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Abstract 

Helicobacter pylori colonises a large proportion of the world’s population, with infection 

invariably leading to chronic, life-long gastritis. While the infection often persists 

undiagnosed and without causing severe pathology, there are a number of host, bacterial and 

environmental factors that can influence disease outcome. In particular, the H. pylori cag 

pathogenicity island (cagPAI) encodes a Type IV secretion system (T4SS), which facilitates 

the translocation of bacterial effectors, such as peptidoglycan, into the host cell. The 

cytosolic pathogen recognition molecule, Nucleotide Oligomerisation Domain 1 (NOD1), 

senses the peptidoglycan of H. pylori and other Gram-negative organisms, resulting in the 

rapid initiation pro-inflammatory responses that are critical for the induction of innate and 

eventually adaptive immune responses. H. pylori is generally considered to be an 

extracellular pathogen and gastric epithelial cells are the pathogen's primary point of contact 

with the host. Therefore, complete characterisation of H. pylori-induced signalling in these 

cells, particularly with respect to the role of NOD1 and the cagPAI, will offer further 

insights into the mechanisms involved in the activation and recruitment of host immune 

effectors. Furthermore, these studies were designed to investigate the existence of a positive 

feedback mechanism between inflammatory responses and gastric epithelial cell signalling 

once infection is established. 

 

In order to ascertain the involvement of NOD1 in host signalling responses to H.  pylori, this 

study employed an in vitro co-infection model using various isogenic H. pylori mutants and 

a gastric epithelial cell line stably expressing siRNA to knock-down NOD1 expression. In 

addition, gastric biopsies from patients with differing degrees of gastritis or gastric cancer 

were analysed to assess the expression of various immune-related genes involved in 

inflammation and disease. 

 

Initially, we addressed the respective contributions of NOD1 and H. pylori virulence factors 

to transcription factor activation and the expression of signalling molecules during infection. 

Accordingly, this study confirmed the role of NOD1 in the activation and nuclear 

translocation of "Nuclear Factor-kappa B" (NF-B). Furthermore, we found that H. pylori 

induced the rapid phosphorylation of p38 and Extracellular-signal Regulated Kinase (ERK) 

Mitogen Activated Protein Kinases (MAPKs) in a NOD1-dependent manner and that this 

was essential for the downstream activation of "Activating Protein-1" (AP-1), an important 
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pro-inflammatory transcription factor involved in host responses to infection. Intriguingly, 

while NOD1 was essential for "c-Jun N-terminal Kinase" (JNK) MAPK phosphorylation in 

Shigella flexneri-infected cells, it was not required for the cagPAI-dependent 

phosphorylation of JNK, nor was it involved in the induction of a characteristic cell 

scattering and elongation phenotype observed in H. pylori-stimulated epithelial cells. 

 

These findings were extended to investigate potential cross-talk between NOD1 and the 

chronic inflammatory responses induced during H. pylori infection. We show that H. pylori 

is capable of activating and enhancing certain components of the IFN- signalling pathway 

in gastric epithelial cells, specifically through NOD1 and the cagPAI. Many of these 

responses are known to be involved in the recruitment of immune cells to the site of 

infection, which would further exacerbate inflammation. In agreement with this hypothesis, 

the expression of several key factors involved in NOD1 or IFN- signalling pathways were 

found to be significantly upregulated in gastric biopsies from patients infected with 

H. pylori, particularly in those exhibiting either severe gastritis or tumour formation. 

 

Taken together, the findings demonstrate a mechanism through which virulent strains of 

H. pylori are able to exacerbate inflammatory responses via activation of NOD1-dependent 

signalling pathways other than those previously reported. Furthermore, the recruitment of 

immune cells to the gastric mucosa may enhance epithelial responses in a cagPAI-dependent 

manner, offering insight into how virulent H. pylori isolates perpetuate the cycle of chronic 

inflammation. This work has identified a number of novel signalling and inflammatory 

responses not previously reported for H. pylori or associated gastric pathologies, which will 

form the basis for exciting future research. 
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CHAPTER 1. Introduction 

1.1   Colonisation 

 

Helicobacter pylori is a spiral-shaped Gram-negative pathogen that resides in the harsh 

environment of the human stomach. Although there is limited knowledge available 

describing how individuals are initially colonised, the infection is generally acquired during 

childhood (1). Transmission of H. pylori is thought to occur primarily through person to 

person contact via the oral-oral, gastric–oral and/or possibly faecal–oral routes, with 

sanitation and hygiene practices influencing the incidence of infection (2). Developing 

countries tend to be associated with an elevated prevalence of H. pylori infections than 

developed countries, where the incidence of infection is steadily declining (3). There is, 

however, substantial variation in the carriage rates of H. pylori within developed nations (3), 

which is partially attributed to differences in hygiene practices, exposure to antimicrobials 

and ethnic/genetic predisposition to infection (2). 

 

Once in the stomach, H. pylori produces large quantities of urease, which hydrolyses urea to 

produce carbon dioxide and ammonia, thus neutralising the surrounding pH and protecting 

the bacteria from the harsh acidic environment (4). This is a crucial step in the initial stages 

of colonisation that protects H. pylori whilst it traverses from the highly acidic lumen to the 

more neutral gastric mucosa, where the bacteria interact with the host epithelium. Motility is 

facilitated by unipolar flagella, which enable H. pylori to penetrate the mucus layer and 

persist in the dynamic gastric mucosa. Both urease- (5-7) and flagella-deficient (8-9) 

H. pylori mutants are unable to colonise the stomach, highlighting how well this pathogen 

has adapted to such a specialised niche. 

 

 

1.2   Adherence 

 

H. pylori express a number of proteins belonging to the "H. pylori outer membrane porins" 

(Hop) family. Many of these proteins act as adhesins that enable bacterial attachment to the 

gastric epithelium (10-11) and in some cases, promote inflammatory responses and influence 
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disease outcome. There is inter-strain variation in the distribution of certain adhesins and a 

remarkable capacity to regulate expression in response to environmental cues (12-16). In 

particular, sialic acid-binding adhesin (SabA) expression is highly variable and correlates 

inversely with low pH (16). Furthermore, SabA expression is associated with gastric cancer 

(16) and given its ability to bind and activate neutrophils (17), SabA may perpetuate the 

chronic inflammation that precedes such malignancies. Another highly variable adhesin is 

blood group antigen-binding adhesin A (BabA), which has been shown to undergo continual 

genetic shuffling with Hop paralogues (18), thus creating substantial variation amongst babA 

orthologues between different strains. Interestingly, BabA expression was found to be lost in 

H. pylori isolates recovered following long-term infection in a number of animal models (14, 

19). This may be due to a reduction in the expression of the host BabA receptor as disease 

progresses (20), highlighting how H. pylori can evolve with the dynamic gastric environment 

during chronic infection.   

 

 

1.3   Virulence Factors 

 

H. pylori possesses a number of virulence factors that enhance disease by either directly 

causing localised cell damage or by exacerbating the host immune response (Table 1.1). 

While many factors may also serve to attenuate host immune responses, the presence of 

certain bacterial factors is known to be associated with the development of severe disease. 

 

1.3.1 cag Pathogenicity Island (cagPAI) 

The "cag PAthogenicity Island" (cagPAI) is found in some H. pylori strains and encodes a 

~40 kb region of DNA comprising 27-31 genes (21-23). Many of these genes are required 

for the assembly of a Type IV secretion system (T4SS) that secretes the bacterial effectors, 

CagA and peptidoglycan, into the host cytoplasm (24-26). It is estimated that approximately 

60% of H. pylori isolates from Western countries and virtually all East Asian isolates 

possess the cagPAI (27). The presence of the cagPAI is the most reliable bacterial indicator 

of disease outcome, strongly correlating with increased bacterial density (28-29), 

inflammation, and as a result, severe disease such as peptic/gastric ulcer, atrophic gastritis 

and gastric cancer (30-38). 
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Virulence 

Factor 
Colonisation/Cell damage Inflammation/Immunity 

Disease 

Outcome 

cagPAI - increased bacterial density 

- increased production of 

   cytokines 

   and antimicrobials 

- infiltration of immune cells 

- gastritis 

- peptic ulcer 

- gastric cancer 

CagA 

- disruption of epithelial 

  junctions 

- epithelial motility and 

  scattering 

- cytokine production? 

- upregulation of oncogenic 

  proteins 

- atrophic 

  gastritis 

- gastric cancer 

Urease 

- colonisation 

- cellular injury (ammonia) 

- disruption of tight 

   junctions  

- activation and recruitment of 

   monocytes and neutrophils 

- sequestration of IgA antibodies 

- inhibition of phagocytosis 

- gastric damage 

VacA 

- colonisation? 

- epithelial permeability 

- epithelial erosion and 

   necrosis 

- vacuolation 

- apoptosis 

- disruption of antigen processing 

- inhibition of T-cell proliferation 
- ulceration 

OipA 

- adherence to epithelial 

   cells 

- colonisation? 

- cytokine production? 

- dysplasia 

- gastric cancer 

- duodenal ulcer 

Hp-NAP 
- adherence to host proteins 

- resistance to iron oxidation 

- activation and recruitment of 

   monocytes, DCs and neutrophils 

-  monocyte and neutrophil 

   survival 

- cytokine production 

- polarization of Th1 immune 

   responses 

- gastric cancer? 

- peptic ulcer? 

 

 

Table 1.1 Association of H. pylori virulence factors with host responses and disease 

outcome. 



17 

 

1.3.2 Cytotoxin-associated gene A (CagA) 

The cagA gene is located within the cagPAI (21) and encodes a 120-140 kDa protein (39-40) 

that is translocated into host cells by the T4SS. Upon entry, CagA multimerises (41) and is 

subsequently tyrosine phosphorylated by host Src and Abl kinases at multiple residues 

known as "EPIYA" motifs (25-26, 42). CagA phosphorylation facilitates its interaction with 

a number of cytoplasmic host proteins, thus inducing aberrant signalling events and 

influencing pathways that affect proliferation, chemokine production, cytoskeletal 

rearrangement and epithelial integrity (43). The EPIYA motifs are encoded within the 3´ 

region of the cagA gene, which is highly variable and enables the classification of Eastern 

and Western isolates based on the flanking DNA sequences. There are four distinct EPIYA 

variants: EPIYA-A, -B, -C and –D. Representative Western isolates generally possess a copy 

of EPIYA-A, –B and –C, whilst Eastern isolates possess EPIYA-A, -B, and –D (44). 

EPIYA-A and –B bind and activate the host "C-terminal Src kinase" (Csk), which inhibits 

phosphorylation of the CagA protein and thus negatively regulates CagA-induced signalling 

(45-47). Phosphorylated EPIYA-C from Western and EPIYA-D from East Asian isolates 

bind and activate a host cytoplasmic phosphatase, "Src homology 2-containing tyrosine 

phosphatase" (SHP-2) (44, 48), which is largely responsible for the disruption of host 

signalling pathways. The flanking sequence of EPIYA-D binds SHP-2 with greater affinity 

than that of EPIYA-C (44-45) and as such, East Asian cagA
+
 isolates correlate more strongly 

with severe disease than Western cagA
+
 isolates (49-53). Certain Western strains, however, 

may produce a CagA with multiple copies of the EPIYA-C segment and these isolates are 

generally more virulent than those with only one copy (44, 49, 54). Regardless, CagA 

containing a EPIYA-D motif is considered to possess the greatest potential for inducing 

aberrant epithelial cell signalling (44).  

 

CagA has been consistently shown to induce cytoskeletal rearrangements in vitro (55-57), 

interfering with epithelial tight-junction proteins, such as Zonular Occludin-1 (ZO-1) and the 

Junction Adhesion Molecule (JAM), thus resulting in a loss of barrier function (58). 

Epithelial cells transiently expressing CagA were shown to lose polarity, acquire the ability 

to degrade the basement membrane and to invade the extracellular matrix (59). In addition, 

cagPAI
+
 H. pylori strains upregulate host expression of matrix metalloproteinases (MMPs) 

(60-63), which can further degrade the extracellular matrix and are often associated with 

malignant metastasis of a number of cancers (64).While cagPAI
-
 H. pylori strains are 
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capable of inducing host cell motility (55), this occurs without concomitant MMP production 

by epithelial cells. Furthermore, CagA has been reported to promote proliferative and anti-

apoptotic gene regulation via activation of serum response elements (65), growth factor 

receptors and signalling molecules (66-68). Indeed, studies have found elevated proliferation 

scores in the stomachs of patients infected with cagA
+
 H. pylori, as compared to those 

individuals infected with cagA
-
 strains (69-70). Interestingly, CagA

-
 isolates were found to 

induce higher levels of apoptosis, whereas CagA
+
 strains did not (69-70). Therefore, the 

uncontrolled cellular growth induced by CagA
+
 H. pylori, in combination with a disruption 

in epithelial integrity and elevated expression of MMPs, may potentiate pre-cancerous 

changes in the stomach and partly explain the elevated incidence of gastric adenocarcinoma 

in individuals infected with CagA
+
 H. pylori. 

 

1.3.3 Vacuolating cytotoxin A (VacA) 

The cytotoxic effects of "vacuolating cytotoxin A" (VacA) were initially thought to be 

induced by CagA, until disruption of the cagA gene was found to have no effect on the 

vacuolating activity of H. pylori on host cells (71). Subsequently, the vacA gene was 

identified and its disruption was shown to ablate these cytotoxic effects (72). Early confusion 

regarding the function of CagA may be attributed to the strong correlation between the 

presence of the most active forms of VacA and the presence of the cagPAI, which is 

associated with an increased risk of severe disease (28, 53, 73-75).  

 

The vacA gene encodes a 140 kDa autotransporter pre-protoxin that is proteolytically 

cleaved to produce the secreted ~88 kDa mature VacA toxin (76-77), which is activated in 

the extracellular milieu by an acidic or alkaline pH (78-79). Although all H. pylori isolates 

possess a copy of the vacA gene, not all strains secrete cytolytically active toxin (80) and 

allelic variation within vacA amongst different strains markedly affects toxin potency (72, 

74). Polymorphic variations in the vacA gene enable classification based on three distinct 

variable regions: signal (s1a, s1b and s2), intermediate (i1 and i2) and middle (m1 and m2). 

Allelic variants tend to cluster into specific subsets, such as s1/i1/m1 and s2/i2/m2, with a 

vacA s1/i1/m1 type being associated with more severe disease (81). The s2 alleles encode an 

altered signal peptide that prevents toxin secretion and therefore renders VacA nontoxic 

(74). Compared to VacA m1, m2 variants are able to act on fewer types of epithelial cell 

lines, due to altered receptor-binding capabilities (82). VacA m2 variants, however, retain 
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their ability to bind and induce cytotoxicity in primary gastric epithelial cells (82), indicating 

that there may not be a difference in clinical outcome between infections with VacA m1 or a 

VacA m2 strains. The intermediate region was described only recently and shown to be 

responsible for the cytotoxic activity of VacA (81). Therefore, the i1 allele is thought to be 

the best indicator of disease outcome, correlating strongly with the development of peptic 

ulcer, duodenal ulcer and gastric cancer (81, 83). 

 

VacA has been reported to bind a number of different host cell receptors including receptor 

protein tyrosine phosphatase (RPTP)  and (79, 84-85), the epidermal growth factor 

receptor (EGFR) (86) and lipid raft-associated receptors (87-88). Interestingly, mice 

deficient in RPTP were found to be resistant to the formation of gastric ulcers following 

oral administration of purified VacA (89). It appears that VacA may bind a number of 

receptors within lipid rafts, which results in endocytosis of the toxin into the host cell (87-88, 

90). Intoxicated cells typically contain characteristic vacuoles, which are fusions of late 

endosomal and early lysosomal compartments (91). Due to its ability to bind a number of 

cell types, VacA not only inflicts direct cell damage, but can also interfere with many 

processes that are involved in inflammatory and immune responses. Specifically, VacA 

induces apoptosis (92-93) and disrupts essential cellular functions such as protein 

degradation (94) and the processing of extracellular ligands in antigen presenting cells (95).  

Furthermore, several reports have demonstrated that VacA directly inhibits the activation 

and proliferation of human B cells, as well as both CD4
+
 and CD8

+
 T cells (96-99). Finally, 

VacA has been shown to increase the permeability of polarised epithelial cell monolayers to 

low molecular weight molecules and ions (100), which may be a mechanism employed by 

H. pylori to acquire nutrients in the harsh gastric environment. 

 

1.3.4 Outer-membrane Inflammatory Protein (OipA) 

OipA acts as an adhesin that facilitates bacterial attachment to gastric epithelial cells in vitro 

(101) and was reported to be important for H. pylori colonisation in the Mongolian gerbil 

model (102). In contrast, another study reported that an H. pylori oipA mutant was able to 

colonise guinea pigs to the same extent as the parental strain (103).  While the oipA gene is 

found in all strains, isolates may possess variants that have either been switched “on” or 

“off” via slip-strand mispairing (16), thereby implying that oipA expression is not required 

by all isolates to efficiently colonise the host. There is a strong correlation, however, 
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between the presence of an “on” oipA gene and other virulence factors, such as CagA and 

the potent VacA variant (101). This may explain why the presence of a functional oipA gene 

also correlates with high bacterial density, neutrophil infiltration, severe gastritis and gastric 

cancer (16, 104). Although Yamaoka and colleagues reported a role for OipA in pro-

inflammatory cytokine production (15-16, 104-107), other groups have been unable to 

replicate this finding (101-102, 108-110). Elucidation of the cognate host receptor for OipA 

may provide insights into the mechanism of action of this protein. 

 

1.3.5 H. pylori neutrophil-activating protein (Hp-NAP) 

"H. pylori-Neutrophil Activating Protein" (Hp-NAP) is a highly immunogenic ~150 kDa 

protein that acts as a potent chemoattractant for monocytes and neutrophils (111-112), and 

promotes their adhesion to endothelial cells (112). The adhesive properties of Hp-NAP can 

also facilitate bacterial binding to mucin and other host proteins (113-114), which may assist 

the persistence of H. pylori in the stomach.  In addition, Hp-NAP stimulates the release of 

"reactive oxygen species" (ROS) from neutrophils (115), and induces the production of pro-

inflammatory cytokines by immune cells (111-112). These reports highlight how H. pylori 

can directly recruit immune cells to the site of infection and facilitate their persistence, 

thereby exacerbating inflammation. 

