|
4
]
i
e
¥
g
i
%

S b ad

T x

)

H O VP Lon L ineS,

i
i
K
3

MONASH UNIVERSITY
THESIS ACCEPTED IN SATISFACTION OF THE
REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF FHILOSOPHY

ON.ovevverreiseaensss 10 NO 2004....rvininnes

ooooooooooooooo

Sec. Research Gragduate School Committee
Under the Copyright Act 1968, this thesis must be used only under the
normal conditions of scholarly fair dealing for the purposcs of
research, criticism or review. In particular no results or conclusions
should be extracted from it, nor should it be copied er closely
paraphrased in whole or ir part without the writien consent of the
author. Proper written acknowledgement should be made for any

assistance obtained from this thesis.




kb e .

e b b ok e R A T Gl bt 4

B it

Note: the Errata/Addenda
are affixed to the end of the thesis ]




An Investigation of Statistical Aspects of
Linear Subspace Analysis
for
Computer Vision Applications

Pei Chen

A dissertation submitted to the
Department of Electrical & Computer System Engineering
Monash University
Clayton, Victoria 3168, Ausiralia
in fulfillment of the requirements for the degree of
Doctor of Philosophy

June, 2004




R A 2 i L A L e AT T R o L

Rt ket Bt

Contents

LISt OF FIZUICS.ccovititiiiaiciiie ettt ettt st s seb s s seat s et en s enternsensasans VI
LiStOf TABIES ..ot ev e er st ens e e eaneneaene VIII
ADSITACL. .. oottt e an et ss et st e s e ae e eanr e 1IX
DECLATALION ot ia ettt ettt e et ebeebe st e st e e e s et e s bt eseeeasretnee X
ACKNOWIEAZEIMENS. ... vecvreiieniiiieccereieesteirereeers e s rressresissersesirseressessenssnnsessssasaerone XI
PUDICATIONS. c.ooeetienierieitecetce e ee e reecres e aeses e eesnee s sas s naesa s seesssamnesesneaaean Xl
Chapter 1: InrOQUCHION .....oc.vviieie et ettt sae e ra e e s s saeareesbsssnsne 1
1.1 Issues to be addressed and molivVaAlIONS .....ccvvvviierriie e 1
1.1.1 i.i.d. Gauusian noise inthe SVD ... e 1
1.1.2 Missing data problem under low-rank constraint.......ocooveevemrvernereennnne 2

1.1.3 Low rank approximatein and parameler estimation in a
hetaroscedastic SYSIEM i . ittt st e e s e er e ssesenasaes 3
1.2 Contributions of 1his (SIS c.oceevrieeririiiereeieere et eeeretece et e e sireeesmereennane 4
1.3 Organization of this thesis ... e 5
Chapter 2; SVD and perturbation expansion theory..........cvvvenniienn i 8
2.1 NOAHOI ot eee s serae e s recasste s s esessarraesssrneneces s svacsnensrossneee 8
2.2 Singular value decomposIioN.........ccoiveeereieeienreieceesrrniereseeesseesesrareressasens 9
2.2.1 SVID HREOTCIN .oovveicrievirnrrereareececvcrnteesresnassraesesineseenbesoasestssensesosssastsasss 10

222 Power method and orthogonal iteration method for the computation
of one or a few singular values and Vectors......cc.ccoeveeecreinnnisiraneen 10
2.2.2.1  The power method (Golub ef al. 1990) «....ccccvivvnierinvinviniineinninann 11
2.2.2.2  The orthogonal iteration method (Golub er al. 19906).......cocvveeene. 1]
2.3 Matrx perturbation thEory ... ettt 12
2.3.1 Perturbation tRCOIY .. oo et cae e serraa st e s eras e e nanesneee 13




T T o e e e

R s

R gttty ot

e g rwm
e o Tl T e e

o

TR

232 New perturbation theory, corresponding to a multiple eigenvalue/
SINZUIAT VALUC...c.vireteritiietiiie et es vt s et enerebensss e s sareseesesen 15

24 COMNCIUSION Lottt iieetiitevete ettt sttt sr e masaes s srneensssssets s reronsessesnnsaesanees 20

Chapter 3: The factorization method in SFM and PCA-based face recognition....21

3.1 Overview of the development of the factorization method for SFM.......... 21
3.2 The factorization method under orthographic Settings ........ccoooeeoeeeniereenen. 23

3.2.1 Measurement matrix and its rank 4 property....c.ceevecveveerineeninnnnnens 23

322 MeEre transformMalion ........ccoiiivueieree et enones 25
3.3 PCA-based face recOgnition ... iviiiiiiiioiciiiteciirseeerenre s serraesse s aenre e, 26
Chapter 4: Analysis of noise effect in the SVD-based applications..........ccceeuneeee. 28
41 Tssuestobe addressed..........cooiiiiins ettt 29

4.1.1 N OIS B 0 S i ieiceeesisereerarenrerencesreemessreeseteseseameteasancanesesaanersnaserreses 29

4,12 Performance QUESHIONS ......c..oieiiit ittt crtestsecaea e s e e e s e saseeons 30
4.1.2.1 Denotsing capacity 0f SVD w...c..cviniininicivinecnincnccnnccesenses 30
4.1.2.2 Learming capacity of linear subspace analysis.......cceveeerenrevevaveerane 31

42  Major results .................................. 32

4.2.1 MaAJOT TESUILS ... vveirreeeriieniicirieeeinereaensiereraasresensressresseessenrareassesnesancoss soe 32

4.3 Denoising capacity Of SVD ..ot eraa s 33

4.3.1 Case of distinct singular values ........cccoooceeceiiiieniicireine e e v e 34

43.2 Case of multiple singular value .......coovviini e 36

433 Extension to the rectangular MatrixX ..o, 38

44  Leaming capacity of LSA-based recognition SYStemM ..o.occvviveniicveesieennes 39

4.4.1 Perturbation of the basis IMages ... ..o iviviviireniccienr e eeear s v 39

4.4.2 Projection of a new test image on the basis Iages.....covevviviieriin, 41

4.4.3 Performance analysis over the learning samiples.....o..ovivviveenninnen., 42

4.4.4 The optimal 1eaMmiINg SEt ...ceeviverreicriririicerecnire et s ee s assreee 44

4.5  Simulation TESULLS ...cooviiircniiiiiiiine e e 45

4.5.1 Simulation of the denoising capacity of SVD ...l 46

452 Simulation of the learning capacity for LSA-based recognition........46

4.5.3 Relationship with some experimental observations .........coveeveeniecnnn 51

4.6 CONCIUSION ..ooiiiiiiiiiec et et st st es s s s s b deeane 52

i




Chapter 5: Recovering the missing components in a large noisy low-rank matrix:

application 10 SFM ..o e 53

5.1 INFOGQUETION. c.ceeiiiiiiiictiiei ettt ae e e st ee e sraeneersens O3
5.1.1 Missing-data problem in SFM .........ccoeoiioiiniccrinericrccrreceieenes 55
5.1.2 Other missing data problems under low rank constraint.................... 58
5.1.3 Contributions of this Chapter .....c.cceeecerviiene e ccreieseecesesneevas 59
5.1.4 Overview of the Chapter.....oveiiecierecci e 39

5.2 The definition of the problem and its nonlinear nature ...........cccecevevenee.... 60

5.2.1 The Problem ..t e 60
522 Non-linearity of the problem......cvecvciveiiievinreinencrnccceenrenen. 61
53 Aniteralive imputation MEHoG.....ococveiviieiiviireee s ecesiereesseernesseeeses 62
5.3.1 Minimization of the distance of a vector with missing entries 1o a
KNOWN SUBSPACE .. ..o 62
532 An iterative algorithm for the problem (J1er) .......ccovvvvincrinenicncenn, 63
533 The convergence of the iterative algorithm ....cocveiinniecenienens 65
54  SVD’sdenoising capacity vs. MiSSING ala.....ccccvenieierieeneernesreersreossnans 65
5.4.1 SVD’s denoising capacity and its extension o an incomplete matrix 66
542 The minimal unreliability ratio in SFM....occoiinvinnccvreeee 68
543 AlZOTIthIM (JIEFPATE) .ottt e e 69
544 DISCUSSION ...veieriirii e creiiereerentcrere b s e cneaeseeraset st st saabeshssrasenanes 70
5.5 EXPEIIMENLS cueeretiereetirieee st ers e racressneessaeseesns sessenseensearsereeseresasssuresssansesonn 71
5.5.1 Only One UNKNOWII ENITY ..ooveiveiiiiineeeenisnrenienie st imreessesnosseconanssesaens 71
5.5.2 Synthetic data in a 8-frame-and-40-point SeqUENCE .....cocvvvrriecrinne. 73
5.5.3 BOX SEQUEIICE ..ottt e 78
554 DiANOSAUE SEQUENCE ..covviiiiriitiniietieesistie i et e saessbasesaaasaes 80
5.0 CONCIUSION tovieiirieitcirieetccee e rre et eme s e ee b s s s e 87
APPENAICES oorvivireeereieeee ettt s e es 87
A.l  “Bad-behaviour” and a bootstrapping Strat€gy ........covvmeivvieniinncniienannns 87
A.2  Revisiting the objective function in (5.5.3) ccvrevniicenciniccnnienns 89

A.3  Difference from the imputation in (Troyanskaya et al. 2001)................90
A4 RMS and Re-projection eITOr ... iececricniiieiseseniniinniressssseesnsens 90

I




Chapter 6: Bilinear approach to the parameter estimation of a general

heteroscedastic linear system, with application to conic fitting......... 93

6.1 IHIOAUCHION. ...ttt ettt en e esss s ve s raaesessnesas e 93
6.1.1 Parameter estimation in a heteroscedastic SySt€NM ....ovevveeecerireveinnaan. 94
6.1.2 Bilinear approach to the low-rank matrix approximation................. 96

6.1.3 The issues to be studied and the organization of this chapter......... .98

0.2 The parameter eSmation Problenl ......cceerrrieicriieniire e sree v 98
6.2.1 Objective function 1o be minimized ......ccooovevriineiieiieciiseaae 98
6.3 The bilinear approach to the heteroscedastic parameter estimation ......... 100
6.3.1 UPdate 0f R..eoiiiiiiiie sttt sr e et enaen s 101
6.3.1.1  Case with zero singular values in the covariance matrix C......... 101
6.3.2 UPAAtE Of S ..ttt sae et seoee 103
6.3.2.1 Constant column in the measurement MatriX ......coooeeeeerceerennnnnes 104
6.3.2.2 Discussion of the convergence of the bilinear approach............... 105
6.3.3 A more general Update......covccievniciinniiiiien e 105
6.3.4 Disussion of the optimalily..ccoovvicvrrienieerere e errrere e rees e 106
6.4  Application in coOniC fIlliNG......ccccoerieimrririiiece e sren et esieresecreecreres 106
6.4.1 Covariance matrix in the conic fitting .............ooooviiincniencnennen. 107
6.4.2 NOISE 1eVe]l @SUMIAUON. ....ccivieteeieerreieeiecererre s sie et nsencecaesesennaen 109
6.5  Experimental results ......ocooviiiiiiiiiirc s e 110
6.5.1 Noise level=2 over a half ellipse ..oocooeiiiiiiiis 111
6.5.2 Noise level=2 over 3/8 elliPSe ..o et 114
6.5.3 Noise level=1 over a quarter ellpse ..., 116
6.5.4 Noise level=2 and a quarter ellipse.........ocvvviriirnieiieiinrenncn, 118
6.5.5 Comments on the experimental results......coceviiinicniinnnienen. 119
6.5.6 QUESTION FAISEA ..o.evoeeieieeieirrie s creceare s trnnrasecrsaesseassanesaraemreeseasansns 121
0.0 CONCIUSION ..oovvieeerree et trece e ieeie ettt esa s en b saas s eresasesenseamorestsnssans 122

Chapter 7: Orthographic projection of distances: a low-dimensional
APPTOXIMATION ..eeeirivenreerrierrririeeceesaresnsmrssiasessssnossesesssosiosrosmossassns | 2
7.1 INEPOAUCHION. . .vcve ettt et cstees e re v cnreritesres e eeresneesnssssesens 12
7.2 Distance vector, spherical harmonics, and linear subspace...........ccoe..... 124
7.2.1 Definition of distance vector (distance matrix) ....c.cccvveeeeeenenrennnnn. 124

7.2.2 Spherical RarmoniCs......o.cov i e recrenneseecciceseecenenineseennees 123

v




7.2.3 Spherical harmonics for the $ine fNCHON .....cvvivivveevieee e ereerieres 125
7.2.4 Low dimensionality of the distance Vectors .......cccvueererrcrierinnenens 126
7.2.5 Sine function on a sparse set of POINtS....c.oovevvivvriiiiiieie. 128

7.3 Discussion and CONCIUSION. ....ccovvveereeeiieeieeeeeesssrassaseesssssassesrreaseseessreees 129

Chapter 8: Subspace-based face recognition: outlier detection and a new distance

CIIETION o et eeteee e eisecre e ettnsnteeresreaessesasarmasseanenrataseeerresessesansannes 131

8.1 IPOUCTION. .o tev et ea sareee et annenn 131
8.2 Lambertian reflection and low dimension subspace.......co.oevvverevercnnne.. 131
8.2.1 Lambertian refleciance and 3-dimensional subspace .......c..covnnnee. 132
82.2 Attached shadow and low-dimensional subspace........cccococevvecccirinnns 133
8.2.3 Generation of the image basis from synthetic images..................... 133

83  Learning capacity of low-dimensional subspace and a new distance

CTUETION e voviriert s v evonrresaeserescrnseeeetnsasessesssntesbessasesesesnenennenearesmrtseraansas 135

8.3.1 Noise level estmation.... ..ot 136
8.4  Non-Lambertian pixel detection.....c.covoieeerreiennniciiiinncnerenicnicreenens 137
8.4.1 Performance evaluation of the outhier detection strategy ................. 138
8.5  EXperimental FeSUMS ....ccoiiiiiiiiirianeenieisterntisresesissrseosecnaesiecrrsenessnonnnesen 139
B.0 CONCIUSION ..ottt sttt e s 142
Chapter 9: Conclusion and future direclions .......ccccceeevninicciinninnes — eevennns 144
9.1 Summary of the contributions of this thesis ..., 144
9.2  Directions of fUture Work.....c..ccocviimniciniereaicniiicssseeanenes 145

!
!




Figure 3.1:

Figure 4.1:

Figure 4.2:
Figure 4.3:

Figure 5.1:
Figure 5.2:
Figure 5.3:

Figure 5.4:

Figure 3.5:

Figure 5.6:

Figure 5.7
Figure 5.8:
Figure 5.9

Figure 5.10:
Figure 5.11:

Figure 5.12:
Figure 5.13:

List of Figures

The coordinate systenis: world system and camera system.

The average error that still resides in the approximation matrix.
The dependency of SSD on the size of leamning samples.

The effects of three parameters in (4.23) on SSD.

The optimal performance of the iterative algorithm.

Two 10-by-10 examples with one unknown entry.

The convergence rate of four iterative methods against the missing entry
fraction.

The reprojection RMS error of the eight methods, as described in the
beginning of section 5.5.

One frame of the box sequence.

The performance of the RMS reprojection error by the eight methods on
the box sequence are depicted.

The convergence rate of the four iterative metheds are depicted.

The 20th frame of the dinosaur sequence.

The missing data (grey) and measured data (black) for the dinosaur
sequence.

The 336 wracked feature points over 36 frames.

The 336 recovered (racks by the Jacobs’ and Shum’s and the proposed
methods.

The recovered tracks over 36 frames.

The RMS errors in the low-rank approximation matrix and the

reprojection RMS error.




Figure 6.1:
Figure 6.2:
Figure 6.3:
Figure 6.4;
Figure 6.5:
Figure 6.6:
Figure 6.7:
Figure 7.1:

Figure 7.2:
Figure 7.3:

Figure 8.1:
Figure 8.2

Figure 8.3:

Figure 8.4:

The comparison of the bilinear approach, with the FNS, HEIV and KAN,
TLS.

Figure 6.2: See the caption of Figure 6.. Noise =2 over 3/8 ellipse.

Two example of “good™ estimales, falling in the 10% and 20% range.
Figure 6.3: The “good™ estimates in 1000 trials of the Bilinear, FNS,
HEIV and KAN approaches for noise=2 over 3/8 ellipse.

Figure 6.4: The “good™ estimates in 1000 trials of the Bilinear. FNS,
HEIV and KAN approaches for noise=1 over 1/4 ellipse.

Figure 6.5: The “good” estimates in 1000 trials of the Bilinear, FNS,
HEIV and KAN approaches for noise=2 over 1/4 ellipse.

A bad estimate, with details.

The amplitudes of the spherical hamnonics up to the tenth order.
The approximations of the sine function.
The singular values of the distance matrices with 20 (denoted by circles

“0”) or 100 (denoted by crosses *+") feature points.

10 persons in Yale-B face database.

Different images under difterent illunination conditions, {or person 7 in
Figure 8.1.

Mask for the outliers, which do not obey the 3-dimensional constraint. The
biack pixels denote the outliers.

The 7D image basis of person 1 and person 4 in the Yale-B face database.

VII




List of Tables

Table 4.1: A typical example of the approximation error, B> — A..

Table 6.1: The statistics of the estimated major length, minor length, x and y
coordinates of the center, and the deflected angel. The truth is listed in the
first row. For every meihod, its mean, with iis standard deviation in the
bracket, is listed in each row. For every method, its mean, with its \.
standard deviation in the bracket, is listed in each row. Noise =2 over 2
ellipse.

Table 6.2: See the caption of Table 6. noise=2 over 3/8 cllipse.

Table 6.3: The “good” estimates for noise=2 over 3/8 ellipse. ;
Table 6.4 The “good™ estimates for noise=1 over 1/4 ellipse.
Table 6.5: The “good™ estimates for noise=2 over 1/4 ellipse.

Table 7.1: Energy distribution for the sphere and a sparse set of direction.

Table 8.1: The ratio between the third singuiar value and the fourth singular value.

Table 8.2: Comparison of the error classification rate on Yale-B face database.




Abstract

This thesis mainly studies lirear subspace analysis and its applications in computer
vision. Using first-order matrix perturbation expansion theory, we present a
statistical analysis of the noise effect on subspace approaches to computer vision
tasks. More specifically, we derive an explicit formula for the denoising canacity
of the low rank matrix, in terms of the noise level, the sizes of the measurement
maltrix and the dimensionality. Similarly, by using first-order matrix perturbation
expansion theory, we also derive an explicit formula for the learning capacity of

algorithms using a leamt low-rank subspace approximation.

In the missing data problem under a low rank constraint, we present a criterion to
recover the most reliable submatrix, in terms o f deciding when the i nclusion o f
extra rows or columns, containing significant numbers of missing entries, is likely
to lead to poor recovery of the missing parts. This is based on the aforementioned
theory of the denoising capacity of a large low-rank matrix. The supenority of our

algorithim is validated in the structure from motion problem.

We propose a new error distance for the subspace-based recognition problem. This
is based on the theory about the leaming capacity in low-rank subspace
approaches. In face recognition, we employ the iterative reweighted least square
(IRLS) technique to detect the pixels that do not following the Lambertian

reflectance model.

In this thesis, we also study other rank-constraint problems. We prove that the
distance vectors under different views approximately lie in a linear subspace with a
dimension of 6. We study the parameter estimation problem in a general

heteroscedastic linear system, by putting the problem in the framework of the

bilinear approach to low-rank matrix approximation.
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Chapter 1: Introduction

Chapter 1

Introduction

Linear subspace analysis (LSA) has become rather ubiquitous in the solution of a
wide range of problems arising in pattern recognition and computer vision. The
essence of these approaches is that certain structures are intrinsically (or
approximately) low dimensional: for example, the factorization approach to the
problem of structure from motion (SFM) (Tomasi et al. 1992) and the principal
component analysis (PCA)-based approach to face recognition (Turk et al. 1991;
Hallinan 1994; Eipstein er al. 1995). Such approaches have also been employed in a
wide range of other fields: like DNA prediction (Troyanskaya et al. 2001),
recommender system (Sarnwvar e af. 2000; Brand 2003), and even the general

“knowledge or opinion networks” (Maslov ez al. 2001).

Computational approaches to such problems have been well established. Their
central idea is to employ the singular value decomposition {(SVD) (Golub er al.
1996) to obtain the low-dimensional representation of the high-dimensional
structures. This representation, obtained by the SVD, is the best approximation,
measured by the Frobenius norm or the 2-norm (Gold er al 1996). More
importantly, it is the maximum likelthood (ML) estimate, assuming the signal is
corrupted with i.i.d. Gaussian noise (Press ef al. 1992; Reid et al. 1996; Hartley et al.
2000; Irani er al. 2000; Anandan et al. 2002).

1.1 Issues to be addressed and motivations

i1.1.1i.i.d. Gaussian noise in the SVD

Although it is well known that the estimate, by the SVD, is the ML estimate in the
presence of i.7.d. Gaussian noise, little effort has been spent on the analysis of the
noise effects in the SVD-based applications. The lack of such a performance analysis

impedes the careful design of optimal systems. For example, in the factorization

!




Chapter 1: Introduction

approach to SFM,, it is widely accepted that processing more frames produces a more
accurate result than depending on just a few ("few" typically being liitle more than
3) frames. It was even clainmed (Thomas ef al. 1999) that the 3D scene could be
reconstructed to arbitrary accuracy given enough frames. However, there are many
questions one could pose about this, for example: what is the gain of adding the data
Jrom one extra frame to a very large measurement matrix? What precision does the

3D reconsiruction have as the number of the frames approaches infinity?

The questions above relate to the performance analysis of the SVD in the presence of
noise. Fundamentally, they are specific examples of the following questions.
Supposing the noise level is small enough, how much signal is retained by keeping
the largest r components? Or, how much has the noise been reduced, as a result of
discarding the other components? In this sense, we are blindly using a SVD, without
knowing its capacity for separating the signal from the noise: how close the low-rank
approximation matrix lo the noise-free matrix is, or how close the SVD-based

subspace to the ground-truth subspace is.

One of the major tasks of this thesis ts to analyze the performance of the SVD in the
presence of noise. This will be done in the context of the two computer vision tasks:
in the factorization method for the structure from motion and in PCA-based face

recognition,

1.1.2 Missing data problem uader low-rank constraint

One prominent drawback with the SVD-based approaches 1s their inability to deal
with the missing data. A SVD can only be applied to complete matrices. However, in
computer vision, it is common to require operations on matrices with “missing data”,

for example because of occlusion or tracking failures in the SFM problem.

Take the SFM as an example. SFM with missing data has been well studied in
computer vision community, c¢g (Tomasi er al. 1992; Shum ef al. 1995; Jacobs 1997;
Heyden et al. 1998; Kahl er al. 1999; Jaccbs 2001; Brand 2002; Guerreiro ef al.

2003), etc. In terms of the computation, we divide these approaches into two

categories: iterative and non-iterative. The non-iterative approaches include: (Tomasi
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et al. 1992; Heyden et al. 1998; Jacobs et al. 1998; Kahl et al. 1999; Jacobs 2001;

Brand 2003), etc; and the iterative approaches include: (Shum et al. 1995; Guerreiro
el al. 2003), etc.

Both approaches have their advantages and disadvantages. Iterative methods are
usually more computation expensive. Moreover, they can suffer from the divergence
problem when there is a large amount of missing data and when the observed data

has been badly corrupted by noise. In contrast, the non-iterative methods cannot

make full use of the information in the observed data, even though they are generally

fast and stable.

A compromise approach is possible and, indeed, very efficient, as will be presented

in chapter 5.

1.1.3 Low rank approximatoin and parameter estimation in a
hetaroscedastic system

Another drawback with the SVD (Golub ef al. 1996) is its “inefficiency” in dealing
with the heteroscedastic noise. Here, we mean the “inefficiency” the fact that the
estimate, by the SVD, is not the ML estimate in the heteroscedastic system, as

pointed out in (Iram er al. 2000; Anandan et al. 2002),

The Mahalanobis distance is always employed as the minimization objective
function, in such a heteroscedastic system (Leedan et «f. 1999; Matei et al. 1999,
Irani ef al. 2000; Leedan ef al. 2000; Matei ef al. 2000; Anandan et al. 2002), If the

noise can be modelled as Gaussian, either 1.1.d. or correlated, the minimizer of the |

Mahalanobis distance is the ML estimate,

A closely related problem is the parameter estimation in a heteroscedastic system,
where some good approaches, like FNS (Chojnacki et al. 2000; Chojnacki et al.
2004)and HEIV (Leedan et al. 1999; Matei et al. 1999; Leedan et al. 2000; Matei et
al. 2000), are already available. However, no convergence in these iterative

approaches is ensured, as pointed out in the literature. Another limitation of these
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approaches is that they can’t model the correlations among different rows of the

“general measurement matrix”.

In this thesis, we employ the bilinear approach (Shum ez al. 1995; Guerreiro er al.
2003; Vidal ef al. 2004) to calculate the optimal estimate of the low-rank matrix
approximation, measured by the Mahalanobis distance. Notably, a large set of
parameter estimation can be put in the framework of the low-rank matrix
approximation. In this way, we solve the parameter estimation problem in a

heteroscedastic system.

1.2 Contributions of this thesis

This thesis has two major contributions. First, it presents an analysis of the i.i.d.
Gaussian noise effects in SVD-based computer vision tasks, especially in the context
of the factorization method for the SFM problem and in PCA-based face recognition.
This is achieved by using the matrix perturbation expansion theory (Wilkinson 1965;
Stewart e/ al. 1990) as the major tool. Second, we employ the bilinear approach
(Shum et al. 1995; Guerreiro et al. 2003; Vidal ef al. 2004) to calculate the low-rank
matrix approximation in a heteroscedastic system, and conseguently solve the

parameter estimation problem in a heteroscedastic system.

More specifically, we study the following problems:

¢ In the factorization method, we study the error between the noise free
measurement matrix and the approximated (low rank) measurement matrix.
Using the mairix perturbation expansion theory, we derive an explicit
formula for the mean square error (MSE) of the approximated (low rank)
matrix, in terms of the noise level, the sizes of the measurement matrix and
the dimensionality. We call this the denoising capacity of a large low-rank
matrix.

e With this characterization of the denoising capacity, we can explain the

accepted fact that more frames produce more accurate result than a few

("few"” typically being little more than 3) frames. Moreover, we can explain
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other phenomenon: that one more frame helps little in improving the
reconstruction precision after 20-40 frames (Morita et al. 1997). More
importantly, by using the denoisiag capacity, we present, in chapter 5, a
criterion to recover the most refiahle submatrix, in terms of deciding when
the inclusion of extra rows or columns, containing significant numbers of
missing entries, is likely to lead to poor recovery of the missing parts.

e In PCA-based face recognition, we study the reprojection error of a new face
image upon a low-dimensional subspace, which is learned from a few
samples. By using the first-order matrix perturbation theory, we also derive
an explicit formula for such a reprojection error measure. This error comes
from two independent sources: one source is the noise in the training samples
and another in the noise in the test image. Based on this learning capacity
theory, we propose a new error distance for subspace-based recognition
problems.

e We study the parameter estimation problem in a gencrz! heteroscedastic
linear system, by putting the problem in the framework of the bilinear
approach to the low-rank matnx approximation. We extend the bilinear
approach to the heteroscedastic system and consequently solve the problem

of parameter estimation in a heleroscedastic systen.

1.3 Organization of this thesis

Although the core contribution of this thesis is a general theoretical analysis of the
noise effect in the SVD-based applications, this thesis mainly concerns two
computer vision tasks: the factorization method for the SFM problem and the PCA-
based face recognition, in order to make the general problem concrete. Thus, a

significant portion of this thesis is devoted to developing such a context.

A bric{ description of the subsequent chapters is as follows:
e Chapter 2: SVD and perturbation expansion theory. The requisite knowledge
of the matrix theory is covered, including the SVD theorem and the first-order

matrix perturbation theory. We also include our new result concerming the first-




Chapter 1: Introduction

order perturbation expansions of the singular vectors (eigenvectors), associated
with a multiple singular value (eigenvalue).

Chapter 3: The factorization method in SFM and PCA-based face
recognition. We review the development of the factorization method for the
SFM problem and describe the seminal factorization method in detail. Then, we
present an overview of the PCA-based face recognition.

Chapter 4: Analysis of noise effect in the SVD-based applications. The noise
effect in the SVD is analyzed in the context of two computer vision tasks: the
factorization method for the SFM problem and PCA-based face recognition. This
analysis is important in since the results in this chapter will be used in chapter 5
and chapter 8.

Chapter 5: Recovering the missing components in a farge noisy low-rank
matrix: application to SFM. This chapter concerns the missing data problem
under a low rank constraint. First, an iterative approach, with weak convergence,
to this problem is proposed. More importantly, by using the denoising capacity
theory from chapter 4, we present a .criterion to recover the most reliable
submatrix, in terms o f deciding when the inclusion o f extra rows or columns,
containing significant numbers of missing entries, is likely to lead to poor
recovery of the missing parts.

