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Abstract

This thesis mainly studies linear subspace analysis and its applications in computer

vision. Using first-order matrix perturbation expansion theory, we present a

statistical analysis of the noise effect on subspace approaches to computer vision

tasks. More specifically, we derive an explicit fomiula for the denoising capacity

of the low rank matrix, in terms of the noise level, the sizes of the measurement

matrix and the dimensionality. Similarly, by using first-order matrix perturbation

expansion theory, we also derive an explicit formula for the learning capacity of

algorithms using a learnt low-rank subspace approximation.

In the missing data problem under a low rank constraint, we present a criterion to

recover the most reliable submatrix, in t enns o f deciding when t he i nclusion of

extra rows or columns, containing significant numbers of missing entries, is likely

to lead to poor recovery of the missing parts. This is based on the aforementioned

theory of the denoising capacity of a large low-rank matrix. The superiority of our

algorithm is validated in the structure from motion problem.

We propose a new error distance for the subspace-based recognition problem. This

is based on the theory about the learning capacity in low-rank subspace

approaches. In face recognition, we employ the iterative reweighted least square

(IRLS) technique to detect the pixels that do not following the Lambertian

reflectance model.

In this thesis, we also study other rank-constraint problems. We prove that the

distance vectors under different views approximately lie in a linear subspace with a

dimension of 6. We study the parameter estimation problem in a general

heteroscedastic linear system, by putting the problem in the framework of the

bilinear approach to low-rank matrix approximation.

IX



1

S

I

I

Declaration

I declare that:

1. this thesis contains no material which has been accepted for the award of any
other degree or diploma in any university or institution, and

2. to the best of my knowledge, it contains no material previously published or
written by another person.

Pei Chen

X



Acknowledgements

if.
t
i
3

First of all, I wish to sincerely thank my supervisor, Professor David Suter, for his

guidance, encouragement, support, inspiration, patience, persistence and

enthusiasm during my studies at Monash University. In particular, I would like

thank David for the academic freedom in the Digital Perception Laboratory and for

his guidance into the computer vision field.

Thanks to all the members of the Digital Perception Laboratory, including Daniel,

Hanzi, Mohamed, James, Tat-jun, and former members, Dr. Fang Chen, Dr. Paul

Richardson and Dr. Prithiviraj Tissainayagam.

I would like to express my gratitude to Jane for her help on English.

I also grateful to my friends, Homer Chen, Sara Shi, John Davis, and Lei Ma, for

their daily help and suggestions.

I am also grateful to the Monash Graduate Scholarships from Monash Graduate

School and the tuition scholarships from the Engineering faculty.

XI



Publications

P. Chen and D. Suter, Recovering the missing components in a large noisy low-rank

matrix: Application to SFM. IEEE Trans. Pattern Analysis and Machine Intelligence, no

8, vol. 26, 2004.

P. Chen and D. Suter, Subspace-based face recognition: outlier detection and a new

distance criterion. In Proceedings ACCV2004, Asian Conference on Computer Vision,

pages 830-835, 2004.

P. Chen and D. Suter, Subspace-based face recognition: outlier detection and a new

distance criterion. Accepted by International Journal of Pattern Recognition and

Artificial Intelligence, subject to minor revision. (Selected in a special issue of ACCV

2004).

P. Chen and D. Suter, Shift invariant wavelet denoising using interscale dependency, in

Proceedings ICIP2004, International Conference on Image Processing.

XII



i

-3
1
j

i

Chapter 1: Introduction

Chapter 1

Introduction

Linear subspace analysis (LSA) has become rather ubiquitous in the solution of a

wide range of problems arising in pattern recognition and computer vision. The

essence of these approaches is that certain structures are intrinsically (or

approximately) low dimensional: for example, the factorization approach to the

problem of structure from motion (SFM) (Tomasi et al. 1992) and the principal

component analysis (PCA)-based approach to face recognition (Turk et al. 1991;

Hallinan 1994; Eipstein et al. 1995). Such approaches have also been employed in a

wide range of other fields: like DNA prediction (Troyanskaya et al. 2001),

recommender system (Sarwar et al. 2000; Brand 2003), and even the general

"knowledge or opinion networks" (Maslov et al 2001).

Computational approaches to such problems have been well established. Their

central idea is to employ the singular value decomposition (SVD) (Golub et al.

1996) to obtain the low-dimensional representation of the high-dimensional

structures. This representation, obtained by the SVD, is the best approximation,

measured by the Frobenius norm or the 2-nonn (Gold et al 1996). More

importantly, it is the maximum likelihood (ML) estimate, assuming the signal is

corrupted with i.i.d. Gaussian noise (Press et al. 1992; Reid et al. 1996; Hartley et al.

2000; Irani et al. 2000; Anandan et al. 2002).

1.1 Issues to be addressed and motivations

1.1.1 i.i.d. Gaussian noise in the SVD

Although it is well known that the estimate, by the SVD, is the ML estimate in the

presence of i.i.d. Gaussian noise, little effort has been spent on the analysis of the

noise effects in the SVD-based applications. The lack of such a performance analysis

impedes the careful design of optimal systems. For example, in the factorization
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approach to SFM, it is widely accepted that processing more frames produces a more

accurate result than depending on just a few ("few" typically being little more than

3) frames. It was even claimed (Thomas et al. 1999) that the 3D scene could be

reconstructed to arbitrary accuracy given enough frames. However, there are many

questions one could pose about this, for example: what is the gain of adding the data

from one extra frame to a veiy large measurement matrix? IVJiat precision does the

3D reconstruction have as the number of the frames approaches infinity?

The questions above relate to the performance analysis of the SVD in the presence of

noise. Fundamentally, they are specific examples of the following questions.

Supposing the noise level is small enough, how much signal is retained by keeping

the largest /• components? Or, how much has the noise been reduced, as a result of

discarding the other components? In this sense, we are blindly using a SVD, without

knowing its capacity for separating the signal from the noise: how close the low-rank

approximation matrix to the noise-free matrix is, or how close the SVD-based

subspace to the ground-truth subspace is.

One of the major tasks of this thesis is to analyze the performance of the SVD in the

presence of noise. This will be done in the context of the two computer vision tasks:

in the factorization m ethod for t he structure from motion and in PCA-based face

recognition.

1.1.2 Missing data problem under low-rank constraint

One prominent drawback with the SVD-based approaches is their inability to deal

with the missing data. A SVD can only be applied to complete matrices. However, in

computer vision, it is common to require operations on matrices with "missing data",

for example because of occlusion or tracking failures in the SFM problem.

Take the SFM as an example. SFM with missing data has been well studied in

computer vision community, eg (Tomasi et al. 1992; Shum et al. 1995; Jacobs 1997;

Heyden et al. 1998; Kahl et al. 1999; Jacobs 2001; Brand 2002; Guerreiro et al.

2003), etc. In terms of the computation, we divide these approaches into two

categories: iterative and non-iterative. The non-iterative approaches include: (Tomasi
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et al. 1992; Heyden et al. 1998; Jacobs et al. 1998; Kalil et al. 1999; Jacobs 2001;

Brand 2003), etc; and the iterative approaches include: (Shum et al. 1995; Guerreiro

et al. 2003), etc.

4

Both approaches have their advantages and disadvantages. Iterative methods are

usually more computation expensive. Moreover, they can suffer from the divergence

problem when there is a large amount of missing data and when the observed data

has been badly corrupted by noise. In contrast, the non-iterative methods cannot

make full use of the infomiation in the observed data, even though they are generally

fast and stable.

A compromise approach is possible and, indeed, very efficient, as will be presented

in chapter 5.

1

i

i

i

i

1.1.3 Low rank approximatoin and parameter estimation in a

hetaroscedastic system

Another drawback with the SVD (Golub et al. 1996) is its "inefficiency" in dealing

with theheteroscedastic noise. Here, we mean the "inefficiency" the fact that the

estimate, by the SVD, is not the ML estimate in the heteroscedastic system, as

pointed out in (Irani et al. 2000; Anandan et al. 2002).

The Mahalanobis distance is always employed as the minimization objective

function, in such a heteroscedastic system (Leedan et al. 1999; Matei et al. 1999;

Irani et al. 2000; Leedan et al. 2000; Matei et al. 2000; Anandan et al. 2002). If the

noise can be modelled as Gaussian, either i.i.d. or correlated, the minimizer of the

Mahalanobis distance is the ML estimate.

A closely related problem is the parameter estimation in a heteroscedastic system,

where some good approaches, like FNS (Chojnacki et al. 2000; Chojnacki et al.

2004)and HEIV (Leedan et al 1999; Matei et al. 1999; Leedan et al. 2000; Matei et

al. 2000), are already available. However, no convergence in these iteraiive

approaches is ensured, as pointed out in the literature. Another limitation of these
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approaches is that they can't model the correlations among different rows of the

"general measurement matrix".

In this thesis, we employ the bilinear approach (Shum et al 1995; Guerreiro et al

2003; Vidal et al 2004) to calculate the optimal estimate of the low-rank matrix

approximation, measured by the Mahalanobis distance. Notably, a large set of

parameter estimation can be put in the framework of the low-rank matrix

approximation. In this way, we solve the parameter estimation problem in a

heteroscedastic system.

1.2 Contributions of this thesis

This thesis has two major contributions. First, it presents an analysis of the i.i.d.

Gaussian noise effects in SVD-based computer vision tasks, especially in the context

of the factorization method for the SFM problem and in PCA-based face recognition.

This is achieved by using the matrix perturbation expansion theory (Wilkinson 1965;

Stewart et al. 1990) as the major tool. Second, we employ the bilinear approach

(Shum et al. 1995; Guerreiro et al. 2003; Vidal et al 2004) to calculate the low-rank

matrix approximation in a heteroscedastic system, and consequently solve the

parameter estimation problem in a heteroscedastic system.

More specifically, we study the following problems:

• In the factorization method, we study the error between the noise free

measurement matrix and the approximated (low rank) measurement matrix.

Using the matrix perturbation expansion theory, we derive an explicit

formula for the mean square error (MSE) of the approximated (low rank)

matrix, in terms of the noise level, the sizes of the measurement matrix and

the dimensionality. We call this the denois'uig capacity of a large low-rank

matrix.

• With this characterization of the denoising capacity, we can explain the

accepted fact that more frames produce more accurate result than a few

("few" typically being little more than 3) frames. Moreover, we can explain
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other phenomenon: that one more frame helps little in improving the

reconstruction precision after 20-40 frames (Morita et al. 1997). More

importantly, by using the denoising capacity, we present, in chapter 5, a

criterion to recover the most reliable submatrix, in terms of deciding when

the inclusion of extra rows or columns, containing significant numbers of

missing entries, is likely to lead to poor recovery of the missing parts.

In PCA-based face recognition, we study the reprojection error of a new face

image upon, a low-dimensional subspace, which is learned from a few

samples. By using the first-order matrix perturbation theory, we also derive

an explicit formula for such a ^projection error measure. This error comes

from two independent sources: one source is the noise in the training samples

and another in the noise in the test image. Based on this learning capacity

theory, we propose a new error distance for subspace-based recognition

problems.

We study the parameter estimation problem in a general heteroscedastic

linear system, by putting the problem in the framework of the bilinear

approach to the low-rank matrix approximation. We extend the bilinear

approach to the heteroscedastic system and consequently solve the problem

of parameter estimation in a heteroscedastic system.

1.3 Organization of this thesis

\

1

Although the core contribution of this thesis is a general theoretical analysis of the

noise effect in the SVD-based applications, this thesis mainly concerns two

computer vision tasks: the factorization method for the SFM problem and the PCA-

based face recognition, in order to make the general problem concrete. Thus, a

significant portion of this thesis is devoted to developing such a context.

A brief description of the subsequent chapters is as follows:

• Chapter 2: SVD and perturbation expansion theory. The requisite knowledge

of the matrix theory is covered, including the SVD theorem and the first-order

matrix perturbation theory. We also include our new result concerning the first-
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order perturbation expansions of the singular vectors (eigenvectors), associated

with a multiple singular value (eigenvalue).

• Chapter 3: The factorization method in SFM and PCA-based face

recognition. We review the development of the factorization method for the

SFM problem and describe the seminal factorization method in detail. Then, we

present an overview of the PCA-based face recognition.

• Chapter 4: Analysis of noise effect in the SVD-bascd applications. The noise

effect in the SVD is analyzed in the context of two computer vision tasks: the

factorization method for the SFM problem and PCA-based face recognition. This

analysis is important in since the results in this chapter will be used in chapter 5

and chapter 8.

• Chapter 5: Recovering the missing components in a large noisy low-rank

matrix: application to SFM. This chapter concerns the missing data problem

under a low rank constraint. First, an iterative approach, with weak convergence,

to this problem is proposed. More importantly, by using the denoising capacity

theory from chapter 4, we present a criterion to recover the most reliable

submatrix, in terms of deciding when the inclusion of extra rows or columns,

containing significant numbers of missing entries, is likely to lead to poor

recovery of the missing parts.

• Chapter 6: Bilinear approach to the parameter estimation of a general

heteroscedastic linear system, with application to conic fitting. We study the

parameter estimation problem in a general heteroscedastic linear system, by

putting the problem in the framework of the bilinear approach to the low-rank

matrix approximation. The conic fitting problem is studied as a specific example

of the general theory.

• Chapter 7: Orthographic projection of distances: a low-dimensional

approximation. We prove that the distance vectors under different views

approximately lie in a linear subspace with a dimension of 6.

• Chapter 8: Subspace-based face recognition: outlier detection and a new

distance criterion. We propose a new error distance for the subspace-based

recognition problem, based on the theory about the learning capacity introduced

in chapter 4. Moreover, in order to remove points not following the Lambertian

reflectance model, we employ the iterative reweighted least square (IRLS)
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technique to detect the pixels that do not obey the dimension-3 subspace

constraint.

• Chapter 9: Conclusion and future directions. We summarize the main work in

this thesis and give some comments of the future research.

11
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In this chapter, we intend to provide a background, in terms of the relevant matrix

theory for the following chapters. However, this chapter does a little more than just

survey known results: a result that appears to be new is also presented.

We first introduce (section 2.1) some notations used in this chapter and in the rest

of the thesis. In section 2.2, we introduce the singular value decomposition (SVD)

theorem (Golub et al. 1996), with two iterative approaches to compute the singular

vectors, associated with the largest (few) singular values. Section 2.3 includes a

treatment of Matrix Perturbation Expansion theory (Wilkinson 1965; Stewart et al.

1990); including our new result, which can be found in section 2.3.2.

2.1 Notation

The notation introduced here will be used through the rest of the thesis. A matrix

will be denoted by a bold capital letter, such as M, and a bold lowercase letter

represents a vector, e.g. x. The /''' column of M is denoted by M,.. A scalar entry

in a vector or in a matrix will be denoted by, for example, x, or M, 2 respectively.

I,, denotes the nxn identity matrix, and 0mn for an mxn zero-matrix. e(. is the

/''' column of I,,. M,. .x.7, a notation from Matlab, denotes for the submatrix of M:

the intersection of the i-to-j rows and the k-to-l columns. The set of m x n matrices

with orthonormal columns is denoted by O'"". That is, U e O " u l iffUTV = ln.

Such a matrix will always be denoted by U or V .

The Frobenius norm of a matrix M(or a vector) will be denoted as HM^, where

Ml = \Y~MJJ • Span(M) denotes the subspace spanned by the columns of M.

The distance of a vector in, m e R"', to the subspace Span(M), M e R'"", is

8



Chapter 2: SVD and perturbation expansion theory

denoted as d(m,Span(M)) and it is sometimes described as the distance of a

vector m to a matrix M , denoted as rf(m,M) . If U e Om" ,

The hat symbol, "A", denotes an estimate of the quantity beneath the symbol.

Usually, a signal is observed with noise. We denote the observed signal with an

unadorned symbol that depends on its nature; for example: s, s, or S, for a scalar, a

vector or a matrix respectively. Although the true signal, without noise, is

generally unknown, we need to refer to it in some cases, especially when we

evaluate the performance. In this thesis, we use the symbol "~" to denote the

noise-free signal, eg ? .

M r denotes the closest rank-/- approximation of M, which can be obtained by

SVD (Golub et al. 1996). The SVD, itself, will be introduced in the next section.

The symbol ' V means the first order perturbation, explained in section 2.3.

Finally, "=" means equality, in the sense of statistical expectation.

2.2 Singular value decomposition

The singular value decomposition plays an important role in many applications,

where a few of the largest singular values, and possibly their associated singular

vectors, are needed. This includes the calculation of the low rank approximation of

a matrix. Such applications can be found in the factorization method for structure

from motion in computer vision (Tomasi et al. 1992; Poelman et al. 1997), object

modeling from range images in computer vision (Shum et al. 1995), data analysis

(Mardia 1979), image processing and coding (Pratt 1975), model reduction (Moore

1981), pattern recognition (Chien eta I 1967), the minimal realization of linear

system (Kung et al. 1987) and antenna array processing (Schmidt 1979; Bienvenu

etal 1983).
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2.2.1 SVD theorem

The principle behind the SVD (Golub et al. 1996) states that any matrix,

M e R"1'", can be decomposed into

M = UZVT (2.1)

where U e Om'm , V e O M and I. = diag{crl,cr2,-,<rp}eRm''1 , with

p = min(/?7,//) and a, >a^ >-~>ap > 0.

Without loss of generality, suppose m>n. [erf j / - 1 , 2 , •••,//} are the eigenvalues

of M r M , or the first n largest eigenvalues of M M 1 . The first /; left singular

vectors of M are {U; | / = 1,2,•••,"}, where U(. is the eigenvector, corresponding

to the eigenvalue of A,, of MM7". Similarly, the right singular vectors of M are

{V(. |/ = 1,2,•••,//}, where V, is the eigenvector, corresponding to the eigenvalue

of A:, of IVTM.

Another important fact (Golub et al. 1996), is that one can easily construct M*,

the closest rank k approximation of M, measured by 2-norm or Frobenius-norm,

by:

Specifically,

M-M* =a

M-M*| =

(2.2)

(2.3)

(2.4)

2.2.2 Power method and orthogonal iteration method for the

computation of one or a few singular values and vectors

In many applications, such as in the PCA (Mardia 1979) and the factorization

method for SFM (Tomasi et al. 1992), only a few of the largest singular values and

their associated singular vectors are needed. From the SVD theorem above, it can

be observed that the right (left) singular vectors of M are the eigenvectors of

10
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M r M (MM7*). In this subsection, we concentrate on the computation of a few of

the most dominant eigenvalues and their associated eigenvectors.

2.2.2.1 The power method (Golub el al. 1996)

Suppose a matrix M e R"*" is diagonalizable and that

X~lAX = diag{Xl,X-,,---,Xll} with X = [X,,X-,,---,Xn] and

| A, |>| A, |>| A3 ]>••• >| Xn | . Starting from an arbitrary initial vector v(0) , a

sequence {va>} will produced by the power method:

for£=1,2, ...
z u ) = M v u - n . v (*)= z (*) / | | z (*) | | i r

end
If v(0) =c,X, +c2X2 +-~ + cHXn and c, * 0, then it follows that

(2.5)

and

(2.6)

where ^k is a constant.

From (2.6), {vU)} approaches the direction of X, and the convergence ratio is

IV4I-

2.2.2.2 The orthogonal iteration method (Golub et al. 1996)

Only the most dominant eigenvector, with its associated eigenvalue, is computed

in the power method. To overcome this drawback, a straightforward generalization

of the power method can be used to compute an invariant subspace, which is

spanned by a few dominant eigenvectors. Following the assumption in section

2.2.2.1, we suppose that the stalling matrix with /• orthogonal columns, Q (0), has

the property that X(
rQ(0) ^ 0 for / = 1,2,-••,/•. Under this assumption, a sequence

of matrices with /• orthogonal columns {Q(A)} can be obtained:

forA'=l,2, ...

11



Chapter 2: SVD and perturbation expansion theory

Q(*) R <*> = y(*> factorization)
end

It has been proved in (Golub et al. 1996) that the subspace span{Q{k)} approaches

span{Xi,X2,---,Xr\ and the convergence ratio is \Ar+i/Ar |.

2.3 Matrix perturbation theory

Noise is inevitably introduced in almost all practical signals, for example, due to

the measurement uncertainty. The central question in matrix perturbation theory is

to characterize how a small variation (or more precisely, perturbation) produces an

error in functions of that matrix. Two issues are usually addressed in perturbation

theory: the development of a perturbation expansion and the calculation of a

perturbation bound (Stewart eta I. 1990). In this section, we concentrate on the

former issue, the perturbation expansion, which will be used in the analysis of the

performance of the SVD-based applications in noisy environments.

1

I
a

Only the perturbation expansion concerning singular values/vectors is needed in

this thesis. However, we also include the perturbation expansion theory concerning

the eigenvalues/eigenvectors as a useful way to arrive at our results. With our

objective, though, in the eigenvalues/eigenvectors form, we need only consider

symmetric matrices.

To our best knowledge*, the perturbation expansion of the eigenvectors/singular-

vectors is available only for those that correspond to a simple eigenvalue or

singular value (Wilkinson 1965; Stewart et al. 1990). In section 2.3.1, we review

such theory; and present, in section 2.3.2, our new results for those that correspond

to a multiple eigenvalue or singular value. In order to have a complete description

of the perturbation theory, we give all the prooft, including those available in the

textbooks (Wilkinson 1 965; Stewart et al. 1990), p lus those leading to our new

results.

* Here, we'd like to express our appreciation to Prof. G. W. Stewart (Stewart et al. 1990), who, by
private correspondence, pointed this out to us.

12
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2.3.1 Perturbation theory

Here, we do not follow the notation in (Wilkinson 1965), where an arbitrarily

small positive number, s, was introduced. Because we only consider the first-

order perturbation, a simpler and straightforward form works. For example,

suppose M has a simple eigenvalue A, and the associated eigenvector is x. If M is

corrupted with AM and AM is small enough, the first-order perturbations of the

eigenvalue and the eigenvector, denoted as A/I and Ax respectively, will also be

small enough, from Ostrowski's continuity theorem (Wilkinson 1965). Suppose

their higher-order terms are SA and <5x , respectively. From

(M + AM)(x + Ax + Sx) = (A + AA + SA){x +Ax + Sx) , we have the first-order

perturbation, by dropping the higher-order terms:

M • x + M • Ax + AM -x^A-x + A - A x + AA-x (2.7)

Of course, this first-order perturbation is same as that in (Wilkinson 1965), despite

the difference in notation.

Theory 1 (Wilkinson 1965): Consider a symmetric matrix, M e R"'-'". Suppose M

has /;/ distinct eigenvalues, {A; | / = 1,2, • • •, /;;} and the corresponding eigenvectors

are {x; | /= 1,2,•••,/»}. If M is perturbed by a matrix N, the eigenvalues and the

eigenvectors of M + N are {X\ \ i = 1,2, • • •, ///} and {x] \ i = 1,2, • • •, m} respectively.

Supposing every entry in N is small enough, the first-order perturbations of

eigenvalues and eigenvectors are:

4 = *,+/?„ (2-8)

• * j
(2.9)

where /?,. y =xfNx ; .

Proof: Suppose xj = x , + £ c / i / x / and A'i=Ai+bi . From the first-order

perturbation, we have Mx, +M^]cy ; x ; + Nx,. « A(.xf. + A^c^.Xy +6,x,, and

(2.10)

13
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Because M is symmetric and h asm distinct eigenvalues, {x,.} are orthogonal to

each other. Pre-multiplying (2.10) by xf , we obtain / ; ,= xfNx,. =/?,,.. Pre-

multiplying xy , we have cjt = xl-xl

Theorem 2 (Stewart et al. 1990): Suppose A (not necessarily symmetric) is

corrupted with N and we observe B: B = A + N . According to the SVD theorem,

we have A = USVT , where U e 0"1X'" , Z = diag{icx ,*:,,-••, Km} , V e Omxm .

Define C = UTNV. Su;. >se Kj is a simple non-zero singular value of A. Then,

the first order perturbations of the singular values A,-, the right singular vector x(.,

and the left singular vector y,., of B are respectively

A,. =Ki+CiJ (2.11)

(2.12)

(2.13)

Proof: Suppose Q = L + C . Obviously, {/Cj} and {ê .} are respectively the

singular values and the right/left singular vectors of E . First, we prove that the

singular values l\, the right singular vectors x'., and the left singular vectors y'.

of H are respectively

^ = Ki+Cu (2.14)

x =e ;
"̂ ~l /^ /,(' •e.

2

i Kj

Suppose X\ = K, + Av,, x|. = e,. + 2 ] / y , e y , and y|. = e, +
7*'

(2.15)

(2.16)

From the properties of SVD, we have Ox] = A/y) and Q ry|. = /l/xj. Equating

their first order parts, we have:

14
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Ee, + Ce,. , + Av,ef.
1*1

£ r e , +Cre,. + £7

Then

7*' ./>'

(2.17)

(2. IS)

(2.19)

(2.20)
7*' 7*'

First, by equating e(., we have A/c, = C, 7.. And from ey (_/ * / ) ,

(2.21)

' '•' ' 'IJ/ v ', i (2.22)

So far, (2.14-2.16) have been proved.

From

B = U Q V 7 % U[y\,-• • ,y'm]diag{A[,• • •,A'm}[x\,• • • x'm]rV7 (2.23)

B has X\, VXp and Uy'. respectively as its singular values, right and left singular

vectors.

The perturbation theory above, concerning the singular values/vectors, holds only

for positive (and especially only for significantly large) singular values (Stewart et

al. 1990) (Note: singular values have to be non-negative.) In this thesis, only linear

subspace analysis based applications are of concern, where the noise-free signal

lies in a low-dimensional subspace, for example, of dimension /*. In these rank-/*

problems, only the first r largest singular values are needed, where /-«/??. Thus, we

do not have to consider the behavior of the perturbation for the zero (or near zero)

singular values.

