Bach

and Graf (1915 & 1926), Gehler anu Amos (1932) and Westergaard and Slater (1921) who had

noticed compressive membrane action in slabs. He also cited a textbook by Taylor, Thompson and

Smulski (1925) that mentioned this behaviour.

According to Braestrup, the first prominent work on membrane action was carried out in the Soviet

Union. Braestrup referred to a paper by Gvozdev in 1939 in which he commented on the Russian

code of practice for reinforced concrete structures. This code allowed the reinforcement in interior

spans of multi-span floor systems to be reduced by 20% because of the enhancing effects of

compressive membrane action.

2.2.2 Ockleston's tests

The development of the modern theories of compressive membrane action began when Ockleston

(1955) conducted load tests on a reinforced concrete building in Johannesburg, South Africa. At the

time of testing, the building was only ten years old, and so this provided Ockleston with a unique

opportunity to conduct load tests on a relatively new structure. Many tests were conducted on the

building but the ones of interest in this research were his tests on lightly reinforced one-way and two-

way interior floor slabs.

Ockleston tested a 10ft. 6in. (32^' >nm) long one-way slab under a uniform load. The slab was

continuous over one edge, with the other edges discontinuous. In the service load range, no cracks

were detected in the slab. The first cracks appeared over one of the supports, followed at a later stage

by cracks over the other support and at the underside of mid-span. These cracks developed further,

followed by the yielding of the reinforcement at the supports, and then yielding of rhe reinforcement

at mid-span. The slab then failed when the concrete crushed at these locations. The ultimate load

turned out to be nearly 3.5 times the total working stress design load. Yield-line theory gave an

ultimate load for bending failure that was only 60% of the actual failure load (although Ockleston

incorrectly attributed this to the effect of the tensile strength of the concrete).
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The two-way slabs that Ockleston tested were 16ft. by 13ft. 6in. (4877mm by 4115mm) and 4.5in.

(114mm) thick, including a 1-inch (25.4mm) thick layer of mortar on the top surface. These slabs

were continuous over all four edges. The reinforcement content varied from 0.04% to 0.24% of the

nominal gross area. The two-way slabs were also tested under a uniform load. Cracking was first

observed in these slabs at the upper surface near the centre of the short edges at two to three times the

working stress design load. These cracks had almost extended right around the perimeter before

cracks appeared on the underside of the slab. At four times the working stress design load> the

negative reinforcement at the edges of the slabs began to yield. Eventually, all the negative

reinforcement around the edge and the positive reinforcement in both directions at the bottom yielded

and the slab failed. The ultimate failure load was found to be nearly six times the working stress

design load. Yield-line theory only predicted 39% of the actual failure load. Unlike his explanation

for the behaviour of the one-way slabs, Ockleston believed this discrepancy was too large to be

attributed to the tensile strength of concrete. Ockleston wrote in his paper that 'this large discrepancy

cannot be accounted for by strain-hardening of the reinforcement or by (tensile) membrane action, and

no satisfactory explanation has yet been found'.

Ockleston (1958) re-examined his results and came up with an explanation for the unexpectedly high

ultimate strengths of the two-way slabs from his previous tests. By studying the changes of geometry

in the slab during the course of the tests, he suggested that the additional capacity of the slab might be

due to compressive membrane action created by the development of membrane stresses in the slab.

His theory was that, as cracking developed, the neutral axis moved towards the compressive face of

the slab. As a result, further vertical deflections caused outward horizontal displacements at the slab

edges. These displacements were prevented by the adjacent panels, which formed a stiff surround for

in-plane forces. Therefore, compressive membrane forces developed in the slab and its ultimate

capacity increased. In his 1958 paper, Ockleston produced a mathematical analysis of a slab under

compressive membrane action. The analysis did not predict the ultimate load but could be used to

determine from test results whether compressive membrane action could explain the behaviour of the

slab. Ockleston wrote in his paper that compressive membrane action was most likely to occur in

lightly reinforced slabs, where the deflections were small and the horizontal spreading of the supports

was effectively restrained. The result was an increase in the load-carrying capacity of the slab.

Following on from the results of Ockleston's tests, a number of researchers derived formulations for

the behaviour of reinforced concrete slabs under membrane action in an attempt to explain the

enhanced load-carrying capacity of these slabs. The following sections of the literature review

discuss the research that has been carried out in this field. The review has been separated into

sections, based on the type of end restraint that was considered in the research.

38



Literature review

2.2.3 Research with analyses based on rigid restraints and rigid-plastic concrete behaviour

The earliest theoretical formulations involving compressive membrane action in reinforced concrete

slabs assumed rigid restraints. This was done to simplify the analysis. This section of the literature

review summarises some of the research carried out where the theoretical formulations have been

based on rigid restraints.

Wood (1961) was one of the first researchers to carry out an analysis of compressive membrane

action in slabs. He developed a mathematical analysis of a circular slab with edges restrained against

sideways expansion. Wood stated that the presence of the edge restraint resulted in a "kind of self-

induced pre-stress" and "collapse can only commence with greatly increased yield moments". Wood

wrote that the effect of in-plane translational restraint can be more significant than the effects

commonly attributed to restraining moments.

Wood's analysis required the formulation of a yield condition that took into account both membrane

forces and bending moment. The strains imposed on the slab as a result of the deflections were

determined using the strain compatibility equations of large-deflection theory applied to circular slabs.

Using the yield condition, the large-deflection theory equations and equilibrium equations, Wood

derived the collapse load of a circular slab with in-plane restraints subjected to uniform loading to be:

p\ =\\ + a'

4>.
Equation 2.1

where PL' is the enhanced collapse load

PL is obtained from yield-line theory (Johansen's load)

a and p are constants for a particular slab section

Wood extended the above equation to determine the collapse load in terms of the slab deflection.

This relationship is shown by the thick solid line in Figure 2.1 (this graph is taken from Wood's 1961

book). It can be seen that when using a rigid-plastic analysis, the peak load that is determined occurs

at zero deflection. This is obviously the case for rigid bodies since any deflection in the slab implies

the structure has yielded. However, if initial elastic deflections are taken into account, the peak load

is reduced and the deflection at which the peak load occurs will not be zero (see Figure 2.1). Figure

2.1 also shows that the peak load is significantly greater than the load (PL) obtained from yield-line

theory (Johansen's load).
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As part of his research, Wood tested a number of restrained slabs and found the failure load to be

significantly greater than Johansen's load, confirming his theories. Wood used a very stiff reinforced

concrete surround to provide the in-plane restraint to the slabs.

3,
Pi.

Probable elastic
deflections

Probable peak load

Wood's equation

Johansen's load,

wo _ Central deflection
d Thickness of slab

Figure 2.1: Load-deflection curve derived from Wood's analysis

There were a number of limitations to Wood's analysis. Firstly, Wood's formulation was based on a

rigid-plastic analysis. Therefore, this assumed that both the concrete and the surrounds were rigid

materials, hence the elastic deformations in the slab and the stiffness of the restraints could not be

taken into account. Also, Wood was able to derive his analysis because of the symmetry of the

circular slabs. Torsional moments did not exist and compressive membrane forces could be included

in his analysis without much difficulty. However, his analysis becomes far more complicated when

rectangular slabs are considered. As a result, a number of investigators simplified the analysis of

rectangular slabs by dividing the slab into a series of strips parallel to the slab's edges.

Park (1964a) used a rigid-plastic strip approximation to derive expressions for the ultimate load of

uniformly loaded rectangular two-way slabs with edges restrained against in-plane movement. The

slab was divided into a series of strips (in both the x and y directions) running parallel to the slab

edges. Park's theory was based on the fact that the presence of compressive membrane forces

increased the ultimate moment at the yield lines, thereby increasing the ultimate load of the slab. A

number of simplifications and assumptions were used in the development of his theory. These

included:

• The strength of the concrete in tension was neglected.
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• At the yield lines, the tension steel had yielded and the concrete had reached its ultimate

compressive strength.

• The concrete was assumed to be rigid-plastic.

By examining the deformations in the slab and using the fact that the external work is equal to the

internal work done at the yield lines, Park was able to derive expressions for the ultimate loads of

uniformly loaded two-way rectangular slabs with in-plane restraint. For the case of full rotational and

in-plane restraint at all edges, the derived equation is shown below:

24
w = ax +ay +A

0
i

Equation 2.2

where w is the uniformly distributed load, including the effects of compressive membrane action

Lx is the span in the x-direction

Ly is the span in the y-direction

o-x, cty, px, Py and Y are constants for a given slab

A is the central deflection at ultimate load

Of note in the above equation is that A is required to calculate the ultimate load. In general, this value

can only be obtained through experiment. Therefore, Park used an empirical value of 0.5D (D is the

total depth of the section) in his calculations. This value was based on tests that Park cited from

Powell (1956) and Wood (1961). These authors found the deflection at ultimate load to be between

0.33D and 0.5D. Park used a value of 0.5D because this produced the most conservative ultimate

load.

Park conducted 35 tests on slabs with all edges fully fixed or one edge free to translate horizontally

and the others fully fixed. The slabs had various aspect ratios, span-to-depth ratios and reinforcement

contents. Holding-down studs were used to prevent rotation while horizontal screws bearing against

steel plates prevented the horizontal displacement of the concrete slab. The uniformly distributed load

was applied using a rubber bag, which was filled with water at the required pressure. The load was

applied in increments to allow deflection measurements to be taken and to observe the cracHng in the

slab. Loading was continued until the reinforcement began to fracture.
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Park's test results indicated a significant increase in load-carrying capacity due to the presence of the

in-plane restraint. The results also showed his theory was reasonably accurate, but conservative in

most cases. In relation to the design of reinforced concrete slabs, Park noted that the effect of

providing in-plane restraint was to delay the onset of cracking and to reduce the central deflections

(compared to the same slab without in-plane restraint). Park also noted that tests were required io

determine the effect of sustained loading, and it was required to determine the restraint stiffness

provided by surrounding panels before compressive membrane action could be used in a design

process. The importance of the restraint stiffness had also been pointed out by other early researchers

in this field (Wood (1961) and Christiansen (1963)), and even now the issue of restraint stiffness

provided in practical situations has not fully been resolved.

A number of researchers have commented on Park's work. Liebenberg et al. (1965) noted that the

assumptions that Park made were 'idealised and required careful consideration in terms of the true

behaviour of slabs'. Liebenberg believed the restraint conditions were the most important variable but

Park's work in his first paper had maintained this variable at extreme values (full or no in-plane

restraint). He also believed the restraint needed to be varied to fully understand the true behaviour of

slabs. In the same discussion, Wood wrote that Park's use of an empirical formula for the deflection

at ultimate load represented too much of a simplification and his theory should be developed to avoid

depending on this empirical formula. This is particularly significant considering that test results

carried out after Park's research indicated that the value for the deflection was not always close to

0.5D.

Sawczuk (1964) used the relations of large-deflection theory of flexure, as well as a yield condition

appropriate for reinforced concrete slabs, to obtain the load-deflection curve for a slab subjected to

both compressive and tensile membrane action. The method he developed produced a continuous

transition from the region of compressive membrane action to tensile membrane action. In his paper,

Sawczuk stated "the simple yield-line theory is not kinematically admissible for all those cases when

the axes of rotation of the bending collapse mechanism do not belong to the plate neutral plane". In

other words, the presence of the in-plane end restraint moves the axes of rotation from the bending

neutral axis of the slab and simple yield-line theory cannot be used when this occurs. Sawczuk

assumed a rigid-perfectly plastic model for the concrete and applied his theory to isotropic slabs that

were rigidly restrained against sliding over the supports but were free to rotate. Sawczuk was the first

researcher to use the flow theory of plasticity (rather than deformation theory) in his formulation,

although there is no mention in his paper concerning this issue (flow theory relates stresses to strain

rates, while deformation theory relates stresses to total strains). In conclusion, Sawczuk stated that
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compressive membrane action governs the behaviour of a slab in its early stages and this action

considerably influences the load-carrying capacity of the slab.

Jacobson (1967) carried out an elastic-plastic analysis for rigidly restrained slabs. He assumed that

concrete was a brittle material with no tensile strength. He also assumed a linear-perfectly plastic

stress-strain relation for the concrete and for the reinforcement. Using Jacobson's analysis, it was

possible to determine the ultimate loads and deflections of restrained slabs and good agreement was

obtained with the experimental results. Jacobson's theoretical formulation, however, was very

involved and his procedure for finding the critical loads and deflections required a great deal of work.

For the experimental part of his research, Jacobson carried out a series of tests on square, uniformly

loaded, reinforced concrete slabs with in-plane restraint to better understand the effect that restraint to

in-plane movements at the edge of a slab has on its load-deflection behaviour. The specimens varied

in span-to-depth ratio (20, 10 and 5) and reinforcement percentages (0%, 0.5%, 1%, 2% and 3%).

The in-plane restraint was provided by rigid steel loading cells.

From his test results, Jacobson concluded that the effect of the end restraint was to increase the load-

carrying capacity of the slab. This was due to the presence of compressive membrane action. He

summarised the effect of various parameters as follows:

• Span-to-depth ratio: The load capacity of thin slabs (approx. L/d > 10) was limited by

geometrical instability (loss of the restraining action) while the load capacity of thick slabs was a

function of the concrete strength.

• Reinforcement ratio: In thin slabs, the enhancement in load-carrying capacity due to compressive

membrane action became more significant as the reinforcement ratio decreased. Jacobson also

concluded that if the slab was assumed to be rigid-plastic, the existence of in-plane restraint was

equivalent to over-reinforcement of the slab.

• Boundary conditions: The location of the restraint (vertically along the depth of the slab) had a

significant effect on the behaviour of the restrained slabs. Also, in practice, the restraining force

was reduced because the in-plane restraint was not completely rigid.

Morley (1967) extended conventional yield-line theory to take into account compressive membrane

action. The membrane forces at the yield lines were calculated based on the in-plane equilibrium of

the forces and the displacement rates in the assumed collapse mechanism (ie. flow theory was used).

The virtual work method was used to obtain the load-deflection relationship. Morley analysed

polygonal and rectangular slabs, with and without rigid restraint. He didn't take into account the

elasticity of the slab and also assumed an ultimate deflectioji of 0.5D (the same ultimate deflection
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assumed by Park). The results compared well with other methods and with experimental results.

However, the analysis was restricted to isotropic slabs, and secondary effects (such as movement of

the supports and elastic shortening of the slab) were difficult to take into account. As a result, Morley

did not incorporate these effects into his analysis and he wrote in his paper that if elastic effects were

to be included in an analysis of restrained slabs, it would be easier io use Park's strip method (or some

other rigid-plastic approximation). He also wrote that better predictions could be obtained if the

deflection at ultimate load could be more accurately assessed (rather than using 0.5D).

Janas (1968) analysed the plastic response of reinforced concrete slabs including the effects of

membrane forces. His analysis was based on the flow theory of rigid-plastic bodies and comparisons

between this approach and the use of deformation theory were discussed. The difference between the

use of each theory was demonstrated by examining the stresses and strains in a deformed beam and it

was shown that when deformation theory was used, it was possible to obtain compressive stresses in

regions where the strains were tensile. For this reason, Janas based his analysis on flow theory.

However, Janas also noted that if the neutral axis moved into the cracked zone of the slab (for

example, under reversed loads) then deformation theory might be more suitable. The issue of which

flow rule is applicable to slabs under compressive membrane action is further discussed in Section

2.2.8.

In his theory, Janas assumed that concrete was a rigid-perfectly plastic material and that the original

collapse mode did not change as the deflection increased. Janas noted that the assumption that

concrete was a rigid-perfectly plastic material lead to a considerable over-estimation of the actual

load-carrying capacity. A more accurate ultimate load obviously needed to take into account the

elastic deformations of the slab. If not, experiments to determine the ultimate deflection of the slab

were required.

Brotchie and Holley (1971) derived expressions for the behaviour of reinforced concrete slabs under

membrane action and the results were compared to experimental results. These expressions were

based on the equilibrium, strains and displacements of the slabs. The equations gave reasonable

agreement with the experimental results, although there were a number of obvious discrepancies.

This was due to the many assumptions that had to be made in the analysis.

The experimental component of their research involved tests on 45 square isotropically reinforced and

unreinforced concrete slabs. The dimensions of the specimens were very small (400mm by 400mm).

The main parameters varied in the experimental program were the span-to-depth ratio (5, 10 & 20)

and the reinforcement ratio (0, 0.005, 0.01, 0.02 & 0.03). The slab edges were simply supported,

hinged (at the bottom surface) or clamped, with the in-plane restraint provided by a steel restraining
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frame. Measurements taken included the restraining force (using load cells) and the horizontal and

vertical displacements (using dial gauges). The slabs were uniformly loaded through a neoprene

membrane by hydraulic fluid at an approximately constant rate of slab deflection. The authors

concluded from the experimental results that the effect of in-plane restraint was to considerably

increase both the load capacity and the stiffness of the slabs, with the effect being more noticeable in

the thicker slabs. It was found that the magnitude of the restraining force varied almost linearly with

the thickness of the slab and with the applied loading up to the ultimate load. On the other hand, the

reinf *-. ;ment ratio had only a slight effect on the magnitude of the restraining force. Also, the

presence of the membrane forces significantly reduced the cracking in the slab (up to the maximum

load).

Desayi and Kulkami (1977a) presented a method to predict the complete load-deflection behaviour

for restrained two-way rectangular slabs subjected to uniform loading. The proposed method was

split into two stages. The first stage involved a semi-empirical method to calculate the load-deflection

behaviour from zero load to Johansen's load. The cracking of the concrete and the yielding of the

steel were taken into account by modifying the flexural rigidity of the slab. This required

approximate values for the effective flexural rigidity to be used in the analysis. The second stage of

the analysis determined the load-deflection relationship beyond Johansen's load and was an extension

of Park's strip method. It was assumed that the membrane forces only developed in the slab after

Johansen's load had been reached and the collapse mechanism had formed. However, this is not

entirely accurate since significant membrane forces develop once cracks begin to form in the slab.

The ultimate loads and deflections obtained from the proposed method showed good agreement with

test results from other authors.

Braestrup (1980) gave an example of using rigid-plastic theory to analyse a one-way strip with rigid

restraints and compared the results obtained using both flow theory and deformation theory. He

discussed the different results and concluded that deformation theory lead to unrealistic predictions

and advocated the use of flow theory. This is further discussed in Section 2.2.8.

Rankin et al. (1991) presented a method for predicting the load-carrying capacity of rigidly restrained

slabs. The method involved an empirical relationship for the arching moment (the arching moment is

the moment due to the eccentricity between the compressive membrane forces at mid-span and at the

supports). The arching moment was then incorporated into work equations to determine the ultimate

capacity of the restrained slab. Good correlation was achieved with experimental results, although the

predictions were slightly conservative. An empirically based restraint factor was also used to extend

the analysis to include the effects of elastic restraints instead of rigid restraints.
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The authors gave the details and results of seven tests carried out on uniformly loaded, rectangular

slabs with in-plane restraint. The enhancement due to compressive membrane action was determined

by comparing the results to similar unrestrained slabs. The in-plane restraint was provided by a steel

supporting frame, which was designed to minimise horizontal and rotational movements at the edge of

the slab. A uniformly distributed load was simulated using 16 point io;;ds, applied by a lOOOkN

capacity hydraulic jack. AH the slabs had a length of 950mm and a sp?.n-to-depth ratio of 19. The

percentage of reinforcement was varied and placed at different effect.ve depths. Test results showed

that the presence of in-plane restraints did not affect the first cracking load, but significantly increased

the post-cracking stiffness of the horizontally restrained specimens. The ultimate capacities of the

restrained slabs were found to be between 1.7 and 5.9 times higher than similar unrestrained slabs.

2.2.4 Research with analyses including elastic effects

While the research involving rigid restraints and rigid-plastic concrete is theoretically and

fundamentally important, a more practical analysis requires that elastic deformations be taken into

account. This is obvious when looking at Figure 2.1, where the maximum load occurs at zero

deflection for a rigid-plastic analysis. All the researchers that have investigated compressive

membrane action realised the importance of the restraint stiffness and the following summarises some

of the research that has been conducted where horizontal translations, the elasticity of the supports, or

the in-plane stiffness of the slab have been considered.

Christiansen (1963) presented an analysis of compressive membrane action in beams and one-way

slabs with a graphical method to determine the ultimate strength of interior slab panels due to the

combined effect of bending and membrane stresses. The solution could also be obtained through a

number of equations, one of which was implicit. The solution to his equations determined the load

carried solely by compressive membrane action. To obtain the ultimate load of the beam, the

calculated compressive membrane action load must be added to the load carried by the beam in

bending. The elasticity of the supports was taken into account by using a ratio (k) of the outward

movement of the supports to the elastic shortening of the beam. Christiansen suggested a value for k

between '/3and3.

Christiansen conducted tests on four reinforced concrete beams that were horizontally restrained by a

steel frame. To determine the magnitude of the load carried by membrane action, four simply

supported beams of the same dimensions as the restrained beams were also tested. Therefore, the load

carried by compressive membrane action could be obtained by subtracting the load carried by the

simply supported beams from the load carried by the restrained beams. Comparisons between
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experimental and theoretical results were reasonable, although some discrepancies occurred in the

calculation of the mid-span deflections.

Christiansen also related his results to two-way slabs, but concluded that until further investigations

were made, it was safer to analyse two-way slabs as one-way slabs (across the shorter span) sinxe this

would lead to a conservative result. Christiansen also believed the greatest source of error in his

analyses was due to the uncertainty in the degree of in-plane restraint.

Park wrote a number of other papers, which extended on the work from his first paper (Park (1964a)).

In one of his papers, Park (1964b), the theory from his first paper was extended to include the effects

of horizontal displacements at the edges due to movement of the boundary restraint, and axial strains

in the plane of the slab due to elasticity, creep and shrinkage. This would allow the effects of

sustained loading to be taken into account. He found that horizontal displacements and axial strains

significantly reduced the ultimate strength of the slabs, particularly in the case of thin slabs (L/D «

40). He also noted that his extended theory required many lengthy equations and proposed that the

best way to calculate the ultimate load when horizontal displacements were taken into account was to

use the theory from his first paper (rigid boundaries) and to multiply the ultimate load calculated from

this theory by predetermined reduction coefficients. Park conducted tests on eight slabs under

sustained loading. The magnitude of the sustained load varied from slab to slab but was generally

greater than practical working loads. He used the same frame as he used on his previous tests but

applied a uniform load for 42 days (he believed 42 days was sufficient for creep and shrinkage to have

a noticeable effect). After 42 days, the sustained load on the slab was released and the slab was then

immediately loaded to failure. The results from these tests indicated that creep strains were

insignificant and only the elastic and shrinkage axial strains needed to be considered in the ultimate

strength calculations. The results also indicated that Park's theory for calculating ultimate loads,

while taking into account time effects, was conservative. Park attributed this to the difficulty in

estimating the axial strains and horizontal boundary displacements, as well as neglecting the enhanced

strength of the concrete due to biaxial compression.

Roberts (1969) developed a theory for beams with in-plane restraint based on Wood's rigid-plastic

approach, but extended it to take into account the stiffness of the surrounds. His theory showed that if

the stiffness of the surround was equal to the in-plane stiffness of the beam, the enhanced load was

only 10% less than the load if the surround was eleven times stiffen

Roberts tested 36 beams restrained against longitudinal expansion. The longitudinal restraint was

provided by a large concrete surround cast with 69MPa concrete and containing longitudinal

reinforcement. The ratio of the extensional stiffness of the surround to the in-plane stiffness of the
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beam varied from 5 to 12. The load was applied through a four point loading system to provide a

constant moment region at the centre of the beam. The vertical deflection at the centre of the beam

and the force exerted on the surround by the loaded beam was measured. The results of the 36 tests

indicated that the load carried by the beams varied from 2.87 to 17.24 times the theoretical ultimate

load obtained through an analysis considering bending only. The lower enhancement ratios occurred

for beams v/ith low concrete strength and high reinforcement ratio, while the higher enhancement

ratios occurred for beams with high concrete strength and low reinforcement ratios. In contrast to

Park, Roberts found that the maximum load did not occur at a fixed proportion of the slab depth. For

3-inch deep beams, he found the average deflection at ultimate load to be 0.269D. For 2-inch deep

beams, the value was 0.158D. He also found that it wasn't necessary for the surrounds to be

extremely stiff for enhanced loads to be achieved.

Hung and Nawy (1971) developed a theoretical equation (based on the work of Sawczuk (1964)) for

predicting the ultimate strength of slabs under compressive membrane tction. The equations made

use of a strength reduction coefficient to take into account the level of boundary restraint. They found

that Johansen's yield-line theory only predicted 50% of the failure load while their theory predicted

approximately 76% of the failure load.

The authors tested twenty-nine isotropically reinforced two-way slabs to failure. The slabs were

either square or rectangular and the boundary conditions varied from restrained (fully clamped) to

hinged. Some of the slabs had all edges clamped, while others had either one or two edges hinged.

The slabs were clamped to a steel frame, with the aid of steel channels and bolts. For the hinged

edges, a half-round steel bar (with the rounded side facing the slab edge) was placed between the slab

and surrounding frame. All the slabs were uniformly loaded using a pressure bag system (with 10

increments to failure) and they all eventually failed in flexure. Deflection, strain and rotation

measurements were taken during the test. These results indicated that the ultimate strength of

restrained two-way reinforced concrete slabs was considerably higher than that predicted on the basis

of ultimate strength at critical sections.

Moy and Mayfield (1972) presented a method (based on equilibrium and strain compatibility) for

predicting the deflection of reinforced concrete slabs from zero load to failure. The method took into

account the effects of membrane actions caused by the bending of the slab. The elastic-plastic

analysis was based on the work of Massonnet (1968). It used the equations for the large-deflection

analysis of plates, which were modified to take into account the yielding of the concrete at certain

locations. The equations were solved using an iterative finite difference process. The authors also

tested 22 reinforced concrete slabs to check the validity of the theoretical solutions. However, the

comparisons between the test results and the theoretical predictions were not very accurate. The
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authors attributed this to the fact that the analysis did not include the change in stiffness due to

cracking of the concrete and the effect of strain-hardening in the steel. The elastic-plastic analysis

carried out in this paper is a different approach to what most authors have followed when looking at

membrane action. However, the method involves intensive numerical computation (use of finite

difference techniques) and the final solution is not very accurate.

Janas (1973) extended his analysis from his previous paper (Janas (1968)) to include elastic effects.

He wrote that the elastic in-plane compressibility of slab panels had the greatest effect on its

behaviour, since variations in the axial (membrane) force were so important in defining the load-

deflection curve. It was found that the results depended strongly on the assumed value of the elastic

axiai compressibility of the slab. Therefore, this value had to be carefully specified. However, the

value of the elastic axial compressibility varies as the forces and deflections change and Janas

couldn't choose a suitable value due to a lack of experimental data on the subject. Eyre and Kemp

(1994) conducted an experimental program to investigate the in-plane stiffness of concrete slabs under

compressive membrane action and it was found that the axial stiffness of the slab was considerably

less than the full depth elastic stiffness. According to Eyre and Kemp, this was due to the presence of

bending moments in the slabs.

Braestrup and Morley (1980) also considered the influence of elastic deformations by analysing a

circular slab with elastic restraints. Following on from the conclusions from the previous paper

(Braestrup (1980)), flow theory was used for the analysis. The in-plane slab stiffness and the support

stiffness were lumped into a single boundary spring and membrane action was assumed to start at an

initial elastic deflection of 0.03D. The results obtained gave reasonably good agreement with

experimental results. In particular, the peak loads were precicted quite well. A disadvantage of this

theory is its reliance on an assumed deflection for the point at which membrane action started. The

deflection that the authors assumed (0.03D) was a compromise between the pre- and post-cracking

stiffnesses of a simply supported slab.

Ouyang and Suaris (1987) derived an analytical relation for reinforced concrete rectangular slabs with

edge restraints. The analytical model was based on a plastic-flow theory allowing for boundary

displacements and in-plane deformations in the slab. A non-linear differential equation was obtained

for the membrane force in the slab, which was solved using a Taylor's Series expansion. The load on

the slab for a given deflection was then calculated by balancing 'he external and internal energy

dissipation. The predicted load-deflection curves gave good agreement with test results up to the peak

load. Strain softening was also included in the analysis to provide a better prediction of the load-

deflection curve beyond the peak load. An advantage of this analysis is that it is a closed form

solution and does not rely on an assumed value for the deflection at ultimate load. However, the
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equation that is derived is quite long and complex and still requires a number of assumptions to be

made. For example, values for the deflection at Johansen's load and the cracked cross-sectional area

of the slab strip needed to be chosen.

Civ.ice et al. (1989) used analytical procedures (modified from the work of Park and Gamble (1980)

and Keenan (1969)) to determine the peak flexural capacity of restrained slabs. It was found that

Park's procedures for determining the peak flexural capacity were reasonably accurate provided that

the deflection at ultimate load was known. A method of determining this deflection with an equation

was presented but a reasonable idea of the support stiffness was required before this equation could be

used. The authors also stated that an analytical procedure was needed that could accurately represent

the entire load-deflection curve of slabs under membrane action. This procedure needed to account

for different types of boundary conditions and reinforcement configurations.

In an earlier paper, Guice and Rhomberg (1988) had conducted tests on 16 quarter-scale reinforced

concrete one-way slabs to determine the effect of partial end restraints (both horizontal translational

and rotational) on the load-deflection behaviour of the slabs. To expose the slabs to these conditions,

an intricate reaction structure was constructed This consisted of a solid steel reaction frame and a

rigid steel support rack. This rack was connected to the steel reaction frame through spring

assemblies, which could be adjusted to give the desired amount of in-plane and rotational restraint.

The slabs themselves were mounted onto the rigid steel support rack. A uniform load was applied by

pumping water into a waterproof membrane at a controlled rate and data was obtained on the slab end

actions, deflections and material strains (concrete and steel). It was concluded that both in-plane

restraint and some degree of rotational restraint was required for significant membrane action to

develop. In-plane restraint near the mid surface of the slab produced little strength enhancement,

while in-plane restraints near the compressive edge restricted rotation and significantly increased the

slab's strength. It was also found that increasing the slab thickness or the area of steel enhanced the

compressive membrane capacity of the slab. This is in contrast with researchers such as Jacobson

(1967) who concluded that the enhancement due to compressive membrane action was more

significant in slabs with lower reinforcement ratios.

In the seceM paper, Guice et al. (1989)) described the results of tests on 47 one-way slabs. Two

different reaction structures were used in the tests. The first one was the same structure used by the

authors in tneir previous paper, while the second one was designed to provide rigid support to the

slabs. A uniform load was applied through a waterproof membrane in all of the tests. The test results

showed that the ultimate load calculated from yield-line theory significantly and consistently

underestimated the peak flexural capacity of restrained slabs. On average, only 68% of the

experimental failure load was predicted.
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Kemp et al. (1989) discussed the use of plastic flow rules in the analysis of reinforced concrete slabs

where membrane forces exist. In particular they looked at the differences between the use of total

strain flow rules (deformation theory) and incremental strain flow rules (flow theory) and determined

which was the more appropriate to use for the analysis of reinforced concrete slabs under membrane

action. They concluded that deformation theory should be used when the membrane compression

forces are increasing and flow theory should be used when tne membrane forces are decreasing (this

is also discussed in Section 2.2.8). They illustrated the use of this combined flow rule by performing

a rigid-plastic analysis of an axially restrained reinforced concrete slab with end gaps (see Figure 2.2).

The presence of the end gap allows in-plane deflectionr to occur, approximating the elastic effects in

the system.

Reinforcement

Rigid Restraints"

Figure 2.2: Reinforced concrete slab strip analysed by Kemp et al. (1989)

Kemp et al. used a total strain flow rule up to the deflection corresponding to the maximum

membrane force, then an incremental strain flow rule thereafter. The load-deflection curve was

continuous in both value and slope at the transition point, while the membrane force-deflection curve

was continuous only in value.

While the use of the combined flow for the case of the reinforced slab strip shown in Figure 2.2 was

demonstrated by Kemp et al. (1989), its validity in models with elastic restraints (a more realistic

situation) had not been established. Eyre (1990) presented this analysis and it was shown that for this

case, the peak load always occurred before the maximum membrane forces were reached. Therefore,

similar to the situation in Figure 2.2, a total strain flow rule could be used when determining the peak
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load. It was also noted that the assessment of the initial deflection, end gap and in-plane stiffness of

the slab were critical in determining peak load values.

Meamarian et al. (1994) developed a method of analysis for horizontally restrained structural concrete

one-way members. Park's method was extended to include the effects of prestressing forces and

long-term deformations, while modified compression field theory (Vecchio and Collins (1986),

Vecchio and Collins (1988)) was used to relate sectional forces io the stresses and strains of the

materials. The total deflection was also calculated using modified compression field theory. The

equations were solved iteratively with a computer program and the results compared reasonably well

with experimental results. The authors believed careful consideration of the in-plane stiffness of the

supports and long-term axial deformations was necessary to obtain accurate predictions of the flexural

enhancement provided by membrane forces.

2.2.5 Research involving restraint provided by edge beams and adjacent slabs

This section of the literature review concerns the behaviour of slabs where the restraint is provided by

edge beams aivd adjacent slabs. The restraint provided by edge beams and adjacent panels provide a

good approximation to the conditions in an actual bridge deck or floor system.

Park (1965) investigated the in-plane bending stiffness and strength that was required in supporting

beams and exterior panels to ensure membrane action could develop in interior slab panels. Through

tests on twenty small-scale models of idealised slab-and-beam floors, Park found that tie

reinforcement might be required in the supporting beams so carry the membrane forces. However,

when the exterior panels were adequately reinforced, the ultimate loads of the interior panels were in

close agreement to the failure loads calculated from his theory. Park noted in his paper that the

following were prerequisites for the development of coirwressive membrane action in slab-and-beam

floors (Figure 2.3 is an illustration of the behaviour of the floor):

• Restriction of the horizontal bending of beams AG and BH through deep beam action of adjacent

panels. The effectiveness of the deep beam action will depend on the ratio of the lengths of the

sides of the adjacent panels.

• Restriction of the extension of beams CD and EF, since these beams in the floor will have to act

as ties to balance the membrane forces acting in the slab. The use of tie reinforcement is

beneficial in limiting the extension of these beams.

• The strength of the beams and the adjacent panels must be sufficient to withstand the in-plane

forces imposed onto them.
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Note that the behaviour described above and shown in Figure 2.3 also would occur perpendicularly to

the situation shown in the figure. That is, membrane forces would also exist along the longer span,

causing beams CD and EF to bend horizontally and beams AG and BH to be in tension. However, for

clarity, this was not described above or shown in the diagram.

A B

Loaded
interior
panel

Horizontal forces exerted onto
beams AG and BH; causes these
beams to bend horizontally

— Creates tensile forces in beams
CD and EF

G H

Figure 2.3: Forces and deflections in slab-beam floor system (plan view)

Park noted that the additional steel required in the beams to withstand the forces imposed onto them

by the compressive membrane forces might offset the reduced amount of steel required in the slabs.

Therefore, there would be no economical benefit to using compressive membrane action in design.

However, Park also wrote that membrane action could be beneficial if the surrounding panels of a

heavily loaded panel were only lightly loaded. Therefore, the steel in these panels could be used to

resist the membrane forces, allowing the heavily loaded panel to carry very high loads.

Aoki and Seki (1971) developed a method for calculating the ultimate strength of slabs that took

compressive membrane action into consideration. The membrane forces in the slab were determined

by calculating the unbalanced stresses in the cross-section, while the stiffness of the edge beams were

calculated assuming the beams were either fixed or simply supported. From the test results and
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theoretical considerations, it was concluded that compressive membrane action should be considered

when evaluating the ultimate strength of the slabs and that compressive membrane action was more

effective in slabs with a high concrete compressive strength or low steel ratios.

The authors conducted an experimental and theoretical investigation into the ultimate strength of

reinforced concrete slabs supported on beams and subjected to concentrated lc^H3. They tested 14

square slabs with side lengths varying from 1.2m to 1.6m and depths from 75mm to 100mm. The test

results indicated that the collapse loads of the slabs were approximately 2.1 times the theoretical

failure loads when compressive membrane action was not taken into account. They also found that

the more rigidly supported slabs were more likely to fail in punching shear than flexure.

Ramesh and Datta (1973) developed a yield-line theory for a slab-beam system that was similar to

Park's analysis. Park's theory was extended to take into account different degrees of edge restraint

and the horizontal bending of the edge beams. The theory is based on the same approximations as

Park's research and also uses the same empirical value for the ultimate slab deflection (0.5D).

The bending of the edge beam was taken into account using the Euler-Bernoulli beam equation:

Equation 2.3
dx4

where I is the moment of inertia of the edge beam in the horizontal direction.

8 is the bowing of the edge beam.

N is the membrane force per unit width in the slab.

Analysis of the theoretical equations indicated that once a certain degree of end restraint was

achieved, further increase in the stiffness of the end restraint had little effect on the load-carrying

capacity of the restrained slab. Besides the degree of in-plane restraint, it was found that the amount

of steel reinforcement had a significant influence on the load enhancement due to compressive

membrane action (the load enhancement was more significant for low percentages of steel).

The authors also carried out tests on six slab/beam systems. A hydraulic jack was used to apply 64

point loads (to approximate a distributed load) and the loads were applied in small increments with

less than seven minutes between each successive increment. The ratio of the ultimate load from tests

to the load given by yield-line theory was found to be between 1.53 and 3.98. It was also found that

the decrease in load, after the peak load had been reached was much more gradual in the slabs with

edge beams than in a slab that had stiff, artificial restraints. Similar to other researchers, the

enhancing effects of membrane action were also found to be more noticeable in slabs with lower steel

ratios.
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Following on from their previous work, Datta and Ramesh (1975) presented the test results of a

further 19 single-panel square slab-beam models. From the research discussed in these two papers,

the main conclusions that were made are listed below:

• There was an upper and lower limit to the degree of edge restraint for which compressive

membrane action will enhance the load-carrying capacity of the slabs. Below the lower limit, the

authors believed that tensile membrane action predominates over compressive membrane action

and the load carried by the slab increases monotonically with increasing deflection. That is, the

peak (point B) seen in Figure 1.23 does not occur. Above the upper limit, the slabs behaved as if

they were fully restrained and further increase in the edge restraint had little effect on the slab's

behaviour.

• The deflection at maximum load increases as the degree of end restraint increases.

• Membrane effects are greater for slabs with low percentages of reinforcement.

• T-beam action increases the load-carrying capacity by 20%.

Kuang and Morley (1992) conducted 12 tests on two-way reinforced concrete slabs with edge beams

to investigate the behaviour of these slabs under concentrated load and to determine their punching

shear capacity. The slabs were one-fifth scale specimens, with a clear span of 1.2m, and the edge

beams were designed so that they remained elastic until after the failure of the slab. Different span-

to-depth ratios, reinforcement ratios and edge beam sizes were used in the specimens. The central

point load was applied using a 250kN scicw jack with the load applied at 4kN intervals. As the peak

load was approached, the control method was changed to displacement control, with increments of

0.4mm.

The results from their tests indicated that the punching shear strength of the slabs was much higher

than both the value predicted by various codes of practice and the flexural failure load predicted by

yield-line theory. The ratio of experimental failure load to Johansen's load was between 1.2 and 5.2

for all of the slabs. The enhanced capacity was attributed to compressive membrane action. It was

found that the level of steel reinforcement had little effect on the ultimate punching load of heavily

reinforced slabs, but had a significant influence on lightly reinforced slabs. An increase in the width

of the edge beam from 70mm to 280mm increased the ultimate strength by 46% for thin slabs and

64% for thicker slabs. This indicated that the size of the edge beams had a considerable influence on

the behaviour of the slabs. The bowing of the edge beams was also measured in xhe tests and it was

found that the majority of the bowing occurred after cracks had initiated in the slab. This was because

compressive membrane action (and the horizontal deflections associated with it) only developed after

the slab had cracked.
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Kuang and Morley (1993) then presented a plasticity model for the punching shear failure of slabs

with in-plane restraint, along with a method to determine the ultimate load of these slabs. The rigid-

plastic model used plasticity theory with a parabolic Mohr failure criterion for the concrete. A similar

approach to the one described in the paper by Braestrup and Morley (1980) was used (ie. flow theory

was used), and the procedure used to calculate the punching shear failure load was iterative. The

method showed good agreement with test results, with a mean ratio of experimental to predicted

ultimate loads of 1.02 (from 86 tests).

2.2.6 Research involving compressive membrane action in bridge decks

The effect of compressive membrane action in bridge decks has also been investigated by a number of

researchers. An important point when looking at the behaviour of bridge decks under compressive

membrane action is the loading condition. Obviously, vehicles impose concentrated loads on a bridge

deck and this can often result in a punching shear failure in the slab. Therefore, while most of the

other research has focussed on flexural failures, punching shear failure is an important consideration

in research concerning the behaviour of bridge decks. Some of the research involving compressive

membrane action in bridge decks is summarised below.

Tong and Batchelor (1971) investigated compressive membrane action in two-way bridge deck slabs

under concentrated wheel loads. The presence of the edge beams and diaphragms provided the end

restraint to the slabs, allowing compressive membrane action to develop. The authors tested a series

of bridge models with varying reinforcement percentages, shear spans and boundary conditions. The

bridge models were a 1/15th scale model of an 80 foot (24.4m) long, 2 lane, 2 girder bridge with 2

interior and 2 end diaphragms. Because of the scale chosen, the specimens that were tested were

relatively small (total length of the bridge models v/ere about 1.6m). The test results showed that the

failure loads were much higher than those obtained from yield-line theory and that for slabs with low

levels of reinforcement, the usual failure mode was in flexure. Increased steel proportions lead to

punching failures. The authors also proposed a theory to predict the ultimate strength of these slabs.

The theory assumed an additional moment, due to membrane action, was generated along all the yield

lines and this resulted in a higher ultimate strength. They concluded that the design procedures at the

time were too conservative and that the method they proposed was more economical, while remaining

safe.

Batchelor and Tissington (1976) extended the previous work of Tong and Batchelor (1971) to study

the effects of model scale, support conditions and slab continuity on the punching shear strength of

the slabs. The authors used scaled bridge decks, similar to the ones used in the previous investigation

and concluded from the test results that scale effects were negligible, provided that appropriate non-
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dimensional parameters were used for comparison between specimens. The results also indicated that

the support conditions had a considerable influence on the failure of the slabs. It was found that the

failure load for the specimens where the beams and diaphragms were restrained against vertical

deflections along their entire length was less than the failure load where the specimens were only

supported at the ends of the girders. The authors attributed this to the fact that when the specimens

were only supported at its corners, the slab developed compressive stresses because it acted as a

compressive flange for the beam. This compression enhanced the ultimate load of the panels.

Batchelor and Tissington also developed empirical equations relating the actual failure load to the

flexural failure load. These equations used an enhancement factor, which included the slab

reinforcement index, o> = 7

J c

Researchers at Queen's University in Ontario, Canada carried out a great deal of research in the 1970s

that looked into the punching shear strength of restrained slabs. In particular, the research focussed

on the ultimate strength of deck slabs of composite steel/concrete bridges and eventually lead to new

provisions in the Ontario Highway Bridge Design Code (1979). These provisions recognised the

effects of compressive membrane action by allowing a reduced minimum reinforcement percentage

(0.2%) to be used in deck slabs, provided certain boundary constraints were met. The experimental

and theoretical work that led to the provision being accepted in the OHDBC is discussed below.

The theoretical aspect of the research was carried out by Hewitt and Batchelor (1975), who developed

a method for predicting the punching shear strength of a restrained slab. The method was based on a

model of punching shear failure developed by Kinnunen and Nylander (1960) for a simply supported

slab but also incorporated boundary restraining forces and moments. The magnify; of the boundary

restraints was taken into account using an empirical restraint factor. The value of the restraint factor

(Rf) ranged from 0 for a simpiy supported slab to 1 for a slab with fully fixed supports. From their

analysis, values for the restraint factor were proposed for slabs restrained by edge beams or frames

and for composite steel/concrete bridge decks.

According to the model (see Figure 2.4), the outer portion of the slab is loaded through a compressed

conical shell that develops from the loaded area to the end of the shear crack. Failure occurs when the

conical shell fails in compression, which takes place when the tangential strain reaches a certain

value. Kinnunen and Nylander developed relationships between the tangential strain and the slab and

column dimensions, and between the tangential stress and the stress in the conical shell. Using

iterative processes, these relationships could be solved to determine the failure load. This method was

found to give good agreement with the test results of other authors.
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Shear crack

Conical shell

- Steel reinforcement Support reactions

Figure 2.4: Model of punching shear failure used by Hewitt and Batchelor (1975)

Batchelor et al. (1978) then focussed the research on to the ultimate strength of deck slabs of

composite steel/concrete bridges. They used the theory that was developed by Hewitt and Batchelor

(1975) and applied it to the design and analysis of model bridge decks. The authors tested nine 178th

scale models of a 24.4m span bridge. The models had either three or four steel I-beam girders. The

reinforcement details of the deck slabs on top of the beams were varied, including some slabs with no

reinforcement at all. These deck slabs were tested under a single concentrated load, to simulate a

wheel load. In these models, the boundary restraints for the loaded slab were provided by the

presence of shear connectors, beams, diaphragms and the neighbouring slabs.

The results of the tests indicated that the factor of safety against failure by punching shear under a

single design wheel load was approximately 16. Under truck loading, failure in the beam was

expected to occur before the slab failed. This meant that conventionally designed deck slabs were

uneconomical^ reinforced.

The punching shear strengths of the slabs were found to vary inversely with the span and directly with

the reinforcement ratio and effective depth. Factors that were found to not influence the punching

shear strength were:

• Position of the load on the bridge deck. The results showed that the failure load was similar for

all panels with the same reinforcement details. The failure load didn't depend on whether the

edge restraint was provided by beams, diaphragms or adjacent slabs.

• Previous failures in adjacent slabs.
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• Hogging moments in the slab.

• Dead load stresses and deflections.

• Strength of concrete in the slab. Previous resc' ch rs have found the concrete strength to be a

factor in the strength of restrained slabs, particular^ for thicker slabs.

Theoretically, it was shown that reinforcement was not required at all in deck slabs if they were

designed for the ultimate punching shear strength. However, temperature and shrinkage

reinforcement is required in deck slabs, so the authors suggested the use of §.2Va isotropic top and

bottom reinforcement. For a 7-inch (178mm) thick slab, this resulted in a factor of safety of 9. For

design purposes, they suggested a value of 0.5 for the empirical restraint factor (Rf).

To confirm these results in the field, Csagoly et al. (1978) tested a number of existing bridges with a

445kN simulated wheel !oad. Details of these tests were given in Section 2.1.3. From the results of

the tests, it was recommended that the design of bridge deck slabs should be based on the theory

described above. Csagoly et al. also recommended the use of 0.5 for the restraint factor but

recommended the use of 0.3% for the reinforcement ratio, rather than the 0.2% suggested bv the

previous authors. This .vas due to the better crack control for live loads, shrinkage and temperature.

Another researcher who investigated the strength of reinforced concrete bridge decks was Bcal

(1982), who performed tests on two reduced-scale conciete bridge decks, subjected to simulated

wheel loads. It was found that the bending moments due to service loads were only 40-65% of those

predicted by flexural theory and the failure load (punching failure) was at least six times larger than

the design load. Beal believed that this was due to the effects of largi in-plane compressive forces

resulting from the restraint of deck expansion under load. Beal believed the presence of the

compressive forces enhanced the flexural capacity and resulted in the slab failing in punching shear,

rather than flexure. Analytical predictions, based on the punching shear theory of bridge decks by

Hewitt and Batchelor (1975), were made and satisfactory results were obtained.

A similar research program to the one carried out in Ontario was conducted in the United Kingdom

where the strength of M-beam bridge decks (Figure 2.5) was investigated in the early 1980s. This

research was carried out because at that time, new provisions allowed the spacing of the beams to be

increased from one metre to two metres. As a result, the strength of the slab spanning between the

beams had to be investigated.

59



Literature review

n
in

\

I
3000

666 500 666 500 666

Figure 2.5:173rd scale M-beam bridge deck cross-section used in the investigation by Kirkpatrick et
al. (1984); (beam dimensions in test specimen not provided)

Kirkpatrick et al. (1984) carried out an experimental and theoretical investigation into this problem.

They constructed a l/3rd scale model of a bridge deck with a total of 20 panels and carried out

ultimate load tests on each of the panels. The model included both the end diaphragms and the edge

parapets to ensure that the model resembled an actual deck as much as possible. The slabs had

varying spans and reinforcement percentages (1.7%, 1.2%, 0.5% and 0.25%). A simulated wheel load

was applied to each slab through a hydraulic jack. All of the slabs failed in punching shear and the

results indicated that the failure load was almost independent of the amount of reinforcement and the

properties of the reinforcement. The authors came to this conclusion because all of the slabs failed at

a load of approximately 1 OOkN. Comparisons were made with various North American and United

Kingdom bridge design codes used at the time and it was concluded that these codes did not give

satisfactory predictions of the punching shear strength of bridge slabs because in-plane restraint was

not considered.

In the same paper, Kirkpatrick et al. developed a method for predicting the ultimate capacity of these

bridge slabs that was based on a modified punching shear equation. This equation included the effects

of the in-plane restraints on the slab by using an effective reinforcement ratio. In other words, the

enhancement due to compressive membrane action was represented by an equivalent percentage of

flexural reinforcement. The effective reinforcement ratio depended on the compressive strength of

the concrete, the total depth of the section, the span-to-depth ratio and the average effective depth of

the tensile reinforcement. The punching shear strength equation (which also depended on the

diameter of the loaded area) gave satisfactory, although slightly conservative, comparisons with test

results. Further details of this method are given in Section 2.2.10.1.
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Recommendations for the design of beam-and-slab bridge decks were also made. This included the

reinforcement details, concrete strength, span-to-depth ratios and the use of diaphragms and parapets.

These are similar to the design provisions in OHBDC (1979).

Kirkpatrick et al. (1986) extended the work from the previous paper and investigated the influence of

compressive membrane action on the serviceability of beam-and-slab bridge decks. Serviceability

tests were performed on 160mm deep concrete slabs and it was concluded that the formula used at

that time for crack control based on flexural strength was not applicable to bcam-and-slab bridge

decks because of the enhancing effects of compressive membrane action. It was found that the initial

cracks in the bridge occurred well above the design service load of 112.5kN.

The paper by Long et al. (1994) summarised much of the research that was carried out by these

authors on M-beam bridge decks in the United Kingdom.

2.2.7 Other experimental work investigating compressive membrane action in reinforced

concrete slabs

This section summarises some of the other research that has been carried out that involved only

experimental work (no theoretical formulations). This included experiments on slabs with artificial

restraints, slabs with edge beams and slabs that were part of a slab/beam floor system.

Taylor and Hayes (1965) tested 22 plain and reinforced concrete slabs. The effect of the in-plane

restraint was determined by testing the slabs in pairs (one simply supported and one restrained by a

stiff surrounding frame). The slabs were approximately 890mm square and 76mm deep with three

different reinforcement ratios. The size of the loading plate was also varied in the experiments. The

restraining frame consisted of welded steel I-beams (304.8mm x 152.4mm) and a stiff mortar was

placed between the slab and the frame to remove any gaps.

