

Copyright Notices

Notice 1

Under the Copyright Act 1968, this thesis must be used only under the normal
conditions of scholarly fair dealing. In particular no results or conclusions should be
extracted from it, nor should it be copied or closely paraphrased in whole or in part
without the written consent of the author. Proper written acknowledgement should be
made for any assistance obtained from this thesis.

Notice 2

I certify that I have made all reasonable efforts to secure copyright permissions for
third-party content included in this thesis and have not knowingly added copyright
content to my work without the owner's permission.

Nanorobotics Control Design for Nanomedicine

by

Adriano Cavalcanti

Supervisor: Prof. Dr. Bijan Shirinzadeh
Co-Supervisor: Prof. Dr. Toshio Fukuda
Co-Supervisor: Prof. Dr. Luiz C. Kretly

A DISSERTATION SUBMITTED TO THE DEPARTMENT OF MECHANICAL
AND AEROSPACE ENGINEERING, AT MONASH UNIVERSITY, FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY IN ENGINEERING

accepted on recommendation of

Prof. Dr. Sylvain Martel
Prof. Dr. Bradley Nelson

October 2009

© Copyright 2009
by

Adriano Cavalcanti

Version 9.46

Monash University Victoria 3800 AUSTRALIA
October 2009

This work is dedicated to
the coming generations.

iii

With love to... Ester M. Paes Cavalcanti, my wife,
from who I have learned a quite few things,

such as determination and patience.

Camila, my little daughter,

who has suffered due our long absence

during my graduation time.

iv

Just a few quotes...

“God does not play at dice.”

Albert Einstein, (1879-1955)

“There is nothing permanent except change.”

Heraclitus of Ephesus (ca. 525-475 B.C.)

“A scientific truth does not triumph by convincing its opponents

and making them see the light, but rather because its opponents

eventually die and a new generation grows

up that is familiar with it.”

Max Plank (1858-1947)

“A pessimist sees the difficulty in every opportunity;

An optimist sees the opportunity in every difficulty.”

Winston Churchill (1874-1965)

v

Abstract

The purpose of this thesis is to present a new paradigm for nanotechnology automation.
Therefore, the work provides a computational methodology for control design of nanorobots with an
application in medicine.

The subject under study concentrates its main focus on the control design of nanorobots for
biomolecular assembly manipulation and the use of evolutionary agents as a suitable way to achieve
the adaptive features required for the proposed model. Furthermore the work presents the use of
neural networks as the most practical technique for the problem of robot motion optimization using a
sensor based system. Thus, the author proposes a useful approach within advanced graphics simulation
for nano-assembly automation with its focus on an application for nanomedicine. The motivation for
such a study is the fact that with the emerging era of molecular engineering, the development of
methodologies that facilitate analytical and empirical investigation, should help in the system
architecture analysis, improving the evaluation of new approaches for insightful comprehension of
nano-worlds. Therefore, it should provide a great impact for effective design of control
instrumentation, helping in the development of nanotechnology.

The presented nanorobot model is required to survive and interact with a complex environment.
Furthermore the nanorobot has to address a pre-defined set of tasks both in a competitive scenario and
in a cooperative collective environment. In a three-dimensional environment our nanorobot monitors a
determined number of organ inlets’ nutritional levels, capturing and assembling new biomolecules into
proteins that have to be delivered to the organ inlets with higher priority during each moment of our
dynamic simulation. The nanorobot must avoid fuzzy obstacles, and must with proper time and
manner react in real time for an environment requiring continuous control. In order to achieve the
most appropriate pre-programmed set of behaviours the nanorobot uses a local perception through
simulated sensors to effectively interact with the surrounding workspace. Thereby this work addresses
distinct aspects of the main techniques required to achieve a consistent nano-planning systems design
through the analysis of numerical results.

To provide a feasible design for the behaviour of a reactive nanorobot, the computational
architecture adopted parallel processing as the natural way to achieve a modular design. This enables a
functional orientation focused on each main aspect related to an intelligent sensor-based nanorobot's
successful performance. For such an aim, it used feedback evolutionary decision control activation,
neural motion control, and real time environment interaction methodologies. The application of
stochastic models has provided an appropriate evolutionary agent behaviour, which was shown to be
the most effective methodology for any situation when a more specific action description does not
attend a large number of complex elements in a dynamic environment. The model includes stochastic
techniques, addressing aspects inherent to quantum uncertainties present in the microscopic spaces.
We have employed the proposed nanorobot in an evolved physically based simulated environment in a
series of task-based non-trivial problems, and have studied the adaptive properties of distinct
nanorobot behaviour with a design to address each environment with respective rules to trigger control
activation for behavior activation and complexities. Thus the development of new concepts on
nanomechatronics and automation theory is focused on the problem of molecular machine systems. A
novel adaptive optimal methodology is described and the model validation is demonstrated
successfully through the application of nanorobot control design for nanomedicine.

vi

“Time flies when you are among good friends.”

- Old Basque Saying

ACKNOWLEDGMENTS

The completion of this thesis was the result of the help, cooperation, faith and support of many
people, thus I would like sincerely to thank all of them.

Foremost, my special thanks for Prof. Bijan Shirinzadeh as my supervisor during my time in his
laboratory. He and the team of Monash University provided me with the required support for the
development of innovative automation paradigms in the new field of medical nanorobotics
automation. His contributions and enthusiasm in supervising my PhD thesis has ensured the success of
this work.

I wish to specially acknowledge as my co-supervisor Prof. Toshio Fukuda at Nagoya University,
for his support and interest in the development of this work towards the investigation of new control
techniques for medical nanorobotics.

My special thanks also to Prof. Luiz C. Kretly at State University of Campinas, for his
incentives, co-supervision with important and significant technical contributions on digital analog
simulation and architecture instrumentation.

My thanks go equally to Prof. Mark Thompson, also from Monash University, for his
encouraging words and for sharing his wise vision about research and development.

Thanks to the library teams of Flinders University and Monash University, which provided
many insightful articles on the topic of nanobiotechnology.

The author also thanks for fruitful discussions, technical collaboration and suggestions: Arancha
Casal, Bill Nace, Constantinos Mavroidis, Declan Murphy, Lior Rosen, Mingjun Zhang, Robert A.
Freitas Jr., Seiichi Ikeda, Tad Hogg, and Warren W. Wood, for all the helpful comments provided
during the development of this project.

To Edgars and Irmgard Krievins, Edison V. Monteiro, Heiko Schors, Helga Wahre, Hermann
and Adelheid Sporer, Hermano M. F. Tavares, Joao A. C. Mangabeira, Jurandir F. R. Ferndandes,
Lara Osborne, Maria Salgado, Marinea Santos, Richard and Margaret Farrell, Takaaki Ohishi, and
Tim Kelleher, for their incentives and friendly support at the very beginning of this journey.

I thank all my family who kept believing that science, research and technology may be used to
improve the human condition. Thank you all for being patient and understanding my absences during
my time in the graduate school, especially my dad, Nitercílio, my mom, Dionice, my brother Ade, as
well as my grandparents, Leopoldo and Amélia. My special gratitude to Ernestina and Gema, who
have missed us through all this journey.

This project was partially supported by the Australian Research Council (ARC).

vii

Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Nanotechnology Range of Applications . 4

1.2.1 Nanoelectronic devices . 5
1.2.2 Next generation storage media . 5
1.2.3 Quantum calculation machines . 5
1.2.4 Surface measurement . 5
1.2.5 Molecular machines . 6
1.2.6 Genetic analysis . 6
1.2.7 Nano-biology . 6
1.2.8 Medical supply . 7
1.2.9 Others . 7

1.3 Recent Developments and Motivation . 7
1.4 Proposed Approach . 11
1.5 Contributions . 11
1.6 Thesis Outline . 12

2 Nanotechnology 14
2.1 Introduction . 14
2.2 Physical and Chemical Properties . 15
2.3 Nano Manipulation . 16
2.4 Nanosystems: Key Technologies . 18

2.4.1 Nanomanipulators . 19
2.4.2 Sensing Systems . 19
2.4.3 Control Systems . 19
2.4.4 Human-Machine Interface . 20

2.5 A New Robotics Field . 20
2.6 Nanomedicine . 23
2.7 Conclusion . 25

3 Physically Based Simulation 26
3.1 Introduction . 26
3.2 Representing Contacts . 27

3.2.1 Polyhedral Contacts . 28
3.2.2 Nonpolyhedral Contacts . 29

3.3 Physically Based Simulation . 30
3.3.1 Timely Dynamic Collision . 32

3.4 Collision Detection for Bounding Volumes . 33
3.4.1 Interval Tree for 2D Intersection Tests . 34
3.4.2 One-Dimensional Sort and Sweep . 35
3.4.3 Uniform Spatial Subdivision . 36
3.4.4 BSP-Trees and Octrees . 36

3.5 Conclusion . 37

viii

4 Motion Control 38
4.1 Introduction . 38
4.2 Motion Control Description . 39
4.3 Uncertainty Environments . 42

4.3.1 Configuration-Sensing Uncertainty . 42
4.3.2 Configuration-Predictability Uncertainty. 42
4.3.3 Environment-Sensing Uncertainty . 43
4.3.4 Environment-Predictability Uncertainty . 43

4.4 Sensor Based Motion Control 43
4.4.1 Perceptual Cue . 44
4.4.2 Orthogonal Sensing . 45
4.4.3 Additive Cue . 45

4.5 Multiple Robot Motion Planning . 47
4.5.1 Multiple Robot Coordination . 49

4.6 Conclusion . 51
5 Artificial Neural Networks 52

5.1 Introduction . 52
 5.2 Brief Historical Review . 52
 5.3 Biological Models . 53
5.4 Artificial Neural Networks . 56

5.4.1 Computational Models of Neurons . 57
5.4.2 Network Architecture . 58
5.4.3 Learning . 59
5.4.4. Multilayer Perceptron . 63

5.5 Intelligent Mobile Robots . 65
5.6 Conclusion . 66

6 Evolutionary Techniques 67
6.1 Introduction . 67
6.2 Brief Historical Review . 68

6.2.1 Robotics and Artificial Life Applications . 68
6.2.2 Cellular Automata Applications . 69

6.3 Genetic Algorithms Representation . 70
6.4 Genetic Algorithms Codification . 73

6.4.1 Genetic Algorithm Initial Population . 74
6.4.2 Function of Chromosomes Evaluation . 75

6.5 Genetic Operators . 75
6.5.1 Crossover . 75
6.5.2 Mutation . 76
6.5.3 Roulette-Wheel Selection . 77

6.6 Parameters Definition . 78
6.7 Conclusions . 79

7 Parallel Processing 80
7.1 Introduction . 80
7.2 Parallel Processing Characterisation . 80
7.3 Processing Requirements of the System . 82

7.3.1 Analysis of The Task . 83
7.3.2 Implications for Processing Performance . 86

7.4 Parallel Processing for Robotics Control . 88
7.4.1 Parallel Architecture . 90
7.4.2 Parallel Sensing for Virtual Robots . 91

7.5 Conclusion . 92
8 Proposed Control Design 93

8.1 Introduction .. 93
8.2 Virtual Environment 93

ix

8.3 Evolutionary Decision . 99
8.3.1 Robust Evolutionary Behaviour . 99
8.3.2 Behaviour Activation . 100

8.4 Task Description and Decomposition . 103
8.4.1 Nondirected Molecule-Capturing . 105
8.4.2 Directed Molecule-Capturing . 107

8.5 Environment Sensing . 107
8.5.1 Memory Behavior . 108

8.6 Neural Motion Control . 111
8.6.1 Feedforward Neural Networks . 113

8.7 Conclusion . 116
9 Results Discussion 117

9.1 Introduction . 117
9.2 Evolutionary Decision for Dynamic Problems . 118
9.3 Competitive Scenery . 119

9.3.1 Environment Description . 120
9.3.2 Nanorobots Interaction Rule . 120
9.3.3 Nanorobots Competitive Results . 122
9.3.4 Nanorobots Competitive Control Robustness . 127

9.4 Collective Robotics Scenery . 129
9.4.1 Environment Description . 130
9.4.2 Nanorobots Interaction Rule . 133
9.4.3 Nanorobots Collective Results . 133
9.4.4 Nanorobots Collective Control Robustness . 136

9.5 Neural Motion Results . 139
9.6 Conclusion . 142

10 Conclusion 143
10.1 Perspective . 143
10.2 Dissertation Role . 144
10.3 Research Achievements . 144

10.3.1 Competitive Evolutionary Behaviour. 145
10.3.2 Collective Evolutionary Behaviour . 145
10.3.3 Neural Motion Performance . 145

10.4 Main Contribution . 146
10.5 Conclusions and Future Works. 146
10.6 Nanotechnology Research - The Bridge for New Frontiers. 148

Appendix A: Environment Dynamics
Appendix B: Decision Control
Appendix C: Parallel Processing
Appendix D: Motion Control
Appendix E: Three Dimensional Rendering
Publication List
Citation List
References

149
158
193
210
217
229
233
240

x

List of Tables

2.1 Imaging devices used for micro/nano manipulation and their properties. 18
2.2 Scaling effects in the physical parameters. 22
5.1 Von Neumann computer versus biological computer. 56
5.2 Analogy between biological neurons and artificial neurons. 58
5.3 Learning algorithms. 62
5.4 Back-propagation algorithm. 64
6.1 Comparison between genetic algorithms terms with their correlation in math. 71
6.2 Genetic Algorithm Pseudo-code. 72
6.3 Encoding synaptic weights on a genotype are encoded as binary numbers. 73
6.4 Encoding synaptic weights on a genotype are encoded as real numbers. 73
6.5 Organ inlets representing the nanorobot attending decision at the current time. 73
6.6 A crossover new solution generation. 75
6.7 A “mutation operator” in action. 76
6.8 Accumulative action for “mutation operator”. 76
7.1 Predecessors and successors set of tasks description. 82
7.2 The revised task predecessor and successor relationships. 83
7.3 Processor network assignment relationships. 85
7.4 Task assignments general expression. 86
7.5 Task-processor start and end times of a task. 86
7.6 Processing time for one processor per task assignment. 87
7.7 Sequential and parallel computation times for equal processing per object task. 88
7.8 Processes of sensing and reacting in parallel with the environment. 91
8.1 Logical AND perceptual cues. 102
8.2 Feedforward network algorithm. 115
9.1 Competitive scenery nanorobot interaction rule. 122
9.2 Competitive scenery with organ inlets’ nutritional levels for the nanoroborot adversary. 123
9.3 Competitive scenery with organ inlets’ nutritional levels for the nanoroborot agent. 124
9.4 Competitive scenery with highest and lowest levels for the nanoroborot adversary. 125
9.5 Competitive scenery with highest and lowest levels for the nanoroborot agent. 125
9.6 Competitive robustness with highest and lowest levels for the nanoroborot adversary. . . 127
9.7 Competitive robustness with highest and lowest levels for the nanoroborot agent. 127
9.8 Collective robotics interaction rule. 132
9.9 Collective robotics scenery with organ inlets’ nutritional levels. 134
9.10 Collective robotics scenery with highest and lowest levels. 135
9.11 Collective robotics robustness with highest and lowest levels. 136
9.12 Neural motion optimization for delivery route - distance cost in nm. 140
9.13 Neural motion optimization for verification route - distance cost in nm. 140
9.14 Neural motion optimization with complete trajectory - distance cost in nm. 140

xi

List of Figures

1.1 The diamond makers, left to right are respectively Drs. Francis P. Bundy, Herbert M.
Strong, H. Tracy Hall, Robert Wentorf, Anthony Nerad and Jim E. Cheney 3

1.2 Nano-gear design by NASA Ames. 8
1.3 Nanotransistor shown in this scanning electron micrograph by Intel. 9
1.4 Nanometer size comparisons: macro, micro and nano by EAMES Office. 10
2.1 Micro/nano scale object manipulation approaches. 17
2.2 Barriers among macro, micro and nano worlds. 21
2.3 The target of the overall micro/nano manipulation project. 23
3.1 A point-plane contact between two polyhedra. 27
3.2 Contacts between polyhedra expressed as point-plane contacts. 28
3.3 Polyhedral convex vertex-convex vertex, vertex-convex-edge, and aligned-convex-

edges contacts. 29
3.4 Typical non-polyhedral contacts. 30
4.1 Sensing by orthogonal spatially sensors. 45
4.2 Robot orientation by sensor-based reaction. 46
4.3 The set Xij and its cylindrical structure on R3. 48
4.4 Input’s stimulus and the robot’s output action. 50
5.1 A sketch of a biological neuron. 55
5.2 A neuron model. 57
5.3 Different types of activation functions. 59
5.4 A taxonomy of network architectures. 60
5.5 Learning issues. 61
5.6 A typical 3-layer feedforward network architecture. 63
6.1 Navigation in the search space of a NP-Hard problem - each sphere represents a

solution. 70
6.2 Evolutionary behaviour for minimization problems - each point represents a solution

cost. 74
6.3 Roulette-wheel selection. 77
6.4 Roulette-wheel parents selection for the next crossover. 78
7.1 Directed task graph. 81
7.2 Task graph for n nanorobots system with modified sense and response stages. 84
7.3 Concept for parallel robot control architecture consisting of multiple components and

an interconnection unit. 89
8.1 Top camera view in the virtual environment. 94
8.2 Molecular identification through collision contacts. 95
8.3 Robot obstacle avoidance: sensing obstacles. 96
8.4 Robot obstacle avoidance: finding path. 96
8.5 System architecture (nanorobot’s functional parallel architecture). 98
8.6 Perceptual cues forward flow. 101
8.7 Tasks are described as a sequence of steps, with each step possibly composed of

xii

additional subtasks (Ti). 103
8.8 Illustrated is the nondirected molecule-transport where the nanorobots catch the

molecule from different directions. 104
8.9 The task description graph where vertices represent an object (molecule) and position,

and edges represent actions that effect changes in an object’s position. 105
8.10 The task description graph for directed molecule-pushing. 106
8.11 Illustrated is the directed molecule-pushing task where the robot push the molecule first

to position AP and then to position BP . 107
8.12 Directed molecule capture-delivery, and the environment sensing with complete tour. . . 108
8.13 Nanorobot’s sensor - back view. 110
8.14 The basic sense-plan-control loop for the stochastic environment. 111
8.15 Obtaining strategies that are minimal related to the ordering that exists on ~/Γ 112
8.16 Nanorobot molecule delivery to the organ inlet (represented by the white cylinder). . . . 114
9.1 Nanorobots’ design - acoustic sensors, molecular sorting rotor, fins and propellers. 118
9.2 Competitive agent and adversary in action. 120
9.3 Competitive scenery, top camera view. 121
9.4 Nanorobot adversary delivery to the organ inlet - represented by the white cylinder. . . . 121
9.5 Histogram of competitive scenery with organ inlets’ nutritional levels. 125
9.6 Upper and lower organ inlets’ nutritional levels for competitive scenery. 126
9.7 Competitive agent and adversary robustness. 127
9.8 Histogram of competitive robustness with organ inlets’ nutritional levels. 128
9.9 Upper and lower organ inlets’ nutritional levels for competitive robustness. 128
9.10 Collective scenery, top camera view. 129
9.11 Collective team behaviour. 130
9.12 Collective scenery, sensing obstacles. 131
9.13 Collective scenery, obstacle avoidance. 131
9.14 Collective scenery, nanorobot molecule delivery. 132
9.15 Histogram of collective robotics scenery with organ inlets’ nutritional levels. 135
9.16 Upper and lower organ inlets’ nutritional levels for collective robotics scenery. 135
9.17 Collective team robust behaviour. 136
9.18 Nanorobot goes back to search and capture more molecules. 137
9.19 Nanorobot avoiding collision to attend delivery goal assembling more nutrients. 137
9.20 Histogram of collective robotics robustness with organ inlets’ nutritional levels. 138
9.21 Upper and lower organ inlets’ nutritional levels for collective robotics robustness. 138
9.22 Complete trajectory comprised by delivery tour and verification tour. 141
9.23 Neural motion cost minimization. 141
10.1 Red blood cells and nanorobots inside a textured vessel wall. 147
10.2 Artery 3D rendering with 60% occlusion, red blood cells and nanorobots. 148

xiii

Chapter 1

Introduction

CHAPTER 1. INTRODUCTION

1.1 Introduction

The new field of nanoscience and nanoengineering began recently, opening new possibilities
and challenges. The gap between the top down strategy and bottom-up strategy to build NEMS
(nanometer-sized electromechanical structures) has been gradually reduced. Moreover, powerful tools
to manipulate nanometer-sized objects are emerging. So, now we are entering a new stage to build
NEMS and MEMS (microelectromechanical systems) based on nanotechnology. In the USA and
Japan government research ministries have provided significant resources for the rapid development of
nanotechnology, and in Europe the same serious approach is taken. A US$ 1 trillion market consisting
of devices and systems with some kind of embedded nanotechnology is projected by 2015 [269],
[130]. Another article announced that corporations intended to achieve revenues of around US$ 1
Billion of profit using commercial nanoproducts by 2012 [324]. Also, a first series of commercial
nanoproducts has been announced as possible by 2007 [147], and nanoelectronics are incorporated
since 2008 into products currently available in the marketplace.

In the medical area, the same miniaturization of devices is expected to have a direct impact on
biomedical instrumentation and practices [367]. Hence, the first class of nanorobots, that are expected
to have revolutionary applications in such areas as health care and environmental monitoring, are
likely to emerge for the coming decades [307]. To reach this goal of building electronic devices in
nanoscales, firms are forming collaborations and alliances that bring together new nanoproducts
through the joint effort of corporations such as IBM, Motorola, Philips Electronics, Plastic Logic, Palo
Alto Research Center Inc (PARC), Xerox Research Centre, Hewlett Packard, Dow Chemical, Bell
Laboratories, Lucent Technologies, Royal Philips Electronics, E Ink Corp., DuPont, Rolltronics Corp.,
Intel Corp., Thin Film Electronics ABA, just to quote a few [274].

The key to advancing this technology is the development of new methodologies and
nanomechatronics techniques that explore the nano-world [65]. Some efforts in the development of
intelligent automated molecular systems design have been undertaken [308]. The increasing
importance of prototyping techniques to enable rapid design can be observed, which must serve to
address complex aspects of the physical principles used for the production of final 3D prototyping

1

CHAPTER 1. INTRODUCTION

[335]. The recent developments of a new branch in the field of computational nanotechnology known
as nanoCAD [66] has drawn attention to the use of 3D visualization as a powerful tool applied to
design of devices with nanoscale dimensions [72]. A major factor for the fast development of the
nanotechnology field [70][66] should comprise a suitable strategy for the study and the design of tools
for the development of integrative and multidisciplinary systems. Such systems should achieve a
molecular manufacturing automation through the increasing and progressive implementation of
interactive platforms for pratical nanomechatronics control and instrumentation.

While industry insiders cannot predict whether polymers or small molecules will rule the
organic electronics universe in the end, all agree that the deciding factor will be manufacturing costs
[274]. Controlled action at a distance, teleoperation, has been used in the past decades to extend man’s
reach into hostile or distant places. Tele-robotics systems for operating robots in hazardous
environments, such as nuclear plants, and remote places, such as outer space, have been some of the
different areas of robotics control application [331]. Now, the newest frontier to be conquered is not
the macro-world or outer space, but the inside space, or nano-world. Since barriers within the nano-
world increase significantly given difficulties to human direct interaction, there is a general agreement
about the importance and necessity for the use of advanced simulation in the nanotechnology
community. Analytical results and simulation should enhance new approaches as a practical pathway
for control of future nanodevices into biomedical applications. Prototyping in 3D can also help
automated planning and judgments about manufacturing feasibility, assisting chemical and biological
assembly analyses in nanobiotechnology.

Two strategies, top down and bottom-up for creating nano systems have been presented [129]
[113]. A combination of these two methods could be useful, i.e., firstly to fabricate building blocks
through directed self-assembling to generate supramolecules (material goes bottom-up), and then to
assemble them into more complex nano systems by smaller and smaller nanomanipulators (tool goes
top down). Hence, nanomanipulation, or positional control at the nanometer scale, will be a key
technology towards molecular nanotechnology.

Microsystems have been researched actively in the last 20 years, thus nanomanipulation is one
of the most promising enabling technologies for MEMS based on NEMS and Nanotechnology. There
are many application fields in this industry. The micromachines have the scale advantage to reduce the
size of components. Miniaturization is essential for tasks to be carried out in narrow spaces. In most
cases, in the early stage of the MEMS research, the key technology to build these microsystems was
microfabrication based on lithography. However, recently there have been proposed a lot of new
strategies to build microsystems. Based on the new fabrication methods, microactuators, microsensors,
micro fluidic devices, and so forth have been produced. The accuracy of the fabrication process has
been improved, and the processed devices have become more complex. Yet most of the microsystems
are made using the top down strategy.

There was an idea to use the bottom-up strategy to build MEMS devices in the early ‘90s. They
are supposed to be made from atoms or NEMS. In nature, physical things are made from atoms. So,
this way of thinking is quite natural. Thus the emerging fields of nanoscience and nanoengineering is
developing successfully, thereby the gap between the top down strategy and the bottom-up strategy is
gradually reducing [308]. Moreover, nano-structured new materials are discovered and developed, and
powerful tools to manipulate nanometer-sized objects are emerging [256]. So, now we are entering a
new stage of integrating NEMS and MEMS based on nanotechnology. Innovative strategies required
at present are summarised as follows: downsizing of the component (Micro to Nano); higher precision
of machining accuracy; 3D manipulation and assembly technique; method and theory to overcome
difference between the model and practice; different ideas in design approaches of nano-structured and

2

CHAPTER 1. INTRODUCTION

Figure 1.1: The diamond makers, left to right are respectively Drs. Francis P. Bundy, Herbert M.
Strong, H. Tracy Hall, Robert Wentorf, Anthony Nerad and Jim E. Cheney.

functional materials; different ideas in nanomechatronics control; utilisation of the self-organisation
phenomenon.

Among them, the 3D manipulation and assembly technique and theory to explore the nano-
world will play an important role in nanotechnology. From this aspect, nanomanipulation is quite
important. With the existing difficulties of exploring the nano-world, the use of computational
nanotechnology is argued as an important tool in design [112].

The long-term purpose of nanomanipulation is to build novel functional nanometer scale
structures and/or mechanisms, which would otherwise be unobtainable, using nanometer scale
building blocks. The last version of nanomanipulators might be Drexler’s assembler [113], which has
been proposed as general purpose manufacturing devices that can build a wide range of useful
products. Presently, nanomanipulation would be also helpful for the exploration of the nano-world. It
might find applications in relatively simple nano structure fabrication and biology research in the near
future.

Obviously when we are talking about nanotechnology as the manipulation of molecular
structures, we cannot forget the historical work performed by the General Electric group in the fall of
1951 [171]. The G.E. team (see Figure 1.1) has become widely known as “the diamond makers” once
they have assembled simple carbon molecules into diamonds. Many famous scientists and engineers
took their turns at trying to make diamond from baser forms of carbon. Final reproducible success was
not attained until the 1950s, after the G.E. scientist team had developed adequate thermodynamic
understanding, the high-pressure-high-temperature apparatus, and the reaction path needed.

Nevertheless the first fine electromechanical practice on nanomanipulation came with a
scanning tunneling microscope (STM) that was achieved by Eigler and Schweizer in 1989 [117]. They
applied a STM at low temperature (4K) to position individual xenon atoms on a single-crystal nickel
surface with atomic precision. The manipulation enabled them to fabricate rudimentary structures of
their own design, atom by atom. The result is the famous set of images showing how 35 atoms were
moved to form the three-letter logo “IBM”, which also helped prove to the world that people indeed
can move atoms. For such work they received the Nobel Prize in Physics in 1986.

3

CHAPTER 1. INTRODUCTION

A Nobel Prize in chemistry was attributed in 1996 [142], to the work realised by the IBM Zurich
Research Center. The reason was their achievement: they have succeeded in positioning individual
organic molecules at room temperature by purely mechanical means. They “hand-picked” for the first
time an organic molecule with 173 atoms and a 1.5nm diameter, including a porphyrin core, for the
experiment. Choosing 6 such molecules from a set randomly positioned on a copper surface, they
pushed each molecule into position to form a ring. This configuration would not normally be found in
nature [138]. It might also be possible to align and maintain these molecular gear teeth in atomically
precise meshed positions. Since that feat, more researchers have used STM or other versions of
nanomanipulators to create letters, and pictures, as well as exotic physical structures on surfaces using
one atom at a time. Although still in its primitive stage, this was just the kind of submicroscopic
manipulation that the physics Nobel Prize winner Richard Feynman was talking about in 1959 [129]
[323]. Continued efforts are being made to develop atom- and molecule-manipulating tools that can be
more effective and easier to use. Key technologies for micro and nanomanipulation include
observation, actuation, measurement, system design, control, calibration, fabrication, communication,
and human-machine interface, among others.

1.2 Nanotechnology Range of Applications

Nanotechnology has a goal of 3D manipulation of chemical moieties to build molecules/clusters
and then to assemble them into larger devices and materials. Achieving this requires combining
techniques of chemical synthesis with engineering methods that wield atomically precise positional
control. Better understanding of mesoscopic phenomenon would help to make automatic, high-speed
and precision manipulation possible [311].

Although Scanning Probe Microscopy (SPM) has been used widely for topographical imaging,
atomic/molecular manipulation, and nanoscale lithography, the low raster speed became a major
drawback, limited by present cantilever and system dynamics to about 50 Hz/line. To alleviate this
problem, several groups of scientists are developing arrays of cantilever probes that are individually
actuated and controlled [261][263]. Further development may provide tools for large-scale and high
density manipulations.

Manufacturing technologies such as microelectromechanical systems (MEMS) are potentially
capable of producing higher degree-of-freedom micromachines, which can exert molecular-level
positional control and bridge mesoscopic extremes in handling nanoscale and microscale components.
Extension of MEMS into nanometer-sized electromechanical structures (NEMS) will achieve that
capability. In combination with chemical schemes and self-assembly concepts MEMS/NEMS will
form an essential generation of hybrid machines for subsequent stages of nanotechnology
development.

Nanotechnology will allow mankind to exploit the ultimate technological capabilities of
electronic, magnetic, mechanical, and biological systems by providing different kinds of nanodevices
and techniques [144]. While the best examples at present are clearly associated with the information
technology industry, the potential for nanotechnology can be much broader. Nanotechnology will
ultimately have a direct impact on our ability to enhance energy conversion, control pollution, produce
food, and improve human health and longevity. The applications of nanotechnology are summarized
as follows.

4

CHAPTER 1. INTRODUCTION

1.2.1 Nanoelectronic devices

To provide ever faster and cheaper computers, the size of microelectronic circuit components
will soon need to reach the scale of atoms or molecules. The idea that a few molecules, or even a
single molecule, could be embedded between electrodes and perform the basic functions of digital
electronics-rectification, amplification and storage- was first put forward in the mid-1970’s. The
concept is now used for individual components, e.g. CNT-based nano electronic devices [354][114]
[203].

Potential applications are in digital radar, electronic support measures (ESM) receivers, ATM
data stream processing, wide bandwidth communications, digital image processing, waveform
generation, and the broad area of analog to digital (A/D) applications.

1.2.2 Next generation storage media

Resonant tunneling devices are being explored with demonstrated successes in multivalued logic
and various logic circuits and memory circuits. SET logic and memory concepts are being explored
with a focus on memory applications [159][250]. Spin devices in the form of nanomagnetics using the
magnetoresistive effect in magnetic multilayers have demonstrated their use for nonvolatile, radiation-
hard memory. Integration of scanning probe tips into sizable arrays provides a mechanical information
storage strategy [241]. Cross-bar architecture is realised with CNTs [313].

1.2.3 Quantum calculation machines

Quantum computing is a joint venture between computer science and quantum physics.
Basically two issues motivate quantum computing:

• Quantum mechanical concepts must be applied to solve tractable computing
problems.

• From a computer miniaturization point of view, the size limit of a bit of
information is important. Recently, this issue has attracted increased attention, due to the
current development of nanotechnology and the design problems of semiconductor and
metal devices that are approaching the quantum size limit. Consequently, the idea of
quantum computing, in which the elements that carry the information are atoms, has
attracted the attention of many scientists. Quantum cellular automata and coupled
quantum dot technology are being explored and their potential assessed for transistorless
computing [103][100].

1.2.4 Surface measurement

The invention of the STM (Scanning-Tunneling Microscope) [41] and AFM (Atomic Force
Microscope) [40] have spawned the development of a variety of new scanning probe microscopes
(SPMs) [372]. As a class, the SPMs measure local properties with nanometer-scale spatial resolution
by bringing a sharp tip in proximity (1-10 Ǻ) to a solid surface.

The proximity of the tip and surface enables the SPMs to operate in ambient temperatures,
which is impossible with vacuum-based surface analytical techniques. The STM and the AFM were
initially limited to monitoring fine scale topography. But the broader class of scanning probes, derived

5

CHAPTER 1. INTRODUCTION

from these initial instruments, allows one to go beyond topography and examine many other local
properties, including the following: electronic structure, optical properties, temperature, dielectric
constants, magnetism, charge transfer and the Helmholtz layer, biological molecule
folding/recognition, and chemical information.

1.2.5 Molecular machines

Synthesis and processing of nanostructures will employ a diverse array of material types -
organic, inorganic, and biological. Increasing emphasis will be placed on synthesis and assembly at a
very high degree of precision, achieved through innovative processing. The result will be the control
of the size, shape, structure, morphology, and connectivity of molecules, supermolecules, nano-objects
and nanostructured devices and molecular machines. Integration of top-down physical assembly
concepts with bottom-up chemical and biological assembly concepts may be required to create fully
functional nanostructures that are operational at mesoscopic scales. The combination of new nanoscale
building blocks and new paradigms in assembly strategies will provide nanostructured materials and
devices with new, unprecedented capabilities, limited only by our imagination.

Building blocks for nanostruture include: (i) polymeric materials, dendrimers, block copolymers
[358], (ii) Nanocrystals [54], (iii) nanotubes and rods, and (iv) nanoparticle structures. Processing
methods of nanostructures include assembly [2], templated growth of mesoporous materials [8], direct
structuring and nanoimprint lithography.

1.2.6 Genetic analysis

During the last few years, scientists have developed the technology for rapidly mapping the
genetic information in DNA and RNA molecules, including detection of mutations and measurement
of expression levels. This technology uses DNA microchip arrays that adapt some of the lithographic
patterning technologies of the integrated circuit industry. Work on new types of chemical arrays
should expand this approach of parallel biological information processing to the analysis of proteins
and other biomolecules. Miniaturization of allied analytical processes such as electrophoresis will lead
to increases in throughput and reduced cost for other important methods of analysis, such as DNA
sequencing and fingerprinting [361][297].

1.2.7 Nano-biology

The ability of DNA to undergo highly controlled and hierarchical assembly makes it ideal for
applications in nanobiotechnology [379][325]. For example, DNA has been used to design lattices that
readily assemble themselves into predictable two-dimensional patterns. These arrays are composed of
rigid DNA tiles, formed by antiparallel strands of DNA linked together by a double-crossover motif
analogous to the crossovers that occur in meiosis. The precise pattern and periodicity of the tiles can
be modified by altering the DNA sequence, allowing the formation of specific lattices with
programmable structures and features at a nanometer scale. This approach has the potential to lead to
the use of designed DNA crystals as scaffolds for the crystallization of macromolecules, as materials
for use as catalysts, as molecular sieves, or as scaffolds for the assembly of molecular electronic
components or biochips in DNA-based computers. Similarly, biological-molecule-based scaffolding
could take advantage of the unique structural characteristics of RNA molecules, of polypeptide chains,
or of the highly specific interactions that occur between DNA and proteins or between RNA and

6

CHAPTER 1. INTRODUCTION

proteins. Devices that are currently in use to control the interactions of DNA on surfaces can have
broader applications for controlling nanoassembly. These devices use electric fields to control the
movement of particles toward or away from microscopic sites on the device surface. Charged
biological molecules (DNA, RNA, protein) and analytes, cells, and other nanoscale or microscale
charged particles can be precisely organized [318].

1.2.8 Medical supply

Scientists are using strategies learned from biological systems to design new materials and
complex biological systems. Such information provides the basis to design components that can come
together in only one way to form a desired three-dimensional nanoarchitectural material for systems
and components. For example, spider silk is one of the strongest materials known. Its molecular
structure is being used to design better composite polymer systems for increasing strength and utility.
Nanoparticles considerably smaller than one micron in diameter have been used in revolutionary ways
to deliver drugs and genes into cells. The particles can be combined with chemical compounds that are
ordinarily insoluble and difficult for cells to internalise. The derivatized particles can then be
introduced into the bloodstream with little possibility of clogging the capillaries and other small blood
vessels, as in the case of insoluble powders. The efficacy and speed of drug action in the human body
can thereby be dramatically enhanced. In similar ways, nanoparticles carrying DNA fragments can be
used to incorporate specific genes into target cells [142].

1.2.9 Others

The trend to smaller and smaller structures, through miniaturization, well known in the
microelectronics industry, can be evidenced by the rapid increase in computing power through
reduction of the area and volume needed per transistor on chips. In the energy and chemicals areas,
this same trend towards miniaturization, i.e., control of function and/or structure at the nanoscale, also
is occurring, but for different reasons. Smallness in itself is not the goal. Instead, it is the realization,
or now even the expectation that new properties intrinsic to nanostructures will enable breakthroughs
in a multitude of different technologically important areas. Nanoenginnering is expected to lead into
significant improvements in fields such as: solar energy conversion and storage; better energy-efficient
lighting; stronger, lighter materials that will improve transportation efficiency; use of low-energy
chemical pathways to break down toxic substances for remediation and restoration; and better sensors
and controls to increase efficiency for manufacturing and processing [17].

1.3 Recent Developments and Motivation

Works in molecular manufacturing has emphasized the need for very small and very accurate
manipulators that simultaneously have a wide range of motion to enable the assembly of molecular
components [111]. New approaches for nanorobotic motion and control design have been proposed,
where the models consider thermal noise as a significant source of positional uncertainty, comparing a
robotic arm, Stewart platform and a five-strut crank model [256]. A precursor work for nanoassembly
automation was presented for a modern molecular library for proteins, DNA, and RNA assembled by
highly automated robotic equipment [101] with polymers approaching 1410 sequences and libraries

with more than 5102 × members [210]. Another study has provided a detailed 2000 atom molecular

7

CHAPTER 1. INTRODUCTION

Figure 1.2: Nano-gear design by NASA Ames.

dynamics simulation to investigate the properties of molecular gears fashioned from carbon nanotubes
with teeth added via a benzyne reaction known to occur with C60 [278]. Computationally, one gear is
powered by forcing the atoms near the end of the nanotube to rotate (Figure 1.2), and a second gear is
allowed to rotate by keeping the atoms near the end of the nanotube constrained to a cylinder (i.e., the
ends of the shaft were constrained to not elongate but were allowed to move within a plane transverse
to the tube symmetry axis). Other types of nanotube-based gear systems were also simulated.

Among other works the ORNL group simulated, was a fullerene motor consisting of two
concentric graphite cylinders (shaft and sleeve) with one positive and one negative electric charge
attached to the shaft [285][272]. Rotational motion of the shaft was induced by applying one, or
sometimes two, oscillating laser fields. The shaft cycled between periods of undesirable rotational
pendulum and good unidirectional motor-like behaviour.

Robotic manipulation and assembly of objects at the nanoscale is a branch of nanorobotics that
has generated considerable interest and promises to produce revolutionary advances in miniaturization
towards developing molecular machine systems. Practical approaches for nano-planning systems have
been presented as a first step towards automating assembly tasks in nanorobotics [245], where there
was presented a 2D assembly task automation.

The design of a molecular library by using 160,000 reactions has used a genetic algorithm
approach consisting of coding 10 isocyanides, 40 aldehydes, 10 amines, and 40 carboxylic acids in a
“bit-string” data structure [369], where it was suggested that the method could be fully automated with
robotic handling and fluidic transport. A closely related work in the possible automation of nanoscale
manipulation has proposed a fully autonomous motion manipulator system capable of performing
200,000 accurate measurements per second at the atomic scale [248].

Recent developments in the field of biomolecular computing [1] have positively demonstrated
the feasibility of processing logic tasks by bio-computers [163], which is a promising first step to
enable the manufacture of future nanoprocessors with increasing complexity, power for information
storage, and data processing capacity, which could be considered as indispensable components for the
real automation of nanosystems.

Intel Corp.’s prototype 90nm process facility has already produced a fully functional 52Mb
Static Random Access Memory (SRAM) with transistor gate lengths of 50nm and SRAM cell sizes of

8

CHAPTER 1. INTRODUCTION

Figure 1.3: Nanotransistor shown in this scanning electron micrograph by Intel.

just 21 mµ , or roughly half the cell size of today’s most advanced SRAMs (see Figure 1.3). This

downscaling will continue, according to the Semicondutor Industry Association’s roadmap. High-
performance ICs will contain by 2016, more than 8.8 billion transistors in an area 280 mm2 (see Figure
1.4) - more than 25 times as many as are on today’s chips built with 130-nm feature sizes [147].
A recent study has addressed the performance of fast electronic switching combined with slow
mechanical nuclear vibrations, and switching was studied showing the aspects required for the
development of nanoelectronics [92].

Developments in the sense of building biosensors [348] and nano-kinetic devices have advanced
recently too [342][272][18][221], and could be considered by many researchers as a prerequisite for
making nano-automation feasible to enable nanorobotics operation and locomotion. The paths for the
development of nanobiomotors [272] have been explained through the study of biological processes
that occur at the molecular levels [243]. The use of ATP synthase was used to convert chemical,
osmotic and mechanical energy, providing the basis of initial nanomotors.

The application of artificial intelligence as the most appropriate means to enable some aspects of
intelligent behaviour for the control of nanorobots, with the intention of facilitating a major
improvement in the cost-effectiveness of molecular manufacturing, and finding a suitable assembly
sequence for end-specified molecules, has been discussed and accepted in the nano community [94].
In this aspect, an acceptable approach is the use of agents as assemblers, where the most suitable
model would be projected ideally as close as possible to concepts related to Artificial Life. Thus, in
order to be useful, nanoscale assembler have to be controlled by robust, scalable, flexible software,
which will enable the system to survive in very chaotic environments, and such characteristics could
be better satisfied by the use of concepts like reinforcement noise proven models, adaptive control
systems, ants, neural networks and genetic algorithms [69][65].

9

CHAPTER 1. INTRODUCTION

Figure 1.4: Nanometer size comparisons: macro, micro and nano by EAMES Office.

Taking the above points into consideration, micro/nano physics-based robotics and sensing with
intelligent control is indispensable for micro/nano manipulation. Therefore, the development of
automation for real-time sensory feedback intelligent control clearly became one of the highest key
technological factors for the fast development of nanotechnology [245]. In this sense, to enhance the
nano-automation systems and prototyping methodology, the present work will address the design of a
fully automated nanorobotic system with the use of a 3D computational nanomechatronics approach
for biomedical applications. The main theoretical analysis and mathematical aspect are detailed in the
work supporting the predefined model for intelligent behaviour, as well as some distinct issues of
specific techniques required to achieve a successful nano-planning system design with a simulation
visualisation in real time. The model implementation is achieved with parallel processing and dynamic
collision detection, showing the effectiveness of each module that comprises the system architecture
for nanorobot control design, and what enables the nanorobot to react adaptively in a stochastic
environment.

10

CHAPTER 1. INTRODUCTION

1.4 Proposed Approach

The aim of this work is to propose the analytical and computational study of a new control
paradigm, using computer aided design and real time physically based simulation, for the
implementation of new concepts and methodologies that can support the automation of collective
medical nanorobotics. The nanorobot model is pre-programmed to perform a set of tasks related to the
nanoassembly automation and control. Actually, a fully robust control model, enabling collective
robotics features, is considered an important and complex problem to achieve massive molecular
manipulation. For the effective development of nano and biotechnology we can consider as critical the
implementation of new tools and systems adopting multidisciplinary methodologies. The demand for
automatic manipulation, encoding and control of macro and nano structures of biological materials is
paramount. In general lines, we can describe a nanorobotic molecular machine system as a system able
to perform molecular manufacturing at the atomic scale, whose constituent robots are capable of
interacting with the surrounding environment.

The main focus in this thesis deals with nanorobot control design for nanomedical application,
where a set of pre-defined tasks is performed by nanorobots capturing proteins in a 3D microscopic
environment. Afterwards, these same biomolecules should be delivered to a set of organ inlets
requiring drug delivery or protein injection. For our analytical analysis, we chose nano-manipulation
in a liquid workspace, which is mostly relevant to biomedical applications.

The proposed design has to be robust enough to operate in a complex environment with
movement providing six-degrees-of-freedom. Taking into consideration all the characteristics
described above, we adopted the use of non-deterministic approaches as the most feasible control
technique. Like some techniques inspired by biological and natural models, and evolving some
capabilities characteristic of artificial life and intelligent agents, it should inherit some ideal
counterparts for such a nanorobotic model. Thus, a model using evolutionary techniques and artificial
neural networks was adopted to be the most appropriate way for an adaptive model and is used in the
proposed study. The reason for this choice is based on the fact that the nanorobot must be capable of
reacting in real time, corresponding in accordance with different changes and requirements that come
from the surrounding dynamic environment.

1.5 Contributions

We are presenting an innovative control model for medical nanorobotics, which is implemented
with a simulation of adaptive intelligent behaviour in stochastic spaces. The investigation of new
methodologies on control automation for molecular machines helps towards complex analytical
design, and opens new paradigms, required for the fast development of nanotechnology with potential
applications in biotechnology and nanomedicine [69][66]. More specifically, the core of present work
consists of considering the main aspects required for the control design and system simulation
architecture of mobile nanorobots. The nanorobot is comprised of nanoscopic components and has a
size comparable with a bacteria to perform molecular manipulation for nanomedicine [142].

The scheduling problem considers the biomolecular manipulation, which is automatically
performed with protein by an intelligent agent. The agent has, as its mission, the improvement of
nutritional levels of organisms, performing the injection of appropriate substances to the pre-
established delivery points. Furthermore, the present model is required also to incorporate either
competitive or cooperative multiple-robotics concepts in order to enable a suitable design model for

11

CHAPTER 1. INTRODUCTION

testability, featuring a massively coordinated action of large proportions. Both aspects could be
considered as a basic requirement for a successful automation model to achieve an efficient
nanorobotics control design. Therefore contributions of this work could be outlined as follows:

• To present a control approach featuring a highly adaptive design, capable of
competitive and reactive decisions in a dynamic and complex environment.

• To elaborate a control model for the interaction of coherent collective nanorobotics,
advocating the use of stochastic methodologies to be the most robust and suitable
automation methodology for stochastic 3D environments, as those related to medicine.

• Outlining the use of physically based simulation as a powerful technique to deals with
nano-worlds representation and dynamic simulation.

• Exposing the necessity of real-time advanced graphics simulation in the nano-world as
a valuable tool for the study to gain better insight into kinematics and stochastic aspects,
where computational nanotechnology with nanomechatronics and scientific visualization
becomes a very important tool for supporting detailed interactive analysis.

• To emphasize the importance of using a parallel modular approach as the most
effective way to evolve a nanorobot design, which would be required to react adaptively
in an uncertain environment.

• For demonstrating the local perception (sensor-based control) as the most feasible
alternative for medical nanorobotics automation approach.

• Using evolutionary techniques and feedforward neural networks as methodologies
require lower computational time and resources. This provides higher flexibility and
adaptability for control investigation of medical nanorobotics.

Thus, the present study makes a detailed investigation of the main issues related to molecular
machine systems design to provide a robust and flexible control methodology for the problem of
nanorobot and molecular machine automation, addressing the key aspects related to this very
promising and new field of research known as medical nanorobotics control automation.

1.6 Thesis Outline

The development of nanorobots presents difficult fabrication and control challenges. Such
devices will operate in microenvironments whose physical properties differ from those encountered by
conventional robots. Particularly interesting microenvironments are those involved in nanomedicine
applications, where the robots should operate inside the body to provide significant new capabilities
for diagnosis and treatment of diseases. Since nanorobots cannot yet be fabricated but are planned for
next coming decades [307][367], evaluating possible designs and control algorithms requires using
experimental analyses and simulators [65]. Such simulators can operate at various levels of detail to
tradeoff physical accuracy, computational cost, number of robots and the time over which the
simulation can follow the robot behaviour.

Hence, we propose as an investigation approach a physical simulation of a 3D
microenvironment incorporating major differences between conventional robotics and the situation
facing nanorobots for medical applications, specifically motion dominated by viscous rather than
inertial forces in fluids. We focus on a typical task for such robots: locating specific targets in the

12

CHAPTER 1. INTRODUCTION

environment and maintaining chemical concentrations at desired levels near them. Our simulation
shows nanorobot behaviours and runs quickly enough to allow rapid evaluation of various control
algorithms.

Taking into account the most important cited points, the control model proposed could be
described and divided into some main aspects and modules, covering the following issues:

• Design: for the nanorobot design, it was necessary to consider concepts related to the
field of application. Thus, Chapter 2 provides information about the main aspects of
nanotechnology related to nanomedicine, such as related to nano-world and quantum
uncertainty, infering directly to important concepts for the automation of biomolecular
manipulation. All those particularities of nanotechnology environments and science have
to be taken into consideration for the development of our nanorobot design.

• Sensing: for the sensing aspects, the nanorobots require the approach of sensor-based
control, which is more appropriate for medicine, as performed in the model by the use of
dynamic physically based simulation, using hierarchical collision detection, as discussed
with more details in Chapter 3.

• Motion control: for motion control, optimization was adopted in the use of neural
network techniques. In Chapter 4 this is described and considered in the main aspects
related to robot motion in complex and stochastic environments, as well as the motion
with multiple robots in the same space. The neural network algorithm implications and
principal considerations are then described in Chapter 5.

• Decision: the nanorobot model concept uses evolutionary techniques, which permit the
nanorobot to decide in an adaptive fashion to react in accordance with the environmental
changes controlled by a mathematical fitness function, which models a detailed pre-
defined set of actions to be taken by the nanorobot based on a penalties and rewards
approach. The genetic algorithms technique is described in Chapter 6, and the
methodology application for nanorobotics in nanomedicine is discussed in more detail in
Chapter 8.

• Model architecture: the use of parallel processing as a methodology necessary for the
integration of the different modules for model simulation is a feasible approach for
systems architecture implementation. Therefore in Chapter 7 we have a description on
parallel processing applied to robotics. The necessary techniques and system integration
aspects for the proposed system design are described in Chapter 8.

The validation of the model under analysis is discussed in Chapter 9, with the study of two
different control approaches in distinct scenarios, as it describes how to optimize and adjust behaviour
control of nanorobots in a stochastic environment. Chapter 10 outlines the main conclusions and future
directions for the development of nanorobotics control design with automation for nanomedicine.

13

Chapter 2

Nanotechnology

\

CHAPTER 2. NANOTECHNOLOGY

2.1 Introduction

Nanotechnology is a very new field, comprised of an interdisciplinary set of sciences [66], such
as computer science, physics, chemistry and biology. Regarding the impact of this new field of science
on our society, this is something that can not be completely and precisely predicted. However, for the
scientific community, the only thing that is clear is that the possibilities and the future results of
nanotechnology indicate it as an exciting new research area. The potential fields of application in the
nanobiotechnology ranges from the development of new materials in the field of metallurgy to
advanced molecular machine systems in the field of medicine [69][74][65].

Nanotechnology will be a bottom-up technology, building upward from the molecular scale
[111]. It will bring a revolution in human abilities like that brought by agriculture in the 19th century
or power machinery in the 18th century. Although major discoveries can be expected, we have no
direct experience of the molecular world, and this can make nanotechnology hard to visualize, and
consequently hard to understand. Actually most scientists working with molecules face this problem.
They can often calculate how molecules will behave, but to understand this behavior, more than
numerical analysis is sought: they need Computer Aided Design (CAD) approaches to achieve
interactive simulations. For this reason, the U.S. National Science Foundation (NSF) has launched a
program in “Scientific Visualization” [112][279] to address computational nanotechnology, in part as
an incentive to strengthen the importance of advanced computational tools focused on the problem of
investigating the molecular world.

Molecules are objects that exert forces on one another. If your hands were small enough, you
could grab the molecules, squeeze them, and compress them. Understanding the molecular world is
much like understanding any other physical world: it is a matter of understanding size, shape, strength,
force, and motion, or a matter of understanding the differences between sand, water, and rock, or
between steel and soap bubbles.

Nowadays there are basically four approaches to nanosystems for molecular manipulation [311].
The first is through consecutive linking of covalent bonds that results in one huge molecule or
macromolecular structure. The second involves hydrogen bonding, van der Waals bonding,
electrostatic bonding, and non-covalent bonding to assemble large systems of molecules. A third
method involves forcing chemical bonding by a so-called positional assembly, which involves using

14

CHAPTER 2. NANOTECHNOLOGY

scanning tunneling microscopy [112]. A fourth method involves biotechnology to manipulate
molecular components and systems into synthetic chemical compounds.

A molecular machine system could be described as a system to perform molecular manipulation
at atomic scales, the constituent entities of which are capable of performing a pre-established set of
tasks. The International Technology Roadmap for Semiconductors, published periodically by the
Semiconductor Industry Association (SIA, San Jose, Calif.), has revised its projection for the 2003
technology node from 100nm to 90nm [147]. “Technology node” refers to the set of processes needed
to print the smallest feature. True to the 2001 Roadmap projections, many foundries including Intel,
TSMC, Philips, IBM, STMicro, Motorola and LSI Logic, have geared up together and started a
volume production of 90nm processes in 2003 [147]. Scientific and engineering knowledge are on a
growth curve that is accelerating exponentially [110], and international progress in molecular
nanotechnology will take the same path. Mushegian’s study [277] suggests that the minimal artificial
biological nanorobot will consist of at least 300 different nanoparts (protein). Recently one private
company has already been formed to pursue the construction of these artificial nanorobots [120].
Studies on robotics motion planning problems are moving to the new and challenging area of
nanorobotics (with the construction of purely mechanical nano-computers, and construction of DNA
assemblies), where the main focus takes on the potential applications of robotics motion planning
[304] in nanotechnology and molecular computing.

The most important challenge that has become evident as a vital problem for the fast
development of nanotechnology with industrial applications is the automation of atoms manipulation
[72][66]. The starting point of nanotechnology to achieve the main goal of building systems in
nanoscale, is the automation and development of molecular machine systems, which could enable a
manufacturing schedule of nano-device building blocks. Thus a molecular machine system, which is
the most desired achievement in the nano-community, will be the most advanced result for
nanotechnology development.