15
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2.3.2 New perturbation theory, corresponding to a multiple eigenvalue/

singular value

In this section, we present our new result concerning the perturbation expansions,

corresponding to the case where the matrix has at least one multiple

eigenvalue/singular value.

First, we want to shed some light on the perturbation expansions concerning

singular vectors that correspond to a multiple singular value. We do this by

considering the perturbation expansions of the eigenvectors of a symmetric square

matrix:

Theorem 3: Suppose M e R'"'"', M = M r , and it has m eigenvalues {/I,} and m

eigenvalues {x,}, which are orthogonal to each other*. Without loss of generality,

suppose the first k eigenvalues of M are same, A( = A for / = 1,2, —, /r . M is

corrupted with N, which, compared with M, is small enough. Define

Q = [x l,"-,x,,,] rN[x l,---,x,J . Then, the first-order perturbation of the first k

eigenvalues and eigenvectors of M+N are:

A] = A + di (2.24)

O'
(2.25)

7 = 1 j=k+\

w h e r e S; ( s u p p o s i n g S ^ S j if i ± j ) a n d S ; = [S1, , . , £ • , , • , - - - ,S i . , ] 7 are the

e i g e n v a l u e s and e igenvec to r s o f Q l : J t 1:jt r e s p e c t i v e l y , i.e.

Qvklk =Sdiag{Sl,---,Sk}S-' and S =[S 1 ,S , , - - ,S J . Define

Q' =
I m-k

Q
1 m-k .

. The other m-k eigenvalues/eigenvectors can be

obtained as in theorem 1.

* For an /--pie multiple eigenvalue, we, fust, have its r eigenvectors, {x,- | / = 1,•••,/•}, which may

not be orthogonal. Then, the r orthogonal eigenvectors can be obtained by applying Schmidt

orthogonalization on {x,-1 / = 1,•••,/•}.

16
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Proof: From the perturbation expansion about the eigenvectors corresponding to a

multiple eigenvalue (Wilkinson 1965), we can suppose x) = ]Tc/<xv + 2 / / ' X y

and X-{ = A,-}• A/l(.. Note: c ; / are different from fLJ. c/(. can possib'.y take any

value within [0,1], while f}i approach zeroes if N is small enough.

(M + N)x;=A/x; (2.26)

Equating the first order parts:

./=* ./•-I

(2.27)

Then

(2.28)
j=k+\ j=k+\ ./=!

where c,. =[cli,c2i,---,cki]
T. Equating the coefficients of x ; for (j = \,---,k), we

have

Qi:*.i:*c/ = M c / C2-29)

where Q]k H is the left-up kxk submatrix of Q. If QhkM has k distinct

eigenvalues, the solution of A/I,- and c,. is unique, as in (2.29). Obviously, c is the

same as S, as defined in the theorem. After substituting AA, and c,. in (2.28), the

equality of x;. for (j = k +1,•••,///) produces the first order perturbations of /,.,. as

in the theorem.

Following the same notation as used in theorem 2, we consider the perturbation

expansion, where the matrix has at least one multiple singular value. This result

appears to be a new one.

Theorem 4: A, B, C and £ are defined as those in theorem 2. Define Q. = C + E.

Without loss of generality, suppose the first k singular values of A are the same:

{K =K\i = \,---,k) . By SVD, Qykuk =?SET =¥cliag{S,,---,Sk}ET . Let

U f =
E

K-t
, and Q' =

17
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B = (UU')Q'(W') r (2.30)

The first order perturbation of the singular values, {A-}, right singular vectors

{xj}, and left singular vectors {y'.} for 0 < / < k, of Q.' are respectively

A;=Q;.,=S,. (2.31)

*Y • ~~ \* i

; ~ , K--K:

m

, < • • , • ' • • /

4.

K -Kj
•*J

(2.32)

(2.33)

From (2.30), {/I/} are also the first k singular values of B, and, the right singular

vectors {x,} and left singular vectors {y,} of B are respectively: {VV'x'.} and

{UU'y'} . The perturbations, corresponding to other non-zero simple singular

values, can be obtained as in theorem 2.

Proof: Let ft has {A,"}, {x"} and |y"} as its first k singular values, right singular

vectors and left singular vectors respectively. For i>k, {A"\, {x"} and {y"} can

be obtained as in theorem 2. Thus, we concentrate on the first-order perturbation of

{A."), {x"} a n d {y"}, f o r i < k .

First, we only consider one singular value and the corresponding singular vectors.

Combining the techniques in the proof of theorem 2 and theorem 3, we assume that

the first-order perturbations of the right and the left singular vectors, x" and y"

respectively, have the following forms:
k m

,e, (2.34)

(2.35)

i=k*\

/--I

Note: Pi and fs can possibly take any value within [0,1], while q, and g-,

approach zeroes if N is small enough. From the continuity of the eigenvalues of

MM r , the singular values of M also obey Ostrowski's continuity rule (Wilkinson

1965), because the singular values of the matrix, M, are the square roots of the

18
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i

eigenvalues of MM T. Supposing the corresponding singular value is A" = K + Arc,

equality of the first order parts of fix" = A"y" and iTy" = A"\" produces:

,e,. (2.36)

(2.37)
1=1 /=* + ! (=1 /=1 i=k+\

From (2.36) a n d (2 .37) , w e have, by equa t i ng e s (for s = \ , - - - , k ) :

; = i

k

In matrix form, they are:

(2.38)

(2.39)

(2.40)

(2.41)

where Cu. u. is the left-up k by k submatrix of C, p = [/?,,P2,---,pkY

f = [f\>f2>'">fk]T -Note that QlkA.k =CHM +/dk. Obviously, AT + AAT, pand f

are respectively the singular value, the right and the left singular vectors of

CHlk +fdk; and p and f correspond to the columns of E and F in the theorem.

CHH+/dk just has k singular values, right and left singular vectors, which

correspond to {X"), {x"} and {>'"}, for / < k , of f i .

Equating the e, in (2.36) and (2.37), for t > k, we have

(2.42)

(2.43)

Note for t>k and / < k , Cu = Q,, and Cu = Q,, . Considering the /"' (for

1 < /< k ) singular value:

(2.44)

(2.45)

7=1

k

19
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Combining (2.40, 2.41) and (2.44,2.45),

(2.46)

'2_\ ''Je, (2AT)

are respectively the right and left singular vectors of Q. . After the system

transformation as (2.30), the first k left/right singular vectors of ft' are as defined

in (2.32, 2.33).

2.4 Conclusion

In this chapter, we reviewed some requisite knowledge about matrix theory:

including the SVD. and perturbation expansion theory in relation to the singular

values and singular vectors (the eigenvalues and eigenvectors). The SVD theorem

will be used throughout the rest of this thesis; yet the perturbation theory will be

used only in chapter 4, which is the core contribution of this thesis (however, the

results in chapter 4 will be employed in other chapters, such as chapter 5 and

chapter 8).

The essential contribution of this chapter is that we present the new perturbation

expansion theory for a multiple singular value (eigenvalue).
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Chapter 3

The factorization method in SFM and PCA-based

face recognition

In this chapter, we review the factorization method for the problem of structure

from motion (SFM) and PCA-based face recognition. In these two tasks, the

singular value decomposition (SVD) is the major tool, to calculate the motion

matrix and structure matrix up to a non-singular transformation in SFM; or to

calculate the eigenfaces from a few training face images. In section 3.1, we

provide an overview of the development of the factorization method for the

problem of Structure from motion. In section 3.2, we review the seminal work on

the factorization method (Tomasi et al. 1992). In section 3.3, a brief description of

the development of the PCA-based face recognition is given.

3.1 Overview of the development of the factorization method for

SFM

The original work by Tomasi and Kanade (Tomasi et al. 1992) restricted itself to

the orthographic setting. The method was extended to the paraperspective setting

(Poelman et al. 1997). Triggs and Sturm applied the factorization method to the

projective setting (Sturm et al. 1996; Triggs 1996).

The advantage of the factorization method for SFM can be ascribed to the SVD's

denoising capacity, as will be analyzed in chapter 4. It states that, as the size of the

matrix increases, the low-rank approximation matrix approaches the noise-free

matrix. That is the underlying superiority of the factorization method: all the

feature points are treated uniformly so that most of the noise can be suppressed if

the size of the measurement matrix is large enough.
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That is also the reason that the factorization method has attracted much attention

from the computer vision community.

• The method has been extended to lines, conies under affine

setting(Quan et al. 1996; Quan et al. 1997; Kahl et al. 1998; Kahl et

al 1999), and to planes under projective settings(Rother et al.

2002).

• In (Aguiar et al. 1999; Aguiar et al. 2003), it was shown that the

factorization method can be reduced to a rank 1 problem.

• In (Morita et al. 1997), a sequential algorithm has been proposed to

deal with the incoming frames, with little loss of the precision.

• The method has been extended to the case of the multi-body

factorization (Costeira et al. 1995; Costeira et al. 1998; Gear 1998;

Kanatani2001) etc.

• The related rank 4 constraint has been employed in the optical flow

computation (Irani 1999; Irani 2002).

• Scalar-weighted factorization has been studied in (Aguiar et al.

1999; Aguiar et al 2000; Aguiar et al 2003). Another more general

setting addresses the directional uncertainty (Morris et al. 1998;

Irani et al. 2000; Anandan et al 2002).

• A few papers have appeared that deal with the missing-data

problem in the factorization method (Shurn et al 1995; Jacobs

1997; Kahl et al 1999; Jacobs 2001; Brandt 2002; Rother et al

2002; Brand 2003; Guerreiro et al 2003; Chen et al 2004). We

address this issue in chapter 5.

• A few attempts have been made to optimize the projective

factorization (Sturm et al. 1 996; Heyden 1 997; Chen etalA 999;

Oliensis 1999; Mahamud et al. 2001; Mahamud et al 2003).

• Robust statistics has been introduced in the context of the

factorization method (Huynh et al 2001; Aanaes et al. 2002).
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3.2 The factorization method under orthographic settings

The critical idea about the factorization method (Tomasi et al. 1992) for the

problem of stmcture from motion is that the measurement matrix is of rank 4 if it

is noise free. From this property, the motion matrix and the structure matrix can be

obtained by the SVD, up to an affine transformation. In the orthographic setting,

the normalization constraints between the camera axes (row vectors of the motion

matrix) are employed to solve the affine ambiguity of the motion/structure matrix.

i

3.2.1 Measurement matrix and its rank 4 property

Suppose that P feature points of a rigid object are observed in an F-view sequence

by a moving camera (the rank 4 property still holds for the cases of a moving

object by a static camera and both moving). Let (*/,,, O'/./i) be the image position

of the//'1 feature point in the/'1 frame. Then, the measurement matrix W e R2F'P

is arranged as:

\V =

.vi.i

XF.\ (3.1)

Image
Plane

world'
oriiiin

local
length

Figure 3.1: The coordinate systems: world system and camera system, (Excerpted
from (Poelman ct al. 1997))
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Suppose the p" feature point is represented by a vector S , -[x ,y ,,z ]T. And,

suppose the camera orientation at frame/is represented by the ortlionormal vectors

if, y and ky, and its focal center in the world coordinate is represented by ty, as

shown in Figure 3.1. Assuming an orthographic projection, we have:

In matrix form, we have:

where

(3.2)

(3-3)

(3.4)

S — [SpS-,,- • • ,o p J (3.5)

(3.6)

If we place the origin of the world coordinate at the mass center of the object, the

registered measurement matrix has the following form:

\V = MS (3-7)

where W = W - w[l,l,••-,!] with W e R2F'] and wk =
j

! P.

From (3.7), the registered measurement matrix has a rank of 3 at most, because

M has 3 columns and S has 3 rows. This is the rank theorem in (Tomasi et ah

1992). Note, the measurement matrix usually has a rank of 4 wec&use there exists

the translation vector T, as in (3.3). Precisely, the measurement matrix lies in a

rank-4 affine subspace.

By the SVD, the registered measurement matrix can be approximated by a rank 3

matrix: \V3 = \yLVr , where U e O2/r<3, V e Op* and L = diag{avcr2,(Ti} . At

24



Chapter 3: The factorization method in SFM and PCA-based face recognition

this stage, the motion and structure matrices can be determined to an affine

transformation:

(3.8)

where

s = E1/2vr

3.2.2 Metric transformation

The decomposition of (3.8) is not unique, because the registered measurement

matrix can be factorized into any other pairs {MA,A"'S}, with a non-singular

matrix A. The correct A can be determined by using the nomialization constraints:

fll'/IHII/IH (39)

Suppose

= AA r = l2 l4 l5 (3.10)

The nomialization constraints (3.9) can be rephrased in the following matrix fonn:

Gl = c (3.11)

where

g

gr(»pj.)

, 1 = and c =

6x1

3Fxl

J3Fx6

g r(a ,b) =[fl,Z71,a,Zj2 +a2b{, a{b3 +a-ib^a

1 can be obtained by the pseudo-inverse method:

(3.12)

+a3b2,aib3] (3.13)

(3.14)
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From (3.10), the matrix L has been obtained, and consequently, the Cholesky

decomposition (Golub et al. 1996) of L gives A.

Note, the metric transformation A, obtained above, is not unique either, because

any other A' = AR with RR r = 73 still satisfies the normalization constraints

(3.9). Thus, by the metric transformation, we obtain the motion and structure

matrices up to a rotation transformation.

3.3 PCA-based face recognition

Another particularly active area of computer vision research, also employing

subspace analysis, is that of PCA-based face recognition* (Turk et al. 1991;

Hallinan 1994; Eipstein et al 1995). A human face, in typical applications, must

be recognized despite illumination changes between the target image (to be

recognised) and the database of candidate images. It has been observed that: "the

variations between the images of the same face due to illumination and viewing

direction are almost larger than image variations due to change in face identity"

(Moses et al. 1994). The issue of large illumination effects makes the problem of

face recognition challenging (Belhumeur et al. 1997; Shashua 1997; Belhumeur et

al. 1998; Georghiades et al. 1998; Jacobs et al. 1998; Georghiades et al. 2001).

In order to tackle this issue, PCA has been utilized to model the lighting variation

in images; because it has been proved, experimentally (Hallinan 1994; Murase et

al. 1994; Nene et al. 1994; Eipstein et al. 1995; Murase et al. 1995; Yuille et al.

1999) and theoretically (Basri et al. 1999; Ramamoorthi et al. 2001; Ramamoorthi

2002; Basri et al. 2003), that the possible images of the same Lambertian object,

* Here, we have to clarify the difference between the common PCA (Turk et al. 1991; Hallinan
1994; Eipstein et al. 1995) and linear subspace analysis (Belhumeur et al. 1997; Basri et al. 1999;
Basri et al. 2003). In face recognition and related applications, several terminologies, 1 ike PCA
(Tiurker al. 1991), eigenface (Turke/fl/. 1991) and eigenimage (Hallinan 1994; Eipstein e t a I
1995), have been used for such dimensionality reduction techniques. PCA (Turk et al. 1991;
Hallinan 1994; Eipstein et al. 1995) works on the correlation matrix, where the mean of the images
was first subtracted. While, in linear subspace analysis, we work directly on the original data
(Belhumeur et al. 1997; Basri et al. 1999; Basri et al. 2003), without subtracting their mean.
Recently, some theoretical analysis and experimental result prove that better performance can be
obtained directly by using the linear subspace analysis, \v ithout s ubtracting the mean. In section
4.4, we analyse the performance of the linear subspace analysis, without subtracting the mean
(Ramamoorthi 2002).
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under different lighting conditions, approximately concentrate in a low-

dimensional subspace, although the dimension of the image set for an object is

"equal to the number of distinct surface normals" (Beihumeur et al. 1998).

• Experimental observations (Turk et al. 1991; Hallinan 1994; Eipstein

et al. 1995) have helped firmly establish that the images of the same

face, produced under different lighting conditions, approximately lie

in a low-dimensional subspace.

o Similar approaches can be used in general object recognition and pose

determination systems. A particularly influential example of such was

the SLAM system (Murase et al. 1994; Nene et al. 1994; Murase et

al 1995), which captured the variations due to pose and illumination

by a 20-dimensional (or less) subspace.

• Recently, it was proved, by using spherical harmonics, that "all

Lambertian reflectance functions obtained with arbitrary distant light

sources lie in close to a 9D linear subspace": Basri and Jacobs (Basri

et al. 1999; Basri et al. 2003) and Ramamoorthi and Hanrahan

(Ramamoorthi et al. 2001; Ramamoorthi 2002).

!
Closely related to the second part of Chapter 4 is the generative model for learning

object shape and albedo from multiple images (Yuille et al. 1999). In (Yuille et al.

1999), a few images, under different illumination conditions, can be employed to

calculate the eigenvectors (or a low-dimensional subspace) by the SVD (Golub et

al. 1996). Moreover, the surface consistency constraint is employed to reconstruct

the surface up to a generalized bas relief (GBR) ambiguity (Beihumeur et al.

1999). The GBR reconstruction is beyond the scope of this thesis. In Chapter 4, we

will analyze the noise effect on the subspace learning process.
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Chapter 4

Analysis of noise effect in the SVD-based

applications

As mentioned in chapter 1, linear subspace analysis (LSA) has become rather

ubiquitous in the solution of a wide range of problems arising in pattern recognition

and computer vision. The essence of these approaches is that certain stnictures are

intrinsically (or approximately) low dimensional: for example, the factorization

approach to the problem of structure from motion (SFM) and principal component

analysis (PCA)-based approach to face recognition, as overviewed in chapter 3. In

LSA, the singular value decomposition (SVD) is usually the basic mathematical tool.

However, researchers have rather blindly used a SVD, without knowing the essential

characteristics of its perfonnance in the noise-corrupted environment. With the help

of matrix perturbation theory, we present such an analysis here. First, the "denoising

capacity' of the SVD is analysed. Second, we study the "learning capacity" of the

LSA-based recognition system in a noise-corrupted environment. These results

should help one to design more optimal systems in computer vision, particularly in

tasks, such as SFM and face recognition. Our analysis agrees with certain observed

phenomenon, and these observations, together with our simulations, verify the

correctness of our theory.

A direct application is that we clarify some issues regarding an optimal learning

strategy for face recognition. Further application of the theory in this chapter can be

found in chapters 5 and 8.

This chapter is structured as follows. In section 4.1, we raise the questions

concerning the noise in LSA. In section 4.2, we first present our results about this

subject. In sections 4.3 and 4.4, our results are justified, with the matrix perturbation

theory in chapter 2 as the main tool. In section 4.5, some simulation results are

presented to testify to the correctness of our results and we explain some

phenomena, observed by other researchers.

28



Chapter 4: Analysis of Noise effect in the SVD-based applications

4.1 Issues to be addressed

Linear subspace analysis has found applications in many problems in computer

vision and pattern recognition, where the high-dimensional representations of certain

structures are intrinsically (or approximately) low dimensional. In this chapter we

focus o n t wo very p rominent p roblems: S tructure from M otion (SFM), and P CA-

based face recognition, as overviewed in Chapter 3, although a whole host of other

computer vision and pattern recognition tasks fall within the framework of our

analysis.

4.1.1 Noise Effects

Despite such a plethora of applications where one expects, in principle, the

measurements to be of low rank; it is widely understood thai noise is inevitably

introduced in the data. In the presence of noise, the matrix in question quickly

becomes full rank. Thus, the matrix has to be fitted to its closest low-rank

approximation. The SVD gives the best solution to this problem (Golub et al. 1996),

measured by the Frobenius norm and 2-nonn. The result is guaranteed to be optimal

(Press et al. 1992) if the noise is i.i.d. Gaussian. Not surprisingly, therefore, the SVD

has become a widely used tool. For example, the factorization method (Tomasi et al.

1992; Poelman et al. 1997) achieves a Maximum Likelihood affine reconstruction

from multiple (>2) views, as pointed out in (Reid et al. 1996; Hartley et al. 2000).

From a related point of view, the low-rank approximation can be regarded as a

"denoising" tool, where we refer to the measure of the sum of squared difference

(SSD)* between the noise-corrupted matrix (or the "denoised" matrix) and the noise-

free matrix. Compared with a noisy matrix that is always of full rank, its low-rank

approximation matrix, obtained by SVD, is always closer to the noise-free matrix,

i.e. the underlying ground truth. For example, the multiview subspace constraint was

utilized to improve the accuracy of recovered homographies, especially for those that

have small regions (Zelnik-Manor et al. 1999; Zelnik-Manor et al. 2002).

* In image denoising, we usually use the terminology of mean square error (MSE).
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Thus, linear subspace approximation is sometimes a model simplification and

sometimes a denoising process (and often both, simultaneously).

4.1.2 Performance Questions

4.1.2.1 Denoising capacity of SVD

Although SVD is widely employed to fit a large matrix to its low-dimensional

subspace, little work has been done to analyze the performance of SVD in such

noise-corrupted cases. It is well known (Golub et al. 1996) that one can, by SVD,

obtain the best solution to the low-rank approximation, measured by 2-norm or

Frobenius-norm. However, the meaning of "optimality" in the context of the noise-

corrupted matrix is that the rank-r approximation matrix obtained by the SVD is the

closest rank-r matrix to the noise-corrupted matrix. We do not know the capacity of

SVD for separating the signal from the noise. Supposing the noise level is small

enough, how much signal is retained by keeping the largest r components? Or, how

much noise has been reduced by discarding the other components? In this sense, we

are blindly using a SVD, without knowing its denoising capacity: how close is the

low-rank approximation matrix to the noise-free matrix, or how close is the SVD-

based subspace to the ground-truth subspace.

The lack of such performance analysis impedes the careful design of optimal

systems. A natural issue arising is how to characterize the achieved accuracy with

the growth in data (in the SFM context, this can be either through a growth in the

number of frames analyzed, or by a growth in the number of features tracked). In the

factorization approach to SFM, it is widely accepted that more frames produce more

accurate result than a few ("few" typically being little more than 3) frames. It was

even claimed (Thomas et al. 1999) that the 3D scene could be reconstructed to

arbitrary accuracy given enough frames. However, what is the gain of adding the

data from one extra frame to a very large measurement matrix? WJiat happens as the

number of the frames approaches infinity? Can the 3D scene be truly reconstructed

with arbitrary accuracy? Can such arbitrary accuracy be achieved only by the

increase of the frames (while the number features do not increase)? Is an increase in

the number of frames the most efficient way to obtain an increase in accuracy?
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In the example of SFM, as suggested above we can also possibly augment the

number of feature points, or we can augment the number frames, or we can do both:

i.e., both the row and the column of the matrix can grow towards the infinite in size.

However, in a related problem, the matrix consisting of the homographies over two

views, is restricted to a class of mx9 matrices (Zelnik-Manor e / al. 1999; Zelnik-

Manor et al. 2002). Such a matrix can only "grow" in one dimension, not both. We

introduce some terminology to describe this difference: We call the matrix

potentially-double-infinite if it has infinite rows and columns, and potentially-single-

infinite for those who has constant rows (columns) and possibly infinite columns

(rows). This raises another question: WJiat is the difference between these two types

of matrices in terms of the precision that can be achieved?

In summary, the first aim of this chapter is to analyze the denoising capacity of SVD,

i.e., to identify the error that still resides in the low-rank approximation matrix and

how this error relates to the growth of additional data.

4.1.2.2 Learning capacity of linear subspace analysis

Different questions, to those posed above, arise from the face recognition

applications (including the object recognition and pose determination, and related

applications). In the PCA-based face recognition approach, the eigenimage

representation relies on a compact approximation of the large image database (or

"training" set), by spanning this set (approximately) with a few orthogonal basis

images. Such an approach attempts to capture and characterize the essential object or

face features, and their variations in appearance under lighting and pose changes.

Although the "illumination cone" (Belhurneur et al. 1998) (see also (Zhao et al.

1999)) can be obtained by as little as three images, the result is usually not accurate

enough. Firstly, there is inevitably some noise in the images, like quantization error.

Secondly, it is difficult to satisfy the conditions in proposition 3 in that paper

(Belhumeur et al 1998). Even if we can have three distinct light sources that can

shed light on all the points of the surface, we cannot, in practice, exclude other light

sources that cause attached or cast shadows on the subject. These considerations,

plus (general) noise, have generally resulting in researchers trying to "learn" the

eigenimages by a data reduction step applied to many "learning samples". Thus,
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many learning samples were needed to produce a good basis, for example, 66 images

were used for one object (Belhumeur et ah 1997). What is the relationship between

the learning capacity and the size of the learning samples? Note, the learning

process will be explained in section 4.4, and a more detailed description of such

learning processes can be found in (Turk et ah 1991; Hallinan 1994; Belhumeur et

ah 1997).

Understanding the error, still residing in the basis images, will hopefully help to

design the recognition system. Accurate basis images are desired because the

recognition algorithm relies on projecting the test image, to be identified, on the

basis i mages. Note that the t est i mage i tself c ontains n oise. Thus t he n oise i n the

LSA-based recognition system comes from two sources: one from the basis and the

other from the test image. Do these two types of noise interfere with each other?

The second aim of this chapter is to present some theoretical analysis of the learning

capacity of LSA-based recognition systems. Specifically, the error (measured by the

sum of squared differences - SSD) of the LSA-based recognition system can be

separated into two parts: one from the basis and the other from the test image, and

we obtain some analytical results about their effects on the performance of the

recognition system. We show that it is possible, theoretically, to design the optimal

recognition system if we know the expectation of the test images.

4.2 Major results

4.2.1 Major results

Here, we present the major results of this chapter, by which we can answer the

questions in the introduction. The justification of these results will be deferred until

section 4.3 and section 4.4.