Chapter 6: Bilinear approach to the parameter estimation of a general
heteroscedastic linear system, with application to conic fitting. We study the
parameter estimation problem in a general heteroscedastic linear system, by
putting the problem in the framework of the bilinear approach to the low-rank
matrix approximation. The conic fitting problem is studied as a specific example
of the general theory.

Chapter 7: Orthographic projection of distances: a low-dimensional
approximation. We prove that the distance vectors under different views
approximately lie in a linear subspace with a dimension of 6.

Chapter 8: Subspace-based face recognition: outlier detection and a new
distance criterion. We propose a new error distance for the subspace-based
recognition problem, based on the theory about the learning capacity introduced

in chapter 4. Moreover, in order to remove points not following the Lambertian

reflectance model, we employ the iterative reweighted least square (IRLS)
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technique to detect the pixels that do not obey the dimension-3 subspace

constraint.

Chapter 9: Conclusion and future directions. We summarize the main work in

this thesis and give some comments of the future research.
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Chapter 2

SVD and perturbation expansion theory

In this chapter, we ntend to provide a background, in terms of the relevart matrix
theory for the following chapters. However, this chapter does a little more than just

survey known results: a result that appears to be new is also presented.

We first introduce (section 2.1) some notations used in this chapter and in the rest
of the thesis. In section 2.2, we introduce the singular value decomposition (SVD)
theorem (Golub et al. 1996), with two iterative approaches to compute the singular
vectors, associated with the largest (few) singular values, Section 2.3 includes a

treatment of Matrix Perturbation Expansion theory (Wilkinson 1965; Stewart ef al.

1990); including our new result, which can be found in section 2.3.2.

2.1 Notation

The notation introduced here will be used through the rest of the thesis. A matrix
will be denoted by a bold capital leiter, such as M, and a bold lowercase letter

represents a vector, ¢.g. x. The i column of M is denoted by M ;+ A scalar entry

in a vector or in a matrix will be denoted by, for example, x, or M, , respectively.

I, denotes the nx 17 identity matrix, and 0

LU

for an mx n zero-matrix. e; is the i

" colunn of 1, M - @ notation from Matlab, denotes for the submatrix of M:

g(c the intersection of the i-fo-j rows and the £-fo-/ columns. The sct of m x n matrices
with orthonormal columns is denoted by O™ . That is, Ue 0™ iff UTU=1,.

Such a matrix will always be denoted by U orV .

The Frobenius norm of a matrix M (or a vector) will be denoted as M| ., where

M|, = /Z M?, . Span(M) denotes the subspace spanned by the columns of M.
i.f

The distance of a vector m, m e R”, to the subspace Span(M), M e R™", is
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denoted as d(m,Span(M)) and it is sometimes described as the distance of a

veclor m to a matix M , denoted as d(mM) . If UeO™

¥

d(m,U) = ||m - UUTm"F .

[Ty

The hat symbol, “*”, denotes an estimate of the quantity beneath the symbol.
Usually, a signal is observed with noise. We denote the observed signal with an
unadomed symbol that depends on its nature; for example: s, s, or S, for a scalar, a
vector or a matrix respectively. Although the true signal, without noise, is
generally unknown, we need to refer to 1t in some cases, especially when we
evaluate the performance. In this thesis, we use the symbol “~” to denote the

noise-free signal, eg 5 .

M’ denotes the closest rank-r approximation of M, which can be obtained by
SVD (Golub e al. 1996). The SVD, itsell, wiil be introduced in the next section.
The symbol *x=” means the f{irst order perturbation, explained in section 2.3.

[T L

Finally, “=" means equality, in the sense of statistical expectation.

2.2 Singular value decomposition

The singular value decomposition plays an important role in many applications,
where a few of the largest singular values, and possibly their associated singular
vectors, are needed. This includes the calculation of the low rank approximation of
a matrix. Such applications can be found in the factorization method for structure
from motion in computer vision {Tomasi ef al. 1992; Poelman ef al. 1997), object
modeling from range images in computer vision (Shum ef al. 1995), data analysis
(Mardia 1979), image processing and coding (Prat: 1975), model reduction (Moore
1981), pattern recognition (Chien es al. 1967), the minimal realization of linear
system (Kung er al. 1987) and anlenna array processing (Schmidt 1979; Bienvenu

ef al. 1983).
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2.2.1 SVD theorem

The principle behind the SVD (Golub et al. 1996) stales that any matrix,
M e R™", can be decomposed into
M=ULpVT (2.1)

where UeO™ , VeO"™ and Z=diagl{s,,0,, 0 SER™ , with

p=min(m,n) and 0,20, 2---20,20.

Without loss of generality, suppose m 2 n. {o} |i=12,---,n} are the eigenvalues

of M"M , or the first » largest eigenvalues of MM 7. The first » left singular

vectors of M are {U, |i=1,2,---,n}, where U, is the eigenvector, corresponding
to the eigenvalue of 22, of MM, Similarly, the right singular vectors of M are
(V. {i=12,---,n}, where V, is the eigenvector, corresponding to the eigenvalue

of A;,of M"M.

Another important fact (Golub ef al. 1996), is that one can easily construct M*,

the closest rank & approximation of M, measured by 2-norm or Frobenius-norm,

by:
Mt = i AIRA (2.2)
i=1
Specifically,
M -M*| =c,, 2.3)

[m-mt, = ZG (2.4)

2.2.2 Power method and orthogonal iteration method for the

computation of one or a few singular values and vectors

In many applications, such as in the PCA (Mardia 1979) and the factorization
method for SFM (Tomasi ef al. 1992), only a few of the largest singular values and
their associated singular vectors are riceded. From the SVD theorem above, it can

be observed that the right (left) singular vectors of M are the eigenvectors of

10
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Chapter 2: SVD and perturbation expansion theory

M™M (MMT). In this subsection, we concentrate on the computation of a few of

the most dominant eigenvalues and their associated eigenvectors.

2.2.2.1 The power method (Golub er al. 1996)
Suppose a matrix M e R"™ is diagonalizable and that
X'AX = diag{d,, 4., 4, } with X=[X,,X,,,X,] and

|4 12| 4, 2] A, |2+ 2{ A, | - Starling from an arbitrary initial vector v® | a

sequence {v¥*'} will produced by the power method:

for k=1,2, ...
28 = My® D,y - zm/” 25 I

end
[ v =¢ X, +¢,X, +-+¢,X, and ¢, =0, then it follows that
R ORY
MAv® =0 24X+ ZJ_[—’} X, (2.3)
=alh

and
c

v =g X+

j
=2 €

A (2.6)
_&'l_ ri J -

where &, isa constant.

From (2.6), {v"’} approaches the direction of X, and ihe convergence ratio is

|2, 1 4.

2.2.2.2 The orthogonal iteration method (Golub ef al. 1996)
Only the most dominant eigenvector, with its associated eigenvalue, is computed

in the power method. To overcome this drawback, a straightforward generalization
of the power method can be used to compute an invariant subspace, which is

spanned by a few dominant eigenvectors. Following the assumption in section
2.2.2.1, we suppose that the starting matrix with » orthogonal columns, Q®, has

the property that X7Q'” =0 for i =1,2,---,r. Under this assumption, a sequence

of matrices with r orthogonal columns {Q*’} can be obtained:

for k=1, 2, ...

il
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Y(h = MQU’-—])
QWR™ =Y®  (OR factorization)
end

It has been proved in (Golub ez al. 1996) that the subspace span{Q*?} approaches

span{X,X,,--,X,} and the convergence ratio is | 4,,,/ 1, |.

2.3 Matrix perturbation theory

Noise is inevitably introduced in almost all practical signals, for exaniple, due to
the measurement uncertainty. The central question in matrix perturbation theory is
to characterize how a small variation (or more precisely, perturbation) produces an
error in functions of that matrix. Two issues are usually addressed in perturbation
theory: the development of a perturbation expansion and the calculation of a
perturbation bound (Stewart er al. 1990). In this section, we concentrate on the
former issue, the perturbation expansion, which will be used in the analysis of the

performance of the SVD-based applications in noisy environments.

Only the perturbation expansion concerning singular values/vectors is needed in
this thesis. However, we also include the perturbation expansion theory concerning
the eigenvalues/eigenvectors as a useful way to arrive at our results. With our
objective, though, in the eigenvalues/eigenvectors form, we need only consider

symumetric matrices.

To our best knowledge*, the perturbation expansion of the eigenvectors/singular-
vectors is available only for those that correspond to a simple eigenvalue or
singular value (Wilkinson 1965; Stewart e al. 1990). In section 2.3.1, we review
such theory; and present, in section 2.3.2, our new results for those that correspond
to a multiple eigenvalue or singular value. In order to have a complete description
of the perturbation theory, we give all the proofs, including those available in the
textbooks ( Wilkinson 1965; Stewart et @/, 1990), p lus those leading to our new

results.

* Here, we'd like to express our appreciation to Prof. G. W. Stewart (Stewart ¢r al. 1990), who, by
private correspondence, pointed this out to us.

12
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2.3.1 Perturbation theory

Here, we do not follow the notation in (Wilkinson 1965), where an arbitrarily
small positive number, £, was introduced. Because we only consider the first-
order perturbation, a simpler and straightforward form works. For example,
suppose M has a simple eigenvalue 4, and the associated eigenvector is x. If M is
corrupted with AM and AM is small enough, the first-order perturbations of the
eigenvalue and the cigenvector, denoted as AL and Ax respectively, will also be
small enough, from Ostrowski’s continuity theorem (Wilkinson 1965). Suppose
their  higher-order terms are &4 and Ox , respeclively. From
(M+AMYX+AX+X)=(A +AA+ ) (x+Ax+Ox) , we have the first-order
perturbation, by dropping the higher-order terms:
M- x+M-AX+AM:-x= A X+ A-AX+ A4 X 2.7)

Of course, this first-order perturbation is same as that in (Wilkinson 1965), despite

the difference in notation.

Theory 1 (Wilkinson 1965): Consider a symmetric matrix, M € R™" . Suppose M

has m distinct eigenvalues, {4, |i=12,---,m} and the corresponding eigenvectors
are {X, {i=12,---,m}. If M is perturbed by a matrix N, the eigenvalues and the
eigenvectors of M+N are {4/|i=12,---,m} and {x;|i =12,.--,m} respectively.

Supposing every entry in N is small enough, the first-order perturbations of

cigenvalues and eigenvectors are:

A=A+ B (2.8)

/8;;
X, =X, + E “— X, 2.9}
] I J#'. /Il '—Aj ¥ ( )

where 8, =X/ Ny .

Proof: Suppose x}-—-.\',.+chJ.x ; and A/=2, +b, . From the first-order

FLT

perturbation, we have MXx, +MZc.‘x -+ NX; = 4. X, +,1,.Zc. X, +b,x,,and

N LI ) / FN Rl i
jri J#i

D¢ (A —A)x; +Nx; =bx, (2.10)

F#f
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Because M issymmetric and has m distinct eigenvalues, {x,} are orthogonal to

cach other. Pre-multiplying (2.10) by x], we obtain b, =x/Nx, = 4, . Pre-

. . T
multiplying x;, wehave ¢;; =

Theorem 2 (Stewart er al. 1990): Suppose A (not necessarily symmetric) is

corrupted with N and we observe B: B= A+ N. According to the SVD theorem,
we have A =UZIV’, where UeO™" , E=diag{x,,x,,-",&x,}, VeO™ .

L
Define C=UTNV. Su: . )se «; is a simple non-zero singular value of A. Then,
the first order perturbations of the singular values 4,, the right singular vector X,

and the left singular vector y,, of B are respectively

A=k +C, (2.11)
x.C..+xC
X =Vo4 ) Ly (2.12)
jei KK !
xC..+x.C
y,=U,+ > —1—L U, (2.13)

Proof: Suppose Q=X +C . Obviously, {x;} and {e;} are respectively the

singular values and the right/left singular vectors of . First, we prove that the

singular values A/, the right singular vectors x;, and the left singular vectors y;

of Q are respectively

A=k, +Cy (2.14)
K.C..+xC. .
Xj=e +y ——2—"le, (2.15)
j=i  Kp —=K;
C. . +x5.C, .
).:_=ei+z LA A ¢; (2.16)

r
Suppose 4! =k, + Ak, X, =e,+ ) f.e;,and yi=e, + ) g, e
J=i J=i

From the properties of SVD, we have Qx; = Aly; and Q7y; = A/)x;. Equating

their first order parts, we have:

14
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Ye, +Ce, + EZf,._I.e,- T K€ AN +KX, Zgi‘,.ej (2.17)
il FEY)
Zref + CTC’- + Z?-Zgr.fef = A6 T ANE, TR, Z i€ (2-]8)
p=i A=
Then
Ce, + ) K, [0, =AKe, +K,) g8, (2.19)
f’f J=i
T - = A -
4 Cle,+) Kk,8;8, =0Ke, +Kk,Y. [.€; (2.20)
=i J=i
B : :
; First, by equating e;, we have Ax; =C;,. And from e, (j =),
kg Kk [, =C,
ug;.r I}j:f,l JE] (2'21)
-k S =0
L‘ 2 1
gii 7™ (Kr' C_r'-i TK; C,-_J‘)/(K,-" -—"(,-'T ) (2 72)
fj.i =(x,C;; + "‘;'Cf.,;)f(’\",‘z - ’f}?)
So far, (2.14-2.16) have been proved.
? From
%, B = UQVT ~ U[)r;,...’}:;l ](ﬁ(lg{/il'9”"‘/1:rl}[‘\';"”x:n]r\'ﬂl (2‘23)
B has A/, Vx;, and Uy; respectively as its singular values, right and left singular
6 vectors.
The perturbation theory above, conceming the singular values/vectors, holds only
, for positive (and espectally only for significantly large) singular values (Stewart ef
al. 1990) (Note: singular values have to be non-negative.) In this thesis, only linear
subspace analysis based applications are of concern, where the noise-free signal
£ lies in a low-dimensional subspace, for example, of dimension r. In these rank-r
problems, only the first » largest singular values are needed, where r<<m. Thus, we
do not have to consider the behavior of the perturbation for the zero (or near zero)

singular values.
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2.3.2 New perturbation theory, corresponding to a multiple eigenvalue/
singular value

In this section, we present our new result concerning the perturbation expansions,
corresponding to the case where the matrix has at least one multiple

eigenvalue/singular value.

First, we want to shed some light on the perturbation expansions concerning
singular vectors that correspond to a multiple singular value. We do this by
considering the perturbation expansions of the eigenvectors of a symmeiric square

matrix:

"l

Theorem 3: Suppose M e R™", M =M, and it has m eigenvalues {4,} and m
eigenvalues {x,}, which are orthogonal to each other*. Without loss of generality,
suppose the first 4 cigenvalues of M are same, A =4 for i=12,--- k. M is
corrupted with N, which, compared with M, is small enough. Define

Q=[x,,-,x, V' N[x,,~-,x, 1. Then, the first-order perturbation of the first k

eigenvalues and eigenveclors of M+N are:

Al=A+0, (2.24)
& m O
Xp=) S, X+ D 2:-’;1 X; (2.25)
j=l j=k+t i

where &, (supposing &, =5, if i=j ) and S, =[S,,,8,;,+-, 5,1 are the
eigenvalues and eigenvectors of  Quu respectively, ie.

Q... =Sdiag{s,,+,5,}8”" and $=[S,.S,,.S,] . Define
s S : .
Q'= : Q . The other m-k eigenvalues/eigenvectors can be
m~k m=k

obtained as in theorem 1.

* For an r-ple multiple eigenvalue, we, first, have its r eigenvectors, {x; {i=1,--+,r}, which may
not be orthogonal, Then, the r orthogonal eigenvectors can be obtained by applying Schmidt
orthogonalization on {x; [i=1,-,r}.

16
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Proof: From the perturbation expansion about the eigenvectors corresponding to a

i m
multiple eigenvalue (Wilkinson 1965), we can suppose x! = Zc X+ Z iy

f=! jxlwl

and 4; = A AA4;. Note: ¢;, are different from f,;. ¢;; can possitly take any

value within [0,1], while f;, approach zeroes if N is small enough.

(M+N)x; = A'x} (2.26)
Equating the first order parts:
& " k k " k
Mzcux.; +M Zf;..-x_; + NZ%X,- = )“Zcf.fxf +4 Zf;.."\',- + A)“:'Zcf.fx;'
J=1 J=k+l =1 f=t dekal J=l
3 (2.27)
p Then
m " k
Z’a'jfj.ixj %5 X, JQuin € = 4 ij.ixj + A’l;'zcj.ixj (2.28)
& Juk+ F=k+] f=1

where ¢; =[c,.,.,ch.,-——,c,u.]r. Equating the coefficients of x; for (j =1,---,k), we

5 have

| Quuc, = A, (2.29)
where Q,,,, is the leftup kxk submatrix of Q. If Q,,, has /& distinct
_ﬁ: eigenvalues, the solution of AZ, and c, is unique, as in (2.29). Obviously, ¢ is the

same as S, as defined in the theorem. After substituting A4, and ¢, in (2.28), the

equality of x, for (j=k +1,---,m) produces the first order perturbations of f;; as
q y ¥ j fof

in the theorem.

b

i

: Following the same notation as used in theorem 2, we consider the perturbation

expansion, where the matrix has at least one multiple singular value. This resuit

appears to be a new one.

Theorem 4: A, B, C and L are defined as those in theorem 2. Define Q =C+X.

Without loss of generality, suppose the first k singular values of A are the same:

=x|i=1---,k} . By SVD, Q,,, =FSE™ =Fdiag{S,,--,S,}E" . Let

{x;

E
U"[F I } sz[ ]’a“d Q'=UTav.
m=k =
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B = (UUYQ(VV') (2.30)
The first order perturbation of the singular values, {4/}, right singular vectors

{X;}, and left singular vectors {¥'} for 0<i <k, of Q' are respectively

L o I
Ai=Q, =, (2.31)
‘ mox QY+ KO
e+ 3 I )
j=ka1 KT K
mo 2L+ Q.
yiosg e Y =2 I Tle (2.33)
w [ A hJ i I

frb+i K —K;
From (2.30), {4/} are also the first k singular values of B, and, the right singular
vectors {x,} and left singular vectors {y,} of B are respectively: {VV'x}} and
{UU’y;} . The perturbations, corresponding to other non-zero simple singular

values, can be obtained as in theorem 2.

Proof: Let  has {4}, {x'} and {y]} as ils first k singular values, right singular
vectors and 1 eft singular vectors respectively. For >k, {4}, {x]} and {y]} can
be obtained as in theorem 2. Thus, we concentrate on the first-order perturbation of
{A7}, {x]} and {y7},for i<k,

First, we only consider one singular value and the corresponding singuiar vectors.

Combining the techniques in the proof of theorem 2 and theorem 2, we assume that

the first-order perturbations of the right and the left singular vectors, x” and y”

respectively, have the following forms:

& "
x"= Zp,.e‘. + Zq'.e!. (2.34)
i=1 i=k+]
& "
y' = foe:‘ + nger' (2.35)
ixl ink el

Note: p, and f; can possibly take any value within [0,1], while ¢; and g;
approach zeroes if N is small enough. From the continuity of the eigenvalues of

MM, the singular values of M also obey Ostrowski’s continuity rule (Wilkinson

1965), because the singular values of the matrix, M, are the square roots of the

it ot o T R 4 3= e AT A
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eigenvalues of MM . Supposing the corresponding singular value is 2" = x + Ax,

cquality of the first order parts of §2x" = A"y" and 227y" = A"x" produces:

kY Pt Same + Y pC =AY fe, 4k S g, (236)
i=) F=k+) i=l i=) fuf+1

fo,e,r Zg e,+Zf(C ), ‘—(K+Ah)2p,ef+x‘2(j‘ e, (2.37)

i=k+1 i=l i=k+l

From (2.36) and (2.37), we have, by equating e, (for s=1,---,k )

+ZP, = (K +AK) S, (2.38)

&

o, + > fiCi, =(k+AK)p, (2.39)

i=l
In matnx form, they are:

(Cippu t8)p = (x+ AN (2.40)

Y R L R S P P s et L S P PR G B
A R e e e e

(C], 1 +&DI = (k + Ax)p (2.41)

where C, ., is the lefi-up & by k submatrix of C, p=[p,p,,--,p) and

b2
i

f=(/,/ o) Notethat Q,,, =C,, , +&l,. Obviously, x +Ax, pand f

e T

are respectively the singular value, the right and the left singular vectors of

Cuue +#1,; and p and f correspond to the columns of E and F in the theorem.

o

C. e +&1, just has k singular values, right and left singular vectors, which
correspond to {47}, {x} and {¥}}, for i <k, of Q.

Equating the e, in (2.36) and (2.37), for ¢ > &, we have

i
S R i PO TR e g

ZCHPI =Kg, — K.Y, (242)

=1

4 k
! % ZCJ.f.f; = K-qr - Krgf (2‘43)
I=1

Bk

Note for >k and [k, C,=Q,, and C,=Q,, . Considering the ™ (for

1 <7 € k) singular value:

IS
Kg, K4, = ZQr.jP;‘J = Q:: (244)

&
qu _K.fgr = ZQ;‘.rf;'.:‘ = Q:x (245)

jol
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Combining (2.40, 2.41) and (2.44,2.45),

- Q '
X _}:p,e,+ Z - “Q Le, (2.46)

b+l ,

nt -g‘)' - Q'
y -—Zf,e, + z Bl Le, (2.47)

i=| j=hal _,

are respectively the right and left singular vectors of Q. After the system
transformation as (2.30), the first & lefi/right singular vectors of Q' are as defined

in (2.32,2.33).

2.4 Conclusion

In this chapter, we reviewed some requisite knowledge about matrix iheory:
including the SVD. and perturbation expansion theory in relation to the singuiar
values and singular vectors (the eigenvalues and eigenvectors). The SVD theorem
will be used throughout the rest of this thesis; yet the perturbation theory will be
used only in chapter 4, which is the core contribution of this thesis (however, the
results in chapter 4 will be employed in other chapters, such as chapter 5 and

chapter 8).

The essential contribution of this chapter is that we present the new perturbation

expansion theory for a multiple singular value (eigenvalue).




T

AL

NPT i

i it R S A

R AT

A L S e L L

e Lot by

Ediani driwiffrininiy

i T KA T T A

rmia

Chapter 3: The factorization method in SFM and PCA-based face recognition

Chapter 3

The factorization method in SFM and PCA-based

face recognition

In this chapter, we review the factorizalion method for the problem of structure
from motion (SFM) and PCA-based face recognition. In these two tasks, the
singular value decomposition (SVD) is the major tool, to calculate the motion
matrix and structure matrix up to a non-singular transformation in SFM; or to
calculate the eigenfaces from a few training face images. In section 3.1, we
provide an overview of the development of the factorization method for the
problem of Structure from motion. In section 3.2, we review the seminal work on
the factorization method (Tomasi ef ¢/, 1992). In section 3.3, a briet description of

the development of the PCA-based face recognition is given.

3.1 Overview of the development of the factorization method for

SFM

The original work by Tomasi and Kanade (Tomasi et al. 1992) restricted itself to
the orthographic setting. The method was extended to the paraperspective sefting
(Poelman et al. 1997). Triggs and Sturm applied the factorization method to the

projective setting (Sturm et al. 1996; Triggs 1996).

The advantage of the factorization method for SFM can be ascribed to the SVD’s
denoising capacity, as will be analyzed in chapter 4. It states that, as the size of the
matrix increases, the low-rank approximation malrix approaches the noise-free
miatrix. That is the underlying superiority of the factorization method: all the
feature points are treated uniformly so that most of the noise can be suppressed if

the size of the measurement matrix is large enough.
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Chapter . The factorization method in SFM and PCA-based face recognition

That is also the reason that the factorization method has attracted much attention

from the computer vision community.

The method has been extended to lines, zonics under affine
selling(Quan et al. 1996; Quan e al. 1997, Kahl ef al. 1998; Kahl ez
al. 1999), and to planes under projective settings(Rother er al.
2002).

In (Aguiar er al. 1999; Aguiar er of. 2003), it was shown that the
factorization method can be reduced to arank 1 problem.

In (Morita er al. 1997), a sequential algorithm has been proposed to
deal with the incoming frames, with littie loss of the precision.

The method has been extended to the case of the multi-body
factorization (Cosieira et al. 1995; Costeira ef al. 1998; Gear 1998;
Kanatani 2001) erc.

The related rank 4 constraint has been employed in the optical flow
computation {Iram 1999; Irani 2002).

Scalar-weighted factorization has been studied in (Aguiar et al.
1999; Aguiar er al. 2000; Aguiar ef al. 2003). Another more general
setting addresses the directional uncertainty (Morris et al. 1998;
Irani er al. 2000; Anandan et al. 2002).

A few papers have appeaied that deal with the missing-data
problem in the factorization method {Shum er al. 1995; Jacobs
1997: Kahl er al. 1999; Jacobs 2001; Brandt 2002; Rother et al.
2002; Brand 2003; Guerreira et al. 2003; Chen et al. 2004). We
address this issue in chapter 5.

A few attempts have been made to optimize the projective
factorization { Sturm e al. 1996; Heyden 1997; Chenetal 1999;
Oliensis 1999; Mahamud ef al. 2001; Mahamud ef al. 2003).
Robust statistics has been introduced in the context of the

factorization method (Huynh ef a/. 2001; Aanaes et al. 2002} .
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Chapter 3: The factorization method in SFM and PCA-based face recognition

3.2 The factorizatior method under orthographic settings

The cntical idea about the faciorization method (Tomasi er al. 1992) for the

g problem of structure from motion is that the measurement matrix is of rank 4 if it
is noise free. From this property, the motion matrix and the structure matrix can be
; obtained by the SVD, up to an affine transformation. In the orthographic setting,
the normalization constraints between the camera axes (row vectors of the motion

matrix) are employed 1o solve the affine ambiguity of the motion/siructure matrix.

Lai

3.2.1 Measurement matrix and its rank 4 property

3

Suppose that P feature points of a ngid object are observed in an [-view sequence
t

7 by a moving camera (the rank 4 property still holds for the cases of a moving

- object by a static camera and both moving). Let (x, ,,y, ) be the image position

of the p™ feature point in the /* frame. Then, the measurement matrix W e R*"*

= A fa i g ek e e A e

is arranged as:

'\-LI. PR xl‘P

we| e T e 3.1)

& Yoo 0 M

% Yer 0 Ve

Image |
¥ Plan¢ |
YRPRINE I :
. S/

:. n] ; 3

:% N ‘/‘ I . M

1 maging ray

Camera

world focal
origin length /

Figure 3.1: The coordinate zystems: world sysiem and camera system. (Excerpted
fromi (Poelimian <t al. 1997))
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Chapter 3: The factorization method in SFM and PCA-based face recognition

il

Suppose the p” feature point is represented by a vector S , =0x,.y,,2 p]r. And,

suppose the camera orientation at frame f'is represented by the orthonormal vectors

ir, jy and Ky, and its focal center in the world coordinate is represented by &, as

shown in Figure 3.1. Assuming an orthographic projection, we have:
xf—P=lf‘(sP_tf) (32)
J',f,p = jf .(sp _tf)

In matrix form, we have:

W =MS +T[LL,-,1] (3.3)
where
i
iT
M=) (3.4)
L
LiF
S=[Sl,Sz,-~,S,,] (3.5)
T=[-i,ot, -, ~i ot —§ot, -, —j ot ] (3.6)

If we place the origin of the world coordinate at the mass center of the object, the

registered measurement matrix has the following form:

W =M5 (3.7)

P
where W = W ~W(lL,1,---,1] with W e B and W, = ZWH/P.
i=1

From (3.7), the registered measurement matrix has a rank of 3 at most, because
M lIas 3 columns and S has 3 rows. This is the rank theorem in (Tomasi et al.
1992). Note, the measurement matrix usually has a rank of 4 l:zcase there exists
the transiation vector T, as in (3.3). Precisely, the measurement matrix lies in a

rank-4 affine subspace.

By the SVD, the registered measurement matrix can be approximated by a rank 3
matrix: W? = ysy 7, where Ue0¥”, Ve 0™ and X = diaglo,.0,,0,} . At
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Chapter 3: The factorization method in SFM and PCA-based face recognition

this stage, the motion and structure matrices can be determined to an affine
transformation:
b M=UE'"”
{ X 12y T G-8)
“% where £ = diag{ o, /o, NERS
¥ 3.2.2 Metric transformation
The decomposition of (3.8) is not unique, because the registered measurement
matrix can be factorized into any other pairs {MA,A™'S}, with a non-singular
matrix A. The correct A can be determined by using the normalization constraints:
i ==l & =1 "
Il ’ I [I il (3.9)
i;ej, =0
Suppose
)
L=AAT =[1, I, (3.10)
l, Iy 1
The normalization constraints (3.9) can be rephrased in the following matnx form:
Gl=c 3.11)
where
| g7 (i)
e ] ;o
g (iy.ip) :
g (ji,h) L .
G = : =] and ¢ = o 2 {3.12)
ig b 4 gr(jF?jF) ,6 Gxl N
i ik T ,» B * .
E g (i,§) i
: LL0ra Jip
8" (i) i i
g’ (a,b) =[a,b,,a,b, +a,b,a,b, + a,b,,a,5,,a,b, + a;b,,a,b,]  (3.13) §
{
I can be obtained by the pseudo-inverse methoa:

1=G'c¢=(G'G)"G¢ (3.14) !