 

1.3.6 Outer Membrane Vesicles (OMVs) 

"Outer Membrane Vesicles" (OMVs) are released during growth in vitro and in vivo by all 

Gram-negative organisms (116), including H. pylori (117). Given that cagPAI
-
 H. pylori 

strains are capable of causing gastritis and severe disease, albeit less often than cagPAI
+
 

strains (34), OMVs may be another mechanism through which strains lacking a T4SS can 

induce immune responses. Indeed, H. pylori OMVs contain cell wall components and 

biologically active VacA that is capable of inducing vacuolation (117-119). These vesicles 

were also shown to inhibit cellular proliferation at low doses and to induce growth cycle 

arrest and apoptosis at higher doses, an effect found to be independent of VacA (118, 120). 

Considering that approximately only 2% of H. pylori are in contact with the gastric 

epithelium at any one time (121), OMVs may serve to sustain inflammatory responses 

without the need for intimate association between bacteria and host cells. 
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1.4   Innate immune recognition of H. pylori 

 

1.4.1 Pathogen Recognition Molecules (PRMs) 

Innate immune responses to pathogenic organisms are largely dependent on the recognition 

of invariant microbial structures known as "pathogen-associated molecular patterns" 

(PAMPs) (122). A number of "pathogen recognition molecules" (PRMs) have been 

identified and shown to respond to a wide variety of PAMPs, resulting in the initiation of 

potent signalling cascades that culminates in pro-inflammatory cytokine production and the 

recruitment and activation of immune cells (122). In this way, PRMs are crucial for the 

development of specific adaptive immune responses that result in pathogen clearance. 

Epithelial cells are often the first point of contact for pathogenic organisms and both "Toll-

like Receptors" (TLRs) (123) and "Nucleotide Oligomerisation Domain" (NOD) receptors 

(124-125) have been shown to play important roles in the initiation of host responses by 

these cells and a number of other cell types (122) (Table 1.2; Figure 1.1). 

 

1.4.2 Toll-like Receptors (TLRs) 

Ten TLR molecules have been identified in humans whereas 12 have been found in mice. 

Nevertheless with highly conserved pattern recognition and associated responses between 

both species (126). With respect to bacterial recognition, TLR2 senses a range of molecules, 

including lipoproteins from Gram-negative organisms (127-128), whereas TLR4 generally 

recognises Gram-negative lipopolysaccharide (LPS) (129-130). In addition, TLR5 responds 

to flagella (131) and TLR9 recognises un-methylated DNA motifs that are frequently present 

in bacteria (132). TLR2, 4, 5 and 9 all utilise the adaptor molecule "Myeloid Differentiation 

primary response protein 88"  (MyD88), which recruits "Interleukin-1 Receptor-associated 

kinases" (IRAKs) (133-136). IRAK interacts with "Tumour Necrosis Factor (TNF) 

Receptor-Associated Factor" 6 (TRAF6) to induce the activation of "transforming growth 

factor-(TGF-associated kinase" (TAK1), which in turn can activate "Mitogen-Activated 

Protein Kinases" (MAPKs), "Activating Protein 1" (AP-1) and "Nuclear Factor-kappa B" 

(NF-B) (122, 137-139). These responses, however, are dependent on both the type and 

cellular context of stimulation. 
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1.4.3 Nucleotide Oligomerization Domain (NOD) Receptors 

Bacterial peptidoglycan is sensed by host cytosolic NOD proteins, of which NOD1 

recognises a distinct diaminopimelate-containg tripeptide motif of Gram-negative 

peptidoglcyan (140), whereas NOD2 recognises muramyl dipeptide motifs common to both 

Gram-positive and -negative peptidoglycan (141-142). While NOD1 is broadly expressed in 

a wide range of tissues, NOD2 expression is generally restricted to monocytic cells (Ogura, 

JBC, 2001). Upon recognition of peptidoglycan, NOD1 or NOD2 associate with "Receptor 

Interacting Caspase-like Kinase" (RICK) (124, 143-144), which leads to the activation of 

IB kinase (IKK) and subsequent IB degradation (124-125, 143), thus allowing the 

translocation of NF-B from the cytoplasm to the nucleus. The precise pathway and 

intermediate signalling molecules, however, have yet to be elucidated. 

 

1.4.4 Transcription factor activation by H. pylori 

Colonisation of the gastric mucosa by H. pylori results in the initiation of a robust innate 

immune response and the production of pro-inflammatory molecules that are involved in the 

direct killing of H. pylori and/or the recruitment of immune cells to the site of infection 

(145). In particular, cagPAI
+
 H. pylori are potent activators of the transcription factors, NF-

B (146-147) and AP-1 (148-149), which are crucial links between pathogen recognition 

and cytokine production. In particular, cagPAI
+
 H. pylori are able to induce IB 

degradation, which releases sequestered NF-B and allows its nuclear translocation (150-

151). AP-1 is induced via the activation of host MAPKs, p38, c-Jun N-terminal kinase (JNK) 

and extracellular signal-related kinase (ERK)(152). Interestingly, aside from ERK MAPK, 

p38 and JNK are activated only by cagPAI
+
 H. pylori (149, 153-154), though the precise 

pathway(s) is(are) unclear. Asides from the importance of the T4SS for transcription factor 

activation, there are conflicting reports regarding the ability of other H. pylori virulence 

factors to induce pro-inflammatory signalling cascades in epithelial cells. For example, while 

some groups have reported that CagA can induce NF-B (109, 155) and AP-1 activation 

(148, 156), CagA is generally considered to be dispensable for cytokine responses induced 

by these transcription factors (24, 65, 157-160). Discrepancies in the reported functions of 

CagA may highlight strain-specific variations in the virulence and function(s) of this protein 

amongst different H. pylori isolates, or even differences in the expression levels of host 

molecules within epithelial cell lines. 
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Host 

Receptor 
Ligand H. pylori factor Cell type Cell-specific response 

NOD1 

Gram negative 

bacterial 

peptidoglycan 

Peptidoglycan 

Epithelial 

cells 

NF-B and AP-1 activation 

Cytokine production 

Antimicrobials 

Polarization of Th1 immune 

responses 

Dendritic 

cells 
IL-17 production 

TLR2 

Multiple 

bacterial 

lipoproteins and 

glycolipids 

H. pylori LPS? 
Epithelial 

cells 

 

NF-B activation 

Cytokine production 

 

Hp-NAP 

Monocytes 
NF-B activation 

Cytokine production 

Dendritic 

cells 

Cytokine production 

Th1 polarization 

TLR4 Bacterial LPS H. pylori LPS? 
Macrophages

? 
Cytokine production 

TLR5 
Bacterial 

flagella 

Non-responsive 

to H. pylori 

flagella 

Non-

responsive 
Non-responsive 

TLR8 / 

TLR13 

Single-stranded 

RNA? 
H. pylori RNA? 

Dendritic 

cells? 

 

No Data 

 

TLR9 Bacterial DNA H. pylori DNA 
Dendritic 

cells 
Cytokine production 

RIG-I Viral RNA H. pylori RNA 
Epithelial 

cells 

Interferon-β 

others? 

 

Table 1.2 Role of pathogen recognition molecules (PRMs) in detecting H. pylori. 
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1.4.5 NOD1-dependent recognition of H. pylori 

Viala et al. found that NOD1 was required for NF-B activation by cagPAI
+
 H. pylori. 

Specifically, they demonstrated that NOD1 recognised H. pylori peptidoglycan, which was 

translocated into host epithelial cells via the T4SS. (24). Furthermore, NOD1 knock-out 

mice had increased bacterial loads and diminished pro-inflammatory cytokine and Th1 

immune responses upon H. pylori challenge (24, 161). These data indicated that NOD1 may 

play a critical role in driving innate and adaptive immune responses to infection by cagPAI
+
 

H. pylori strains. In contrast, Hirata et al. reported that in epithelial cells, H. pylori activated 

NF-B independently of either NOD1 or RICK and instead induced signalling via the 

critical TLR adaptor molecule, MyD88 (162). The reason for this discrepancy is unclear, as 

epithelial cell lines are relatively non-responsive to TLR-2 and -4 activation by live H. pylori 

bacteria, due to defective receptor signalling (163). 

 

1.4.6 TLR-dependent recognition of H. pylori 

The ability of TLRs to recognise H. pylori and activate inflammatory pathways in epithelial 

cells is controversial. H. pylori LPS is substantially less endotoxic and immunogenic than 

the LPS molecules of other Gram-negative pathogens (164-167) and studies are conflicted 

over whether it is recognised in gastric epithelial cells by TLR4 (168-172) or 

unconventionally, by TLR2 (173-176). Regardless, H. pylori LPS is a weak activator of 

epithelial signalling and live bacteria are still capable of inducing robust pro-inflammatory 

responses, even in the absence of TLR2 and TLR4 signalling in these cells (24, 140, 151, 

177). 

 

Despite having minimal effects on gastric epithelial cells, some studies have reported that 

H. pylori LPS can be recognised via TLR4 in monocytes and macrophages (169, 172), 

whereas TLR2 is thought to be responsible for macrophage recognition of live H. pylori 

bacteria (172). Indeed, Hp-NAP, which is likely released upon bacterial lysis (113), was 

shown to stimulate TLR2-transfected HEK293 cells (111). Furthermore, the treatment of 

murine splenocyte preparations with Hp-NAP induced robust cytokine responses (178). In 

contrast, Obonyo et al,. reported that in addition to TLR2 and MyD88, TLR4 was in fact 

essential for cytokine responses to H. pylori-infected macrophages (179). Despite the 

element of cell-specificity regarding TLR-dependent responses to H. pylori, MyD88 is 
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undoubtedly a critical mediator of host responses, as knock-out mice had an elevated 

bacterial burden and impaired adaptive immune responses during H. pylori infection (180). 

 

Another key TLR molecule involved in host defence at mucosal surfaces is TLR5, which 

responds to bacterial flagella (131) and is expressed in many gastric epithelial cell lines (163, 

174, 181). H. pylori flagellin, however, fails to induce gastric epithelial responses (174, 181-

182), as it lacks the consensus amino acid motifs that are critical for recognition by TLR5 

(183). Indeed, flagellin-responsive epithelial cell lines are not responsive to purified 

H. pylori flagella (181-182). Furthermore, isogenic H. pylori mutants, lacking FlaA and/or 

FlaB proteins, retained their ability to induce "Interleukin-8" (IL-8) production by gastric 

epithelial cells (181), whereas transfection of a dominant-negative TLR5 receptor into 

epithelial cells only partially diminished epithelial responses to H. pylori (174). As 

mentioned previously, H. pylori flagella mutants are unable to colonise the stomach, 

suggesting that H. pylori may have evolved to express immunologically inert flagella in 

order to efficiently colonise the host without inducing excessive inflammation. Interestingly, 

this characteristic appears to have been conserved across other Helicobacter species and 

members of the Campylobacterales (184) (185)  (182-183). 

 

 

Figure 1.1 TLR and NOD receptor family 
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1.4.7 Signal Transducers and Activators of Transcription (STATs) 

Signal Transducers and Activators of Transcription (STATs) are a family of 7 transcription 

factors that exist latently in the cytoplasm, which can associate with self or other STAT 

proteins upon phosphorylation via reciprocal phosphotyrosine-SRC homology 2 (SH2) 

domain interactions (186). These homo- or hetero-dimers translocate to the nucleus to 

regulate the expression of a wide variety of genes (187). STATs 2, 4 and 6 have limited 

activation stimuli, whereas STATs 1, 3 5a and 5b are responsive to a wider array of signals 

(188). Paradoxically, whilst certain STAT members can exert opposing effects on each 

other, in some instances they can unite as hetero-dimers, imparting an elevated degree of 

complexity and specificity on signalling responses (189-190). 

 

Until now, few studies have investigated the role of STAT proteins during H. pylori 

infection and as such, the specific role of these transcription factors in epithelial responses to 

the pathogen remain unclear. With respect to STAT1, one group reported that H. pylori 

induces STAT1 tyrosine phosphorylation in gastric epithelial cells via OipA (191), whilst 

another study found that H. pylori actually inhibits IFN--induced STAT1 activation and 

subsequent gene expression in a VacA-, CagA- and cagPAI-independent manner (192). A 

similar H. pylori-dependent inhibitory effect on IL-4-induced STAT6 activation in epithelial 

cells was also reported (193). Although no studies to date have investigated the role of 

STAT3 responses during H. pylori infection, a recent report found that transgenic mice with 

hyperactivated STAT3 spontaneously developed gastric tumours (194). The anti-apoptotic 

and pro-proliferative effects of STAT3 and the anti-tumourigenic properties of STAT1 

(190), warrant further investigation into the role of these transcription factors in host 

responses to H. pylori and the development of associated malignancies. 

 

 

1.5   Innate immune responses to H. pylori 

 

1.5.1 Secretion of pro-inflammatory factors 

Studies have consistently shown elevated levels of Interleukin-1(IL, Interleukin-2 (IL-

2), Interleukin-6 (IL-6), IL-8, Growth-related oncogene- (Gro-) and tumour necrosis 
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factor- (TNF-)in the gastric mucosa of H. pylori-infected individuals (195-199). IL-1, IL-

8 and Gro- expression in particular, are generally higher in patients infected with cagPAI
+
 

H. pylori (199-200). Furthermore, cagPAI
+
 H. pylori bacteria have been shown to induce 

epithelial cell secretion of chemokines such as IL-8 (160, 201), Gro-(202), "monocyte 

chemotactic protein-1" (MCP-1) (203) as well as the chemokine, "Regulated upon 

Activation, Normal T cell Expressed and Secreted" (RANTES) (204). Many of these 

chemokines/cytokines have overlapping functions during H. pylori infection, which include 

apoptosis, proliferation, recruitment, activation and differentiation of lymphocytes, 

neutrophils, macrophages and DCs (145).  

 

1.5.2 Antimicrobial molecules 

The expression of a number of host antimicrobial compounds is upregulated in the gastric 

mucosa of H. pylori infected individuals. These include the neutrophil-derived alpha-

defensins 1, 2 and 3 (205-206) and the epithelial-derived peptides, LL37/hCAP18 (207) and 

human  defensins (hDs; (208)). hDs are potent antimicrobial peptides and both hD2 and 

hD3 have been demonstrated to exert potent microbicidal action against H. pylori (209-

211). H. pylori upregulates LL37 (207), hD2 and hD4 expression in a cagPAI-dependent 

manner in gastric epithelial cells (212), whereas, hD3 expression is upregulated 

independently of the cagPAI (212-213). The production of these potent anti-microbial 

peptides may assist the host in controlling H. pylori infection by attacking extracellular 

bacteria that are not easily reached by immune cells. 

 

1.5.3 Infiltration of immune cells 

The interaction of H. pylori with the epithelium results in the activation and rapid 

recruitment of monocytes and neutrophils to the site of infection (164, 196, 214-219). This is 

partially attributed to the direct chemotactic activity of virulence factors, such as urease 

(216) and Hp-NAP (112, 115), which are expressed by all H. pylori isolates. As mentioned 

previously, T4SS effector translocation into gastric epithelial cells by cagPAI
+
 H. pylori 

results in the secretion of chemokines (24, 160, 201) and the further recruitment of immune 

cells. As a result, cagPAI
+
 H. pylori strains are generally associated with more severe 

gastritis than infection with cagPAI
-
 isolates (220). Neutrophils, macrophages and DCs that 
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are recruited to the gastric mucosa perpetuate the inflammatory cycle by sampling antigens 

and secreting additional pro-inflammatory cytokines. It is important to note that 

inflammatory cell infiltration and corresponding gastritis is minimal in H. pylori-infected 

SCID mice (221) and the adoptive transfer of CD4
+
 T-cells is capable of restoring the 

phenotype in these animals (222). These data indicate that the recruitment of inflammatory 

mediators to the site of infection is a largely T-cell mediated event. 

 

1.5.4 Disease-associated polymorphisms 

A number of studies have investigated the contribution of host genetic polymorphisms to the 

development of H. pylori-induced morbidity. Certain pro-inflammatory polymorphisms in 

the Interleukin-1 (IL-1) gene cluster, encoding IL-1, IL-1 and their receptor, IL-1Ra, have 

been demonstrated to influence disease outcome (223). IL-1 polymorphisms were shown to 

be associated with a significantly increased risk of developing precancerous abnormalities 

(224) and intestinal and diffuse-type (non-cardia) gastric cancer in individuals with H. pylori 

infection (224-225). An even stronger correlation was noted if the patient was infected with 

a cagA
+
 or VacA s1/m1 H. pylori strain (226). IL-1 is a potent inhibitor of gastric acid 

secretion (227) and hypochlorhydria is a hallmark of non-cardia gastric cancer (223). Indeed, 

transgenic mice expressing human IL-1 in the stomach were shown to spontaneously 

develop gastritis and carcinomas, an effect that was exacerbated by concomitant 

Helicobacter felis infection (228). Pro-inflammatory polymorphisms in the genes encoding 

TNF-, Interleukin-10 (IL-10) and TLR4 have also all been linked to an elevated risk of 

non-cardia gastric cancer (225, 229-230). In addition, a common polymorphism in the 

CXCL8 (IL-8) gene promoter, which results in enhanced mucosal IL-8 production, has been 

linked to an increased risk of severe gastritis and pre-malignant changes (231). The analysis 

of genetic polymorphisms in inflammatory molecules, which are associated with an elevated 

risk of developing severe disease, will continue to provide novel insights into the roles of 

different factors in host responses to H. pylori infection. 
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1.6   Adaptive Immunity 

 

Infection with H. pylori results in the development of vigorous humoral and cell-mediated 

adaptive immune responses. Nevertheless, in most cases these responses appear to be 

relatively ineffective in eliminating the pathogen from the gastric mucosa (232). Results 

from immunisation studies in mice have revealed that the immune response generated during 

chronic infection differs markedly from responses induced by vaccination (232). This 

indicates that early events in the course of an H. pylori infection may actively skew the 

development of an effective immune response. 