Building patterns and manipulating atoms using the SPM has been used quite successfully [308]
as a promising approach for the construction of nanoelectromechanical systems (NEMS). However,
these manual manipulations require much time and as it is a repetitive task, it tends to be monotonous
and imprecise when performed manually for a large number of molecules. Hence, automation systems
in such a situation would greatly improve the productivity and precision in atoms manipulation.

2.2 Physical and Chemical Properties

One of the main directions of research in the field of mechatronics is the miniaturization of
robots, machines and devices. This new branch of science is called micro/nano-mechatronics [69][65].
With the use of Scanning Probe Microscopes (SPM) as in Atomic Force Microscopy and Scanning
Tunneling Microscopy, geometrical and electrical magnetic properties of material can be measured
down to atomic scale in 3D with precision at up to 0.01nm resolution. Thus if our main long-range
goal is to build a nanorobot, then we have to do more than speculate on its capabilities. We need also
to describe some of the main aspects needed to make molecular-scale machines.

The use of classical rigid-body dynamics and semiclassical mechanics are quite sufficient for
studying the rotational dynamics for building molecular components [311], which could be proved
through the use of concepts provided by chemistry, protein engineering and scanning probe methods.
The molecules will arrange themselves according to their configuration and the temperature of the
surrounding medium. Hence, we can see that a specific molecular reaction will take place regarding
thermodynamic perspectives and chemical kinetics.

15

CHAPTER 2. NANOTECHNOLOGY

The appliance of chemical kinetics for the study of molecular collisions from beam-type
experiments can be used to deduce the mechanism of chemical reactions. From this understanding of
the mechanisms, we can design specific molecular structures, as we can expect to do for molecular
nanotechnology. About the consideration of quantum chemistry, advanced mechanics simplifies the
equations of motion by the Lagrangian and Hamiltonian forms [350], and these are the mathematical
methods for quantum mechanics.

The major strength of molecular mechanics is that energy minimizations for large systems can
be computed in a reasonable amount of time. The computed answers are usually accurate, although the
force constants from the preceding interactions were determined by empirical methods. The essential
methods of molecular dynamics have been discussed [165], in this manner the kinematics of hard-
sphere and soft-sphere collisions could be computed along with the intermolecular potential and time
dynamics.

The methods usually involve finite-difference computations, which consist of solving partial
differential equations. All those concepts and calculations could be found at molecular-design
programs like Alchemy III and HyperChem [194]. More practically the quantum mechanical
calculations are usually approximated by various methods, including the convolution technique,
Huckel methods, and group theory involving symmetry operators, which allow one to achieve
reasonable numerical values [311]. Molecules and atoms are generally considered for such mechanical
calculations as hard spheres.

2.3 Nano Manipulation

Micro/nano manipulation approaches can be classified depending on the starting point, process,
interaction and operation as given in Figure 2.1 [144]. In respect to the starting point for
manipulation, systems can be classified as bottom-up and top-down approaches [223].

We can consider the self-assembly technique as an example of the bottom-up approach. It is
based on a manipulation technique, using a biochemical process that can be utilized for constructing
micro/nano devices or materials. Several laboratories especially in the fields of chemistry
(supramolecular chemistry) and biology are trying to use this approach [235] where it is promising in
building highly-repetitive or symmetrical structures. For top-down, also known as positional
nanoassembly, the approach using STM or AFM to manipulate atoms or molecules [322][309][343]
[204] is allowing molecular structures that may never exist in nature. Hence, the technique [292][192]
[206] [321][209][316][352][42][280] starts from familiar operations in the macroscopic world and
moves towards smaller and smaller objects, and more and more precision of handling. In this
approach Codourey [87] achieved a pick-and-place task for octagonal diamonds with 50µm diameter.
Koyano proposed new micro object handling and teleoperation system with concentrated visual fields
and new handling skills [222]. They achieved the fabrication of pyramidal 3D structures made of
polymer particles of 2µm in diameter using Scanning Electron Microscope (SEM) and a two-arm
micromanipulator system [267]. Zesch [380] utilized piezoresistive AFM cantilevers for force-
controlled 2D pushing of microparts on a planar substrate. Zhou [381] tried to control the position of a
microcantilever on a substrate precisely by integrating visual and force feedback.

16

CHAPTER 2. NANOTECHNOLOGY

Figure 2.1: Micro/nano scale object manipulation approaches.

The positional nanoassembly, or positional nanomanipulation, uses forces such as electrical,
mechanical, magnetic and optical forces. By physical manipulation, an external force for positioning
or assembling objects in 2D or 3D, cutting, drilling, twisting, bending, pick-and-place, push and pull
kinds of tasks are to be carried out. STM-based atom/molecule manipulation systems control the
electrical force between the metallic STM probe and the substrate atom/molecules for pick-and-place,
or push-and-pull kind of tasks [343][242][362]. AFM-based manipulation systems utilize the AFM tip
for pushing or pulling nano objects such as particles [322][34][168][331] or cutting DNA [338] or
fiber [288], by controlling the applied mechanical load on the sample. Actually using the AFM-based
system, the smallest pushed particle manipulation is around 15 nm radius, moving atoms or molecules
with respect to the tip size of the microscope and strong interatomic forces [204]. Inoue [195] utilised
magnetic fields to control the motion of the microparts. Finally, laser-trapping approaches also can be
used to move micro/nano particles in 2D or 3D by the applied laser light force [320].

Depending on the interaction type, non-contact and contact manipulation systems can be used.
In the former, laser trapping (optical tweezers) or electrostatic or magnetic field forces are utilized.
Yamamoto [378] can cut DNA using restriction enzymes on a laser-trapped bead. Stroscio [343]
utilized electrical force between an STM probe tip and the surface atoms for non-contact manipulation
of Xe or Ni atoms. As the contact manipulation, an AFM probe tip is utilized for positioning particles
on a substrate by contact pushing or pulling operations [322][204][310].

The operation-based approaches, are the teleoperated and the automatic approaches [333].
Teleoperation technology at the initial phase is a promising tool for understanding quantum
uncertainties and improving automatic manipulation strategies used by the human interface [330].
Teleoperation systems have the stages of direct teleoperation, and task-based-semiautonomous
teleoperation systems, where in the former, an operator directly enters the control-loop of the
micro/nanomanipulator, and in the latter, the operator only sends high-level task commands, and the
manipulator performs the tasks in an autonomous way.

17

CHAPTER 2. NANOTECHNOLOGY

P
R
O
P
E
R
T
Y

Microscopes AFM STM SEM OM
Highest
Resolution

0.1nm 0.1nm ~ 5nm ~ 40nm

Visible object
Types

All ½ conductors ½ conductors All

Imaging type Near-field Near-field Far-field Far-field
Object Interaction Contact non-contact Non-contact Non-contact Non-contact
Imaging
Environment

All Vacuum or air Vacuum Air or liquid

Imaging Principle Interatomic forces Tunneling
current

Electron
emission

Material-light
interaction

Imaging
Dimensions

3D 3D 2D 2D

Table 2.1: Imaging devices used for micro/nano manipulation and their properties.

Hollis [181] utilized an STM probe as the slave-robot and 6-DOF fine motion device called
Magic Wrist as the master device for feeling atomic scale topography in the operator’s hand. The
nanoManipulator group utilizes commercial AFM and a haptic device for a real-time haptic display
[124]. They utilize a plane and probe model [247][161] for surface force feedback, but they do not
have any report on scaled teleoperation control problems and micro/nano force modelling. The final
goal is a fully automatic system that can enable the mass-production of micro/nano robots or
machines.

For the imaging devices during micro/nano manipulation, OM (Optical Microscope), SEM
(Scanning Electron Microscope), AFM (Atomic Force Microscope) and STM (Scanning-Tunneling
Microscope) are the most frequently used microscopes. Their properties are reported in Table 2.1. Up
to the 1µm scale an OM integrated with a CCD camera is enough with 30-100 frames/sec speed. OM
can be used for submicron imaging using special techniques such as fluorescence labelling, and
submicron imaging. Therefore SEM, AFM or STM is utilized where SEM has limitations in the sense
of requiring a vacuum chamber, getting only a 2D image and works only for conducting and some
semi-conducting objects.

Finally, the vision sensors can be classified as far-field or near-field sensors. Far-field sensors
can get images of the manipulation tool and the manipulated object from another reference, while in
the near-field case only the relative distance between the tool and object can be maintained during
manipulation.

2.4 Nanosystems: Key Technologies

Strategies for nanomanipulations determine the “fingers” of nanomanipulation systems,
presently, which generally include AFM cantilevers, nanotweezers, and lasers. Other parts of
nanomanipulation generally include manipulators, sensing devices, control systems and a human-
machine interface. Manipulators serve to position the end-effectors into the desired position, while
microscopes are used for sensing the action and/or measuring the properties of the objects. Other
devices served to facilitate the manipulations, e.g. a human-machine interface.

18

CHAPTER 2. NANOTECHNOLOGY

2.4.1 Nanomanipulators

There are mainly two families of positioning devices/nanomanipulators: the STM family
(including STM, AFM, and other types of SPMs), and the robotic type.

• STM family nanomanipulators

From the time of their invention, STM and AFM or other type local probe microscopes had also
been used as positioning devices. The advantage of this family is their incomparable resolution (tenths
of an angstrom) for 3D surface topology observation. An STM can be used in air or in a vacuum for
the manipulation of conductive or semi-conductive objects. An AFM can be used in any environment
(in air, vacuum or liquid) for different kinds of objects.

• Nanorobotic manipulators

It is most significant to be able to manipulate nano scale objects in 3D space for constructing
nano structures and devices. In order to undertake such manipulations, robotic manipulators with a
multi-degree of freedom and nanometer scale resolutions, will be useful tools. The basic requirements
for a nanorobotic manipulator for 3D manipulations include a nano-scale positioning resolution, a
relatively large working space, enough DOFs for 3D positioning of the end effectors, and usually with
multi-end-effectors for complex operations. However, such kinds of manipulators need microscopes as
the real time observation system. Selectable microscopes include the SEM, TEM (Transmission
Electron Microscope) or the OM. The vacuum chamber of a TEM is too narrow to be used for
complex operations at present for the relatively large sizes of actuators, Skidmore [336] has succeeded
in building a 3-DOF manipulator inside a TEM and it was cooperatively used with another
manipulator inside a SEM with a transportable common substrate. The SEM is still the first choice for
nanorobotic manipulators. The OM is seldom used, except in special situations.

2.4.2 Sensing Systems

The recent rapid advances in nanomanipulation are due in large part to the development of
microscopes. Whether it is scanning probes, optical tweezers, high-resolution electron microscopes, or
other new tools, instruments available to research workers in science and technology now permit them
to create new structures, measure new phenomena, and explore new applications. To facilitate
nanomanipulation, a whole range of imaging is useful for operators even when applying local probe
type manipulators based on the STM or AFM. Guthold [160] is planning to insert their AFM into a
SEM. An AFM cantilever with external measurement system (commonly using laser-photo diode in
the AFM, or images of SEM in the robotic type [105][106], or cantilever built-in piezoresistive
sensors [329], or independent strain gauges [145] for force sensing) provides useful information to
avoid destruction of tools or samples. A micro tri-axial force sensor for a 3D bio-manipulation system
also has been developed [9].

2.4.3 Control Systems

Since there is a lack of knowledge about the micro/nano-world, telemanipulation based on a
master-slave method is still the only method to control the manipulators. For this reason, the

19

CHAPTER 2. NANOTECHNOLOGY

development of intelligent systems capable of automated molecular assembly is an open issue for
study and development. Once considered an uncertainty which involves the nano-world resembling a
complex environment, the most feasible sensing approach seems to be the use of nanorobotic sensor-
based control instead of deterministic motion planning for a nanorobot conception [68]. A bilateral
control system has been presented [10], and the use of collective robotics was emphasized for the
development of intelligent control design [179][308] [13]. Collective robotics appears to be the more
feasible methodology for a practical approach related to the appliance and development of a system
capable of a massive automatic molecular manipulation for nanotechnology. The use of concepts
derived from collective nanorobotics, and behavior control based on local rules, was also investigated
for medicine dealing with a common goal to destroy malignant tissues in the human body [238].

The importance of such an issue is quite remarkable [67]. Therefore, the specification of a
control paradigm to deal with the problems of uncertainty implicit in the nano-world, enables a fast
massive automation of nanotechnology, and is one of the most challenging subjects in the control
research community. For such advances, in so complex an issue, a cooperative interdisciplinary work
team was demonstrated to be the best path to follow, and good achievements on the improvement of a
new paradigm for the automation of a nanorobot control design should be developed [73][65]. Such a
model will be forced to learn and to evolve even when problems occur in an unpredictable fashion.
Thus non-deterministic approaches were demonstrated to be the best way to fulfil this kind of complex
set of pre-programmed tasks, which are expected to address the rapid development in nanotechnology
[74].

2.4.4 Human-Machine Interface

Guthold [160] tried to provide a SPM virtual-environment interface to improve interactivity.
The system provided the virtual telepresence on the surface, scaled by a factor of about a million to
one. The introduction of direct human-SPM interaction creates not only enhanced measurement
capability (for instance, special transducers can provide a sense of touch to the nanomanipulator), but
also an automated technology presaging nanofabrication and/or repair of nanostructures. A 3D bio-
micromanipulation system integrated with a real-time virtual reality simulator was proposed [145].
The use of virtual reality and physically based simulation was argued [69] as the most efficient
method, providing a fast development for the study of the nano-world kinematics. Computational
systems should enable a better comprehension and a real time follow-up of phenomenon related to the
nano-world [70][66].

2.5 A New Robotics Field

Going from the macro to the micro/nano-world, the main phenomenon is the reduction of the
size of objects where the effect of length change is defined as a scaling effect. Figure 2.2 describes
some major barriers to achieving the nano-world. Scaling effect for different physical and geometrical
parameters can be seen in table 2.2 [368]. As observed from the table and figures, by decreasing the
size, for example, inertial forces decrease with the power of 4, and angle/rotational information does
not change. Considering these kinds of effects, following physical and other object property changes
occur at the micro/nano scale due to the scaling effect:

20

CHAPTER 2. NANOTECHNOLOGY

Figure 2.2: Barriers among macro, micro and nano-worlds.

• Other surface or adhesion forces such as van der Waals, electrostatic and capillary
forces become dominant with respect to the inertial forces [126] [12]. As distinct from the
macro scale object manipulation, when the objects to be gripped are in the nano-world,
this dominance may result in a sticking effect.

• Going to a smaller nanometer or molecular scale, continuum mechanics is not valid.
New physics utilizing electromechanical quantum mechanics and chemistry is necessary
for exact analysis.

• Besides any applied load, frictional forces become affected by adhesion forces that
differ from the macro world. Thus, a new definition of friction is needed for the nano
scale.

• Resonant frequency increases with the length power of 1, which implies that the
dynamics in the nano-world are very fast. Therefore, the approaches in quasi-static
dynamics are more feasible for a teleoperated micro/nano manipulation control case.

• Specification increases in the sense of manipulation tasks such that sticking forces
depend on the following aspects: object geometry and material type, object-gripper
distance, environmental parameters such as temperature and humidity, and the
environment type such as air, vacuum or liquid. Thus, manipulation, sensing, control and
nano manipulator design strategy depend increasingly on the task specification and
environment.

• Objects become more fragile and easily deformed in the case of imperfect shapes.
Thus, sensor feedback is very important for uncertain objects and nano gripper shapes,
and force-feedback is needed so as not to break or deform the objects and manipulation
tools at the nano scale.

21

CHAPTER 2. NANOTECHNOLOGY

Parameter Equation Scaling Effect
Length L L

Surface area 2Lα 2L

Volume 3Lα 3L

Mass Vρ 3L
Pressure SP 2L
Gravitational force mg 3L
Inertial force

2

2

dt
xdm

4L

Viscosity force

t
x

L
Sc

∂
∂ 2L

Elastic force

L
LeS ∆ 2L

Linear spring Constant
2)(

2

L
UV

∆

L

Eigen vibration frequency
m

K 1−L

Angular momentum 2amr 5L

Electrostatic force

2

2

2 d
VSε 0L

Electromagnetic force
mSB

µ2
2L

Thermal expansion force

L
TLeS)(∆ 2L

Piezoelectric force

L
ELeS)(∆ 2L

Table 2.2: Scaling effects in the physical parameters.

• Rotational position is not affected by scaling, but the translational positioning is
linearly scaled, which means that high precision linear positioning is necessary for the
manipulation tool at the nano scale.

22

CHAPTER 2. NANOTECHNOLOGY

Figure 2.3: The target of the overall micro/nano manipulation project.

Taking the above points into consideration, micro/nano physics-based robotics and sensing with
intelligent control is indispensable for nano manipulation. The following features are needed for the
new robotics field:

• Design of nanoactuators taking into consideration the sticking effect and the specific
task of reducing the sticking forces or controlling adhesive forces.

• Nanometer precision intelligent manipulation control with sensory feedback devices
for quantum effects, nonlinear dynamics and disturbances. This should be addressed
through teleoperated systems or real-time autonomous sensory feedback intelligent
control.

• Robust and stable nonlinear controller design is required to attend to the nonlinearity
and uncertainties at the actuators and the manipulation interactions.

• Cameras are replaced by nano physics-based microscopy.

At the molecular scale on molecular robotics cases, besides nano physics, chemistry has to be
considered for controlled manipulation; thus nanorobotics requires interdisciplinary research from
experts from different fields in a collaborative work. A general target for manipulation systems for
nanotechnology development was established [331] (see Figure 2.3).

2.6 Nanomedicine

Molecular nanotechnology has been defined as the three dimensional positional control of
molecular structures to create materials and devices with molecular precision. The human body is
comprised of molecules, hence the availability of molecular nanotechnology will permit dramatic
progress in human medical services. More than just an extension of "molecular medicine",
nanomedicine will employ molecular machine systems to address medical problems, and will use
molecular knowledge to maintain and improve human health at the molecular scale [142].
Nanomedicine will have extraordinary and far reaching implications for the medical profession, for the

23

CHAPTER 2. NANOTECHNOLOGY

definition of disease, for the diagnosis and treatment of medical conditions including ageing, for our
very personal relationships with our own bodies, and ultimately for the improvement and extension of
natural human biological structure and function.

The principal focus in medicine is going to shift from medical science to medical engineering.
The design of medically active microscopic machines will be the consequent result of techniques
provided from human molecular structure knowledge derived from the 20th and the beginning of the
21st century. For the feasibility of such achievements in nanomedicine two primary capabilities are
required: fabrication of parts and assembly of parts. Through the use of different approaches such as
biotechnology, supramolecular chemistry, and scanning probes, both capabilities had been
demonstrated in a limited fashion as early as 1998 [142].

Despite quantum effects which impose a relative uncertainty of electron positions, such
objections are resolved by recognizing that an atom has a predictable position due its nucleus having a
large mass. The quantum probability function of electrons in atoms tends to drop off exponentially
with distance outside the atom, giving atoms a moderately sharp "edge". Even in most liquids at their
boiling points, each molecule is free to move only ~0.07 nm from its average position [151].

Many classical objections related to the feasibility of nanotechnology, such as quantum
mechanics, thermal motions and friction, have already been considered and resolved [311] and
discussions of techniques for manufacturing nanodevices are appearing in the literature with
increasing frequency [140], [172]. Natural molecular machines could be found operating in living
things: in the human body the closest similarity with a molecular machine is a ribosome. A ribosome
acts as a general purpose factory building diverse varieties of proteins by bonding amino acids
together in precise sequences under instructions encoded in the DNA [142]. Similarly a pre-
established set of molecular manipulation tasks will be performed by the presented nanorobot with the
task of protein delivery for organ inlets. Thereby the story of nanotechnology in medicine will be the
story of achieving control at the molecular level, with nanorobots expected to serve as highly precise
sensors and actuators for biomedical instrumentation. The easiest applications will be a system for
diagnosis and health monitoring. More difficult applications will require that medical nanomachines
perform surgical procedures and drug delivery.

One approach to nanomedicine would make use of microscopic mobile devices built using
molecular-manufacturing equipment. Such molecular machines would either be biodegradable, self-
collecting, or collected by something else once they had completed their work. Here, it is useful to
think in terms of medical nanomachines that resemble small cells. Indeed a more recent estimation
shows that future nanoprocessors will enable computers to be 100,000 times faster than any actual
computers [208]. With their onboard nanobiosensors, they will be able to react to the same molecular
signals that the immune system does, but with greater specification. Before being sent into the body on
their mission, they should be programmed with a set of characteristics that allow them to distinguish
their targets from everything else.

The advantages of the use of nanorobotics for medical problems are numerous [139]. We could
mention briefly some of these as follows. A practical approach could be taken to exclude parasites,
bacteria, viruses, and metastasizing cancer cells using medical nanorobots to limit the spread of blood
borne diseases [141][142]. The establishment of a faster action against foreign antigens [93], thus
greatly speeding up the natural immune system response to a large range of diseases. Eradication of
most serious circulatory-related pathological conditions is possible, including all vascular disease, and
heart disease, through the elimination of unconstrained metabolite and fluid circulation. Faster
metabolite transport and distribution, significantly improves physical endurance and stamina [142]
[143]. The direct control by the user of many hormonal- and neurochemical-mediated, and all blood-
mediated, physiological responses will enable the extremely rapid detection of health problems [21].

24

CHAPTER 2. NANOTECHNOLOGY

2.7 Conclusion

As in any new field of technology composed of multidisciplinary sciences, nanotechnology has
arisen in order to have an impact on our society’s life style. The expectations are considerable and the
motivation for this is the large range of possibilities expected to be achieved in the coming years.
Among them, the possibilities that are expected in the field of medicine are exciting. With
miniaturization, the new frontiers have become more challenging at in the same time more intriguing.
With the development of smaller and smaller robots, and the nanomechatronics devices with
manipulation at 3D nanoscale precision, the steps to achieve nanorobots have been considered [72]
[92][243].

Many barriers have fallen recently, and many others are coming down [74][65]. The importance
of a better understanding of nano-world mechanisms and behaviours is paramount. Computational
systems can be used to improve interactivity at the nano scale, thus improving the developmental
stages of medical nanorobotics. It should have a great impact on the fast development of
nanotechnology, resulting in direct improvements to medicine.

A more suitable approach for such endeavours has been shown in the appliance of bottom-up
and up-down joint efforts, where the concepts derived from both approaches point to a feasible path
for the theoretical development of models capable of addressing the complexity of nano-worlds.
Among other approaches, the use of computer graphics as a human interface that facilitates the
interaction between the human and nano-worlds could be pointed out as a most justifiable way to
identify the essence of nanomedicine instrumentation [70][66]. Nanotechnology is expected to enable
us to employ molecular machine systems to address medical problems. Therefore, we should use
scientific knowledge at the molecular scale to maintain and improve human health.

25

Chapter 3

Physically Based Simulation

CHAPTER 3. PHYSICALLY BASED SIMULATION

3.1 Introduction

The study of non-penetrating rigid bodies in virtual reality using dynamic constrained
simulation is a field of research in computer graphics that has an enormous impact on physically based
simulation and a large range of works in this field have resulted in good outcomes [24][70][164][66].
Particularly in calculating the motion of many objects that move under changing constraints, and
frequently collide, one of the key issues of the dynamic simulation method is the calculation of
collision impulses between rigid bodies [23][302]. Depending on the type of applications, it is given
many different names, such as interference detection, clash detection, intersection tests, etc. In
robotics, an essential component of robot motion planning and collision avoidance is a geometric
reasoning system which can detect potential contacts and determine the exact collision points between
the robot manipulator and the obstacles in the workspace [29][62][344].

The problem of collision detection or contact determination between two or more objects is
fundamental to computer animation, molecular modelling, computer simulated environments, and
robot motion planning [59][176][273][294][295][360]. In mathematical terms the correlation between
contact force and relative normal acceleration could be expressed as a linear programming task [25]
[69][81][66], which allows the calcultation of the collision impulse that operates between rigid bodies
colliding at multiple points. Furthermore the relation between the collision impulse and relative
normal velocity also could be expressed as a linear complementary task.

A simple and fast algorithm was equally demonstrated for calculating the contact force with
friction by formulating the relation between force and relative acceleration as a linear complementary
task [22]. This model was based on Dantzig’s algorithm for solving linear complementary problems,
which is extended to systems with friction. Baraff’s algorithm has achieved great performance for
real-time and interactive simulation of two-dimensional mechanisms with contact force, friction force
and collision impulse, although friction impulse at collision was not completely covered in such a
model. Therefore a complementary algorithm was established covering the “impulse-based” aspects as
well, which can trace in detail the change of friction force at a single colliding point by numerical
integration of both the contact force and the friction force [266].

26

CHAPTER 3. PHYSICALLY BASED SIMULATION

Figure 3.1: A point-plane contact between two polyhedra.

In the physical world, there are no perfectly planar faces or perfectly straight edges, and
specifically at a nanoscopic level all contacts can be modelled as a composition of point contacts [70]
[66]. Dynamic collision detection and non-penetrating constraint aspects were indispensable for model
development once we decided to consider kinetics and frictional aspects required specially for
molecular assembly manipulation and rigid body motion with hydrodynamics at low Reynolds
numbers (Re) [79][142].

3.2 Representing Contacts

A contact in the 3ℜ space is represented as a finite conjunction set C of point- plane contact

constraints. A typical point-plane constraint between two polyhedra is shown in Figure 3.1. The
constraint c is defined by a vertex of contact vc and the outward normal of the face nc. A translation d

of vc rebord causes p1 to penetrate p2 at vc exactly when 0<dnT
c . The local motion X∆ causes a

vertex vc of P1 to undergo a translation XJd cc ∆= , where Jc is the constant 63× Jacobian matrix

that relates the differential motion of P1 to the motion of vc. Thus X∆ causes P1 to penetrate P2 at vc

exactly when 0<∆ XJn cc .
The presentation C of a contact between parts P1 and P2 is interpreted as follows. For each

constraint Cc ∈ , a local motion X∆ can relate to c in three ways, depending on the relative motion at
the contacting point:

• Motion X∆ violates c if and only if 0<∆ XJn c
T
c . In other words, X∆ violates c exactly

when part P1 undergoing motion X∆ penetrates part P2 at contact point vc.

• Motion X∆ breaks c when 0>∆ XJn c
T
c . In this case, X∆ causes contact point vc on P1 to

move in a local tangent to part P2.

27

CHAPTER 3. PHYSICALLY BASED SIMULATION

Figure 3.2: Contacts between polyhedra expressed as point-plane contacts.

• Motion X∆ slides on c when 0=∆ XJn c
T
c , i.e. when X∆ causes contact point vc on P1 to

move in a local tangent to part P2.

When X∆ breaks or slides on constraint c, we say that X∆ obeys c. The set of local motions
that obey c form a closed half-space bounded by a hyperplane through the origin.

A local motion X∆ obey the contact C if and only if it obeys all constraints in C. C describes
the contact between P1 and P2 if and only if the set of motions that obey C is equal to the local
freedom of P1 with respect to P2. In this case the c local freedom of P1 is given by the intersection of
the closed half-spaces defined by the constraints Cc ∈ . Note that the point-plane constraints
representing a contact need not correspond to actual contact points on the parts; the only requirement
is that the local motions that obey the contact be equal to the local freedom between the parts.

3.2.1 Polyhedral Contacts

The following types of contact between polyhedra can be described as sets of point-plane
constraints:

Plane-point: the contact c between a planar face of P1 with outward normal nc and vertex vc of

P2 is given by a constraint at vc between a point of P1 and plane of P2 with outward normal cn− .
Face-face: a contact between two polygonal planar faces is described by a set of point-plane

constraints at the vertices of the convex hull of their contacting surface area (Figure 3.2a).

28

CHAPTER 3. PHYSICALLY BASED SIMULATION

Figure 3.3: Polyhedral convex vertex-convex vertex, vertex-convex-edge, and aligned-convex-edges
contacts.

Non-aligned convex edges: two convex edges touching at a point p are described by a point-
plane constraint between p and the plane containing the two edges (Figure 3.2b).

Edge-face: A contact between a convex edge e and a planar face f is described by two point-
plane constraints, one at each end of the intersection segment of e and f (Figure 3.2c).

Convex vertex-concave edge or vertex: if a convex vertex v is in contact with a concave edge
or vertex, the constraint on local motion is equivalent to a set of point constraints between v and each
of the faces meeting at the edge or vertex (Figures 3.3d and 3.3e).

Convex edge-concave edge: in a similar way, two edge-face contacts suffice to describe the
constraint arising from a convex edge contacting a concave edge (Figure 3.2f).

A contact between two polyhedra that includes several of the contacts described above can be
expressed as a set of constraints C, where C is the union of sets Ci each representing one of the above
simple contacts. The remaining possible contacts between polyhedra are convex vertex-convex vertex,
vertex-convex-edge, and aligned-convex-edges contacts (Figure 3.3). All but aligned-convex-edges
contacts can be treated using finite disjunctions of point-plane constraints [374][177]. For instance, in
Figure 3.3a, the motion of the contact vertex vc on P1 must obey at least one of the point-plane
constraints between vc and the planes of P2 that meet at vc.

3.2.2 Nonpolyhedral Contacts

In addition to the above contacts between polyhedra, several common contact types in non-
polyhedral 3D-objects can be expressed in terms of point-plane constraints:

Cylinder-face: a cylinder contacting a plane in a line segment is equivalent for local motion
purposes to an edge-plane contact along the contact line segment (Figure 3.4a).

Cylinder-cylinder: a round peg in a round hole has the same local freedom as a round peg in a
triangular hole. Thus a cylinder-cylinder contact can be described as three cylinder-plane contacts, i.e.
six point-plane contacts (Figure 3.4b).

Threaded cylinders: a contact between two threaded cylinders can be expressed as shown in
Figure 3.4c. A cylinder-cylinder contact is combined with two point-plane contacts that together
express the twisting constraint of the threads at a single point. The normals of the two thread contact

29

CHAPTER 3. PHYSICALLY BASED SIMULATION

Figure 3.4: Typical non-polyhedral contacts.

constraints are opposing and have angle p
1arctan=α with the axis of the cylinder, where p is the

pitch of the threads. In the procedure to calculate local freedom described below, this representation of
threaded contacts is never needed because motion is so strongly constrained.

Although products often have complicated, curved surface shapes, the great majority of contacts
between parts fall into the cylindrical, planar, and threaded types above. The main exception is when
the convex hull of the contact area of a face-face contact is not polygonal (Figure 3.4d). Such a contact
is equivalent to an infinite number of point-plane contacts around the convex hull. A polygonal
approximation of the convex hull allows such a contact to be described with some loss of accuracy.

Non-contacting surfaces of parts are often curved to satisfy requirements such as strength,
aerodynamics, and aesthetics. Thus reasoning about curved surfaces is more important when extended
motions are considered, since these surfaces may interfere with each other. In such cases approximate
methods are often better suited [178].

3.3 Physically Based Simulation

Basically the problem of collision detection corresponds to determining whether there is any
contact between two objects. We can express the exact conditions for dynamically contact forces as a
vector C of contact force magnitude, which is correct if it satisfies some of the basic conditions
discussed next.

Thus the main aspects for collision detection are described as follows. There is no object
interpenetration through contact forces for a rigid body, and any contact force can only push any
related object. The contact force could not be used to pull any 3D object, it affects just the contact
points and nothing else. For dynamic collision detection the contact force expresses a continuous

30

CHAPTER 3. PHYSICALLY BASED SIMULATION

behaviour related to the function of time. Such observations are necessary for any correct contact force
function that intends to produce a dynamically correct motion.

It is possible to have a multiple correct contact force and when some similar circumstances
arises the right solution is given using an equation of compatibility, that is precluded by the rigid body
modelling. Nevertheless any correct result provided by the contact force C results in the same correct
motion [25]. The motion of a rigid body subject to external forces is described by the Newton-Euler
motion equations as follows:

∑=
=

k

i
iCf

m
v

1
)(1

 (3.1)







∑ ×−×=
=

− k

i
ii IwwCfCIw

1

1)( (3.2)

where v is the dotted velocity vector, w is the dotted normal contact distance vector, iCf)(are the

external forces (including contact forces), iC is the vector which points from the center of mass to the
points where the force is applied, I denotes the inertia tensor, and m the object mass. We are interested
to verify when the objects begin their motion if there is any contact between the objects. For rigid
body simulation there are two types of contacts [61] that we could identify as tangential collision and
boundary collision.

Tangential Collisions: this corresponds to a tangential intersection between two surfaces at a
geometric contact point. The contact point lies in the interior of each surface and the normal vectors at
that point are collinear. Equation 3.3 expresses a tangential intersection.

),(),(vuPtsE = (3.3)

0),()),(),((=•× vuPtsEtsE uts (3.4)

0),()),(),((=•× vuPtsEtsE vts (3.5)

with E(s,t) and P(u,v) representing two parametric surfaces, we assume that the Bézier surface has an
algebraic formulation in homogeneous coordinates as:

)),(),,(),,(),,((),(tsWtsZtsYtsXtsE = (3.6)

)),(),,(),,(),,((),(vuWvuZvuYvuXvuP = (3.7)

where vuts PPEE ,,, correspond to the partial derivatives and • corresponds to the dot product.
Equation 3.3 corresponds to a contact between the two surfaces; equation 3.4 and 3.5 represent the fact
that their normals are collinear. They are expressed as scalar triple products of the vector. This is an
over constrained system and has a solution only when the two surfaces are touching each other
tangentially. For such equations, after cross multiplication we get 3 polynomial equations of degree 2n
each. The dot product results in the addition of degrees of the numerator polynomials. Similarly for
two algebraic surfaces, the problem of tangential intersection can be formulated as:

0),,(),,(== zyxpzyxe (3.8)
with

31

CHAPTER 3. PHYSICALLY BASED SIMULATION
















=

















),,(
),,(
),,(

),,(
),,(
),,(

zyxp
zyxp
zyxp

zyxe
zyxe
zyxe

z

y

x

z

y

x
θ (3.9)

Equation 3.8 and 3.9 correspond equally to an over constrained system.

Boundary Collisions: this intersection lies on the boundary curve of one of two surfaces. Thus
given a Bézier surface, defined over the domain,]1,0[]1,0[),(×∈ts , we obtain the boundary curves by
substituting s or t to be 0 or 1. Hence, the problem is reduced into the following equation:

),()1,(vuPsE = (3.10)

Two objects collide if equations 3.3 or 3.10 for parametric surfaces and the 3.3 for algebraic
surfaces have a common solution in their domain. Instead of a Lagrangian model, which complicates
the calculations exponentially as the complexity of the system increases, the Newton-Euler method
was chosen to derive system differential equations. Thus linear state feedback could be used for
motion kinematics modelling.

3.3.1 Timely Dynamic Collision

Given a trajectory that each moving object will travel, we can determine the exact collision time
[64]. It will require the computation of the initial separation and the possible collision time among all
pairs of objects and the obstacles, assuming that the magnitude of relative initial velocity, relative
maximum acceleration and velocity limits are given. If the path that each object travels is known in
advance, then we can calculate a lower bound on collision time. This bound on collision time is
calculated adaptively to speed up the performance of dynamic collision detection.

Let maxa be an upper bound on the relative acceleration between any two points on any pair of

objects. The bound maxa can be easily obtained from bounds on the relative absolute linear lina and

relative rotational accelerations rota and relative rotational velocities rw of the bodies and their

diameters:)(max rwwraaa rrrotlin
 ××+×+= where r is the vector difference between the

centers of mass of two bodies. Let d be the initial separation for a given pair of objects, and vi (where

rwvv rlini
 ×+=) the initial relative velocity of the closest points on these objects. Then we can

bound the time tc to collision as

max

max
2 2

a
vdav

t ii
c

−+
= (3.11)

This is the minimum safe time that is added to the current time to give the wake-up time for this
pair of objects. To avoid a “Zeno’s paradox” condition [174] where smaller and smaller times are
added and the collision is never reached, we must add a lower bound to the time increment. So rather

32

CHAPTER 3. PHYSICALLY BASED SIMULATION

than just adding tc as derived above, we added),max(minttt cw = , where mint is a constant, e.g.

1m Sec or
FrameRate

1
 which determines the effective time resolution of the calculation.

As a side note here, we would like to mention the fact that since we can calculate the lower
bound on collision time adaptively, we can give a fairly good estimate of exact collision time to the

precision in magnitude of mint . In addition, since the lower bound on time to collision is calculated
adaptively for the object most likely to collide first, it is impossible for the algorithm to fail to detect

an interpenetration. This can be done by modifying mint , the effective time resolution, and the user
defined safety tolerance ε according to the environment so as to avoid the case where one object
collides with the other between time steps. The parameter ε is used because the polyhedra may be
actually shrunk by ε amount to approximate the actual object. Therefore, the collision should be
declared when the distance between two convex polytopes is less than 2 ε . This is done to ensure that
we can always report a collision or near-misses.

3.4 Collision Detection for Bounding Volumes

To compute exact collision contacts, using a bounding volume for an interference test is not
sufficient, but it is rather efficient for eliminating those object pairs that are of no immediate interest
from the point of collision detection. The bounding box can either be spherical or rectangular, or even
elliptical, depending on the application and the environment. We prefer spherical and rectangular
volumes due to their simplicity and suitability for implementation.

Consider an environment where most of the objects are elongated and only a few objects,
probably just the robots in most situations, are moving, then rectangular bounding boxes are
preferable. In a more dynamic environment like a vibrating parts feeder where all objects are rather
“fat” [290] and bouncing around, then spherical bounding boxes are more desirable for such objects,
e.g. the biomolecules. If the objects are concave or articulated, then a subpart-hierarchical bounding
box representation (similar to subpart-hierarchical tree representation, with each node storing a
bounding box) should be employed. The reasons for using each type of the bounding volumes are as
follows.

Using a spherical bounding volume, we can pre-compute the box during the pre-processing step.
At each step, we only update the center of each spherical volume and get the minimum and maximum
x, y, z coordinates almost instantaneously by subtracting the measurement of radius from the
coordinates of the center. This involves only one vector-matrix multiplication and six simple
arithmetic operations: 3 additions and 3 subtractions.

However, if the objects are rather oblong, then a sphere is a rather poor bonding volume to use.
Therefore, a rectangular bounding box is a better choice for elongated objects. To impose a virtual
rectangular bounding volume on an object rotating and translating in space, involves a recomputation
of the rectangular bounding volume. Recomputing a rectangular bounding volume is done by updating
the maximum and minimum x, y, z coordinates at each time instance. This is a simple procedure that
can be done at constant time for each body. We can update the “min” and “max” using the following
approaches.

Since the bounding boxes are convex, the maximum and minimum in the x, y, z coordinates
must be the coordinates of vertices. We can set up 6 imaginary boundary walls, each of these walls is
located at the maximal and minimal x, y, z coordinates possible in the environment. Given the
previous bounding volume, we can update each vertex of the bounding volume by performing only

33

CHAPTER 3. PHYSICALLY BASED SIMULATION

half of the modified vertex-face tests, since all the vertices are always in the Voronoi regions of these
boundary walls. We first find the nearest point on the boundary wall to the previous vertex, after
motion transformation, on the bounding volume, then we verify if the nearest point on the boundary
wall lies inside the Voronoi region of the previous vertex. If so, the previous vertex is still the extreme
point, minimum or maximum in x, y, or z-axis. When a constraint is violated by the nearest point on
the face (wall) to the previous extreme vertex, the next feature returned will be the neighbouring
vertex, instead of the neighbouring edge. This is a simple modification to the point-vertex applicability
criterion routine. It still preserves the properties of locality and coherence well. This approach of
recomputing the bounding volume dynamically involves 6 point-vertex applicability tests.

Another simple method can be used based on the property of convexity. At each time step, all
we need to do is to check if the current minimum or maximum vertex in x, y, or z coordinate still has
the smallest or largest x, y, or z coordinates values in comparison to its neighbouring vertices. By
performing this verification process recursively, we can recompute the bounding boxes at an expected
constant rate. Once again, we are exploiting the temporal and geometric coherence and the locality of
convex polytopes. Obviously we must update only the bounding volumes for the moving objects.

We speed up the performance of this approach by realising that we are only interested in one
coordinate value of vertices for each update, say x coordinate while updating the minimum or
maximum value in x-axis. Therefore, there is no need to transform the other coordinates, say y and z
values, in updating the x extremal vertices during the comparison with neighbouring vertices.
Therefore, we only need to perform 24 vector-vector multiplications. 24 comes from 6 updates in
minimum and maximum in x, y, z coordinates and each update involves 4 vector-vector
multiplications, assuming each vertex has 3 neighbouring vertices.

For concave and articulated bodies, we need to use a hierarchical bounding box structure, i.e. a
tree of bounding boxes. Before the top level bounding boxes collide, there is no need to impose a
bounding volume on each subpart or each link. Once the collision occurs between the parent bounding
boxes, then we compute the bounding boxes for each child (subpart or linkage). At last we would like
to briefly mention that in order to report “near-misses”, we should “grow” the bounding boxes by a
small amount to ensure that we perform the exact collision detection algorithm when two objects are
about to collide, not after they collide. Given the details of computing bounding volume dynamically,
we will describe briefly some current algorithms that are applied for collision detection with their
particularities, suitable applicability and relative computational effort required for each one.

3.4.1 Interval Tree for 2D Intersection Tests

Another approach is to extend the one-dimensional sorting and sweeping technique to higher
dimensional space. However, as mentioned earlier, the time bound will be worse than)(nO for two or
three-dimensional sort and sweep due to the difficulty in making a tree structure dynamic and flexible
for quick insertion and deletion of a higher dimensional box. Nevertheless, for more dense or special
environments, such as a mobile robot moving around in a room cluttered with moving obstacles, such
as biomolecules, it is more efficient to use an interval tree for 2-dimensional intersection tests to
reduce the number of pairwise checks for overlapping. We can significantly reduce the extra effort in
verifying the exchanges checked by the one-dimensional sort and sweep. Here we will briefly describe
the data structure of an interval tree and how we use it for intersection testing of 2-dimensional
rectangular boxes.

An interval tree is actually a range tree properly annotated at the nodes for fast search of real

intervals. Assume that n intervals are given, as],[,],,[11 nn ebeb ⋅⋅⋅ where ib and ie are the endpoints

34

CHAPTER 3. PHYSICALLY BASED SIMULATION

of the interval as defined above. The range tree is constructed by first sorting all the endpoints into a

list mxx ,,1 ⋅⋅⋅ in ascending order, where nm 2≤ . Then, we construct the range tree top-down by

splitting the sort list L into the left subtree lL and the right subtree rL , where),,(1 pl xxL ⋅⋅⋅= and

),,(1 mpr xxL ⋅⋅⋅= + . The root has the split value
2

1++ pp xx
. We construct the subtrees within each

subtree recursively in this fashion till each leaf contains only an endpoint. The construction of the
range tree for n intervals takes)log(nnO time. After we construct the range tree, we further link all
nodes containing stored intervals in a doubly linked list and annotate each node if it or any of its
descendants contain stored intervals. The embellished tree is called the interval tree.

We can use the interval tree for static query, as well as for the rectangle intersection problem. To
check for rectangle intersections using the sweep algorithm, we take a sweeping line parallel to the y-
axis and sweep in increasing x direction, and look for overlapping y intervals. As we sweep across the
x-axis, y intervals appear or disappear. Whenever there is an appearing y interval, we check to see if
the new interval intersects the old set of intervals stored in the interval tree, report all intervals it
intersects as rectangle intersections, and add the new interval to the tree.

Each query of interval intersection takes)(log knO + time where k is the number of reported
intersection and n is the number of intervals. Therefore, reporting intersections among n rectangles can
be done in)log(knnO + where K is the total number of intersecting rectangles.

3.4.2 One-Dimensional Sort and Sweep

This approach is especially suitable for an environment where only a few objects are moving
while most of the objects are stationary, e.g. a virtual walk-through environment. In computational
geometry, there are several algorithms that can solve the overlapping problem for d-dimensional

bounding boxes in)log(1 snnO d +− time where s is the number of pairwise overlaps [116][182]

[334]. This bound can be improved using coherence. Let a one-dimensional bounding box be [b,e]
where b and e are the real numbers representing the beginning and ending points. To determine all
pairs of overlapping intervals given a list of n intervals, we need to verify for all pairs i and j if

],[jji ebb ∈ or],[iii ebb ∈ , nji ≤<≤1 . This can be solved by first sorting a list of all bi and ei

values, from the lowest to the highest. Then, the list is traversed to find all the intervals that overlap.
The sorting process takes)log(nnO and)(nO to sweep through a sorted list and)(sO to output
each overlap where s is the number of the overlap.

For a sparse and dynamic environment, we do not anticipate that each body will make a
relatively large movement between time steps, thus the sorted list should not change much.
Consequently the previous sorted list would be a good starting point to continue. To sort a “nearly
sorted” list by bubble sort or insertion sort can be done in)(enO + where e is the number of
exchanges.

All we need to do now is to keep track of “status change”, i.e. from overlapping in the last time
step to non-overlapping in the current time step and vice versa. We keep a list of overlapping intervals

at all times and update it whenever there is a status change. This can be done in)(zyx eeenO +++

time, where zyx eee ,, are the number of exchanges along the x, y, z coordinate. Though the update

35

CHAPTER 3. PHYSICALLY BASED SIMULATION

can be done in linear time, zyx eee ,, can be)(2nO with an extremely small constant. Therefore, the

expected run time is linear in the total number of vertices.
To use this approach in a three-dimensional workspace, we pre-sort the minimum and maximum

values of each object along the x, y, z axis, as if we are imposing a virtual bounding box hierarchy on
each body, sweep through each nearly sorted list every time step and update the list of overlapping
intervals as we mentioned before. If the environment is sparse and the motions between time frames
are “smooth”, we expect the extra effort to check for collisions will be negligible. This “pre-filtering”
process to eliminate the pairs of objects not likely to collide will run essentially in linear time. A
similar approach has been mentioned by Baraff [23].

3.4.3 Uniform Spatial Subdivision

We can divide the space into unit cells (volumes) and place each object (bounding box) in some
cell(s) [290]. To check for collisions, we have to examine the cell(s) occupied by each box to verify if
the cells are shared by other objects. But, it is difficult to set a near-optimal size for each cell and it
requires a tremendous amount of allocated memory. If the size of the cell is not properly chosen, the
computation can be rather expensive. For an environment where almost all objects are of uniform size,
like a vibrating parts feeder bowl or molecular modelling [360] [290], this is a rather ideal algorithm,
especially to run on a parallel-computing machine. In fact, Overmars has shown that using a hash table
to look up an entry, we can use a data structure of)(nO storage space to perform the point location
queries in constant time [290].

3.4.4 BSP-Trees and Octrees

One of the commonly used tree structure is the BSP-tree, Binary Space Partitioning tree, to
speed up intersection tests in CSG Constructive Solid Geometry [356]. This approach constructs a tree
from separating planes at each node recursively. It partitions each object into groups of parts that are
close together in binary space. When the separation planes are chosen to be aligned with the
coordinate axes, then a BSP tree becomes more or less like an octree.

One can think of an octree as a tree of cubes within cubes. But the size of the cube varies
depending on the number of objects occupying that region. A sparsely populated region is covered by
one large cube, while a densely occupied region is divided into smaller cubes. Each cube can be
divided into 8 smaller cubes if necessary. So each node in the tree has 8 children (leaves).

Another modified version of the BSP-Tree proposed by Vanecek [364] is a multidimensional
space-partitioning tree called Brep-Index. This tree structure is used for collision detection [45]
between moving objects in a system called Proxima developed at Purdue University.

The problem with tree structures is that its update, insertion and deletion, is inflexible and
cumbersome, especially for a large tree. The overhead of insertion and deletion of a node in a tree can
easily dominate the run time, especially when a collision occurs. The tree structures also cannot
capture the temporal and spatial coherence well.

36

CHAPTER 3. PHYSICALLY BASED SIMULATION

3.5 Conclusion

The use of physically based simulation is a branch of computer graphics that has a great range of
applications in different fields. For nanotechnology its impact could be of great importance for the
nanoCAD design of new devices at nanoscale [70][66]. With the application of virtual reality and
dynamic collision detection many aspects for a better comprehension of kinetics features in the nano-
world could be improved. The representation of diverse contacts in 3D are easily accompanied with
the use of a virtual reality approach, where the exact conditions for dynamically contacted forces could
be expressed and satisfied in a precise fashion. Although there are different methodologies proposed
for collision detection with bounding volumes, we have chosen the Interval Tree for 2D Intersection,
this is the most suitable approach for the complexity of environments with different objects and robots
moving all around the workspace, once its reduced number of pairwise checks improve the simulator
performance. The field of computer graphics is providing a unique opportunity to contribute to a new
field of science that promises to revolutionise our society [65]. The possibilities that are open for the
new field of nanotechnology are impressive and computer graphics will play a decisive role in the fast
development of nanotechnology [73][66].

37

Chapter 4

Motion Control

CHAPTER 4. MOTION CONTROL

4.1 Introduction

Motion planning algorithms were initially developed in the context of robotic systems. Such
algorithms process motion given a high-level goal and a geometric description of the objects involved
[230]. In the context of computer animation, motion planning can be used to effectively compute
primary intentional motions. Examples include computing collision-free motions to accomplish high-
level navigation or object manipulation tasks [219][19][226], or connecting different body
configurations [86][44]. Motion planning is particularly suited to such tasks, since there is a near
infinite number of possible goal locations and obstacle arrangements in the environment. This
combinatorial explosion of possibilities currently prohibits the direct use of pre-recorded motion
sequences. Instead, flexible and efficient planning algorithms can be designed to compute collision-
free motions for specific categories of task commands that apply to a broader set of situations.

Indeed path planning problems arise in such diverse fields as robotics [71], assembly analysis
[42][65], virtual prototyping [69][66], pharmaceutical drug design [210], manufacturing [20], and
computer animation [226]. Such problems involve searching the systems configuration space for a
collision-free path connecting a given start and goal configuration [230]. Randomized algorithms for
path planning have enjoyed success and popularity in the last several years due to their efficiency in
handling problems with many degrees of freedom [26]. The randomized path planner of Barraquand
and Latombe [28] was an early attempt to practically solve problems with high-dimensional
configuration spaces. Their search technique alternated between following the gradient of an artificial
potential field [215], and utilizing random walks in order to escape the basin of attraction of any local
minima encountered. Variations of this planner were used to solve complex single and multi-arm
manipulation tasks [218][219][359]. Unfortunately, pathological cases involving local minima can
exist such that the probability of escaping them via random walk is extremely small [83][211].

In order to avoid the problems of local minima inherent with artificial potential fields, new
sampling strategies were devised [212]. Probabilistic roadmap methods build a network of randomly-
sampled free configurations in the configuration space [290][213]. After the network (roadmap) has
been built, a path may be sought for using standard graph-search algorithms [349].

38

CHAPTER 4. MOTION CONTROL

Theoretical results show that with a reasonable resolution of the geometry of the configuration
space, a relatively small roadmap can correctly capture the connectivity of the free space with a high
probability [189]. More precisely, the probability that a roadmap incompletely represents the
connectivity of the free space decreases exponentially with the number of sample points in the
roadmap. The main issue affecting coverage of the free space is the presence of narrow passages in the
configuration space [188].

There are numerous variations on the basic roadmap strategy, most of which rely on different
sampling techniques in an effort to reduce the computational costs [186][4]. The computed roadmaps
are especially suitable when multiple path-planning queries are given for a robot in the same static
environment, since searching a roadmap is very fast [188]. However, the overhead associated with
building the roadmap is often too large for single-query planning problems in interactive environments
[43].

Hsu developed a variant of the probabilistic roadmap planner that is better suited for solving
single-query path planning problems [189]. It avoids the initial cost of preprocessing by incrementally
building two trees respectively rooted at the start and the goal. As the trees grow, the planner
periodically attempts to join them together to form a path. The idea of constructing search trees from
the initial and goal configurations comes from classical Artificial Intelligence (AI) bidirectional
search, and its use in motion planning methods [193]. In order to avoid oversampling any region of the
configuration space, in such a method the planner incrementally samples around nodes in the trees
according to a weighted probability that favors nodes that have few neighbors.

LaValle recently introduced the concept of Rapidly-exploring Random Trees (RRTs), a
randomized sampling scheme originally designed for nonholonomic motion planning [232]. RRTs
have also been applied to kinodynamic planning problems in configuration spaces of up to 12
dimensions. For both holonomic and nonholonomic planning, the sampling technique exhibits several
desirable properties. Similar to the planner, the goal is to incrementally build a tree of free
configurations in such a way that the expansion of the tree is heavily biased towards the unexplored
regions of the space [189]. Due to the way that RRTs are constructed, the distribution of samples

eventually converges toward a uniform distribution over freeC [232]. Further approaches were also

proposed [71], and among others we could briefly mention for example genetic algorithms, tabu
search, simulated annealing, neural networks that were applied successfully to the problem of motion
control [65]. A mathematical description of the basic aspects related to the problem of motion control
is detailed next.

4.2 Motion Control Description

Basic motion planning can be characterized as an optimal control problem. In this section it is
important to note that we are not using control theory to study such issues as robot dynamics,
controllability, or stability, but simply to recast the basic motion planning problem. Optimal control
theory is a vast subject, and only some key definitions are provided here. A more thorough

introduction to optimal control theory can be found in [56][228]. Let nX ℜ⊆ represent a state space

in which Xx ∈0 represents the initial state of a system. Let n
ftu ℜ→],0[: represent a control

function in which],0[ft represents an interval of time. The control at time t is given by u(t), and the

system state at time t is given by x(t). The system equation can be represented as))(),((tutxfx = ,

39

CHAPTER 4. MOTION CONTROL

which defines how the state will evolve over time. A loss functional is defined that evaluates any state
trajectory and control function as follows:

∫ +=⋅⋅
ft

ftxQdttutxluxL
0

))(())(),(())(),(((4.1)

The integrand l(x(t),u(t)) represents an instantaneous cost, which when integrated can be
imagined as the total amount of energy that is expended. The term Q(x(tf)) is a final cost that can be
used to induce a preference over trajectories that terminate in a particular portion of the state space by

penalizing the final state of the system. One can also take ∞=ft and describe an asymptotic final

state)(∞x . Suppose that the initial state, x0, is given. The optimal control design task is to select a
control function)(⋅u that causes equation 4.1 to be minimized.