Chapter 3: The factorization method in SFM and PCA-based face recognition

From (3.10), the matrix L has been obtained, and consequently, the Cholesky

decomposition (Golub ez al. 1996) of L gives A.

Note, the metric transformation A, obtained above, is not unique either, because
any other A'= AR with RR” =7, still satisfies the normalization constraints

(3.9). Thus, by the metric transformation, we obtain the motion and structure

matrices up tc a rotation transformation.

3.3 PCA-based face recognition

Another particularly active area of computer vision research, also employing
subspace analysis, is that of PCA-based face recognition* (Turk er al. 1991;
Hallinan 1994; Eipstein er ol 1995). A human face, in typical applications, must
be recognized despite illumination changes between the target image (o be
recognised) and the database of candidate images. It has been observed that: “the
variations between the images of the same face due to illumination and viewing
direction are alinost larger than image variations due (o change in face identity”
(Moses et al. 1994). The issue of large illumination effects makes the problem of
face recognition challenging (Belhumeur ef al. 1997; Shashua 1997; Belhumeur et
al. 1998, Georghiades et al. 1998; Jacobs ef al. 1998; Georghiades er al. 2001).

In order to tackle this issue, PCA has been utilized to model the lighting variation
in images; because it has been proved, experimentally {Halbnan 1994; Murase e/
al. 1994; Nene er al. 1994; Eipstein et al. 1995; Murase er al. 1995; Yuille er al.
1999) and theoretically (Basri er al. 1399; Ramamoorthi er «l. 2001; Ramamoorthi

2002; Basri er al. 2003), that the possible images of the same Lambertian object,

* Here, we have to clarify the difference between the common PCA (Turk et al. 1991; Hallinan
1994; Eipstein ef al. 1995) and linear subspace analysis (Belhumeur ef al. 1997; Basri ef al. 1999;
Basri et al. 2003). In face recognition and related applications, several terminologies, like PCA
(Turk er al. 1991), eigenface (Turk eral 1991) and eigenimage {Hallinan 1994; Eipsteinetal.
1995), have been used for such dimensionality reduction techniques. PCA (Turk ef al 1991;
Hallinan 1994; Eipstein er al. 1995) works on the correlation matrix, where the mean of the images
was first subtracted. While, in linear subspace analysis, we work directly on the original data
(Bethumeur er al. 1997, Basri er al, 1999; Basrii er al. 2003), without subtracting their mean.
Recently, some theoretical analysis and experimental result prove that better performance can be
obtained direcily by using the linear subspace analysis, without s ubtracting the mean. In section
4.4, we analyse the performance of the linear subspace analysis, wilhout subtracting the mean
(Ramamoorthi 2002).
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Chapter 3: The factorization method in SFM and PCA-based face recognition

under different lighting conditions, approximately concentrate in a low-

dimensional subspace, although the dimension of the image set for an objectis

“equal to the number of distinct surface normals” (Beihumeur e al. 1998).

Experimental observations (Turk ef al. 1991; Hallinan 1994; Eipstein
et al. 1995) have helped fimnly establish that the images of the same
face, produced under different lighting conditions, approximately lie
in a low-dimensional subspace.

Similar approaches can be used in general object recognition and pose
determination systems. A particularly influential example of such was
the SLAM system (Murase et al. 1994; Nene et al. 1994; Murase et
al. 1995), which captured the variations due to pose and illumination
by a 20-dimensional (or less) subspace.

Recently, it was proved, by using spherical harmonics, that “ail
Lambertian reflectance functions obtained with arbitrary distant light
sources lie in close to a 9D hnear subspace™ Basri and Jacobs (Basn
et al. 1999; Basri er al. 2003) and Ramamoorthi and Hanrahan

(Ramamoorthi et al, 2001; Ramamoorthi 2002).

Closely related to the second part of Chapter 4 is the generative model for leaming

object shape and albede from multiple images (Yuille ef al. 1999). In (Yuilie et al.

1999), a few images, under different illumination conditions, can be employed to

calculate the eigenvectors {or a low-dimensional subspace) by the SVD (Golub et

al. 1996). Moreover, the surface consistency constraint is employed to reconstruct

the surface up to a generalized bas relief (GBR) ambiguity (Belhumeur et al.

1999). The GBR reconstruction is beyond the scope of this thesis. In Chapter 4, we

will analyze the noise effect on the subspace learning process.
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Chapter 4

Analysis of noise effect in the SVD-based

applications

As mentioned in chapier 1, linear subspace analysis (LSA) has become rather
ubiquitous in the solution of a wide range of problems arising in patiern recognition
and computer vision. The essence of these approaches is that cerlain structures are
intrinsically (or approximately) low dimensional: for example, the factorization
approach to the problem of structure from motion {(SFM) and principal component
analysis (PCA)-based approach to face recognition, as overviewed in chapter 3. In
LSA, the singular value decomposition (SVD) is usually the basic rathematical tool.
However, researchers have rather blindly used a SVD, without knowing the essential
characteristics of its performance in the noise-corrupted environment. With the help
of matnx perturbation theory, we present such an analysis here. First, the “denoising
capacity” of the SVD is analysed. Second, we study the “learning capacity” of the
LSA-based recognition system in a noise-corrupted environment. These resuits
should help cne to design more optimal systems in computer vision, particularly in
tasks, such as SFM and face recognition. Our analysis agrees with certain observed
phenomenon, and these observations, together with our simulations, verify the

correctness of our theory.

A direct application is that we clarify some issues regarding an optimal leaming
strategy for face recognition. Further application of the theory in this chapter can be

found in chapters 5 and 8.

This chapter is siructured as follows. In section 4.1, we raise the questions
conceming the noise in LSA. In section 4.2, we first present our results about this
subject. In sections 4.3 and 4.4, our results are justified, with the matrix perturbation
theory in chapter 2 as the main tool. In section 4.5, some simulation results are
presented 1o testify to the correctness of our results and we explain some

nhenomena, observed by other researchers.
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Chapter 4: Analysis of Noise effect in the SVD-based applications

4.1 Issues to be addressed

Linear subspace analysis has found applications in many problems in computer
vision and pattern recognition, where th:e high-dimensional representations of certain
structures are intrinsically (or approximzieiy) low dimensional. In this chapter we
focus ontwo very prominent problems: Structure from M otion (SFM), and P CA-
based face recognition, as overviewed in Chapter 3, although a whole host of other
computer vision and pattern recognition tasks fall within the framework of our

analysis.

4.1.1 Noise Effects

Despite such a plethora of applicaiions where one expects, in principle, the
measurements 10 be of low rank; it is widely understood that noise is inevitably
introduced in the data. In the presence of noise, the matrix in question quickly
becomes full rank. Thus, the mairix has to be fitted to its closest low-rank
approximation. The SVD gives the best solution to this problem (Golub ef al. 1996),
measured by the Frobenius norm and 2-norm. The result is guaranteed to be optimal
(Press et al. 1992) if the noise is i.1.d. Gaussian. Not surprisingly, therefore, the SVD
has become a widely used tool. For example, the factorization method (Tomast et al.
1992; Poeiman er al. 1997) achieves a Maximum Likelihcod affine reconstruction

from multiple (>2) views, as pointed out in {Reid e al. 1996; Hartley et al. 2000).

From a related point of view, the fow-rank appreximation can be regarded as a
“denoising” tool, where we refer to the measure of the sum of squared difference
(SSD)* between the noise-corrupted matrix (or the “denoised™ matrix) and the noise-
free matrix. Compared with a noisy matrix that is always of full rank, its low-rank
approximation matrix, obtained by S3VD, is always closer to the noise-free matrix,
i.e, the underlying ground truth. For example, the multiview subspace constraint was
utilized to improve the accuracy of recovered homographies, especially for those that

have small regions (Zelnik-Manor ef al. 1999; Zelnik-Manor et al. 2002).

* I image denoising, we usually use the terminology of mean square error (MSE).
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Chapter 4: Analysis of Noise effect in the SVD-based applications

Thus, linear subspace approximation is sometimes a model simplification and

sometimes a denoising process (and often both, simultancously).

4.1.2 Performance Questions

4.1.2.1 Denoising capacity of SVD

Atthough SVD is widely employed to fit a large matrix to its low-dimensional
subspace, little work has been done to analyze the performance of SVD in such
noise-corrupted cases. It is weil known (Golub er a/. 1996) that one can, by SVD,
obtain the best solution to the low-rank approximation, measured by 2-norm or
Frobenius-norm. However, the meaning of “optimality” in the context of the noise-
corrupted matrix 1s that the rank-r approximation matrix obtained by the SVD is the
closest rank-» matrix to the noise-corrupted matrix. We do not know the capacity of
SVD for separating the signal from the noise. Supposing the noise level is small
enough, how much signal is retained by keeping the largest » components? Or, how
much noise has been reduced by discarding the other components? In this sense, we
are blindly using a SVD, without knowing its denoising capacity: how close is the
low-rank approximation matrix to the noise-free matrix, or how close is the SVD-

based subspace 1o the ground-truth subspace.

The lack of such performance analysis impedes the careful design of optimal
systems. A natural issue arising is how to characterize the achieved accuracy with
the growth in data (in the SFM context, this can be either through a growth in the
number of frames analyzed, or by a growth in the number of features tracked). In the
factorization approach to SFM, it is widely accepted that more frames produce more
accurate result than a few ("few" typically being little more than 3) frames. It was
even claimed (Thomas er al. 1999) that the 3D scene could be reconstructed to
arbitrary accuracy given enough frames. However, what i s the g ain of adding the
data from one extra frame to a very large measurement matrix? What happens as the
number of the frames approaches infinity? Can the 3D scene be truly reconstructed
with arbitrary accuracy? Can such arbitrary accuracy be achieved only by the
increase of the frames (while the mmber features do not increase)? Is an increase in

the number of frames the most efficient way to obtain an increase in accuracy?
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Chapter 4: Analysis of Noise effect in the SVD-based applications

In the example of SFM, as suggested above we can also possibly augment the
number of feature points, or we can augment the number frames, or we can do both:
i.e., both the row and the column of the matrix can grow towards the infinite in size.
However, in a related problem, the matrix consisting of the homographies over two
views, is restricted to a c lass of mx9 matrices { Zelnik-Manor et al. 1999; Zelnik-
Manor et al. 2002). Such a matrix can only "grow" in one dimension, not both. We
introduce some terminology to describe this difference: We call the matrix
potentially-double-infinite if it has infinite rows and columns, and potentially-single-
infinite for those who has constant rows {colunins) and possibly infinite columns
(rows). This raises another question: What is the difference between these two types

of matrices in terms of the precision that can be achieved?

In summary, the first aim of this chapter is to analyze the denoising capacity of SVD,
1.e., to identify the error that still resides in the low-rank approximation matrix and

how this error relates to the growth of additional data.

4.1.2.2 Learning capacity of linear subspace analysis

Different questions, to those posed above, arise from the face recognition
applications (including the object recognition and pose determination, and related
applications). In the PCA-based face recognition approach, the eigenimage
representation relies on a compact approximation of the large image database (or
“training” set), by spanning this set (approximately) with a few orthogonal basis
images. Such an approach attempts to capture and characterize the essential object or
face features, and their variations 1n appearance under lighting and p ose changes.
Although the “illumination cone” (Belhumieur et al. 1998) (see also (Zhao er al.
1999)) can be obtained by as litile as three images, the result is usually not accurate
enough. Firstly, there is inevitably some noise in the images, like quantization error.
Secondly, it is difficult to satisfy the conditions in proposition 3 in that paper
(Belhumeur er al. 1998). Even if we can have three distinct light sources that can
shed light on all the points of the surface, we cannot, in practice, exclude other light
sources that cause attached or cast shadows on the subject. These ¢ onsiderations,
plus (general) noise, have generally resulting in researchers trying to "learn” the

cigenimages by a data reduction step applied to many "leamning samples”. Thus,

31

-t e L




(T S i

ek ke
5 L [

T

Lo g

Chapter 4: Analysis of Noise effect in the SVD-based applications

many learning samples were needed to produce a good basis, for example, 66 images
were used for one object (Belhumeur er al. 1997). What is the relationship between
the learning capacity and the size of the learning samples? Note, the learning
process will be explained in section 4.4, and a more detailed description of such
learning processes can be feund in (Turk er al. 1991; Hallinan 1994; Belhumeur et
al. 1997).

Undersianding the error, still residing in the basis images, will hopefully help to
design the recognifion system. Accurale basis images are desired because the
recognition algorithm relies on projecting the test image, to be identified, on the
basis 1 mages. Note that the test 1 mage itself c ontains noise. Thus the noise in the
LSA-based recognition system comes from two sources: one from the basis and the

other from the test image. Do these two rypes of noise interfere with each other?

The second aim of this chapter is to present some theoretical analysis of the leaming
capacily of LSA-based recognition systems. Specifically, the error (measured by the
sum of squared differences — SSD) of the LSA-based recognmtion system can be
separated into two parts: one {rom the basis and the other from the test image, and
we obtain some analytical results about their effects on the performance of the
recognition system. We show that it is possible, theoretically, to design the optimal

recognition system if we know the expectation of the test images.

4.2 Major results

4.2.1 Major results

Here, we present the major results of this chapter, by which we can answer the
questions in the introduction. The justification of these results will be deferred until

section 4.3 and section 4.4,

Result 1 (Denoising capacity of SVD): Suppose a matrix A € R™ lies in a low-

dimensional, r, subspace. It is corrupted by i.i.d. Gaussian noise producing another
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Chapter 4: Analysis of Noise effect in the SVD-based applications

matrix B, which is directly observed. Then, the ervor that still resides in the rank-r

approximation matrix, B", is

, r(m+n)~r?
E|B[, -4, = a\/—(———-——)——-— (4.1)
mn
if the noise level o, compared with the signal level, is small enough. Specialiy, as
m,n = o, the rank-r approximation of B approachzss A, i.e. B" = A; and if

n=k(kzr)and m— o,

E|B,-4,l> aJ—,’; (4.2)

Result 2 (Learning capacity of LSA): For a rank-r LSA-based recognition system,
the “error measure” (the SSD) comes from two independent sources: the noise in the
basis images and the noise in the test image. Specifically, the expectation of the

SSD, over the learning samples, is:

(=)o + =1l / @3)

where m is the dimension of the object, n is the nu:aber of learning samples, o,
and ¢, are the noise levels, in the test image and the learning samples respectively
{Suppose both o, and o, are small enough, compared with the signal level o,).

Moreover, for a random test image set, (4.3) is oprimal among the size-n leaming

sels; and the size-n learning set is optimal /it has r equal singular values.

Result 1 and result 2 will be motivated in section 4.3 and section 4.4 respectively.

4.3 Denoising capacity of SVD

In this and subsequent sections, we analyze the performance of SVD-related

applications, as promised and sketched in the introduction and in section 4.2: (a) the
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Chapter 4: Analysis of Noise effect in the SVD-based applications

denoising capacity of SVD; (b) and the learning capacity of LSA-based recognition
system. We motivate our analysis by the perturbation expansion theory concerning

singular values and singular vectors, as presented in chapter 2.

4.3.1 Case of distinct singular values

First, we consider the simplest case: a square matrix with a few distinct non-zero

singular values. A, B, C, and £ are defined as i’n theorem 2 in chapter 2: A is the

signal matrix, N is the i.i.d. Gaussian noise matrix (with zero mean and o

variance), B=A+N, A = ULV’ and C=UTNV . Note C is still an i.i.d. Gaussian

noise matrix {with zero mean and ¢ variance). Further, define @ =C+X. Then,
B=UQV’ (4.4)

{4}, {x;} and {y,}, defined as (2.11-2.13) in chapter 2, are the right and the Jeft

singular veclors of B respectively; {4/}, {x;} and {y}}, defined as {2.14-2.16) in
chapter 2, are the right and the left singular vectors of Q respectively. Obviously,
from (4.4),

y, =Uy; and x; = VX, 4.5)
And, also from (4.4), the singular values of B, {4}, are same as the corresponding

singular values of ©, {1/} .

Suppose that the noise-free matrix A should have a rank of r, i.e. A= z,'c,.U '
i=1

Combining (2.2) in chapter 2, (4.4) and (4.5), the closest rank-r approximation of B

is
B' =3 Ay:x; =UQAyx[ VT =uQv? (4.6)
i=] i=1
Then
1B~ Alr=[D.(Q, - Ay, )U.-V}'} 4.7)
1N F
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Chapter 4: Analysis of Noise effect in the SVD-based applications

where AERm'm ; A,‘_J‘ =0 if (f,j)E{(1,1),(2,2),”‘,(1',1')} and Al’.f =Kf for
(f=1,---,ry. Due to the mutual orthonormality among any U ,.V} , we have the
following formula:

1B - AlR=]Q" - Al 4.8)

According to the perturbation theory in chapter 2, the first order perturbation of

Ay'x:7 (1o see the definition o f {27}, {x!} and {y}} in(2.14-2.16), in chapter 2),

]
e AT
for example Ay x|, is:
A AaT K, +C, ., wxa’
1ot otT I | ™ I |
Ayixy =i = (4.9}
Ab 0 Kb 0
T
"“2C2.I +K, CI.Z K, Cr.l +K|C|.r Cl.r+l Cl_m
where a= T T - = , and
K] =K K=K K, K,
T
& C, +x.C xC  +x.C C C
bz[ | 2‘.: .; 1.2 i r.: r, Ir r+1.1 . ut,l ) NOte, 2-01‘der
L K-k K-kl K 2

and higher-order terms have been dropped. Similarly, the first-order perturbations

of Ay;x;", for (i=2,---,r), can be obtained.

By combining such results as (4.9), it is easy to obtain

Q —A=Y (4.10)
i Cl.l Cl.r Cl.r-rl Cl.m ]
l Y r.l Cr‘r Cr.r+l Cr.m
WA o Cr+l.l ’ Cr+l.r 0 0
Cm.l Cm.r 0 0 A
E|\B -AlR=EY). =D EY} =@m-r*)o* (4.11)
} ciry o gel
E|B;, - A, g Y2 (4.12)
m
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Chapter 4: Analysis of Noise effect in the SVD-based applications

Obviously, (4.12) is a special case of (4.1) for square matrices, where n=n.

We note that the fact about the zero-block in Y in (4.10) holds in the context of the
{irst~order perturbation theory. Actually, there are second and higher order terms in
the zero-block of Y and they are not exactly zeroes. However, they are near zeroes as
the noise level approaches zero; or precisely, they are much smaller, compared with

other items, like C, ; for i < r or j<r. We can testify to this fact by the following

simple example in Matlab. Suppose A € R'™ is a signal matrix, with all zero

entries except 4,, = 4,, =A4,, =100. Ce R'™" is a noise matrix, generated as

randn(10) in Matlab. The observed signal matrix is B= A + C. The matrix in Table
4.1 is a typical example of the approximation error, B® — A, between A and the rank

3 approximation of B, B*. P lease note the zero-block in 'Y (highlighted) i s much

smaller that other entries, although they not exactly zeroes.

Table 4.1: A typical example of the approximation error, B’ — A

1.188  1.1857 -0.1289 .0.823 0337 0.1243 -0.4911 -1.0207 0467 -1.5508
2.2023 10554 -0.6569 -0.2284 0.8511 00955 0.8644 15689 -03891 -0.6872
-0.9865 -1.4727 11689 1.0365 -05205 -0.5185 -0.0025 0063 -0.714 -1.9757
0.5235 -0.0745 (04441 -0.0005 0.0012 00018 0.0032 0.0062 0.0005 0.0165
-0.3597 1.1914 0.2415 -0.0025 -0.0078 0.0005 -0.012 -0.0224 0.0079 0.0076
-0.2397 0.0212 12484 -0.0152 0.0074 0.0069 -0.0012 -0.0034 0.0162 0.021
-0.0112 11295 1.3475 -0.0115 -0.0025 0.006 -0.0097 -0.018¢ 0.014 0.0345
1.0295 1.3365 -0.9429 0.0221 -0.0204 -0.0077 -0.0066 -0.01 -0.0066 0.0072
09273 0255 -0.0308 0.0087 -0.0057 -0.0016 0.0023 0.0054 -0.0036 0.0158
0.3838 -0.9499 0.677 -0.0064 00106 0.0041 0.0101 0.0184 -0.0005 0.0126

4.3.2 Case of multiple singular value

As in theorem 4 in chapter 2, suppose the first k (k<r) singular values of A are same.

Following the notation in theorem 4 in chapter 2, we similarly have, as done in

section 4.3.1;
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B =Y Ayl = (UUYY Ay XVV)T = (UU)Q7(VV) =UQ'VT (4.13)
i=l izl

By the same techniques as in section 4.3.1, the first-order perturbation of Q' has

the following form (please note the similar form between (2.32, 2.33) and {2.15,

1'__'-'_- A e R T
T A S e R R b

E 2.16) and the fact that the up-left ixk submatrix of Q', Q, ., is a diagonal
3
matrix.):

Q:‘I Q:.r Q;.H-I L.m

g

ch r) r.r rrel T rom (414)

Then,

1
1.r Ql,r+l

Q, - Q

N
! i
Qr.l t r.r ra+l e ran E
Qr

’
r+1.1 Q

L)
r+lr L m=k

o e A

i i indRs

QP

fas
v L m,} ntr

K 1.+

= £t rr ror+l r.am =A+Y
L LI )

r+ld rabg

e S e it EETY S e el ey et S ma T 2 Rt

Q 0 - 0

ml mr J

| Q

2 b st g

where A and Y are same as those in (4.10), and E and F are deflined in theorem 4

in chapter 2. Obviously, the same result, as (4.12), has been obtained. o
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4.3.3 Extension to the rectangular matrix

As stated in section 2.2.3.1 in chapler 2, we only have to consider the first r largest
singular values. Thus, in the cases of rectanguiar matrices, the perturbation theory
concerning the singular values/vectors still holds and the performance analysis, in
section 4.3.1 and section 4.3.2, can be ecasily extended to the rectangular matrices.
Here, we only present the final result, omitting the tedious mathematical deduction,

which is almost same as that in section 4.3.1 and section 4.3.2. Suppose the signal
matrix, A, and noise matrix, N, lie in R™* (m,k > r). Other conditions slay same as

in section 4.3.1.

Q' -A=Y
[ C,, G Cir Cus 1
where Y = Cra Cor Crm C;‘k
Cus Con, O 0
] c;,,_, c 0 0 |
EIIB" -Ali=E|Y]. =Y EY?, = (rm+rk-r*)o® (4.15)

. ’mr+rk—r2
EIB;.j_A;‘.j |=0’ T (416)

N o g ’r
which is the same as (4.1). As nmr—> oo, while kis aconstant, £{ B/, ~4, ;|=» ¢ e

2 non-zero constanl. As suggested by (4.2), it is impossible 10 reconstriict 3D scene
to arbitrary accuracy by the factorization method using an affine camera model,
by only increasing the number of the frames (while heeping the number of the
Sfeature points unchanged). T his contrasts with the ¢ laim that 3D scenecould be
reconstructed to arbitrary accuracy given enough frames (Thomas et al. 1999).
However, we recognize the need for caution, our setting 1s not exactly the same as

that in the paper (Thomas ef al. 1999), where the perspective model was adopted.

38

gAY
ShE Ry

RIS

st
EEH,

£
£

b
foF




Chapter 4: Analysis of Noise effect in the SVD-based applications

4.4 Learning capacity of LSA-based recogrition system

In this section, we analyze the performance of LSA-based recognition systems when
the test image is correctly identified. Under such an assumption, there is still some
- error, as stated n the introduction, because of the noise in the basis images and the
noise in the test image. In the following, we analyze the effect of these noise on the

recognition system (also by the means of first-order perturbation theory).

Before we motivate the performance analysis of the LSA-based recognition system,
we present a simple description of the LSA-based face recognition algorithm
(Belhumeur et al. 1997; Georghiades et al. 1998; Georghiades er al. 2001). It
consists of two steps: the off-line learning stage and the on-line recognition stage. In
the learning stage, the image basis is obtained this way: a set of learning images for
one face is arranged as a learning matrix A so that each image is regarded as one
column of the learming matrix A. Suppose the face image has a dimension of m, and
n leaming s amples are collected. A e R™". The r (r<<mand r £n) basis images
can be obtained as the first r left singular vectors of A, which correspond to the »
largest singular values. In the on-line recognition stage, a test image is projected on

the » basis images and its distance to the unage basis is used for recognition.

4.4.1 Perturbation of the basis images

First, we analyze the learning stage, by using the matrix perturbation theery in
chapter 2. By SVD, the low-dimension subspaces, U’ =[y,,y,,,y,] and
V' ={x,,X,, -, X, ], as defined in theorem 2 in chapter 2, are obtained. In some

cases, such as in face recognition, the consequent step is contingent on an accurate

basis. Here, we only study the subspace U'": U'" = UH, where
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1

&, Coy +5,C

o 2
Ky =K

l-l = A-lCr.l +A‘rCI.r

K,Cp s +0Cy

Ky - "‘12

1

K'rcl.r + chr.l

.2 e
hr -1\1

Krvlcr.r-l +A‘r Cr-l.r |

a2 ul
K., ~K

¥

(4.17)

Note: From (4.17), we can roughly see that, for different singular vectors {U,}, their

perturbations {y;} have been corrupted to a different extent, which depends on their

strengtht (more formally, on their corresponding singular vajues). £ m>>r, the

corruption comes mostly from {U, | (i > r)}. Obviously . the corruption in y,; (i<r)

is approximately inversely proportional to its corresponding singular value, ;.

Thus, y, can be considered cleanest, while y, the dirtiest. In section 4.4.2, we will

return 1o this point when the projection error is analyzed.

Furthermore, 1o decompose H into: i = E+F+G, where E =

I,

{M-r)r

x,C,+xC,,

b s 2 2
l\‘z -h‘l h'r "h‘l
0
K, Cr-l.r +““r-lcr.r-l (4. 1 8)
KD —=K[
r-ICr.r-I +K!Cr-t,r
1 ) 0
KL K
0 . 0
0 0 ]
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i . .
0 :
0
0 0 0
G=1C., C.. Crar (4.19)
K, K, K,
Con Cu.  C..
5 ok K,

4.4.2 Projection of a new test image on the basis images

r

0

{m~-rixr

The underlying noise-free subspace U’ =U[ ]zUE . Suppose a noise

corrupted test image p to be identified is observed, and the underlying truth is q:

qg=Uf and p=U(f+g). Because qe U", only the first » components of f are

possibly non-zeroes, i.e. f=[f;, f5,-, f.,0,-+-,0]7 . In practice, the noise-corrupted
test image has to be projected on the noise-corrupted basis in the recognition system
because the noise free basis is always unknown. More formally, the projection error
of non U” is used:

p-U U p=U(+g)-UE+F+G)E+F+G) UTU( +g)
~Ufg -EE"g—(EF" +EG’ + FE” + GE")I]
=U[g-EE'g—(EG™ + GE")f]
=Ulg' - Gf'}

(4.20)

where g° has same components as g, except its first »r zeroes, i.c
g =[0,0,,0,8,.,,.2.,1 - And £'=[f, f»,--, £.]". Note, in (4.20), the 2-order

and higher-order terms have been dropped: F, G, and g can possibly approach 0.
From (4.20),

p-U" U p=Ug,C,C,, -, C LMY (4.21)

i ] ' [ ' i
p-uu | =fes ey, (4.22)

where C; ={0,-:-,0,C C
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o Co and h={/f, /&, [ Ik, 1.
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We suppose the basis is obtained from » learning samples, i.c., the learning matrix is

AeR™, and each entry of A has energy of ¢}, and is corrupted with 1i.d.

Gaussian noise with energy of ;. It is also assumed that the test image has energy

r m "
. . . 2 2 1
of o and is corrupted with noise of o). Y x7 =mnc}, > > C}, =mno;,

= = =1
Zf =mo], and zgl =mao!. ||g'll;vm-ro, and ||C ||,=vm-ro,. Due

i=!
to the independence among {g’, {C | i =1,---,r}}, (4.22) becomes

r 2

Ilp vy

“'(m-—f)o' +(m-—:)0'

(4.23)

Hp"i =m(c} +0)) (4.24)

" ) Obviously, from (4.23), the projection error is contingent on the relationship

betweer: {f;} and {x.}. From G in (4.19), and (4.23), it can be concluded that the
basis y, that corresponds to the largest singular value is the cleanest, and that the

basis y, that corresponds to the least singular value is the dirtiest. The cleanness of

the j* basis y ;» here, is measured by the projection error, in (4.23), which is

introduced by the j* unit-norm basis image. For a random test image, the best and
worst performance is:

: (n=-r)o}+(m-ryo} £ “p uru” p" <(m-r)o}? +(m-ryo} - (4.25)
| K.

r

1 2
mo; T Y? mao;
(m=ryo} +(m-r)o} -—+< ”p -uru” <(m-ryol +(m-ryo} —= (4.26)
Ky F Kl

4 1 , _mno! .

where &7 < < . Define, furthermore, x/ =cmno;:

'3 ¥

i n— m—-r

(n—1r)o +——-a, _"p —yrru” <(m—-;)o' 2 427

ne ne,

i 4.4.3 Performance analysis over the learning samples

* We have given the best and the worst performance analysis of the recognition

system. Next, we want to analyze the average performance of the system when we
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test the basis on the whole learning examples,i.e. all the images thatareusedto
obtain the basis images.