Test results indicated that the increase in strength due to the restraining frame varied from 0% to 60%,

with the higher ratios associated with the slabs with lower reinforcement ratios. It was concluded that

the flexural capacity of a slab was an important variable in the punching shear strength because the

formation of flexural cracks reduced the area of concrete in compression. Therefore, there was less

concrete to resist the shear for:;?s, leading to a punching shear failure. This was indicated by the

results of the tests on the simply supported slabs, where the punching shear failure load was close to

the flexural failure load.

Gamble et al. (1969) tested a quarter-scale, nine-panel, two-way reinforced concrete floor slab. Each

of the panels was square (with a span of 1.524m), and was designed according to the 1956 ACI

Building Code (318-56) with a design live load of 70psf (3.35kPa) and a dead load of 75psf
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(3.59kPa). For each panel, a hydraulic jack was used to simulate a uniform load (by distributing the

load from the jack into 16 point loads on each panel).

The tests on this floor allowed the authors to investigate the effect of edge beams, walls and adjacent

floor panels on the behaviour of interior panels. It was found that at design load levels, the behaviour

of the structure was essentially linear, with no cracking and small deflections and stresses. When the

loading reached the dead load plus three live loads, the reinforcement began to yield, and the structure

eventually failed at a load of 537psf (25.7kPa), which was 3.7 times the total design load. The

specimen failed in the beams as a result of combined shear and torsion. A reason for this was that the

edge beams had not been specially designed to withstand the torsional moments that were applied to

them. The load was applied simultaneously to all the slabs, and so the entire structure failed at once.

Therefore, there was no distinction between the failure loads of the interior panels and the edge

panels. However, after the completion of the test, the interior panel was still relatively intact and the

authors conducted a further load test on just this panel. The ultimate load of the interior panel was

found to be 829psf (39.7kPa), confirming the fact that the presence of compressive membrane action

in interior panels enhances its load-carrying capacity. From this, it was concluded that single panels

would not collapse under the load predicted by a yield-line analysis if there were stiff in-plane

restraints at the edges of the slab.

Hopkins and Park (1971) used Park's equations to assess the load enhancement of a panel in a

reinforced concrete slab-and-beam floor. Tests were conducted on a quarter-scale nine-panel slab-

and-beam floor that had been designed with allowance for compressive membrane action. The

different panels of the floor were designed for different ultimate loads calculated from Johansen's

theory. It was then expected that the presence of compressive membrane action would cause the

actual ultimate load of all the panels to be the same value. For example, the centre panel was

designed for a Johansen's load of 4001b/ft2 (19.2kPa) and the presence of membrane action was

expected to increase this by a factor of two. On the other hand, the corner panels were designed for

an ultimate Johansen's load of 8001b/ft2 (38.3kPa) and since membrane action was not expected to

occur in t'nj corner panel, the actual ultimate load would also be 8001b/ft2(38.3kPa), which was the

same as the centre panel. The uniform load was applied though pressurised water bags and deflection,

reaction and strain measurements were taken during the test. The floor was supported on rollers to

prevent horizontal reactions. Therefore, all in-plane restraint was provided by the horizontal rigidity

of the beams and adjacent slabs. Test results showed the ultimate loads to be higher than the design

loads and the behaviour in the service load range was satisfactory. The authors concluded that the

design of slabs to allow for membrane action was possible provided certain requirements were met.

This included designing the beams to withstand the tensile forces that balanced the compressive
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forces that were generated in the slab. They also concluded that the use of membrane action in design

was most suitable for relatively thick, heavily loaded slabs with reliable in-plane restraint.

Christiansen and Frederiksen (1983) tested 11 two-way reinforced concrete slabs with in-plane

restraint provided by a reinforced concrete edge zone around the test panel. This edge zone had the

same thickness as the test area. The model slabs were rectangular with side lengths between 1 and 2

metres and a thickness of about 40mm. The loading consisted of 16 point loads, connected to a single

hydraulic jack. Horizontal and vertical deflections were measured throughout the test. From the test

results, the authors concluded that the load carried by membrane action (maximum total load minus

Johansen's load) was independent of the amount of reinforcement and of the ratio of the side lengths,

but depended on the slab slendemess (average side length divided by thickness).

Christiansen and Frederiksen (1983) also tested two full-scale concrete slabs from a building in

Copenhagen that was constructed in 1951. In-plane restraint was provided by adjacent slabs and edge

bear?) •-, One of the specimens was an interior slab (with in-plane restraint on all four sides). The

ultimate load of this slab was 2.95 x Johansen's load. The second specimen was an edge slab (with

in-plane restraint on 3 sides). This carried an ultimate load of 2.39 x Johansen's load. Observations

made during both tests showed that the first cracks in the slabs didn't appear until the load

approximately equalled Johansen's load. This indicated that the serviceability performance of these

slabs was significantly better than expected.

They concluded that for slabs with "normal restraint", such as those found in slab-and-beam floors, an

estimate of the load-carrying capacity of the slab could be given by:

Equation 2.4

where P is the total load that has been uniformly distributed over the slab (N)

Pj is the total Johansen's load, uniformly distributed over the slab (N)

h is the slab thickness (mm)

f c is the concrete cylinder strength (MPa)

The increase in load due to membrane action is given by h2f c. For slabs with more rigid restraints

(such as in reaction frames in the laboratory), the increase in load due to membrane action can be up

to 3 x h2fc.

Fenwick and Dickson (1989) conducted concentrated load tests on three one-way reinforced concrete

slabs with different end restraints (simply supported, rotationally restrained, rotatitnally and

horizontally restrained). The slabs were 102mm deep with a span-to-depth ratio of 12. The results
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from the tests showed that the stress in the reinforcement was significantly less than theoretical values

(thin plate theory and elastic cracked section analysis). For the simply supported and the rotationally

restrained slabs, the peak reinforcement forces were found to be between 50% and 65% of the

theoretical values. For the slabs with both rotational and in-plane restraint, the peak reinforcement

forces were found to be only 35% of the theoretical value. The authors attributed this discrepancy to

the presence of compressive membrane forces. These membrane forces were found to resist a

significant portion of the load from initial cracking through to the failure load. All the slabs failed in

punching shear and the results showed that the punching shear strength increased and the ductility

decreased as the in-plane restraint increased.

Fang et al. (1994) tested 18 slabs with edge beams under concentrated loads. All the slabs were

1000mm wide by 2300mm long with a depth of either 75mm or 115mm. The slabs were isotropically

reinforced (top and bottom) and the variables investigated were the concrete strength, reinforcement

content, steel yield strength and the thickness of the slab. The edge beams were 300mm wide by

245mm deep and were tied down to the floor. This provided the slabs with a degree of edge restraint.

The load was applied through a hydraulic jack at increments of 20kN, with the size of the increments

decreasing as failure approached.

All the slabs failed in punching shear. As expected, the slabs had a higher failure load than

calculations that do not include membrane forces predict they should have. For thick slabs, it was

found that the concrete strength and thickness were the main factors that affect the load capacity of

the slab. For thin slabs, the strength was mainly dependent on the amount of flexural reinforcement.

Edge beam rotations were calculated on every specimen and were found to vary between 0.2 to 0.74

degrees. It was concluded that adequate slab thickness and appropriate edge restraints were required

for compressive membrane action to develop.

2.2.8 Summary of formulations based on plasticity theory

The previous sections of the literature review showed that many researchers have produced theoretical

formulations for the analysis of compressive membrane action in reinforced concrete slabs. The

different researchers used varying approaches but they all generally followed the procedure outlined

below:

1. A failure mechanism was assumed.

2. A constitutive model was used to find the membrane forces and moments at the yield lines as

functions of certain parameters. These parameters were related by kinematical conditions.
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3. The parameters were eliminated and the load found by equilibrium, work or energy dissipation

methods.

While the formulations of the researchers follow this general pattern, there are slight differences

between each one. For example, when comparing the analyses by Wood (1961) and Park (1964a), the

equations used for the moments and membrane forces at the yield lines differ only in the assumed

concrete stress block that was used. Wood used the concrete stress block based on plastic potential

theory (a rectangular distribution), while Park used the stress distribution determined by Hognestad et

al (1955), which he referred to in his paper. The physical consequence of using the different stress

blocks is small and only the theoretical correctness is affected. Another difference was that Wood's

analysis was for a circular slab, while Park's analysis was for a rectangular slab. Because of this,

there were a number of differences in their formulations. Firstly, because of the symmetry of the

circular slab and the lack of torsional moments, Wood could easily incorporate compressive

membrane forces into the analyses. However, for the rectangular slabs analysed by Park, a similar

procedure of combining equilibrium equations, yield criterion and collapse mechanism would be far

more complicated. Therefore, to analyse the rectangular slabs, Park divided the slab into a series of

strips running parallel to the edges of the slab.

Much of the research that followed on from the work of Wood and Park were extensions to their

theories. For example, the research by Desayi and Kulkarni (1977a) extended Park's work to include

a semi-empirical method of determining the load-deflection curve up to the peak load. This was done

by modifying the flexural rigidity to account for the cracking of the concrete and the yielding of the

steel. Ramesh and Datta (1973) extended Park's theory to take into account the horizontal bowing of

edge beams, which was a more realistic representation of actual slab structures. The analysis by

Roberts (1969) was based on Wood's theory, modified for one-way slab strips and took into account

support stiffness and in-plane elasticity.

When carrying out the theoretical formulations, either flow theory or deformation theory was used by

the researchers. Flow theory relates stresses to incremental strains, while deformation theory relates

stresses to total strains. Wood and Park's analyses were based on deformation theory, while Sawczuk

(1964), Janas (1968) and Morley (1967) based their analyses on flow theory. Janas (1968), Braestrup

(1980) and Kemp et al. (1989) have discussed which flow rule should be used and the results of using

each flow rule have also been discussed by these authors. In his historical review, Braestrup (1980)

discussed the differences between the two theories and concluded that for rigid-plastic analyses, flow

theory should be used because the use of deformation theory resulted in a number of unrealistic

results. These were:
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• When using deformation theory, it was possible for the load-deflection curve to drop below the

flexural collapse load of an unrestrained slab. However, in a discussion of this paper by

Witteveen et al. (1981), it was shown that this can also occur when flow theory was used.

• The use of deformation theory predicted that the membrane forces would decrease very slowly

after the peak had been reached, contradicting test results.

Kemp et al. (1989) discussed the choice of flow-rule and they concluded that a combination of flow

rules was required when determining the complete load-deflection behaviour of a structure. The

authors referred to a PhD thesis written by H.M. Al-Hassani, who was one of the authors of the paper.

His thesis (submitted in 1978 at the University of London) was titled "Behaviour of axially restrained

concrete slabs". Based on physical arguments, Kemp et al. concluded that when the compressive

membrane forces were increasing and the neutral axis was moving into the tensile crack region, a total

strain flow rule was required. When the compressive membrane forces were decreasing and the

neutral axis was moving into the compression zone, then the incremental strain flow rule was

required. Therefore, flow theory could be used if the maximum membrane force occurred at zero

deflection and decreased thereafter (rigid-plastic analysis). However, if axial strains were to be taken

into account, then both flow rules were required. Also, the total strain flow rule (deformation theory)

should be used when predicting the ultimate load because the maximum load occurs while the

membrane forces are increasing.

In formulating their mathematical analyses, the various researchers had to make many gross

assumptions (such as assuming the concrete to be a rigid-plastic material, or the surrounds to be

infinitely stiff). Therefore, the resultant formulations did not accurately represent the actual load-

deflection behaviour of the slabs. For example, by assuming the concrete to be a rigid-plastic

I material, the maximum load was determined to occur at zero deflection and this obviously does not

I occur when a real slab is loaded. To account for elastic effects, Park used an empirical ultimate

| deflection and determined the load carried by the slab at that point. The value for the empirical

deflection (0.5D) was conservative and was based on his test results and the results of other authors

that had been published at the time. Subsequent tests by further authors showed large variations in the

value of the ultimate deflection, which disagree with Park's assumption. In his book, Wood also

noted that the presence of elastic deformations would ieduce the peak load and result in this load

occurring at a deflection greater than zero.

Despite these limitations, the research that was carried out helped in the understanding of compressive

membrane action. However, the formulae derived by these researchers have only been of use to other

researchers in this field, not only because of the assumptions that had to be made, but also because
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they have generally been too complex to be used in design and/or assessment methods. This fact is

illustrated by the following quote, taken from a recent paper by Eyre (1997): 'The determination of

the strength of reinforced concrete slabs with proper consideration of the benefits of compressive

membrane action is too complex for regular use by the practicing engineer'.

2.2.9 Simplified formulations

The formulations discussed so far have been attempts to derive rigorous and theoretically sound

theories to explain the behaviour of slabs under compressive membrane action. Rankin and Long

(1997) took a different approach and derived a simplified method to investigate the behaviour and

ultimate load capacity of concrete slabs with in-plane restraint. The method was based on

deformation theory and utilised an elastic-plastic stress-strain criterion for concrete. The stiffness of

the in-plane restraint was taken into account using a three-hinged arch analogy. It was shown that an

elastically restrained arch was equivalent to a rigidly restrained arch if the length of the rigidly

restrained arch was slightly modified. Therefore, it was possible to model the more complicated

elastically restrained slab as a simpler rigidly restrained slab. In the analysis, it was assumed that the

maximum arching moment developed after yielding of the reinforcement. This would appear to be a

reasonable assumption for moderately reinforced slabs and is important because it allows the loads

carried by compressive membrane action and by bending to be calculated separately and added

together to give the total ultimate load capacity. Bending deformations were also neglected in the

analysis. The results using the method were compared with experimental results and good correlation

was obtained with many tests. The method is also used in this thesis as a basis for the analysis of the

experimentally tested slabs and in the development of a design method to incorpora.3 compressive

membrane action in the strength assessment of slabs with edge beams. Therefore, the method is

discussed in more detail in Section 2.2.10.

Similarly, Eyre (1997) formulated a simplified method for directly assessing the strength of reinforced

concrete slabs under membrane action. The method is based on plastic flow rules and the fact that a

rigid-plastic analysis can be used to obtain the deflection at which the maximum membrane force

occurs in any one-way strip. This procedure is discussed below.
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The relationship between the membrane force and the deflection in a one-way strip, using a rigid-

plastic analysis is given by Equation 2.5 (Eyre (1997)):

a , -
5 + S;

n = •
5-5, Equation 2.5

§(8-5,)

where n is the membrane force

a.1 is a section parameter

8 is the vertical deflection (non-dimensionalised)

8i is the initial vertical deflection in the slab

£ is a gap parameter that takes into account any gap between the slab and the supports

S is a non-dimensionalised stiffness parameter

At the maximum membrane force, — = 0 . This gives the deflection at the maximum membrane
d5

force (Equation 2.6)

Equation 2.6

Equation 2.6 is true regardless of any elastic effects in the strip.

The load-deflection relationship, derived from a rigid-plastic analysis, is given by Equation 2.7.

— = 1 + 2-
1 + y,

(a , -5) 2 Equation 2.7

where P is the load capacity including compressive membrane action

Py is tlie load capacity according to yield-line theory

P is a slab section parameter

yi is the ratio of moment capacity at support to moment capacity at mid-span

<xi and 8 are as above

The load carried at maximum membrane force is then found by substituting the deflection at peak

membrane force (Equation 2.6) into Equation 2.7.
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The load calculated using this method is always slightly less than the actual load-carrying capacity of

the slab, thus providing a safe estimate of the slab's strength (See Figure 2.6). The fact that a rigid-

plastic analysis is used in the formulation of the method considerably simplifies the approach.

Maximum load

Load at maximum
membrane force
(Eyre's method
calculates this load)

Load-deflection curve using
rigid-plastic model based on
strain-rate equations

Actual load
deflection curve

Deflection at
maximum load

I

Deflection at
maximum membrane
force

Figure 2.6: Use of rigid-plastic model to approximate load-carrying capacity of restrained slabs

However, information about the surround stiffness that a slab is exposed to is required before the

method can be used and Eyre writes in his paper that more reliable information is needed in this

regard before compressive membrane action can be used in design and analysis.

From the papers by Rankin and Long (1997) and Eyre (1997), it appears that reasonably accurate

predictions can be made with these simplified methods. These methods are easier to implement than

the methods based on rigorous theories discussed earlier, and considering that assumptions are

necessary for all theories that include membrane action, simplified methods appear to provide the best

opportunity for the utilisation of compressive membrane action by practicing engineers.

2.2.10 Rankin and Long's method for strength assessment of slabs under compressive

membrane action

A simplified method for incorporating compressive membrane action in the strength assessment of

reinforced concrete slabs was developed by Rankin and Long (1997). This method, which is

described in detail below, forms the basis of the design method developed in this thesis.
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The basic assumption in the method developed by Rankin and Long (1997) is that the maximum load

carried by compressive membrane action occurs after the yielding of the reinforcement. Therefore,

the ultimate strength of the slab can be separated into two components: bending and arching. The

load carried by bending is calculated based on the moment capacity of the section, which is calculated

using the commonly known equations of flexural theory. The arching capacity is then calculated

based on a theory derived by McDowell et al. (1956), which Rankin and Long (1997) extended to

account for the slab's restraint stiffness. These two components are then added together to determine

the total capacity of the slab.

McDowell's method was originally used to determine the arching capacity of masonry walls confined

between rigid restraints. In the analysis, it was assumed that:

• The material was brittle. When the crushing strength was exceeded and the strain in the material

decreased, the stress instantly dropped to zero.

• The material had no tensile capacity.

The geometry of the deformations was used to determine the stress distributions along the contact

areas (at mid-span and the ends). Knowing this, and the lever arm between the resultants of the stress

distributions, the moment due to arching was determined, from which the load carried by arching

could be calculated. The equations for the arching moment varied depending on the stress distribution

along the contact area.

McDowell's method allowed for the determination of the entire load-deflection curve for the slab.

However, Rankin and Long's method only required the peak arching moment. Therefore Rankin and

Long used McDowell's equations to derive simpler equations that only determined the peak arching

moment. This was done by differentiating McDowell's moment capacity equations (details of these

equations are shown in Appendix 1). The result was two simple equations for the arching moment

capacity that only depended on a variable known as R. The value of R depended on the span-to-depth

ratio of the slab and the plastic strain in the concrete. Rankin and Long used a simplified stress-strain

curve and conventional stress block parameters to determine the value for the plastic strain.

To take into account the elastic stiffness of the restraints, Rankin and Long used a 'three hinge arch

analogy'. They showed that the load-deformation response of an elastically restrained arch was the

same as a rigidly restrained arch, provided the length of the arch legs was slightly altered.

The interaction between bending and arching action was taken into account by reducing the amount of

concrete that was available to carry the compressive membrane forces. The reduced concrete depth
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was called the 'depth available for arching' and was calculated by subtracting the concrete depth

required to balance tne tensile forces in the steel from the total depth of the section.

2.2.10.1 Use of Rankin and Long's method to determine punching shear capacity

This method can also be used to calculate the enhanced punching shear failure load when compressive

membrane action exists in the slab. The method, as described in Kirkpatrick et al. (1984), converts

the arching moment into an 'effective reinforcement ratio', pc, using Equation 2.8.

M.

fycdx lever arm

where Ma is the arching moment (per mm width of slab).

Equation 2.8

fye is an effective yield stress for the reinforcement. A value of 320MPa is used because the

tests used in the derivation of the punching shear equation (see Equation 2.9 below) used

reinforcement with a yield strength of 320MPa.

d is the average depth to the tensile reinforcement.

the lever arm of the effective reinforcement was assumed to be 0.75d, which the authors

believed was realistic.

Note: Kirkpatrick et al. (1984) used the arching moment for rigid restraint (Mar) rather than the

arching moment for elastic restraint (Ma). This was because the inclusion of elastic restraint into the

theory was not detailed until a later paper (Rankin and Long (1997)).

The effective reinforcement ratio is then used in Equation 2.9, derived by Long (1975), to calculate

the punching capacity.

.25
pp = Equation 2.9

where 4(c + d) is the critical perimeter for a square area (c is the length of one side of the loaded

area). This can be easily converted to different shaped loading areas.

2.2.11 Summary

It is clear from this literature review that although a great deal of research has been done in this field,

there are many limitations to the work that has been carried out. While it is well acknowledged that

compressive membrane action increases the load-carrying capacity of reinforced concrete slabs, the

theories that have been developed to explain the behaviour have required many assumptions to be

made. This has lead to solutions that are not entirely accurate. Additionally, the formulations have
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been very complicated and therefore, engineers rarely utilise the benefits of compressive membrane

action in design and assessment.

It is also difficult to compare the experimental work between different researchers. This is due to the

many different support conditions that have been used by different researchers. Many researchers

write that "rigid" restraints have been used, but in practice, this can never be achieved. Therefore,

when evaluating the results from different authors the actual stiffness of the restraints is difficult to

assess. The fact that the effects of compressive membrane action depend greatly on the stiffness of

these restraints compounds this problem. However, this is balanced by experimental evidence that

indicates that there is a limit to the surround stiffness, after which further increase in the stiffness has

little effect on the behaviour of the slab. Therefore, provided that the surrounds are sufficiently stiff,

they can almost be considered rigid. But then the problem is determining for a particular

experimental setup and slab properties, the stiffness that is required for the restraint to be considered

rigid.

The experimental work involving slabs with edge beams and bridge decks indicate that compressive

membrane forces can develop in practical situations without the need for artificial in-plane restraints.

It has been shown that the load-carrying capacity is increased in practical situations due to the

presence of compressive membrane action and the enhancemenl in load-carrying capacity is greatly

affected by the surround conditions. For significant membrane forces to develop, it is vital that the

surrounds provide sufficient horizontal translational restraint stiffness to the loaded slab. It has also

been noted by many researchers that more information is required on the restraint stiffness provided in

practical situations before compressive membrane action can be more widely utilised by practicing

engineers.

Simplified methods for incorporating compressive membrane action in design and assessment

procedures have been developed by a number of authors and reasonably accurate predictions can be

made using these methods. These methods are easier to implement than methods based on rigorous

theories and provide the best opporturity for compressive membrane action to be utilised by

practicing engineers.

2.3 Finite element modelling

Finite element methods offer a powerful analytical tool for studying the behaviour of reinforced

concrete. It allows important effects, such as cracking, tension softening, non-linear multi-axial

material properties and complex steel-concrete interface behaviour to be modelled. This section of

the literature review briefly describes the application of finite element modelling to the analysis of

compressive membrane action and to the analysis of bridges.
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2.3.1 Finite element modelling of compressive membrane action

The use of finite element analysis to model structures where compressive membrane forces exist has

been carried out by a number of researchers. One reason that finite element modelling is beneficial in

analysing compressive membrane action in structures is that the membrane forces are automatically

generated without the need for any extra computations. In comparison, an analysis method such as

yield-line analysis cannot take into account compressive membrane forces. In addition, the ability of

a finite element model to produce a full load-deflection curve also makes it useful for investigating

the behaviour of the structure. In comparison, a yield-line analysis can only determine the structure's

ultimate load-carrying capacity. The following summarises the work of a number of researchers who

have carried out analyses of compressive membrane action using finite element modelling.

May and Ganaba (1988) used the finite element method to produce an analysis of fully restrained

reinforced concrete slabs. The analysis was able to predict the behaviour of the slabs under both

compressive and tensile membrane action, right up to the point at which the reinforcement fractures.

Two dimensional plate elements were used, with the biaxial failure of the concrete governed by a

square yield criterion (Figure 2.7). The uniaxial stress-strain curve for the concrete in compression

was assumed to be tri-linear up to the strain corresponding to the maximum stress. After this strain,

the concrete was assumed to have no strength (ie. the softening of the concrete was not considered).

In tension, the concrete was assumed to behave linearly until cracking occurred. This was followed

by a linear strain-softening region, which was dependent on the reinforcement details and the mesh

used in the analysis. The uniaxial stress-strain curve for the steel was assumed to be bilinear in both

tension and compression. This corresponded to one linear section for the initial elastic response and

one linear section for the strain-hardening region. The yield plateau was ignored. In the finite

element model, the reinforcement was modelled as smeared layers with perfect bond between it and

the concrete.

The analysis included the effects of geometric non-linearities and the solution procedure made use of

both load and displacement control, depending on which portion of the load-displacement curve the

solution was on (load control up to the maximum load, displacement control thereafter). They

compared their results with experimental slabs from other researchers and found that the load-

displacement curves that their program produced were in reasonable agreement with the experimental

load-displacement curves.
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Figure 2.7: Square yield criterion for concrete, used by May and Ganaba (1988)

Vecchio and Tang (1990) used a finite element analysis to predict the behaviour of two reinforced

concrete slabs, which had previously been tested in a laboratory. The specimens were a half-scale of

slabs from a building floor system. The finite element analysis was carried out using a program called

TEMPEST, which was a computer program for the non-linear structural analysis of reinforced

concrete plane frames. The finf'e elements used in the model were divided into layers, with different

parts of the specimen represented by elements with different properties. Non-linear constitutive

models were used for both the concrete and the steel reinforcement. The analysis also took into

account geometric non-linearities, tension stiffening, strain-hardening and other second order

influences. It was found that the analysis gave an accurate prediction of the second order effects in

the slab, with the pattern of internal forces and strains, load-deformation curve and the ultimate load

all agreeing reasonably well with the experiments. The finite element analysis slightly overestimated

the strength and stiffness of the structure, and the authors attributed this to the inability of the program

to model the two-way behaviour in the vicinity of the columns.

Lahlouh and Waldron (1992) used finite elements to model the behaviour of three concrete one-way

slab/wall subassemblies, which had previously been tested in the laboratory. They used a general-

purpose finite element program (ANSYS) to model the slabs. Eight-noded solid (brick) elements with

two degrees of freedom at each node were used. Under uniaxial compression, the concrete was

simplified as an elastic-plastic material. In tension, the concrete was also assumed to behave linearly

up to the cracking stress. The reinforcement was modelled as discrete elements, with strain-hardening

after its yield point.
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The results that were obtained from the finite element analysis were reasonably close to the

experimental results. The authors were able to produce stress trajectories and determine the location

of the compression zones in the slab and this verified the existence of compressive membrane action.

Once the finite element model had been verified, they conducted a parametric study to determine the

effects of various parameters on the load-carrying capacity of slabs with in-plane restraint. They

concluded that a decrease in the steel percentage or an increase in the concrete strength increased the

load enhancement that could be expected due to compressive membrane action.

Salami (1994) developed a finite element model for predicting the strength of uniformly loaded two-

way reinforced concrete slabs that were rigidly restrained against rotation and horizontal translation

on all four edges. Four noded shell elements were used, with each node having five degrees of

freedom. The five degrees of freedom were the displacements in the x, y and z directions and the

rotations about the x and y axes. This meant the element was capable of modelling both in-plane and

bending responses. The uniaxial stress-strain curve for the concrete in compression contained both

the ascending and descending portions, while the response in tension was assumed to be bilinear. The

stress-strain curve for the steel reinforcement was represented with piecewise straight lines (in both

tension and compression) and perfect bond was assumed between the steel and the concrete. A

smeared cracking model was used to model the cracks in the concrete and geometric non-linearities

were also considered in the analysis. The solution procedure used displacement control since this

allowed the unloading behaviour to be reproduced.

The finite element model was verified using the results from a series of tests carried out by Powell

(1956) and reasonable agreement was obtained. The ratio of experimental to theoretical ultimate load

varied from 0.92 to 1.05. The finite element model was then used to analyse 243 slabs with various

! aspect ratios, breadth-to-depth ratios, concrete strengths, reinforcement strengths and reinforcement

percentages. The results from these finite element models were then used to develop an empirical

equation for determining the ultimate strength of restrained slabs. The ultimate load from the

equation was compared with ultimate loads from a number of tests by various authors. The ratio of

experimental to predicted peak load had an average value of 0.87 and a standard deviation of 0.18. It

was found that in general, the empirical equation overestimated the peak load. This was because rigid

restraints had been assumed in the analysis, but the restraints in the tests were not fully rigid. Salami

concluded by stating that further work was required to take the flexibility of the supports into

consideration.

Famiyesin and Hossain (1998a) used finite elements to model fully restrained slabs and to develop

design charts for these slabs. The finite element model used 8 or 9-noded shell elements, with each

node having five degrees of freedom. Each element was divided into 10 layers. The reinforcement
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was represented as a smeared layer of equivalent thickness with uniaxial (anisotropic) behaviour. The

behaviour of concrete was assumed to be either elastic-perfectly plastic or with strain-hardening

included. The yield criterion used in the analysis was a modified form of the Drucker-Prager yield

criterion, with the concrete assumed to lose all capacity once the ultimate compressive strain had been

reached. In tension, the concrete was assumed to behave linearly until the maximum tensile strength

had been reached. This was followed by a sudden drop in stress, then a linear softening region.

Cracks were represented using the smeared cracking approach.

Using the model, a parametric study was then carried out to study the effect of various parameters on

the finite element model. A number of material parameters were investigated, but the parameter that

had the greatest effect was found to be the ultimate compressive strain of the concrete. A total of 864

slabs were analysed using the finite element program. The slabs had various width-to-depth ratios,

aspect ratios, steel yield strengths, concrete compressive strengths and reinforcement ratios. These

results were used to produce design charts, which were compared with experimental results from

other authors. The design charts predicted the ultimate strength to within a mean value of 2% and the

displacement at ultimate load to within 4%. A reason for the larger discrepancy in the displacement is

because the deflection at ultimate load is sensitive to the degree of edge restraint. Therefore, since

rigid restraints were used in the finite element models and the restraint used in the experiments had

some flexibility, discrepancies occurred in the predictions of the displacement. In a separate paper,

Famiyesin and Hossain (1998b) extended their work to include slabs that have one simply supported

edge and three fully restrained edges.

2.3.1.1 Summary

The research summarised above shows that finite element modelling can be used to analyse the

I behaviour of reinforced concrete slabs where membrane forces exist. Simplifications have been made

in the non-linear material models, but in general, reasonable predictions of the behaviour of the slabs

have been made. The models produced by Salami (1994) and Famiyesin and Hossain (1998a) have

assumed the slabs to be rigidly restrained. For this reason, the ultimate loads have been slightly

overestimated and the deflection at ultimate load underestimated. Famiyesin and Hossain (1998b)

modelled slabs with one edge simply supported (other edges fully restrained) and described them as

partially restrained slabs. However, to apply the results of finite element analyses to practical

situations, slabs where the edge restraint has finite horizontal translational and torsional stiffnesses

have to be investigated. This would obviously give more accurate predictions of the behaviour of

slabs in structures such as bridge decks and floor systems.

1

1
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2.3.2 Non-linear finite element modelling of bridges

Non-linear finite element modelling of bridges has been carried out by many researchers in an attempt

to more accurately predict their behaviour. With the increasing knowledge in finite element analysis

and the processing capabilities of computers, finite element modelling in applications such as this

have increased. The following summarises some of the research that has been carried out in this area.

Buckle et al. (1985) discussed a non-linear finite element program that was used to analyse a

reinforced concrete bridge that had been earlier tested to destruction (Phillips (1985)). This was done

because the authors believed that a more advanced analysis than conventional ultimate strength theory

was required to take into account second order effects (such as compressive membrane action) and

provide better predictions of the ultimate load of the bridge. The finite element program had earlier

been developed by Jackson (1979). A filament element was used to model the inelastic biaxial

behaviour of the reinforced concrete beams. The slab was modelled using layered shell elements.

Each layer subdivision or filament element could have different material properties, allowing the steel

reinforcement in the deck to be modelled. The beam-and-slab structure was then modelled by

assembling elements parallel to a reference plane. The model predicted the ultimate loads reasonably

well, although the deflections were overestimated. Another limitation to the analysis was that it could

not model shear or torsion failures and this lead to discrepancies between the results from the model

and the failure of the actual bridge (since both these modes of failure were present to some extent in

the test results).

As part of studies into the behaviour of deteriorated and damaged reinforced concrete bridges, Aktan

et al. (1993) evaluated the use of non-linear finite element analysis for predicting the behaviour of

reinforced concrete bridges. A general purpose, non-linear finite element analysis (NLFEA) package

was used to perform the analyses. The effects of concrete cracking, concrete plasticity and yielding of

the steel reinforcement were included in the finite element model and the slab was modelled using

shell elements. It was found that the parameters that most affected the analysis were the stress-strain

response of the concrete under uniaxial tension and the boundary conditions at the abutments. It was

concluded that the sensitivity of the analysis to these parameters meant that it was not yet possible to

rely on non-linear finite element modelling to predict the failure mode and load-carrying capacity of

reinforced concrete slab bridges. Instead, the authors stated that NLFEA might be helpful for

understanding the critical parameters in the design of new bridges or the upgrade of existing ones.

Huria et al. (1993) produced a finite element model of a reinforced concrete slab bridge as part of an

attempt to develop a step-by-step modelling and analysis procedure for non-linear finite element

analysis. A NLFEA code called 3DSCAS (Three-Dimensional Step-by-Step Static Collapse Analysis
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of Structures) was used for the analysis. The deck slab was modelled using layered shell elements,

with translational and rotational springs used to represent the boundary conditions. Beam elements

were used to model the piers. The material model for the concrete incorporated features such as

tension softening, a smeared crack model and shear retention. The authors concluded that the

modelling parameters that had the greatest effect on the global and local response of the bridge were:

1. In-plane restraint at the abutments

2. Rotational restraint stiffness at abutments

3. Compressive and tensile strength of the concrete

4. Tension-softening characteristics

5. Geometric non-linearity

The failure mechanism of the finite element prediction was found to agree well with results from a

destructive test carried out on a similar bridge.

Shahrooz et al. (1994) examined the reliability of NLFEA to assess the strength and stiffness of

reinforced concrete bridges. The 3DSCAS program described in Huria et al. (1993) was also used in

this analysis and comparisons were made with analyses carried out using DIANA, as well as with

experimental results. The results from 3DSCAS and DIANA both indicated that the amount of

membrane forces in the slab had a significant effect on the strength and stiffness of the bridge.

However, the failure mechanism was not accurately predicted in the finite element models. The

authors attributed this to a number of reasons, including the inability of the shell elements to model

transverse shear failure and the inaccuracies in the modelling of the deterioration of the bridge and the

slab-abutment connection.

Miller et al. (1994) also carried out a finite element analysis of a concrete slab bridge. They believed

that finite element modelling could provide better estimates of the strength of a bridge because

simpler methods could not account for all the load-carrying mechanisms (such as membrane action).

The finite element analysis was based on the model used by Huria et al. (1993) and Shahrooz et al.

(1994) and it was concluded that non-linear finite element modelling did provide better estimates of

the bridge's strength.

As part of an experimental investigation into the punching shear fatigue behaviour of bridge decks

including the effects of compressive membrane action, Graddy et al. (1995) produced finite element

models of full-scale bridges and test specimens. They used a sequence of linear elastic models to

follow the non-linear elastic behaviour of the cracked concrete. To do this, they started with a model

using the properties of uncracked reinforced concrete. A load was applied and it was determined
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which elements in the model cracked. These elements were given the properties of cracked concrete

and the model analysed again. This process was repeated to produce an approximation of the fully

cracked state of the structure. The results from the finite element analyses agreed well with the

experimental results of the research.

From these analyses, it was concluded that the finite elemeni modelling of a complete structure, such

a reinforced concrete bridge was a very involved procedure. It was important to model the material

properties and the boundary conditions of the bridge accurately to obtain precise predictions for the

behaviour of the bridge. This was further complicated when dealing with deteriorated structures,

since it was difficult to obtain accurate values for the material parameters of deteriorated concrete or

steel.

2.3.2.1 Summary

It can be seen that there are benefits in using finite element analysis for assessing the load-carrying

capacity of a reinforced concrete bridge. This is because finite element analysis can take into account

the interaction between various components of the bridge, allowing second-order effects such as

compressive membrane action to be taken into account. This leads to more accurate assessments of

the stiffness and strength of the bridge than would be obtained using conventional methods.

However, there are a number of limitations to using finite element analysis for the strength assessment

of bridges. One is that the results of the finite element analysis of a bridge have been found to be very

sensitive to parameters (such as the bridge support condition) that are difficult to assess in the field.

In addition, it can be difficult to obtain information on the properties of the steel and the concrete,

particularly in deteriorated structures. Despite these limitations, many researchers believe that non-

linear finite element modelling has the potential to give more accurate predictions for the strength of

bridges than conventional assessment methods.
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3 EXPERIMENTAL PROGRAM FOR ONE-WAY SLABS

3.1 Introduction

This chapter details the experimental program that was implemented to test a series of one-way slabs

with idealised end conditions. The program included the casting of eighteen one-way slabs, the

fabrication of a reaction frame to model various end conditions and the testing to destruction of these

specimens. The presentation and interpretation of the results from these tests are shown in Chapter 4,

while the finite element modelling of these slabs is detailed in Chapter 5.

The reaction frame was designed to horizontally restrain the slabs at various points along its depth,

while allowing the slab ends to rotate. The different heights of the horizontal restraint results in

different amounts of membrane forces developing in the slab. This allows the behaviour of the slabs

under differing amounts of membrane action to be investigated. By allowing the slab ends to rotate,

the effect of end restraining moments can be neglected

3.2 Specimens

Eighteen one-way slabs were fabricated in this stage of testing. Figure 3.1 shows the details of these

slabs. The span-to-depth ratio and the steel percentage were selected to represent typical beam-and-

slab bridge decks.
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Figure 3.1: Details of one-way slabs

The eighteen slabs were identical, with dimensions of 1200 x 500 x 140mm. They were cast with

20mm thick steel end plates, which allowed the horizontal end restraints to be imposed onto the slabs.

The end plates consisted of two separate sections of steel that were welded together at 90°. Figure 3.2

shows the steel end plates after they had been welded together. The longitudinal reinforcement

consisted of 3Y12 bars (12mm diameter, deformed) at both V* depth and 3A depth. These were welded

to the end plates using 45° butt welds. Y12 bars were also used as transverse reinforcement to reduce

the likelihood of transverse cracks forming. These bars were spot welded to the longitudinal

reinforcement at 200mm intervals. This arrangement of reinforcement meant the percentage of steel

reinforcement in the longitudinal direction was 0.65% in the top layer and 0.65% in the bottom layer.

Similarly, the percentage in the transverse direction was 0.54% in the top layer and 0.54% in the

bottom layer. Figure 3.3 shows a close-up view of how the reinforcement was welded to the end

plates. Steel guides were also welded to the steel end plates to allow a 20mm diameter roller to be

positioned against the end plates. The purpose of the roller was to allow the slab ends to rotate, while

allowing a horizontal restraining force to be exerted onto the slab. Figure 3.4 shows a fully

constructed reinforcement cage. The bars were milled at various locations to produce a flat surface
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:

for the installation of strain gauges. Masking tape was placed around these milled sections of the bars

to protect them during the welding process.

Figure 3.2: Construction of steel end plates

Figure 3.3: Close-up view of the we/ding of the reinforcement to the end plates
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Figure 3.4: A completed reinforcement cage

Figure 3.5 shows the slabs after the concrete has been poured and screeded. It was then covered with

plastic and allowed to cure (Figure 3.6).

Figure 3.5: Slabs with concrete poured

Figure 3.6: Slabs covered with plastic sheeting

f 'i
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3.2.1 Designation of slabs

The slabs in this series of tests are designated as follows:

SS -A <«- A, B or C designates the
number of strain gauges
on the reinforcement.
Further details are given
in Section 3.5.1: Strain
gauges.

SS: Simply supported slabs

50: Pin ended slab, horizontal restraint 50mm below top surface

70: Pin ended slab, horizontal restraint 70mm below top surface

105' Pin ended slab, horizontal restraint 105mm below top surface

140: Pin ended slab, horizontal restraint 140mm below top surface

The designations above are for individual slabs. In the following chapters, when the general
behaviour of slabs of one restraint condition is being discussed, they are referred to as the
SS, PP50, PP70, PP105 and PP140 slabs.

3.3 Material properties

3.3.1 Steel

To install strain gauges on the deformed bars, a flat surface was milled into the bars. This reduced the

cross-sectional area of the bars and hence their material properties. Figure 3.7 shows a deformed bar

that has been milled.

Figure 3.7: Milling of the deformed bars to form a flat surface

Due to the deformations in the bar, it is difficult to determine the exact cross sectional area of the

deformed bars. It was found that approximately 1.5mm was removed from the top of each bar (see

Figure 3.8), resulting in a reduction in cross-sectional area of approximately 8mm2.
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Height removed = 1.5mm

d = 4.5mm

Area removed = r2cos~' — - r-y/r2 - d2

r
-•1

r
.,4.5

6V62-4.52

= 8.16mm2

Figure 3.8: Reduced cross-sectional area of milled bars

Tensile tests (following the guidelines in AS 1391) were performed on three milled bars and three

unmilled bars. This allowed the effect of the reduced cross-sectional area on the stress-strain

relationship of the bars to be determined. Figure 3.9shows a typical stress strain curve for the bars

and it can be seen that the bars did not have a distinct yield point. All the stress-strain curves had a

similar shape to the one shown in Figure 3.9, although the yield stress and ultimate stress for the

milled bars were generally lower than the unmilled bars. Table 3.1 summarises the results obtained

from these tensile tests.
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Stress-strain curve for reinforcement used in one-way slabs
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Figure 3.9: Stress-strain curve for reinforcement used in one-way slabs

Table 3.1: Material properties for milled and unmiiled bars

Milled Bars (A - 105mm)

0.2% Proof

Stress (MPa)

430

490

442

Ultimate

Tensile Force

(kN)

65.0

67.1

63.4

Ultimate

Tensile

Stress (MPa)

619

639

604

I nmillod Bars (A = 113mm*)

0.2% Proof

Stress (MPa)

530

466

514

Ultimate

Tensile

Force (kN)

75.6

74.8

75.8

Ultimate

Tensile

Stress (MPa)

668

661

670

From the stress-strain curves of the tensile tests, it can be seen that the stress in the bars reach a

significantly higher value than the 0.2% proof stress before they fracture. After converting the forces

to stresses (taking into account the different areas), it was found that the ultimate tensile stress and the

yield stress of the unmiiled bars were generally higher than the milled bars. This may have been

caused by the heat treatment process used to fabricate the bars. The heat treatment process produced

a cross-section where the outer layer was stronger than the inner core. When the bars were milled,

part of the outer layer was removed and this resulted in the bars having slightly different properties.
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3.3.2 Concrete

The concrete was specified as a 25MPa concrete with a maximum aggregate size of 14mm. The mix

design is summarised in Table 3.2.

Table 3.2: Mix design for concrete used in one-way slabs

Slump (mm)

( e merit t\ pe N

Portland cement content (k« in1]

80

General Purpose

245

ater'eement ratio 0.68

Pakenham a<j<jre«ate - 14mm (k« mJ) 1010

l.\ ml hurst sand

Water content (k»mJ)

980

166.6

The slump of the concrete was tested following the guidelines in AS1012.3 and was found to be

80mm. Twenty-one cylinders (iOOmm diameter, 200mm high) were cast and these were tested after a

certain number of days to determine the compressive strength of the concrete and the rate at which the

compressive strength increased over time. The compressive strengths of these cylinders at various

times are shown in Table 3.3. The results are plotted in Figure 3.10.

Table 3.3: Compressive strength of cylinders

l ime (days) ( Onipressive strength. \\ (MPa)

28

28

28

49

49

49

101

101

101

27.50

27.37

27.63

31.07

32.21

30.81

34.63

34.12

34.00
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Concrete compressive strength
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Figure 3.10: Compressive strength of concrete cylinders as a fund ion of time

3.4 Test set-up

The slabs were supported on roller supports, which rested on the concrete strongfloor. For the

horizontally restrained slabs, a reaction frame was placed around the slab. This frame also rested on

the strongfloor. A hydraulic jack, reacting against a vertical cross-frame, was used to apply the load.

This set-up can be seen in Figure 3.11. A schematic diagram is shown in Figure 3.12.

Figure 3.11: Test set-up for one-way slab tests
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Figure 3.12: Test set-up for one-way slab tests (horizontal reaction frame not shown) I
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3.4.1 Vertical reaction frame and hydraulic jack

The use of a hydraulic jack to load the slabs required a vertical frame that the jack could react against.

This frame was bolted to the strong floor and provided the necessary vertical stiffness to the system.

Figure 3.13 shows the vertical reaction frame with the horizontal reaction frame and a slab

underneath.

i

Figure 3.13: Vertical reaction frame for one-way slab tests

3.4.2 Horizontal reaction frame

This series of tests required a reaction frame to horizontally restrain the ends of the slabs. This frame

consisted of two longitudinal tie beams (530UB92.4) and two transverse end beams (460UB74.6)

assembled as shown in Figure 3.14. Stiffeners were welded to the beams at critical locations to

increase the stiffness of the frame and to minimise bending of the end beams. The beams were held

together with 8x38mm diameter bolts at each end. Load cells were placed within the frame to
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measure the horizontal forces exerted by the slab on the frame. Detailed drawings can be seen in

Figure 11.1 to Figure 11.6 of Appendix 2.

Longitudinal
Tie Beams

Concrete Slab

End Beams

Load Cell

Roller Supports

Figure 3.14: Horizontal reaction frame for one-way slab tests

With the dimensions of the components given above, it was calculated that the frame would ideally

have an axial stiffness of 5640kN/mm. In practice, this stiffness did not occur because of

imperfections resulting from the construction process and other unexpected weaknesses (flexing in

plates and flanges). Compliance tests were carried out before the slabs were tested to determine the

horizontal stiffness of the frame. This was done by placing dial gauges at certain positions on the

frame, then applying a horizontal load to the frame using a manual hydraulic jack. This loading

represented the horizontal force that a slab would exert on the frame. The load cells within the frame

were used to measure the horizontal force. The load was applied in a number of steps and the dial

gauges were read at each step to determine the deflections within the frame. Measurements indicated

that the frame had a stiffness of approximately 500kN/mm.

3.4.3 Loading plate

During the tests, the loading plate used to apply the vertical load onto the slab was found to have an

effect on the behaviour of the slabs. For the initial tests, a steel loading plate (dimensions of 100mm

by 500mm, with a 20mm groove for the gauge on the concrete surface) was placed directly onto the
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slab (Figure 3.15). This had the effect of confining the concrete directly under the steel plate,

increasing the ultimate load of the slabs (since the failure of the slabs was due to the crushing of the

concrete). However, since the concrete at the location of the gauge was not confined, the concrete

here crushed before the concrete that was confined under the loading plate. The strains then

continued to increase beyond the expected ultimate strain, as the slab continued to carry more load. In

subsequent tests, Teflon pads were placed between the steel loading plate and the concrete slab in an

effort to reduce the confinement of the concrete, but this was found to have a minimal effect.

Loading plate

Concrete
slab

Groove in loading plate
for gauge on concrete

surface

Figure 3.15: Diagram of loading plate

3.5 Instrumentation

Various forms of instrumentation were used to monitor the behaviour of the slabs while they were

being loaded. These are summarised below:

3.5.1 Strain gauges

Strain gauges were placed on both the longitudinal and transverse reinforcement at various locations.

A total of 158 strain gauges were put on the 18 specimens, with different slabs having different

numbers of strain gauges. Figure 3.16 and Table 3.4 show the location of the gauges and which slabs

had gauges at these locations. The designation of the strain gauges were defined as follows:

• First letter: C - Centre longitudinal bar, S - Longitudinal bar on the side, T - Transverse bar

• Second letter: T - Top bar, B - Bottom bar

• Third letter: M - Mid-span, E - End
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Gauges were not installed at all the desired locations in all the specimens due to time and cost

restrictions. Standard procedures were used to install the strain gauges. Figure 3.17 shows the gauges

after they had been installed and waterproofed.

STE1

1
CTE1

M

STM

CTM

1
TTM

Top Reinforceneri"t

SBE1

Jj
CBEl

SBM

CBM

Bottom Reinforcenent

ISTE2

TTE
CTE2

-TBM TBE
pCBE2

rig

Figure 3.16: Location of strain gauges
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Table 3.4: Details of strain gauges for slab designations A, B and C

Slat) Designation Strain Gauges , - °

A

B

C d )

CTM,CTE1,CBM,CBE1

CTM, CTE1, CBM, CBE1, STM, STE1, SBM, SBE 1

CTM, CTE1, CBM, CBE1, CBE2, STM, STE1, SBM, SBE1, SBE2, TTM,

TTE, TBM, TBE

Notes:
(I) For Slab 50C, there were additional gauges at locations CTE2 and STE2

Figure 3.17: Strain gauges after installation onto reinforcement

Strain gauges were also installed on the concrete surface at upper mid-span to measure the concrete

strain at this location. These gauges had a longer gauge length (50.8mm) than the strain gauges

placed on the steel reinforcement (6.1mm). This is required because local fluctuations often occur in

the concrete strain and a longer gauge length allows the average strain over a greater length to be

measured. Also, in the following chapters, positive strain values indicate a tensile strain.

3.5.2 Load cells

300kN load cells were used to measure both the horizontal restraining force and the vertical reactions.

The load cells for the horizontal restraining force were placed within the reaction frame (Figure 3.18),

while the load cells to measure the vertical reactions were placed between the slab and the supports.
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VI

Figure 3.18: Load cells in horizontal reaction frame

3.5.3 Linear variable displacement transducers (LVDTs)

LVDTs were used to measure the vertical deflection at mid-span of each slab. Horizontal deflections

at the ends of the slabs were also measured and these results were used to calculate the end rotations

and neutral axis positions of the slabs. Figure 3.19 shows a pair of LVDTs mounted on stands at one

end of a specimen. An example of calculating end rotations and the neutral axis position, based on

the readings from the LVDTs, is shown in Appendix 3.

Figure 3.19: LVDTs to measure end displacements and rotations
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3.6 Experimental procedure

A vertical line load was applied at mid-span of the slab. Displacement control was used since this

would allow any unloading behaviour to be followed. For the horizontally restrained slabs, a 40kN

pre-compression was applied to the slabs before testing to remove some of the slack within the

system. Table 3.5 lists the dates when the slabs were tested and the number of days after the concrete

was poured that the test occurred.

Table 3.5: Test dates of specimens

Specimen Date tested Da\s after pour

SS-A

SS-B

SS-C

50-A

70-A

105-A

140-A

50-B

70-B

105-B

40-B

50-C

70-C

105-C

140-C

SS-A2

31/1/01

1/2/01

1/2/01

27/3/01

28/3/01

29/3/01

30/3/01

2/4/01

2/4/01

3/4/01

4/4/01

5/4/01

9/4/01

10/4/01

18/4/01

18/4/01

44

45

45

99

100

101

102

105

105

106

107

108

112

113

121

121

During the first test of the simply supported slabs (test SS-A), a loading rate of 0.002mm/sec was

used. In subsequent tests, the rate was increased to 0.006mm/sec due to the excessive duration of the

first test. It was further increased to a loading rate of 0.012mm/sec for test 50-B and onwards.

96



Presentation and interpretation of results from one-way slab tests

4 PRESENTATION AND INTERPRETATION OF RESULTS FROM

ONE-WAY SLAB TESTS

4.1 Introduction

This chapter presents the results of the experimental program described in Chapter 3. Because tests

with the same restraint type behaved similarly, only typical results from each restraint type will be

presented in this chapter. Refer to Appendix 4 for the results of all of the tests. The interpretations of

the results, aiong with theoretical predictions of the behaviour of the specimens are also included

within this chapter.