Result 1 (Denoising capacity of SVD): Suppose a matrix A e R'"1" lies in a low-

dimensional, r, subspace. It is corrupted by i.i.d. Gaussian noise producing another

32



1I
i
hi

Chapter 4: Analysis of Noise effect in the SVD-based applications

matrix B, which is directly observed. Then, the error that still resides in the rank-r

approximationmatrix, B r , is

\ r{m + n) - r2

mix
(4.1)

if the noise level a, compared with the signal level, is small enough. Specially, as

m,/7-»oo, the rank-/- approximation of B approaches A, i.e. B r —>A; and if

n = k (k>r) and m -> oo

(4.2)

Result 2 {Learning capacity of LSA): For a rank-/- LSA-based recognition system,

the "error measure" (the SSD) comes from two independent sources: the noise in the

basis images and the noise in the test image. Specifically, the expectation of the

SSD, over the learning samples, is:

(m-rtf (4.3)

where //; is the dimension of the object, /; is the nu.nber of learning samples, <r,

and a, are the noise levels, in the test image and the learning samples respectively

(Suppose both at and cr, are small enough, compared with the signal level as).

Moreover, for a random test image set, (4.3) is optimal among the size-/? learning

sets; and the size-// learning set is optimal iffii has /• equal singular values.

Result 1 and result 2 will be motivated in section 4.3 and section 4.4 respectively.

4.3 Denoising capacity of SVD

In this and subsequent sections, we analyze the perfomiance of SVD-related

applications, as promised and sketched in the introduction and in section 4.2: (a) the
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denoising capacity of SVD; (b) and the learning capacity of LSA-based recognition

system. We motivate our analysis by the perturbation expansion theory concerning

singular values and singular vectors, as presented in chapter 2.

4.3.1 Case of distinct singular values

First, we consider the simplest case: a square matrix with a few distinct non-zero

singular values. A, B, C, and L are defined as in theorem 2 in chapter 2: A is the

signal matrix, N is the i.i.d. Gaussian noise matrix (with zero mean and a2

variance), B=A+N, A = USV r and C = UTNV . Note C is still an i.i.d. Gaussian

noise matrix (with zero mean and a2 variance). Further, define H = C + E . Then,

B = \3nVT (4.4)

{/L.}, {x;} and {y,}, defined as (2.11-2.13) in chapter 2, are the right and the left

singular vectors of B respectively; {A'}, (x'} and {>'•}, defined as (2.14-2.16) in

chapter 2, are the right and the left singular vectors of Q. respectively. Obviously,

from (4.4),

y,.=Uy; and x,. = Vx;. (4.5)

And, also from (4.4), the singular values of B, {/I,.}, are same as the corresponding

singular values of Q., {A-}.

r

Suppose that the noise-free matrix A should have a rank of r, i.e. A = ^/c (-U (V i
r .

Combining (2.2) in chapter 2, (4.4) and (4.5), the closest rank-/- approximation of B

is

(4.6)

Then

U

(4.7)
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where A e TT'" , A , y = 0 if {i,j) e {(1,1),(2,2),-••,(/%/-)} and Au=Ki for

(/=!,•••,/")• Due to the mutual orthonormality among any U (-Vj, we have the

following formula:

(4.8)

According to the perturbation theory in chapter 2, the first order perturbation of

A'iy'ix'i
T (to see the definition o f {A,'}, {*'.} and {yr,} in (2.14-2.16), in chapter 2),

for example A,'y',x^r, is:

K
0

K,

/c,b

- nr

0

where a =
K",C, . +K,

-K;

c,.,,,
I •>

(4.9)

, and

b =
AT.C-,1 ^ 2 . 1

K: -K;

K\CrA+Krt
-i ^

K:: -K:

. Note, 2-order

and higher-order terms have been dropped. Similarly, the first-order perturbations

of Aj'yjx'. , for (; = 2,-••,/-), can be obtained.

By combining such results as (4.9), it is easy to obtain

ar - A = Y

r ... C C ••• C

(4.10)

where Y =
Cr.l

r

C. 0

r
• • " r,

••• 0

0

r. =(2nn-r)a2

•Jlrm^r

(4.H)

(4.12)
m
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Obviously, (4.12) is a special case of (4.1) for square matrices, where n=m.

We note that the fact about the zero-block in Y in (4.10) holds in the context of the

first-order perturbation theory. Actually, there are second and higher order terms in

the zero-block of Y and they are not exactly zeroes. However, they are near zeroes as

the noise level approaches zero; or precisely, they are much smaller, compared with

other items, like CLj for / < r or j < r. We can testify to this fact by the following

simple example in Matlab. Suppose A e i?1010 is a signal matrix, with all zero

entries except AU] = A22 = A3i =100 . C 6 R™~w is a noise matrix, generated as

randn(\0) in Matlab. The observed signal matrix is B = A + C. The matrix in Table

4.1 is a typical example of the approximation error, B3 - A, between A and the rank

J approximation of B, B 3 . Please note the zero-block in Y (highlighted) is much

smaller that other entries, although they not exactly zeroes.

Table 4.

1.188

2.2023

-0.9865

0.5235

-0.3597

-0.2397

-0.0112

1.0295

0.9273

0.3838

1.1857

1.0554

-1.4727

-0.0745

1.1914

0.0212

1.1295

1.3365

0.255

-0.9499

1: A typical example of the approximation

-0.1289 -0.823 0.337 0.1243 -0.4911

-0.6569 -0.2284 0.8511 0.0955 0.8644

1.1689 1.0365 -0.5205 -0.5185 -0.0025

0.4441 -0.0005 0.0O12 0.0018 0.0032

0.2415 -0.0025 -0.0078 0.0005 -0.012

1.2484 -0.0152 0.0074 0.0069 -0.0012

1.3475 -0.0115 -0.0025 0.006 -0.0097

-0.9429 0.0221 -0.0204 -0.0077 -0.0066

-0.0308 0.0087 -0.0057 -0.0016 0.0023

0.677 -0.0064 0.0106 0.0041 0.0101

eiror, B3 - A .

-1.0207

1.5689

0.063

0.0062

-0.0224

-0.0034

-0.0184

-0.01

0.0054

0.0184

0.467

-0.3891

-0.714

0.0005

0.0079

O.01O2

0.014

-0.0066

•0.0036

-0.0005

-1.5508

-0.6872

-1.9757

0.0165

0.0076

0.021

0.0345

0.0072

0.0158

0.0126

4.3.2 Case of multiple singular value

As in theorem 4 in chapter 2, suppose the first k (k<r) singular values of A are same.

Following the notation in theorem 4 in chapter 2, we similarly have, as done in

section 4.3.1:
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')7' = (uur)Q/r(vv')r = u a r v r (4.13)
i=\ 1=1

By the same tecliniques as in section 4.3.1, the first-order perturbation of Q'r has

the following fonn (please note the similar fonn between (2.32, 2.33) and (2.15,

2.16) and the fact that the up-left kxk submatrix of Q ' , Q'vk vk, is a diagonal

matrix.):

r,r

^r+l .r 0

Q\"'

0

c. ••• Q',., ° 0

Then,

=U'Q'rV'r =
F

m - k Q'.. ••• Q'r+\.r o

o

0

0

0

0

= A + Y

(4.14)

o

o

"Er

where A and Y are same as those in (4.10), and E and F are defined in theorem 4

in chapter 2. Obviously, the same result, as (4.12), has been obtained.
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4.3.3 Extension to the rectangular matrix

As stated in section 2.2.3.1 in chapter 2, we only have to consider the first r largest

singular values. Thus, in the cases of rectangular matrices, the perturbation theory

concerning the singular values/vectors still holds and the performance analysis, in

section 4.3.1 and section 4.3.2, can be easily extended to the rectangular matrices.

Here, we only present the final result, omitting the tedious mathematical deduction,

which is almost same as that in section 4.3.1 and section 4.3.2. Suppose the signal

matrix, A, and noise matrix, N, lie in R'"'k (m,k > r). Other conditions stay same as

in section 4.3.1.

ft' - A = Y

where Y =

cl.r cl.r+1

cr,\ C.

cr+l.l cr+l.r

c c
0 ••• 0

c.. 0 o

E\\Br -A\\2
F = E\\Y

rk-r

mk
(4.16)

which is the same as (4.1). As m -> oo, while k is a constant, E \ B- , - At |—> crJ— ,

V k

a non-zero constant. As suggested by (4.2), it is impossible to reconstruct 3D scene

to arbitrary accuracy by the factorization method using an affine camera model,

by only increasing the it umber of the frames (while keeping the number of the

feature points it iichanged). This contrasts with the c laim that 3 D scene c ould b e

reconstructed to arbitrary accuracy given enough frames (Thomas et al. 1999).

However, we recognize the need for caution, our setting is not exactly the same as

that in the paper (Thomas et al. 1999), where the perspective model was adopted.
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4.4 Learning capacity of LSA-based recognition system

In this section, we analyze the performance of LSA-based recognition systems when

the test image is correctly identified. Under such an assumption, there is still some

error, as stated in the introduction, because of the noise in the basis images and the

noise in the test image. In the following, we analyze the effect of these noise on the

recognition system (also by the means of first-order perturbation theory).

Before we motivate the performance analysis of the LSA-based recognition system,

we present a simple description of the LSA-based face recognition algorithm

(Belhumeur et al. 1997; Georghiades et al. 1998; Georghiades et al 2001). It

consists of two steps: the off-line learning stage and the on-line recognition stage. In

the learning stage, the image basis is obtained this way: a set of learning images for

one face is arranged as a learning matrix A so that each image is regarded as one

column of the learning matrix A. Suppose the face image has a dimension of/;;, and

/; learning s amples are c ollected. A e R'"'". T he /• ( r « m a nd /•<//) b asis i mages

can be obtained as the first r left singular vectors of A, which correspond to the r

largest singular values. In the on-line recognition stage, a test image is projected on

the /* basis images and its distance to the image basis is used for recognition.

4.4.1 Perturbation of the basis images

First, we analyze the learning stage, by using the matrix perturbation theory in

chapter 2. By SVD, the low-dimension subspaces, U'r =[yj,y,,•••,}',.] and

V"" = [ x , , x , , - - - , x r ] , as defined in theorem 2 in chapter 2, are obtained. In some

cases, such as in face recognition, the consequent step is contingent on an accurate

basis. Here, we only study the subspace U"": U"" = UH , where
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H =

V," -*%"

K\Cr.\ + * 'Ar

A i

C ; - A-

r.r-\

Kr-\ ~K

1 1

•; - A.-;

(4.17)

A ô/e: From (4.17), we can roughly see that, for different singular vectors {U,}, their

perturbations {y,} have been corrupted to a different extent, which depends on their

strength (more formally, on their corresponding singular values). Jf m»r, the

corruption comes mostly from {U,. | ( />r )} . Obvious!), the corruption in y(. (i<r)

is approximately inversely proportional to its corresponding singular value, Ki.

Thus, y, can be considered cleanest, while yr the dirtiest. In section 4.4.2, we will

return to this point when the projection error is analyzed.

Furthermore, to decompose H into: ii = E + F + G, where E -•

F =

0

\ l \^r •

- A ' ,

K\Cr.\

AT," - K:

2 1,2 1 2 1

A'," - AT"

*"r-l - « • ,

I..
0,

A T * - A T ,

0

0

(4.18)
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G =

0
0
I

0
C r + l . l

0
0
...

0
Cr+1.2

cllt.

0

0

0

c'm.

(4.19)

4.4.2 Projection of a new test image on the basis images

The underlying noise-free subspace IT = U
0,

= UE . Suppose a noise

corrupted test image p to be identified is observed, and the underlying truth is q:

q = Uf and p = U(f + g) . Because q e U r , only the first r components of f are

possibly non-zeroes, i.e. f = [f],f2>'",fr A -">0] r- In practice, the noise-corrupted

test image has to be projected on the noise-corrupted basis in the recognition system

because the noise free basis is always unknown. More formally, the projection error

of n on U'r is used:

p - l T i r r p = U(f + g ) - U(E + F + G)(E + F + G) r UrU(f + g)

* U[g - EErg - ( E F r + EG r + FE7" + GF/)f]

= U[g - EErg - (EGr + GE r)f ]

= U[g ' -Gf]

where g' has same components as g, except its first /* zeroes, i.e.

g' = [ 0 , 0 , - , 0 , g r t l , - , £ j r . And f' = [ / , , / 2 , - , / r ] r . Note, in (4.20), the 2-order

and h igher-order t enns h ave b een d ropped: F, G, a nd g can possibly approach 0.

From (4.20),

(4.22)

(4.20)

p-U' rU" p = ||[g',c;,c2,-,c;][i-hrr

where C] =[0,-,0,C r+1,,C r+ :,,--,Cm,] r and h =[/ , I KX, -Jr IK,?.

41



Chapter 4: Analysis of Noise effect in the SVD-based applications

We suppose the basis is obtained from n learning samples, i.e., the learning matrix is

AER"1'" , and each entry of A has energy of a] , and is corrupted with i.i.d.

Gaussian noise with energy of a]. It is also assumed that the test image has energy

of cr) and is corrupted with noise of a] .
r m n

):r =mner"s , 2 - I Z J 'V =mn<7i »
1=1 7=1

/=!
.̂2 =ma) , and ]Tg2 =/»<r,2. ||g'||/r=V'«-/"cr, and ||C|. 11̂ .=

to the independence among {g', {C'. | /" = 1, • • •, r}} , (4.22) becomes

p-U'rU'r p = {m-r)a; -r) ^ ^ 2

l;

. Due

(4.23)

(4.24)

Obviously, from (4.23), the projection error is contingent on the relationship

between {/•} and {\v}. From G in (4.19), and (4.23), it can be concluded that the

basis y, that corresponds to the largest singular value is the cleanest, and that the

basis y r that corresponds to the least singular value is the dirtiest. The cleanness of

the / ' ' basis yy., here, is measured by the projection error, in (4.23), which is

introduced by the/ '1 unit-norm basis image. For a random test image, the best and

worst performance is:

<(m-r)a;

- _ (4.25)
" r

i (4.26)

mna
where K2

r < — < /c-,2. Define, furthermore, /cf = corner] :

(;M - r)cr;
nc,

p - U ' f U ' f p m — r<(m-r)a; +' a~ (4.27)
nc.

4.4.3 Performance analysis over the learning samples

We have given the best and the worst performance analysis of the recognition

system. Next, we want to analyze the average performance of the system when we
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test the basis on the whole learning examples, i.e. all the images that a re used to

obtain the basis images.

TH-.TH-r q e l A , ! . / ^ . • • • . « ! •

(4.28)

From (2.2) in chapter 2,

Surprisingly,

(4.29)

Then

p-U' rU' r 7p (4.30)

It can be easily proved that (m-r)af + ^m ' -*' ' / is the expectation for any test

sets when the /- largest singular values of the learning matrix A are equivalent.

Moreover, from (4.33), this is also the best expectation performance over a random

sample set, where the randomness means that Eff in (4.23) should be statistically

equivalent.

From this fonnula, (4.30), we can see clearly the effects of all the parameters in the

recognition system. Given that the noise in the learning samples and in the test

image, compared with the signal, is small, the perfomiance can be regarded to be

independent o f t he signal level. As /;; approaches a v ery 1 arge n umber, compared

with /*, the SSD is almost linearly dependent on in. As the number of the learning

samples, /;, increases, the recognition system improves: the error from the basis

images decreases, and as n approaches infinite, the error from the basis images

approaches zero. However, the error from the test image cannot be reduced except

by having a cleaner image.
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Another measure, used in the recognition system, is the angle between the test image

and the basis images:

P-u"Lrrp
/ n a; ra,

r; 4 cr; cr) + a? n(<j] + erf )
(4.31)

Supposing m»r, the angle is independent of the size of the object, and depends on

the energy level of the signal and the noise (in the learning samples and in the test

image). As the size of the learning samples, /;, increases, the system improves: the

error from the basis images approaches zero and the error from the test image

gradually dominates in the total error.

4.4.4 The optimal learning set

Suppose that the expectation of the test images, i.e. {f2}, in (4.23), is known. How

should we design the recognition system: specifically, how to select the learning

samples, so that the system, concerning the expectation, has the best performance?

Obviously, only the second term in (4.23) is dependent on the learning samples. The

problem is:

min
fr , subject to ]T K-;2 = C (4.32)

K1 = C means that, when the dimension, ;;/, and the size, //, of the learning

samples is large enough, the signal energy, 2^,Ki > snould be approximately

inner2. By using a Lagrange multiplier, the minimum can be obtained iff

-4 = Cons (4.33)

From (4.33), we can draw such a conclusion, however it is a little surprising, that the

basis images obtained from the /; samples of A are not optimal when the test image

set is also {A(.}. The reason is that, the basis, corresponding to the largest singular

value, is overlearned in the learning process: from (4.33), the optimal learning

ability, K] , should be proportional to /•, while fcf is actually proportional to f2,

as in (4.29).
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4.5 Simulation results

Here, we have to note that it is very difficult to have real data with high precision

ground truth. Thus, in this section, we present some simulations to verify result 1

and result 2.

\
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v\-

(b)

•1 \
•" ! \

oool \
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(d)

o i | r
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1«] 180 JOO
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(c) (0
Figure 4.1: The average error that still resides in the approximation matrix. The abscissa denotes the
number of the rows of the matrices, and the error is on the ordinate. (a-c) are for the square matrices, and
(d-f) are for the rectangular matrices, which have a constant, 40, columns. There are three curves in every
sub-figure: the (approximately) straight curve in the upper part denotes the original noise in the noise
corrupted matrix, and the smooth/unsmooth curves are the expectation/actual error in the approximation
matrix respectively. In (a) and (d), the signal and the noise are randomly generated. In (b) and (e), the
noise levels are normalized, so that the average energy in each entry of the matrices is 0.01. In (c) and (f),
the signal matrices have 3 equivalent singular values, while the energy level remains same.
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4.5.1 Simulation of the denoising capacity of SVD

In a recent paper, an experimental result related the SVD's denoising performance

has been reported (Chen et al. 2004). In that example, noise with amplitude of

1.5/40=0.037 still resides in the approximation matrix: where the noise-free 40x40

matrix, with a rank of 3, had been corrupted with zero-mean-and-0.01 -variance

Gaussian noise. From result 1 we have derived, the value should be 0.038. That this

is pretty close to the result in (Chen et al. 2004), confirms the theory present here.

To provide further evidence, we have carried out our own simulations. Here, we

work on a set of rank-3 matrices. For square matrices, the size of the matrices

increases from 3 to 200; while for rectangular matrices, the number of the columns

remains unchanged, staying at 40. The noise level is 0.1. In Matlab notation,

M = randn(rows,3) * randn(3, columns) + 0.1* randn(rows, columns) is the noise-

corrupted matrix. Figure 4.1 shows the simulation results of SVD's denoising

performance, compared with the expectation from result 1. It can be easily observed

that the expected curve almost coincides with the simulation result. In contrast with

Figure 4.1 (d-f) (rectangular matrices), the curves in Figure 4.1 (a-c) (square

matrices) can be observed to continue towards zero error, while the error for the

rectangular matrices changes little after the number of the rows increases to 20 or 40.

4.5.2 Simulation of the learning capacity for LSA-based recognition

In this section, we present some simulation results concerning the SSD performance

of the LSA-based recognition system, as stated in section 4.4. Suppose we work on a

set of rank 3 subspaces but in a dimension of 100. In this section, the parameters are

set as follows: m=100, r=3, crs =100, and cr, =cr, =1. First, the SSD performance

of a set of basis images is analyzed, over two test sets: the learning set, from which

the basis images are obtained, and another random set where its 3 singular values

have been artificially equalized. Obviously, as the learning sample size approaches

infinite, the SSD, over two sets, approaches a stable value, as shown in Figure 4.2-a.

Over the learning set, the performance, denoted by solid curve, almost coincides

with the expectation from (4.30), denoted by dashed curve. Over the random set, the

performance is denoted by dotted curve. Because the 3 singular values of the random
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test set have been artificially equalized, the best performance over this random set

can be obtained only if the learning set has 3 equal singular values, from (4.33).

However, the random learning set always has 3 distinct singular values. Thus, the

performance over the random test set is worse than the optimal curve, denoted by

dashed curve, especially fc; the small-size learning samples; in fact, the performance

for the recognition system is very bad, at 5,771.6, 788.1 and 588.1 respectively,

when the learning sample sizes are only 3, 4 and 5. In order to make the curves clear,

these points have been omitted in Figure 4.2-a.

Conversely, next, we first have a random test set, and show the performance of

different learning sets (different basis images): an optimal learning set, which

complies with (4.33), and a random learning set, who has 3 equal singular values.

For the random learning set, with 3 equal singular values, its performance, denoted

by the solid curve, can be expected to coincide with the expectation (4.30), denoted

by the dashed curve, as shown in Figure 4.2-b. Obviously, the optimal learning set,

complying with (4.33), has a better performance than the random learning set,

especially for small learning sizes.

Note, if the learning set and the test set are truly randomly generated, it probably has

a very bad SSD performance, especially for a small-size learning set. For example,

the r" basis image may be very dirty, because the /*" singular value of the learning

set is comparatively small; while most of the energy of the test image probably

comes fron? this basis image. In such cases, the error from the basis images,

especially from the /-'/( basis image, will dominate the total error, as can be seen from

(4.23).
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Figure 4.2, The dependency of SSD on the size of learning samples.(a) for a learning set, over
two test sets: (solid) the learning set from which the basis images are obtained, and (dotted) another
random set that has 3 equal singular values; (b) for a test set, by two learning sets: (dotted) the
optimal learning set and (solid) another random learning set that has 3 equal singular values. In
both sub figures, the dashed curves denote the expectation from (4.30).
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(to be continued)
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Figure 4.3: The effects of three parameters in (4.23) on SSD. To see the description in the text.

In Figure 4.3, we show the effects of the three parameters in (4.30), the size of the

learning samples, //, the noise level in the learning set, a,, and the noise level in the
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test set, <r,; on SSD when the recognition system works over the learning samples.

Figure 4.3(a) shows the performance of SSD when the noise level in test image is 0.5

(very small). It can be easily observed: the square dependency on the noise level in

the learning set and the decreased effects of the noise in the learning set as the

learning size increases. Figure 4.3 (b) shows the performance of SSD when the noise

level in learning samples is 0.5 (very small). It can be easily observed: the square

dependency on the noise level in the test set and its effect is almost independent of

the learning size. Figure 4.3(c) and (d) show the effect of the noise levels oft he

learning set and the test set when the learning sizes are 3 and 125 respectively. When

the learning size is 3, the noise in learning set has almost a same effect on SSD as the

noise in test set; when the learning size is 125 (»3) , the noise in learning set can be

almost neglected if it is not much higher than tlr t̂ in the test set.

4.5.3 Relationship with some experimental observations

Here, we can explain such phenomena previously reported in the computer vision

literature, by using the analysis in section 4.3 and section 4.4. For example, in SFM,

the root-mean-square error of the recovered shape with respect to the true shape was

reported in (Morita et al. 1997). Fig. 6 in that paper (Morita et al. 1997) shows that

the error approaches a constant value after the number of the frames increases to 20

or 40, as almost coincides with the result 1, in section 4.2 or the Figure 4.1 in section

4.5.1.

Another two observations are related to result 2, in section 4.2. In (Basri et al. 2003),

it was reported that no s ignificant deterioration of the perfomiance was found for

LSA-based face recognition, if the images were subsampled by 16x16 squares,

which means that, m, the number of the rows of A, decreases by 1/256. However, the

reduced m is still very large, about 1000 ( » 4 or 9). We can find the explanation

from (4.31): the performance, measured by the angel between the test image and the

basis images, is almost independent of/?/ i f m » r .

The last, but not the least, (maybe even the most important), observation was that

"recognition of an object under a particular lighting and pose can be performed
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reliably provided the object has been previously seen under similar circumstances"

(Georghiades et al. 2001). A very reliable explanation can be found from (4.23) and

(4.33). For a test image, if it or its similar cases have been observed in the learning

samples, its {f.2} will probably have a good relationship with {rcf}, i.e., for a larger

A:,2 , f? is also larger, and vice versa. More formally, if (4.33) holds, the recognition

system has a best performance. However, for a test image, which is produced under

very different lighting conditions from those in the learning set, its {f2} probably

has very baa relationship with {tcj}. If most of its energy comes from the dirtiest

basis, which corresponds to the /'';' singular value of the learning matrix, from (4.23),

the recognition error is probably very large. This not only explains the drawback of

PCA-based face recognition, pointed out in (Georghiades et al. 200?.), but also gives

a possible solution, as suggested by (4.33). For a random test set, the best learning

samples should be selected this way: to equalize the first r largest singular values as

possible. However, we do not present any specific strategies for this open, and

probably promising, issue.

4.6 Conclusion

The main contribution of this chapter is the presentation of a theoretical analysis of

SVD-based low rank projections: specifically the dencising capacity of SVD (where

we characterized the error that still resides in the SVD-denoised matrix) and the

learning capacity of LSA-based recognition systems (where we showed that the

projection error can be decomposed into two independent sources, one from the test

image and the other from the basis image). The work presented in chapters 5 and 8

directly exploits these results.
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Chapter 5

Recovering the Missing Components in a Large

Noisy Low-Rank Matrix: Application to SFM

In computer vision, it is common to require operations on matrices with "missing

data", for example because of occlusion or tracking failures in the Structure from

Motion (SFM) problem. Such a problem can be tackled, allowing the recovery of

the missing values, i f the matrix should be of low rank (when noise free). The

filling in of missing values is known as imputation. Imputation can also be applied

in the various subspace techniques for face and shape classification, on-line

"recommender" systems, and a wide variety of other applications.

However, iterative imputation can lead to the "recovery" of data that is seriously in

error. In this chapter we provide a method to recover the most reliable imputation,

in terms of deciding when the inclusion of extra rows or columns, containing

significant numbers of missing entries, is likely to lead to poor recovery of the

missing parts. Although the proposed approach can be equally applied to a wide

range of imputation methods, we address only the SFM problem in this chapter.

The performance of the proposed method is compared with Jacobs' and Shum's

methods for SFM.

The work presented in this chapter has been published in (Chen et al. 2004).