” ! IA E—I 1] fiz
=(m-ryo] +(m-r)o} Z el L (4.28)
F

“p UfrUrr p

qelA, |;=l - ) = ;

From (2.2) in chapter 2

A =[AI’“"Au] = [Ul’.”’Ur](h'ag(xl’”.’Kr)[\’l"”’vr]r :[Ui’..-’Ur][l(lvl"”’xrvr]r

Surprisingly,
S =V =stand B SP= (429)
[LHE P ‘3E{A;|J‘I-"‘<": ]
Then
7T, 2 (m-ryo? + ("= A (4.30)
qe{.—\l:-l

oY e 2
It can be easily proved that (m-r)o] + (= rp 0‘% is the expectation for any test

sets when the » largest singular values of the learning matrix A are equivalent.

Moreover, from (4.33), this is also the best expectation performance over a random
sample set, where the randomness means that Ef,.2 in (4.23) should be statistically

equivalent.

From this formula, (4.30), we can see clearly the effects of all the parameters in the
recognition system. Given that the noise in the learmning samples and in the test
image, compared with the signal, is small, the performance can be regarded to be
independent o f the signal level. Asm approaches a very large number, compared
with », the SSD is almost linearly dependent on m. As the number of the learning
samples, n, increases, the recognition system improves: the error from the basis
images decreases, and as n approaches infinite, the error from the basis images
approaches zero. However, the error from the test image cannot be reduced except

by having a cleaner image.
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Another measure, used in the recognition system, is the angle between the test image
and the basis images:

et 2, (=ryrof 2 "C"r:/ 2
np u“u p"f__ (o ) (m~r)a] + /{ N :‘ n - ol . 1o {4.31)
Pl o, +a,;

m(orf +o'f) -4 ol+o’ n(af +a’)

¥ I

Supposing m>>r, the angle is independent of the size of the object, and depends on
the energy level of the signal and the noise (in the learning samples and in the test
image). As the size of the leaming samples, #, increases, the system improves: the
error from the basis images approaches zero and the error from the test image

gradually dominates in the total error.

4.4.4 The optimal learning set

Suppose that the expectation of the test images, 1.e. {f;’}, in (4.23), is known. How

should we design the recognition system: specifically, how to select the leaming
samples, so that the system, concerning the expectation, has the best performance?
Obviously, only the second term in (4.23) is dependent on the learing samples. The

problem is:
. S , 2 _
min Z—;—,subject to ZK,. =C (4.32)
K
fo = C means that, when the dimension, m, and the size, n, of the learing
samples is large enough, the signal energy, chf , should be approximately

mno!. By using a Lagrange multiplier, the minimum can be obtained iff

Ji = Cons (4.33)

?

K
From (4.33), we can draw such a conclusion, however it is a little surprising, that the
basis images obtained from the # samples of A are not optimal when the test image
set is also {A;}. The reason is that, the basis, corresponding to the largest singular
value, is overlearned in the learning process: from (4.33), the optimal learning
ability, k!, should be proportional to f;, while x°7 is actually proportional to f;?,

as in (4.29).
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4.5 Simulation results

Here, we have to note that it is very difficult to have real data with high precision

ground truth. Thus, in this section, we preset some sinuilations to verify result 1

and result 2.

L R e R i

(c) ()

Figure 4.1: The average error that still resides in the approximation matrix. The abscissa denotes the
number of the rows of the matrices, and the error 1s on the ordinate. {a-c) are for the square matrices, and
(d-f) are for the rectangular matrices, which have a constant, 40, columns. There are three curves in every
sub-figure: the (approximately) straight curve in the upper part denotes the original noise in the noise
corrupted matrix, and the smoothVunsmooth curves are the expectation/actual error in the approximation
matrix respectively. In (a) and (d), the signal and the noise are randomly g enerated. In (b) and (e), the
noise levels are normalized, so that the average energy in each entry of the matrices is 0.01. In (c) and (f),
the signal matrices have 3 equivalent singular values, while the energy level remains same.
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4.5.1 Simulation of the denoising capacity of SVD

In a recent paper, an experimental result related the SVD’s denoising performance
has been reported (Chen er al. 2004). In that example, noise with amplitude of
1.5/40=0.037 still resides in the approximation matrix: where the noise-free 40x40
matrix, with a rank of 3, had been corrupted with zero-mean-and-0.01-variance
Gaussian noise. From result 1 we have derived, the value should be 0.038. That this

is pretty close to the resuit in (Chen e7 al. 2004), confirms the theory present here.

To provide further evidence, we have carried oul our own simulations. Here, we
work on a set of rank-3 matrices. For square matrices, the size of the matrices
increases from 3 to 200; while for rectangular matrices, the number of the columns
remains unchanged, staying at 40. The noise level is 0.1. In Matlab notation,
M = randn{rows,3) * randn(3, columns) + 0.1 * randn{rows, columns) is the noise-
corrupted matrix. Figure 4.1 shows the simulation resuits of SVD’s denoising
performance, compared with the expectation from result 1. It can be easily observed
that the expected curve almost coincides with the simulation result. In contrast with
Figure 4.1 (d-f) (rectangular matrices), the curves in Figure 4.1 (a-¢) (square
matrices) can be observed to continue towards zero error, while the error for the

rectangular matrices changes little afier the number of the rows increases to 20 or 40.

4.5.2 Simulation of the learning capacity for LSA-based recognition

In this section, we present some simulation results concerning the SSD performance
of the LSA-based recognition system, as stated in section 4.4. Suppose we work on a
set of rank 3 subspaces but in a dimension of 100. In this section, the parameters are

set as follows: m=100, r=3, o, =100, and o, =0, =1. First, the SSD performance

of a set of basis images is analyze:, over two test sets: the learning set, from which
the basis images are obtained, and another random set where its 3 singular values
have been artificially equalized. Obviously, as the leaming sample size approaches
infinite, the SSD, over two sets, approaches a stable value, as shown in Figure 4.2-a.
Over the learning sei, the performance, denoted by solid curve, almost coincides
with the expectation from (4.30), denoted by dashed curve. Over the random set, the

performance is denoted by dotted curve. Because the 3 singular values of the random
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test set have been artificially equalized, the best performance over this random set
can be obtained only if the leaming set has 3 equal singular values, from (4.33).
However, the random learning set always has 3 distinct singular values. Thus, the
performance over the random test set is worse than the optimal curve, denoted by
dashed curve, especially fc:: the small-size learning samples; in fact, the performance
for the recognition system is very bad, at 5,771.6, 788.1 and 588.1 respectively,
when the learning sample sizes are only 3, 4 and 5. In order 10 make the curves clear,

these points have been omitted in Figure 4.2-a.

Conversely, next, we first have a random test set, and show the performance of
different leaming sets (different basis images): an optimal learning set, which
complies with (4.33), and a random learning set, who has 3 equal singular values.
For the random learning set, with 3 equal singular values, its performance, denoted
by the solid curve, can be expected 1o coincide with the expectation (4.30), denoted
by the dashed curve, as shown in Figure 4.2-b. Obviously, the optimal leaming set,
complying with (4.33), has a better performance than the random learning set,

especially for smali icarning sizes.

Note, if the learning set and the test set are truly randomly generated, it probably has
a very bad SSD performance, especially for a small-size learning set. For example,
the »*" basis image may be very dirty, because the " singular value of the learning
set is comparatively small; while most of the energy of the test image probably
comes from this basis image. In such cases, the error from the basis images,

especially from the /" basis image, will dominate the total error, as can be seen from

(4.23).
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Figure 4.2, The dependency of SSD on the size of learning samples.{a) for a learning set, over
two test sets: {solid) the learning set from which the basis images are obtained, and (dotted) another
random set that has 3 equal singular values; (b) for a test set, by two leaming sets: {dotted) the
optimai learning set and (solid) another random learning set that has 3 equal singular values. In
both subfigures, the dashed curves dunote the expectation from (4.30).
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(1o be continued)
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Figure 4.3: The effects of three parameters in (4.23) on SSD. To see the description in the text.

In Figure 4.3, we show the effects of the three parameters in (4.30), the size of the

learning samples, n, the noise level in the learning set, &, and the noise level in the
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test set, o,; on SSD when the recognition system works over the /earning samples.

Figure 4.3(a) shows the performance of SSD when the noise level in fest image is 0.5
(very small). It can be easily observed: the square dependency on the noise level in
the learning set and the decreased effects of the noise in the leaming set as the
learning size increases. Figure 4.3 (b) shows the performance of SSD when the noise
level in learning samples is 0.5 (very small). it can be easily observed: the square
dependency on the noise level in the test set and its effect is almost independent of
the learning size. Figure 4.3(c) and (d) show the effect of the noise levels of the
learning set and the iest set when the learming sizes are 3 and 125 respectively. When
the learning size is 3, the noise in learning set has almost a same cffect on SSD as the
noise in test set; when the learning size is 125 (>>3), the noise in learning set can be

almost neglected if it is not much higher than th=t in the test set.

4.5.3 Relationship with some experimental observations

Here, we can explain such phenomena previously reported in the computer vision
literature, by using the analysis in section 4.3 and section 4.4, For example, in SFM,
the root-mean-square error of the recovered shape with respect to the true shape was
reported in (Morita ef al. 1997). Fig. 6 in that paper (Morita er al. 1997) shows that
the error approaches a constant value after the number of the frames increases to 20

or 40, as almost coincides with the result 1, in section 4.2 or the Figure 4.1 in section
4.35.1.

Another two observations are related to result 2, in section 4.2. In (Basri ef al. 2003),
it was reported that no significant deterioration of the performance was found for
LSA-based face recognition, if the images were subsampled by 16x16 squares,
which means that, 7, the number of the rows of A, decreases by 1/256. However, the
reduced m is still very large, about 1000 (>>4 or 9). We can find the explanation
from (4.31): the performance, measured by the angel between the test image and the

basis images, is almost independent of m if m>>s,

The last, but not the teast, (maybe evea the most important), observation was that

“recognition of an object under a particular lighting and pose can be performed
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reliably provided the object has been previously seen under similar circumstances”
(Georghiades ef al. 2001). A very reliable explanation can be found from (4.23) and
{4.33). For a test image, if il or its similar cases have been observed in the learning
samples, its {f;°} will probably have a good relationship with {x?}, i.e., for a larger

2 2

x;, f; 1s also larger, and vice versa. More formally, if (4.33) holds, the recognition
sysiem has a best performance. However, for a test image, which is produced under

very different lighting conditions from those in the learning set, its {f;°} probably

has very bau relationship with {x7}. If most of its energy comes from the dirtiest

basis, which corresponds to the P singular value of the learning matrix, from (4.23),
the recognition error is probably very large. This not only explains the drawback of
PCA-based face recognition, pointed out in (Georghiades er al. 2001), but also gives
a possible solution, as suggested by (4.33). For a random test set, the best learning
samples should be selected this way: to equalize the first r largest singular values as
possible. However, we do not present any specific strategies for this open, and

probably promising, issue.

4.6 Conclusion

The main contribution of this chapter is the presentation 5{ a theoretical analysis of
SVD-based low rank projections: specifically the dencising capacity of SVD (where
we characterized the error that still resides in the SVD-denoised matrix) and the
learning capacity of LSA-based recognition systems (where we showed that the
projection error can be decomposed into two independent sources, one from the test
image and the other from the basis image). The work presented in chapters 5 and 8

directly exploits these results.
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Chapter 5

Recovering the Missing Components in a Large

Noisy Low-Rank Matrix: Application to SFM

In computer vision, it 1s common to require operations on matrices with “missing
data”, for example because of occlusion or tracking failures in the Structure from
Motion (SFM) probleni. Such a problem can be tackled, allowing the recovery of
the missing values, 1 f the matrix should be of low rank {when noise free). The
filling in of missing values is known as imputation. Imputation can also be applied
in the various subspace techniques for face and shape classification, on-line

“recommender” systems, and a wide variety of other applications.

However, iterative imputation can lead to the “recovery” of dafa that is seriously in
error. In this chapter we provide a method to recover the most reliable imputation,
in terms of deciding when the inclusion of extra rows or columns, containing
significant numbers o f missing entries, is likely to lead to poor recovery of the
missing parts. Although (he proposed approach can be equally applied to a wide
range of imputation methods, we address only the SFM problem in this chapter.
The performance of the proposed method is compared with Jacobs’ and Shum’s

methods for SFM.

The work presented in this chapter has been published in (Chen et al. 2004).

5.1 Introduction

Several problems in computer vision (and beyond) can be reduced to fitting a large
matrix to its closest low-rank approximation: the factorization method under affine
models of Structure from Motion (SFM) (Tomasi et al. 1992; Poelman et al. 1997;

Kahl et al. 1999; Kanatani 2 001), o ptical flow ¢stimation i n multi-frame video
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(Irani 1999; Irani 2002}, subspace constraints in face recognition and indexing,
pose determination, data mining and a plethora of related problems (e.g.. customer

modelling and recommender systems (Sarwar et al. 2000; Brand 2003)).

In this chapter, we restrict our application to the structure from motion in an affine
camera setting, although this is to make the problem concrete rather than to exploit
any special structure of that problem. Indeed we do not use any features of the
problem formulation that is specific to the particular application (see section 5.1.1)
so we will generically say that the matrix M (of dimension m x n and with real
number entries) should be (without noise) of rank r <<min{m, n} . A consequence
of the matrix being of rank r is that it can be factored into RS for real rank-r
matrices R of size mxrand S of size » x », and vice versa. For the SFM problem,
we are of course interested in particular faclors (the factorization is not unique
because for any invertible matrix G of size rxr we have RS = (RG)}G™'S)).
However, for other problems we are not interested in any of the factors per se but
are interested in the projection onto a low rank matrix to reduce noise, to fill in
missing data, or extrapolate to as yet uncollected data. For example, we may wish
to expioit the low rank constraint to assist in the feature point-matching problem

(predicted search ranges) or to exirapolate tracks.

In most real world problems, noise is inevitably introduced in the data. In the

presence of noise, the measurement matrix quickly becomes full-rank. Thus, the

matrix has to be projected upon its low-rank approximation M” mininising mean

squared error (using Frobenius norm):

||M -M’

- (5.1)

The singular value deconiposition (SVD) gives the best solution to this problem
(Golub et al. 1996): M =UDV", M" = UD" V7 where D' is obtained by setting to
0 all of the singular values except the » largest ones. This is classical and is the

starting point of the original factorization method for SFM, and hence for many of

its variants.
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We could equivalently seek the rank-r factors explicitly in the formulation. That is,

finding R of size mxrand S of size rx n, that minimize

|M - RS] (5.2)

In such cases, one can side-step directly computing the "clean" M™ (the

reprojected points in SFM terminelogy).

The issues to solve, other than c omputational e fficiency 1ssues, 1 nclude: how to
deal with missing values, and how to deal with large amounts of data or data that is
armving sequentially. We will focus here on the first problen, and an algorithm is

presented n section 5.4.3.

5.1.1 Missing-data problem in SFM

In SFM, one starts from the mathematical relationship between the measurement
matrix M (coordinates of features tracked through frames), the object-camera
motion matrix R, and the structure/shape matrix S. In the non-degenerale cases,
and assuming an affine camera, the measurement matrix, should be exactly of rank
4. However, one can ¢ xploit the special structure: the "registered” measurement
matrix, formed by subtracting the centre of mass of the image points from their
coordinates, which should be of rank 3 (Tomasi et al. 1992; Poelman et al. 1997;
Kahl et al. 1999; Kanatani 2001), and one can even reduce the problem to a rank-1
problem {(Aguiar et al. 2003).

Regardless of what formulation, in terms of rank, the SVD cannot be directly used
if some of the data are unavailable. This issue has been regarded (Jacobs 1997;
Jacobs 2001; Rother et al. 2002) as the major drawback of the factorization

method.

Attempts to apply a subspace projection approach, in the presence of missing data,
can be divided into two categories:
1 Those that attempt to "fill in" {or impute) the missing values:
a. The seminal approach of Tomasi and Kanade (Tomasi et al. 1992)
where the filling in is called "%allucination". In their somewhat heuristic

approach to the missing data sub-problem, a full submatrix (no missing
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entries) 1s first decomposed by the factorization method, and then the
inittal solution grows by one row or by one column at a tirae,
hallucinating missing data. The final estimate is then refined by '

employing a steepest descent minimization method on a Least Squares
fitting criterion (equation 5.2) |M - RS —Cllfc where the inclusion of C

makes the adjustment for the registration.

b. Jacobs’ method (Jacobs 1997; Jacobs 2001) treated each column, with
some missing entries, as an affine subspace, and solved the problem by
obtaining the intersection of all the quadruple (in practice, a large
selection of) affine subspaces. Unknown entries are recovered by

finding, for each column, the least squares regression onto this subspace. /

2 Methods that directly obtain the factors — thus not imputing the measurement
matrix (directly)

e.g., Shum's method (Shum et al. 1995) and Guerreiro and Aguiar’s
work (Guerreiro et al. 2003). Though Shum's method was not originally
formulated for SFM (see section 5.1.2) Jacobs (Jacobs 1997; Jacobs
2001) suggested that it could be applied to the SFM problem. We note
that Shum’s formulation uses data weighting to incorporate confidence
measures, an elaboration not essential to our exposition. In essence, the
method iteratively solves coupled least squares problems for the factors
starting from the formulation of equation 5.2 but modifying the
Frobenius norm so that only entries for measured data are involved, and
adding the weights as mentioned previously. Since the formulation is
bilinear in the factors, one can hold one factor constant and solve a
linear least square problem for the other factor, Thus the missing data
are only indirectly imputed (one can "reproject” the recovered structure

onto ihe images). See chapter 6.

Tomasi and Kanade’s approach to the problem of occlusion (Tomasi et al. 1992)
has the following disadvantages: needing to start from a complete submatrix (it isa

NP-hard problem of finding the largest complete submatrix), asymmetric usage of
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the data, and error propagation, as pointed out by Jacobs (Jacobs 1997; Jacobs
2001).

The greatest advantage of Jacobs’ method lies in the fact that it does not need 1o
start from a complete submatrix. Ideally, for a generic problem, all the quadruple
affine subspaces should be utilized in order to obtain a good result. In practice, a
selection of the affine subspaces is needed. However, in the severe noise case,
using only a small portion of the affine subspaces may produce unsatisfactory
results. Intrinsically, Jacobs’ linear approach can be employed in any missing-data
problems under low-rank consiraint; however, better performance for SFM
problem can be obtained, because some “outlier” detection strategies are used, by
incorporating the speciaity of the SMF problem; while, for a general low-rank
problem, the performance of the generic algorithm proved to be {ar away from the

optimal solution, especially when there is a lot of missing data.

Or¢ drawback of Shum’s approach is its dependence on an initial matrix, although
a random initial matrix works when the percentage of the missing data is low and
the data is not highly corrupted by noise. Even taking Jacobs’ result as its initial
point, Shum’s approach still tends to diverge when there is a lot of missing data,

especially for the generic low-rank problems.

Recently, by combining Jacobs’ method (Jacobs 1997; Jacobs 2001) with the
projective factorization method of Sturm & Triggs (Sturm et al. 1996), Martinec et
al. (Martinec et al, 2002) solved the missing-data problem under the perspective
model. Various geometric constraints (Heyden et al. 1998; Kahl et al. 1999; Brandt
2002), have also been employed to cope with the missing-data problem. For
example, Heyden and Kahl (Heyden et al. 1998; Kahl et al. 1999) proposed to use
“closure constraints™ for affine construction, where the missing-data problem can
be naturally handled. They noted that Jacobs’ method could be regarded to be
“dual” to the closure constraints. It should also be noted that the missing-data
problem in SFM could be efficiently solved by an incremental SVD (Brand 2002).

Our own method for solving this problem is to be found in section 5.4.3.
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5.1.2 Other missing data problems under low rank constraint

Low rank based imputation is so commonly useful that it is not surprising that
many v ariations have appeared in the literature. M any applications are quite far
removed from SFM: e.g., DNA prediction (Troyanskaya et al. 2001), or in
recommender system (Sarwar et al. 2000, Brand 2003). Yet these studies share the

same intrinsic nature: missing-data problem under low-rank constraints.

The approach used in DNA prediction (Troyanskaya et al. 2001) employs a
“"SVDimpute" algorithm that bears a superficial similarity to our approach. The
starting point of that approach is to fill in the missing values with row averages,
then to use the SVD to rank r-project, then regress the missing values against the
spanning vectors of the SVD, the process then being re-iterated until convergence.
The first potential drawback of these imputation methods is that, the initial values
for the starting point are rather arbitrary. Such limits its application to the cases
where only a few data are missing (Sarwar et al. 2000; Brand 2003). Secondiy
(Troyanskaya et al. 2001), only one missing component is updated at a ime — an
inefficiency. More importantly, as will be covered in the Appendix, such a strategy
does not impute with minimal distance to the “current” subspace. Thus
convergence cannot be ensured. Indeed, the same criticisms as have been levelied
at Tomasi and Kanade apply: strong d ependence on the starting matrix and the
imputation order (Brand 2002; Brand 2003). In addition, the iterative imputation
method has the possibility of exhibiting “bad behaviour” (see Appendix), i.e. the
estimate goes further from the underlying optimal solution as the iteration
proceeds. However, such an important 1ssue was overlooked in (Troyanskaya et al.
2001).

In a recommender system, the low rank constraint is supposed to capture customer
preferences and it needs to be continually updated. However, it wouid be very
computationally expensive (o update the system online by traditional SVD. Brand
(Brand 2002; Brand 2003) proposed an incremental SVD to efficiently do this
work, making the online updating possible. In what Brand calls bootstrapping
(Brand 2003), he re-orders t he matrix to have a dense submatrix in the top left

corner and incrementally adds rows and columns using incremental SVD updating
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routines. Incremental update is also desirable in SFM problems (Brand 2002), but

it is beyond the scope of the present chapter.

5.1.3 Contributions of this chapter

The main contribution of this chapter is that we provide a means of determining
which parts of the matrix should be used in the iterative imputation/recovery
process. In the SFM context, this corresponds to deciding which tracks and/or
which frames (typically the former) should be exploiled in the iterative recovery
process. Intuitively, the gain, on the one hand, o f using more data (rows and/or
cols) is balanced by the fact that extra rows and cols carry more missing entries.
Rows or columns that have almost all entries missing are not likely to bring much
extra information and the extra degrees of freedom can make the recovery less
stable. Incorporation of data with more missing values can cause the solution to

“wander” away from the true solution.

As a second contribution, we present an iterative imputation strategy and prove its
weak convergence. Although falling short of a theoretical guarantee, the weak
convergence, together with our mechanism of precluding the “wandering” of the
iterative approach, ensures the iteration to the optimal solution in almost every

case. This will be demonstrated by experiments.

5.1.4 Overview of the chapter

In section 5.2, we first state the general missing-data problem under low-rank
constraint, using an objective function that is subtly different from the one in
Shum’s method. In section 5.3, we analyze the central idea, used in the imputation
approach (Sarwar et al. 2000; Troyanskaya et al. 2001; Brand 2003), i.€., to fill in
the missing data so that the complete vector has a minimal distance to a known
low-rank subspace. Then, we propose a new iterative method of recovering the
missing data in a large low-rank matrix; and prove its weak convergence. In
section 5.4, based on the analysis of the denoising capacity of the SVD in chapter
4, we propose a criterion determining whether it is worth incorporating the

incomplete vectors in the iteration. In section 5.5, we experimentally compare the
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algorithm with Jacobs’ and Shum’s methods. In the Appendix, we discuss some
aspects of the iterative method, including its convergence, the “wandering” issue, a
bootstrapping strategy that provides a partial solution to the “wandering issue™

(hinting at a more complete solution), and the relation to other approaches.

5.2 The definition of the problem and its nonlinear nature
5.2.1 The problem

A large matrix M ¢ R™" | which should have a low rank , is corrupted with noise
(assumed to be i.i.d. Gaussian), and has missing entries. The problem is to recover

these missing entries and to minimize the approximation error between the
recovered matrix, M, and its closest rank-r approximation, M’

min [|M-M" || (5.3)
subject to M, ;=M If M, is observed. In other words, we seek to minimize

the difference between the imputed matrix M (where the missing values have

been recovered but the matrix has not been de-noised) and the closest rank-r

approximation of the imputed matrix M’ (now imputed and de-noised).

Nete: The minimization objective is different from that in Shum’s approach (Shum
et al. 1995), where the objeclive is to recover the matrix factors that minimize the
re-projection error of the “non-missing” data, i.e. the sum of the square of the
difference between known elements in the incomplete matrix and the
corresponding elements in the new recovered matrix, which is exactly of low-rank.
Moreover Shum’s formulation incorporates weighted erors — an elaboration that
can be extremely effective if one has error covariance estimates that can be
exploited. Weighted error norms are beyond the scope of this chapter (however see

chapter 6) and so we express Shum’s formulation as:

min “ M- ﬁé ”i‘_non-—missing (54)

In essence, (5.4) predisposes one to directly seek the factors, and to perform
imputation and de-noising together. This suggests different implementation

strategies but the solutions to both formulations should be equivalent. Of course,
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given different implementation strategies, the stability and convergence properties

can differ.

5.2.2 Non-linearity of the problem

Obviously, Shum’s formulation (equation 5.5.4) is non-linear: in fact il is bi-linear
in the factors R and S. Here, we show the intrinsic non-linearity of our formulation

(equation 5.5.3).

Suppose M € R™". Its closest rank-r matrix, measured by the Frobenius norm, is

M =UZ((VY => ouyv/

i ?

with ||M—M'

izj‘:f} (Golub et al. 1996),

where p = min(/n,n) and {o]} are the non-descending eigenvalues of MM .

Suppose M  has some missing entries {M,; (i, /)eE} , where
E={(, /)M, isunknown,1i<m1< j<n}. E,; € R"", has all zero entries,

except a one at (ij). Let the recovered matrix be M , M=M+ Zkf‘ /E, ; » where

(4.5)e2

ij?

F Mf.‘(i’j)ga Y . -~ T - . .
M, ;= { / . The characteristic polynomial of M"M, p(4), is a high-

0 (i,j)eE
order polynomial of A and %, ;. The equation, p(1) =0, has n non-negative roots

for any {k; ;}, because M7M is positive semi-definite. The problem reduces to

finding {k, ,}, which minimizes the sum of the least 77— roots of the equation,

p(A) = 0. This is a nonlinear probiem.

Consider a simple case, M € R'*"° with a missing entry M, . Suppose M should

beofrank 4,1 {1t were noise free and had no nussing entries. Its ¢ haracteristic

polynomial, p(A4,) , where ¢ dci:otes the missing entry, is of the form:

PR =2+ (A + [{(AN + [ (1) = A° + iﬂ"g; (1), where f,(4)= iﬁ.ﬂf

iul) S=0
i=2 :
and g,.(t)=Z g.;t' . and f,; and g, are determined by M. This equation is
=0
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nonlinear and the problem of minimizing the sum of the least 6 roots is very
complicated. If there are many missing entries in the matrix, the problem appears

intractable from this point of view.

5.3 An iterative imputation method

In this section, an iterative algorithm, based on the imputation principle, is

proposed, and we prove a weak convergence of the iterative algorithm.

5.3.1 Minimization of the distance of a vector with missing entries to a
known subspace

The key starting point is to “grow” a complete matrix by adding rows or columns,
filling in those missing entries in the new rows or columns. Without loss of

generality, we consider only the case of column-wise growth of the complete
matrix. Thus suppose we have a complete matrix, M & 8", which should be of
rank r (r<m,n) if it were noise-free; and another vector x € R”, with missing
components. Ideally, [M, x] should be also of rank r if both of them were noise-
free and complete. Suppose (e first & (X <m-r) components of x (i.e., x,) are

missing (swapping rows if nccessary). The imputation method finds a linear

combination of column vectors in M, fitting x the best (Troyanskaya et al, 2001;

Brand 2002):
X =Y, (UgUz)-] ngkd-lzm
(5.5)
where, by SVD, the rank-r  projection  of M s

U
M’ =Udiag(s)V" =[U' }diag(s)vr, and U, is the upper & rows of U and U, is

2

the rest of U.