4.2 Results and discussion

In this section, the results from the simply supported slabs will be presented first so that the load-

carrying capacity of the stab in pure bending can be interpreted. Following this, the results from the

restrained slabs with compressive membrane forces will be presented. The influence of the

restraining force, and the relationship between the bending mechanism and the compressive

membrane mechanism can then be discussed.

4.2.1 Simply supported slabs

The load-deflection curve for a simply supported slab is shown in Figure 4.1. A noticeable drop in

stiffness occurred when the deflection was slightly less than lmm (approximately 20kN). This was

caused by the formation of flexural cracks at mid-span. As the concrete softened, the stiffness of the

slab continued to decrease until the slab failed as a result of concrete crushing at upper mid-span. The

peak load was reached at a vertical deflection of approximately 14mm.

Figure 4.2 shows the strains that were measured in the gauges at mid-span for the simply supported

slabs. It can be seen that when the concrete cracked (at a vertical deflection slightly less than 1 mm),

there was a small jump in the strain in the. bottom steel. The strain in the bottom bar then increased at

an almost constant rate, until the steel began to yield at A « 4mm. The strain then began to increase at

a much higher rate. The strain in the top steel was initially tensile and relatively low (compared to the

bottom steel) up to the peak load. Once the concrete at upper mid-span began to crush, the neutral

axis fell and the strain in the top steel eventually became compressive. The strains on the top surface

increased in compression up to the peak load. After this point, the accuracy of the recorded strain

values was questionable, since the concrete at this location had begun to crush.
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Figure 4.1: Load-deflection curve for simply supported slabs

Strains in gauges at mid-span for simply supported slabs

—Top surface
— Top steel

Bottom steel

Mid-span deflection (mm)

Figure 4.2: Strains in gauges at mid-span for simply supported slabs

The strains in the end gauges (CTE and CBE) were very low throughout the tests on the simply

supported slabs and are not presented here.

The strains in the gauges on the transverse bars are shown in Figure 4.3. It can be seen that the strains

in the transverse bars at the end of the simply supported slab were very low. This indicates that, as
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expected, there was essentially no moment at the ends of the simply supported slab. The strains were

higher at mid-span and this was due to the moment generated by the applied load. As shown in

Figure 4.4, a moment causes the slab cross-section to deform, generating strains in the transverse

direction.

Strain in gauges on transverse bars in simply supported slabs

Mid-span deflection (mm)

Figure 4.3: Strains in gauges on transverse bars in simply supported slabs

z y- L— 1
2a

\

X

Figure 4.4: Cross-section of beam subjected to pure bending (taken from Timoshenko and Goodier
(1969))

The end rotation of the simply supported slabs was mainly dependent on its vertical mid-span

deflection and increased in an almost linear manner. Changes in the slope of the simpiy supported

slab were concentrated at the flexural cracks, so the geometry of the deflections can be simplified as

in Figure 4.5.
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Clear span = 1100mm

Figure 4.5: Simplified geometry of deflections

Based on this geometry, the relationship between vertical deflection and end slope can be calculated

as:

tanG =

0«

9*

550

—
550

(i

(for small G)

(in
55071

0«O.1O4A

degrees)

The relationship between the rotation at the slab ends and the vertical mid-span deflection is shown in

Figure 4.6. The small jumps in the LVDT readings at 'End 2' were probably due to a problem \vit"i

the LVDT (such as the core not moving smoothly), rather than the slab behaviour. The linear

relationship can be approximated as 0 = 0.115A and this confirms that the end rotations were linearly

dependent on the vertical deflection of the slab.

Based on the results of the pairs of LVDTs that measured the horizontal deflections at the ends of the

slabs, the neutral axis positions (points which the slab ends rotated about) were also calculated and

these are shown in Figure 4.7. These results indicate that the initial point of rotation was below the

mid-depth of the section. The neutral axis position then rose quickly, reaching a maximum height («

110mm) before the peak load was reached. After reaching its peak, the neutral axis position dropped

gradually, as the applied load dropped.
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End Rotation vs Deflection (simply supported slabs)
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Figure 4.6: Relationship between end rotation and deflection for simply supported slabs

Neutral axis position at slab ends vs deflection (simply supported slabs)
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Figure 4.7: Relationship between neutral axis position and deflection for simply supported slabs

4.2.2 Slabs with horizontal restraint

4.2.2.1 Load-deflection behaviour

Figure 4.8 shows typical load-deflection curves for slabs with each of the end restraint conditions

(including simple supports). This shows a significant increase in ultimate load and stiffness when the

101



Presentation and interpretation of results from one-way slab tests

slabs were horizontally restrained. The increase was greater when the restraint was closer to the

bottom surface.

Typical load vs deflection curves for slabs (different end restraints)

250 i
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50 -

0
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Pin-pin (70mm depth)

•Simply Supported

Pin-pin (105mm depth)
Pin-pin (50mm depth)

0 25 305 10 15 20

Mid-span deflection (mm)

Figure 4.8: Typical load-deflection curves for slabs with different end restraints

Figure 4.9 shows the same load-deflection curves at the initial stages of loading. For clarity, the load-

deflection curves for the slabs restrained at 105mm and 70mm depth have been omitted. Figure 4.9

shows that a difference in the stiffness of the slabs existed from the start of the test. This was because

the pinned ends allowed compressive membrane action to develop before cracking had initiated (refer

to Section 1.2.1). As discussed in Section 1.2.8.1, the magnitude of the compressive membrane force

is highest when the restraint is at the bottom surface. Therefore, the slab restrained at 140mm depth

had the highest stiffness. The initial stiffness of the slab restrained at 50mm depth and the simply

supported slab where almost the same, indicating that the compressive membrane force in the slab

restrained at 50mm depth was negligible. All the slabs displayed a drop in stiffness after the

formation of flexural cracks. In general these cracks formed at load; between 15kN and 40kN, with

the simply supported slabs being at the lower end of the range (see Figure 4.9). This indicates that the

presence of compressive membrane action caused the first crack in the restrained slabs to occur at a

higher load. The deflection at which the first crack occurred was similar for all of the slabs. This is

because the cracks are associated with the bending stiffness of the slab, which was not affected by the

pinned ends used in these experiments. Therefore, all the slabs had the same bending stiffness and

cracking initiated at the same deflection. However, the presence of compressive membrane action

increased the load at v^jch cracking initiated.
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Comparison of load-deflection curves for restrained slabs
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0.0

— Pin-pin (140mm depth)
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Mid-span deflection (mm)
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Figure 4.9: Load-deflection curves at initial stages of loading

After the cracks formed, the variation in stiffness between the slabs of various restraints was more

noticeable (see Figure 4.8). The slabs with horizontal restraint closer to the bottom surface had a

much stiffer response, which could be attributed to the larger compressive membrane forces in these

slabs. The loads carried by the slabs continued to increase, although the stiffness dropped as the

concrete at upper mid-span began to lose stiffness. The pinned ended slabs with horizontal restraint at

105mm and 140mm depth failed in a brittle manner, with a crack propagating from the load point

towards the supports (see Figure 4.10). These cracks may have been caused by tension forces that

existed perpendicular to the high compressive forces between the loaded area and the supports (Figure

4.11). The other slabs displayed a more ductile failure with the crushing of the concrete at upper mid-

span (see Figure 4.12) governing the load-carrying capacity. The bottom longitudinal reinforcing

steel had previously yielded in all specimens before failure occurred.

Table 4.1 summarises the failure loads of the slabs, along with the average enhancement in load-

carrying capacity for the restrained slabs over the simply supported slabs. It can be seen that for the

slab restrained at the bottom surface, the load-carrying capacity increased by over 250% over the

simply supported slabs.

103



Presentation and interpretation of results from one-way slab tests

Figure 4.10: Crack patterns of slabs that failed in brittle manner (Top: 105-B and Bottom: 105-C)

A

Figure 4.11: Compressive membrane forces in slab long-section

Figire 4.12: Crack patterns of slabs that failed in a ductile manner (Bottom: SS-A, Middle: SS-B and
Top: SS-C)

I
••'[%
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Table 4.1: Failure load and deflection at failure load of slabs of each support condition

%

Knd condition Average failure 'Knharicemcnt Average

deflection'at

supported failure load

slabs..("', • ( m m )

Simply supported

Pinned ends

(horizontal restraint

at 50mm depth)

Pinned ends

(horizontal restraint

at 70mm depth)

Pinned ends

(horizontal restraint

at 105mm depth)

Pinned ends

(horizontal restraint

at 140mm depth)

91.6

95.2

113

179

246

-

104

123

195

268

14.5

12.1

12.5

12.9

10.2

0.10

0.09

0.09

0.09

0.07

The average deflections at ultimate load for each support condition are also shown in Table 4.1. It

can be seen that the ultimate deflections of the restrained slabs were lower than the simply supported

sJabs. However, there was no noticeable pattern to the ultimate deflection when comparing die pinned

slabs restrained at various heights. The values of A/D are significantly less than the values used by

Park (1964), where he assumed an ultimate deflection of 0.5D in his theoretical predictions.

However, Park ch. .-.*; to use A/D = 0.5 to ensure his predictions were conservative and experiments

such as those by Roberts (1969) have shown significantly different values. For 76mm thick slab

strips, Roberts obtained an average A/D value of 0.158. For 51mm thick slab strips, the A/D value

was 0.269. The values shown in Table 4.1 are in closer agreement with these values. Roberts' results

also indicated that the A/D value decreased with increasing thickness. The results from this series of

tests confirms ihis, since the thickness of the slabs tested was much greater than Roberts' slab strips

and the A/D value was also lower.
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4.2.2.2 Horizontal restraining force

Figure 4.13 shows the relationship between restraining force and deflection for typical slabs of each

end condition, while Figure 4.14 compares the restraining force and applied load. The horizontal

restraining force represents the compressive membrane force in the slab. The 40kN pre-compression

force that was applied to the slabs to remove any slack before testing can be seen in these figures.

Figure 4.13 shows that initially, the horizontal restraining force increased almost linearly with the

deflection, with the rate of increase being greater for the slabs horizontally restrained closer to the

bottom surface. This is because as a slab deflects vertically, the largest horizontal deflections occur at

the bottom surface of the slab. Therefore, if the horizontal restraint is at this level, then this

movement is restricted and the largest restraining forces are generated. It can also be seen in Figure

4.13 that the restraining force for the slab restrained at a depth of 105mm eventually became greater

than the restraining force of the slab restrained at 140mm depth, even though the load remained lower.

This was because the slab had deflected further vertically, and so the horizontal deflections had also

become greater. However, the load carried by the slab was not as great, due to the angle of the

compressive strut, as shown in Figure 4.15 and described in the following paragraph.

Typical horizontal restraining force vs deflection (slabs with different end
restraints)
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Figure 4.13: Restraining force vs deflection curves for slabs with different end restraints
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Horizontal restraining force vs load (slabs with different end restraints)
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Figure 4.14: Relationship between restraining force and load for slabs with different end restraints
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Figure 4.15: Simplified compressive strut analogy

Referring to Figure 4.15, it can be deduced that as the height of the horizontal restraint decreases, the

angle of the compressive strut (0) increases. Therefore, for two slabs carrying the same load, a

smaller compressive strut force (and restraining force) is required to maintain equilibrium of the

forces within the slab. This is shown in Figure 4.14, which shows that at corresponding loads, the

restraining force decreased as the height of the horizontal restraint decreased. A lower compressive

strut force also means that the strains in the concrete at upper mid-span should be lower for the slabs

with the horizontal restraint closer to the bottom surface. This is confirmed in Figure 4.16, which

shows that at corresponding loads the strain in the concrete decreased as the restraint moved closer to

the bottom surface.
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Concrete strain at upper mid-span vs load (slabs with different end
restraints)
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Figure 4.16: Concrete strain at upper mid-span vs load for slabs with different end restraints

Figure 4.14 also shows that at early stages the relationship between the horizontal restraining force

and the applied load was almost independent of the end restraint condition. A possible reason for this

is described below (by comparing the PP105 and PP140 slabs).

At equal restraining force

Vertical deflection is lower (seeFigure 4.13)

Since deflection is lower, load carried in

bending (Pb) is lower

From the compressive strut analogy (Figure

4.15), it can be seen that for equal restraining

forces, load carried in arching (Pa) is higher

for the slab restrained at greater depth

Vertical deflection is higher

Pb is higher

Pa is lower

Therefore, these two effects balance each other out and the total load carried becomes similar

for equal restraining forces. As the load increases, the arching mechanism becomes more

dominant and for equal loads, the restraining force becomes lower for slabs restrained at

greater depth
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Figure 4.14 also shows that in the specimens with restraint at depths of 70mm and 105mm the

maximum restraining force occurred after the peak load had been reached This is in agreement with

authors such as Kemp et al. (1989) who have stated that the peak load in a slab where compressive

membrane action exists occurs while the restraining force is increasing. This indicates that the

compressive membrane action mechanism continues to carry more load even after the load-carrying

capacity of the bending mechanism has started to decrease.

4.2.2.3 Concrete strains

Figure 4.17 shows the relationship between concrete strain and deflection for typical slabs with

different end restraint. It can be seen that at corresponding deflections, the concrete strain was lowest

for the simply supported slab and became progressively higher as the height of the horizontal restraint

for the pinned ended slabs decreased. This is better illustrated in Figure 4.18. At equal deflections,

the bending effects of the slab should be similar, which means that the concrete strain due to bending

should also be similar. Therefore, any difference in the strain at this location, at corresponding

deflections, would be due to the presence of compressive membrane forces. These figures show that

as the height of the horizontal restraint decreased the strain in the concrete at upper mid-span

increased. This implies the presence of larger compressive membrane forces. When compared to

loads (Figure 4.16), it can be seen that at corresponding loads, the concrete strain was highest for the

simply supported slabs, and decreased as the height of the horizontal restraint decreased. This would

largely be due to the fact that at equal loads, the simply supported slabs had a larger vertical

deflection. Therefore, because of the vertical bending, the concrete strains at this location were

higher.

4.2.2.4 Steel strains at bottom mid-span

Graphs showing the relationship between the strains in the CBM gauges and the vertical mid-span

deflection are shown in Figure 4.19. The CBM gauges were at mid-span of the bottom reinforcement,

which carried the majority of the tension forces in the slabs. These gauges were placed at the location

where the bottom reinforcement was likely to yield.

It can be seen that the strain in these gauges was largely independent of the support condition of the

slabs. This was due to the fact that the strains at this location were related to the bending effects in

the slab and at corresponding vertical deflections, the magnitude of the bending in all the slabs was

approximately equal.
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Concrete strain at upper mid-span vs deflection (slabs with different end
restraints)
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Figure 4.17: Concrete strain at upper mid-span for slabs with different end restraints
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Figure 4.18: Concrete strain at upper mid-span for A = 5mm
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Strain in C3M gauges vs deflection (slabs with different restraint)
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Figure 4.19: Strain in CBM gauges vs deflection for slabs with different end restraints

Figure 4.20 compares the strains in the CBM gauge with the load. It can clearly be seen that as the

depth of the restraint increased, the strain in this gauge increased at a much slower rate. This was

because at corresponding loads, the amount of load carried by compressive membrane action

increased as the depth of restraint increased. Therefore, the amount of load carried in bending

decreased and the strain in the CBM gauge also decreased.

4.2.2.5 Steel strains at top mid-span

Figure 4.21 shows the relationship between the strain in the CTM gauges and the deflection for

typical slabs with different end restraints. These gauges were located in the top longitudinal

reinforcement at mid-span. It can be seen that at corresponding deflections, the compressive strain at

this location increased as the depth of the horizontal restraint increased. This indicates the presence of

compressive membrane forces at this location for the horizontally restrained slabs, since the

compressive arch passed through the location of this gauge. A proportion of the compressive strain

would also have been due to the bending in the slab, since compressive strains were also measured in

the simply supported slabs. At corresponding deflections, the difference between the strain in the

simply supported slab and the restrained slab is an indication of the magnitude of the compressive

membrane forces in the slab. It can be seen that this difference increased as the depth of the restraint

increased
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Strain in CBM gauges vs load (slabs with different end restraint)
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Figure 4.20: Strain in CBM gauges vs load for slabs with different end restraints

Strain in CTM gauges vs deflection (slabs with different restraint)
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Figure 4.21: Strain in CTM gauges vs deflection for slabs with different end restraints

The relationship between the strain in the CTM gauge and the applied load is shown in Figure 4.22. It

can be seen that for all of the slabs, the compressive strain in this gauge increased noticeably before

failure. The strains at this location would have been caused by a combination of the compressive

membrane forces in the slab and the compressive strains due to bending. In the simply supported
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slabs and the slabs with restraint at 50mm and 70mm depth, the compressive strains developed

suddenly. This would have occurred when the concrete at upper mid-span began to crush and the

peak load had been reached. For the slabs restrained at 105mm and 140mm depth, the compressive

strains developed gradually, since the concrete did not crush in these slabs. Instead these strains

developed due to a combination of the compressive membrane forces increasing in the slab and the

slab's bending.

Strain in CTM gauges vs load (slabs with different end restraint)
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Figure 4.22: Strain in CTM gauges vs load for slabs with different end restraints

4.2.2.6 Steel strains at bottom end

Figure 4.23 shows the relationship between the strain in the CBE gauges and the deflection for tyoical

slabs with different end restraints. Similar to the gauges at top mid-span, the strains in these gauges

also developed compressive strains, indicating the formation of compressive membrane action in the

slabs when horizontal restraint was induced. The compressive strains increased as the depth of the

restraint increased.

Figure 4.23 also shows that compressive forces did not develop at this location for the slabs with

horizontal restraint at 50mm depth. This was because the horizontal restraint was near the neutral

axis. This meant that the load-deflection behaviour for these slabs was very similar to those of the

simply supported slabs because only small membrane forces developed. In fact, tension forces were

induced in the CBE gauge for the slabs with restraint at 50mm depth. This was because the restraint

was above the mid-depth of the slab, so the eccentricity of the restraint induced tensile strains in the

gauge.

113



Presentation and interpretation of results from one-way slab tests

s

V

5

s

I

The strains in the CBE &auge are compared with the applied load in Figure 4.24. This figure shows

that, at corresponding loads, *he strain at this location increased (in compression) as the depth of the

restraint increased. This is similar to the relationship between the strain in this gauge and the vertical

deflection. However, it can be seen that at corresponding loads, the difference in strains was smaller

than at corresponding deflections. The reason for this is the same as why the restraining force at equal

loads was similar for all slabs (see Section 4.2.2.2).

4.2.2.7 Steel strains at top end

Figure 4.25 shows the relationship between the strain in the CTE gauges and the deflection for typical

slabs with different end restraints, while Figure 4.26 compares the strain with the applied load. The

strains in the gauges at this location show the effect of both the compressive forces induced by the

horizontal restraint and the restraint's eccentricity.

Strain in CBE gauges vs deflection (slabs with different end restrain;)
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Figure 4.23: Strain in CBE gauges vs deflection for slabs with different end restraints
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Figure 4.24: Strain in CBE gauges vs load for slabs with different end restraints

Strain in CTE gauges vs deflection (slabs with different restraint)
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Figure 4.25: Strain in CTE gauges vs deflection for slabs with different end restraints
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Strain in CTE gauges vs load (slabs with different end restraint)
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Figure 4.26: Strain in CTE gauges vs load for slabs with different end restraints

As shown in Figure 4.27, when the horizontal restraint is near the bottom surface of the slab, the top

region of the slab should theoretically be in tension (due to eccentricity). This is verified in Figure

4.25 and Figure 4.26, which show the strain in the CTE gauge for the pin-pin slab with horizontal

restraint at 140mm depth to be tensile. Figure 4.25 shows that the largest compressive strains at this

location occur for the slab with horizontal restraint at 70mm depth (no eccentricity, uniform

compression in section). When the restraint falls below this height, the effects of the eccentricity of

the restraint become more significant and the tensile strains induced by the eccentricity reduce the

compressive strains in the CTE gauge.

Load

Horizontal
restraint

Tension

Compression

Tension

Compression

T t
Support

Figure 4.27: Development of compression and tension regions due to the eccentricity of the horizontal
restraint
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4.2.2.8 Steel strains in transverse reinforcement

Figure 4.28 to Figure 4.31 show the relationship between the strain in the transverse reinforcement

and the mid-span deflection in the slab. Each figure compares the strain at the same location for

different end restraint conditions. From Figure 4.29 and Figure 4.31, it can be seen the strains in the

transverse steel at the end of the slab were very small. This indicates there was very little curvature in

the slab at the ends and that the pinned ended conditions had been reproduced successfully in the

experiments, since the slab ends were allowed to rotate. If large moments existed at the slab ends, the

cross-section would be deformed (see Figure 4.4) and larger strains would be present in these gauges.

Figure 4.28 and Figure 4.30 show the transverse strains near mid-span are significantly greater than at

the ends, with the strains in the bottom transverse reinforcement being greater than the strains at the

top. The tensile strains at mid-span are caused by a combination of the mid-span moment (as for the

simply supported slabs in Figure 4.3) and the axial compressive membrane forces generating

transverse tensile forces in the slab. It can be seen in Figure 4.28 that the largest transverse strains

occurred for the slabs restrained near the bottom surface. This was because the largest axial

compressive forces existed in these slabs. Therefore, the transverse strains were also highest in these

slabs.

Strain in TTM gauges vs deflection (slabs with different end restraint)
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Figure 4.28: Strain in TTM gauges for slabs with different end restraints
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Strain in TTE gauges vs deflection (slabs with different end restraints)
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Figure 4.29: Strain in TTE gii-i^es for slabs with different end restraints

Strain in TBM gauges vs deflection (slabs with different end restraints)
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Figure 4.30: Strain in TBM gauges for slabs with different end restraints
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Strain in TBE gauges vs deflection (slabs with different end restraint)
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Figure 4.31: Strain in TBE gauges for slabs with different end restraints

4.2.2.9 Cracking patterns and failure modes

The crack patterns of the slabs in Figure 4.10 and Figure 4.12 are shown in Figure 4.32 to Figure 4.36.

The remainder of the crack patterns are shown in Appendix 5. The numbers below the crack indicate

the approximate width at the base of the crack. If there is no number, the crack width at the base is

less than 1 mm. Large diagonal cracks have the crack width labelled next to them.
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Figure 4.32: Cracking Pattern for Slab SS-A
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4.35; Cracking Pattern for Slab SS-B
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Figure 4.34: Cracking Pattern for Slab SS-C
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Figure 4.35: Cracking Pattern for Slab 105-B
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Slab 105-C (Side 1)
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Figure 4.36: Cracking Pattern for Slab 105-C

The different crack patterns that exist for the brittle failures and the ductile failures can clearly be seen

in these figures. The presence of the large diagonal cracks in the slabs horizontally restrained near the

bottom surface is an indication of large compressive forces in the slabs. As previously mentioned,

these forces flow from the load point to the horizontal support (like a compressive strut) and the

diagonal cracks seen in Figure 4.10 form due to the presence of tensile forces perpendicular to the

compressive strut.

All failures occurred after the yielding of the bottom steel at mid-span, indicating flexural failures of

the slab. The mechanism that led to the eventual decrease in load-carrying capacity depended on the

restraint condition and the magnitude of the compressive membrane forces.

4.2.2.10 End rotations and neutral axis positions

The end rotations for the restrained slabs are shown in Figure 4.37. It can be seen that the end

rotations in each slab are similar and also have the same linear relationship (9 « 0.104A) as for the

simply supported slabs. Therefore, it can be concluded that the magnitude of the end rotation is

independent of the restraint condition and is approximately linearly dependent on the vertical

displacement of the slab. The point of rotation at the ends of these slabs was obviously at the location

of the pin support.
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Figure 4.37: End rotations for restrained slabs

4.2.2.11 Maximum load and restraining force/compressive membrane force

Table 4.2 compares the maximum load in the pinned ended slabs with the compressive membrane

force within the slab. Figure 4.38 shows the relationship between the peak load and the restraining

force at the peak load. These results show that the load-carrying capacity of the slab increases as the

compressive membrane forces in the slab increase. The line of best fit used to approximate this

relationship is given by the following equation:

Compressive Membrane Force at Maximum Load = 55(Maximum Load - 91.6)°4

Equation 4.1
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Table 4.2: Comparison between maximum load and restraining force

Specimen Maximum Load (UN) Maximum Compressive ("ompressive Vlenrhrane

Membrane Force at Maximum

50-A

50-B

50-C

70-A

70-B

70-C

105-A

105-B

105-C

140-A

140-B

140-C

96.2

95.0

94.4

107.3

114.6

116.2

184.1

181.9

170.4

229.7

234.2

274.1

• * ' . • • • . , _ _

100.8

103.4

94.2

200.6

232.2

275.9

453.0

364.2

329.9

351.9

381.1

497.8

I .oad(kN)

95.1

98.0

89.8

163.9

172.9

226.6

381.0

361.7

312.6

347.5

375.2

497.6

124



Presentation and interpretation of results from one-way slab tests

1

I
I

!

i

Compressive Membrane Force at Maximum Load vs
Maximum Load

<D Z 600

2 -u 500
ja CB

I | 400 -
^ 3

£ .E 300 -

| 1 200

I"! 100 H
& o

0

Simply
supported

slabs

50 100 150 200 250 300

Maximum load (kN)

350

Figure 4.38: Restraining force at maximum load vs maximum load

4.3 Theoretical analyses

4.3.1 EMPHI analysis of simply supported slabs

EMPHI is a program that can be used to produce the moment-curvature diagram for a reinforced

concrete section. The program uses the strain compatibility method for determining the ultimate

moment of the section. The stress-strain relationship shown in Figure 4.39 is used for the concrete,

while the stress-strain relationship of the steel is assumed to be multilinear. EMPHI also assumes the

concrete has no tensile strength. Further details of this program can be seen in Darvall (1987).

CT k

fo

/ *>•

/

-a2e>

+ a3)e

c

•

vO.953

fo = 0.856fc

a! = 39OOO(fo + 7)"'

a2 = 206600

a3 = 65600(f0+10)-1085-850

Figure 4.39: Stress-strain curve for concrete (Comite Europeen du Beton (1973))
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The simply supported slabs were analysed using the program and the results were compared with the

experimental results. The appropriate material properties for the steel and concrete (obtained from

experimental tests on the materials) were input into the program (see Table 4.3). The results obtained

are shown in Table 4.4.

Table 4.3: Material properties used in EMPHI analysis

( oncrete Strength

Rein I<

Maximum ('(rtuTeti1 Strain.

30MPa

660MPa

0.005

Notes:

(1)The stress-strain curve for the reinforcement was approximated to yield at 660MPa, with no strain-

hardening. This was due to the fact that the steel did not show a definite yield point in the tensile tests

(See Figure 3.9)

(2) The maximum concrete strain was taken from the tests on the simply supported slabs, which

showed the strain in the concrete reached values of approximately 0.005. This is higher than standard

values and was adopted because of the confinement of the concrete under the loading plate (as was

previously discussed in Section 3.4.3).

The moment-curvature diagram can be seen in Figure 4.40. The results are compared to those from

Slab SS-C. It can be seen that the two curves are reasonably close. The discrepancies may be due to

the fact that the steel was approximated to be linear-perfectly plastic in the EMPHI model, which is

obviously not the case in reality.
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*
s

1

Table 4.4: Results from EMPHI analysis

• Moment (k\tn) £,,,,, £,„„ Curvature (<j>) Neutral axis depth (mm)

4.9

9.2

13

16.4

19.5

21.3

21.5

21.8

21.9

22.1

22.2

22.2

22.3

22.3

22.2

22.2

22.1

22

21.9

21.8

0.00025

0.0005

0.00075

0.001

0.00125

0.0015

0.00175

0.002

0.00225

0.0025

0.00275

0.003

0.00325

0.0035

0.00375

0.004

0.00425

0.0045

0.00475

0.005

-0.00105

-0.00201

-0.00289

-0.0037

-0.00445

-0.00539

-0.00663

-0.00786

-0.00905

-0.01017

-0.01126

-0.01229

-0.01329

-0.01424

-0.01514

-0.016

-0.01682

-0.01758

-0.01829

-0.01895

9.31xlO"6

1.80xl0"5

2.60x10-5

3.35x10'5

4.07x10'5

4.92x10"5

5.99x10-5

7.05x10"5

8.07x10-5

9.05x10'5

l.OOxlO"4

1.09xl0-4

1.18xlO"4

1.27xlO-4

1.35xlO'4

1.43xlO-4

1.50xl0"4

1.58X10'4

1.65xlO"4

1.71xlO"4

26.9

27.8

28.8

29.8

30.7

30.5

29.2

28.4

27.9

27.6

27.5

27.5

27.5

27.6

27.8

28

28.2

28.5

28.9

29.2
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Moment-Curvature Diagram
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Figure 4.40: Moment-curvature diagram

4.3.2 Analysis of one-way slabs using Rankin and Long's method

As discussed in the literature review, a number of simplified methods have been derived to determine

the flexural (and punching) capacity of horizontally restrained one-way slabs. The literature review

showed that reasonably accurate predictions could be made using simplified methods, which are

easier to implement than rigorous methods based on plasticity theory. The accuracy of the methods

based on plasticity theory is also compromised due to the many assumptions and simplifications that

are required in the analysis. Instead, simpler methods have been derived which give an adequate

approximation to the ultimate strength of restrained slabs. One of these methods was derived by

Rankin and Long (1997), and is now used as a basis for the analysis of the slabs in this series of tests.

4.3.2.1 Analysis of slabs from first series of tests

The restrained slabs from this series of tests were analysed using Rankin and Long's method, with the

following information:

• The load carried due to bending was obtained from the results of the tests on the simply supported

slabs.

• The restraining force at peak load was measured by the load cells in the test.

• The ultimate deflection was obtained from experimental results.
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• The restraint stiffness (500kN/mm) was previously determined from a compliance test on the

reaction frame (refer to Section 3.4.2).

• Figure 4.41 was used to approximate the lever arm for arching. This required an assumption for

the depth of the resultant of the stress distribution at mid-span.

Restraining Force, N - Depth of resultant of stress
distribution

Restraining
Force, N

Height of restraint

Figure 4.41: Lever arm for arching forces

The location of the resultant of the stress distribution at mid-span was obtained by examining results

from finite element analysis. The stress profile for the slabs at mid-span (at the peak load) are

presented in Figure 4.42. These stress profiles were obtained using the same finite element models

(mesh, boundary conditions, constitutive models, etc.) as those in Section 5.6.

I

-40

£
E.

«-•
a
v
•v
.a
Siw

-35 -30

Mid-span stress profiles at peak load

Stress (MPa)

-25 -20 -15 -10 -5

-•-Slab restrained at 50mm depth

-•-Slab restrained at 70mm depth

Slab restrained at 105mm depth

* Slab restrained at 140mm depth

140 *

Figure 4.42: Mid-span stress profiles at peak load from finite element analysis
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It can be seen in all slabs that the stress profile is approximately triangular, with the resultant acting at

about 10mm depth (the resultant of the triangular distribution acts at l/3rd of the distance from the top

of the slab to the point where the stress becomes zero). Using these results, the ultimate load carried

by these slabs, according to Rankin and Long's theory was calculated. The results are shown in Table

4.5 and Figure 4.43. Detailed calculations are shown in Appendix 6.

Table 4.5: Comparison of experimental results with theoretical results

Specimen A (mm) at \ (kN) at K\perimcntal •Theoretical

peak loittJ peak load MJaimre load (kN) lailure load (kN)

50A

50B

50C

70A

70B

70C

105A

105B

105C

140A

MOB

140C

12.89

10.84

12.45

13.17

10.14

14.30

16.25

11.00

11.42

9.09

8.48

12.88

190.20

196.00

179.50

327.80

345.80

453.20

761.90

723.40

625.20

694.90

750.30

995.10

96.20

95.00

94.40

107.30

114.60

116.20

184.10

191.90

170.40

229.70

234.20

274.10

103.83

105.16

103.33

128.01

132.49

140.72

233.90

235.72

215.53

290.87

307.84

368.01

1.08

1.11

1.09

1.19

1.16

1.21

1.27

1.23

1.26

1.27

1.31

1.34
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Comparison of predicted ultimate load to experimental failure load
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Figure 4.43: Comparison of predicted ultimate load to experimental failure load

These results indicate that Rankin and Long's method can predict the failure load of these slabs

reasonably well. However, in all cases, the theory overestimates the ultimate load, with larger

discrepancies for the slabs with higher ultimate loads. Possible explanations for this are:

• The location of the stress resultant at mid-span.

• The depth available for arching (refer to Section 2.2.10 for a description of this variable).

• The restraint stiffness (500kN/mm) used in the calculations was an approximate value. A more

accurate value could not be obtained because of the difficulty in obtaining precise measurements

of the reaction frame stiffness during the compliance tests. It will be shown in Section 4.3.2.2

that for restraint stiffnesses less than lOOOkN/mm, the ultimate load is very sensitive to the

stiffness of the< restraint.

• The failure load of the simply supported slabs was slightly higher than that predicted using

normal flexural theory. However, this does not explain the trend of larger discrepancies as the

failure load increases.

• The underlying assumptions in Rankin and Long's theory, such as neglecting bending

deformations and the simplification of separating the load carried in arching from the load carried

in flexure.
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43.2.2 Effect of reaction frame stiffness

Figure 4.44 shows the effect of the horizontal stiffness of the reaction frame on the peak load of

specimen PP140. It can be seen that in the range of the stiffness of the reaction frame (less than

lOOOkN/mm), the peak load is very sensitive to the restraint stiffness. Therefore, even a small error in

the stiffness obtained from the compliance test will have a noticeable effect on the peak load. For

higher stiffnesses, the peak load is only slightly affected by the value of restraint stiffness. Therefore,

it is possible that the overestimation of the experimental load was due to the restraint stiffness that

was used in the calculations.

4.3.2.3 Effect of location of stress resultant

The effect of the location of the stress resultant of specimen PP140 is shown in Figure 4.45. It can be

seen that as the depth of the location of the stress resultant increases, the peak load falls because the

arching moment lever arm is reduced. However, the peak load is not as sensitive to this variable as

the restraint stiffness. For the theoretical failure load to equal the experimental failure load of

specimen PP140, the depth would have to be close to 45mm. By examining Figure 4.42, this does not

appear possible. The stress distributions seen in Figure 4.42 would be effected by the local stresses

underneath the loaded area, but it is extremely unlikely that the stress resultant could be at 45mm

depth.

4.3.2.4 Effect of depth available for arching

The effect of the depth available for arching on the peak load of specimen PP140 is shown in Figure

4.46. It can be seen that the effect of the depth available for arching decreases as its value increases

and over the range of feasible values for this variable, the theoretical peak load is always greater than

the experimental peak load. Therefore, it can be concluded that the value of the depth available for

arching is not the reason for the overestimation in the theoretical predictions.
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Peak load vs restraint stiffness for specimen PP140
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Figure 4.44: Peak load vs reaction frame stiffness
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Figure 4.45: Peak loadvs location of stress resultant
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Peak load vs depth available for arching
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Figure 4.46: Peak load vs depth available for arching

4.3.2.5 Summary

It can be concluded that Rankin and Long's method provides a reasonable prediction of the peak load

of the restrained slabs. The method slightly overestimates the peak load obtained in the experiments

and this is most likely due to the restraint stiffness used in the calculations and the underlying

assumptions in the method.
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5 FINITE ELEMENT ANALYSIS OF ONE-WAY SLABS

5.1 Introduction

The work detailed in this chapter discusses the finite element modelling of the one-way slabs

described in Chapters 3 and 4. Various parameters within the finite element models were varied to

determine their effects on the solution. Comparisons between the results of the finite element models

and the experimental results are also presented in this chapter.

The application of finite element modelling to the analysis of reinforced concrete structures requires

appropriate constitutive relationships for the concrete and the steel, as well as a bond-slip relationship

between the steel and the concrete. These relationships are described in the following sections.

5.1.1 Concrete behaviour

Concrete is a highly non-linear material, as can be seen in the stress-strain curves in Figure 5.1.

Phenomena such as cracking and time-dependent effects (creep, shrinkage) lead to further non-

linearities. When all of these phenomena are taken into account, an analysis of a reinforced concrete

structure becomes a very complex procedure.

Some of the secondary effects can be ignored in an analysis, depending on the type of problem being

investigated, but the basic information that is generally required in a finite element analysis is the

multi-dimensional stress-strain relations (the constitutive relations), which can adequately describe the

behaviour of concrete until failure. Although there has been a great deal of research done on multi-

axial stress-strain relations, the knowledge is not complete and approximations have to be made when

conducting a finite element analysis.

The stress-strain behaviour of the concrete includes the formation of cracks under tensile stresses.

This is very important because the overall behaviour of a reinforced concrete structure depends

heavily on how, when and where the cracks form, as well as the behaviour of the crack after it opens

(tension softening behaviour).

The following sub-sections summarise some of the research done and knowledge gained in this field.
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Figure 5.1: Uniaxial stress-strain curves for concrete (Chen (1982))

5.1.1.1 Uniaxial behaviour

The uniaxial stress-strain curve for concrete (see Figure 5.1) is usually assumed to be linear, up to

about 30% of the uniaxial compressive strength. At this point, the concrete begins to lose stiffness

until it reaches its peak stress. The stress-strain curve then begins to descend, with the rate of descent

depending on the ductility of the concrete. High strength concrete tends to be more brittle and,

therefore, has a steeper descending portion. In the linear range, Young's Modulus of concrete (Ec) is

generally taken to be a function of the mean compressive strength, fcm. Therefore, concrete with a

higher compressive strength will have a higher Young's Modulus. For example, the Australian

Concrete Structures Standard (AS3600), uses Ec =0.043pL5^//cm ; where p is the density of the

concrete.

Poisson's ratio for concrete under uniaxial stress ranges from 0.15 to 0.22. A value commonly used

for finite element modelling is 0.2.
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The stress-strain curve for concrete in tension is a similar shape to the stress-strain curve in

compression, except the strength is much lower (about 10% of the compressive strength). The

modulus of rupture and the split cylinder strength can also be used to approximate the tensile strength

of concrete. These tests give slightly higher tensile strengths than the direct tensile strength.

The uniaxial stress-strain relationship for concrete in tension is usually simplified in a finite element

model. The relationship is assumed to be linear up to the ultimate tensile stress, after which the

concrete begins to soften (ie. the stress that the concrete can sustain reduces as the strain increases).

Various softening models can be used for the concrete. These include brittle cracking (the stress

immediately drops to zero), linear tension softening models, multi-linear models and various non-

linear models.

5.1.1.2 Biaxial behaviour

A great deal of knowledge about concrete under biaxial stresses can be attributed to Kupfer et al.

(1969) who conducted experimental investigations into the biaxial strength of concrete. The authors

used a new testing apparatus, which allowed concrete specimens to be tested under various states of

biaxial stress. To ensure a uniform stress and minimise friction between the concrete and the loading

surface, the authors used "brush bearing platens". These consisted of a series of closely spaced steel

filaments, which were flexible enough to follow the concrete deformations without applying

appreciable restraint, but had enough buckling stability to transmit compressive forces from the

loading plate to the concrete. Calibration tests were conducted and these found that the system was

effective in eliminating restraint and no adverse effects, such as local stress concentrations, were

found. Using this set-up, the authors conducted tests on many concrete specimens to better

understand the behaviour of concrete under biaxial stresses.

The following summarises the knowledge gained concerning the strength of concrete under biaxial

stresses. This information has been gained from the tests by Kupfer et al. or from tests carried out by

other authors. The text by Chen (1982) refers to researchers such as Nelissen (1972) and Tasuji et al.

(1978) who have carried out work in this area. A typical biaxial strength envelope for concrete is

shown in Figure 5.2.

• When concrete is subjected to biaxial compression, its compressive strength increases to about

1.25 fc (when G\la2 = 0.5). When ai/a2 = 1, the strength increase is about 16%.

• In biaxial tension, the strength is approximately equal to the uniaxial tensile strength.

• Concrete in compression-tension exhibits a noticeably reduced strength compared to the uniaxial

compressive strength.
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Under biaxial compression, the initial stiffness may increase due to Poisson's effect.

compression-
/ compression

compression-tension

tension-tension

Figure 5.2: Biaxial strength envelope for concrete (Warner et al. (1998))

The ductility of concrete can also vary depending on the state of stress. Chen (1982) summarised the

important experimental results in this; area and these are outlined below:

• Under uniaxial and biaxial compression, the maximum compressive strain that can be attained is

about 0.003.

• The maximum tensile strain varies between 0.002 and 0.004.

• In compression-tension, both the compressive and tensile strains at failure decrease as the tensile

stress increases.

Other important aspects of the biaxial behaviour of concrete that have been seen in experiments

include:

• Under biaxial compression, the concrete initially compacts. As the concrete nears failure, the

volume starts to increase as the compressive stress continues to increase. This is caused by the

growth of microcracks in the concrete and is known as dilatancy.

• Failure occurs by the tensile splitting of the concrete. The fracture surface is orthogonal to the

direction of the principal tensile stress.
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• The maximum strength envelope is largely independent of the load path.

5.1.1.3 Triaxial behaviour

In many situations, concrete structures are subjected to triaxial stresses. Therefore, unless situations

are idealised (eg. plane stress), knowledge of the triaxial behaviour of concrete may be required.

The behaviour of concrete under triaxial stresses is not as well understood as its behaviour under

biaxial stress. Tests have been carried out to understand the behaviour of concrete under triaxial

stresses. Chen (1982) cites the work of researchers such as Richart et al. (1928) and Balmer (1949)

who have carried out these tests. Similar to the biaxial behaviour of concrete, it has been found that

the confining stresses significantly influence the behaviour of the concrete. It has also been found that

concrete exhibits non-linear stress-strain behaviour under hydrostatic compressive loading and that an

increase in volume occurs due to the progressive growth of microcracks (same as for biaxial

behaviour). A large increase in ductility and strength also exists as a result of the hydrostatic

pressure.

Tests have been conducted on the triaxial stress-strain behaviour at low, moderate and high confining

stresses. These results show that concrete can act as a quasi-brittle, plastic-softening or plastic-

hardening material, depending on the level of the confining stress. Under very high confining

stresses, extremely high strengths have been recorded. Balmer (1949) achieved stresses as high as

560MPa in one direction when the concrete was confined by stresses of 170MPa in the other

directions.

5.1.1.4 Failure criteria

Failure in concrete can be defined as the state of stress and strain at which the concrete can no longer

maintain its load-carrying capacity. There are two general types of failure: tensile and compressive.

Compressive failure is characterised by ductility, whereas tensile failure is generally more brittle.

Once failure of concrete has occurred, a strain increment results in a decrease in the stress carried by

the concrete.

The failure surface of concrete is a function of the three principal stresses (o\, az, 03). However, it is

difficult to establish and interpret a failure surface in terms of these principal stresses and so, the three

stress invariants (Ii, J2 and J3) are commonly used. These stress invariants are useful for defining

failure surfaces because their values are not altered by a rotation in the coordinate axes of the

principal stress space. Ils J2 and J3 can be defined as follows:
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- [s f Equation 5.1

J3 = s,s2s3

where Si, S2 and S3 are the deviatoric stresses and are defined as follows:

Equation 5.2

where am is the mean normal stress, am = —(a, + a2 + a 3 ) = — I, .

The geometrical interpretation of these stress invariants is shown in Figure 5.3 to Figure 5.5. In these

figures, P represents the state of stress in principal stress space, while the invariants Ii, J2 and J3 have

been converted to the following invariants:

0 = cos-1 V2J,

Equation 5.3

p =

It can be seen in Figure 5.4 and Figure 5.5 that t, defines the hydrostatic component of the stress state,

p defines the deviatoric component of the stress state and the angle 9 gives the location of the stress

state in the deviatoric plane.
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0,-02-03

Figure 5.3: Failure surface in principal stress space (Bazant et al. (1982))

P(au G2, a3)

Figure 5.4: Decomposition of stress in principal stress space
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Figure 5.5: Cross-section of failure surface in deviatoric plane (hydrostatic axis at point 'N')

As the hydrostatic pressure increases, the deviatoric sections (Figure 5.5) become more circular and

hence, the failure becomes independent of the third stress invariant (0). At small hydrostatic

pressures, the deviatoric cross-sections are convex and noncircular.

As discussed above, the state of stress (ie. tension, compression, shear) that the concrete is subjected

to affects the strength of the concrete. Therefore, the interaction between these states of stress must

be considered to determine the strength of the concrete. Many tests have been conducted on the

failure criterion for concrete. These tests indicate that the failure surface has the following properties

(refer to Figure 5.3 for a three dimensional representation of a failure surface):

• The failure surface is smooth.

• For compressive stresses, the failure surface is convex.

• For tensile and small compressive stresses, the failure curve is nearly triangular and becomes

increasingly circular as the compressive stresses increase.

The simplest failure criteria are the one-parameter models. The maximum stress theory, proposed by

Rankine in 1876 assumed that failure occurred when the maximum principal tensile stress in any

direction exceeded a limiting value for the material. It neglected any normal or shear stresses in other

planes.
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Instead of using the maximum tensile stress to determine failure, another approach that has been used

is to look at the shear stress. The Tresca yield criterion (1864) stated that the yielding of a material

begins when the maximum shear stress at a point reaches a critical value. This results in a hexagonal

failure envelope in the deviatoric plane. An alternative to the Tresca yield criterion is the Von Mises

yield criterion (1913). Here, the octahedral shearing stress ( x ^ = J—J2 ) rather than the maximum

shear stress is used and the resultant failure envelope in the deviatoric plane is a circle. This leads to

more convenience in practical situations and is more realistic, since failure surfaces should be smooth.

The failure criteria mentioned so far have been one-parameter models. The next level of complexity

involves two-parameter models such as the Mohr-Coulomb criteria. According to this criterion, the

concrete will fail when the shearing stress on a plane exceeds the value given by the linear

relationship shown in Equation 5.4.

r = C - <Tn tan (f) Equation 5.4

Here, the two parameters that define the failure surface are the angle of internal friction ((j>) and the

cohesion (cj of the material. It has been found that the use of a linear failure envelope provides a

good approximation to the failure of concrete at an intermediate stress level. A disadvantage of the

Mohr-Coulomb criteria is the influence of the intermediate stress (02) is not taken into account. This

is because failure is assumed to occur when the largest of Mohr's circles (see Figure 5.6) is just

tangent to the failure envelope, but the position and size of this circle is only dependent on crt and cr3.

Another disadvantage is that the failure surface is not smooth (the failure curves on the deviatoric

plane are hexagonal).

To eliminate the corners of the hexagon in the failure surface and remove any difficulties and

complications in obtaining numerical solutions, the Drucker-Prager criterion (1952) can be used. This

criterion is a smooth approximation of the Mohr-Coulomb criteria. The failure surface is a right-

circular cone in principal stress space.

The use of the Drucker-Prager criterion with tension cut-offs is a reasonable approximation to the

failure of concrete and is suitable for general use in finite element modelling. More complex models

(with three, four and five parameters) exist. However, they are not discussed here because they have

not been implemented in the finite element models produced in this research. Details of some of these

models can be found in the text by Chen (1982).
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Figure 5.6: Mohr-Coulomb failure criteria

5.1.1.5 Concrete plasticity

Concrete plasticity is associated with the crushing of the concrete while in compression. Under

compressive stresses, concrete exhibits linear behaviour up to a limit point. After this point, internal

microcracks form and the concrete begins to weaken. At this point, the concrete is undergoing plastic

flow, where irreversible plastic strains are occurring. Eventually, if the strains continue to increase,

the concrete will crush and soften.

For the purposes of finite element modelling, the complete stress-strain relationship for concrete is

required. While concrete can be idealised as an elastic-perfectly plastic material, a more accurate

representation should include the strain-hardening, plastic flow and the softening of the concrete.

The elastic-plastic concrete behaviour can be described using the flow theory of plasticity. This

allows the total stress as a function of total strain and strain history to be obtained. A number of

parameters must be specified:

• An elastic stress-strain relation for early stages of loading.

• A yield condition, f(cr,K), that specifies the state of stress at which plastic flow is initiated (a is the

stress vector and K is the internal state parameter); see Section 5.1.1.4.
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• A flow rule that specifies the plastic strain rate as a function of the state of stress; This requires a

plastic potential function, g(a,K).

• A hardening hypothesis that allows the stress and strain history to be taken into account (through

the use of an internal state parameter).

These parameters allow a complete stress-strain relationship, which takes into account the loading

history, to be derived.

Another issue is whether an associated or a non-associated plasticity model should be used for the

concrete after it has yielded. When using associated plasticity, the yield function (f) and the plastic

potential function (g) are the same, with the friction angle (<|)) and dilatancy angle (\|/) being equal.

When non-associated plasticity is used, <}> * \\i and g * f. Vermeer and de Borst (1984) provided a

theoretical basis of the need for non-associated plasticity. The fact that <J) = \j/ when associated

plasticity is used implies that at any point on the yield surface, the plastic strain-rate vector (£p) and

the total stress vector ( o ) are normal to each other. The energy dissipation of a material is derived

from the inner product of these two quantities. Hence the use of associated plasticity implies there is

no energy dissipation during plastic deformation and this is not physically possible. Venneer and de

Borst (1984) also mentioned test results from other authors who reported that the dilatancy angle for

all materials was approximately between 0° and 20°, while for concrete the friction angle is generally

in the range of 30° to 35°. The fact that these ranges do not coincide further implies the need for non-

associated plasticity.

A detailed explanation of concrete plasticity can be seen in TNO (1998) and in Vermeer and de Borst

(1984).

5.1.1.6 Concrete cracking

One of the main causes of non-linear behaviour in concrete is cracking and its associated behaviour

(tension cut-off, tension softening, shear retention, etc.). Cracking initiates when the tensile stress

exceeds the tensile capacity of the concrete, resulting in cracks developing in a direction

perpendicular to the principal tensile stress. The crack developme it and subsequent stress

redistribution have a major influence on the behaviour of concrete structures. Many theories have

been developed over the years to account for these phenomena and many of these have then been

applied to finite element models.

Essentially, there are two ways to model cracking in finite element models, discrete cracking and

smeared (or distributed) cracking. The earliest finite element models made use of discrete cracks.

Ngo and Scordelis (1967) created a finite element model to perform a linear elastic analysis of beams
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with predefined crack patterns. The cracks were modelled by the separation of the nodal points at the

location of the crack. The major deficiency with this technique is that the crack pattern, and hence the

finite element model had to be redefined at each load step. Nilson (1968) created a finite element

model where the locations of the cracks were automatically generated by the model. To account for

the cracking, the elements were disconnected at the locations of the cracks. The disadvantage of this

method is that the cracks are restricted to form at the sides of the finite elements.

The use of discrete models to represent cracking decreased in popularity due to the difficulty in

redefining the finite element mesh after a crack had formed. The redefinition of the structure stiffness

matrix resulted in a significant increase in computation time because the narrow bandwidth of the

matrix no longer existed. Despite this, there are applications for discrete crack models, such as

problems that involve a few dominant cracks. This is because a discrete crack is a more realistic

representation than a smeared crack of what an actual crack is like.

To overcome the limitations of discrete crack models, smeared cracking models were developed.

These allowed automatic generation of cracks without a need to redetermtne the finite element model

I and allowed cracks in any direction. The use of a smeared cracking model implies the formation of an

infinite number of small cracks (or fissures) across the width of the element. Bazant et al. (1982)

cited the work of Rashid (1968) as the first researcher to use this method.

i
J In this approach, the cracked concrete is assumed to remain continuous but the modulus of elasticity

of the material in the direction of the principal tensile stress is reduced to zero. In the early smeared

crack models, the shear modulus of the element was also reduced to zero after a crack formed.