Considering that the basic motion planning could be expressed as a problem to compute a path

freeC→]1,0[τ such that initq=)0(τ and goalq=)1(τ , when such a path exists, and that the natural

choice for the state space as freeCX = . Furthermore if robot dynamics were also included in the
problem specification, then X might be expanded to include time derivatives on the configuration
space. Next we define a simple system equation,)())(),((tututxf = for all t. This is not intended to be
the most specific model of a particular robotic system, but rather it is used to encode the basic motion

planning problem. We can assume for all t that the control input is either normalized, 1)(=tu , or

0)(=tu . The initial state of the system is fixed, initq=)0(τ . The loss functional can be simplified to

))(())(),((ftxQuxL =⋅⋅ . We take 0))((=ftxQ if goalf qtx =)(, and 1))((=ftxQ otherwise. Thus
our modelling partitioned the space of admissible controls into two classes: control functions that
cause the basic motion planning problem to be solved receiving zero loss; otherwise, unit loss is
received.

The motion planning problem requires a collision-free path. This can be obtained by mapping
the space of control functions into the space of state trajectories for well-known obstacles. For a given
u(t), t > 0 and x0, a state trajectory xu(t), t > 0 can be completely predicted. If 0))(),((=⋅⋅ uxL u , then
the determined state trajectory is a solution to the basic motion planning problem, which can be

expressed as)()(fu stxs =τ .
The previous formulation considered all control inputs that achieve the goal to be equivalent. By

changing the loss functional, the optimal-path-length motion planning problem can be formulated:









∞⇒

∫⇒==⋅⋅
otherwise

dtxqtxuxL
ft

goalf
0

)())(),(( (4.2)

The term ∫
ft

dtx
0
 measures the path length, and recall that)()(tutx = for all t. It is well known

that the optimal path generally maps into the closure of freeC [230]. Because freeC is open, we

define the state space for this case to be validCX = . A variety of other possibilities exist for defining
the loss functional.

40

CHAPTER 4. MOTION CONTROL

The motion planning problem can alternatively be characterized in discrete time. The discrete-
time representations can simplify the development of computational methods. With the discretization

of time,],0[ft is partitioned into stages, denoted by }1,...,1{ +∈ Kk . Stage k refers to time

tk ∆−)1(. If tf is finite, the final stage is given by 







∆

=
t

t
K f

. Let xk represent the state at stage k. At

each stage k, an action uk can be chosen. Because

t
txttx

dt
dx

t ∆
−∆+=

→∆

)()(
lim

0
(4.3)

the state transition equation can be approximated as

kkk uxx +=+ 1 (4.4)

As an example of how this representation approximates the basic motion planning problem,

consider the following example. Suppose 2ℜ⊆freeC . It is assumed that 1=ku and, hence, the

space of possible actions can be sufficiently characterized by the parameter 2,0[∈Φ k π]. The
discrete-time state transition equation becomes





Φ
Φ





∆+=+)(

)(
sin
cos

1
k

k
kk txx (4.5)

At each stage, the direction of motion is controlled by selecting kΦ . Any K-segment polygonal

curve of length tK∆ can be obtained as a possible state trajectory of the system. If an action is
included that causes motion, shorter polygonal curves can also be obtained.

A discrete-time representation of the loss functional must also be defined:

∑ +=
=

+++
K

k
KKkkkKK xluxluuxxL

1
11111)(),(),...,,,...,((4.6)

in which lk and lk+1 serve the same purpose as l and Q in the continuous-time loss functional.
The basic motion planning problem can be represented in discrete time by letting 0=kl for all

},...,1{ Kk ∈ , and defining the final term as 0)(11 =++ kK xl if goalk qx = and 1)(11 =++ kK xl

otherwise. This gives equal preference to all trajectories that reach the goal, and approximate the

problem of planning as an optimal-length path, with 0=kl for all },...,1{ Kk ∈ . The final term is

then defined as 0)(11 =++ kK xl if goalk qx ∈ , and ∞=++)(11 kK xl otherwise.

The previous formulations have shown equivalence between the basic motion planning problem
and a specific version of the optimal control problem. Therefore, an algorithm that solves a basic
motion planning problem equivalently solves a specific optimal control problem. For example, the
visibility graph approach can be considered as a method for determining an optimal controller for a

particular optimal control problem in 3ℜ with polygonal constraints on the state space and the loss

functional.

41

CHAPTER 4. MOTION CONTROL

One key difference between this optimal control problem and those typically considered in
control theory literature is the set of geometric constraints on the state space that appear because of
obstacles in the workspace. These constraints represent a twist to the control problem and must be
confronted in a robotics context. Another difference is that a goal (or reference) trajectory that serves
as a reference for comparing solutions is often specified for standard control problems; however, in
basic motion planning the primary task is to select the trajectory (the collision-free path).

The optimal control formulations that are considered in this section are limited, however, in a
number of ways: (1) only open-loop control functions are considered; (2) no form of uncertainty is

assumed; and (3) only a single robot is being controlled; (4) the space of motion is in 3ℜ .

4.3 Uncertainty Environments

The success of a motion planning approach in an implemented robotics system depends to a
large extent on the manner in which various forms of uncertainty are modelled and treated. Motion
planning under uncertainty therefore represents a very important extension of the basic problem and
has received much attention from the motion planning community [233].

Two common representations of uncertainty have been applied to motion planning problems.
One representation restricts parameter uncertainties to lie within a specified set. A motion plan is then
generated that is based on worst-case analysis [63][122][231][239]. We refer to this representation as
nondeterministic uncertainty. The other popular representation expresses uncertainty in the form of a
probability density function. This often leads to the construction of motion plans through average-
case or expected-case analysis [53][150][327]. We refer to this case as probabilistic uncertainty.

We will describe each of the sources of uncertainty in isolation, although in general any
combination of these uncertainty types can be considered simultaneously in a motion planning
formulation. Uncertainty can be introduced into a motion planning problem in a number of ways, thus
we organize this uncertainty into four basic sources [233] for the discussion which follows.

4.3.1 Configuration-Sensing Uncertainty

Suppose that freeC is given. Under uncertainty in configuration sensing, incomplete or

imperfect information is utilized by the robot to make an inference about its configuration. This
information could come from sensor measurements or motion history. With a nondeterministic
uncertainty model, the robot might have sufficient information to infer that q lies in some subset

freeCQ ⊂ . For example, this representation of uncertainty is used to guarantee that the robot

recognizably terminates in a goal region. With a probabilistic model, the robot might infer a posterior
probability density over configurations [239], p(q), that is conditioned on sensor observations [231],
initial conditions [63], or additional knowledge [122]. Examples that handle configuration-sensing
uncertainty with probabilistic representations could be found at [53][351][60].

4.3.2 Configuration-Predictability Uncertainty

Suppose that both freeC and the current configuration, q freeC∈ are given. Motion commands

can be given to the robot, but with control uncertainty the future configurations cannot, in general, be
completely predicated [104]. With nondeterministic uncertainty, the robot may infer that some future

42

CHAPTER 4. MOTION CONTROL

configuration will belong to a subset freeCQ ⊂ . The method of preimage backchaining constitutes a

large body of work in which bounded uncertainties are propagated and combined with configuration-
sensing uncertainty, to guarantee that the robot will achieve a goal [135][239]. With a probabilistic
model, future configurations can be described by a posterior density over configurations, p(q), that is
conditioned on the initial configuration and the executed motion command [150].

4.3.3 Environment-Sensing Uncertainty

Analogous to configuration-sensing uncertainty, suppose that a space of possible environments,
E, is known to the robot. Although a space of configurations is a well-defined concept, in robotics
literature, we must define what is meant by a “space of environments”. For the purpose of discussion,

let E contain different possibilities for freeC . Under environment-sensing uncertainty, incomplete or

imperfect information is utilized by the robot to make an inference about its environment. With a
nondeterministic uncertainty model, the robot might have sufficient information to infer that the
environment e belongs to some subset EF ⊂ . For example, a determined environment could be
restricted to a plane populated with unknown polygonal obstacles, which are then discovered using
visual “scans” to build a visibility graph for motion planning [300]. Sometimes unknown obstacles are
allowed to be of arbitrary shape, and the sensor data consists of “tactile” information for a point robot
[240]. With a probabilistic model [115], the robot might infer a posterior probability density [190],
p(e), over environments, which is conditioned on sensor observations [119], initial conditions, or
additional knowledge [341].

4.3.4 Environment-Predictability Uncertainty

Suppose again that the space of environments E is known by the robot; however, in addition, the
robot knows its current environment Ee ∈ . Predictable motion commands might be given to the
robot, but with environment-predictability uncertainty, future environments cannot be completely
predicted. With nondeterministic uncertainty, the robot may infer that some future environment will
belong to a subset EF ⊂ [289]. With a probabilistic model, future environments can be described by
a posterior density over environments p(e) that can be conditioned on the initial environment, the robot
configuration, or an executed motion command [33][53].

4.4 Sensor-Based Motion Control

The role of perception for a given robot with predefined motor actions is to determine what
actions take place and when. In this style of action-oriented perception, the action defines the form of
the perception in terms of what information is needed for the action to make its control decision. Thus
sensing for intelligent robots may be defined as “the process of gathering or receiving data about the
environment and the agent itself” [85]. Architecture for intelligent agents usually provides some
method of interfacing the agent to the environment through sensors. Sensory information can be
encoded at both a low level and a high level and utilised by high-level decision-making processes of
the agent. We could summarise that the work of sensing the environment around a robot as two
fundamental operations: gathering data about the environment, and interpreting the data. For a
physical robot, gathering data involves devices such as cameras, laser rangefinders, and sonars, while

43

CHAPTER 4. MOTION CONTROL

interpreting data involves software algorithms, e.g. image segmentation, 3D model reconstruction,
object recognition, motion estimation, etc.

Previous researchers have argued the case for employing some kind of virtual perception for
animated characters [305]. This may include one or more of simulated visual, acoustic, aural,
olfactory, or tactile perception. Some research has been done on sensor-based motion [214] and
manipulation [191], therefore perception is used to help decide what action the robot should take and
when it should be performed, and such approach is also known in the literature as perceptual sensing
[225].

The connection between local perception and global action is a redundant system of mobile
robots through the mass effect of competitive or collective robotics. For any one robot, its locally
derived perception may not decode the environment completely, due to limitations imposed by the
robot’s position within the environment (a spatial constraint). Nevertheless, since sensing in such a
spatially distributed system increases the probability that some of the robots correctly respond to the
environment, then the actions performed on the environment by those robots may allow others to sense
stimulus changes upon the manipulated objects in the workspace. How local perception decodes
stimuli depends on the approaches taken to integrating sensor data, and one of them could be by
defining and specifying perceptual cues.

Defining and specifying perceptual cues involves three techniques for cue creation: feature
extraction using threshold logic; orthogonal sensing as a means for integrating physical sensors; and
additive cue construction specified as clauses in predicate calculus. The result is cues that answer
yes/no type questions about what can be sensed in the robot’s immediate vicinity. Functionally,
perceptual cues are used for either activating motor behaviours or for causing state transitions among
the robot’s subtask controllers. Consequently, the local perception can be summarized as a way of
determining the “what and when” for robot action sequences.

4.4.1 Perceptual Cue

A perceptual cue is a boolean value that indicates either the presence or absence of a pattern of
stimuli. Perceptual cues (PCs) are context dependent features in sensor data that indicate a perceived
event. Context is determined by the current state in task execution space. States in task execution are
specified as steps in the task and implemented as subtask controllers. At the level of task description,
PCs are used to determine which step of the task is being executed. Each subtask controller consists of
a finite number of states, where each state is associated with a certain motor action and implemented
as a primitive actuation behaviour. In a perceptual behaviour approach, sensor features detected by a
perceptual cue map directly to motor actions.

Features are obtained by processing sensor data to produce a binary output. Sensor data is
acquired from single or multiple sensors and is processed using simple threshold logic. Cues can be
created by using data from different sensor types using boolean operators. Cues are context dependent
in that they are specified or a specific task and a given environment. Sensor features which are not
unique can be combined orthogonally or additively.

44

CHAPTER 4. MOTION CONTROL

Figure 4.1: Sensing by orthogonal spatially sensors.

4.4.2 Orthogonal Sensing

In order to simplify sensor processing, binary cues created using threshold logic can be
integrated by employing either spatially or modally orthogonal sensing strategies. The result integrates
multiple sensors of the same type geometrically, by spatially partitioning the robot’s perceptual field-
of-view. Sensors of different type are combined to create cues in which all bit positions in the output
vector are from dissimilar stimulus modalities. Their combination makes the extracted sensor feature
temporally unique.

Sensing can be made spatially orthogonal by either arranging the same type of sensors
geometrically with nonoverlapping fields-of-view or by partitioning the field-of-view with thresholds
as shown in Figure 4.1. As an example of a spatially orthogonal sensor, consider a ring of eight
sensors, each with a 45 degrees field-of-view and equally spaced on a circle – it is a common
configuration found in commercial mobile platforms. The perceptual space is divided into eight
discreet zones in which stimuli may be detected. If obstacle sensors were used, then each bit of an 8-
bit vector could represent the presence of an obstacle within the assigned zone. Thus, 256 possible
combinations are available for mapping to motor actions used in obstacle avoidance. The outputs are
combined using boolean operators resulting in an unique feature in the sensor’s output space from
sensors of different modalities.

4.4.3 Additive Cue

Perceptual cues can also be defined by combining cues additively as a Horn clause [225]. In
predicate calculus a Horn clause is any disjunction of the form: DCBA ∨¬∨∨¬∨¬ Each Horn
clause has at most one positive literal, and can be rewritten as an equivalent formula:

DCBA →∧∧∧ Such a formula is a notational variant of Horn clauses used in Logic
Programming and Fuzzy Logic [249]. The newly defined cue is the consequent variable D of
previously defined cues represented by the variables A, B,…, C. Cues defined in this way represent the
state of the task model and are generally used for behaviour activation in a world completed by

45

CHAPTER 4. MOTION CONTROL

Figure 4.2: Robot orientation by sensor-based reaction.

objects, agents, and events. Thus a perceptual cue is a control decision used to trigger a motor
behaviour and to control the transition among states in a task model. Motor behaviours remain active
for a fixed period of time, at the end of which the cue’s truth-value is reevaluated. Either the same cue
is applicable or the stimulus conditions have changed, thereby activating another cue.

In executing a robot task, defined as a multistep procedure, stimulus conditions may also change
sufficiently to indicate a state transition, where “state” represents a separate motion controller
designed to accomplish one step in a task description. Using cues to trigger a behavioural response is a
common mechanism for action in social insects [275] and for governing different phases of activity in
tasks such as nest building [109].

The advantage of reducing motor behaviour control decisions to binary values is the cue’s
functional abstraction. In this manner, activation of a motor behaviour is not dependent on a specific
perceptual cue, but rather on the decision that results from sensor processing. For example, a motor

46

CHAPTER 4. MOTION CONTROL

behaviour created to make a robot rotate)sin(Φ , where Φ assumes a set of possible predefined
values, changes the robot route avoiding a collision between the robot and some undesirable obstacle.
If touch sensors are used then about the point of contact, it could specify when both touch sensors are
in contact with the surface as illustrated in Figure 4.2, and return a binary “11” value. Thus to maintain
a normal orientation with respect to obstacles, left and right contact information is used. The
information can be provided by either touch sensors or acoustic sensors.

Contact with the left side only would be represented as binary “10” and contact with the right as
a “01” value, with the no contact condition specified as a “00” value. The same contact information
using acoustic sensors and phototaxis could be specified by determining the sensor’s threshold value
when in contact with a surface and creating cues that return “11” when the robot is in full contact with
the surface in a similar manner.

The advantage is that the design of the motor behaviour does not change when different sensor
types or alternate feature extraction techniques are used since the information needed by the motor
behaviour is the same binary vector in both cases. Therefore the function of perceptual cues is to
control behaviour activation and state transitions in a manner that allows for changes in perception
design and implementation without affecting the control architecture’s connection to motor action.

4.5 Multiple Robot Motion Planning

For multiple robot motion planning problems, we are concerned not only about collision with

obstacles, but also about collisions that occur between robots. Thus let each robot, Ωr , be a rigid

object, capable of moving in a workspace that is a bounded subset of 3ℜ . The position and orientation

of the robot in the workspace are specified parametrically, by a point in an n-dimensional

configuration space, Ci. Static obstacles in the workspace, compact subsets of 3ℜ , prohibit certain

configurations of the robot. The open subset of Ci that corresponds to configurations in which Ωr
does not intersect any obstacles, is referred to as the free configuration space, and is denoted by

i
validC , which is the closure of i

freeC . We use i
validC in this work because optimality is more

straightforward to consider. This distinction is primarily technical, because solutions that exist in

i
validC can be considered as limit points for solutions in i

freeC . We assume that each robot has

complete knowledge of i
validC , along with perfect configuration sensing and control.

A state space, X, is defined that simultaneously represents the configurations of all of the robots.
Because collisions with obstacles are prohibited, a natural choice for the state space is

N
validvalidvalid CCCX ×⋅⋅⋅××= 21 (4.7)

in which × denotes the Cartesian product. Let the state space be represented as

47

CHAPTER 4. MOTION CONTROL

Figure 4.3: The set Xij and its cylindrical structure on R3.

NXXXX ×⋅⋅⋅××= 21 (4.8)

Each subspace, Xi, of the state space yields the configuration of Ωr . Let Ωr denote the interior

of Ωr . We define the open set corresponding to the exclusion of the boundary of Ωr as

}0)()(|{ ≠∩∈= =Ω=Ω
j

j
i

i
ij
coll xrxrXxX  (4.9)

We use the notation Ωr (xi) to refer to the transformed robot, ir =Ω , at xi. The equation 4.9

represents the set of states in which two robots collide. The collision subset, XX coll ⊂ is
represented as the open set,

ij
collji

coll XX
≠

=  (4.10)

Hence, a state is in the collision subset if the interiors of two or more robots intersect. We

define validX as the closed set, collXX − - see Figure 4.3. The basic task is to bring each robot

from some initial state ii
init Xx ∈ to some goal state ii

goal Xx ∈ . While achieving this task, each

robot is not permitted to collide with obstacles or other robots, which means that the state must remain

within validX . In addition, explicit objectives must be taken into consideration when achieving this
task.

We consider a state trajectory as a continuous mapping XTx →],0[: . A trajectory for an

individual robot is represented as ii XTx →],0[: . An explicit choice for the final time, T, is usually

48

CHAPTER 4. MOTION CONTROL

not needed in practice. For some problems, a final time may naturally exist, by which the robots must
accomplish the basic task. Usually, however, we do not require a specific termination time, and can

consider ∞=T . The motion of an individual robot, Ωr , is specified through the state transition
equation,

))(),(()(tutxftx iiii = for each },...,1{ Ni ∈ , (4.11)

in which ui(t) represents a control function for Ωr , which is chosen from a set of allowable
controls.

Considering the geometric aspect of a motion planning problem [27], we assume that a robot is

capable of switching between a fixed, maximum speed, iv , and remaining motionless, what

represents a typical characteristic in geometric motion planning [121][287]. If for example, a robot is
allowed to translate and rotate, then finite bounds might be given that limit the translational and
angular speeds [207].

4.5.1 Multiple Robot Coordination

A collective system that acts as a unit in a well-coordinated manner is displaying a coherent
system behaviour. Such a system, composed of people, insects or robots, is thought to be more
effective at achieving some goals than individuals acting alone. In robot tasks, like collective
manipulation, is such a cooperative system possible without inter-robot communication or robot
identification? Coherent behaviour is accomplished by viewing the system that solves the problem as
two equally important parts consisting of the environment and the robot system as shown in Figure
4.4. A solution to a given task is considered to consist of two parts: the environment with actions on its
input and changes in stimulus as its output, and the robot system with stimulus as input and actions on
the environment as output.

The environment has actions performed in it on its input side, which result in changes that may
be perceived on its output side. The robot system has perception on its input and produces actions in
the environment as its output. In such a system the task to be accomplished is the desired change in the
environment in response to input actions performed by the robots. The robot system is the procedural
mechanism used to achieve those changes. In this synergistic system coherent behaviour becomes
possible as the common task and its environment become the central coordinating mechanism.

Nature has generally provided us examples of a multi-agent system such as social insects [137],
whose decentralized control is based solely on locally sensed information. Moreover, ants exhibit a
group transport behaviour, used in both food and prey retrieval tasks, in which stagnation problems
arise and are solved using simple recovery strategies [345]. Group transport is the most common
cooperative movement of a global team goal observed by social insects. Very few studies have
examined this behaviour which is found almost exclusively in ants, but those that have, have shown
group transport to be an efficient way of moving a load with a small workforce [268][135]. Food is
generally consumed within the nest and must be first torn apart before consumption. Ants must either
transport the food item as a whole from its location or dismantle it into small enough pieces to be
carried back to the nest by an individual. A detailed study of the movement patterns involved in group
transport was carried out by Sudd in which it was concluded that although the behaviour of ants in
group transport was similar to that of single ants, a cooperative team interaction could be attained for
distinct kinds of pre-established tasks [347][345].

49

CHAPTER 4. MOTION CONTROL

Figure 4.4: Input’s stimulus and the robot’s output action.

Sensing plays a key role in triggering the transition between different task construction or
transport behaviour steps. It is reasonable, therefore, to speculate that such a mechanism may also be
used as a means of synchronizing several asynchronous robots in the execution of a common task. A
frequent question about social insects is how they collectively build sophisticated nests without
centralized planning. Coordinating their building activities often involves simple rules applied without
communicating directly with other workers as Brooks concluded after modelling the two dimensional
structures built by ants using a bulldozing-building behaviour [52].

Nest building by ants that live in the flat crevices of rocks involves making perimeter walls
around their colonies without the need to construct either a roof or floor. This type of two dimensional
structure is highly conducive to laboratory observation and data collection, as nests could be built
between two microscope glass slides separated with cardboard columns. The first stage of wall
construction described involves an individual ant carrying a granule into the nest towards the cluster of
nest mates. Once the ant is close it reverses its direction 180 degrees and begins to push the granule
into other existing granules. This bulldozing behaviour was tested as a computer-simulation model
producing a similar pattern of granules that formed perimeter walls. Thus, bulldozing behaviour is an
example of how a simple rule for building can be used to produce a predictable result without direct
communication between builders. Rather, indirect communications through the environment by way
of the building structure serves to coordinate collective activity [52]. In this way both the environment
and behavioural act used for task completion is part of the solution.

Attempts to model the states of both the environment and its cognizant occupants is not novel.
Animal behaviour studies were done to define a motivational state as a combination of a physiological
and perceptual state, with behaviour used to change states in motivational space [98]. This approach
was extended to modelling the system behaviour by assigning state variables to environmental space,
behaviour space and task space. Environmental space defines the constraints imposed on the system
with regards to movement and topology. Behavioural space refers to the partition of the environment
made by the animal’s or robot’s sensory system. Tasks are defined by their initial and final states using
state variables that are relevant to the task.

50

CHAPTER 4. MOTION CONTROL

Finite state automata (FSA) have been used to model perceptual tasks [31] and motivational
behaviour in animals [123][99]. FSA was used to model the space-time relationship in a perceptual
processing task on a mobile robot. This approach allows for perceptual tasks to be sequenced in a
reactive control system. Thus finite state automata used to model the steps in a task as rules of
interaction along with local perception to control the application of that action is a plausible model for
a collective coherent behaviour.

4.6 Conclusion

The study of motion planning is a part of the control problem that has a great application for
robotics control and for animation in computer graphics [66]. Many algorithms have been proposed
dealing with motion planning optimization, and different approaches have demonstrated good results
[4][43][71][186]. A mobile robot requires a more elaborated motion algorithm, once it is believed that
it will work in a more complex environment. Thus for such cases, the best way to deal with uncertain
environments is to use non-deterministic approaches. Generally non-deterministic methodologies will
be supported by a set of sensors as an ancillary way to support the robot when dealing with
unpredictable situations. This is mentioned in the research communities as action-oriented perception,
which affects a robot's behaviour based on events in a multiple reaction to the surrounding
environment.

While for a dynamic environment a local perception will help the robot mainly to avoid
collisions, for workspaces composed of several mobile robots the sensor-based perception will be
required to recognize any eventual change performed by the other robots, which could interfere
directly or indirectly with the task attributed to any robot in the related environment. Although an
easier approach would be a telemetric system with centralized information, for the problem related to
nanorobotic automation applied to nanomedicine, the most feasible approach is a decentralised and
local perception approach. For fast massive automation in nanotechnology, the study of competitive
and collective robotics systems capable of supporting the complexity inherent in nano-worlds and to
incorporate coherent behaviour interacting with the environment, is a field of growing interest that has
to be further investigated in the coming years [69][70][72][66].

51

Chapter 5

Artificial Neural Networks

CHAPTER 5. ARTIFICIAL NEURAL NETWORKS

5.1 Introduction

The field of artificial neural networks (ANNs) is an interdisciplinary area of research. A
thorough study of artificial neural networks involves knowledge about neurophysiology, cognitive
science or psychology, control theory, computer science, artificial intelligence, statistics, mathematics,
pattern recognition, computer vision, parallel processing, and hardware.

The successful use of neural networks for robotics is a feasible method for adaptive motion
control for complex environments where some determined robot is required to interact with a certain
set of stochastic events which have been done with satisfactory results [71][70]. Virtually every
intelligent robot designer uses a different combination of controller paradigm and learning method. As
a result the automation field for robotics is very broad and many working systems have been
demonstrated for different kinds of applications [65][66].

The classical artificial intelligence (AI) approach to control autonomous systems is to break up
the problem into functional modules such as sensory perception, environmental modelling, planning of
actions and execution of those plans [51]. Various techniques from the AI toolbox are used within
each module, such as knowledge representation schemes, and goal directed searching and reasoning
[353]. However it has been argued that classical AI cannot produce systems that are robust in real-
world environments [38].

It has been established that a large number of applications can benefit from the use of ANNs
[95][183][175][246][162]. Artificial neural networks are massive parallel computing systems
consisting of an extremely large number of simple processors with many interconnections between
them. ANNs were designed with the goal of building “intelligent machines” to solve complex
problems, such as control systems, pattern recognition and dynamic optimization.

5.2 Brief Historical Review

Humans, being inquisitive creatures, have long been interested in exploring where the mind
originates and how the brain computes. These efforts may be traced back to Aristotle. Yet, the modern

52

CHAPTER 5. ARTIFICIAL NEURAL NETWORKS

era of computational neural modelling began in 1943 with the pioneering work of McCulloch and Pitts
[252], who introduced a computational model of neuron and a logical calculus of neural networks.
McCulloch-Pitts’ classic paper was widely read at the time (and is still read), and for 15 years
generated considerable interest in the detailed logic of networks consisting of simple neurons. Such
networks were proved to be capable of any boolean function.

The next major milestone in ANNs was Rosenblatt’s work on the Perceptron in 1958. The
crowning achievement of Rosenblatt’s work was the first proof of the perceptron convergence
theorem. In 1960, Widrow introduced the least mean square (LMS) algorithm for the Adaptive Linear
Element. Nilsson’s book on machine learning [281] was the best-written exposition of linearly
separable patterns in hypersurfaces. ANNs generated a great deal of enthusiasm in the 1960’s. It
appeared that such a machine could do any type of computation. However, this enthusiasm was
dampened by Minsky’s book [265], which demonstrated the fundamental limitations of the computing
power of one-layer perceptrons. They showed that certain rather simple computations, such as the
Exclusive-OR (XOR) problem, could not be solved by the one-layer perceptron. It was believed that
such limitations could be overcome by multilayer perceptrons that employ intermediate layers of units
(hidden units) between the input layer and output layer. But, a difficult problem encountered in
designing a multilayer perceptron is the credit assignment problem. There was no learning algorithm
known at that time to solve this problem, thus Minsky doubted that one could find a solution for that
and thought it more profitable to explore other approaches to artificial intelligence. Because of this and
other reasons, research into neural networks went into hibernation. However, the neural network field
was not completely abandoned in the 1970’s. A number of dedicated researchers continued to develop
neural network models. Two important themes that emerged were associative content-addressable
memory and self-organizing networks using competitive learning.

In the 1980’s a number of important publications appeared, which changed the course of ANNs
research. Perhaps more than any other publication, the 1982 paper by Hopfield [183] and the two-
volume book by Rumelhart in 1986 [314] were the most influential publications. In 1982 Hopfield
introduced the idea of an energy function from statistical physics to formulate a new way of
understanding the computation of recurrent networks with symmetric synaptic connections. This
formulation makes explicit the principle of storing information as dynamically stable attractors.

In 1986 Rumelhart reported the development of the backpropagation algorithm that popularized
the use of the multilayer perceptron to solve a wide variety of pattern recognition problems. In fact,
the development of the back-propagation algorithm has a colorful history. It was first developed by
Werbos in 1974 in his Ph.D. thesis, and later rediscovered independently in two other places by Parker
and by Lecun in 1985.

Over the last ten years, thousands of researchers from many diverse fields, such as neuroscience,
psychology, medicine, mathematics, physics, computer science, and engineering, have been involved
in developing neural network models, implementing the models in hardware, VLSI (Very Large Scale
Integration Systems) and optics, and software, and solving a number of important applications of the
ANN models.

5.3 Biological Models

Many existing robots and automatons are biologically inspired in some way. This is sometimes
because researchers want an injection of new ideas into their designs, and sometimes because they
want to model biological systems to help understand them better. For example, in [118] the body and
spinal cord of the Lamprey (a kind of fish) were simulated. It was shown that the coupled oscillators in
the signal cord could, in conjunction with sensory feedback, produce the correctly timed muscle

53

CHAPTER 5. ARTIFICIAL NEURAL NETWORKS

contractions necessary for swimming. Other Lamprey studies [283][282] explored brain stem control
models and learning schemes to acquire the appropriate central pattern generator (CPG) parameters for
correct swimming.

Another example is the study of a model insect walking in a neural network simulation, which
controls a six-legged robot [91][32]. Realistic inter-leg coordination mechanisms are used and it is
shown that interactions between the controlling network, the robot and the environment are important.
Lewis has used genetic algorithms to synthesize gait-producing pattern generators in a hexapod robot
[237].

Several groups have attempted to model the brain at a much higher level. For example, Hosogi
describes a quasi-realistic cerebellum model used to control a robot manipulator [187]. It contains a
self-organizing granule cell layer and a Purkinje layer that uses Hebb learning rules. The “Darwin”
system is an ambitious attempt to create a complete artificial brain for various automatons [303].
Based on Edelman’s theory of neuronal group selection, it has realistic cell and synaptic modification
dynamics, and various realistic sensory and motor systems. The Darwin-III system contains 50
interconnected networks with some 50,000 cells and 620,000 synaptic junctions.

Many authors have created design paradigms based on biological principles. Crawford suggests
a hierarchical controller using radial basis function networks for systems with many degrees of
freedom, made up of a network of the simple single-joint controllers [89][90]. This approach was used
to control a simulated human platform diver. Altman presents a distributed decision-making model for
insects [3], based on a neural equivalent of Brooks’ typical architecture model. Kalveram suggests that
robot arm movements can be controlled by CPGs and reflex-like processes which allow high level
centres to specify only the kinematics (not the dynamics) of movement [205]. Hallam gives a
neuroethological approach for controlling a mobile robot using a neural network with quasi-realistic
synapse modification [166].

A neuron is a special biological cell, the essence of life, with information processing ability. The
introduction of neurons as basic structural constituents of the brain was credited to Ramon y Cajal who
won the 1906 Nobel Prize for physiology and medicine, shared with Camillo Golgi, for the crucial
discovery of the extensive interconnections within the cerebral cortex, the portion of the brain where
approximately 90% of the neurons in the human are located.

A schematic drawing of a neuron is shown in the Figure 5.1. A neuron is composed of a cell
body, or soma, and two types of out-reaching tree-like branches: axon and dendrites. The cell body has
a nucleus that contains information on hereditary traits and plasma containing molecular equipment
for the production of material needed by the neuron. The cell membrane contains various types of
electrochemical pumps that can maintain equilibrium in charge concentrations inside and outside the
cell.

A neuron receives signals (impulses) from other neurons through its dendrites (receivers), and
transmits signals generated by its cell body along the axon (transmitter), which eventually branches
into strands and substrands. At the terminals of these strands are the synapses. A synapse is a place of
contact between two neurons (an axon strand of one neuron and a dendrite of another neuron). When
the impulse reaches the synapse’s terminal, certain chemicals, called neurotransmitters are released.
The neurotransmitters diffuse across the synaptic gap, and their effect is to either enhance or inhibit,
depending on the type of synapse, the receptor neuron’s own tendency to emit electrical impulses. The
effectiveness of a synapse can be adjusted by the signals passing through it so that synapses can learn
from the activities in which they participate. This dependence on past history acts as a memory that is
possibly responsible for the human ability to remember.

54

CHAPTER 5. ARTIFICIAL NEURAL NETWORKS

Figure 5.1: A sketch of a biological neuron.

The cerebral cortex in humans is a large flat sheet of neurons about 2 to 3 mm thick with a
surface area of about 2,200 cm2, about twice the area of a standard computer keyboard. This is an
amazing creation of nature because a sphere with a volume of about 1.5 liters, the typical size of a
human brain, has a surface area of only 634 cm2. It is the walnut appearance of the human brain that
provides the cerebral cortex with a surface area three times larger than a simple smooth spherical
surface. The cerebral cortex contains about 1011 neurons, which is approximately the number of stars
in the Milky Way! There are about 34 different types of neurons based solely on their shape, and as
many as 100 types of functionally different neurons. Neurons are massively connected, much more
complex and denser than today’s telephone networks. Each neuron is connected to 103–104 other
neurons. The number of interconnections depends on the location of the neuron in the brain and the
type of neuron. In total, the human brain contains approximately 1014–1015 interconnections.

Neurons communicate by a very short train of pulses, typically milliseconds in duration. The
message is modulated on the frequency with which the pulses are transmitted. The frequency can vary
from a few up to several hundred Hertz, which is a million times slower than the fastest switching
speed in electronic circuits. However, complex perceptual decisions, such as face recognition, are
made by a human brain very quickly, typically within a few hundred milliseconds. These decisions are
made by a network of neurons whose operational speed is a few milliseconds. This implies that the
computation involved cannot take more than about one hundred serial stages. In other words, the brain
runs parallel programs that are about 100 steps long for such perceptual tasks. This is known as the
hundred step rule [128]. The same timing considerations show that the amount of information sent
from one neuron to another must be very small (a few bits). This implies that critical information is
not transmitted directly, but captured and distributed in the interconnections, thus comes the name
connectionist model. What is the magic that permits slow computing elements to perform extremely
complex tasks rapidly? The key is the parallel and distributed representation and computation.

55

CHAPTER 5. ARTIFICIAL NEURAL NETWORKS

Von Neumann computer Biological computer
Processor Complex Simple

High speed Low speed
One or a few Large number

Memory Separate from processor Integrated into processor
Localized Distributed
Non-content addressable Content addressable

Computing Centralized Distributed
Sequential Parallel
Stored programs Self-learning

Reliability Very vulnerable Robust
Expertise Numerical and symbolic

manipulations
Perceptual problems

Operating environment Well-defined,
well-constrained

Poorly-defined,
unconstrained

Table 5.1: Von Neumann computer versus biological computer.

5.4 Artificial Neural Networks

Modern digital computers have outperformed humans in the domains of numeric computational
and related symbol manipulation. However, humans can effortlessly solve complex perceptual
problems (e.g., recognizing a person in a crowd from a mere glimpse of his face) at such a fast speed
and extent as to dwarf the world’s fastest computer. Why does there exist such a remarkable difference
in their performance? The biological computer employs a completely different architecture than the
Von Neumann architecture (table 5.1). It is this difference that significantly affects the type of
functions each computational model is best able to perform.

Numerous efforts have been made on developing “intelligent” programs based on the Von
Neumann’s centralized architecture. However, such efforts have not resulted in any general purpose
intelligent programs. ANNs are inspired by biological evidence, and attempt to make use of some of
the “organizational” principles that are believed to be used in the human brain. Our ability to model a
biological nervous system using ANNs can increase our understanding of biological functions. For
example, for many years experimental psychologists have used neural networks to model classical
conditioning animal learning data [95]. The state-of-the-art in computer hardware technology (e.g.
VLSI and optical) has made such modeling and simulation feasible. The long course of evolution has
resulted in the human brain possessing many desirable characteristics, which are present neither in a
Von Neumann computer nor in modern parallel computers. These characteristics include massive
parallelism, distributed representation and computation, learning, ability, generalization ability,
adaptability, inherent contextual information processing, fault tolerance, and low energy consumption.
It is hoped that ANNs, motivated from biological neural networks, would possess some of these
desirable characteristics from the human brain.

56

CHAPTER 5. ARTIFICIAL NEURAL NETWORKS

Figure 5.2: A neuron model.

5.4.1 Computational Models of Neurons

McCulloch and Pitts proposed a binary threshold unit as a computational model for a neuron
[252]. A schematic diagram of a McCulloch-Pitts neuron is shown in Figure 5.2. This mathematical
neuron computes a weighted sum of its n input signals, xj, j = 1, 2,…, n, and generated an output of
“1” if this sum is above a certain threshold μ, and an output of “0” otherwise.

Mathematically,











∑ −=
=

n

j
jj xwy

1
µθ (5.1)

where (.)θ is a unit step function, and wj is the synapse weight associated with the jth input. For

simplicity in notation, we often consider the threshold μ as another weight µ−=0w that is attached to

the neuron with a constant input, 10 =x . Positive weights correspond to excitatory synapses, while
negative weights model inhibitory synapses. McCulloch and Pitts proved that with suitably chosen
weights, a synchronous arrangement of such neurons is, in principle, capable of universal
computation. There is a crude analogy (table 5.2) to a biological neuron: wires and interconnections
model axons and dendrites, connection weights represent synapses, and the threshold function
approximates the activity in soma. The model of McCulloch and Pitts contains a number of
approximated resolutions, which reflect biological neuron behaviour simplification. Some of these
differences are:

• Biological neurons are not threshold devices, but have a graded response
(essentially a nonlinear function of the inputs);

• Biological neurons perform a nonlinear summation of inputs and can even perform
logical processing;

57

CHAPTER 5. ARTIFICIAL NEURAL NETWORKS

Biological neurons Artificial neurons
Synapses Connection weights

Axons Output wires
Dendrites Input wires

Soma Activation function

Table 5.2: Analogy between biological neurons and artificial neurons.

• Biological neurons produce a sequence of pulses, not a simple output value;

• Biological neurons are updated asynchronously.

Nevertheless, the McCulloch-Pitts neuron model started a new era of computational neural
modeling. The McCulloch-Pitts neuron has been generalized in many ways. An obvious generalization
is to use activation functions other than the threshold function, e.g., a piecewise linear, sigmoid, or
Gaussian, shown in Figure 5.3. The sigmoid function is by far the most frequently used function in
ANNs. It is a strictly increasing function that exhibits smoothness and asymptotic properties. The
standard sigmoid function is the logistic function, defined by

)exp(1
1)(

x
xg

β−+
= (5.2)

where β is the slope parameter.

5.4.2 Network Architecture

An assembly of artificial neurons is called an artificial neural network. ANNs can be viewed as
weight-directed graphs in which nodes are artificial neurons and directed edges (with weights) are
connections from the outputs of neurons to the inputs of neurons. These are based on categories as
shown in Figure 5.4, where there are feedforward networks in which no loop exists in the graph, and
feedback (or recurrent) networks in which loops exist because of feedback connections.

The most common family of feedforward networks is a layered network in which neurons are
organized into layers with connections strictly in one direction from one layer to another. In fact, all
the networks with no loops can be rearranged in the form of layered feedforward networks with
possible skip-layer connections. Figure 5.4 also shows typical networks of each category.

Different connectivities exhibit different network behaviours. Generally speaking, feedforward
networks are static networks, i.e., given an input, they produce only one set of output values, not a
sequence of values. Feedforward networks are memoryless in the sense that the response of a
feedforward network to an input is independent of the previous state of the network. An exception is
the time delay feedforward network in which dynamics occurs because of different delay factors of the
neurons in the network. A positive aspect of feedforward networks is the fact that they have a good
performance for combinatorial problems requiring low computational effort and processing demand
[71].

58

CHAPTER 5. ARTIFICIAL NEURAL NETWORKS

Figure 5.3: Different types of activation functions.

Recurrent networks are dynamic systems. Upon presenting a new input pattern, the outputs of
the neurons are computed. Because of the feedback paths, the inputs to each neuron are then modified,
which leads the network to enter a new state. This process is repeated until convergence. Obviously,
different mathematical tools must be employed to treat these two different types of networks. Dynamic
systems are often described by differential equations.

These network architectures can be either simulated in software or implemented in hardware -
VLSI and optical. Software simulation of a network is always necessary before implementing it in
hardware. A number of public and commercial software ANN simulators are available. More and
more researchers have recognized the importance of hardware implementation, which is probably the
only way to take full advantage of the capacities of ANNs. A difficulty in the VLSI implementation of
ANNs is the massive connections. A fully connected network with N neurons requires N2 connections!

This factor limits the number of neurons, typically a few hundred, that we can build on a single
chip using the state-of the-art VLSI technology. An alternative is the optical implementation of ANNs.
But it is still in the early stages.

Different network architectures require different learning algorithms. The next section will
provide a general overview of the learning processes.

5.4.3 Learning

Ability to learn is a fundamental trait of intelligence, although what is meant by learning is often
difficult to describe. A learning process, in the context of artificial neural networks, can be viewed as
the problem of updating network architecture and connection weights so that a network can efficiently
perform a specific task. Typically, learning in ANNs is performed in two ways. Sometimes, weights
can be set primarily by the network designer through a proper formulation of the problem.

59

CHAPTER 5. ARTIFICIAL NEURAL NETWORKS

Figure 5.4: A taxonomy of network architectures.

However, most of the time, the network must learn the connection weights from the given training
patterns. Improvement in performance is achieved over time through iteratively updating the weights
in the network. The ability of neural networks to automatically learn from examples makes artificial
neural networks very attractive and exciting. Instead of having to specify a set of rules, ANNs appear
to learn from the given collection of representative examples. This is one of the major advantages of
neural networks over traditional expert systems.

In order to understand or design a learning process, one must first have a model of the
environment in which a neural network operates, i.e. what information is available to the neural
network. We refer to this model as a learning paradigm [183]. Second, one must understand how
weights in the network are updated, i.e. what is the learning rule that governs the updating process. A
learning algorithm refers to a procedure in which learning rules are used for adjusting weights in the
network. Finally, it is important to investigate how much the network can learn from examples
(capacity), how many training samples are required (sample complexity), and how fast the system can
learn (time complexity).

60

CHAPTER 5. ARTIFICIAL NEURAL NETWORKS

Figure 5.5: Learning issues.

The study of capacity, sample complexity, and time complexity is what a learning theory must
deal with. Figure 5.5 illustrates these three aspects of a learning process. There are three main learning
paradigms, namely: supervised, unsupervised, and hybrid learning.

• Supervised learning: In supervised learning, the network is provided with a correct answer
to every input pattern. Weights are determined so that the network can produce answers as
close as possible to the known correct answers. This is sometimes referred to as learning
with a teacher. Reinforcement learning is a special case of supervised learning where the
network is provided with only critiques on the correctness of network outputs.

• Unsupervised learning: In contrast, unsupervised learning does not require any correct
answer associated with each input pattern in the training data set. It explores the underlying
structure in the data, or correlations between patterns in the data, and organizes patterns into
categories from these correlations.

• Hybrid learning: combines supervised learning and unsupervised learning. Typically, a
portion of weights in the network is determined using supervised learning, while the others
are obtained from unsupervised learning.

Learning theory must address three fundamental and practical issues associated with learning
from samples: capacity, sample complexity, and time complexity. The first issue concerns whether the
true solution is contained in the set of solutions that a network can deliver. If not, we can never hope to
obtain the optimal solution. This remains a difficult and unsolved problem. Approximation capabilities
of feedforward neural networks have been investigated by many researchers [175]. A fundamental
result of these studies is that 3-layer, or even 2-layer, feedforward networks with an arbitrarily large

61

CHAPTER 5. ARTIFICIAL NEURAL NETWORKS

Learning
paradigm

Learning Rule Architecture Learning Algorithm Task

Supervised Error-
correction

Single- or
multi-layer
perceptron

- Perceptron learning
algorithms

- Backpropagation
- Adaline and Madaline

- Pattern classification
- Math approximation
- Control

Boltzmann Recurrent - Boltzmann learning
algorithm

- Pattern classification

Hebbian Multi-layer - Linear discriminant
analysis

- Data analysis
- Pattern classification

Competitive Competitive - Learning vector
quantization

- Within-class
categorization

- Data compression
ART
network

- Artmap - Pattern classification
- Within-class

categorization
Unsupervised Error-

correction
Multi-layer
feedforward

- Sammon’s projection - Data analysis

Hebbian Feedforwar
d
or
Competitive

- Principal component
analysis

- Data analysis
- Data compression

Hopfield net - Associative memory
learning

- Associative memory

Competitive Competitive - Vector quantization - Categorization
- Data compression

Kohonen
SOM

- Kohonen’s SOM - Categorization
- Data analysis

ART
networks

- Art1, Art2 - Categorization

Hybrid Error-
correction
and
Competitive

RBF (Radial
Basis
Function)
network

- RBF Learning algorithm - Pattern classification
- Function

approximation
- Control

Table 5.3: Learning algorithms.

number of non-linear hidden units are capable of implementing any continuous mapping with a pre-
specified accuracy under certain mild conditions.

The second issue, sample complexity, determines the number of training patterns needed to train
the network in order to guarantee a valid generalization. Too few patterns may cause the “over-fitting”
problem where the network performs well on the training data set, but poorly on independent test
patterns drawn from the same distribution as the training patterns.

62

CHAPTER 5. ARTIFICIAL NEURAL NETWORKS

Figure 5.6: A typical 3-layer feedforward network architecture.

The third issue is the computational complexity of the learning algorithm used to estimate a
solution from the training patterns. Many existing learning algorithms have a high computational
complexity. For example, the popular backpropagation learning algorithm for feedforward networks is
computationally demanding because of its slow convergence. Designing efficient algorithms for neural
network learning is a very active research topic.

There are four basic types of learning rules as shown in figure 5.5: error-correction, Boltzmann,
Hebbian, and competitive learning. Various learning algorithms and their associated network are
summarized in Table 5.3. However this is by no means an exhaustive list of the learning algorithms
available in the literature.

We notice that both the supervised and unsupervised learning paradigms employ learning rules
based on error-correction, Hebbian and competitive learning. Learning rules based on error-correction
can be used for training feedforward networks, while Hebbian learning rules have been used for all
types of network architecture. However, each learning algorithm is designed for training a specific
network architecture. Therefore, when we talk about a learning algorithm, it is implied that there is a
particular network architecture associated with it. Each learning algorithm is also designed for
performing one or a few specific tasks. The last column of Table 5.3 lists a number of tasks that each
learning algorithm can perform.

5.4.4 Multilayer Perceptron

It has been recognized that multilayer feed forward networks are capable of forming arbitrarily
complex decision boundaries and can represent any Boolean function [265]. The development of the
back-propagation learning algorithm for determining weights in a multi-layer feedforward network has
made these networks the most popular of all the networks.

Figure 5.6 shows a typical 3-layer perceptron. Is adopted by convention that the input nodes are
not counted as a layer. In general a standard L-layer feedforward network consists of one input stage,
L – 1 hidden layers, and one output layer of units that are successively connected fully or locally in

63

Step 1: Initialize the weights to small random values;

Step 2: Randomly choose an input pattern ()µx ;
Step 3: Propagate the signal forward through the network;

Step 4: Compute L
iδ in the output layer ()L

ii yo =

()()L
ii

L
i

L
i ydhg −= µδ ' ,

where L
ih represents the net input to the ith unit in the lth layer.

Step 5: Compute the deltas for the preceding layers by propagating the errors backwards;

() 11' ++∑= l
i

j

l
ij

l
i

l
i whg δδ

for () .1,,1 −= Ll

Step 6: Update weights using

1−=∆ l
j

l
i

l
ji yw η δ

Step 7: Go to step 2 and repeat for the next pattern until the error in the output layer is
below a pre-specified threshold or the maximum number of iterations is reached.

CHAPTER 5. ARTIFICIAL NEURAL NETWORKS

Table 5.4: Back-propagation algorithm.

a feedforward fashion with no connections between units in the same layer and no feedback
connections between layers. We denote wij

(l) as the weight on connection between the ith unit in layer (l
– 1) to jth unit in layer l.

Recall that the task of a learning algorithm is to automatically determine the weights in the
network such that a certain cost function is minimized.

Let () ()() () ()() () ()(){ },,,...,,,, 2211 pp dxdxdx be a set of p training patterns, input-output pairs,

where () nRx ∈1 is the input vector in the n-dimensional pattern space, and () [] mid 1,0∈ is the

desired output vector in the m-dimensional hyper-cube. For classification purposes, m is set to the
number of classes. The squared-error cost function, which is most frequently used in the ANN
literature [314], can be defined as

() ()
2

12
1

∑ −=
=

p

i

ii dyE (5.3)

The back-propagation algorithm is a gradient-descent method to minimize the above squared-
error cost function in Equation 5.3. It is described in detail in the Table 5.4.

Multilayer feedforward networks with sigmoid activation functions can form smooth decision
boundaries rather than piece-wise linear boundaries. There are many issues in designing feedforward
networks. These issues include: how many layers are needed for a given task ?; how many units per
layer?; what can we expect a network to generalize on data not included in the training net?; and how
large should the training set be for “good” generalization? Although multilayer feedforward networks
with a backpropagation algorithm have been widely used for classification and function approximation

64

CHAPTER 5. ARTIFICIAL NEURAL NETWORKS

[175], many design parameters still have to be determined by the trial-and-error method. Existing
theoretical results only provide very loose guidelines for selecting these parameters in practice.

5.5 Intelligent Mobile Robots

Intelligent control is necessary for mobile robots that must survive in unstructured environments
without continuous human guidance. Examples include robot sentries, intra-office delivery robots, and
robot tour guides. Unlike the typical factory robot they may have to negotiate environments that are
complex, changeable, full of obstacles and possibly hostile. Intelligent control is also necessary when
there is a time lag between operator commands and robot execution. An example of intelligent
adaptive control is the NASA’s six-wheeled robotic rover, which was placed on the surface of Mars in
July 1997 as part of the Mars Pathfinder project [251]. The rover had to be partly autonomous because
of the large communication delay between Earth and Mars, where the time delay was between 6 and
41 minutes. The rover navigated between way-points specified by an earth bound operator, avoiding
obstacles along the way. Another real motivation for the use of intelligent mobile robots in some
specific situations can either have economic or security features. Unmanned landers have touched
down on Mars for as little as US$ 250 million. But the estimated price tag for a manned journey to the
red planet is estimated at around US$ 500 billion. Thereby further developments for spatial
investigation require a more practical approach using robotics for unmanned missions [340].

Robots are already playing a growing role in complex tasks and hazardous environments. For
example the U.S. arsenal includes intelligent robots to identify chemical and biological warfare
agents. Since February 2004, the U.S. Defense Department has offered a US$ 1 million prize in a
robot race with the aim to accelerate the development of autonomous robotic technologies [366]. The
competition was launched by DARPA Defense Advanced Research Projects Agency, and the robot
must complete a course comprised of both on-road and off-road segments which will include
extremely rugged terrain and obstacles. The prize will go to the team whose robot fully and
autonomously completes the course first.

Intelligent control is equally useful in telepresence applications, where a human operator issues
high-level commands from a remote location and the robot complies using its own behavioural
resources to implement the lower-level subtasks that are required. Furthermore a relatively new and
speculative application of intelligent control is to control virtual agents. For example, in some
situations an animator would prefer to be able to ask a virtual agent to “walk into the room and sit
down” rather than specifying the detailed motions required for the action.

Numerous efforts have been made in developing “intelligent” programs based on Von
Neumann’s centralized architecture. Inspired by biological neural networks, researchers in a number
of scientific disciplines are designing ANNs to solve a variety of problems in decision making,
optimization, prediction, and control. Real-time sensory functions, process control, and motor control
are the most meaningful tasks for neural computing. ANNs can be viewed as parallel and distributed
processing systems that consist of a huge number of simple and massively connected processors.

An alternative for the design of intelligent controllers is the use of ANNs for “modular
behaviour”. The idea is that the controller contains modules which each perform some simple task
oriented function. The robot’s overall behaviour emerges from the interaction of these modules, rather
than being specified explicitly. For example, Brooks’ architecture consists of modules containing state
machines and timers that each implement some simple behaviour [51][50]. This architecture has been
used to make robust controllers for wheeled and legged robots, though the networks have to be
carefully constructed to get the desired behaviour. Another example is Beer’s artificial insect [38][36]
[37]. It is a hexapod robot that is controlled by an artificial nervous system made up of about 80

65

CHAPTER 5. ARTIFICIAL NEURAL NETWORKS

biologically realistic neurons. The neural network is designed rather than trained: it contains groups of
neurons dedicated to particular tasks, such as leg control, which interact to achieve overall coordinated
movement. The robot is capable of walking with various gaits and performing simple tasks such as
wall following and food finding.

These two examples, though different in implementation are similar in principle: they are
designed from the bottom up, by adding units that interact with the existing structure to create new
behaviour. Such systems are constructed especially to survive in their environments. They are not
smart in the sense of classical AI, so they do not perform high level planning and problem solving.
Instead they are smart in the sense that simple animals like insects are smart: able to robustly survive
in, and interact appropriately with, their environments.

A lot of research has been done on using feed-forward neural networks as the adaptive
component in a learning controller [262]. The network weights can be adjusted using the
backpropagation algorithms, genetic algorithms [7], or various stochastic search algorithms [363]
[373]. Supervised training is usually performed using error signals derived from the system’s
performance error, although other approaches that transfer expert information from a rule base are
common. For example, Handelman trains a CMAC from a “knowledge base” to control a planar two-
link manipulator [167]. A similar approach was implemented with the use of a fuzzy rule base [319]
[197].