Intuitively: X is the closest point to the subspace Span(U). Because this property is

crucial in proving the convergence in section 5.3.3, we give a formal proof here.
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Theorem 1: The estimate X, obtained from (5.3), is the closest point to the

subspace Span(U).

Proof: For any estimate, X, suppose U'XY=¢:

o ~|I? ~ ~2 - ~2 —~2 A2
"x - UUTx"F =[R- U] =[x, - U, T +[x,. - U, € © 2 X ~ U

where the equality holds iff” € is the LS solutica2 & for U,e =x,,,, and X, =

U¢. QED

Note: Although the solution by (5.5) is optimal in terms of the distance between
the vector with missing data and the known subspace, it is not true for the new

subspace of [M, X]; because the new subspace depends not only on M, but also on

3.3.2 An iterative algorithm for the problem (Iter)

In this subsection, we present an iterative algorithm (called Iter) to solve the
nonlinear problem defined in section 5.2.1. Though Iter performs well in the vast
majority of cases, it does not always converge to a good solution. Hence this core

algorithm will be improved in section 5.4.

Algorithm (Irer)

(i) Starting from a complete submatrix: Suppose, w.l.o.g., that M , alter some row

. A B ..
and column exchanges, has a block represeniation: [C D] , where all entnies in A

are known, and some entries in B, C, and D are missing. For example, permute
columns so that columns with least missing values are on the left and permute
rows so that rows with least missing values are towards the top. We do not need
the largest submairix — any A of size 2rx 2 or larger wili do.

(i) Initialization - growing a complete sub-matrix: (a) Column-wise filling. First

consider the submatrix [A B]. Recover B from A by equation 5.5 and obtain

A B, B,
C D, D,

-], where the missing entries in B, have been recovered and the

missing entries in B, cannot be recovered. Note: this induces a split of submatrix
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D. (b) Row-wise filling. Similarly, recover [C D,] from [A B,], and obtain

A B, B, )
C, D, D, |. Note: after sub-step (b}, {A B‘} 1s now A, the complete
C, D, Dy G D

submatrix, in the block representation of [A B]; [32 :I ,[c, D,]and D,,
C D D,

now are B, C and D respectively.

After sub-step (a), check whether all the missing entries have been recovered. If
so, terminate the initialization step and go to the iteration step; if not, go to sub-
step (b). After sub-step (b), check for completion again. If all the entries have been
recovered, go to the iteration step. If not, check the following condition: Is the
number of the non-recovered entries before sub-step (a) the same number as after
sub-step (b)? If so, the missing entries in B, C, and D cannol be recovered. If the
number of non-recovered entries decreases, continue the initialization step (a) by
regarding the recovered entries as “non-missing”. (Note: although growing the
complete submaltrix to obtain the initial complete mairix, as described here, is
somewhat ilerative, we prefer to view this as an initialisation step to the refinement

iterations that follow in the next step.)
Afier this initialization procedure, we obtain a recovered matrix 1\71,, which is

complete; and we prepare for the iterative stage by setting a convergence measure

d,=c0.
(iii) Iteration — refining the ramplete matrix: From I\A/l,‘ , obtain iis closest rank-r
approximation by SVD: M}' =U.Z.V]. Compute the rank-r approximation error

d; =|

M;-M| L If

diy-d;<¢ (5.6)

terminate the iteration; else, from U, , recover the missing entries in B, C, and D
A i+l}
i+]

by (5.5), and obtain B.,,, C,,, and D,,,. Set M, = [ .

i+l >

o &

i+l
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5.3.3 The convergence of the iterative algorithm

In this section, we prove a weak convergence of the iterative imputation algorithm
above (thus the algorithm is independent of the initial matrix when the matrix has
not been badly corrupted by the noise or by the missing data - as experimentally

verified).

Theorem: The iterative algorithm above converges to a local minimum.

Proof: Suppose m is an arbitrary column of M, and its estimates are m, and m,,,

at the i and the i+/™ iteration steps, respectively.
pir 31 = o, vz

R
- T - -
= E "rnl.+l -UU;m,,

alf m

- I T .~
2 Z”mm - U, Unmg,

aff m

= -,

The first inequality is from theorem 1, and the second from the SVD theorem
(Golub et al. 1996). QED

Note: There are many ways to detect/characterise convergence. Another condition
for the convergence, not so rigorous as (5.6), is to check the variation of the
missing entries, 1.€.

1M, M, lo<é (5.7)

Condition (5.7) is easier to check. However, condition (5.7) is stronger than (5.6),

and it may happen that condition (5.7) fails to indicate convergence. The cases,
non-convergent measured by (5.7), are described as divergent in section 5.5.2 and

sectiont 5.5.3.

5.4 SVD’s denoising capacity vs. missing data

Vectors, with only a few “non-missing” components, may cause the iteration to

“wander away” from the true solution. Moreover, even if the optimal solution,
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defined as in (5.3), can be obtained”, we experimentally find that these recovered
vectors may degrade the accuracy that might have been gained from the other
reliable data, alone. We have experimented, with some success with various
strategies to detect and rectify this (see Appendix), however the true solution will
be found in a closer analysis of the de-noising process. By analyzing the SVD’s
denoising capacity in chapter 4, we present a criterion to decide whether it is worth

incorporating an incomplete vector into the iteration.

5.4.1 SVD’s denoising capacity and its extension to an incomplete
matrix

In chapter 4, with the tool of the matrix perturbation theory (Wilkinson 1965), the
SVD’s denoising capacity is analyzed, in ierms of the size of the matrix, the noise

level, and the underlying rank (equations (4.1) and (4.2) in chapter 4).

The advantage of the SFM factorization method can be ascribed to the SVD’s
denoising capacity. From (4.1) in chapter 4, we can see, as the size of the matrix
increases, the low-rank approximation matrix approaches the noise-free matrix.
That is the underlying superiority of the factorization method when applied to a
complete matrix: all the feature points are treated uniformly so that most of the

noise can be suppressed if the size of the measurement matrix is large enough.

However, SVD is not directly applicable when there is some missing data in the
matrix. A possible solution is to first recover the missing data, using for example
the iterative imputation method above; then to SVD the recovered matrix.
However, when there are a lot of missing components, a vector with only a few
“non-missing” components, might degrade the accuracy obtainable from the other
refiable data. Yet, using only a small complete submatrix may not achieve optimal
de-noising ability — clearly there is a trade-off here. This is illustrated in Figure

5.1: as the missing percentage increases, the performance deteriorates.

" With synthetic data, or real data with artificial occlusion, it is, of course, easy to check for
divergence and to assess how badly the solution has been degraded by the addition of one or more
columns with large missing data and/or large amounts of noise.
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Figure 5.1: The optimal performance of the iterative algorithm. The abscissa is the
missing percentage, o; and the ordinate is RMS error for the iterative algorithm.

Four curves are drawn: the upper dotted one is (1-p)"' , the lower solid

one(i-p) ™", the dashed oneinthe middle is 1-p)*",and thesolid onein the

middle is the optimal performance of the proposed iterative algorithm ( section
5.3.2).

A natural question arises: 1s it possible to find a submatrix, complete or
incomplete, which is miore reliable than the whole matrix? From (4.1} in chapter 4,
the denoising capacity of the SVD is dependent on the ratio between (m+n-r)r” and
mn: the former 1s the number of the independent elements of the low-rank matrix
(Shum et al. 19935), and the latter is the number of the variables in the matrix. From
this fact, we postulate that the incomplete matrix approximately has similar

“denoising capacity”.

Hypothesis 1 (the denoising capacity of the incomplete matrix): Suppose there are

p (pz(m+n=-r)) “non-missing” components in a matrix B, and each row

(column) has at least » “non-missing” components. The best estimate of B, B ,

should have the following property:

E|£’{; -4, =0 rim+un)=r* s ,r(m-kn)—-r‘ mn_ ’ (m+n)-r- 1 (5.8)
d p mn \, P mn dl-—p

* Please note that in Shum'’s formulation (Shum et al. 1995) the mean is also considered, so in that
case there are {(m+n-r)r+n independent variables.
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where p 1s the percentage of the missing data.

Compared with the denoising capacity of the complete matrix, the error in the

incomplete matrix should increase by | ! as a funciion of the missing
I-p

percentage. The RMS error index of the iterative algorithm approximately {ollows
(1- p)™ “(see Figure 5.1), when the percentage is less than 0.5 - not exact

agreement but still useful.

We employ (5.8) as a criterion as to whether it is worth incorporating a veclor,
with missing data, into the iteration. For an incomplete matrix with a rank of r, all
of whose coluinns and rows have at least » “non-missing” components, we define
its unvreliability as the ratio between the number of its independent variables and
the number of non-missing components:
2
o= r(m+n)-r

r

(5.9)

Thus, we propose to use the following strategy: first, use the iterative algorithm in
section 5.3.2, to recover the most reliable incomplete sub-matrix, which has the
minimal unreliability ratio; then, project other columns (rows) on it, if required,
using the imputation method. Specifically for SFM, our strategy is: first
reconstruct the 3D scene and the cameras by the factorizing the most reliable
measurement mairix (obtained by the algorithm in section 5.4.3); then to estimate
the positions of other feature points and orhier camera malrices, using the

techniques in (Tomasi et al. 1992).

5.4.2 The minimal unreliability ratio in SFM

It is an NP-hard problem to find the submatrix that has the minimal unreliability
ratio. Here, we propose a simple approach: to iteratively exclude the vector(s),

which has the least “non-missing” components among the retained submatrix, until

" The exponent may vary in different settings: with different-size matrix or with different
underlying rank. However, the optinal performance is generally betier than (} - PO RN
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the unreliability ratio beings to increase. Obviously, only a local minimum can be
obtained, in general. Howeves, in many cases, such as the SFM problem and the
recommender system, we usually have a thin matrix, i.e., it has a large width or
height. I n the following discussion, w e suppose w.l.o.g. we have an incomplete
matrix whose width is much larger than its height. We then sor? the columns so
that the columns with the least missing entries are towards the left. Now we simply
must find a “‘cut” point, beyond which to exclude unreliable columns. Indeed, if we
restrict the exclusion to columns, the optimal property can be proved. Without loss
of generality, suppose n>>m>>r, and the non-missing number in the i* column,

k; , is descending, i.e., k, >k, for 1<i<n . The unreliability ratio of the

submatrix M, (the left / columns of M), is:

¢, =(m+i—-r)r ik; (10)
i=l

We only need to prove: ¢, > ¢, =>¢,_, >¢, and ¢, <¢,,, = ¢,,, <¢,,,. That is, the

curve ¢, has one minimum. The first can be easily proved:

r r o
C,>c, ¢ >—=¢,>—& ¢, >c . Please note ¢,r,k, are positive
‘ k

141 i

numbers. The second fact can be similarly proved.

5.4.3 Algorithm (IterPari)

In this section, we propose another algorithm, which still uses lrer, in section

5.3.2, at its core.

Use quick cull of cols(rows) that are not reasonable (o iteratively impute (section

5.4.2),

1 Use the “sweeping” initialization of the core algorithm (section 5.3.2). This
could be augmented with a bootsrapping strategy (Appendix), but such
appears to be unnecessary in all of our experiments.

2 Use error norm monitored iteration of the core algorithm to convergence ( i.e.,
the iteration step in Irer, in section 5.3.2).

3 Finally, recover the “hopeless™ (the entries not recovered by 1-3), if one really

must, with another approach — e.g. Tomasi-Kanade. These portions may not
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be recovered well but at least they will be somewhat recovered and they will

not pollute the accuracy of the previously recovered portion.

In shont, IterPart is an 1mprovement on Jffer that benefits from our heuristic
approach to deciding which of the entries are worth recovering directly. The
difference is in step 1 (to predelermine where the core of reliable information is
likely to be) and step 4 (optional recovery of those parts that are likely to be

unreliable). This approach tends to converge more often than other methods.

5.4.4 Discussion

IterPart (section 5.4.3) performs almost the same as Iter (section 5.3.2), when
there are only a few missing components. Suppose the matrix is very large:
n>>pi>>r, Then, the unreliability ratio for the complete matrix is about »/n2. Thus,
if each column (or a row) has less than r (or nr/im) missing components, the whole
matrix is the most reliable one; i.e., IterPart is the same as Irer. Moreover, if the
missing percentage is comparatively low, both of them are expected to have

similar performance, as will be validated by experiments.

When there are a lot of missing components, IterPart should perform better than
the Iter. Generally, each column {row) in the m ost reliable submatrix has more
than 2r non-missing components; because the most reliable matrix would generally
have an unreliability ratio less than 0.5. If the matrix can be recovered, there
should be (m+n-r)r non-missing components at least, i.e., the unreliability should
be less than /. The unreliability ratio decreases as a result of the cutting processes.
The vectors with only » non-missing components are retained in the most reliable

matrix only if the whole incomplete matrix has an unreliability ratio of 1.

We also note that Irer has a risk of divergence, even when employing an additional
“bootstrapping” strategy outlined in the Appendix. frerPart generally, does not
have such problems, cven without the aid of bootstrapping, as will be

demonstrated by experiments.
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5.5 Experiments

In this section, we compare the performance of eight approaches: frer (proposed in
section 5.3.2), its variant: frerPart (proposed in section 5.4.3), Jacobs’s three
methods:  (rankr “Jacobsl”, rankrsfm ‘“Jacobs2”, and raunkrsfm_tpose
“Jacobs3”), and Shum’s method, also with three vanants: Sheuncl, Shium2, Shum3
(starting from Jacobs’ methods above). We use rank4 versions of Jacobs routines,
sidestepping the erroneous centroid subtraction in the presence of missing data
(Heyden et al. 1998; Kahl et al. 1999). We present 4 groups of experiments, two
using synthetic data, another from the box sequence, which was also used by
Jacobs (Jacobs 1997; Jacobs 2001), and the other from the dinosaur sequence,

which is somewhat more challenging.

In the first group of experiments, we concern the convergence of the core iterative
algorithm, frer. In the other groups of experiments, we focus on stability since Iter,
Shuml, Shum2, and Shum3 have almost the same performance wien they
converge. I terPart has a very small risk o fdivergence. It should be very stable
because only the most reliable submatrix is used in the iteration, where each row
(column) generally has more than 2r non-missing components and »+/ ar least.
Indeed, no divergence case has been found in all 20,000 cases we examined (20-

noise-levelx 10-level-of-missing-percentagex100-times repetition).

5.5.1 Only one unknown entry

Consider a matrix M e R'™°, whose rank is 3. M is corrupted with Gaussian

noise (zero mean and unit vanance) producing M, which is observed. 8pecifically,
in Matlab notation, M = randn(10,3)x randn(3,10)x5 and M = M + randn(10,10) .

Suppose a single element, M, ,, is unknown.

In this experiment, in order to evaluate the algorithm, we also search the

neighborhood of the candidate solution, by perturbing the estimated value, M, ;.

We compute the distances of 200 perturbed matrices, M , respectively to their

rank-3 approximations, M°, where M, takes one of 200 values centred around
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M],w, ie, M|, =srep><i+ft71’,.w for i=~100:~1, 1:100. When the step is

small (e.g., 0.1), we search a small area: while a large step (e.g., 3) isused to
search a large area. Figure 5.2 shows two of these experiments, one of which is
denoted by the solid curves and the other by the dotted curves. Two curves in the
lower part are from the experiment using a smaller step and the other two curves
from the larger step. The horizontal axes are the step numbers in the above recipe
for generating the perturbations: the point 0 is the solution obtained by the iterative
algorithm. Note: thus the scales of the upper and lower graphs are different — the
lower curves are in fact an expanded part of the upper curves. From the smaller
steps, the solution appears to be a local minimum. From the larger step, we may

see other local minimums or maximumes.

Thus we can see examples of the iteration behaviour: suppose, for example, that

the initial value of M, 4 in the matrix corresponding in the solid-curve example is

Ry

assigned the value M|, +3x80, which is shown as the star, “*”, on the solid

curve. Stlarting from here, the algorithm cannot find the correct solution. Even
worse, when the convergence condition is criterion (5.7), the iterations will

proceed to the infinite if there is no other local minimum in the right part, i.e., if

the convergence condition is “N’I i —M,”F <&', defined in (5.7), the algorithm

will not converge. However, it does converge under the condition of d,_, —d; <&

and stops somewhere. Those cases, nou-convergent measured by (5.7), are

described non-convergent in sections 3.5.2 and 3.3.3.

We have run the experiments 10,000 times, and in all of them we found good
solutions, which can be regarded as the global minimum. First, the recovered data
is closer to the noise-free data than the noise-corrupted one. Secondly, the distance
of the noise-corrupted matrix to its rank-3 approximation is almost same as the
solution by the algorithra. Thirdly, compared with the other 200 perturbed matrices
selected in a large or small area arcuid the solution produced by our mettiod, that
solution is the best one, as shown in Figure 5.2. 1t has to been admitted that such
sampling strategy can never totally rule out the existence of other better solutions

L+itiin the sampling area. However, the optimal solution, if it is not the one
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obtained by our approach, must lic beyond the large area because of the
smoothness of the objective function (as observed in Figure 5.2) and it is not

meaningful in practice.

!

e e

Figure 5.2: Two 10-by-10 examples with one unknowu entry

5.5.2 Synthetic data in a 8-frame-and-40-pcint sequence

As in (Heyden et al. 1998; Kahl et al. 1999). all the synihetic image data is
generated this way: the 3D feature points are uniformly distribute in a cube, within
{-500,500]*[-500,500)*[-5G0,500] units; the cameras are¢ placed around 1000
units far away from the origin. Thus, the 2D image size is about 500*500. Then,
different levels of Gaussian noise, from 1 to 20, are added into the 2D feature
points. Because the proposed algerithm has to start from a complete sub-matrix,
we suppose that the first 8x8 sub-matrix is always non-missing and the missing
entries are then randomly distributed in the rest of the matrix. In addition, in order
to have a recoverable incomplete matrix, we make sure that each row/column of
the incomplete has 4 non-missing entries at feast. The simulation repeats 100 times

for each setting.

The experimental results under noise level of 1, 5, 10, 15 and 20, are shown in
Figure 5.4. Please note, we do not include those divergent cases for the approaches
of Iter, Shuml, shum?2, and shium3 (if the RMS of any iterative algorithms has a

magnitude of 3 times or more than the noise level, the algorithm is regarded

73




i S

Chapler 3: Recovering the missing components in a large noisy low-rank matrix:

Application to SFM ;
divergent); because the divergent cases would require a greatly expanded RMS
axis. Figure 5.3 depicts the convergence rate for the iterative algorithms. Since the .
convergence rate is strongly dependent on the missing percentage, we only : '__
compare the average convergence rates (over different noise levels) for the same f

missing percentuage.

We can see, from Figure: 5.4, that the proposed iterative algorithm (fter) has almost 7

the same performance as Shum’s, and that these four curves (frer and 3 version of

Shum’s) merging into the second lowest trace. Another conclusion is that the more

A

stable variant of our method ({terParsr) shows its superiority when there is a Jot of
missing data, performing much better than fter and Shwum, as expected from
section 5.4. Of Jacobs’ methods, the rankrsfin perfonins best, good enough to be
the initial point for the iterative algorithms. Note, rankrsfin_tpose is much worse
than rankr. Though the three versions of Shum'’s algorithm (starting from the )
three versions of Jacobs as their nitial matrix) perform identically with frer when
they converge, Figure 5.3 shows that Iter generally converges at least as reliably. .

Note, the improved algorithm, IrerPart converges 100% of the experiments.

100 -~ = - )
S er B
g % . shumt
g Shum2 | _
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Figure 5.3:The convergence rate of four iterative methods against the inissing entry

fraction. Dotted curve with plus (+): Iter; solid curve with circle: Shum-+rankrsfm;

dotted curve with star (*): Shum+rankrsfm_tpose; and solid curve with plus

(+):Shum-+rankr.
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Figure 5.4: The reprojection RMS error of the eight methods, as described in the

beginning of section 5.5. The abscissa is the missing percentage, and the ordinate is
the reprojection RMS error. In (2), we depict all eight methods when the noise level is
only 1{From the best to the worst, they are IterPart, lter (and 3 Shums), rankrsfim,
rankr, and rankrsfm_tpose); while, in (b-¢), with noise levels of 5, 10, 15 and 20,
respectively, only six methods: three versions of Shum’s method, Iter, IterPart, and
the best Jacobs’ method (“rankrsfm”), are depicted, in order to make the comparison
visible. IterPart is the best, and rankrsfm is the worst one, and the other four have

almost the same performance.
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Figure 5.5: One frame of the box sequence.

5.5.3 Box sequence

Here, to test the algorithms on real data, we use the box video, which was used in
(Jacobs 1997; Jacobs 2001). The sequence consists of 40 feature points across 8
frames. One frame is shown n Figure 5.5. As in section 5.5.2, we suppose that §
points in 4 frames are available. This 8x8 submatrix is randomly selected. We then
randomly occlude (consider as missing) the other feature points. For this example,
as shown in Figurs 5.0, the five methods have aimost the same performance when
they converge: Iter, IterPart, Shumi, Shum2, and Shwmn3. Their convergence rate

is shown in Figure 5.7.
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Figure 5.6: The performance of the RMS reprojection error by the eight methods on
the box sequence are depicted: triangle (A) for five approaches (Iter, IterPart, and 3
Shum approaches), circle (o) for rankrsfim_tpose, star (*) for rankr and cross(+) for
rankrsfin. Note: Five approaches (Iter, IterPart, and 3 Shum approaches) have
almost the same performance so those five curves merged 110 one curve at the

bottom.
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Figure 5.7: The convergence rate of the four iterative methods are depicted: circle
(o) for Iter, tnangie (A) for Shum+rankrsfm_tpose, star (*) for Shum+ rankr and

cross(+) for Shum+ rankrsfm.

5.5.4 Dinosaur sequence

Here, we present an example where some data is truly missing (i.e., not artificially
occluded to simulate missing data), 4983 feature points were tracked over the 36-
frame “dinosawr” sequence (Fitzgibbon et al. 1998), and the 20" frame is shown in
Figure 5.8, where the feature points are denoted by symboi “+”. The feature points,
extracted by the Harris interest operator (Harris et al. 1988), were obtained from
Oxford (bttp://www.robots.ox.ac.uk/~vgg/data/). Over the dinosaur sequence,
about 90.84% data is missing; and the mask of the tracked feature points is shown
in Figure 5.9, where a black pixel in (/, /) means the i* feature point (in abscissa) is
tracked in the /* frame (in ordinate) and a grey pixel denotes the occlusion/missing
data. Under the assumption of the affine camera, the measure matrix should lie in a
four-dimension subspace. However, in this example, the perspectivity factor is not

negligible, and the four-dimension subspace does not fit the feature points well
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,: even without other noise. Thus, the model error, as well as the error introduced in
| the feature extraction, makes it a challenging task to recover these missing feature
points. We note that the projective model was used, by Martinec (Martinec et al.
2002), to recover the dinosaur sequence. It is beyond the scope of this chapter to
tackle such a setting, but we find that our results, even in the inferior affine setting,

are approximately same, at least as far as on¢ can determine from gross statistics,

as Martinec’s results (Martinec et al. 2002).

R s B T Nl A ki

Figure 5.9: The missing data (grey) and measured data (black) for the dinosaur sequence.

The core iterative algorithm (lter) fails on the total sequence because of too much
missing data and strong noise. By excluding the vectors with a few non-missing
components (frerPart), the most reliable matrix has 36 frames and 336 feature
points, with an unreliability ratio of 0.2892, where each point has b een tracked
over more than 6 (>6) frames, and each frame tracked more than 20 feature points.
We compare all algorithms using this same subset of “reliable”™ data,

i)




Chapter 5: Recovering the missing components in a large noisy low-rank matrix:
Application to SFM

First, by the core iterative method in section 5.3.2, we reconstruct the 336 (“most
reliable”) feature points, as shown in Figure 5.10, where about 77% data is
nussing. The result by Jacobs’ method under affine camera, as shown in Figure
5.11 (a), 1s unsatisfactory. When the initial result is not accurate enough, Shum’s
approach tends to diverge, or become trapped in a local minimum, as shown in
Figure 5.11 (b-c). The recovered tracks by the proposed method Irer are shown in

Figure 5.11 (d). (Which is, of course, the same as that by IrerPart since we have

pruned.)

Figure 5.10: The 336 tracked feature points over 36 frames
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Figure 5.11: The 336 recovered tracks by the Jacobs’ and Shum’s and the proposed
_.- methods: (a) Jacobs, {b) Shum’s result after 100 iterations, (¢) Shum’s result after

400 iterations, (d) The 336 recovered tracks vy Iter.
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By combining Jacobs’ method (Jacobs 1997; Jacobs 2001) and Sturm and Triggs’
projective factorization method (Sturm et al. 1996), a good result over the whole
sequence was reported (Martinec et al. 2002). the mean reprojection error per
image point, measured by pixels, was reported as 1.76 pixels, and the maximal
reprojection error was reported as 73.9 pixels. The mean error and maximal error

were reported as 0.64 and 41.5 pixels (respectively) after bundle adjustment.

However, the above indexes (mean error and maximal error) may be sometimes
misleading in assessing the performance of the algorithms as we demonstrate here.
Using the stabie variant of the proposed itzrative method (IterParf), we conducted
some experiments over two selections of the data: a) the whole 4983 feature
points, and b) with only the 2683 feature points that were tracked over more than 2
frames. (2300 feature points were tracked only over 2 frames in the dinosaur
sequence!) Qur results of the reprojection tracks, for 4983 and 2683 feature points
respectively, are shown in Figure 5.12 (a-b). Obviously, the resull from 2683
features is much better than that from 4983 features. The recovered tracks should
be approximately elliptical, because the sequence was taken while the dinosaur
was on a rolating turn-table (Fiizgibbon et al. 1998). Note: all the wild recovered
tracks in the first experiment are from the 2300 feature points which have been
tracked over only 2 frames — thus the likely reason for such sensitive behaviour in
Figure 5.12 (a) is that some feature points are tracked only over 2 frames (any
noise in these features is likely to be influential). Contrast the visual quality with
the impression conveyed by the mean/maximal error for 4983 and 2683 features,
which are respectively 1.8438/72.4467 and 2.4017/72.4467 pixels; obviously these
measures alone are misleading since the reconstruction from the case with only
2683 features scores worse although it has no wild recovered tracks. In fact, the
mean/maximal error for the 2300 feature points tracked over only 2 frames is only
0.4088/ 7.8093 pixels. Since we only have the measures, as reported by Martinec

(Martinec et al. 2002), it is not clear whether his results may have included such

wild (and wrong) recovered tracks.
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Figure 5.12: The recovered tracks over 36 frames, (a) for 4983 points, and (b) for
2683 points.
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5.6 Conclusion

The main contribution of this chapter is the development of a criterion one can use
to recover the most re liable submatrix — 1.e., to decide which parts o a matrix
contain too many missing values to be included in the imputation. We also propose
an iterative algorithm to employ the above criterion to the problem of missing data
in a large low-rank matrix and we prove its convergence. In the cases, where the
matrix has been badly corrupted by the missing data, the approach we propose is
superior to other approaches. We avoid the NP-hard problem of finding the largest
complete submatrix, as one does not need to start with a very large complete
submatrix in our approach. Due to the convergence (toward the optimal solution,
as demonstrated by the experiments), one can expect to arrive at the same solution

even when starting from different complete sub-matrices.

As a result of our work, we also draw to the attention of the reader a salutary
message regarding the use of simple error measures in making decisions about the
superiority of one algorithm over another, It may be the case, as we demonstrated,
that an approach with several very bad tracks, scores better than a method with
generally very good tracks. Some care must be taken in assessing the contributions

of studies that report only a single such measure (see also appendix A.4).

Appendices

A.l1  “Bad-behaviour” and a bootstrapping strategy

As noted in the introduction, for the proposed core iterative i mputation m ethod
(Iter) only the convergence to a local minir -m is proved. The worse case scenario
is that, some components “wander away” from :he underlying ground truth as the
iteration proceeds. We call this phenomenon “bad behaviour”. Some vecters have
polluted the first » components and the remaining data cannot “correct” the values
that have “wandered”. By an example (F. De la Torre et al. 2003), it has been
shown that, if one data (an outlier) has 10 times the energy as the sum of the rest of

the data, the outlier becomes the first principal component, and the first and the

87

e




Chapter 5: Recovering the missing components in a large noisy low-rank matrix:
Application to SFM

second original principal components become the other two principal components,
approximately. Such a fact can be easily proved by the matrix perturbation theory
(Wilkinson 1 965), by regarding the outlier as the signal matrix and the original

signal matrix as the perturbation.

If we followed the algonithm Jrer, outlined in section 5.3.2, we may observe this ix
a few cases (although very rare, it does occur), when the percentage of the missing
data is very high. The problem is with the initialization step. In the bad cases, the
initialization step in the algorithm usually needs a few loops to obtain a complete
nitial matrix. However, no refinement is made on the newly increased submatrix

before it continues to absorb otiier columns/rows.