However, some researchers (Hand et al. (1973), Lin and Scordelis (1975)) found that reducing the

shear modulus to zero led to numerical difficulties and distortions in crack patterns. This lead to the

use of a shear retention factor (P), which meant the element retained a certain proportion of its shear

strength after cracking. Hand et al. (1973) and Lin and Scordelis (1975) were two of the earliest

researchers who used this approach. The use of a shear retention factor in smeared crack models

leads to more realistic models of the behaviour of cracked concrete, since the effects of aggregate

interlock across the open crack are taken into account. The value chosen for p (between 0 and 1) has

varied among researchers but Hand et al. (1973) and Lin and Scordelis (1975) believed that the value

chosen was not critical.

In structural engineering applications, the smeared cracking approach is generally used. Although the

crack patterns and local stresses are not entirely realistic, the overall load-deflection behaviour is

obtained without the need to redefine the element mesh after the crack has occurred. When
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implementing the smeared crack models into a finite element analysis, the following information is

required:

• A tension cut-off criterion is required to specify the stress state when the concrete has reached its

tensile capacity and begins to crack. Two tension cut-off criteria (constant and linear) are shown

in Figure 5.7. The tensile strength, ft, varies but is approximately one-tenth of the compressive

strength of the concrete.

(a) o

ft

Figure 5.7: Tension cut-off models, (a) constant (b) linear

A tension softening model is required to specify the stress-strain relationship after the concrete

has cracked. An example of a tension softening model (the linear model) is shown in Figure 5.8.

Other models are available, such as brittle cracking, multi-linear models and various non-linear

models. These are described in TNO (1998). For reinforced concrete, an estimate of the

maximum tensile strain can be obtained from the yield strain of the reinforcement (ie.

cr fsy

eu = — — ) . This formula is applicable to structures where the reinforcing bars are uniformly
^stcc!

distributed and when the cracks develop perpendicular to the bars (van Mier (1987)). However,

since these conditions rarely occur in practice, a reduction coefficient, a, is often used to adjust

the value of e " . The value of the reduction coefficient is generally chosen through experience.
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ft

Cracking
Strain

Figure 5.8: Linear tension softening model for cracked concrete

As previously mentioned, the shear retention factor (P) takes into account the reduction in shear

stress that occurs when the concrete becomes cracked. When a crack occurs, some shear can still

be transferred across the crack due to the presence of aggregate interlock. This is accounted for

by the use of a shear retention function and a shear retention factor. An example of a shear

retention function is shown in Figure 5.9. This figure illustrates ihe constant shear retention

function, which gives the relationship between shear stress (T) and shear strain (y) as x = PGy.

There is no set rule on the value of P that should be used and an appropriate value is often

determined using a parametric study.

Shear stress (x)

PG

L
Shear strain (y)

Figure 5.9: Constant shear retention model for cracked concrete

5.1.2 Steel behaviour

Because the steel used in reinforced concrete is relatively long and slender, it is generally assumed

that it is only capable of transmitting axial forces. Therefore, a uniaxial stress-strain relationship is

satisfactory for finite element analyses. A large number of analyses assume an eiastic-perfectly
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i

plastic response for the steel, although it is now relatively straightforward to include strain-hardening

effects up to fracture (refer to Figure 5.10).

In general, the following regions can be observed in a stress-strain curve for steel (refer to Figure

1. An initial linear-elastic region with a modulus of elasticity of approximately 200,000MPa. This

region ends when the steel reaches its yield point (fsy, %) .

2. A yield plateau exists between ssy and the strain at which strain-hardening begins, est. A typical

ratio for esl/esy is 12.

3. A strain-hardening region exists from e^ to eu and on to the fracture strain ef. The fracture strain

(6f) that can be achieved and the ratio of the ultimate strength to yield stress (fu/fsy) are measures

of the steel's ductility and decrease as the strength of the steel increases.
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(a)

(b)

(c)

Figure 5.10: Stress-strain relationships for steel, taken from Chen (1982); (a) elastic-perfectly
plastic; (b) tri-linear; (c) complete curve

The stress-strain behaviour of steel can be modelled in a number of ways, from the simple elastic-

perfectly plastic approximation (Figure 5.10(a)) to more complete models that include the strain-
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i

hardening region. For obvious reasons, the more realistic the approximation, the more accurate the

finite element model will be.

To implement these models in a finite element analysis, experimental values of the stress and strain at

yield, ultimate and fracture are required. Because the steel reinforcement behaves uniaxially, a Von

Mises yield criterion can be used to model the failure of the bars. In addition, the reinforcement can

be modelled as either discrete elements or embedded into the concrete elements. Embedded

reinforcement models essentially add stiffness to the elements in which the bars are embedded. This

implies a perfect bond-slip relationship (see Section 5.1.3) between the steel and the concrete.

Discrete reinforcement models are more realistic, since the bond-slip relationship can be included.

However they are more difficult and time-consuming to implement.

5.1.3 Bond-slip behaviour

The behaviour of reinforced concrete structures also depends on the bond between the steel

reinforcement and the concrete. As load is increased, cracking and breaking of the bond will occur.

This leads to bond-slip and a redistribution of the stresses in the steel and the concrete. The strength

of the bond itself depends on the properties of the concrete and the reinforcement.

For smooth, plain bars the strength of the bond depends on friction and the chemical adhesion

between the steel and the concrete. Failure of specimens with these bars is normally characterised by

the extraction of the bar from the concrete. The bond behaviour of deformed bars depends mainly on

the bearing of the steel ribs against the intervening concrete keys.

There are a number of ways in which the bond-slip relationship can be modelled with finite elements.

Ngo and Scordelis (1967) used linear-elastic bond links to model the behaviour. The linkage

elements consisted of two orthogonal linear springs that transmit shear and normal forces. The

constitutive relationship for these elements related the shear and normal forces to the nodal

displacements. This relationship depended on the stiffnesses of the springs, which was chosen based

upon the force transfer due to dowel action and the interface shear stiffness.

An alternative is the use of bond interface elements. These elements are placed along the entire steel-

concrete interface. The constitutive relationships for the elements are formulated in terms of relative

displacements of the top and bottom surfaces and depend on the interface shear stiffness and the

interface normal stiffness.

Perfect bond between the concrete and the steel reinforcement can also be assumed. However, this

can only occur at early stages of loadi.ig when the load intensity is low. Therefore, the use of a perfect
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bond relationship can lead̂  to unrealistic predictions. However, a perfect bond assumption is often

assumed to simplify a finite element analysis.

5.2 Details of finite element models

The non-linear finite element analyses (NLFEA) were conducted using a general-purpose finite

element package called DIANA. Details of this program can be seen in TNO (1998).

1 5.2.1 Material properties

1
5.2.1.1 Concrete

An explanation of the material parameters required to model the behaviour of concrete in a non-linear

finite element analysis was given in Section 5.1.1. The values chosen for these parameters are

1 discussed below:

• The models in this chapter made use of the Drucker-Prager yield criterion because it was found to

« satisfactorily model the failure of the concrete in these slabs.

• A non-associated plasticity model for the concrete has been used. The reasons for this were

mentioned in Section 5.1.1.5. Various values for the friction angle and the dilatancy angle were

tried as part of the parametric study into these slabs.

• Two tension cut-off criteria (constant and linear) were investigated in the models to determine the

more appropriate. A range of tensile strengths was also examined to establish its effect on the

slab's behaviour.

• A linear tension softening model was used to model the behaviour of the cracked concrete (see

Figure 5.8). More elaborate models were not investigated because the simple linear model was

found to be sufficiently accurate. A parametric study was also carried out to determine a suitable

value for the tension softening parameter (a) for the slabs that were being modelled.

• A constant shear retention function has been used for the finite element models. As mentioned in

the literature review, there is no set rule for the value of the shear retention factor (|3) and it is

usually chosen based on experience. Therefore, a parametric study of this variable was also

conducted in this chapter.

5.2.1.2 Steel reinforcement

The stress-strain properties of the steel used in all the NLFEA models were determined from the

results of the tensile tests discussed in Section 3.3.1. Figure 5.11 shows the multi-linear stress-strain
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curve that was input into the models. As mentioned in the literature review, a Von Mises failure

criterion can be used to model the failure of the reinforcement.

Stress-Strain Curve for Steel Reinforcement used in Finite Element Models

(0

10000 20000 30000 40000 50000

Strain (xiO"6)

60000 70000 80000

Figure 5.11: Stress-strain curve for steel reinforcement used infinite element models

The reinforcement was modelled as embedded elements and was included in different ways,

depending on the type of element that was used (see Figure 5.12). The reinforcement in the plane

strain elements was modelled as a grid. This essentially appears as a line in the long-section. The

reinforcement in the plane stress elements also appears as a line in the long-section. However, in this

case, the reinforcement is modelled as bars, rather than a grid. As previously mentioned, the two-

dimensional models were given element thicknesses of lmm. Therefore, the amount of reinforcement

had to be converted to the equivalent amount for 1 mm width of slab. The transverse reinforcement

was not modelled in either the plane strain or plane stress models. This was because it is impossible

to model transverse bars in the plane stress models and so, for consistency, they were also not

included in the plane strain models. Irrespective, the inclusion of the transverse bars would be

expected to have a very minimal influence on the results from the finite element analyses. For the

brick models, each bar of reinforcement in the slab (including the transverse bars) was included in the

finite element models.
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Slab with
reinforcement

Plane strain representation

Plane stress representation

Reinforcement
bars converted to
grid of equivalent
thickness

Unit thickness

'8

Plane stress elements
given same thickness
as slab width.

i

Reinforcement
lumped into a single
bar, which appears as
a line in the finite
element mesh.

§

Plane stress elements can be given
unit thickness if the quantity of
reinforcement is also divided by the
width of the slab.

Plane strain elements
have default unit
thickness.

Plane strain elements

Grid reinforcement appears
as a line in the finite
element mesh

Figure 5.12: Modelling of reinforcement in plane stress and plain strain elements
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5.2.2 Mesh

The slabs were modelled using both 8-noded, two-dimensional elements (plane stress and plane

strain) and 20-noded, three-dimensional brick elements to determine which element type was the most

suitable. This was done by comparing the accuracy of the solutions obtained from each of these

elements. The two-dimensional models require less computation time but they cannot fully represent

the behaviour of the slabs. Even though the slabs were designed for one-way action, the concrete can

still expand or contract in the transverse direction (as can be seen by the results in Chapter 4). This

behaviou * n only be reproduced in a three-dimensional model of the slab.

When modelling the slabs in plane strain, the elements are given a default thickness of lmm. To

maintain consistency, the plane stress elements were also given a lmm thickness, even though they

can be given a thickness of the entire slab width (500mm). Therefore, the quantity of the steel

reinforcement had to be adjusted to represent an element thickness of lmm. As a result, the

calculated loads had to be converted to a load that represented the entire width of the slab.

The coarseness of the mesh was also varied because this can have a noticeable effect on the results,

particularly if there are large stress gradients in the slab.

5.2.3 Analytical procedure

The analytical procedure was varied to determine the most efficient method. Various iterative

schemes were tried (constant, Newton-Raphson, modified Newton-Raphson and a number of secant

methods). In addition, the step size and the maximum number of iterations per step were also varied

to determine any effects on the solution.

5.3 Sensitivity analysis of modelling parameters for simply supported slabs

This section presents a sensitivity analysis of various parameters in the finite element models of

simply supported slabs that fail as a result of concrete crushing at upper mid-span. Its purpose is to

determine which variables have the most effect on the behaviour of these models and to determine

appropriate values for these parameters to use in more complicated models.

5.3.1 Base model for sensitivity analysis

The base model used 8-noded plane stress elements. Due to symmetry, half of the slab was modelled

and a total of 240 elements were used (See Figure 5.14). The elements were 20mm x 17.5mm (aspect

ratio = 1.14) and a 2x2 point integration scheme was used. The Drucker-Prager yield criterion was

used for the concrete in compression (with fc = 32MPa, (j) = 35°, \\i = 12.6°). A linear tension cut-off
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criterion was applied to the concrete, with a maximum tensile stress of 2.26MPa \pA^jfc j . The

tension softening parameter (a) was given a value of 0.1, while the shear retention factor (|3) was

given a value of 0.2. A constant iteration scheme was used, with a step size of 0.1mm and a

maximum of 50 iterations in each load step.

Stress-strain curves used for concrete in finite element models

na.

(A
CO

2

0.0000 0.0020 0.0040 0.0060

Strain

0.0080 0.0100 0.0120

Figure 5.13: Stress-strain curves used for concrete infinite element models

From this base model, the parameters were then varied to determine the sensitivity of the model to

each of the parameters. The results are shown in the following sections.

\

'•:
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Figure 5.14: Mesh used for simply supported slabs

5.3.2 Friction angle

Figure 5.15 shows the effect of the concrete friction angle on the load-deflection curves of the slabs.

The results are summarised in Table 5.1. It can be seen that the friction angle did not change the

stiffness of the response, but altered the vertical deflection at which the slab failed. When the friction

angle decreased, the slab failed at a lower deflection and at a lower load. The reason for this was the

concrete could not sustain as high a stress before it crushed. This can be seen in Figure 5.16, which

shows the concrete strain at upper mid-span for various concrete friction angles. As a result, a

reduction in the friction angle reduced the ultimate load in these slabs. This was because the failure of

the specimens was governed by the crushing of the concrete in the compression zone. It can also be

seen in Figure 5.15 that the load-deflection curve for the model with § = 15° was noisier than the

other curves. These spikes represent uncoverged results, which indicates that a lower concrete

friction angle may result in a less stable solution.
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Load vs Deflection Curve for Simply Supported Slabs (varying $)
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Figure 5.15: Load-deflection curve for simply supported slabs (with various <j>)

Concrete Strain at Upper Mid-span vs Deflection for Simply Supported
Slabs (varying <|>)

-3500
Mid-span Deflection (mm)
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Figure 5.16: Relationship between concrete strain and deflection for simply supported slabs (with
various <f>)
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Table 5.1: Influence of friction angle on failure of slab

Frict ion angle. <f> (cleg) Peak load ( k \ ) - i n f l e c t i o n at peak load (mm)

35

30

22.5

15

89.95

84.02

79.74

76.67

14.0

11.5

9.3

8.4

5.3.3 Dilatancy angle

Figure 5.17 shows the load-deflection curves obtained from an analysis of a simply supported slab

with various concrete dilatancy angles. It can be seen that changing the dilatancy angle had a minimal

effect on the load-deflection curves. The stiffness of the structure was not changed and the slabs

reached almost the same load before failure.

Load vs Deflection Curve for Simply Supported Slabs (varying y)
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Figure 5.17: Load-deflection curve for simply supported slabs (with various y/)

5.3.4 Tension softening parameter

Figure 5.18 shows that varying the tension softening parameter (a) had a noticeable impact on the

load-deflection curves. The results are summarised in Table 5.2. A low value for a resulted in a

lower maximum tensile strain and so, it can be seen in Figure 5.18 that the decrease in stiffness
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j

caused by the development of flexural cracks occurred at an earlier stage for lower values of a. The

ultimate load was not greatly affected by the value of a. However, the deflection at ultimate load was

affected, with a lower deflection for slabs with higher a. This implies a stiffer response was achieved

when a higher a value was used. Papers h> Al-Mahaidi and Ghalib (1994), Frantzeskakis and

Theillout (1989) and Gilbert and Warner (1978) have also shown that a has an effect on the stiffness

of the response, but not the ultimate strength.

Table 5.2: Effect of a on load-deflection curve

si drop Deflection'*1 Deflection at peak

0.1

0.3

0.5

0.7

i n s t i l l n e s s ( k \ )

25.9

36.2

43.1

49.1

drop in stiffness

(in m)

0.3

0.5

0.7

0.9

90.2

90.0

88.6

89.3

load (mm)

13.9

13.4

11.1

10.4

Load vs Deflection Curve for Simply Supported Slabs (varying a)
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Figure 5.18: Load-deflection curve for simply supported slabs (with various a)
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5.3.5 Shear retention factor

The effect of the shear retention factor (P) on the load-displacement curve is shown in Figure 5.19. It

can be seen that the value chosen for p had very little influence on the behaviour of the simply

supported slab. The shear retention factor is likely to be more critical in structures that fail as a result

of shear or punching shear.

Load vs Deflection for Simply Supported Slabs (varying p)
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Figure 5.19: Load-deflection curve for simply supported slabs (with various {3)

5.3.6 Tension cut-off criteria

The effect of the tension cut-off criteria (refer to Figure 5.7) and the tensile stength of the concrete

can be seen in Figure 5.20. Both the linear and constant tension cut-off criteria gave similar load-

deflection curves, with a lower tensile strength resulting in a slightly less stiff response. The ultimate

load was not greatly affected by either the tensile strength or the cut-off criteria.
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Figure 5.20: Load-deflection curve for simply supported slabs (with various tension cut-off criteria)

5.3.7 Element type and mesh grading

The effect of the element type and mesh grading on the behaviour of the slabs can be seen in Figure

5.21. This figure shows noticeable variations in behaviour when these parameters were changed. The

use of an 8x2 (coarsest) mesh resulted in a load-deflection curve with a lower stiffness for both the

plane stress and plane strain models. For these two models, the concrete at upper mid-span had net

yet reached its peak stress when the vertical deflection had reached 25mm and the analysis had not yet

diverged (see Figure 5.22). For the other plane stress models with finer meshes, the peak stress had

already been reached at deflections less than 15mm. Experimental results also showed thai ine

concrete had crushed at this deflection. The results indicate that the use of a finer mesh resulted in the

peak stress in the concrete being reached earlier. This is because the finer mesh meant more values of

stress were calculated through the depth of the slab and this allowed a higher value to be calculated at

some points (particularly if the stress gradients were high).

The concrete stresses in the models with plane strain and brick elements reached a higher value than

the plane stress models. For the plane strain models, this was because of the extra confinement given

by the plane strain condition, which allowed the concrete to reach higher stresses and strains. For the

brick models, there are two reasons for the higher stresses in the concrete. Firstly, the concrete was

confined transversely by adjacent elements. Secondly, it can be seen in Figure 5.23 that the concrete

at upper mid-span had reached different strains along the width of the slab, with higher strains in the

centre. At other locations, the concrete strain had not yet reached such a high value and can continue
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to carry load. Therefore, the slab continued to carry load, while the concrete at the centre had

crushed. This behaviour was also seen in the experimental results and obviously cannot be

reproduced in a two dimensional analysis.

The use of brick elements allowed some of the softening behaviour to be reproduced. However,

because of the much greater computational time required, the fact that the unloading behaviour is not

critical to this research and the fact that the unloading behaviour can vary so much in the experiments

from specimen to specimen, it was decided not to use the brick models in this analysis. The results

also indicate that not including the transverse bars in the two-dimensional models made little or no

difference to the solutions.

Load vs Deflection Curve for Simply Supported Slabs (varying element
type and element size)
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— Brick (12x5x3)
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Figure 5.21: Load-deflection curves for simply supported slabs (using various element types and
sizes)
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Stress in concrete at upper midspan vs deflection for simply supported
slabs (varying element type and element size)
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Figure 5.22: Stress in concrete at upper mid-span vs deflection for simply supported slabs (using
various element types and sizes)
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Figure 5.23: Longitudinal concrete strains in brick model
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5.3.8 Iterative scheme

The effect of the solution scheme is shown in Figure 5.24. The Newton-Raphson and Modified

Newton-Raphson iterative schemes were also tried but these solutions diverged well before the

solutions using the other iterative schemes and were therefore disregarded. Each of the solution

schemes plotted gave similar results and it can be concluded that the choice of scheme has little

influence on the stiffness and ultimate load. However, it can be seen that the Crisfield scheme

produced a very noisy curve (as a result of uncoverged solutions), when compared to the curves

produced by other schemes. Table 5.3 summarises the CPU time, I/O time and FILOS file accesses

required for each iterative scheme. These parameters are a measure of the speed and efficiency of the

analysis. Refer to TNO (1998) for descriptions of these terms.

he
HII
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i
§
p
I
I

Load vs Deflection Curve for Simply Supported Slabs (varying the iterative
scheme)
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Figure 5.24: Load-deflection curves for simply supported slabs (using various solution schemes)
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Table 5.3: Comparison of CPU time, I/O time and FILOS file accesses for various iterative schemes
(simply supported slabs)

S c l u ' n u ' A n a l y s i s T \ p c ( P l - t i m e l O t i m e * I-LI O S fi le a c c e s s e s

Constant

BFGS

Broyden

Crisfield

Linear

Non-linear

Linear

Non-linear

Linear

Non-linear

Linear

Non-linear

1.27

869

1.20

461

1.19

455

1.20

788

0.19

118

0.19

87

0.17

90

0.14

124

13

497797

13

345322

13

334690

13

581250

5.3.9 Step size

The effect of the step size is shown in Figure 5.25. The only significant difference was in the stiffness

of the response from the formation of the first flexural crack (A = 0.3mm) up to A = 4mm. Between

these deflections, it can be seen that a smaller step size resulted in a load-deflection curve with a

stiffer secant stiffness (the tangent stiffnesses are similar). However, the effect is slight and does not

affect the overall behaviour of the slab.

'!s
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Load vs Deflection Curve for Simply Supported Slabs (varying step size)
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Figure 5.25: Load-deflection curves for simply supported slabs (using various step sizes)

5.3.10 Maximum iterations each load step

The effect of the maximum number of iterations allowed in each load step is shown in Figure 5.26.

This graph indicates that using a higher number of maximum iterations resulted in a slightly lower

secant stiffness once the specimen had begun to lose stiffness. This is because increasing the

maximum number of iterations allows the out-of-balance force at each load step to be smaller. This

results in a solution that more closely satisfies equilibrium in the system. This behaviour is more

noticeable at later stages of loading because the equilibrium state is numerically more difficult to

achieve when the structure and the materials are behaving non-linearly.
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Load vs Deflection Curve for Simply Supported Slabs (varying maximum
iterations)

no • Maximum iterations = 10
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Figure 5.26: Load-deflection curves for simply supported slabs (varying maximum number of
iterations each load step)

5.3.11 Summary

It was found that the material parameters that had the most influence on the load-deflection curves for

simply supported slabs were the friction angle, tension softening parameter (a) and the tensile

strength of the concrete (f,). The friction angle was the only variable that had an effect on the ultimate

load of the slabs, a and f, affected the stiffness of the load-deflection curves. Within the typical

range of values, a had a greater influence on the response than the tensile strength of the concrete

(compare Figure 5.18 with Figure 5.20).

For this particular problem, the dilatancy angle, shear retention factor and the tension cut-off criteria

had very little effect on the behaviour of the slab.

The type of element had a noticeable impact on the load-deflection curve. In general, the models

using plane strain elements produced a load-deflection curve with a higher stiffness than the models

using plane stress elements. This was because the confinement of the concrete in the z-direction in

the plane strain elements allowed the concrete to reach a higher yield stress than the plane stress

elements. This was not observed in the models using the 8x2 mesh because the concrete at upper

mid-span did not reach the yield stress in these models (for reasons mentioned in Section 5.3.7).

There was little difference in the response observed between the models using the 15x4 and 30x8

meshes. It can be concluded that above a certain level (15x4 in this case), the grading of the rnesh

had little influence on the response of the slab.
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The results from the models using brick elements were found to correlate well with the experimental

results. However, these morals required significantly greater computation time than the 2D models.

Given the fact that the models using 2D plane stress elements also gave reasonably accurate solutions

(when compared to experimental results), it was decided that models using these elements would be

used in this stage of the research program. Plane strain elements were not used because the

confinement in the z-direction allowed the stress in the concrete to reach unrealistically high values.

It was also found that a suitable mesh grading for these models was the 30x8 mesh. Although a 15x4

mesh also compared well with experimental results, the models using a 3'Jx8 mesh did not require

excessively more computation time. Therefore, it was decided to use the finer mesh. The results

using the 8x2 mesh did not compare well witn the experimental results and have not been used.

The iteration scheme, step size and maximum number of iterations per step were found to have lit*'c

influence on the overall behaviour of the structure. Using more maximum iterations resulted in a

smoother response, but had little effect on the ultimate load or the stiffness of the response.

By examining the results of the sensitivity analysis, and comparing these results with the experimental

results, it was decided that the base model originally chosen (see Section 5.3.1) was suitable for the

analysis of the simply supported slabs. This is due to the fact that most of the parameters were found

to have a minimal influence on the behaviour of the slab. In general, there was more variability in the

experimental results than when each of the parameters was varied. Although a slightly smoother

load-deflection curve was obtained by using smaller step sizes and more iterations per step, the slight

improvement does not justify the additional computation time required.

In summary, the physical characteristics of the model were:

• Plane stress elements with a 30x8 mesh

• Drucker-Prager yield criterion for concrete in compression with a friction angle (4) of 35° and a

dilatancy angle (\|/) of 12.6°. The shape of the concrete base curve shown previously in Figure

5.13 was used. The concrete had a compressive strength of 32MPa and an initial elastic modulus

of25000MPa.

• Constant tension cut-off criteria with f, = 2.26MPa

• Linear tension softening with tension softening parameter (a) = 0.1

• Constant shear retention with shear retention factor (P) = 0.2

The characteristics of the solution procedure were:

• Constant iterative scheme
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• A step size of G.I mm with a maximum of 50 iterations per step

5.4 Sensitivity analysis of modelling parameters for restrained slabs

This section presents a sensitivity analysis of the parameters used in the finite element modelling of

the restrained slabs. Its purpose is to determine which modelling parameters have the most influence

on the behaviour of slabs where compressive membrane action exists. The restrained slab chosen for

the parametric analysis was the pinned ended slab, horizontally restrained at the bottom surface

(140mm depth). This slab was chosen because the highest compressive membrane forces existed in

this slab and would provide a good contrast with the simply supposed slabs. The mesh used for the

sensitivity analysis of the simply supported slabs was also used here, except that the steel plates at the

ends of the slab were also modelled. This helped to prevent local crushing at the slab ends, where the

horizontal restraint was applied to the slab. The stiffness of the horizontal restraint, which was

modelled using a linear translational spring, was varied in the parametric study.

5.4.1 Friction angle

The effect of the concrete friction angle on the load-deflection behaviour can be seen in Figure 5.27.

It can be seen that an increased friction angle resulted in a higher ultimate load but had minimal effect

on the stiffness of the slab. This was because the concrete with a higher friction angle reached higher

strain (and stress) values before it failed (see Figure 5.28).

Load vs Deflection Curve for Slabs with Pinned Ends at 140mm depth
(varying <}>)
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Figure 5.27: Load-deflection curve for slabs with pinned ends at 140mm depth (with various <j>)
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Concrete Strain at Upper Mid-span vs Deflection for Slabs with Pinned
Ends at 140mm depth (varying $)
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Figure 5.28: Relationship between concrete strain and deflection for slabs with pinned ends at
140mm depth (with various </>)

5.4.2 Dilatancy angle

The effect of the concrete dilatancy angle on the load-deflection behaviour of the restrained slabs is

shown in Figure 5.29. Similar to the simply supported slabs, it can be seen that the dilatancy angle

had minimal effect on the load-deflection behaviour of the horizontally restrained slabs.

1
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Load vs Deflection Curve for Slabs with Pinned Ends at 140mm depth
(varying v)
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Figure 5.29: Load-deflection curve for slabs with pinned ends at 140mm depth (with various y/)

5.4.3 Tension softening parameter

The effect of the tension softening parameter (a), on the load-deflection curve is shown in Figure

5.30. It can be seen that the initial drop in stiffness due to the formation of tensile flexural cracks

occurred at a higher load and deflection when a higher value of a was used. This was similar to the

behaviour observed in the simply supported slabs. However, unlike the simply supported slabs, the

deflection when the ultimate load was reached in the horizontally restrained slabs was not greatly

effected by the value of a (compare with Figure 5.18). This was because the failure mechanism of

this slab was different to the simply supported slab. Prior to failure, many more flexural cracks had

developed in the simply supported slab than in the restrained slab. Therefore, the tension softening

parameter would have had a greater effect in the simply supported slabs.
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Load vs Deflection Curve for Slabs with Pinned Ends at 140mm depth
(varying a)
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Figure 5.30: Load-deflection curve for slabs with pinned ends at 140mm depth (with various a)

5.4.4 Shear retention factor

The effect of the concrete shear retention factor (P) is shown in Figure 5.31. This shows that the shear

retention factor did not have a significant effect on the behaviour of the restrained slabs (similar to the

simply supported slabs).

Load vs Deflection Curve for Slabs with Pinned Ends at 140mm depth
(varying p)
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Figure 5.31: Load-deflection curve for slabs with pinned ends at 140mm depth (with various fi)
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5.4.5 Tension cut-off criteria

Figure 5.32 shows the effect of the tension cut-off criteria on the load-deflection relationship of the

slab restrained at 140mm depth. Table 5.4 summarises the relationship between the ultimate load and

the deflection at ultimate load for each of the criteria used. Figure 5.32 shows that the stiffness of the

slab was not greatly affected by the tension cut-off criteria used. However, it can be seem that when

the tensile strength of the concrete decreased, the ultimate load was higher and occurred at a higher

deflection. A possible reason for this is that the higher tensile strength increased the rate at which the

concrete softens after cracking (Figure 5.33). This was true because the ultimate strain, a e " , was

kept constant for each of the analyses. Therefore, because the concrete loses its strength at a higher

rate, instabilities may have developed in the solution and this may have caused the solution to diverge

at an earlier load step. This behaviour occurred for these analyses and not the models of the simply

supported slabs because of the different failure mechanisms. The simply supported slabs failed as a

result of crushing at upper mid-span. Therefore, the tensile behaviour of the concrete was less

important. These slabs failed as a result of a large crack developing from upper mid-span towards the

supports (See Figure 4.10). Therefore, the tensile properties of the concrete were likely to be more of

a factor in the failure of the slab.

Load vs Deflection Curve for Slabs with Pinned Ends at 140mm depth
{varying the tension cut-off criteria)
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Figure 5.32: Load-deflection curve for slabs with pinned ends at 140mm depth (with various tension
cut-off criteria)
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Table 5.4: Ultimate load and deflection at ultimate load for various tension cut-off criteria

•Tension cut-off criterion Ufiuiatc load (kN) Deflection oadjnwn)

Linear, f, = 3.39MPa

Constant, f, = 3.39MPa

Linear, ft = 2.83MPa

Constant, f, = 2.83MPa

Linear, ft = 2.26MPa

Constant, f, = 2.26Mpa

192.10

194.03

195.06

195.59

196.78

198.72

6.3

6.4

6.7

6.5

7.0

6.9

A

Higher ft

Lower f t

cr

ae u

Figure 5.33: Effect of concrete tensile strength on tension softening curve

5.4.6 Element type and mesh grading

Figure 5.34 shows the effect of the element type and mesh grading on the load-deflection behaviour of

the finite element models of restrained slabs. The results are summarised in Table 5.5
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Table 5.5: Ultimate load and deflection at ultimate load for various element types and mesh gradings

N

* •

H
1
I

it

I.lement i\ pc mesh grading I Itimatr |,<>ad{k\) DefToctioii at ultimate load (mm)

Plane stress (30x8)

Plane stress (15x4)

Plane stress (8x2)

Plane strain (30x8)

Plane strain (15x4)

Plane strain (8x2)

Brick (16x7x4)

Brick (12x5x3)

191.27

176.43

267.30

353.59

361.41

458.9

269.76

192.26

6.4

6.6

10.2

14.7

15.6

25.0

9.0

5.8

The most noticeable feature of Figure 5.34 is the effect the use of plane strain elements has on the

ultimate load and deflection of the slabs. The plane strain condition confines the concrete in the

transverse direction, allowing the concrete to reach very high stresses before it fails. As a result, the

peak load is much higher than that obtained using plane stress or brick elements. The use of brick

models resulted in a solution that lay between the plane stress and plane strain models. Brick

elements allow some transverse confining stresses to develop, increasing the load-carrying capacity of

the concrete at upper mid-span above that in the plane stress models. Obviously, it does not reach the

confining stress that exists in a plane strain model.

The effect of mesh grading that was seen in the simply supported slabs can also be seen here. The use

of a finer mesh caused the concrete strain at upper mid-span to be higher for equal deflections (see

Figure 5.35). As previously mentioned, this was because there were more elements in the depth of the

slab. Therefore, more values of strain were calculated through the depth and the extreme values were

likely to be higher. This caused the slabs with a finer mesh to reach the ultimate load at a lower

deflection (see Figure 5.34) because the concrete at upper mid-span reached its maximum capacity

earlier. Figure 5.34 indicates the stiffness of the slab was not greatly affected by the element type or

the mesh grading.
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Load vs Deflection Curves for Slabs with Pinned Ends at 140mm depth
(varying element type and mesh grading)
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Figure 5.34: Load-deflection curve for slabs with pinned ends at 140mm depth (with various element
types and mesh grading)

Concrete Strain at Upper Mid-span vs Deflection (varying element type and
mesh grading)
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Figure 5.35: Concrete strain at upper mid-span vs mid-span deflection for slabs with pinned ends at
140mm depth (with various element types and mesh grading)

5.4.7 Iterative scheme

Figure 5.36 indicates that the choice of the iterative scheme has no significance on the behaviour of

the structure (ultimate load or stiffness). The CPU time, I/O time and the number of FILOS file
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accesses is summarised in Table 5.6. The Newton-Raphson and Modified Newton-Raphson schemes

were also tried but these solutions diverged well before the solutions using the other iterative schemes

and were therefore disregarded. This also occurred when these iteration schemes were used in the

analyses of the simply supported slabs.

Load vs Deflection Curves for Slabs with Pinned Ends at 140mm depth
(varying iterative scheme)
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Figure 5.36: Load-deflection curve for slabs with pinned ends at 140mm depth (varying the iterative
scheme)

Table 5.6: Comparison of CPU time, I/O time and FILOSfile accesses for various iterative schemes
(pinned ended slabs at 140mm depth)

S c h e m e . V n a h s i s 1 \ p e ( P I t i m e ( s e f K j / O t i m e ( s e c ) H I . O S file a c c e s s e s

Constant

BFGS

Broyden

Crisfield

Linear

Non-linear

Linear

Non-linear

Linear

Non-linear

Linear

Non-linear

1.33

379

1.27

211

1.20

188

1.23

214

0.16

49

0.19

36

0.17

35

0.19

35

13

203179

13

150074

13

133979

13

148641
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5.4.8 Step size

The effect of the step size on the finite element solution is shown in Figure 5.37. This clearly

indicates that the step size has very little influence on the load-deflection behaviour of the slabs.

Load vs Deflection Curve for Slabs with Pinned Ends at 140mm depth
(varying step size)
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Figure 5.37: Load-deflection curve for slabs with pinned ends at 140mm depth (varying the step size)

5.4.9 Maximum iterations each load step

The effect of the maximum number of iterations in each load seep is shown in Figure 5.38. This

figure indicates that increasing the maximum number of iterations in each step caused the finite

element model to fail at a slightly lower deflection. This is because a higher number of iterations

increases the possibility of divergence at any given load step. However, Figure 5.38 shows that the

overall effect is small and the deflection and ultimate load at which the solution diverges will still be

similar (provided the load step is not too large).
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Load vs Deflection Curve for Slabs with Pinned Ends at 140mm depth
(varying maximum iterations)
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Figure 5.38: Load-deflection curve for slabs with pinned ends at 140mm depth (varying the maximum
iterations per step)

5.4.10 Horizontal restraint stiffness

The effect of the horizontal restraint stiffness on the load-deflection behaviour of the slab restrained at

140mm depth is shown in Figure 5.39. The load carried by each slab at a 3mm vertical deflection and

the bending stiffness of the slab is summarised in Table 5.7. This relationship can be seen in Figure

5.40. It can be seen there is a noticeable increase in the strength and bending stiffness of the slab as

the horizontal restraint stiffness increases. However, this increase becomes less as the restraint

stiffness increases. In a practical sense, these results indicate that above a certain limit, any further

increase in the restraint stiffness has a negligible influence on the amount of compressive membrane

action that develops in the slab. This limit is determined by the compressive strength of the concrete.
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Load vs Deflection Curve for Slabs with Pinned Ends at 140mm depth
(varying the horizontal restraint stiffness)
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Figure 5.39: Load-deflection curve for slabs with pinned ends at 140mm depth (varying the horizontal
restraint stiffness)

Table 5.7: Effect of restraint stiffness on the bending stiffness of the slab

Horizontal restraint stiffrress (kYmni) Bending stiffness of slab (kVmm)

5000

2500

1000

500

250

100

0 (simply supported)

229.85

201.80

152.01

115.76

91.35

70.25

53.45

76.62

67.27

50.67

38.59

30.45

23.42

17.82
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Bending stiffness of slab vs horizontal restraint stiffness

1000 2000 3000 4000

Horizontal restraint stiffness (kN/mm)

5000 6000

Figure 5.40: Effect of horizontal restraint stiffness on the bending stiffness of the slab

5.4.11 Summary

The same parameters that influenced the behaviour of the models cf the simply supported slabs had

similar influences on the restrained slabs. When the friction angle of the concrete was increased, the

ultimate load of the slab also increased, without any change to the stiffness. The tension softening

parameter (a) affected the load and deflection at which flexural cracks developed in the slab. A

higher value of a caused the slab to crack later and hence, the drop in stiffness in the load-deflection

curve occurred later. An increase in the tensile strength in the tension cut-off criteria caused the

analysis to diverge at an earlier load step. The reason for this was discussed previously in Section

5.4.5. The dilatancy angle and shear retention factor did not have a significant influence on the slab's

behaviour.

The element type and mesh grading had more of an influence on the strength than the stiffness of the

slabs. This was due to the level of confinement that existed for the concrete. For the plane stress

elements, there was no confinement in the z-direction. This meant the concrete stress did not reach as

high a value as in the plane strain and brick models. As a result, the peak load was also lower. The

highest peak loads occurred for the plane strain models where there was full confinement in the z-

direction. Also, the use of a finer mesh caused the peak load to be reached at a lower deflection. This

was discussed in Section 5.4.6.
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The iterative scheme and step size had no influence on th^ strength or stiffness of the slab, while the

maximum number of iterations in each load step had a slight influence on when the solution diverged.

More iterations increased the possibility of divergence at any given load step, hence the solution

diverged earlier when there were more maximum iterations.

As expected, an increase in the horizontal restraint stiffness increased the strength and stiffness of the

slab. This effect became less as the restraint stiffness increased (Figure 5.40).

By comparing the results from the sensitivity analysis with the experimental results, it was found that

the values adopted for the various parameters for the analysis of the simply supported slabs were also

suitable for the analysis of the restrained slabs. These values, along with the value adopted for the

horizontal restraint stiffness, are summarised below:

• Plane stress elements with a 30x8 mesh

• Drucker-Prager yield criterion for concrete in compression with a friction angle (<j>) of 35° and a

dilatancy angle (\|/) of 12.6°. The shape of the concrete base curve is the same as that use for the

simply supported slabs (see Figure 5.13). The concrete had a compressive strength of 34MPa and

an initial elastic modulus of 25000MPa.

• Constant tension cut-off criteria with ft = 2.26MPa

• Linear tension softening with tension softening parameter (a) = 0.1

• Constant shear retention with shear retention factor (P) = 0.2

• Horizontal restraint stiffness = 500kN/mm

• Constant iterative scheme

• A step size of 0.1 mm with a maximum of 50 iterations per step

5.5 Comparison between experimental and analytical/FE results for simply supported slabs

5.5.1 Load-deflection

A comparison of the experimental load-deflection curves and the curve obtained from finite element

modelling is shown in Figure 5.41.
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Load vs deflection (comparison between experimental results and finite
element modelling)

120

— TestSS-A
— TestSS-B

Tesi SS-C
— NLFEA

10 15 20 25

Mid-span deflection (mm)

30 35 40

Figure 5.41: Load-deflection curves (comparison between experimental results and finite element
modelling)

It can be seen that the FE model reproduced the experimental behaviour very well. The ultimate load

was slightly underestimated for two of the tests but the deflection at ultimate load was very close.

The finite element model did not reproduce the unloading behaviour observed in the experiments.

This was due to the difficulty in obtaining converged and accurate solutions after the concrete at

upper mid-span had failed. This caused a reduction in the stiffness of the slab, creating instabilities in

the solution. Hence, convergence becomes difficult to attain. However, the fact that the unloading

behaviour was not reproduced is not critical in this analysis since the ultimate load is the primary

focus of this research.

5.5.2 Steel and concrete strains

A comparison between the steel strain at bottom mid-span obtained in the experiments and in the FE

analysis are shown in Figure 5.42. Initially, the finite element model reproduced the experimental

behaviour very well. However, at higher deflections, the finite element model underestimated the

strain in the steel. Possible reasons for this include:

• The reduced cross-sectional area of the milled bars was not taken into account in the finite

element model.

• Because the steel had yielded in the experiment, the strain gauge readings may not be entirely

accurate.
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Strain in bottom steel at mid-span (comparsion between experimental
results and finite element modelling)

30000
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— TestSS-B
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-5000 J

Mid-span deflection (mm)
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Figure 5.42: Strain in bottom steel at mid-span (comparison between experimental results and finite
element modelling)

The strains obtained in the concrete at upper mid-span in the finite element model are compared with

experimental results in Figure 5.43. Initially, there was excellent comparison between the finite

element model and the experimental results. At later stages of loading, the finite element model

underestimated the concrete strain measured in the experiments. This was a result of the confinement

of the concrete under the loading plate in the experimental setup and was discussed previously in

Section 3.4.3. The finite element model predicted the strains when there was no confinement of the

concrete, hence the ultimate strain achieved was approximately 0.003 (the value usually assumed for

normal strength concrete).
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Strain in concrete at upper mid-span (comparison between experimental
results and finite element modelling)
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Figure 5.43: Strain in concrete at upper mid-span (comparison between experimental results and
finite element modelling)

5.5.3 End rotations/neutral axis positions

Figure 5.44 compares the end rotations obtained from the experiments with those obtained from the

finite element analysis. This shows excellent agreement between the experiments and the FE results.

Figure 5.45 compares the neutral axis positions calculated from the test results with those obtained

from a finite element analysis. Once again, excellent agreement was achieved.
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End rotation vs deflection (comparison between experimental results and
finite element modelling)
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Figure 5.44: End rotation vs mid-span deflection for simply supported slabs

Neutral axis position at slab ends vs deflection (comparison between
experimental results and finite element modelling)
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Figure 5.45: Neutral axis position vs mid-span deflection for simply supported slabs

5.5.4 Moment-curvature

Figure 5.46 shows a comparison of the experimental and theoretical moment-curvature relationship of

the simply supported slabs. The theoretical moment-curvature relationship was obtained using finite

element modelling and using the program EMPHI, while the experimental curvature was calculated
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from the strain in the bottom steel, the strain in the concrete on the top surface and the effective depth.

Because the compressive strains on the top surface of the concreie slab were localised near mid-span

(where the flexural cracks were), the strain gauge on the top concrete surface had to have a large

gauge length so that the strain could be averaged over a greater length. The curvature from the finite

element model was also calculated from the strain in the bottom steel, the strain in the concrete on the

top surface and the effective depth of the section. As shown in Figure 5.46, excellent agreement was

obtained between the experimental and theoretical results.

Moment vs curvature (comparison between experimental results, finite
element modelling and EMPHI analysis)

3 0 !

25-

_ 20 H
E

? 15 H

o

— TestSS-A
— TestSS-B

Test SS-C
—NLFEA
— EMPHI Analysis

0.00000 0.00005 0.00010 0.00015 0.00020

Curvature (mm"1)

0.00025 0.00030

Figure 5.46: Moment vs curvature for simply supported slabs

5.5.5 Failure mechanism

The observed failure mechanism for the simply supported slabs in the experiments was the crushing

of the concrete in compression. From the finite element analysis, the plasticised regions in the slab (at

A = 13.5mm) were plotted (see Figure 5.47) and it can be seen that just before failure, the concrete in

the compression zone has undergone large plastic strains. This indicates that the analysis correctly

modelled the experimental failure of the specimens.
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Figure 5.47: Plasticised regions from finite element modelling

5.5.6 Summary

It can be concluded that the finite element model predicted the load-deflection behaviour, steel strains

and concrete strains of the experimental simply supported slabs very well. Minor discrepancies were

observed but these can be explained by examining the differences between the finite element model

and the experimental test set-up (such as the effect of concrete confinement under the loading plate in

the experiment). The correct failure mode was also reproduced in the finite element model. The end

rotations and neutral axis positions compare excellently when plotted against mid-span deflection.

This is because these relationships are only dependent on the geometry of the structure's deflections.

The material properties do not greatly influence these results.

5.6 Comparison between experimental and analytical/FE results for restrained slabs

5.6.1 Load-deflection

Figure 5.48 compares the load-deflection curves obtained from the finite element models with those

obtained from the experiments for each of the restrained slabs. The lines with the discrete points

represent the steps of the finite element analysis. The thin lines represent typical experimental load-
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deflection curves. In general, the finite element models predicted the strength and stiffness of the

slabs reasonably well. There are a few minor discrepancies (the stiffness of the PP105 slab was

overestimated and the strength of the PP140 slab was underestimated) but in general, there is good

agreement between the two sets of results. The obvious reasons for the discrepancies are that even

though the slabs were designed to act as one-way slabs, lateral effects (which cannot be taken into

account when using plane stress elements) still occurred in the tests. This can be seen in the strains in

the transverse reinforcement (Figure 4.28 to Figure 4.31). The other reason for discrepancies was the

confinement of the concrete under the loading piate in the experiment, which was not taken into

account in the finite element models.

Comparison of load-deflection curves for restrained slabs

250 n

— Pin-pin (140mm depth)

— Pin-pin (105mm depth)
Pin-pin (70mm depth)

— Pin-pin (50mm depth)
—Simply Supported

6 8 10 12

Mid-span deflection (mm)

14 16 18

Figure 5.48: Comparison of load-deflection curves for restrained slabs

5.6.2 Concrete and steel strains

The strains in the bottom steel at mid-span are shown in Figure 5.49. It can be seen that initially, the

finite element analysis reproduced the experimental results well for each restraint condition. For later

stages of loading, the finite element analysis still predicted the strain response in specimens PP140

and PP105 reasonably well. These were the specimens that failed in a brittle manner. For the other

three restraint conditions, where the slabs failed in a ductile manner, the finite element modelling

significantly underestimated the strain in the steel. The reasons for this were discussed previously in

Section 5.5.2.
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Figure 5.49: Strain in bottom steel vs deflection curves for slabs with different restraint conditions
(dotted line: FE, plain line: experimental)

Similar graphs comparing the concrete strain at upper mid-span are shown in Figure 5.50. In all

cases, the finite element models underestimated the strain in the concrete at this location. This was

likely due to the effect of the concrete confinement under the loading plate (as mentioned in Section

3.4.3).

i
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Figure 5.50: Strain in concrete at upper mid-span vs deflection curves for slabs with different
restraint conditions (dotted line: FE, plain line: experimental)

5.6.3 Restraining force

The restraining force obtained from the finite element analyses is compared to the experimental

results in Figure 5.51. Despite the fact that the rate of increase of the restraining force in the finite

element models was higher than in the experiment in all cases, it can be seen that the results compare

reasonably well. In particular, it can be seen that as the depth of the restraint increased, the rate at

which the restraining force increased was also higher. The finite element analyses also showed a
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linear relationship between the restraining force and the vertical deflection. These trends were also

observed in the experimental results.

Restraining force vs mid-span deflection

300 -,
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£
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Pin-pin (70mm depth)
— Pin-pin (50mm depth)

4 6

Mid-span deflection (mm)

10

Figure 5.51: Restraining force vs deflection for slabs with different end restraint (dotted line: FE,
plain line: experimental)

5.6.4 End rotations

The end rotations obtained in the finite element analyses are compared to the experimental results in

Figure 5.52. It can be seen that for all cases, the finite element analysis reproduced the experimental

behaviour very well.
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5.6.5 Crack patterns/failure mechanisms

The crack patterns obtained in the finite element models are shown in Figure 5.53 to Figure 5.57.

These figures show half of a slab, with mid-span on the right of each figure. Similar to the

experimental results, there is a distinct difference in the failure mechanism depending on the restraint

condition. Figure 5.53 indicates the development of many flexural cracks in the simply supported

slab. For the slabs restrained at 50mm depth (Figure 5.54) and 70mm depth (Figure 5.55) the crack
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patterns were similar to the simply supported slab, since they all failed as a result of concrete crushing

under the load point. In comparison, the crack patterns for the slabs restrained at 105mm depth

(Figure 5.56) and 140mm depth (Figure 5.57) show the formation of a large crack, running from the

load point towards the slab end. It can also be seen that the number of flexural cracks at failure

decreases as the depth of the restraint increases. This was due to the compressive membrane action

mechanism increasing the stiffness of the response. Hence, less flexural cracks developed in these

slabs. These crack patterns can be compared with the experimental crack patterns shown in Figure

4.10 and Figure 4.12, which indicates that the correct failure mechanisms have been reproduced in the

finite element analyses.
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Figure 5.53: Crack pattern obtained from finite element model of simply supported slab
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Figure 5.54: Crack pattern obtained from finite element model of slab restrained at 50mm depth
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Figure 5.55: Crack pattern obtained from finite element model of slab restrained at 70mm depth
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Figure 5.57: Crack pattern obtained from finite element model of slab restrained at 140mm depth

5.6.6 Summary

It can be concluded that the finite element models predicted the behaviour of the restrained slabs well.

The important aspects of the experimental load-deflection behaviour were reproduced, such as the

increasing strength and stiffness as the restraint moved closer to the bottom surface. The ductile and

brittle failures were also reproduced, and the crack patterns at failure matched those of the

experimental slabs. Discrepancies between the experimental behaviour and the finite element model

would obviously be due to the fact that three-dimensional behaviour and the effect of the loading plate

could not be taken into account in the plane stress models. This was discussed in Section 5.6.1. As

was the case with the simply supported slabs, the end rotations obtained from the finite element

analyses compared very well with the experimental slabs.
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6 EXPERIMENTAL PROGRAM FOR SLABS WITH EDGE BEAMS

6.1 Introduction

This stage of the experimental program consisted of ultimate load tests on a series of one-way slabs

with edge beams. Five specimens were fabricated, each with slightly different surrounds (ie. edge

beam size, presence of an adjacent slab). The slab itself was kept identical in all the specimens so that

the effect of the boundary condition could be properly evaluated. Two types of tests were performed

on the specimens. Punching shear failure tests were performed at mid-span and at quarter-span of the

specimens, as well as flexural failure tests on 300mm wide slab strips. The slab strips were formed by

making saw cuts in the slab. It was expected that the ultimate load attained in the tests would be

dependent on the boundary condition of the slab and be enhanced by the presence of compressive

membrane action.

An example of a specimen in this series of tests is shown in Figure 6.1.