 

As mentioned previously, certain H. pylori virulence factors can either directly or indirectly, 

via the stimulation of epithelial cells, recruit neutrophils, macrophages and "Dendritic Cells" 

(DCs) to the gastric mucosa. Neutrophils and macrophages perpetuate non-specific 

inflammatory responses, whilst DC sampling and process antigens to present to pathogen-

specific lymphocytes. The cytokines secreted by antigen presenting cells during lymphocyte 

priming polarise T-helper (Th) cells into specific functional classes, such as Th1, Th2 and 

Th17, which secrete particular cytokine profiles and have different roles in H. pylori 

infection (232-233). 

1.6.1 T-helper (Th)-1, Th2 and Th17 responses to H. pylori 

"T-helper" (Th)-1 CD4
+
 lymphocytes produce a cytokine profile that includes Interferon-

gamma (IFN-, Interleukin-2 (IL-2) and Interleukin-12 (IL-12) and is associated with cell-

mediated immunity, which is important in the protection against intracellular parasites and 

viral infections (234). Th2 cells produce the cytokines, Interleukin-4 (IL-4), Interleukin-5 

(IL-5) and Interleukin-13 (IL-13) and are associated with antibody-driven humoral immunity 

(234). Early studies investigating the immune responses in H. pylori-infected individuals 

reported a predominately Th1 phenotype, characterised by the gastric infiltration of CD4
+
 T-

helper cells (235-236) and the production of large quantities of IFN-and IL-12 (237-240). 

While there are conflicting reports linking the number of IFN--secreting cells with the 

severity of gastritis (238, 241), infusion of IFN- into mice has been shown to induce pre-

cancerous lesions, even without concomitant H. pylori infection (242). Likewise, pre-

treatment of mice with IL-4 prevented the development of gastritis in mice infected with 

Helicobacter felis (243). Paradoxically, in vivo neutralization of IFN- was shown to 
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alleviate H. felis-associated gastritis in mice, without affecting vaccine-induced protection 

(244) and studies employing IFN-knock-out mice demonstrated that immunised animals 

were capable of inducing a protective immune response to H. pylori infection (240, 245). In 

contrast, however, others have reported that IFN- is indispensable for vaccine-induced 

protection (246). Discrepancies between these findings highlights the complexity of adaptive 

immune responses and the limitations of the Th1/Th2 model, particularly given the 

identification of additional T-helper subsets. Th17 CD4
+
 T-cells are one such example and 

have emerged as important mediators of autoimmune inflammatory disorders (247) and 

immune responses to extracellular bacteria (248). Th17 CD4
+
 cells secrete large amounts of 

IL-17 that can act on a variety of target cells to upregulate the production of pro-

inflammatory molecules (249).  In this regard, studies of mycobacterial infections in IFN- 

knock-out mice have demonstrated a significant increase in the amount Th17 CD4
+
 T-cells 

and associated IL-17 production (250). Likewise, in vivo administration of IFN- to IFN- 

knock-out mice completely abrogated the artificially enhanced IL-17 and Th17 CD4
+
 T-cell 

responses in a model of arthritis (251). While both T-helper subsets are capable of inducing 

potent inflammatory responses, their antagonistic effects offer some insight into the 

perplexing results of numerous H. pylori immunisation studies. While the precise role of 

Th17 CD4
+
 T-cells in host responses to H. pylori is currently unclear, IL-17 cytokine levels 

are elevated during infection (252-253), suggesting that Th1/IFN--driven immunity may not 

be solely responsible for the gastritis and inflammation associated with H. pylori infection. 

 

1.6.3 Regulatory T-cell (T-reg) control of inflammation during H. pylori 

infection 

Another confounding factor influencing disease progression is the failure to successfully 

clear H. pylori infection due to ineffective immune responses. While H. pylori-treated 

Dendritic cells (DCs) stimulate IFN- production by naïve T-cells, prolonged exposure of 

DCs to the bacterium was shown to result in impaired cytokine production and an inability to 

induce sufficient T-cell responses (254). Furthermore, memory T-cells isolated from 

H. pylori-infected patients had impaired proliferation and IFN--secreting potential when re-

challenged with H. pylori (255-256), despite retaining the ability to respond to stimulation 

with other antigens. This impaired T cell function was shown to be mediated by the presence 

of "Regulatory T-cells" (T-regs), the numbers of which are elevated in the gastric mucosa of 
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H. pylori-infected individuals (257-258). These cells indirectly facilitate the persistence of 

H. pylori in the stomach, by suppressing excessive inflammatory responses in an attempt to 

protect the host (256, 258). Indeed, there is a negative correlation between gastritis and 

gastric expression of the T-reg marker, Foxp3 (258-259). Levels of IL-10 and TGF- are 

also elevated in the gastric mucosa during H. pylori infection (260-261) and these cytokines 

are known to be important mediators of T-reg function (262-264). T-regs may be a means by 

which H. pylori establishes an inflammatory equilibrium during persistent infection, thereby 

preventing pathogen clearance and minimising excessive damage to the host. This strategy is 

probably successful, considering that the proportion of infections that result in severe 

disease, such as peptic ulcer and gastric adenocarcinoma, are 15 % and 0.5 %-2 % 

respectively (265). 

 

 

1.6.4 Antibody responses to H. pylori 

From acute infection studies, it has been shown that H. pylori infection elicits a strong 

antibody response in the host, with detectable serum Immunoglobulin (Ig)A and IgM 

antibodies present 2 weeks after infection (266). IgA- and IgM-secreting cells can be found 

in the gastric mucosa (267) and IgA antibodies are detectable in both the gastric mucosa and 

gastric juice (32, 266, 268). The role of H. pylori-specific antibodies in host immunity or 

clearance is questionable, however, as IgA-deficient patients do not experience enhanced 

gastritis or an increased susceptibility to disease (269). Akhiani et al. even found that IgA 

knock-out mice had reduced H. pylori colonisation (270), suggesting that IgA antibodies 

may actually facilitate bacterial persistence, possibly through immune evasion (271-272).  

 

Results from the numerous Helicobacter immunisation studies suggest that cell-mediated, 

rather than humoral immune responses are the most effective in controlling H. pylori 

infection (273). Indeed, both IgA- and antibody- deficient mice achieved the same levels of 

vaccine-induced protective immunity as wild-type animals (274-277). There are, however, 

differences in antibody responses induced by live Helicobacter and those induced by 

immunisation. Interesting comparisons were made in a study analysing the antibody profiles 

of mice infected with H. felis and mice immunised with bacterial sonicate. H. felis infection 

induced the proliferation of large numbers of IgA-secreting cells and associated IgA 

production, which were not seen in immunised animals (278). Instead, immunisation induced 
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the production of IgG production in both the salivary glands and the gastric mucosa, 

indicating a specific localised response that was absent in unimmunised mice (278). These 

results highlight the inability of the host to mount an effective immune response during 

Helicbacter infection and may be one mechanism that enables pathogen persistence. 

 

It is noteworthy that no vaccine to date has achieved sterilising immunity against H. pylori 

and as such, no specific polarised immune response or component can be discounted when 

considering how infection is best controlled. It is also important to note that almost all of the 

vaccination studies to date have been performed in mice of the C57BL/6 background, which 

are more prone to develop a default Th1 response (279) and thus are more likely to rely on 

cell-mediated immunity to fight infection. 

 

 

1.7 Aims of this study 

 

H. pylori rapidly activates host signalling pathways upon interaction with gastric epithelial 

cells. In particular, NOD1-dependent recognition of cagPAI
+
 bacteria is responsible for the 

induction of robust pro-inflammatory responses and profoundly affects the establishment and 

maintenance of adaptive immune responses. Characterisation of how epithelial cells respond 

to H. pylori early in the acute phase of infection and also to the ongoing stimuli of immune 

response during chronic infection may provide insight into how the pathogen is able to 

persist. 

 

In order to ascertain the role of NOD1 and the cagPAI in the activation of different 

inflammatory signalling pathways in epithelial cells, this study employed a number of 

isogenic H. pylori mutants and a specialised gastric epithelial cell line stably expressing 

siRNA to knock-down NOD1. An in vitro time-course co-culture assay was established to 

assess the kinetics of MAPK activation in these cells, focussing on the involvement of 

NOD1 and the cagPAI. Furthermore, we investigated the role of these factors in the 

activation and nuclear translocation of the transcription factors, NF-B and AP-1, in addition 

to cytokine production. 
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Although many studies have evaluated the type of adaptive immune response generated 

during H. pylori infection, there is limited information available on how this organism 

influences epithelial cell responses to ongoing immune stimulation. Therefore, the second 

major aim of this study was to determine the ability of H. pylori to directly activate 

molecules involved in IFN- signalling and to assess the effects of H. pylori on IFN--

stimulated responses in epithelial cells. In vitro co-culture assays were utilised to assess 

whether NOD1-dependent recognition of cagPAI
+
 bacteria could activate such pathways. In 

addition, this study investigated a potential positive feedback mechanism between IFN-- 

and NOD1-dependent responses during H. pylori infection. In this way, the expression 

patterns of various molecules involved in host responses to H. pylori were analysed in 

gastric biopsies from H. pylori-infected and -uninfected patients with different stages of 

gastritis or gastric cancer. 

 

This work describes for the first time, the downstream signalling events initiated by cagPAI
+
 

H. pylori activation of the NOD1 pathway. Furthermore, the work identifies a molecular link 

between NOD1 and IFN-signalling pathways, thereby providing a novel insight into the 

mechanisms that facilitate the persistence of chronic and destructive inflammation during 

H. pylori infection.  
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CHAPTER 2. NOD1 is essential for cagPAI-dependent 

MAPK phosphorylation and AP-1 activation in gastric 

epithelial cells. 

 

2.1 Summary 

 

Infection with cagPAI
+
 H. pylori bacteria results in the rapid initiation of pro-inflammatory 

cascades in gastric epithelial cells and the secretion of a number of cytokines involved in the 

recruitment and modulation of immune cells (145). These potent inflammatory responses are 

known to be induced via the cagPAI-encoded T4SS, which secretes the effectors, CagA and 

peptidoglycan, into the host cell (24-26). The cytosolic pathogen recognition molecule, 

NOD1, was shown to recognise peptidoglycan delivered into the cell via the T4SS, which in 

turn led to the activation of NF-B (24). In that study, however, NF-B activity was reported 

using an artificial reporter assay (162). It was thus unclear whether other signalling 

molecules were involved. 

 

Although the transcription factor, AP-1, is also known to be activated in a cagPAI-dependent 

manner (148-149), no specific mechanism has yet been reported. It was previously reported 

that MAPKs are essential for H. pylori-induced AP-1 activation. Furthermore, both p38 and 

JNK MAPKs were shown to be phosphorylated only by cagPAI
+
 H. pylori bacteria (149, 

153). In contrast, ERK MAPK can be phosphorylated by H. pylori in a number of different 

ways, one of which is via CagA (68, 148, 153, 280) (154). Although the role of CagA in NF-

B and AP-1 activation is contentious, it is generally considered to be dispensable for 

transcription factor activation and cytokine expression in epithelial cells (24, 65, 157-160). 

CagA is, however, known to induce the formation of characteristic host cell hummingbird-

like cytoskeletal rearrangements during in vitro stimulation (56, 281). It was reported that 

phosphorylated ERK (68, 280), in addition to a number of other, as yet unidentified host 

proteins, are required for CagA effects on the cytoskeleton. 

 

The following series of experiments were thus designed to, firstly, examine the role of 

NOD1 in NF-B activation and nuclear translocation. Secondly, we wished to determine 



35 

 

whether NOD1 is required for cagPAI-dependent p38 and JNK MAPK, and ultimately, AP-

1, activation. Finally, the role of NOD1 and MAPKs in the formation of the CagA-dependent 

hummingbird phenotype was also assessed. 
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2.2 H. pylori activates MAPKs and AP-1 in a NOD1-
dependent manner 
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2.3 H. pylori activates β1 Integrin Signalling in Cell Motility 
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2.4 Final Discussion 

 

The findings from this chapter support the hypothesis that NOD1 is essential for cagPAI-

dependent NF-B activation and translocation during H. pylori infection. Furthermore, these 

data provide evidence for the first time that the serine threonine kinase, RICK, is likely to be 

involved in NOD1-dependent responses to H. pylori. This is consistent with the canonical 

model of the NOD1/NF-B signal transduction pathway previously described by other 

groups. According to that model, NOD1 associates with RICK following peptidoglycan 

recognition (124, 143-144). Interestingly, however, a recent study reported that RICK was 

dispensable for NOD1 responses to H. pylori (282). In that study, however, the workers also 

found RICK to not be required for NOD1 signalling to its minimal agonist, iE-DAP, a 

finding that is not consistent with a large body of work in the field. In any case,  RICK was 

recently shown to phosphorylate TAK1 (283), which in turn induces the activation of both 

NF-B and MAPKs (283-284). In this way, TAK1 may be the kinase responsible for 

downstream NOD1-dependent p38 and ERK MAPK activation during H. pylori stimulation. 

 

Intriguingly, the effect of NOD1 knock-down on p38 and ERK phosphorylation was found 

to be transient. Diminished p38 and ERK MAPK phosphorylation was restored to levels seen 

in wild-type cells after a period of time, indicating the T4SS may compensate for the lack of 

NOD1. These findings were supported by another study, which found a direct role for the 

type-IV pilus in the induction of pro-inflammatory signalling cascades, including Src 

kinases, via physical interaction with the host cell (285). In this way, work performed with 

our collaborators identified that H. pylori-induced JNK MAPK activation was mediated via 

the Src kinase (286), which may also explain how the presence of the T4SS was able to 

activate p38 and ERK at later time-points in cells with reduced NOD1. 

 

Another key finding from our work was the demonstration that AP-1 activation was induced 

via NOD1-dependent p38 and ERK MAPK phosphorylation. This is the first demonstration 

of the role of NOD1 in the AP-1 signalling pathway during H. pylori stimulation. 

Furthermore, we found that NOD1-dependent AP-1 activation, in combination with NF-B, 

was essential for maximal cytokine production by epithelial cells in response to the 

pathogen. Interestingly, in vivo studies have reported NF-B activation in the gastric 
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epithelium of H. pylori-infected individuals, which was shown to correlate with IL-8 

production, neutrophil infiltration and gastritis (201, 287-289). Furthermore, AP-1-

dependent gene expression was also found to be elevated in H. pylori-infected patients (290). 

Consistent with these data, a significant increase in ERK phosphorylation was observed in 

gastric biopsies from patients infected with CagA
+
 H. pylori, whereas individuals infected 

with CagA
-
 isolates had no detectable ERK phosphorylation (291). Whether or not these 

effects were directly mediated by CagA or the cagPAI, however, are unclear. Interestingly, 

we found that CagA had a small but significant effect on both ERK and p38 MAPK 

activation at certain time points post-stimulation. While CagA was not required for JNK 

activation at any stage of stimulation, work performed with our collaborators identified that 

both CagA and JNK were essential for H. pylori-induced epithelial scattering and elongation. 

Furthermore, given that NOD1 was dispensable for JNK activation by H. pylori, we found 

that NOD1 was also not involved in the induction of the aforementioned 'hummingbird' 

phenotype. 

 

These data confirm the importance of NOD1 in the rapid induction of pro-inflammatory 

responses of gastric epithelial cells to H. pylori. Furthermore, we have demonstrated for the 

first time the ability of NOD1 to induce MAPK phosphorylation and downstream AP-1 

activation (Figure 2.1). These signalling cascades that are rapidly initiated in the acute phase 

of infection are critical for the recruitment of immune cells to the site of infection and as a 

result, are likely to be important for the development of H. pylori specific immune 

responses. Indeed, our in vitro data suggest that both the cagPAI and NOD1 may be 

important for transcription factor activation in vivo and further studies are warranted to 

verify this. 
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Figure 2.1 NOD1- and cagPAI-dependent induction of MAPK signalling pathways in 

gastric epithelial cells by H. pylori. 
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CHAPTER 3. NOD1 enhances gastric epithelial cell 

responses to IFN- 

 

3.1  Introduction 

 

We have previously shown that in addition to NF-B activation, NOD1 is essential for the 

induction of additional signalling cascades during H. pylori stimulation, which are required 

for maximal pro-inflammatory responses by gastric epithelial cells. These NOD1-dependent 

responses are critical for the recruitment of inflammatory cells to the gastric mucosa and for 

the induction of adaptive immune responses to the pathogen (24, 292-293). In this way, 

NOD1 was shown to be essential for the development of T cell Th1-type antibody responses 

to peptidoglycan adjuvants and H. pylori infection respectively (292). Indeed, H. pylori 

infection rapidly polarises host immune responses to a Th1 phenotype, characterised by the 

infiltration of IFN--producing CD4
+
 T cells (237-238). IFN- has been shown to be 

responsible for much of the pathology associated with H. pylori infection (240, 242, 294) 

and given that cagPAI
+
 positive strains are more often associated with severe disease (30-

38), NOD1-dependent recognition of these organisms is likely to be crucial for 

IFN-dependent inflammatory responses. 

 

Global profiling studies of H. pylori-infected tissues or cell lines revealed the up-regulation 

of IFN--responsive genes or genes involved in IFN--signalling (295-297), suggesting that 

H. pylori infection may augment epithelial cell responsiveness to IFN-. Furthermore, IFN- 

has been shown to upregulate NOD1 expression in intestinal epithelial cells (298), which 

was shown to be mediated via the expression and binding of the “Interferon Regulatory 

Factor 1” (IRF1) to the NOD1 promoter (298). Likewise, NOD1 protein is elevated in gastric 

epithelial cells and the lamina propria of patients infected with H. pylori (299), an effect 

probably mediated by the abundance of IFN- at the site of infection. Whether enhanced 

NOD1 expression sensitises epithelial cells to ongoing H. pylori stimulation is unknown.  
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Figure 3.1 IFN-γ / STAT1 signalling pathway. 
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IFN- signals via the Jak/STAT pathway following ligand binding to multimerised IFN- 

receptor chains ( and ) (300). This process induces the phosphorylation of receptor-

associated Jak1 and Jak2 molecules (301-302), which allows binding and activation of 

STAT1 (303-304). STAT1 homodimers associate via reciprocal SH2 domains and 

translocate to the nucleus and bind specific “Gamma-activated sequences” (GAS) in the 

promoters of a number of genes to induce expression (305). In particular, the IRF1 promoter 

contains a GAS sequence and is strongly upregulated upon IFN- treatment (306) (Figure 

3.1). In the context of H. pylori infection, there is conflicting data regarding the role of 

STAT1 in the induction of gastric epithelial cell responses (191-192). While some 

investigators have reported that H. pylori is capable of inducing STAT1 phosphorylation 

both in vitro and in vivo, others have found that H. pylori actually inhibits IFN--mediated 

activation of this pathway (192) (307).  