In practice, such a phenomenon can be easily detected. From experiments, we
found that the energy in M, —M., ||} concentrates in a few missing-values,

mostly in one or two columns (rows). Having detected the likely “wandering”, we
can attempt to “punify” the matrix in the initialization phase or in the iteration
phase. We can first regress these bad (one or two) columns (or rows) against the
other columns (or rows), and then continue the iteration. Another is to restart the
algorithm: in the initialization step, using those columns (or rows) that do not
produce such bad behaviour producing a partially complete matrix; then regress
the columns (rows) with bad behaviour against the partially complete matrix
before re-starting the iteration. The second strategy, experimentally, performs

better than the first.

The “afterward” bootstrapping strategy is not ideal because of its time consuming.
Generally, the wandering-away behaviour occurs with those columns, with only
(or slightly more than r) “non-missing data”; because the noise in such cases can
be influential, especially when the subspace is ill-conditioned. For other columns,
with only a few missing components, the imputation method of (5.5) is
intrinsically an overdetermined system; therefore, it can resist noise to some
extent, and consequently, it is unlikely that the wandering-away behaviour occurs

with these vectors.
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Thus, we propose the following bootstrapping strategy (o overcome the
wandering-away: 1o recover those columns (rows) with fewer missing values first,
i.e., to recover the more stable vectors in the inner initialization loops. In order to
reduce the computation loops in the initialization step, we suggest that only those
columns (rows), with more than (or equal t0) 2r non-missing data, should be
incorporated into the complete submatrix, by using the imputation method

(equation 5.5).

Such a strategy raises another issue: in some cases, the complele submatrix stops
increasing because no incomplete vector has more than {or equai to) 2r “non-
missing” values. In such cases, one can temporarily relax the constraint of
requiring 2» “non-missing values” — using columns (rows) with 27 “non-missing
values” {even as low as r if need be) to break the impasse and then resume with the

more conservative demand of at least 2r “non-missing values”.

This bootstrapping strategy can increase the robustness of the algorithm, especially
when there are a lot of missing components; while it only incurs a little
computation overhead—one or two more loops in the initialization step. However,
we have found a similarly motivated procedure that makes this bootstrapping

largely redundant (section 5.4).

A.2 Revisiting the objective function in (5.5.3)

As stated in section 5.2.1, our objective function is subtly different from that, used

in Shum’s approach (Shum et al. 1995). However, under the strong convergence

condition (5.7), the error index for the missing components, Z(A:I,.J —A:I,.fj)z ,
(igek=

where = = {(, j} | M, is unknown}, approaches zero during the i terations. T hus,
the objective function of (5.3), under the convergence condition of (5.7), is

effectivel; >ame as Shum’s objective function. It will also be proved by

experiments that virtuaily the same solution is obtained by our method in section

* In {Brand 2003), a similar booistrapping sirategy was employed to make the imputation method
robust.
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5.3.2 and by Shum’s method, providing both of them converge. In practice our

approach converges far more reliably.

A.3  Difference from the imputation in (Troyanskaya et al. 2001)

The iterative algorithm in section 5.3.2 (Irer) has been loosely anticipated by the
method in (Troyanskaya et al. 2001). Here, we describe the difference between the
proposed algorithm in section 5.3.2 and the algorithm in (Troyanskaya et al. 2001).
As noted in the introduction, the iterative imputation method in (Troyanskaya et al.
2001) can not be shown to converge, although the iteration may stop after a few
loops. The problem with the method in (Troyanskaya et al. 2001) lies in its
upd-ung procedure in the iteration. In (Troyanskaya et al. 2001), even if there is
more than one missing component in one column, only one missing data is updated
at a time; by regarding all other components known, including other missing data
that has been estimated. Thus, k applications of updating are needed for a column,
where k components are missing. Note: if every incomplete vector has only one
missing entry (an entirely unlikely event) then the method is same as Jrer, outlined
in section$.3.2. However, if there is more than one missing component the iwo are
not equivalent and any method that can only recover one missing entry at a time
raises the question: which imputation order should be taken? Afier some
components have been updated, should their old or new values be employed in the
sequential estimation for other missing components? Generally, for any sequential
updating, a different estimate from that, by (5.5), would be obtained, i.e., the
estimate in (Troyanskaya et al. 2001) does not have the nice property that it is the
closest point to the current subspace. Consequentially, no convergence can be

promised in the iterative method in (Troyanskaya et al. 2001).

A.4 RMS and Re-projection error

Generally, the root mean square (RMS) of the reprojection error is used to evaluate
the performance of the reconstruction algorithm. However, the reprojection error
index, in the real d ata sequence, m ay be misleading unless we have the ground

truth. We illustrate the reason for our cautionary note here.
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In chapter 4, it is proved that as the size of the matrix approaches infinite, its low-
rarik approximation approaches the underlying noise-free matrix. Consequently,
for a very large matrix, if we compare iis low-rank approximation with the noise-
corrupted matrix, the residuals are approximately the added noise; yet if we
compare with the ground truth (the uncorrupted matrix) the error should be around

0. From Figure 5.13, we can observe this point: a series of synthetic measurement
matrices (M) are generated and i.i.d. Gaussian noise (0-mean-and-1-variance) is

added, observing M. The reprojection error, compared with M and M, is depicted

by the dashed curve and the solid curve, respectively. We also compare the rank-4

approximation of M, M*, with M and M, the error is depicted by the dot-with-
star curve and the dotted curve, respectively. Obviously, the RMS indexes, against
M (upper traces — ““observed/noise corrupted” data), are misleading, in evaluating
the performance. If we use the RMS error against the noise corrupted measurement
matrix, the reconstruction error also increases as the size of the matrix increases
{upper two traces); contrasting with an accepted fact that more frames produce
more accurate reconstruction (Morita et al. 1997; Thomas et al. 1999). In contrast,

the lower two traces (using “ground truth”) show the correct trend.

Because of this, we mainly rely on the synthetic data in evaluating the performance
of the algorithms. In addition, please note that we use a different reprojection error
index, from that in Jacobs’ paper: in our work the RMS error is obtained over the
whole sequence, including those artificially occluded points. It makes little
difference in most cases; however, the occluded points should be included in the
evaluation, if possible, because in some pathological cases, we can find the
reprojection error for the non-missing data is comparatively small, while that for
the whole data is very large. In section 5.5.2, we can easily find such a case: with
50% data missing and a noise level of 10, where the RMS error for the non-
missing e ntries is only 7.2098, while the RMS error for the artificially missing

entries/all entries is 57.2773/38.2693, by the iterative algorithms.
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Figure 5.13: The RMS errors in the low-rank approximation matrix and the
reprojection RMS error: the abscissa is the size of the square measurement matrix
and the ordinate is the RMS errur. The dotted with star curve and the dotted one is
the RMS errors of the rank-4 approximation matrix, cormpared with the noise-free
matrix and the noise-corrupted matrices, respeclively. The dashed one and the
solid one denote the reprojection RMS errors, compared with the noise-free matrix

and the noise-corrupted matrices, respectively.
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Chapter 6

Bilinear approach to the parameter estimation of a
general heteroscedastic linear system, with

application to conic fitting

The theory presented up until now has assumed that the noise in the measurement
matrix 1s uncorrelated — a setting where SVD-based methods are optimal ways to
“denoise”. In this chapter, we study the parameter estimation problen: in a general
heteroscedastic linear system, by putting the problem in the framework of the
bilinear approach to low-rank matrix approximation. The ellipse fitting probilcm is
studied as a specific example of the general theory. Despite the imnpression given
in the literature, the ellipse fitting problem is still unsolved when the data comes
from a small section of the ellipse. Although there are already some good
approaches to the probiem of conic fitting, such as FNS and HEIV, convergence in
these iterative approaches is not ensured, as pointed out m the literature. Another
limitation of these approaches is that they can’t model the correlations among
different rows of the “general measurement matrix”. Qur method, of employing the
bilinear approach to solve the general heteroscedastic parameter estimation
problem, overcomes these limitations: it is convergent and can cope with a general
heteroscedastic problem. However, experimental results show that none of the
methods investigated, including ours, can be considered adequate for fitting data

from a small arc of the ellipse.

6.1 Introduction

Parameler estimation in a heteroscedastic system has become an active subject, in
order to overcome the difficuities of the total least squares (TLS) method (Huffel
et al. 1991), as can be found in (Leedan er al. 1999; Chojnacki e al. 2000; Leedan
et al. 2000; Matei er al. 2000; Matei er al. 2000; Chojnacki er al. 2003; Chojnacki
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et al. 2004). Another active research topic is to employ the bilinear approach to
calculate the low-rank approximation of a large matrix in some challenging
environments (Shum et al. 1995; Morris ef al. 1998; Mahamud er al. 2001;
Guerreiro er al. 2003; Vidal ef al. 2004), where the traditional SVD (Golub ef al.
1996) does not work or its solution is not optimal. Here, in this chapter, we apply
the bilinear approach to solve the parameter estimation problem in a general
heteroscedastic envirenment. First, we review the work on these two research

topics.

6.1.1 Parameter estimation in a heteroscedastic system

Many parameter estimation problems can be reduced to the following linear form:
wi(x)0=0 6.1)
w(x) are nx1 carriers of the observed quantity x, for example, a prominent

problem in computer vision: conic fitting. We will study the comc fitting problem

in section 6.4.

Suppose m different quantities x, (i =12,---,m) are observed. We arrange the

carriers as a general “measurement matrix” We R™":

[ wi(x,) ]

wrgxz) 62)

| wi(x,)]

Without loss of generality, suppose m 2 n. If not, (6.2) is an underdetermined
system. If W isnoise free, it isrank deficient, witha rank of n-1. However, it
quickly becomes full rank, due to noise. Many optimization approaches and their
associated objective functions have been proposed to solve this parameter
estimation problem, as can be found in a comprehensive survey (Zhang 1997).
Among them, a straightforward solution to (6.1) is the right singular vector of W,
associated with the least singular value. Such a solution is usually called as the
TLS estimate (Huffel er al. 1991), because it minimizes the following objective

function:
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>0 w(xw’ (x)0/]0 | (6.3)

Itis also the maximum likelihood (ML) estimate if the noise/uncertainty in the

carriers w (not the observed qualities x) 1s 1.1.d. Gaussian.

However, the assumption of i.i.d. Gaussianality usually does not hold, especially in

the system (6.1), because the carriers ar: transformed quantities of the observed

data. Even if the noise in x can reasonably be assumed to be i.i.d. Gaussian, the

uncertainty in the carriers w oflen loses this property. The violation of the i.i.d.

Gaussianality makes the probiem challenging to the TLS method. For example, a

biased estimate is obtained by the TLS method, if the noisy points come from a

segment of the conic, as testified experimentally (Leedan er al. 1999; Leedan et al,

2000) and proved theoreticaily (Kanatanm 1994; Kanatani 1996).

In order to overcome the difficulties, introduced by the non-i.i.d. Gaussianality,

Kanatani analyzed this problem from a geometric statistics view and devised the

renormalization method (Kanatam 1993; Kanatani 1994; ikanatant 1996). The idea

behind this is to approximately equalize the noise in all carriers. Other general

approaches to this heteroscedastic problem include HEIV (Leedan ef al. 1999;
Leedan et al. 2000; Matei ef al. 2000; Matei et al. 2000) and FNS (Chojnacki et al.

2000; Chojnaciki e al. 2004). In the HEIV model, the covariance matrix C,

between the carriers in w, is first obtained from a linearization process, then, the

parameters are estimated by minimizing the Mahalanobis distance:

2(“’; -w ) Cl(w,-w,, (6.4)

where C™ is the pseudo inverse of C and w,, is the underlying ground truth of

w,. This minimization problem is reduced to a generalized eigenproblem, where

the generalized eigenvector, associated with the least eigenvalue, is needed. In the

FNS method, an approximated maximum-likelihood (AML) objective function is

employed. It is also reduced to a generalized eigenproblem. In (Chojnacki et al.

2004), it has been proved that these two approaches, HEIV and FNS, are

intimately related.
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6.1.2 Bilinear approach to the low-rank matrix approximation

The SVD is the basic tool for calculating the low-rank matrix approximation. The

principle behind the SVD (Golub es al. 1996) states that any matrix, We R™",

can be decomposed into
W=yny’ (6.5)
where UeQO"" , VeO™ and LIL=diaglo,,o,,,0,}eR™ , with

p=min(m,n) and o) 20, 2---2 0, 20. Animportant fact is that one can easily

construct W', the closest rank » approximation of W, measured by 2-norm or

Frobenius-norm, as (Golub et al. 1996).

W’ = icr,.u,.vf.r (6.6)
i=l
Specifically,
"W-W”I: =0,, (6.7)
M
[w-w, =2 (6.8)

JEr+]

From the optimality measured by the Frobenius-norm, the estimate by (6.0) is also
the ML estimate (Press er al. 1992; Reid et al. 1996; Hartley et al. 2000), if the

noise in the matrix W is i.i.d. Gaussian.

However, the SVD method does not work on an incomplete matrix (with missing
data). Moreover, the solution by (6.6) is not optimal if the noise in W does not
obey the 1.i.d. Gaussian model. Some effort has been devoted to the missing data
problem (Jacobs 1997; Kahl er al. 1998; Kahl ef al. 1999; Jacobs 2001; Guerreiro
et al. 2003; Chen ef al. 2004) and the heteroscedastic noise problem (Aguiar ef al.
1999; Aguiar et al. 2000; Irani er al. 2000; Anandan er al. 2002; A guiar et al.
2003). Another promising approach to these problems, as mentioned in chapter 5,
is the bilinear approach (Shum et «/. 1995; Guerreiro er al. 2003; Vidal er al.

2004)', where one tries to fit W as the product;

' In (Vidal er al. 2004), the bilinear approach is called the PowerFactorization methed.
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RS (6.9)
_ with Re R™ and SeR™ . To do so, one iteratively updates R and S, by 5
altemately holding S and R constant, respectively: i
R,.. =mRin | W-RS|| (6.10) %
8,0, = min | W-RS |, 6.11) ]

The objective function in (6.10) and (6.11) can: be reformulated as: I

IW=RS 3= llw; =Sl =3 18™(r)" - (W) [; (6.12)

I W=RS};=2 lIRs; —w, |I7 (6.13)

= ‘u“’\mv;;m ST 1Y e

where W' is the i row of W and r/ is the /" row of R, and s, and w, are the *
columns of § and W, respectively’. If the noise in W is i.i.d. Gaussian, r; in
(6.12), or s, in (6.13), can be separately calculated as the least squares (LS)

solution, which minimizes

ST -(wi' I (6.14)
IRs, -w, |2 (6.15) .
This way, each step of the iteration is reduced to solving a linear system: .
Ax=b (6.16) '

with the LS solution as:

X=A"b (6.17)
More details can be found in (Shum er al. 1995), and we will revisit this point in
section 6.3. In this bilinear approach to the low-rank approximation, the missing ﬁ
data problem can be naturally coped with, and a scalar-weighted uncertainty can F
i

also be incorporated (Shum er al. 1995). Moreover, this bilinear approach can be
further developed to incorporate directional uncertainty (Morris et al. 1998)

(although the measurement matrix was assumed to be complete in (Morris er al.

2 In the following, a matrix is usually denoted by a bold capital letter, eg W. Tts i column is

denoted by W, and its " row is denoted by W.
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1998), the method can be naturally extended 10 the missing d ata problem, with

directional uncertainty.)

6.1.3 The issues to be studied and the organization of this chapter

In HEIV and FNS, only the correlation among the carriers in w(x;) can be dealt

with, although this is the most common case in practice. In this chapter, we will

consider the general case, where the uncertainties in different carriers {w(x,)} are

correlated. To do so, we rephrase the general heteroscedastic parameter estimation
problem into the framewerk of the bilinear approach. Then, to make our theory

concrete, we consider a specific computer vision task: conic fitting.

In section 0.2, we formulate the parameter estimation problem with an objective
function which is subtly different from (6.4), and then we rephrase this problem in
the framework of the low-rank matrix approximation. In section 6.3, we present
our bilinear approach to the problem of the low-rank approximation in the
heteroscedastic system. In section 6.4, we study the specific computer vision task:
conic fitting, including the issue of noise level estimation. In section 6.5, our

results, with comparison with other competing approaches, are presented.

6.2 The parameter estimation problem

6.2.1 Objective function to be minimized

Temporarily, we suppose that the noise model in the carriers {w(x;)} is known.

More precisely, the correlated Gaussian model, with covariance matrix C e R™™,
is employed to characterize the uncertainties among the vectorized carriers
vecl{w(x)}, where

[ w(x,)

w(x,}

vecl{w(x)} = e R™ (6.18)

| W(x,,) ]
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Please note that the covariance matrix C is symmetric and positive semi-definite,

HH

and can be factorized into C = Za.u u] ,with g, 20.

[ R Rt
i=l

We start by defining the following modified Mahalanobis distance as the objective

function to be mininzed:

min(vecH{w(x)} - DT C* (vecl{w(x)}-1) (6.19)
L
ma u‘u?' l_'
where C* =Z i The vector 1=} ? [e R™ in (6.19), with I. € R"', is
1=l C‘r;‘
L
T

associated with a rank n-1 matrix L=| 7 |[e R™".

T
|

e

In plain language, the minimization of the objection function (€.19) is to obtain a
rank n-1 approximation matrix, which has the shortest modified Mahalanobis
distance to the general measurement matrix. If the uncertainties in the general
measurement matrix are Gaussian, 1.i.d. or correlated, the minimizer of the (6.19)

is the ML estimate, as will be shown in section 6.3.

Assume that 1 is the solution of the system of (6.19), and it has an associated rank
n-1 matrix L. The solution of the systent of (6.1) is taken as the right singular

vector of L, associated with the least singular value.

If the uncertainties in different carriers w(x;) and w(x;) for /= / are

independent, the objective function (6.19) can be formulated as

L)

2w, =w, ) CH (W, ~w,,) (6.20)

i
;
i
I
]
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where C, is the covariance matrix for w(x;) and the matrix, , has a rank of

L o

n-1.

Despite the similanty between (6.20) and {6.4), which is the objective function of

the HEIV method, please note the difference between them. First, w, is the
assumed underlying ground truth, in (6.4). In contrast, in (6.20), w, can be

characterized by the property that its associated matrix has a rank of n-1. We are
deliberately projecting onto the “nearest” rank n-1 matrix as the srarting point of
our bilinear approach to the heteroscedastic problem. Second, the modified
Mahalanobis distance is employed in (6.20). In contrast, the Mahalanobis distance
is employed in (6.4). They are identical if the covariance matrix is non-singular.
However, there is a difference in cases, where the covariance matrix is singular,

i.e., some singular values of the covariance matrix are zeroes. Obviously, if g, is

zero, and (6.19) or (6.20) are not mathematically meaningful. it will become clear
in section 6.3.1.1, that, in such cases, this can be reduced to an equality constrained

LS problem (Golub e /. 1996). In contrast, (6.4) can be reduced to a LS problem.

6.3 The bilinear approach to the heteroscedastic parameter

estimation

Although we have reformulated the bilinear approach in a simple m athematical
language, as the linear system (6.16), the case becomes complicated if the
uncertainty mode! in W is not i.i.d. Gaussian. In order to simplify the development
of the solution to the low-rank approximation in a general heteroscedastic system,
we first consider the case of (6.20), where the uncertainties between different

carriers w(x;) and w(x,) for i # j are independent.
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6.3.1 Update of R

In case of (6.20), the uncertainties between different rows of W are assumed to be
independent, so we can separately update each row of R, as in (6.14). The updating
of each row of R equalé to solving the linear system (6.16), where the uncertainties

in b are modeled as correlated Gaussian noise, with a covariance matrix of C. Note

that, A is S, and b is the transform of the i row of W, (w')”; and the estimated

X would be the transform of the i row of R, (r/)" . which is to be updated.

The mimmization objective function in the linear system (6.16) is:

X = min(Ax -b)" C* (Ax~b) (6.21)
Suppose C = Udiag(d,,d,, -,d )U"T . Define
Q = diag(1/Jd, 1/,Jd, ,---}/ Jd,)UT . The solution to (6.21) is:

Xx=(QA)"Qb (6.22)
Proof. We arrange the minimization objective function in (6.21) as:
(Ax-b)" Q"Q(Ax -b) = (QAx —Qb)" (QAx - Qb)
Obviously, (6.22) is the solution to the above objective function, ana consequently,

is the solution of (6.21).

It will become clear in section 6.3.1.1, that the uncertainties in Qb are 1.1.d.

Gaussian and the solution in (6.22) is the ML estimate, if the uncertainties in b are

Gaussian.

6.3.1.1 Case with zero singular values in the covariance matrix C

As we note in section 6.2.1, the modified pseudo inverse of the covariance matrix
C does not make sense if C has some zero singular values. However, there is
usually a constant carrier in (6.1), i.e., this component is noise free. Consequently,
C has, at least, a zero singular value. Here, we study this case and present our

solution to this problem.

First, we study the covariance matrix of the transformed b, U'b.
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cov(U'b) = U cov(b)U = U'CU = diag(d,,d,, -,d,) (6.23)
(6.23) means that the coupled uncertainties in b have been decoupled in the
transformed U'b.Ifall d, # O and the coupled uncertainties in b are G aussian,

the uncertainties in Qb are 1.i.d. Gaussian, and (6.22) can be taken as the ML

estimate.

Any zero d, in (6.23) means that the u,-direction component of b, u’b, has no
uncertainties or noise. Without loss of generality, we suppose the last k d, for

i=n—-k+1,---,n are zeroes. Define

ol ul
7 UZ‘ u’l .
AI = (h.ag(ll dl ’1/'\/@"“."5{ du—k ) .- A » AZ = ke A *
_ufl-k_ \_ I-l: ]
| u]r - 'u:—lwl-

b, = diag(1/Jd, )/ \Jd, -1/ Jd, ;) "2 b and b, = Wa-tez

L™y n
Now, it is clear that the uncertainties in b, are i.i.d. Gaussian, and that b, is noise
free. Thus, the optimal estimate of (6.21) should be the solution of the following
constrained minimization problem:

min A x=b, (6.24)

Agx=h,
(6.24) is an equality constrained least squares problem, and its solution can be

found in (Golub er al. 1996) (see the appendix).

Now, it is clear that our objective function in (6.19) or (6.20) makes sense if we
adopt the interpretation of 0/0 = 0. More importantly, the solution of (6.24) is the

optimal solution of (6.21).

In contrast, if we employ (6.4) as the objective function, as in the HEIV method, in
zero-singular-value cases, (6.21) will be reduced to a simple LS problem:

min A, x=b, , without the equality constrained A,x=Db, . Obviously, the
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objective function of (6.4) can’t be employed in such cases. In order to overcome
this difficulty in (Leedan er al. 1999; Leedan er al. 2000), the constant component
is not included in (6.4), and has been separately considered from the other

columns.

6.3.2 Update of S

Because the uncertainties in the columns of W, w; and w for (i # j) in (6.13),

are not independent, the minimization process can’t be separately dealt with (as
(6.15) dose not apply). We have to jointly solve a matrix equation: AX=B. Note
that, A 1s R, and B is W; and that X is the S, which is to be updated.

Fundamentally, we abstract (6.13) as the following minimization problem.

a| b;

at, b; . ' l ' Le L -
Suppose A=| “|and B=| |, with a; € R and b, € R . Suppose b;" 1s

_a:u_J _b:n_

corrupted with correlated Gaussian noise with C, covariance matrix, which can be
factorized into C, = (U")diag(d|,d},---,d!)(U")". And, the uncertainties in b}’
are independent of those in b'jr for j #i. Thus, the ML estimation is to solve the

following minimization problem:
X = min Z(a}X—b})C;’ (a}X-b})" (6.25)
Xer™ 5

We suppose that df #0. If not, we can convert the problem to an equality

constrained least squares problem (6.24), as in section 6.3.1.1. Define

Q, =diag(1/+Jd| ] /Jd—;,---,l /\/d—:.)(U")T. The correlated uncertaintiesin B can
be decoupled by:
[a,XQ] | [biQ] ]

ot T ] r
0XQ: 1_ (20 (6.26)

T : T
__a:ume_ _mem_

(6.26) equals to the following linear system:

103

!
i
;
i
i
1
|
[
i




Chapter 6: Bilinear approach to the parameter estimation of a general
heteroscedastic linear system, with application to conic fitting

[ Q, ®a] ] [ vec(v,Q]) |
Q9% | x) - | oD 627)
1Q, ®a | _vec.'(b':“Q,: )]
where @ denotes the Kronecker product of two matrices, and, for a matrix X with
x,
r columns, vec(X) = x:3 . (6.27) comes from the property of the Kronecker
-x"_

product: vec(AXB)=(B” ® A)vec(X) . The uncertainties in the right side of

(6.27) have already been made 1..d. Gaussian. Thus, the optimal solution to

vec(X), and consequently X, can be obtained by the LS estimation.

Note the solution of vec(X) from (6.27), and consequently X, minimizes the

objective function in {6.25).

Proof: we arrange the minimization objective function in (6.25) as:

n

2. (@X-b)QIQ; (¢} X -b))"

n
M-

(a;XQ] - b!Q] )@ XQ] -+ )"

i=]

I

" 1(Q, ® 8 )vee(X) —vec(b:Q])(Q, ® a))vec(X) - vec(h/QT)]"

]

The uncertainties in vee(bQ] ) are i.i.d. Gaussian, so, the ML solution to (6.27) is

the LS estimate. The LS estimate of vec(X) in (6.27) minimizes the above

objective function, and consequently, the related X minimizes the objective
function in (6.25). 0

6.3.2.1 Constant column in the measurement matrix

Assume that there is a constant column in the general measurement matrix, as will
be found in the conic fitting, i.e. M = [M’,l]]. In such cases, we can single out the

constant column in the above updating of S. The last column of S, s, can be

calculated as:
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s, =R71 (6.28)
Note, in the updating of each row of R, we convert the minimization problem of

(6.21) as an equality constrained LS estimation problem of (6.24). Consequently,

r;S =[m’,1]. It is clear that the approximated measurement matrix RS, after each

updating of R, has an exact constant column 1. This means that 1 € span(R). So,

(6.28) holds without any error, i.e. R§_=1.

6.3.2.2 Discussion of the convergence of the bilinear approach

In sections 6.3.1 and 6.3.1.1, we studied the updating of R, where the objective
function 1s (6.2C). Because of the assumed independence among the uncertainties
in different rows of W in (6.2), we can separately update each row of R,
minimizing the associated part in the sum of (6.20). In sections 6.3.2 and 6.3.2.1,
we have jointly updated S in order lo incorporate the correlation among different
columns of W. Thus, the objective function in (6.20) decreases after each updating
step of R or S. From these observations, we can see that the bilinear approach
converges, in contrast 1o the lack of proof of convergence of the HEIV or FNS

methods.

6.3.3 A more general update

In the general case of (6.10) or(6.11) whatweneed to doisto solve amalrix

equation:
AX=B (6.29)
[a) ] (b ]
al, b’ :
where A=| " [eR"", B=| |eR™, XeR". In a general heteroscedastic
_a:ﬂ_ _b:lf_j

case, the uncertainties in B are characterized by the covariance matrix C for the
vectorized vecl(B)=[b; b} - b, | € R™'. The objective function to be
minimized is:

X= min(vecl(AX - B))C* (vecAX~B)) ’ (6.30)
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Similarly, C can be factorized as C=Udiag(d,,d,.--,d,,)U7 , and define

Q = diag(1/,Jd, )/ Jd, -1/ Jd, UT.

First, we convert the equation of a;X =b] to (I, ®a})ves(X) =b!". Then, AX=B

can be rewritten as;

(1, ®a)] b ]
I, ®a; b’
o eeX) = ] 6.31)
[, ®a,, | b)) ]
and further as
7, ®a)] (b7
1 ®a) b.’
Q . vee(X)y = Q| - (6.32)
1, ®, | b |

The uncertainties in the right side of (6.32) have been i.i.d. Gaussian if the
uncertainties in C are Gaussian. Thus, (6.32) can be solved by the LS method, and

the associated X can be obtained.

6.3.4 Disussion of the optimality

From the above sections, we can see that the optimal solution, at least a local
optimal solution, is iteratively obtained, if we evaluate the estimate using the
objective functions in (6.19) or (6.20). However, it is not the ML estimate if the
uncertainties in W (or in b and B) are not Gaussian. Because of this, we assumed
the uncertainties in W {(or in b and B) are Gaussian when we referred to the ML

estimate above.

6.4 Application in conic fitting

As can be observed in section 6.3 and in the objective function in (6.19) or (6.20),
the crux of our bilinear approach to the heteroscedastic low-rank approximation,

and consequently of the heteroscedaslic parameter estimation problem, is to obtain
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the covariance matrix of the carriers w. In this section, we will study this issue, by
taking the conic fitling problem as a specific example. This case has been analyzed
in (Leedan er al. 1999; Leedan er al. 2000), where the covariance matrix of the

carriers was obtained.