Gap between s l a b /
and diaphragm ^

One-way slab
(spanning
transversely)

Edge beams

Transverse end
diaphragms One-way slab

(spanning transversely)

Top isometric view Bottom isometric view

Figure 6.1: Example of slab with edge beam specimen

Ths purpose of the edge beams and end diaphragms was to provide the one-way slab with a degree of

rotational and horizontal translational restraint. This restraint would induce membrane forces within

the slab and increase its load-carrying capacity above the value that would be obtained from

calculations using normal flexural methods. To ensure the slab carried the load in one-way action, a

gap was formed between the slab and the end diaphragm. The gap was sufficiently large to ensure

that slab deflections did not cause contact to be made between the two surfaces.
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I

6.2 Design of test specimens

6.2.1 Scaling of specimens

The specimens in this series of tests were scaled to make the laboratory testing physically viable. The

dimensions of a typical beam-and-slab bridge were scaled to 50% and these dimensions were slightly

adjusted in the final dimensions chosen for the specimens. The typical bridge chosen was the Old

Kiewa Valley Highway Bridge because it had been investigated during previous research at Monash

University. Table 6.1 summarises the scaling of the dimensions of test specimens.

Table 6.1: Scaling of laboratory specimens of slabs with edge beams

Parameter <al beam-

arul-slah

Actual \ alue in test

specimens

Span(m)

Beam depth (mm)

Slab span between beams (mm)

Web width (mm)

Slab thickness/flange thickness

(mm)

hriu»c

7.5

610

1200

280

150

3.75

305

600

140

75

3.00

305

600

130-200

75

6.2.2 Specimen details

The details of the specimens are shown in Table 6.2. A total of five specimens were fabricated. The

beam span was kept constant, while the edge beam width was varied from 130 to 200mm. Two

specimens also had a 300mm wide adjacent slab.

Table 6.2: Specimen details

Specimen

SI

S2

S3

S4

S5

Beam span (mm)

3000

3000

3000

3000

3000

Kdge beam width (mm)

130

165

200

130

200

Adjacent slab

No

No

No

Yes

Yes
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6.2.3 Slab reinforcement

The slab reinforcement consisted of a mesh of 6mm diameter plain bars at spacings of 75mm in both

directions. The top layer and the bottom layer of reinforcement were the same. The transverse bars in

both layers extended into the beam to assist in the moment transfer between the slab ends and the

edge beams.

The reinforcement ratio, p, was equal to 0.006 and the moment capacity of the section was calculated

using EMPHI to be 13.3kNm for a lm wide strip. A concrete strength of 25MPa (the strength

specified in the mix design) and a yield strength for the steel of 660MPa (an approximate value taken

from tensile tests) were assumed in these calculations. Assuming the ends of the strip were simply

supported, this was equivalent to a load of 89kN applied at the centreline of the lm wide strip (or

27kN for a 300mm wide strip). Also, punching shear calculations showed the punching capacity

based on AS3600 (Standards Australia (2001)) was approximately 97kN for a loaded area of

200x100mm. With the presence of compressive membrane action, both of these values can be

expected to increase.

6.2.4 Beam reinforcement

The reinforcement in the beam was designed according to AS3600 (Standards Australia (2001)). To

ensure the specimens failed in the slab rather than the edge beams, it was assumed that each beam

would resist half of a central point load of 200kN. This is much higher than the point load mentioned

in Section 6.2.3 and would still be higher than the failure load enhanced by compressive membrane

action. Therefore, each beam was required to withstand a centrally applied load of 1 OOkN, which was

equivalent to a design moment of 75kNm (with the conservative assumption that the ends of the beam

were simply supported).

The reinforcement in each edge beam consisted of two 24mm diameter deformed bars at the bottom

and two 12mm diameter deformed bars at the top. The reinforcement ratio, neutral axis depth and

ultimate moment are summarised in Table 6.3.

Table 6.3: Summary of section parameters

Beam width = 130mm Beam width = Homm Beam -width = 200mm

p

dn (mm)

Mu(kNm)

0.019

76.1

79.9

0.015

62.3

81.5

0.013

53.3

82.7
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It can be seen in Table 6.3 that the ultimate moment of each section is greater than the design moment

(75kNm). A typical cross-section, showing both the slab reinforcement and the beam reinforcement

is biiown in Figure 6.2.
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Figure 6.2: Cross-section of typical specimen

The shear and torsional reinforcement in the edge beams consisted of 6mm diameter stirrups, spaced

at 150mm. Calculations showed that a 190mm spacing was sufficient but a 150mm spacing was

chosen for simplicity. Longitudinal torsional reinforcement was also required in the design, hence the

use of the 12mm diameter bars in the top corners (as previously mentioned). Another requirement to

satisfy the torsional design of the edge beams was for the stirrups to be closed.

6.2.5 Diaphragm reinforcement

The reinforcement details in the beam were also used in the diaphragm. The purpose of the

diaphragm reinforcement is twofold:

• To minimise any bending that may < ccur in the diaphragm.

• To withstand any tension forces that may develop in the diaphragm. These tension forces would

exist to balance the compressive membrane forces in the slab.

Figure 6.3 shows the long-section of a typical specimen. This figure shows the details of the

diaphragm reinforcement, along with the location of the stirrups in the edge beam.
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Figure 6.3: Long-section of typical specimen

6.2.6 Fabrication

Fabrication of the specimens is shown in Figure 6.4 to Figure 6.6. Due to space limitations, a

maximum of two specimens were fabricated at once, and a total of three concrete pours were required.

As previously mentioned, 300mm wide slab strips were also formed in the specimens by making cuts

through the slab. These cuts are shown in Figure 6.7.

Figure 6.4: Reinforcement cage
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Figure 6.5: Reinforcement cage (close-up of one end)

Figure 6.6: Specimens ready for concrete pour
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Figure 6.7: Smv cuts in specimen to form slab strips

6.3 Material properties

6.3.1 Steel reinforcement

A number of different bar sizes were used as the reinforcement in the test specimens. 24mm diameter

deformed bar was used for the bottom longitudinal reinforcement in the beams and diaphragms, while

12mm diameter deformed bar was used as the top longitudinal reinforcement. The slab mesh

consisted of 6mm plain wire at 75mm spacing.

Tensile tests were performed on samples of these bars and the results are shown below.

6.3.1.! 24mm diameter deformed bar

Three tensile tests were performed on samples of these bars and they all produced consistent results.

The average yield stress was 571.2MPa and the average ultimate tensile capacity was 667.6MPa. All

the bars displayed a definite yield point, with a yield plateau follov/ed by a strain-hardening region. A

typical stress-strain curve is shown in Figure 6.8.

6.3.1.2 12mm diameter deformed bar

Three tensile tests were performed on samples of the 12mm deformed bar. The average yield stress

was found to be 523.1MPa and the average ultimate tensile capacity was 597.6MPa. As with the
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24mm diameter bars, these bars also displayed a distinct yield point and a yield plateau, followed by a

region of strain-hardening. A typical stress-strain curve for these bars is shown in Figure 6.9.

6.3.1.3 6mm diameter plain wire

Tensile tests were also performed on the 6mm plain bar used for the mesh. Three specimens were

tested and an average ultimate capacity of 693.8MPa was obtained. The 0.2% proof stress was

approximately 660MPa. The stress-strain curves did not display a distinct yield point (see Figure

6.10).

6.3.1.4 Steel used for stirrups

Tensile tests were performed on samples of the plain bar (6mm diameter) used for the stirrups. These

bars were not gauged, so only the ultimate tensile strength was determined. The average value of fu

was found to be 537.3MPa.

Typical Stress-Strain Curve for 24mm diameter deformed bar

CO

- 1 -1 1 1

10000 20000 30000 40000 50000 60000 70000 80000
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Figure 6.8: Typical stress-strain curve for 24mm deformed bar
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Typical Stress-Strain Curve for 12mm diameter deformed bar
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Figure 6.9: Typical stress-strain curve for 12mm deformed bar

Typical Stress-Strain Curve for 6mm diameter plain bar
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Figure 6.10: Typical stress-strain curve for 6mm plain bar

The specimens in this series were fabricated in a series of pours. The specimens that were fabricated

in each pour were chosen to minimise formwork costs and to simplify the rebuilding of the formwork.
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The mix design used in all of the pours is shown in Table 6.4. Because of the separate pours, the

various specimens had different concrete strengths. This is summarised in Figure 6.11.

Table 6.4: Mix design

Stivnuth (.rack-(MPa a 28 davs)

Max. \u»iv<»H-te Si/o (mm)

Nominal Slumj

Mix l \ p c to \SI3" ()
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\> V Ratio

25

14

0.69
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Figure 6.11: Compressive strength of concrete cylinders

6.4 Test procedure

A number of different tests were performed on the specimens. These were:

1. Punching failure tests at mid-span
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2. Punching failure tests at quarter-span

3. Flexural failure tests on slab strips. These strips were fabricated by cutting the slab into strips

(Figure 6.7). The strips were tested across their width, simulating the tests performed in the first

series of one-way slabs

; is illustrated in Figure 6.12, which shows where theThe location of the loaded area on the specimens o ,

slab was loaded on specimens 'S I ' and 'S2' for each test. The load positions in tests on specimens

'S3', 'S4' and 'S5' were the same as for specimen 'S2'.
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Figure 6.12: Location of loaded areas on specimens 'SI' & 'S2'

The specimens were tested under displacement control. The displacement rate used for test 'S3',

which was the first test carried out, was 0.2mm/min. However, due to the excessive duration of this
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test, the loading rate for all other tests was increased to 0.4mm/min. The loading was paused a

number of times during the tests so that the specimens could be examined closely for cracks that may

have developed. The loading was not paused when the specimen approached failure.

The date when each of the tests was carried out, and the age of the concrete at the time of the test are

shown in Table 6.5.
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Table 6.5: Test dates of specimens

t

Specimen

SI

SI

SI

SI

SI

SI

SI

S2

S2

S2

S2

S3

S3

S3

S3

S4

S4

S4

S4

S5

S3

S5

S5

I \pe of failure

Flexural

Flexural

Flexural

Flexural

Flexural

Flexural

Flexural

Punching

Punching

Flexural

Flexural

Punching

Punching

Flexural

Flexural

Punching

Punching

Flexural

Flexural

Punching

Punching

Flexural

Flexural

Date of test

30/9/02

7/10/02

4/10/02

3/10/02

9/10/02

9/10/02

1/10/02

11/7/02

17/7/02

7/8/02

7/8/02

23/4/02

3/6/02

19/6/02

19/6/02

23/7/02

30/7/02

26/9/02

26/9/02

2/5/02

23/5/02

26/6/02

26/6/02

Age of concrete (days)

82

89

86

85

91

91

83

92

98

119

119

50

91

107

107

104

111

169

169

59

80

114

114

Designation

SIFa

SIFb

SIPc

SIFd

SIFe

SIFf

SIFg

S2

S2b

S2Fa

S2Fb

S3

S3b

S3Fa

S3Fb

S4

S4b

S4Fa

S4Fb

S5

S5b

S5Fa

S5Fb

210



Experimental program for slabs with edge beams

r-tj

:1

6.5 Test set-up

6.5.1 Vertical reaction frame " i d supports

The test set-up for this series of tests consisted of a vertical reaction frame (for the hydraulic jack to

react against) and supports for the specimens to rest upon. The maximum width of the specimens was

1.6m. This was greater than th:*. width of the one-way slab specimens, so the vertical reaction frame

that was used in those tests had to be changed to have a longer cross-beam. A diagram of the test set-

up is shown in Figure 11.7 of Appendix 2. Because of the longer cross-beam, it had to be ensured that

the frame had enough bending stiffness to minimise the vertical displacements while withstanding the

maximum loads. Calculations showed that for a load of 250kN, the cross-beam would deflect

vertically by 0.16mm. This value was deemed satisfactory for the tests, especially since the

maximum load was not expected to exceed 150kN.

The supports were designed to allow rotation and horizontal translation (roller supports), since

translational restraint was provided by the load point. However, since the rotation and translations at

the supports were expected to be relatively small, the simple mechanism shown in Figure 6.13 was

used in the tests. The support also consisted of a load cell, which would allow the support reactions to

be measured. For the tests on the specimens without an adjacent slab ('SI', 'S2' and 'S3'), the

supports were placed at the corners of the specimen, in line with the edge beams. For specimen 'S4',

the supports were placed in line with the edge beams. Because of the adjacent slabs, this was not at

the corners of the specimen. For specimen 'S5', the supports were placed at the corners of the

specimen and not in line with the edge beam.

Figure 6.13: Support mechanism to allow rotation and translation (includes load cell to measure
vertical reaction)
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A rectangular loading plate (200mm by 100mm, with the shorter length in the slab span direction) was

used to load the specimens in the punching failure tests. For the flexural failure tests, a 300mm by

50mm loading plate was used to load across the entire width of the slab strip. Figure 6.14 shows a

picture of a specimen ready to be tested.

Figure 6.14: Test set-up for slabs with edge beams

6.5.2 Description of terms

In Chapter 7, which presents and interprets the results of these tests, various observations will be

described (such as crack orientation) where the direction being considered is important. These

directions are defined in Figure 6.15.

N
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W <
V

> E
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J
C3

Edge beam

Longitudinal direction

Edge beam

A

V

Transverse
direction §•

Figure 6.15: Definition of directions in test set-up (plan view)
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6.5.3 Instrumentation

6.5.3.1 Strain gauges

Strain gauges were installed at various positions on the steel reinforcement. These were:

• Diaphragm reinforcement (to measure the tension forces in the diaphragm).

• Longitudinal edge beam reinforcement (to measure the strains due to horizontal and vertical

bending of the edge beam).

• Mesh reinforcement (to measure the strains at various locations in the slab).

Strain gauges were also used at a number of locations to measure the strain on the concrete surface.

These gauges assisted in determining a strain profile at particular locations of the specimens.

When the results of these experiments are presented in Chapter 7, strain gauges will often be referred

to by their location. For the punching shear failure tests, these locations are summarised inFigure

6.16. A three-dimensional illustration of the reinforcement cage and strain gauge locations is also

shown in the Appendix 7. Gauges at ' C and 'D' are often referred to is being at the beam/slab

interface.

i

%

Gauges at 'A'
(under loaded area) Gauges at 'B'

Edge beam

Loaded area

Gauges at 'C
d

Diaphragm
gauges

Edge beam gauges Gauges at 'D'

Figure 6.16: Plan view of specimen showing strain gauge locations

The designation of the strain gauges for the punching shear failure tests is summarised in Table 6.6.

Note: Gauge 'ABYC was placed on the same reinforcing bar as gauge 'ABY', but at a distance of

75mm away.
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Table 6.6: Strain gauge designation for punching shear tests

1 Designation

EBI

EBO

ETI

ETO

DBI

DBO

DTI

DTO

ABX

ABY

ABYC

BBY

CBY

CTY

DBY

DTY

CA (concrete surface gauge)

CB (concrete surface gauge)

CO (concrete surface gauge)

CE (concrete surface gauge)

CCB concrete surface gauge)

CCT (concrete surface gauge)

CDB (concrete surface gauge)

CDT (concrete surface gauge)

Edge Beam

Edge Beam

Edge Beam

Edge Beam

Diaphragm

Diaphragm

Diaphragm

Diaphragm

Location 'A'

Location 'A'

Location 'A'

Location 'B '

Location ' C

Location ' C

Location 'D'

Location 'D'

Location 'A'

Location 'B '

Diaphragm

Edge beam

Location ' C

Location ' C

Location 'D'

Location 'D'

location

Bottom steel

Bottom steel

Top steel

Top steel •

Bottom steel

Bottom steel

Top stee!

Top steel

Bottom steel

Bottom steel

Bottom steel

Bottom steel

Bottom steel

Top steel

Bottom steel

Top steel

Inside bar

Outside bar

Inside bar

Outside bar

Inside bar

Outside bar

Inside bar

Outside bar

In 'x' direction

In 'y' direction

In 'y' direction

In 'y' direction

In 'y' direction

In 'y' direction

In 'y' direction

In 'y' direction

On top surface above 'ABYC gauge

On top surface above 'BBY' gauge

On top surface, at centre of diaphragm

On top surface, at centre of edge beam

On bottom surface below ' C gauges

On top surface above ' C gauges

On bottom surface bc'ow 'D' gauges

On top surface above 'D' gauges
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For the flexural failure tests on the slab strips, the edge beam gauges and diaphragm gauges were the

same as in Figure 6.16. In each slab strip, four gauges were placed at the beam/slab interface and one

gauge was placed under the loaded area on the bottom transverse bar. Table 6.7 summarises the

location of the gauges for slab strip 'A'. For other strips, the letter 'A' in the designation was

replaced by the appropriate letter for each particular strip. All gauges were in the 'y' direction, which

was the span direction of the one-way slab strips.

Table 6.7: Strain gauge designation for flexural failure tests

MBA

ETA

EBA

ETAC (concrete surface

gauge)

EBAC (concrete surface

gauge)

Bottom steel at mid-span

Top steel at end of slab strip (beam/slab interface)

Bottom steel at end of slab strip (beam/slab interface)

Top surface at end of slab strip (beam/slab interface)

Bottom surface at end of slab strip (beam/slab interface)

Note: Some slab strips did not have gauges on the steel at the beam/slab interface

Strain gauge readings that were positive indicated a tensile strain and a negative reading indicated a

compressive strain.

6.5.3.2 Load cells

Load cells were placed at each support to measure the vertical reactions (see Figure 6.13). This gave

an indication of whether the load was being evenly distributed to each support, as well as giving a

check of the load applied by the hydraulic jack. -

6.53.3 LVDTs

Linear variable displacement transducers (LVDTs) were pUx A at a number of locations to measure

the displacements in the specimens. LVDTs were placed under an edge beam and under the slab

centre to measure the vertical deflections. LVDTs were also used to measure the horizontal

deflections in the edge beams (locations 'A' and 'B') and at the end of an edge beam (location 'C').

This is illustrated in Figure 6.17, which shows a plan view of a specimen and the position of the

LVDTs. For tests where the loaded area was not in the middle of the specimen, the LVDTs at 'A' and

'B' were moved so they would be in line with the loaded area.
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LVDTs at 'B'
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Edge beam

Loaded area

Edge beam

E
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II
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Q

LVDTs at 'C
LVDTs at 'A'

Figure 6.17: Plan view of specimen showing locations ofLVDTs

Two LVDTs were placed at each of the locations in Figure 6.17 so that the rotations could be

calculated (see Figure 6.18). The sign convention used for the LVDT measurements is shown in

Figure 6.19.

Figure 6.18: LVDTs to measure displacement and rotation
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Concrete
specimen

-> Positive deflection
Top LVDT

J
Negative deflection

Bottom LVDT

Positive rotation/twist Positive rotation/twist

Figure 6.19: Sign convention for LVDTs

A consideration in the setup of the LVDTs that measure the horizontal displacements is the effect that

the vertical displacements that occur during the test would have on these measurements. Vertical

displacements would affect the magnitude of the horizontal LVDT displacements, especially since the

vertical displacements are expected to be greater than the horizontal displacements. In addition, if the

face of the concrete surface is not perfectly flat, the horizontal displacements will change depending

on the contours on the face of the concrete. However, all of this depends on the contact between the

LVDT and the concrete surface. Whether the tip of the LVDT will slide along the concrete surface

while the specimen is deflecting vertically or whether there is enough friction to keep the LVDT in

contact with one point is uncertain. These factors have to be considered when interpreting the

measurements from the LVDTs.

6.5.4 Additional apparatus used in test set-up

Because the specimens were designed to fail in the slab, a mirror was positioned in the experimental

set-up so that the underside of the slab could be observed during loading. This would allow the

development of cracks on the underside of the slab to be closely observed.
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7 PRESENTATION AND INTERPRETATION OF RESULTS FOR SLABS

WITH EDGE BEAMS

7.1 Introduction

Tests were carried out on five slabs with edge beams. The details of the design and fabrication of

these specimens were described previously. Two types of tests were performed on the specimens,

punching shear failure tests and flexural failure tests. On specimens 'S2 \ 'S3' , 'S4' and 'S5' a

punching test was first carried out at mid-span, followed by a punching test at quarter-span (at one

end of the specimen). Saw cuts were then made at the other end of the specimen to create slab strips

and flexural failure tests were carried out on these strips. For specimen 'SI ' , no punching tests were

carried out. Instead, seven slab strips were formed by making saw cuts in the slab and flexural tests

were carried out on each of the strips.

7.2 General behaviour of punching shear failure tests

There was a general pattern to the behaviour of the specimens in all of the punching shear failure

tests. This is described below.

• Flexural cracks appeared on the underside of the slab, running longitudinally along the specimen

(Figure 7.1).

• Flexural cracks appeared on the top surface at the beam/slab interface (Figure 7.2). The

development of significant compressive membrane forces in the slab was likely to have occurred

with the formation of these cracks. Yhese cracks often passed through strain gauges that were

applied on the top surface of the slab. Therefore, very high tensile strains were recorded in these

gauges before the widening of the cracks caused the strain gauge to split (Figure 7.3).

• The cracks on the bottom surface propagated and a yield-line pattern developed. The yield-line

pattern consisted of cracks running diagonally on the slab soffit (Figure 7.1).

• Flexural cracks appeared in the edge beams. These cracks were at spacings of approximately

150mm.

• During the tests, the edge beams displaced outwards and underwent a positive twist. This caused

torsional cracks to appear in the beams.

• Punching failure occurred in the slab.
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Diagonal cracks from
yield line pattern

Flexural cracks running
longitudinally

Figure 7.1: Flexural cracks and yield-line pattern on bottom surface during loading

Flexural cracks at
beam/slab interface

Figure 7.2: Flexural cracks at beam/slab interface during loading
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Figure 7.3: Example of crack causing strain gauge to split

Top surface of punching
shear failure cone

Figure 7.4: Top surface ofr'ab after failure showing failure surface of punching shear cone

i i
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Bottom surface i .
shear failure cone

Figure 7.5: Underside of slab after test

After failure, an imprint of the loaded area was clearly seen on the top surface (Figure 7.4), while the

perimeter of the failure surface on the slab underside extended almost the entire 600mm from edge

beam to edge beam (Figure 7.5). Therefore, the angle of the punching cone was only about 17°. A

reason that the failure surface occurred at this angle may be the tensile forces that existed

perpendicular to the compressive membrane forces (see Figure 7.6). The tensile forces may have

caused the concrete to split along the compressive strut.
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Loading plate

" • • \ " ' ' • ' .

Compressive
membrane forces

Cone punched out

Figure 7.6: Approximate failure surface of punching shear failure tests

7.3 Behaviour of punching test on specimen 'S2' at mid-span

7.3.1 Load-displacement behaviour

The load-displacement curve obtained for this test is shown in Figure 7.7. The stiffness of the

specimen slowly decreased as the load was applied and cracks developed. Eventually, a brittle

punching failure occurred causing a sudden drop in load. The following was observed during the test:

• A flexural crack, running longitudinally (R-W) was observed on the bottom surface of the slab at

a load of 40kN (A = 1.55mm). This crack was slightly to the north side of the LVDT, which was

at the centre of the slab.

• At 65kN (A = 3.4mm), a second flexural crack appeared on the bottom surface on the south side

of the LVDT.
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Flexural cracks appeared near the beam/slab interface on the top surface at a load of 72kN (A =

3.95mm). At failure, these cracks were approximately 1500mm long (750mm to each side of

specimen mid-span).

Flexural cracks developed in the beam at a load of 86kN (A = 5.2mm). The spacing of these

cracks was approximately 150mm.

At 87kN (A ~ 5.3mm), cracks running diagonally developed on the bottom surface of the slab.

These cracks formed the pattern that would be assumed for a yield-line analysis.

At a load of 106kN (7.4mm), cracks running in the N-S direction developed on the bottom

surface. The spacing of these cracks and the earlier flexural cracks on the bottom surface were at

a spacing approximately equal to the spacing of the mesh bars.

A punching failure occurred at a load of 142.85kN and a vertical displacement of 12.97mm. At

failure, none of the flexural cracks in the edge beam, or the cracks on the top surface at the

beam/slab interface had developed significantly. This indicates that there was still a significant

amount of flexural capacity in both the slab and the edge beams when the slab failed in punching

shear.

Load vs displacement

160-1
140

^ 80-
o 60-

40
20

0
0 5 10

Vertical displacement under load (mm)
15

Figure 7.7: Load-displacement curve for test 'S2'

7.3.2 Displacements, twists and end rotations in edge beam

The displacements in the LVDTs at location 'A' are shown in Figure 7.8(a). It can be seen that up to

a vertical displacement of approximately 6mm, the displacements in the top and bottom LVDTs were

almost the same. This indicates the edge beam was bending horizontally and not twisting. As the

vertical displacement increased, the displacement in the bottom LVDT became greater than the top

LVDT, indicating a positive twist in the edge beam. A similar trend is seen in Figure 7.8(b) for the
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LVDT displacements at location 'B' , although the displacements in the top LVDT and the bottom

LVDT deviated earlier. This indicates that the edge beam began to twist at location 'B ' earlier than at

'A'. It can also be seen in Figure 7.3(b) that the displacements in the LVDTs at 'B ' only began to

increase at a vertical displacement of approximately 2mm. This corresponded to the stage of loading

when flexural cracks began to open up on the bottom surface of the ss<- .b. The cracks would have

resulted in the stretching of the bottom surface of the slab, which in turn pushed out the edge beam.

This caused the horizontal displacements at 'B ' to increase.

The twists at 'A' and 'B' ire plotted against the vertical displacement in Figure 7.8(c). This figure

shows that the twists at 'A' and 'B' were positive and increased in magnitude as the vertical

displacement increased. The twist at 'A' remained very small throughout the test (less than 0.1°),

while the twist at 'B ' was slightly higher (approxirr<uc'y 0.3°). Positive twists at 'A' and 'B' were

expected because of the transverse bending or'the slab, which applied a positive torque to the edge

beams.
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Figure 7.8: Horizontal displacements and edge beam twists at 'A' and 'B 'for test 'S2'

The displacements in the LVDTs at ' C are shown in Figure 7.9(a). Initially, both the top and bottc.n

LVDTs moved slightly inward (towards mid-span of the specimen). At a vertical displacement of

approximately 2mm, the bottom LVDT began to move outward while the top LVDT continued to
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move inwards. This indicates a positive rotation at the end of the edge beam (see Figure 7.9(b)). At

failure, this rotation had reached approximately 0.35°.
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Figure 7.9: Displacements and rotations at 'C for test 'S2'

7.3.3 Strain gauge data

The strain in gauges 'ABX', 'ABY' and 'ABYC are shown in Figure 7.lO(a). The strain in gauge

'ABX' indicates that the longitudinal bending in the slab did not develop until A = 2mm. This is in

agreement with the rotation at the end of the edge beam (Figure 7.9(b)), which did not begin to have a

positive rotation until A = 2mm. This is because longitudinal bending in the slab would also cause

positive rotations at the ends of the specimen. The longitudinal bending in the slab continued to

increase throughout the test.

The strains in gauges 'ABY' and 'ABYC indicate that the slab began to bend in the transverse

direction from the start of the test. Gauge 'ABY' increased at an almost constant rate throughout the

test, while the rate of increase in gauge 'ABYC suddenly increased at A = 5mm. This change was

almost certainly related to crack development on the bottom surface of the slab.

Figure 7.10(b) shows the relationship between gauges 'ABY' and 'BBY' and the vertical

displacement. It can be seen that the transverse bending was much greater at mid-span (under the

load) than at quarter-span. The strains in gauge 'BBY' did not begin to increase until a vertical

displacement of approximately 2mm. At this stage of the test, flexural cracks had begun to develop

on the bottom surface of the slab at mid-span. This would have caused a redistribution of loads and

resulted in the development of strains in gauge 'BBY'.

The strains in the gauges at the beam/slab interface at mid-span are shown in Figure 7.10(c). It can be

seen that both the top steel and the bottom steel were in tension, while the bottom surface was in

compression. This indicates that the strain neutral axis was below the bottom steel. At a

displacement of 5mm, corresponding to the observation of flexural cracks on the top surface, there
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was a sudden drop in the strains in the gauges on the steel reinforcement. This indicates slippage in

the bars due to the development of the crack. The strain in the gauge on the top surface also began to

increase very rapidly because of the development of the crack (which ran through the gauge).
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Figure 7.10: Strains in gauges for test 'S2'

The strains in gauges 'DTY' and 'DBY' are shown in Figure 7.10('d). It can be seen that up to a

displacement of approximately 5mm, there was very little strain in these gauges. At this stage,

flexural cracks began to develop on the top surface of the beam/slab interface at mid-span. As a

result, compressive membrane forces developed across mid-span and this had to be balanced by

tensile forces in surrounding regions (see Figure 7.11), hence the development of tensile strains in
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T'f

gauges 'DTY' and 'DBY'. While the strains in gauges 'DTY' and 'DBY' were increasing, the strains

in the diaphragm gauges remained nearly zero. This indicates that the balancing tensile forces did not

extend into the diaphragm because there was sufficient tensile capacity in the surrounding slab

regions. Figure 7.10(d) shows that the strains in both the top gauge and the bottom gauge were almost

at the same value. Therefore, there was very little bending in the slab at quarter-span, and the slab

was almost in pure tension. At a displacement of approximately 9mm, the strain in the top gauge

began to increase at a faster rate than the bottom gauge. This indicates that the slab had begun to bend

in the transverse direction at quarter-span.

Compressive
membrane forces

L
Edge beam

It Tensile forces to
balance compressive
membrane forces

III
\ZZZZZZ2 Loading area

Figure 7.11: Compressive membrane forces balanced by tensile force in surrounding regions

The strains in the gauges in the edge beam for test 'S2' are shown in Figure 7.10(e). Note: Gauge

'ETF was damaged during the pouring of the concrete and results could not be presented. The tensile

strain in the bottom gauges 'EBF and 'EBO' were greater than the tensile strain in the top gauge

'ETC which shows the vertical bending in the edge beam. It can also be seen that the strain in gauge

'EBO' was greater (in tension) than the strain in gauge 'EBP, indicating horizontal bending in the

edge beam. The vertical bending of the edge beam is also shown by the compressive strain in the

gauge on the top surface.

~ t;
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7.4 Behaviour of punching test on specimen 'S3' at mid-span

7.4.1 Load-displacement behaviour

The load-displacement curve obtained for this specimen is shown in Figure 7.12. In this test, the

displacement was held constant at certain points so the specimen could be closely examined for crack

development. These points can clearly be seen on this curve. This load-displacement curve shows a

gradual decrease in stiffness as the displacement increased. The following was observed during this

test:

• Flexura! cracks (running E-W) on the bottom surface of the slab were first observed in the mirror

at a load of 60kN (A = 2.9mm).

• At 75kN (A = 3.75mm), cracks appeared on the top surface at the beam/slab interface. At failure,

these cracks eventually extended to a total length of approximately 1200mm (600mm on each side

of the specimen centreline). None of the cracks on the top surface of the slab became particularly

wide and there appeared to be <-<ily slight overall damage to the slab. This was likely due to the

beneficial effects of compressive membrane action.

• By the time the load had reached 105kN (A = 6.25mm), more cracks had developed on the

underside of the slab. In some areas, the cracks had formed into a rectangular pattern. These

rectangles were approximately the same size as the mesh spacing. Diagonal cracks in the yield-

line pattern had also developed on the bottom surface.

• Flexural cracks in the edge beams began to form at a load of 1 lOkN (A = 6.7mm). However,

these cracks were very fine and did not open up significantly before the slab failed.

• While these cracks were propagating, the stiffness of the specimen decreased slowly (see Figure

7.12). Eventually, at a load of 143kN and a vertical displacement of 10.5mm, the slab failed as a

result of punching shear. The failure was brittle, with a sudden decrease in load after failure.
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Load vs displacement
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Figure 7.12: Load-displacement curve for test 'S3'

7.4.2 Displacements, twists and end rotations in edge beam

The displacements in the LVDTs at 'A' and 'B' are shown in Figure 7.13(a) and Figure 7.13(b)

respectively. Figure 7.13(a) shows that the top and bottom horizontal displacements at 'A' were

almost identical throughout the test. Initially, the top displacement was slightly higher than the

bottom displacement, indicating a slight negative twist (Figure 7.13(c)). Near ultimate load, this

condition reversed and the twist became positive.

The horizontal displacements at 'B ' showed an unusual trend (Figure 7.13(b)). Initially, the bottom

LVDT had a higher displacement, indicating a positive twist. At a vertical displacement of

approximately 3mm (corresponding to the development of the first flexural cracks on the bottom

surface) the displacement in the bottom LVDT decreased suddenly, while the displacement in the top

LVDT began to increase at a faster rate. At A = 4mm, corresponding to the development of flexural

cracks on the top surface at the beam/slab interface, the bottom LVDT began to increase again. These

changes in the horizontal displacements remain unexplained. Similar to the twist at 'A', the twist at

'B' also became positive as the peak load approached (Figure 7.13(c)). The twists at 'A' and 'B'

were both very small and less than the corresponding values in 'S2\ This illustrates the increased

torsional restraint available to the slab in specimen 'S3' because of the wider edge beams.
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Figure 7.13: Horizontal displacements and edge beam hvists at 'A' and 'B 'for test 'S3'

Figure 7.14(a) shows the displacements at the end of the edge beam for test 'S3'. It can be seen that

the displacement at the bottom was always greater than the displacement at the top, indicating a

positive rotation at the end of the edge beam (Figure 7.14(b)). The bottom LVDT always increased at

a faster rate than the top LVDT, indicating that the magnitude of the positive rotation increased

throughout the test.
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Figure 7.14: Displacements and rotations at 'Cfor test 'S3'
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7.4.3 Strain gauge data

The strains at location 'A' are shown in Figure 7.15(a). It can be seen that the strain in gauge 'ABX'

increased at an almost constant rate after an initial flat portion. This can be seen more clearly in

Figure 7.15(b), which compares the strain in the 'ABX' gauge with the applied load. The strains in

this gauge indicate that initially, the load was almost entirely carried in the direction of the shorter

span (the y-direction). Once cracking initiated (at approx. A = lmm), some of the load began to be

carried in the x-direction. This is confirmed by the slight drop in gradient of the strain in the 'ABY'

gauge at A = lmm. From this point on, the strain in the 'ABX' gauge increased almost linearly with

the vertical displacement, right up to the failure of the specimen.

A comparison of the strains in the 'ABY' and 'BBY' gauges are shown in Figure 7.15(c). It can be

seen that the strain in the 'ABY' gauge was approximately five times greater than the strain in the

'BBY' gauge. This indicates that the bending effects in the transverse direction decreased rapidly as

the distance away from the centreline increased ('ABY' gauge is at the specimen mid-span, 'BBY'

gauge is at quarter-span).

Figure 7.15(a) shows that the strain in the 'ABY' gauge (under the loaded area) was higher than the

strain in the 'ABYC gauge. This is consistent with the fact that the bending moments at the slab

centreline would be greater than at a point 75mm away (where gauge 'ABYC was located).

The strains in the gauges at locations ' C and 'D' are shown in Figure 7.15(d) and Figure 7.15(e).

These gauges are at the beam/slab interface, with the ' C gauges at mid-span and the 'D' gauges at

quarter-span. Figure 7.15(d) shows that, initially, the strain in the bottom steel (gauge 'CBY')

increased in compression, reaching a peak value at a displacement of approximately 2mm. After this

point, the compressive strain decreased and became tensite at a displacement of approximately 5mm.

This implies that at this stage of loading, the strain neutral axis of the slab section was at the level of

the bottom steel. At the same stage that the strain in gauge 'CBY' reached zero, the strain in gauge

'CTY' reached its peak value. After this peak value, the strain dropped slightly, then remained at an

almost constant value until the failure of the specimen. Past a displacement of 5mm, further loading

caused the tensile strains in gauge 'CBY' to increase, indicating that the neutral axis was continuing

to drop, or that the curvature was increasing. Near failure, the strains in both the 'CTY' and 'CBY'

gauges had similar values.
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Figure 7.15: Strains in gauges for test 'S3'

Figure 7.15(e) shows that the strains in gauges 'DTY' and 'DBY' both followed a similar pattern

throughout testing, with gauge 'DTY' having slightly higher values. Throughout the test, both these

gauges read tensile values and the values were very similar. This means that the slab was almost

purely in tension, with only a small amount of bending. Initially, the strains were very small, but once

compressive membrane action developed near the loaded area, the strains in gauges 'DTY' and

'DBY' began to increase to balance the compressive membrane forces near the loaded area. This

occurred at a vertical displacement of approximately 7mm. At this stage, the strains in the gauges at

the beam/slab interface (see Figure 7.15(d)) were both tensile, despite the fact that compressive
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membrane forces existed transversely in the slab. This indicates that large compressive forces must

have existed below the neutral axis at the beam/slab interface. The compressive forces were large

enough to balance the tensile forces in. the steel and produce a net compressive force in the slab.

The strains in the edge beam gauges are shown in Figure 7.15(f). The bottom gauges ('EBF and

'EBO') were in tension, due to the vertical bending of the edge beam. The outside gauge had a

slightly higher tensile strain, because of the horizontal bending of the edge beam. The top gauges had

very little strain throughout the test, indicating the strain neutral axis was close to this position during

the test. As expected, the gauge on the top surface had the highest compressive strain, due to the

vertical bending of the edge beam.

There was negligible strain in the diaphragm gauges, indicating that the tension forces in the

surrounding region that were required to balance the compressive membrane forces near the loaded

area did not extend into the diaphragm. This was because the concrete in the vicinity of the loaded

area had sufficient capacity to balance the compressive membrane forces in the slab.

7.5 Behaviour of punching test on specimen 'S4' at mid-span

7.5.1 Load-displacement behaviour

The load-displacement curve for the test on specimen 'S4' at mid-span is shown in Figure 7.16. The

following observations were made during the test:

• Flexural cracks developed on the underside of the slab at a load of 36kN (A = 1.4mm). The first

crack ran E-W on the north side of the LVDT.

• At 60kN (A = 3mm), cracks radiating from the bottom of the slab (near the LVDT) began to

develop. These eventually became the diagonal cracks in the yield-line pattern.

• Cracks developed on the top surface (near the beam/slab interface) at a load of 81kN (A =

4.65mm). At failure, the cracks were approximately lm long (500mm to each side of specimen

mid-span).

• Flexural cracks (approximately 150mm spacing) appeared in the edge beams at a load of 90kN (A

= 5.45mm).

• The diagonal cracks in the yield-line pattern on the slab soffit reached the edge beam at a load of

approximately 130kN (A = 9.25mm).

During the test, it was observed that the cracks in this specimen appeared to develop more slowly than

in specimens 'S2\ 'S3' and 'S5'. Also, the crack widths were generally smaller than seen in previous
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tests. The reduced crack propagation was due to the concrete in this specimen being stronger than in

specimens 'S3' and 'S5', while the presence of an adjacent slab reduced the crack propagation in

comparison with specimen 'S2\

Eventually, at a load of 160.13kN and a vertical displacement of 13mm, the specimen failed in

punching. The failure cone in this test was more "punched out" on one side than the other (see Figure

7.17).

Load vs displacement
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Figure 7.16: Load-displacement curve for test 'S-t'
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Figure 7.17: Failure surface on underside of slab for test 'S4'
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7.5.2 Displacements, twists and end rotations in edge beam

The displacements measured by the LVDTs at 'A' and 'B ' are shown in Figure 7.18(a) and Figure

7.18(b). The top LVDT at 'A' initially had a larger horizontal displacement than the bottom LVDT.

This indicates a negative twist, as shown in Figure 7.18(c). Whether the twist was positive or

negative may have been related to how well the slab reinforcement was anchored to the edge beam

reinforcement. If the slab reinforcement was well anchored, the beam twist would follow the rotation

at the slab ends (ie. a positive twist). However, if the reinforcement was not well anchored, then

slippage of the slab reinforcement would occur. As a result, the eccentricity of the horizontal force

applied by the slab to the beam due to compressive membrane action may cause the beam to twist in a

negative direction. Therefore, in these experiments, the negative edge beam twists may have been

due to insufficient anchorage of the slab reinforcement to the edge beam reinforcement.

The LVDTs at 'B ' showed the expected behaviour, with the bottom LVDT having a larger

displacement than the top LVDT. In other words, there was a positive twist at 'B ' (Figure 7.18(c)).

The magnitude of the positive twist increased throughout the test.
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Figure 7.18: Horizontal displacements and edge beam twists at 'A' and 'B 'for test 'S4'

The displacements measured by the LVDTs at ' C in test 'S4' are shown in Figure 7.19(a). Initially,

both LVDTs were moving in the negative direction at the same rate. That is, the end of the beam was
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translating inwards, with no rotation. The top of the beam continued to move inwards throughout the

test, but just before A = 2mm (P = 45kN), the bottom of the beam began to move outwards and a

positive rotation developed (Figure 7.19(b)). From Figure 7.18(c), it can be seen that at A = 2mm, the

positive twist also began to develop at location 'B' . Both of these developments were likely due to

the development of cracks on the underside of the slab causing a redistribution of the load. The

magnitude of the positive rotation at ' C continued to increase (Figure 7.19(b)) until the slab failed.

Displacements in LVDTs at 'C vs vertical
displacement

Vertical displacement under load (mm)

Rotation at 'C vs vertical displacement

0.5 i

10 15

Vertical displacement under load (mm)

(a) Displacements in LVDTs at 'C' (b) Edge beam rotation

Figure 7.19: Displacements and rotations at 'C 'for test 'S4'

7.5.3 Strain gauge data

The strains in gauges 'ABX' and 'ABYC are shown in Figure 7.20(a). Note: gauge 'ABY' was

damaged during the concrete pour and did not produce meaningful results. The strain in gauge

'ABYC increased almost linearly throughout the test. This indicates that the transverse bending

effects in the slab also increased linearly throughout the test. At A = 9mm, gauge 'ABYC failed.

This was due to poor adhesion between the gauge and the steel, rather than the yielding of the steel.

This was determined from the fact that the load-displacement curve (Figure 7.16) did not show any

noticeable change in behaviour at A = 9mm that would have been seen if the steel had yielded. The

strain at which the gaug'j failed (approximately 2200u.e) was also well below the yield strain attained

in the tensile tests. The strain in gauge 'ABX' also increased throughout the test, although a

noticeable change in the strain rate occurred at A = lmm (30kN). This was also the displacement at

which the load-displacement curve began to soften because of the formation of flexural cracks on the

bottom surface of the slab. Therefore, the change in strain-rate in gauge 'ABX' at A = 1 mm was

likely caused by a redistribution of loads due to crack formation.
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Figure 7.20: Strains in gauges for test 'S4'

The strain in gauge 'BBY' is shown in Figure 7.20(b). Initially, the strain increased almost linearly

(in tension). At A = 2mm (after the development of flexural cracks on the bottom surface of the slab),

the strain rate increased because of a redistribution of the loads caused by the cracking.

The strains in the gauges at the beam/slab interface are shown in Figure 7.20(c). Note: gauge 'CBY'

was damaged during the concrete pour and did not produce meaningful results. The strain on the

bottom surface (gauge 'CCB') increased in compressive strain at an almost constant rate throughout

the test. Similarly, the strain in the gauge on the top steel reinforcement also increased at an almost

constant rate, except the strains were tensile instead of compressive. A slight deviation in the strain
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rate of gauge 'CTY' occurred at A = 3mm. This is more noticeable in the strain at the top surface

(gauge 'CCT') and was due to the development of cracks on the top surface of the specimen. As

ultimate load was approached, the strain in gauge 'CCT' suddenly reached very high values. This

would have been due to the opening up of the crack at the beam/slab interface, resulting in the failure

of the surface gauge (the gauge splits in half as shown in Figure 7.3).

The strains in gauges 'DTY' and 'DBY' are shown in Figure 7.20(d). The strain in gauge 'DTY' was

close to zero until the vertical displacement was nearly 5mm. At this point, flexural cracks formed on

the top surface at the beam/slab interface and compressive membrane forces developed transversely in

the slab. These compressive membrane forces had to be balanced by tensile forces in the surrounding

region, hence the development of tensile strains in the 'DTY' gauge. There was also a change in the

rate at which the tensile strains increased in the 'DBY' gauge. It can also be seen in Figure 7.20(d)

that tensile strains began to develop in gauge 'DBY' from the start of the test, while 'DTY' remained

close to zero. Therefore, some degree of transverse bending must have existed in the slab.

The strains in the edge beam gauges are shown in Figure 7.20(e). The vertical bending in the edge

beam is shown by the tensile strains in the gauges on the bottom steel (gauges 'EBP and 'EBO') and

the compressive strains in the top reinforcement (gauge 'ETO') and on the top surface. Horizontal

bending can be seen with the higher tensile strain in the outside bar (gauge 'EBO') than the inside bar

(gauge 'EBI'). Note: gauge 'ETI' was previously damaged and did not produce meaningful results.

7.6 Behaviour of punching test on specimen 'S5' at mid-span

7.6.1 Load-displacement behaviour

The load-displacement curve for test 'S5' is shown in Figure 7.21. The loading was paused at loads

of 40kN, 60kN, 90kN and 120kN so the specimen could be examined more closely. The loading was

also paused momentarily at approximately 70kN because of an irregularity in the load-displacement

curve. At this point, a sudden jump occurred in the displacement measured by the LVDT under the

slab. The specimen was examined again but no irregularities could be observed. Therefore, it was

concluded that the jump in the LVDT reading was most likely caused by a temporary malfunction in

the data acquisition equipment.
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Load vs displacement
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Figure 7.21: Load-displacement curve for test 'S5'

The following was observed during the test:

• A change in stiffness occurred at a vertical displacement of approximately 0.5mm (13kN). This

was caused by the development of flexural cracks on the underside of the slab.

• At a load of 60kN (A = 2.8mm), cracks were observed along the beam/slab interface on the top

surface of the specimen. The total length of this crack after the specimen had failed was

1200mm.

• Flexural cracks at 150mm spacing appeared in the edge beam at a load of 70kN (A = 3.2mm).

The development of these cracks occurred at a lower load than for the other specimens loaded at

mid-span. However, conclusions cannot be drawn from this observation since cracks may have

appeared in the specimen before they were observed.

• At this time, the cracks on the underside of the slab had formed into a rectangular grid pattern,

followed by the development of diagonal cracks in the yield-line pattern.

• The cracks on the bottom surface continued to develop until a punching failure occurred at a load

of 124kN and a vertical displacement of 7.6mm. The failure surface was similar to the ones seen

in other punching shear failure tests, although its size in the longitudinal direction was slightly

smaller than the other tests at mid-span. The failure was sudden, with significant unloading after

the peak load had been reached.

7.6.2 Displacements, twists and end rotations in edge beam

The displacements measured at 'A' and 'B ' for this test are shown in Figure 7.22(a) and Figure

7.22(b). Both of these figures show an almost linear relationship between the horizontal

displacements in the edge beams and the vertical displacement. At both locations, the displacement in
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me bottom LVDT was greater than the displacement in the top LVDT, indicating positive twists

(Figure 7.22(c)). Figure 7.22(c) also shows that the magnitude of the twist at 'A' was slightly larger

than the twist at 'B ' .
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Figure 7.22: Horizontal displacements and edge beam twists at 'A' and 'B 'for test 'S5'

The horizontal displacements at ' C are shown in Figure 7.23(a). This figure indicates that the end of

the edge beam moved outward from the beginning of the test. The bottom LVDT also displaced at a

greater rate, resulting in a positive rotation (Figure 7.23(b)). Figure 7.23(b) shows that the end

rotation increased at an almost constant rate throughout the test. This indicates that the response of

the edge beam was essentially linear throughout the test.
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7.6.3 Strain gauge data

The strains in gauges 'ABX\ 'ABY' and 'ABYC are shown in Figure 7.24(a). This figure shows

that the strain in the reinforcement bar running in the transverse direction increased as the vertical

displacement increased, indicating that the transverse bending in the slab increased throughout the

test. The strains in both the 'ABY' and 'ABYC gauges were almost identical, and did not reach yield

before the slab failed in punching shear. The strain in gauge 'ABX' initially increased, but at a

vertical displacement of just under 3mm, the strain levelled off to a constant value of about 400|ne. At

A = 3mm, longitudinal flexural cracks began to develop in the slab, possibly causing a loss of bond

between the steel reinforcement and the concrete and a subsequent decrease in strain. Another

possible reason was the development of compressive membrane action in the slab, which produced

another load-carrying mechanism. Therefore, the amount of load carried by longitudinal bending in

the slab did not have to increase and the strain in gauge 'ABX' remained constant.

A comparison between the transverse reinforcement strains at mid-span (gauge 'ABY') and quarter-

span (gauge 'BBY') is shown in Figure 7.24(b). This figure clearly shows the higher transverse

bending at mid-span compared to quarter-span (at peak load, the strain in gauge 'ABY' was almost

three times greater than the strain in gauge 'BBY').

The strain in the gauges at the beam/slab interface at mid-span is shown in Figure 7.24(c). Initially,

the top reinforcement (gauge 'CTY') was in tension and the bottom reinforcement (gauge 'CBY') was

in compression, indicating the strain neutral axis position was somewhere between the top and bottom

reinforcements. At A = 2mm, the bottom reinforcement strain reached its maximum compressive

value of approximately 150ue before passing back through zero at a vertical displacement of just

under 4mm. This indicates that the neutral axis of strain fell below the bottom reinforcement at that

displacement. The tensile strain in the top reinforcement (gauge 'CTY') initially increased very

slowly, but at a vertical displacement of approximately 1.5mm, the strain rate increased. For vertical

displacements greater than 3mm, the strain rate in gauges 'CTY' and 'CBY' was almost constant.

This is also true of all of the other gauges in the specimen during this test.

Figure 7.24(d) shows the strains in gauges 'DTY' and 'DBY' during the test. This figure shows that

the strains in these gauges were almost identical throughout the test, indicating there was negligible

transverse bending in the slab at quarter-span. Instead, the entire slab section at this location was in

pure tension (from A = 3mm onwards). This tensile force existed to balance the compressive

membrane forces at mid-span. It can be seen that the strains in these gauges began to increase at a

central vertical displacement of 3mm. Therefore, it can be inferred that the compressive membrane
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forces also began to develop at this time. This is also consistent with the strains measured in gauge

'ABX' (Figure 7.24(a)), which levelled off at A = 3mm. It is not possible to determine the magnitude

of the tensile forces because the effective width over which these tensile stresses exist (and the

variation of the stress over the effective width) cannot be determined from these test results.
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Figure 7.24: Strains in gauges for test 'S5'

in the edge beam gauges for test 'S5' is shown in Figure 7.24(e). Both the vertical and

bending in the edge beam is illustrated in this figure. Vertical bending is shown with the

the bottom steel gauges and compression in the top steel gauges. Horizontal bending is
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shown by the higher tensile strain in gauge 'EBO' than gauge 'EBF and the lower compressive strain

in gauge 'ETO' than gauge 'ETF.

7.7 Behaviour of punching test on specimen 'S2' at quarter-span

After the punching test at mid-span of specimen 'S2', a punching test was also carried out at quarter-

span. This was possible because the failure surface from the mid-span test was localised near the slab

centre, with the remaining parts of the specimen relatively undamaged. The results of this test are

shown below.

7.7.1 Load-displacement behaviour

The load-displacement curve obtained for this test is shown in Figure 7.25. For comparison, the load-

displacement curve for the test at mid-span is also shown in this figure. It can be seen that the test at

quarter-span produced a stiffer response, but the failure load was lower. The increased stiffness of the

response was predominately due to the fact that a specimen loaded at quarter-span will produce a

stiffer response than the same specimen loaded at mid-span. Another factor could be the increased

restraint (both horizontal translational and torsional) that exists at quarter-span. The increased

horizontal translational restraint stiffness increased the magnitude of the compressive membrane

forces, resulting in a stiffer slab.