 

While both NOD1 and IFN- are known to be crucial mediators of pro-inflammatory 

responses during H. pylori infection, direct cross-talk between these respective pathways has 

yet to be thoroughly investigated, despite a potential regulatory link between both factors. To 

study this, an artificial in vitro co-culture system was employed to re-create a basic model of 

the early stages of infection in gastric epithelial cells. In addition, the expression of various 

genes involved in NOD1- and IFN--dependent host responses to H. pylori were analysed in 

gastric biopsies from infected and uninfected patients with differing degrees of disease 

severity. This series of experiments was designed to determine the ability of H. pylori to 

directly activate components of the IFN- signalling pathway and investigate the possibility 

of a positive feedback loop between NOD1-dependent recognition of cagPAI
+
 H. pylori and 

Th1/IFN- responses in the gastric mucosa. 
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3.2 Materials and Methods 

3.2.1 Cell culture and reagents 

The human gastric epithelial cell lines, MKN28 (308) and AGS (309), as well as AGS cells 

stably expressing shRNA
 
to either the Caspase-activation and Recruitment Domain (CARD) 

of NOD1 (AGS siNOD1) (310)
 
or an irrelevant gene, Enhanced Green Fluorescent Protein, 

EGFP (AGS control), were cultured in RPMI 1640 (Gibco, VIC, Australia) containing 10% 

FCS (Thermo Electron, VIC, Australia). The human embryonic kidney cell line, HEK293, 

was cultured in DMEM (Gibco) containing 10% (v/v) FBS. All cell lines were supplemented 

with 1% (v/v) penicillin-streptomycin (Gibco) and 1% (v/v) Glutamax (Gibco) and grown at 

37°C, with 5% CO2. Additionally, AGS siNOD1 and AGS control cells were supplemented 

with 400
 
µg/mL Geneticin (Gibco) to maintain selection. 

 

3.2.2 Bacterial strains and isogenic mutants 

H. pylori strains 251 (311) and G27 (80) are clinical isolates and the isogenic mutants 251 

∆cagPAI (157), (312), G27 ∆cagA and G27 ∆cagM were constructed by natural 

transformation as described previously (24, 39). Bacteria were
 
routinely cultured on blood 

agar medium (40 g/L Blood Agar Base 2, Oxoid, SA, Australia, 8 % Defibrinated Horse 

Blood, Oxoid; supplemented with Skirrows selective supplement (155 μg/L polymixin B, 

6.25 mg/L vancomycin, 3.125 mg/L trimethoprim, 1.25 mg/L amphotericin B; all from 

Sigma, MO, USA). Isogenic H. pylori mutants were grown on blood agar medium 

supplemented with 10 µg/mL kanamycin, under micro-aerophilic conditions (313). Liquid 

broth cultures were incubated
 
overnight at 37°C with shaking at 125 rpm in 25-cm

3
 tissue 

culture flasks (IWAKI, Japan,) containing 10 mL of brain heart infusion broth (Oxoid) with 

10% (v/v)
 
Newborn Calf Serum (Gibco). 

 

3.2.3 Transient transfection of expression vectors 

AGS, MKN28 and HEK293 cells were seeded in 24-well tissue culture plates at a 

concentration of 1x10
5
 cells/mL and incubated for 18-24 hours. For STAT1 overexpression 

assays, cells were transfected with 100 ng/well of STAT1 plasmid (314) or pCDNA3. The 
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total amount of DNA to be transfected was standardised to 1150 ng/well by the addition of 

pCDNA3 (24). Transfection was achieved using 4 µL polyethyleneimine (PEI) 

(Polysciences, PA, USA) per µg of total DNA. Cells were cultured in a final volume of 1 mL 

complete culture media per well and incubated for 16 hours at 37°C in 5% CO2. All plasmid 

DNA was prepared using the PureYield
TM

 Plasmid Midiprep System (endotoxin free; 

Promega, WI, USA).  

 

3.2.4 Stimulation of epithelial cells with bacteria and/or IFN- 

For transfections, 16 hours after transfection, cells in RPMI or DMEM not supplemented 

with antibiotics, were stimulated with wild-type H. pylori strains 251, G27 and respective 

isogenic mutants. Briefly, overnight H. pylori broths were washed twice in PBS and pelleted 

at 1250 x g for 10 minutes. Bacterial pellets were resuspended in RPMI or DMEM and 

added to AGS, MKN28 or HEK293 cells, respectively, at a multiplicity of infection (MOI) 

of 1:10, a ratio of 1 gastric epithelial cell to 10 bacterial cells.  

 

For IL-8 assays, cell media was replaced with RPMI or DMEM, as appropriate, after 1 hour 

of co-incubation. After a further 3 hours of incubation, cells were stimulated with 20 ng/mL 

IFN-γ (Chemicon, VIC, Australia), and incubated for a further 20 hours.  

 

For Western Blotting analysis of STAT1 phosphorylation in response to co-culture with both 

H. pylori and IFN-γ, MKN28 cells were stimulated with H. pylori strains, as described 

above. After 4 hours of co-culture, 20 ng/mL IFN-γ  was added, and cells incubated for a 

further 2 hours. For assessment of STAT1 phosphorylation in response to H. pylori alone, 

MKN28 cells were stimulated with H. pylori 251 and isogenic mutant strains for 30 or 60 

minutes. 

 

3.2.5 High Content Immunofluorescence Analysis of STAT1 PTyr701 

activation in epithelial cells 

AGS or MKN28 cells were seeded in black clear bottom Corning Costar 96-well plates 

(Corning, NSW, Australia) in 100 μl at 1x10
5 

cells/mL, and incubated for 8 hours at 37
o
C in 

5 % CO2. Media was replaced with serum-free RPMI for 18 hours prior to stimulation. 30 

minutes prior to stimulation, media was replaced with 100 μl per well of Hoescht 
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(Invitrogen) diluted 1:10,000 in RPMI for 30 minutes. Bacterial cultures, prepared as above, 

were diluted to 10
6
 cfu/mL in RPMI. Cell media was replaced with 100 μL per well of the 

bacterial suspension at a final MOI of 1:10, or 20 ng/mL IFN-γ. 2 hours after stimulation, 8 

% formaldehyde in PBS (100 μl) was added directly to wells and incubated for 15 minutes at 

room temperature. After formaldehyde fixation, cells were incubated for 10 minutes at –

20°C with ice-cold 100 % methanol, prior to 3 washes in PBS. Wells were blocked in 100 

μL Blocking Buffer (5 % FCS, 0.03 % Triton-X in PBS) for 30 minutes at room temperature. 

After 3 washes in PBS, cells were stained for 1 hour in 50 μL of rabbit α-P-STAT1 (Tyr701) 

(Santa-Cruz, CA, USA), diluted 1:200 in Antibody Dilution Buffer (1 % Bovine Serum 

Albumin; BSA, 0.03 % Triton-X in PBS), then for 30 minutes in 50 μL of goat-α-rabbit IgG 

conjugated to Alexa Fluor 488 (Invitrogen), diluted 1:500 in Antibody Dilution Buffer. P-

STAT1 (Tyr701) activation in cells was viewed using the Cellomics* ArrayScan VTI HCS 

Reader (Thermo Scientific), capturing at least 1000 cells or 20 fields per well with the 20x 

objective lens. Data was analysed using the Nuclear translocation analysis algorithm. Cells 

with a nuclear to cytoplasmic P-STAT1 staining intensity ratio greater than 1.5 were 

considered to be activated.  

 

3.2.6 Immunoflourescence 

MKN28 cells were seeded onto glass coverslips in 24-well tissue culture plates at 1x10
5 

cells/mL and stimulated with H. pylori 251 (MOI 1:10) or 20 ng/mL IFN-γ for 2 hours. Cells 

were stained as above, and coverslips were viewed using a Leica DMR upright fluorescence 

microscope (Leica) using a 40x objective lens. 

 

3.2.7 Enzyme linked immunosorbent assay (ELISA) 

The levels of IL-8, IP-10 and MIG secreted by AGS, MKN28, and HEK293 cells in the 

culture supernatants were all determined using the respective BD OptEIA
TM

 Human ELISA 

kits (All from BD Biosciences Pharmingen, CA, USA), in accordance with manufacturer’s 

specifications. Reactions were stopped by addition of 0.5 M sulphuric acid, and absorbances 

at 450 nm were measured using the BMG FluoStar Optima, and standard curves were 

constructed to determine cytokine concentrations in test samples. The minimum detection 

limits of the assays were 3.125 pg/mL, 7.8125 pg/mL and 15.625 pg/mL, respectively. 
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3.2.8 Luminex ELISA 

The levels of RANTES, MCP-1, Mip-1α and Mip-1β secreted by MKN28 cells in the culture 

supernatants were determined using the Chemokine Human 10-Plex Panel Luminex® 

Protein Assay (Invitrogen), in accordance with the manufacturer’s instructions.  

 

3.2.9 RNA isolation  

Human gastric biopsies, stored in RNA later were placed in TRIzol reagent (Invitrogen) and 

homogenised on ice using a PRO-200 homogeniser (PRO Scientific, CT, USA). RNA from 

AGS and MKN28 cells that had been grown in 24-well plates (IWAKI) and stimulated with 

H. pylori for 2 or 4 hours, as appropriate, was purified using the Purelink RNA mini kit 

(Invitrogen) in accordance with the manufacturer’s instructions. RNA was eluted in 50 L of 

RNase-free H2O and DNAse treated using Turbo DNA free kit (Ambion,VIC, Australia). 

RNA concentrations and purity were determined using the Qubit flourometer (Invitrogen) 

and visualised using agarose gel electrophoresis.  

 

3.2.10 RT-PCR 

RNA (1 μg) was reverse transcribed using random hexamers (Invitrogen) and the 

SuperScript III reverse transcriptase (Invitrogen), according to the manufacturer’s 

instructions. PCR for cagA was performed using the primers listed in Table 3.1. PCR 

reactions contained 200 µM dNTPs, 300 nM forward and reverse primers, 1 unit Taq 

polymerase, 1.5 mM MgCl2. Cycling conditions consisted of an initial denaturation for 2 

minutes at 95
o
C, followed by 35 cycles of 1 minute at 95

o
C, and 1 minute at 50

o
C, and 1 

minute at 72
o
C, followed by a final extension at 72

o
C for 5 minutes. PCR products were 

visualised using 1 % agarose gel electrophoresis. 

 

3.2.11 Quantitative RT-PCR (qRT-PCR) 

RNA (1 μg) was reverse transcribed using SuperScript III (Invitrogen), according to the 

manufacturer’s instructions. Primers for the genes encoding IRF1 (IRF1), IRF3 (IRF3), β-

actin (ACTB), IFN-γ (IFNG), NOD1 (NOD1), IL-8 (CXCL8), IP-10 (CXCL10) and 18S RNA 

(18S) were designed using the Primer Express
TM

 primer design software (Applied  
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Primer name Primer sequence 5'-3' Tm 

cagA F ATAATGCTAAATTAGACAACTTGAGCGA 54 

cagA R TTAGAATCAACAAACATCACGCCAT 54 

16S F GGAGTACGGTCGCAAGATTAAA 52.9 

16S R CTAGCGGATTCTCTCAATGTCAA 53.4 

IRF1 F CCCTGCCAGATATCGAGGAG 55.8 

IRF1 R CTCGCACAGCTGAGCTGC 54.7 

IRF3 F GAGGAATTTCGGCTCTGCC 53.1 

IRF3 R TCCTTGCTCCGGTCCTCTG 55.3 

IFNG F TGTCGCCAGCTAAAACAGG 56.6 

IFNG R TGGGATGCTCTTCGACCTCGA 56.2 

CXCL10 F CACCTTTCCCATCTTCCAAGGG 56.6 

CXCL10 R AGGATGGCAGTGGAAGTCCATG 56.6 

18S F CGGCTACCACATCCAAGG 62 

18S R GCTGGAATTACCGCGGCT 58 

NOD1 F ACGATGAACTGGCAGAGAGTT 55 

NOD1 R GGGAGTCCCCTTAGCTGTGA 64 

 

Table 3.1 Oligonucleotides used in this study 
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Biosystems, VIC, Australia; Table 3.1). Each reaction mix consisted of 0.5 L of 1 M 

forward and reverse primers (Micromon, VIC, Australia), 5 l SYBR
®

 GREEN PCR Master 

Mix (Applied Biosystems, Warrington, UK) and 4 L cDNA template (diluted 1:50) or 

genomic DNA standards. The optimal amounts of genomic DNA standards were determined 

to be 16 ng, 640 pg and 25.6 pg per reaction. Each reaction was made to a final volume of 10 

L with ultrapure distilled H2O. Reactions were performed using the 7900HT Fast Real-

Time PCR System (Applied Biosystems) using the following conditions: 2 minutes at 50
o
C, 

10 minutes at 95
o
C, followed by 40 cycles of 15 seconds at 95

o
C, and 60

o
C for 1 minute. 

Cycle threshold (Ct) values were calculated as the lowest cycle number producing an 

exponential increase in PCR product amplification. Following PCR, a melting curve analysis 

was performed as follows: 95
o
C for 15 seconds, 60

o
C for 20 seconds, followed by slow 

heating at 0.03
o
C/second up to 95

o
C. The purity of amplicons was determined by 

visualisation of a single peak in the melting curve. No peaks were observed in the samples 

without cDNA or in which reverse transcriptase had not been added. All PCR reactions were 

performed in triplicate in MicroAmp® Optical 384-Well Reaction Plates (Applied 

Biosystems). To ensure standardisation of amplification efficiencies for all primer sets, 

standard curves were constructed by plotting average Ct values against the logarithm of the 

concentrations of the genomic DNA standards. cDNA concentrations of the target genes for 

each test sample were determined from the standard curve and normalised to expression of 

ACTB or 18S RNA, as appropriate. 

 

3.2.12 Western Blotting 

MKN28 cells were incubated with H. pylori or IFN-γ for the appropriate times. Cells were 

lysed by the addition of 100 µL boiling Laemmli buffer and subjected to 10 % (v/v) SDS-

PAGE. Proteins were transferred to nitrocellulose membrane using the iBlot Dry Blotting 

System (Invitrogen), followed by membrane blocking using 5% (w/v) skim milk in TBS 

(Tris Buffered Saline: 2.42 g/L Tris, 8 g/L NaCl, pH to 7.6). Immunodetection of 

phosphorylated or total STAT1 was performed by incubating membranes with respective 

anti-STAT1 primary antibodies (P-STAT1 (Tyr701); P-STAT1 (Ser727); Total STAT1; Cell 

Signaling Technology) at a dilution of 1:1000 in 5% Bovine Serum Albumin (Roche, IN, 

USA), prepared in TBST. Secondary Goat α-Rabbit (Chemicon, Millipore) antibody was 

used at a dilution of 1:1000 in 5% skim milk in TBST (TBS with 0.01 % Tween 20). 
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Westerns were developed using ECL detection reagent (GE Healthcare) and exposed to 

Super RX film (FUJI). 

 

3.2.13 Gastric Biopsies and Histological Grading 

A total of 20 patients presenting with a wide range of gastric symptoms attending the 

Monash Medical Centre Gastrointestinal and Liver Unit (Investigators: Associate Professor 

William Sievert and Associate Professor Brendan Jenkins; Clayton, Australia) were recruited 

for this study. Informed consent was obtained prior to enrolment and the local ethics 

committee approved the study. Findings in endoscopy and results of histopathological 

examination of gastric biopsies, classified according to the Sydney classification (315-316), 

were recorded by Dr. Prithi Bhathal. A total of 6 patients presented with normal gastric 

histology, 8 patients presented with moderate gastritis and 6 patients, with severe gastritis. A 

total of 11 patients were positive for H. pylori, as detected by qRT-PCR for 16S RNA. Of 

these, 5 patients were cagA positive, as determined by PCR for cagA. Of the 12 gastric 

cancer samples analysed in this study, the majority were distal intestinal-type 

adenocarcinoma. Three adenocarcinoma patients were positive for H. pylori, of which one 

was infected with a cagA
+
 strain. 

 

3.2.14 Statistical analysis 

The Student’s t test was used for numerical data, whereas the Mann-Whitney test was used 

for categorical data as appropriate. p values of < 0.05 were considered statistically 

significant. 
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3.3 Results 

3.3.1 IFN--dependent responses in different gastric epithelial cell lines. 

 

The first aim of this work was to assess the responses of different gastric epithelial cell lines 

to H. pylori stimulation both with and without combined IFN- treatment. Preliminary co-

culture experiments were performed to assess the ability of H. pylori to induce IFN- 

signalling pathways and/or to augment pro-inflammatory responses to IFN- treatment. In 

addition. AGS siNOD1 cells stably expressing shRNA to knock-down NOD1 mRNA were 

employed to determine whether these responses were dependent on NOD1 and the cagPAI. 

In addition, the gastric epithelial cell line MKN28 was also used to further compare 

responses between gastric cell lines. Briefly, cells were stimulated for 1 hour with wild-type 

H. pylori strain 251 and IFN- was added 4 hours later, followed by a further 20 hours 

incubation. At this point, supernatants were collected and analysed by ELISA to measure the 

production of pro-inflammatory chemokines. This protocol was designed to artificially 

mimic an in vivo infection, the rationale being that infection of the gastric epithelium with 

H. pylori results in the recruitment of IFN--secreting monocytic cells. 

 

As expected, AGS siNOD1 cells stimulated with wild-type bacteria secreted significantly 

less IL-8 than AGS control cells (Figure 3.2 a), due to their impaired ability of NOD1-

induced NF-B activation (310, 317). Both AGS control and siNOD1 cells that were co-

stimulated with both bacteria and IFN- had enhanced IL-8 production as compared to cells 

treated with either bacteria or IFN- alone (Figure 3.2 a, p<0.05, p<0.0001, and p<0.0001 

for AGS Control, AGS siNOD1 and MKN28 cells, respectively). Likewise, MKN28 cells 

stimulated with bacteria and IFN- had significantly elevated IL-8 production, which was 5-

fold higher in cells stimulated with H. pylori alone (Figure 3.2 a). IFN- treatment alone 

failed to stimulate IL-8 production above basal levels in any of the cell lines tested.
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b) IP-10 ELISA 
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Figure 3.2 Gastric epithelial cell lines respond similarly to stimulation with H. pylori 

and IFN-. 