5.6 Conclusion

Various ANN models and learning algorithms have been successfully applied to a large variety
of problems. Developments in ANNs have prompted a lot of enthusiasm as well as criticism. Many
comparative studies provide an optimistic outlook for ANNs, while others offer a pessimistic view.
For many tasks no single approach dominates the others. Thus the choice of the best technique should
be driven by the nature of the given application. We should try to understand the capacities,
characteristics, and applicability of various approaches developed in various disciplines, and
maximally exploit the complementary advantages of these approaches in order to develop better
intelligent systems. Such an effort may lead to a synergistic approach that combines the strengths of
ANNs and other disciplines in order to achieve a significantly better performance for challenging
problems [65][66]. Minsky has recognized that the time has come to build systems out of diverse
components [264]. In such a synergistic approach, not only are individual modules important, but also
a good methodology for integrating various modules is the key to success. It is clear that
communication and cooperative work between ANNs and other methodologies will not only avoid
repetitious work but also, more importantly, will stimulate and motivate individual disciplines.

66

Chapter 6

Evolutionary Techniques

CHAPTER 6. EVOLUTIONARY TECHNIQUES

6.1 Introduction

A mobile robot is more than just a mechanical device that can operate without being attached to
a power supply or an external computer [196]. Although it may include those features, intelligent
mobile robots are rather identified by the ability to adapt to their environment by finding optimal
solutions, to develop a suitable control system, to define their low-level priorities, and possibly, to
perform some self-monitoring [339].

As a reaction to partial failure of the classical artificial intelligence approach to develop robust
control systems for intelligent robots by performing a functional decomposition [49], a novel approach
called behaviour-based robotics emerged in the early 90’s [47][244]. Whereas classical Artificial
Intelligence (AI) is more concerned with a high-level definition of the environment and of the
knowledge required by the system, behaviour-based robotics stresses the importance of continuous
interaction between the robot and its environment by means of sets of reflexes applied in particular
perceptual situations. Thus Subsumption Architecture was introduced as a behaviour-based approach,
incrementally adding more situation-specific components to a control architecture for a more robust
and adaptive robot performance [48]. However, this incremental design was done by hand, exploiting
the designer’s knowledge about the robot, the environment, and the task.

Within the behaviour-based methodology, a number of researchers have successfully employed
an evolutionary approach to the development of control systems for the automation of the mobile
robotics field [153][152][258]. The rich variety of structures that has been put under evolution, such as
feed-forward neural networks, dynamic recurrent neurons, classifier systems and Lisp code, and the
large number of evolved behaviours, such as locating food sources, obstacle avoidance, wall-
following, object collection, etc, have empirically demonstrated the power and generality of the
evolutionary methodology. However, evolved control systems may present robustness problems when
environmental conditions change.

From the perspective of a control system, changes can be induced by several factors, among
which are modification to the sensory appearance of objects, e.g. different light conditions, changes in

67

CHAPTER 6. EVOLUTIONARY TECHNIQUES

sensor response, re-arrangement of the environmental layout, transfer from simulated to physical
robots, and transfer across different robotic platforms. Some authors have suggested ways to improve
the robustness of evolved systems by adding noise [260][199] and by evaluating individuals in several
different environments [357]. However, both techniques imply that one knows in advance what makes
the evolved solution brittle in the face of future changes, in order to choose a suitable type of noise and
environmental diversity.

Intelligent robots working in the real world must cope with changing conditions. In order to
survive in such a dynamic environment evolved robots must show some adaptive features capable of
coping with unpredictable new situations that differ from those encountered during the evolution
process. Environmental changes can be a problem also for other approaches (programming, learning)
to the extent in which the sources of change have not been considered during systems design. They are
even more so for evolved systems because these often rely on environmental aspects that are often not
predictable by an external observer.

For robotics automation one of the main advantages of evolution with respect to other adaptation
methods, such as gradient descent techniques or reinforcement learning, is that the criterion function
describing the desired behaviour need not be detailed, continuous, and differentiable [132]. Instead,
you could model a range of desirable behaviours that the robot could decide on from a set of possible
acts that would be better when applied to the presented situation [72]. Performance of Genetic
Algorithms (GAs) has been compared with that of a back-propagation algorithm in different
classification tasks [371]. The results showed that evolution is capable of generating better
performance solutions with lower computational effort or processing time.

6.2 Brief Historical Review

Genetic Algorithms (GAs) have the aim of adaptive heuristics based on the evolutionary idea of
natural selection and genetics. GAs have demonstrated good performance even when the problem
dimension grows, and for this reason such methodology has achieved success in a large range of NP-
complete and NP-Hard problems [259] [149]. GAs were first introduced as a parallel search technique
based on the Darwinian principle of selective reproduction of the fittest individuals [180]. A GA
operates on a population of artificial chromosomes, which are strings that encode the properties of a
population of individuals. An artificial chromosome can be thought of as the individual’s D.N.A.,
composed of a number of genes, each one containing a symbol or allele from a set of possible
symbols. Although several kinds of encoding methods have been used, the most common one consists
of encoding each gene of the chromosome using a set composed of two alleles, 0 and 1. This method
is known as binary encoding [196].

GAs have achieved special success and emphasis as a heuristic technique applicable for
complex problems covering the deficiency of deterministic methods, avoiding stagnation in a local
optimum, thus providing a global near-optimum solution with lower computational effort for
optimization problems [82]. Some of the many possible kinds of problems which could be solved with
the use of GAs are discussed briefly next.

6.2.1 Robotics and Artificial Life Applications

Menczer has used steady-state GA to evolve sensory characteristics of artificial organism in an
environment with controlled complexity [255]. The environment model used is called a latent energy
environment. The behaviour of two types of sensors is interesting in this study: avoidance and

68

CHAPTER 6. EVOLUTIONARY TECHNIQUES

enforcement. Contact sensors are presented in the robot that is required to learn avoidance tasks.
Reinforcement learning is used to train motor actions that are desirable. Ambient sensors are presented
in the robot providing a feasible approach for a better interaction with the environment. Any changes
in motor characteristic of this type of organism can only be achieved via evolution. Steady-state GA
was used in such a study as follows. Each individual, represented by a string, must acquire energy
from atoms in the environment beyond a fixed threshold before it can asexually reproduce. If the
energy level within an individual is lower than the threshold, that individual will die. The chromosome
of each individual contains two parts, one in floating-point format, and the other in binary format.
Mutation is done by randomly added uniformly distributed noise to the chromosome. The types of
atoms the sensors sensed are coded into the binary part.

Grefenstette has used GA to evolve rule sets in the SAMUEL system [156]. The evolving rule
sets contain the rules for collision avoidance and the finding of energy resources. The SAMUEL
system consists of two modules: the execution system module and the off-line system module. The
execution system module contains the actual robot and environment. The off-line system module
consists of a robot simulation module and a GA module for rule sets evaluation. The initial population
is a heterogeneous population that is automatically generated. After the off-line learning is
accomplished, the rule sets are tested on the actual system. Ramsey has modified this learning system
to include real-time modification to the robot model [299]. This learning strategy is called case-based
anytime learning.

Jakobi has introduced a new encoding scheme in GA with a hybrid approach where the
evolutionary process is influenced by a recurrent neural network [200]. This neural network can be
used as a robot controller. The robot controller can be used to control a robot to perform corridor
following tasks and object avoidance tasks. Within each cell there is a genomic regulatory network
(GRN). A GRN is composed of a number of units, with each unit containing a single string genome.
One genome is responsible for the production of one protein. Protein that is produced by one unit
regulates other genes in the different units. Proteins within each cell are divided into different classes
that affect the gross behaviour of the cell. Signal proteins diffuse out of one cell and into another,
resulting in an interaction between cells. Initially a single cell is placed in a controlled environment,
which contains a number of predefined cellular developments including cell division and cell
movement. Interaction between cells will eventually lead to cell differentiation. Once a cell is
differentiated, a number of densities are grown out of each cell. When a dendrite from one cell
contacts another cell, a synaptic connection is established. After every cell has been fully developed,
thresholds and weights are assigned to each cell and dendrite, respectively.

6.2.2 Cellular Automata Applications

Cellular automata are an abstract way of analysing the simultaneous execution of local rules. A
cellular space is a uniform array of cells arranged in some forms of topology and dimension. For
cellular automaton (CA), each cell in the cellular space contains an identical automation. The next
state of each automaton is defined by a function of its current state and the current state of other
automata in a predefined neighbourhood. As discussed earlier (chapter 1), the idea of quantum
computing, in which the elements that carry the information are atoms, has attracted the attention of
many scientists. Quantum cellular automata and coupled quantum dot technology are being explored
and their potential assessed for transistorless computing [103][100].

Andre has used genetic programming with automatically defined functions to produce a state-
transition rule of linear cellular automaton for solving majority classification problems [5][6]. The

69

CHAPTER 6. EVOLUTIONARY TECHNIQUES

Figure 6.1: Navigation in the search space of a NP-Hard problem - each sphere represents a solution.

cellular space consists of 149 automaton in linear arrangement. Each automaton has either state 0 or
state 1 at any given time.
The next state of each automaton depends on its own current state and the states of its six
neighbouring automata, three to the left and three to the right. In this case, the program tree contains a
result-producing branch and automatically defined functions. The resulting state-transition rule can
solve the majority classification problem with a higher accuracy than the Gacs-Kurdyumov-Levin
(GKL) rule and other known human-written rules.

Das has also studied the behaviour of cellular automata via the use of linear cellular automaton
[97]. Unlike the work by Andre [5][6], Das uses GA to evolve the state-transition rules. A
chromosome of each individual represents the output bits from all rules in a rule set in lexicographic
order of neighbourhood configuration. Since in this case, each rule output depends on the states of
seven cells, each individual will have chromosome of length 27. Das has applied this technique to
majority classification tasks. Das has utilised the same technique on synchronisation tasks [96].
Further analysis of majority classification tasks and synchronisation tasks using cellular automata and
GA can be found in Hordijk [184].

6.3 Genetic Algorithms Representation

Imagine any desired solution for some combinatorial problem, where if we start from a feasible
solution, we could achieve another combination that results in a better solution to the problem under
analysis. This analysis to find an optimal combination is done through the study of a set of possible
solutions for the focused problem. The process for the resolution of searching a problem depends

70

CHAPTER 6. EVOLUTIONARY TECHNIQUES

Genetic Algorithms Mathematics
1 population of solutions (individuals): chromosomes 1 set of solutions
1 chromosome 1 solution
1 gene 1 part of a solution

Table 6.1: Comparison between genetic algorithms terms with their correlation in math.

mainly on the environment where the search is happening, and what conditions need o be satisfied by
the expected solution. However, it does not matter what methodology is applied to such combinatorial
searching processes, because every search method will require at least:

• Some way to represent the possible solutions for the problem;

• Operators that could generate new candidate solutions;

• Evaluation of a generated solution;

According to its generality, the searching algorithms could be classified as weak, when they can
be applied to a large range of problems, or strong, when they are projected into a short range of well
specified applications, which make use of a greater quantity of information related to a specific
situation. Gradually as the knowledge about the search space develops (Figure 6.1), the algorithms
become specialized in the search of this specified space. Such algorithms grow in efficiency with a
loss of generality, i.e. it is possible to use stronger or weaker searching algorithms.

Another important classification is the possible inclusion of some probabilistic component in a
related searching algorithm. When a decision is generated from some value with a number randomly
generated, we say that such an algorithm is stochastic, and in the opposite situation, we say that the
algorithm is deterministic. In the first case the numeric random generator is always initialized with
some value (e.g. supplied by the user) and therefore every algorithm execution could theoretically
result in a different result.

Generally we could identify a thread-off that could be characterized as a prerequisite for a good
searching algorithm: intensification and diversification. Intensification could be observed as the work
of intensifying the local search, trying to get the best of all possible local solutions. The diversification
is the work of exploring the global space for probable solutions. Thus some algorithm that has just one
of these characteristics won’t be able to obtain a good performance for NP-complete and NP-Hard
problems. In optimization a good capacity of diversification in the search space is required if it is
desired to find an extreme maximum/minimum global value, which should represent at least a good
solution.

In GAs the crossover operator performs the recombination of two possible solutions, which will
be used as the base for a new solution for a combinatorial problem. Normally this operator presents
intensification characteristics to achieve the best solution, once there is a greater incentive for the
recombination and generation of new son solutions from better adapted parents. This intensification
tends to generate an accented loss of diversity, which is continuously equilibrated with the appliance
of the mutation process in the descendent solutions.

The mutation alters the state of some components of some solutions. For the elaboration of the
mutation algorithm, it is possible to determine what kind of mutation is to be used: a heavy mutation
or a simple mutation. In the case of the problem under study we have chosen a simple mutation, where
the state of only one of the components in a determined solution is inverted.

71

CHAPTER 6. EVOLUTIONARY TECHNIQUES

Genetic Algorithm Pseudo-code
Begin

 • Generate an initial solution population with size n
 • Evaluate the solutions in this solutions population
 While < this generation does not converge >
 Begin
 do
 Begin
 • Select parents to produce the actual generation
 • Apply crossover
 • Evaluate the new solutions (individuals)

 • Replace the old individuals in the population by new individuals
 end

 While < parameter not satisfied >
 end

 end

Table 6.2: Genetic Algorithm Pseudo-code.

The mutation change in the solution is a random choice on what solution and what component will
suffer such a mutation, as is discussed in the following paragraph. When there is a loss of diversity,
i.e. the population has indeed converged to a region that is near a local minimum, the GA applies a
diversification through the use of a heavy mutation. Therefore a GA has as its main characteristic the
property to avoid an optimum local, thus exploring a much greater range of points in the search space,
which results in a greater probability of achieving an optimum global solution.

The GAs represent tool classes which are very versatile and robust, that are utilized for the
solution of optimization problems.

In Table 6.1 is shown a set of GA expressions and their comparison with mathematical related
terms. A GA applied to some determined problem must be composed from the following elements:

• A genetic representation for a feasible solution about some problem.
• A solution population.
• An evaluation function for the evolutionary population behaviour, what is called the
“fitness” function.
• A genetic operator that generates new solutions, which is called the “crossover” operator.
• Diversification operator, which is called the “mutation” operator.
• Parameters definition, such as: population size, stop criterion, chromosome renovation
criterion, and diversification criterion.

A pseudo-code which is capable of describing in general terms the existing GA as described in
Table 6.2.

72

chromosse 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
solution 42 90 13 8 51 2 23 10 84 39 62 70 15 38 20 75

chromosse 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
solution 1 0 1 1 1 0 0 0 1 1 1 1 1 1 0 0

CHAPTER 6. EVOLUTIONARY TECHNIQUES

Table 6.3: Encoding synaptic weights on a genotype are encoded as binary numbers.

Table 6.4: Encoding synaptic weights on a genotype are encoded as real numbers.

Table 6.5: Organ inlets representing the nanorobot attending decision at the current time.

6.4 Genetic Algorithms Codification

The first stage to resolve a specified problem using GAs consist in the establishment of a
codification/representation fashion to each element in the search space of the model in question, once
the GA engine will affect and operate on its codification, which itself represents a solution. The GA
could be made using an integer or real codification of their variables. Hence, the solution can assume
integer values or continuous percentage (tables 6.3 and 6.4).

Normally a problem solution is associated with a chromosome p represented by a vector or a list

in the space },,,{: 21 n
n xxxp =ℜ where each ix represents a gene, which is a real variable

that characterizes a problem solution. Generally an advantage of a real representation is its more
intuitive conception, what makes possible and easier the appliance of prior knowledge derived from
the appliance field, for the use of a crossover and mutation operator within the specified problem
context [81].

For the problem under study where the nanorobots are required to operate a set of n organ inlets,
a chromosome represents the configuration and state of an inlet organ at time step t in the scenery
simulated. Supposing that we lead with a problem with n = 16 organ inlets, thus a chromosome is
represented by a vector with 16 elements with each element corresponding the organ inlet nutritional
level. The value “1” means that such organ inlet was scheduled at time t to be attended by the
nanorobot i, and “0” meaning that such organ inlet is not included in the priority list to be attended at
current time (table 6.5).

73

Organ Inlet 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Supply 0 0 1 1 0 0 0 1 1 0 0 1 1 1 0 0
State % 41 46 36 27 39 49 47 37 43 46 41 37 36 27 39 49

CHAPTER 6. EVOLUTIONARY TECHNIQUES

Figure 6.2: Evolutionary behaviour for minimization problems - each point represents a solution cost.

In the first line is represented the organ inlet identification, while in the second the supply’s
values “0” or “1” represents when the nanorobot has chosen to attend or not attend each determined
organ inlet with a nutritional delivery in the current time step. In the third line the state represents the
relative nutritional state of each organ inlet influenced by the nanorobot decision on attending or not
attending the actual organ inlet demand.

6.4.1 Genetic Algorithm Initial Population

The population of a GA is a set of feasible solutions represented by a chromosome as a vector
with size n composed of continuous or integer variables for a determined problem. To generate an
initial GA population in most cases, this is done through a very simple procedure. Normally it is used
from randomized up to heuristic algorithms for such an aim. For example, with the introduction of an
“interesting individual” (i.e. solution) into the initial population, which could be an approximated
known solution with some previous expert information, such an initial population could tend to
converge faster to develop the best global solution.

Each execution of a GA can be repeated on a computer by just taking for it the same “seed” for
the random number generator. Another seed value introduces a new sequence of random numbers and
consequently will bring in a new initial population. To obtain a better insight about the GA behaviour
on some specific application, all that we need is to do a statistic analysis on a set of results
corresponding to different seed values. Observe that, independently of the seed value in use, a robust
GA must experience little influence by such random mechanisms, thus returning every solution with a
good result.

74

Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Father A 1 0 1 1 1 0 0 0 1 1 0 1 1 1 0 0
Father B 0 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1
Son 1 0 1 0 1 0 0 1 1 1 0 1 0 1 0 0

CHAPTER 6. EVOLUTIONARY TECHNIQUES

Table 6.6: A crossover new solution generation.

6.4.2 Function of Chromosomes Evaluation

This function is responsible for the chromosome classification process and must identify the
quality of each chromosome in the population. By comparison with mathematical programming, such
a function is designated as the fitness function in a GA engine and is equivalent to an objective
function that wishes to minimize or maximize some parameter. On the other hand it is also possible to
make a multi-goal function where the model tries to maximize some α parameter while minimizing a
β parameter at the same time.

The objective function must be determined in such a way that through a successive sample
using an evolutionary process we could obtain some insight into which direction the optimal solution
could be located. For example, an evaluation function that only returns a binary solution with a value
“1” for just one right solution and “0” (such as “guess a keyword” game) for all other cases is
incapable of being a GA application, once we have lost any kind of guidance engine for such a
situation. Thus the search becomes completely blind and any feasible solution becomes merely a
chance play.

6.5 Genetic Operators

Once defined, the representation of population elements is possible to construct genetic
operators, which will be acting about a chromosome population. Therefore such operators are able to
generate new individuals (solutions). The development of a genetic operator is very closely influenced
by the solution representation for the original problem, which is encoded in a chromosome format. It
means that for some solution S we have to encode it into a chromosome p, and after some updating
performed in p by the genetic operator the new chromosome p’ will be decoded to obtain the new
solution S’ for the associated problem. Basically there are two kinds of conventional genetic operators
to generate new solutions, which are discussed next. In the sequence we also describe the roulette
approach, which is the engine applied to choose parents for reproduction and mutation in the GA
methodology.

6.5.1 Crossover

The expression crossover is normally applied in the evolutionary literature representing the
operator that generates new solutions through combinatorial manipulations. These new solutions came
from their parents. Thus the crossover operator aims to promote the genetic material recombination
from distinct parents, in order to generate one or more “sons” (new solutions). Depending on the

75

Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Individual (P’) 1 0 1 1 1 0 1 0 1 1 0 1 1 1 0 0
Individual (P”) 1 0 0 1 1 1 1 0 1 1 0 1 1 1 0 0

CHAPTER 6. EVOLUTIONARY TECHNIQUES

Table 6.7: A “mutation operator” in action.

Table 6.8: Accumulative action for “mutation operator”.

evaluation parameters of the fitness function, these new solutions could result in better or worse
solutions for the problem under study.

The better one will be given a greater reproduction probability in comparison with the worst
one, thus the population is going to achieve better solutions through the evolutionary process (Figure
6.2).

For the crossover operator two or more chromosomes are chosen and with a probability pc, they
are submitted to the crossover operation. One position in the recombination process is randomly
selected and the parents’ genetic material is recombined as demonstrated in the Table 6.6.

In this example the positions 2, 3, 6, 7, 9, 10, 12, 14 and 15 have the same value from both
fathers. In this way, the values were copied automatically to the generated son. The father A was
selected to transmit his characteristics to the positions 1, 5, 11 and 16. Meanwhile the father B was
chosen for the positions 4, 8 and 13. For the positions where the fathers would have distinct values, the
selection was done randomly with equivalent probability for each father.

6.5.2 Mutation

One or more operators for mutations are normally introduced in a GA engine. Normally they
operate over an unique solution generating a new solution for a specified population. This new
solution is then evaluated and then reincluded in the actual solutions population. The mutation
operators modify one or more chromosome’s genes, and such modification is based on a randomized
process or on a pre-defined rule. Thus if we have an individual P, which belongs to a determined
population, and the mutation operator has decided to alter one of the chromosome’s genes values (e.g.
in the 7th position), we would obtain a new individual with a modified solution P’ (see Table 6.7).

In the same way the mutation operator could use a duplicate effect for the same solution,
thereby generating a newer solution P’’ through a permutation with genes in the solution P’. For
example, if we recombine the genes x3 = 1 and x6= 0 we will have the result obtained in Table 6.8. The
occurrence of such a mutation process over a specified gene (chromosome) is done in a probability
manner pm such that the incidence is small. The idea originated in genetic concepts and tries to
preserve some genetic diversity in the population, which tends to lose such diversity when the

76

Positions 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Individual (P) 1 0 1 1 1 0 0 0 1 1 0 1 1 1 0 0
Individual (P’) 1 0 1 1 1 0 1 0 1 1 0 1 1 1 0 0

CHAPTER 6. EVOLUTIONARY TECHNIQUES

Roulette-wheel

5%
7%

7%

31%

48%

2%
solution 1: 0,713106

solution 2: 1,464286

solution 3: 1,974933

solution 4: 1,989683

solution 5: 9,182728

solution 6: 13,96281

Each individual
evaluation

Population with 6 individuals: selection probability

Figure 6.3: Roulette-wheel selection.

evolution goes forward and individuals become more and more similar, which tends to achieve a good
solution for a determined problem for cases where the applied GA achieves success. Furthermore,
when a significant loss of diversity occurs, the algorithm could use a heavy mutation action as a
diversification alternative for this specific generation. This approach aims to achieve new regions in
the search space with an increment of diversity in the population of the solution.

The mutation provides a diversification tool for the search space once it generates new
individuals. These new individuals could reveal promising regions in the search for the best solution.

6.5.3 Roulette-Wheel Selection

The roulette-wheel is the process where it is chosen what parents will have the crossover or
mutation operator applied. This choice is done in a randomized form based on probability intervals.
These probability intervals observe the value relative to the fitness function evaluation for each
individual related to its population. Thus in the GA classical literature the fitness function is closely
related to the roulette-wheel selection. The fitness function by definition must be maximized.
Therefore, the individuals (solutions) from a determined population that have a greater value are those
that become nearest to the optimum point in the solution search space, which means that such
solutions have a higher adaptability. For these individuals the roulette-wheel will always attribute a
greater chance to be chosen in the process of generating a new population, thus they have a higher
probability to become the fathers for the crossover operator.

77

CHAPTER 6. EVOLUTIONARY TECHNIQUES

Roulette-wheel - parents selection
First random value generated by the roullet-wheel: 0,133 - which implies by the Figure 6.3 that the
solution 3 was chosen to be the first father.

Solution 1
[0 – 0,020]

Solution 2
[0,021 - 0,070]

Solution 3
[0,071 – 0,14]

Solution 4
[0,15 – 0,21]

Solution 5
[0,22 - 0,52]

Solution 6
[0,53 - 1]

Second random value generated by the roullet-wheel: 0,956 - the solution 6 is selected to be the
second father in the crossover process.

Figure 6.4: Roulette-wheel parents selection for the next crossover.

More precisely, the width of each slot is proportional to the fitness of the population. Since copies are
made by spinning the wheel and selecting the individual corresponding to the slot where the ball stops,
individuals with higher fitness have more reproduction chances. For example, the probability
attribution for each individual is decided as follows: consider the evaluation value for all of those 6
individuals (Figure 6.3), where we have obtained the value 29,28755 as being the total sum from each
individual fitness (solution value). Sharing the fitness value from a solution using the total sum of all
those fitness values, we obtain the contributing fraction of this individual in relationship to the whole
population's fitness value. Once having generated the probability intervals, we generate random
numbers with a uniform distribution probability U[0,1], where this value will determine the father's
choice for the next crossover (Figure 6.4).

This approach assures that better adapted individuals tend to have a greater probability of being
chosen. However, individuals with lower values are also given a chance to be chosen for crossover.
Obviously, they receive a lower probability in comparison with those with a higher fitness value. The
justification for this approach, where individuals with lower fitness are also permitted to be chosen for
the crossover process, is done in order to avoid too fast a convergence into a very similar population,
locking the search into an optimum local solution, which would imply automatically in the loss of the
best global solution that is what is really of interest in our optimization search.

In general terms, we could affirm that heuristic methods show a satisfactory performance, when
we must lead with combinatorial problems [365]. In the majority of those cases a heuristic approach
results in excellent near optimal solutions with significantly lower computational effort for a large
range of problems.

6.6 Parameters Definition

In GA there are many parameter adjustments, such as crossover proportion, mutation proportion
etc. For the crossover proportion, we mean what percentage of a population will be involved in the
recombination process for each generation. The mutation proportion determines with what probability
an individual will suffer a mutation in one of his genes in each generation. Experimental results have
demonstrated that for crossover weight values from 60% up to 80% demonstrated good performance,
while for the mutation the suitable values are quite small, i.e. generally as small as 5% [80].

An important question also is related to the suitable population size that must be used in a GA.
Experimental tests have demonstrated that the greater the population size, the better will be the
achieved solutions. On the other hand, the greater the defined population size, the greater will be the
computational time required for each complete population iterations. Another important parameter for

78

CHAPTER 6. EVOLUTIONARY TECHNIQUES

the GA engine definition is the number of iteration, i.e. the stop criterion. As well as the prior
parameter, this also has an inverse proportion related to solution improvement versus a greater
computational effort consumption.

The adjustment of such parameters are in the majority of cases better specified for each
situation, thus having to observe some specific restriction related to the problem under study, could be
the better option. For example, some real time problems must have a very fast answer from GA
leading to a control system response, therefore the time required for processing must be lower for a
smaller population. Such a parameter could be completely different for a short time decision system,
which requires a solution for the next 1 hour and so forth. What happens in many cases is the use of
good sense and previous knowledge about the problem in question for the GA parameter specification.

6.7 Conclusions

A fundamental requirement for intelligent mobile robots is a decision by the robot on how to
interact with its environment. Many situations require the robot to decide what kind of task demands a
higher priority than another, and so forth. Approaches based on the classical paradigms were not
completely suitable for unpredictable and dynamic environments. Other approaches consider this
reaction as the new paradigm to build intelligent systems. One classical instance of this kind of
architecture is the subsumption architecture that was proposed by Brooks and has been successfully
implemented on robots of many research institutes [47]. The base of the subsumption architecture is
“behaviour”. Each behaviour reacts in a particular situation and the global control is a composition of
such behaviours. Different systems, from finite state machines to fuzzy controllers [198], have been
used for the implementation of these behaviours, and the rules of these behaviours may be designed by
a human expert, designed “ad-hoc” for the problem, or learned using different artificial intelligence
techniques.

Machine learning has been applied to shape the behaviour of adaptive agents. Some of these
techniques become inapplicable for learning about reactive behaviour problems because they require
more information than the problem constraints allow. Thus, it would seem reasonable to use an
automatic system that gradually builds up a control system for a robust and dynamic agent by
exploiting the changing interactions between the environment and the agent itself. Some approaches
use GAs [249], Classifier Systems to learn controllers [317][270] or Neural Networks to adjust
behaviours to attend to real time environmental demands [271].

Dynamic and interactive concepts are crucial in the case of mobile robots. Unlike robotic
manipulators, mobile robots often operate in open, unpredictable, and dynamic environments. These
dynamics between the robot and its environment are not easy for a human designer to completely
analyse. Instead a better approach is to define a robust high level range of instructions and goals that
must be accomplished by the robot. In this scenario, one cannot program a robot to move along a
given path, but instead, must allow the robot the possibility of making low-level decisions depending
on the conditions encountered in the surrounding environment. Learning and evolutionary approaches
[65] can exploit these kinds of interaction complexities at high and low decision levels to generate a
satisfactory adaptive behaviour, as has been demonstrated in recent works [73][69][66].

79

Chapter 7

Parallel Processing

CHAPTER 7. PARALLEL PROCESSING

7.1 Introduction

Computer animation, and in particular physical simulation, can impose extreme loads on
processing hardware. Motion dynamics and collision detection for complex environments where
mobile robots need to be interactive with each other and the objects surrounding them, can be the most
computationally intensive stage of the production process of an animation sequence. Methods for
decreasing the time spent on such activities must be a major priority if future requirements for
complex, interactive scenes are to be met.

Despite the expected future increase in available processing power, demands will always tend to
exceed the capabilities of current state-of-the-art machines. Although these are significant
improvements in processing speed, sequential processors are far from rendering sufficient computing
capacity for an advanced robot system. Any methods that increase the efficiency and speed of
generation of physical simulation for animation are therefore of great importance [78]. In several
cases, fundamentally new concepts have to be developed, so that a parallelization is possible. The use
of parallel processing can offer potential increases in processing speed in proportion to the number of
processors used.

7.2 Parallel Processing Characterisation

In order to use a parallel system, it is important to demonstrate the feasibility of parallelizing
existing problem solutions in robotics. In several cases, fundamentally new concepts have to be
developed, so that a parallelization is possible. is surveyed in . The historical development of control
structures of automated manufacturing has influenced specially designed computer architecture for
robot control [102][154].

80

CHAPTER 7. PARALLEL PROCESSING

Figure 7.1: Directed task graph.

A classification scheme for robot control architecture has been proposed to cover the extreme
viewpoints of the historical development, hierarchical and distributed control [185]. Additionally,
function-oriented and behaviour-oriented approaches are distinguished. Altogether, this results in four
different classes. For parallel processing each function or each behaviour can be performed by an extra
processing element (PE). Thus computer programs that could be running distinct PEs in a
multiprogramming environment should be identified as suitable applications for parallel processing
techniques and will be described as a flow shop problem in the sequence.

In general flow shop problems there may be n jobs each requiring m tasks T1i, T2i, …, Tmi, 1≤ i ≤
n, to be performed. Task Tji is to be performed on processor Pj,1≤ j ≤ m. The time required to complete
task Tji is tji . A schedule for the n jobs is an assignment of tasks to time intervals on the processors. No
processor may have more than one task assigned to it in any time interval. Additionally, for any job I
the processing of task Tji, j > 1, cannot be started until task Tj-1, i has been completed. A non-
preemptive schedule is a schedule in which the processing of a task on any processor is not terminated
until the task is complete. A schedule for which this need not be true is called preemptive. In our case,
we are dealing with a non-preemptive model.

The finish time, fi(Z), of job i is the time at which all tasks of job i have been completed in
schedule Z. The finish time value V(Z), of a schedule Z is given by

)}({max)(
1

ZfZV ini≤≤
= (7.1)

The mean flow time M(Z), is defined to be

∑
≤≤

=
ni

i Zf
n

ZM
1

)(1)((7.2)

An optimal scheduling finish time for a given set of jobs is a non-preemptive schedule Z for
which V(Z) is minimum. The general problem of obtaining an optimal finish time for parallel
processing scheduling is computationally difficult with dynamic programming.

81

Pred 1)(−= ff xb

}|{)(IiubSucc iff ∈=

,|{ IiuU if ∈= Pred }}|{)(,)(IhsuSuccbu hfiffif ∈==

,|{ IisS if ∈= Pred }}|{)(},|{)(IgrsSuccIhus gfififif ∈=∈=

,|{ IirR if ∈= Pred })(},|{)(fifhfif xrSuccIhsr =∈=

Pred }|{)(Iirx iff ∈=

1)(+= ff bxSucc

CHAPTER 7. PARALLEL PROCESSING

Table 7.1: Predecessors and successors set of tasks description.

To our problem we could represent a job with a directed task graph. Jobs could be sometimes
application problems, and sometimes part of the application problem. Figure 7.1 shows an example of
a task graph. Each node of the graph stands for a task. The letters inside the node show the task
identification and the value next to the node shows the processing time for that task. The arcs from one
node to another indicate communication between tasks and task precedence. For example, task d
communicates with task a, task b and task f, and is not executable until both task a and b have been
completed. The number beside an arc shows the communication cost between the tasks. Since a loop
structure in the job can be expanded to a set of tasks without any loop, we assume that the task graph
has no directed cycle, and is, therefore, a directed acyclic graph.

We assign tasks to processors and determine the execution order of the tasks, so that the total
computation time is minimized and the assignment constraints are satisfied. The assignment of tasks
implies a partition of tasks into subsets, where each subset contains the tasks assigned to a processor.
From the relation between the assignment constraints and the computation time, we can choose the
appropriate architecture. The relation between the number of processors and the total computation
time shows whether the problem is appropriate for parallel processing with that type of architecture.
Generally if the computation time decreases in inverse proportion to the number of processors, parallel
processing is a good solution for the problem [134]. On the other hand, if the computation time is
independent of the number of processors, as in the case of a simple linear task graph, parallel
processing is not applicable to the problem.

7.3 Processing Requirements of the System

An appropriate notation is required to analyse formally the problem of applying a parallel
processing solution to computer interactive robotics control in a graphic environment. It should
provide the method for assessing the suitability of applications for parallel processing and a way of
mapping the tasks of the problem domain to processing elements [227].

82

)}1(,...,2,1|{)(−+++== niiijjiJ

)}1(,...,2,1|{)(−+++== niiikkiK





+=→<
=→≥

=
nkmk

kmk
kM

0
0

)(

,|{' ' IiuU if ∈= Pred }})},(|{{)(,)(''
mod

''
ifnjfiffif siJjsuSuccbu ∈==

,|{' ' IisS if ∈= Pred }},)},(|)({|{{)('''
ifmfif uiKkkMmus ∈∈=

}})},(|)({|{{)('''
ifmfif riKkkMmrsSucc ∈∈=

 ,|{' ' IirR if ∈= Pred }},)},(|{{)(''
mod

'
ifnjfif siJjsr ∈= })('

fif xrSucc =

CHAPTER 7. PARALLEL PROCESSING

Table 7.2: The revised task predecessor and successor relationships.

7.3.1 Analysis of the Task

A task graph G for the process of producing a single frame of an animation sequence can be
defined as:

),,,,(dheCTG = (7.3)
}0,|{* ≥∈= xRxxR (7.4)

where:
T: the set of tasks;
C: the set of task communications: TTC ×⊂ ;
e: a task execution time function: *: RTe → ;
h: a communication overhead time function: *: RCh → ;
d: a communication delay time function: *: RCd → ;
R*: is a set of non-negative real numbers.

In the case of the generation of a single frame of animation, f, for a system of n “agent” objects
(which represents our nanorobots), T is defined as:

)}1(0|{ −≤≤= niiI (7.5)
},,,,{ RSUxbT ff= (7.6)

where:

fb : the initial trigger for frame f;

fx : the final synchronisation for the frame;

U: the set of initial object update tasks, }|{ Iiu if ∈ ;

S: the interaction response tasks, }|{ Iis if ∈ ;

83

CHAPTER 7. PARALLEL PROCESSING

Figure 7.2: Task graph for n PEs system with modified sense and response stages.

R: the interaction response tasks, }|{ Iir if ∈ ;

The predecessors and successors for the tasks can be identified in Table 7.1.
This gives the task graph shown in the Figure 7.2. This represents the worst-case scenario, since

every object in the system receives data from every other object to provide it with the data for the
sense stage. If the operation of the sense and response stages is implemented as commutative
operations, then they need only be carried out for each pair of objects once. It is then possible to divide
the sense and response stage work for the entire system equally amongst the agent objects [291].

This results in the replacement of the naive s sense tasks with a new s’ sense task that processes

data from (n-1)/2 other objects. It must be remembered, however, that each of the ifu , ifs and ifr

tasks refer to the same object, i.e. they have common data. Therefore in addition to each of the (n-1)/2
assignments for each task there is the additional task successor corresponding to the present task for
each object. The new predecessor and successor requirements are then given by the relationships in
Table 7.2.

It is now apparent that the communications requirements for the successors of the tasks in S’ are
the same as those of these predecessors. A processing element assignment can now be defined that is
consistent with the task graph.

Since the tasks R’ are indirect successors to the set of tasks U’, and there is no direct
communication requirement between the members of U’ and those of R’, there is no direct relationship
between the processor assignment function. There is a requirement, however, for the relationship
between pa (predecessor assigned task) for each element in U’ and each element of S’ and each
element of R’.

84

),(LPW =

},...,2,1{ pP =

))}),(()),((())(()((
,,,,,|,{

12212211

21212121
CttCttptpaptpa

TttppPppppL
∈∨∈∧=∧=

∈∃<∈=

∈∈∧=∈
∈∧=∈=

dLpppcpatSuccc
PpptpaTttT

ctc

tta
),),(())((),(

),())((,|{

 Pred)}),(())((),(Lpppdpat dtd ∈∧=

CHAPTER 7. PARALLEL PROCESSING

Table 7.3: Processor network assignment relationships.

These relationships can be expressed for a processor network W, with a set of p processors, P, and a
set of inter-processor links L. This is given in Table 7.3, and merely specifies the requirement that
each task assigned to a particular processor has a communication channel to its predecessors and its
successors.

Since these have been defined, pa for each set of tasks can be defined. It is assumed that it is
desirable to minimise the number of inter-processing element links. Hence, since the successors of a
given member of S’ are in the same set as its predecessors, it is logical to assign the predecessors and
successors of each member of S’ to the same processor. To start with, assign each element of S’ to a
particular processor:

spspaSs =∈∀)'(,'' (7.7)

Since, for each i, ifu , ifs and ifr execute consecutively and share data, it is logical to

implement them on the same processing element. With the other predecessor and successor
relationships, the assignments become the general expression detailed in Table 7.4. Where in Table 7.4

aL is the set of actual links required for a given set of processor assignments. The link requirements,

aL , for any processor that has an assigned task ifu is that there must be a link connecting that

processor to the processor '
jfs , where '

jfs is a successor to '
ifu . Since)('

ifupa has already been

defined as equal to)('
ifrpa , this specifies all the inter-processor links for the task graph. So any

suitable network of processing elements P, will have:

)}},(),(|{,|{ ji ppliJjjPilL =∈∈= (7.8)

with a suitable architecture and task assignment algorithm defined, the implications for
processing performance can be analysed.

85







+
=

≡
∈

otherwisettdtTM
NULLted

tTM
e

tedt
s :))),(()((max

)(Pr:0
)(

122
)1(Pr2

1
1 ;

∑++∑+≡
∈∈)1(3

3111
)1(Pr2

211),()(),()()(
tSuccttedt

se tthtetthtTMtTM ;

;)(),(),()((max
)(

))((max))((max),,(

)(Pr)(Pr

})(,|{

∑ +++=
=

=≡

∈∈

=∈∈∈

xedr
e

xedr

e

e
NULuSuccTuut

e
Tt

xexrhxrdrTM
xTM

tTMtTMAPGTM

∑++∑++=
∈∈∈)()(Pr)(Pr

),()(),(),()(max)(
rSuccxreds

e
xeds

e erhrershrsdsTMrTM ;

∑++∑++=
∈∈∈)()(Pr)(Pr

),()(),(),()(max)(
sSuccrsedu

e
sedu

e srhsesuhsuduTMsTM ;

∑++++=
∈)(

),()(),(),()()(
uSuccs

ee suhueubhubdbTMuTM ;

∑+=
∈)(

),()()(
bSuccu

e ubhbebTM ;

iifififji prpaspaupaII ===∈∀∈∀)()()(,, '''

((())((' papspa iif ∧= Pred)),(())))(())(''
ajijifif LpppsSuccpas ∈→==

)}},(,)(),(|{,)()(,|{ '''
jijjfiiififa pplpspaiJjpprpaupaIilL ==∈==∈=

CHAPTER 7. PARALLEL PROCESSING

Table 7.4: Task assignments general expression.

Table 7.5: Task-processor start and end times of a task.

7.3.2 Implications for Processing Performance

The system that results from the assignment algorithm can be assessed for its performance
advantage over a sequential system. The start and the end times of a given task t and the computation
time for a task could be defined by a graph G [227], a set of processors P and a set of task-processor
assignments are expressed in the Table 7.5, along with the final computation time requirements.

The processing time of the production process for a single frame in a sequential system is given
by the formula:

∑ ++++=
−

=

1

0
)())()()(()(

n

i
iiiseq xereseuebeTM (7.9)

where:

86

∑ ++++

++∑+

+∑+

+∑+

∑ ++

∑ ++++=

∈

∈

∈∈

∈

∈ ∈

∈ ∈

Ii
ii

nmnm
mJv

nmnv

nmnj
jKMmjKMm

nmnj

nj
jKMm

njnm

nji
iJj ijj

nji

Ii
iii

Ii
ipar

xexrhxrd

xrhrersh

rsdrsh

sesuh

sudsuh

ueubhubdubhbeTM

)(),(),(

))),()(),(

),(max),(

)(),(

),((max),((

)(),(),((max),((()(

modmod
)(

modmod

modmod
))(())((

modmod

mod
))((

modmod

mod
)()(

mod

CHAPTER 7. PARALLEL PROCESSING

Table 7.6: Processing time for one processor per task assignment.

)(be = time taken by task b.

)(iue = time taken for each update task u.

)(ise = time taken for each sense task.

 ∑=
−

=

1

0

''))(()(
n

j
ii jsese (7.10)

)(ise is the time to process data corresponding to each other object.

 ∑=
−

=

1

0

''))(()(
n

k
ii krere (7.11)

)(xe = time taken for task x.

)(ire is the time to produce a response for each other object.

For the parallel case I which the tasks are assigned 2/)1(−n , the minimum processing time
(i.e. the case where there is one processing element per assignment) is given in Table 7.6.

Hence the processing performance increase that can be expected depends on h and d for each
pair of communicating processes and on the relationship of the maximum time for each stage with the
mean time for each stage. For a system where d and h are independent of the task-processor
assignments, the best possible speed-up will be when each stage takes an equal amount of time, and if
this is the case the corresponding sequential and parallel computation times are given by the
relationships in Table 7.7.

This represents an order n speed-up for the update, sense and response phases, in a situation with
n processors. This, of course, is the maximum that could be expected. What is more important is that
the communication overhead is of order n too, when the communications between tasks provide an

effective inter-object data exchange of order 2n . Hence, although the actual speed up will be reduced

by the communication overhead, this overhead only increases in proportion to the number of object
tasks run concurrently. For the general case of p processing elements:

87

dhnhnxe
rnsenuebe

xenhdhrne
hndhnsne

hndhnuehdnhbeTM
xerensenunebe

xenrenseuenbeTM
dttdhtthTtt

rereseseueueIi

par

seq

iii

4)1(2)2/)1((4)(
)'')(2/)1(()''()2/)1(()()(

)()'')2/)1(((
)2/)1(()2/)1(())'')2/)1(((

)2/)1((()2/)1(()()(
)()''()''()()(

)()''()''())(()(
),(,),(,,

)()(),()(),()(,

22

212121

+++−++
−+−++=

++++−+
−++−+−+

−++−+++++=
++++=

++++=
==∈∀

===∈∀

CHAPTER 7. PARALLEL PROCESSING

Table 7.7: Sequential and parallel computation times for equal processing per object task.

dhnpnhpnph

xerensenuepnbeTM par

4)2/)1)((/(4)/(22

)()''()2/)1(()''()2/)1(()()(/()(

+−+++

+−+−++=
(7.12)

So for p processors, the update, sense and responses stages can offer an order p speed-up. In
many animation applications these are the major tasks in the system, certainly this is the case in
physical simulation systems [70]. In other applications, for example in the growing field of intelligent
agents [46][58][158][74][77], these will also be the most processor intensive tasks since it is in these
that the majority of data processing is going on to produce the final animation sequence [66]. This
method therefore offers an important performance improvement.

7.4 Parallel Processing for Robotics Control

Distributed high-level robot control systems make use of functional parallelism by dividing the
system into functionally different modules that run on different PEs. A system with high efficiency
can be achieved by concentrating on large and efficient software blocks with little inter-modular
communication [20]. Those systems typically provide extensible inter-processor communication
bandwidths. In the following, some classes will be distinguished:

• Shared memory systems communicate through a common memory. An efficient system

hierarchically organized can solve the dynamics of a robot [154]. Besides analyzing the
different buffering strategies, this work investigates pipelining the data flow for achieving
maximum parallelism.

• Another possibility for running distributed robot task controllers that are independent
from the network structure is the commonly used distributed operating systems. They
have the advantage that basic communication and coordination functions are provided at
the system level. Systems like DCE [328], therefore, provide a mechanism for remote
procedure calls. With this simple form, only synchronous communication is supported
and deadlocks are possible.

88

CHAPTER 7. PARALLEL PROCESSING

Figure 7.3: Concept for parallel robot control architecture consisting of multiple components
and an interconnection unit.

Even more convenient to program are distributed object-oriented systems [217][76][69]. They
offer all the possibilities of common distributed systems and support remote object access. Though
often remote object access can be used asynchronously, the system performance still is dependent on a
low level communication structure and protocol [146]. A flexible software architecture was designed,
which allows the software to be easily adapted to system changes [65][66]. Some concepts could be
observed in most parallel systems:

• Having a component called “Workcell Manager” which orchestrates most of the
cooperation activities with the other components.

• Fixed cycle patterns and fixed programs for the interaction of the components solving a
common task.

• Interfaces of the components defined with a few simple and common operations, and
components designed with as few characteristics as possible about the cell.

More loosely coupled system architecture is defined by the multi-agent systems [229] and
especially the blackboard systems [286]. The subsystems called agents are of similar size to the
components of our concept and also use asynchronous communication. Another system architecture
similar to the adopted approach is the distributed simulation system [254], where a distributed and
flexible system divided into functional subsystems is suggested, which can be run in parallel. One
main problem investigated is the temporal and functional consistency of the world model. The data-
flow must correspond directly to the flow of the material. Temporal consistency is monitored and
managed by a timer component. Such a system may work well for advanced manipulation tasks, like
cooperating robot manipulators.

89

Interconnection unit

Cell
configuration
component

High level
cell control
component

Graphical
user

interface

Functional
component

1

Functional
component

n

Functional
component

2
. . .

CHAPTER 7. PARALLEL PROCESSING

7.4.1 Parallel Architecture

Before discussing parallel control architecture, it is important to explain what control
architecture is. According to [102], control architecture makes a control system from control
components. The architecture determines the interrelationships between the components and the
mechanisms for coordination.

Requirements on robot control architecture can be described from a general point of view [125],
for manufacturing systems [131], and for software architectures of robot control [131]. Important
requirements from the parallel processing point of view are required to attend flexibility [173]. The
goal of our system concept is to provide scalable and flexible high level robot control architecture for
a complex manipulation task in a 3D virtual environment with real time adaptive reaction. In order to
provide high efficiency, our system is divided into subsystems with different functionality that may
run on different PEs and communicate by an efficient message passing protocol.

A subsystem is also called a component. A component implements a set of related functions and
can either be a physical or a logical component [254]. Logical components run as different processes
in order to have the possibility to run them on different PEs for higher efficiency. Additionally, a
component process can be parallelized at the algorithm level like automatic motion and decision
control (see chapter 8).

The system of components from this abstract point of view is shown in Figure 7.3. Each
component is linked to the interconnection unit. This interconnection unit may solely transfer
messages from one component to another (communication) or may have some intelligence and
decision capabilities (coordination). The set up of the system and the distribution of the component
processes is done by the cell configuration component that is invoked only at the beginning of the cell
process and is idle after the system has been investigated. Thus, our system establishes a flat
hierarchy: the main process control is at the top level and the other components at the second level
with little functional dependencies in order to support short response times.

In order to keep our system extensible and its components exchangeable, all software
components need to have an identical structure. Each component provides a set of functions, which
can be used by other components. Together with the interconnection unit, this enables a component to
fulfill a given task by cooperating with the other components. For example, with the nanorobot design,
such a model may generate a coherent behaviour comprised of distinct components, such as motion
control, dynamic decision, and collision detection, among others. In order to make the robot’s
architecture faster, it has been subdivided into parallel subcomponents. Thus the neural network
component is used to provide an optimization for the robot route trajectory (see chapter 5 and 8). The
nanorobot has also a sensor-based component, which uses an Interval Tree for 2D Intersection Tests
for collision detection (see chapter 3) with a hierarchical distance computation in the 3D workspace,
based on the given virtual model interaction between the robot and the environment [174] [72] [66].
Moreover last but not least, the decision component integrates the robot evolutionary behaviour in a
reactive fashion with the dynamic environment [75] [65].

90

Step 1: Process sensing
Robot 1: sense the 3D environment
Robot 2: sense the 3D environment
.
.
.
Robot n: sense the 3D environment

Step 2: Get response
Robot 1: calculate response
Robot 2: calculate response
.
.
.
Robot n: calculate response

CHAPTER 7. PARALLEL PROCESSING

Table 7.8: Processes of sensing and reacting in parallel with the environment.

7.4.2 Parallel Sensing for Virtual Robots

In order to enable a real time interaction between a set of intelligent agents in our virtual
environment, there is the necessity for what we can identify as an interaction phase. In such a phase,
there is an exchange of data between the nanorobots in the system. This means that each nanorobot
requires access to the data of each of the other nanorobots. To analyses this problem further, the
interaction phase can be broken down into two stages. In a physical simulation system these would
typically involve the detection and resolution of collisions, but the stages could equally incorporate
any other forms of sensory information and response, hence they shall be defined as the sense and
response stages.

The sense stage is when a given agent is retrieving sufficient information about its environment
to enable it to perform the response stage. A naive approach to this would be for every robot in the
system to acquire the necessary information from every other robot action in the system. This would
provide the desired result but would result in many cases of redundancy of data. It means that every
action performed by any robot in the environment must be realized in a fashion which will permit the
recognition by the other agents through the use of local perception. Thus each nanorobot is required to
react with changes occurring in its surrounding environment. Such an approach would allow the
nanorobots to perform the sense stage in parallel.

However, if the security of data is maintained, then the acquisition of data from other
nanorobots will require that the other agents in the system actually provide the data to the sensing
robot. This means that during each robot’s active sense stage some processing time will be spent
serving data to other objects. Hence the concurrent nature of the sense stage can rapidly become
communication bound. Of course, any intelligent implementation of such a system would provide
mechanisms to reduce this communication to a minimum. Firstly, only data need be processed for
agents that have changed their state information since the last interaction stage. Secondly, most data
operations need only be processed once for each agent (as in the case of the collision detection
operation). But the inter-agent communications would still be significant in any system with a
nontrivial collection of complex objects.

91

CHAPTER 7. PARALLEL PROCESSING

It is possible to circumnavigate this problem to some degree by providing shared memory
storage for the data of all the agents. This would allow the sense stage to gather data without direct
inter-agent communication and (allowing for resolution of memory contention) this could be carried
out in parallel. The problem with this approach is that it destroys the security of data for the
nanorobots. To solve this problem a security manager class was implemented, which is responsible for
data consistency. Since nanorobots may typically change the objects’ status that is under manipulation
during an animation (e.g. the organ inlets’ nutritional levels), the information about such objects will
not be known in advance. Some data will be required to be obtained by each agent through its sensing
systems upon such manipulated objects, what is implied in a shared exchanging data process. The
sense stage will therefore involve indirect inter-agent communications, both during the gathering of
information and the redistribution of results.

The response stage will include some isolated processing per agent that acts on the data gathered
during the sense stage. For example for collision detection, this stage would involve nanorobots
calculating their new velocities resulting from the data obtained during the collision detection stage.
For the evolutionary decision process, it will require the sensing and gathering of information on the
organ inlets’ nutritional levels in order for a better strategy for action the next time-step in the dynamic
environment.

The entire procedure ends with the scene collecting the information generated by the agents’
updated operations, which signals that they are ready for the next frame generation sequence. The
interaction phase can therefore be written as described in Table 7.8. These requirements are
independent of the design paradigm used for the system and are valid for real time and frame-based
systems that use discrete time increments for the simulation process.

7.5 Conclusion

Processing demands could increase extremely rapidly for the physical simulation of mobile
robots when using computer animation. Specially for the automation of robotics systems, which are
characterized as systems composed of several functional modules, the use of methods for decreasing
the operation time is even more important. After identifying each functional module, the
parallelization of such complex systems is an intensive field of research in computer science, even
with an increasing level of processing power and memory capacity. For our problem the same
approach was used based on such concepts, considering the complexity of the scenery under study.
Hence breaking down the whole complex system into smaller functional parts, enables faster
management and implementation, providing an architecture which is easier to test and to verify the
robustness of each module. Afterwards such an approach seems to be a more suitable architecture for
modeling robotics animation in computer graphics. To improve the simulator performance not only the
systems were projected to run in parallel but also we have taken care to minimize as much as possible
the intercommunication among the different modules, which implies an improvement in the
performance of the system in question.

92

Chapter 8

Proposed Control Design

a

CHAPTER 8. PROPOSED CONTROL DESIGN

8.1 Introduction

This chapter summarizes distinct aspects of the main techniques required to achieve a successful
nano-planning system design for a nanorobot model testing the reliability of an adaptive behaviour
under diverse circumstances as a robust agent. It also illustrates the required architecture for a 3D
visualization in real time. A new approach, using advanced graphics simulations for the problem of
nano-assembly automation and its application in medicine with concepts derived from mobile robotics,
is discussed. Therefore the problem under study concentrates its main focus on dynamic control for
nanorobot optimal performance as a suitable way to achieve a large range of tasks and biomolecular
manipulation in a dynamic environment. In our described workspace representing a simplification of
the human body, the nanorobot performs a pre-established set of tasks building nutrient molecules,
crudely analogous to the work done by a ribosome which is a natural assembler. Hence we discuss in
this chapter the main aspects involved in successful nanorobotics control modelling, proposing the
main concepts required for a new paradigm on the challenging development of molecular machine
systems design.