5.1 Introduction

Several problems in computer vision (and beyond) can be reduced to fitting a large

matrix to its closest low-rank approximation: the factorization method under affine

models of Structure from Motion (SFM) (Tomasi et al. 1992; Poelman et al. 1997;

Kahl et al. 1 999; Kanatani 2 001), o ptical flow estimation i n multi-frame video
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(Irani 1999; Irani 2002), subspace constraints in face recognition and indexing,

pose determination, data mining and a plethora of related problems (e.g., customer

modelling and recommender systems (Sanvar et al. 2000; Brand 2003)).

In this chapter, we restrict our application to the structure from motion in an affine

camera setting, although this is to make the problem concrete rather than to exploit

any special structure of that problem. Indeed we do not use any features of the

problem formulation that is specific to the particular application (see section 5.1.1)

so we will generically say that the matrix M (of dimension wxwand with real

number entries) should be (without noise) of rank /• « min{/», n]. A consequence

of the matrix being of rank r is that it can be factored into RS for real rank-/*

matrices R of size mxrand S of size ;• x n, and vice versa. For the SFM problem,

we a re of course i nterested i n p articular factors (the factorization is n ot u nique

because for any invertible matrix G of size rxr we have RS = (RG)(G~'S)).

However, for other problems we are not interested in any of the factors per se but

are interested in the projection onto a low rank matrix to reduce noise, to fill in

missing data, or extrapolate to as yet uncollected data. For example, we may wish

to exploit the low rank constraint to assist in the feature point-matching problem

(predicted search ranges) or to extrapolate tracks.

In most real world problems, noise is inevitably introduced in the data. In the

presence of noise, the measurement matrix quickly becomes full-rank. Thus, the

matrix has to be projected upon its low-rank approximation M r minimising mean

squared error (using Frobenius norm):

M - M r (5.1)

The singular value decomposition (SVD) gives the best solution to this problem

(Golub et al. 1996): M = UDVr, Mr = UD rV r where Dr is obtained by setting to

0 all of the singular values except the r largest ones. This is classical and is the

starting point of the original factorization method for SFM, and hence for many of

its variants.
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We could equivalently seek the rank-/- factors explicitly in the formulation. That is,

finding R of size m x /• and S of size rxi i , that minimize

||M-RS|£ (5.2)

In such cases, one can side-step directly computing the "clean" Mr (the

reprojected points in SFM terminology).

The i ssues t o solve, o iher t han c omputational e fficiency i ssues, i nclude: how t o

deal with missing values, and how to deal with large amounts of data or data that is

arriving sequentially. We will focus here on the first problem, and an algorithm is

presented in section 5.4.3.

5.1.1 Missing-data problem in SFM

In SFM, one starts from the mathematical relationship between the measurement

matrix M (coordinates of features tracked through frames), the object-camera

motion matrix R, and the structure/shape matrix S. In the non-degenerate cases,

and assuming an affine camera, the measurement matrix, should be exactly of rank

4. However, one can exploit the special structure: the "registered" measurement

matrix, formed by subtracting the centre of mass of the image points from their

coordinates, which should be of rank 3 (Tomasi et al. 1992; Poelman et al. 1997;

Kahl et al. 1999; Kanatani 2001), and one can even reduce the problem to a rank-1

problem (Aguiar et al. 2003).

Regardless of what formulation, in terms of rank, the SVD cannot be directly used

if some of the data are unavailable. This issue has been regarded (Jacobs 1997;

Jacobs 2001; Rother et al. 2002) as the major drawback of the factorization

method.

Attempts to apply a subspace projection approach, in the presence of missing data,

can be divided into two categories:

1 Those that attempt to "fill in" (or impute) the missing values:

a. The seminal approach of Tomasi and Kanade (Tomasi et al. 1992)

where the filling in is called "hallucination". In their somewhat heuristic

approach to the missing data sub-problem, a full submatrix (no missing
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entries) is first decomposed by the factorization m ethod, and then the

initial solution grows by one row or by one column at a time,

hallucinating missing data. The final estimate is then refined by

employing a steepest descent minimization method on a Least Squares

fitting criterion (equation 5.2) ||M — RS-C|^. where the inclusion of C

makes the adjustment for the registration.

b. Jacobs' method (Jacobs 1997; Jacobs 2001) treated each column, with

some missing entries, as an affine subspace, and solved the problem by

obtaining the intersection of all the quadruple (in practice, a large

selection of) affine subspaces. Unknown entries are recovered by

finding, for each column, the least squares regression onto this subspace.

2 Methods that directly obtain the factors — thus not imputing the measurement

matrix (directly)

e.g., Shum's method (Shum et al. 1995) and Guerreiro and Aguiar's

work (Guerreiro et al. 2003). Though Shum's method was not originally

formulated for SFM (see section 5.1.2) Jacobs (Jacobs 1997; Jacobs

2001) suggested that it could be applied to the SFM problem. We note

that Shum's formulation uses data weighting to incorporate confidence

measures, an elaboration not essential to our exposition. In essence, the

method iteratively solves coupled least squares problems for the factors

starting from the formulation of equation 5.2 but modifying the

Frobenius norm so that only entries for measured data are involved, and

adding the weights as mentioned previously. Since the formulation is

bilinear in the factors, one can hold one factor constant and solve a

linear least square problem for the other factor. Thus the missing data

are only indirectly imputed (one can "reproject" the recovered structure

onto the images). See chapter 6.

Tomasi and Kanade's approach to the problem of occlusion (Tomasi et al. 1992)

has the following disadvantages: needing to start from a complete submatrix (it is a

NP-hard problem of finding the largest complete submatrix), asymmetric usage of
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the data, and error propagation, as pointed out by Jacobs (Jacobs 1997; Jacobs

2001).

The greatest advantage of Jacobs' method lies in the fact that it does not need to

start from a complete submatrix. Ideally, for a generic problem, all the quadruple

affine subspaces should be utilized in order to obtain a good result. In practice, a

selection of the affine subspaces is needed. However, in the severe noise case,

using only a small portion of the affine subspaces may produce unsatisfactory

results. Intrinsically, Jacobs' linear approach can be employed in any missing-data

problems under low-rank constraint; however, better performance for SFM

problem can be obtained, because some "outlier" detection strategies are used, by

incorporating the specialty of the SMF problem; while, for a general low-rank

problem, the performance of the generic algorithm proved to be far away from the

optimal solution, especially when there is a lot of missing data.

Ore drawback of Shum's approach is its dependence on an initial matrix, although

a random initial matrix works when the percentage of the missing data is low and

the data is not highly corrupted by noise. Even taking Jacobs' result as its initial

point, Shum's approach still tends to diverge when there is a lot of missing data,

especially for the generic low-rank problems.

Recently, by combining Jacobs' method (Jacobs 1997; Jacobs 2001) with the

projective factorization method of Sturm & Triggs (Sturm et al. 1996), Martinec et

al. (Martinec et al. 2002) solved the missing-data problem under the perspective

model. Various geometric constraints (Heyden et al. 1998; Kahl et al. 1999; Brandt

2002), have also been employed to cope with the missing-data problem. For

example, Heyden and Kahl (Heyden et al. 1998; Kahl et al. 1999) proposed to use

"closure constraints" for affine construction, where the missing-data problem can

be naturally handled. They noted that Jacobs' method could be regarded to be

"dual" to the closure constraints. It should also be noted that the missing-data

problem in SFM could be efficiently solved by an incremental SVD (Brand 2002).

Our own method for solving this problem is to be found in section 5.4.3.
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5.1.2 Other missing data problems under low rank constraint

Low rank based imputation is so commonly useful that it is not surprising that

many variations have appeared in the literature. Many applications are quite far

removed from SFM: e.g., DNA prediction (Troyanskaya et al. 2001), or in

recommender system (Sarwar et al. 2000; Brand 2003). Yet these studies share the

same intrinsic nature: missing-data problem under low-rank constraints.

The approach used in DNA prediction (Troyanskaya et al. 2001) employs a

"SVDimpute" algorithm that bears a superficial similarity to our approach. The

starting point of that approach is to fill in the missing values with row averages,

then to use the SVD to rank /--project, then regress the missing values against the

spanning vectors of the SVD, the process then being re-iterated until convergence.

The first potential drawback of these imputation methods is that, the initial values

for the starting point are rather arbitrary. Such limits its application to the cases

where only a few data are missing (Sarwar et al. 2000; Brand 2003). Secondly

(Troyanskaya et al. 2001), only one missing component is updated at a time — an

inefficiency. More importantly, as will be covered in the Appendix, such a strategy

does not impute with minimal distance to the "current" subspace. Thus

convergence cannot be ensured. Indeed, the same criticisms as have been levelled

at Tomasi and Kanade apply: strong d ependence on the starting matrix a nd the

imputation order (Brand 2002; Brand 2003). In addition, the iterative imputation

method has the possibility of exhibiting "bad behaviour" (see Appendix), i.e. the

estimate goes further from the underlying optimal solution as the iteration

proceeds. However, such an important issue was overlooked in (Troyanskaya et al.

2001).

In a recommender system, the low rank constraint is supposed to capture customer

preferences and it needs to be continually updated. However, it would be very

computationally expensive to update the system online by traditional SVD. Brand

(Brand 2002; Brand 2003) proposed an incremental SVD to efficiently do this

work, making the online updating possible. In what Brand calls bootstrapping

(Brand 2003), he re-orders the matrix to have a dense submatrix in the top left

corner and incrementally adds rows and columns using incremental SVD updating
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routines. Incremental update is also desirable in SFM problems (Brand 2002), but

it is beyond the scope of the present chapter.

5.1.3 Coiitributions of this chapter

The main contribution of this chapter is that we provide a means of determining

which parts of the matrix should be used in the iterative imputation/recovery

process. In the SFM context, this corresponds to deciding which tracks and/or

which frames (typically the former) should be exploited in the iterative recovery

process. Intuitively, the gain, on the one hand, o f using more data (rows and/or

cols) is balanced by the fact that extra rows and cols carry more missing entries.

Rows or columns that have almost all entries missing are not likely to bring much

extra information and the extra degrees of freedom can make the recovery less

stable. Incorporation of data with more missing values can cause the solution to

"wander" away from the true solution.

As a second contribution, we present an iterative imputation strategy and prove its

weak convergence. Although falling short of a theoretical guarantee, the weak

convergence, together with our mechanism of precluding the "wandering" of the

iterative approach, ensures the iteration to the optimal solution in almost every

case. This will be demonstrated by experiments.

5.1.4 Overview of the chapter

In section 5.2, we first state the general missing-data problem under low-rank

constraint, using an objective function that is subtly different from the one in

Shum's method. In section 5.3, we analyze the central idea, used in the imputation

approach (Sarwar et al. 2000; Troyanskaya et al. 2001; Brand 2003), i.e., to fill in

the missing data so that the complete vector has a minimal distance to a known

low-rank subspace. Then, we propose a new iterative method of recovering the

missing data in a large low-rank matrix; and prove its weak convergence. In

section 5.4, based on the analysis of the deiwisiiig capacity of the SVD in chapter

4, we propose a criterion determining whether it is worth incorporating the

incomplete vectors in the iteration. In section 5.5, we experimentally compare the
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algorithm with Jacobs' and Shum's methods. In the Appendix, we discuss some

aspects of the iterative method, including its convergence, the "wandering" issue, a

bootstrapping strategy that provides a partial solution to the "wandering issue"

(hinting at a more complete solution), and the relation to other approaches.

5.2 The definition of the problem and its nonlinear nature

5.2.1 The problem

A large matrix M e: Rm", which should have a low rank /•, is corrupted with noise

(assumed to be i.i.d. Gaussian), and has missing entries. The problem is to recover

these missing entries and to minimize the approximation error between the

recovered matrix, M, and its closest rank-r approximation, Mr:

min i |M-M r Hi- (5.3)

subject to Mjj =MiJ if Mtj is observed. In other words, we seek to minimize

the difference between the imputed matrix M (where the missing values have

been recovered but the matrix has not been de-noised) and the closest rank-/-

approximation of the imputed matrix Mr (now imputed and de-noised).

Note: The minimization objective is different from that in Shum's approach (Shum

et al. 1995), where the objective is to recover the matrix factors that minimize the

re-projection error of the "non-missing" data, i.e. the sum of the square of the

difference between known elements in the incomplete matrix and the

corresponding elements in the new recovered matrix, which is exactly of low-rank.

Moreover Shum's formulation incorporates weighted errors - an elaboration that

can be extremely effective if one has error covariance estimates that can be

exploited. Weighted error norms are beyond the scope of this chapter (however see

chapter 6) and so we express Shum's formulation as:

min ||M-RSi|J._non_missing (5.4)

In essence, (5.4) predisposes one to directly seek the factors, and to perform

imputation and de-noising together. This suggests different implementation

strategies but the solutions to both formulations should be equivalent. Of course,
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given different implementation strategies, the stability and convergence properties

can differ.

5.2.2 Non-linearity of the problem

Obviously, Shum's formulation (equation 5.5.4) is non-linear: in fact it is bi-linear

in the factors R and S. Here, we show the intrinsic non-linearity of our formulation

(equation 5.5.3).

Suppose M e Rm'". Its closest rank-r matrix, measured by the Frobenius norm, is

Mr =Ur2/(Vr)r=]To-.uI.v/
7' , with | M - M f | 2 = £ o y (Golub et al. 1996),

i=l i=r+l

where p - min(m,n) and {07} are the non-descending eigenvalues of M rM .

Suppose M has some missing entries {M,-%j \ (i,j) e s} , where

- = {('*>./) I M;j is unknown, 1 < i < m,\ < j < 11}. ELJ e Rm", has all zero entries,

except a one at (ij). Let the recovered matrix be M , M = M + /^^ij^ij » v v n e r e

1-7 ' . The characteristic polynoniial of M rM , p(A,), is a high-
0 (i,j)e~

order polynomial of A and ktj. The equation, p{X) =0 , has /; non-negative roots

for any {kl i}, because M M is positive semi-definite. The problem reduces to

A

finding {kLi}, which minimizes the sum of the least n-r roots of the equation,

p{X) = 0. This is a nonlinear problem.

Consider a simple case, M G /?1Oll° with a missing entry Mu . Suppose M should

be 0 f r ank 4, i f i t w ere noise free a nd h ad n o missing e ntries. Its c haracteristic

polynomial, p(A.,t) , where / dciotes the missing entry, is of the fonn:

,'g\(/), where ff{X) =
(=0 y=o

7=2

and *..tJ , and fij and gitj are determined by M. This equation is
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nonlinear and the problem of minimizing the sum of the least 6 roots is very

complicated. If there are many missing entries in the matrix, the problem appears

intractable from this point of view.

5.3 An iterative imputation method

In this section, an iterative algorithm, based on the imputation principle, is

proposed, and we prove a weak convergence of the iterative algorithm.

5.3.1 Minimization of the distance of a vector with missing entries to a

known subspace

The key starting point is to "grow" a complete matrix by adding rows or columns,

filling in those missing entries in the new rows or columns. Without loss of

generality, we consider only the case of column-wise growth of the complete

matrix. Thus suppose we have a complete matrix, M e R'"'", which should be of

rank /- (r<m,n) if it were noise-free; and another vector x e R'", with missing

components. Ideally, [M, x] should be also of rank r if both of them were noise-

free and complete. Suppose the first A- (k<m-r) components of x (i.e., x1:A.) are

missing (swapping rows if necessary). The imputation method finds a linear

combination of column vectors in M, fitting x the best (Troyanskaya et al. 2001;

Brand 2002):

x1:,=U1(U2
rU2)-'U2

rx,+1:n(

(5.5)

where, by SVD, the rank-/- projection of M is

Mr =Udiag(s)VT =

the rest of U.

U,
diag(s)VT, and U, is the upper k rows of U and U2 is

Intuitively: x is the closest point to the subspace Span(U). Because this property is

crucial in proving the convergence in section 5.3.3, we give a formal proof here.
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Theorem 1: The estimate x , obtained from (5.5), is the closest point to the

subspace Span(U).

Proof: For any estimate, x , suppose U rx = "c :

= | x 1 , - x,+1:m - u 2 c [ ; > ||x,+!;m - u 2 6 |

where the equality holds iff c is the LS solution c for U2c = xA+1.m and xyk =

U,c. QED

Note: Although the solution by (5.5) is optimal in terms of the distance between

the vector; whh missing data and the known subspace, it is not true for the new

subspace of [M,x]; because the new subspace depends not only on M, but also on

x.

5.3.2 An iterative algorithm for the problem (Iter)

In this subsection, we present an iterative algorithm (called Iter) to solve the

nonlinear problem defined in section 5.2.1. Though Iter performs well in the vast

majority of cases, it does not always converge to a good solution. Hence this core

algorithm will be improved in section 5.4.

Algorithm (Iter)

(i) Starting from a complete submatrix'. Suppose, w.l.o.g., that M , after some row

A B
and column exchanges, has a block representation:

C D
, where all entries in A

are known, and some entries in B , C, and D are missing. For example, permute

columns so that columns with least missing values are on the left and permute

rows so that rows with least missing values are towards the top. We do not need

the largest submatrix - any A of size 2rx2r or larger will do.

(ii) Initialization -growing a complete sub-matrix: (a) Column-wise filling. First

consider the submatrix [A B]. Recover B from A by equation 5.5 and obtain

A B, B2

C D, D2

, where the missing entries in B, have been recovered and the

missing entries in B, cannot be recovered. Note: this induces a split of submatrix
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D. (b) Row-wise filling. Similarly, recover [C D,] from [A B , ] , and obtain

A B,
A B, B2

C, D n D12

C2 D21 D22

. Note: after sub-step (h),

submatrix, in the block representation of
A B

C D

is now A, the complete

, [C, D21] and D2 2

now are B, C and D respectively.

After sub-step (a), check whether all the missing entries have been recovered. If

so, terminate the initialization step and go to the iteration step; if noi, go to sub-

step (b). After sub-step (b), check for completion again. If all the entries have been

recovered, go to the iteration step. If not, check the following condition: Is the

number of the non-recovered entries before sub-step (a) the same number as after

sub-step (b)? If so, the missing entries in B, C, and D cannot be recovered. If the

number of non-recovered entries decreases, continue the initialization step (a) by

regarding the recovered entries as "non-missing". (Note: although growing the

complete submatrix to obtain the initial complete matrix, as described here, is

somewhat iterative, we prefer to view this as an initialisation step to the refinement

iterations that follow in the next step.)

After this initialization procedure, we obtain a recovered matrix M,, which is

complete; and we prepare for the iterative stage by setting a convergence measure

(Hi) Iteration — refining the complete matrix: From M ( , obtain its closest rank-r

approximation by SVD: M, = U.X .̂V. . Compute the rank-r approximation error

.If

d,.x - d, < £ (5.6)

terminate the iteration; else, from U., recover the missing entries in B, C , and D

by (5.5), and obtain B /+1, C/+1 and D(+1. Set M/+1 =
A B

;+1
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5.3.3 The convergence of the iterative algorithm

In this section, we prove a weak convergence of the iterative imputation algorithm

above (thus the algorithm is independent of the initial matrix when the matrix has

not been badly corrupted by the noise or by the missing data - as experimentally

verified).

Theorem: The iterative algorithm above converges to a local minimum.

Proof: Suppose m is an arbitrary column of M, and its estimates are m, and ml+]

at the /''' and the i+l'1' iteration steps, respectively.

all m

all m

all m

The first inequality is from theorem 1, and the second from the SVD theorem

(Golubetal. 1996). QED

Note: There are many ways to detect/characterise convergence. Another condition

for the convergence, not so rigorous as (5.6), is to check the variation of the

missing entries, i.e.

\\MM-M,\\F<e' {5J)

Condition (5.7) is easier to check. However, condition (5.7) is stronger than (5.6),

and it may happen that c ondition (5.7) fails to indicate convergence. The cases,

non-convergent measured by (5.7), are described as divergent in section 5.5.2 and

section 5.5.3.

5.4 SVD's denoising capacity vs. missing data

Vectors, with only a few "non-missing" components, may cause the iteration to

"wander away" from the true solution. Moreover, even if the optimal solution,
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defined as in (5.3), can be obtained", we experimentally find that these recovered

vectors may degrade the accuracy that might have been gained from the other

reliable data, alone. We have experimented, with some success with various

strategies to detect and rectify this (see Appendix), however the true solution will

be found in a closer analysis of the de-noising process. By analyzing the SVD's

denoising capacity in chapter 4, we present a criterion to decide whether it is worth

incorporating an incomplete vector into the iteration.

5.4.1 SVD's denoising capacity and its extension to an incomplete

matrix

In chapter 4, with the tool of the matrix perturbation theory (Wilkinson 1965), the

SVD's denoising capacity is analyzed, in terms of the size of the matrix, the noise

level, and the underlying rank (equations (4.1) and (4.2) in chapter 4).

The advantage of the SFM factorization method can be ascribed to the SVD's

denoising capacity. From (4.1) in chapter 4, we can see, as the size of the matrix

increases, the low-rank approximation matrix approaches the noise-free matrix.

That is the underlying superiority of the factorization method when applied to a

complete matrix: all the feature points are treated uniformly so that most of the

noise can be suppressed if the size of the measurement matrix is large enough.

However, SVD is not directly applicable when there is some missing data in the

matrix. A possible solution is to first recover the missing data, using for example

the iterative imputation method above; then to SVD the recovered matrix.

However, when there are a lot of missing components, a vector with only a few

"non-missing" components, might degrade the accuracy obtainable from the other

reliable data. Yet, using only a small complete submatrix may not achieve optimal

de-noising ability - clearly there is a trade-off here. This is illustrated in Figure

5.1: as the missing percentage increases, the performance deteriorates.

With synthetic data, or real data with artificial occlusion, it is, of course, easy to check for
divergence and to assess how badly the solution has been degraded by the addition of one or more
columns with large missing data and/or large amounts of noise.
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Figure 5.1: The optimal performance of the iterative algorithm. The abscissa is the
missing percentage, p; and the ordinate is RMS error for the iterative algorithm.
Four curves are drawn: the upper dotted one is (1-/>)"' , the lower solid
onQ(\-p)'U2, the dashed one in the middle is (l-p)'07, and the solid one in the
middle i s the o ptimal performance of the proposed iterative algorithm ( s ection
5.3.2).

A natural question arises: is it possible to find a submatrix, complete or

incomplete, which is more reliable than the whole matrix? From (4.1) in chapter 4,

the denoising capacity of the SVD is dependent on the ratio between (m+n-r)r* and

mn: the former is the number of the independent elements of the low-rank matrix

(Shum et al. 1995), and the latter is the number of the variables in the matrix. From

this fact, we postulate that the incomplete matrix approximately has similar

"denoising capacity".

Hypothesis 1 (the denoising capacity of the incomplete matrix): Suppose there are

p (p>(m +n-r)r ) "non-missing" components in a matrix B, and each row

(column) has at least /• "non-missing" components. The best estimate of B, B ,

should have the following property:

| = o .
mn mn

(5.8)

* Please note that in Shum's formulation (Shum et al. 1995) the mean is also considered, so in that
case there are (/»+«-/•)/+» independent variables.

67



Chapter 5: Recovering the missing components in a large noisy low-rank matrix:
Application to SFM

where p is the percentage of the missing data.

Compared with the denoising capacity of the complete matrix, the error in the

incomplete matrix should increase by as a function of the missing

percentage. The RMS error index of the iterative algorithm approximately follows

(I-/?)"0"7 '(see Figure 5.1), when the percentage is less than 0.5 - not exact

agreement but still useful.

We employ (5.8) as a criterion as to whether it is worth incorporating a vector,

with missing data, into the iteration. For an incomplete matrix with a rank of r, all

of whose columns and rows have at least r "non-missing" components, we define

its unreliability as the ratio between the number of its independent variables and

the number of non-missing components:

/*(/;/ + n) - r2

c = •

P
(5.9)

Thus, we propose to use the following strategy: first, use the iterative algorithm in

section 5.3.2, to recover the most reliable incomplete sub-matrix, which has the

minimal unreliability ratio; then, project other columns (rows) on it, if required,

using the imputation method. Specifically for SFM, our strategy is: first

reconstruct the 3D scene and the cameras by the factorizing the most reliable

measurement matrix (obtained by the algorithm in section 5.4.3); then to estimate

the positions of other feature points and other camera matrices, using the

techniques in (Tomasi et al. 1992).

5.4.2 The minimal unreliability ratio in SFM

It is an NP-hard problem to find the submatrix that has the minimal unreliability

ratio. Here, we propose a simple approach: to iteratively exclude the vector(s),

which has the least "non-missing" components among the retained submatrix, until

* The exponent may vary in different settings: with different-size matrix or with different

underlying rank. However, the optimal performance is generally better than (1 - p)'x.
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the unreliability ratio beings to increase. Obviously, only a local minimum can be

obtained, in general. However, in many cases, such as the SFM problem and the

recommender system, we usually have a thin matrix, i.e., it has a large width or

height. In the following discussion, we suppose w.l.o.g. we have an incomplete

matrix whose width is much larger than its height. We then sort the columns so

that the columns with the least missing entries are towards the left. Now we simply

must find a "cut" point, beyond which to exclude unreliable columns. Indeed, if we

restrict the exclusion to columns, the optimal property can be proved. Without loss

of generality, suppose n»m»r, and the non-missing number in the i'h column,

A'(. , is descending, i.e., k(>kM for \<i<n . The unreliability ratio of the

submatrix M ; (the left /columns of M), is:

c, = (10)

We only need to prove: c, > cM => c,_x > c, and c, < cux => c/+1 < cl+2. That is, the

curve c, has one minimum. The first can be easily proved:

Y V

c, > cl+] <=> c, > => c, > — <=> cM > c, . Please note c,, r, k, are positive

numbers. The second fact can be similarly proved.

5.4.3 Algorithm (fterPart)

In this section, we propose another algorithm, which still uses Iter, in section

5.3.2, at its core.

Use quick cull of cols(rows) that are not reasonable to iteratively impute (section

5.4.2).