Gastric epithelial cell lines were treated or not with wild-type 251 H. pylori for 1 hour. Cells 

were then washed and replenished with fresh media and incubated for a further 3 hours, 

followed by the addition of IFN- (20 ng/mL). Culture supernatants were collected a total of 

24 hours after initial stimulation and analysed by ELISA to determine the secretion of a) IL-

8 or b) IP-10. Error bars indicate standard deviation across samples analysed in triplicate. 

Results are representative of at least 3 biological replicates. NS: not significant; * p<0.05; ** 

p<0.01; *** p<0.0001, as analysed by unpaired t-test. 
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We next assessed the ability of these cells to produce "interferon-inducible protein 10" (IP-

10) in response to H. pylori and/or IFN- stimulation. IP-10 is a potent chemoattractant for 

monocytes and activated T cells (318) and is therefore likely to play an important role in the 

recruitment of immune cells to the gastric mucosa during H. pylori infection. Interestingly, 

secretion of IP-10 did not rise above basal levels in any of the cell lines following 

stimulation with either bacteria or IFN- alone (Figure 3.2 b). In contrast, combined 

stimulation with H. pylori and IFN- resulted in IP-10 production in all cell lines (Figure 3.2 

b), indicating that multiple stimuli are required for the expression of this chemokine in 

gastric epithelial cells. This finding is consistent with that of a previous report  (307). In 

comparison to MKN28 cells, however, AGS control and siNOD1 cells secreted much less 

IP-10 when co-stimulated with bacteria and IFN- (Figure 3.2 b, p<0.0001), suggesting that 

AGS control and siNOD1 cells may be less responsive to IFN- stimulation. 

 

3.3.2 IFN- augments epithelial cytokine responses in a cagPAI-

dependent manner. 

 

As MKN28 cells were shown to induce robust chemokine responses to IFN- and H. pylori 

co-stimulation, the following series of experiments in this cell line were designed to examine 

the role of the cagPAI in IFN- signalling responses. Both wild-type and isogenic cagA 

mutant H. pylori bacteria were equally able to stimulate the production of large quantities of 

IL-8, whilst the isogenic cagM mutant, which lacks a functional T4SS (21, 157), was 

unable to do so (Figure 3.3 a). These results confirm the requirement of the cagPAI and 

T4SS for cytokine production by epithelial cells, whilst demonstrating that CagA is not 

required for these responses. Co-stimulation of cells with H. pylori and IFN- resulted in 

significant increases in IL-8 production, although this effect too was dependent on the 

cagPAI, as combined stimulation of cells with H. pylori cagM and IFN- failed to induce 

IL-8 production (Figure 3.3 a). 
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Figure 3.3 H. pylori enhances chemokine responsiveness of MKN28 cells to IFN-γ in a 

cagPAI-dependent manner. 

 

MKN28 cells were treated or not with wild-type 251 H. pylori or isogenic ΔcagA or ΔcagM 

mutants for 1 hour. Cell media was then replaced with fresh media and incubated for a 

further 3 hours, prior to the addition of IFN- (20 ng/mL). Culture supernatants were 

collected a total of 24 hours after initial stimulation and analysed by ELISA to determine the 

secretion of a) IL-8 or b) IP-10. Error bars indicate standard deviation across samples 

analysed in triplicate. Results are representative of at least 3 biological experiments. ***; 

p<0.0001, as determined by unpaired t-test. 
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Figure 3.4 H. pylori-induced enhancement of MKN28 cell chemokine responses to 

IFN-γ are not strain specific. 

 

MKN28 cells were treated or not with either wild-type 251 or G27 H. pylori, or isogenic 

ΔcagA or ΔcagM mutants on either genetic background for 1 hour. Cell media was then 

replaced with fresh media and incubated for a further 3 hours, prior to the addition of IFN- 

(20 ng/mL). Culture supernatants were collected a total of 24 hours after initial stimulation 

and analysed by ELISA to determine the secretion of a) IP-10 or b) MIG. Error bars indicate 

standard deviation across samples analysed in triplicate. Results are representative of at least 

3 biological experiments. ***; p<0.0001, as determined by unpaired t-test. 

 



94 

 

As observed in the previous experiment, H. pylori infection alone failed to induce detectable 

IP-10 production in all cell lines tested, regardless of the cagPAI status of the bacteria, 

which was the case with IFN- treatment alone (Figure 3.3 b). Whilst combined H. pylori 

and IFN- treatment induced IP-10 production, this effect occurred in the presence of 

bacteria with a functional cagPAI, indicating that the activation of cagPAI-dependent 

signalling pathways is required to facilitate the IFN--dependent expression of pro-

inflammatory molecules, such as IP-10. A separate finding of interest was that cells co-

stimulated with IFN- and the cagA H. pylori mutant secreted significantly more IP-10 than 

cells stimulated with IFN- and wild-type bacteria (Figure 3.3 b), although the reasons for 

this are unclear. 

 

To further confirm the findings above, we performed additional experiments with another set 

of H. pylori parental and isogenic mutant strains. Furthermore, we measured production of 

another IFN--inducible cytokine, "Monocyte Interferon-gamma-inducible protein" (MIG), 

which also has chemotactic activity for lymphocytes (319). The same cytokine secretion 

profile was observed for both IP-10 and MIG in cells stimulated with H. pylori strain 251 

and strain G27, with respect to the requirement of the cagPAI (Figure 3.4 a, b). In addition, 

IFN- treatment alone failed to stimulate MIG production (Figure 3.4 b), indicating that this 

cytokine is induced in very much the same way as IP-10 in these cells. In agreement with the 

results obtained using H. pylori strain 251, the G27 cagA mutant induced significantly 

more IP-10 and MIG production than the corresponding wild-type strain (Figure 3.4, 

p<0.0001), showing that this too is not a H. pylori strain-specific response.  

 

Supernatants from MKN28 cells co-stimulated with H. pylori 251 and IFN- were also 

analysed using a multiplex assay to detect the secretion of chemokines: Eotaxin, Gro-, 

MCP-1, MCP-2, MCP-3, Mip-1, Mip-1 and RANTES (Figure 3.5). Some of these 

chemokines are reportedly upregulated by cagPAI
+
 H. pylori bacteria [Gro- (200, 202, 

320), MCP-1 (203), RANTES (204)].  Interestingly, stimulation of cells with H. pylori alone 

failed to induce the production of detectable quantities of any of the chemokines 



95 

 

 



96 

 

NS

251 W
T

cagA



251 
cagM



251 

0

100

200

300
No Treatment

IFN-

pg
/m

L

NS

251 W
T

cagA



251 
cagM



251 

0

10

20

30

40

50
No Treatment

IFN-

pg
/m

L

NS

251 W
T

cagA



251 
cagM



251 

0

10

20

30

IFN-

No Treatment

pg
/m

L

NS

251 W
T

cagA



251 
cagM



251 

0

5

10

15

20
No Treatment

IFN-

pg
/m

L

a) RANTES Production                 b) MCP-1 Production 

 

 

 

 

 

 

 

  

 

 

 

  

 

 

 

 

 

c) Mip-1α Production                 d) Mip1-β Production 

 

 

 

 

 

 



97 

 

 

 

 

 

 

 

 

Figure 3.5 H. pylori and IFN-γ co-stimulation induce chemokine secretion in MKN28 cells in a cagPAI-dependent manner. 

 

MKN28 cells were treated or not with wild-type 251 H. pylori or isogenic ΔcagA or ΔcagM mutants for 1 hour. Cell media was then replaced 

with fresh media and incubated for a further 3 hours, prior to the addition of IFN- (20 ng/mL). Culture supernatants were collected a total of 24 

hours after initial stimulation and analysed by Luminex Multiplex ELISA to determine the secretion of a) RANTES, b) MCP-1, c) Mip-1α, or d) 

Mip-1β. Error bars indicate standard deviation across triplicate biological samples from independent experiments. 
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tested (Figure 3.5 a-d). In contrast, co-stimulation of cells with IFN- and cagPAI
+
 bacteria 

induced RANTES, MCP-1, Mip-1 and Mip-1production (Figure 3.5 a-d). Co-stimulation 

of cells with IFN- and H. pylori cagM mutant was able to induce the very modest 

production of RANTES and MCP-1 (Figure 3.5 a, b). As observed with IP-10 and MIG in 

previous experiments, IFN--treated cells co-stimulated with the H. pylori cagA mutant 

produced greater quantities of chemokines than the cells co-stimulated with wild-type 

bacteria, although these differences did not achieve statistical significance. There was no 

detectable levels of Eotaxin, Gro-, MCP-2 or MCP-3 in the supernatants of MKN28 cells, 

stimulated with either H. pylori 251 or G27 strains. Taken together, these findings indicate 

that stimulation of MKN28 epithelial cells with H. pylori alone is insufficient to induce the 

secretion of numerous pro-inflammatory cytokines, suggesting that their expression in 

epithelial cells during infection may be delayed and dependent on additional stimuli, such as 

the presence of IFN-. 

 

3.3.3 STAT1 over-expression augments epithelial cell responses to 

H. pylori. 

 

IFN- induces the phosphorylation and nuclear translocation of STAT1 dimers, which 

directly bind to the promoters of a number of pro-inflammatory genes (305, 321). Given the 

ability of IFN- treatment to enhance epithelial responses to H. pylori stimulation, the 

following series of experiments were designed to examine whether STAT1 per se was 

sufficient to directly mediate these effects. For these experiments, we used an artificial 

system to over-express STAT1 in a number of different epithelial cell lines (AGS, MKN28, 

HEK293), followed by stimulation with H. pylori. IL-8 production was significantly 

upregulated in wild-type H. pylori-stimulated MKN28 cells over-expressing STAT1 as 

compared to stimulated cells that were transfected with the control plasmid (Figure 3.6 a, 

p<0.0001). This effect was a cagPAI-dependent event, as cells infected with H. pylori 

mutant bacteria lacking the entire cagPAI were unable to induce substantial cytokine 

production, nor was STAT1 over-expression able to enhance production (Figure 3.6 a). 

Similar results were observed with respect to IP-10 production, although responses were 

relatively low, given that cells were not co-stimulated with IFN- (Figure 3.6 b). 
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Figure 3.6 STAT1 over-expression enhances chemokine secretion in response to H. pylori in gastric epithelial cells. 

 

MKN28 (a-b),  AGS (c), or HEK293 (d) cells were transfected with either pCDNA3 or STAT1-expression constructs for 18 hours 

prior to stimulation with wild-type 251 H. pylori or isogenic ΔcagPAI mutants for 1 hour. Cell media was then replaced with fresh 

media and further incubated. Culture supernatants were collected a total of 24 hours after initial stimulation and analysed by ELISA to 

determine the secretion of a, c-d) IL-8 or b) IP-10. Error bars indicate standard deviation across samples analysed in triplicate. Results 

are representative of at least 3 biological replicates. *** p<0.0001, as determined by unpaired t-test. 
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The results from preliminary STAT1 over-expression experiments using AGS and 

HEK293 epithelials also supported the findings from MKN28 cells (Figure 3.6 c, d). 

These results confirm that STAT1, a key transcription factor induced by IFN-, is capable 

of synergising with H. pylori-induced signalling pathways to enhance IL-8, and to some 

extent, IP-10 production by gastric epithelial cells. Tyrosine phosphorylated STAT1 is 

capable of inducing the expression of IRF1 (306), which in turn has been shown to bind 

to the NOD1 promoter and upregulate its expression (298). In this way, STAT1 over-

expression may increase the total levels of NOD1 in these cells and make them more 

responsive to cagPAI
+
 bacteria. 

 

3.3.4 cagPAI+ H. pylori bacteria enhance IFN--induced STAT1 

phosphorylation. 

 

The results thus far have demonstrated that IFN- treatment synergises with cagPAI
+
 

H. pylori bacteria to upregulate production of pro-inflammatory cytokines by epithelial 

cells. In addition, the over-expression of STAT1 alone was shown to be capable of 

mediating cytokine secretion. A critical event in the downstream activation of pro-

inflammatory responses induced by IFN- is the tyrosine phosphorylation of STAT1 

(321). Considering that IFN- treatment and STAT1 over-expression enhances epithelial 

responses to cagPAI
+
 H. pylori, but not to bacteria lacking a functional T4SS, it was 

hypothesised that these effects may have occurred via H. pylori-dependent STAT1 

tyrosine phosphorylation. To investigate this, MKN28 cells were cocultured with 

H. pylori and IFN-Whole cell lysates were then analysed by immunoblot to detect 

tyrosine phosphorylation of STAT1. As a positive control, IFN-treatment alone was 

shown to rapidly induce the phosphorylation of the STAT1 tyrosine 701 residue 

(Tyr701). This effect was drastically enhanced in cells that had been co-stimulated with 

cagPAI
+
 H. pylori (Figure 3.7). STAT1 phosphorylation in these cells was observed 6 

hours after the initial H. pylori infection and 2 hours after the addition of IFN-. Despite 

an increase in phosphorylation levels, however, the levels of total STAT1 protein 

remained unchanged  
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Figure 3.7 H. pylori augments IFN-γ-dependent Tyr701 STAT1 phosphorylation in a 

cagPAI-dependent manner in MKN28 cells. 

MKN28 cells were stimulated or not with H. pylori 251 wild-type or isogenic ΔcagA or 

ΔcagM strains for 4 h. After 4 hours, media was replaced and cells were stimulated or not 

with 20 ng/mL IFN-γ for a further 2 hours. Cells were lysed in 100 µL boiling Laemmli 

buffer and subjected to SDS-PAGE and Western Blotting analysis using  P-STAT1 

(Tyr701) and Total STAT1 antibodies. 
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(Figure 3.7). In addition, there was a small increase in IFN--induced STAT1 

phosphorylation in cells infected with the H. pylori cagM mutant, indicating that while 

the cagPAI is primarily responsible for the increase, other non-cagPAI-associated 

H. pylori factors may have a minor effect. Intriguingly, cells stimulated only with 

H. pylori displayed no STAT1 Tyr701 phosphorylation at this time-point, regardless of 

the cagPAI status (Figure 3.7). 

 

3.3.5 H. pylori induces STAT1 serine 727 phosphorylation, but not 

tyrosine 701 phosphorylation, in a cagPAI-dependent manner. 

 

A previous study reported that H. pylori is capable of inducing STAT1 Tyr701 

phosphorylation in MKN45 gastric epithelial cells, which peaked 2 hours after 

stimulation (191). Using MKN28 cells, we were unable to demonstrate STAT1 tyrosine 

phosphorylation 6 hours after stimulation with H. pylori alone (Figure 3.7). Therefore, a 

co-culture time-course was performed to observe the kinetics of STAT1 phosphorylation, 

if any, in the earlier stages of H. pylori stimulation. As expected, IFN- rapidly induced 

STAT1 Tyr701 and serine 727 (Ser727) phosphorylation within 30 minutes of treatment 

(Figure 3.8). Serine phosphorylation is essential for the complete functionality of tyrosine 

phosphorylated STAT1 (322). While the Tyr701 residue is critical for the dimerisation 

and nuclear translocation of STAT1, Ser727 phosphorylation is required to mediate the 

maximal transcriptional potential of IFN- (322). In contrast to IFN- treatment, H. pylori 

stimulation failed to induce STAT1 tyrosine phosphorylation at either 30 or 60 minutes 

(Figure 3.8), nor at any later time points tested post H. pylori stimulation (data not 

shown). Similar results were obtained when using H. pylori strain G27 (data not shown). 

Intriguingly, while all strains and corresponding mutants were unable to phosphorylate 

the Tyr701 residue, STAT1 Ser727 phosphorylation was induced by cagPAI
+
 H. pylori 

within 30 minutes of stimulation. This activity peaked at 60 minutes post stimulation 

(Figure 3.8). 
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Figure 3.8 H. pylori induces STAT1 Ser727, but not Tyr701, phosphorylation in a 

cagPAI-dependent manner in MKN28 cells. 

MKN28 cells were stimulated or not with H. pylori 251 wild-type or isogenic ∆cagA or 

∆cagM strains for 30 or 60 minutes. As a positive control, cells were also stimulated for 

30 minutes with 20 ng/mL IFN-γ. Cells were lysed in 100 µL boiling Laemmli buffer and 

subjected to SDS-PAGE and Western Blotting analysis using P-STAT1 (Tyr701), P-

STAT1 (Ser727)and Total STAT1 antibodies. 
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To further confirm that H. pylori alone was not capable of inducing STAT1 Tyr701 

phosphorylation, we employed immunofluorescence techniques in an attempt to directly 

visualise STAT1 tyrosine phosphorylation in gastric epithelial cells stimulated with 

H. pylori and IFN-. In agreement with the data obtained from immunoblotting analysis, 

H. pylori-stimulated cells showed no visible increase in Tyr701 phosphorylation at 2 

hours after stimulation, as compared to IFN--treated cells (Figure 3.9 a). High content 

immunofluorescence was also used to evaluate more subtle phosphorylation changes in 

H. pylori-stimulated cells. Specifically, the fluorescence intensity of cytoplasmic and 

nuclear localised phosphorylated STAT1, if any, was calculated numerically on a cell to 

cell basis, enabling the detection of both STAT1 phosphorylation and its nuclear 

translocation. IFN--treated cells displayed a high nuclear to cytoplasmic intensity ratio 

as compared to non-stimulated cells 2 hours after stimulation, indicating Tyr701 

phosphorylated STAT1 localisation to the nucleus of IFN--treated cells (Figure 3.9 b). 

In agreement with previous experiments, however, H. pylori infection failed to induce the 

nuclear translocation (or activation) of Tyr701-phosphorylated STAT1. Taken together, 

these data suggest that although H. pylori does not induce STAT1 Tyr701 

phosphorylation, the bacterium is capable of enhancing the IFN--induced 

phosphorylation of this residue. While the precise mechanism(s) through which this 

occurs is(are) unclear, we show that this process is dependent on the cagPAI. 