As in (Leedan er al. 1999; Chojnacki er al. 2000; Leedan er al. 2000; Chojnacki ef

al. 2004), we also assume that each component of the observed x is corrupted with

. . e - . - . . .
i1.i.d. and o -variance Gaussian noise, and consequently, that the uncertainties in

different carriers are independent.

6.4.1 Covariance matrix in the conic fitting

A conic is characterized by the following constraint:
ax’ +bxy+cy’ +dx+ey+ =0 (6.33)
The carriers in (6.33) are x*, xy, y*, x, y, and 1. By the linearization, we
reformulate (6.33) in the form of (0.1):
(3, yoxy,.x0, v 1d,e.bya,c, /) =0 (6.34)
The conic fitting probiem is to estimate the parameters, a, b, ¢, d, e and J, from a

few (at least G), noisy points.

We can neglect the constanit component, by using the techniques suggestzd n

section 6.3.1.1 and 6.3.2.1. So, we only need study the uncertainty model for the

first five carriers [x, y,xy, x%, ¥*].

As in (Leedan er al. 1999; Leedan er al. 2000), we employ the following

covariance matrix to characterize the uncertainties in [x, y,xy,x*, y*}:

Rl ) Ll i

L P e

(1 0 ¥, 2x, 0
0 | X, 0 2y,
clly, x, xl+ylt+o® 2x,v, 2x,y, |=o3C, (6.35)
2x, O 2x,¥, 4x +20° 0
| 0 2y, 2x, 5, 0 4y} +207 |
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where the subscript “o” denotes the underlying ground truth of the associated
quantity. In practice, the ground truth is unknown and we use the observed

qualities. So, in the following, we do not use the symbol “o™ in the subscript.

If we drop the o in C in (6.35), we have:

1 O V 2x 0

¢ 1 x 0 2y
C=|y x x*+y 2xv 2y =DD’ (6.36}

2x 0 2xy 4x° O
0 2y 2 0 4y’

where
Lo
0 1
D=|y «x .37
2x 0
L 0 2)"-‘

From (6.36), C has a rank of 2. Supposing C = Udiag(d,,d,,0,0,0)U", we have
span(u,,u,) = span{D) (6.38)

If the x and y coordinates are much larger than the noise in them (this is true in

most points}, it would hold that

span{u ,u,) = span(i,,0,) (6.39)
where i, U, are the singular vectors of C, associated with the two largest singular
values. This can be obtained from the matrix perturbaltion theory, by regarding the

terms of &* in C as some perturbation.

Suppose we observe x, y, with noise £, and £, in them, respectively. The

uncertainties in the carriers [x, y,xy, x*, y*], introduced by £ and £, are:
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of a general

| X, +&, [ X, ] .«
J’o + b‘y )’o »
E= (xo + &y )(yo 5 g,t') il Yobx + X, g.r + €x g,r (640)
2 2 . 2
(x, +&.) x; 2x,&, + &,
2 2 2
L (}’ 0 + 83') 3 |_ J’: 2)’0 8;‘ + 8,'-'
And, g can be expressed as:
T 2 297
e=Df¢g,,£,) +{0.0,£.¢,.¢.¢] (6.41)

From (6.36), (6.38), (6.39), (0.40) and (6.41), the first order uncertainties are

modeled by the covariance matrix C, and cbnsequently approximately by the first

two singular vectors of C, associated wilh the two largest singular values. This

property will be used in the noise level estimation.

6.4.2 Noise level estimation

As can be observed in (6.35), the noise level, o, in the observed qualities is
needed in obtaining the covariance maitrix of the carriers. Because the second order
terms of uncertainties in the carriers are not Gaussian, we only use their first order
uncertainties in estimating the noise level in the observed data. Taking the conic

fitting as an example, the first order uncertainties are D¢, &, ).

First, we have the following fact
[e,,£,1D"(DD")Y D¢, £, ] =&} +&; (6.42)

where D7(DD7)"D = diag(l,]).

From (6.36), (6.38), (6.39), (6.40) and (6.41), the rank 2 approximation of the

covariance matrix C, is approximately C if the x and y coordinates are much
larger than the noise level::C? ~ C = DD’ . Moreover, the uncertainties captured
by the 2 largest singular vectors of C, are approximately D[«S‘x,é'y]r. Combining

these observations and (6.42), we employ the following estimate for the noise

level:
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—l—-Ze;E;ze;T (6.43)

2mig

s

where C;* is the pseudo inverse of the rank-2 approximation matrix of C; in

(6.35), and €’ is the " row of the error matrix E, E= W-RS, with R and S as
the current estimates in the bilinear approach (6.9). Note, in the calculation of the

error matrix E, the constant column in W is not included.

6.5 Experimental results

In this section, we conducl experiments on ihe conic fitting, to validate the
correctness of our general theory in section 6.3. With this aim, we mainly compare
our approach with other compeling approaches to this problem: including FNS
(Chojnacki er al. 2000), HEIV (Leedan ef al. 1999; Leedan er al. 2000), KAN
(Kanatani 1994; Kanatani 1996) and the constrained TLS method (Fitzgibbon ef
al. 1999). The method in (Fitzgibbon et al. 1999) is a specific implementation of
the TLS method (Huffel et al. 1991), for the conic filting problem, as pointed out

in (Leedan et al. 2000), in particular it enforces that the solution is an ellipse.

It has been established in {Chojnacki et al. 2004), that the HEIV and the FNS are
intimately related, with only different numerical solution; and it has also
experimentally proved that both of them have almost same performance, where the
AML objective function is employed as a criterion. The following experiments
suggest that HEIV performs betier than FNS in the more challenging problems, for
example, where the points distribute in a small portion (e.g., a quarter) of the
ellipse; although they have almost same performance in other mildly ch .enging
. | settings, for example, where the points are from an half ellipse. We do not know

the reason for this difference in performance.

In all the experiments, we use the foliowing setting: the true ellipse has a major
axis of size 100 and a minor axis of size 50. Two factors have much influence on
the estimates of, almost all, the methods mentioned above: the noise level and the
span of the points. All the methods produce good estimates, indeed estimates
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which are almost same, if the points span the whole ellipse. Because of this, we do

not run experiments on the whole ellipse.

6.5.1 Noise level=2 over a half ellipse

First, we conduct the experiments in the following setting. 100 points are randomly
generated in a half ellipse, where the segment of the half ellipse is also randomly
selected. Then, 1.1.d. Gaussian noise, with noise level of 2, is added to the 100
points. The experiment is repeated 200 times {with different random samples).
Surprisingly, our bilinear approach performs almost identically to HEIV, FNS and
KAN, all of which perform better then TLS.

Table 6.1: The statistics of the estimated major length, minor length, x and y
“coordinates of the center, and the angle between the major axis and the horizontal

axis. The ground truth is listed in the first row. For every method, its mean, with its

standard deviation in the brackets, is listed in each row. Noise =2 over ¥ ellipse

Major(100) | Minor(30) | Center X(0) | Center_Y(0) | Angle(0) |

Bilinear 100.6332 49.9533 -0.1382 0.1164 0.0218
(4.3768) (1.6987) (4.3744) (1.7272) {1.2630)

FNS 100.7461 49.9794 -0.1540 0.1194 0.0176
' (4.5155) (1.7131) (4.5255) (1.7441) (1.2746)

HEIV 100.8303 50.15604 -0.1783 0.1182 0.0235
(4.4745) (1.6956) (4.4852) (1.7454) (1.2878)

KAN 100.6214 49,9326 -0.1670 0.0903 0.0328
(4.5938) (1.7042) (4.5990) (1.7457) (1.2966)

TLS 93.6993 47.1748 0.2508 -0.3264 0.4267
{4.3251) {1.7675) (7.5858) (3.3746) (2.6456)

We cexperimentally find that the error in the five parameters above is not
independent. The error in the coordinates of the center and the orientation angle
are strongly dependent on the estimates of the major length and the minor length.
If both the major | ength and the minor length are ¢ orrectly estimated, the o ther
three parameters are probably close to the ground truth. Because of this
observation, we mainly resort to the major length and the minor length in the
evaluation of the methods, in the following. In Figure 6.1, we show the
performance of the methods, in contrast with that of the Bilinear. We can observe a
strong linear correlation between the four approaches: HEIV, FNS , KAN and

Bilinear.
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Figure 6.1: The comparison of the bilinear approach, with the FNS, HEIV and
KAN, TLS. (a) is the estimated major length and (b) is the estimated minor length.
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Figure 6.2: See the caption of Figure 6.1. Noise =2 over 3/8 ellipse. The only other
difference is that the TLS method is not included. In two of the graphs, there are a
significant number of “outlier” results that we have highlighted by drawing an
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6.5.2 Noise level=2 over 3/8 ellipse

The next experiment differs from the above experiment in that now the points are
randomly generated from a random 3/8 ellipse. The noise level is stili 2. In order to

present a better comparison, we repeated the experiment 1000 times to obtain the

statistics (listed in Table 6.2).

Table 6.2: See the caption of Table 6.1. noise=2 over 3/8 eilipse

T e e R S S S RN

R

Major(100) | Minor(50) { Center X(0) | Center_Y(0) [ Angel(0)

Bilinear 103.6820 51.0717 0.4578 0.2702 -0.0461
(16.0952) (6.6344) (16.0868) (6.9479) (3.2988)

FNS 100.3527 46,9251 0.4511 0.2104 0.0434
(17.4383) (9.4859) (16.4996) (9.7672) (3.6045)

HEIV 103.7216 51.4157 0.3804 0.3439 -0.0313
(15.5261) (6.8837) (15.4628) (7.2849) (3.3207)

KAN 104.4603 51.246! 0.3138 0.0375 -0.0042
(18.5451) (7.3436) (18.5808) (7.8171) (3.5893)

TLS 73.8776 35.7235 0.1016 -0.2730 -0.2007
(9.0869) (5.0653) (28.0569) (13.6420) (10.5892)

However, taken alone, the statistics in Table 6.2 don’t adequately reflect the
performance of the methods. Consider also Figure 6.2 and Table 6.3. We find that
the FNS method performs much worse than the HEIV, KAN and Bilinear
approaches in some cases, as can be observed in Figure 6.2. (Note, although there
are a few cases in the circles in Figure 6.2, where the Bilinear, HEIV and KAN
also produce “bad” estimates; in many cases, the Bilinear, HEIV and KAN
produce “good” estimates, as can observed in Table 6.3). The problem with the
FNS method is that there is no guarantee of convergence. Because of the lack of
convergence, in some cases, the FNS stops in the first iteration step, and
consequently, its estimate is the same as the itial estimate, which we chose as the
TLS estimate for initializing FNS. (This also accounts for the fact that the FNS
method produces almost 100% ¢llipses in the following experiments, which are

even more challenging. Note, the TLS always produces an ellipse because the

constraint 4de —¢® =1 is enforced in the TLS method.)

To summarize: it is difficult to evaluate the approaches in this setting. This is

because one appreach scores better in a few cases, while another approach scores
114

#ﬁﬁm"ﬁyﬂ\m

e e R R R




Chapter 6: Bilinear approach to the parameter estimation of a general
heteroscedastic linear system, with application to conic fitting

better in other different cases. Moreover, as we will see in the more challenging
experiments below, some estimates are wildly wrong, (they may not even be
ellipses - except when the special TLS method is employed, enforcing the elliptic
consiraint). For these reasons, the statistics above, by themselves, can not reliably
reflect the performance of the approaches. Worse, the wildly wrong estimates
make the statistics, like mean, misleading in assessing the performance of the
methods. For example, from the mean o {the major length, the FNSi1s the best
method. However, if we examine the figures in Figure 6.2 in detail, we find that
FNS actually is worse than the HEIV, KAN and Bilinear methods.

In order to present a m eaningful comparison, we mainly resort to the following
statistics: for a method, how often does it produce good estimate? As in Figure 6.2,
we only use the estimated major length and the esttimated minor length in
evaluating the performance, because the accuracy of other parameters is strongly
dependent on the accuracy of the lengths. More precisely, we regard an estimate as
“good” if the error of the estimated major, and minor, lengths fall short of 10% or
20% of the true lengths. In this example, we regard the estimate good if its major
length lies in [90,110] or [80,120] and if its minor length lies in {45,55] or [40,60].
The KAN and FNS methods perform a little worse than HEIV and the proposed

Bilinear method.

To provide an indication of our measure, two examp! 5 of “good” estimates are
shown in Figure 6.3, The good estimates by these four methods are shown in

Figure 6.4.
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Figure 6.3: Two example of “good” estimates, falling in the 10% and 20% range.
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Table 6.3: The “good” estimates for noise=2 over 3/8 ellipse. See the definition of
“good™ estimate in the text.

g 10% 20% Other ellipses | Non-ellipse
| ' Bilinear 532 325 175 0
HEIV 526 820 179 1 %
KAN 470 773 205 3 :
;
%
FNS 444 686 314 0 i
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Figure 6.4: The “good” estimates in 1000 trials of the Bilinear, FNS, HEIV and
KAN approaches for noise=2 over 3/8 ellipse. The number after the approaches in

the legend is how often the associated approach produces “good” estimates in 1000
trials.

6.5.3 Noise level=1 over a quarter ellipse

In this experiment the noise level is 1 and the poinis are from a quarter of the
ellipse. We also run 1000 trials for this setting. As we discussed above, the statistic
of mean and standard deviation are not good indexes for comparing. We only list

how often the approaches succeed in producing “good” estimates in 1000 trials.
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Table 6.4: The “good” estimates for noise=1 over 1/4 ellipse. See the definition of

“good” estimate 1n the text.

10% 20% Other ellipses | Non-ellipse
Bilinear 229 421 569 10
HEIV 222 425 553 22
KAN 188 383 481 136
FNS 125 246 752 2
TLS 0 0 1000 0
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Figure 6.5: The “good” estimates in 1000 trials of the Bilinear, FNS, HEIV and
KAN approaches for noise=1 over 1/4 ellipse. The number after the approaches in
the legend is how ofien the associated approach produces “good” estimates in 1000
trials. The “good” estimates are defined by the 10% range.

Although there is a strong linear correlation between the results produced by the
HEIV, FNS, KAN and Bilinear methods in some settings, as can be observed in
Figure 6.1 and Figure 6.2; they actually have quite different performance in this

more challenging environment.
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Note: even though the HEIV and the bilinear methods seem io have a similar
performance, in terms o f the statistics in Table 6.3 and T able 6 .4, they a ctually
have different oulputs in many cases. For example, although the Bilinear approach
and the HEIV approach produce a similar result, in terms of how often they
produce “good” estimates; there are only 142 cases, where both approaches
simultaneously produce “good” estimates, falling in the 1 0% range. This means
that, in 80 cases, while the HEIV result falls in the range of 10%, the Bilinear does
not. On the other hand, the Bilinear approach produces good estimates in 87 cases,

where the HEIV approach does not.

We also comment that, due to the moderately high failure rate, none of these
approaches can’t be regarded as a solution to the conic fitling problem in the most

challenging forms (data over a small arc of the ellipse only). .

6.5.4 Noise level=2 over a quarter ellipse

In this last experiment the noise level is 2 and the points are from a quarter of the
ellipse. As in section 6.5.3, we only list how often the approaches succeed in

producing “good” estimates in 1000 tr:als.

Table 6.5: The “good” estimates for neise=2 over 1/4 ellipse . See the definition of

“good” estimate in the text.

10% 20% Other ellipses | Non-ellipse
Bilinear 88 211 T 663 126
HEIV 75 179 577 244
KAN 29 75 313 612
ENS 10 26 965 9
TLS 0 0 1000 0
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Figure 6.6: The “good” estimates in 1000 trials of the Bilinear, FNS, HEIV and
KAN approaches for neise=2 over 1/4 ellipse. The numbers afier the approaches in
the legend are how o flen the associated approach produces *“good™ estimates in
1000 tnials. The “good” estimates are defined by the 10% and 20% range,
respectively.

We remark that, only on 19 or 92 cases, out of the 1000 trials, both HEIV and
Bilinear produce “good™ estimates, in terms of the 10% or 20% ranges,

respectively.

6.5.5 Comments ¢a the experimental results

Although convergence to the ML estimate, at least a local optimal estimate, can be
ensured in the proposed bilinear approach, as discussed in section 6.3.4, the results
are not so good as expected. From the Table 6.4 and Table 6.5, the bilinear
approuch can’t be regarded as a good solution to the problem:, where the points
only span a quarter of the etlipse; because it has only about 10-20% success rate of

*good” estimates.
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There are two possible reasons for this. First, as suggested in section 6.3.4, only a
local optimal solution can be ensured in the iteration process. If the initial estimate
deviates far from the giobal optimal estimate, the iteration is possibly trapped in
other local minimal estimates. In our experiments, we took the TLS result
(Fitzgtbbon ef al. 1999) as the initial estimate for the bilinear approach. However,
it has been suggested in (Leedan er al. 2000) that the TLS result is not “adequate to
be used as an initial solution.” Also note that we take the TLS result as the initial
estimate for FNS approach. This possibly accounts for the fact that FNS performs
much worse than HEIV in the challenging seltings, as shown in Table 6.4 and
Table 6.5.

The second reason, possibly, is due to the specific nature of the conic fitting
problem. Also as discussed in section 6.3.4, the optimal solution, measured by
“(6.19) or (6.20), does not imply the ML estimate, because the ML optimality
applies only when the uncertainties in the general measurement matrix W are
Gaussian. As we analysed in section 6.4.1, the second order uncertainties are not
Gaussian. Strictly, even if we obtain the optimal solution, measured by (6.19) or

(6.20), 1t is not the ML estimate.

We also have to remark that, although that the bilinear approach outperforms other
competing approaches, as can be observed in experiments above; we do not claim
that the proposed bilinear approach can replace the other approaches because of
two facts. First, as pointed out in the experiments, although the results, by FNS,
HEIV, and KAN show a strong correlation with the result by the proposed bilinear
approach, there are many situations where one method succeeds and other methods

fail. There is no clear “safe-bet” in this regards.

Second, the computation complexity of the proposed bilinear approach impedes its
practical applications especially when the points only span a quarter ellipse. In the
challenging settings, as in sections 6.5.3, 6.5.4, the bilinear approach suffers from
its low convergence rate. The bilinear approach in (Shum er al. 1995; Gear 1998;

Vidal er al. 2004) is a variant of the orthogonal iteration method in (Golub ef al.

1996), whose convergence rate is the ratio between the (r+l)"' singular value and
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the (r+1)" singular value. It is not clear what governs the convergence rate in the

heteroscedastic setting.
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Figure 6.7: A bad estimate, with details. The solid ellipse is the ground truth, and

the dotted ellipse is the estimated ellipse. The dots, *.’, are the noisy feature points.

6.5.6 Question raised

We have stated that the approaches, including FNS, HEIV, KAN and the proposed
bilinear approach, can’t be regarded to a good solution to the conic fitting problem,
when the points only span a small arc of the ellipse. Here, we highlight aspects of
the problem from another point of view. Figure 6.7.a shows a “bad” estimate,
whose estimated major and minor lengths are 230 and 80, respectively. In terms of
the estimated parameters, this estimated ellipse is wildly wrong, because it is far

from the truth. However, from Figure 6.7.b, we can find that the estimated ellipse
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fits the points very well. If we separate the fitted ellipse and the underlying ground
truth, it is very difficult to decide which one fits the noisy points better, as shown
m Figure 6.7.c and Figure 6.7.d. This suggests that in many cases it may actually
be unreasonable to expect the true ellipse to be recovered in such exireme cases of

only a small fraction of the ellipse containing data.

6.6 Conclusion

In this chapter, we present a general theory of the parameter estimation problem in
a heteroscedastic linear system. This theory suggests a bilinear solution method
which we implemented and tested. The method was shown to perform relatively
well, and, for ellipse fitling where the data covers a large fraction of the ellipse, the
results are good. However, none of the methods investigated, including ours, can
be considered adequate for fitting data from a small arc of the ellipse. As we
illustrated in our concluding section, it is perhaps true that in at least some of the
cases where the methods fail, it is unreasonable to expect any method to produce
the “true” solution. However, we have no way of making such a notion precise and

for testing the “reasonableness’™ of the task.

In the latter stage of this work, the author became aware of work that tries to
project onto a low rank subspace by optimization on the Grassman manifold. See
(Lu et al. 1997; Manton et al. 2003). It would be interesting to use such methods

on this problem.

Appendix: Equality Constrained Least Squares

The equality constrained least squares problem is as:

min {| A, x-b, || (A.6.1)
Ayx=by
where A, € R™, A, e R, b, eR™ ,and b, e R™.
: . ;7 IR
Without loss of generality, assume rank(A,)=p and p<n.Let Q" A, = 0 be

the QR factorization of A , where R is a pxp upper triangle matrix. Set
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A Q=[P,P,] and er=[yJ, where yeR™ |, ze R"™ . With these
z

transformations, (A.6.1) becomes

Rz;}i_? [Py+P,z~-b, | (A.6.2)

where the vector § can be determined from the constraint R’y =b, . (A.6.2)

becomes

min || P,z - (b, — P, )| (A.6.3)

which is an unconstrained LS problem. The solution to the equality constrained LS

problem (A.6.1) 1s:

'y

Q[ ] (A.6.4)
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Chapter 7

Orthographic projection of distances: a low-

dimensional approximation

7.1 Introduction

The distance between two feature points in an image is a coordinate-free quality;
however, it has seldom been used in computer vision or pattern recognition tasks
because it rapidly changes as the view varies. In this chapler, we investigate one
property of a quantity we call the “distarnce vector”, which consists of the distance
among the pairs of feature points under orthographic projection. We prove that the
distance vectors under different views approximately lie in a linear subspace with a

dimension of 6.

7.2 Distance vector, spherical harmonics, and linear subspace

[t has been proved, by exploiting spherical harmonic expansions, that the gray
scale images of a Lambertian object approximately liec in a 9D linear subspace
(Basri er al. 1999; Ramamoorthi et al/. 2001; Ramamoorthi 2002; Basn et a’.
2003). Similarly, we will prove here that the “distance vectors™ of a rigid object
approximately lie ina 6D linear subspace, and the 6D subspace accounts for at

least 99.76% of the variability of the distance vector.

7.2.1 Definition of distance vector (distance matrix)

For m feature points in an image, there are C. =m(m~—1)/2 line segments

jointing all pairs of such points. We use a symmetric »m<m matrix, D, with all zeros

in its diagona) entries, to represent all the segments between features. D, ; is the

length of the line segment between the i** feature point and the /" feature point. We

arrange the m(m-1)/2 entries, D, ; with i>j, of the upper-half matrix as a vector,
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calling it the distance vector. The order of the eniries of the distance vector does
not make difference in the subsequent sections. What counts is that we arrange all

the distance vectors in different views in the same order.

7.2.2 Spherical harmonics

Spherical harmonics for the functions on the surface of the unit sphere have the

same role as the Fourier basis for functions in the plane. Spherical harmonics are

defined as:
2 - ! ;
Ynm(9,¢) = ( ”+]) (” I‘”l l) Pnlml(COSG)emm (‘7'1)
‘ 4z  (n+|mp
where P, s the  associated Legendre  functions, with

(1 _ 72)»1!2 d:mm
— (zZ=1) for n=012,--- and —-n<m<n . Y, for
2“ ”! ‘!zﬂi-ﬂ! .

Pn(z)=

—-n<m<n is the ™ order spherical harmonics, and there are 2n+/ spherical

harmonics in the n" order.

Spherical harmonics form an orthogonal basis for functions on the surface of the
unit sphere. A function on the unit sphere can be decomposed into a series of the

spherical harmonics:

FOH=3 Y (6 (72)

n=0m=—n

where f,,, is the strength of the harmonics of ¥,

Jom = [[16.8)Y,,,(0.9)sin(8)d g (7.3)

7.2.3 Spherical harmonics for the sine function

As was used in (Basri ef al. 1999; Ramamoorthi er al. 2001; Ramamoorthi 2002;
Basri et al. 2003), the sine function can be approximately decomposed into the a

few spherical harmonics. Particularly, the harmonics e xpansion o f sine function

can be decomposed into:

sin(@) = z L2 F (7.4)

n=0

125

SR

o -
L% YR

A AT

e

R

O R A ST




Chapter 7: Orthographic projection of distances: a low-dimensional approximation

L

2n f=n +f L . .
where , =;i—r-;Z{(—l)"Ci,,P§"Z{(-l)"C‘ 28=1hy . The calculation of ks, is
< WGen j=0

- i-n

-~
L

arranged in the appendix.

Please note that all the odd order harmionics Y. are eliminated. The reason is

2a+l,m
that the sine function is symmelric with 7/2 and all odd order terms are anti-
symmetnc with 7 /2. Another fact is that, because the sine function is circular
symmetric, only the zonal harmonics (i.e. m=0 in equation (7.1)) exist in the

expansion of (7.4), 1.e,, f, . =0 in(7.3) for m=0.

The amplitudes up to the 20" order spherical harmonic are plotted in Figure 7.1.
Specifically, k, =a\m/2 , k,=-z/57/16 and k,=-37J7 /128 . (Note

ky,., =0 .) The approximation up to the second/fourth order accounts for

2+l

99.76/99.96% of the energy of the sine function --- % T

I;g I: sin’ @sin Od Bl = %ﬂ' (7.5)

Figure 7.2 shows the close agreement between the sine function and the spherical

harmonic approximations up to the second and the fourth order.

7.2.4 Low dimensionality of the distance vectors

Under the orthographic camera, the lengih between two points ina view is the
product of its length in the 3D world and sin(@) , where & is the angle between the
optical axis of the camera and the 3D line. Suppose each point on the unit sphere
surface represents the direction of one unit-length segment in 3D space.
Consequently, its distance vector is the function sin(#) when the optical axis of
the orthographic camera coincides with the z direction. From (7.4), this distance
vector can be approximately spanned up to the second or the fourth order, with 2

or 3, respectively, orthogonal zonal harmonics.
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Figure 7.1: The amplitudes of the spherical harmonics up to the tenth order.
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Figure 7.2: The approximations of the sine function. The solid curve 1s the sine

function, the dashed/dotted curves for the second/fourth order approximation.

When the view 1s taken from other direction, other non-zonal harmonics are not
zeroes any more. Viewing [rom other direction has the same effect on the spherical
harmonics as a rotation. In (Ramamoorthi ef a/. 2001), it has been shown that the

rotation of the harmonics only mix the energy between the same order harmonics
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and that the total energy in one order does not change. Precisely, a rotation of a
harmonics is a linear combination of all spherical harmonics within the same
order. This fact has also been pointed out in (Basri e al. 1999; Basri ef al. 2003).
Thus, when viewed from other directions from the z directicn, the sine function on

ih

the surface of the unit sphere can be approximated by up to the 2n™ order with

L]

Z(I +4n) = (2n* +3n+1)" harmonics; particularly for the second or fourth order,
i=0

respectively with 6 or 15 harmonics. Because the rotation only mixes the energy of
the harmonics with the same order, these 6 or 15 harmonics still accounts for

99.76/99.96% of the energy of the rotated sine function.

7.2.5 Sine function on a sparse set of points

Of course, only some sparse directions are needed for an object with some feature
points, instead o f the whole sphere. M oreover, line segments in 3 D world have
different lengths. However, for a sparse set of directions, the property of the low-
dimensionality still applies. Indeed, a slightly better approximation can be

expected for the sparse case, as is validated by the experiments.

We arrange the distance matrix this way: the distance vector, with the same order,
for each view takes a column. Two cases are considered as examples: 100 or 20
points are randomly generated and then are randomly orthographically projected
upon 1000 views. Next, we apply SVD (Golub ef al. 1989) on the distance matrix.
The energy distribution for 100 poinis and 20 points is listed in Table 7.1,

comparing with the theoretical values {or the sphere.

The data in Table 7.1 confirms our claim that the low-dimensionality of the
distance vectors sti}l holds for a sparse set of directions. The first 6 singular vectors
of the distance matrix account for 99.79% or 99.80% of the energy, compared with

99.76% for the sine function on the surface of the unit sphere.

Another property can be observed, from this example, that the difference between
the second and the sixth singular values decreases as the feature points increases,

as shown in Figure 7.3. It can be e xpected t hat the singular values in the same
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order are approximately same when enough feature poinis averagely distribute in

3D space.

Table 7.1: Energy distribution for the sphere and a sparse set of direction.

Stmulation Sphere
100 points 20 points
I 93.47% 9324% | 0" | 92.53%
26" 6.33% 6.55% 2™t 7.23%
74 15" 0.17% 0.18% 4" 0.20%
095- ﬂ
IJ.B:- I
OTE-
06.-
os:
ga’
CI.ZjL "
i ?
o.1§~ ' A T -{
D T T e e

Figure 7.3: The singular values of the distance matrices with 20 (denoted by circles

“0") or 100 (denoted by crosses “+°°) feature points

7.3 Discussion and conclusion

As discussed in previous chapters of this thesis, the low-dimensional subspace
analysis has been widely employed in computer vision tasks, like the faclorization
method for structure from motion and the PCA (or the linear subspace approach) to
the face recognition problem. In this chapter, we prove a new low-dimensional

property that a 6D subspace accounts for at least 99.76% of the variability of the

distance vector.
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Closely related to this approximately 6D property of the distance vector is the fact

that the measurement matrix lies in a 4D subspace, as discussed in chapter 3. At
this stage, we cannot demonstrate that the new property established here is directly
useful for computer vision tasks. However, it does seem likely that such a '

remarkable feature can be exploited.