The following observations were made during this test:

• A flexural crack appeared on the bottom surface of the slab at a load of 30kN (A = 0.85mm). This

crack ran along the x-direction (E-W) on the N side of the LVDT. This first crack appeared at a

lower load than the first crack on the previous punching test on specimen 'S2\ This was likely

due to the presence of pre-existing damage in the slab that would have occurred from the previous

test.

• Cracks appeared on the top surface (near the beam/slab interface) at approximately 46kN (A =

1.5mm). The lengths of these cracks could not be properly evaluated since they combined with

the cracks that existed on the surface from the test at mid-span.

• Another flexural crack appeared at the slab bottom on the S side of the LVDT at a load of 55kN

(A = 1.9mm).

• Diagonal cracks in the yield-line pattern at the bottom of the slab developed at a load of 62kN (A

= 2.3mm). These cracks first appeared on the side closer to the diaphragm. At 85kN (A =

3.65mm), similar diagonal cracks developed on the other side (towards the centre of the slab).
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• At a load of 70kN (A = 2.75mm), the first longitudinal flexural crack on the bottom surface had

extended to the gap between the slab and the diaphragm.

• At lOOkN (A = 4.65mm), cracks perpendicular to the longitudinal flexural cracks (ie. running N-

S) appeared in the yield-line pattern on the bottom surface, resulting in a grid-like crack pattern.

Eventually, a brittle punching failure occurred in the slab at a load of 130.0kN and a vertical

displacement of 9.91 mm
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Figure 7.25: Load-displacement curves for tests 'S2' and 'S2b'

7.7.2 Displacements, twists and end rotations in edge beam

The horizontal displacements in the edge beams at 'A' and 'B ' are shown in Figure 7.26(a) and Figure

7.26(b). Figure 7.26(a) shows that up to a vertical displacement of just under 3mm, the top and

bottom displacements at 'A' were almost equal, indicating minimal twist in the edge beam. Past this

vertical displacement, the displacement in the bottom LVDT began to increase at a faster rate, and a

positive twist developed in the edge beam (Figure 7.26(c)). A similar trend was observed in Figure

7.26(b) for the horizontal displacements at 'B ' , except the twist did not develop until the vertical

displacement was approximately 4mm. The edge beam twists were both positive, with a slightly

smaller twist at 'B ' than at 'A' (Figure 7.26(c)). The magnitudes of the twists were very small

because of the high torsional stiffness of the edge beams. This was also the case for all of the other

specimens.

The displacements in the LVDTs at ' C (end of edge beam) are shown in Figure 7.27(a). Initially,

both displacements were positive (outward) and were increasing at the same rate. When the vertical

displacement neared 1 mm (corresponding to the point when flexural cracks began to develop on the

bottom surface of the slab), the bottom displacement began to increase at a faster rate and a positive
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rotation developed at the end of the beam (Figure 7.27(b)). Once the vertical displacements exceeded

3mm, the horizontal displacements and the rotation remained at an almost constant level.
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Figure 7.26: Horizontal displacements and edge beam twists at 'A' and 'B 'for test 'S2b'
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Figure 7.27: Displacements and rotations at 'C for test 'S2b'

7.7.3 Strain gauge data

The strains in the 'A' gauges are shown in Figure 7.28(a). The 'A' gauges were located at mid-span

(as in test 'S2'), which was about 800mm from the loaded area at quarter-span. It can be seen that the
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transverse bending in the slab increased almost linearly with displacement (measured under the load)

at this location.

A comparison between the strains in gauges 'ABY' and 'BBY' is shown in Figure 7.28(b). As

expected, the transverse bending was much greater under the loaded area than at mid-span (just under

eight times higher). This shows that the transverse bending effects decrease rapidly away from the

loaded area.

A comparison of the readings from gauge 'BBY' in test 'S2' and 'ABY' in test 'S2b' is shown in

Figure 7.28(c). Both of these gauges were 800mm away from the loaded area, so this figure compares

the load distribution longitudinally along the specimen in these two tests. It can be seen that the

strains in these gauges did not increase in the same way. Gauge 'BBY' in test 'S2' initially had very

little strain and only began to record strains when cracking (and membrane action) developed in the

slab. On the other hand, cracks already existed in the slab when test 'S2b' was carried out and the

strain in the 'ABY' gauge increased from the start of the test. An interesting point is that the strain

rate of gauge 'ABY' in test 'S2b' from the start of the test was almost the same as the strain rate in

gauge 'BBY' near the end of test 'S2'. This perhaps indicates that once the cracks had developed in

the specimen during test 'S2', the amount of load carried transversely a certain distance away from

| the load point carried over into test 'S2b'.

Figure 7.28(d) shows the strains at four locations at the beam/slab interface (top surface, top steel,

bottom steel, bottom surface) at quarter-span. It can be seen that the tensile strain in the gauge on the

top surface increased very rapidly. This was because of the formation of cracks on the top surface,

which were first observed at a load of 46kN (A = 1.5mm). The gauges on the top and bottom steel

reinforcement also had tensile strains throughout the test, except for A less than 2mm, where the strain

in the bottom steel gauge was very close to zero. This indicates that the strain neutral axis was at the

level of the bottom steel during the early stages of loading. The gauge on the bottom surface was in

compression throughout the test. Therefore, the strain neutral axis remained between the bottom

reinforcement and the bottom surface of the slab. However, since the strain profile is highly non-

linear, it is not possible to determine the neutral axis position exactly.

The strains in the reinforcement at the beam/slab interface at mid-span are shown in Figure 7.28(e).

For vertical displacements less than 4mm, the tensile strains increased at an almost constant rate, with

the bottom bar being in slightly more tension than the top bar. This indicates a small amount of

positive bending in the slab, even though the gauges were at the interface of the beam and the slab.

At A = 4mm, the strain rate began to increase. This was the same displacement at which the edge

i

l
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beam twist at 'B ' began to develop (Figure 7.26(c)). These points indicate the formation of cracks in

the specimen, leading to the development of compressive membrane action in the slab.
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Figure 7.28: Strains in gauges for test 'S2b'

The strain in the diaphragm gauges in test 'S2b' are shown in Figure 7.28(f). These strains were not

presented previously for the tests at mid-span because they were far away from the loaded a'ea and

the measured strains were negligible. This figure indicates minimal strain in the diaphragms, except

in gauges 'DTI' and 'DBF. These gauges were located on the inside of the diaphragm, and their

strains began to increase noticeably (in tension) at a vertical displacement of approximately 4mm.

This was the same displacement at which the strain rate in the ' C gauges increased. This indicates

that this region of the specimen was beginning to act as a tensile membrane to balance the

compressive membrane forces, and that the tensile membrane area extended into the diaphragm.

The strains in the edge beam gauges are shown in Figure 7.28(g) (note: gauge 'ETF was damaged and

did not produce meaningful results). The strain gauge on the top bar (gauge 'ETO') and the gauge on

the top surface were both in compression, while ihe gauges in the bottom bars were both in tension.

This was due to the vertical bending in the edge beams, which increased throughout the test.

When comparing the two bottom gauges ('EBF and 'EBO'), it can be seen that the inside gauge had

higher tensile strains. A possible explanation for this is illustrated in Figure 7.29, which shows the

exaggerated horizontal displacements in the edge beam caused by a load (and compressive membrane

forces) at quarter-span. It can be seen that the horizontal displacements caused the outside

reinforcement (gauge 'EBO') to be in compression, while the inside reinforcement (gauge 'EBI') was

in tension. Obviously, this would not have occurred if the slab was loaded at mid-span. When these

strains were combined with the strains due to vertical bending (which were more significant), the

inside reinforcement (gauge 'EBI') had a higher overall tensile strain than the outside reinforcement

(gauge 'EBO').
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Figure 7.29: Horizontal edge beam displacements caused by load at quarter-span (exaggerated)

7.8 Behaviour of punching test on specimen 'S3' at quarter-span

Following the test at mid-span of specimen 'S3 ' , a test was performed at quarter-span of the same

specimen. Some flexural cracks in the slab existed in the loaded area, but these were expected to have

negligible influence on the ultimate strength (only the stiffness would be affected).

7.8.1 Load-displacement behaviour

The load-displacement curve for this test, along with the mid-span test on the same specimen is shown

in Figure 7.30. \t can be seen that the test at quarter-span produced a marginally stiffer load-

displacement curve, but the peak load was significantly lower.

During this test, the following cracks were observed in the specimen:

• At 35kN (A = 1.25mm), flexural cracks appeared on the underside of the slab (running E-W).

There was one crack on each side of the LVDT.

• Flexural cracks appeared at the beam/slab interface on the top surface at a load of 40kN (A =

1.55kN).

• At 70kN (A = 3.25mm), the cracks on the bottom surface had formed into a rectangular grid

pattern, with the grid spacing similar to the spacing of the steel mesh. Diagonal cracks in the

yield-line pattern also began to appear.

• At 90kN (A = 4.6mm), the diagonal cracks had almost reached the edge beam, and other cracks

were propagating and widening.
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Eventually, the slab failed as a result of punching shear at a load of 122.78kN and a vertical

displacement of 7.07mm.
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Figure 7.30: Load-displacement curves for tests 'S3' and 'S3b'

7.8.2 Displacements, twists and end rotations in edge beam

The horizontal displacements in the LVDTs at 'A' and 'B ' are shown in Figure 7.31 (a) and Figure

7.31 (b) respectively. Figure 7.31 (a) shows that the horizontal displacements in the top and bottom

LVDTs at 'A' were almost identical up to a vertical displacement of 4mm. At this point, the

displacement in the top LVDT began to increase at a slightly slower rate than the bottom LVDT,

which indicates the development of a positive twist in the edge beam (Figure 7.31(c)). At 'B' , the

displacement rate at the bottom was consistently higher than the displacement rate at the top

throughout the test, indicating that a positive twist developed in the edge beam at 'B ' almost frorv- the

start of the test (Figure 7.3 l(c)). The magnitude of this twist increased as the vertical displacement

increased.

At ' C , the horizontal displacement in the bottom LVDT increased (in the positive direction)

throughout the test, with the rate slowly decreasing as ultimate load was approached (see Figure

7.32(a)). The top LVDT had little displacement until the vertical displacement was just over lmm.

At this point, the displacements started to increase (in the negative direction). This resulted in a

positive rotation at the end of the edge beam, and this can be seen in Figure 7.32(b). This figure

shows that the end rotation in the edge beam increased almost linearly with vertical displacement.
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Figure 7.32: Displacements and rotations at 'C for test 'S3b'

7.8.3 Strain gauge data

The strains in the 'A' gauges in test 'S3b' are shown in Figure 7.33(a). This figure shows that the

strains in the gauges on the transverse bar (gauge 'ABY' and gauge 'ABYC') increased in tension

aimost linearly throughout the test. This would have been caused by the transverse bending of the

slab. The compressive strain in the 'ABX' gauge increased almost linearly with the vertical
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displacement during the test. This may have been due to the longitudinal bending in the slab and the

existence of a point of contraflexure between the load and the gauge location (Figure 7.34).
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Figure 7.34: Long-section of specimen, showing exaggerated deformation of slab

The strain in gauge 'BBY' (Figure 7.33(b)) shows the expected tensile strains due to the transverse

bending of the slab. It can be seen that the strain rate decreased as the ultimate load was approached.

This was the only punching test where the strain in the transverse gauge under the load began to level

off before failure. This perhaps indicates that the flexural capacity of the slab had almost been

reached when this specimen failed in punching. It is possible that this occurred in this test and not in

test 'S5b' (see Section 7.10) because the adjacent slab in specimen 'S5' allowed higher compressive

membrane forces to develop in the slab. Therefore more of the load could be carried through

compressive membrane ar.ion in test 'S5b' than in this test. As a result, more of the load had to be

carried in flexure in this test, so the flexural capacity of the slab was approached.

The strain in gauge 'CTY' is shown in Figure 7.33(c). The corresponding gauge on the bottom bar

(gauge 'CBY') was damaged in the previous test and did not produce meaningful results in this test.

This gauge shows a tensile strain, increasing throughout the test. This strain could be due to the

transverse bending in the slab, or to the existence of tensile forces in the surrounding regions required

to balance the compressive membrane forces acting transversely across the slab near the loaded area.

The strains at the beam/slab interface near the loaded area are shown in Figure 7.33(d). The gauges at

this location behaved in a peculiar manner. Unlike other tests the gauge on the top surface did not

reach very high strains. This would have been because the crack on the top surface did not pass

through the length of the gauge. Therefore, the strains that were measured were on one side of the

crack and the values were lower than in other tests. In fact, at the peak load, the strain measured on

the top surface was less than the strain measured in the steel bars. The strain in the top steel bar

increased, until the vertical displacement reached 2.5mm. After this point, the strain remained almost

constant till the end of the test. This was most likely caused by slippage in the bar after the crack

formed at this location.

The strains in the diaphragm gauges are shown in Figure 7.33(e). It can be seen that the strain rate in

all the gauges increased at A = 2.5mm. This corresponds to the displacement at which flexural cracks
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appeared on the top surface of the slab at the beam/slab interface. When this occurred, compressive

membrane forces developed transversely across the slab, and these were balanced by tensile forces in

the surrounding region. The tensile strains in the gauges in the diaphragm indicate that the balancing

tensile forces extended into the diaphragm. The inside gauges had higher tensile strains than the

outside gauges, indicating that the tensile balancing force dropped off as the distance away from the

loaded area increased. When comparing the top and bottom gauges in the diaphragm, the gauge in the

top steel recorded higher strains than the corresponding gauge on the bottom steel, with the gauge on

the top surface recording the highest strain overall. This was because the compressive membrane

forces in the slab acted near the top surface of the specimen, and so the highest balancing tensile

forces were also near the top surface.

The strains in the edge beam gauges for test 'S3b' are shown in Figure 7.33(f). As expected, the

vertical bending of the edge beam caused the bottom bars to be in tension, while the top bars were in

compression. Similar to test 'S2b\ gauge 'EBF had higher tensile strains than gauge 'EBO' because

of the horizontal bending of the edge beam (see Figure 7.29). As expected, the gauge on the top

surface of the edge beam had the highest compressive strains because of the vertical bending of the

edge beam.

7.9 Behaviour of punching test on specimen 'S4' at quarter-span

Following the test at mid-span of specimen 'S4', a test was carried out at quarter-span. The results of

this test are presented below.

7.9.1 Load-displacement behaviour

The load-displacement curve for test 'S4b' is shown in Figure 7.35. The curve shows a gradual

decrease in stiffness as cracks developed in the specimen, before a sudden punching failure. For

comparison, the load-displacement curve for the test at mid-span is also shown in Figure 7.35.

Similar to specimens 'S2' and 'S3', the test at quarter-span produced a stiffer but weaker response.

The following observations were made during this test.

• Flexural cracks on the bottom surface appeared at a load of 44kN (A = 1.6mm). Unlike some of

the other punching tests, cracks appeared simultaneously on both the N side and the S side of the

LVDT. In most of the other tests, a flexural crack developed on one side of the LVDT, before a

second crack appeared at a later stage on the other side. Whether one or two cracks developed

initially would have been dependent on how close to the slab centreline the loading plate was

placed.
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Cracks on the top surface (at the beam/slab interface) developed at a load of 68kN (A = 2.8mm).

• Cracks running in the N-S direction on the bottom surface of the slab developed at a load of 78kN

(A = 3.15mm). These cracks were at a spacing approximately equal to the spacing of the bars in

the mesh.

• Diagonal cracks in the yield-line pattern on the bottom surface appeared on the W side (towards

the nearer diaphragm) at a load of lOOkN (A = 4.45mm). At al load of 11 lkN (A = 5.1mm),

similar cracks developed on the E side.

• At a load of 153.28kN and a vertical displacement of 7.07mm, the slab failed in punching shear.

Load vs displacement
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Figure 7.35: Load-displacement curves for tests 'S4' and 'S4b'

7.9.2 Displacements, twists and end rotations in edge beam

The displacements in the LVDTs at 'A' and 'B ' for test 'S4b' are shown in Figure 7.36(a) and Figure

7.36(b) respectively. It can be seen that at both locations, the displacement in the bottom LVDT was

greater than the displacement in the top LVDT, indicating positive twists in the edge beam (Figure

7.36(c». The magnitudes of the twists increased at an almost constant rate after the vertical

displacement passed 1 mm. For vertical displacements less than 1 mm, the twists were close to zero.

The displacements in the LVDTs at ' C are shown in Figure 7.37(a) and the end rotation in the edge

beam is shown in Figure 7.37(b). These results show that the displacement in the bottom LVD C

stayed at an almost constant value (about 0.1mm) throughout the test after an initial increase. The

displacement in the top LVDT increased at an almost constant rate (in the negative direction). This

resulted in an almost constant increase in the rotation (positive direction) throughout the test (Figure

7.37(b)).
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Figure 7.36: Horizontal displacements and edge beam twists at 'A' and 'B 'for test 'S4b'
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Figure 7.37: Displacements and rotations at 'C for test 'S4b'

7.9.3 Strain gauge data

The strain in gauge 'ABX' versus displacement is shown in Figure 7.38(a). The other 'A' gauges

(gauge 'ABY' and gauge 'ABYC') were damaged during the previous test (test 'S4') and did not

produce meaningful results and are not presented in this figure. It can be seen in Figure 7.38(a) that

during this test there was very little bending in the x-direction at the location of gauge 'ABX'. The

strain only reached approximately 100/ae before failure. The strain in this gauge was lower than the
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strain in the corresponding gauge in test 'S3b' indicating there was less longitudinal bending of the

slab in this test (or perhaps that the point of contraflexure of the slab (seeFigure 7.34) was near the

location of the gauge).
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Figure 7.38: Strains in gauges for test 'S4b'

The strain in gauge 'BBY' is shown in Figure 7.38(b). It can be seen that the strain increased linearly

with increasing displacement up to the failure of the specimen. It is clear that the steel had not

yielded when the slab failed and that the failure mode was punching shear.

The strains in the gauges at the beam/slab interface are shown in Figure 7.38(c). This figure shows

that, originally, the gauges on the bottom surface and on the bottom steel were both in compression,
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while the other two gauges were in tension. Therefore, the strain neutral axis was between the top

steel and the bottom steel. At a vertical displacement of 2.5mm, the strain in the bottom steel changed

from compressive to tensile, indicating that the strain neutral axis had fallen below the level of the

bottom steel. The strain in the gauge on the bottom surface of the slab remained in compression

throughout the test, with the magnitude of the compressive strain continuing to increase. Very high

strains were measured on the top surface at the beam/slab interface due to the formation of cracks at

this location.

The strains in the edge beam gauges are shown in Figure 7.38(d). This figure shows the vertical

bending in the edge beam (compression at the top, tension at the bottom). However, because edge

beam gauges 'ETF and 'EBO' were previously damaged, horizontal bending effects cannot be

interpreted in this test.

The strains in the diaphragm gauges for this test are shown in Figure 7.38(e). It can be seen that the

tensile strain rate in these gauges began to increase when the vertical displacement was approximately

3.5mm. Therefore, it can be inferred that the compressive membrane forces in the slab began to

develop at this stage of loading. Also, it can be seen that the gauges on the outside bars ('DTO' and

'DBO') had the least tensile strain. This indicates that the tensile forces required to balance the

compressive membrane force in the slab decreased as the distance away from the loaded area

increased.

7.10 Behaviour of punching test on specimen 'S5' at quarter-span

A test at quarter-span of specimen 'S5' was carried out following the test at mid-span. The specimen

behaved in a similar manner to the test at mid-span. There was a gradual decrease in stiffness until a

sudden punching failure occurred.

7.10.1 Load-displacement behaviour

The load-displacement curve for this test is shown in Figure 7.39. For comparison, the load-

displacement curve for the same specimen, tested at mid-span, is also shown in the figure. It can be

seen that the test at quarter-span resulted in a stiffer response than the mid-span test, but the ultimate

loads were similar.

The following was observed in this test:

• Flexural cracks appeared on the bottom surface at a load of 60kN (A = 1.7mm). These cracks ran

longitudinally along the slab and were on both sides of the LVDT.
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• At 67kN (A = 2.05mm), cracks developed on the top surface of the specimen at the beam/slab

interface.

• The flexural cracks on the bottom surface had extended to the failure surface from the test at mid-

span at a load of 80kN (A = 2.85mm).

• At lOOkN (A = 4mm), the diagonal cracks in the yield-line pattern had developed on the bottom

surface of the slab. By 1 lOkN (A = 4.55mm), cracks in the yield-line pattern bad formed into a

rectangular grid.

Eventually, at a load of 127.3kN and a vertical displacement of 5.76mm, the slab failed in punching

shear.

Load vs displacement

— Mid-span

— Quarter-span

0 2 4 6 8

Vertical displacement under load (mm)

Figure 7.39: Load-displacement curves for tests 'S5'and 'S5b'

7.10.2 Displacements, twists and end rotations in edge beam

The displacements in the LVDTs at 'A' are shown in Figure 7.40(a), while the displacements in the

LVDTs at 'B ' are shown in Figure 7.40(b). Both these figures show the expected trend of larger

displacements in the bottom LVDT than the top LVDT and positive twists in the edge beams (Figure

7.40(c)).

The displacements in the LVDTs at ' C are shown in Figure 7.41 (a). It can be seen that there was

minimal displacement in the bottom LVDT, while the displacement in the top LVDT increased (in the

negative direction) at an almost constant rate throughout the test. This resulted in an almost linear

relationship between the rotation at the end of the edge beam and the vertical displacement (Figure

7.41 (b)). This indicates that the response of the edge beam remained linear throughout the test.
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Figure 7.41: Displacements and rotations at 'C for test 'S5b'

7.10.3 Strain gauge data

The strains in gauges 'ABY' and 'ABYC are shown in Figure 7.42(a). These tensile strains

developed due to a combination of transverse bending in the slab and the tensile membrane force that

existed in the surrounding region to balance the compressive membrane forces near the loaded area

(which was at quarter-span for this test).
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Figure 7.42: Strains in gauges for test 'S5b'

The transverse bending under the loaded area is illustrated in Figure 7.42(b), which shows the strain

in gauge 'BBY' during the tssi. It can be seen that this strain increased linearly throughout the test,

indicating a linear increase in the bending effects, right up to the failure of the slab. The fact that the

strain rate in this gauge had not changed prior to failure indicates that the steel had not yielded and the

fiexural capacity had not yet been reached before punching failure occurred.

The strains in the ' C gauges are shown in Figure 7.42(c). It can be seen that, initially, the strain in

the bottom reinforcement (gauge 'CBY') increased at a faster rate than the top reinforcement (gauge

'CTY'). This indicates there was a small amount of transverse bending in the slab. From a vertical
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displacement of lmm onwards, the strain in both gauges increased at an almost equal constant rate.

This indicates a pure tensile force was developing in the slab. This tensile force would have

developed to balance the compressive membrane forces near the loaded area.

The strains in the gauges at the beam/slab interface near the loaded area are shown in Figure 7.42(d).

Cracks caused the strain at the top surface to be very high, and the gauge split in half before the test

was completed. Initially, the neutral axis of strain was located between the top steel and the bottom

steel. At a vertical displacement of approximately 3mm, the neutral axis passed below the depth of

the bottom steel. The strain on the bottom surface remained in compression throughout the test and

increased at an almost constant rate.

The strains in the gauges in the edge beam during this test are shown in Figure 7.42(e). The vertical

bending in the edge beam can be seen by the compressive strains in the top gauges and the tensile

strains in the bottom gauges. Similar to the other tests at quarter-span, the bottom inside

reinforcement (gauge 'EBF) had a higher tensile strain than the bottom outside reinforcement (gauge

'EBO'). This was because of the horizontal bending in the edge beam as described in Figure 7.29.

The strains in the diaphragm gauges in test 'S5b' are shown in Figure 7.42(0- The strains shown in

this figure indicates vertical bending in the diaphragm with the bottom gauges ('DBI' and 'DBO')

having higher tensile strains than the other gauges, and the surface gauge having the highest

compressive strain. It can be seen that a sudden increase in strains occurred at a vertical displacement

of approximately 2.5mm. This was most likely caused by the development of cracks in the

diaphragm. Vertical bending occurred in the diaphragm in this test because the supports were located

at the corners of the specimen. For the other specimens, the supports were in-line with the edge

beams and because there was a gap between the diaphragm and the slab, vertical bending in the

diaphragm did not occur (Figure 7.43). Despite this, the trend seen in the diaphragm gauges of the

other quarter-span tests (higher tensile strains in inside gauges than outside gauges due to the

balancing tensile forces decreasing) can also be seen in this test.
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Figure 7.43: Bending of diaphragm in test 'S5b'

7.11 Summary of punching shear failure tests

The following summarises the observations made from the punching shear failure tests:

263



Presentation and interpretation of results for slabs with edge beams

« The punching failure loads of these slabs were significantly enhanced by the presence of the edge

beams, adjacent slabs, end diaphragms and the surrounding concrete areas. The code prediction

for the punching shear failure load was 96.94kN and the average failure load attained in the tests

was 137.88kN (refer to Section 7.11.1 for a summary of the ultimate loads). The presence of the

edge beams, adjacent slabs, end diaphragms and the surrounding concrete area allowed

compressive membrane forces to develop in the slab, significantly increasing the slab's punching

capacity.

• The compressive membrane forces in the siab have to be balanced by tensile forces in the

surrounding regions. In the specimens tested at mid-span, it was found that the tensile forces

existed in the slab for some distance (in the x-direction) away from the loaded area but did not

reach the end diaphragms. In other words, the tensile forces that existed to balance the

compressive membrane forces existed solely in the slab. For the tests at quarter-span, the

punching strength was lower because there was less capacity for the surrounding slab area to

balance the compressive membrane forces. This is discussed further in Section 7.11.1.

• When a specimen did not have an adjacent slab, the width of the edge beam had a clear influence

on the punching strength of the slab. This can be seen when comparing specimens 'S2' and 'S3'.

Specimen 'S3' had significantly weaker concrete than specimen 'S2' but its punching strength

was higher. This was possibly due to the extra restraint provided by the wider edge beams in

specimen 'S3' . This allowed more compressive membrane action to develop, increasing the

punching shear strength of the slab. This behaviour was not seen in specimens 'S4' and 'S5',

which had adjacent slabs. Specimen 'S5' had weaker concrete than specimen 'S4' and its

punching strength was lower, despite the wider edge beam. This indicates that the width of the

edge beam was not as significant when an adjacent slab existed in the specimen. This perhaps

indicates that once sufficient restraint stiffness exists for the slab (such as that provided by an

adjacent slab), any further increase in the restraint stiffness (such as from a wider edge beam) has

minimal influence on the amount of compressive membrane action that develops. However, if

there is no adjacent slab and the restraint stiffness is lower, an increase in the restraint stiffness

provided by a wider edge beam does influence the level of compressive membrane forces in the

slab.

• As expected, the concrete strength had a significant effect on the punching strength of the slab.

This is obvious when comparing the peak loads obtained in tests on specimens 'S4' and 'S5'.

Tests 'S4' and 'S4b' produced significantly higher peak loads (approximately 25% higher) than

tests 'S5' and 'S5b\ despite having thinner edge beams.
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IMA Ultimate load and vertical displacement

Table 7.1 summarises the ultimate loads and vertical displacements from the punching shear failure

tests on the specimens. Note: the total displacement is the displacement under the load, while the slab

displacement is the displacement under the edge beam (at the same longitudinal position as the

applied load) subtracted from the displacement under the load. This gives the magnitude of the slab's

displacement.

Table 7.1: Summary of ultimate loads and vertical displacements from punching tests

ak load Secant

at displacement at \ stiffness

peak load (mm) pe;

displacement
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26.00
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The following trends can be seen in Table 7.1:

• For all specimens except 'S5' the test at mid-span produced a higher ultimate load than the test at

quarter-span. This may be due to the fact that the surrounding steel reinforcement and concrete

slab area provided the tensile capacity to balance the compressive membrane forces near the

loaded area. The test at mid-span, which was always carried out before the test at quarter-span,

had two large areas of undamaged concrete and steel to balance the compressive membrane forces

(Figure 7.44). The fact that these areas were in tension was verified by the strain gauge readings

at 'B ' and 'D'. However, the test at quarter-span did not have as much undamaged concrete and

steel reinforcement to provide the balancing tensile forces. The concrete (and perhaps the steel

reinforcement) on one side had been damaged from the test at mid-span. Test results also showed
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that if the slab was loaded at mid-span, the balancing tensile forces did not reach the end

diaphragm (strain gauge readings in diaphragm gauges were close to zero). Therefore, only small

tensile balancing forces could be expected from the area of the concrete that was far away from

the loaded area at quarter-span (see Figure 7.44). As a result, there may have been less

compressive membrane action in the test at quarter-span because there wasn't as much tensile

capacity in the specimen to balance the compressive membrane forces. Specimen 'S5'

contradicted this behaviour, with the test at quarter-span having a higher ultimate load than the

test at mid-span. This may have been due to the presence of an adjacent slab in specimen 'S5',

which provided additional horizontal restraint to the loaded slab area. This meant that the

influence of the surrounding slab areas was not as significant in balancing the compressive

membrane forces. The amount by which the peak load in the mid-span test was higher than the

peak load in the quarter-span test in specimen 'S4\ which also had an adjacent slab, was also

smaller than in the specimens without an adjacent slab. This is further evidence that the presence

of the adjacent slab reduced the importance of the surrounding slab areas in withstanding the

compressive membrane forces near the loaded area.

• The total vertical displacement at peak load was always greater in the tests at mid-span than

quarter-span. The main reason for this is the increased bending stiffness of any structure that is

(? 85.33Er̂  _, f? 48EH
loaded at quarter-span — = - — than mid-span — = — — .

• When the vertical displacement of the beam was subtracted from the total vertical displacement,

the amount by which the slab itself deflected could be determined. It can be seen in Table 7.1 that

in every specimen except 'S5', the slab displacement at ultimate load was greater in the tests at

mid-span than in the tests at quarter-span. This is perhaps an indication of the increased torsional

and horizontal translational restraint stiffness that exists at quarter-span compared to mid-span. In

all specimens, the test where the slab displacement reached a higher value produced a higher

ultimate load.

• Table 7.1 shows that in general, the secant stiffness (using the slab displacement) was higher for

the specimens with the adjacent slabs. This would have been caused by the presence of the

adjacent slab, increasing both the torsional and horizontal translational restraint stiffness available

to the slab.
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Compressive membrane forces
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concrete to balance
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Figure 7.44: Comparison of capacity to withstand compressive membrane forces between tests at
mid-span and quarter-span

7'.11.2 Horizontal displacements and edge beam twists

The horizontal displacements and twists in the edge beams for all of the punching tests are

summarised in Table 7.2.

The following trends can be seen in Table 7.2.

• The tests at quarter-span produced smaller horizontal displacements than the tests at mid-span.

This was due to the greater horizontal restraint stiffness that existed at quarter-span than at mid-

span. In specimens 'S2' and 'S4\ the horizontal displacements in the quarter-span tests were 0.61
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times those for the tests at mid-span. For specimens 'S3' and 'S5\ the corresponding ratios were

0.80 and 0.86 respectively.

Tests on specimens 'S3' and 'S5' had lower horizontal displacements than tests on specimens

'S2' and 'S4\ even though the concrete strength was lower. This indicates that the horizontal

displacements were more dependent on the width of the edge beam than the concrete strength.

This may also partly be due to specimens 'S2' and 'S4' reaching higher vertical displacements at

failure (see Table 7.1) than specimens 'S3' and 'S5'. This would have also caused the horizontal

displacements to be higher.

Tests on specimen 'S4' (with adjacent slab) produced higher horizontal displacements than tests

on specimen 'S2' (wider edge beam). This indicates that the presence of an adjacent slab was not

as important as the increased width in the edge beam for reducing the horizontal displacements.

Table 7.2: Summary of horizontal displacements and edge beam twists from punching tests

Specimen Twist at A" I wist at B"
* ft "

horizontal • h<Vri/oiital bori/ontal1 ' (tleti) at
t . . . !

displacement displacement ' displacement peak load*

(n im) i i t ' \ ' (mil l) at 'IV at . (mm) at

at peak load peak load • peal* load * '

(clesi) at

peak load

S2

S2b

S3- ' /

"S3b J -

S4

S4b

S5

-S5b ."*!

1.94

1.19

- % O 9 9 ^

K 0 59" ' v'.

1.77

1.15

- r 0.62

0.62

1.72

1.04

t>m -
r v -,, 1 0 *.<•

2 06

1.20

1.00 '

if\- 0.77

3.66

2.23

- 2,10

! L69

3.83

2.35

1.62

• 1 39 * ~

0.06

0.07

: 004%

'* Ooo^

0.03

0.15

0.24 ••

011 ? %

0.24

0.03

• 0 06

" 018 '

0.34

0.24

0.12

0.18

7.11.3 Beam end rotations

Table 7.3 summarises the rotations at the ends of the edge beam for all of the punching tests. This

table shows that the rotation at this location in all of the tests was positive. This was to be expected

because of the vertical bending of the edge beams. However, there was no pattern to the magnitude of

the rotations and there appears to be no correlation between these rotations and the behaviour of the
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specimen in terms of the development of compressive membrane action. The rotations at the end of

the edge beam should have some form of relationship with the vertical displacements in the edge

beam, but Table 7.3 shows that no correlation can be observed between these values either. However,

as mentioned in Section 6.5.3.3, these measurements are very sensitive to the condition on the face of

the edge beam and this must be taken into consideration when interpreting these results.

Table 7.3: Summary of beam end displacements and rotations from punching tests

Specimen V\ era tie end Knd rotation (dog) at Beam vertical ,v

.}, at peak load ,

displacement (mm>

at peak load

S2

S2b

* S3 - ' -
y-

. S3b - - ; l

S4

S4b

S5 ' ,

S56-T \ \

0.25

0.50

-0.48

-0.36

-•/ 0 .̂47 % '-

0.31

0.04

*v _ 018 -

- ' 026 - , >

0.36

0.28

\ I- 020 %

' :• ;^o.2tf ;

5.82

2.61

4 8 5 -

219

6.84

3.18

4 25

2.12

7.11.4 Strain profiles at beam/slab interface

The strain profile at the beam/slab interface gives an indication of the state of stress at this location.

The actual stress condition cannot be determined exactly, due to the non-linearity of the strain profile,

the material non-linearity, the biaxial/triaxial stress state of the concrete at this location and the

disturbed stress condition in the vicinity of the corner. However, some observations can be drawn

from the strain profiles.

To obtain the strain profiles, tv>o strain gauges on the concrete (one each on the top and bottom

surface) and two strain gauges on the reinforcement (one on the top transverse bar and one on the

bottom transverse bar) were installed at the beam/slab interface. Typical strain profiles are shown in

Figure 7.45 and Figure 7.46.
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Strain profiles for 'S2'
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Figure 7.45: Strain profile at beam/slab interface for test 'S2'
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Strain profiles for 'S5b'
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Figure 7.46: Strain profile at beam/slab interface for test 'S5b'

A number of features can be seen in these strain profiles:

• The gauge on the bottom surface of the concrete remained in compression throughout the test.

• The gauge on the top surface of the concrete showed very high tensile strains. This was due to the

formation of a crack through the gauge.

• The strain profile was highly non-linear. This was to be expected because the gauges were

located in the vicinity of a corner. This resulted in stress concentrations in the region

• The location of the neutral axis (where the strain is zero) fell during the test. This was due to the

low tensile strength of concrete causing cracks to develop in the regions of high tensile stress.

The neutral axis fell as the depth of the crack increased. The formation of cracks is the basis for

the development of compressive membrane forces in the slab.
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7.11.5 Bending action vs compressive membrane action

The strains in the bottom mid-span reinforcement in the transverse direction for all of the punching

tests are shown in Figure 7.47 and summarised in Table 7.4. The last column in the table indicates

how many microstrain developed in the bar for each kN of load taken by the slab. It can be seen that

in general, the specimens with the adjacent slabs (specimens 'S4' and 'S5') had less strain in the steel

bar for each kN of load. This indicates that these specimens carried a smaller proportion of the load

in bending and that more compressive membrane action developed in these specimens. Note: the

values in Table 7.4 for test 'S4' are not the values at the peak load. They are the values just before the

gauge failed, but have been included to help in the comparison of the test results. The actual peak

load of this test was 160.13kN

Strain in bottom steel for tests failing in punching
shear

4000 -I
3500-

^ 3 0 0 0 -
o 2500-
S 2000
.£ 1500 -
S 1000-
W 500-
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-500 i

S2
-S4

/

)

S2b -S3
S4b -S5

1

5

-S3b
-S5b

I 1

10 15
Vertical displacement under load (mm)

Figure 7.47: Strains in bottom steel gauges for punching shear tests
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Table 7.4: Summary of strains in bottom reinforcement at peak load

Specimen . Peak loud (UN) Strain'at peak load (u£) Strain/peak load (n£/k\>

S2

S2b

" S 3 - A"

*$3b ?*

S4

S4b

S5

S5b *

142.85

130.00

129.13

153.28

123,68 ̂  v

** 1273D " ^

3697

2778

> v ^ ^ X ^ - ? ^ - . ^

2416

2506

25.88

21.37

*3^«3§> 2 2 6 8 - ^
^ , *4*% •XT'6 S°_ ^ _.

18.71

16.35

* - . ^ 13 38

1627

Another indication of the amount of compressive membrane action in the slab can be obtained by

examining the strain rate and the maximum strain in the gauge on the bottom concrete surface near the

beam/slab interface. This is summarised in Table 7.5.

Table 7.5: Summary of strains on bottom surface at beam/slab interface at peak load

1 etf

S2

S2b

S3b '

S4

S4b

IB

Stimin at peak load (ji£)

362.68

1012.44

" ^ v ' " 9̂6.43 ~ ': '

743.54

600.96

Strain rate (p£/mm of slab displacement)

50.7

208.3

120.7

125.7

Except for test 'S2b\ the trend was for the tests where the specimen had adjacent slabs to have higher

strains at the peak load and a higher strain rate. This could have been due to the higher compressive

membrane forces that can develop in these tests because of the greater horizontal translational

restraint provided by the adjacent slab. However, there are not enough test results to draw a definite-

conclusion. The strain from test 'S2b' was much higher than the other tests and would appear to be

inaccurate.
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7.11.6 Failure surfaces

The approximate size of the failure surface in the x and y directions for each punching test is shown in

Table 7.6. This table indicates that the failure surface was generally larger for the test at mid-span

than the test at quarter-span on the same specimen. Also, larger failure surfaces generally occurred

for the tests with the higher failure loads.

Table 7.6: Approximate size of failure surface for punching shear failure tests

lest • I'cjj.k load (UN) \(mm) \ (mm)

S2

S2b

* S3^

J3b

S4

S4b

142.85

130.00

'?" 1̂22 78.
~ "*• ,,55 < vr

160.13

153.28

^'12368',, ,

A-v 127 30 P>

660

540

\670 '
^̂ ^ »• ° *

;>o;
660

640

"eoo >

v49cT

570

550

, 520-:

^520^-

500

530

530 *

430

7.12 General behaviour of flexural failure tests

Along with the punching shear failure tests, the slab was also cut into strips and flexural failure tests

were performed on the strips. This was previously described in Section 6.4. Because the strips were

located at different longitudinal positions along the specimen, they were expected to develop varying

amounts of compressivs membrane action.

In all of the tests on slab strips, the following pattern of behaviour was observed:

• Flexural cracks developed on the bottom surface, running across the width of the slab strip

(Figure 7.48).

• Flexural cracks developed on the top surface at the beam/slab interface (Figure 7.49).

• Flexural (in horizontal bending) and torsional cracks developed in the edge beam (Figure 7.50).

The flexural cracks were in the middle of the width of each slab strip.

• Crushing of concrete under the loading plate (Figure 7.51).

• Crushing of concrete on the bottom surface of slab at beam/slab interface (Figure 7.52).
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Flexural cracks on
bottom surface

Figure 7.48: Flexural cracks on slab bottom during loading

Flexural cracks on top
surface

Figure 7.49: Flexural cracks on top surface during loading
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Figure 7.50: Cracks in edge beam after testing

Figure 7.51: Cnishing of concrete under loading plate
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Figure 7.52: Crushed concrete on bottom surface at beam/slab interface

Following the peak load, a ductile failure occurred in most specimens with a gradual drop-off in load

as the concrete under the loading plate and on the underside of the slab at the beam/slab interface

continued to crush. A more brittle failure occurred in some of the slab strips after the peak load had

been reached. This generally occurred for the specimens that reached higher peak loads.

7.13 Behaviour of flexural tests on specimen 'S I '

7.13.1 Load-displacement behaviour

The load-displacement curves for the flexural tests on specimen 'SI ' are shown in Figure 7.53, while

the peak loads are summarised in Figure 7.54. The most noticeable feature is the strips at the ends

('A' and 'G') produced the stiffest response and the highest peak loads. The stiffnesses of all the

other strips were quite similar. This was partly due to the existence of damage in the specimen that

existed from previous tests on adjacent strips. The only tests that were conducted on pristine concrete

were tests 'SIFa', 'SIFd' and 'SIFg'. By comparing these three tests, it can be seen that the stiffness

and ultimate load of the strip at mid-span ('SIFd') was noticeably less than the strips at the ends

('SIFa'and'SIFg').
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Load vs displacement
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Figure 7.53: Load-displacement curves forflexural tests on specimen 'SI'

Peak load for strips in specimen 'S1'
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Figure 7.54: Peak loads for strips in specimen 'SI'

The existence of cracks in the specimen from previous tests on adjacent strips had two effects on the

currently loaded strip (Figure 7.55). Firstly, flexural cracks from the adjacent strips that extended into

the strip being loaded would have reduced its stiffness. Secondly, when the adjacent strip was

previously loaded cracks developed in the areas surrounding the adjacent strip. These were due to the

existence of tension forces in the surrounding areas, which were required to balance the compressive

membrane forces in the loaded strip. Often these cracks developed at the corner of the saw cuts

because of the discontinuity and stress concentrations in these areas. Depending on the location of

these cracks, the amount of horizontal restraint that existed for the strip currently being loaded was

reduced. The fact that the adjacent strip was damaged, with concrete crushing in a number of

locations, also reduced the amount of horizontal restraint that existed for the currently loaded strip.
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Figure 7.55: Damage in specimen from previous tests and influence on current test

Because of this, the order that the strips were tested had an effect on the results. For example, it was

expected that strips 'B' and 'F' would have been the second stiffest (after strips 'A' and 'G') because

the horizontal restraint stiffness decreases away from the diaphragm. However, because of the

damage that already existed in the specimen when these tests were carried out, the strength and

stiffness of these strip, were lower than if the specimen was in pristine condition. Also, it will tz

shown later in Section 8.8.3 that as the distance away from the diaphragm increases, the horizontal

Iranslational restraint stiffness decreases rapidly, then stays at a constant value. As a result, strips 'B' ,

' C , 'D', 'E' and 'F ' all had almost identical restraint stiffnesses (assuming uncracked behaviour).
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Because of this, the pre-existing damage in the specimen became the determining factor in the

restraint stiffness that existed for each slab strip, rather than the strip's position.

In summary, the following can be concluded ,~ Dm the comparisons of the load-displacement

behaviour of these strips:

• The position of the slab strip had an effect on the stiffness and ultimate strength of the strip. The

strip at mid-span had less torsional and horizontal transiational restraint than the strips at the ends,

and this caused the stiffness and ultimate strength to be lower.

• The presence of cracks in surrounding areas affected the amount of horizontal transiational

restraint that existed in the slab strips. This had the effect of reducing the amount of compressive

membrane action in the slab. Therefore, its stiffness and stren^ih was reduced.

7.13.2 Displacements and twists in edge beam

The relationship between the total average horizontal displacements and the applied load for each test

is shown in Figure 7.56. The total average horizontal displacement is defined as

fHAT+HAB HBT + HBB^ J r A L , _,. ,
r . HAT and HAB are the horizontal displacements at 'A' in the top

\ Z Z J

and bottom LVDTs respectively. Similarly, HBT and HBB are the corresponding horizontal

displacements at ' B \

Average horizontal displacement for strips in
specimen'S1'

—Strip A - Strip B Strip C
—Strip E — Strip F — Strip G

Strip D

-1 20 40 60 80

Load(kN)

100 120

Figure 7.56: Total average horizontal displacement vs load for strips in specimen 'SI'

Figure 7.56 shows that at equivalent loads, the horizontal displacements increased when the location

of the test was closer to mid-span. Strips 'A' and 'G' had the lowest displacements and these

progressively increased, with strip 'D' having the highest horizontal displacement. This was due to

the strips having lower transiational restraint stiffness when they were closer to mid-span. It can be
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seen that tests at equivalent positions (ie. strips 'A' and 'G \ strips 'B ' and ' F \ strips ' C and 'E')

produced very similar horizontal displacements, until the peak load was approached.

The relationship between the edge beam twist and the vertical displacement for each strip in specimen

'SI' is shown in Figure 7.57. The curves are quite noisy, but it can be seen that the expected pattern

for the twists was obtained. The highest twist occurred in the middle strip (strip 'D') and decreased as

the strips moved away from the middle. Strip 'G' actually r.i< -rsured a negative average twist and this

behaviour remains unexplained.

Average edge beam twist for strips in specimen
•S1"

0.4 i — Strip A — Strip B Strip C - Strip D

— Strip E — Strip F — Strip G

Vertical displacement under load (mm)

Figure 7.57: Average edge beam twist vs displacement curves for strips in specimen 'SI'

7.13.3 Strain gauge data

The relationship between the strain in the bottom steel gauge and the applied load is shown in Figure

7.58. The following can be seen in the graph:

• When comparing the pristine strips ('A', 'D ' and 'G'), initially the strains in the bottom steel of

all three of these strips were almost the same. However once cracks developed at mid-span and at

the beam/slab interface, the strain in strip 'D' began to increase at a faster rate. This was because

although compressive membrane action was developing in all of the strips, higher compressive

membrane forces were developing in the strips at the ends ('A' and 'G') than in the middle strip

CD'). Therefore, more of the load in strip 'D' had to be carried in bending so the strain in the

bottom steel was higher.

• The rate at which the strain in the non-pristine strips initially increased was noticeably higher.

This was due to the pre-existing cracks in the slab strips that reduced their stiffnesses.

• For the non-pristine strips where the surrounding regions were already partly damaged, the strains

depended on the order that the strips were tested (Table 7.7). This is because the order of testing
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directly influenced the amount of damage in the surrounding regions of the strip, which affected

the amount of restraint that existed for the loaded strip. In turn, this affected the amount of

compressive membrane action that could develop in the strip.

Strain in bottom steel at midspan

5000-1

4000-

-1000 ^

— Strip A — Strip B Strip C
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— Strip G

20 80 10040 60

Load (kN)

Figure 7.58: Strain in bottom steel gauge vs load for strips in specimen 'SI'

Table 7.7: Strain in bottom steel gauge atP = 20kN

I csi Order Spmm-eri Strain (xll)") at P = 20k\

1

2

3

4

5

6

7

SIFa

SIFg

SIFd

SIFc

SIFb

SIFe

SIFf

330.90

382.48

421.41

753.28

994.65

919.71

1180.54

The development of strains on the bottom surface at the beam/slab interface is shown in Figure 7.59.

Only the results of the pristine strips have been presented since many of the gauges at this location on

the non-pristine strips had been damaged from previous tests. It can be seen that the strain rate at this

location is slightly higher for the strips at the end than the strip in the middle. This is a likely

indication that compressive membrane forces, which pass through this location, were higher in the

end strips than in the middle strip at corresponding vertical slab displacements. The compressive

membrane forces were higher in the end strips because of the increased horizontal restraint that

existed for these strips.
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Strain on bottom surface at beam/slab interface
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Figure 7.59: Strain on bottom surface at beam/slab interface for strips in specimen 'SI'

7.13.4 Strain profiles

Strain profiles at the beam/slab interface for tests 'SIFa', 'SIFd' and 'SIFg' are shown in Figure 7.60

to Figure 7.62. Strain profiles for the other strips in 'S I ' have not been produced because some of the

gauges had already been damaged before the tests were carried out. In the later stages of loading in

Figure 7.60 to Figure 7.62, cracks had formed through the gauge on the top concrete surface, so those

readings have been disregarded. These figures show that the strain profile at the beam/slab interface

was not linear. Near the bottom surface of the slab, the strain gradient was much higher than in the

top half of the slab. In all tests, the strain at the bottom surface was compressive, with strip 'SIFd'

reaching higher compressive strains than the other strips. This was because the failure of strip 'SIFd'

was more ductile than strips 'SIFa' and 'SIFg', so higher strains were recorded in this test because

the vertical displacement reached larger values. However, as Figure 7.59 shows, at corresponding

displacements, the strains in 'SIFd' were lower than in the end strips.
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Figure 7.60: Strain profiles for test 'SIFa'
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Strain Profiles for Test 'S1Fd'
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Figure 7.61: Strain profiles for test 'SIFd'
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Figure 7.62: Strain profiles for test 'SIFg'

7.13.5 Horizontal restraint provided by surrounding regions

To establish the source of the horizontal restraint provided to strip 'D' , the strain gauge readings in

the slab strips surrounding strip 'D' were examined. These are shown in Figure 7.63(a) and Figure

7.63(b).
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Figure 7.63: Strains in surrounding strips during test 'SIFd'

These figures show significant tensile strains in the surrounding regions. Gauges 'EBCC and

'EBEC showed the highest tensile strains and cracks developed across the length of these gauges.

This would have been due to the fact that at the beam/slab interface, the compressive membrane

forces are highest near the bottom surface (compare with compressive strut analogy). Therefore, in

surrounding regions, the highest tension forces required to balance the compressive membrane forces

are also found on the bottom surface. Hence the larger tensile strains in the bottom gauges ('EBCC

and 'EBEC') than the top gauges ('ETCC and 'ETEC).

In Figure 7.63(a), a noticeable increase in the strains can be observed at a vertical displacement of

approximately 3mm. This corresponded to the displacement when flexural cracks formed at the

beam/slab interface in strip 'D'. Hence, it can be reasoned that once the flexural cracks formed at the

beam/slab interface, significant compressive membrane action developed in strip 'D'. As a result,

tensile strains developed in the surrounding regions to balance the compressive membrane forces.

7.14 Behaviour of flexural tests on specimen 'S2'

7.14.1 Load-displacement behaviour

Two tests were performed on slab strips that had been formed in specimen 'S2' after the punching

shear tests had been completed. The load-displacement curves for these tests are shown in Figure

7.64. This figure shows that test 'S2Fa' produced a far stiffer load-displacement curve than test

'S2Fb\ The peak load was also significantly higher. The lower stiffness in test 'S2Fb' can be

attributed to the presence of cracks that developed at the beam/slab interface that developed during

test 'S2Fa\ The significantly lower ultimate strength in 'S2Fb' was likely due to the reduced

horizontal restraint that existed for this slab strip. This was caused by the existence of a splitting

crack at the bottom of the beam/slab interface (Figure 7.65). This crack developed because of the

presence of a horizontal compressive force in test 'S2Fa', which caused the splitting crack to develop
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in the surrounding concrete area (refer back to Figure 7.55). The presence of the splitting crack

reduced the amount of horizontal restraint that existed when test 'S2Fb' was carried out. Therefore, it

can be concluded that more horizontal translational restraint existed in test 'S2Fa' than 'S2Fb' and

this was the reason for the higher ultimate load and stiffness.