Furthermore, co-culture of cells with cagPAI
+
 H. pylori bacteria induced rapid STAT1 

Ser727 phosphorylation, which may be involved in a previously uncharacterised 

signalling pathway in H. pylori-stimulated gastric epithelial cells. 

 

3.3.6 H. pylori induces IRF1 transcription in a cagPAI- dependent 

manner. 

 

While it is clear that cagPAI
+
 H. pylori bacteria can enhance the pro-inflammatory 

responses of epithelial cells to IFN-, a distinct mechanism of action remains elusive. In 

particular, the expression of many IFN-responsive genes were found to be induced only 

upon co-stimulation with IFN- and cagPAI
+
 bacteria. IFN- treatment upregulates
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Figure 3.9 H. pylori does not induce STAT1 Tyr701 phosphorylation in MKN28 

cells. 

a) MKN28 cells, on glass coverslips, were stimulated with H. pylori 251 or 20 ng/mL 

IFN-γ for 2 hours. Phosphorylated STAT1 was detected using rabbit P-STAT1 (Tyr701) 

antibodies and secondary anti-rabbit Alexa Fluor 488 antibodies. Cells were viewed using 

a 40x objective lens. b) MKN28 cells, seeded in 96-well clear bottom plates, were 

stimulated for 1 hour with IFN-γ or H. pylori 251 wild-type or isogenic ΔcagA or ΔcagM 

mutants. Cell nuclei were stained with Hoescht and STAT1 (P-Tyr701) was stained using 

rabbit P-STAT1 (Tyr701) antibodies and secondary anti-rabbit Alexa Fluor 488 

antibodies. Images were collected using the Cellomics* ArrayScan VTI HCS Reader, and 

analysed using the Nuclear Translocation algorithm. Nuclear to cytoplasmic fluorescence 

intensity ratios greater than 1.5 were considered high. 
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expression of the transcription factor, IRF1, via the binding of phosphorylated STAT1 to 

specific "gamma-activated sequences" (GAS) elements in the IRF1 promoter (pine, 

1994). NF-B has also been shown to induce IRF1 expression (323-324) and given that 

cagPAI
+
 H. pylori bacteria are potent activators of NF-B, the ability of H. pylori to 

induce IRF1 transcription was investigated. To examine H. pylori induced IRF1 

expression, quantitative real-time PCR analysis (qRT-PCR) was performed on cDNA 

prepared from MKN28 cells co-cultured with H. pylori for varying periods of time. 

Indeed, both wild-type and cagA mutant H. pylori strongly upregulated IRF1 

transcription within 2 hours of stimulation, an effect not seen in cells stimulated with 

H. pylori cagM mutants (Figure 3.10 a). As was the case for the production of IP-10, 

MIG and various other chemokines, cagA H. pylori mutants induced significantly more 

IRF1 transcription than wild-type bacteria at 2 hours post-stimulation (Figure 3.10 a, 

p<0.05). This difference was reversed at 4 hours post-stimulation, with wild-type bacteria 

inducing slightly higher levels of IRF1 expression than cagA mutants, although the 

trend did not reach significance (Figure 3.10 b). As a control, we also analysed the 

transcription of another IRF family member, IRF3, in order to determine if this is a 

specific induction of IRF1 or of all IRF family members. While IRF3 has been reported 

to be induced following stimulation of certain TLRs (325), its expression was not induced 

by H. pylori at 2 hours (Figure 3.10 c), nor at later time-points (data not shown). 

 

3.3.7 H. pylori induces IRF1 expression in a cagPAI- and NOD1-

dependent manner. 

 

From the data presented above, we have shown that the cagPAI is essential for H. pylori-

induced IRF1 expression, which concurs with a previous study (191). Given that NOD1 

is a crucial mediator of cagPAI-dependent epithelial signalling, we next investigated the 

role of NOD1 in H. pylori-induced IRF1 expression using AGS siNOD1 cells stably 

expressing shRNA directed against NOD1. As observed in MKN28 cells, both wild-type 

and cagA mutant H. pylori induced IRF1 expression within 2 hours of stimulation 

(Figure 3.11), although these levels were more modest than those induced in MKN28
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Figure 3.10 H. pylori induces cagPAI-dependent IRF1, but not IRF3, expression in MKN28 cells. 

a-b) IRF1 mRNA expression in MKN28 cells in response to stimulation for a) 2 hours or b) 4 hours with parental H. pylori 251 or 

isogenic ΔcagA or ΔcagM mutant strains was assessed by qRT-PCR. c) IRF3 mRNA expression in MKN28 cells in response to 

stimulation for 2 hours with parental H. pylori 251 or isogenic ΔcagA or ΔcagM mutant strains was assessed by qRT-PCR.  As a 

control (NS), cells were left untreated. Target gene expression was normalised to ACTB expression. Error bars indicate SEM 

determinations of 3 separate experiments performed in triplicate. * p<0.05; NS: not significant, as determined by the Mann-Whitney 

test. 
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Figure 3.11 H. pylori induces IRF1 expression in AGS cells in a NOD1- and T4SS-

dependent manner. 

IRF1 mRNA expression in AGS control and AGS siNOD1 cells in response to 

stimulation for 2 hours with parental H. pylori 251 or isogenic ΔcagA or ΔcagM mutant 

strains was assessed by qRT-PCR. As a negative control (NS), cells were left untreated. 

As a positive control, cells were stimulated with 20 ng/mL IFN-γ. Target gene expression 

was normalised to ACTB expression. Error bars indicate SEM determinations of 3 

separate experiments performed in triplicate. * p<0.05, as determined by the Mann-

Whitney test. 
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cells (Figure 3.10). Expression was again higher in H. pylori cagA-stimulated cells as 

compared to those stimulated with wild-type bacteria, although this trend did not reach 

significance (Figure 3.11, p=0.0571). Importantly, all IRF1 transcriptional responses 

were abolished in H. pylori-stimulated AGS siNOD1 cells, regardless of the cagPAI 

status of bacteria (Figure 3.11). In addition, corresponding IL-8 production in the AGS 

siNOD1 cells was significantly reduced as compared to the AGS control cells (data not 

shown), confirming that NOD1 levels were in fact reduced. Furthermore, these data 

demonstrate that NOD1, in addition to the cagPAI, is critical for the induction of 

H. pylori-induced IRF1 expression in gastric epithelial cells. 

 

3.3.8 IFNG, IRF1, NOD1 and chemokine expression is upregulated in 

human gastric biopsies during H. pylori infection and correlates with 

disease severity. 

 

We and others have previously demonstrated the importance of NOD1-dependent 

recognition of cagPAI
+
 H. pylori for the induction of pro-inflammatory responses in 

gastric epithelial cells (24, 310, 317). The data from this chapter also provides evidence 

for NOD1-dependent IRF1 expression and the requirement for the cagPAI in augmented 

responses to IFN-. IFN- has been shown to upregulate NOD1 expression via IRF1 

(298) and previous studies have reported that all three factors are critical for the 

development of gastritis and Th1-type adaptive immune responses during H. pylori 

infection (24, 161, 235-236). Therefore, we examined the existence of a possible positive 

feedback mechanism between these factors, chemokine production and gastritis in vivo. 

Gastric biopsies were taken from both the antrum and body of the stomach from 20 

patients and assessed by histology, with the degree of gastritis graded as being normal (6 

samples), moderate (8 samples) or severe (6 samples) (Table 3.2). Furthermore, biopsies 

were collected from 12 patients with antral stomach tumours, sampling both tumour and 

non-tumour tissue for paired analysis. RNA was extracted from the biopsies and analysed 

for the expression of genes involved in host responses to H. pylori. Furthermore, 

quantitative real-time PCR detection of H. pylori 16S RNA and standard PCR detection 
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Patient 
Disease 

Pathology 

H. pylori 

status 

cagA 

status 

Mononuclear 

Infiltration 

Neutrophil 

Infiltration 
Atrophy 

Intestinal 

Metaplasia 

1 Normal - NA 0 0 0 0 

2 Normal - NA 0 0 1 0 

3 Normal - NA 1 0 0 0 

4 Normal - NA 0 0 0 0 

5 Normal - NA 0 0 0 0 

6 Normal - NA 0 0 0 0 

7 Moderate - NA 2 0 0 0 

8 Moderate + - 2 0 2 0 

9 Moderate - NA 2 0 2 2 

10 Moderate + - 2 0 2 0 

11 Moderate + + 2 1 1 0 

12 Moderate + - 2 0 1 0 

13 Moderate - NA 2 1 1 0 

14 Moderate + + 2 1 2 2 

15 Severe + - 3 2 3 1 

16 Severe + - 2 2 2 1 

17 Severe + + 3 2 2 0 

18 Severe + + 2 1 2 2 

19 Severe + + 2 3 1 0 

20 Severe + - 2 2 0 0 

 

 

 

Table 3.2 Disease Pathology and H. pylori status of antral gastric biopsy specimens. 

 

Disease pathology was graded as moderate and severe using a revised version of the 

Sydney System. Samples that were H.pylori-negative with no evidence of lesions were 

considered normal. H. pylori status was confirmed using real-time PCR to detect the 

presence of pathogen-specific 16S RNA. In H. pylori-positive samples, the presence of 

cagA was determined using standard PCR to detect the 5` conserved region of the cagA 

gene.
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of the cagA gene amongst these isolates was used to determine the infection status of 

each individual (Table 3.2). In this way, the relative contributions of cagPAI- and non-

cagPAI-encoded factors in the regulation of host pro-inflammatory gene expression could 

be evaluated in vivo. 

 

Reports in the literature have demonstrated that H. pylori infection induces potent Th1 

immune responses, characterised by the production of large quantities of IFN-γ (235-

236). Although cagPAI
-
 H. pylori strains too were shown to be capable of inducing this 

type of response, they appeared to do so less effectively (199, 326). Indeed, while 

H. pylori-infected patients analysed in this study tended to express more IFNG, there 

were no significant differences in the IFNG levels induced by CagA
+
 and CagA

-
 isolates 

(Figure 3.12 a). As in vitro data demonstrated that cagPAI
+
 H. pylori induced the 

expression of IRF1 in a NOD1-dependent manner (Figure 3.11), we analysed the 

expression of IRF1 and NOD1 to determine if our in vitro results were comparable in the 

context of an in vivo H. pylori infection. Although IRF1 and NOD1 expression was 

elevated in H. pylori-infected patients, no differences were noted between patients 

infected with CagA
+
 or CagA

-
 isolates (Figure 3.12 b, c, respectively). 

 

We next evaluated the expression of the chemokines, CXCL8 and CXCL10 in the gastric 

biopsy samples. These chemokines are important in the recruitment of inflammatory cells 

to the gastric mucosa during H. pylori infection. Furthermore, CXCL8 has previously 

been shown to be elevated during H. pylori-induced gastritis (195, 198-199). Indeed, this 

was true for the biopsies tested in this report, where substantial CXCL8 expression was 

generally only measured in biopsies from H. pylori-infected individuals (Figure 3.12 d). 

While CXCL8 expression was significantly elevated in the H. pylori-infected mucosa, no 

differences were observed between patients infected with either CagA
+
 or CagA

-
 strains 

(Figure 3.12 d). These results are in contrast to previous reports, which have shown that 

H. pylori-induced CXCL8 expression in the gastric mucosa strongly correlates with 

cagPAI
+
 bacteria (53, 200). The fact that this was not observed in our studies, however, 

may simply reflect the relatively small sample size available for analysis. 
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Figure 3.12 H. pylori infection induces expression of pro-inflammatory molecules in 

vivo. 

Antral gastric biopsies from 20 patients with or without H. pylori infection were analysed 

for expression of a) IFNG, b) IRF1, c) NOD1, d) CXCL8 or e) CXCL10 by qRT-PCR. 

Patients are grouped based on gastric pathology and H. pylori status. Normal indicates 

patients with normal histology in the absence of H. pylori infection. Medium indicates 

medium gastritis in the absence of H. pylori infection. CagA
-
 indicates patients infected 

with CagA
-
 strains of H. pylori, whereas CagA

+
 indicates patients infected with CagA

+
 

H. pylori strains, as determined by cagA-specific PCR. Target gene expression was 

normalised to 18S RNA expression. Individual data points indicate the expression levels 

for individual patients and error bars indicate SEM determinations. ** p<0.01; NS: not 

significant, as determined by the t-test. cagA 
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Although these pro-inflammatory mediators did not correlate with the cag status of 

H. pylori in our study, we were able to show an association between their expression and 

disease status. Accordingly, the expression of IFNG in antral biopsies correlated strongly 

with disease severity, with discernable increases in expression between normal, moderate 

and severe samples (Figure 3.13 a, p<0.05). There was no difference, however, in the 

expression pattern of IFNG between tumour and corresponding non-tumour samples, 

which were both similar to the levels measured in patients with moderate gastritis (Figure 

3.13 a). IFN- is known to strongly induce IRF1 expression (306) and thus, NOD1 

expression (298). Certainly, our data suggests that this is also true in gastritis, where both 

IRF1 and NOD1 expression followed the same trend as seen with IFNG, with significant 

incremental increases in expression correlating with disease severity (Figure 3.13 b, c). 

Intriguingly, we found that both IRF1 and NOD1 expression were modestly, yet 

significantly elevated in tumour tissue (Figure 3.13 b, c, p<0.05, p<0.0001, respectively). 

 

As previously mentioned, CXCL8 expression has been shown to correlate with disease 

severity during H. pylori infection in vivo. We were able to detect statistically significant 

increases in CXCL8 expression between normal and moderate gastritis samples and again 

between patients with moderate and severe gastritis (Figure 3.13 d). Furthermore, CXCL8 

expression was drastically elevated in tumour specimens as compared to the non-

cancerous surrounding tissue, where CXCL8 expression was comparable to those in 

patients with moderate gastritis (Figure 3.13 d, p<0.05). The fact that normal tissue 

samples in many instances expressed no detectable CXCL8, indicates that expression of 

this chemokine is induced virtually only in situations of inflammation and is therefore an 

accurate indicator of disease severity during H. pylori infection. Indeed, neutrophil 

infiltration scores from antral biopsies (Table 3.2) positively correlate with CXCL8 

expression from those samples (data not shown). 

 

While CXCL10 expression was also elevated during gastritis as compared to normal 

tissues, these differences were only statistically significant for cases of severe gastritis 

(Figure 3.13 e, p<0.05). Furthermore, there was no significant up-regulation when 

comparing moderate and severe gastritis, indicating that the pattern of CXCL10 
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expression does not fully correlate with that of IFN-. Finally, CXCL10 expression is 

similar in both tumour and non-tumour tissue at levels comparable to those detected in 

severe gastritis (Figure 3.13 e). 

 

The findings from the in vivo expression pattern of IFNG, IRF1, NOD1, CXCL8 and 

CXCL10 in gastric biopsies implicates all in gastritis, with expression generally 

correlating with disease severity. Intriguingly, while H. pylori infection was associated 

with enhanced expression of these factors, we were unable to demonstrate a correlation 

with the cag status of infecting bacteria. While this result may be attributable to the small 

sample size available, no study to our knowledge has investigated the correlation between 

in vivo expression of IFNG, IRF1, NOD1 or CXCL10 and the cag status of H. pylori. A 

noteworthy finding of the present work was the elevated IRF1 and NOD1 expression in 

gastric tumours. To our knowledge, this has not before been reported in gastric 

malignancy. 

 

3.4 Discussion 

 

Colonisation of the gastric mucosa by H. pylori rapidly induces the recruitment of 

immune cells to the site of infection (164, 196, 214-219). Although certain H. pylori-

encoded virulence factors are capable of interacting with and stimulating these 

inflammatory cells, such responses are likely to be largely initiated by gastric epithelial 

cells, which are the first point of contact for H. pylori. Accordingly, we suggest that 

NOD1-dependent recognition of H. pylori by epithelial cells provides the stimuli that are 

pivotal in initiating pathogen-specific immune responses. We demonstrated in the 

previous chapter that NOD1-dependent recognition of cagPAI
+
 bacteria results in NF-B 

and AP-1 activation and the secretion of pro-inflammatory chemokines, such as IL-8. 

Both IL-8 and Gro- are potent neutrophil chemo-attractants produced in large quantities 

in the gastric mucosa of H. pylori-infected patients, particularly with those infected with 

cagPAI
+
 isolates (200, 202). Furthermore, the expression of these chemokines has been 

shown to correlate with increased infiltration of inflammatory cells (198, 200, 202). 
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Figure 3.13 Expression of pro-inflammatory molecules correlates with disease 

severity in vivo. 

Antral gastric biopsies from 20 patients with or without H. pylori infection were analysed 

for expression of a) IFNG, b) IRF1, c) NOD1, d) CXCL8 or e) CXCL10 by qRT-PCR. 

Patients are grouped based on disease category. Normal indicates patients with normal 

histology. Medium and severe indicates medium and severe gastritis, respectively. 

Tumour and non-tumour groups indicate paired samples taken from the tumour and non-

tumour tissue of gastric biopsies containing tumours. Target gene expression was 

normalised to 18S RNA expression. Individual data points indicate the expression levels 

for individual patients and error bars indicate SEM determinations. * p<0.05; *** 

p<0.0001; NS: not significant, as determined by the t-test. 
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 The expression of the Th1-type cytokines IL-12 and IFN- are also correlated with 

gastritis (92, 260, 327) and the majority of CD4
+
 T-cells isolated from the infected 

mucosa produce IFN- and display a polarised Th1 phenotype (92, 235-237, 327). This 

response is associated with the development of gastritis, which is further enhanced in 

patients infected with cagPAI
+
 H. pylori strains (31, 34, 36-37, 328). While a number of 

studies have demonstrated that both CD4
+
 T cells and IFN- are the precipitating factors 

responsible for the development of severe gastritis in the host (238, 242), few studies 

have investigated the direct effects of IFN- on NOD1-dependent epithelial responses to 

H. pylori. The current study not only examined this question, but also the roles of the 

cagPAI in these responses.  