1 Use the "sweeping" initialization of the core algorithm (section 5.3.2). This

could be augmented with a bootsrapping strategy (Appendix), but such

appears to be unnecessary in all of our experiments.

2 Use error nonn monitored iteration of the core algorithm to convergence (i.e.,

the iteration step in Iter, in section 5.3.2).

3 Finally, recover the "hopeless" (the entries not recovered by 1-3), if one really

must, with another approach - e.g. Tomasi-Kanade. These portions may not
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be recovered well but at least they will be somewhat recovered and they will

not pollute the accuracy of the previously recovered portion.

In short, IterPart is an improvement on Iter that benefits from our heuristic

approach to deciding which of the entries are worth recovering directly. The

difference is in step 1 (to predetermine where the core of reliable information is

likely to be) and step 4 (optional recovery of those parts that are likely to be

unreliable). This approach tends to converge more often than other methods.

5.4.4 Discussion

IterPart (section 5.4.3) performs almost the same as Iter (section 5.3.2), when

there are only a few missing components. Suppose the matrix is very large:

n»m»r. Then, the unreliability ratio for the complete matrix is about r/m. Thus,

if each column (or a row) has less than /• (or nr/m) missing components, the whole

matrix is the most reliable one; i.e., IterPart is the same as Iter. Moreover, if the

missing percentage is comparatively low, both of them are expected to have

similar performance, as will be validated by experiments.

When there are a lot of missing components, IterPart should perfomi better than

the Iter. G enerally, each column (row) i n the m ost reliable submatrix h as m ore

than 2r non-missing components; because the most reliable matrix would generally

have an unreliability ratio less than 0.5. If the matrix can be recovered, there

should be (m+n-r)r non-missing components at least, i.e., the unreliability should

be less than 1. The unreliability ratio decreases as a result of the cutting processes.

The vectors with only r non-missing components are retained in the most reliable

matrix only if the whole incomplete matrix has an unreliability ratio of 1.

We also note that Iter has a risk of divergence, even when employing an additional

"bootstrapping" strategy outlined in the Appendix. IterPart generally, does not

have such problems, even without the aid of bootstrapping, as will be

demonstrated by experiments.
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5.5 Experiments

In this section, we compare the performance of eight approaches: her (proposed in

section 5.3.2), its variant: IterPart (proposed in section 5.4.3), Jacobs's three

methods: [rankr "Jacobsl", rankrsfm "Jacobs2", and rankrsfmtpose

"Jacobs3"), and Shum's method, also with three variants: Shunt 1, Shum2, Shiun3

(starting from Jacobs' methods above). We use rank4 versions of Jacobs routines,

sidestepping the erroneous centroid subtraction in the presence of missing data

(Heyden et al. 1998; Kahl et al. 1999). We present 4 groups of experiments, two

using synthetic data, another from the box sequence, which was also used by

Jacobs (Jacobs 1997; Jacobs 2001), and the other from the dinosaur sequence,

which is somewhat more challenging.

In the first group of experiments, we concern the convergence of the core iterative

algorithm, her. In the other groups of experiments, we focus on stability since her,

Shunt 1, Shuin2, and Shiim3 have almost the same performance when they

converge. IterPart has a very small risk o f divergence. It should be very stable

because only the most reliable submatrix is used in the iteration, where each row

(column) generally has more than 2r non-missing components and r+J at least.

Indeed, no divergence case has been found in all 20,000 cases we examined (20-

noise-levelx 10-level-of-missing-percentagex 100-times repetition).

5.5.1 Only one unknown entry

Consider a matrix Mei?10"10, whose rank is 3. M is corrupted with Gaussian

noise (zero mean and unit variance) producing M, which is observed. Specifically,

in Matlab notation, M = randn(\0,3)x randn(2,\0)x5 and M =M + randn(l0,\0).

Suppose a single element, Mx 10, is unknown.

In this experiment, in order to evaluate the algorithm, we also search the

neighborhood of the candidate solution, by perturbing the estimated value, M, 10.

We compute the distances of 200 perturbed matrices, M , respectively to their

rank-3 approximations, M3 , where A/uo takes one of 200 values centred around
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M u o , i.e., Mi
il0=stepxi + Mlw for / = —100:—1, 1:100. When the step is

small (e.g., 0.1), we search a small area: while a large step (e.g., 3) is used to

search a large area. Figure 5.2 shows two of these experiments, one of which is

denoted by the solid curves and the other by the dotted curves. Two curves in the

lower part are from the experiment using a smaller step and the other two curves

from the larger step. The horizontal axes are the step numbers in the above recipe

for generating the perturbations: the point 0 is the solution obtained by the iterative

algorithm. Note: thus the scales of the upper and lower graphs are different - the

lower curves are in fact an expanded part of the upper curves. From the smaller

steps, the solution appears to be a local minimum. From the larger step, we may

see other local minimums or maximums.

Thus we can see examples of the iteration behaviour: suppose, for example, that

the initial value of Mx 10 in the matrix corresponding in the solid-curve example is

assigned the value Mll0 +3x80, which is shown as the star, "*", on the solid

curve. Starting from here, the algorithm cannot find the correct solution. Even

worse, when the convergence condition is criterion (5.7), the iterations will

proceed to the infinite if there is no other local minimum in the right part, i.e., if

the convergence condition is M;+1 - M , <£-', defined in (5.7), the algorithm

will not converge. However, it does converge under the condition of d^ — d, <£

and stops somewhere. Those cases, non-convergent measured by (5.7), are

described non-convergent in sections 5.5.2 and 5.5.3.

We have run the experiments 10,000 times, and in all of them we found good

solutions, which can be regarded as the global minimum. First, the recovered data

is closer to the noise-free data than the noise-corrupted one. Secondly, the distance

of t he n oise-comipted matrix t o i ts r ank-3 approximation i s almost s ame a s t he

solution by the algorithm. Thirdly, compared with the other 200 perturbed matrices

selected in a large or small area around the solution produced by our method, that

solution is the best one, as shown in Figure 5.2. It has to been admitted that such

sampling strategy can never totally rule out the existence of other better solutions

'. -ithin the sampling area. However, the optimal solution, if it is not the one
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obtained by our approach, must lie beyond the large area because of the

smoothness of the objective function (as observed in Figure 5.2) and it is not

meaningful in practice.

•loo -»o -eo ~i « oo M ica

Figure 5.2: Two 10-by-10 examples with one unknown entry

I

5.5.2 Synthetic data in a 8-frame-and-40-pcini sequence

As in (Heyden et al. 1998; Kahl et al. 1999). all the synthetic image data is

generated this way: the 3D feature points are uniformly distribute in a cube, within

[-5OO,5OO]*[-5OO,5OO]*[-500,5O0] units; the cameras are placed around 1000

units far away from the origin. Thus, the 2D image size is about 500*500. Then,

different levels of Gaussian noise, from 1 to 20, are added into the 2D feature

points. Because the proposed algorithm has to start from a complete sub-matrix,

we suppose that the first 8x8 sub-matrix is always non-missing and the missing

entries are then randomly distributed in the rest of the matrix. In addition, in order

to have a recoverable incomplete matrix, we make sure that each row/column of

the incomplete has 4 non-missing entries at least. The simulation repeats 100 times

for each setting.

The experimental results under noise level of 1, 5, 10, 15 and 20, are shown in

Figure 5.4. Please note, we do not include those divergent cases for the approaches

other, Shunt)., shuin2, and shum3 (if the RMS of any iterative algorithms has a

magnitude of 3 times or more than the noise level, the algorithm is regarded
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divergent); because the divergent cases would require a greatly expanded RMS

axis. Figure 5.3 depicts the convergence rate for the iterative algoritlims. Since the

convergence rate is strongly dependent on the missing percentage, we only

compare the average convergence rates (over different noise levels) for the same

missing percentage.

We can see, from Figure 5.4, that the proposed iterative algorithm (Iter) has almost

the same performance as Shum's, and that these four curves (Iter and 3 version of

Shum's) merging into the second lowest trace. Another conclusion is that the more

stable variant of our method (IterPart) shows its superiority when there is a lot of

missing data, performing much better than Iter and Shu in, as expected from

section 5.4. Of Jacobs' methods, the rankrsfm perfonns best, good enough to be

the initial point for the iterative algorithms. Note, rankrsfmjtpose is much worse

than rankr. Though the three versions of Shum's algorithm (starting from the

three versions of Jacobs as their initial matrix) perform identically with Iter when

they converge, Figure 5.3 shows that Iter generally converges at least as reliably.

Note, the improved algorithm, IterPart converges 100% of the experiments.
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Figure 5.3:The convergence rate of four iterative methods against the missing entry

fraction. Dotted curve with plus(+): Iter; solid curve with circle: Shum+rankrsfm;

dotted curve with star (*): Shum+rankrsfin_tpose; and solid curve with plus

(+):Shuni+rankr.
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Figure 5.4: The reprojection RMS error of the eight methods, as described in the

beginning of section 5.5. The abscissa is the missing percentage, and the ordimate is

the reprojection RMS error. In (a), we depict all eight methods when the noise level is

only l(From the best to the worst, they are IterPart, Iter (and 3 Shu ins), rankrsfm,

rankr, and rankrsfm_tpose); while, in (b-e), with noise levels off, 10, 15 and 20,

respectively, only six methods: three versions of Slium's method, Iter, IterPart, and

the best Jacobs' method ("rankrsfm"), are depicted, in order to make the comparison

visible. IterPart is the best, and rankrsfm is the worst one, and the other four have

almost the same performance.
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Figure 5.5: One frame of the box sequence.

5.5.3 Box sequence

Here, to test the algorithms on real data, we use the box video, which was used in

(Jacobs 1997; Jacobs 2001). The sequence consists of 40 feature points across 8

frames. One frame is shown in Figure 5.5. As in section 5.5.2, we suppose that $

points in 4 frames are available. This 8x8 submatrix is randomly selected. We then

randomly occlude (consider as missing) the other feature points. For this example,

as shown in Figui-j 5.6, the five methods have almost the same performance when

they converge: her, IterPart, Shuml, Shum2, and Shum3. Their convergence rate

is shown in Figure 5.7.
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Figure 5.6: The performance of the RMS reprojection error by the eight methods on

the box sequence are depicted: triangle (A) for five approaches (Iter, IterPart, and 3

Shum approaches), circle (o) for rankrsfm_tpose, star (*) for rankr and cross(+) for

rankrsfm. Note: Five approaches (Iter, IterPart, and 3 Shum approaches) have

almost the same performance so those five curves merged into one curve at the

bottom.
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Figure 5.7: The convergence rate of the four iterative methods are depicted: circle

(o) for Iter, triangle (A) for Shum+rankrsfm_tpose, star (*) for Shum+ rankr and

cross(+) for Shum+ rankrsfm.

5.5.4 Dinosaur sequence

Here, we present an example where some data is truly missing (i.e., not artificially

occluded to simulate missing data). 4983 feature points were tracked over the 36-

frame "dinosaur" sequence (Fitzgibbon et al. 1998), and the 20'7' frame is shown in

Figure 5.8, where the feature points are denoted by symbol"'+". The feature points,

extracted by the Harris interest operator (Harris et al. 1988), were obtained from

Oxford (http://www.robots.ox.ac.uk/~vgg/data/). Over the dinosaur sequence,

about 90.84% data is missing; and the mask of the tracked feature points is shown

in Figure 5.9, where a black pixel in (i,j) means the /''' feature point (in abscissa) is

tracked in the/y' frame (in ordinate) and a grey pixel denotes the occlusion/missing

data. Under the assumption of the affine camera, the measure matrix should lie in a

four-dimension subspace. However, in this example, the perspectivity factor is not

negligible, and the four-dimension subspace does not fit the feature points well
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even without other noise. Thus, the model error, as well as the error introduced in

the feature extraction, makes it a challenging task to recover these missing feature

points. We note that the projective model was used, by Martinec (Martinec et al.

2002), to recover the dinosaur sequence. It is beyond the scope of this chapter to

tackle such a setting, but we find that our results, even in the inferior affine setting,

are approximately same, at least as far as one can determine from gross statistics,

as Martinec's results (Martinec et al. 2002).

Figure 5.8: The 20th frame of the dinosaur sequence

Figure 5.9: The missing data (grey) and measured data (black) for the dinosaur sequence.

The core iterative algorithm (Her) fails on the total sequence because of too much

missing data and strong noise. By excluding the vectors with a few non-missing

components {IterPart), the most reliable matrix has 36 frames and 336 feature

points, with an unreliability ratio of 0.2892, where each point has b een t racked

over more than 6 (>6) frames, and each frame tracked more than 20 feature points.

We compare all algorithms using this same subset of "reliable" data.
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First, by the core iterative method in section 5.3.2, we reconstruct the 336 ("most

reliable") feature points, as shown in Figure 5.10, where about 77% data is

missing. The result by Jacobs' method under affine camera, as shown in Figure

5.11 (a), is unsatisfactory. When the initial result is not accurate enough, Shum's

approach tends to diverge, or become trapped in a local minimum, as shown in

Figure 5.11 (b-c). The recovered tracks by the proposed method Iter are shown in

Figure 5.11 (d). (Which is, of course, the same as that by IterPart since we have

pruned.)
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Figure 5.10: The 336 tracked feature points over 36 frames
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(to be continued)
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Figure 5.11: The 336 recovered tracks by the Jacobs' and Shum's and the proposed

methods: (a) Jacobs, (b) Shum's result after 100 iterations, (c) Shum's result after

400 iterations, (d) The 336 recovered tracks by Iter.
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By combining Jacobs' method (Jacobs 1997; Jacobs 2001) and Sturm and Triggs'

projective factorization method (Sturm et al. 1996), a good result over the whole

sequence was reported (Martinec et al. 2002): the mean reprojection error per

image point, measured by pixels, was reported as 1.76 pixels, and t he m aximal

reprojection error was reported as 73.9 pixels. The mean error and maximal error

were reported as 0.64 and 41.5 pixels (respectively) after bundle adjustment.

However, the above indexes (mean error and maximal error) may be sometimes

misleading in assessing the performance of the algorithms as we demonstrate here.

Using the stable variant of the proposed iterative method (IterPart), we conducted

some experiments over two selections of the data: a) the whole 4983 feature

points, and b) with only the 2683 feature points that were tracked over more than 2

frames. (2300 feature points were tracked only over 2 frames in the dinosaur

sequence!) Our results of the reprojection tracks, for 4983 and 2683 feature points

respectively, are shown in Figure 5.12 (a-b). Obviously, the result from 2683

features is much better than that from 4983 features. The recovered tracks should

be approximately elliptical, because the sequence was taken while the dinosaur

was on a rotating turn-table (Fitzgibbon et al. 1998). Note: all the wild recovered

tracks in the first experiment are from the 2300 feature points which have been

tracked over only 2 frames - thus the likely reason for such sensitive behaviour in

Figure 5.12 (a) is that some feature points are tracked only o ver 2 frames (any

noise in these features is likely to be influential). Contrast the visual quality with

the impression conveyed by the mean/maximal error for 4983 and 2683 features,

which are respectively 1.8438/72.4467 and 2.4017/72.4467 pixels; obviously these

measures alone are misleading since the reconstruction from the case w ith only

2683 features scores worse although it has no wild recovered tracks. In fact, the

mean/maximal error for the 2300 feature points tracked over only 2 frames is only

0.4088/ 7.8093 pixels. Since we only have the measures, as reported by Martinec

(Martinec et al. 2002), it is not clear whether his results may have included such

wild (and wrong) recovered tracks.
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Figure 5.12: The recovered tracks over 36 frames, (a) for 4983 points, and (b) for

2683 points.
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5.6 Conclusion

The main contribution of this chapter is the development of a criterion one can use

to r ecover t he m ost re liable s ubmatrix - i .e., t o decide w hich p arts o f a m atrix

contain too many missing values to be included in the imputation. We also propose

an iterative algorithm to employ the above criterion to the problem of missing data

in a large low-rank matrix and we prove its convergence. In the cases, where the

matrix has been badly corrupted by the missing data, the approach we propose is

superior to other approaches. We avoid the NP-hard problem of finding the largest

complete submatrix, as one does not need to start with a very large complete

submatrix in our approach. Due to the convergence (toward the optimal solution,

as demonstrated by the experiments), one can expect to arrive at the same solution

even when starting from different complete sub-matrices.

As a result of our work, we also draw to the attention of the reader a salutary

message regarding the use of simple error measures in making decisions about the

superiority of one algorithm over another. It may be the case, as we demonstrated,

that an approach with several very bad tracks, s cores better than a method with

generally very good tracks. Some care must be taken in assessing the contributions

of studies that report only a single such measure (see also appendix A.4).

Appendices

A.I "Bad-behaviour" and a bootstrapping strategy

As noted in the introduction, for the proposed core iterative i mputation method

(Iter) only the convergence to a local miuip-'m is proved. The worse case scenario

is that, some components "wander away" from rhe underlying ground truth as the

iteration proceeds. We call this phenomenon "bad behaviour". Some vectors have

polluted the first r components and the remaining data cannot "correct" the values

that have "wandered". By an example (F. De la Torre et al. 2003), it has been

shown that, if one data (an outlier) has 10 times the energy as the sum of the rest of

the data, the outlier becomes the first principal component, and the first and the
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second original principal components become the other two principal components,

approximately. Such a fact can be easily proved by the matrix perturbation theory

(Wilkinson 1 965), b y r egarding t he o utlier a s t he s ignal m atrix and t he original

signal matrix as the perturbation.

If we followed the algorithm her, outlined in section 5.3.2, we may observe this in

a few cases (although very rare, it does occur), when the percentage of the missing

data is very high. The problem is with the initialization step. In the bad cases, the

initialization step in the algorithm usually needs a few loops to obtain a complete

initial matrix. However, no refinement is made on the newly increased submatrix

before it continues to absorb other columns/rows.

In practice, such a phenomenon can be easily detected. From experiments, we

found that the energy in |j M,-+1 - M ; \\'F concentrates in a few missing-values,

mostly in one or two columns (rows). Having detected the likely "wandering", we

can attempt to "purify" the matrix in the initialization phase or in the iteration

phase. We can first regress these bad (one or two) columns (or rows) against the

other columns (or rows), and then continue the iteration. Another is to restart the

algorithm: in the initialization step, using those columns (or rows) that do not

produce such bad behaviour producing a partially c omplete matrix; then regress

the columns (rows) with bad behaviour against the partially complete matrix

before re-starting the iteration. The second strategy, experimentally, performs

better than the first.

The "afterward" bootstrapping strategy is not ideal because of its time consuming.

Generally, the wandering-away behaviour occurs with those columns, with only r

(or slightly more than /•) "non-missing data"; because the noise in such cases can

be influential, especially when the subspace is ill-conditioned. For other columns,

with only a few missing components, the imputation method of (5.5) is

intrinsically an overdetermined system; therefore, it can resist noise to some

extent, and consequently, it is unlikely that the wandering-away behaviour occurs

with these vectors.
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Thus, we propose the following bootstrapping strategy* to overcome the

wandering-away: to recover those columns (rows) with fewer missing values first,

i.e., to recover the more stable vectors in the inner initialization loops. In order to

reduce the computation loops in the initialization step, we suggest that only those

columns (rows), with more than (or equal to) 2r non-missing data, should be

incorporated into the complete submatrix, by using the imputation method

(equation 5.5).

Such a strategy raises another issue: in some cases, the complete submatrix stops

increasing because no incomplete vector has more than (or equal to) 2r "non-

missing" values. In such cases, one can temporarily relax the constraint of

requiring 2r "non-missing values" - using columns (rows) with 2r-l "non-missing

values" (even as low as r if need be) to break the impasse and then resume with the

more conservative demand of at least 2r "non-missing values".

This bootstrapping strategy can increase the robustness of the algorithm, especially

when there are a lot of missing components; while it only incurs a little

computation overhead—one or two more loops in the initialization step. However,

we have found a similarly motivated procedure that makes this bootstrapping

largely redundant (section 5.4).

A.2 Revisiting the objective function in (5.5.3)

As stated in section 5.2.1, our objective function is subtly different from that, used

in Shum's approach (Shum et al. 1995). However, under the strong convergence

condition (5.7), the error index for the missing components, ^(MLj ~M-j)2,
('.7>H

where H = {(i,j) \Mij is unknown}, approaches zero during the iterations. Thus,

the objective function of (5.3), under the convergence condition of (5.7), is

effectively dame as Shum's objective function. It will also be proved by

experiments that virtually the same solution is obtained by our method in section

* In (Brand 2003), a similar bootstrapping strategy was employed to make the imputation method
robust.
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5.3.2 and by S hum's method, providing both of them converge. In practice our

approach converges far more reliably.

A.3 Difference from the imputation in (Troyanskaya et al. 2001)

The iterative algorithm in section 5.3.2 (her) has been loosely anticipated by the

method in (Troyanskaya et al. 2001). Here, we describe the difference between the

proposed algorithm in section 5.3.2 and the algorithm in (Troyanskaya et al. 2001).

As noted in the introduction, the iterative imputation method in (Troyanskaya et al.

2001) can not be shown to converge, although the iteration may stop after a few

loops. The problem with the method in (Troyanskaya et al. 2001) lies in its

updoing procedure in the iteration. In (Troyanskaya et al. 2001), even if there is

more than one missing component in one column, only one missing data is updated

at a time; by regarding all other components known, including other missing data

that has been estimated. Thus, k applications of updating are needed for a column,

where k components are missing. Note: if every incomplete vector has only one

missing entry (an entirely unlikely event) then the method is same as Itcr, outlined

in section5.3.2. However, if there is more than one missing component the two are

not equivalent and any method that can only recover one missing entry at a time

raises the question: which imputation order should be taken? After some

components have been updated, should their old or new values be employed in the

sequential estimation for other missing components? Generally, for any sequential

updating, a different estimate from that, by (5.5), would be obtained, i.e., the

estimate in (Troyanskaya et al. 2001) does not have the nice property that it is the

closest point to the current subspace. Consequentially, no convergence can be

promised in the iterative method in (Troyanskaya et al. 2001).

A.4 RMS and Re-projection error

Generally, the root mean square (RMS) of the reprojection error is used to evaluate

the performance of the reconstruction algorithm. However, the reprojection error

index, i n t he real d ata s equence, m ay b e m isleading u nless w e h ave t he ground

truth. We illustrate the reason for our cautionary note here.
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In chapter 4, it is proved that as the size of the matrix approaches infinite, its low-

rank approximation approaches the underlying noise-free matrix. Consequently,

for a very large matrix, if we compare its low-rank approximation with the noise-

corrupted matrix, the residuals are approximately the added noise; yet if we

compare with the ground truth (the uncorrupted matrix) the error should be around

0. From Figure 5.13, we can observe this point: a series of synthetic measurement

matrices (M) are generated and i.i.d. Gaussian noise (0-mean-and-l-variance) is

added, observing M. The reprojection error, compared with M and M, is depicted

by the dashed curve and the solid curve, respectively. We also compare the rank-4

approximation of M, M4 , with M and M, the error is depicted by the dot-with-

star curve and the dotted curve, respectively. Obviously, the RMS indexes, against

M (upper traces - "observed/noise corrupted" data), are misleading, in evaluating

the performance. If we use the RMS error against the noise corrupted measurement

matrix, the reconstruction error also increases as the size of the matrix increases

(upper two traces); contrasting with an accepted fact that more frames produce

more accurate reconstruction (Morita et al. 1997; Thomas et al. 1999). In contrast,

the lower two traces (using "ground truth") show the correct trend.

Because of this, we mainly rely on the synthetic data in evaluating the performance

of the algorithms. In addition, please note that we use a different reprojection error

index, from that in Jacobs' paper: in our work the RMS error is obtained over the

whole sequence, including those artificially occluded points. It makes little

difference in most cases; however, the occluded points should be included in the

evaluation, if possible, because in some pathological cases, we can find the

reprojection error for the non-missing data is comparatively small, while that for

the whole data is very large. In section 5.5.2, we can easily find such a case: with

50% data missing and a noise level of 10, where the RMS error for the non-

missing e ntries is only 7.2098, while the RMS error for the artificially missing

entries/all entries is 57.2773/38.2693, by the iterative algorithms.
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Figure 5.13: The RMS errors in the low-rank approximation matrix and the

reprojection RMS error: the abscissa is the size of the square measurement matrix

and the ordinate is the RMS error. The dotted with star curve and the dotted one is

the RMS errors of the rank-4 approximation matrix, compared with the noise-free

matrix and the noise-corrupted matrices, respectively. The dashed one and the

solid one denote the reprojection RMS errors, compared with the noise-free matrix

and the noise-corrupted matrices, respectively.
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Chapter 6

Bilinear approach to the parameter estimation of a

general heteroscedastic linear system, with

application to conic fitting

The theory presented up until now has assumed that the noise in the measurement

matrix is uncorrelated — a setting where SVD-based methods are optimal ways to

"denoise". In this chapter, we study the parameter estimation problem in a general

heteroscedastic linear system, by putting the problem in the framework of the

bilinear approach to low-rank matrix approximation. The ellipse fitting problem is

studied as a specific example of the general theory. Despite the impression given

in the literature, the ellipse fitting problem is still unsolved when the data comes

from a small section of the ellipse. Although there are already some good

approaches to the problem of conic fitting, such as FNS and HEIV, convergence in

these iterative approaches is not ensured, as pointed out in the literature. Another

limitation of these approaches is that they can't model the correlations among

different rows of the "general measurement matrix". Our method, of employing the

bilinear approach to solve the general heteroscedastic parameter estimation

problem, overcomes these limitations: it is convergent and can cope with a general

heteroscedastic problem. However, experimental results show that none of the

methods investigated, including ours, can be considered adequate for fitting data

from a small arc of the ellipse.