8.2 Virtual Environment

A molecular machine systems could be described as a system capable of performing molecular
manufacturing on an atomic scale [111]. With reference to nanorobotics control, it was demonstrated
that computation is relatively cheap for macroscale robotic actuators while arm motion is relatively
cheap for nanoscale robotic actuators [143]. Thus the moment-by-moment computer control of arm
trajectories is the appropriate paradigm for macroscale robots, but not for nanoscale robots [142]. For
nanoscale robots, the appropriate manipulator control is often trajectory trial and error, also known as
sensor based motion control [214][69][67].

93

CHAPTER 8. PROPOSED CONTROL DESIGN

Figure 8.1: Top camera view in the virtual environment.

Actually there are three main design approaches in nanomanipulation for liquid and air

environments, these are robotic arm, Stewart platform and a five-strut crank model [256]. In respect to
the simulated environment, for our experiments we have chosen a nanomanipulation in liquid medium,
which is most relevant within the presented application in nanomedicine [70][66].

There is a general agreement about the importance and necessity of the use of advanced
graphical simulation that can accurately reflect the results of experiments in automated planning to
permit judgments about manufacturing feasibility assisting chemical and biological assembly analyses
in nanotechnology [94]. Nanoscale object manipulation systems have been successfully applied with
the use of computer graphics for teleoperation, where the requirements for such systems have been
clearly established [330]. Virtual Reality was used for our nanorobot design where the use of macro
and microrobotics concepts is considered as a practical approach once the theoretical and practical
aspects are focused on its domain of appliance. The virtual environment in our study is inhabited by
nanorobots, biomolecules, obstacles, and organ inlets. Each nanorobot measures 650 nm in length and
160 nm in diameter. The biomolecule has a diameter of ~10 nm and each obstacle has a diameter of
120 nm. The organ inlets are 400 nm in height and width with inlet orifices 720 nm in diameter.

The nanorobot should be robust enough to operate in an environment with movements of six-
degrees-of-freedom. For the input and user interface, the mouse and keyboard was adopted, and the
camera view can also change its position in the y-axis related to the user’s view height (Figure 8.1).

94

CHAPTER 8. PROPOSED CONTROL DESIGN

Figure 8.2: Molecular identification through collision contacts.

Therefore a suitable starting point for our hypotheses formulations and assembly system automation
experiments was to consider the nanorobot design derived from biological models and comprised of
some basic nanoscale components such as molecular sorting rotors (see Figure 8.2); to distinguish
among different molecule types, the molecular sorting rotor presents a series of chemotactic sensors
whose binding sites have different affinity for each kind of molecule [142].

The nanorobot exteriors considered in our design assume a diamond-based material [111] which
may provide a smoother surface that minimizes fibrinogen (and other blood protein) adsorption and
bioactivity, thus ensuring sufficient biocompatibility for the nanorobot to avoid immune system attack
[142].

Some concepts provided from underwater robotics [55], [57], [370] were also assumed for
nanorobot locomotion. Observing kinematics aspects, the nanorobot kinetic response can be predicted
using state equations, positional constraints, inverse kinematics and dynamics, while some individual
directional component performance can be simulated using control system models of transient and
steady-state response [55]. For the kinetics aspects the nanorobot lives in a world of viscosity, where
friction, adhesion, and viscous forces are paramount and gravitational forces are of little or no
importance [142]. The main argument for using concepts based on underwater robotics as a good
starting point for design, is the liquid environment in which the agents will be under operation
performing the biomolecular assembly tasks [75]. In order to enable the nanorobot to function, it can
provide its own energy demands, via the chemical combination of oxygen and glucose [142], both of
which are plentiful in the human body.

95

CHAPTER 8. PROPOSED CONTROL DESIGN

Figure 8.3: Robot obstacle avoidance - sensing obstacles.

Figure 8.4: Robot obstacle avoidance - finding path.

96

CHAPTER 8. PROPOSED CONTROL DESIGN

A nanoactuator will be carried internally inside the nanorobot, and the nanorobot pushes the
assembled molecule to the delivery point. The obstacles will be located in unknown probabilistic
positions and the nanorobot has to avoid any collision with possible obstacles (Figures 8.3 and 8.4).

The nanorobot uses a macrotransponder navigational system that has been adapted for the main
aspects of nanorobot positioning, which may keep high positional accuracy to each nanorobot’s
orientation [142]. Such a system might involve an externally generated signal from beacons placed at
fixed positions outside the skin [257]. The uptake kinetics of a low molecular weight using a magnetic
resonance contrast agent can predict the delivery of protein drugs to solid tumors. This can provide
spacial information for inside body diagnosis of patient's chemotherapy developments. Hence, a
similar approach can also be useful for nanorobot navigational purposes. Such approach uses Image
Registration that belongs to the sub-field of computer science know as Computer Vision. It is directly
related to pattern recognition in the sense of treatment of image. The methodologies normally adopted
on Image Registration is to use sample techniques with data extraction through digital-analog data
processing and approximation techniques. Thus the delivery positions that represent organ inlets
requiring proteins to be injected are located for the nanorobot in a well-known position, whether these
organ inlets are scheduled or not, for injection at time t. They will change their delivery orifice’s
colours making it open or closed. Thus assembled molecules are delivered to specific locations by a
nanorobot’s docking at 2 micron2 (~1.4-micron square) embedded at appropriate spatial intervals
across the organ inlets orifice, which will be open for the delivery and be closed automatically within
the nanorobot’s delivery act. The assembled molecule can be pumped by the molecular sorting rotors
in ~10 seconds [139].

The trajectories and position of each molecule were generated randomly and each one will have
also a probabilistic motion acceleration. The nanorobot navigation uses plane surfaces (three fins total)
and bi-directional propellers, which are comprised of two simultaneously counter-rotating screw
drives for the propulsion; propellers applicable as a propulsion system has been considered to
nanorobots [142][148]; although propellers are adopted in the current work, other different approaches
can be possible. Among other different types of propulsion system, an interesting possibility to be
considered is cilia-based of flagella [367], which should be further investigated. The nanorobot has
sensors which will inform it if a collision occurs and if it is an obstacle to generate a new trajectory
plan, or if it could be a molecule which has to be captured and assembled (Figure 8.2).

The nanorobot will live in a world dominated by viscosity, as well as bacteria do. In this world a
very low Reynolds number (Re) is assumed for the kinetic calculations [298], where the fluid
mechanics in small structures can usually be described by the classical continuum equations [111].
The ratio of inertial to viscous forces is determined by Re which could be expressed in equation 8.1.

ηρ /Re vr= (8.1)

where η is the viscosity of the fluid, v is the velocity, ρ is the fluid density, and r is a
characteristic dimension or fluid density. Re indicates whether the flow will be laminar or turbulent
around an object of a given shape [79]. For nanoscale dimensions in fluids of ordinary viscosities and
velocities, Re is low and the flow laminar [142]. Given a sudden stop, the nanorobot will “coast” to a
halt in a time nanocoast rt Re= and by equation 8.2:

1.0
15

2
==

η
ρ Ltcoast (8.2)

97

CHAPTER 8. PROPOSED CONTROL DESIGN

Figure 8.5: System architecture (nanorobot’s functional parallel architecture).

where 0.1 is expressed in microsecond, and in distance 1=≅ coastnanocoast tvx nm [39]. Thus with n

as the rotational frequency, if the nanorobot is rotating at a frequency 100=nanon Hz when its

rotational power source is suddenly turned off, nanon decays exponentially to zero in a time
1.0≅coastt microsecond and stops after turning, as expressed by equation 8.3:

40
15

Re2 2
≅=

η
nanonano

coast
rpn

q (8.3)

where q is the rotational motion, p is the pressure and 40 is expressed in microradians.

98

CHAPTER 8. PROPOSED CONTROL DESIGN

8.3 Evolutionary Decision

We intend to construct and validate a nano-planning system, where the use of robust
evolutionary agents will enable a better-tuned validation of the nanorobot control system under study.

8.3.1 Robust Evolutionary Behaviour

Incorporating robust behaviour in a complex real-world system requires accurate and timely reactions
to stochastic environmental events [236][293][84], thereby advances in artificial intelligence and real
time systems have become important and successful tools dealing with such problems, therefore use of
concepts derived from Evolutionary Techniques, Artificial Life and Ants have received special
attention in the research community [75][66].

The evolutionary model used for nanorobot control decisions is cited in the literature as Genetic
Algorithms (GA). A GA relies on concepts derived from evolution and genetics [76][65], thus
providing behavioural learning from events and actions through time. In a GA every solution is seen
as an individual with its own genetic characteristics and belonging to a certain population. In the
implemented architecture (Figure 8.5) we used real time and parallel processing techniques [377],
which were intended to provide a simulation scenery as close as possible to a real situation, where the
agents react adaptively to any event and change in the environment with the model visualization in
real time [78]. Each solution in the GA model is expressed as a chromosome regarding the agent
decision on how, when and what organ inlets to serve in the dynamic scenery, and each decision
required to be taken by the nanorobot is always attaining the programmed set of actions rigidly pre-
established in our design by the fitness function, as is described through the equations 8.4 to 8.13.

t
i

tn

t

m

i

t
i zywrfMax −−= ∑ ∑

= =
Ω

1 1
)(ψ (8.4)

s.t. *1
i

t
i

t
i wwz −= + (8.5)

dQy tt −= (8.6)

LxQ t
i

t ≤= ∑ (8.7)
max
i

t
i

t
i xx µ= (8.8)

max
i

t
i ∆≤µ (8.9)

t
i

t
i

t
i

t
i xsww ψγ ψ +−=+ 1 (8.10)

maxmin
i

t
ii www ≤≤ (8.11)

}}1,0{}100,0{{ ∨∈t
iµ (8.12)

},{ BA∈Ω (8.13)

where
wi

t : nutritional state of the organ inlet i at time t.
yt : surplus/deficit to the desired assembled mean.
z: keep the nutritional levels close to the target.

*
iw : defined desirable organ inlets’ nutritional target level.

r, t, i: subscript denoting respectively robot, time, and organ inlet.
max, min: upper and lower bound parameter.
A, B: define the kind of nanorobot.

99

CHAPTER 8. PROPOSED CONTROL DESIGN

n: size of time in the simulated scenery.
m: total of organ inlets to be fed.
L: robot load capacity.
xi

t : substance amount injected in the organ inlet i.
Qt : total assembled molecule by r in t.
si

t : substance consumed in the organ inlet i.
d : desired assembled substances rate.
γ : parameter to look ahead at nutritional levels.

t
iµ : boolean variable.

ψ: determines specific model performance for r; ψ value is defined respectively in the
chapter 9 by the equations 9.3 and 9.4 depending on each respective control approach.

Ω: determines if r is of kind A or B.
∆: maximum to be injected at organ i in t.

Equation 8.4 represents our fitness function, where the nanorobot optimizes the protein levels
for the selected organ inlets, what could mean a maximization or a minimization of the same variable
depending on the parameter ψ, and the variable y induces the nanorobot to catch a number of
molecules as closely as possible to the desired delivery mean, while z brings the nutritional levels as

close as possible to *
iw . Equation 8.5 informs the nanorobot how close its action is in bringing the

organ inlets’ levels to the desirable nutritional target. As it has been pointed out by the results in
Chapter 9, there is a direct correlation between a greater number of nanorobots acting in the
workspace and the desirable nutritional levels’ target improvement. Equation 8.6 sets up the specified
amount to be transported and assembled at time t for the nanorobot. Equation 8.7 is the total sum of
captured molecules that will be assembled attending the nanorobot load capacity. Equation 8.8 is the
amount specified for each organ inlet i with injection at time t. Equation 8.9 expresses the maximum
that could be injected into the organ inlet i at time t. Equation 8.10 is the nutritional state for the organ
inlet i due to the action performed by r. Equation 8.11 shows the minimum and maximum nutritional
levels needed for the organ inlets. Equation 8.12 is the genetic random operating values. Equation 8.13
defines what kind of features the present nanorobot has in r, such characteristics are described in detail
in the next chapter (see Chapter 9).

As we shall see, the action based on sensor local perception has generated an adaptive coherent
nanorobot behaviour, which was observed by the proposed model simulation (see Chapter 9). The
study of coherent multi-robot behaviour in a single global environment is a relatively new field of
research [225], which has advanced most concepts related to the use of local perceptions for reactive
agents.

8.3.2 Behaviour Activation

The nanorobot model uses a local perception technique, thus the first approach to sensor
integration involves two orthogonal sensing strategies: spatially and modally orthogonal sensors.
Spatially orthogonal refers to a geometric arrangement of sensors which carves the robot’s perceptual
field-of-view into discrete non-overlapping regions.

100

CHAPTER 8. PROPOSED CONTROL DESIGN

Figure 8.6: Perceptual cues forward flow.

Modally orthogonal is the integration of sensor data from dissimilar sensor types. By combining
sensor data using these approaches, features from the environment’s stimulus output are extracted and
used by the robot’s motor decision process.

The second method of integrating sensor data uses previously defined perceptual cues additively
by concatenating binary decisions (cue outputs) into vectors that can be used to control state
transitions in the robot’s task model. Biomolecules-pushing is the task used to demonstrate the
feasibility of the perceptual cue framework, by defining the cues used in the task independently from
the actions performed by the nanorobots. In this manner, what the system of robots is required to do is
defined by an evolutionary robot’s task controller, but how the robots accomplish the task is not
explicitly defined, it is instead dictated by sensor-based behaviour activation.

• Controlling behaviour activation

Behaviour activation refers to the process of deciding which behaviour is to become active in
the current context, i.e. in the currently executing controller. Each behaviour has an associated
perceptual cue that activates the behaviour to produce a motion command as output. More
than one behaviour may become active during the control loop. A priority scheme among the
behaviours within the current executing controller determines which action is executed by the
robot. Thus, in a known environment a robot’s action is based on a perceptual process that
uses local sensing to look for specific features in sensor data.

• Controlling task state transitions

Perceptual cues used on control state transitions in task execution are specified as predicates
with perceptual preconditions that must be satisfied. Each task is decomposed into subtasks
and a controller is designed for each subtask. Control system processing is handled in discrete
steps, with control either remaining within the current subtask controller or passing onto the
next one, as specified in the task model digraph using a forward (FL) or repeat (RL) edge. The
cue used or the transition in each subtask controller, or step i, is related to its predecessor by:

iii cFLFL ∧= − 1 (8.14)

101

nn

nn
ccccST

ccccST

cccST
ccST

cST

¬∧∧∧∧←
¬∧∧∧∧←

¬∧∧←
¬∧←

¬←

−−






321

13211

3213

212

11

CHAPTER 8. PROPOSED CONTROL DESIGN

Table 8.1: Logical AND perceptual cues.

for I= 1,2,…,n where n is the number of subtasks and ic is a new perceptual cue for step i.

iii cFLFL ¬∧= − 1 (8.15)

specified in this manner the forward edge, illustrated in Figure 8.6, is the cue signalling step transition
and signifies that a locally detectable event has occurred indicating step completion. Each step in the
task is modelled as a state in a finite state machine with perceptual cues used for state transition. The
perceptual cue causing a forward transition (FL) is simply a concatenation of another boolean variable
to the previous step’s forward perceptual cue. The repeat edge indicates that the current action is to be
repeated since the specified change in stimulus (the detectable event) has not occurred.

When a task is modelled as a multistep procedure, with each step represented as a state in a task
digraph, then the current state (ST) is specified as a logical AND of the perceptual cues, or i = 1,2,…,n
where n is the number of subtasks, as detailed in the Table 8.1. In choosing a minimal set of sensors
for the transport task, the robot’s activities of avoiding obstacles, locating the molecules to be moved,
and transporting it to a goal location, are considered. Each behaviour that could be taken must be
enumerated, with inputs to the behaviours specified as binary input variables. This establishes the
minimal number of binary variables that each behaviour requires for a determined action. For
example, the possible actions of the AVOID behaviour are idle, left-turn, right-turn therefore requiring
two binary input variables allowing for a maximum of four actions. In a similar manner, the molecule
locating behaviours use two input variables and the pushing behaviour uses one.

The nanorobot includes external sensors to inform it of collisions and to identify when it has
encountered an obstacle which will require new trajectory planning. Aspects of the non-structured
opaque surrounding workspace, like the interior of the human body where the nanorobot is acting,
must be considered in the navigational sensing design. In robotics fields there are often many kinds of
sensors such as infrared, computer vision, acoustic, chemical sensors, and so forth which are normally
used for robotics navigational purposes. Optical sensors have been widely applied in terrestrial mobile
robotics but these have an extremely limited range in a liquid environment. Types of sensors such as
laser rangefinders [55] could be also used for underwater robotics but not for nanorobotic sensing
because, for instance, the laser energy might excite or chemically alter the surrounding biomolecules
that the nanorobot is trying to capture. Optical sensors may also be unfavorable for nanorobot design
because lighting requires excessive power and has limited range, and because vision based systems are
unreliable in opaque environments which may restrict their use except at short distances.

102

CHAPTER 8. PROPOSED CONTROL DESIGN

Figure 8.7: Tasks are described as a sequence of steps, with each step possibly composed of
additional subtasks (Ti).

Although the infra-red sensor seems preferable for macroscale terrestrial robots, for underwater robots
the most common sensor approach involves the use of sonar systems. Similarly the most addressable
approach for nanorobots in nanomedicine is to use acoustic waves [142]. The blue cones shown in
Figure 8.2 represent regions that the robot’s sonar can “hear”. Scientific visualization techniques
permit rapid and precise geometric analysis for a sonar classification system [55]. The present
approach provides a medical nanorobotics control model in accordance with engineering, physics
concepts, and current trends in nanotechnology. For communication, as well as for navigational
purposes, the use of nanoacoustics for nanorobot interactions can effectively achieve resolutions of
700 nm [284].

8.4 Task Description and Decomposition

Task description and decomposition can be divided into task-related and tool-related knowledge
[253]. In other words, what is to be done and how to do it. Tasks-related knowledge can be described
in terms of externally observable desired changes in the environment, independent of the procedural
mechanism used to accomplish them. This is synonymous with Wilson’s sensory state machines in
which the environment is considered as a machine with the effects of robot actions considered as input
and changes in observable stimulus as output [375].

Our model assumes that the task under consideration can be described as a sequence of steps. A
finite state machine (FSM) will then be designed to accomplish each step with transitions between
steps triggered by perceptual cues. Each step may, of course, be composed of substeps or subtasks also
to be performed sequentially. In this manner a task may be described in fine detail as required by its
decompositional analysis. This results in a task description having the hierarchical structure illustrated
in Figure 8.7.

In the presented model, the task description is specified in a directed graph, called a task
description graph (TDG), with vertices representing a stimulus-object and its position to be
manipulated by the system, and edges in the graph representing possible actions that effect those
manipulations.

103

CHAPTER 8. PROPOSED CONTROL DESIGN

Figure 8.8: Illustrated is the nondirected molecule-transport where the nanorobots catch the molecule
from different directions.

Tool-related knowledge is specific to the mechanism employed by the system and refers to robot

actions in the environment and therefore is procedural in nature. A task is decomposed into finite state
controllers that accomplish the desired changes specified in the TDG. Both the execution of individual
subtask controllers and the transition between them are accomplished with perceptual cues. Perceptual
cues and their finite state machine controllers are called Q-machines and together with a task
description graph provide a model that considers the environment and robots together in its solution to
the specified task.

In the class of manipulation tasks being modelled here, objects to be manipulated are described
as stimulus-objects and states are determined by position, time and performance metric. Since states
are vectors, there are an infinite number of states in the environment. However, in the molecule-
capturing task the states of interest are: initial, final, intermediate and stagnating. Thus the states
correspond to several actual positions of the object being manipulated in an X, Y, Z coordinate system.
A task to be accomplished by the system is described by defining the initial and goal positions of the
object being manipulated. As well, stagnating conditions are identified as positions in the graph
requiring special actions, i.e. stagnation recovery behaviours. In the nanoassembly case that we
discuss in items 8.4.1. and 8.4.2, two actions are used to manipulate the molecule: 1A

capture_molecule and 2A remake_motion.

104

CHAPTER 8. PROPOSED CONTROL DESIGN

Figure 8.9: The task description graph where vertices represent an object (molecule) and position, and
edges represent actions that effect changes in an object’s position.

Task description is an external global point-of-view and describes changes in the environment
without regard to the mechanism that causes those same changes. The description of the task is
captured in a directed graph defined as follows.

Task description graph (TDG): is a directed graph G with n vertices and m edges. The vertex

set },,{)(1 nvvGV = describes the state uniquely determined by position, time and performance

metric, of an object (S) perceived as a stimulus to be manipulated, and the edge set },,{)(1 mi aaGA =
describes the actions needed to manipulate the object i without speaking about the actor or actors.
V(G) contains an initial state and a goal state, each of which can be associated with a set of positions,
times and performance metrics according to the precision to which the values are known.

8.4.1 Nondirected Molecule-Capturing

Nondirected molecule-capturing involves pushing a molecule from an initial position for a fixed
distance in any direction. The task is considered successful if the molecule S is pushed to a fixed
distance R in a given amount of time T. Distance R is the radius of a circle with the center at an initial

position 0tP as illustrated in Figure 8.8. The goal position P is any position that satisfies

0tPPR −≥ which is simply the distance between the goal and initial molecule positions.

Each vertex in the TDG show in the Figure 8.9 specifies an unique condition as defined by

changes in radius from the initial position δ−−=∆ tPPr per time period δ summarized as:

Initial molecule position, which may take any value in the 3D position space with 0=∆ r

011 ,0|),(: ttrPSv t ==∆ . (8.16)

Intermediate molecule positions, which may take any value in the 3D position space with
0>∆ r

105

CHAPTER 8. PROPOSED CONTROL DESIGN

Figure 8.10: The task description graph for directed molecule-pushing.

δ+=>∆ 012 ,0|),(: ttrPSv t . (8.17)

Goal molecule positions, which may be specified as any value in the 3D position space where
Rr ≥∆ and Tttn ≤− 0

nt ttRrPSv =≥∆ ,|),(: 13 . (8.18)

Stagnating molecule position, which describes a position that has not changed in time period δ
resulting in 0=∆ r

δkttrPSv t +==∆ 014 ,0|),(: . (8.19)

where δk is the time period before stagnation is detected, i.e. a timeout.
The stagnation condition in equation 8.19 occurs when robots capturing the molecules in

opposing directions detect an imminent collision with another robot moving in a contrary direction,
thereby producing an undesirable event, that is, the collision between robots. The problem occurs due
to the nondirected nature of the task. The solution is a recovery behaviour whose output is a robot

action that changes the orientation of the navigation force and is labelled as 2A in Figure 8.9.

106

CHAPTER 8. PROPOSED CONTROL DESIGN

Figure 8.11: Illustrated is the directed molecule-pushing task where the robot pushes the molecule

first to position AP and then to position BP .

8.4.2 Directed Molecule-Capturing

The task can be changed to directed molecule-capturing towards specific positions and can
include a temporal sequence of positions as indicated in Figure 8.10. The molecule is pushed from an

unknown initial position labelled as 1v to the position described by vertex 4v in time period 1T∆ and

then to position described by vertex 7v in the time period 2T∆ . Positions 5,2v describe intermediate

positions during execution, while position 3v and 6v refer to stagnating positions from which
recovery actions are required.

In this example, the molecule is first moved from an initial unknown position iP to a known

position AP and then moved to a second position BP (Figure 8.11).

8.5 Environment Sensing

Using a sensor-based model our nanorobot can explore the unknown environment dynamically,
and incrementally build its own internal model of the world. Due to the sensor-based local perception,
the nanorobot must on each time-step verify the organ inlets that belongs to its attribution, to make
feasible the next step in decision planning (Figure 8.12). Thus each nanorobot visits in a shorter time
the organ inlets that were pre-attributed to that nanorobot in order to gather information for the next
time-step decision from the 3D workspace.

107

CHAPTER 8. PROPOSED CONTROL DESIGN

Figure 8.12: Directed molecule capture-delivery, and the environment sensing with complete tour.

The nanorobot firstly visits the organ inlet selected to be supplied, attending to each demand,
afterwards the nanorobot visits any other organ inlet still not visited during the time-step simulation in
order to evaluate their nutritional levels. Thereby the referred nanorobot has attained enough
knowledge necessary to decide the best action plan for the next step. The organ inlet state level is read
through contact sensors, with the sensor-based local perception.

8.5.1 Memory Behavior

Memory behavior begins with the sonar recognition of 3D objects using a set of previously
recorded memory sonar object data identifications. These are based on geometric collision detection
for the process of evaluating different sensing actions that the nanorobot can take, and choosing the
kind of low-level action that maximizes the information acquired by an effective agent performance.
Three dimensional data could be obtained by a high resolution acoustic camera, such as the Echoscope
[169], with the recognition process performed through CAD-based vision techniques [133]. The
acoustic camera is formed by a two-dimensional array of transducers sensitive to signals backscattered
from the scene previously insonified by a high-frequency acoustic pulse [276]. A related system has
been proposed for transcellular acoustic microscopy for nanomedicine [142].

For each object class, and for each level of detail, an aspect graph is built off-line. Each node of
the aspect graph corresponds to a characteristic view of the object at the given level of detail,

108

CHAPTER 8. PROPOSED CONTROL DESIGN

including views that are close to one another. This allows the nanorobot’s recognition system to act
quickly and effectively with low computational effort to show the most adequate low level action
based on the memory behavior approach. Thus, when the acoustic or chemical sensors (molecular
sorting rotors) [142] touch an object in the scenery, the nanorobot will identify what kind of object the
signal is related to. Thereafter the memory activation permits recognition of distinct objects, allowing
the nanorobot to perform suitable activities upon encountering a molecule, an obstacle, an organ inlet,
or another colliding robot.

As a feasible approach to operate the graphic simulator as fast as possible and to keep the
nanorobotics animation efficient, we have done set strings representing the kind of objects which
comprise the workspace where the nanorobots are interacting. Thus, let K denote the set of all kind of
3D objects in the environment. Each nanorobot maintains a set M of observations checked
incrementally from the output of the sensor-based module. Thus the nanorobot rule-based behavior is
influenced by equation 8.20:

KM ← (8.20)

{ }usvqpoK t
i ,,,,=⊂ (8.21)













=⇒=

=⇒=
=⇒=

Ω

Ω

Ω

.

,
,

22

11

nn roK

roK
roK

M
ω

ω
ω

 (8.22)

ii GA)(=ω (8.23)
 where

i, t: subscript denoting: object identification and time.
Ωr : nanorobot.

o : each possible 3D object to be sensed by the
Ωr .

ω : kind of activated behavior that Ωr has to perform.

iGA)(: actions needed to manipulate the object i.
K: set with the kind of object comprising the 3D

nano-world.
M: memory behavior.
p: actual position from i.
q: properties of i.
v: velocity of i.
s: translation of i.
u: rotation of i.

Component t represents the variable time in our model, while i is the related object that the
nanorobot is sensing. The attribute q contains specific properties and qualities of the object, including
information about the typical reaction features from the object when it is manipulated, such as whether
the object is a deformable or rigid body, and other kinds of information that allows the nanorobot to
take the correct action required. For example, if the observed object is a molecule, then q might
identify the object as something that can be captured, and so forth. Object properties are flexible and
can be utilized by reasoning engines to enable the nanorobot to make correct decisions when
interacting with the surrounding workspace.

109

CHAPTER 8. PROPOSED CONTROL DESIGN

Figure 8.13: Nanorobot’s sensor - back view.

The translation s is the observed position and orientation of the object represented by io and the same

idea is applied for u. The linear and angular velocities observed from io are represented by the

variable v. M represents the nanorobot sensing memory related to the object io under consideration.
The nanorobot’s perception sensing is continuously evaluated by the sensor-based module

engine, which detects collisions on each sensor and relates them to the referred 3D object in M (see
Figure 8.2 and 8.13). Thus the object identification from any currently contacted object is returned

from the set K. As expressed in equation 8.21, each io in K is combined with its corresponding

object’s state description. Thus the characteristic from io is compared and recognized based on the
values contained in K. For example, after M has been supported by K, then the navigation path-
planning module is invoked using the information returned by M in order to know whether the sensed
object leads to an obstacle, a molecule, or an organ inlet, and what subsequent action to take. Thus,
each nanorobot plans determined action interactively in the nano-world based on its own sensor-based
local perception and its memory behavior. The data flow of the algorithm is shown in Figure 8.14.

The interaction of the nanorobot with its environment supported by the sensing system and
memory behavior is a suitable approach mainly because the nanorobot’s workspace is a stochastic
environment populated by objects which could appear, disappear, or move around in an unforeseeable
fashion. There are many proposed architectures for implementing rule-based models in the literature,
the suitability of each one depending on the kind of application [201], [226], [315].

110

CHAPTER 8. PROPOSED CONTROL DESIGN

Figure 8.14: The basic sense-plan-control loop for the stochastic environment.

In the artificial intelligence literature, there has been a growing movement towards knowledge
representation languages that support an explicit representation of uncertainty [220]. The emphasis
has been on probabilistic representations, which allow the agent’s reasoning process to utilize such
techniques as conditioning for incorporating new information, and expected utility maximization for
making decisions [202][88]. Concepts such as Bayesian belief networks that provide a compact
representation of complex probability distributions could be used to allow the agent to make
inferences based on observations of the environment. In our approach the nanorobot uses an integrated
multi-modular functional architecture, in which the information collected by the nanorobot in the time-
step simulation t-1 serves as the basis for the evolutionary decision planning and neural motion control
at the time step t.

8.6 Neural Motion Control

A connectionist model using an artificial neural network (ANN) was chosen for the solution of
motion control and shortest-path problem, where we are going to lead with a dynamic combinatorial
problem for each time-step simulation. The classical problem of finding an optimal three-dimensional
shortest path avoiding polygonal obstacles was demonstrated as typical NP-hard [14]. The use of a
non-deterministic approach to solve the motion control seems to be the appropriate technique in such
cases, in the sense that among other heuristic methods the use of ANNs were successfully used for
motion and animation of physically-based models in virtual environments [157]. Suppose that a
coordination problem has been posed in which the state space, X, is defined, along with initial goal

states, initx and goalx .

111

CHAPTER 8. PROPOSED CONTROL DESIGN

Figure 8.15: Obtaining strategies that are minimal related to the ordering that exists on ~/Γ .

The goal of each robot is to choose some control function iu that achieves the goal i
goalx . We will

use the notation iγ to refer to a robot evolutionary strategy, which represents a possible choice of a

control function that incorporates state feedback, represented as),()(txtu ii γ= . In terms of control

laws, this is equivalent to a closed-loop controller. In principle, extensions that incorporate incomplete

or imperfect information feedback can be made [30] [234] [233]. We refer to },...,,{ 21 Nγγγγ = as

a strategy. Let Γ denote the set of all allowable strategies.

A stationary strategy is a special form of strategy that depends only on state, and not on a
particular time. For the motion planning problems that we are considering, although in relation to the

time step simulation represented by },...,,{ 21 Nt γγγγ = we have dynamically time-varying strategy

solutions, non-stationary strategy, the solutions are naturally stationary related to each specific time
step t solution, which is dynamically considered and defined at the moment t-1.

For a given initx and strategy γ , the entire trajectory, x(t), can be determined. If we assume that

initx and goalx are given, then)(γiL can be written, instead of using the form

),...,,,(1 N
goalinit

i uuxxL . Unless otherwise stated, we assume that)(γiL refers to the loss

associated with implementing γ , to bring the robot from some fixed initx to goalx . Hence, we can

consider the loss functional as a function on Γ .

112

CHAPTER 8. PROPOSED CONTROL DESIGN

In general, there will be many strategies in Γ that produce equivalent losses. Therefore, we
define an equivalence relation, Γ~ , on all pairs of strategies in Γ . We say that '~ γγ Γ if and only if

)'()(γγ ii LL = i∀ (i.e., γ and 'γ are equivalent). The equivalence relation, Γ~ , induces a partition

of Γ into classes that represent equivalent losses. We denote the quotient strategy space by ~/Γ ,
whose elements are induced equivalence classes. An element of ~/Γ will be termed a quotient
strategy and will be denoted as Γ][γ , indicating the equivalence class that contains γ . Consider a

strategy, γ , which produces 10)(1 =γL and 10)(2 =γL , and another strategy, 'γ , which produces

6)'(1 =γL and 6)'(2 =γL . From a global perspective, it is not clear which strategy would be

preferable. Robot 1r would prefer γ , while 2r would prefer 'γ . Both robots would, however, prefer

either strategy to a third alternative that produced 5)''(1 =γL and 5)''(2 =γL . These comparisons

suggest that there exists a natural partial ordering on the space of strategies (see Figure 8.15).
Our interest is in finding the set of strategies that are minimal with respect to this partial

ordering; these comprise all the useful strategies, because any other strategies would not be preferred
by any of the robots. We define a partial ordering on the space ~/Γ . The minimal elements with
respect to ~/Γ will be considered as the solutions to our problem. For a pair of elements

~/]'[,][Γ∈LL γγ we declare that)'()(]'[][γγγγ ii
LL LLif ≤≤ for each i. Two quotient

strategies, L][γ and L]'[γ , are incomparable if there exist some i, j such that)'()(γγ jj LL < and

)'()(γγ jj LL > . Hence, we can consider L][γ to be either better than, worse than, equivalent to, or

incomparable to L]'[γ . We can also apply the terms worse and better to representative strategies of

different quotient strategies; for example we could say that γ is better than 'γ if LL]'[][γγ ≤ . We

can say that L][*γ is a minimal strategy if, for all LL][][*γγ ≠ such that L][γ and L][*γ are not

incomparable, we have LL][][* γγ ≤ .

8.6.1 Feedforward Neural Networks

In our case we have implemented a feedforward or acyclic network due to its suitability for
probabilistic calculations. We assume that a robot is capable of a switching between a fixed, maximum

speed, iv , and remaining motionless (this represents a typical resolution in geometric motion

planning [27][121][207][108]). If, for example a robot is allowed to translate and rotate, then finite
bounds might be given that limit the translational and angular speeds.

We next express the performance criteria for the robots. For each robot, ir , we define a loss
functional of the form

))(())(())(),(,(),...,,,(
0

1 TxqxcdttutxtguuxxL iiT

ij

ijiiiN
goalinit

i +∫ ∑ ⋅+=
≠

(8.24)

which maps to the extended reals, and





∞
∈

=⋅
otherwise

tallforXtxif
xc validij)(0

))(((8.25)

113

CHAPTER 8. PROPOSED CONTROL DESIGN

Figure 8.16: Nanorobot molecule delivery to the organ inlet (represented by the white cylinder).

and







∞
==

otherwise
xTxifTxq

i
goal

i
ii)(0))(((8.26)

The function ig represents a continuous cost function, which is a standard form that is used in

optimal control theory. We additionally require, however, that
i
goal

iiii xtxiftutxtg ==)(0))(),(,((8.27)

This implies that no additional cost is received while robot ir “waits” at i
goalx until time T.

The middle term in the equation 8.24,))((⋅xcij penalizes collisions between the robots. This

has the effect of preventing any robots from considering strategies that lead to collision. The function

also in the equation 8.24))((Txq ii represents the goal in terms of performance. If a robot, ir , fails to

achieve its goal i
goalx , then it receives infinite loss.

The model particularly implemented here is known as a Feedforward Network with logistic
belief characteristics [170] that requires a lower computational effort in comparison with a
backpropagation approach. The properties of Feedforward Neural Networks could be described by
equation 8.28.

114

timeSeconds=Ф;

time_begin = time(NULL);

do{//Generate Feedforward Solutions

j=0;

for(move=0;move<nDestiny;move++)

{ neuronActiv=randomLayer(nDestiny-move);

 // Take the activated neurons.

search.sequence[j]=neuronSelect[neuronActiv];

 for(i=neuronActive;i<(nDestiny-move)-1;i++)

 { neuronSelect[i]=neuronSelect[i+1];

 }

 j++;

}

// Compare the actual cost and take this

// solution if it has the best cost.

reckonNeuralCost();

time_end = time(NULL);

}while(time_end - time_begin < timeSeconds);

CHAPTER 8. PROPOSED CONTROL DESIGN

Table 8.2: Feedforward network algorithm.

},...,,{)(121 −⊆ jj XXXXpa (8.28)

where X represents a vector, consisting of the two-valued random variables X1, X2,…, Xn, defining a
topology composed of N stochastic neurons.

With n representing the range of a hidden layer, which leads the network to be optimized at the
time-step t, it is related to each destiny to be achieved for the nanorobot through the simulation. The

units in the network are organized into a two-dimensional n rows by m columns matrix mnA , where n
and m is the cost matrix of destinations to be performed by each evolutionary nanorobot, which tries to
complete its set of tasks successfully as fast as possible. Let the output of the unit in row i and column

j be ijv = 1, where i ≠ j. This means that the referred destiny is visited at the thi stop, with ijv = 0

otherwise. Therefore, a solution cost for the nanorobot routing could be expressed by equation 8.29.

ij
i j

i
t wvR ∑ ∑=min (8.29)

115

CHAPTER 8. PROPOSED CONTROL DESIGN

The best solution was achieved by running our simulation based on the distance from each
intended goal in the virtual environment configuration (Figure 8.16). A Feedforward Network pseudo
code is described in Table 8.2.

8.7 Conclusion

The development of a control model and the design of a nanorobot automation has been
described, emphasising the necessity to attain flexibility and robustness at the same time for any
intelligent nanomolecular machine system prototyping, once considered to be complex, in relation to
many aspects of the nano-worlds. The control model will be required to perform molecular
manufacturing at nanoscale, which is even more evident for the specific problem that we are focusing
on, that is related to the application of nanorobots in nanomedicine.

We have included in the control model the most suitable methodologies regarding the main
aspects of adaptability, considering evolutionary and learning concepts, through the use of algorithms
that are considered to be most applicable to complex problems, enabling low processing efforts for
NP-Complete and NP-Hard problems. Moreover, the advantage of our approach is to provide a
modular behaviour for the nanorobot, where the nanorobot is required to react in a well-tuned way
with the events that came up from the surrounding uncertain 3D environment. For such a goal the
sensor-based concept, also know as local perception sensing was used. The simulator implementation
has required a higher performance, therefore the model described was developed using C++ [224],
OpenGL [376], and RAPID [301].

The use of computer graphics for the design of the model has significantly helped in our
understanding of many of those aspects related to nanoscale modelling such as: how a six-degree-of-
freedom model has to interact in an environment where the agent must ensure a satisfactory response,
even in a world dominated by quantum mechanics. The main expected requisites to be considered for
a complex representation of kinematics aspects at nanoscales was specified and detailed. Furthermore
the follow-up and theoretical considerations, as well as numerical simulations and experimentation at
nanoscale could be very hard to understand intuitively, and even more so, to be designed and
modelled, without the helpful use of computer graphics.

Thus, the main prerequisite and techniques for a detailed study of theoretical and practical
characteristics related to the investigations of new paradigms for the development of control models
applied to the coming new field of nanorobotics, has been considered and discussed. We expect that
the design approach presented here could serve in some way as an inspiring framework for further
studies on the field of nanosystems control design for mobile nanorobotics automation. The next
chapter has a detailed discussion on the numerical results and the model achievements.

116

Chapter 9

Results Discussion

CHAPTER 9. RESULTS DISCUSSION

9.1 Introduction

This chapter shows how the proposed intelligent nanorobotics control design can be used to
generalise and unify the analysis and computation methods for an adaptive behaviour model that has
to survive in a stochastic way across different classes of motion planning problems with different
kinds of interaction rules, such as competitive and collective robotics environments. The emphasis
here is on defining models and formulating concepts, and validating the modelling through simulation
and numerical analyses. The discussion in this chapter also provides a basis for future research on the
direction taken in this dissertation.

Section 9.2 describes the main aspects related to the decision control model used by the
nanorobot. Section 9.3 describes the competitive scenery where the nanorobot is required to react
adaptively in an environment in which an adversary is found [69], thus the nanorobot control decision
is validated showing its reactive characteristics and effectiveness in a competitive dynamic
environment, where the two presented agents compete against each other [65]. Section 9.4 describes
the collective robotics scenery [66] where the nanorobots in a collective fashion must work
cooperatively to achieve a massively parallel assembly task in a 3D environment to improve the organ
inlets’ nutritional levels [74]. Section 9.5 shows the numerical optimization for the motion control
problem [71], where the nanorobot must visit the set of organ inlets that has to be attended and
verified, to provide a well-tuned decision for the next time-step in the simulation scenery. Section 9.6
concludes this chapter by discussing issues that result from generalizing and comparing new
paradigms on the problem related to the design of nanorobots [73][66], declaring the presented work
as a feasible framework for the complex problem of nanorobotics control modelling applied to
nanomedicine [65].

117

CHAPTER 9. RESULTS DISCUSSION

Figure 9.1: Nanorobots’ design - acoustic sensors, molecular sorting rotor, fins and propellers.

9.2 Evolutionary Decision for Dynamic Problems

The described nanorobots (Figure 9.1) should react adaptively in an uncertain and dynamic
environment with a well defined pre-programmed set of actions, such as finding, capturing, and
transporting biomolecules, which are required for the biomolecular assembly task and delivery. In our
architectural implementation, we use real time and parallel processing techniques to provide a real
time coherent adaptive behaviour with the visualization of the dynamic 3D virtual environment in real
time. Basically each nanorobot r is responsible for handling some different molecules, where such
molecules are designated as ge, and h as the kind of molecules to be assembled by r, therefore:





=⇒=
=⇒=

Ω

Ω
,
,

hBr
eAr

β
β

β (9.1)

.g=δ (9.2)

where A and B represent distinct nanorobot types depending on the interaction rule specified for each
investigated scenery. Thus A and B will imply two different nanorobot behavioural characteristics,
which will be determined and discussed in more detail in the sequence of this chapter. Our
fitness/objective function observes the same mathematical modelling discussed in the mathematical
model described in Chapter 8 in equation 8.4, where the nanorobots optimize the protein levels for the

118

CHAPTER 9. RESULTS DISCUSSION

selected organ inlets. The nanorobot has to decide what organ inlets to attend at each time-step once
the delivery for the organ inlets in most of the cases assumes not a continuous but only an integer
value and the nanorobot cannot attend all the organ inlets at the same time. Just two of each ten organ
inlets was randomly specified to have a possible continuous nutritional injection working as the gap
variable for the delivery mean problem, which becomes more complex and significant once the
nanorobot decides what organ inlets to attend at each time-step of the dynamic decision. For the organ
inlets’ nutritional levels in both scenes discussed next, we have adopted as the most ideal nutritional
target levels at 50% of the relative organ inlet nutritional capacity. In general trems it is assumed that
levels lower than 20% or higher than 80% are characterised as a possible deficiency or overdose case.
Therefore, as we will observe, in very rare occurrences when such a circumstance arises, i.e.
nutritional levels outside the 20% to 80% operational ranges, the medically beneficial nanorobotic
behaviour acts immediately to bring the nutritional level into the desirable nutritional ranges. Those
numerical simulations will be described in more detail throughout this chapter.

The delivery mean was established, that each 10 organ inlets are expected to deliver an amount
of 100 proteins as a relative symbolic amount to set up a target, which has to be managed by our
nanorobots. Thus it does not matter what amount of nanorobots are in the simulated scenery, their
loading capacity will be adjusted in order to correspond to the respective targets in the simulation.
Obviously the nanorobots' load capacity won’t be larger nor smaller than the delivery target, which
implies that the nanorobots must make a well tuned decision on how to administer their delivery
capacity, considering that at each time-step in the simulation any robot cannot attend all the organ
inlets in the 3D environment at the same moment on the same simulated interval of time. So, the
nanorobot has to decide what organ inlets can stay out of the delivery list at the actual interval of time
and what organ inlet cannot wait till the next time in the dynamic simulation. For example, for a
situation where we have 30 organ inlets with one nanorobot agent, the nanorobot agent's load capacity
is adjusted to a maximum value of 300 proteins at each round simulated; for 60 organ inlets, the
nanorobot's load capacity is 600 proteins for each respective round. Of course, the same modelling
applies for each nanorobot in the environment. Nevertheless for scenery with collective robotics,
where for each nanorobot is attributed a fixed number of 10 organ inlets, each nanorobot will have a
load/delivery capacity pre-established as 100 proteins for each round simulated. It does not matter if
the environment is comprised of 30 or 60 organ inlets.

The functional decision module uses genetic algorithms as a suitable approach for dynamic
behaviour dealing with a highly complex environment, which provides a nanorobot decision in an
efficient fashion with low time processing effort. Thus the proposed model is not dealing with any
kind of nanorobot self-replication behaviour [110], instead the model uses the evolutionary approach
strictly for the combinatorial analyses.

9.3 Competitive Scenery

The competitive scenery presents a pair of nanorobots competing against each other (Figure 9.2)
in the sense that while one agent tries to improve the nutritional state of a set of organ inlets in the
represented living three-dimensional environment, the nanorobot adversary tries to debilitate it
through the injection of inappropriate assembled substances into the same organ inlets. The aim of
such an approach is to demonstrate the timely reactive characteristics of the presented nanorobot
model.

119

CHAPTER 9. RESULTS DISCUSSION

Figure 9.2: Competitive agent and adversary in action.

The model behaviour must achieve a satisfactory adaptive reaction in front of a set of disturbances
produced by an adversary, which is acting dynamically in the same environment.

9.3.1 Environment Description

The competitive scenery is comprised of 2 nanorobots, 30 organ inlets and n obstacles (Figure
9.3). Therefore we could express the combinatorial complexity of the present problem as 230 for each
nanorobot in the scenery. The complexity of the problem refers to the fact that each nanorobot must
decide what action to take in the next time-step in the simulation scenery. Both nanorobots are
required to move in a 3D environment, thereby swimming in an environment with a motion control of
6 degrees-of-freedom to avoid obstacles in order to deliver the assembled biomolecules delivery to the
organ inlets (Figure 9.4).

9.3.2 Nanorobots Interaction Rule

We intend to construct and validate a nano-planning system, where the use of competitive
evolutionary agents will enable a better-tuned validation of the nanorobot control model under study.
The competitive nanorobot interactive rule is described in Table 9.1. The min denotes the minimum
defined to be captured by each nanorobot at time step t.

120

CHAPTER 9. RESULTS DISCUSSION

Figure 9.3: Competitive scenery, top camera view.

Figure 9.4: Nanorobot adversary delivery to the organ inlet - represented by the white cylinder.

121

Step 1: rΩ walk randomly to capture β and δ;

Step 2: if ∑ β = ∑ δ  assemble f(rΩ)= β + δ;

Step 3: if ∑ f(rΩ) < min repeat step 1;

Step 4: rΩ achieve next delivery goal regarding the delivery queue;

Step 5: if Ω = B go to step 7, otherwise next step;

Step 6: if delivery_NOT_overdose = true  next step; otherwise go to step 8;

Step 7: delivery: f(rΩ) = f(rΩ) -1;

Step 8: if f(rΩ)>0 repeat step 4;

Step 9: repeat step 1;

CHAPTER 9. RESULTS DISCUSSION

Table 9.1: competitive scenery nanorobot interaction rule.

Both agents react adaptively based on their local perception of any action performed by an adverse

decision with the environment visualization in real time [78]. The parameter ψ in the equation 9.3
defines the distinct behaviour of nanorobots A and B, which is denominated here respectively as the
agent and adversary competitive function, directly influencing the evolutionary decision control model
defined by the equation 8.4 from Chapter 8.





−=⇒=Ω
=⇒=Ω

;1
;1

ψ
ψ

ψ
B
A

(9.3)

As we are going to see, the action performed using the sensor-based system has generated a
competitive nanorobot coherent behaviour, which was observed in the proposed model simulation.

9.3.3 Nanorobots Competitive Results

Tables 9.2 and 9.3 respectively show the nanorobot agent and nanorobot adversary decisions
about the injection of assembled substances into the set of 30 organ inlets. As we observe, the action
performed by the agent is influenced by the decision made by the nanorobot adversary at the same
time-step in the dynamic environment. On one side the nanorobot adversary is injecting an amount of
assembled substances that convey elements into the organ inlets that take off the actual nutritional
state, minimizing their levels. On the other side the nanorobot agent is observing with its local
perception sensors the organ inlets’ nutritional level in order to maximize it, and trying to bring all
levels as close as possible to the optimal target level, which was established as 50%. In the actual
scenery with 30 organ inlets one could see in Tables 9.4 and 9.5 that both the nanorobot agent and
adversary have achieved their protein delivery target. In the same Tables 9.4 and 9.5 one could see the
highest and lowest nutritional levels resulting from each nanorobot’s action respectively.

122

CHAPTER 9. RESULTS DISCUSSION

Table 9.2: Competitive scenery with organ inlets’ nutritional levels for the nanoroborot adversary.

123

Inlet time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 delivery 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0

level 30 42 34 46 37 49 20 32 44 56 27 39 51 42 54 46 37 49 41 32 44 56 27 39
2 delivery 0 0 1 0 1 1 1 0 0 1 0 0 0 0 1 1 0 1 0 0 1 0 0 1

level 56 62 58 55 52 49 37 42 48 44 41 46 43 49 45 42 48 44 41 46 43 40 45 42
3 delivery 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 1 0 0 1 1 0 0

level 46 42 48 45 41 48 34 40 47 53 39 46 42 48 55 61 57 44 50 57 53 49 46 52
4 delivery 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 1 0 0 1

level 43 56 66 61 50 45 52 47 53 44 39 45 56 45 52 63 58 52 64 62 46 58 70 50
5 delivery 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0

level 25 38 52 41 31 45 34 24 37 51 40 30 44 57 23 36 50 63 29 43 56 46 35 49
6 delivery 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1

level 59 75 58 58 74 57 56 72 72 71 54 54 70 53 52 68 68 51 50 66 49 49 65 48
7 delivery 0 1 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 1

level 57 54 45 48 45 49 40 44 47 45 42 45 43 40 44 47 45 42 45 49 46 44 47 38
8 delivery 0 1 0 0 1 0 1 0 1 0 1 0 0 1 1 0 1 1 0 0 0 0 1 0

level 56 53 60 56 54 60 61 68 68 64 65 61 70 56 54 62 56 55 60 61 65 73 60 56
9 delivery 0 1 0 0 1 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 1 1 0 1

level 59 58 57 63 56 55 60 54 59 52 57 57 56 61 60 60 65 64 69 69 62 61 66 66
10 delivery 0 1 1 1 0 1 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1

level 56 53 50 47 54 51 48 55 41 48 45 52 49 56 43 50 36 44 40 48 34 41 48 45
11 delivery 1 0 0 0 1 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0 1 0

level 30 22 34 46 37 49 20 32 44 56 47 19 30 42 54 46 37 49 20 32 44 56 27 39
12 delivery 1 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0

level 48 53 50 46 52 40 45 42 48 44 50 38 43 40 45 33 39 44 41 46 43 49 45 51
13 delivery 1 0 1 1 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0

level 46 52 48 45 41 48 44 50 37 43 49 36 42 48 45 51 48 54 60 66 63 59 56 52
14 delivery 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 1 1 0 0 0 1

level 54 56 53 47 57 51 59 54 66 46 55 48 57 51 55 67 47 56 53 29 38 47 57 54
15 delivery 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0

level 25 38 52 41 31 45 34 48 61 27 40 54 19 33 47 36 50 15 29 43 56 22 35 49
16 delivery 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0

level 59 75 58 58 74 57 56 72 55 55 71 54 53 69 52 52 68 67 50 50 66 49 48 64
17 delivery 0 1 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0

level 57 47 51 55 52 49 46 50 47 51 48 45 36 40 44 47 45 48 45 43 46 44 47 45
18 delivery 0 1 0 0 1 0 0 1 0 1 0 1 0 1 1 0 0 0 1 0 0 1 0 0

level 56 51 59 56 53 49 56 48 54 48 55 52 55 51 38 39 44 52 51 59 65 62 66 72
19 delivery 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 1 1 0 1

level 53 58 57 57 50 55 60 54 59 58 63 57 62 67 66 66 65 64 69 63 62 55 60 60
20 delivery 1 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1

level 46 43 50 47 54 40 48 44 41 48 45 42 49 46 53 60 47 54 51 58 55 62 59 55
21 delivery 1 0 0 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1

level 30 42 34 46 37 49 41 52 44 35 47 39 30 42 54 25 37 49 41 52 44 35 47 39
22 delivery 0 1 0 0 0 1 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0 0

level 56 44 50 55 52 49 54 42 48 44 50 55 52 49 54 51 48 53 58 46 52 40 45 51
23 delivery 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0

level 56 52 48 55 61 57 54 50 47 53 49 56 62 58 55 61 67 54 60 66 73 59 66 72
24 delivery 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0

level 54 48 56 47 56 67 61 69 47 55 59 71 55 49 60 55 66 60 71 49 43 53 48 50
25 delivery 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0

level 49 38 52 41 31 45 58 72 37 27 40 54 44 33 47 60 74 39 29 43 56 70 35 49
26 delivery 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0

level 59 59 58 74 74 73 73 56 55 71 71 70 53 53 69 52 51 67 67 50 49 65 48 48
27 delivery 0 0 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0

level 57 54 45 48 52 56 59 50 47 51 42 45 43 46 50 41 45 35 39 43 40 44 41 45
28 delivery 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

level 56 41 37 42 39 46 53 40 45 54 50 58 54 58 55 43 39 43 48 44 40 36 44 40
29 delivery 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0

level 59 52 51 51 50 55 54 48 53 58 57 63 62 67 66 60 59 64 63 57 56 55 54 54
30 delivery 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

level 56 43 40 47 44 40 48 44 51 48 45 52 49 56 53 40 36 44 51 48 44 41 48 45

Inlet time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 delivery 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 0 1 1

level 51 42 54 66 57 49 41 52 64 56 47 59 71 62 74 46 57 69 41 52 64 56 47 59
2 delivery 1 1 0 1 1 0 1 1 1 0 1 0 1 1 1 1 1 0 1 1 0 1 1 1

level 65 70 58 64 61 49 45 51 56 44 50 46 52 57 54 51 56 44 50 55 43 49 54 51
3 delivery 0 1 1 0 1 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1

level 46 52 58 45 51 48 44 50 57 53 49 56 52 58 65 71 57 54 60 66 63 49 56 62
4 delivery 1 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1 0 1 1 0 1 1 0 0

level 61 72 66 73 50 58 52 59 65 44 51 62 67 58 69 80 58 69 80 62 64 75 70 50
5 delivery 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 0

level 49 62 76 41 55 69 34 48 61 75 40 54 68 57 47 60 74 63 53 67 80 46 59 49
6 delivery 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0

level 75 75 58 74 74 57 73 72 72 71 54 70 70 53 69 68 68 51 67 66 49 65 65 48
7 delivery 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 0 1

level 63 54 51 48 52 49 46 50 54 45 48 52 43 46 50 54 45 48 52 56 46 50 47 45
8 delivery 1 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 0 0 1

level 66 64 60 69 64 72 72 80 68 77 65 74 70 69 66 70 66 64 65 69 77 73 60 67
9 delivery 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 1 1 0 1 1 1 1

level 65 58 63 63 62 61 60 60 59 58 63 57 62 67 60 66 71 70 75 69 68 67 72 72
10 delivery 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 1 1 1

level 67 63 60 57 64 51 58 55 51 48 55 63 59 56 53 50 47 44 51 48 44 51 59 55
11 delivery 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 0 1 1

level 30 42 54 66 57 49 41 52 64 76 47 39 51 62 74 46 57 49 41 52 64 56 47 59
12 delivery 1 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1 0 1 1 1 0 1 1

level 56 62 50 55 52 49 45 51 56 53 50 46 43 49 45 42 48 44 50 55 52 49 54 60
13 delivery 1 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 0 1 0 1

level 56 62 58 45 51 57 54 50 47 53 49 46 52 48 55 61 57 64 70 76 63 69 56 62
14 delivery 1 1 0 1 1 1 0 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 0

level 62 69 53 63 67 65 59 72 66 61 67 63 57 61 72 67 61 74 53 43 53 63 74 54
15 delivery 1 1 1 0 1 1 1 1 0 1 1 0 1 1 0 1 0 1 1 1 0 1 1 1

level 49 62 76 41 55 69 58 72 61 51 65 54 44 57 47 60 50 39 53 67 56 46 59 73
16 delivery 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0

level 75 75 58 74 74 57 73 72 55 71 71 54 70 69 52 68 68 67 50 66 66 49 65 64
17 delivery 0 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1

level 57 54 58 61 58 49 53 50 54 58 55 45 43 46 50 54 51 55 52 49 53 50 47 51
18 delivery 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0

level 67 63 59 67 53 60 63 58 63 58 67 59 66 51 43 48 56 64 63 69 73 70 76 72
19 delivery 1 0 1 0 1 1 0 1 1 1 0 1 1 0 1 0 1 1 0 1 0 1 1 1

level 59 58 63 57 56 61 60 60 65 64 63 63 68 67 72 66 71 70 69 69 62 61 66 66
20 delivery 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 0 1 0 1 1 1 0 1 1

level 46 53 60 57 54 51 58 44 51 59 45 52 59 56 63 60 57 54 61 68 65 62 69 66
21 delivery 1 0 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1 1 1

level 51 42 54 66 57 69 61 73 44 56 67 39 51 62 54 46 57 69 61 73 44 56 67 59
22 delivery 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0

level 56 53 58 55 61 57 54 51 56 53 58 64 61 57 63 60 56 62 58 55 52 49 54 51
23 delivery 0 1 1 1 0 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0

level 56 62 58 65 61 67 64 50 57 63 59 66 62 68 65 71 67 64 70 76 73 69 75 72
24 delivery 0 1 1 1 1 0 1 0 1 1 1 0 0 1 0 1 0 1 0 0 1 1 1 1

level 54 61 63 61 72 67 75 69 61 64 76 71 55 66 60 71 66 77 71 49 58 69 56 68
25 delivery 0 1 1 0 1 1 1 0 0 1 1 1 0 1 1 1 0 0 1 1 1 0 1 1

level 49 62 76 41 55 69 82 72 37 51 65 78 44 57 71 84 74 39 53 67 80 70 59 73
26 delivery 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1

level 59 59 75 74 74 73 73 56 72 71 71 70 53 69 69 52 68 67 67 50 66 65 48 64
27 delivery 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 0 1 1 0 1 0 1 0

level 57 54 51 55 58 62 59 57 54 51 48 52 49 53 50 47 45 42 45 43 46 44 47 45
28 delivery 0 0 1 0 1 1 0 1 1 0 1 0 1 0 0 0 1 1 0 0 0 1 0 1

level 56 41 46 42 50 56 53 49 58 54 61 58 62 58 55 43 47 51 48 44 40 48 44 44
29 delivery 0 0 1 0 1 0 0 1 1 0 1 0 1 0 0 0 1 0 0 0 0 1 0 1

level 59 52 57 51 56 55 54 54 59 58 63 63 68 67 66 60 65 64 63 57 56 61 54 60
30 delivery 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 0 1 1 0 0 0 1 0 1

level 56 43 50 47 44 51 48 55 51 48 55 52 59 56 53 40 47 54 51 48 44 51 48 55

CHAPTER 9. RESULTS DISCUSSION

Table 9.3: Competitive scenery with organ inlets’ nutritional levels for the nanoroborot agent.