 

We first investigated the ability of cagPAI
+
 H. pylori to induce the gastric epithelial cell 

secretion of the IFN--responsive T cell chemoattractants, IP-10 and MIG. While 

H. pylori induced robust IL-8 production in a cagPAI- and NOD1-dependent manner, 

bacteria alone were unable stimulate IP-10 and MIG production. Furthermore, IFN- 

treatment alone also failed to induce the production of these chemokines, indicating that 

multiple stimuli are required to upregulate these genes in gastric epithelial cells, which is 

consistent with the work of Kraft and colleagues (307). Studies of the CXCL10 promoter 

revealed that it contains both NF-B and "interferon-stimulated response element" 

(ISRE) binding sites (329). While STAT1 homodimers do not bind ISRE, an interferon-

induced complex "interferon-stimulated gene factor 3" (ISGF3) is capable of binding 

such sites (330). ISGF3 is composed of STAT1, STAT2 and IRF9 and its expression can 

be induced by IFN- treatment (331). In some instances this complex is sufficient to 

upregulate IP-10 production (329). A recent study found that IFN--dependent IP-10 

production is dependent on the action of nuclear histone deacetylases (HDACs) to 

facilitate gene transcription (332), which may explain the variability in the literature with 

respect to the ability of IFN- alone to stimulate IP-10 production. Interestingly, the 

CXCL9 (MIG) promoter contains similar transcription factor binding sites (333) and 

given that our results show equivalent patterns of MIG and IP-10 production during 

H. pylori stimulation, it is likely that both of these chemokines are regulated in the same 
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manner. Certainly, in the context of H. pylori-stimulated gastric epithelial cells, IP-10 

expression appears to be dependent on the dual stimulation with IFN- and cagPAI-

dependent factors, such as NF-B. This synergism between IFN- and NF-B has been 

previously shown to augment IL-8, IP-10 and MIG production in gastric epithelial cells 

(307, 334). 

 

These findings suggest that gastric epithelial cells are unable to induce the production of 

IP-10 and MIG directly in response to cagPAI
+
 H. pylori bacteria and thus, may be less 

able to recruit T cells to the gastric mucosa in the early stages of infection. In contrast, a 

recent study reported that stimulation of gastric epithelial cell lines with the purified 

NOD1 agonist, triDAP, induced robust IP-10 production, as did co-culture of AGS cells 

with cagPAI
+
 H. pylori bacteria (282). Specifically, they found that NOD1-dependent 

recognition of H. pylori induced an autocrine pathway that led to the production of 

IFN-, thereby inducing the formation of ISGF3 and subsequent IP-10 production (282). 

In this way they found that NOD1-dependent IFN- induction was essential for the 

production of IFN-, IFN- and IP-10 in the gastric mucosa during H. pylori infection, 

finding no role for NOD1 in the activation of NF-B or associated responses (282). 

Furthermore, they found that while in vivo inhibition of NF-B reduced TNF- and MIP-

2 production in H. pylori-infected mice, bacterial burden was only slightly increased, 

suggesting that NF-B plays only a minor role in host responses to H. pylori (282).  

 

Importantly, however, the vast majority of experiments in the Watanabe study (282), 

were performed with synthetic NOD1 ligands, used at high doses (10-100 µg/mL). Also, 

all of the in vitro experiments were performed in either a colonic cell line, or in primary 

intestinal or fibroblast cells. The two sole in vitro experiments in which H. pylori bacteria 

were used to stimulate gastric epithelial cells employed the AGS cell line. As reported 

here, we found that in comparison to MKN28 cells, even combined stimulation of AGS 

cells with H. pylori and IFN- induced relatively low levels of IP-10 production. A report 

published during the course of our studies revealed that AGS cell lines (including the 

founding strain catalogued in the ATCC) can be persistently and unknowingly infected 

with the Parainfluenza 5 virus (PIV5) (335). Importantly, the PIV5 virus selectively 
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targets STAT1 for proteasomal degradation, which would significantly impair IFN--

dependent signalling (335). Indeed, preliminary results from our laboratory suggest that 

the AGS cell lines employed in this study may be infected with PIV5 (data not shown), 

which would explain the reduced responses observed upon treatment with IFN-. It is 

noteworthy that the AGS cells used in the Watanabe study (282) were obtained from the 

ATCC. 

 

Although our results indicate that H. pylori may not be able to directly stimulate IP-10 or 

MIG secretion in gastric epithelial cells, it is possible that the recruitment of IFN--

producing immune cells to the mucosa may provide the gastric epithelium with the 

required stimuli to induce production at later time points. An in situ hybridisation study 

analysed the pattern of chemokine expression in the H. pylori-infected stomach and 

reported that both IP-10 and MIG were neither expressed, nor present at the gastric 

epithelium, instead finding that these molecules were produced exclusively at sites of 

high T cell density or infiltration (336). While this suggests that epithelial cells may not 

be a major source of IP-10 and MIG production during H. pylori-associated chronic 

gastritis, the cag status of infecting isolates in that study was not determined. Therefore, it 

is difficult to draw any definitive conclusion since our findings indicate that combined 

stimulation with IFN- and cagPAI
+
 H. pylori bacteria is required for the production of 

these chemokines by gastric epithelial cells. 

 

Intriguingly, a separate study reported that certain H. pylori membrane and soluble 

fractions actually inhibit gastric epithelial responses to IFN- and TNF- treatment, 

suggesting that certain H. pylori factors may inhibit IFN--dependent responses during 

infection (307). Interestingly, we found that co-stimulation of cells with IFN- and the 

H. pylori cagA mutant induced significantly higher IP-10 and MIG production than cells 

stimulated with IFN- and wild-type bacteria. Similar trends were found for the 

production of RANTES, MCP-1, Mip-1 and Mip-1, which are all chemokines 

involved in the recruitment of immune cells. Importantly, IL-8 production was equivalent 

between cells stimulated with IFN- and either wild-type or cagA mutant H. pylori. 
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Therefore, NF-B activation by cagPAI
+
 H. pylori, in combination with the exposure of 

the gastric epithelium to IFN-, could potentially provide the necessary stimulus for the 

production of these chemokines, whereas CagA may exert an inhibitory effect as a 

mechanism of curtailing excessive inflammatory responses. 

 

IFN-treatment results in the rapid phosphorylation of STAT1, which is an essential 

transcription factor involved in the expression of a number of pro-inflammatory genes 

(reviewed in (305)). Indeed, we found that the augmentation of epithelial chemokine 

responses upon co-stimulation with IFN- and cagPAI
+
 H. pylori coincided with 

enhanced STAT1 Tyr701 phosphorylation. Nevertheless, co-stimulation of IFN--treated 

cells with H. pylori cagA bacteria did not result in a further enhancement of STAT1 

Tyr701 phosphorylation as compared to levels detected in cells co-stimulated with wild-

type bacteria, suggesting that the inhibitory effects of CagA are not exerted on STAT 

Tyr701 phosphorylation. In contrast, a previous studied reported that H. pylori was able 

to directly inhibit IFN--induced STAT1 Tyr701 phosphorylation, nuclear translocation 

and subsequent gene transcription in gastric epithelial cells (192). These effects were 

shown to be dependent on the interaction of viable bacteria with the host cell, yet 

intriguingly were found to occur in a cagPAI- and therefore CagA-independent manner. 

The work, however, was performed using independent H. pylori isolates and not with 

isogenic mutants. Furthermore, this group used only 1 ng/ml of IFN-, whereas 20 ng/ml 

was used to stimulate cells in experiments performed in this chapter, which is in the 

lower range of the concentration employed in similar studies with gastric epithelial cells 

(233, 337-339). While this may explain the lack of inhibition of IFN--dependent 

responses in our hands, it does not explain the observed augmentation of chemokine 

production and STAT1 phosphorylation induced by co-stimulation with IFN- and 

cagPAI
+
 H. pylori. Furthermore, we found that in the absence of IFN-, STAT1 over-

expression significantly increased IL-8 and IP-10 production upon stimulation with 

cagPAI
+
 H. pylori bacteria, suggesting that STAT1 may be involved in pro-inflammatory 

gastric epithelial cell responses to H. pylori. 
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Although discrepancies were noted between the study by Mitchell et al. and results from 

this chapter, our findings concur with respect to the inability of H. pylori to directly 

induce STAT1 Tyr701 phosphorylation (192). In contrast, however, Yamaoka and 

colleagues reported that H. pylori induced detectable STAT1 Tyr701 phosphorylation 

within 2 hours of stimulation, as measured by immunoblotting analysis (191). This was 

found to occur via the H. pylori adhesin, OipA, through an unknown mechanism, whereas 

the cagPAI was not required (191). Furthermore, Yamaoka et. al. reported elevated levels 

of tyrosine phosphorylated STAT1 in antral biopsies from infected patients, although the 

specific cell type(s) was/were not identified. It is unclear whether STAT1 was tyrosine 

phosphorylated directly by H. pylori or indirectly via elevated levels of cytokines in the 

inflamed mucosa, although phosphorylation was shown to correlate with the expression 

of a functional oipA gene by the infecting strain (191). Although a number of methods 

were employed in this chapter to reproduce the authors' in vitro STAT1 data, co-culture 

of cells with either H. pylori strain 251 or G27, both of which possess a functional oipA 

gene (data not shown), failed to induce STAT1 Tyr701 phosphorylation at any point 

between 30 minutes and 8 hours after stimulation. The reason for this discrepancy is 

unclear, although experiments from the previous study employed MKN45 gastric 

epithelial cells that had detectable levels of constitutively tyrosine phosphorylated 

STAT1 (191), suggesting that IFN- signalling pathways were activated in these cells, 

even in the absence of H. pylori stimulation. 

 

Despite the inability of H. pylori to tyrosine phosphorylate STAT1 in our hands, we 

found that cagPAI
+
 H. pylori bacteria was able to rapidly induce STAT1 Ser727 

phosphorylation. It has been shown that Tyr701 phosphorylation is required for 

dimerisation and nuclear translocation of STAT1, whereas concomitant Ser727 activation 

is essential for complete transcriptional functionality, particularly in response to IFN- 

treatment (322). Interestingly, IFN--stimulated IRF1 expression was reduced by up to 

80% in human fibroblasts expressing a form of STAT1 in which tyrosine, but not serine, 

residues are phosphorylated (322). In this way, IFN--induced tyrosine phosphorylated 

STAT1 may become fully transcriptionally activated following cagPAI-dependent 

STAT1 Ser727 phosphorylation, thus enhancing the production of pro-inflammatory 
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cytokines. However, a precise role for STAT1 Ser727 phosphorylation, in the absence of 

Tyr701 phosphorylation, in inflammatory responses is unclear, although studies have 

indicated that it may be involved in apoptosis (340-341). 

 

These data suggest that H. pylori alone is unable to directly induce the tyrosine 

phosphorylation, and therefore nuclear translocation, of transcriptionally active STAT1. 

In contrast, we found that H. pylori can induce the expression of IRF1, which is an 

important downstream transcription factor of IFN- signalling (306). Although a previous 

study found this to occur in a cagPAI-dependent manner (191), we have extended this 

finding by demonstrating that IRF1 expression was dependent on the recognition of 

cagPAI
+
 H. pylori bacteria by NOD1  (Figure 3.10 and 3.11). Given that the IFN--

dependent IRF1 expression that we observed required both STAT1 Tyr701 and Ser727 

phosphorylation, it is likely that cagPAI-induced IRF1 expression is likely to occur via 

another signalling pathway. Indeed, NF-B was found to strongly and rapidly stimulate 

IRF1 production in response to TNF- treatment (324). Based on the evidence presented 

here, NOD1-dependent NF-κB activation in response to H. pylori would appear to be a 

novel alternative mechanism.  

 

A previous study demonstrated that IRF1 could bind the NOD1 promoter and upregulate 

its expression (298). Given our findings that cagPAI
+
 H. pylori bacteria upregulated IRF1 

transcription via NOD1, this suggests the existence of a positive inflammatory feedback 

mechanism between NOD1 and IRF1 in the context of H. pylori infection. Certainly, we 

found that expression of both NOD1 and IRF1 was elevated in gastric biopsies of patients 

infected with H. pylori, although this did not correlate with the cag status of the isolates, 

which may be due to small sample sizes. There was, however, a significant correlation 

between NOD1, IRF1 and IFNG expression and gastritis severity, as was the case for 

CXCL8 and CXCL10 expression. In addition to the known requirement for NOD1 in the 

development of Th1 responses during H. pylori infection (292), another study found IRF1 

to be essential in a similar manner (342). IRF1 null mice were more heavily colonised 

with H. pylori and failed to induce either Th1 or antibody responses during infection 

(342). Accordingly, these mice also failed to develop characteristic gastritis that is 
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associated with Th1 responses during H. pylori infection (342). Furthermore, IRF1 

expression in CD4
+
 T cells was shown to correlate with the production of Th1 cytokines, 

such as IFN- (343), which was not secreted by CD4
+
 T cells isolated from IRF1

-/-
 mice 

following H. pylori infection (342). These data highlight the importance of IRF1 in both 

epithelial and immune cell responses to H. pylori infection.  

 

Finally, although we found that severe gastritis was induced only in patients infected with 

H. pylori, it was difficult to correlate gastritis severity with CagA
+
 H. pylori isolates due 

to low sampling numbers. CagA
+
 strains, however, were more often detected in patients 

with severe gastritis, than in those with normal or moderate pathology. Many studies have 

verified an association between infection with cagPAI
+
 H. pylori and the development of 

severe disease, such as gastric cancer (Reviewed by (344)). Nevertheless, as only 25 % of 

patients with antral tumours in the present study had concurrent H. pylori infection, it is 

difficult to draw too many conclusions in this regard. Furthermore, there was some 

variation in the details of the pathologist reports regarding differences in tumour 

histology between patients, which made it difficult to accurately group tumour types and 

corresponding responses. Regardless, although there were no significant increases in 

IFNG or CXCL10 expression in tumour compared to non-tumour tissue, statistically 

significant increases were detected in CXCL8, IRF1 and NOD1 expression (Figure 3.13; 

p<0.05). Elevated CXCL8 expression in gastric cancer is thought to promote tumour neo-

vascularisation (345-346). In contrast, elevated IRF1 and NOD1 expression is an 

interesting finding that has not been reported previously. IRF1 is generally regarded as an 

anti-tumour factor that mediates apoptosis of cancer cells (Reviewed by (347)) and 

although a loss of heterozygosity in the IRF1 chromosomal region has been reported in 

gastric cancer (348), a functional phenotype has yet to be established in this context. 

Increased NOD1 expression in tumour tissue is another intriguing finding, particularly as 

a concurrent H. pylori infection was absent in most cases. Increases in IRF1 and NOD1 

expression suggest possible IFN--dependent induction of this pathway and although 

IFNG is not upregulated in these cases of gastric cancer, there may be increased IFN- 

production from nearby immune cells. 
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The ability of gastric epithelial cells to recruit immune effectors to the site of H. pylori 

infection is paramount to the development of inflammation. We and others have 

demonstrated that NOD1-dependent recognition of cagPAI
+
 bacteria is essential for the 

initiation of innate and eventually adaptive immune responses to the pathogen (24, 161, 

293, 310, 317), and NOD1 appears to facilitate the induction of a skewed Th1 phenotype 

during H. pylori infection (292). The Th1 phenotype is characterised by the infiltration of 

IFN--producing CD4
+
 T cells (92, 235-237, 327) and these pathogen specific 

lymphocytes, in addition to IFN-, are necessary for the development of gastritis in the 

host and for the control of H. pylori infection (240). The production of large quantities of 

IFN-further regulated cell specific host responses and in this way, we have shown that 

IFN- treatment of H. pylori-infected gastric epithelial cells upregulates the expression of 

chemokines that are responsible for the recruitment of immune cells into the gastric 

mucosa. These effects were found to be mediated by cagPAI
+
 H. pylori bacteria only, 

suggesting a role for NOD1 in this pathway. Furthermore, NOD1-dependent recognition 

of cagPAI
+
 bacteria was found to induce IRF1 expression, which itself is known to 

upregulate NOD1. Indeed, we and others have shown increased NOD1 expression (299) 

during H. pylori infection and like IFNG and IRF1, the expression of this pathogen 

recognition molecule correlates with disease severity. These data demonstrate for the first 

time, a potential positive feedback mechanism between the key molecule involved in 

gastric epithelial cell recognition of H. pylori, and the primary cytokine that drives 

chronic inflammatory responses to this pathogen. 
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CHAPTER 4. Final Discussion 
 

The pathogen recognition molecule, NOD1, is a critical component of the innate immune 

system that is able to recognise and respond to both extracellular and invading pathogens. 

NOD1 is expressed ubiquitously in most cell types and in this way, its responsiveness is 

not limited to mucosal surfaces such as epithelial cells. Indeed, recent studies have found 

a crucial role for NOD1 in macrophage (349) and dendritic cell (350) responses to 

invading pathogens, indicating its importance in effective myeloid cell function. While 

NOD1 is vital for the initiation of innate inflammatory responses and pathogen-specific 

immunity, studies have identified that allelic variation within the NOD1 gene is 

associated with aberrant inflammatory signalling and in some instances, an increased risk 

of severe disease (351-353). These reports recapitulate the fine balance that exists 

between the establishment of effective immune responses and potentially pathogenic non-

specific inflammation. 

 

Host responses to the gastric pathogen, H. pylori, are largely dependent on gastric 

epithelial cell recognition via NOD1 (24, 161). In particular, the virulent cagPAI
+
 isolates 

possess a T4SS that translocates bacterial effectors into the host cell (21, 24-26). In this 

way, peptidoglycan is sensed via the intracellular NOD1 (140), which rapidly initiates a 

signalling cascade that culminates in the activation of NF-B and the expression of pro-

inflammatory chemokines (24) that recruit immune effectors to the gastric mucosa. While 

gastric epithelial cells are largely refractory to TLR stimulation via H. pylori products, 

such as LPS (24, 140, 151, 177) and flagella (174, 181-183), cells of myeloid lineage 

seem to be more responsive. Indeed, the TLR adaptor molecule, MyD88, is critical for 

the development of adaptive immune responses to H. pylori.  Specifically, macrophage 

recognition of live H. pylori and its LPS is thought to occur via TLR2 and TLR4 

respectively (169, 172), whereas recent reports suggest that TLR8 and TLR9 may be 

important for dendritic cell recognition of H. pylori RNA and DNA respectively (354). In 

this way, there appears to be a dual requirement by the host for NOD1 in the initial 
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recognition of H. pylori by gastric epithelial cells, and later for TLR recognition by 

macrophages and dendritic cells. 