Appendix

Here, we derive the analytical formula for the decomposition of the sine function.

According 1o (7.3), the coefficient of the 21" order harmonics, &2y, is:

k, =2z J:sm oY,, ,(0)d0 (7.6)

(2n+1)
where V., (€)= P,,(cos8). We can express P, (7} as:

Py=—— Z(—l) C Pt (7.7

‘ i=n

The following formula can be easily obtained:

f cos™* @sin? M = Z( ~1)7 C* f sin2/*Y g1g (7.8)
ja0j
[[sin® 66 =712 (1.9)

fsinzu*” &lé = f(2j+ Dsin® cos® &8

=(2/+ I)fsin’-" alg -2+ l)fsinzu‘” Gio

2 7.10
2)+] fsnr’&z’@ (7.10)
’)J +2
’*' 2A —1
Combining (7.6), (7.9) aud (7.10), we “ave obtained
2n 21,
fy, = Z -D'C; P»?"Zi( -y’ I1 (7.11)

w0 k=1 2’"
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Chapter 8

Subspace-based face recognition: outlier detection

and a new distance criterion

8.1 Introduction

Ilumination effects, including shadows and varying lighting, make the problem of
face recognition challenging. Experimental and theoretical results show that the
face 1mages under different illumination conditions approximately lie in a low-
dimensional subspace, hence principal component analysis (PCA) or low-

dimensional subspace techniques have been used, as overviewed in Chapter 3.

The contributions of this chapter are: (a) In section 8.3, we propose a new error
distance for the subspace-based recognition problem. This is based on the new
theory about the learning capacity in low-rank subspace approaches, presented in
chapter 4. (b) In order to remove points not following the reflectance model, we
employ the iterative reweighted least square (IRLS) technique (section 8.4) to
detect the pixels that do not obey the dimension-3 subspace constraint, such as
eyeballs. The experiments on the Yale-B face database show the effectiveness of

the new techniques.

The work presented in this chapter has been published in (Chen et al. 2004).

8.2 Lambertian reflection and low dimension subspace

It has been experimentally observed that the set of images, observed under

different lighting conditions, can be considered as lying in 2 low dimension
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subspace (of the set of all possible images of a certain person). This fact can be
theoretically justified so that, depending upon the complexity of the image model,
we can demonstrate that the dimension of the subspace is as low as 3-9 (in this
chapter, we use 7 dimension subspace to model the attached shadow.) This section

overviews the background in the context of face recognition.

8.2.1 Lambertian reflectance and 3-dimensional subspace

The images of a Lambertian object can be approximately modelzd by a 3-
dimensional subspace if the light source lies at infinity and there is neither attached
shadow nor cast shadow (Shashua 1997; Georghiades et al. 2001). Following
(Belbumeur er al. 1998), for any point p on a Lambertian surface, illuminated by

an infinite light source, its intensity can be described by
I(p)=a(pm(p) s=b(p)'s (8.1)

where a(p) (a scalar) is the albedo’ at position p, n(p) (a 3-vector) is the inward

normal of the surface at position p, and s (a 3-vector) is the direction of the light.
Let Be R™ be a matrix where each row is b(p)” . The illumination subspace can
be generated by:

L={x|x=BsVYse R’} (8.2)

The images w ithout shadows are a subset of L. The set o f all images, the non-

negative orthant, 1s defizx-d as:

L, = {x|x = max(Bs,0),Vs € R’} (8.3)

A general subspace-based algorithm for the face recognition is (Georghiades et al.
2001):
(a) Training stage. Arrange the training samples (images of the same face under

varying light conditions) as the training matrix, each column of which is an image.

" The albedo factor can be neglected, because it only scales the associated row of B by the factor of
a. The training matrix, which consists of the face images without shadow, should be of rank 3, no
matter whether the albedo at differem positions is the same or different. We do not refer to the
albedo in the following.
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By SVD (Golub et al. 1989), the 3 basis images are derived from the 3 singular

vectors that correspond to the 3 largest singular values.
(b) Recognition stage. Calculate the distance of the test image 1o the 3-dimensional
subspace that is spanned by the 3 basis images. The target is selecied as that which

has the shortest distance.

As we discuss in the next section, the Lambertian assumption, particularly
excluding shadows, is a bit unrealistic and pne usually uses slightly larger

dimensional subspaces (with obvious changes to the algorithm described above).

8.2.2 Attached shadow and low-dimensional subspace

The 3-dimensional constraint does not hold when there is a shadow. Intrinsically,
the dimension of the image set for an object is “equal to the number of distinct
surface normals™. However, it has been proved, experimentally and theoretically,
that the image set approximately lies in a low-dimensional subspace (Turk et al.
1991; Hallinan 1994; Eipstein et al. 1995). It has been experimentally proved that
images with shadow can be approximately modeled by 542 eigenimages (Eipstemn
et al. 1995). Moreover, an important theoretical proof shows that the images of a
Lambertian object can be approximately modeled by a 9-dimensional subspace if
there is no cast shadow (Basri ez al. 1999; Ramamoorthi ef al. 2001; Ramamoorthi
2002; Basri ef al. 2003). Based on this 9-dimension theory, 9 points of light for

face recognition were optimally determined (Lee er al. 2001).

8.2.3 Generation of the image basis from synthetic images

One does not want 10 use more images then necessary in constructing a training
set. It has been shown (Lee er al. 2001) that for a single face approximately 9 well-
chosen lighting directions are optimal. However, the result in (Lee er al. 2001) was
not good enough in practice. A reliable approach to obtain the image basis is to
calculate them from a large amount of training images, for exampie 80-120
training images (Georghiades er al. 2001). Although a large set of images 1s
unwieldy, a possible solution to this problem is to use the synthetic images, as in
(Georghiades ef al. 2001). I this chapter, we also employ this strategy to obtain

the wnage basis.
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Taking the Yale-B face database as an example, the procedure of generating the
image basis in the training stage is (the image basis for each person is separately
generated in our approach), as follows:

Training algorithm:

(a). Obrain the illumination subspace L in (8.2) from more than 2 images that have
no shadow. Here, we use the 7 images in “subset 17 in Yale B face database as the
training samples.

{b). Generate the synthetic images that are illuminated by a light at infinity, using
equation (8.3). Note: the nonlinear operation of setting to zero the negative pixel
values moves the resulting images outside ot the 3 dimensional subspace.

(c). Calculate the approximate low-dimensional subspace from the simulated
images, by SVD (Golub er al. 1989). The 7D basis image of person | and person 4

are shown in Figure 8.4.

As an important variation, we employ the iterative least squares procedure as an
“outlier” detection strategy when we calculate the illumination subspace in sub-
step (a), because not all the pixels of a face can be approximately Lambertian, for
example the eyeballs and eyebrows. This outlier detection straregy will be

presented in section 8.4.

In the simulation of the possible images in sub-step (b), we only consider the effect
of the attached shadow, as the “Cones-attached” in (Georghiades er al. 2001}.
However, we don’t need to reconstruct ihe face to a generalized Bas-Relief (GBR)
transformation (Belhumeur er al. 1999). Instead, we “randomly” generate the
synthetic images, because an arbitrary “linear” combination of the three basis
images can be an image, illuminated by a light with unknown direction
(Georghiades er al. 2001). It should be noted that the negative pixels in the
synthetic images have to be set as zeroes. The attached shadow can be modeled
this way, while the cast shadow cannot be modeled. Although the direction of the
light s is randomly generated, we set the energy of first basis image to half as that

of the other two basis images, in order to model the shadow effect better.
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In calculating the basis images in sub-step (c), which accounts for the attached
shadow, we find that the 7-dimensional subspace performs slightly betier than the
9-dimensional subspace. Crucially, in our approach, the “outliers” deiected in sub-
step (a) are not included in calculating the distances of the test image to the 7-
dimensional subspaces. In more detail, suppose we are calculating the distance of

the test image 1, from the subspace of the i training image set

lle. lir

84
IE I (54

where e, ; is the projection error calculated by ignoring (masking out) those pixels

in I, in the same positions as we detected outliers in i" training set. That is, when

calculating the distance of the test image to each training image set we will
exclude different parts of the test image according to the “mask™ of the relevant

training images.

8.3 Learning capacity of low-dimensional subspace and a new

distance criterion

Few people have properly estitiated where the noise in the training and
recognition processes resides. In chapter 4, based on the matrix perturbation theory
(Wilkinson 1965; Stewart et al. 1990), the leaming capacity of the low-
dimensional linear subspace has been studied. The theory states that the distance of
a new test vector to the estimated low-dimenstonal subspace comes from two
sources: one source is the noise in the training samples and another in the noise ia

the test image.

Suppose we work on the i dimensional vectors and » sample vectors are available
in the training stage. The training samples can be arranged as an mn matrix L,
taking each sample as a column. Ideally, this training matrix should be of low rank
rif there were no noise in the samples. For example, the training matrix, consisting

of the Lambertian images without shadow, is of rank 3. By the SVD (Golub et al.

1989), the traintng matrix can be decomposed into L = UZV T Uand V are mxr
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and nxr matrices with orthogonal columns, respectively, and £ is a *r diagonal
matrix: diag{x,,x,,--,K,}. The test image p should li¢ in the subspace span{U},
re, n=Ulf,, /3, f,], if it were noise free. Ideally, if both the training samples
and the test image were noise free, the projection error of p on the subspace
span{U} is 0, i.e, |p—UU p|=0. However, noise inevitably exists in the
training samples L' and in the test image p’. Consequently, the noise free

subspace U cannot be obtained: another s~dimension subspace U’ is actually

obtained.

From the theory in section 4.4.2 (specifically, equation 4.23 in chapter 4), the
following formula describes the effects of the noise ( &, ) in the training images and
the noise (o,) in the test image, on the "error measure" (SSD, the sum of the

squared difference):

lp' = VU Tp I3 =(m=ryu? +(m=r)o} Z-L (8.5)

2
i
2
-
=1 "\,'

where o, and o,, small enough compared with the signal level, are the noise

levels for the test image and the training samples respectively.

Since some error is introduced by the noise in the training samples, this part of the
error in (8.5) should be subtracted in the recognition stage. More formally, suppose

the new test image p' has a distance of d to the r-dimensional subspace span{U’}.

From (8.5), we take the following distance as the criterion for the classification:

K

\[max(a'2 ~Gun-ne YL, o) (8.6)
t=|

i
The estimation of the noise level o, in the training samples will be discussed in

the following section.

8.3.1 Noise ievel estimation

In this section, we explain how to estimate the noise level o, in (8.6). In our

synthetic generation of the image basis, we first e stimate the noise level in the

actual images. Then, we use these estimates to calculate the estimates for the noise
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levels in the synthetic images (gencrated by a linear combination of basis images,
as per (b) step in section 8.2.3).
From (Bishop 1998), the maximal likelihood (ML) estimate of the noise level in an

r-dimensional illumination subspace is as follows:

J—-l > & 8.7)

m{m=r) 4

where x; is the " singular value of the actual training matrix. It should be noted

that the estimate in (8.7} is calculated from the outlier-detected training matrix

(i.e., after removing outliers).

We calculate the total noise energy of the synthetic training miatrix and regard the

root mean of that energy as the noise level.

8.4 Non-Lambertian pixel detection

Although the human faces can be approximately modeled as Lambertian, some
part are obviously non-Lambertian, for example the eyeballs and eyebrows.
Moreover, some parts of the true training samples that are in the shadow do not
obey the 3-dimension constraint. In order to obtain an accurate 3-dimensional

illumination subspace, we should exclude these abnormal pixels.

Here, we employ a variant of the iterative reweighted least square (IRLS)
(Rousseeuw ez al. 1987) as the “outlier” detection strategy: the weight is either 1 or
0. IRLS works by iteratively fitting the model to the data: essentially, we adjust the
weight of each data, according to its residual; then, a new model is obtained by
minimizing the reweighted least square. More details can be found in (Rousseeuw
etal 1987).

More specifically, we retain those data whose residual is less than 3 times of the
noise scale and prune the other data. Thus, a general 1/0 IRLS iteratively works
this way:

(i) to estimate the scale from the residual of the reiained data.
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(i1) if there is some “outliers”, whose residual is larger than 3 times’ of the scale, to
prune these data and go to sub-step (i); else, terminate the iteration.

Because we work on low-dimensional subspaces, the general 1/0 IRLS can not be

directly applied to detect the non-Lambertian pixels. In particular, we have to

define the residual for a pixel, which in fact is an #-dimensional vector if we work

on n training images.

Suppose an mxa training matrix consists of # training images, each of which has m
pixels. First, calculate the »-dimensional subspace by SVD (Golub er al. 1989).
Second, calculate the residual matrix, by subtracting the r largest components from
each column (each image). Third, calculate the 2-norm of all row (a row
corresponds to the same pixel in different images) vectors and regard them as the
residual for the corresponding pixels. The scale can be estimated as the root mean
square of the residuals of the retained pixels. The detected mask for the non-
Lambertian pixels are displayed in Figure 8.3, where the black pixels denote the
::on-Lambertian ones. The detected outliers do not appear to be perfect - certainly
this part could be improved. However, we can observe that, from Table 8.2, this
amperfect outlier strategy actually improves the face recognition performance.
Also from Table 8.1, the contribution of this outlier detection strategy can be
confirmed by the change of the ratio between the third and the fourth largest

singular values.

8.4.1 Performance evaluation of the outlier detection strategy

For a Lambertian obiject, the fourth singular value of the training matrix should be
zero if the training matrix is noise free. Due to noise, this does not hold. Here, we
employ the ratio between the third singular value and the fourth singular value as
the index to how well the matrix can be approximated by another rank-3 matrix.
The larger the ratio, the better the approximation. Because we use the Yale B face
database in our experiment (in section 8.5), the ratio, respectively for these 10
persons in Figure 8.1, is listed in Table 8.1. The row labeled “original” denotes the

training matrices before the outlier detection and the row of “outher detected”

* The factor 3 is somewhat arbitrary, A factor in the range 2.7 to 3 is often used. This is based on
including a certain (large) fraction of inliers to a Gaussian distribution {¢.g., 99%).
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denotes the training matrices that do not include the detected outliers. Clearly, the

outlier detection has improved the ratios. The detected outlier masks are shown in

Figure 8.3.

Table 8.1: The ratio between the third singular value and the fourth singular value.

Person 1 2 3 4 5 6 7 8 9 10

original | 3.761 | 2.460 | 4.216 | 3.967 | 3.050 | 2.265 | 3.26]1 | 5.364 | 3.923 | 2.159

outlier

4.335 | 4. 949 | 4967 | s. _ a5 | 7. _
detected 514209 | 5949 | 4967 | 5.992 | 2.582 | 4.345 | 7.990 | 5344 | 3.109

8.5 Experimental results

In this section, we report our results, comparing with that in (Georghiades ef al.
2001; Lee et al. 2001). As in (Georghiades et al. 2001), we also carry out the face
recognition experiments on the Yale-B face database, which consists of 10
persons. This face database can be employed to study the pose estimation and the
illumination effects. For each person, pictures were taken from 9 poses, and at
each pose, 64 different illumination conditions w=re used. However, we only study
the illumination effects on the face recognition; thus we only use the 64 frontal
images. These 64 images are divided into 5 subsets of 7/12/12/14/19 pictuces
respectively. From “subset 1” to “subset 57, there is more and more shadow in the
pictures. Two images are shown in Figure 8.2 for each subset. In fact, the pictures
in “subset 5” are almost indiscermble, as shown in Figure 8.2, and no result has
previously been reported on this subset. We follow (Georghiades et a/. 2001) in
cropping, centering and resizing the images. The 10 persons are shown in Figure
8.1.

By employing the new strategies outlined in this chapter, we obtain a good
performance on this subset, up to 92.1% correct. From Table 8.2, we can see that
the outlier detection strategy contributes more than the new distance criterion to
the improvement in our approach. We can also see that both strategies, adopted
together, improve ore than each strategy employed separately. Compared with
the dimension-7 subspace, the dimension-9 subspace performs a little worse, as

also can be observed from Table 8.2. Although th< experimental setting suffers
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from the small size of the Yale-B face database, we can still observe the
contributions of our new strategies by comparing with other compeling approaches
(Georghiades er al. 2001, Lee ef al. 2001). Our purpose is not to claim that we

have a complete and foolproof method - rather to show that the two proposals can

lead to gains in performance.

0 © h) e 0

Figure 8.2: Different images under different illumination conditions, for person 7
in Figure 8.1. (a) and (b) from subset 1; (¢) and (d) from subset 2; (¢) and (f) from
subset 3; (g) and (h) from subset 4; and (i) and (j) from subsct 5.

R L R S LR
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() (8) (h) )
Figure 8.3: Mask for the outliers, which do not obey the 3-dimensional constraint.

The black pixels denote the outliers. From (a) to (j), the masks correspond to

person 1 to person 10 in Figure 8.1.

Person 1

Person 4

Figure 8.4: The 7D image basis of person 1 and person 4 in the Yale-B face
database. Note that green denote positive pixels and red for negative, and that the

detected pixels (outliers) in Figure 8.3 are excluded in these basis images, shown

as black.
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Table 8.2: Comparison of the error classification rate on Yale-B face database. In
the bottom four rows, the numbers in the brackets are the dimensions of the
subspace, used in our approach. Note that a m ethod e mploying only o ur o utlier
detection strategy (row 5) performs better than previous methods (rows 1-3).
Likewise, only using our new distance criterion (row 6), we can do better than
previous methods except 9PL (row 3). However, both improvements combined
(row 7) performs better than previous methods (rows 1-3). Method 4, Cones-cast,
achieves the same flawless recognition rate on subsets 1-4; however, since they did
not report an error rate for the most challengirg subset 5, we can’t say whether our
method definitely performs better. However, it is perhaps salient that none of the

cited previous methods attempted such difficult images.

Method Subset 1-3 Subset 4 Subset 5
| Linear subspace 0 15 /
(Georghiades et al. 2001)
Cones-attached
2 |(Georghiades et al. 2001) 0 8.6 /
3 9PL (Lee et ai. 2001) 0 28 /
Cones-cast

4 (Georghiades er al. 2001) 0 0 /
5 | OQutlier detection (dim 7) 0 2.1 11.0
6 New distance (dim 7) 0 5 15.8

Qutlier detection+
7 New distance (dim 7) 0 0 1.9

Qutlier detection+
8 New distance {(dim 9) 0 1.4 105

8.6 Conclusion

In this chapter, we introduce two new techniques for subspace-based face
recognition: outlier detection and the exploitation of a new distance-based
criterion. Without reconstructing the 3D scene, the standard subspace approach,
augmented with the new techniques described here, proves to be at least
comparable to Cones-cast, where the cast shadow has to be detected and
consequently demands the GBR reconstruciion (Beliumeur ef al. 1999).

Moreover, by the new techniques, a good performance can be obtained on “subset
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57, which is the most challenging in the Yale-B face database and on which no

performance has been reported before. While we can see much room for

improvement in the implementation of our outlier detection stralegy, we have

shown that, even when only partially successful in identifying outliers from the
subspace model, it can be responsible for a significant improvement in accuracy.
QOur new distance criteria, as it properly recognizes and adjusts fornotse in the
training set, is also shown to be useful as a separate component, as well as in

conjunction with the outlier detection strategy.




Chapter 9: Conclusion and future directions

Chapter 9

e

|

Conclusion and future directions

9.1 Summary of the contributions of this thesis

In this thesis, we mainly studied the linear subspace analysis in computer vision
applications, from a statistical view. The contributions of this thesis can be
categorized into three aspects: {1) a theoretical analysis of the i.i.d. Gaussian noise
effect on the linear subspace analysis; (2) an investigation of heteroscedastic
parameter fitting; and (3) practical applications of improved aigorithms to structure
from motion and face recognition problems. In this chapter, we briefly expand

upon these contributions before we suggest some avenues of future work.

Theoretical contributions to the linear subspace analysis:

e Using the matrix perturbation expansion theory, we derived an
explicit formula for the denoising capacity of the approximated
(low rank) matrix, in terms of the noise level, the sizes of the
measurement matiix and the dimensionality.

e By using the first-order matrix perturbation theory, we also derived
an explicit formula for such a reprojection error measure. This error
comes from two independent sources: one source is the noise in the

training samples and another in the noise in the test image.

Practical contributions to the computer vision tasks:
e In the missing data problem under low rank consiraint, we
presented a criterion to recover the most reliable submatrix, in
terms of deciding when the inclusion of extra rows or columns,

containing significant numbers of missing entries, is likely to lead
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to poor recovery of the missing parts. We applied this algorithm in
the structure from motion problem

e We proposed a new emor distance for the subspace-based
recognition problem. This is based on the new theory about the
learning capacity in low-rank subspace approaches.

e In face recognition, we employed the iterative reweighted least
square (IRLS) techmque to detect the pixels that do not following

the Lambertian reflectance model.

In this thesis, we also studied other rank-constraint problems.
o We proved that the distance vectors under different views
approximately lie in a linear subspace with a dimension of 6.
e We studied the parameter estimation problem in a general
heteroscedastic linear system, by putting the problem in the
framework of the bilinear approach 1{o low-rank matrx

approximation,

9.2 Directions of future work

In terms of theory, we only studied the is.d. Gaussian noise effect on the linear
subspace analysis. It would be interesting to extend the theories in chapter 4 to the
following two problems. First, it is worth studying the effect of the heteroscedastic
noise in the low-rank approximation. For example, the conic fitiing problem can be
reduced to a rank-5 approximation of a px6 matrix, where p is the number of
points, How does the number of the points (p=6) affect the precision of the
estimation? Second, the interesting problems (e.g., conic fitting and fundamental
matrix estimation) are essentially non-linear problems, although cne often
formulates them as a linear eslimation problem. It would be interesting to

investigate how the linearization affects the precision of the solution.

We only studied the illumination effects on the face recognition problem. More

specifically, we employed a 7 dimensional subspace to model the attached shadow.

A possible extension of this issue is to deal with the cost shadow in the face
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recognition problem. Some papers about this issue have appeared in a recent
conference, Europe Conference on Computer Vision 2004, such as (Frolova et al.
2004; Zhou et al. 2004).

Several recent papers (Lu et al. 1997; Miihlich et al. 2001; Manton et al. 2003)
suggest different avenues of i nvestigation for d ealing with h eteroscedastic rank-
constrained problem. It should be interesting to use these approaches to ellipse

fitting and contrast and compare.

Finally, we must acknowledge that what we have done is incomplete. For example,
we studied “imputation™ (filling in missing data) in an i.1.d. setting but not in a
heteroscedastic setting. This thesis has made significant contributions on many
fronts but a complete theory is still missing. Moreover, it has to be admitted that
the algorithms described here, while making a contribution in several ways, fail to

present the complete solution. Much work remains to be done.
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Errata and Amendments

p IX, para 3, line 4: Replace “following” with “follow™.

p IX, para 4, line i: Replace “rank-constraint” with “renk-constrained”.

p IX, para 4, line 2: Replace “approximately lie in a linear subspace with a
dimension of 6.” with “lie in a space that is well approximated by a 6-dimensional
linear subspace.”

p 1, para 2, line 6: Replace “signal” with “matrix”.

p 2, para 1, line 3: Add “(Aguiar ez al. 2002; Sun et al. 2001)” after “frames”.

p 2, para 3, line3: Insert “(SFM)” between “motion” and “and”.

p 3, para 1, line 3: Insert “Guerreiro et al. 2002; Maruyama et al. 1999 before ‘),
ete”.

p 3, para 2, line 4: Replace the last sentence with “The iterative methods have the
advantage that they are driven by minimizing a global cost function. In contrast,
the non-iterative ones are clearly suboptimal, although they are generally fast and
stable.”

p 3, para 4, line 1: Add “, i.e., each data point having a different covariance
matrix)” after “heteroscedastic noise”

p 4, para 2, line 2: Insert “Wiberg 1976” afier “2004”.

p 6, para 3, line 4: Replace “important in since™ with “important since”.

p 6, the second last para: Replace “approximately lie in a linear subspace with a
dimension of 6.” with “lie in a space that is well approximated by a 6-dimensional
linear subspace.”

p 10, para 1, line 3: “V”" in equation (2.1) should be bold as “V”.

p 10, para 2, line Z: Delete “first” between “the” and *‘n”.

p 10, para 2, lines 4&6: Replace A7 with ;.

p 11, para 2, line 4: Add “be” between “will” and “produced”.

p 13, para 1, the second last line: add “the” between *“is” and “same”

p 13, para 2, line 1: Replace “Theory 1” with “Theorem 17,

p 15, the last para: Explanation: “large™ in line 2 means that the singular values
have to be much larger than the noise level in the matrix in order to make (2.14-
2.16) approximately hold. For a small singular value, the singular vectors (values),
calculated from (2.14-2.16), may have a large error.

p 16, para 3, line 2: Replace ““eigenvalues” with “eigenvectors”.

p 16, para 3, line 3: Replace “same” with “equal”.

p 22 para 2 line 3: Insert “to surface patches (Guerreiro er al. 2002; Maruyama ef
al. 1999), ” before “and to planes”.

p 28, para 1, the fourth iast line: Replace “more optimal™ with “better”.

p 42, para 1, line 2&3; p 44, para 1, line 4: “the energy of a matrix entry” denotes

[| M [
N

p 44, between (43) and (44), the energy of a matrix, M, denotes its norm [| M |[3..

p 47, in the fourth last line; and p 52, line 8: the energy of a vector (an image), v,

denotes its norm || viji%.

p 50, In the legend of Fig. 4.3, replace “To see” with “See”.

p 51, In the second last para, the second last line, replace “angel” with “angle”.

p 67, In the legend of Fig. 5.1, replace “the missing percentage” with “the fraction
of missing data”.

the quantity , where M is the matrix, and m and # are its sizes.




p 73: Add “For an explanation of the traces, see the text in page 72.” to the legend

of Fig. 5.2.

p 78, para 1, line 3: Add a sentence: “The data of the tracked feature points was

downloaded from Jacobs’ homepage.” before “One frame™.

p 126, as the concluding sentence to section 7.2.3, add “It should be noted that one
could question whether an expansion in terms of other basis functions may
be preferred; however, investigation of this question is beyond the scope of
this thesis.”

p 140: Replace “Different images™ with “Images”.

p 148: Replace *2004” in the second last reference with “2004a”.

p 148: Replace “2004” in the last reference with “2004b”.

p 149: Replace “2004” in the first reference with “2004¢”.

p 22, para §, Replace “Chen et al. 2004” with “Chen et al. 2004¢”.

p 46, para 1, Replace “Chen ef al. 2004” with “Chen ef al. 2004¢”,

p 53, para 3, Replace “Chen ef al. 2004 with “Chen et al. 2004c”.

p 96, the last para, Replace “Chen et al. 2004” with “Chen ef al. 2004¢”.

p 131, para 3, Replace “Chen er al. 2004 with “Chen et al. 2004a; Chen et al.
2004b”

Insert the following references between p 147-158:

Aguiar, P. M. Q. and J. M. F. Moura (1998). Video representation via 3D shaped
mosaics. IEEE International Conference on Image Processing ICIP'98.

Aguiar, P. M. Q. and J. M. F. Moura (2001). "Three-dimensional modeling from
two-dimensional video." IEEE Transactions on Image Processing 10(10).

Aguiar, P. M. Q. and J. M. F. Moura (2002). 3D rigid structure from video: What
are "easy"” shapes and "good" motions? IEEE Multimedia signal processing
workshop.

Guerreiro, R. F. C. and P. M. Q. Aguiar (2002). 3D Structure from video streams
with partially overlapping images. IEEE International Conference on Image
Processing ICIP'02.

Maruyama, M. and S. Kurumi (1999). Bidirectional _optimization for
reconstructing 3D shape from an image sequnce with missing data. IEEE
International Conference on Image Processing ICIP'99.

Sun, Z., V. Ramesh, et al. (2001). "Error characterization of the factorization

- method.” Computer Vision and Image Understanding 82: 110-137.

Wiberg, T. (1976). Computation of principle components when data are missing.

2nd Symposium computational statistics.

Additional comments on chapter 6 In chapter 6, there are several references to
the assumption of Gaussian noise. In fact, this assumption is only necessary to
obtain the ML result in section 6.3.4. For the remainder of the chapter, a weaker
assumption (zero mean noise) suffices.

The following explanation may help the reader to interpret equation (6.4): The
noiseless data points W, =[w ,w, ,---,w ] are “nuisance parameters”, That is,

they are not directly of interest. W, =[W_,W,,,---, W, ] is the rank n~1 matrix

that minimizes the objective function in (6.4), subject to the constraint §” W =07,
where 0 is the estimate of the practical parameters of interest (0 ).
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