124

CHAPTER 9. RESULTS DISCUSSION

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Delivery goal 300 300
adversary lowest 25 22 34 41 31 40 20 24 37 27 27 19 19 33 23 25 36 15 20 29 34 22 27 38
adversary highest 59 75 66 74 74 73 73 72 72 71 71 71 70 69 69 68 74 67 71 69 73 73 70 72

Table 9.4: Competitive scenery with highest and lowest levels for the nanoroborot adversary.

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Delivery goal 300 300
agent lowest 30 41 46 41 44 48 34 44 37 44 40 39 43 46 43 40 45 39 41 43 40 44 44 44
agent highest 75 75 76 74 74 73 82 80 72 77 76 78 71 69 74 84 74 77 80 76 80 75 76 73

Table 9.5: Competitive scenery with highest and lowest levels for the nanoroborot agent.

Simulation competitive: 24 time-steps

0

5

10

15

20

25

30

35

40

45

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

percentage nutritional state all 30 organs inlets

fr
eq

ue
nc

y

agent adversary

target: 50%

Figure 9.5: Histogram of competitive scenery with organ inlets’ nutritional levels.

For a total of 720 organ inlets’ nutritional levels observed through a scenery of 24 intervals of time,
we can observe that there are only 6 occasions when the nanorobot adversary could put the nutritional
level in or under the pre-established nutritional level of 20%, which determines a risk of nutritional
insufficiency - see Table 9.2. This represents a percentage of 0,0083% for the time in the simulated
scenery. One could observe in the same instant the nanorobot agent has acted above such negative
insufficiencies registered in the organ inlets nutritional levels, thus in the same time-step where it was
observed that such insufficiencies were caused by the nanorobot adversary, i.e. time-steps {7, 12, 13,
18, 19}, we could observe that no one insufficiency remains after the nanorobot agent reaction - see
Table 9.4 and Table 9.5.

The same satisfactory behaviour could be observed regarding the organ inlets’ nutritional level
related to overloads. In Table 9.3 we should note that from the nutritional levels of 720 organ inlets
observed through a scenery of 24 intervals of time, only 7 occurrences of levels rounding 80% were
registered. Representing 0.0097% for all nutritional level performances registered.

125

CHAPTER 9. RESULTS DISCUSSION

Competitive reaction: nutritional states of 30 organ inlets

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
time step simulation

le
ve

l %

agent lowest agent highest adversary lowest adversary highest

Figure 9.6: Upper and lower organ inlets’ nutritional levels for competitive scenery.

As it might be observed, even in such cases, the nanorobot has carried out an action for the next time-
step simulation by not injecting any proteins into the organ inlets, thereby reducing the levels - see
Table 9.3. Furthermore the nanorobot agent has ensured that not one organ inlet has achieved levels
near of an insufficient nutritional state, as we could see in Table 9.5.

A general adversary objective between both competitive nanorobots could be better ilustrated by
Figure 9.5, where both characteristic behaviours could be better observed. While the nanorobot agent
is clearly forcing the organ inlets’ levels to increase, an equivalent counter reaction occurs with the
injections administered by the nanorobot adversary. Although most of the nutritional levels remains at
the desired level of 50%, the influence of both nanorobots is clear, in the sense that one is trying
overall to maximize the nutritional levels and the other is acting to reduce it.

The aspect of paying more attention to the highest or lowest level registered at the organ inlets
through the simulated scenery, is to be considered as the most important for nanorobot control
behaviour. We can observe that the nanorobots react in a well tuned fashion, in the sense that within a
satisfactory time when the nanorobot adversary achieves a lower nutritional level, the agent reacts to
the respective organ inlet increasing that nutritional level - see the Figure 9.6. Here we could equally
observe that the highest and lowest levels for the agent and adversary have a distinct performance in
the sense that the levels for the action performed by each nanorobot is respectively maximized or
minimized in a significant way.

126

CHAPTER 9. RESULTS DISCUSSION

Figure 9.7: Competitive agent and adversary robustness.

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Delivery goal 600
adversary lowest 15 12 18 8 7 19 11 14 27 17 6 9 21 12 13 7 7 19 11 23 22 12 17 15
adversary highest 49 54 55 64 60 60 63 62 62 61 61 60 60 59 62 62 61 57 60 57 58 59 59 62

Table 9.6: Competitive robustness with highest and lowest levels for the nanoroborot adversary.

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Goal 600 600
agent lowest 37 33 32 32 28 30 24 32 27 33 31 29 32 33 33 26 28 30 31 33 33 33 25 29
agent highest 63 64 67 64 69 63 66 63 64 66 66 68 62 63 65 64 65 64 67 63 63 66 62 63

Table 9.7: Competitive robustness with highest and lowest levels for the nanoroborot agent.

9.3.4 Nanorobots Competitive Control Robustness

To evaluate the stability and robustness of the model, we have increased the complexity of the
problem (Figure 9.7). Thus the number of organ inlets has increased 100%, i.e. now we have 60 organ
inlets that will be visited by one nanorobot agent and one nanorobot adversary at each turn of the
dynamic environment, thereby each nanorobot load capacity has equally grown by up to 600 nutrients
at each time-step simulation.

127

CHAPTER 9. RESULTS DISCUSSION

Simulation competitive: 24 time-steps

0

10

20

30

40

50

60

70

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

percentage nutritional state all 60 organs inlets

fr
eq

ue
nc

y

agent adversary

target 50%

Figure 9.8: Histogram of competitive robustness with organ inlets’ nutritional levels.

Competitive reaction: nutritonal states of 60 organ inlets

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
time step simulation

le
ve

l %

agent lowest agent highest adversary lowest adversary highest

Figure 9.9: Upper and lower organ inlets’ nutritional levels for competitive robustness.

As can be seen in Table 9.6, although the nanorobot adversary has shown a certain degree of
deeper nutritional levels, with a more frequent observation of levels ranging under 20%, this means a
higher possible registration of an insufficient nutritional state, but on the other side the nanorobot
agent has demonstrated its capability to bring all organ inlets’ nutritional levels into the desirable
range of 20% to 80% - see Table 9.7. With reference to substances delivery goal, it was attended
equally successfully by both nanorobots as detailed in the same tables.

128

CHAPTER 9. RESULTS DISCUSSION

Figure 9.10: Collective scenery, top camera view.

The same satisfactory behaviour could be observed in a more detailed fashion in Figures 9.8 and
9.9, where the nanorobot agent is able to keep the levels of all the organ inlets in a very satisfactory
range of operation, bringing all the nutritional levels to the desirable level, even though the nanorobot
adversary would keep trying to reduce the organ inlets’ nutritional state.

9.4 Collective Robotics Scenery

The approach presented here is suggested by the necessity of the massive nanoassembly task,
which would be required to be performed by groups of collective nanorobots in a timely parallel set of
operations in a stochastic environment (Figure 9.10). Many of the concepts presented in collective
robotics consider studies based on social insects with the aim of enabling multi-robotics groups to
cooperate amongst themselves. Stigmergy, a term coined by the biologist P. Grassé [155], means to
promote work by the effect of previous work, is a principle which is finding its way from the field of
social insects to collective robotics [35][355]. With their limited repertoire of behavioural acts, social
insects display an amazing competence in building nest structures. From the simple nests produced by
the blind bulldozing of ants to the termite homes that stand over several meters tall, all of these result
from common tasks coordination that does not appear to depend on interaction between the agents but
rather on the object they act upon [136][346].

129

CHAPTER 9. RESULTS DISCUSSION

Figure 9.11: Collective team behaviour.

9.4.1 Environment Description

The collective scenery is comprised of 2 teams with each team formed by 3 nanorobots. Thus
we have a total of 6 nanorobots in the environment that are responsible for 30 organ inlets requiring
proteins. While in the competitive scenery the nanorobots compete against each other, here the
nanorobot teams have to work together in a sequenced coordinated assembly task (Figure 9.11),
avoiding the set of stochastic obstacles present in the 3D virtual nano-world in order to deliver protein
to the organ inlets. We have the first nanorobot team where the nanorobots belonging to this team are
identified as nanorobots A and those other ones belonging to the second group are identified as
nanorobots B. Basically what distinguishes the A and B nanorobots is the kind of pre-defined
molecular assembly task to be performed by each one. Furthermore nanorobot A and B have to present
a sequenced delivery fashion in relation to its organ inlets. In both cases they are trying to maximize
the organ inlets’ nutritional level, attending a pre-defined nutritional consumption from the set of
organ inlets present in the environment.

The use of local perception should in most cases be quite sufficient for the overall set of tasks
that our nanorobots are designed to perform (Figure 9.12 and Figure 9.13). An explicit communication
between each nanorobot partner sending the signal is required just when a delivery is completed for
the determined organ inlet, whereupon nanorobot B awaits a message from nanorobot A confirming
that A has finished the delivery to the given organ inlet. Acoustic communication sensors [143]
mounted within the nanorobot hull permit the nanorobot to communicate with its partner whether or
not the organ inlet has received the required substance. This permits the nanorobots to maintain the
correct delivery sequence of assembled substances into the organ inlets (Figure 9.14).

130

CHAPTER 9. RESULTS DISCUSSION

Figure 9.12: Collective scenery, sensing obstacles.

Figure 9.13: Collective scenery, obstacle avoidance.

131

Step 1: rΩ walk randomly to capture β and δ;

Step 2: if ∑ β = ∑ δ  assemble f(rΩ)= β + δ;

Step 3: if ∑ f(rΩ) < min  repeat step 1;

Step 4: rΩ achieve next delivery goal;

Step 5: if delivery_permition = true 

 delivery: f(rΩ) = f(rΩ) -1;

Step 6: if f(rΩ)>0  repeat step 4;

Step 7: repeat step 1;

CHAPTER 9. RESULTS DISCUSSION

Figure 9.14: Collective scenery, nanorobot molecule delivery.

Table 9.8: Collective robotics interaction rule.

By using the nanorobot’s local perception as much as possible and by sending the fewest possible
messages to other nanorobots, unnecessary communication between the agents is minimized, thus
optimizing energy consumption by the nanorobots. Nanorobots satisfy their energy requirements via
the chemical combination of oxygen and glucose [142], both of which are plentiful in the human body.

132

CHAPTER 9. RESULTS DISCUSSION

9.4.2 Nanorobots Interaction Rule

The approach for a nanomedicine problem here could be described as two multi-robots teams that
must cooperate interactively to feed a set of organ inlets in the virtual environment under study.
Research on multi-robot teams working cooperatively to achieve a single global task suggests that we
should consider emulating the methods of the social insects [326], because nature is showing us how
to build decentralized and distributed systems that are robust and capable of accomplishing tasks
through the interaction of agents with the same structures and pre-programmed actions and goals.
Kube [225] has pointed out that a careful decomposition of the main problem task into subtasks with
action based on local sensor-based perception could generate multi-robot coherent behaviors.
We have decomposed the total set of organ inlets, assigning for each pair of nanorobots a specified
number of organ inlets to be attended by the nanorobots at each time-step during the simulation. Each
pair is comprised of nanorobots from teams A and B. The parameter ψ in the equation 9.4 defines the
nanorobot A and B behaviour, which is designated here as cooperative teams, directly influencing the
evolutionary decision control model defined by the equation 8.4.

;1{ =⇒∨=Ω ψψ BA (9.4)

The organ inlets selected to be fed at time t have to be fed first by the agent A and so forth. Both
agents must take care to avoid supplying too much or too little of the injected substances. The multi-
robot team behaviour interaction rule is described at Table 9.8. The study of mobile multi-robot
behaviour in a single global environment is a relatively new field of research [225], which has
advanced most of the concepts related to the use of local perception for reactive agents.

9.4.3 Nanorobots Collective Results

The collective nanorobotics performance has achieved the most desirable performance, as we
can be observed in Table 9.9. The organ inlets have registered excellent behaviour in all of the 720
nutritional levels observed through a simulation of 24 time-steps, with no one level raging outside the
desirable operational levels, i.e. 20% to 80%. Indeed the highest level registered in an organ inlet was
a nutritional level of 60%, and on the other side, the lowest level observed was 37% - both indicating a
most desirable control performance on the stochastic environment realised by the cooperative
nanorobots teams. The delivery mean was equally successful, as detailed in Table 9.10.

In Figure 9.15 we could observe how well tuned was the collective nanorobots cooperative
work, demonstrating that a collective approach is an ideal approach for massively parallel actions for
nanotechnology automation specifications, where most of the nutritional levels are ranging
significantly around the target mark of 50% in relation to the organ inlets relative capacity. We could
estimate that the deviation was around 10 points above and 10 points below the considered nutritional
target value - see Figure 9.16.

133

CHAPTER 9. RESULTS DISCUSSION

Table 9.9: Collective robotics scenery with organ inlets’ nutritional levels.

134

Inlet time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 delivery 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1

level 47 44 48 45 49 53 50 54 51 48 52 56 53 57 48 52 56 53 57 47 51 55 52 56
2 delivery 0 1 0 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1

level 45 47 46 45 47 46 48 46 45 47 46 48 44 46 48 44 42 44 46 45 47 43 45 46
3 delivery 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 0 1 1

level 48 47 49 45 47 49 48 46 45 47 43 45 47 42 45 47 42 44 46 45 47 46 45 47
4 delivery 1 1 1 1 1 0 1 1 1 1 1 0 0 1 0 1 1 1 0 1 0 1 1 1

level 51 48 49 51 55 47 48 52 50 54 58 50 48 52 50 47 51 55 50 51 49 47 49 51
5 delivery 1 0 1 1 1 0 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1

level 54 51 47 52 56 45 49 46 42 47 43 48 52 49 37 42 46 43 47 52 48 45 50 54
6 delivery 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0

level 49 55 55 54 49 54 54 48 54 53 53 53 53 47 53 52 52 52 46 52 52 51 51 46
7 delivery 1 1 1 0 1 1 1 0 0 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0

level 51 50 51 48 49 50 50 49 45 47 44 45 46 45 44 45 45 46 43 44 45 44 45 45
8 delivery 1 1 1 1 0 1 0 1 1 0 1 0 1 1 1 0 1 0 1 0 1 1 1 1

level 49 50 51 54 52 55 51 52 55 54 53 52 49 51 54 49 50 46 49 47 50 48 49 51
9 delivery 0 0 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 0

level 49 47 47 47 48 48 50 48 49 49 47 49 48 48 50 50 51 51 51 53 52 54 54 52
10 delivery 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1

level 48 51 50 45 48 46 45 48 43 46 48 47 49 52 51 50 49 51 50 52 48 50 53 51
11 delivery 1 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1

level 53 57 48 52 49 53 43 47 51 42 46 50 40 44 48 38 42 46 43 47 51 48 52 56
12 delivery 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1

level 48 47 46 45 47 43 45 46 42 44 46 42 44 46 42 44 45 44 43 45 47 43 45 46
13 delivery 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 0

level 48 50 49 45 43 45 48 46 45 47 43 45 47 46 48 47 45 48 46 45 47 49 48 47
14 delivery 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 1

level 48 46 50 48 51 46 49 52 55 53 52 56 54 55 53 50 54 52 53 45 49 47 52 51
15 delivery 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1

level 46 51 47 52 56 53 57 54 58 55 51 48 52 57 53 50 46 51 55 60 48 45 50 54
16 delivery 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1

level 49 55 55 54 49 54 54 48 54 53 53 53 53 47 53 52 52 47 52 52 52 51 46 51
17 delivery 1 1 0 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1

level 51 50 47 48 47 48 50 49 45 47 44 43 44 45 44 45 45 46 47 46 47 44 45 47
18 delivery 1 0 1 1 0 1 0 1 1 0 1 1 1 1 0 1 1 0 1 0 1 0 1 0

level 48 47 49 48 46 48 47 46 49 48 50 50 52 54 50 52 54 49 51 50 50 49 48 47
19 delivery 1 0 1 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 1 1 1 1 0 0

level 51 49 49 49 48 48 50 50 47 47 47 47 48 50 48 48 49 49 51 53 52 54 54 52
20 delivery 1 0 1 1 1 1 1 0 1 1 0 1 1 0 1 0 1 1 1 0 1 1 1 0

level 52 51 50 52 54 53 56 55 54 56 51 54 56 52 54 50 52 54 53 52 51 54 56 51
21 delivery 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 1 0

level 47 51 41 45 49 46 50 47 44 48 39 43 47 51 48 52 56 46 50 54 51 48 52 43
22 delivery 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 0 1 0 1 1 0 1

level 51 50 52 51 50 52 53 55 54 53 55 57 53 54 56 52 54 53 52 51 50 52 50 49
23 delivery 1 1 1 0 1 0 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 0 1 1

level 51 50 52 48 50 49 48 46 45 44 46 48 47 49 48 50 49 48 50 52 51 49 51 54
24 delivery 1 1 1 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 1 0 0

level 52 51 55 57 52 53 51 55 53 53 56 54 51 49 54 57 52 55 54 51 54 57 55 48
25 delivery 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1

level 54 51 55 52 48 53 49 54 50 47 51 56 60 49 45 50 54 59 47 52 40 45 50 54
26 delivery 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1

level 49 49 49 54 54 54 48 54 54 53 53 48 53 53 53 52 47 52 52 52 52 51 46 51
27 delivery 0 0 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1

level 49 48 47 46 47 46 45 46 45 45 46 43 44 45 44 45 47 46 45 46 45 46 45 45
28 delivery 0 0 0 1 1 0 1 0 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0

level 48 47 46 45 46 45 47 46 44 44 47 47 42 44 44 47 45 46 44 43 44 47 46 45
29 delivery 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 0

level 49 49 49 49 48 48 50 50 49 49 49 51 48 50 50 52 49 51 51 51 52 54 52 52
30 delivery 0 0 0 1 1 0 1 0 0 1 1 1 0 1 1 1 0 1 1 0 1 1 0 0

level 48 47 46 45 48 46 49 48 47 46 48 50 49 52 54 56 52 54 57 52 55 57 53 51

CHAPTER 9. RESULTS DISCUSSION

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Delivery goal300 300
Lowest level 45 44 41 45 43 43 43 46 42 42 39 42 40 42 37 38 42 43 43 43 40 43 45 43
Highest level 54 57 55 57 56 55 57 55 58 56 58 57 60 57 56 57 56 59 57 60 55 57 56 56

Table 9.10: Collective robotics scenery with highest and lowest levels.

Simulation collective robotics: 24 time-steps

0

10

20

30

40

50

60

70

80

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

percentage nutritional state all 30 organs inlets

fre
qu

en
cy

cooperative behavior

target: 50%

Figure 9.15: Histogram of collective robotics scenery with organ inlets’ nutritional levels.

Collective reaction: nutritional states of 30 organ inlets

35

40

45

50

55

60

65

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

time step simulation

le
ve

l %

lowest level highest level

Figure 9.16: Upper and lower organ inlets’ nutritional levels for collective robotics scenery.

135

CHAPTER 9. RESULTS DISCUSSION

Figure 9.17: Collective team robust behaviour.

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Delivery goal600 600
Lowest level 40 43 41 38 42 43 38 41 42 42 39 42 40 41 42 38 42 43 43 41 40 42 43 42
Highest level 54 57 55 60 56 56 57 55 58 57 59 56 55 57 55 56 58 59 57 55 58 57 58 56

Table 9.11: Collective robotics robustness with highest and lowest levels.

9.4.4 Nanorobots Collective Control Robustness

We have simulated a larger scenery with a total of 12 nanorobots shared equally into 2 teams, which
were designated respectively nanorobot teams A and B, to evaluate the robustness of collective
nanorobotics (Figure 9.17). The environment was comprised of 60 organ inlets, and n obstacles
positioned randomly. Thus nanorobot A must cooperate with nanorobot B forming a kind of nanorobot
couple, which has to carry out the nutritional control of 10 organ inlets that were pre-assigned to each
one. The quantity to be delivered by the nanorobots increases to 600 nutrients by each time-step on the
simulation. They have obviously to decide what organ inlet to attend immediately and what organ inlet
to set for the next time-step in the dynamic environment. The desired delivery mean was always
successfully attended by the nanorobot teams as observed by the delivery goal in Table 9.11. In the
same table it can be seen, the lowest organ inlet’s level observed was 38% and the highest level was
60%, which are satisfactory values ranging within the considered range of 20% to 80%, indicating no
insufficiency or overdoses.

136

CHAPTER 9. RESULTS DISCUSSION

Figure 9.18: Nanorobot goes back to search and capture more molecules.

Figure 9.19: Nanorobot avoiding collision to attend delivery goal assembling more nutrients.

137

CHAPTER 9. RESULTS DISCUSSION

Simulation collective robustness: 24 time-steps

0

20

40

60

80

100

120

140

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

percentage nutritional state all 60 organs inlets

fr
eq

ue
nc

y

cooperative behavior

target: 50%

Figure 9.20: Histogram of collective robotics robustness with organ inlets’ nutritional levels.

Collective reaction: nutritional states of 60 organ inlets

35

40

45

50

55

60

65

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

time step simulation

le
ve

l %

lowest level highest level

Figure 9.21: Upper and lower organ inlets’ nutritional levels for collective robotics robustness.

After performing the tasks related to nutrient delivery and organ inlet’s levels verification, the
nanorobot navigates through the 3D environment to capture more molecules attending the delivery
goal (Figures 9.18 and 9.19).

At the same time the control behaviour registered here is quite similar to the values observed in
Table 9.10, where the lowest value observed was 37% and the highest 60%. Such performance
similarity between the instances with 60 organ inlets and the prior one with 30 organ inlets could be

138

CHAPTER 9. RESULTS DISCUSSION

explained, once we have the collective nanorobotics scenery for both instances and the capability to
proportionately increase the number of nanorobots with the increase in problem complexity.

We could observe in Figure 9.20 that the control model has achieved a similar behaviour, in the
sense that most of the values have ranged in the same intervals registered by the scenery with the 30
organ inlets. Thus we could affirm that the model has the robustness required with coherent behaviour
to a desirable massive assembly automation for nanotechnology. Comparing Figure 9.21 and Figure
9.16 we could clearly observe that the model has demonstrated its stability in the sense that the upper
and lower registered nutritional levels maintain basically the same satisfactory performance features.

9.5 Neural Motion Results

The nanorobot required a motion control model based on either of two main aspects:
optimization of the trajectory distance, and real time analyses for a required trajectory which enables
the delivery of assembled biomolecules with the avoidance of obstacles. Coherent behaviour in
complex real-world systems requires accurate and timely reactions to environmental events. The use
of Artificial Neural Networks appears to be a suitable approach for nanorobot motion analysis in a 6-
degrees-of-freedom environment [71]. The reactive layer is comprised of a low-level approach which
is required to interact with a continuous time complex environment [16]. Overall, this design results in
a flexible, hard real-time execution system that exhibits graceful performance.

Considering that the motion problem of the core of our discussion is comprised of a dynamic
sub-set of sequenced trajectories, we have expressed the solution as the cost minimization of a
complete trajectory. This complete trajectory is comprised of a first route, that we nominate as the
delivery route, representing the organ inlets that were set-up to be attended in the present simulation
time, and the second route, which we could identify as the verification route, being respectively the set
of organ inlets not selected for any delivery in the current evolutionary dynamic decision. The
complete trajectory is necessary in order to provide important information for the evolutionary
decision making for an effective action in the next time-step dynamic scenery.

As we have discussed in Item 8.5 from the previous chapter, each nanorobot visits in a shorter
time the organ inlets that were pre-attributed to that nanorobot in order to gather information for the
next time-step decision from the 3D workspace. Thus for a larger workspace, the nanorobot r does not
visit all the organ inlets comprising the environment, but only the ones included into the r’s complete
trajectory, i.e. the attribution that r has to supervise.

 The architecture and model implemented comprise concepts derived from real time systems
[337] in the sense that it is a controller that should meet appropriately its behaviour in response to
changes in the dynamics of the process and the nature of the disturbances [15], such as uncertain
obstacles in the environment that would require an adaptive motion in regard to unpredictable events
and other agents, therefore avoiding collisions, to successfully achieve a pre-established set of
dynamic goals.

Table 9.12 shows the sequential optimization performed by our neural networks to complete the
delivery route, where the multi-layer was instructed to minimize the layer energy, thus optimizing the
trajectory to be performed by our nanorobot. The best trajectory is achieved at the 11th sequence, with
a cost of 77040 nm for the trajectory related to visiting the organ inlets, which must be supplied at
present time-step simulation. The results in Table 9.12 show a cost optimization of 37%.

A similar performance could be observed in Table 9.13 about the verification route, where the
trajectory is related to the organ inlets that the nanoborot will visit, in order to verify their nutritional
levels. Here the optimization has achieved 36% for the trajectory cost minimization.

139

Trajectory neural optimization – organs inlet „OFF“ Cost
sequence 1 28 29 18 0 24 21 14 22 26 27 23 25 76400
sequence 2 27 22 28 21 14 0 23 24 26 25 29 18 74440
sequence 3 21 14 28 0 18 27 25 22 29 24 26 23 71240
sequence 4 0 14 23 24 25 18 29 21 27 28 26 22 70040
sequence 5 25 28 18 0 14 21 23 27 26 22 29 24 61320
sequence 6 14 28 18 27 26 29 24 25 22 21 0 23 61120
sequence 7 23 14 21 27 26 18 24 29 25 22 28 0 58640
sequence 8 23 14 0 21 22 29 28 24 25 18 27 26 55520
sequence 9 29 23 0 18 28 24 25 26 27 22 14 21 51840
sequence 10 21 14 0 28 22 27 26 25 18 29 24 23 51520
sequence 11 21 22 26 27 25 18 29 24 28 23 0 14 49960
sequence 12 23 21 14 0 29 18 27 26 25 24 28 22 49040

CHAPTER 9. RESULTS DISCUSSION

Table 9.12: Neural motion optimization for delivery route - distance cost in nm.

Table 9.13: Neural motion optimization for verification route - distance cost in nm.

Complete trajectory sequence Cost
3 5 17 15 9 16 2 7 4 1 20 13 19 6 10 8 11 12 22 28 24 25 26 27 18 29 0 14 21 23 120360

Table 9.14: Neural motion optimization with complete trajectory - distance cost in nm.

Once the routes to be taken by the nanorobots for supply of organ inlets are verified, we join both
trajectories considering the best connection for the verification route with the last point on the delivery
route, i.e. the verification route could be set in forward or backward sequence, depending on the
nearest position between the last organ inlet in the delivery route and the first or last organ inlet in the
verification route sequence. In the case shown in the Table 9.14, the best sequence was to connect
organ inlet 12 with organ inlet 22, instead of 12-23 sequence, which has resulted in achieving a
complete trajectory with the lowest cost. Thus for this case we have a verification route in backward
sequence.

140

Trajectory neural optimization – organs inlet „ON“ cost
sequence 1 6 5 8 16 3 2 13 7 4 9 10 19 12 15 11 20 1 17 122240
sequence 2 9 15 13 1 7 12 5 11 3 17 19 10 4 8 6 20 16 2 106040
sequence 3 2 3 12 4 13 16 8 10 19 11 15 9 1 17 5 7 6 20 101880
sequence 4 10 9 4 2 7 3 5 13 12 17 15 6 11 19 20 8 16 1 99560
sequence 5 7 10 8 11 6 13 9 19 2 20 4 15 16 1 12 3 5 17 94720
sequence 6 5 3 9 15 4 7 20 13 12 2 1 8 10 11 16 6 19 17 94280
sequence 7 11 10 4 6 8 13 19 7 12 16 1 2 15 5 9 3 20 17 91440
sequence 8 6 10 11 4 13 15 9 17 2 5 16 1 7 12 20 3 19 8 87240
sequence 9 19 12 1 2 20 10 8 4 7 11 9 13 6 3 17 5 16 15 85960
sequence 10 8 19 10 11 6 13 17 5 2 16 20 4 7 12 1 3 15 9 80720
sequence 11 3 5 17 15 9 16 2 7 4 1 20 13 19 6 10 8 11 12 77040

CHAPTER 9. RESULTS DISCUSSION

Figure 9.22: Complete trajectory comprised by delivery tour and verification tour.

Neural complete trajectory optimization

40

50

60

70

80

90

100

110

120

1 2 3 4 5 6 7 8 9 10 11 12
solutions for a time-step simulation

D
is

ta
nc

e
(u

ni
t i

n
10

00
 n

m
)

route ON route OFF

Figure 9.23: Neural motion cost minimization.

Figure 9.22 shows an illustrative representation of the parallel trajectory process that the
nanorobot receives by the neural control module to improve its performance. As could be observed the
complete trajectory has a smaller number of connected directed edges than the total sum of the
directed edges connecting the delivery route and the total sum of the directed edges connecting the
verification route together, which implies a lower cost for the complete trajectory as a whole
trajectory, rather than the separated sum of delivery route and verification route costs.

141

CHAPTER 9. RESULTS DISCUSSION

In Figure 9.23 we see the delivery route and the verification route evaluation with its trajectory
optimization, which represents the sequenced cost minimization observed in Tables 9.12 and 9.13. The
neural motion control has achieved suitable results with a low processing requirement, providing
shortest-path values ~ 37% better than a greedy solution [77] for the route distance minimization
problem. A similar performance for the motion control problem has been observed for the different
scenarios under study [72][69][66].

9.6 Conclusion

This chapter has demonstrated through its numerical results that a promising field of research of
increasing interest such as nanorobotics automation could be specified and designed in more detail
with the use of techniques derived from control theory using stochastic and flexible algorithms, such
as neural networks and evolutionary programming. With reference to the intrinsic problem related to
the study of nano-worlds and the question directly influenced by the observation of nanoscale events,
the use of virtual reality and computer graphics could be shown as an essential tool for a better insight
into phenomena related to the emerging field of nanotechnology, thus enabling an easier elaboration of
new concepts considering complex and uncertain environments, through better observation.

On one side, the competitive nanorobotics scenery is a practical approach to evaluate the
stability of the robust behaviour of the nanorobot for the adaptive control model under study. Thus the
competitive environment has been shown as a powerful tool to verify in a detailed fashion the model’s
coherent performance attending a large range of aspects inherent to nano-worlds, such as dealing with
uncertainty and stochastic events. Meanwhile on the other side, the collective nanorobotics approach
could be observed equally as a desirable way to lead with a high complex set of assembly tasks
intended to achieve a massive assembly automation, where a number of agents could work
cooperatively, through a well shared set of tasks and an equal pre-programmed set of actions, and
achieve a greater performance over a stochastic and complex environment. Thus the analyses and
results in this chapter indicate that the approaches described might also be a promising systems design
for assembly automation in nanotechnology.

142

Chapter 10

Conclusion

CHAPTER 10. CONCLUSION

10.1 Perspective

The general purpose throughout this dissertation has been to provide a feasible design approach
for the most important aspects directly related to the fast development of nanotechnology with an
application to medicine. Thus we have centred our discussions on the study of possible automation
models and tools to follow up control analyses focusing on the theory of the development of
molecular machines capable of working and accomplishing successfully a set of pre-programmed task
in a stochastic environment. One of the aims of the presented work was also to serve as a framework
for the new stage of future nanotechnology in the sense of nanosystems automation, which is
considered by the research community to be one of the most important paradigms to achieve feasible
nanoassemblers.

The emerging field of nanotechnology has brought new challenges and possibilities never
thought of before. We are going to see in coming years exciting achievements, with industries and
governments in a mature joint partnership, each doing their part in this endeavour, making significant
investments for a worthwhile effort. Obviously such important investments reflect just a small part of
all revenues expected by the same government and private initiatives. Although the first steps for this
molecular manufacturing in the sense of building blocks, has come with positive results in the 80’s
and 90’s. Now we are faced with a more complex duty that is the next generation of nanotechnology
advances, in the sense of building nanobioelectronics and molecular machines, which are expected to
achieve the most important aspects of the expanding nanotechnology development.

When we take note of some important aspects of a large nanotechnology development, there is
general agreement about the necessity of new approaches to conquer a higher level of automation for
molecular manipulation comprising many uncertaint aspects related to quantum mechanics
calculations inherent in the nano-world. In such aspects the key technology is new devices and
theories to explore and automate such environments.

As a practical approach we have examined many of the coherent behaviours based on
nanorobotic performances using virtual reality as the most actual and feasible way for a detailed
exploration of nano-worlds. Working in a complex 3D environment, a set of tasks was presented to a

143

CHAPTER 10. CONCLUSION

group of nanorobots, specifically for the task of automation assembly, to find and capture molecules,
avoid collision with any kind of obstacles, molecules delivery for a pre-defined set of organ inlets, and
dynamic decision making based on the nanorobot’s local perception.

10.2 Dissertation Role

The main aspects required for a new nanorobot control design paradigm have been considered
throughout the discussions and experimentation in this dissertation. In Chapters 1 and 2 we have an
overview of the main aspects of the emerging new field of nanotechnology, pointing out the
importance of new paradigms for nanoassembly automation, as well as the important role that
computer graphics could play in the actual stage of chemical and mechanical experimentation.

In Chapter 3 we have discussed the main aspects of physically based simulation, and its
application for the study of dynamic virtual environments, specifically the use of bounding box
volume with the 2D intersection tests as the most practical approach for collision detection in robotics
applications. In Chapter 4 we have described the main mathematical considerations about motion
control, and its importance in relation to mobile robotics design.

In Chapters 5 and 6 we have described the algorithms that we have chosen to compose the
nanorobot “brain”, in the sense of motion control and dynamic decisions, where we have respectively
discussed the main aspects related to neural networks and to evolutionary programming. In Chapter 7
we have presented important issues related to parallel processing, which is an important aspect
required to integrate the whole simulator and nanorobot architecture with nanorobot respective
functional architecture and distinct parallel modules.

Finally, we have presented in detail the control model and nanorobot design in Chapter 8, where
we pointed out the importance of adaptive characteristics inherent in a nanorobot model that must
survive in a dynamic stochastic environment. Obviously the computer graphics were a valuable tool
for nanorobot design, in the sense that virtual reality has enabled an easier and practical prototyping
than any other imaginable approach. Going forward in the dissertation we have achieved several
conclusions with the numerical results obtained through the graphic simulator, which was discussed in
detail in Chapter 9. Next we highlight the main aspects obtained from the development of proposed
designs analysing the model’s performance according to the dissertation achievements.

10.3 Research Achievements

The concepts developed in this dissertation have provided a useful characterisation of the many
aspects related to the design of control systems for the development of molecular machines. Thus a
successful design methodology for nanorobotic evolutionary development decision and motion control
comprised of functional parallel modules was implemented. We have postulated two main paths to
investigate the dynamics of robust nanorobotic control: the first was the study of competitive
nanrobotics scenery, and the second was the collective nanorobotics scenery. Both scenarios utilising
evolutionary techniques for the dynamic decision problem, and neural networks for the motion control
problem, have their worth. In the following sequence we discuss the model performance for each
scenario investigated.

144

CHAPTER 10. CONCLUSION

10.3.1 Competitive Evolutionary Behaviour

The competitive scenery was demonstrated as a suitable approach for the aim of verification of
model adaptability, once it was possible to observe that the model could react in a satisfactory fashion
against an adversary as skilful as our nanorobot acting upon the environment, thus requiring from a
nanorobot decision model the most fitting behaviour considering the information gathered from the
environment through sensor-based local perception.

A starting point for our model validation was a scenery where the nanorobot has acted upon 30
organ inlets, which were experiencing, at the same time, the counter action of a nanorobot adversary
with the same capabilities inherent in the nanorobot agent. Furthermore we have included more
complexity in this scenery, in the sense of verifying the decision model robustness through an adaptive
behaviour within a greater problem instance, and for such model validation we have observed the
nanorobot performance for an environment with 60 organ inlets, where in a similar competitive
environment the nanorobot has also achieved satisfactory control accross a greater number of organ
inlets.

In both instances the nanorobot decision model has reacted with a real time response attending
successfully to all problem constraints that were considered, which provided accurate proof of the
stability and adaptability of the model, once its satisfactory behaviour was demonstrated in a reactive
stochastic environment.

10.3.2 Collective Evolutionary Behaviour

Once we have verified that the model could adapt in a circumstance where competitive agents
operate in the same environment, we have addressed a second scenery where our experiment with the
nanorobots has converged to show a collective function. Therefore the concept of collective robotics
was adopted as an effective coordinated action approach for a massive nanoassembler manipulation.

We observed that the collective behaviour of the nanorobot has achieved a collaborative and
well coordinated performance, once all nanorobots have the same behaviour characteristics and share
the same set of targets, which were equally pre-programmed. Thereby, they share a common goal
acting upon the same set of objects (organ inlets) in a dynamic environment. For a more successful
accomplishment of the task, we have shared subsets of organ inlets with the same number of organ
inlets and attributed a subset to each nanorobot, with the intention of a well coordinated shared effort,
which could be observed as an appropriate approach especially if it was considered that the
nanorobots' interaction with their surrounding world was based on a local perception approach.

The main aspects expected to be controlled in this environment were attended successfully by
collective nanorobotics modelling, where the evolutionary module also has demonstrated a tuned
performance for a multinanorobots workspace, where through time the organ inlets’ nutritional levels
have remained in the desirable ranges of 20% to 80%, conserving most of the values around the target
level of 50%. Thereby we could affirm that the collective robotics approach seems to be a promising
approach to achieve massive nanoassembler automation.

10.3.3 Neural Motion Performance

The neural motion control was successfully used in two sceneries with two different levels of
complexity with real time responses for the circumstance where the nanorobots should go around
capturing molecules and visiting a pre-defined set of delivery points, avoiding random obstacles,

145

CHAPTER 10. CONCLUSION

collision with other mobile nanorobots, and trying at the same time to minimize the time required to
accomplish such tasks. These requirements have been fulfilled by the neural networks approach,
where the nanorobots have completed their trajectories with a cost minimization of a mean value of
37%, which shows an impressive improvement in comparison with a greedy solution for motion
control optimization. A positive aspect of feedforward neural networks is its suitable application
requiring low computational effort for NP-hard and NP-Complete problems, which is the case for
motion in 6-degrees-of-freedom.

10.4 Main Contribution

The approach presented through this thesis is a practical technique for investigating the
behaviour of nanorobots. Including aspects of the physical environment, in conjunction with graphical
visualization, provides a feasible methodology for automation and control design in nanotechnology.
Unlike some prior simulators for simple robots, the simulator presented here does not assume robots
are restricted to a fixed grid or behave as simple cellular automata with very simple environments. Our
simulator differs also from most of those used with larger robots, e.g., for operating in office
environments or for robot soccer, by its focus on viscous forces and emphasis on motion in three
dimensions.

Our work has proposed a new paradigm for the challenging issue related to the development of
control models for nanorobotics automation with biomedical applications. Thus this work has
discussed a nanorobotics control investigation focusing on the aspects of a robust and adaptive model
for the nanoassembly manipulation problem. The dissertation has presented an innovative contribution
and investigation of the central aspects influencing the possible approaches and design of control for
the development of molecular machine systems.

Altogether, the dissertation has brought the reader’s attention to essential aspects related to
molecular assembly manipulation on behalf of nanorobotics and nanoassembly automation as one of
the most important questions for the fast development of nanotechnology.

10.5 Conclusions and Future Works

Computational Nanotechnology is a new research branch originated from Computer Graphics
and Simulation, that provides an extremely useful and important enabling approach to make feasible
many of the chemical, physical, and kinetic analyses for theoretical and practical investigation of
nano-worlds. Many intriguing aspects of nanomanipulation and automation are still open and awaiting
pioneers that are willing to develop work on a very exciting emerging field with plenty of new
possibilities to be discovered. In such contest, the use of advanced 3D Computer Aided Design
systems for interactive visualization are expected to play an important role for the further development
in scientific research for the coming years.

Nanorobots monitoring nutrient concentrations in a three dimensional workspace is a possible
application of nanorobots to medicine and other biomedical problems. Ongoing developments in
hardware and with the use of distributed processing could also allow increasingly the number of
nanorobots or the level of detail to improve investigations for many medical questions (Figure 10.1).
Future work with more detailed simulator versions could then provide a more specific evaluation for
particular cases.

146

CHAPTER 10. CONCLUSION

Figure 10.1: Red blood cells and nanorobots inside a textured vessel wall.

Nanorobots supervising the human body through delivering assistance to organs that require some
kind of repair is also a possible application of nanorobots in medicine, among other biomedical
problems. Another interesting nanorobotic application is its use to process specific chemical reactions
in the human body as ancillary devices for injured organs. Nanorobots equipped with nanosensors
could be used to detect glucose demand in diabetes patients. Nanorobots could also be applied in
chemotherapy to combat cancer through superior chemical dosage administration, and a similar
approach could be taken to enable nanorobots to deliver anti-HIV drugs. New works applying
nanorobots to coronary problems (Figure 10.2) is also a very interesting possibility.

A set of nanorobots could be used as well to link together and form larger structures. For
instance, as an initial response to tears in the vessel wall. In this case, the controls based on chemical
signals described here readily extend to artificial “scents” passed among nanorobots via direct contact
as applied to modular robots to form a variety of structures. Effective grouping of modular nanorobots
is a difficult control problem requiring recognition of other nanorobots and requiring independent
locomotion capabilities beyond those usually considered for modular robotics (where movement often
requires prior physical contact with other modules). While originally proposed for large modular
robots, these techniques readily apply to nanorobots since they do not require a centralized planner
with extensive computational capabilities and knowledge of the environment.

More generally, nanorobots could be of different types, some could act as scouts with a wide
range of sensors, others to provide additional power, and others with large supplies of signalling
molecules or broader communication capabilities. Such heterogeneous teams face additional control
issues of resource allocation, for which market-based control should be well-suited due to the large
numbers of nanorobots. In our work, we addressed collective behaviour through effective
communication for homogeneous nanorobots, hence all have the same control program and
capabilities.

147

CHAPTER 10. CONCLUSION

Figure 10.2: Artery 3D rendering with 60% occlusion, red blood cells and nanorobots.

10.6 Nanotechnology Research - The Bridge for New Frontiers

New aspects of control theory and automation models on many different facets of
nanotechnology are still to come, specifically for nanomedicine considering the complex range of
problems to be solved on such issues. Therefore many different aspects must be investigated in the
future and the expectation is that the advent of nanotechnology will bring together more than ever
engineers and medical experts in order to open new frontiers for mankind. The design and
development of complex nanosystems with high performance can be well analysed and addressed via
simulation to help pave the way for the future use of nanorobots in biomedical engineering
applications.

In reality nanorobots are not a new invention from any nanotechnology expert; the fact is that
their nature has been shown to us: the construction of a molecular machine is really possible and
workable. Indeed the existence of the virus, bacterium, and ribosome, gives us an insight into complex
mechanisms and molecular machines that have performed complex tasks for millions of years. Even
though it may take some time for the international scientific community to dominate completely the
requisites to fulfil such a challenge of building functional nanorobots, all the actual interdisciplinary
developments evolved are important works that promise revolutionary advances in our current
technology.

The methodology developed through this research provides the basis and motivation for
further research and investigation of control system for nanorobots. A broad range of possible
nanorobot applications can be achieved in the future, but only if we start now moving in that
direction. A tree will never give you an apple just a few hours after you ringing the phone. It
demands nurturing, wisdom and time.

148

APPENDIX A. ENVIRONMENT DYNAMICS

 149

Appendix A

Environment Dynamics

Enviroment Interaction

The 3D environment contains nanorobots, obstacles, biomolecules and specific medical targets,

named organ-inlets. Organ-inlets represent medical targets, displaced stochastically as target drug

delivery points for medical applications. These organ-inlets are closed when the chemical

concentrations are near the desired levels. Otherwise, it will open to allow the required injection of

protein drugs. For real biomedical instrumentation, targets can be for cancer a tumour nodule, or for

cardiology, it will be plaques of fat in the coronary vascular system. A target can assume different

sizes and shapes according with the biomedical application. In our study the organ-inlets act as a

general purpose target for biomedical identification. This approach provides a practical test-bed

environment for nanorobots control design. Further physically based simulation and related references

is found in the dissertation on Chapters 3 and 8.

Diffusing Signals

A key choice in chemical signalling is the measurement time and detection threshold at which

the signal is considered to be received. Due to background concentration, some detection occurs even

without the target signal. As a threshold, we use the diffusive capture rate φ for a sphere of radius R

in a region with concentration as:

DRCπφ 4= (1)

where the concentration for other shapes such as cylinders are about the same. All moving objects

(i.e., the nanorobots and biomolecules) in the workspace have neutral buoyancy. In regard of

circulatory system about vessels geometries and the nanorobot sizes for medical purposes, the lumen

diameters ranges from the vena cava with ~3cm in the heart, to ~10μm of capillary vessels. In the

present study the nanorobot is transporting proteins.

APPENDIX A. ENVIRONMENT DYNAMICS

 150

 TABLE 1. Parameters
Chemical signal

production rate
1410 −

⋅

= smoleculeQ

diffusion coefficient
12100 −= smD μ

background concentration
33106 −−× mmolecule μ

Parameter Nominal value
average fluid velocity 11000 −= smv μ

vessel diameter mmmd μμμ 40,20,10=
workspace length mL μ60=
density of nanorobots

33 mμ

The virtual environment as testbed includes a randomized network of obstacles. This

construction creates a random network of obstacles in the plane bisecting environment, which is quite

appropriate as a basis for nanorobot control feedback purposes of motion analyzes and obstacle

avoidance. The environment presents also spheres with 10nm diameter as bio-molecules that the

nanorobots can use to supply medical targets with proteins. These spheres move with the fluid, and

follow the laminar flow considered additional Brownian motions. In a typical molecular dynamics

simulation, a set of molecules is introduced initially with a random velocity for each molecule and the

intermolecular interactions can be expressed, using Lennard-Jones potential:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛=

−− 612

4)(
σσ

ε rrrV
(2)

Except for coronary artery blood flow, in the typical biomedical applications the blood flow is

laminar, especially for smaller vessels where the fluid velocity is typically lower.

Hence, in order to simulate the nanorobot intervention and interaction with the workspace, we

used different organ-inlets as delivery targets, where depending on their protein demand, they will be

emitting chemical and thermal signals. We simulated distinct cases to validate our study given the Eq.

(1) and parameters on Table 1 for diffusing signals.

Fluid Dynamics

The fluid in the workspace moves through the vessel with velocity 1mm/sec, as is typical of flow in

small blood vessels. The fluid is described by the classical continuum equations. The continuity

condition 0=⋅∇ v and the Navier-Stokes equation are applied for the velocity v of the fluid:

vPfvv
t
v 21)(∇+∇−=∇⋅+
∂
∂

ρ
η

ρ ,

(3)

APPENDIX A. ENVIRONMENT DYNAMICS

 151

where η is the fluid’s viscosity, ρ its density, P is the pressure and f is the external force, per

unit mass, imposed on the fluid. The three components of the Navier-Stokes equation and the

continuity condition give four equations for the three components of the velocity and the pressure. In

contrast to the conventional and large-scale robots, the nanorobot’s world is dominated by viscosity

while inertial and gravitational forces are negligible. The Reynolds number, defined as:

ηρ /Re vL= ,

(4)

for objects of size L with velocity v, characterizes this behavior by giving the ratio of inertial to

viscous forces. The Re is low for nanoscale robots operating in fluids of ordinary viscosities. The

surrounding liquid has density of 1 g/cm–3 and viscosity of 1 centipoise, or equivalent to 10–2 g/cm–1 s–

1. As an example, if a nanorobot of size 1μm moving at 1 mm s–1 in liquid flow has Re=10–3, much

less than 1 and hence viscous forces dominate. As boundary conditions, the flow velocity v matches

the velocity of each object in the fluid at the object’s surface. We also impose a constant input velocity

along the pipe as a boundary condition to maintain the fluid flow. This condition is maintained by a

pressure gradient imposed on the fluid.

Interaction in Viscous Flow

Our environment contains two types of moving objects: the nanorobots and the small spheres

representing biomolecules. These objects are subject to both deterministic and random forces. The

deterministic forces arise from the fluid motion and, in the case of the nanorobots, from their powered

locomotion.

The inertial force on the object of size L moving with velocity v with respect to the fluid is of order

22 LvFinertial ρ≅ and the viscous drag force is of order vLFviscous η≅ . Thus to keep moving, a

nanorobot of size L ≅ 1μm and velocity v≅ 1mm s–1 with respect to the fluid must apply fNFinertial 1≅

(femtonewtons, NfN 15101 −=) and a much larger fNFviscous
310≅ of motive force. As a consequence

of this dominance of viscosity, when a force F is applied to an object, it quickly reaches a terminal

velocity where that force is canceled by the drag from the fluid. As an illustration of this behavior, if

motive power to a swimming spherical nanorobot with radius L=1μm, and the velocity v=1cm s–1 with

respect to the fluid, is suddenly stopped, then the nanorobot will “coast” to a halt with respect to the

fluid in a time coastt as:

1.0
15

2
==

η
ρLtcoast microsecond

(5)

and in distance nmtvx coastcoast 1=≅ . A comparable result applies to other shapes, e.g., the nanorobot

and the smaller sized biomolecules. Thus an applied force quickly results in motion with constant

APPENDIX A. ENVIRONMENT DYNAMICS

 152

velocity. It contrasts with the behavior when inertial forces dominate: an applied force produces a

constant acceleration. A similar observation applies to rotations: a given torque rapidly produces a

constant angular velocity rather than a constant angular acceleration.

Two main forces act on a nanorobot while it is not in contact with other objects. First is the force

rF produced by the robot itself, which is taken to be directed along the axis of the cylinder. Second is

the drag from the fluid given by:

LvAF dragdrag η−= ,

(6)

where v is the velocity vector of the nanorobot with respect to the fluid, fluidrobot vvv −= . The quantity

dragA is a geometric factor depending on the orientation of the nanorobot with respect to the fluid and

is typically of order 1, e.g., for a sphere of diameter L, dragA is π3 when no other objects are nearby.