 

The aims of this study were to investigate the ability of NOD1 to activate additional 

signalling pathways in gastric epithelial cells following recognition of cagPAI
+
 H. pylori, 

which may enhance pro-inflammatory responses. Furthermore, the literature suggests that 

IFN-, a crucial cytokine that drives adaptive immune responses to H. pylori, is capable 

of up-regulating NOD1 expression (298). Indeed, NOD1 protein levels are elevated in the 

gastric mucosa of H. pylori-infected patients (299). Therefore, we examined the ability of 

IFN- to enhance epithelial responsiveness to cagPAI
+
 bacteria via NOD1. This was 

expanded upon to determine whether there is a correlation between the expression of 

IFN-- and NOD1- responsive genes and disease severity. In this way, the possibility of 

cross-talk between IFN- and NOD1 signalling pathways was addressed in order to 

determine the existence of a positive regulatory loop that may exacerbate chronic 

inflammatory responses to cagPAI
+
 H. pylori. 

 

While NOD1 recognition of cagPAI
+
 H. pylori was found to rapidly activate NF-B, a 

number of additional signalling responses were consistently shown to be induced in 

gastric epithelial cells in a cagPAI-dependent manner, although a specific mechanism of 

action was unclear. In this way, we evaluated the role of NOD1 in the cagPAI-dependent 

activation of signalling responses other than the canonical NF-B pathway. Indeed, 

previous reports demonstrated that H. pylori activated p38 and JNK MAPKs in a cagPAI-

dependent manner, yet further studies were not conducted to ascertain the specific 

mechanism(s) through which this occurs. Investigation of host responses to the invasive 

pathogens L. monocytogenes (355) and S. flexneri (356) revealed that NOD1 induced the 

activation of JNK and p38 MAPKs respectively. Accordingly, using a stably transfected 

NOD1 knock-down gastric epithelial cell line, we demonstrated that NOD1-dependent 

recognition of cagPAI
+
 H. pylori was essential for the rapid activation of p38 and ERK 

MAPKs, which in turn were required for the activation of AP-1. In this way, we have 

shown that dual activation of the transcription factors, NF-B and AP-1, occurs via a 

NOD1-dependent mechanism and is essential for the production of pro-inflammatory 
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chemokines. In contrast, we determined that NOD1 was dispensable for JNK activation 

by H. pylori, whilst verifying the findings of Girardin and colleagues showing NOD1-

dependent JNK activation in response to S. flexneri (356). These results validated our co-

culture model and highlighted that cagPAI
+
 H. pylori were capable of inducing signalling 

cascades in epithelial cells that were independent of NOD1 and CagA. Indeed, our 

collaborators found that characteristic CagA-induced host cytoskeletal re-arrangements, 

termed the "hummingbird" phenotype, were also dependent on JNK phosphorylation. In 

this way, we have shown that the hummingbird phenotype occurs independently of 

NOD1. This work was furthered to demonstrate that cagPAI-dependent JNK 

phosphorylation occurred via the activation of host Src kinases upon contact of the 

H. pylori cagPAI-encoded T4SS with the host cell. 

 

A report published during the course of these studies elegantly demonstrated that 

cagPAI-encoded CagL protein localised to the tip of the Type-IV pilus and bound the 

51 integrin receptor on gastric epithelial cells via an arginine-glycine-aspartate (RGD) 

motif (285). This interaction was suggested to be essential for the translocation of CagA 

into the host cell and the subsequent activation of host Src kinases (285). In contrast, 

another group reported that the Type-IV pilus binds integrin 1 with greater affinity via 

the H. pylori CagA and CagY proteins in an RGD-independent mechanism (357), finding 

no role for the CagL RGD motif in either CagA translocation or IL-8 production during 

H. pylori stimulation (357). While the reason for these discrepancies are unclear, 

subsequent studies have supported a role for CagL in the activation of host signalling 

pathways, suggesting that it mimics many of the functions of fibronectin via its regulation 

of not only FAK and Src, but also the epidermal growth factor receptor (EGFR) and 

related proteins (358). Furthermore, CagL binding was shown to induce the dissociation 

of the metalloenzyme, ADAM17, from the integrin 51 receptor during H. pylori 

stimulation (359). This resulted in the activation of ADAM17 and the NF-B-dependent 

transcriptional repression of H,K-adenosine triphosphatase (ATPase) (359), the enzyme 

which is responsible for gastric acid secretion. Indeed, hypochlorhydria is a common 

symptom during the acute phase of H. pylori infection (145) and in this regard, CagL-
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induced aberrant host cell signalling is postulated to be another significant contributing 

factor in the pathogenesis of H. pylori infection. 

 

Host Src kinases are responsible for the tyrosine phosphorylation of multiple CagA 

EPIYA motifs once it enters the cell (25-26, 42). CagA phosphorylation of EPIYA-C or -

D motifs facilitate binding to and phosphorylation of the host phosphatase, SHP-2, which 

induces a number of aberrant signalling pathways within the cell. In this way, 

CagA/SHP-2 signalling has recently been implicated in the manipulation of STAT3 

signalling pathways in the host cell. Specifically, CagA was reported to bind to the 

cytoplasmic domain of the host gp130 receptor, whereby it induces Jak2 phosphorylation 

and subsequent STAT3 activation (360). Whilst investigators agree that CagA is capable 

of STAT3 activation, there is less consensus regarding the role that CagA 

phosphorylation plays. In particular, STAT3 activation has been reported to occur both 

dependently (361) and independently (362) of CagA phophorylation, with a recent study 

suggesting that phosphorylated CagA actually inhibits STAT3 activation (360). A 

possible mechanism for this was postulated to involve SHP-2, which negatively regulates 

STAT3 by directly de-phosphorylating tyrosine residues on the gp-130 receptor (363-

364), or indirectly in this case via the activation of ERK MAPK, which can deactivate 

STAT3 (360). The investigators found that H. pylori strains encoding wild-type CagA, 

which can be tyrosine phosphorylated, preferentially activate the SHP-2/ERK pathway in 

epithelial cells, whereas strains possessing a mutated CagA protein, which cannot be 

tyrosine phosphorylated, instead activate STAT3. During stimulation with a CagA
+
 

isolate, CagA is constantly phosphorylated and de-phosphorylated within the cell by host 

kinases (45, 47). This process is likely to balance SHP-2/ERK and STAT3 activation, 

thereby creating a degree of signalling equilibrium. Gastric biopsies from patients 

infected with CagA
+
 H. pylori had markedly enhanced STAT3 phosphorylation, as 

compared to basal levels detected in individuals infected with CagA
-
 strains (291). This 

was confirmed in the Mongolian gerbil model, with STAT3 phosphorylation detected in 

gastric epithelial cells and inflammatory infiltrates of Mongolian gerbils infected with 

CagA
+
 H. pylori only (362). STAT3 phosphorylation is elevated in many malignancies, 

including gastric cancer (291, 365) and is a poor prognostic marker for disease outcome 
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(366-367), something that is attributable to its potent anti-apoptotic, pro-proliferative, 

angiogenic and metastatic effects (188). The ability of CagA to induce STAT3 signalling 

in epithelial cells may be an important contributing factor towards the elevated risk of 

developing gastric cancer in patients infected with CagA
+
 isolates (31, 33, 36, 38). 

 

In our studies we noted that compared to wild-type bacteria, isogenic H. pylori 251 and 

G27 cagA mutants, which possess a functional T4SS, induced markedly higher IP-10 

and MIG production from cells co-stimulated with IFN-. Indeed, similar trends were 

also noted for the production of RANTES, MCP-1, Mip-1 and Mip-1 chemokines. 

These data indicate that CagA has an inhibitory effect on IFN- signalling pathways in 

gastric epithelial cells. SHP-2 is known to negatively regulate IFN- responses via the 

direct de-phosphorylation of STAT1 (368) and given that CagA activates SHP-2 in the 

host cell, we hypothesised that IFN--induced STAT1 phosphorylation was being 

reversed by activated SHP-2 in cells stimulated with cagPAI
+
 H. pylori. There was, 

however, no difference in the levels of STAT1 phosphorylation between cells co-

stimulated with either IFN- and wild-type bacteria or IFN- and H. pyloricagA 

mutants. Furthermore, STAT1 Tyr701 phosphorylation was actually enhanced in these 

cells as compared to those stimulated with IFN- alone. Intriguingly, a recent report 

found that STAT3 is capable of negatively regulating STAT1-dependent IP-10 and MIG 

production in IFN--stimulated cells (369). While STAT3 did not inhibit STAT1 

phosphorylation or nuclear translocation, it prevented STAT1 complexes from binding 

the promoters of a number of pro-inflammatory genes (369). In the context of recent 

literature on CagA/STAT3 signalling, these findings suggest that CagA is able to 

negatively regulate IFN-induced responses of gastric epithelial cells via STAT3 

activation (Figure 4.1). This appears to be the case in vivo, given that STAT3 is hyper-

activated in CagA
+
 H. pylori-infected individuals (291, 362), yet immunohistochemistry 

and in situ hybridisation studies have revealed that both IP-10 and MIG are not produced 

by gastric epithelial cells during H. pylori infection (336), despite the fact that levels of 

IFN- are elevated in the gastric mucosa during infection. 
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Figure 4.1 Overview of NOD1- and IFN--dependent signalling responses in gastric 

epithelial cells during H. pylori infection. 

 

Interestingly, the inhibitory effects of CagA were also noted for NOD1-dependent IRF1 

expression, suggesting that STAT3 may also inhibit a component of this pathway. It is 

not likely that STAT1 is responsible for IRF1 expression in this case, given that Tyr701 

phosphorylation is required for STAT1 nuclear translocation and subsequent IRF1 

expression (322) and we have clearly demonstrated that H. pylori does not induce the 

phosphorylation of this residue. We did, however, demonstrate that cagPAI
+
 bacteria are 

capable of inducing STAT1 Ser727 phosphorylation, although CagA was not involved. 

Intriguingly, TLR activation has been shown to induce STAT1 Ser727 phosphorylation in 

macrophages and dendritic cells, which occurs via activation of p38 MAPK (370-371). In 

this study, we have demonstrated that NOD1-dependent recognition of cagPAI
+
 H. pylori 

is essential for p38 MAPK activation upon stimulation of gastric epithelial cells. 

Therefore, we hypothesise that the cagPAI-dependent STAT1 Ser727 phosphorylation 
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observed occurs in a NOD1-dependent manner. Further studies are warranted to 

determine if this is indeed the case and to assess the significance of STAT Ser727 

phosphorylation in the absence of concomitant tyrosine phosphorylation during H. pylori 

stimulation. 

 

Numerous studies have reported the enhanced capacity of cagPAI
+
 H. pylori to induce 

gastritis (30-38), which correlates with augmented pro-inflammatory cytokine production 

and immune infiltrates in the gastric mucosa (200, 202). Due to the small sample size in 

our study, it was difficult to draw definitive conclusions between the cagPAI and disease 

severity in H. pylori-infected patients. We were, however, able to show a significant 

association between disease severity and the expression of pro-inflammatory molecules 

in the gastric mucosa. Intriguingly, while the expression of IFNG, NOD1, IRF1, CXCL8, 

and CXCL10 were all elevated in H. pylori-infected individuals, there was no significant 

differences between patients infected with cagPAI
+
 or cagPAI

-
 isolates. While this may 

be an artefact of insufficient sample size, cagPAI
-
 H. pylori strains are capable of causing 

gastritis and severe disease, albeit less often than cagPAI
+
 strains (34). A recent study 

elucidated a mechanism whereby OMVs released by cagPAI
-
 strains are able to induce 

pro-inflammatory responses in gastric epithelial cells (312). These bacterial membrane 

blebs contain peptidoglycan and were shown to enter epithelial cells via membrane lipid 

rafts, where they were recognised in a NOD1-dependent manner (312). In this way, 

OMVs were shown to stimulate robust Th1 adaptive immune responses, similar to those 

induced by live H. pylori. Indeed, we have shown here that H. pylori OMVs isolated from 

cagPAI
-
 strains, rapidly activate MAPKs and AP-1 in gastric epithelial cells via NOD1, 

demonstrating that even cagPAI
-
 isolates are capable of initiating NOD1-dependent 

signalling cascades in epithelial cells, which are necessary to recruit inflammatory cells to 

the gastric mucosa. In this way, the ability of cagPAI
-
 H. pylori to induce expression of 

pro-inflammatory molecules in the gastric mucosa, such as IFNG, NOD1, IRF1, CXCL8, 

and CXCL10, is plausible. While separate reports have shown a correlation between IL-8 

production and cagPAI
+
 strains, this is the first study to assess the correlation between 

IFNG, NOD1, IRF1 and CXCL10 expression and the cagPAI in a human cohort, albeit 

small. 
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Finally, we have shown that the expression of IRF1 and NOD1 are significantly enhanced 

in gastric tumour specimens as compared to the surrounding healthy tissue. While gastric 

cancer studies have reported mutations in the chromosomal region containing the IRF1 

gene, these are generally associated with loss of function (348). Indeed, IRF1 is a potent 

anti-tumour factor, due to its ability to induce growth arrest, apoptosis and inhibit cell 

transformation (372). Therefore, our finding of elevated IRF1 expression in gastric cancer 

is curious and warrants further investigation. In particular, control of IRF1 expression in 

tumours has been demonstrated to occur via mechanisms other than gene deletion or loss 

of protein function. These include aberrant signalling responses that lead to IRF1 

inactivation, such as mRNA splicing aberrations (373) or inhibitory factors that directly 

bind IRF1 and inhibit function (374). The enhanced NOD1 expression in tumour tissue is 

another intriguing finding, given that in most cases of gastric cancer analysed, patients 

were not infected with H. pylori, suggesting that up-regulation occurs via another 

mechanism, although we did not detect enhanced IFN- expression in tumour tissue. A 

functional role for NOD1 in gastric cancer is unclear, although a G796A SNP in the 

NOD1 gene was recently shown to be associated with aberrant NOD1 signalling in 

patients suffering from Sarcoidosis (353). This allele was also reportedly associated with 

an elevated risk of antral atrophy and intestinal metaplasia in H. pylori-infected 

individuals (352). While this allele was also shown to correlate with the development of 

duodenal ulcer (351), another study found no association between the NOD1 G796A SNP 

and gastritis or gastric ulcer (299). Although the role of this specific allele in disease 

development is controversial, we have shown for the first time in these studies that NOD1 

expression is associated with disease severity and gastric cancer, which indicates that 

NOD1 signalling may in fact be a critical factor in the potentiation of inflammatory 

responses. 

 

These studies have demonstrated for the first time that NOD1 is capable of activating 

pro-inflammatory signalling cascades in gastric epithelial cells other than the canonical 

NF-B pathway. In this way, NOD1-dependent recognition of cagPAI
+
 H. pylori or 

OMVs from cagPAI
-
 strains is able to rapidly induce the production of pro-inflammatory 

chemokines, which are essential for the recruitment of inflammatory cells to the gastric 
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mucosa. Our findings re-emphasise the importance of NOD1-dependent gastric epithelial 

responses and have furthered previous studies in NOD1 knock-out mice that 

demonstrated the role of NOD1 in the development of Th1-type adaptive immune 

responses to H. pylori. The recruitment of IFN--secreting CD4
+
 T cells to the gastric 

mucosa is a critical component of H. pylori-induced gastritis and we were able to show 

an association between IFN-, NOD1 and gastritis severity. Furthermore, NOD1-

dependent recognition of cagPAI
+
 H. pylori augmented epithelial cell responsiveness to 

IFN-, suggesting that both NOD1 and IFN- responses continuously upregulate pro-

inflammatory signalling during infection. H. pylori infection is unusual in that it is 

seldom eradicated without therapeutic intervention, suggesting that NOD1 may be in a 

state of perpetual activation that facilitates constant inflammatory cell migration into the 

gastric mucosa. In this way we have demonstrated the importance of NOD1 in the 

induction and also maintenance of pro-inflammatory responses during H. pylori infection. 
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4.1 Future Directions 

 

We have demonstrated a number of novel findings in this study that warrant further 

investigation. In particular, we have shown that cagPAI
+
 H. pylori induce NOD1-

dependent MAPK phosphorylation, which is critical for subsequent AP-1 activation and 

pro-inflammatory cytokine production. In particular, NOD1 was required for the rapid 

activation of p38 MAPK, which has been reported to induce STAT1 Ser727 

phosphorylation following TLR stimulation. While we were able to show that cagPAI
+
 

H. pylori induced the phosphorylation of this residue in gastric epithelial cells, it is of 

interest to confirm that NOD1 is indeed responsible. Furthermore, evaluation of the 

significance of serine phosphorylated STAT1 without concomitant tyrosine 

phosphorylation may reveal additional signalling pathways not previously characterised 

in the context of H. pylori infection or other inflammatory responses. 

 

Another noteworthy and unexpected finding was that CagA actually inhibited IFN--

dependent responses in gastric epithelial cells. Recent reports have demonstrated that 

CagA is capable of activating STAT3 in gastric epithelial cells. These findings suggest 

that STAT3 may inhibit IFN--dependent responsiveness of cells, by inhibiting STAT1 

binding to DNA. While this hypothesis supports the results of this study, validation of the 

CagA-dependent inhibitory effects of STAT3 on IFN- signalling is necessary. Indeed, 

this raises the possibility that although CagA is associated with the development of 

severe disease during H. pylori infection, it may act to dampen pathogen specific immune 

responses, thereby promoting the persistence of H. pylori in the stomach. 

 

Finally, we have shown for the first time that IRF1 and NOD1 expression is significantly 

upregulated in gastric cancer, although the precise mechanism is unclear. Further work is 

necessary to investigate the functionality of IRF1 and NOD1 in gastric cancer and to 

ascertain whether enhanced expression correlates with common SNPs in their respective 

genes. Whilst requiring further investigation, enhanced IRF1 and NOD1 expression in 

gastric cancer is an exciting finding that may reveal novel mechanisms involved in the 

development and progression of gastric cancer. 
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Appendix 1. Virulence factors and host cell signalling in 
H. pylori recognition 
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Appendix 2. NOD1 directs H. pylori killing by antimicrobial 
peptides 
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Appendix 3. PAR1 and Helicobacter-induced Gastritis 
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