Load vs displacement
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Figure 7.64: Load-displacement curves for flexural tests on specimen 'S2'

Splitting crack

Figure 7.05: Underside of slab, showing splitting crack in surrounding concrete area

7.14.2 Displacements and twists in edge beam

The total average horizontal displacements at 'A' and 'B ' for tests 'S2Fa' and 'S2Fb' are shown in

Figure 7.66(a). It can be seen that at corresponding vertical displacements, the total average LVDT

displacements were almost equal. However, an important trend can be seen in the LVDT
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displacements when they are compared to the load carried by the slab strip. This is shown in Figure

7.66(b).

Total average LVDT displacement vs
vertical displacement

0 5 10 15 20
Vertical displacement under load (mm)

Total average LVDT displacement vs
applied load

H ? 1
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d c 2.0
1 2 1.5-1
.§ § 1.0-
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0.0 r
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Applied load (kN)

(a) Horizontal LVDT displacement vs
vertical displacement

(b) Horizontal LVDT displacement vs load

Figure 7.66: Total average LVDT displacements for tests 'S2Fa'and 'S2Fb'

This figure shows that for the test with greater horizontal restraint ('S2Fa'), the horizontal

displacements were smaller at a corresponding load than for the test with less horizontal restraint

('S2Fb'). On the other hand, the relationships between the horizontal LVDT displacements and the

vertical displacements were almost the same. This implies that the slab strips deflected in a similar

manner, but 'S2Fa' was stiffer and able to carry a higher load because of the greater horizontal

translational restraint. Because both of these strips were near the diaphragm, the twists at 'A' and 'B '

were small and are not presented here. However, the twists at peak load for all of the flexural failure

tests are summarised in Section 7.18.2.

7.14.3 Strain gauge data

The relationship between the strain in the steel at bottom mid-span and the applied load is shown in

Figure 7.67. It can be seen in this graph that at corresponding loads, the strains in 'S2Fa' were lower

than 'S2Fb\ This indicates that in 'S2Fa', less load was carried in bending, implying more load was

carried in compressive membrane action. This occurred because of the greater horizontal translational

restraint stiffness that existed for 'S2Fa' compared to 'S2Fb'.
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Figure 7.67: Strain in steel at bottom mid-span vs load for flexural tests on specimen 'S2'

The strains in the gauges at the edge beam/slab interface for test 'S2Fa' are shown in Figure 7.68(a).

It can be seen that the bottom surface gauge increased in compression throughout the test at an almost

constant rate. Initially, the top surface gauge slowly increased in tensile strain. At a vertical

displacement of approximately 0.8mm (20kN), the strain began to increase at a more rapid rate. This

was due to the development of a flexural crack on the top surface of the slab. The tensile strain

continued to increase as the crack widened, before the gauge failed. A similar trend is shown in

Figure 7.68(b) for test 'S2Fb\ These results indicate that the strain profiles in these two slab strips

were similar to the strain profiles in the slab strips in specimen 'SI ' (see Section 7.13.4).
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Figure 7.68: Strains in gauges at beam/slab interface for tests 'S2Fa' and 'S2Fb'

7.15 Behaviour of flexural tests on specimen 'S3'

7.15.1 Load-displacement behaviour

Two flexural failure tests were performed on slab strips in specimen 'S3' after the punching tests were

carried out. The load-displacement curves for these two tests are shown in Figure 7.69. Test 'S3Fb'

produced a slightly stiffer response, even though the location of the strip was further away from the
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diaphragm (hence, the restraint stiffness should have been less). The stiffer response was due to the

presence of pre-existing cracks from test 'S3Fb\ which were created when test 'S3Fa' was carried

out. This resulted in a lower stiffness for the strip in test 'S3Fa' than for the strip in test 'S3Fb\ This

was confirmed by the development of flexural cracks in the strip at a much lower load (12kN) in test

'S3Fa' than in test 'S3Fb' (27kN). These slab strips exhibited a ductile flexural failure, as a result of

concrete crushing under the loading plate (Figure 7.51). This occurred after the bottom steel in the

slab strips had yielded.

Load vs displacement
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Figure 7.69: Load-displacement curves for flexural tests on specimen 'S3'

7A 5.2 Displacements and twists in edge beam

The total average horizontal displacement in the slab strip from tests 'S3Fa' and 'S3Fb' are shown in

Figure 7.70. It can be seen that the horizontal displacements in test 'S3Fa' were less than in 'S3Fb\

which was due to the slab strip in 'S3Fa' being closer to the diaphragm. However, as can be seen in

Figure 7.69, the additional horizontal translational restraint did not result in 'S3Fa' having a higher

ultimate load. The twists at 'A' and 'B ' in both test 'S3Fa' and test 'S3Fb' were small and are not

presented here. However, the twists obtained at the peak load are summarised in Section 7.18.2.
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Total average LVDT displacement vs vertical
displacement
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Figure 7.70: LVDT displacements at 'A' and 'B 'for tests 'S3Fa' and 'S3Fb'

7.15.3 Strain gauge data

The strain in the bottom steel at mid-span of the slab strip is shown in Figure 7.71 for test 'S3Fa' and

'S3Fb\ At corresponding loads, 'S3Fb' had lower strain in the bottom steel than 'S3Fa'. The lower

strain indicates that a smaller proportion of the load was carried in flexure and that more of the load

was carried in membrane action in 'S3Fb' than 'S3Fa'. Once again, this was caused by the fact that

the specimen was more damaged before test 'S3Fa' than 'S3Fb'.

Strain in bottom steel at midspan
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Figure 7.71: Strain in bottom steel at mid-span forflexural tests on specimen 'S3'

The strains in the concrete on the top and bottom surface in test 'S3Fa' are shown in Figure 7.72(a).

The same strains are shown in Figure 7.72(b) for test 'S3Fb'. Both these figures show a similar

relationship as seen in the flexural tests on specimen 'S2\
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Figure 7.72: Strains in gauges at beam/slab interface for tests 'S3Fa' and 'S3Fb'

7.16 Behaviour of flexural tests on specimen 'S4'

7.16.1 Load-displacement behaviour

The load-displacement curves for the flexural tests on specimen 'S4' are shown in Figure 7.73. The

slab strips in both tests failed as a result of concrete crushing, first on the top surface underneath the

loaded area, then on the bottom surface at the beam/slab interface. However, as can be seen in Figure

7.73, the strips behaved slightly differently after the peak load had been reached. The strip in test

'S4Fa' failed in a more brittle manner, when the concrete on the bottom surface crushed suddenly.

On the other hand, the strip in test 'S4Fb' failed in a far more ductile manner, with the concrete on the

bottom surface crushing gradually, hence the gradual decrease in load. Strip 'S4Fa' produced a stiffer

response and a higher ultimate load than strip 'S4Fb\ This would have been due to the increased end

restraint stiffness that existed for strip 'S4Fa\ and the existence of cracks in the specimen that had

previously developed before test 'S4Fb' was carried out. The fact that strip 'S4Fa' produced such a

high ultimate load compared to other slab strips may be the reason for the brittle failure of this strip.
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Figure 7.73: Load-displacement curves for flexural tests on specimen 'S4'

7.16.2 Displacements and twists in edge beam

The total average horizontal displacements in these tests are shown in Figure 7.74(a) and Figure

7.74(b). When comparing against vertical displacement, the horizontal displacements in each test

were similar, indicating that the horizontal displacements were dependent on the geometry of the

deformations in the slab strip. That is, a certain amount of vertical displacement resulted in a certain

amount of horizontal end displacement. This was true until the strip approached failure. However,

when comparing against load (Figure 7.74(b)), it can be seen that at corresponding loads, a larger

horizontal displacement existed during test 'S4Fb' than test \S4Fa'. This indicates that less horizontal

translational restraint stiffness existed in test 'S4Fb' than test 'S4Fa'. Similar to the flexural failure

tests on specimens 'S2' and 'S3' , the twists at 'A' and 'B ' in both of these tests were negligible and

are not shown here. Instead, the twists obtained at the peak load are summarised in Section 7.18.2.
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Figure 7.74: Total average LVDT displacements for tests 'S4Fa' and 'S4Fb'
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7.16.3 Strain gauge data

The strains in the bottom steel gauge at mid-span for tests 'S4Fa' and 'S4Fb' are shown in Figure

7.75. It can be seen that at equal loads, the strains in these gauges were almost identical. This

indicates that at equal loads the bending effects in the two strips were the same, and hence the amount

of compressive membrane action that developed in the two strips was almost identical. This was not

the case for strips in specimens 'SI ' , 'S2' and 'S3'. This behaviour may have been due to the

presence of the adjacent slab in this specimen, in that it provided a very stiff surround to the slab strip.

Since the restraint was already very stiff, a small difference in the restraint stiffness (such as from the

strip position) had negligible influence on the amount of compressive membrane action that

developed. This was also seen in the finite element modelling of the restrained one-way slabs

(Section 5.4.10). Figure 5.40 showed that once the restraint stiffness exceeded a certain value, a

further increase made little difference to the slab behaviour. Despite this, as seen in Figure 7.73, strip

'S4Fa' was stiffer and stronger than strip 'S4Fb'. This was most likely due to the damage that already

existed in the specimen when strip 'S4Fb' was tested. The pre-existing damage resulted in a decrease

in the flexural capacity and bending stiffness of the strip, but the presence of the adjacent slab meant

that the capacity of the two strips to develop compressive membrane action was the same.
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Figure 7.75: Strain in bottom steel gauge vs load for tests 'S4Fa' and 'S4Fb'

The strains in the gauges at the beam/slab interface for tests 'S4Fa' and 'S4Fb' are shown in Figure

7.76(a) and Figure 7.76(b) respectively. The same behaviour seen in previous tests can be seen in

these gauges. An interesting point is that the strain in the gauge on the top surface in strip 'S4Fb'

increased very rapidly (Figure 7.76(b)) and failed very early on in the test. This would have been

caused by pre-existing cracks on the top surface of the slab.
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Figure 7.76: Strains in gauges at beam/slab interface for tests 'S4Fa' and 'S4Fb'

7.17 Behaviour of flexural tests on specimen 'S5'

7.17.1 Load-displacement behaviour

The load-displacement curves for the flexural tests on specimen 'S5' are shown in Figure 7.77. Both

tests produced a similar peak load, but 'S5Fa' had a stiffer response. This may have been due to the

increased translational horizontal restraint in test 'S5Fa', or the reduced stiffness of test 'S5Fb'

because of pre-existing damage that existed when the test was carried out (test 'S5Fa' was carried out

before test 'S5Fb').
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Figure 7.77: Load-displacement curves for flexural tests on specimen 'S5'

7.17.2 Displacements and twists in edge beam

The total average horizontal displacement for flexural tests on specimen 'S5' is shown in Figure 7.78.

Similar to the previous tests, the horizontal displacements in 'S5Fa' were smaller than those in

'S5Fb'. This may have been due to the increased horizontal translational restraint that existed for the

strip. However, the peak loads from both tests were similar. The twists in the edge beams in these
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tests were very small and are not presented here. However, the twists at the peak load for all flexural

failure tests are summarised in Section 7.18.2.

Total average LVDT displacement vs vertical
displacement
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Figure 7.78: LVDT displacements at 'A' and 'B 'for tests 'S5Fa' and 'S5Fb'

7.17.3 Strain gauge data

The relationship between the strain in the bottom steel at mid-span and the applied load is shown in

Figure 7.79 for tests 'S5Fa' and 'S5Fb\ Similar to specimen 'S4\ the strains were close throughout

the two tests. When the applied load was approximately 35kN in test 'S5Fa\ there was a sharp drop

in the load before it begcji to increase again. This was caused by the loading plate coming into

contact with the concrete on an adjacent strip. When the concrete broke off, the applied load started

to increase again. By examining Figure 7.79, it can be seen that if this had not occurred, the strains in

the two tests would probably have been even closer. This verifies the results from specimen 'S4', in

that the adjacent slab provided enough horizontal restraint to the slab strip such that the position of the

strip had no influence on the development of compressive membrane action.
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Figure 7.79: Strain in bottom steel at mid-span vs load for flexural tests on specimen 'S5'

The strains on the top and bottom surface at the beam/slab interface for tests 'S5Fa' and 'S5Fb' are

shown in Figure 7.80(a) and Figure 7.80(b) respectively. Both these figures show a similar

relationship to that seen in previous flexural test specimens discussed so far. However, one noticeable

difference is that the compressive strain on the bottom surface in test 'S5Fb' reached a much higher

value than in any other flexural failure test. At the peak load, a strain of 4540jis was recorded in this

gauge compared to a maximum strain of 2323UE (at the peak load) from all of the other flexural

failure tests.
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Figure 7.80: Strains in gauges at beam/slab interface for tests 'S5Fa' and 'S5Fb'

7.18 Summary of flexural failure tests

7.18.1 Ultimate load and vertical displacement

Table 7.8 summarises the peak loads and the displacement at the peak load for the flexural failure

tests on the slab strips. From these results, it can be seen that:
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The position of the slab strip made a difference to the strength and stiffness of the pristine strips in

specimen 'SI ' . The strips near the ends of the specimen ('SIFa' and 'SIFg') were significantly

stronger and stiffer than the strip in the middle 'SIFd'. This was due to the increased torsional

and horizontal translational restraint at the ends of the specimen.

The order of testing was found to have an effect on both the stiffness and strength of the slab

strips. This was because damage in the surrounding region reduced the specimen's ability to

withstand the compressive membrane forces in the slab strips. If there was already significant

damage in the surrounds, the available restraint was reduced. This point can be seen in specimen

'SI ' . According to the analyses shown later in Section 8.8.3, strips 'SIFb', 'S lFc \ 'SIFd',

'SIFe' and 'SIFf all have approximately the same horizontal translational restraint stiffness (if

the specimen is undamaged). However, the experimental results showed that the strength

generally decreased according to the order of testing. This shows that pre-existing damage

affected the restraint stiffness that existed for a slab strip. In turn, this affected the slab's strength

and stiffness. This was also highlighted by the fact that in the tests on specimens 'S2' to 'S5' , the

test that was carried out first (the 'a' strip in all specimens except 'S3') produced a stronger and

stiffer response than the second test.

The strips in specimen 'S5' were stronger than the strips in specimen 'S3'. These strips had the

same concrete strength and edge beam width but specimen 'S5' had an adjacent slab. Therefore,

it can be concluded that the presence of an adjacent slab meant more restraint was provided to the

slab strip, allowing higher compressive membrane forces to develop. The same conclusion can be

drawn by comparing the strips in specimen 'S2' with the strips in specimen 'S4\ The effect is

even more pronounced with these strips since specimen 'S4' has a thinner edge beam than

specimen 'S2', but the adjacent slab more than compensates for this reduced width.
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Table 7.8: Peak load and stiffness of flexural failure tests

Test I" , , (MPH)

displacement at "displacement at

Secant

stiffness

peak load (mm) peak load (mm) usinu slab

displacement

(UN mm)

SIFa

SIFb

SIFc

SIFd

SIFe

SIFf

SIFg

S2Fa

S2Fb'

S3Fa

S3Fb

WM

S5Fa

S5Fb

29.37

29.37

29.37

29.37

29.37

29.37

29.37

*" '34^93 ~ -

34.93

22.24

22.24

•mm
22.56

22.56

100.80

79.93

80.00

80.95

74.30

75.15

91.75

"7400-

57 42

64.18

64.40

ISIiiSl
wgmm
:^t.--r •/••-. ."ii , r^~' ••• -..:•- iJejcr,

71.97

70.23

8.75

11.39

10.45

12.68

10.28

12.73

8.52

- ^ . 8.96

' " 1195

6.93

6.43

5.57

8.12

7.65

9.60

7.83

9.55

7.67

10.83

7.51

8 38

10.67

6.27

5.24

5.37

6.91

13.18

8.33

10.22

8.48

9.69

6.94

12.22

x 8.83 ~

' 5 38 °

10.24

12.29

wmmimm
13.40

10.16
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7.18.2 Horizontal displacements and edge beam twists

Table 7.9 summarises the horizontal edge beam displacements in the flexural failure tests.

Table 7.9: Horizontal displacements in flexural failure tests

Specimen \ \ era«c horizontal \mouni

displacement (mm) at "A displacement (mm) at '\\ (mm) »reater •

at peak load at peaU load

SI Fa

SIFb

SIFc

SIFd

SIFe

SIFf

SIFg

S2Farf

^S2Fb

S3Fa

S3Fb

iiiiif
S5Fa

S5Fb

0.52

0.53

1.15

1.24

0.75

0.78

0.30

0/76

- : - L25

0.80

0.77

MUlilil^ii
0.27

0.40

1.32

1.14

1.07

1.78

1.29

0.97

1.22

•" ' 09f ,

" - j - 088

-0.26

0.30

0.50

0.81

1.84

1.67

2.22

3.02

2.04

1.75

1.52

167

* ^213- ,-

0.54

1.07

0.77

1.21

-

-

-

-

-

-

-

0.46mm

(27.5%)

0.53mm

(98.1%)

0.44mm

(57.1%)

It can be seen that:

• In specimen 'SI', the total horizontal displacement at peak load was higher for the strips near the

centre of the specimen (see Figure 7.81).

• In all the other specimens, the total displacement was higher in strip 'B' than strip 'A' (strip 'A'

was closer to the end diaphragm).
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• Specimen 'S2' had higher horizontal displacements than specimen 'S3', even though it had

stronger concrete. This was because the edge beam was thinner. Similarly, specimen 'S4' had

higher horizontal displacements than specimen 'S5 \ despite the higher concrete strength.

Total average horizontal displacements at peak
load

S1Fa S1Fb S1Fc S1Fd S1Fe S1Ff S1Fg

Test

Figure 7.81: Total average horizontal displacements at peak load for strips in specimen 'SI'

Table 7.10 summarises the edge beam twists in each of the flexural tests.

• In specimen 'SI ' , the twists were higher in the strips near mid-span.

• In specimens 'S2' to 'S5', the twists in strip 'B ' were more positive than those in strip 'A'.

» Strips near the diaphragm in all specimens had very small twists, with many of the twists being

negative.

• In general, there was very little twist in these specimens. Once the beam/slab interface cracked,

the slab end tended to rotate about this point, and little rotation was transferred to the edge beams.
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Table 7. JO: Edge beam twists in Jlexuralfailure tests

Specimen Twist at " V (desj) at peak load Twist at 'IV (de<!) at peak l(tad \ \ e r a » e

SIFa

SIFb

SIFc

SIFd

SIFe

SIFf

SIFg

S2Fa^

S2Fb

S3Fa

S3Fb

S 4 F a ^

S4Fb"

S5Fa

S5Fb

-0.09

-0.08

0.09

0.20

0.05

-0.01

-0.06

""' "^ ' -007 ̂  ' $~l

^ . -0 00 ^

-0.05

-0.01

" \ -007;; ,' ,

0.00

0.03

0.05

0.04

0.17

0.25

0.04

0.14

-0.12

*" ~ "003,

J "-002 5V"/ ^

-0.05

-0.02

" - 4 ̂  -0.13

0.14

0.01

0.25

-0.020

-0.020

0.130

0.225

0.045

0.065

-0.090

-0050

--0010

-0.050

-0.015

\ -0 100

, 0 075

0.005

0.140

7.18.3 Beam end rotations

Table 7.11 summarises the rotation at the end of the edge beam for each flexural failure test. Similar

to the punching failure tests, there appears to be no pattern to these rotations. The vertical beam

displacements had the expected pattern where the tests on the strips closer to the ends of the specimen

produced lower displacements. However, there was no such pattern in the end rotations.
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Table 7.11: Beam end rotations for flexuralfailure tests

Specimen Beam end rotation (dejz) at peak load 'vBeam vertical displacement

\ (mm) ar peak load

SIFa

SIFb

SIFc

SIFd

SIFe

SIFf

SIFg

-'S2Fa'

S2Fb

S3Fa

S3Fb

* S4Fa' r

-i

S4Fb

S5Fa

S5Fb

0.17

0.13

0.24

0.32

0.09

0.20

0.01

:^>;y - 0.07 .-

0.03

0.02

i -0.12 "_

017

0.01

0.25

1.10

1.79

2.62

3.13

2.61

1.90

1.01

^;\.? -'0.58, y- .-

_* ' "T '1.28 -'/•";/ - -

0.66

1.19

088^

170^

0.20

1.21

7.18.4 Compressive membrane forces/Strain profiles

Strain profiles at the beam/slab interface for tests 'SIFa', 'SIFd' and 'SIFg' were shown previously

in Figure 7.60 to Figure 7.62. In all strips, the tensile strain on the top surface was very high, due to

the formation of cracks on the top surface. The neutral axis position was generally between the

bottom surface and the bottom steel, and the bottom surface was always in compression. It is not

possible to determine the net force along the interface because the strain profiles were not linear and

the stress state in a disturbed region such as this cannot be easily understood. However, the fact that

the bottom surface was in compression indicates that it was possible that compressive membrane

forces developed in the slab strips. The fact that the LVDTs indicated an outwards displacement in
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the edge beams and the tension forces in the surrounding regions were further indications of the

development of compressive membrane forces in the strips.

7.18.5 Bending action vs compressive membrane action

The proportion of load carried in bending compared to that carried in compressive membrane action

cannot be exactly calculated. However, the strain in the bottom steel gives an indication of the load

carried in bending. When these strain values are compared between specimens at corresponding

loads, it can be seen how much load is carried by bending in each strip, compared to other strips.

Hence, an idea of the amount of membrane action that exists in each slab can be determined.

Table 7.12 compares the strain in the bottom steel for each slab strip at a load of 50kM. The gauge in

strip 'SIFe' was already damaged before 50kN was reached, so a strain value could not be obtained

from this test. 50kN was chosen because flexural cracks had developed at both mid-span and at the

beam/slab interface in all of the slab strips at this load level. Hence, compressive membrane action

had developed in the strips.

From Table 7.12, it can be seen that:

• Comparing strips 'SIFa', 'SlFd' and 'SIFg' (the strips that were in pristine condition when

tested), the strain in the bottom steel in the middle strip ('SlFd') was close to 50% higher than the

end strips. This indicates that in the middle strip a much larger proportion of the load was carried

in bending than in the other strips.

• Even when the strips were not pristine, the strains decreased the further away the strip was from

mid-span (compare strips 'SIFa' to 'SlFd'). It would be reasonable to assume that if the areas

surrounding strips 'SIFb' and 'SIFc' were pristine when the strips were tested, then the bottom

steel strains in these strips would be lower.

• Strip 'SIFf recorded very high strains in the bottom steel. This was because 'SIFf was the last

strip in specimen 'SI ' to be tested and nearly all of the surrounding area was already damaged.

Therefore, only a comparatively small amount of compressive membrane action could have

developed in this slab and the majority of the load had to be carried in bending.

• The tests on strips in specimens 'S4' and 'S5' showed that at corresponding loads, the strain in the

bottom steel was quite similar, irrespective of the position of the strip. This was not so much the

case for the specimens without an adjacent slab, indicating an adjacent slab provided sufficient

restraint that the position of the strip had a reduced influence on the development of compressive

membrane action.
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Tabh 7.12: Comparison of strains in bottom steel atP = 50kNforflexuralfailure tests

' = 50k\ (fi£) -Strain load {[ie k \ ) Kventual fuifcurc load (k \ )

SIFa

SIFb

SIFc

SIFd

SIFe

SIFf

SIFg

S2Fa

S2Fb

S3Fa

S3Fb

S4Fa

S4Fb

S5Fa

S5Fb

1133.82

1663.26

1716.79

1807.30

-

2114.84

1243.80

\ \ 2X22 63 , *

0- ". 2808>6 *

2232.60

1796.59

1560 fO

1 : ~ 1661.31 * ^ *r

1321.65

1131.87

22.68

33.27

34.34

36.15

-

42.30

24.88

<, , -42 45 , ~

"̂"'56̂ 8 7 \

44.65

35.93

;v ' 3 1 2 0 ' -

33 23

26.43

22.64

100.80

79.93

80.00

80.95

74.30

75.15

91.75

r ; ; ^ 7440 \ , r

1S1A2"

64.18

64.40

108 2%\ ,

- " „ .8763 -

71.97

70.23

Table 7.13 compares the strains at peak load in the gauge on the bottom surface of the beam/slab

interface for each of the flexural failure tests. Some of the compressive strain at this location would

have been due to the bending of the slab strip and the remainder would have been due to the

compressive membrane forces in the slab strip. A trend that can be observed in these results is that in

specimens 'S2' to ' S 5 \ the 'B ' strip always had a higher strain at P = 50kN than the 'A' strip (the 'B '

strip was closer to mid-span). Similarly, in specimen 'SI ' , the strip in the middle ('SIFd') had higher

strains than the strips at the ends. However, because it is not known how much load was carried by

bending and how much was carried through compressive membrane action, it is not possible to make

any definite conclusions from these results.
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Table 7.13: Comparison of strains on bottom surface at beam/slab interface forflexuralfailure tests

l o s t

SIFa

SIFb

SIFc

SIFd

SIFe

SIFf

SIFg

S2Fa"

' S2Fb

S3Fa

S3Fb

S4Fa
X

~S4Fb

S5Fa

S5Fb

Strain at P = 5()k\ (ue)

-317.70

-

-

-433.49

-

-

-404.78

^ ^ J-m73Xj|||§§

'^^^263J6/fli | j l

-353.11

-675.60

, / v -290.91
f

-622.97

-479.43

-1540.67

P e a k t o a d ( k \ )

100.80

-

-

80.95

-

-

91.75

64.18

64.40

- 108.28

- ^87.63 .

71.97

70.23

Strain at peak load (̂ e.)

-1405.74

-

-

-1345.45

-

-

-2323.44

•.'.•'•';yi|f'/'ii,^ii*iiA''-i^| . ^ i - ^ / Q > ^

-1002.87

-1159.81

-2239 23

,-2058 37

-1828.71

-4524.40

7.19 Summary of all tests on slabs with edge beams (flexural failure tests and punching shear

failure tests)

The results of the tests in this chapter showed that the ultimate strength of the slabs, in both flexure

and punching, was influenced by the boundary conditions of the slab. In general, the bending

stiffness and bending capacity were only affected by any damage that already existed in the slab,

whereas the compressive membrane stiffness and compressive membrane capacity were influenced by

the boundary conditions of the slab. The presence of edge beams, adjacent slabs and the surrounding

concrete area allowed compressive membrane forces to develop in the slab, enhancing its stiffness and

strength. Damage to the surrounds decreased the capacity for the specimen to withstand the

compressive membrane forces in the slab. Also, the position of the test longitudinally along the
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specimen had an affect on the ultimate load. This was because the restraint stiffness (in both torsion

and horizontal translation) varied along the length of the span.

In terms of boundary conditions, the presence of an adjacent slab had the greatest influence on the

strength of the slab. If the specimen had an adjacent slab, then sufficient restraint stiffness existed

such that the edge beam width did not have a significant influence on the slab's strength. The

presence of an adjacent slab increased the amount of compressive membrane action that developed in

the slab and reduced the importance of the surrounding concrete area and edge beam width.

The existence of a surrounding concrete area capable of withstanding the tensile forces necessary to

balance the compressive membrane forces in the slab was found to be important. This was shown by

the fact that the ultimate strength of the specimen (in both flexure and punching) decreased when

there was damage in the surrounding concrete area. The damage reduced its capacity to withstand the

compressive membrane forces. The influence of the surrounding concrete area decreased as the

distance away from the loaded area increased.

The position of the slab strip had an influence on the ultimate strength attained in the test. This was

most clearly shown by the tests on the pristine strips in specimen ' S l \ where the end strips were

stronger and stiffer than the strip in the middle. The horizontal displacements and edge beam twists

were also higher in the middle strip.
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8 DESIGN METHOD FOR SLABS IN BEAM-AND-SLAB BRIDGE

DECKS

8.1 Introduction

This chapter presents a design method for determining the strength of reinforced concrete slabs in

beam-and-slab bridge decks. The method utilises the procedure for determining the contribution of

compressive membrane action to the strength of slabs developed in the papers by Rankin and Long

(1997) and Kirkpatrick et al. (1984). These papers were discussed in Section 2.2.10 of the literature

review. To utilise these methods in a practical situation, the horizontal translational restraint stiffness

and the torsional restraint stiffness that exists in actual structures must be evaluated. This section

proposes a method for estimating the restraint stiffness, which is then used to provide a better

prediction of the strength of the slab (in both flexure and punching shear) than methods that are

commonly used at this time. The method is simplified so that it is appropriate for design applications.

Following the derivation of the design method, the strength of the test specimens described in Chapter

7 (both punching shear failures and flexural failures) will be determined using the method. Also, 2D

finite element models of the slab strips will be presented in this chapter. These models provide a

better understanding of the interaction between compressive membrane action and the flexural

behaviour of the slab, as well as validating some of the assumptions that the design method is based

on.

8.2 Horizontal translational restraint stiffness

In a slab with edge beams, there are a number of factors that will affect the horizontal translational

restraint stiffness that exists transversely across the loaded area. This can be seen in Figure 8.1.
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(2) Horizontal bending stiffness of edge beam

Compressive
membrane forces

(3) Position of load

(1) Axial stiffness of surrounding slab area

Figure 8.1: Plan view of deformed shape of slab with edge beams (exaggerated)

The various factors are described below:

1. Axial stiffness of the surrounding slab area. This depends on the cross-sectional area and the

transverse span of the deck, as well as the elastic modulus of the slab material.

2. Horizontal bending stiffness of the edge beam. The horizontal bending stiffness of the edge beam

depends on its dimensions. For horizontal bending, the width of the edge beam is more important

than the depth. The span of the edge beam and the presence of an adjacent slab are also factors in

the horizontal bending stiffness. The presence of an adjacent slab can be very significant since

the width of an adjacent slab would be greater than the width of the edge beam, and the width is

the more important dimension in horizontal bending. Also, the elastic modulus of the edge beam

material will affect its bending stiffness.

3. The location of the loaded area (where the compressive membrane forces are acting) also affects

the restraint stiffness. The lowest restraint stiffness will occur if the loaded area is at mid-span.

The restraint stiffness increases as the loaded area moves towards the ends of the specimen.

The behaviour described in Figure 8.1 can be simplified to the model shown in Figure 8.2. The axial

stiffness of the slab surround is modelled as a number of springs, with the stiffness of each spring

dependent on the width of the slab deck that each spring is modelling. For the models in this thesis,

each spring has been assumed to model a slab width of 100mm.
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Axial stiffness of
surrounding slab area
modelled with springs

Diaphragm modelled as
fixed end (no displacement,

rotation or twist)

T

Edge beam (and
adjacent slab)

Horizontal restraint stiffness available to
loaded area determined by applying unit load
in horizontal direction, then calculating the

horizontal displacement

Figure 8.2: Model of slab/beam system

The edge beam members are given the dimensions of the actual edge beam and adjacent slab (if it

exists). The compute: program used to analyse the beam models assumes that the load is applied

through the centroid of the cross-section (Figure 8.3). Therefore, the load applies no twist to the edge

beam.

Compressive
membrane force

Slab

V

Cross-section used in beam model
(with adjacent slab)

\ \ ^

Adjacent slab

Edge beam

Actual situation: compressive
membrane force acts near level of

bottom surface of slab

In beam model, compressive
membrane force acts through

centroid of cross-section

Figure 8.3: Edge beam model used for analysis

The ends of the edge beam were assumed to be fully fixed against displacement and rotation. This is

a reasonable assumption given the existence of transverse diaphragms in the deck. A transverse unit
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load was then applied to the edge beam and the displacement was obtained using a linear-elastic

analysis of the beam model. From this, the horizontal translational restraint stiffness could be

determined. An example of an analysis of a beam model is shown in Appendix 10. Due to symmetry,

only half of the specimen was modelled.

For the tests on the slab strips, the width across which the unit load acted was defined by the saw cuts

(ie. 300mm). However, for the punching shear failure tests where there were no saw cuts, an effective

width (bCf) for a strip of concrete spanning transversely is required. For the purposes of this method,

bCf was determined using Equation 8.1.

bef = (load width) + 2.4a 1 - — Equation 8.1

where a is the distance from the load to the nearest support

Ln is the clear span in the transverse direction

This equation was obtained from Clause 9.6 of AS3600 (2001).

In the preceding discussion, the behaviour of the slab and the edge beams have been assumed to

remain in the elastic region. The influence of cracks and other non-linear behaviour in the slab and in

the surrounds is discussed in Section 8.4.

Using this method, the horizontal translational restraint stiffness that exists for the slab can be

estimated. This value is then used to determine the arching capacity of the slab (Section 8.5).

83 Torsional restraint stiffness

The torsional restraint stiffness that exists for the slab of a beam-and-slab bridge deck depends on the

torsional rigidity of the edge beam cross-section (GJ), the span of the edge beam and the location

along the edge beam that the loaded slab area is.

The elastic torsional rigidity (GJ) depends on the shear modulus of the material (G) and the torsional

constant (J) of the cross-section. For a rectangular cross-section, the torsional constant can be

approximated as:

J =
hb3

1 - 0.63-+ 0.052 - Equation 8.2 (Ghali and Neville (1997))

When an adjacent slab also exists, the torsional constant can be calculated as the sum of the torsional

constants of the individual components (ie. the sum of the torsional constant of the edge beam and the

torsional constant of the adjacent slab).
1
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The torsional restraint stiffness (kr) can then be calculated using Equation 8.3

LbGJ
G

Equation 8.3

where Mend is the end moment applied by the slab onto the edge beam

6 is the twist in the edge beam

Lb is the span of the edge beam

GJ is the torsional rigidity

xa is the distance from one end of the edge beam to the location of the loaded slab area

Xb is the distance from the other end of the edge beam to the location of the loaded slab area

Equation 8.3 assumes that the ends of the edge beam are fully fixed against twist, which is a

reasonable assumption when diaphragms exist. The equation also assumes that the slab end moment

is applied at a single point along the span of the edge beam. This is obviously not the case, but has

been assumed for simplicity and leads to an underestimate of the torsional restraint stiffness. This

leads to a conservative estimate of the bending strength of the slab.

8.4 Cracked, non-linear behaviour of surrounds

The method for determining the horizontal translational restraint stiffness described in Section 8.2

calculated the stiffness assuming the surrounds remained in the elastic region. Also, the steel

reinforcement was not taken into account. However, once cracks develop in the specimen, the

horizontal translational restraint stiffness is reduced and the steel reinforcement begins to contribute

more to the specimen's behaviour. The extent to which cracking reduces the horizontal restraint

stiffness is very difficult to determine and there are many factors that would have to be taken into

account. Because of this, and the fact that reasonable predictions have been made when the full

elastic stiffness was used (see Sections 8.7 and 8.8), it was deemed appropriate to ignore any non-

linear effects in the calculation of the translational restraint stiffness. In structural design, the

uncracked gross section properties are often used in analysis, and linear-elastic behaviour is ass imed.

This design approach is consistent with that simplified approach.

Equation 8.2 gives the torsional rigidity of the beam, provided its behaviour is in the elastic region.

However, once the beam has cracked, the torsional rigidity will drop significantly. The cracked

rigidity is difficult to determine, and researchers such as Hsu (1968) and Iyengar and Rangan (1968)

have developed equations to calculate the cracked torsional rigidity. The text by Warner et al. (1998)

cites tests by Hsu (1968) and McMullen and Rangan (1978) where the cracked torsional stiffnesses of
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experimental beams were as low as one-tenth of the uncracked torsional stiffness. The torsional

rigidity used in the analyses in this thesis will be chosen based on the observed state of the edge beam

(cracked or uncracked). For example, the full elastic stiffness has been used in the analysis of the test

results. This was because the experimental results showed that the edge beam twists increased

linearly throughout the test (see Figure 7.57 for the twists in the strips in specimen 'SI'). This

indicated that the torsional rigidity of the edge beam had not degraded. Therefore, it was deemed

reasonable to use the full elastic torsional stiffness in the calculations. However, when predicting the

strength of a slab in practice, it is desirable to have a conservative estimate. Therefore, the torsional

rigidity used should be less than the elastic value. Calculations showed that using a cracked torsional

rigidity of one-tenth of the full elastic value reduced the load carried in bending by as much as 30% in

the experimental slab strips.

8.5 Failure load of slab strips

The arching capacity (Pa) is determined using the method detailed in Rankin and Long (1997) and

described previously in Section 2.2.10. The horizontal translational restraint stiffness, obtained from

the beam models described in Section 8.2 is used in the calculations.

The bending capacity (Pb) of the slab can be determined using normal flexural methods, with the ends

of the slab partially restrained against rotation (Figure 8.4). The partial rotational restraint is provided

by a torsional spring, having a stiffness as described in Section 8.3.

kr

MuTieni capacity = Mu

Bending stiffness = El

V kr

Figure 8.4: Simple beam with rotational restraint

The load carried by the beam in Figure 8.4 is given by the following formula:

4M.

L - kX2

I 2m;
The derivation of this formula is shown in Appendix 11.

Therefore, the failure load of the slab strips (P,) can be obtained by summing the arching capacity and

the bending capacity of the strip (Equation 8.4).
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P = P +P Equation 8.4

8.6 Punching failure load of slabs

The punching failure load can be estimated using the method described in Section 2.2.10.1. Since

there is no flexural component to the punching shear capacity, the torsional restraint stiffness is not

necessary in the calculation of the punching strength. Only the horizontal translational restraint

stiffness is required.

In the calculation for the arching moment (refer to Section 2.2.10), a parameter called the 'depth

available for arching' is required. This is the depth of the concrete section that can be used to sustain

the compressive membrane forces in the slab. For the slab strips, where a component of the ultimate

load was carried in bending, the depth of concrete required to balance the tension forces in the

reinforcement was subtracted from the total depth to obtain the 'depth available for arching'.

However, for the punching shear failures this has been ignored and it has been assumed that the full

depth of the concrete section is available to sustain the compressive membrane forces

8.7 Analysis of punching shear failure tests using design method

The failure load attained in the punching shear failure tests (described in Chapter 7) can be

approximated using the design method. It has been assumed that the torsional restraint has no effect

on the punching shear capacity, while the presence of horizontal translational restraint induces

compressive membrane action and enhances the punching failure load of the specimens. The

horizontal translational restraint stiffness (kt) was determined using a linear analysis of a beam model

of the slab/beam system. This was described in Section 8.2.

8.7.1 Peak loads

The peak loads obtained from the analyses are compared to the experimental failure loads and

AS36OO code predictions (Standards Australia (2001)) in Table 8.1. Figure 8.5 compares the peak

loads graphically. A sample calculation is shown in Appendix 8. It can be seen that the theory

provides a more accurate estimate of the experimental failure loads than the code prediction. In all

cases the code prediction significantly underestimated the failure load obtained in the experiment. On

the other hand, the theoretical analyses provided a more accurate estimate of the failure load, despite

overestimating the peak load in some cases. These results indicate that a theory that includes the

enhancing effects of compressive membrane action is likely to provide a better estimate (than current

code predictions) of the punching shear failure loads obtained in the experiments.
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Table 8.1: Summary of peak loads for punching shear tests

lost. k,(\7rnm) Theoretical failure

load (k\)

H\ peri mental

failure load (k\)

Comparison between peak loads

03 Theoretical
• Experimental
• AS3600 code prediction

AS3600 code

prediction (kN)

S2

S2b

S3

S3b

S4

S4b

S5

S5b

844600

849600

913200

918300

2348000

2433000

2219000

2390000

156.82

156.90

116.60 .

116.64

177.70

178.02

123.47

123.85

142.85

130.00

142.98

' 122.78"

160.13

153.28

123.68

127.30

101.28

80.81

105.70

81.39

S2 S2b S3 S3b S4 S4b S5 S5b

Figure 8.5: Comparison of peak loads for punching shear failure tests

8.7.2 Stiffness of horizontal translational restraint

The effect of the restraint stiffness on the punching shear failure load of specimen 'S2' is shown in

Figure 8.6. The failure loads in this figure were calculated using Rankin and Long's method, with

varying restraint stiffnesses. It can be seen that the effect of the restraint stiffness is most significant

when its value is low. The effect becomes less significant as the restraint stiffness increases. Figure
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8.6 also shows that for low restraint stiffnesses, the punching shear failure load can fall below the

code prediction (lOlkN for specimen 'S2'). This indicates that the theory should not be used for low

restraint stiffnesses when the calculated failure load falls below the code prediction.

Figure 8.7 shows the same graph as in Figure 8.6 but for restraint stiffnesses between 25000N/mm

and 2500000N/mm only. The restraint stiffnesses that existed in tests 'S2' and 'S2b' (as calculated

using the method that was described in Section 8.2) are also shown on this graph. It can be seen that

the horizontal translational restraint stiffness that existed in the two tests was almost the same and

hence, the calculated punching failure loads were also similar. The fact that the restraint stiffness did

not vary significantly along the span can also be seen in the analysis of the slab strips (see Section

8.8.3). It can also be seen that a restraint stiffness of approximately 25000N/mm will result in a

calculated punching shear failure load equal to the code prediction.

Effect of restraint stiffness on punching shear failure load (for specimen
•S21)

1000000 2000000 3000000 4000000 5000000

Horizontal translational restraint stiffness (N/mm)

6000000

Figure 8.6: Effect of restraint stiffness on punching shear failure load for specimen 'S2' (theoretical
values)
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Effect of restraint stiffness on punching shear failure load (for specimen
•S2')

rigid restraint

'S2b' AS3600 prediction

25000 525000 1025000 1525000 2025000

Horizontal translational restraint stiffness (N/mm)

Figure 8.7: Effect of restraint stiffness on punching shear failure load for specimen 'S2 'for k,
between 25000N/mm and 2500000N/mm (theoretical values)

An indication of the magnitude of the horizontal translational restraint stiffness that existed for the

slab is shown in Table 8.2. This table compares the punching shear failure load calculated using the

restraint stiffness (determined from the method described in Section 8.2) with the punching shear

failure load assuming rigid restraints. The results are also plotted in Figure 8.8. According to the

calculations, it can be seen that the restraints were sufficiently stiff to allow at least 87% of the rigid

restraint punching load to be attained in all specimens.
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Table 8.2: Calculated punching shear failure load compared to punching shear failure load for rigid
restraints

Test Calculated punching /* Calculated punching

shear failure load (k\) shear failure, load for'

% of rigid restraint

-punching load

S2

S2b

S3

S3b

S4

S4b

S5

S5b

•

156.82

156.90

- 116.60

116.64

177.70

178.02

123.47

123.85,

rigid restraints (k\)

178.53

128.82

189.91

130.16

87.8

87.9

90.5'

90.5

93.6

93.7

94.9

95.1

Calculated punching shear failure load compared to calculated punching
shear failure load for rigid restraints

EH Punching shear failure load • Punching shear failure load for rigid restraints

I 180
ra 160

o 140

| 120 -
"re
t 100 -
| 80 !
w
en 60
'E 40o
§ 20 -

S2 S2b S3 S3b S4
Test

S4b S5 S5b

Figure 8.8: Calculated punching shear failure load compared to punching shear failure load for rigid
restraints

8.7.3 Summary

It can be concluded that this method of analysis provides a more accurate prediction of the punching

strength of the slabs with edge beams than code predictions. This method takes into account the
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horizontal translational restraint stiffness that exists for the slab. Based on the theoretical failure

loads, it was found that the boundary conditions that the experimental slabs were exposed to allowed

at least 87% of the rigid restraint punching load to be attained. When compared to the experimental

failure loads, it was found that at least 73% of the theoretical rigid restraint punching load was

achieved.

8.8 Analysis of slab strips using design method

The strength of the experimental slab strips (as described in Chapter 7) can be predicted using the

design method. For these slab strips, the flexural capacitv is determined using bending theory, with

the rotational restraint stiffness taken into account. This means that the load carried by the strip

(neglecting compressive membrane action) will be somewhere between the load carried by a simply

supported strip and that of a strip with fixed ends. For the slab strips, these predicted values are

shown in Table 8.3. The strips from different specimens have slightly different moment capacities

because of the varying concrete compressive strengths.

Table 8.3: Ultimate flexural capacities for slab strips with simple supports and fixed ends

Spccim en *\ 1 „ (N m m) 1',,, „, (k \ ) P,M„, (k \ )

SI

S2

S3

S4

S5

4.146xlO6

4.248x106

3.985xlO6

4.298x106

3.993x106

27.64

28.32

26.57

28.66

26.62

55.28

56.64

53.14

57.31

53.24

The method for determining the rotational restraint stiffness to calculate the flexural capacity was

described in Section 8.3. The horizontal translational restraint stiffness used to determine the arching

capacity was determined using linear elastic analyses of beam models, as described in Section 8.2.

8.8.1 Peak loads

The peak loads obtained using this method are shown in Table 8.4 and summarised in Figure 8.9. A

sample calculation is shown in Appendix 9. It can be seen that the theoretical and experimental

failure loads are reasonably similar. The trends seen in the experimental results can also be seen in

the theoretical results, such as the reduced peak load when the specimen is closer to mid-span and the

influence of the compressive strength of the concrete.

I

S
m

317



Design method for slabs in beam-and-slab bridge decks

The results indicate that the arching capacity is greatly affected by the concrete strength. This is

shown by the fact that the concrete strength does not have much influence on the bending capacity

(see Table 8.3). However, the results from the theoretical analysis show a noticeable difference in

peak loads, mainly dependent on concrete strength. This indicates that the additional load-carrying

mechanism (compressive membrane action) is greatly affected by the concrete strength.

The effect of the strip position on the peak load is noticeable but is not as significant as the effect of

the concrete strength. This is because sufficient restraint existed in all of the strips so that any

changes in the restraint stiffness due to the strip position did not have a large influence on the arching

capacity. This is discussed further in Section 8.8.3.
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Table 8.4: Theoretical failure loads of slab strips using Rankin and Long's method

Specimen

(Vmm)

\ichin« k, I Icxural - Total Ivperimental

capacih (Nmm rad) capacity theorelicHl f'a-iluro load

(lv\> ' (UN) failuiT (k\)'

SIFa

SIFb

SIFc

SIFd

SIFe

SIFf

SIFg

S2Fa- ^

S2Fb ,'

S3Fa

S3Fb

S4Fa

S4Fb - '

S5Fa

S5Fb

1.615xlO6

8.688x105

8.651xlO5

8.65 lxlO5

8.65 lxlO5

8.688x105

1.615x106

3J02Oxl'6a

1.201x^0^

4.409x106

1.405xl06

L479xlO7

Xodbxio*

1.630x107

4.027x106

26.14

23.50

23.48

23.48

23.48

23.50

26.14

^ 3 6 32 ,-

" 31 96̂

17.50

15.96

*. 44.69

-41.98

18.67

17.92

6.352x109

3.099x109

2.352x109

2.150x109

2.352x109

3.099x109

6.352x109

1.418x3 0l0%

7,233x109'

1.806xl010

9.215x109

9.749x10*

4:974x109'

1.953x1010

9.965x109

49.22

45.16

43.33

42.72

43.33

45.16

49.22

' ,53 2 2 ;

50.61-
i

Is

51.07

49.33

. -5235

48.96

51.21

49.56

75.36

68.66

66.81

66.20

66.81

68.66

75.36

, 89.54

82̂ 57

68.57

65.29

97.04 „

90.94' -

69.88

67.48

100.80

79.93

80.00

80.95

74.30

75.15

91.75

~ 74.00

: -' 57 42 \

64.18

64.40

^',108.28 ; -

87.63 t

71.97

70.23
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Comparison between experimental and theoretical failure loads

S3 Theoretical
M Experimental
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•a
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S1Fa S1Fb S1Fc S1Fd S1Fe S1Ff S1Fg S2Fa S2Fb S3Fa S3Fb S4Fa S4Fb S5Fa S5Fb

Specimen

Figure 8.9: Comparison between experimental and theoretical failure loads of slab strips

8.8.2 Proportion of load carried in compressive membrane action

Figure 8.10 shows the proportion of the load that is carried in bending and in compressive membrane

action for each slab strip. The results are summarised in Table 8.5. It can be seen that for low

concrete strengths (strips in specimen 'S3' and 'S5'), the proportion of the load carried in arching was

approximately 25%. This increased to 46% in specimen 'S4\ when the compressive strength of the

concrete was 38MPa. This indicates that compressive membrane action can result in a significant

enhancement in load-carrying capacity, especially when the concrete strength is reasonably high.
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Proportion of load carried in bending and in compressive membrane
action

120

100

80 -

60 H

40
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• Load due to compressive membrane action
E3 Load due to bending

S1Fa S1Fb S1Fc SiFd S2Fa S2Fb S3Fa S3Fb S4Fa S4Fb S5Fa S5Fb

Specimen

Figure 8.10: Proportion of load carried in bending and in compressive membrane action

Table 8.5: Percentage of load carried by compressive membrane action

Specimen % ofload carried in compressive membrane action

SIFa

SIFb

SlFc

SIFd

S2Fa

S2Fb

S3Fa

S3Fb

S4Fa

S4Fb

S5Fa

S5Fb

34.7

34.2

35.1

35.5

40.6'

38.7

25.5

24.4

- " 46.1

46.2 \ ,

26.7

26.6
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8.8.3 Stiffness of horizontal translational restraint

Figure 8.11 compares the load carried in arching by each of the slab strips with the load carried in

arching if the restraint was rigid. The results are summarised in Table 8.6. It can be seen that in all

strips, at least 75% of the rigid restraint arching load is achieved. For strips where an adjacent slab

existed and for strips near the diaphragm, the percentage is even higher. These results indicate that

the restraint provided to the slab strips in the experiment was reasonably rigid and allowed a

significant amount of compressive membrane action to develop.

Load carried in arching compared to load carried in arching for rigid
restraint

50 i

45

40

35 ^

Z 30
jc

•a 25
n
5 20 H

15

10 -

5

0

El Load carried in arching
• Load carried in arching for rigid restraints

S1Fa S1Fb S1Fc S1Fd S2Fa S2Fb S3Fa S3Fb S4Fa S4Fb S5Fa S5Fb

Specimen

Figure 8.11: Load carried in arching compared to load carried in arching if restraints were rigid
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fable 8.6: Load carried in arching compared to load carried in arching if restraints were rigid

i

I

Load carried in Load-carried in

ar.chin« (l>\) * 'arching

gJ" rigid rrMrainf

« load achieved

SIFa

SIFb

SIFc

SIFd

S2Fa

S3Fa

S3Fb

S4Fa

S4Fb ^

S5Fa

S5Fb

*

26.14

23.50

23.48

23.48

3632

17.50

15.96

,4469 ''' *

„ 4̂198

18.67

17.92

"crej-imu

30.69

* v

18.39

18.94

•4 b,

85.2

76.6

76.5

76.5

> . 8 9 ? ; V sC
..-̂  ;, 79i , ^ ^

95.1

86.8

97.3 *

91.6" ^ -

98.6

94.6

This is more clearly seen in Figure 8.12 and Figure 8.13, which compare the load carried in arching

with the horizontal restraint stiffness for specimen 'SI ' . Figure 8.12 shows that a change in the

horizontal translational restraint stiffness is significant when the stiffness is low. However, when the

restraint stiffness is higher, any change in the restraint stiffness has only a small effect on the load

carried in arching. This is the same pattern of behaviour observed in the one-way slabs from the first

series of tests. Figure 8.13 shows the relationship for the range of stiffnesses encountered in specimen

'SP. It can be seen that over this range, there is only a small difference in the load carried by arching.