For other situations, dragA has roughly the same magnitude, but the exact value must be determined

numerically. To see how this is done, consider a small area dA on the surface of an object, treated as a

vector oriented perpendicular to the surface. The fluid imposes a force vector dAT− on that area,

where T is a matrix representing the stress tensor for the fluid motion at the surface of the object. For

incompressible fluids, its components are expressed:

)(,, xk
v

x
vPT l

l
k

lklk ∂
∂

+
∂
∂

−= ηδ , (7)

where is 1, =lkδ when k=l and is 0 otherwise.

In general, the velocity gradient and pressure vary over the surface of the object. The total drag

force requires integrating the force on each part of the object. The difference in forces around the

object can also give rise to a torque, causing the object to rotate as it moves through the fluid. The total

force acting on the robot is dragr FF + , which is zero when the nanorobot velocity equals to:

)/(LAFvv dragrfluidrobot η+= . (8)

The biomolecules move passively along with the fluid, i.e., their velocity is equal to fluidv . Both

the passive obstacles and other nanorobot are potential sources of collision and additional force. In

particular, a collision with the wall of the pipe or one of the obstacles sets to zero the component of the

object’s velocity perpendicular to the wall or obstacle. When a biomolecule collides with a nanorobot,

the biomolecule velocity perpendicular to the robot is set to zero; it may also be absorbed by the robot

if it was identified as a protein. In addition to these deterministic forces, stochastic forces due to

thermal motion of molecules in the fluid give rise to additional random motions, i.e., Brownian

APPENDIX A. ENVIRONMENT DYNAMICS

 153

motion. As an indication of the size of these motions, the average displacement of a particle of radius

L over a time t when the fluid has temperature T is:

2/1

3 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

L
kTtb
πη , (9)

where k is Boltzmann’s constant and b is displacement. Operating at typical body temperature, this

gives displacement for the nanorobot of about t μm when t is measured in seconds, and t8 μm for

the biomolecules.

 Collecting biomolecules is part of the robot task. A nanorobot at rest with respect to the fluid will

encounter biomolecules due to their diffusion. The laminar fluid flow itself only moves the molecules

along streamlines which go through the workspace. An estimate of the rate at which such a nanorobot

will encounter diffusing biomolecules is of order 10LDC, where L is the size of the robot, D is the

diffusion coefficient in liquid, about 10–10 m2 s–1, and C is the concentration of molecules around the

robot. In the simulation, C=1016m–3 enabling the nanorobots to have an interactive response in

collecting them for a further target identification, and protein drug delivery. In our simulation, the

collisions between biomolecules and the robots are determined from their individual motions,

including the diffusion from Brownian motion.

Object Motion

Our physically-based simulation includes kinetics and frictional aspects for object motion with

hydrodynamics at low Reynolds number. Specifically, the dynamics of the objects in our environment

is determined by the object positions and, for the nanorobots, their choice of locomotion force as

determined from their control program. Unlike the case of inertial forces, there is no need to consider

accelerations. The dynamics in the environment is processed as the boundary conditions for

determining the fluid motion from Eq. (3). Given the fluid motion, we determine the net force and

torque on each nanorobot, after which Eq. (8) gives its new velocity. Each biomolecule’s velocity

matches that of the fluid at its position. For both the nanorobots and biomolecules, this velocity is also

subject to constraints from any collisions. From the perspective of each object, this process amounts to

a function that evaluates its velocity vobject in terms of the state of the system. Using a time step of tΔ ,

we then update the object positions according to:

 ε+Δ+←= tvFobjectP object , (10)

P is the current position of the nanorobot, which changes given the following parameters: ε represents

a random vector chosen from a Gaussian distribution with mean of 0 and average length tΔ μm

APPENDIX A. ENVIRONMENT DYNAMICS

 154

(with tΔ measured in seconds) for the nanorobots and 8 times as large for the biomolecules. For the

nanorobots, a similar evaluation is based on the torques applied by the fluid, the nanorobots

themselves as part of their locomotion, and any collisions given their angular velocities. The angular

velocity then gives the change in orientation after the time tΔ , and rF is the applied force for

manipulating an object. As mention before dragr FFF += , and therefore dragF can assume positive or

negative values depending the direction of the nanorobot in relation to the bloodstream. For a 3D

enviroment the forces applied to the nanorobot can be represented by:

 kFjFiFF zyx ++= (11)

Where the xF , yF , zF are the (x, y, z) components of the force. The nanorobot position is updated

dynamically and has the respective values of each coordinate that comprises the coordinate system

represented as follows:

 ZYXP ,,= (12)

According with the equation (10), the nanorobot motion is obtained from Newton’s second law, which

states that the summation of all external forces acting on a body is equal to the time rate of the

momentum of the body, plus angular velocity - i.e., the rate of change of the momentum of a particle

is proportional to the resultant force acting on the particle and is in the direction of that force.

Therefore, momentum represents the product of total mass M by the velocity of the center of the mass

giving us the object translation:

 ∑ = maF (13)

Momentum the total momentum of any closed system (one not affected by external forces) cannot

change, and this law also applies electrodynamics, quantum mechanics, quantum field theory, and

general relativity. For nanoworlds, the linear velocity of the nanorobot can be broken into relative

velocities, related to his coordinates system, representing applied velocities using u, v, w respectively.

Mathematically we can the vector velocity in terms of subcomponents:

 wkvjuiVM ++= (14)

where (i, j, k) are the unit vectors along the respective nanorobot body axes.

APPENDIX A. ENVIRONMENT DYNAMICS

 155

Figure 1: Representation of the unit vectors along the respective 3D nanorobot body axes.

 2/1222)(wvuVV MM ++== (15)

Which is illustrated in the figure 1. The moment of external forces comprises the rolling moment (L),

pitching moment (M) and the yawing moment (N):

 NkMjLiM ++=Δ∑ (16)

In a similar manner, the nanorobot’s angular velocity vector ω can be broken up into the components

P,Q, and R about the (Xb, Yb , Zb) axes, respectively, as follows:

 RkQjPi ++=ω (17)

where P is the roll rate, Q is the pitch rate, and R is the yaw rate. For these parameters represented in

the figure 1, the values for angular velocities θφψ ,, are obtained with the integration of

)/,/,/(dtddtddtd θφψ :

APPENDIX A. ENVIRONMENT DYNAMICS

 156

 θφφψ cos/)cossin(RQ
dt

d
+= dt

dt
dt

∫ ⎟
⎠
⎞

⎜
⎝
⎛+=

0
0

ψψψ
(18)

 θψφ sin⎟
⎠
⎞

⎜
⎝
⎛+=

dt
dP

dt
d

 dt
dt
dt

∫ ⎟
⎠
⎞

⎜
⎝
⎛+=

0
0

φφφ
(19)

 φφθ sincos RQ
dt
d

−= dt
dt
dt

∫ ⎟
⎠
⎞

⎜
⎝
⎛+=

0
0

θθθ
(20)

The angular velocity in terms of Euler angles, comprises a time dependent system and interferes with

the positioning of the nanorobot, and can be expressed in a matrix as follows:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

w
v
u

C
Z
Y
X

dt
d b

e

e

e

e

(21)

with

w

vu
dt

dX e

)sinsinsincos(cos

)cossinsinsin(cos)cos(cos

φψθφψ

φψθφψψθ

++

−+=

(22)

w

vu
dt

dYe

)sincossincos(sin

)coscossinsin(sin)sin(cos

φψθφψ

φψθφψψθ

−+

−+=

(23)

 wvu
dt

dZe)cos(cos)cos(sin)(sin φθθφθ ++−=
(24)

From the equation 21, for a trajectory of objects in a dynamic environment the motion is described by:

 dt
dt

dX
XX

t
e

ee ∫ ⎟
⎠
⎞

⎜
⎝
⎛+=

0
0,

(25)

 dt
dt

dY
YY

t
e

ee ∫ ⎟
⎠
⎞

⎜
⎝
⎛+=

0
0,

(26)

 dt
dt

dZ
ZZ

t
e

ee ∫ ⎟
⎠
⎞

⎜
⎝
⎛+=

0
0,

(27)

where axes coordinates are updated in relation to time. The physical simulation uses the computational

approach based on a real time clock and independent of the fps (frames per second) rate in the

APPENDIX A. ENVIRONMENT DYNAMICS

 157

rendering pipeline that update the objects positions. Thus, there is no relation between fps and the

simulator timer to update the physical environment. This allows showing the behavior in fast or slow

motion, as the user requests, without changing the physical simulation. The simulator maintains a list

of positions and orientations of all objects in the task environment, including the nanorobots. This list

maintains all information relevant to the nanorobot interactions in the workspace. It also introduces

new bio-molecules with the fluid as it enters the environment extremity. The simulator consists of

several modules that simulate physical behaviors, determine sensory information for each nanorobot,

run the control programs to determine the nanorobot sensing activation, provide a visual display of the

environment, and record the chemical levels monitored by the nanorobots. The processing approach

for the environment involves a multithreaded system, which provides dynamic updates for the

nanorobot real-time sensing and activation. This same concept and implementation is applied in

relation to other nanorobots, as well as to the surrounding workspace.

Appendix B

Decision Control

APPENDIX B. DECISION CONTROL

Source Code

The sequence discloses two classes that contain the events and structures related to nanorobot

interactive decision control and evolutionary optimization. The code was implemented using an object

oriented approach, which helps to keep the software development and multi-agent based processing

effective.

The program CrobotDecisionSensing is organized into two distinct files, saved with the

extension “cpp” and “.h”. As the name suggests, it is used for the nanorobots which perform sensing

interactive actions. The second program called CrobotDecisionEvolutionary, is where control

optimization takes place, with a focus on the control of protein levels for each organ inlet whitin the

simulated environment. Comments throughout the code are used, and clear names for variables and

functions are adopted as a feasible way to make it easier to undertake maintenance of the software.

Mathematical and logical explanation of the code related to evolutionary computation, control

decision, competitive and collective behaviours, were described in Chapters 6, 8 and 9.

CLASS: CrobotDecisionSensing

//***//
//***//
// FILE CRobotDecisionSensing.h
#ifndef __CROBOTDECISIONSENSING_H
#define __CROBOTDECISIONSENSING_H
//***//
//***//
#include <stdlib.h>
#include <math.h>
#include <stdio.h>
//***//
//***//
#include "CRobotDecisionEvolutionary.h"
#include "CParallelCriticalSection.h"
#include "CDataSetupSimulator.h"
//***//

158

APPENDIX B. DECISION CONTROL

//***//
class CRobotDecisionSensing
{

private:
int n_inlets_continue;
int global_timeLength;
int n_timeframes;
int type;
int complexity;

// aim_NonLinear robotDeliveryGoal*complexity
int goal_NonLinear;
// aim_Linear
int goalGA;
// Generate numbers [0,1]
int RangeOperation_Integer;
// Generate numbers [0,100] :: nonIntegerControl
int RangeOperation_Continue;

CRobotDecisionEvolutionary nanorobot_IntegerControl, nanorobot_nonIntegerControl;

void Setup(int agent);
void initData(int nanorobotID);
void linkIntConstOBJincrease(int timer);
void LinkIntConstOBJdecrease(int timer);
void linkIncrease(int timer);

 void linkDecrease(int timer);

void chooseInlet(int timer);
void delivery(int timer);
void setConstantOutput(void);
int takeSmaller(void);
void freeData(void);

void writeCheckFile(void);
void writeCheckFileOpen(void);
void writeCheckFileClose(void);

public:
CRobotDecisionSensing() {}
~CRobotDecisionSensing() {}

CParallelCriticalSection *criticSection;
CDataSetupSimulator *setup;

int *ProteinLevelLevelInlet;//[setup.n_inletTotal];
int *sendSocketMaxProteinUB;
int *outputInlet;//[setup.n_inletTotal];
int *ProteinLevelLevel;//[setup.n_inletTotal];
int *constantOutput;//[setup.n_inletTotal];
int *reagent;//[setup.n_inletTotal];
int *controlActived;//[setup.n_inletTotal]
int *sort;//[setup.n_inletTotal]

void writeCheckFile2(int timer);

void adaptiveAPI(int nanorobotID);

};
//***//
//***//

159

APPENDIX B. DECISION CONTROL

#endif // __CROBOTDECISIONSENSING_H
//***//
//***//
// FILE CRobotDecisionSensing.cpp
#include "CRobotDecisionSensing.h"
//***//
//***//
void CRobotDecisionSensing::Setup(int agent)
{ // here the word Continue means: not Integer Programming

complexity=setup->GComplexity;
global_timeLength=setup->Nhours;
n_timeframes=setup->Ndays;
// n. intervention
type=setup->n_InletIntervention;
// Generate numbers [0,1]
RangeOperation_Integer=2;
// Generate numbers [0,100]
RangeOperation_Continue=101;
// Objective itens to be delivered
goal_NonLinear=(setup->robotDeliveryGoal*complexity);
// Itens to be delivered: plus the lack variables
//goalGA=(int)goal_NonLinear*(float)1.09;
goalGA=(int)goal_NonLinear*(float)setup->gapVarible[setup->setProcessTime];//1.18;
// lack variables in the math model
n_inlets_continue=2*complexity;

}
//***//
//***//
void CRobotDecisionSensing::initData(int nanorobotID)
{

//--/
criticSection=receive_criticSection;
setup=receive_setup;
//--/
ProteinLevelLevelInlet=(int*)malloc(setup->n_inletTotal*sizeof(int));

 if(ProteinLevelLevelInlet == NULL)
{ printf("\n insufficient memory for ProteinLevelLevelInlet");
 exit(1);
}
//--/

sendSocketMaxProteinUB=(int*)malloc(setup->n_inletTotal*sizeof(int));

 if(sendSocketMaxProteinUB == NULL)
{ printf("\n insufficient memory for sendSocketMaxProteinUB");
 exit(1);
}
//--/
outputInlet=(int*)malloc(setup->n_inletTotal*sizeof(int));

 if(outputInlet == NULL)
{ printf("\n insufficient memory for outputInlet");
 exit(1);
}
//--/
ProteinLevelLevel=(int*)malloc(setup->n_inletTotal*sizeof(int));
if(ProteinLevelLevel == NULL)
{ printf("\n insufficient memory for ProteinLevelLevel");
 exit(1);
}

160

APPENDIX B. DECISION CONTROL

//--/
constantOutput=(int*)malloc(setup->n_inletTotal*sizeof(int));

 if(constantOutput == NULL)
{ printf("\n insufficient memory for constantOutput");
 exit(1);
}
//--/
controlActived=(int*)malloc(setup->n_inletTotal*sizeof(int));

 if(controlActived == NULL)
{ printf("\n insufficient memory for controlActived");
 exit(1);
}
//--/
sort=(int*)malloc(setup->n_inletTotal*sizeof(int));

 if(sort == NULL)
{ printf("\n insufficient memory for sort");
 exit(1);
}
//--/
reagent=(int*)malloc(setup->n_inletTotal*sizeof(int));

 if(reagent == NULL)
{ printf("\n insufficient memory for reagent");
 exit(1);
}
//--/

}
//***//
//***//
void CRobotDecisionSensing::freeData(void)
{ free(ProteinLevelLevelInlet);

free(sendSocketMaxProteinUB);
free(outputInlet);
free(ProteinLevelLevel);
free(constantOutput);
free(reagent);
free(controlActived);
free(sort);

}
//***//
//***//
void CRobotDecisionSensing::adaptiveAPI(int nanorobotID)
{ int pack,currentTime_xls;
 int breakTime,timer,status,Inlet;

initData(nanorobotID);
Setup(nanorobotID);

 nanorobot_IntegerControl.initDataGeneticObj(setup,
 RangeOperation_Integer,
 setup->n_inletTotal,

 global_timeLength+1,
 goalGA,

 type);
nanorobot_IntegerControl.Agent=protectHealth;

for(Inlet=0;Inlet<setup->n_inletTotal;Inlet++)
{

ProteinLevelLevelInlet[Inlet]=nanorobot_IntegerControl.organ[Inlet].vol;
sendSocketMaxProteinUB[Inlet]=nanorobot_IntegerControl.organ[Inlet].max;

}

161

APPENDIX B. DECISION CONTROL

if(!nanorobot_IntegerControl.Agent)
{ criticSection->initProteinLevel(setup->n_inletTotal,

 ProteinLevelLevelInlet,
 sendSocketMaxProteinUB);

}

 nanorobot_nonIntegerControl.initDataGeneticObj(setup,
 RangeOperation_Continue,
 n_inlets_continue,
 global_timeLength+1,
 goal_NonLinear,
 type);

 nanorobot_nonIntegerControl.Agent=protectHealth;
//--//

 breakTime=global_timeLength+1;
 currentTime_xls=0;

for(pack=0;pack<n_timeframes;pack++)
{
 for(timer=1;timer<breakTime;timer++)
 {

currentTime_xls++;
nanorobot_IntegerControl.setTimer(timer);
nanorobot_nonIntegerControl.setTimer(timer);
chooseInlet(timer); // Run - AG : Interger and Non Integer
delivery(timer);

nanorobot_IntegerControl.mean_AG_count_LOOP+=(float)nanorobot_IntegerControl.AG_count_LOOP;

if(!setup->keep_parallelThreadings)
{ // stop the genetic_search, stop threadings

pack=n_timeframes;
timer=breakTime;

}
 }

 nanorobot_IntegerControl.mean_AG_count_LOOP/=(float)global_timeLength;
 nanorobot_IntegerControl.Excell(breakTime,pack,currentTime_xls,goal_NonLinear);
}
freeData();
status=criticSection->keepSimulator(1);

}
//***//
//***//
void CRobotDecisionSensing::writeCheckFileClose(void)
{ fclose(checkAGincreaser);

fclose(checkAGdecreaser);
}
//***//
//***//
void CRobotDecisionSensing::writeCheckFile(void)
{ // choose output of variables to analysis
}
//***//
//***//
void CRobotDecisionSensing::writeCheckFileOpen(void)
{

int i;
char fileName1[40]="AGincreaser";
char fileName2[40]="AGdecreaser";
char extension[5];

162

APPENDIX B. DECISION CONTROL

for(i=0;i<setup->sizeExtension;i++)
{ extension[i]=setup->extension[i];

}

strcat(fileName1,extension);
checkAGincreaser=fopen(fileName1,"w");
strcat(fileName2,extension);
checkAGdecreaser=fopen(fileName2,"w");

}
//***//
//***//
void CRobotDecisionSensing::linkIntConstOBJincrease(int timer)
{ int inletID,step,organID;

 //---//
 // Add all Activated Inlet
 for(inletID=0;inletID<nanorobot_IntegerControl.size;inletID++)
 { if(nanorobot_IntegerControl.organ[inletID].selected)

 {
nanorobot_nonIntegerControl.proteins_integer+=nanorobot_IntegerControl.organ[inletID].output;//2

 }
 }
 inletID=0;
 // Subtract Continuous Activated Inlet
 for(organID=0;organID<complexity;organID++)
 { if(nanorobot_IntegerControl.organ[3+setup->tenOrgansInlet*organID].selected)

 { nanorobot_nonIntegerControl.proteins_integer-=nanorobot_IntegerControl.organ[3+setup-
> tenOrgansInlet*organID].output;

 nanorobot_nonIntegerControl.organ[inletID].selected=1;

nanorobot_nonIntegerControl.organ[inletID].vol=nanorobot_IntegerControl.organ[3+setup->
tenOrgansInlet*organID].vol;

 nanorobot_nonIntegerControl.organ[inletID].reagent=
nanorobot_IntegerControl.organ[3+setup->

tenOrgansInlet*organID].reagent;
 }
 else
 { nanorobot_nonIntegerControl.organ[inletID].selected=0;

nanorobot_nonIntegerControl.organ[inletID].vol=nanorobot_IntegerControl.organ[3+setup->
tenOrgansInlet*organID].vol; nanorobot_nonIntegerControl.organ[inletID].reagent=

nanorobot_IntegerControl.organ[3+setup->
tenOrgansInlet*organID].reagent;

 }
 inletID++;
 if(nanorobot_IntegerControl.organ[7+setup->tenOrgansInlet*organID].selected)
 { nanorobot_nonIntegerControl.proteins_integer-=nanorobot_IntegerControl.organ[7+setup-

> tenOrgansInlet*organID].output;
 nanorobot_nonIntegerControl.organ[inletID].selected=1;

nanorobot_nonIntegerControl.organ[inletID].vol=nanorobot_IntegerControl.organ[7+setup->
tenOrgansInlet*organID].vol;

 nanorobot_nonIntegerControl.organ[inletID].reagent=
nanorobot_IntegerControl.organ[7+setup->

tenOrgansInlet*organID].reagent;
 }
 else
 { nanorobot_nonIntegerControl.organ[inletID].selected=0;

163

APPENDIX B. DECISION CONTROL

nanorobot_nonIntegerControl.organ[inletID].vol=nanorobot_IntegerControl.organ[7+setup-
>tenOrgansInlet*organID].vol;

 nanorobot_nonIntegerControl.organ[inletID].reagent=
nanorobot_IntegerControl.organ[7+setup->

tenOrgansInlet*organID].reagent;
 }
 inletID++;

 }
 //---//
 puts("\n");
 for(inletID=0;inletID<n_inlets_continue;inletID++)

{ nanorobot_nonIntegerControl.organInlet2[inletID].vol=nanorobot_nonIntegerControl.organ[inletID].vol;

nanorobot_nonIntegerControl.organInlet2[inletID].reagent=nanorobot_nonIntegerControl.organ[inletID].reagent
;

 }
 //---//
 nanorobot_nonIntegerControl.AGAPI();
 //---//
 inletID=0;
 for(organID=0;organID<complexity;organID++)
 { nanorobot_IntegerControl.organ[3+setup->tenOrgansInlet*organID].xTotal=0;
 nanorobot_IntegerControl.organ[3+setup->tenOrgansInlet*organID].goal=0;

 if(nanorobot_IntegerControl.organ[3+setup->tenOrgansInlet*organID].selected)
 { nanorobot_IntegerControl.Result[timer-1].ON_OFF[3+setup->tenOrgansInlet*organID]=1;
 for(step=0;step<type;step++)

{ nanorobot_IntegerControl.organ[3+setup->tenOrgansInlet*organID].x_t[step]=
 nanorobot_IntegerControl.organ[3+setup>tenOrgansInlet *

organID].output *
nanorobot_nonIntegerControl.organ[inletID].selected/100;

 nanorobot_IntegerControl.organ[3+setup->tenOrgansInlet*organID].xTotal+=
nanorobot_IntegerControl.organ[3+setup->

tenOrgansInlet*organID].x_t[step];
 nanorobot_IntegerControl.organ[3+setup->tenOrgansInlet*organID].goal+=

nanorobot_IntegerControl.organ[3+setup->
tenOrgansInlet*organID].x_t[step];

 }
 }
 else
 { nanorobot_IntegerControl.organ[3+setup->tenOrgansInlet*organID].selected=0;
 nanorobot_IntegerControl.Result[timer-1].ON_OFF[3+setup->tenOrgansInlet*organID]=0;
 }

 inletID++;

 nanorobot_IntegerControl.organ[7+setup->tenOrgansInlet*organID].xTotal=0;
 nanorobot_IntegerControl.organ[7+setup->tenOrgansInlet*organID].goal=0;

 if(nanorobot_IntegerControl.organ[7+setup->tenOrgansInlet*organID].selected)
 { nanorobot_IntegerControl.Result[timer-1].ON_OFF[7+setup->tenOrgansInlet*organID]=1;
 for(step=0;step<type;step++)
 {

nanorobot_IntegerControl.organ[7+setup->tenOrgansInlet*organID].x_t[step]=
nanorobot_IntegerControl.organ[7+setup->tenOrgansInlet * organID].output *

 nanorobot_nonIntegerControl.organ[inletID].selected/100;
 nanorobot_IntegerControl.organ[7+setup->tenOrgansInlet*organID].xTotal+=

nanorobot_IntegerControl.organ[7+setup->tenOrgansInlet*organID].x_t[step];
 nanorobot_IntegerControl.organ[7+setup->tenOrgansInlet*organID].goal+=

164

APPENDIX B. DECISION CONTROL

nanorobot_IntegerControl.organ[7+setup->tenOrgansInlet*organID].x_t[step];
 }

 }
 else
 { nanorobot_IntegerControl.organ[7+setup->tenOrgansInlet*organID].selected=0;

nanorobot_IntegerControl.Result[timer-1].ON_OFF[7+setup->tenOrgansInlet*organID]=0;
 }
 inletID++;
 }

}
//***//
//***//
void CRobotDecisionSensing::LinkIntConstOBJdecrease(int timer)
{ int inletID,step,organID;

 //---//
 // Add all Activated Inlet
 for(inletID=0;inletID<nanorobot_IntegerControl.size;inletID++)
 { if(nanorobot_IntegerControl.organ[inletID].selected)

{ nanorobot_nonIntegerControl.proteins_integer+=nanorobot_IntegerControl.organ[inletID].output;//2

 }
 }
 inletID=0;
 // Subtract Continuous Activated Inlet
 for(organID=0;organID<complexity;organID++)
 { if(nanorobot_IntegerControl.organ[3+setup->tenOrgansInlet*organID].selected)

 { nanorobot_nonIntegerControl.proteins_integer-=nanorobot_IntegerControl.organ[3+setup-
> tenOrgansInlet*organID].output;

 nanorobot_nonIntegerControl.organ[inletID].selected=1;

nanorobot_nonIntegerControl.organ[inletID].vol=nanorobot_IntegerControl.organ[3+setup->
tenOrgansInlet*organID].vol;

 nanorobot_nonIntegerControl.organ[inletID].reagent=
nanorobot_IntegerControl.organ[3+setup->

tenOrgansInlet*organID].reagent;
 }
 else
 { nanorobot_nonIntegerControl.organ[inletID].selected=0;

nanorobot_nonIntegerControl.organ[inletID].vol=nanorobot_IntegerControl.organ[3+setup->
tenOrgansInlet*organID].vol;

 nanorobot_nonIntegerControl.organ[inletID].reagent=
nanorobot_IntegerControl.organ[3+setup->

tenOrgansInlet*organID].reagent;
 }
 inletID++;
 if(nanorobot_IntegerControl.organ[7+setup->tenOrgansInlet*organID].selected)
 { nanorobot_nonIntegerControl.proteins_integer-=nanorobot_IntegerControl.organ[7+setup-

> tenOrgansInlet*organID].output;
 nanorobot_nonIntegerControl.organ[inletID].selected=1;

nanorobot_nonIntegerControl.organ[inletID].vol=nanorobot_IntegerControl.organ[7+setup->
tenOrgansInlet*organID].vol;

 nanorobot_nonIntegerControl.organ[inletID].reagent=
nanorobot_IntegerControl.organ[7+setup->

tenOrgansInlet*organID].reagent;
 }
 else
 { nanorobot_nonIntegerControl.organ[inletID].selected=0;

165

APPENDIX B. DECISION CONTROL

nanorobot_nonIntegerControl.organ[inletID].vol=nanorobot_IntegerControl.organ[7+setup->
tenOrgansInlet*organID].vol;

 nanorobot_nonIntegerControl.organ[inletID].reagent=
nanorobot_IntegerControl.organ[7+setup->

tenOrgansInlet*organID].reagent;
 }
 inletID++;

 }
 //---//
 puts("\n");

 for(inletID=0;inletID<n_inlets_continue;inletID++)

{ nanorobot_nonIntegerControl.organInlet2[inletID].vol=nanorobot_nonIntegerControl.organ[inletID].vol;

nanorobot_nonIntegerControl.organInlet2[inletID].reagent=nanorobot_nonIntegerControl.organ[inletID].reagent
;

 }
 //---//
 nanorobot_nonIntegerControl.AGAPI();
 //---//
 inletID=0;
 for(organID=0;organID<complexity;organID++)
 { nanorobot_IntegerControl.organ[3+setup->tenOrgansInlet*organID].xTotal=0;
 nanorobot_IntegerControl.organ[3+setup->tenOrgansInlet*organID].goal=0;
 if(nanorobot_IntegerControl.organ[3+setup->tenOrgansInlet*organID].selected)
 { nanorobot_IntegerControl.Result[timer-1].ON_OFF[3+setup->tenOrgansInlet*organID]=1;

 for(step=0;step<type;step++)
 { nanorobot_IntegerControl.organ[3+setup->tenOrgansInlet*organID].x_t[step]=

 nanorobot_IntegerControl.organ[3+setup->tenOrgansInlet*organID].output *

nanorobot_nonIntegerControl.organ[inletID].selected/100;
nanorobot_IntegerControl.organ[3+setup->tenOrgansInlet*organID].xTotal+=

 nanorobot_IntegerControl.organ[3+setup->
tenOrgansInlet*organID].x_t[step];

 nanorobot_IntegerControl.organ[3+setup->tenOrgansInlet*organID].goal+=
nanorobot_IntegerControl.organ[3+setup->

tenOrgansInlet*organID].x_t[step];
 }

 }
 else
 { nanorobot_IntegerControl.organ[3+setup->tenOrgansInlet*organID].selected=0;
 nanorobot_IntegerControl.Result[timer-1].ON_OFF[3+setup->tenOrgansInlet*organID]=0;
 }
 inletID++;

 nanorobot_IntegerControl.organ[7+setup->tenOrgansInlet*organID].xTotal=0;
 nanorobot_IntegerControl.organ[7+setup->tenOrgansInlet*organID].goal=0;

 if(nanorobot_IntegerControl.organ[7+setup->tenOrgansInlet*organID].selected)
 { nanorobot_IntegerControl.Result[timer-1].ON_OFF[7+setup->tenOrgansInlet*organID]=1;

 for(step=0;step<type;step++)
 {

nanorobot_IntegerControl.organ[7+setup->tenOrgansInlet*organID].x_t[step]=
 nanorobot_IntegerControl.organ[7+setup->tenOrgansInlet*organID].output *

nanorobot_nonIntegerControl.organ[inletID].selected/100;
nanorobot_IntegerControl.organ[7+setup>tenOrgansInlet*organID].xTotal+=

nanorobot_IntegerControl.organ[7+setup->
tenOrgansInlet*organID].x_t[step];

166

APPENDIX B. DECISION CONTROL

nanorobot_IntegerControl.organ[7+setup->tenOrgansInlet*organID].goal+=
nanorobot_IntegerControl.organ[7+setup->

tenOrgansInlet*organID].x_t[step];
 }

 }
 else
 { nanorobot_IntegerControl.organ[7+setup->tenOrgansInlet*organID].selected=0;
 nanorobot_IntegerControl.Result[timer-1].ON_OFF[7+setup->tenOrgansInlet*organID]=0;
 }
 inletID++;
 }
 //---//

}
//***//
//***//
void CRobotDecisionSensing::linkIncrease(int timer)
{ int inletID,step,organID;

 int gapVariables=0;

 for(inletID=0;inletID<nanorobot_IntegerControl.size;inletID++)
 { nanorobot_IntegerControl.organ[inletID].goal=0;
 if(nanorobot_IntegerControl.organ[inletID].selected)

{ nanorobot_IntegerControl.organ[inletID].goal=type*nanorobot_IntegerControl.organ[inletID].output;//2
 nanorobot_IntegerControl.Result[timer-1].ON_OFF[inletID]=1;
 for(step=0;step<type;step++)
 { nanorobot_IntegerControl.organ[inletID].x_t[step]=

nanorobot_IntegerControl.organ[inletID].output;

nanorobot_IntegerControl.organ[inletID].xTotal+=nanorobot_IntegerControl.organ[inletID].x_t[step];
 }

 }
 }
 //---//
 for(organID=0;organID<complexity;organID++)
 { gapVariables+=nanorobot_IntegerControl.organ[3+setup->tenOrgansInlet*organID].selected;

gapVariables+=nanorobot_IntegerControl.organ[7+setup->tenOrgansInlet*organID].selected;
 }
 // there must be: gapVariables and goalAG>goal_NonLinear
 if(nanorobot_IntegerControl.Result[timer-1].goal_integer>goal_NonLinear && gapVariables)
 { linkIntConstOBJincrease(timer);
 }
 //---//

}
//***//
//***//
void CRobotDecisionSensing::linkDecrease(int timer)
{ int inletID,step,organID;

 int gapVariables=0;

 for(inletID=0;inletID<nanorobot_IntegerControl.size;inletID++)
 { nanorobot_IntegerControl.organ[inletID].goal=0;

 if(nanorobot_IntegerControl.organ[inletID].selected)

{ nanorobot_IntegerControl.organ[inletID].goal=type*nanorobot_IntegerControl.organ[inletID].output;//2
 nanorobot_IntegerControl.Result[timer-1].ON_OFF[inletID]=1;
 for(step=0;step<type;step++)
 { nanorobot_IntegerControl.organ[inletID].x_t[step]=

nanorobot_IntegerControl.organ[inletID].output;

167

APPENDIX B. DECISION CONTROL

nanorobot_IntegerControl.organ[inletID].xTotal+=nanorobot_IntegerControl.organ[inletID].x_t[step];
 }

 }
 }
 //---//
 for(organID=0;organID<complexity;organID++)
 { gapVariables+=nanorobot_IntegerControl.organ[3+setup->tenOrgansInlet*organID].selected;

gapVariables+=nanorobot_IntegerControl.organ[7+setup->tenOrgansInlet*organID].selected;
 }

 // there must be: gapVariables and goalAG>goal_NonLinear
 if(nanorobot_IntegerControl.Result[timer-1].goal_integer+(goal_NonLinear/2)>goal_NonLinear &&

gapVariables)
 { LinkIntConstOBJdecrease(timer);
 }
 //---//

}
//***//
//***//
void CRobotDecisionSensing::chooseInlet(int timer)
{ int inletID,ordem;

 nanorobot_IntegerControl.Init_xTotal_t();
 // Chama AGAPI - Probl. Variaveis Inteiras
 /*---*/
 // alteracoes para rodar com o genetico
 ordem=0;
 nanorobot_nonIntegerControl.proteins_integer=0;
 nanorobot_IntegerControl.AGAPI();

 for(inletID=0;inletID<nanorobot_IntegerControl.size;inletID++)
 { nanorobot_IntegerControl.Result[timer-1].ON_OFF[inletID]=0;
 }
 if(nanorobot_IntegerControl.Agent)
 { linkIncrease(timer);
 }
 else
 { linkDecrease(timer);
 }

}
//***//
//***//
void CRobotDecisionSensing::writeCheckFile2(int timer)
{ FILE *checkAdap;

int Inlet,i;

//---/
//-------- itoa(var,probl,2) ---------------------------------------/
char kindData[5];
char probl[5];
//char fileName[15]={"adaptSocket"};
char fileName[40]="adaptSocket";
//---//
char extension[5];
for(i=0;i<setup->sizeExtension;i++)
{ extension[i]=setup->extension[i];
}
//---//
sprintf(kindData,"%d",nanorobot_IntegerControl.Agent);
strcat(fileName,kindData);
sprintf(probl,"%d",timer);
strcat(fileName,probl);
strcat(fileName,extension);

168

APPENDIX B. DECISION CONTROL

checkAdap=fopen(fileName,"w");

for(Inlet=0;Inlet<setup->n_inletTotal;Inlet++)
{ fprintf(checkAdap,"\n AG[%d].x_t[0]*type=

%d\t",Inlet,nanorobot_IntegerControl.organ[Inlet].x_t[0]*type);
 fprintf(checkAdap,"nanorobot_IntegerControl.organ[%d].reagent=

%d\n",Inlet,nanorobot_IntegerControl.organ[Inlet].reagent);
}
fprintf(checkAdap,"\nnanorobot_IntegerControl.Result[timer-1].goal_nonInteger = %d\n\n",

nanorobot_IntegerControl.Result[timer-
1].goal_nonInteger);

fprintf(checkAdap,"ag_count_LOOP = %.1f\n",nanorobot_IntegerControl.AG_count_LOOP);
fprintf(checkAdap,"ag_count_LOOP = %.1f\n",nanorobot_nonIntegerControl.AG_count_LOOP);
fclose(checkAdap);

}
//***//
//***//
int CRobotDecisionSensing::takeSmaller(void)
{ int Inlet;

int lowerProteinLevel=99999;
int lowerInlet;
int nextStepProteinLevel;
for(Inlet=0;Inlet<setup->n_inletTotal;Inlet++)
{ if(!controlActived[Inlet])
 { nextStepProteinLevel=((nanorobot_IntegerControl.organ[Inlet].vol-

nanorobot_IntegerControl.organ[Inlet].input) *100) /

nanorobot_IntegerControl.organ[Inlet].max;
nextStepProteinLevel*=1;
if(lowerProteinLevel>nextStepProteinLevel)
{ lowerProteinLevel=nextStepProteinLevel;

lowerInlet=Inlet;
}

 }
}
controlActived[lowerInlet]=1;
return(lowerInlet);

}
//***//
//***//
void CRobotDecisionSensing::setConstantOutput(void)
{ int higherProteinLevel,Inlet,sum,whatDifferInlet,differ,i;

higherProteinLevel=0;
//--//
// sort from smaller to greatest
for(Inlet=0;Inlet<setup->n_inletTotal;Inlet++)
{ controlActived[Inlet]=0;
}
for(Inlet=0;Inlet<setup->n_inletTotal;Inlet++)
{ sort[Inlet]=takeSmaller();
}
//--//
Inlet=setup->n_inletTotal;
sum=0;
for(i=0;i<setup->n_inletTotal;i++)
{ --Inlet;

if(sum<goal_NonLinear)
{ if(!nanorobot_IntegerControl.organ[sort[Inlet]].x_t[0])

{ sum+=nanorobot_IntegerControl.organ[sort[Inlet]].input;
whatDifferInlet=sort[Inlet];

169

APPENDIX B. DECISION CONTROL

constantOutput[sort[Inlet]]=nanorobot_IntegerControl.organ[sort[Inlet]].input;
}

}
}
if(sum)
{ differ=sum-goal_NonLinear;

constantOutput[whatDifferInlet]=nanorobot_IntegerControl.organ[whatDifferInlet].input-
differ;

}
}
//***//
//***//
void CRobotDecisionSensing::setConstantOutput(void)
{ int Inlet,sum=0;

for(Inlet=0;Inlet<setup->n_inletTotal;Inlet++)
{ constantOutput[Inlet]=nanorobot_IntegerControl.organ[Inlet].input/2;

sum+=constantOutput[Inlet];
}

}
//***//
//***//
// all values in delivery are in cubic meter
void CRobotDecisionSensing::delivery(int timer)
{ int inletID,t,caudalTotal,Inlet,wait;

for(Inlet=0;Inlet<setup->n_inletTotal;Inlet++)
{ outputInlet[Inlet]=nanorobot_IntegerControl.organ[Inlet].x_t[0];

constantOutput[Inlet]=0;
ProteinLevelLevel[Inlet]=0;
reagent[Inlet]=0;
nanorobot_IntegerControl.organ[Inlet].reagent=0;

}
if(!nanorobot_IntegerControl.Agent)
{ setConstantOutput();
}
do
{ wait=criticSection->setupProteinLevel(timer, nanorobot_IntegerControl.Agent, setup->

n_inletTotal,type,
 outputInlet, ProteinLevelLevel, reagent, constantOutput);

if(wait)
{ //printf("\n sleep#1 agent = %d time = %d",nanorobot_IntegerControl.Agent,timer);

Sleep(10000);// sleep time in milliseconds
}

}while(wait);
for(Inlet=0;Inlet<setup->n_inletTotal;Inlet++)
{ nanorobot_IntegerControl.organ[Inlet].vol=ProteinLevelLevel[Inlet];
 nanorobot_IntegerControl.organ[Inlet].reagent=reagent[Inlet];
}
//fclose(check);

for(t=0;t<type;t++)
{ caudalTotal=0;
 for(inletID=0;inletID<nanorobot_IntegerControl.size;inletID++)
 { caudalTotal+=nanorobot_IntegerControl.organ[inletID].x_t[t];

caudalTotal+=constantOutput[inletID];
 }
 //--/
 // Format output for Excell
 nanorobot_IntegerControl.Result[timer-1].goal_nonInteger=caudalTotal;
 //---/
}// End of the first "for" loop

170

APPENDIX B. DECISION CONTROL

//writeCheckFile2(timer);
// Format output for Excell
for(inletID=0;inletID<nanorobot_IntegerControl.size;inletID++)
{ nanorobot_IntegerControl.Result[timer-1].Vol_Perc[inletID]= 100 *

nanorobot_IntegerControl.organ[inletID].vol/nanorobot_IntegerControl.organ[inletID].max;
}

}

CLASS: CrobotDecisionEvolutionary

//***//
//***//
// FILE CRobotDecisionEvolutionary.h
//***//
//***//
#ifndef __CROBOTDECISIONEVOLUTIONARY_H
#define __CROBOTDECISIONEVOLUTIONARY_H
//***//
//***//
// ClassGenetic Specification
//***//
//***//
#include <process.h>
#include <windows.h>
#include <winuser.h>
#include <gl/gl.h>
#include <gl/glu.h>
#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#include <time.h>
//***//
//***//
#include "CDataRandomize.h"
#include "CDataSetupSimulator.h"
//***//
//***//
class CRobotDecisionEvolutionary
{ private:

//101 ::random number 0 - 100
int rangeOperation;
// Population size = number of individuals
int num_seq;
// crossover percentage
float Kporcentagem;
// mutation percentage
float Kmut_rate;
// number of mutation
int num_mut;
// 15 seconds: determine how longer to process
long time_monitor;
long genetic_timing;
// n solution forbidden to recombine
int num_forbidden;
// fitness do melhor solution_ID
float bestfitness;
int type;

171

APPENDIX B. DECISION CONTROL

float *slice,*fitness_main,*fitness_integer;
int *selected,*ordered,*blocked_father;
int *chromosome_aux,*solution_global,*best_chromosome;
int *solution_passing,*start_inlet;
int *solution_temp;

struct population{ int *column;
}*population_main, *population_int;

float InitInletProteinLevel;
int SendGoal;
int timer;

// Methods :: Genetic methods
void start_population(void);
void genetics(void);
void fc_verify(void);
void mutation_swap(int n_swaps);
void include_solution(int index);
void crossover_UX(void);
void crossover_OX(void);
void ordering_population(void);
int select_solution(void);
float calculate_fitness(int last, int show_it);
void verifygapVariables(void);
float integerFitnessIncrease(int last, int show_it);
void setnotActived(void);
int notevenActived(void);
float continuousFitnessIncrease(int last, int show_it);
float integerFitnessDecrease(int last, int show_it);
float continuousFitnessDecrease(int last, int show_it);
// Data methods
void constAGSGBD(void);
void intSGBD(void);
void InletPosition(void);

public:
// public variable declaration
// public variables don't require methods to be accessed
CRobotDecisionEvolutionary() {}
~CRobotDecisionEvolutionary() {}

// radom methods
CDataRandomize randGA;
CDataSetupSimulator *setup;

struct outputexcell{ int goal_nonInteger, goal_integer;
int *ON_OFF,
*Vol_Perc;

}*Result;
struct inletsK{ // Comunication variables

 int selected,vol,max,input,output;
 int lb,ub,mean_day;
 int reagent;
 int x_t[4],xTotal,goal;
 int restarted, init_Zero;
 // Inlet position
 int xLocate,zLocate,yLocate;
 int avoidEverOFF;

}*organ,*organInlet2;

172

APPENDIX B. DECISION CONTROL

// Number of inletOrgan = chromossomes: 10 numero de tarefas
int size, Complexity;// = 2 * Complexity;
int proteins_integer;
// Set if the Class instance will be a Saver or Decreaser
int Agent;
float AG_count_LOOP,mean_AG_count_LOOP;
// Methods.
void initDataGeneticObj(CDataSetupSimulator *receive_setup, int MyRange_Operation,

int NumberInlet, int breakTime, int mySendGoal, int ptype);
void AGAPI();
void setTimer(int pTimer);
void Excell(int breakTime,int pack,int currentTime_xls,int goal_NonLinear);
// method required just by integer problem
void Init_xTotal_t(void);
//void writeCheckFile(float fitness,int distanceFlow,int kindProcess);
//friend CDataSetupSimulator;

};
//***//
//***//
#endif // __CROBOTDECISIONEVOLUTIONARY_H

//***//
//***//
// FILE CRobotDecisionEvolutionary.cpp
#include "CRobotDecisionEvolutionary.h"
//***//
//***//
void CRobotDecisionEvolutionary::initDataGeneticObj(CDataSetupSimulator *receive_setup,

 int MyRange_Operation, int NumberInlet,
 int breakTime, int mySendGoal, int ptype)

{ int i;
setup=receive_setup;
// set to the random methods if the problem is continuous or integer
rangeOperation=MyRange_Operation;
// Number of inletOrgan = chromossomes: 10 numero de tarefas
size = NumberInlet;
// Set a percentual on the initial ProteinLevel level for every Inlet
InitInletProteinLevel=(float)setup->startProteinLevel[setup->n_InletIntervention];
// Set the Amount to be delivered
SendGoal=mySendGoal;

if(Agent)
{ SendGoal*=1;

SendGoal*=1;
}
// Set the number of regions: each region has x_inletOrgan
// "x_inletOrgan"=(NumberInlet/Complexity)
Complexity=setup->GComplexity;
type=ptype;
// Population size = number of individuals
num_seq= 200;
// crossover percentage
Kporcentagem= (float) 0.3;
// mutation percentage
Kmut_rate= (float) 0.1;
// number of mutation
num_mut = 1;
// 15 seconds: determine how longer to process
time_monitor =setup->timeProcessingSeconds[setup->setProcessTime];
num_forbidden = 0; // numero de indiv. que nao podem se recombinar

173

APPENDIX B. DECISION CONTROL

bestfitness =(float) 1500000; // fitness do melhor solution_ID
// number Iteractions

 AG_count_LOOP=(float)0;
mean_AG_count_LOOP=(float)0;
// it's set forever value as "0" for all "Integer Objects"
proteins_integer=0;
// Memory allocation for Structs
//--/
fitness_main=(float*)malloc(num_seq*sizeof(float));
if(fitness_main == NULL)
{ printf("\n insufficient memory for fitness_main");
 exit(1);
}
//--/
fitness_integer=(float*)malloc(num_seq*sizeof(float));
if(fitness_integer == NULL)
{ printf("\n insufficient memory for fitness_integer");
 exit(1);
}
//--/
slice=(float*)malloc(num_seq*sizeof(float));
if(slice == NULL)
{ printf("\n insufficient memory for slice");
 exit(1);
}
//--/
ordered=(int*)malloc(num_seq*sizeof(int));
if(ordered == NULL)
{ printf("\n insufficient memory for ordered");
 exit(1);
}
//--/
blocked_father=(int*)malloc(num_seq*sizeof(int));
if(blocked_father == NULL)
{ printf("\n insufficient memory for blocked_father");
 exit(1);
}
//--/
selected=(int*)malloc(num_seq*sizeof(int));
if(selected == NULL)
{ printf("\n insufficient memory for selected");
 exit(1);
}
//--/
chromosome_aux=(int*)malloc(size*sizeof(int));
if(chromosome_aux == NULL)
{ printf("\n insufficient memory for chromosome_aux");
 exit(1);
}
//--/
best_chromosome=(int*)malloc(size*sizeof(int));

if(best_chromosome == NULL)
{ printf("\n insufficient memory for best_chromosome");
 exit(1);
}
//--/
solution_global=(int*)malloc(size*sizeof(int));

if(solution_global == NULL)
{ printf("\n insufficient memory for solution_global");

174

APPENDIX B. DECISION CONTROL

 exit(1);
}
//--/
start_inlet=(int*)malloc(size*sizeof(int));
if(start_inlet == NULL)
{ printf("\n insufficient memory for start_inlet");
 exit(1);
}
//--/
solution_passing=(int*)malloc(size*sizeof(int));
if(solution_passing == NULL)
{ printf("\n insufficient memory for solution_passing");
 exit(1);
}
//--/
solution_temp=(int*)malloc(size*sizeof(int));
if(solution_temp == NULL)
{ printf("\n insufficient memory for solution_temp");
 exit(1);
}
//--/
organ=(struct inletsK*)malloc(size*sizeof(struct inletsK));
if(organ == NULL)
{ printf("\n insufficient memory for organ");
 exit(1);
}
//--/
organInlet2=(struct inletsK*)malloc(size*sizeof(struct inletsK));
if(organInlet2 == NULL)
{ printf("\n insufficient memory for organInlet2");
 exit(1);
}
//--/
population_main=(struct population*)malloc(num_seq*sizeof(struct population));
if(population_main == NULL)
{ printf("\n insufficient memory for population_main");
 exit(1);
}
for(i=0;i<num_seq;i++)
{ population_main[i].column = (int *)malloc(setup->n_inletTotal*sizeof(int));

if(population_main[i].column == NULL)
{ printf("\nSim Memoria Para population_main[%d].column",i);
 exit(1);
}

}
//--/
population_int=(struct population*)malloc(num_seq*sizeof(struct population));
if(population_int == NULL)
{ printf("\n insufficient memory for population_int");
 exit(1);
}
for(i=0;i<num_seq;i++)
{ population_int[i].column = (int *)malloc(setup->n_inletTotal*sizeof(int));
 if(population_int[i].column == NULL)
 { printf("\nSim Memoria Para population_int[%d].column",i);
 exit(1);
 }
}
//--/
Result=(struct outputexcell*)malloc(breakTime*sizeof(struct outputexcell));
if(Result == NULL)

175

APPENDIX B. DECISION CONTROL

{ printf("\n insufficient memory for Result");
 exit(1);
}
for(i=0;i<breakTime;i++)
{ Result[i].ON_OFF = (int *)malloc(setup->n_inletTotal*sizeof(int));

if(Result[i].ON_OFF == NULL)
{ printf("\nSim Memoria Para Result[%d].ON_OFF",i);
 exit(1);
}

}
for(i=0;i<breakTime;i++)
{ Result[i].Vol_Perc = (int *)malloc(setup->n_inletTotal*sizeof(int));

if(Result[i].Vol_Perc == NULL)
{ printf("\nSim Memoria Para Result[%d].Vol_Perc",i);
 exit(1);
}

}
//--/
// case rangeOperation [0,1], is processed the initSGBD
if(rangeOperation-2)
{ //initialize continuous problem database

constAGSGBD();
}
else
{ //initialize integer problem database

intSGBD();
}
for(i=0;i<size;i++)
{ organ[i].avoidEverOFF=0;
}

}
//***//
//***//
void CRobotDecisionEvolutionary::setTimer(int pTimer)
{ timer=pTimer;
}
//***//
//***//
// Old Genetic main method
void CRobotDecisionEvolutionary::AGAPI(void)
{ int cont2;
 start_population();
 bestfitness = (float)100000;
 //opencheck(rangeOperation);
 genetics();
 for (cont2 = 0; cont2 < size; cont2++)
 { start_inlet[cont2]=solution_global[cont2] = best_chromosome[cont2];
 }
 // Reckons the best result
 calculate_fitness(1, 3);
}
//***//
//***//
void CRobotDecisionEvolutionary::genetics()
{ int cont1, cont2, cont3, cont4;
 int index_insercao;
 time_t time_begin, time_end;
 //===//
 // apply heavy mutation to the whole population //
 //===//
 for (cont1 = 0; cont1 < num_seq; cont1++)

176

APPENDIX B. DECISION CONTROL

 { for (cont3 = 0; cont3 < size; cont3++)
 { solution_global[cont3] = population_main[cont1].column[cont3];
 }
 mutation_swap(10*size);
 for (cont2 = 0; cont2 < size; cont2++)
 { solution_global[cont2] = solution_passing[cont2];
 }
 //Kbusca_local();
 for (cont3 = 0; cont3 < size; cont3++)
 { population_main[cont1].column[cont3] = solution_global[cont3];
 }
 fitness_main[cont1] = calculate_fitness(0, 0);
 }

 do
 { cont1 = 0;

time_begin = time(NULL);
do
{ index_insercao = 0;

ordering_population();
for (cont3 = 0; cont3 < (int)((float)Kporcentagem*(float)num_seq); cont3++)
{ crossover_OX();

for (cont2 = 0; cont2 < size; cont2++)
{ solution_global[cont2] = solution_passing[cont2];
}
if (((float)randGA.randomizeAPI(10000))/10000< Kmut_rate)
{ mutation_swap(num_mut);

for (cont2 = 0; cont2 < size; cont2++)
{ solution_global[cont2] = solution_passing[cont2];
}

}
//Kbusca_local();
for (cont4 = 0; cont4 < size; cont4++)
{ population_int[index_insercao].column[cont4] = solution_global[cont4];
}
index_insercao++;

}
include_solution(index_insercao);
//================================//
// calculate fitness //
//================================//
for (cont3 = 0; cont3 < num_seq; cont3++)
{ for (cont4 = 0; cont4 < size; cont4++)

{ solution_global[cont4] = population_main[cont3].column[cont4];
}
fitness_main[cont3] = calculate_fitness(0, 0);

}
fc_verify();
time_end = time(NULL);
cont1++;

}while((time_end - time_begin < time_monitor) && setup->keep_parallelThreadings)
 }while((AG_count_LOOP<500000) && setup->keep_parallelThreadings);

 genetic_timing=0;//time_end - time_begin;
 }
//***//
//***//
void CRobotDecisionEvolutionary::start_population(void)
{ int cont1, cont2;
 for (cont1 = 0; cont1 < num_seq; cont1++)
 { for (cont2 = 0; cont2 < size; cont2++)

177

APPENDIX B. DECISION CONTROL

 {population_main[cont1].column[cont2] = randGA.randomizeAPI(rangeOperation);
 }
 blocked_father[cont1] = 0;
 num_forbidden = 0;
 }
}
//***//
//***//
float CRobotDecisionEvolutionary::continuousFitnessIncrease(int last, int show_it)
{ int LowerBound, distance;

int inletID, ProteinLevelLevel;
float fitness;
int aux_2;
int maximum, index;

for(inletID=0;inletID<size;inletID++)
{ if(!organ[inletID].selected)

{ solution_global[inletID]=0;
}
organInlet2[inletID].selected=solution_global[inletID];
solution_temp[inletID] = organInlet2[inletID].selected;

}
maximum = 0;
index=20;
LowerBound=0;
ProteinLevelLevel=0;
aux_2 = 0;

for (inletID = 0; inletID < size; inletID++)
{ aux_2 += organInlet2[inletID].selected*organInlet2[inletID].output/100;

ProteinLevelLevel+=(int)(organ[inletID].vol-
(organ[inletID].input*0.7+organ[inletID].reagent*0.3)*2+