6.1 Introduction

Parameter estimation in a heteroscedastic system has become an active subject, in

order to overcome the difficulties of the total least squares (TLS) method (Huffel

et al. 1991), as can be found in (Leedan et al. 1999; Chojnacki et al. 2000; Leedan

et al. 2000; Matei et al. 2000; Matei et al. 2000; Chojnacki et al. 2003; Chojnacki
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et al. 2004). Another active research topic is to employ the bilinear approach to

calculate the low-rank approximation of a large matrix in some challenging

environments (Shum et al. 1995; Morris et al. 1998; Mahamud et al. 2001;

Guerreiro et al. 2003; Vidal et al. 2004), where the traditional SVD (Golub et al.

1996) does not work or its solution is not optimal. Here, in this chapter, we apply

the bilinear approach to solve the parameter estimation problem in a general

heteroscedastic environment. First, we review the work on these two research

topics.

6.1.1 Parameter estimation in a heteroscedastic system

Many parameter estimation problems can be reduced to the following linear form:

wr(x)G = 0 (6.1)

w(x) are /;xl carriers of the observed quantity x, for example, a prominent

problem in computer vision: conic fitting. We will study the conic fitting problem

in section 6.4.

Suppose m different quantities x; (/ = 1,2,-••,/») are observed. We arrange the

carriers as a general "measurement matrix" W e R'"'":

VV= >v (6.2)

Without loss of generality, suppose m > n . If not, (6.2) is an underdetermined

system. If W i s noise free, it is rank deficient, with a rank of/?-l. However, it

quickly becomes full rank, due to noise. Many optimization approaches and their

associated objective functions have been proposed to solve this parameter

estimation problem, as can be found in a comprehensive survey (Zhang 1997).

Among them, a straightforward solution to (6.1) is the right singular vector of W,

associated with the least singular value. Such a solution is usually called as the

TLS estimate (Huffel et al. 1991), because it minimizes the following objective

function:
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]Torw(x}wr(x)O/||O||a (6.3)

It is also the maximum likelihood (ML) estimate if the noise/uncertainty in the

carriers w (not the observed qualities x) is i.i.d. Gaussian.

However, the assumption of i.i.d. Gaussianality usually does not hold, especially in

the system (6.1), because the carriers ar? transformed quantities of the observed

data. Even if the noise in x can reasonably be assumed to be i.i.d. Gaussian, the

uncertainty in the carriers w often loses this property. The violation of the i.i.d.

Gaussianality makes the problem challenging to the TLS method. For example, a

biased estimate is obtained by the TLS method, if the noisy points come from a

segment of the conic, as testified experimentally (Leedan et al. 1999; Leedan et al.

2000) and proved theoretically (Kanatani 1994; Kanatani 1996).

In order to overcome the difficulties, introduced by the non-i.i.d. Gaussianality,

Kanatani analyzed this problem from a geometric statistics view and devised the

renormalization method (Kanatani 1993; Kanatani 1994; kanatani 1996). The idea

behind this is to approximately equalize the noise in all carriers. Other general

approaches to this heteroscedastic problem include HEIV (Leedan et al. 1999;

Leedan et al. 2000; Matei et al 2000; Matei et al 2000) and FNS (Chojnacki et al.

2000; Chojnacki et al. 2004). In the HEIV model, the covariance matrix C;

between the carriers in w,. is first obtained from a linearization process, then, the

parameters are estimated by minimizing the Mahalanobis distance:

* ( . -w , , ) r C-(w ; -w , , ) (6.4)

where C" is the pseudo inverse of C and \v/o is the underlying ground truth of

w ;. This minimization problem is reduced to a generalized eigenproblem, where

the generalized eigenvector, associated with the least eigenvalue, is needed. In the

FNS method, an approximated maximum-likelihood (AML) objective function is

employed. It is also reduced to a generalized eigenproblem. In (Chojnacki et al

2004), it has been proved that these two approaches, HEIV and FNS, are

intimately related.
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6.1.2 Bilinear approach to the low-rank matrix approximation

The SVD is the basic tool for calculating the low-rank matrix approximation. The

principle behind the SVD (Golube/ al. 1996) states that any matrix. W e Rm",

can be decomposed into

W = UEKr (6.5)

where UeO'"" ' , Ve6>"" and 2 = diag{ox,a2,---,cj p) e /?'"" , with

p = min(w, n) and crx >a2 >--->crp > 0. An important fact is that one can easily

construct W r , the closest rank /• approximation of W, measured by 2-norm or

Frobenius-norm, as (Golub et al. 1996):

\\"=]>>,.u,vf

Specifically,

w-wi = r+l

\v-\vr =

(6.6)

(6.7)

(6.8)

From the optimality measured by the Frobenius-norm, the estimate by (6.6) is also

the ML estimate (Press et al. 1992; Reid et al. 1996; Hartley et al. 2000), if the

noise in the matrix W is i.i.d. Gaussian.

However, the SVD method does not work on an incomplete matrix (with missing

data). Moreover, the solution by (6.6) is not optimal if the noise in W does not

obey the i.i.d. Gaussian model. Some effort has been devoted to the missing data

problem (Jacobs 1997; Kahl et al. 1998; Kahl et al. 1999; Jacobs 2001; Guerreiro

et al. 2003; Chen el al. 2004) and the heteroscedastic noise problem (Aguiar et al.

1999; Aguiar et al 2000; Irani et al. 2000; Anandan et al. 2 002; Aguiar et al.

2003). Another promising approach to these problems, as mentioned in chapter 5,

is the bilinear approach (Shum et al. 1995; Guerreiro et al. 2003; Vidal et al.

2004)', where one tries to fit VV as the product:

In (Vidal et al. 2004), the bilinear approach is called the PowerFactorization method.
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RS (6.9)

with Rei?m ' r and S e i ? M . To do so, one iteratively updates R and S, by

alternately holding S and R constant, respectively:

(6.10)

(6.11)

(6.12)

(6.13)

where w) is the /"' row of W and r/ is the /"' row of R, and s; and \v; are the ;';'

columns of S and W, respectively2. If the noise in \V is i.i.d. Gaussian, r/ in

(6.12), or s(. in (6.13), can be separately calculated as the least squares (LS)

solution, which minimizes

lis r(t-;) r-(>v;y !£ (6.i4)

HRS..-W,. HJ. (6.15)

This way, each step of the iteration is reduced to solving a linear system:

Ax=b (6.16)

with the LS solution as:

x = A~b (6.17)

More details can be found in (Shum et al. 1995), and we will revisit this point in

section 6.3. In this bilinear approach to the low-rank approximation, the missing

data problem can be naturally coped with, and a scalar-weighted uncertainty can

also be incorporated (Shum et al. 1995). Moreover, this bilinear approach can be

further developed to incorporate directional uncertainty (Morris et al. 1998)

(although the measurement matrix was assumed to be complete in (Morris et al.

2 In the following, a matrix is usually denoted by a bold capital letter, eg W. Its fh column is

denoted by W • and its i1'1 row is denoted by \v' ;.
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1998), the method can be naturally extended to the missing data problem, with

directional uncertainty.)

6.1.3 The issues to be studied and the organization of this chapter

In HEIV and FNS, only the correlation among the carriers in w(x/) can be dealt

with, although this is the most common case in practice. In this chapter, we will

consider the general case, where the uncertainties in different carriers (w(xl)} are

correlated. To do so, we rephrase the general heteroscedastic parameter estimation

problem into the framework of the bilinear approach. Then, to make our theory

concrete, we consider a specific computer vision task: conic fitting.

In section 6,2, we formulate the parameter estimation problem with an objective

function which is subtly different from (6.4), and then we replirase this problem in

the framework of the low-rank matrix approximation. In section 6.3, we present

our bilinear approach to the problem of the low-rank approximation in the

heteroscedastic system. In section 6.4, we study the specific computer vision task:

conic fitting, including the issue of noise level estimation. In section 6.5, our

results, with comparison with other competing approaches, are presented.

6.2 The parameter estimation problem

6.2.1 Objective function to be minimized

Temporarily, we suppose that the noise model in the carriers {w(x,)} is known.

More precisely, the correlated Gaussian model, with covariance matrix C e R'""-'"",

is employed to characterize the uncertainties among the vectorized carriers

vecl{>v(x)}, where

vecl{"\v(x)} =
>v(x2)

m /_

eR mii,\ (6.18)
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Please note that the covariance matrix C is symmetric and positive semi-definite,
ntn

and can be factorized into C = ̂ ovu^uf, with cr, > 0.
1=1

We start by defining the following modified Mahalanobis distance as the objective

function to be minimized:

min(ved{w(x)} -1)7 C+(vecl{>v(x)} -1) (6.19)

where C+ = v e c t o r 1 = eR'""A in (6.19), with I,, e i?"J , is

associated with a rank ;;-l matrix L = 6 R

In plain language, the minimization of the objection function (6.19) is to obtain a

rank n-\ approximation matrix, which has the shortest modified Mahalanobis

distance to the general measurement matrix. If the uncertainties in the general

measurement matrix are Gaussian, i.i.d. or correlated, the minimizer of the (6.19)

is the ML estimate, as will be shown in section 6.3.

Assume that i is the solution of the system of (6.19), and it has an associated rank

n-\ matrix L. The solution of the system of (6.1) is taken as the right singular

vector ofh, associated with the least singular value.

If the uncertaint ies in different carriers \v(x,.) and w ( x y ) for i*j are

independent, the ob jec t ive function (6.19) can b e formulated as

;->v(,)
rcrK.->v,,) (6.20)

1=1
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w \o

J
mo

, has a rank ofwhere C(. is the covariance matrix for \v(x,.) and the matrix,

n-\.

Despite the similarity between (6.20) and (6.4), which is the objective function of

the HEIV method, please note the difference between them. First, w/0 is the

assumed underlying ground truth, in (6.4). In contrast, in (6.20), wio can be

characterized by the property that its associated matrix has a rank of n-\. We are

deliberately projecting onto the "nearest" rank n-\ matrix as the starting point of

our bilinear approach to the heteroscedastic problem. Second, the modified

Mahalanobis distance is employed in (6.20). In contrast, the Mahalanobis distance

is employed in (6.4). They are identical if the covariance matrix is non-singular.

However, there is a difference in cases, where the covariance matrix is singular,

i.e., some singular values of the covariance matrix are zeroes. Obviously, if cr; is

zero, and (6.19) or (6.20) are not mathematically meaningful. It will become clear

in section 6.3.1.1, that, in such cases, this can be reduced to an equality constrained

LS problem (Golub et al. 1996). In contrast, (6.4) can be reduced to a LS problem.

6.3 The bilinear approach to the heteroscedastic parameter

estimation

Althougli we h ave reformulated the bilinear approach in a simple m athematical

language, as the linear system (6.16), the case becomes complicated if the

uncertainty model in W is not i.i.d. Gaussian. In order to simplify the development

of the solution to the low-rank approximation in a general heteroscedastic system,

we first consider the case of (6.20), where the uncertainties between different

carriers w(x() and w(x;.) for / ^ j are independent.
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6.3.1 Update of R

In case of (6.20), the uncertainties between different rows of W are assumed to be

independent, so we can separately update each row of R, as in (6.14). The updating

of each row of R equals to solving the linear system (6.16), where the uncertainties

in b are modeled as correlated Gaussian noise, with a covariance matrix of C. Note

that, A is ST, and b is the transform of the i'h row of W, (>vj)7; and the estimated

x would be the transform of the /''' row of R, (r(')
7, which is to be updated.

The minimization objective function in the linear system (6.16) is:

x = min(Ax-b) rC+(Ax-b) (6.21)

Suppose C = Udiag(dx,d2,~-,du)V
T . Define

Q = diag(\/^,\/^,---A/^r,)VT . The solution to (6.21) is:

x = (QA)+Qb (6.22)

Proof. We arrange the minimization objective function in (6.21) as:

(Ax - b) rQ rQ(Ax - b) = (QAx - Qb)r(QAx - Qb)

Obviously, (6.22) is the solution to the above objective function, and consequently,

is the solution of (6.21).

It will become clear in section 6.3.1.1, that the uncertainties in Qb are i.i.d.

Gaussian and the solution in (6.22) is the ML estimate, if the uncertainties in b are

Gaussian.

6.3.1.1 Case with zero singular values in the covariance matrix C

As we note in section 6.2.1, the modified pseudo inverse of the covariance matrix

C does not make sense if C has some zero singular values. However, there is

usually a constant carrier in (6.1), i.e., this component is noise free. Consequently,

C has, at least, a zero singular value. Here, we study this case and present our

solution to this problem.

First, we study the covariance matrix of the transformed b, li' b.
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cov(Urb) = U7" cov(b)U = UrCU = diag(dvd2,--,dn) (6.23)

(6.23) means that the coupled uncertainties in b have been decoupled in the

transformed U r b. I f all dt * 0 and the coupled uncertainties in b are Gaussian,

the uncertainties in Qb are i.i.d. Gaussian, and (6.22) can be taken as the ML

estimate.

Any zero dt in (6.23) means that the u,.-direction component of b, ufb, has no

uncertainties or noise. Without loss of generality, we suppose the last k dt for

/ = n -k+ ],-••,n are zeroes. Define

A,

r",

T

A, A2 =

u

u

7
n-k*\
T
n-k*2

b, =
uT,

b and

u

u

H-A+l
T
n-k + 2

u

Now, it is clear that the uncertainties in b, are i.i.d. Gaussian, and that b, is noise

free. Thus, the optimal estimate of (6.21) should be the solution of the following

constrained minimization problem:

min A, x = b,
A,x=b2

(6.24)

(6.24) is an equality constrained least squares problem, and its solution can be

found in (Golub et al. 1996) (see the appendix).

Now, it is clear that our objective function in (6.19) or (6.20) makes sense if we

adopt the interpretation of 0/0 = 0. More importantly, the solution of (6.24) is the

optimal solution of (6.21).

In contrast, if we employ (6.4) as the objective function, as in the HEIV method, in

zero-singular-value cases, (6.21) will be reduced to a simple LS problem:

minA,x = b, , without the equality constrained A,x = b2 . Obviously, the
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objective function of (6.4) can't be employed in such cases. In order to overcome

this difficulty in (Leedan et al. 1999; Leedan et al 2000), the constant component

is not included in (6.4), and has been separately considered from the other

columns.

6.3.2 Update of S

Because the uncertainties in the columns of W, w, and wy for (/ * j) in (6.13),

are not independent, the minimization process can't be separately dealt with (as

(6.15) dose not apply). We have to jointly solve a matrix equation: AX=B. Note

that, A is R, and B is W; and that X is the S, which is to be updated.

Fundamentally, we abstract (6.13) as the following minimization problem.

Suppose A =

a;
a 2

a',,,

and B = , with a) e RUn and b; e Rlr . Suppose b, is

corrupted with correlated Gaussian noise with C, covariance matrix, which can be

factorized into C,- = (\Ji)diag(d^,di
2,---,d

i
r)(\J

i)T. And, the uncertainties in b',T

are independent of those in b'f for y > / . Thus, the ML estimation is to solve the

following minimization problem:

x= min y(a;.x-b;.)c;(a;.x-b;.)r (6.25)
1=1

We suppose that dj * 0 . If not, we can convert the problem to an equality

constrained least squares problem (6.24), as in section 6.3.1.1. Define

ft, =diag(\/y|^^/^,•^•^/y[l'r)(V
i)T.ThQconQ\a[eduncQl•^ilmt\esinB can

be decoupled by:

(6.26)

(6.26) equals to the following linear system:
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Q2®a',
vec(X) =

vec(b'2Q
T

2)
(6.27)

where <S> denotes the Kronecker product of two matrices, and, for a matrix X with

x,

/• columns, vec(X) = . (6.27) comes from the property of the Kronecker

product: vec(AXB) = (Br <8> A)vec(X) . The uncertainties in the right side of

(6.27) have already been made i.i.d. Gaussian. Thus, the optimal solution to

vec(X), and consequently X, can be obtained by the LS estimation.

Note the solution of vec(X) from (6.27), and consequently X, minimizes the

objective function in (6.25).

Proof, we arrange the minimization objective function in (6.25) as:

±(a'iX-b'i)Q'Qi(a'iX-b'i)
T

) - vec(b]Qj j)f®a>ec(X)-vec(b;.Q;)]

The uncertainties in vec(b]Qj) are i.i.d. Gaussian, so, the ML solution to (6.27) is

the LS estimate. The LS estimate of vec(X) in (6.27) minimizes the above

objective function, and consequently, the related X minimizes the objective

function in (6.25). •

6.3.2.1 Constant column in the measurement matrix

Assume that there is a constant column in the general measurement matrix, as will

be found in the conic fitting, i.e. M = [M',1]]. In such cases, we can single out the

constant column in the above updating of S. The last column of S, s r , can be

calculated as:
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s =R 1 (6.28)

Note, in the updating of each row of R, we convert the minimization problem of

(6.21) as an equality constrained LS estimation problem of (6.24). Consequently,

f/S = [m',1]. It is clear that the approximated measurement matrix RS, after each

updating of R, has an exact constant column 1. This means that 1 e span(R). So,

(6.28) holds without any error, i.e. Rs, = 1.

6.3.2.2 Discussion of the convergence of the bilinear approach

In sections 6.3.1 and 6.3.1.1, we studied the updating of R, where the objective

function is (6.20). Because of the assumed independence among the uncertainties

in different rows of W in (6.2), we can separately update each row of R,

minimizing the associated part in the sum of (6.20). In sections 6.3.2 and 6.3.2.1,

we have jointly updated S in order to incorporate the correlation among different

columns of W. Thus, the objective function in (6.20) decreases after each updating

step ofR orS. From these observations, we can see that the bilinear approach

converges, in contrast to the lack of proof of convergence of the HEIV orFNS

methods.

6.3.3 A more general update

In t he general c ase of (6.10) o r (6.11) w hat w e n eed t o d o i s t o solve a m atrix

equation:

AX=B (6.29)

V."1

where A = eR'"'r, B =

b'

<=R"'-", Xe Rr'". In a general heteroscedastic

case, the uncertainties in B are characterized by the covariance matrix C for the

vectorized ve?cl(B) = [b', b'2 ••• b'mfeJ?'"" J . The objective function to be

minimized is:

X = min(ved(AX-B))C+(v<?cl(AX- B))r (6.30)
A
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Similarly, C can be factorized as C = \Jdiag(di,d2,'--,dmn)U
T , and define

Q = di

First, we convert the equation of a'X = b ' to (/„ ® a'.)v<?c(X) = b ' r . Then, AX=B

can be rewritten as:

and further as

A,® a',

J,,

vec(X) =

/., ® a',
vec(X) = Q

b; r

b'J

b'l

(6.31)

(6.32)

The uncertainties in the right side of (6.32) have been i.i.d. Gaussian if the

uncertainties in C are Gaussian. Thus, (6.32) can be solved by the LS method, and

the associated X can be obtained.

6.3.4 Disussion of the optimality

From the above sections, we can see that the optimal solution, at least a local

optimal solution, is iteratively obtained, if we evaluate the estimate using the

objective functions in (6.19) or (6.20). However, it is not the ML estimate if the

uncertainties in W (or in b and B) are not Gaussian. Because of this, we assumed

the uncertainties in W (or in b and B) are Gaussian when we referred to the ML

estimate above.

6.4 Application in conic fitting

As can be observed in section 6.3 and in the objective function in (6.19) or (6.20),

the crux of our bilinear approach to the heteroscedastic low-rank approximation,

and consequently of the heteroscedastic parameter estimation problem, is to obtain
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the covariance matrix of the carriers >v. In this section, we will study this issue, by

taking the conic fitting problem as a specific example. This case has been analyzed

in (Leedan et al. 1999; Leedan et al. 2000), where the covariance matrix of the

carriers was obtained.

As in (Leedan et al. 1999; Chojnacki et al. 2000; Leedan et al. 2000; Chojnacki et

al. 2004), we also assume that each component of the observed x is corrupted with

i.i.d. and a2 -variance Gaussian noise, and consequently, that the uncertainties in

different carriers are independent.

6.4.1 Covariance matrix in the conic fitting

A conic is characterized by the following constraint:

ax2 + bxy + cy2 + dx + ey + f = 0 (6.33)

The carriers in (6.33) are A-2, xy, y2, .x, y, and 1. By the linearization, we

reformulate (6.33) in the form of (6.1):

[xl,yl,x,yl,xi,yl\][d,e,b,a,cJ]T=0 (6.34)

The conic fitting problem is to estimate the parameters, a, b, c, d, e and/, from a

few (at least 6), noisy points.

We can neglect the constant component, by using the techniques suggested in

section 6.3.1.1 and 6.3.2.1. So, we only need study the uncertainty model for the

first five carriers [A-,y,xy,x2 ,y2].

As in (Leedan et al. 1999; Leedan et al. 2000), we employ the following

covariance matrix to characterize the uncertainties in [x,y,xy,x2,y2]:

1

0

y 0

o

o
I

0 2A"0

2A-

2A- O

0

A- O V O

+ 2cr2

0

0

2v
~.' 0

0

Ay] + 2cx2

(6.35)
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where the subscript "o" denotes the underlying ground truth of the associated

quantity. In practice, the ground truth is unknown and we use the observed

qualities. So, in the following, we do not use the symbol "o" in the subscript.

[f we drop the a2 in

C =

C

' 1

0

y
2A-

0

where

in (6.35),

0

1
•

X X'

0

2y

D

\\ e have:

V

A'

+ y~
2xy

2xy

—

" 1

0

y
2A-

0

2A-

0

2.YV

4A- 2

0

0"

1

A"

0

0

2v
2xy

0

4/

= DD7 (6.36)

(6.37)

From (6.36), C has a rank of 2. Supposing C = Udiag(d]td2,0,0,0)U7', we have

spcw(u,, u , ) = span(P) (6.38)

If the A- and v coordinates are much larger than the noise in them (this is true in

most points), it would hold that

span(ul,u2) » span(ul,u2) (6.39)

where u , ,u 2 are the singular vectors of C, associated with the two largest singular

values. This can be obtained from the matrix perturbation theory, by regarding the

terms of a2 in C as some perturbation.

Suppose we observe .Y, y, with noise £x and ev in them, respectively. The

uncertainties in the carriers [x,y,.xy,.x2, y 2 ] , introduced by sx and £\,,are:
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£ —'•

xo

yo

+ Sx

(y0

+ £x

)(yo+£y)
+ o 2

+ o 2

—
y0

•x
oyo

•y

L y l .

£.<
£y

V f 4- V f A- F F

2 A - O ^ . + ^ ;

(6.40)

And, E can be expressed as:

(6.41)

From (6.36), (6.38), (6.39), (6.40) and (6.41), the first order uncertainties are

modeled by the covariance matrix C, and consequently approximately by the first

two singular vectors of C , associated with the two largest singular values. This

property will be used in the noise level estimation.

6.4.2 Noise level estimation

As can be observed in (6.35), the noise level, a, in the observed qualities is

needed in obtaining the covariance matrix of the carriers. Because the second order

terms of uncertainties in the carriers are not Gaussian, we only use their first order

uncertainties in estimating the noise level in the observed data. Taking the conic

fitting as an example, the first order uncertainties are D[sx,£v]
T.

First, we have the following fact

[£x,£y]DT(DDT)-U[ex,£y]
T =e;

where Dr(DDr)'D = diag(\,\).

(6.42)

From (6.36), (6.38), (6.39), (6.40) and (6.41), the rank 2 approximation of the

covariance matrix C , is approximately C if the .v and y coordinates are much

larger than the noise level: C2 » C = DD r . Moreover, the uncertainties captured

by the 2 largest singular vectors of C, are approximately D[sx,£Y]T. Combining

these observations and (6.42), we employ the following estimate for the noise

level:
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(6.43)
,-.,

where C7~ is the pseudo inverse of the rank-2 approximation matTix of C, in

(6.35), and e' is the /"' row of the error matrix E, E = W - RS, with R and S as

the current estimates in the bilinear approach (6.9). Note, in the calculation of the

error matrix E, the constant column in W is not included.

6.5 Experimental results

In this section, we conduct experiments on the conic fitting, to validate the

correctness of our general theory in section 6.3. With this aim, we mainly compare

our approach with other competing approaches to this problem: including FNS

(Chojnacki et al. 2000), HE1V (Leedan et al. 1999; Leedan et al. 2000), KAN

(Kanatani 1994; Kanatani 1996) and the constrained TLS method (Fitzgibbon et

al. 1999). The method in (Fitzgibbon et al. 1999) is a specific implementation of

the TLS method (Huffel et al. 1991), for the conic fitting problem, as pointed out

in (Leedan et al. 2000), in particular it enforces that the solution is an ellipse.

It has been established in (Chojnacki et al. 2004), that the HE1V and the FNS are

intimately related, with only different numerical solution; and it has also

experimentally proved that both of them have almost same performance, where the

AML objective function is employed as a criterion. The following experiments

suggest that HEIV performs better than FNS in the more challenging problems, for

example, where the points distribute in a small portion (e.g., a quarter) of the

ellipse; although they have almost same performance in other mildly clr ienging

settings, for example, where the points are from an half ellipse. We do not know

the reason for this difference in performance.

In all the experiments, we use the following setting: the true ellipse has a major

axis of size 100 and a minor axis of size 50. Two factors have much influence on

the estimates of, almost all, the methods mentioned above: the noise level and the

span of the points. All the methods produce good estimates, indeed estimates
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which are almost same, if the points span the whole ellipse. Because of this, we do

not run experiments on the whole ellipse.

6.5.1 Noise level=2 over a half ellipse

First, we conduct the experiments in the following setting. 100 points are randomly

generated in a half ellipse, where the segment of the half ellipse is also randomly

selected. Then, i.i.d. Gaussian noise, with noise level of 2, is added to the 100

points. The experiment is repeated 200 times (with different random samples).

Surprisingly, our bilinear approach performs almost identically to HEIV, FNS and

KAN, all of which perform better then TLS.