Therefore, there was only a small difference in the peak loads obtained in the experiments.
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Load carried in arching vs horizontal translational restraint stiffness (for
specimen *S1')

35 i

0.00E+00 1.00E+07 2.00E+07 3.00E+07 4.00E+07

Horizontal translational restraint stiffness (N/mm)

5.00E+07

Figure 8.12: Effect of horizontal translational restraint stiffness on load carried in arching for
specimen 'SI' (theoretical values)

Load carried in arching vs horizontal translational restraint stiffness (for
specimen'S1')

rigid restraint

500000 700000 900000 1100000 '300000 1500000 1700000 1900000

Horizontal translational restraint stiffness (N/mm)

Figure 8.13: Effect of horizontal translational restraint stiffness on load carried in arching for
specimen 'SI \for range of stiffnesses encountered in experiment (theoretical values)

Another reason that the arching capacities were similar in the strips in 'SI ' was because the restraint

stiffness did not vary much along the length of the span. This can be seen in Figure 8.14, which

shows that the restraint stiffness decreases rapidly as the distance away from the diaphragm increases
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(the points in this figure were obtained from the method described in Section 8.2). Only the strip near

the diaphragm ('SIFa') had a significant difference in restraint stiffness from the other strips. As a

result, strips 'SIFb', 'SIFc' and 'SIFd' all had similar peak loads because the horizontal restraint

stiffnesses for each of these strips were almost the same. This was also seen in the experimental

results, where the two end strips ('SIFa' and 'SIFg') had significantly higher peak loads than all of

the other strips, with all the other strips reaching similar peak loads.

Effect of load position on restraint stiffness in specimen 'S1'

w
too

(0

2
•»*
to
o
OH

1.80E+06 -I

1.60E+06 -

1.40E+06

1.20E+06

1.00E+06 -

8.00E+05 -

6.00E+05 -

4.00E+05 -

2.00E+05

O.OOE+00

2G0 400 600 800 1000

Load position (mm)

1200 1400

Figure 8.14: Effect of load position on restraint stiffness in specimen 'SI' (theoretical values)

8.8.4 Summary

It can be seen that this method of analysis can provide a reasonable estimate of the peak loads

obtained in the experimental slab strips. The results show that adequate stiffness was provided to the

experimental slab strips such that a significant proportion of the rigid restraint arching capacity was

attained. The analysis also shows that the different positions of the strips on the same specimen lead

to differences in the peak loads of the strips. However, the horizontal translational restraint stiffness

that existed was sufficiently high so that the changes in stiffness due to the position of the strip had

only a small influence on the arching capacity. Because of this, the greatest influence on the arching

capacity was found to be the concrete compressive strength, rather than the strip position.
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8.9 Finite element models of slab strip specimens

8.9.1 Introduction

The slab strip specimens were modelled using finite element analysis to better understand the

interaction between the flexural behaviour of the slab and compressive membrane action, as well as

justifying some of the assumptions in the design method.

The slab strips were modelled using two-dimensional plane stress elements. Linear springs were used

to model the torsional and horizontal translational restraint that existed fot the slab. It should be noted

that the vertical displacements obtained in these models cannot be directly compared to the vertical

displacements in the experiments. This is because the models in this section only consider the vertical

displacements in the slab. The edge beam has not been modelled, so the vertical displacements in the

edge beam cannot be obtained.

The same constitutive models and solution procedure that was used for the finite element modelling of

the one-way slabs (refer to Chapter 5) was also used for these slab strips.

To better interpret the results of these analyses, the peak loads of simply supported slabs and fixed

ended slabs are presented in Table 8.7. It should be noted that the peak load obtained from finite

element analysis of the fixed ended slabs was not obtained by simply fixing the horizontal

displacements at the ends of the slab, since this would allow compressive membrane forces to develop

in the slab. This would give a significantly higher peak load than that given by flexural theory. Also,

plane stress elements do not have a rotational degree of freedom so the fixed ?nded restraint could not

be applied by giving the slab end rotational support. Instead a very stiff beam element, along with a

stiff rotational spring was used to model the fixed end (this is described further in the next section).

Table 8.7 shows that the finite element prediction is slightly lower than flexural theory in both cases.

One reason for this is that an approximate yield value for the reinforcement was used in the flexural

theory calculations, while the full stress-strain curve for the reinforcement was used in the finite

element analysis.

Table 8.7: Peak loads for simply supported slabs and fixed ended slabs

ll'eak load(kN)
Knd restraint condition

Hexural theory! Finite element annhsis

Simple supports

Fixed ends

27.15

56.14

24.59

53.62
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8.9.2 Torsional restraint

Because plane stress elements do not have a rotational degree of freedom, a number of different

approaches of applying torsional restraint to the slab were evaluated. These are discussed below:

1. Initially, a beam element was connected to the nodes along the end of the slab (Figure 8.15). The

beam element was given a modulus of elasticity of lxl 010 so it would be very stiff and not bend.

This would ensure the end of the slab remained plane. The beam element had a width (along x-

direction in Figure 8.15) of 1 Omm, and its depth (into the page) was the same as the plane stress

elements. The torsional spring was applied at mid-depth. The results obtained are shown in

Table 8.8. The finite element model for a slab with fixed ends and no horizontal restraint

produced a peak load of 53.62kN. The finite element model of the simply supported slab

overestimated the peak loads of Table 8.7. Therefore, it appeared that the presence of a stiff beam

element at the slab end affected the stresses and strains at that location, leading to an overestimate

of the peak load. When a very stiff horizontal restraint was also applied to the slab end, the peak

load obtained was 77.18kN. This load has been enhanced over the flexural theory failure load by

the presence of compressive membrane action.

Beam element Slab
centreline

Torsional
spring

Plane stress
elements

Translation^
spring

y

Figure 8.15: Mesh used for analysis of slabs with spring restraints.
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Table 8.8: Peak loads for slabs with very stiff beam element

Restraint condition Peak load (k\)

S
t

Simply supported (kr = INmm/rad, kt = lN/mm)

Fixed ends, no horizontal restraint (kr =

1 x 102ONmm/rad, k, = 1 N/mm)

Fixed ends, stiff horizontal restraint (kr =

1 xl 020Nmm/rad, k, = 1 x 1020N/mm)

30.71

53.62

77.18

2. Because of the effect of the very stiff beam element on the behaviour of the simply supported

slab, the modulus of elasticity of the beam element was reduced to 25000MPa (the modulus of

elasticity of the concrete). The results of these analyses are shown in Table 8.9.

Table 8.9: Peak loads for slabs with beam element ofE = 25000MPa

Restraint condition Peak load (k\)

Simply supported (kr= INmm/rad, kt = IN/mm)

Fixed ends, no horizontal restraint (kr =

1 x 102ONmm/rad, k, = 1 N/mm)

Fixed ends, stiff horizontal restraint (kr =

1 x 1020Nmm/rad, k, = 1 x 1020N/mm)

30.01

47.54

72.06

By comparing Table 8.9 with Table 8.8 it can be seen that the reduction in the stiffness of the beam

element reduced the peak load in the slab for all of the restraint conditions. However, the finite

element model of the simply supported slab still overestimated the flexural theory peak load, although

by a slightly lesser amount. The deformations at the slab end were examined for the case of fixed

ends and stiff horizontal restraint (Figure 8.16). It can be seen that although the torsional spring is

very stiff, the bending of the beam element means that the edge of the beam does not remain vertical.

Hence, the analysis does not exactly model a fully fixed end. There is still some rotation at the end.
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FEHGV 6.1-02 : Honash University

MODEL: FMSP OEF • 2 8 . 7
LCl : LOflD CASE 1
STEP: 35 LOftD: .375
CftUSS EL.SXX.L SXX
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RESULTS SHOWN:
rtfiPPED TO NODES

27-fiUG-2D03 14:38 f«sp

Figure 8.16: Deformations and stresses in slab with beam of nominal stiffness (slab has fixed ends
and stiff horizontal restraint)

3. In an attempt to keep the edge of the beam vertical and better model a fully fixed end, a model

was created that included the edge beam. The purpose of the edge beam was to ensure the edge of

the slab remained straight. A beam element of nominal stiffness was still placed along the

beam/slab interface so that the torsional restraint could be applied to the slab. The locations of the

torsional spring and the translational spring were the same as the previous model. The results of

this analysis are shown in Figure 8.17. Both the torsional spring and the translational spring had

very high stiffnesses. It can be seen that the inclusion of the edge beam didn't stop the slab edge

from bending and rotating. This is because the edge beam had an elastic modulus of 25000MPa

(concrete) and this was not stiff enough to prevent the deformations along the slab edge. The

peak load of this analysis was found to be 74.10kN, which is slightly higher than when the edge

beam was not included (72.06kN), but the overall effect is not significant.
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Figure 8.17: Deformations and stresses in slab with edge beam included

A summary of these analyses is shown in Table 8.10. In conclusion, it can be seen that placing a

torsional spring on a beam element of nominal stiffness at the slab end only had the effect of

restraining one node, since the beam element bent about the torsional restraint. Because the beam

bends, the end of the slab is not fully restrained against rotation. The inclusion of an edge beam at the

interface didn't greatly affect the behaviour because the concrete elements of the edge beam were not

stiff enough to force the slab edge to be straight. The use of a very stiff beam element at the slab end

forced the edge of the slab to remain plane, but led to an overestimate of the failure load. However,

since the other two schemes also overestimated the peak load, it was concluded that the most suitable

scheme for applying torsional restraint to the slab edge was to use a beam element with a very high

stiffness, and applying the torsional restraint to this element.

330

m



Design method for slabs in beam-and-slab bridge decks

Table 8.10: Summary of schemes for modelling torsional restraint

Scheme >Suitabilit\

Stiff beam element

at slab edge, no

edge beam

Nominal stiffness

beam element at

slab edge, no edge

beam

Nominal stiffness

beam element at

slab edge, with edge

beam

30.71

30.01

31.10

53.62

47.54

53.82

77.18

72.06

74.14

Overestimates peak

load of simply

supported slabs

Only provides

torsional restraint in

the vicinity of the

spring, due to

bending of the beam

element

Concrete elements

in edge beam not

stiff enough to force

slab end to be plane

8.9.3 Horizontal transnational restraint

The horizontal translational restraint spring was applied to the bottom surface of the slab, as this is

consistent with the compressive strut model and with Rankin and Long's's threr-hinged arch analogy.

Also, once flexural cracks develop at mid-span and at the slab ends during loading, the load path

extends from the top of the slab at mid-span, to the bottom at the slab ends (Figure 8.18). Hence,

placing the horizontal translational restraint spring at the bottom surface was deemed appropriate.

The location of the spring was shown in the mesh in Figure 8.15.

Figure 8.18: Compressive force path
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8.9.4 Material properties

The stiffnesses of the swings were obtained using the method described in Section 8.2 (horizontal

translational spring) and Section 8.3 (torsional spring). The concrete constitutive model was the same

as for the plane stress models of the first series of one-way slabs, with the appropriate concrete

strength obtained from cylinder tests of the concrete from the experimental slabs. The stress-strain

properties of the steel were obtained from the tensile tests discussed in Section 6.3.1.3.

8.9.5 Results

8.9.5.1 Peak loads

The peak loads obtained from the finite element analyses are summarised in Table 8.1 i and compared

graphically in Figure 8.19. It can be seen that the failure loads obtained from the finite element

analyses compares excellently with the results using the design method (refer to Section 8.8) and also

compares well with the experimental failure loads. This indicates that the approach detailed in

Section 8.9.2 and Section 8.9.3 allowed the torsional and horizontal translational restraint stiffness to

be included in the finite element model.
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Table 8.11: Comparison between peak loads obtained from experiments and from finite element
analysis

S pe"c mi en • k, |N m m) l a i l u r e load Kail lire Kxperimental

(Nmin rad) from Unite load UM"II» failure load <k\ )

•, element

anahsis (k\)

design

method

SIFa

SIFb

SIFc

SIFd

SIFe

SIFf

SIFg

S2?& ^

S2Fb

S3Fa

S3Fb

S4Fa Z

S4Fb

S5Fa

S5Fb

1.615xlO6

8.688x105

8.651xlO5

8.651xlO5

8.651xlO5

8.688x105

1.615xlO6

-3.020x106

fioixiodJ

4.409x106

1.405xl06

1 479x107

.4.000x10^

1.630x107

4.027x106

6.352x109

3.099x109

2.352x109

2.150x109

2.352x109

3.099x109

6.352x109

1 41SxI010 -

" 7.233xf(f

1.806xl010

9.215x109

" 9 . 7 4 9 x 1 < ? '

4.974x109

1.953xlO10

9.965x109

71.10

70.41

67.64

67.24

67.64

70.41

71.10

x - 87.41.,.-

c * *

\ '77.27

58.52

56.06

91 94 ^
->

60.52

59.92

75.36

68.66
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Comparison between failure loads of slab strips
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Figure 8.19: Comparison between failure loads obtained using finite element model, using design
method and from experiment

8.9.5.2 Load-displacement curves

The load-displacement curves obtained from the finite element analyses are shown in figure 8.20. In

each of the graphs in Figure 8.20, load-displacement curves for a similar slab with simple supports

(SS), fixed ends (FF) and fixed ends plus rigid horizontal translational restraint (FF+TR) are also

presented for comparison. In all cases, it can be seen that the rotational restraint and horizontal

translational restraint that existed in the slab strips significantly enhanced its strength and stiffness

compare^ , :he simply supported slab. The load-displacement curves for the experimental slab strips

were only slightly less stiff and less strong than that of the slab with full horizontal translational and

rotational restraint. This indicates that the restraint that existed for the slab strips in the experiment

was very stiff. Figure 8.20 also shows that the stiffness of the slabs where horizontal translational

restraint exists is initially very similar to that of the slabs with fixed ends. However, as cracking

develops and the bending mechanism begins to fail, the enhancing effect of the compressive

membrane action mechanism comes into effect in the slabs with horizontal translational restraint.

This leads to a significant enhancement in strength and stiffness over the slab with fixed ends.
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Figure 8.20: Load-displacement curves obtained from finite element analyses

8.9.5.3 Compressive membrane forces

The finite element analysis allowed the compressive membrane force in the slab to be obtained (from

the force in the horizontal translational spring). These are summarised in Table 8.12 and displayed

graphically in Figure 8.21. The trend seen in these results is that the peak load is higher when the

compressive membrane force is higher.
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Table 8.12: Summary of peak loads and compressive membrane force at peak load
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8.9.5.4 End moment vs vertical displacement

The relationship between the end moment and the vertical displacement (obtained from finite element

analyses) can be seen in Figure 8.22. The end moment was obtained from the rotational spring at the

end of the slab (see Figure 8.15). For comparison, the relationship between the end moment and the

vertical displacement for similar slabs with fixed ends (FF) and fixed ends plus rigid horizontal

restraint (FF+TR) is also shown in this figure. It can be seen that the end moment increased rapidly in

the early stages of loading but the rate decreased as the vertical displacement increased, cracks

developed in the slab and the flexural mechanism began to reach its capacity. When this occurred, a

greater proportion of the load began to be carried by compressive membrane action. Figure 8.22 also

shows that the lowest end moment occurred for the slabs with rigid horizontal translational restraint.

This indicates that the proportion of the load carried in bending decreased as the stiffness of the

horizontal restraint increased and more of the load could be carried in arching. It can also be seen that

the relationship between the end moment and the vertical displacement was relatively jumpy. This

was caused by the development of cracks at the ends of the slab.
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End moment vs displacement
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Figure 8.22: End moment vs displacement curves obtainedfrom finite element analyses

8.9.5.5 Compressive membrane force vs vertical displacement

The relationship between the compressive membrane force and the vertical displacement is shown in

Figure 8.23. The compressive membrane force was obtained from the force in the horizontal

translational spring (see Figure 8.15). This relationship is also shown in this figure for a slab with

fixed ends and rigid horizontal translational restraint (FF+TR). It can be seen that the end force

increased almost linearly until failure. This confirms the fact that the compressive membrane action

mechanism continued to carry more load, even after the flexural capacity had been reached. It also

validates Rankin and Long's assumption that the maximum arching moment develops after yielding

338



Design method for slabs in beam-and-slab bridge decks

of the reinforcement. It can also be seen that at corresponding vertical displacements, the

compressive membrane force increased as the horizontal translational restraint stiffness increased.
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Figure 8.23: End force vs displacement curves obtained from finite element analyses

8.9.6 Summary

The results of the finite element analyses in this section compared well with the results from the

design method. This indicates that both the finite element approach and Rankin and Long's method

are suitable for determining the strength of slabs under compressive membrane action. The finite

element models also provide information on the interaction between flexural behaviour and

compressive membrane action in the slabs. The results showed that the maximum arching capacity
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occurred after the flexural capacity had been reached. Therefore, the arching capacity and the

bending capacity can be calculated separately, then combined to determine the total load carrying

capacity of the slab. This was one of the basic assumptions in Rankin and Long's analysis method.

8.10 Discussion of method

8.10.1 Assumptions

The design method described in this chapter required a number of assumptions to be made. These are

discussed below.

• As mentioned in the literature review, Rankin and Long's method assumes that the maximum

arching moment develops after yielding of the reinforcement. TherefOxre, the bending component

and the arching component of the load-carrying capacity can be separated. The analysis shown in

Section 8.9.5 has shown that this is a reasonable assumption.

• The full depth of the concrete section has been assumed to be available to withstand compressive

membrane forces in punching shear failures. This is not the case since a certain amount of

bending would exist in the slab and the depth available for arching would be reduced to some

degree. The amount by which the depth available for arching would be reduced depends on the

amount of steel in the slab, the location of the steel and the amount of bending that the slab has

undergone when the punching failure occurs. It is not possible to predict this, so for simplicity

the full depth has been assumed in the calculations.

• For the punching failures, the effective width of the loaded area was determined using Equation

8.1. Knowledge of the distribution of stress in the longitudinal direction would allow a better

estimate to be made of the effective width. However, without further information, Equation 8.1

was deemed appropriate to use for the analyses in this thesis.

• When determining the arching capacity, the elastic horizontal translational restraint stiffness has

been assumed in the calculations. This was because it was found to give reasonable results and

because the cracked horizontal restraint stiffness would be very difficult to determine accurately.

• Cracking has a significant influence on the torsional restraint stiffness and the bending capacity of

the slab. However, since the focus of this thesis is on the development of compressive membrane

action in bridge decks, a rigorous model for the reduction in torsional stiffness of the edge beams

due to cracking was not developed. The torsional stiffness affects the bending capacity, not the

arching capacity.
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• When determining the horizontal translational restraint stiffness using the linear elastic analyses

of the beam models, the horizontal load was applied through the centroid of the edge beam cross-

section and there was no twist in the edge beam. In reality, the compressive membrane forces

acts eccentrically on the edge beam and the analysis of the beam model does not take this into

account.

8.10.2 Further work required

The design method proposed in this chapter could be further developed through the following

refinements:

• More accurate models to determine the restraint stiffness (both rotational and horizontal

translational) that would take into account cracking and other non-linear effects.

• A better understanding of the distribution of stress in the longitudinal direction in the punching

shear failures may provide a more rational value of the effective width of the loaded area.

• A more rigorous beam model, that takes into account the eccentricity of the compressive

membrane force.

It should also be noted that Rankin and Long's method was derived based on a load that was applied

at mid-span of the slab. In bending, the critical load case is for the load applied at mid-span, but the

effect of loads that are not applied at mid-span on the arching capacity has not been investigated in

this thesis. Further examination into the load position may be required.

Introducing these refinements into the design method would make it more accurate at the cost of

greater complexity. This chapter has shown that the simplified design method using linear elastic

analyses gives acceptable results.

8.11 Conclusions

Despite the inherent unpredictability of punching shear failures, the results of the design method have

shown good correlation with the results from the experiments and from finite element analysis. The

design method discussed in this chapter provided a better estimate of the punching load of the slabs

than commonly used methods. The contribution of compressive membrane action to the load-

carrying capacity of slabs that fail in flexure has also been demonstrated. The results of these

analyses have also shown good agreement.

The results have shown that the restraint that exists for deck slabs in typical beam-and-slab bridges is

sufficient to develop significant compressive membrane forces. This was the case for the

experimental specimens where there was either one adjacent slab or none at all. It can be expected
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that bridges with many longitudinal beams would provide an even greater degree of horizontal

translational restraint (Figure 8.24) than the experimental specimens.

Laboratory specimens with one adjacent slab on
each side of loaded slab

Bridges often have many longitudinal beams and adjacent slabs, resulting in
higher restraint stiffness for the loaded slab

Figure 8.24: Greater degree of horizontal restraint in actual bridges than laboratory specimens

The enhancement in the load-carrying capacity of slabs with horizontal translational restraint has been

demonstrated in this thesis. A design method for quantifying this enhancement has been presented in

this chapter.
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9 CONCLUSION

9.1 Concluding remarks

Currently, methods that are commonly used in the strength assessment of reinforced concrete slabs

underestimate the peak load because the beneficial effects of compressive membrane action are not

taken into account. This thesis has shown that compressive membrane action exists in the slabs of

typical reinforced concrete beam-and-slab bridge decks, significantly increasing the slab's strength

and stiffness.

There are two requirements for compressive membrane action to develop in the slab. Firstly, some

form of horizontal translational restraint must exist for the slab. In the case of a beam-and-slab bridge

deck, this consists of the longitudinal beams, the adjacent slabs and the surrounding slab area. The

other condition is related to the strain compatibility along the length of the slab, in that the net strain

along a longitudinal fibre must be non-zero if there is no horizontal restraint. The presence of a rigid

horizontal restraint (at the level of the non-zero longitudinal fibre) then forces the strain back to zero,

which induces membrane forces in the slab.

A literature review was conducted on compressive membrane action in reinforced concrete slabs. The

review showed that a great deal of work (both experimental and theoretical) had been done in this area

and the fact that compressive membrane action enhances the strength and stiffness of slabs was well

accepted. The theoretical formulations have generally been based on plasticity theory and because of

the complexity of this approach, many assumptions and simplifications have been required in those

analyses. Simplified methods, such as those by Eyre (1997) and Rankin and Long (1997), have been

developed. However, to use these methods in practical situations, knowledge of the surround stiffness

that exists in real structures is required and Eyre (1997) stated in his paper that further research was

needed to provide reliable information in this area.

An t perimental program was carried out to examine the behaviour of slabs where compressive

membrane action exists. The first series consisted of 16 identical one-way slabs with various

boundary conditions. A reaction frame was constructed that allowed horizontal translational restraint

to be applied to the slab end at various heights. This meant that varying amounts of compressive

membrane action would develop in the slab. The behaviour of the slabs under different magnitudes of

compressive membrane forces could then be examined.

The results showed a significant increase in stiffness and strength when compressive membrane action

developed in the slab. The greatest increase occurred when the restraint was at the bottom surface.

This is consistent with the fact that if there was no horizontal restraint (ie. a simply supported slab),
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the greatest outward horizontal displacements would occur on the bottom surface. For the slab

restrained at the bottom surface, the peak load was enhanced by 169%. The enhancement decreased

as the restraint moved upwards. If the restraint was placed at the neutral axis of the slab, then no

membrane force would develop. The failure mechanism was also found to differ, depending on the

amount of compressive membrane action in the slab. For slabs with high compressive membrane

forces, large cracks propagated from upper mid-span to the bottom surface at the slab ends. This was

consistent with the compressive strut analogy, with large crack-inducing tensile forces existing

perpendicular to the compressive strut. For slabs with smaller amounts of compressive membrane

action, a more ductile failure occurred with the slab failing as a result of concrete crushing at upper

mid-span.

Finite element modelling of these one-way slabs was carried out. The finite element models made use

of plane stress elements and the horizontal restraint was modelled using a linear elastic spring. The

stiffness of the spring was obtained through a compliance test on the reaction frame. Good correlation

was achieved between the results of the finite element analyses and the experimental results. An

important trend seen in the finite element analysis, that would not be possible to observe in the

experiments, was the effect of the restraint stiffness. The finite element analysis allowed the restraint

stiffness to be varied and it could be seen that a stiffer restraint increased the magnitude of the

compressive membrane force, and hence the peak load and stiffness of the slab. This effect becomes

less as the restraint stiffness increases and the limit at which an increase in the restraint stiffness

would have no further effect on the development of compressive membrane action depends on the

axial stiffness of the slab.

The purpose of the second component of the experimental program was to establish the magnitude of

the horizontal translational restraint that could be expected in a typical slab/beam system. To achieve

this, five slabs with edge beams were fabricated. The edge beams had different sizes and some had

adjacent slabs. This meant that the surround stiffness that existed for the slab would be varied.

Two types of tests were performed. Firstly tests where the slab failed in punching were carried out.

The development of compressive membrane action in these tests was illustrated by the outwards

horizontal displacements of the edge beams. Strain gauge readings also indicated the existence of a

tensile region in the surrounding slab area. This tensile area balanced the compressive membrane

forces that developed transversely across the loaded slab area. The failure loads of the tests showed

significant enhancement over those predicted by methods commonly used at this time.

Saw cuts were made in the slab of the specimens to form a series of one-way slab strips. Tests were

performed on the slab strips, which failed as a result of flexure. The stiffness and ultimate load of the
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strips were significantly enhanced over that given by simple flexurai theory. As with the punching

failure tests, displacements and strain gauge readings from the tests indicated the development of

compressive membrane action in the slab strips. The longitudinal position of the strip along the

specimen was shown to affect the development of compressive membrane action in the strip. This

was because the horizontal translational restraint stiffness varied longitudinally along the specimen.

A design method was presented that could be used to predict the strength of reinforced concrete slabs

where compressive membrane action existed. The influence of compressive membrane action was

taken into account using a method derived by Rankin and Long (1997). However, to utilise this

method, the horizontal translational restraint stiffness must be predicted. This thesis proposed using a

linear elastic analysis of a beam model of the slabfteam system. The horizontal bending stiffness of

the edge beam (and adjacent slab, if it exists) and the axial stiffness of the surrounding slab area were

included in the beam model. The full elastic restraint stiffness was adopted because of the difficulty

in accurately assessing the influence of cracking on the behaviour of the specimen. Irrespective, the

elastic restraint stiffness was found to give reasonable predictions of the strength of the slabs.

Both the punching failure tests and the flexural failure tests were analysed using this method. The

calculated failure load of the punching failure tests correlated well with the experimental results and

produced a closer prediction than that obtained using conventional code predictions. For the flexural

failure tests, a component of the load is carried in bending. Therefore, to estimate the bending

capacity, an approximation of the torsional restraint stiffness that existed for the slab strip was

required. The presence of the torsional restraint means that the slab strip will have a bending capacity

somewhere between that of a simply supported strip and that of a strip with fixed ends. The torsional

restraint stiffness was estimated from linear elastic equations, with a reduction factor for cracking, if

required. The results from the analysis correlated well with the experimental results, and the general

trends seen in the experiment were also seen in the results from the analysis.

The results of the analyses of both the punching failure tests and the flexural failure tests indicated

that the boundary conditions allowed a significant amount of compressive membrane action to

develop. For the punching failure tests, it was found that at least 87% of the rigid restraint failure load

was obtained. For the flexural failure tests, at least 75% of the rigid restraint arching load was

achieved.

Two-dimensional finite element models of the slab strips were also produced. These models utilised

the same mesh (ie. plane stress elements), material properties and solution technique as used for the

one-way slabs in the first series. The torsional restraint was approximated using a linear rotational

spring, while the horizontal restraint was approximated using u linear Jranslational spring. The
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stiffnesses of the springs used in the finite element analysis were the same as those used in the design

method based on Rankin and Long's method. The results of the finite element analyses compared

very well with the results from the design method. This showed the validity of both the finite element

approach and Rankin and Long's method in assessing the strength of slabs where compressive

membrane action exists. The finite element analysis also showed that the maximum arching capacity

occurred after the flexural capacity had been reached. This was one of the basic assumptions in

Rankin and Long's analysis method, and allows the arching capacity and the bending capacity to be

calculated separately.

The results obtained in this thesis demonstrate the possibility of using this design method to assess the

strength of slabs in practical situations where compressive membrane action exists. It was found that

sufficient horizontal translational restraint stiffness exists in reinforced concrete beam-and-slab bridge

decks to allow significant amounts of compressive membrane action to develop in the slab. This

enhances its strength in both flexure and in punching shear.

9.2 Recommendations for future work

While this thesis provides an understanding into the development of compressive membrane action in

reinforced concrete slabs and proposes a design method for quantifying its effect, research is required

to further the findings that have been obtained. In particular, further work into the restraint stiffness

that exists in practice is required. The following is an outline of possible future research that would

extend the results obtained in this thesis:

• More rigorous models of the restraint stiffness (both torsional and horizontal translational) that

takes into account the effects of cracking and other non-linearities. This would lead to more

accurate predictions of the ultimate load of the slab.

• Investigations into the distribution of stresses in the longitudinal direction of the punching failure

tests. This will give information on the distribution of the compressive membrane forces in the

slab and may provide a more rational value for the effective width of the loaded area in punching

failures.

• Further experimental work, with more tests on slabs with different boundary conditions to extend

the results obtained in this thesis.

• The finite element modelling could also be refined, including the use of three-dimensional

models.

mm
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Appendices

11 APPENDICES

Appendix 1: Summary of derivation of Rankin and Long's method

A detailed derivation of this method can be seen in McDowell et al. (1956) and Rankin and Long

(1997). The following summarises the key aspects of the derivation of the method.

McDowell et al. (1956) defined two dimensionless parameters (Equation 11.1 and Equation 11.2),

which were used in their derivations.

Equation 11.1

u =
w

2dT
Equation 11.2

where ec is the plastic strain in the concrete

Lr is the half span of the slab strip

di is 'he half depth of the arching section

w is the vertical mid-span displacement

Using these dimensionless parameters, McDowell et al. developed two equations for the arching

moment ratio, Mr. These equations (Equation 11.3 and Equation 1 \A) depended on the values of R

and u.

For R > 0.5 and u > 0 or R < 0.5 and 0 < u < 1 - Vl - 2R

3R

For R < 0.5 and 1 - VI - 2R < u < V2R :

. . / , R 3u2 . R2

Mr = 4 1 + —+ 2u
r 2 4 3u2

Equation 11.3

Equation 11.4

Equation 11.3 can be differentiated and when ~"r- = 0, the roots of the equation are given by
du

Equation 11.5.

20u2 - 32u + 8 = 0 Equation 11.5

which has a root of u = 0.31. Substituting this value back into Equation 11.3 gives:
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M =
0.3615

R
Equation 11.6

Differentiating Equation 1 ':.4 gives:

3u3 Equation 11.7

Since this equation is dependent on R, it was solved for discrete values of R to obtain values of u.

These u values were substituted back into Equation 11.4 and the following relationship between Mr

and R (Equation 11.8) was determined.

M=4.3-16.lV3.3xl0"4+0.1243R Equation 11.8

Therefore, there are two equations (Equation 11.6 and Equation 11.8) for Mr depending on the values

of Rand u.

The appropriate Mr value is then substituted into Equation 11.9 to obtain the maximum arching

moment of resistance.

Equation 11.9
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Appendix 3: End rotation and neutral axis calculations

The procedure for calculating end rotations and neutral axis positions, based on the LVDT readings is

shown below (refer to Figure 11.8 on the following page for definitions of the symbols):

Calculate end rotations (0S and 02). For example:

0, =-tan~'[ "~ lb

\K~K

Calculate mid-depth movement of slab at each end (mi and m2). For example:

w, = 70 tan 0, + hu tan 0, + du

Calculate horizontal shift of each end (si and s2). For example:

= mx -
mx + m2

Calculate neutral axis position from slab bottom (ni and n2). For example:

For example (refer to Figure 11.9),

hIt = 224mm

hib = 87mm

d|t = -0.48mm

Using the equations shown above:

01 = 0.15°

mi = 0.29mm

Si = 0.205mm

ni = 102.35mm

tan0,

h2, = 254mm

h 2 b = 109mm

d2t = -0.86mm

d2b
 = -0.52mm

02 = O.13O

m2 = -0.12mm

s2 = -0.205mm

n2 = 105.32mm
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Height of bottom
LVDT from top

surface (hlb)

Height of
top LVDT
from top

surface (hi,)

Top of
slab

Mid-
depth
of slab

Bottom of slab

Displaced slab edge position Original slab edge position

Figure 11.8: Notation used for rotation and neutral axis calculation
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102.35mm+

0.15° •

Positive
direction at
Endl

Endl Original slab position
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<>' -0.12mm

Displaced slab position
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0.205mm
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direction at
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End 2
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-0.52mm
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Note: Dimensions and angles not to scale

Figure 11.9: Example of rotations and displacements in slab
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Appendix 4: Test results for one-way slabs

Load-deflection curves

Load-deflection curves for simply supported slabs
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— SS-A2
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Figure 11.10: Load-deflection curves for simply supported slabs

Load-deflection curves for pinned ended slabs (horizontal restraint
50mm below top surface)
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Figure 11.11: Load-deflection curves for pinned ended slabs (horizontal restraint 50mm below top
surface)
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Load deflection curves for pinned ended slabs (horizontal restraint 70mm
below top surface)
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Figure 11.12: Load-deflection curves for pinned ended slabs (horizontal restraint 70mm below top
surface)

Load deflection curves for pinned ended slabs (horizontal restraint
105mm below top surface)
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Figure 11.13: Load-deflection curves for pinned ended slabs (horizontal restraint 105mm below top
surface)
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Load deflection curves for pinned ended slabs (horizontal restraint 140mm
below top surface)
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Figure 11.14: Load-deflection curves for pinned ended slabs (horizontal restraint 140mm below top
surface)
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Horizontal restraining force

Horizontal restraining force for pinned ended slabs (horizontal restraint
50mm below top surface)
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Figure 11.15: Horizontal restraining force for pinned ended slabs (horizontal restraint 50mm below
top surface)

Horizontal restraining force for pinned ended slabs (horizontal
restraint 70mm below top surface)
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Figure 11.16: Horizontal restraining force for pmned ended slabs (horizontal restraint 70mm below
top surface)
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Horizontal restraining force for pinned ended slabs (horizontal
restraint 105mm below top surface)
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Figure 11.17: Horizontal restraining force for pinned ended slabs (horizontal restraint 105mm below
top surface)

Horizontal restraining force for pinned ended slabs (horizontal
restraint 140mm below top surface)
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Figure 11.18: Horizontal restraining force for pinned ended slabs (horizontal restraint 140mm below
top surface)
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Concrete strains

Concrete strain at upper midspan vs deflection (simply supported slabs)
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Figure 11.19: Concrete strain at upper mid-span vs deflection for simply supported slabs

Concrete strain at upper mid-span vs deflection for pinned ended slabs
(horizontal restraint 50mm below top surface)
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Figure 11.20: Concrete strain at upper mid-span vs deflection for pinned ended slabs (horizontal
restraint 50mm below top surface)
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Concrete strain at upper mid-span for pinned ended slabs (horizontal
restraint at 70mm depth)

•6000

Mid-span deflection (mm)

Figure 11.21: Concrete strain at upper mid-span vs deflection for pinned ended slabs (horizontal
restraint 70mm below top surface)
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restraint at 105mm depth)
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Figure 11.22: Concrete strain at upper mid-span vs deflection for pinned ended slabs (horizontal
restraint 105mm below top surface)
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Concrete strain at upper mid-span for pinned ended slabs (horizontal
restraint at 140mm depth)

— 140-A
140-C

Mid-span deflection (mm)

Figure 11.23: Concrete strain at upper mid-span vs deflection for pinned ended slabs (horizontal
restraint 140mm below top surface)
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Steel strains at bottom mid-span

Strain in CBM and SBM Gauges vs Deflection (simply supported slabs)
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Figure 11.24: Strain in CBM and SBM gauges vs deflection (simply supported slabs)

Strain in CBM and SBM Gauges vs Deflection (pinned ended slabs with
horizontal restraint at 50mm depth)
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Figure 11.25: Strain in CBM and SBM gauges vs deflection (pinned ended slabs with horizontal
restraint at 50mm depth)
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Strain in CBM and SBM Gauges vs Deflection (pinned ended slabs with
horizontal restraint at 70mm depth)
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Figure 11.26: Strain in CBM and SBM gauges vs deflection (pinned ended slabs with horizontal
restraint at 70mm depth)

Strain in CBM and SBM Gauges vs Deflection (pinned ended slabs with
horizontal restraint at 195mm depth)
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Figure 11.27: Strain in CBM and SBM gauges vs deflection (pinned ended slabs with horizontal
restraint at 105mm depth)
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Strain in CBM and SBM Gauges vs Deflection (pinned ended slabs with
horizontal restraint at 140mm depth)
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Figure 11.28: Strain in CBM and SBM gauges vs deflection (pinned ended slabs with horizontal
restraint at 140mm depth)
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Steel strains at top mid-span

Strain in CTM and STM Gauges vs Deflection (simply supported slabs)
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Figure 11.29: Strain in CTM and STM gauges vs deflection (simply supported slabs)

Strain in CTM and STM Gauges vs Deflection (pinned ended slabs with
horizontal restraint at 50mm depth)
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Figure 11.30: Strain in CTM and STM gauges vs deflection (pinned ended slabs with horizontal
restraint at 50mm depth)
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Strain in CTM and STM Gauges vs Deflection (pinned ended slabs with
horizontal restraint at 70mm depth)
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Figure 11'.31: Strain in CTMand STMgauges vs deflection (pinned ended slabs with horizontal
restraint at 70mm depth)

Strain in CTM and STM Gauges vs Deflection (pinned ended slabs with
horizontal restraint at 105mm depth)
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Figure 11.32: Strain in CTM and STM gauges vs deflection (pinned ended slabs with horizontal
restraint at 105mm depth)
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Strain in CTM and STM Gauges vs Deflection (pinned ended slabs with
horizontal restraint at 140mm depth)
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Figure 11.33: Strain in CTM and STM gauges vs deflection (pinned ended slabs with horizontal
restraint at 140mm depth)
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Steel strains at bottom end

Strain in CBE and SBE Gauges vs Deflection (simply supported slabs)
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Figure 11.34: Strain in CBE and SBE gauges vs deflection (simply supported slabs)

Strain in CBE and SBE Gauges vs Deflection (pinned ended slabs with
horizontal restraint at 50mm depth)
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Figure 11.35: Strain in CBE and SBE gauges vs deflection (pinned ended slabs with horizontal
restraint at 50mm depth)

m
m

383 m



Appendices

Strain in CBE and SBE Gauges vs Deflection (pinned ended slabs with
horizontal restraint at 70mm depth)
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Figure 11.36: Strain in CBE and SBE gauges vs deflection (pinned ended slabs with horizontal
restraint at 70mm depth)

Strain in CBE and SBE Gauges vs Deflection (pinned ended slabs with
horizontal restraint at 105mm depth)
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Figure 11.37: Strain in CBE and SBE gauges vs deflection (pinned ended slabs with horizontal
restraint at 105mm depth)
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Strain in CBE and SBE Gauges vs Deflection (pinned ended slabs with
horizontal restraint at 140mm depth)
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Figure 11.38: Strain in CBE and SBE gauges vs deflection (pinned ended slabs with horizontal
restraint at 140mm depth)
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Steel strains at top end

Strain in CTE and STE Gauges vs Deflection (simply supported slabs)
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Figure 11.39: Strain in CTE and STE gauges vs deflection (simply supported slabs)

Strain in CTE and STE Gauges vs Deflection (pinned ended slabs with
horizontal restraint at 50mm depth)
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Figure 11.40: Strain in CTE and STE gauges vs Reflection (pinned ended slabs with horizontal
restraint at 50mm depth)
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Strain in CTF and STE Gauges vs Deflection (pinned ended slabs with
horizontal restraint at 70mm depth)
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Figure 11.41: Strain in CTE and STE gauges vs deflection (pinned ended slabs with horizontal
restraint at 70mm depth)

Strain in CTE and STE Gauges vs Deflection (pinned ended slabs with
horizontal restraint at 105mm depth)
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Figure 11.42: Strain in CTE and STE gauges vs deflection (pinned ended slabs with horizontal
restraint at 105mm depth)
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Strain in CTE and STE Gauges vs Deflection (pinned ended slabs with
horizontal restraint at 140mm depth)
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Figu"? t >'. -si; Strain in CTE and STE gauges vs deflection (pinned ended slabs with horizontal
restraint at 140mm depth)
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Strains in transverse steel

Strain in Transverse Steel vs Defection (simply supported slab)
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Figure 11.44: Strains in transverse steel vs deflection (simply supported slab)

Strain in Transverse Steel vs Deflection (pinned ended slab with horizontal
restraint at 50mm depth)
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Figure 11.45: Strains in transverse steel vs deflection (pinned ended slabs with horizontal restraint at
50mm depth)
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I

Strain in Transverse Steel vs Deflection (pinned ended slabs with
horizontal restraint at 70mm depth)
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Figure 11.46: Strains in transverse steel vs deflection (pinned ended slabs with horizontal restraint at
70mm depth)
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Figure 11.47: Strains in transverse steel vs deflection (pinned ended slabs with horizontal restraint at
105mm depth)
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horiozntal restraint at 140mm depth)
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Figure 11.48: Strains in transverse steel vs deflection (pinned ended slabs with horizontal restraint at
140mm depth)
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Appendix 5: Crack patterns for one-way slabs at failure

Slab SS-A (Side 1)
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Figure 11.49: Cracking Pattern for Slab SS-A

Slab SS-B (Side 1)
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// .50: Cracking Pattern for Slab SS-B
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Slab SS-C (Side 1)

Slab SS-C (Side 2)

10mm Inn

Figure 11.51: Cracking Pattern for Slab SS-C

Slab SS-A2 (Side 1)
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/7.52: Cracking Pattern for Slab SS-A2
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Ifi

Slab 50-A (Side 1)
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Slab 50-A (Side 2)

Figure 11.53: Cracking Pattern for Slab 50-A
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Figure 11.54: Cracking Pattern for Slab 50-B
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77.55: Cracking Pattern for Slab 50-C K

Slab 70-A (Side 1)
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Figure 11.56: Cracking Patterns for Slab 70-A
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Slab 70-B (Side 1)

2mm 6nr*i I nn

Slab 70-B (Side 2)

2mm 4nn Inn

11.57: Cracking Patterns for Slab 70-B

Slab 70-C (Side 1)
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Figure 11.58: Cracking Patterns for Slab 70-C
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Slab 105-A (Side 1)
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Figure 11.59: Cracking Patterns for Slab 105-A

Slab 105-B (Side 1)
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Figure 11.60: Cracking Patterns for Slab 105-B
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Slab 105-C (Side 1)
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Figure 11.61: Cracking Patterns for Slab 105-C
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Figure 11.62: Cracking Patterns for Slab 140-A
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Slab 140-B (Side 1)

S.'ab 140-B (Side 2)
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Figure 11.63: Cracking Patterns for Slab 140-B
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Figure 11.64: Cracking Patterns for Slab 140-C
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Appendix 6: Sample calculation of Rankin and Long's method to calculate ultimate

strength of restrained slabs

Specimen PP140

Material and physical properties:

j x clear span = Lc = 550mm

Overall depth = D = 140mm

Effective depth = d = 105mm

Width of section = b = 500mm

Positive reinforcement ratio = p = 0.0065

Negative reinforcement ratio = pc = 0.0065

fc =32MPa

Experimental results:

fsy =660MPa

Ec = c =26756.92MPa

"simplysuppoitcd ~ 9 1 . 6 k N

Restraining force at peak load = 995. lkN

Deflection at peak load = 12.88mm

Restraintstiffness = kt = 500000N/mm

mmi

ill
m

II''
I

1 U
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Calculation:

D - ( p + p c ) —
Depth available for arching = d, =

.85fc

= 53.53mm

Effective area of arch leg = d, x b

= 26767.18mm2

Equivalent length of rigidly restrained arch = Lr =
+ 1

= 843.28mm

Arching moment lever arm = D - deflection - restraint height - resultant of stress distribution

= 140-12.88-0-10

= 117.12mm

Arching moment (rigid restraint) = M^ = lever arm x restraining force

= 117.12x995.1xl03

= 1.17xlO8Nmm

Arching moment (elastic restraint) = Ma = Mar —-

= 7.60xl07Nmm

Load carried out by arching = Pa =
4M

clear span

1100

= 276.4 lkN

10"3

Total load carried = Psimplysupportcd

= 368.0 lkN

IP
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Appendix 7: 3D view of reinforcement cage and strain gauge location for slabs with
edge beams
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Figure 11.66: 3D view of diaphragm reinforcement with strain gauge location
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Figure 11.67: 3D view of edge beam reinforcement with strain gauge location
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Figure 11.68: 3D view of slab reinforcement with strain gauge location
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Appendix 8: Sample calculation of Rankin and Long's method to calculate ultimate

punching strength of slabs

Specimen 'S2'

Properties:

Clear span = L = 600mm

Y x clear span = Lc = 300mm

Overall depth = D = 75mm

Effective depth = d = 60mm

Ast = Asc =4x(7ix32)=113.1mm2

O Positive reinforcement ratio = p = 0.0063

Negative reinforcement ratio = pc = 0.0063

fc =34.9MPa

Load width = x = 200mm

Load length = y = 100mm

Horizontal translational restraint stiffness:

a = distance from load to nearest support = 300mm

Effective width = bcf = x + 2.4a, 1 — = 560mm

v w
Using a linear beam model (similar to the one in Appendix 10), the horizontal translational restraint

stiffness (k,) was calculated to be 844595N/mm
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Compressive membrane capacity:

Depth available for arching = d, = 37.5mm (assumed to equal half of the slab depth)

Effectivearea of arch leg = d, x bcf = 21000mm2

Equivalent length of rigidly restrained arch = Lr = L(
EA

IKK
+ 1 = 447.40mm

Plastic concrete strain = ec = (- 400 + 60fc - 0.33fc
2 )x 10"6 = 1.293 x 10

eX2 1.293 xl0"3x447.402

-3

R =_ c r

4x37.5'
= 0.046

0 < R < 0.26 => M r = 4 . 3 - 16.lV3.3xlO~4 +0.1243R = 3.05

Arching moment (rigid restraint) = M^ = —— — -

= 3.18 x 104 Nmm/mm width of slab

Arching moment (elastic restraint) = Ma = M^ —-

Effective reinforcement ratio = p c =

= 2.13xlO6Nmm

M.

fycd x lever arm

fyc is assumed to be 320MPa and the lever arm is assumed to be 0.75d (see Section 2.2.10.1).

Therefore:

Pc =
M.

= 0.025
320x0.75di

Punching failure load = 2((x + d)+(y + d))d x 0.42^(100pe)°
25 = 156.82kN
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Appendix 9: Sample calculation of Rankin and Long's method to calculate ultimate

strength of slab strips

Specimen 'SIFd'

Slab properties:

Clear span = L = 600mm

yx clear span = LC = 300mm

Overall depth = D = 75mm

Effective depth = d = 60mm

Width of section = b = 300mm

Ast = Asc =4x(?ix32)= 113.1mm2

I= — = 1.055xl07mm4

12

Positive reinforcement ratio = p = 0.0063

Negative reinforcement ratio = pc = 0.0063

fc =29.4MPa

fsy = 660MPa

408



Shear modulus = G =
2(1 + v)

= 9859MPa

Toiaional constant = J =- T - M 1-0.63-^-
Dk

).052f-^-

Appendices

Torsional restraint stiffness:

Beam span = Lb = 3000mm

Beam depth = Db = 305mm

Beam width = bb = 130mm

Distance from end of beam to slab position = xa = 1500mm

Distance from other end of beam to slab position = xb = 1500mm

Poisson's ratio = v = 0.3

= 1.635xl08mm4

Elastic torsional rigidity = GJ = 1.612 x 1012Nmm2

Since edge beam was not significantly cracked, assume elastic torsional rigidity can be

used in calculations
T r~* T

Torsional restraint stiffness = kr = —-— = 2.150 x 109 Nmm/rad

Flexural capacity:

Mu = 4.15 x 106Nmm (for a doubly reinforced section)

Flexural capacity = Pb = •
4M.

L - 4kX2
• = 4.272 xlO4N = 42.72kN

I|1 +
I 2EI.

Horizontal translational restraint stiffness:

kt = 865052N/mm (from elastic beam model, refer to Appendix 10)
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Compressive membrane capacity:

Depth available for arching = d, =
0 85f

— = 27.53mm

Effective area of arch leg = d, x b = 8259.98mm2

Equivalent length of rigidly restrained arch = Lr = L(
EA

+ 1 = 366.00mm

Plastic concrete strain = ec = (- 400 + 60fc - 0.33fc
2 )x 10"6 = 1.078 x 10-3

4x27.53'

0<R<0.26=>Mr=4.3-16.W3.3xl0-4+0.1243R=3.03

* u- i- -A - x x , M r0.85fcd?
Arching moment (rigid restraint) = M^ = — —-

Arching moment (elastic restraint) = Ma = M^ —-
r

= 3.52 xlO6 Nmm

= 1.43 x 104 Nmm/mm width of slab

= 4.30 x 106 Nmm for a 300mm wide slab strip

L.

Load carried out by arching = Pa =
4M.

clear span

(̂  600

= 23.48kN

xlO -3

Total capacity:

Total load carried = Pb + Pa

= 66.20kN
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Appendix 10: Elastic beam model for calculating horizontal translational restraint

stiffness

An elastic beam model, using the general-purpose structural analysis program SpaceGass, was used to

determine the horizontal translational restraint stiffness that existed for the slab strips. The model was

described previously in Section 8.2 and is shown below.

2 S1Fd

lO.O)

1 2 3 4 7 8 9 10 11 12 13 1 1 18 19 ^20 21 22 p pi 25 ^6 _27 _28 _29 30^31

~I i i < i < I I i i i < 5

Figure 11.69: Elastic beam model to determine horizontal translational restraint stiffness

The edge beam was given a length of 3000mm, a width of 130mm and a depth of 305mm. The edge

beam and the slab were considered to act separately. That is, there was no contribution to the

horizontal bending stiffness from the slab. Springs were placed at a spacing of 100mm to model the

axial stiffness of the slab. The stiffness of each spring was given a value of:

_ P _ EA _ 25634 x (100x75) _
k = - =

A L 300
= 640850N/mm

Note: 300mm is used for L because only half of the slab/beam system is modelled in Figure 11.69.

A total load of IN was applied over a width of 300mm (0.0033N/mm). The displacement at tii

centre node was then obtained to determine the horizontal translational restraint stiffness.
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Appendix 11: Derivation of equation for load-carrying capacity of slab with rotational

restraint

The following derivation is for a slab with the following properties:

Length = L

Moment capacity = Mu

Bending stiffness = El

End rotational restraint stiffness = kr

The rotations at the slab ends due to the point load and the end moments are first obtained.

For a point load: p

P 16EI

For end moments:

0 =
M "
M

M L | M L

3EI + 6EI
ML

2EI

The total rotation at the slab ends is:

9 = 9P - 9M

M = kr6M

8 — 9p - 0M

Therefore, for an end moment of Mc and an applied load of Pi,:

MeL

16EI 2EI

16EI 2EI
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PbL
2

1 6 E I | 1 + L k r

I 2EI.

The bending moment diagram is:

Mc

Mn

)( A A

PbL/4

V

The mid-span moment (Mm) will always be critical, except when the end rotational restraint is rigid,

in v/hich case both Me and Mm will reach the moment capacity (Mu) at the same time. Since the end

rotational restraint is always less than rigid in practice, at failure, Mm = Mu.

Therefore:

Mu+-

M = - ^

I 2El

k

4M.

L —
4EI 1 + - ^

I 2EI
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