Table 6.1: The statistics of the estimated major length, minor length, x and y
coordinates of the center, and the angle between the major axis and the horizontal
axis. The ground truth is listed in the first row. For every method, its mean, with its
standard deviation in the brackets, is listed in each row. Noise =2 over 'A ellipse

Bilinear

FNS

HEIV

KAN

TLS

Major(lOO)
100.6332
(4.3768)
100.7461
(4.5155)
100.8303
(4.4745)
100.6214
(4.5938)
93.6993
(4.3251)

Minor(50)
49.9533
(1.6987)
49.9794
(1.7131)
50.1564
(1.6956)
49.9326
(1.7042)
47.1748
(1.7675)

Center X(0)
-0.1382
(4.3744)
-0.1540
(4.5255)
-0.1783
(4.4852)
-0.1670
(4.5990)
0.2508

(7.5858)

Center Y(0)
0.1164

(1.7272)
0.1194

(1.7441)
0.1182

(1.7454)
0.0903

(1.7457)
-0.3264
(3.3746)

Angle(O)
0.0218

(1.2630)
0.0176

(1.2746)
0.0235

(1.2878)
0.0328

(1.2966)
0.4267

(2.6456)

We experimentally find that the error in the five parameters above is not

independent. The error in the coordinates of the center and the orientation angle

are strongly dependent on the estimates of the major length and the minor length.

If both the m ajor 1 ength a nd t he m inor 1 ength a re c orrectly e stimated, t he o ther

three parameters are probably close to the ground truth. Because of this

observation, we mainly resort to the major length and the minor length in the

evaluation of the methods, in the following. In Figure 6.1, we show the

performance of the methods, in contrast with that of the Bilinear. We can observe a

strong linear correlation between the four approaches: HEIV, FNS , KAN and

Bilinear.
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Figure 6.1: The comparison of the bilinear approach, with the FNS, HEIV and
KAN, TLS. (a) is the estimated major length and (b) is the estimated minor length.

112



Chapter 6: Bilinear approach to the parameter estimation of a general
heteroscedastic linear system, with application to conic fitting

100 150 200

Bilinear

Bilinear

250

90

BO

%0
H

60

•

D 100 150 200 25

100 150 200

Bilinear

100 150 200

Bilinear

250

250

(a)

Bilinear

40 60

Bilinear

100

LU
X

50

20 40 60 60 100

Bilinear

(b)

40 60 80

Bilinear

100

Figure 6.2: See the caption of Figure 6.1. Noise =2 over 3/8 ellipse. The only other
difference is that the TLS method is not included. In two of the graphs, there are a
significant number of "outlier" results that we have highlighted by drawing an
enclosing boundary around them.
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6.5.2 Noise level=2 over 3/8 ellipse

The next experiment differs from the above experiment in that now the points are

randomly generated from a random 3/8 ellipse. The noise level is still 2. In order to

present a better comparison, we repeated the experiment 1000 times to obtain the

statistics (listed in Table 6.2).

Table 6.2: See the caption of Table 6.1. noise=2 over 3/8 ellipse

Bilinear

FNS

HEIV

KAN

TLS

Major(lOO)
103.6820
(16.0952)
100.3527
(17.4383)
103.7216
(15.5261)
104.4603
(18.5451)
73.8776
(9.0869)

Minor(50)
51.0717
(6.6344)
46.9251
(9.4859)
51.4157
(6.8837)
51.2461
(7.3436)
35.7235
(5.0653)

CenterX(O)
0.457S

(16.0868)
0.4511

(16.4996)
0.3804

(15.4628)
0.3138

(18.580S)
0.1016

(28.0569)

Center_Y(0)
0.2702

(6.9479)
0.2104

(9.7672)
0.3439

(7.2849)
0.0375

(7.8171)
-0.2730

(13.6420)

Angel(O)
-0.0461
(3.2988)
0.0434

(3.6045)
-0.0313
(3.3207)
-0.0042
(3.5893)
-0.2007

(10.5892)

However, taken alone, the statistics in Table 6.2 don't adequately reflect the

performance of the methods. Consider also Figure 6.2 and Table 6.3. We find that

the FNS method performs much worse than the HEIV, KAN and Bilinear

approaches in some cases, as can be observed in Figure 6.2. (Note, although there

are a few cases in the circles in Figure 6.2, where the Bilinear, HEIV and KAN

also produce "bad" estimates; in many cases, the Bilinear, HEIV and KAN

produce "good" estimates, as can observed in Table 6.3). The problem with the

FNS method is that there is no guarantee of convergence. Because of the lack of

convergence, in some cases, the FNS stops in the first iteration step, and

consequently, its estimate is the same as the initial estimate, which we chose as the

TLS estimate for initializing FNS. (This also accounts for the fact that the FNS

method produces almost 100% ellipses in the following experiments, which are

even more challenging. Note, the TLS always produces an ellipse because the

constraint Ade-c2 = 1 is enforced in the TLS method.)

To summarize: it is difficult to evaluate the approaches in this setting. This is

because one approach scores better in a few cases, while another approach scores
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better in other different cases. Moreover, as we will see in the more challenging

experiments below, some estimates are wildly wrong, (they may not even be

ellipses - except when the special TLS method is employed, enforcing the elliptic

constraint). For these reasons, the statistics above, by themselves, can not reliably

reflect the performance of the approaches. Worse, the wildly wrong estimates

make the statistics, like mean, misleading in assessing the performance of the

methods. For example, from the mean ofthe major 1 ength, the FNS is thebest

method. However, if we examine the figures in Figure 6.2 in detail, we find that

FNS actually is worse than the HEIV, KAN and Bilinear methods.

In order to present a meaningful comparison, we mainly resort to the following

statistics: for a method, how often does it produce good estimate? As in Figure 6.2,

we only use the estimated major length and the estimated minor length in

evaluating the performance, because the accuracy of other parameters is strongly

dependent on the accuracy of the lengths. More precisely, we regard an estimate as

"good" if the error of the estimated major, and minor, lengths fall short of 10% or

20% of the true lengths. In this example, we regard the estimate good if its major

length lies in [90,110] or [80,120] and if its minor length lies in [45,55] or [40,60].

The KAN and FNS methods perform a little worse than HEIV and the proposed

Bilinear method.

To provide an indication of our measure, two examp1 i of "good" estimates are

shown in Figure 6.3. The good estimates by these four methods are shown in

Figure 6.4.

Estimated major108 4124,Esitimated minor.52 5399 Estimated major.117 04O9.Esitimaled minor 59 6891

Jf'

40 i

-100 * ) - « - « -20 0 2 0 4 0 0 0 8 0 IO0 • 100 M

Figure 6.3: Two example of "good" estimates, falling in the 10% and 20% range.
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Table 6.3: The "good" estimates for noise-2 over 3/8 ellipse. See the definition of
"good" estimate in the text.

Bilinear

HEIV

KAN

FNS

LS

10%

532

526

470

444

0

20%

825

820

773

686

1

Other ellipses

175

179

205

314

999

Non-ellipse

0

1

22

0

0

55
Major/minor length

- Bilinear532
- HE IV: 526
. KAN:470
:. FNS:444

53

45'til V_
90 92 96 98 100 102

Major length
104 106 108 110

Figure 6.4: The "good" estimates in 1000 trials of the Bilinear, FNS, HEIV and
KAN approaches for noise=2 over 3/8 ellipse. The number after the approaches in
the legend is how often the associated approach produces "good" estimates in 1000
trials.

6.5.3 Noise level=l over a quarter ellipse

In this experiment the noise level is 1 and the points are from a quarter of the

ellipse. We also run 1000 trials for this setting. As we discussed above, the statistic

of mean and standard deviation are not good indexes for comparing. We only list

how often the approaches succeed in producing "good" estimates in 1000 trials.
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Table 6.4: The "good" estimates for noise=l over 1/4 ellipse. See the definition of

"good" estimate in the text.

Bilinear

HEIV

KAN

FNS

TLS

10%

229

222

188

125

0

20%

421

425

383

246

0

Other ellipses

569

553

481

752

1000

Non-ellipse

10

22

136

2

0

55 r-srrz:-xn.-.".-^i; •
i '• a Bilinear229 i
I i - HEIV:222

54 r . KAN:188
FNSM25

53.

Major/minor length

. i>

52

•C 51!

B i
Z 50o
c
i 49|-

!•
i

48 U **! 'X - ̂ T

46"

45L- .
90 92

' + -»-w- "

94 96 "98 100 102 104 10G 108 110

Major length

Figure 6.5: The "good" estimates in 1000 trials of the Bilinear, FNS, HEIV and
KAN approaches for noise=l over 1/4 ellipse. The number after the approaches in
the legend is how often the associated approach produces "good" estimates in 1000
trials. The "good" estimates are defined by the 10% range.

Althougli there is a strong linear correlation between the results produced by the

HEIV, FNS, KAN and Bilinear methods in some settings, as can be observed in

Figure 6.1 and Figure 6.2; they actually have quite different performance in this

more challenging environment.
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Note: even though the HEIV and the bilinear methods seem to have a similar

performance, in terms of the statistics in Table 6.3 and Table 6.4, they actually

have different outputs in many cases. For example, although the Bilinear approach

and the HEIV approach produce a similar result, in terms of how often they

produce "good" estimates; there are only 142 cases, where both approaches

simultaneously produce "good" estimates, falling in the 1 0% range. This means

that, in 80 cases, while the HEIV result falls in the range of 10%, the Bilinear does

not. On the other hand, the Bilinear approach produces good estimates in 87 cases,

where the HEIV approach does not.

We also comment that, due to the moderately high failure rate, none of these

approaches can't be regarded as a solution to the conic fitting problem in the most

challenging forms (data over a small arc of the ellipse only)..

6.5.4 Noise Ievel=2 over a quarter ellipse

In this last experiment the noise level is 2 and the points are from a quarter of the

ellipse. As in section 6.5.3, we only list how often the approaches succeed in

producing "good" estimates in 1000 trials.

Table 6.5: The "good" estimates for noise=2 over 1/4 ellipse . See the definition of

"good" estimate in the text.

Bilinear

HEIV

KAN

FNS

TLS

10%

88

75

29

10

0

20%

211

179

75

26

0

Other ellipses

663

577

313

965

1000

Non-ellipse

126

244

612

9

0
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Figure 6.6: The "good" estimates in 1000 trials of the Bilinear, FNS, HEIV and
KAN approaches for noise=2 over 1/4 ellipse. The numbers after the approaches in
the legend are how often the associated approach produces "good" estimates in
1000 trials. The "good" estimates are defined by the 10% and 20% range,
respectively.

We remark that, only on 19 or 92 cases, out of the 1000 trials, both HEIV and

Bilinear produce "good" estimates, in terms of the 10% or 20% ranges,

respectively.

6.5.5 Comments on the experimental results

Although convergence to the ML estimate, at least a local optimal estimate, can be

ensured in the proposed bilinear approach, as discussed in section 6.3.4, the results

are not so good as expected. From the Table 6.4 and Table 6.5, the bilinear

approach can't be regarded as a good solution to the problem, where the points

only span a quarter of the ellipse; because it has only about 10-20% success rate of

"good" estimates.
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There are two possible reasons for this. First, as suggested in section 6.3.4, only a

local optimal solution can be ensured in the iteration process. If the initial estimate

deviates far from the global optimal estimate, the iteration is possibly trapped in

other local minimal estimates. In our experiments, we took the TLS result

(Fitzgibbon et al. 1999) as the initial estimate for the bilinear approach. However,

it has been suggested in (Leedan et al. 2000) that the TLS result is not "adequate to

be used as an initial solution." Also note that we take the TLS result as the initial

estimate for FNS approach. This possibly accounts for the fact that FNS performs

much worse than HE1V in the challenging settings, as shown in Table 6.4 and

Table 6.5.

The second reason, possibly, is due to the specific nature of the conic fitting

problem. Also as discussed in section 6.3.4, the optimal solution, measured by

(6.19) or (6.20), does not imply the ML estimate, because the ML optimality

applies only when the uncertainties in the general measurement matrix W are

Gaussian. As we analysed in section 6.4.1, the second order uncertainties are not

Gaussian. Strictly, even if we obtain the optimal solution, measured by (6.19) or

(6.20), it is not the ML estimate.

We also have to remark that, although that the bilinear approach outperforms other

competing approaches, as can be observed in experiments above; we do not claim

that the proposed bilinear approach can replace the other approaches because of

two facts. First, as pointed out in the experiments, although the results, by FNS,

HEIV, and KAN show a strong correlation with the result by the proposed bilinear

approach, there are many situations where one method succeeds and other methods

fail. There is no clear "safe-bet" in this regards.

Second, the computation complexity of the proposed bilinear approach impedes its

practical applications especially when the points only span a quarter ellipse. In the

challenging settings, as in sections 6.5.3, 6.5.4, the bilinear approach suffers from

its low convergence rate. The bilinear approach in (Shum et al. 1995; Gear 1998;

Vidal et al. 2004) is a variant of the orthogonal iteration method in (Golub et al.

1996), whose convergence rate is the ratio between the (r+\)'h singular value and
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the (r+l)'/! singular value. It is not clear what governs the convergence rate in the

heteroscedastic setting.

Estimated major.230 3147.EsiUmated minor80 3007
Estimated ma|or230 3U7,EsiUmdled minor 80.3007

OSO -900 -2SO -TOO -ISO -ICO -SO

(a)

Estimated ma)or,230.3147,Esitimated nunor.BO 3007

(b)

Estimated major230.3147.Esitmiated minor.80.3007

90 BO 100 JO JO JO 4O SO TO 90 M 100

(c) (d)

Figure 6.7: A bad estimate, with details. The solid ellipse is the ground truth, and

the dotted ellipse is the estimated ellipse. The dots,'.', are the noisy feature points.

6.5.6 Question raised

We have stated that the approaches, including FNS, HE1V, KAN and the proposed

bilinear approach, can't be regarded to a good solution to the conic fitting problem,

when the points only span a small arc of the ellipse. Here, we highlight aspects of

the problem from another point of view. Figure 6.7.a shows a "bad" estimate,

whose estimated major and minor lengths are 230 and 80, respectively. In terms of

the estimated parameters, this estimated ellipse is wildly wrong, because it is far

from the truth. However, from Figure 6.7.b, we can find that the estimated ellipse
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fits the points very well. If we separate the fitted ellipse and the underlying ground

truth, it is very difficult to decide which one fits the noisy points better, as shown

in Figure 6.7.c and Figure 6.7.d. This suggests that in many cases it may actually

be unreasonable to expect the true ellipse to be recovered in such extreme cases of

only a small fraction of the ellipse containing data.

6.6 Conclusion

In this chapter, we present a general theory of the parameter estimation problem in

a heteroscedastic linear system. This theory suggests a bilinear solution method

which we implemented and tested. The method was shown to perform relatively

well, and, for ellipse fitting where the data covers a large fraction of the ellipse, the

results are good. However, none of the methods investigated, including ours, can

be considered adequate for fitting data from a small arc of the ellipse. As we

illustrated in our concluding section, it is perhaps true that in at least some of the

cases where the methods fail, it is unreasonable to expect any method to produce

the "true" solution. However, we have no way of making such a notion precise and

for testing the "reasonableness" of the task.

In the latter stage of this work, the author became aware of work that tries to

project onto a low rank subspace by optimization on the Grassman manifold. See

(Lu et al. 1997; Manton et al. 2003). It would be interesting to use such methods

on this problem.

Appendix: Equality Constrained Least Squares
The equality constrained least squares problem is as:

rnin || A,x-b , (A.6.1)

where A, e R'"", A2 e R"-", b, e /?'"', and b2 eRp 'x .

Without loss of generality, assume rauk(A2) = p and p <n. Let Q A, =
R

0
be

the QR factorization of A, , where R is a p*p upper triangle matrix. Set
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= [P,,P2] and Q'x =
y , where y e R'!i , zei?"""J . With these

transformations, (A.6.1) becomes

min || P.y + P^z-b, II (A.6.2)
Rr.v=b,

where the vector y can be determined from the constraint R ry = b2 . (A.6.2)

becomes

min|| P,z-(b, -P^OI! (A.6.3)

which is an unconstrained LS problem. The solution to the equality constrained LS

problem (A.6.1) is:

y (A.6.4)
z
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Chapter 7

Orthographic projection of distances: a low-

dimensional approximation

7.1 Introduction

The distance between two feature points in an image is a coordinate-free quality;

however, it has seldom been used in computer vision or pattern recognition tasks

because it rapidly changes as the view varies. In this chapter, we investigate one

property of a quantity we call the "distance vector", which consists of the distance

among the pairs of feature points under orthographic projection. We prove that the

distance vectors under different views approximately lie in a linear subspace with a

dimension of 6.

7.2 Distance vector, spherical harmonics, and linear subspace

It has been proved, by exploiting spherical harmonic expansions, that the gray

scale images of a Lambertian object approximately lie in a 9D linear subspace

(Basri et a I. 1999; Ramamoorthi et a I. 2001; Ramamoorthi 2002; Basri et a!.

2003). Similarly, we will prove here that the "distance vectors" of a rigid object

approximately lie in a 6D linear subspace, and the 6D subspace accounts for at

least 99.76% of the variability of the distance vector.

7.2.1 Definition of distance vector (distance matrix)

For m feature points in an image, there are C], -m{jn — \)l2 line segments

jointing all pairs of such points. We use a symmetric int-m matrix, D, with all zeros

in its diagonal entries, to represent all the segments between features. Duj is the

length of the line segment between the ith feature point and the. / ' feature point. We

arrange the m{m-l)l2 entries, Du with i>j, of the upper-half matrix as a vector,

124



Chapter 7: Orthographic projection of distances: a low-dimensional approximation

calling it the distance vector. The order of the entries of the distance vector does

not make difference in the subsequent sections. What counts is that we arrange all

the distance vectors in different views in the same order.

7.2.2 Spherical harmonics

Spherical harmonics for the functions on the surface of the unit sphere have the

same role as the Fourier basis for functions in the plane. Spherical harmonics are

defined as:

where

C7.D

is the associated Legendre functions, with

-z2)_2\m/2 /7"+ m

( z 2 - l ) for w = 0,1,2,-• and -n<m<n . Ynm for
2"n\ dz

-n<m<n is the n'h order spherical harmonics, and there are 2n+l spherical

harmonics in the //'' order.

Spherical harmonics form an orthogonal basis for functions on the surface of the

unit sphere. A function on the unit sphere can be decomposed into a series of the

spherical harmonics:

Jnm{9,<f>) (7.2)

where fnm is the strength of the harmonics of Ynm:

(7.3)

7.2.3 Spherical harmonics for the sine function

As was used in (Basri et al. 1999; Ramamoorthi et al. 2001; Ramamoorthi 2002;

Basri et al. 2003), the sine function can be approximately decomposed into the a

few spherical harmonics. Particularly, the harmonics expansion o f sine function

can be decomposed into:

, y,n0 (7.4)
n=0
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w h e r c * I , = ^
-

arranged in the appendix.

. The calculation of k2n is

Please note that all the odd order harmonics Y2nU m are eliminated. The reason is

that the sine function is symmetric with nil and all odd order terms are anti-

symmetric with K12. Another fact is that, because the sine function iscircular

symmetric, only the zonal harmonics (i.e. m=0 in equation (7.1)) exist in the

expansion of (7.4), i.e., fnm = 0 in (7.3) for w ^ 0.

The amplitudes up to the 2011' order spherical harmonic are plotted in Figure 7.1.

Specifically, ko=njnl2 , k2 = -nJ5?r/\6 and kA =-2>n4n /128 . (Note

/r2/l+1 = 0 .) The approximation up to the second/fourth order accounts for

99.76/99.96% of the energy of the sine function n\

j'J J*sin2 6?sin OdOdtj) = - n (7.5)

Figure 7.2 shows the close agreement between the sine function and the spherical

harmonic approximations up to the second and the fourth order.

7.2.4 Low dimensionality of the distance vectors

Under the orthographic camera, the length b etween two points in a view is the

product of its length in the 3D world and sin(#), where 9 is the angle between the

optical axis of the camera and the 3D line. Suppose each point on the unit sphere

surface represents the direction of one unit-length segment in 3D space.

Consequently, its distance vector is the function sin(#) when the optical axis of

the orthographic camera coincides with the z direction. From (7.4), this distance

vector can be approximately spanned up to the second or the fourth order, with 2

or 3, respectively, orthogonal zonal harmonics.
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Figure 7.1: The amplitudes of the spherical harmonics up to the tenth order.
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Figure 7.2: The approximations of the sine function. The solid curve is the sine

function, the dashed/dotted curves for the second/fourth order approximation.

When the view is taken from other direction, other non-zonal harmonics are not

zeroes any more. Viewing from other direction has the same effect on the spherical

harmonics as a rotation. In (Ramamoorthi et al. 2001), it has been shown that the

rotation of the harmonics only mix the energy between the same order harmonics
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and that the total energy in one order does not change. Precisely, a rotation of a

harmonics is a linear combination of all spherical harmonics within the same

order. This fact has also been pointed out in (Basri et al. 1999; Basri et al. 2003).

Thus, when viewed from other directions from the z direction, the sine function on

the surface of the unit sphere can be approximated by up to the 2nth order with

+ An) = (2/72 + 3/i +1)'* harmonics; particularly for the second or fourth order,
/=0

respectively with 6 or 75 harmonics. Because the rotation only mixes the energy of

the harmonics with the same order, these 6 or 15 harmonics still accounts for

99.76/99.96% of the energy of the rotated sine function.

7.2.5 Sine function on a sparse set of points

Of course, only some sparse directions are needed for an object with some feature

points, instead o f the whole sphere. M oreover, line segments i n 3 D world h ave

different lengths. However, for a sparse set of directions, the property of the low-

dimensionality still applies. Indeed, a slightly better approximation can be

expected for the sparse case, as is validated by the experiments.

We arrange the distance matrix this way: the distance vector, with the same order,

for each view takes a column. Two cases are considered as examples: 100 or 20

points are randomly generated and then are randomly orthographically projected

upon 1000 views. Next, we apply SVD (Golub et al. 1989) on the distance matrix.

The energy distribution for 100 points and 20 points is listed in Table 7.!,

comparing with the theoretical values for the sphere.

i

i

si
If
Si

The data in Table 7.1 confirms our claim that the low-dimensionality of the

distance vectors still holds for a sparse set of directions. The first 6 singular vectors

of the distance matrix account for 99.79% or 99.80% of the energy, compared with

99.76% for the sine function on the surface of the unit sphere.

Another property can be observed, from this example, that the difference between

the second and the sixth singular values decreases as the feature points increases,

as s hown i n F igure 7.3. It c an be e xpected t hat t he s ingular values i n t he s ame
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order are approximately same when enough feature points averagely distribute in

3D space.

Table 7.1: Energy distribution for the sphere and a sparse set of direction.

Simulation

2nd— 6'"
r-15'"

100 points
93.47%
6.33%
0.17%

20 points
93.24%
6.55%
0.18%

Sphere

0*
yid

4'"

92.53%
7.23%
0.20%
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Figure 7.3: The singular values of the distance matrices with 20 (denoted by circles

V ) or 100 (denoted by crosses "+") feature points

7.3 Discussion and conclusion

As discussed in previous chapters of this thesis, the low-dimensional subspace

analysis has been widely employed in computer vision tasks, like the factorization

method for structure from motion and the PCA (or the linear subspace approach) to

the face recognition problem. In this chapter, we prove a new low-dimensional

property that a 6D subspace accounts for at least 99.76% of the variability of the

distance vector.
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Closely related to this approximately 6D property of the distance vector is the fact

that the measurement matrix lies in a 4D subspace, as discussed in chapter 3. At

this stage, we cannot demonstrate thai the new property established here is directly

useful for computer vision tasks. However, it does seem likely that such a

remarkable feature can be exploited.

Appendix

Here, we derive the analytical formula for the decomposition of the sine function.

According to (7.3), the coefficient of the 2n'h order harmonics, /;>„, is:

(7.6)

where Y2nQ(0) = J P2» (cos 9). We can express Pk (t) as:

,/ /~>2n n2ij2i-2n

The following formula can be easily obtained:

j [ co s " 0sin2 -1) ; C* f sin2O+1) OdO

OdO = [(2.7 + 1) sin27'cos2 MO

= (2 / + l ) r s i n 2 ' # / # - ( 2 / + l ) r

2 i ~f" 1 F? . i •

= — sin"' OdO
2j + 2 *

Combining (7.6), (7.9) and (7.10), we save obtained

OdO

2 Hi ,=„

(7.7)

(7.8)

(7.9)

(7.10)

(7.11)
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Chapter 8

Subspace-based face recognition: outlier detection

and a new distance criterion

8.1 Introduction

Illumination effects, including shadows and varying lighting, make the problem of

face recognition challenging. Experimental and theoretical results show that the

face images under different illumination conditions approximately lie in a low-

dimensional subspace, hence principal component analysis (PCA) or low-

dimensional subspace techniques have been used, as overviewed in Chapter 3.

The contributions of this chapter are: (a) In section 8.3, we propose a new error

distance for the subspace-based recognition problem. This is based on the new

theory about the learning capacity in low-rank subspace approaches, presented in

chapter 4. (b) In order to remove points not following the reflectance model, we

employ the iterative reweighted least square (IRLS) technique (section 8.4) to

detect the pixels that do not obey the dimension-3 subspace constraint, such as

eyeballs. The experiments on the Yale-B face database show the effectiveness of

the new techniques.

The work presented in this chapter has been published in (Chen et al. 2004).

8.2 Lambertian reflection and low dimension subspace

It has been experimentally observed that the set of images, observed under

different lighting conditions, can be considered as lying in a low dimension
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subspace (of the set of all possible images of a certain person). This fact can be

theoretically justified so that, depending upon the complexity of the image model,

we can demonstrate that the dimension of the subspace is as low as 3-9 (in this

chapter, we use 7 dimension subspace to model the attached shadow.) This section

overviews the background in the context of face recognition.

8.2.1 Lambertian reflectance and 3-dimensionaI subspace

The images of a Lambertian object can be approximately modeled by a 3-

dimensional subspace if the light source lies at infinity and there is neither attached

shadow nor cast shadow (Shashua 1997; Georghiades et al. 2001). Following

(Belhumeur et al. 1998), for any point/? on a Lambertian surface, illuminated by

an infinite light source, its intensity can be described by

T Ts (8.1)

where a{p) (a scalar) is the albedo at position /;, n(p) (a 3-vector) is the inward

normal of the surface at position p , and s (a 3-vector) is the direction of the light.

Let B e R"'2 be a matrix where each row is b(p)T . The illumination subspace can

be generated by:

7?3} (8.2)

$3

| |

1

•m
1

The i mages w ithout s hadows a re a s ubset o f L. T he s et o f a 11 i mages, the n on-

negative orthant, is defi:s>-d as:

Lo = {.v | A- = max(Bs,0), Vs e R*} (8.3)

1

I

A general subspace-based algorithm for the face recognition is (Georghiades et al.

2001):

(a) Training stage. Arrange the training samples (images of the same face under

varying light conditions) as the training matrix, each column of which is an image.

* The albedo factor can be neglected, because it only scales the associated row of B by the factor of
a. The training matrix, which consists of the face images without shadow, should be of rank 3, no
matter whether the albedo at different positions is the same or different. We do not refer to the
albedo in the following.
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By SVD (Golub et al. 1989), the 3 basis images are derived from the 3 singular

vectors that correspond to the 3 largest singular values.

(b) Recognition stage. Calculate the distance of the test image to the 3-dsmensional

subspace that is spanned by the 3 basis images. The target is selected as that which

has the shortest distance.

'4

As we discuss in the next section, the Lambertian assumption, particularly

excluding shadows, is a bit unrealistic and one usually uses slightly larger

dimensional subspaces (with obvious changes to the algorithm described above).

8.2.2 Attached shadow and low-dimensional subspace

The 3-dimensional constraint does not hold when there is a shadow. Intrinsically,

the dimension of the image set for an object is "equal to the number of distinct

surface normals". However, it has been proved, experimentally and theoretically,

that the image set approximately lies in a low-dimensional subspace (Turk et al.

1991; Hallinan 1994; Eipstein et al. 1995). It has been experimentally proved that

images with shadow can be approximately modeled by 5±2 eigenimages (Eipstein

et al. 1995). Moreover, an important theoretical proof shows that the images of a

Lambertian object can be approximately modeled by a 9-dimensional subspace if

there is no cast shadow (Basri et al. 1999; Ramanioorthi et al. 2001; Ramamoorthi

2002; Basri et al 2003). Based on this 9-dimension theory, 9 points of light for

face recognition were optimally determined (Lee et al. 2001).

m

I
"1

m

8.2.3 Generation of the image basis from synthetic images

One does not want to use more images then necessary in constructing a training

set. It has been shown (Lee et al 2001) that for a single face approximately 9 well-

chosen lighting directions are optimal. However, the result in (Lee et al 2001) was

not good enough in practice. A reliable approach to obtain the image basis is to

calculate them from a large amount of training images, for example 80-120

training images (Georghiades et al. 2001). Although a large set of images is

unwieldy, a possible solution to this problem is to use the synthetic images, as in

(Georghiades et al. 2001). In this chapter, we also employ this strategy to obtain

the image basis.
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Taking the Yale-B face database as an example, the procedure of generating the

image basis in the training stage is (the image basis for each person is separately

generated in our approach), as follows:

Training algorithm:

(a). Obtain the illumination subspace L in (8.2) from more than 2 images that have

no shadow. Here, we use the 7 images in "subset 1" in Yale B face database as the

training samples.

(b). Generate the synthetic images that are illuminated by a light at infinity, using

equation (8.3). Note: the nonlinear operation of setting to zero the negative pixel

values moves the resulting images outside of the 3 dimensional subspace.

(c). Calculate the approximate low-dimensional subspace from the simulated

images, by SVD (Golub et al. 1989). The 7D basis image of person 1 and person 4

are shown in Figure 8.4.

As an important variation, we employ the iterative least squares procedure as an

"outlier" detection strategy when we calculate the illumination subspace in sub-

step (a), because not all the pixels of a face can be approximately Lambertian, for

example the eyeballs and eyebrows. This outlier detection strategy will be

presented in section 8.4.

In the simulation of the possible images in sub-step (b), we only consider the effect

of the attached shadow, as the "Cones-attached" in (Georghiades et al. 2001).

However, we don't need to reconstruct the face to a generalized Bas-Relief (GBR)

transformation (Belhumeur et al. 1999). Instead, we "randomly" generate the

synthetic images, because an arbitrary "linear" combination of the three basis

images can be an image, illuminated by a light with unknown direction

(Georghiades et al. 2001). It should be noted that the negative pixels in the

synthetic images have to be set as zeroes. The attached shadow can be modeled

this way, while the cast shadow cannot be modeled. Although the direction of the

light s is randomly generated, we set the energy of first basis image to half as that

of the other two basis images, in order to model the shadow effect better.

1

i
i

I

134



Chapter 8: Subspace-based face recognition: outlier detection and a new distance
criterion

In calculating the basis images in sub-step (c), which accounts for the attached

shadow, we find that the 7-dimensional subspace performs slightly better than the

9-dimensional subspace. Crucially, in our approach, the "outliers" detected in sub-

step (a) are not included in calculating the distances of the test image t o the 7-

dimensional subspaces. In more detail, suppose we are calculating the distance of

the test image I, from the subspace of the /''' training image set

He... IL

I
(8.4)

where e,,. is the projection error calculated by ignoring (masking out) those pixels

in I,, in the same positions as we detected outliers in /lh training set. That is, when

calculating the distance of the test image to each training image set we will

exclude different parts of the test image according to the "mask" of the relevant

training images.

|

if
mm

m
la

8.3 Learning capacity of low-dimensional subspace and a new

distance criterion

Few people have properly estii lated where the noise in the training and

recognition processes resides. In chapter 4, based on the matrix perturbation theory

(Wilkinson 1965; Stewart et al. 1990), the learning capacity of the low-

dimensional linear subspace has been studied. The theory states that the distance of

a new test vector to the estimated low-dimensional subspace comes from two

sources: one source is the noise in the training samples and another in the noise in

the test image.

Suppose we work on the m dimensional vectors and n sample vectors are available

in the training stage. The training samples can be arranged as an m *n matrix L,

taking each sample as a column. Ideally, this training matrix should be of low rank

/• if there were no noise in the samples. For example, the training matrix, consisting

of the Lambertian images without shadow, is of rank 3. By the SVD (Golub et al.

1989), the training matrix can be decomposed into L = \}HVT. U and V are m*r
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and nx-r matrices with orthogonal columns, respectively, and £ is a r*r diagonal

matrix: diag{ic},K2,---,Kr}. The test image p should lie in the subspace span{\J},

i.e., n = U [ / i , / 2 , " - , / r ] , if it were noise free. Ideally, if both the training samples

and the test image were noise free, the projection error of p on the subspace

span{U} is 0, i.e., | |p -UU r p | |= 0 . However, noise inevitably exists in the

training samples L' and in the test image p' . Consequently, the noise free

subspace U cannot be obtained: another /-dimension subspace U' is actually

obtained.

From the theory in section 4.4.2 (specifically, equation 4.23 in chapter 4), the

following formula describes the effects of the noise ( <J1 ) in the training images and

the noise (a , ) in the test image, on the "error measure" (SSD, the sum of the

squared difference):

% (8.5)
- K -

where <jt and a,, small enough compared with the signal level, are the noise

levels for the test image and the training samples respectively.

Since some error is introduced by the noise in the training samples, this part of the

error in (8.5) should be subtracted in the recognition stage. More formally, suppose

the new test image p' has a distance of d to the /--dimensional subspace span{V}.

From (8.5), we take the following distance as the criterion for the classification:

j
^V, 0)

i

(8.6)

The estimation of the noise level a, in the training samples will be discussed in

the following section.

1

8.3.1 Noise level estimation

In this section, we explain how to estimate the noise level a, in (8.6). In our

synthetic generation of the image basis, we first estimate the noise level in the

actual images. Then, we use these estimates to calculate the estimates for the noise
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levels in the synthetic images (generated by a linear combination of basis images,

as per (b) step in section 8.2.3).

From (Bishop 1998), the maximal likelihood (ML) estimate of the noise level in an

/•-dimensional illumination subspace is as follows:

1
m{m - r) ,f̂ ,

(8.7)

where Kt is the /';' singular value of the actual training matrix. It should be noted

that the estimate in (8.7) is calculated from the outlier-detected training matrix

(i.e., after removing outliers).

H

We calculate the total noise energy of the synthetic training matrix and regard the

root mean of that energy as the noise level.

8.4 Non-Lambertian pixel detection

Although the human faces can be approximately modeled as Lambertian, some

part are obviously non-Lambertian, for example the eyeballs and eyebrows.

Moreover, some parts of the true training samples that are in the shadow do not

obey the 3-dimension constraint. In order to obtain an accurate 3-dimensional

illumination subspace, we should exclude these abnormal pixels.

Here, we employ a variant of the iterative reweighted least square (IRLS)

(Rousseeuw et a\. 1987) as the "outlier" detection strategy: the weight is either 1 or

0. IRLS works by iteratively fitting the model to the data: essentially, we adjust the

weight of each data, according to its residual; then, a new model is obtained by

minimizing the reweighted least square. More details can be found in (Rousseeuw

etal. 1987).

More specifically, we retain those data whose residual is less than 3 times of the

noise scale and prune the other data. Thus, a general 1/0 IRLS iteratively works

this way:

(i) to estimate the scale from the residual of the retained data.
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(ii) if there is some "outliers", whose residual is larger than 3 times* of the scale, to

prune these data and go to sub-step (i); else, terminate the iteration.

Because we work on low-dimensional subspaces, the- general 1/0 IRLS can not be

directly applied to detect the non-Lambertian pixels. In particular, we have to

define the residual for a pixel, which in fact is an ^-dimensional vector if we work

on n training images.

I
1

Suppose an mxn training matrix consists of/; training images, each of which has m

pixels. First, calculate the /--dimensional subspace by SVD (Golub et al. 1989).

Second, calculate the residual matrix, by subtracting the r largest components from

each column (each image). Third, calculate the 2-norm of all row (a row

corresponds to the same pixel in different images) vectors and regard them as the

residual for the corresponding pixels. The scale can be estimated as the root mean

square of the residuals of the retained pixels. The detected mask for the non-

Lambertian pixels are displayed in Figure 8.3, where the black pixels denote the

aon-Lambertian ones. The detected outliers do not appear to be perfect - certainly

this part could be improved. However, we can observe that, from Table 8.2, this

Imperfect outlier strategy actually improves the face recognition performance.

Also from Table 8.1, the contribution of this outlier detection strategy can be

confirmed by the change of the ratio between the third and the fourth largest

singular values.

i

8.4.1 Performance evaluation of the outlier detection strategy

For a Lambertian object, the fourth singular value of the training matrix should be

zero if the training matrix is noise free. Due to noise, this does not hold. Here, we

employ the ratio between the third singular value and the fourth singular value as

the index to how well the matrix can be approximated by another rank-3 matrix.

The larger the ratio, the better the approximation. Because we use the Yale B face

database in our experiment (in section 8.5), the ratio, respectively for these 10

persons in Figure 8.1, is listed in Table 8.1. The row labeled "original" denotes the

training matrices before the outlier detection and the row of "outlier detected"

* The factor 3 is somewhat arbitrary. A factor in the range 2.7 to 3 is often used. This is based on
including a certain (large) fraction of inliers to a Gaussian distribution (e.g., 99%).
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denotes the training matrices that do not include the detected outliers. Clearly, the

outlier detection has improved the ratios. The detected outlier masks are shown in

Figure 8.3.

Table 8.1: The ratio between the third singular value and the fourth singular value.

Person
original
outlier

detected

1
3.761

4.335

2
2.460

4.209

3
4.216

5.949

4
3.967

4.967

5
3.050

5.992

6
2.265

2.582

7
3.261

4.348

8
5.364

7.990

9
3.923

5.344

10
2.159

3.109

8.5 Experimental results

In this section, we report our results, comparing with that in (Georghiades et al.

2001; Lee et al. 2001). As in (Georghiades et al. 2001), we also carry out the face

recognition experiments on the Yale-B face database, which consists of 10

persons. This face database can be employed to study the pose estimation and the

illumination effects. For each person, pictures were taken from 9 poses, and at

each pose, 64 different illumination conditions were used. However, we only study

the illumination effects o n the face recognition; thus we only use the 64 frontal

images. These 64 images are divided into 5 subsets of 7/12/12/14/19 pictures

respectively. From "subset 1" to "subset 5", there is more and more shadow in the

pictures. Two images are shown in Figure 8.2 for each subset. In fact, the pictures

in "subset 5" are almost indiscernible, as shown in Figure 8.2, and no result has

previously been reported on this subset. We follow (Georghiades et al. 2001) in

cropping, centering and resizing the images. The 10 persons are shown in Figure

8.1.

By employing the new strategies outlined in this chapter, we obtain a good

performance on this subset, up to 92.1% correct. From Table 8.2, we can see that

the outlier detection strategy contributes more than the new distance criterion to

the improvement in our approach. We can also see that both strategies, adopted

together, improve 'norethan each strategy employed separately. Compared with

the dimension-7 subspace, the dimension-9 subspace performs a little worse, as

also can be observed from Table 8.2. Although th* experimental setting suffers
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from the small size of the Yale-B face database, we can still observe the

contributions of our new strategies by comparing with other competing approaches

(Georghiades et al. 2001; Lee et al. 2001). Our purpose is not to claim that we

have a complete and foolproof method - rather to show that the two proposals can

lead to gains in performance.

(f) (g) (h) (i)

Figure 8.1: 10 persons in Yale-B face database.

G)

Figure 8.2: Different images under different illumination conditions, for person 7

in Figure 8.1. (a) and (b) from subset 1; (c) and (d) from subset 2; (e) and (f) from

subset 3; (g) and (h) from subset 4; and (i) and (j) from subset 5.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 8.3: Mask for the outliers, which do not obey the 3-dimensional constraint.

The black pixels denote the outliers. From (a) to (j), the masks correspond to

person 1 to person 10 in Figure 8.1.

Person 1

Person 4

Figure 8.4: The 7D image basis of person 1 and person 4 in the Yale-B face

database. Note that green denote positive pixels and red for negative, and that the

detected pixels (outliers) in Figure 8.3 are excluded in these basis images, shown

as black.
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Table 8.2: Comparison of the error classification rate on Yale-B face database. In

the bottom four rows, the numbers in the brackets are the dimensions of the

subspace, u sed i n o ur a pproach. N ote t hat a m ethod e mploying o nly o ur o utlier

detection strategy (row 5) performs better than previous methods (rows 1-3).

Likewise, only using our new distance criterion (row 6), we can do better than

previous methods except 9PL (row 3). However, both improvements combined

(row 7) performs better than previous methods (rows 1-3). Method 4, Cones-cast,

achieves the same flawless recognition rate on subsets 1-4; however, since they did

not report an error rate for the most challenging subset 5, we can't say whether our

method definitely performs better. However, it is perhaps salient that none of the

cited previous methods attempted such difficult images.

1

2

3

4

5
6

7

8

Method
Linear subspace

(Georghiades et al 2001)
Cones-attached

(Georghiades et al. 2001)
9PL(Leee/a/. 2001)

Cones-cast
(Georghiades et al 2001)
Outlier detection (dim 7)

New distance (dim 7)
Outlier detection+

New distance (dim 7)
Outlier detection+

Nevv distance (dim 9)

Subset 1-3

0

0

0

0

0
0

0

0

Subset 4

15

8.6

2.8

0

2.1
5

0

1.4

Subset 5

/

/

/

/

11.0
15.8

7.9

10.5

y

I

8.6 Conclusion

In this chapter, we introduce two new techniques for subspace-based face

recognition: outlier detection and the exploitation of a new distance-based

criterion. Without reconstructing the 3 D scene, the standard s ubspace approach,

augmented with the new techniques described here, proves to be at least

comparable to Cones-cast, where the cast shadow has to be detected and

consequently demands the GBR reconstruction (Belhumeur et al 1999).

Moreover, by the new techniques, a good performance can be obtained on "subset
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5", which is the most challenging in the Yale-B face database and on which no

performance has been reported before. While we can see much room for

improvement in the implementation of our outlier detection strategy, we have

shown that, even when only partially successfiil in identifying outliers from the

subspace model, it can be responsible for a significant improvement in accuracy.

Our n ew d istance criteria, as it properly recognizes and adjusts for noise in the

training set, is also shown to be useful as a separate component, as well as in

conjunction with the outlier detection strategy. i

> r
P
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Chapter 9

Conclusion and future directions

9.1 Summary of the contributions of this thesis

4

In this thesis, we mainly studied the linear subspace analysis in computer vision

applications, from a statistical view. The contributions of this thesis can be

categorized into three aspects: (1) a theoretical analysis of the i.i.d. Gaussian noise

effect on the linear subspace analysis; (2) an investigation of heteroscedastic

parameter fitting; and (3) practical applications of improved algorithms to structure

from motion and face recognition problems. In this chapter, we briefly expand

upon these contributions before we suggest some avenues of future work.

4
in

Theoretical contributions to the linear subspace analysis:

• Using the matrix perturbation expansion theory, we derived an

explicit formula for the denoising capacity of the approximated

(low rank) matrix, in terms of the noise level, the sizes of the

measurement matrix and the dimensionality.

• By using the first-order matrix perturbation theory, we also derived

an explicit formula for such a reprojection error measure. This error

comes from two independent sources: one source is the noise in the

training samples and another in the noise in the test image.

Practical contributions to the computer vision tasks:

• In the missing data problem under low rank constraint, we

presented a criterion to recover the most reliable submatrix, in

terms of deciding when the inclusion of extra rows or columns,

containing significant numbers of missing entries, is likely to lead
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to poor recovery of the missing parts. We applied this algorithm in

the structure from motion problem

We proposed a new error distance for the subspace-based

recognition problem. This is based on the new theory about the

learning capacity in low-rank subspace approaches.

In face recognition, we employed the iterative reweighted least

square (IRLS) technique to detect the pixels that do not following

the Lambertian reflectance model.

I

4

In this thesis, we also studied other rank-constraint problems.

• We proved that the distance vectors under different views

approximately lie in a linear subspace with a dimension of 6.

• We studied the parameter estimation problem in a general

heteroscedastic linear system, by putting the problem in the

framework of the bilinear approach to low-rank matrix

approximation.

9.2 Directions of future work

In terms of theory, we only studied the i.i.d. Gaussian noise effect on the linear

subspace analysis. It would be interesting to extend the theories in chapter 4 to the

following two problems. First, it is worth studying the effect of the heteroscedastic

noise in the low-rank approximation. For example, the conic fitting problem can be

reduced to a rank-5 approximation of a p><6 matrix, where p is the number of

points. How does the number of the points (/?>6) affect the precision of the

estimation? Second, the interesting problems (e.g., conic fitting and fundamental

matrix estimation) are essentially non-linear problems, although one often

formulates them as a linear estimation problem. It would be interesting to

investigate how the linearization affects the precision of the solution.

We only studied the illumination effects on the face recognition problem. More

specifically, we employed a 7 dimensional subspace to model the attached shadow.

A possible extension of this issue is to deal with the cost shadow in the face
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recognition problem. Some papers about this issue have appeared in a recent

conference, Europe Conference on Computer Vision 2004, such as (Frolova et al.

2004; Zhou et al. 2004).

Several recent papers (Lu et al. 1997; Muhlich et al. 2001; Manton et al. 2003)

suggest different avenues of investigation for dealing with heteroscedastic rank-

constrained problem. It should be interesting to use these approaches to ellipse

fitting and contrast and compare.

Finally, we must acknowledge that what we have done is incomplete. For example,

we studied "imputation" (filling in missing data) in an i.i.d. setting but not in a

heteroscedastic setting. This thesis has made significant contributions on many

fronts but a complete theory is still missing. Moreover, it has to be admitted that

the algorithms described here, while making a contribution in several ways, fail to

present the complete solution. Much work remains to be done.

>
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Errata and Amendments

p IX, para 3, line 4: Replace "following" with "follow".
p IX, para 4, line i: Replace "rank-constraint" with "mik-constrained".
p IX, para 4, line 2: Replace "approximately lie in a linear subspace with a
dimension of 6." with "lie in a space that is well approximated by a 6-dimensional
linear subspace."
p 1, para 2, line 6: Replace "signal" with "matrix".
p 2, para 1, line 3: Add "(Aguiar et al. 2002; Sun et al. 2001)" after "frames".
p 2, para 3, Iine3: Insert "(SFM)" between "motion" and "and".
p 3, para 1, line 3: Insert "Guerreiro et al. 2002; Maruyama et al. 1999" before "),
etc".
p 3, para 2, line 4: Replace the last sentence with "The iterative methods have the
advantage that they are driven by minimizing a global cost function. In contrast,
the non-iterative ones are clearly suboptimal, although they are generally fast and
stable."
p 3, para 4, line 1: Add ", i.e., each data point having a different covariance
matrix)" after "heteroscedastic noise"
p 4, para 2, line 2: Insert "Wiberg 1976" after "2004".
p 6, para 3, line 4: Replace "important in since" with "important since".
p 6, the second last para: Replace "approximately lie in a linear subspace with a
dimension of 6." with "lie in a space that is well approximated by a 6-dimensional
linear subspace."
p 10, para 1, line 3: "K" in equation (2.1) should be bold as "V".
p 10, para 2, line 2: Delete "first" between "the" and "/;".
p 10, para 2, lines 4&6: Replace A: with af .
p 11, para 2, line 4: Add "be" between "will" and "produced".
p 13, para 1, the second last line: add "the" between "is" and "same"
p 13, para 2, line 1: Replace "Theory 1" with "Theorem 1".
p 15, the last para: Explanation: "large" in line 2 means that the singular values
have to be much larger than the noise level in the matrix in order to make (2.14-
2.16) approximately hold. For a small singular value, the singular vectors (values),
calculated from (2.14-2.16), may have a large error.
p 16, para 3, line 2: Replace "eigenvalues" with "eigenvectors".
p 16, para 3, line 3: Replace "same" with "equal".
p 22 para 2 line 3: Insert "to surface patches (Guerreiro et al. 2002; Maruyama et
al. 1999), " before "and to planes".
p 28, para 1, the fourth last line: Replace "more optimal" with "better".
p 42, para 1, line 2&3; p 44, para 1, line 4: ;'the energy of a matrix entry" denotes

II M ||2

the quantity —, where M is the matrix, and m and n are its sizes.
mn

p 44, between (43) and (44), the energy of a matrix, M, denotes its norm || M ||J..
p 47, in the fourth last line; and p 52, line 8: the energy of a vector (an image), v ,
denotes its norm || v ||]L.
p 50, In the legend of Fig. 4.3, replace "To see" with "See".
p 51, In the second last para, the second last line, replace "angel" with "angle".
p 67, In the legend of Fig. 5.1, replace "the missing percentage" with "the fraction
of missing data".

I



p 73: Add "For an explanation of the traces, see the text in page 72." to the legend
of Fig. 5.2.
p 78, para 1, line 3: Add a sentence: "The data of the tracked feature points was
downloaded from Jacobs' homepage." before "One frame".
p 126, as the concluding sentence to section 7.2.3, add "It should be noted that one

could question whether an expansion in terms of other basis functions may
be preferred; however, investigation of this question is beyond the scope of
this thesis."

p 140: Replace "Different images" with "Images",
p 148: Replace "2004" in the second last reference with "2004a".
p 148: Replace "2004" in the last reference with "2004b".
p 149: Replace "2004" in the first reference with "2004c".
p 22, para 8, Replace "Chen et al. 2004" with "Chen et al. 2004c".
p 46, para 1, Replace "Chen et al. 2004" with "Chen et al. 2004c".
p 53, para 3, Replace "Chen et al. 2004" with "Chen et al. 2004c".
p 96, the last para, Replace "Chen et al. 2004" with "Chen et al. 2004c".
p 131, para 3, Replace "Chen et al. 2004" with "Chen et al. 2004a; Chen et al

2004b"

Insert the following references between p 147-158:

Aguiar, P. M. Q. and J. M. F. Moura (1998). Video representation via 3D shaped
mosaics. IEEE International Conference on Image Processing ICIP'98.

Aguiar, P. M. Q. and J. M. F. Moura (2001). "Three-dimensional modeling from
two-dimensional video." IEEE Transactions on Image Processing 10(10).

Aguiar, P. M. Q. and J. M. F. Moura (2002). 3D rigid structure from video: What
are "easy" shapes and "good" motions? IEEE Multimedia signal processing
workshop.

Guerreiro, R. F. C. and P. M. Q. Aguiar (2002). 3D Structure from video streams
with partially overlapping images. IEEE International Conference on Image
Processing ICIP'02.

Maruyama, M. and S. Kurumi (1999). Bidirectional optimization for
reconstructing 3D shape from an image sequnce with missing data. IEEE
International Conference on Image Processing ICIP'99.

Sun, Z., V. Ramesh, et al. (2001). "Error characterization of the factorization
method." Computer Vision and Image Understanding 82: 110-137.

Wiberg, T. (1976). Computation of principle components when data are missing.
2nd Symposium computational statistics.

Additional comments on chapter 6 In chapter 6, there are several references to
the assumption of Gaussian noise. In fact, this assumption is only necessary to
obtain the ML result in section 6.3.4. For the remainder of the chapter, a weaker
assumption (zero mean noise) suffices.

The following explanation may help the reader to interpret equation (6.4): The
noiseless data points Wo = [wlo,w2o,---,\v;(O] are "nuisance parameters". That is,

they are not directly of interest. Wo =[wl0,vv2o,•••,>>'„„] is the rank n-\ matrix

that minimizes the objective function in (6.4), subject to the constraint 6 rW = 0 r ,
where 0 is the estimate of the practical parameters of interest (0).
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