(organInlet2[inletID].selected*organInlet2[inletID].output/100));
}
ProteinLevelLevel/=100;
AG_count_LOOP++;
distance=(int)abs(SendGoal-(aux_2+proteins_integer));
// minimizing fitness
fitness = (float)(4*distance)+(float)ProteinLevelLevel;
if ((show_it == 1)||(show_it == 3))
{

if(show_it==3)// final result
{ for(inletID=0;inletID<size;inletID++)
 { organ[inletID].selected=organInlet2[inletID].selected;
 }
}

}
return(fitness);

}
//***//
//***//
float CRobotDecisionEvolutionary::integerFitnessIncrease(int last, int show_it)
{ int LowerBound;
 int inletID, organID;
 float fitness;

int distance;
int neverActived;

 int aux_2;
 int maximum, index;

int ProteinLevelOverFlow;
int goal_integer,goal_nonInteger;

178

APPENDIX B. DECISION CONTROL

for(inletID=0;inletID<size;inletID++)
 { organ[inletID].selected=solution_global[inletID];
 solution_temp[inletID] = organ[inletID].selected;
 }
 for(inletID=0;inletID<size;inletID++)
 { if(!organ[inletID].selected)
 { if(organ[inletID].vol-
(organ[inletID].input*0.7+organ[inletID].reagent*0.3)*2+organ[inletID].output*type

 <=(float)organ[inletID].max*setup->lowerBound[setup->
n_InletIntervention])
 { // too low level and not attended

 solution_global[inletID]=solution_temp[inletID]=organ[inletID].selected=1;
 }
 }

 if(organ[inletID].selected)
 { if(organ[inletID].vol-
(organ[inletID].input*0.7+organ[inletID].reagent*0.3)*2+organ[inletID].output*type

 >=((float)organ[inletID].max * setup->upperBound[setup->n_InletIntervention]))
 { // too overloaded and injected again
 solution_global[inletID]=solution_temp[inletID]=organ[inletID].selected=0;
 }
 }
 }

verifygapVariables();
for(inletID=0;inletID<size;inletID++)

 { organ[inletID].selected=solution_global[inletID];
 solution_temp[inletID] = organ[inletID].selected;
 }

maximum=0;index=20;LowerBound=0;
 aux_2 = 0;

ProteinLevelOverFlow=0;
for (inletID = 0; inletID < size; inletID++)

 { if(organ[inletID].selected)
 { aux_2 += organ[inletID].output;
 }

 }
//===/
for(organID=0;organID<Complexity;organID++)
{ for(inletID=0+setup->tenOrgansInlet*organID;inletID<setup->

tenOrgansInlet*(organID+1);inletID++)
 { if(organ[inletID].selected)

{ProteinLevelOverFlow=(int)pow(organ[inletID].vol-
(organ[inletID].input*0.4+organ[inletID].reagent*0.6) * 4+

 organ[inletID].output*type,2);
}

 }
}
//===/
neverActived=notevenActived();
//===/
// We try to minimize to fitness
goal_integer=SendGoal;
goal_nonInteger=SendGoal;
distance=(int)abs(goal_integer - aux_2);
fitness=(float)200*distance;
fitness+=(float)ProteinLevelOverFlow/200;
fitness+=neverActived;
fitness*=(float)0.15;

 AG_count_LOOP++;
//===/

179

APPENDIX B. DECISION CONTROL

 if ((show_it == 1)||(show_it == 3))
 { //writeCheckFile(fitness,distance,1);

//writeCheckFile();
 if(show_it==3) // final result
 { Result[timer-1].goal_integer=aux_2;

setnotActived();
}

}
return(fitness);

}
//***//
//***//
float CRobotDecisionEvolutionary::continuousFitnessDecrease(int last, int show_it)
{ int LowerBound, distance;

int inletID, ProteinLevelLevel;
float fitness;
int aux_2;
int maximum, index;
for(inletID=0;inletID<size;inletID++)
{ if(!organ[inletID].selected)

{ solution_global[inletID]=0;
}
organInlet2[inletID].selected=solution_global[inletID];
solution_temp[inletID] = organInlet2[inletID].selected;

}
maximum = 0;
index=20;
LowerBound=0;
ProteinLevelLevel=0;
aux_2 = 0;
for (inletID = 0; inletID < size; inletID++)
{ aux_2 += organInlet2[inletID].selected*organInlet2[inletID].output/100;

ProteinLevelLevel+=(int)
(organ[inletID].vol(organ[inletID].input*0.7+organ[inletID].reagent*0.3)*2-

(organInlet2[inletID].selected*organInlet2[inletID].output/100));

}
ProteinLevelLevel/=100;
//===//
AG_count_LOOP++;
distance=(int)abs(SendGoal/2-(aux_2+proteins_integer));
// minimizing fitness
fitness = (float)(4*distance)+(float)ProteinLevelLevel;
//===//
if ((show_it == 1)||(show_it == 3))
{

if(show_it==3)// final result
{ for(inletID=0;inletID<size;inletID++)
 { organ[inletID].selected=organInlet2[inletID].selected;
 }
}

}
return(fitness);

}
//***//
//***//
void CRobotDecisionEvolutionary::verifygapVariables(void)
{ int organID,gap,vector[2]={3,7};

int gapVariables=0;
for(organID=0;organID<Complexity;organID++)
{ if(Agent) //saver

180

APPENDIX B. DECISION CONTROL

 { // is not added, but it is too full
 if(organ[3+setup->tenOrgansInlet*organID].selected)
 { if(organ[3+setup->tenOrgansInlet*organID].vol-

(organ[3+setup->tenOrgansInlet*organID].input*0.7+
organ[3+setup->tenOrgansInlet*organID].reagent*0.3)*2+
organ[3+setup->tenOrgansInlet*organID].output*type

>=((float)organ[3+setup->tenOrgansInlet*organID].max
*setup->upperBound[setup->n_InletIntervention]))

 { // it is too full and attended again
solution_global[3+setup->tenOrgansInlet*organID]=0;

 }
}
if(organ[7+setup->tenOrgansInlet*organID].selected)
{ if(organ[7+setup->tenOrgansInlet*organID].vol-

(organ[7+setup->tenOrgansInlet*organID].input*0.7+
organ[7+setup->tenOrgansInlet*organID].reagent*0.3)*2+
organ[7+setup->tenOrgansInlet*organID].output*type

>=((float)organ[7+setup->tenOrgansInlet*organID].max
*setup->upperBound[setup->n_InletIntervention]))

 { // it is overloaded and attended again
solution_global[7+setup->tenOrgansInlet*organID]=0;

 }

}
}

if(!Agent) //Decreaser
{ // is not subtrated, but it is too full

if(!organ[3+setup->tenOrgansInlet*organID].selected)
{ if(organ[3+setup->tenOrgansInlet*organID].vol+

(organ[3+setup->tenOrgansInlet*organID].input*0.7+
organ[3+setup->tenOrgansInlet*organID].reagent*0.3)*2-
organ[3+setup->tenOrgansInlet*organID].output*type
>=((float)organ[3+setup->tenOrgansInlet*organID].max
*setup->upperBound[setup->n_InletIntervention]))

{ // too overloaded and attended again
solution_global[3+setup->tenOrgansInlet*organID]=1;

}
}
if(!organ[7+setup->tenOrgansInlet*organID].selected)
{ if(organ[7+setup->tenOrgansInlet*organID].vol+

(organ[7+setup->tenOrgansInlet*organID].input*0.7+
organ[7+setup->tenOrgansInlet*organID].reagent*0.3)*2-
organ[7+setup->tenOrgansInlet*organID].output*type
>=((float)organ[7+setup->tenOrgansInlet*organID].max
*setup->upperBound[setup->n_InletIntervention]))

{ // too overloaded and attended again
solution_global[7+setup->tenOrgansInlet*organID]=1;

}
 }

 }

 //--//
 gapVariables+=solution_global[3+setup->tenOrgansInlet*organID];
 gapVariables+=solution_global[7+setup->tenOrgansInlet*organID];
}

if(!gapVariables)
{ gap=randGA.randomizeAPI(2);

organID=randGA.randomizeAPI(Complexity);

181

APPENDIX B. DECISION CONTROL

solution_global[vector[gap]+setup->tenOrgansInlet*organID]=1;
}

}
//***//
//***//
float CRobotDecisionEvolutionary::integerFitnessDecrease(int last, int show_it)
{ int LowerBound;
 int inletID, organID;
 float fitness;
 int distance;
 int neverActived;
 int aux_2;
 int maximum, index;
 int ProteinLevelOverFlow;
 int goal_integer,goal_nonInteger;

 for(inletID=0;inletID<size;inletID++)
 { organ[inletID].selected=solution_global[inletID];
 solution_temp[inletID] = organ[inletID].selected;
 }
 // This "for" is the first point that change from Save to Decrease
 for(inletID=0;inletID<size;inletID++)
 { if(organ[inletID].selected)// is being subtracted, but it is too empty
 { if(organ[inletID].vol+(organ[inletID].input*0.7+organ[inletID].reagent*0.3)*2-
organ[inletID].output*type

<=(float)organ[inletID].max*setup->lowerBound[setup->n_InletIntervention])
 { // it is empty and not attended
 solution_global[inletID]=solution_temp[inletID]=organ[inletID].selected=0;
 }
 }
 if(!organ[inletID].selected)// is not subtrated, but it is too full
 { if(organ[inletID].vol+(organ[inletID].input*0.7+organ[inletID].reagent*0.3)*2-
organ[inletID].output*type

>=((float)organ[inletID].max*setup->upperBound[setup->n_InletIntervention]))
 { // it is overloaded and being injected again
 solution_global[inletID]=solution_temp[inletID]=organ[inletID].selected=1;
 }
 }
 }
 //==//
 verifygapVariables();
 for(inletID=0;inletID<size;inletID++)
 { organ[inletID].selected=solution_global[inletID];
 solution_temp[inletID] = organ[inletID].selected;
 }
 //===//
 maximum = 0;
 index=20;
 LowerBound=0;
 aux_2 = 0;
 ProteinLevelOverFlow=0;
 for (inletID = 0; inletID < size; inletID++)
 { if(organ[inletID].selected)
 { aux_2 += organ[inletID].output;
 }
 }
 //===/
 // Here is the second point where there is change from Save to Decrease
 for(organID=0;organID<Complexity;organID++)
 { for(inletID=0+setup->tenOrgansInlet*organID;inletID<setup->tenOrgansInlet*(organID+1);inletID++)

{ if(organ[inletID].selected)

182

APPENDIX B. DECISION CONTROL

{ ProteinLevelOverFlow=(int)pow(organ[inletID].vol+(organ[inletID].input*0.4 +
organ[inletID].reagent*0.6) *4-

organ[inletID].output*type,2);
}

}
 }
 neverActived=notevenActived();
 // We try to minimize to fitness
 goal_integer=SendGoal/2;
 goal_nonInteger=SendGoal/2;
 distance=(int)abs(goal_integer - aux_2);

 fitness=(float)200*distance;
 fitness+=(float)ProteinLevelOverFlow/200;
 fitness+=neverActived;
 fitness*=(float)0.15;
 AG_count_LOOP++;
 if ((show_it == 1)||(show_it == 3))
 {
 if(show_it==3) // final result
 { Result[timer-1].goal_integer=aux_2;

setnotActived();
 }
 }
 return(fitness);
}
//***//
//***//
int CRobotDecisionEvolutionary::notevenActived(void)
{ int inletID;

int neverActived=0;
for(inletID=0;inletID<size;inletID++)
{ if(!organ[inletID].selected)

{ neverActived+=organ[inletID].avoidEverOFF*3*Complexity;
}

}
return(neverActived);

}
//***//
//***//
void CRobotDecisionEvolutionary::setnotActived(void)
{ int inletID;

for(inletID=0;inletID<size;inletID++)
{ if(organ[inletID].selected)
 { organ[inletID].avoidEverOFF=0;
 }
 else
 { organ[inletID].avoidEverOFF+=1;
 }
}

}
//***//
//***//

// output is the active varible from each agent, thus:
// agent saver(1)= active<<output(++)>>; passive<<input (--)>>
// agent Decreaser(0)= active<<output(--)>>; passive<<input (++)>>

//***//
//***//
float CRobotDecisionEvolutionary::calculate_fitness(int last, int show_it)
{ if(Agent)

183

APPENDIX B. DECISION CONTROL

{ if(rangeOperation-2)
{ return(continuousFitnessIncrease(last,show_it));
}
else
{ return(integerFitnessIncrease(last,show_it));
}

}
else
{ if(rangeOperation-2)

{ return(continuousFitnessDecrease(last,show_it));
}
else
{ return(integerFitnessDecrease(last,show_it));
}

}
}
//***//
//***//
void CRobotDecisionEvolutionary::ordering_population(void)
{ int cont1, cont2;
 float maximum;
 int index_maximum;

 for (cont1 = 0; cont1 < num_seq; cont1++)
 { selected[cont1] = 0;
 }
 for (cont1 = 0; cont1 < num_seq; cont1++)
 { maximum = (float)-15000;
 index_maximum = -1;
 for (cont2 = 0; cont2 < num_seq; cont2++)
 { if ((selected[cont2] == 0) && (fitness_main[cont2] >= maximum))
 { maximum = fitness_main[cont2];
 index_maximum = cont2;
 }
 }
 selected[index_maximum] = 1;
 ordered[cont1] = index_maximum;
 }
}
//***//
//***//
int CRobotDecisionEvolutionary::select_solution(void)
{ int cont1;
 int last_elemento;
 float aux;
 float total =(float) 0;
 float accumulative =(float) 0;
 //===========================//
 // reckon the total fitness
 total = (float)0;
 accumulative = (float)0;
 last_elemento = -1;
 for (cont1 = 0; cont1 < num_seq; cont1++)
 { if (blocked_father[cont1] == 0)

{ total += (float)1/(float)(fitness_main[cont1]+(float)1);
}

 slice[cont1] =(float) 0;
 }
 //===//
 // reckon the slice (percentage) of each solution for the roulette well
 for (cont1 = 0; cont1 < num_seq; cont1++)

184

APPENDIX B. DECISION CONTROL

 { if (blocked_father[cont1] == 0)
{ slice[cont1] = (float)1/(float)(fitness_main[cont1]+(float)1)/(float)total;
}

 }
 //===//
 // run roulette and pick a solution
 aux = (((float)randGA.randomizeAPI(10000))/10000);
 cont1 = 0;
 while ((accumulative < aux) && (cont1 < num_seq))
 { if (blocked_father[cont1] == 0)

{ accumulative = accumulative + slice[cont1]; last_elemento = cont1;
}

 cont1 = cont1 + 1;
 }
 if (cont1 == num_seq)
 { cont1 = last_elemento+1;
 }
 return(cont1-1);
}
//***//
//***//
void CRobotDecisionEvolutionary::crossover_OX(void)
{ int cont1, cont2;
 int solution_ID_1, solution_ID_2;
 int position1;
 int position2;
 int passing;

 solution_ID_1 = select_solution();
 blocked_father[solution_ID_1] = 1;
 solution_ID_2 = select_solution();
 blocked_father[solution_ID_2] = 1;
 num_forbidden = 0;
 for (cont2 = 0; cont2 < num_seq; cont2++)
 { if (blocked_father[cont2] == 1)

{ num_forbidden++;
}

 }
 if (num_forbidden > (int)((float)num_seq*(float)0.7))
 { for (cont1 = 0; cont1 < num_seq; cont1++)
 { blocked_father[cont1] = 0;
 }
 num_forbidden = 0;
 }
 for (cont2 = 0; cont2 < size; cont2++)
 { chromosome_aux[cont2] = 0;
 }
 position1 = 0; position2 = 0;

 while(position1 == position2)
 { position1 = randGA.randomizeAPI(size);
 position2 = randGA.randomizeAPI(size);
 }
 if(position1 > position2)
 { passing = position1;
 position1 = position2;
 position2 = passing;
 }
 for (cont2 = position1; cont2 < position2+1; cont2++)
 { chromosome_aux[cont2] = population_main[solution_ID_1].column[cont2];
 }

185

APPENDIX B. DECISION CONTROL

 for (cont2 = 0; cont2 < position1; cont2++)
 { chromosome_aux[cont2] = population_main[solution_ID_2].column[cont2];
 }
 for (cont2 = position2+1; cont2 < size; cont2++)
 { chromosome_aux[cont2] = population_main[solution_ID_2].column[cont2];
 }
 for (cont2 = 0; cont2 < size; cont2++)
 { solution_passing[cont2] = chromosome_aux[cont2];
 }
}
//***//
//***//
void CRobotDecisionEvolutionary::crossover_UX(void)
 { int cont1, cont2;
 int solution_ID_1, solution_ID_2;
 solution_ID_1 = select_solution();
 blocked_father[solution_ID_1] = 1;
 solution_ID_2 = select_solution();
 blocked_father[solution_ID_2] = 1;

 if (((float)randGA.randomizeAPI(10000))/10000< 0.5)
 { blocked_father[solution_ID_1] = 0;
 }
 else
 { blocked_father[solution_ID_2] = 0;
 }
 if (((float)randGA.randomizeAPI(10000))/10000< 0.5)
 { blocked_father[0] = 1;
 }
 else
 { blocked_father[0] = 0;
 }
 num_forbidden = 0;
 for (cont2 = 0; cont2 < num_seq; cont2++)
 { if (blocked_father[cont2] == 1)

{ num_forbidden++;
}

 }
 if (num_forbidden > (int)((float)num_seq*(float)0.7))
 { for (cont1 = 0; cont1 < num_seq; cont1++)
 { blocked_father[cont1] = 0;
 }
 num_forbidden = 0;
 }
 for (cont2 = 0; cont2 < size; cont2++)
 { if (((float)randGA.randomizeAPI(10000))/10000< 0.5)

{ chromosome_aux[cont2] = population_main[solution_ID_1].column[cont2];
}

 else
 { chromosome_aux[cont2] = population_main[solution_ID_2].column[cont2];

}
 }
 for (cont2 = 0; cont2 < size; cont2++)
 { solution_passing[cont2] = chromosome_aux[cont2];
 }
}
//***//
//***//
void CRobotDecisionEvolutionary::include_solution(int index)
{ int cont1, cont2;
 float fit;

186

APPENDIX B. DECISION CONTROL

 int new;

 for (cont1 = 0; cont1 < index-1; cont1++)
 { new = 1;
 for (cont2 = 0; cont2 < size; cont2++)

{ solution_global[cont2] = population_int[cont1].column[cont2];
}

 fit = calculate_fitness(0,0);
 for (cont2 = 0; cont2 < num_seq; cont2++)
 { if (fitness_main[cont2] == fit)

{ new = 0;
}

 }
 if (new)
 { for (cont2 = 0; cont2 < size; cont2++)
 { population_main[ordered[cont1]].column[cont2] = solution_global[cont2];
 fitness_main[ordered[cont1]] = fit;
 }
 }
 }
}
//***//
//***//
void CRobotDecisionEvolutionary::mutation_swap(int n_swaps)
{ int cont2;
 int position1, position2; // mutation position
 int passing;

 for (cont2 = 0; cont2 < n_swaps; cont2++)
 { position1 = randGA.randomizeAPI(size);

position2 = randGA.randomizeAPI(size);
passing = solution_global[position2];
solution_global[position2] = solution_global[position1];
solution_global[position1] = passing;

 }
 for (cont2 = 0; cont2 < size; cont2++)
 { solution_passing[cont2] = solution_global[cont2];
 }
}
//***//
//***//
void CRobotDecisionEvolutionary::fc_verify(void)
{ int cont1, cont2;
 for (cont1 = 0; cont1 < num_seq; cont1++)
 { if(fitness_main[cont1] < bestfitness)
 { bestfitness = fitness_main[cont1];

fitness_main[0] = fitness_main[cont1];
 for (cont2 = 0; cont2 < size; cont2++)
 { best_chromosome[cont2] = population_main[cont1].column[cont2];
 population_main[0].column[cont2] = population_main[cont1].column[cont2];

solution_global[cont2] = best_chromosome[cont2];
 }

calculate_fitness(1, 1);
 }
 }
 for (cont2 = 0; cont2 < size; cont2++)
 { population_main[0].column[cont2] = best_chromosome[cont2];
 }
 fitness_main[0] = bestfitness;
}
//***//

187

APPENDIX B. DECISION CONTROL

//***//
void CrobotDecisionEvolutionary::constAGSGBD(void)
{ int inletID, organID;

for(organID=0;organID<Complexity;organID++)
{ // maximum inletID

organInlet2[organID].max=organ[organID].max= setup->max[organID];
// output inletID
organInlet2[organID].output=organ[organID].output= setup->output[organID];
// input inletID
organInlet2[organID].input=organ[organID].input= setup->input[organID];
// lower_bound inletID
organInlet2[organID].lb=organ[organID].lb= setup->lb[organID];
// upper_bound inletID
organInlet2[organID].ub=organ[organID].ub= setup->ub[organID];
// mean_day inletID
organInlet2[organID].mean_day=organ[organID].mean_day= setup->meanDay[organID];

}
// start up nutritional levels currentTime zero
for(inletID=0;inletID<size;inletID++)
{ organInlet2[inletID].vol=organ[inletID].vol=(organ[inletID].max*InitInletProteinLevel);
 organInlet2[inletID].reagent=0;
}

}
//***//
//***//
void CRobotDecisionEvolutionary::intSGBD(void)
{ int organID;

// output is the active varible from each agent, thus:
// agent saver(1)= active<<output(++)>>; passive<<input (--)>>
// agent Decreaser(0)= active<<output(--)>>; passive<<input (++)>>
for(organID=0;organID<Complexity;organID++)
{ // mean output inletID

organ[0+setup->tenOrgansInlet*organID].output= setup->output[organID];
organ[1+setup->tenOrgansInlet*organID].output= setup->output[organID];
organ[2+setup->tenOrgansInlet*organID].output= setup->output[organID];
organ[3+setup->tenOrgansInlet*organID].output= setup->output[organID];
organ[4+setup->tenOrgansInlet*organID].output= setup->output[organID];
organ[5+setup->tenOrgansInlet*organID].output= setup->output[organID];
organ[6+setup->tenOrgansInlet*organID].output= setup->output[organID];
organ[7+setup->tenOrgansInlet*organID].output= setup->output[organID];
organ[8+setup->tenOrgansInlet*organID].output= setup->output[organID];
organ[9+setup->tenOrgansInlet*organID].output=setup->output[organID];
// mean input inletID
organ[0+setup->tenOrgansInlet*organID].input= setup->input[organID];
organ[1+setup->tenOrgansInlet*organID].input= setup->input[organID];
organ[2+setup->tenOrgansInlet*organID].input= setup->input[organID];
organ[3+setup->tenOrgansInlet*organID].input= setup->input[organID];
organ[4+setup->tenOrgansInlet*organID].input= setup->input[organID];
organ[5+setup->tenOrgansInlet*organID].input= setup->input[organID];
organ[6+setup->tenOrgansInlet*organID].input= setup->input[organID];
organ[7+setup->tenOrgansInlet*organID].input= setup->input[organID];
organ[8+setup->tenOrgansInlet*organID].input= setup->input[organID];
organ[9+setup->tenOrgansInlet*organID].input= setup->input[organID];
// maximum inletID
organ[0+setup->tenOrgansInlet*organID].max= setup->max[organID];
organ[1+setup->tenOrgansInlet*organID].max= setup->max[organID];
organ[2+setup->tenOrgansInlet*organID].max= setup->max[organID];
organ[3+setup->tenOrgansInlet*organID].max= setup->max[organID];
organ[4+setup->tenOrgansInlet*organID].max= setup->max[organID];
organ[5+setup->tenOrgansInlet*organID].max= setup->max[organID];

188

APPENDIX B. DECISION CONTROL

organ[6+setup->tenOrgansInlet*organID].max= setup->max[organID];
organ[7+setup->tenOrgansInlet*organID].max= setup->max[organID];
organ[8+setup->tenOrgansInlet*organID].max= setup->max[organID];
organ[9+setup->tenOrgansInlet*organID].max= setup->max[organID];

// lower bound inletID
organ[0+setup->tenOrgansInlet*organID].lb= setup->lb[organID];
organ[1+setup->tenOrgansInlet*organID].lb= setup->lb[organID];
organ[2+setup->tenOrgansInlet*organID].lb= setup->lb[organID];
organ[3+setup->tenOrgansInlet*organID].lb= setup->lb[organID];
organ[4+setup->tenOrgansInlet*organID].lb= setup->lb[organID];
organ[5+setup->tenOrgansInlet*organID].lb= setup->lb[organID];
organ[6+setup->tenOrgansInlet*organID].lb= setup->lb[organID];
organ[7+setup->tenOrgansInlet*organID].lb= setup->lb[organID];
organ[8+setup->tenOrgansInlet*organID].lb= setup->lb[organID];
organ[9+setup->tenOrgansInlet*organID].lb=setup->lb[organID];

// upper bound inletID
organ[0+setup->tenOrgansInlet*organID].ub= setup->ub[organID];
organ[1+setup->tenOrgansInlet*organID].ub= setup->ub[organID];
organ[2+setup->tenOrgansInlet*organID].ub= setup->ub[organID];
organ[3+setup->tenOrgansInlet*organID].ub= setup->ub[organID];
organ[4+setup->tenOrgansInlet*organID].ub= setup->ub[organID];
organ[5+setup->tenOrgansInlet*organID].ub= setup->ub[organID];
organ[6+setup->tenOrgansInlet*organID].ub= setup->ub[organID];
organ[7+setup->tenOrgansInlet*organID].ub= setup->ub[organID];
organ[8+setup->tenOrgansInlet*organID].ub= setup->ub[organID];
organ[9+setup->tenOrgansInlet*organID].ub=setup->ub[organID];

// mean_day inletID
organ[0+setup->tenOrgansInlet*organID].mean_day= setup->meanDay[organID];
organ[1+setup->tenOrgansInlet*organID].mean_day= setup->meanDay[organID];
organ[2+setup->tenOrgansInlet*organID].mean_day= setup->meanDay[organID];
organ[3+setup->tenOrgansInlet*organID].mean_day= setup->meanDay[organID];
organ[4+setup->tenOrgansInlet*organID].mean_day= setup->meanDay[organID];
organ[5+setup->tenOrgansInlet*organID].mean_day= setup->meanDay[organID];
organ[6+setup->tenOrgansInlet*organID].mean_day= setup->meanDay[organID];
organ[7+setup->tenOrgansInlet*organID].mean_day= setup->meanDay[organID];
organ[8+setup->tenOrgansInlet*organID].mean_day= setup->meanDay[organID];

organ[9+setup->tenOrgansInlet*organID].mean_day= setup->meanDay[organID];

}
// start volume currentTime zero
for(inletID=0;inletID<Complexity;inletID++)
{ organ[inletID].vol=(int)(organ[inletID].max*(float)InitInletProteinLevel);
 organ[inletID].reagent=0;
}

}
//***//
//***//
void CRobotDecisionEvolutionary::Init_xTotal_t(void)
{ int inletID,t;
 for(inletID=0;inletID<Complexity;inletID++)
 { organ[inletID].xTotal=0;

for(t=0;t<4;t++)
{ organ[inletID].x_t[t]=0;
}

 }
}
//***//
//***//

189

APPENDIX B. DECISION CONTROL

void CRobotDecisionEvolutionary::Excell(int breakTime, int pack, int currentTime_xls,int goal_NonLinear)
{ int timer,inletID,smallerVol,higherVol,Histogram[101];
 int negative,negativeAmount;
 int transbord,transbordAmount;

FILE *writeout;
 negative=negativeAmount=0;

transbord=transbordAmount=0;
for(inletID=0;inletID<101;inletID++)
{ Histogram[inletID]=0;
}
//---/
// itoa : convert int to char
char protectHealth[5];
char probl[5];
char fileName[15]={"Results"};
char extension[5];
for(int i=0;i<setup->sizeExtension;i++)
{ extension[i]=setup->extension[i];
}

 sprintf(protectHealth,"%d",Agent);
strcat(fileName,protectHealth);

 sprintf(probl,"%d",pack);
strcat(fileName,probl);
strcat(fileName,extension);
//---/

 writeout=fopen(fileName,"w");
 fprintf(writeout,"\ttime\t");
 for(timer=0;timer<breakTime-1;timer++)
 { fprintf(writeout,"%d\t",timer+1+currentTime_xls-breakTime+1);
 }
 fprintf(writeout,"\n");
 fprintf(writeout,"\tPL\t");
 for(timer=0;timer<breakTime-1;timer++)
 { fprintf(writeout,"%d\t",Result[timer].goal_nonInteger);
 }
 fprintf(writeout,"\n");
 fprintf(writeout,"\tAG\t");
 for(timer=0;timer<breakTime-1;timer++)
 { fprintf(writeout,"%d\t",Result[timer].goal_integer);
 }
 fprintf(writeout,"\n");
 fprintf(writeout,"goal_nonInteger: %d\n",goal_NonLinear);
 fprintf(writeout,"type:%d\n",type);
 fprintf(writeout,"Complexity:%d\n",Complexity);
 fprintf(writeout,"mean_AG_count_LOOP : %.2f\n",mean_AG_count_LOOP);
 fprintf(writeout,"genetic_timing: %l\n",genetic_timing);
 fprintf(writeout,"Ongans Inlet\n");
 if(!pack)
 { for(inletID=0;inletID<size;inletID++)

{ // <1> or <0> based on the previous state
 organ[inletID].init_Zero=0;
 organ[inletID].restarted=0; // receive the previous total of sum
 }
 }
 //---//

for(inletID=0;inletID<size;inletID++)
{ fprintf (writeout," %d\t",inletID);

 fprintf (writeout,"delivery\t");
 for(timer=0;timer<breakTime-1;timer++)
 { fprintf(writeout,"%d\t",Result[timer].ON_OFF[inletID]);
 if(organ[inletID].init_Zero) // (!Result[timer].ON_OFF[inletID-1])

190

APPENDIX B. DECISION CONTROL

 { if(Result[timer].ON_OFF[inletID])
 { organ[inletID].restarted++;
 }
 }
 organ[inletID].init_Zero=Result[timer].ON_OFF[inletID];
 }
 fprintf(writeout,"\n");
 fprintf (writeout,"\tProteinLevelLevel\t");
 for(timer=0;timer<breakTime-1;timer++)
 { fprintf(writeout,"%d\t",Result[timer].Vol_Perc[inletID]);

 if((Result[timer].Vol_Perc[inletID]<0)||(Result[timer].Vol_Perc[inletID]>100))
{ if(Result[timer].Vol_Perc[inletID]<0)

{ negative++;
 negativeAmount+=abs(Result[timer].Vol_Perc[inletID]);

}
else
{ transbord++;

 transbordAmount+=Result[timer].Vol_Perc[inletID];
}

}
 else

{ Histogram[Result[timer].Vol_Perc[inletID]]++;
}

 }
 fprintf(writeout,"\n");
 }
 //---//

fprintf (writeout,"\tlowerProteinLevel\t");
for(timer=0;timer<breakTime-1;timer++)
{ smallerVol=200;

for(inletID=0;inletID<size;inletID++)
{ if(smallerVol>Result[timer].Vol_Perc[inletID])

{ smallerVol=Result[timer].Vol_Perc[inletID];
}

}
fprintf(writeout,"%d\t",smallerVol);

}
fprintf(writeout,"\n");
fprintf (writeout,"\thigherProteinLevel\t");
for(timer=0;timer<breakTime-1;timer++)
{ higherVol=0;

for(inletID=0;inletID<size;inletID++)
{ if(higherVol<Result[timer].Vol_Perc[inletID])

{ higherVol=Result[timer].Vol_Perc[inletID];
}

}
fprintf(writeout,"%d\t",higherVol);

}
fprintf(writeout,"\n");

 //---//
 // histogram
 fprintf(writeout,"\nHistogram\n");
 for(inletID=0;inletID<101;inletID++)
 { fprintf(writeout,"%d\t",inletID);
 }
 fprintf(writeout,"\n");
 for(inletID=0;inletID<101;inletID++)
 { fprintf(writeout,"%d\t",Histogram[inletID]);
 }

fprintf(writeout,"\n\nnegative \tProteinLevel \tfrequency =\t %d\tamount =\t
%d\n",negative,negativeAmount);

191

APPENDIX B. DECISION CONTROL

 fprintf(writeout,"\ntransbord \tProteinLevel \tfrequency =\t %d\t amount =\t
%d\n",transbord,transbordAmount);
 //---//
 // show the total of long time ago inletID not actived
 fprintf(writeout,"\n\n show the total of long time ago inletID not actived\n");
 fprintf(writeout,"\n\n");
 for(inletID=0;inletID<size;inletID++)
 { fprintf(writeout,"%d\t",inletID);
 }
 fprintf(writeout,"\n");
 for(inletID=0;inletID<size;inletID++)
 { fprintf(writeout,"%d\t",organ[inletID].avoidEverOFF);
 }
 fprintf(writeout,"\n\n");
 //---//
 // control of last activation
 fprintf(writeout,"\n\n\n total of initialization by inletID && final state\n\n ");

for(inletID=0;inletID<size;inletID++)
 { fprintf(writeout,"%d\t\t %d\n",organ[inletID].restarted,organ[inletID].init_Zero);
 }
 fclose(writeout);
}
//***//
// End of ClassGenetic Specification
//***//
//***//

192

Appendix C

Parallel Processing

APPENDIX C. PARALLEL PROCESSING

Source Code

The implemented class was designated CParallelManager, which is responsible for the management

of the shared data by a set of distinct components that run in parallel. Among other events, it activates

and runs the method adaptiveAPI from the class CrobotDecisionSensing, which interacts with motion

control for agent simulation – see it at neuralAPI method from the class CNeural. The source codes

for both classes are shown respectively in Appendix A and C. As can be observed through the source

code, parallel processing synchronizes the events running dynamically in parallel, and also generates

the random database used in the 3D virtual environment. Key aspects and concepts of system

architecture related to parallel processing were described in Chapter 7.

Start: Parallel Processing

//***//
//***//
// Activate parallel processing
//***//
//***//
#include <windows.h>
// library for parallel processing: process.h
#include <process.h>
#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include <string.h>
//***//
//***//
#include "CSetup.h"
CSetup setup;
#include "CParallelManager.h"
CParallelManager criticSection;
#include "CSetPosition.h"
#include "CNeural.h"

193

APPENDIX C. PARALLEL PROCESSING

#include "CAdaptive.h"

#include "CcreatePosition.h"

CAdaptive adaptiveControl[setup.n_nanorobots];
CSetPosition locate;
CcreatePosition moleculePosition,obstaclesPosition;
CNeural neuralMotion[setup.n_nanorobots];
//***//
//***//
void InletPositionThread(void* pParams);
void moleculePositionThread(void* pParams);
void obstaclesPositionThread(void* pParams);
void activateAgent(void* pParams);
void agentMotionControl(void* pParams);
//***//
//***//
void initMultithreading(void);
//***//
//***//
void initMultithreading(void)
{ int shootDown=0;

setup.SetupAPI();

//--//
criticSection.initData(setup.NumberInlettotal);

criticSection.firstwaitworld3D();

// Create Environment Coordinates
_beginthread(InletPositionThread,0,NULL);
shootDown++;

// Create molecule startPosition to be Assembled
_beginthread(moleculePositionThread,0,NULL);
shootDown++;

// Create obstacles startPosition
_beginthread(obstaclesPositionThread,0,NULL);
shootDown++;
// Start Adaptive Agents
setup.agentType=0;
for(i=0;i<setup.n_nanorobots;i++)
{ setup.nanorobotID=i;

_beginthread(activateAgent,0,NULL);
shootDown++;
_beginthread(agentMotionControl,0,NULL);
shootDown++;

if(setup.agentType)
{ setup.agentType=0;
}
else
{ setup.agentType=1;
}

}

criticSection.initkeepSimulator(shootDown);
shootDown=0;

shootDown=criticSection.keepSimulator(shootDown);

194

APPENDIX C. PARALLEL PROCESSING

}
//***//
//***//
void moleculePositionThread(void* pParams)
{

moleculePosition.positionAPI(setup.n_molecule,
 setup.minDistance_molecule,
 setup.objMOl, setup.distanceRadiusMol);

}
//***//
//***//
void obstaclesPositionThread(void* pParams)
{

obstaclesPosition.positionAPI(setup.n_obstacle,
 setup.minDistance_obstacle,
 setup.objObst, setup.distanceRadiusObst);

}
//***//
//***//
void InletPositionThread(void* pParams)
{

locate.positionAPI();
}
//***//
//***//
void activateAgent(void* pParams)
{

adaptiveControl[setup.nanorobotID].adaptiveAPI(setup.agentType);
}
//***//
//***//
void agentMotionControl(void* pParams)
{ neuralMotion[setup.nanorobotID].neuralAPI(setup.nanorobotID);
}
//***//
//***//

Class: CParallelManager

//***//
//***//
// FILE CParallelManager.h
//***//
//***//
CRITICAL_SECTION cs;
//***//
//***//
class CParallelManager
{

private:

int Sequencecontrol;

int wait1_initworld3D;
int wait2_initworld3D;
int wait3_initworld3D;
int wait4_initworld3D;

int waitNanorobotProteinIncrease;
int waitNanorobotProteinDecrease;

195

APPENDIX C. PARALLEL PROCESSING

int sizeworld3D;

int RouteControlIncrease;
int RouteControlDecrease;

struct dataInlet
{ // Protein levels on each Inlet and

// the last "+" or "-" Protein update
int positive,negative,Protein,wait,maxProtein;

}*InletSocket;

int *InletON3D;

int nTotalAgent;
struct agentTimer
{ // Increase: 0; Decrease: 1; graphic: 2;

int timerAdaptive;
int timerNeural;

}*setTime;

struct locateObj3D
{ int *x,*z,*y;
};
locateObj3D Inletposition;
locateObj3D molPosition;
locateObj3D obstaclePosition;

struct locateBasexz
{ int x,z,y;
}basePosition,robotBasePosition;

struct Inlet_trajectory
{

int *whatInlet;
int totalInlet;
int waitNeural;

}IncreasePath, DecreasePath, IncreasePathSolution, DecreasePathSolution;

int simulatorStatus;

struct costTrajectory
{

int *NM;
}*MyInletConnection,
IncreaseBaseConnection,DecreaseBaseConnection;

int distancesMatrix;

FILE *verify_file,*Increaseoute,*DecreaseRoute;

public:

CParallelManager() {};
~CParallelManager() {};

int setupProtein(int timer, int agent,
int TotalInlet,int nOperation,
int *outputInlet, int *ProteinLevel,
int *robotDecrease);

void initProtein(int TotalInlet,int *ProteinLevelInlet,int *maxProteinLevel);

196

APPENDIX C. PARALLEL PROCESSING

void initData(int TotalInlet);
void freeData(void);

void putMoleculePosition(int kind_of_Obj,
 int *object_x,
 int *object_z,
 int *object_y,
 int objTotal,
 int sizeworld);

void putInletPosition(int startBase, int *Inletposition_x,
 int *Inletposition_z,int *Inletposition_y,
 int InletTotal, int sizeworld);

void putInletDistances(int n,int *distance, int InletTotal, int startBase);

int initSocketNeural(int agent,int n, int *matrixlineNM,int *distanceBase);
int setupNeural(int agent, int *ntotalInlet, int *on_what);
int neuralRouteSolution(int *Inletsequence, int nInletinRoute,int agent);

void initkeepSimulator(int shootDown);
int keepSimulator(int shootDown);

void firstwaitworld3D(void);
int updateTimer3D(int agent, int timer);

int initVirtualWorld(int *sizeworld,
int *ProteinDecrease,int *ProteinIncrease,
int moleculeTotal,
int *molPos_x,int *molPos_z,int *molPos_y,
int obstacleTotal,
int *obstaclePos_x,int *obstaclePos_z,int *obstaclePos_y,
int InletTotal,
int *Inletposition_x,
int *Inletposition_z,
int *Inletposition_y,
int *baseposition_x,
int *baseposition_z,
int *baseposition_y,
int *robotBasePosition_x,
int *robotBasePosition_z,
int *robotBasePosition_y);

int updateRoute3D(int *Inletsequence, int *totalinRoute,int agent);
int updateProtein3D(int *ProteinLevel,int *InletON,int agent,int totalInlet);

friend CSetup;
};
//***//
//***//
void CParallelManager::firstwaitworld3D(void)
{ int agent,i,j;

EnterCriticalSection(&cs);

for(i=0;i<setup.NumberInlettotal;i++)
{ for(j=0;j<setup.NumberInlettotal;j++)

{ MyInletConnection[i].NM[j]=0;
}

}

197

APPENDIX C. PARALLEL PROCESSING

wait1_initworld3D=1;
wait2_initworld3D=1;
wait3_initworld3D=1;
wait4_initworld3D=1;

IncreasePathSolution.waitNeural=1;
DecreasePathSolution.waitNeural=1;

waitNanorobotProteinIncrease=1;
waitNanorobotProteinDecrease=1;

for(agent=0;agent<nTotalAgent;agent++)
{ setTime[agent].timerAdaptive=0;

setTime[agent].timerNeural=0;
}

LeaveCriticalSection(&cs);
}
//***//
//***//
void CParallelManager::initProtein(int TotalInlet,int *ProteinLevelInlet,int *maxProteinLevel)
{ int Inlet;

EnterCriticalSection(&cs);

for(Inlet=0;Inlet<TotalInlet;Inlet++)
{ InletSocket[Inlet].Protein=*ProteinLevelInlet++;

InletSocket[Inlet].maxProtein=*maxProteinLevel++;
}

Sequencecontrol=0;
wait4_initworld3D=0;
IncreasePath.waitNeural=1;
DecreasePath.waitNeural=1;

LeaveCriticalSection(&cs);

}
//***//
//***//
void CParallelManager::initkeepSimulator(int shootDown)
{

EnterCriticalSection(&cs);

simulatorStatus=shootDown;

LeaveCriticalSection(&cs);
}
//***//
//***//
int CParallelManager::keepSimulator(int shootDown)
{

EnterCriticalSection(&cs);

simulatorStatus-=shootDown;

LeaveCriticalSection(&cs);

return(simulatorStatus);
}

198

APPENDIX C. PARALLEL PROCESSING

//***//
//***//
int CParallelManager::initSocketNeural(int agent, int n, int *matrixlineNM, int *distanceBase)
{ int Inlet,wait;

EnterCriticalSection(&cs);

if(!MyInletConnection[setup.NumberInlettotal-1].NM[setup.NumberInlettotal-1])
{ // Inlet position wasn't initialized

wait=1;
}
else // last position in the matrix was completed
{ wait=0;

if(agent)
{ for(Inlet=0;Inlet<setup.NumberInlettotal;Inlet++)

{ (*matrixlineNM++)=MyInletConnection[n].NM[Inlet];
(*distanceBase++)=IncreaseBaseConnection.NM[Inlet];

}
}
else
{ for(Inlet=0;Inlet<setup.NumberInlettotal;Inlet++)

{ (*matrixlineNM++)=MyInletConnection[n].NM[Inlet];
(*distanceBase++)=DecreaseBaseConnection.NM[Inlet];

}
}

}
LeaveCriticalSection(&cs);

return(wait);
}
//***//
//***//
int CParallelManager::setupNeural(int agent, int *ntotalInlet, int *on_what)
{ int wait,Inlet;

EnterCriticalSection(&cs);

wait=0;

if(agent)
{ if(!IncreasePath.waitNeural)

{ IncreasePath.waitNeural=1;
// to do goes here
for(Inlet=0;Inlet<IncreasePath.totalInlet;Inlet++)
{ (*on_what++)=IncreasePath.whatInlet[Inlet];
}
(*ntotalInlet)=IncreasePath.totalInlet;

}
else
{ wait=1;
}

}
else
{ if(!DecreasePath.waitNeural)

{ DecreasePath.waitNeural=1;
// to do goes here
for(Inlet=0;Inlet<DecreasePath.totalInlet;Inlet++)
{ (*on_what++)=DecreasePath.whatInlet[Inlet];
}

199

APPENDIX C. PARALLEL PROCESSING

(*ntotalInlet)=DecreasePath.totalInlet;
}
else
{ wait=1;
}

}

LeaveCriticalSection(&cs);

return(wait);
}
//***//
//***//
int CParallelManager::updateTimer3D(int agent, int timer)
{ int updateTimer3D=0;

EnterCriticalSection(&cs);

if((setTime[agent].timerAdaptive-timer)&&(setTime[agent].timerNeural-timer))
{ updateTimer3D=1;
}

LeaveCriticalSection(&cs);

return(updateTimer3D);
}
//***//
//***//
int CParallelManager::updateProtein3D(int *ProteinLevel,int *InletON,int agent,int totalInlet)
{ int wait,i;

EnterCriticalSection(&cs);

if(agent)
{ wait=waitNanorobotProteinIncrease;

if(!waitNanorobotProteinIncrease)
{ for(i=0;i<totalInlet;i++)

{ // percentual ProteinLevel
(*ProteinLevel++)=InletSocket[i].Protein*100/InletSocket[i].maxProtein;
(*InletON++)=InletON3D[i];

}
waitNanorobotProteinIncrease=1;

}
}
else
{ wait=waitNanorobotProteinDecrease;

if(!waitNanorobotProteinDecrease)
{

for(i=0;i<totalInlet;i++)
{

(*ProteinLevel++)= InletSocket[i].Protein * 100/
InletSocket[i].maxProtein;

(*InletON++)=InletON3D[i];
}
waitNanorobotProteinDecrease=1;

}
}

LeaveCriticalSection(&cs);

200

APPENDIX C. PARALLEL PROCESSING

return(wait);
}
//***//
//***//
int CParallelManager::setupProtein(int timer, int agent, int TotalInlet,int nOperation,

 int *outputInlet, int *ProteinLevel,int *robotDecrease)
{ int Inlet,wait,numberInlet;

 EnterCriticalSection(&cs);

wait=0;
numberInlet=0;

if(agent)
{ // Agent Increase

// wait if the agent Decrease hasn't visited
if(Sequencecontrol && IncreasePath.waitNeural && waitNanorobotProteinIncrease)
{ // Neural control

IncreasePath.totalInlet=0;

for(Inlet=0;Inlet<TotalInlet;Inlet++)
{ InletSocket[Inlet].positive=((*outputInlet++)*nOperation);

InletSocket[Inlet].Protein+=InletSocket[Inlet].positive;
(*ProteinLevel++)=InletSocket[Inlet].Protein;

// Neural Control
// inform inlets to be attended in the motion control
InletON3D[Inlet]=0;
if(InletSocket[Inlet].positive)
{ IncreasePath.whatInlet[IncreasePath.totalInlet++]=Inlet;

InletON3D[Inlet]=1;
}

// I need to inform what was the last negative setup
// to the Increase choose the better next action plane
// so, it returns for the pointer in the AG
// the action performed by the robotDecrease
(*robotDecrease++)=InletSocket[Inlet].negative;

}
setTime[agent].timerAdaptive++;
Sequencecontrol=0;
IncreasePath.waitNeural=0;

waitNanorobotProteinIncrease=0;
}
else
{ wait=1;
}

}
else
{ // Agent Decrease

// wait if the agent Increase hasn't finished
if((!Sequencecontrol) && DecreasePath.waitNeural &&

 waitNanorobotProteinDecrease)
{ // Neural Control

DecreasePath.totalInlet=0;

for(Inlet=0;Inlet<TotalInlet;Inlet++)

201

APPENDIX C. PARALLEL PROCESSING

{ InletSocket[Inlet].negative=((*outputInlet++)*nOperation);
InletSocket[Inlet].Protein= InletSocket[Inlet].Protein -

 InletSocket[Inlet].negative;
(*ProteinLevel++)=InletSocket[Inlet].Protein;

// Neural Control
// inform inlets to be attend in the motion control
InletON3D[Inlet]=0;
if(InletSocket[Inlet].negative)
{ DecreasePath.whatInlet[DecreasePath.totalInlet++]=Inlet;

InletON3D[Inlet]=1;
}

// it return for the pointer in the AG
// the action performed by the robotDecrease
(*robotDecrease++)=InletSocket[Inlet].positive;

}
setTime[agent].timerAdaptive++;
Sequencecontrol=1;
DecreasePath.waitNeural=0;

waitNanorobotProteinDecrease=0;
}
else
{ wait=1;
}

}

LeaveCriticalSection(&cs);

return(wait);
}
//***//
//***//
void CParallelManager::freeData(void)
{ int i;

 EnterCriticalSection(&cs);

for(i=0;i<setup.NumberInlettotal;i++)
{ free(MyInletConnection[i].NM);
}
free(MyInletConnection);

free(InletSocket);
free(setTime);

free(IncreasePath.whatInlet);
free(DecreasePath.whatInlet);
free(IncreasePathSolution.whatInlet);
free(DecreasePathSolution.whatInlet);

free(IncreaseBaseConnection.NM);
free(DecreaseBaseConnection.NM);
free(Inletposition.x);
free(Inletposition.z);
free(Inletposition.y);

free(molPosition.x);
free(molPosition.z);

202

APPENDIX C. PARALLEL PROCESSING

free(molPosition.y);

free(obstaclePosition.x);
free(obstaclePosition.z);
free(obstaclePosition.y);

free(InletON3D);

LeaveCriticalSection(&cs);

}
//***//
//***//
void CParallelManager::initData(int TotalInlet)
{

int i;

 EnterCriticalSection(&cs);

nTotalAgent=setup.numberAgent;
//--/
InletSocket=(struct dataInlet*)malloc(

TotalInlet*sizeof(struct dataInlet));
if(InletSocket == NULL)
{ printf("\n not enough memory");
 exit(1);
}
//--/
setTime=(struct agentTimer*)malloc(

nTotalAgent*sizeof(struct agentTimer));
if(setTime == NULL)
{ printf("\n not enough memory");
 exit(1);
}
//--/
IncreasePath.whatInlet=(int *)malloc(setup.NumberInlettotal*sizeof(int));
if(IncreasePath.whatInlet == NULL)
{ printf("\n not enough memory");
 exit(1);
}
//--/
DecreasePath.whatInlet=(int *)malloc(setup.NumberInlettotal*sizeof(int));
if(DecreasePath.whatInlet == NULL)
{ printf("\n not enough memory");
 exit(1);
}
//--/
IncreasePathSolution.whatInlet=(int *)malloc(setup.NumberInlettotal*sizeof(int));
if(IncreasePathSolution.whatInlet == NULL)
{ printf("\n not enough memory");
 exit(1);
}
//--/
DecreasePathSolution.whatInlet=(int *)malloc(setup.NumberInlettotal*sizeof(int));
if(DecreasePathSolution.whatInlet == NULL)
{ printf("\n not enough memory");
 exit(1);
}
//--/
MyInletConnection=(struct costTrajectory *)

malloc(setup.NumberInlettotal

203

APPENDIX C. PARALLEL PROCESSING

*sizeof(struct costTrajectory));
if(MyInletConnection==NULL)
{ printf("\n not enough memory");

exit(1);
}
for(i=0;i<setup.NumberInlettotal;i++)
{

MyInletConnection[i].NM = (int *)malloc(
setup.NumberInlettotal*sizeof(int));

if(MyInletConnection[i].NM == NULL)
{ printf("\n not enough memory");
 exit(1);
}

}
//--/
IncreaseBaseConnection.NM=(int *)malloc(setup.NumberInlettotal*sizeof(int));
if(IncreaseBaseConnection.NM == NULL)
{ printf("\n not enough memory");
 exit(1);
}
//--/
DecreaseBaseConnection.NM=(int *)malloc(setup.NumberInlettotal*sizeof(int));
if(DecreaseBaseConnection.NM == NULL)
{ printf("\n not enough memory");
 exit(1);
}
//--/
molPosition.x=(int *)malloc(setup.n_molecule*sizeof(int));
if(molPosition.x == NULL)
{ printf("\n not enough memory");
 exit(1);
}
molPosition.z=(int *)malloc(setup.n_molecule*sizeof(int));
if(molPosition.z == NULL)
{ printf("\n not enough memory");
 exit(1);
}
molPosition.y=(int *)malloc(setup.n_molecule*sizeof(int));
if(molPosition.y == NULL)
{ printf("\n not enough memory");
 exit(1);
}
//--/
obstaclePosition.x=(int *)malloc(setup.n_obstacle*sizeof(int));
if(obstaclePosition.x == NULL)
{ printf("\n not enough memory");
 exit(1);
}
obstaclePosition.z=(int *)malloc(setup.n_obstacle*sizeof(int));
if(obstaclePosition.z == NULL)
{ printf("\n not enough memory");
 exit(1);
}
obstaclePosition.y=(int *)malloc(setup.n_obstacle*sizeof(int));
if(obstaclePosition.y == NULL)
{ printf("\n not enough memory");
 exit(1);
}
//--/
Inletposition.x=(int *)malloc(setup.NumberInlettotal*sizeof(int));
if(Inletposition.x == NULL)

204

APPENDIX C. PARALLEL PROCESSING

{ printf("\n not enough memory");
 exit(1);
}
Inletposition.z=(int *)malloc(setup.NumberInlettotal*sizeof(int));
if(Inletposition.z == NULL)
{ printf("\n not enough memory");
 exit(1);
}
Inletposition.y=(int *)malloc(setup.NumberInlettotal*sizeof(int));
if(Inletposition.y == NULL)
{ printf("\n not enough memory");
 exit(1);
}
//--/
InletON3D=(int *)malloc(setup.NumberInlettotal*sizeof(int));
if(InletON3D == NULL)
{ printf("\n not enough memory");
 exit(1);
}
//--/
LeaveCriticalSection(&cs);

}
//***//
//***//
int CParallelManager::initVirtualWorld(int *sizeworld,

int *ProteinDecrease,int *ProteinIncrease,
int moleculeTotal,
int *molPos_x,int *molPos_z,int *molPos_y,
int obstacleTotal,
int *obstaclePos_x,int *obstaclePos_z,int *obstaclePos_y,
int InletTotal,
int *Inletposition_x,
int *Inletposition_z,
int *Inletposition_y,
int *baseposition_x,
int *baseposition_z,
int *baseposition_y,
int *robotBasePosition_x,
int *robotBasePosition_z,
int *robotBasePosition_y)

{
 EnterCriticalSection(&cs);

int wait = wait1_initworld3D + wait2_initworld3D +
 wait3_initworld3D + wait4_initworld3D;

// initialize the world object position in 3D
if(wait)
{ // wait, the position wasn't generated
}
else
{ int j;

(*sizeworld)=sizeworld3D;
//---//
// initialize the molecule to be assembled points' coordinates
for(j=0;j<obstacleTotal;j++)
{ (*obstaclePos_x++)=obstaclePosition.x[j];

(*obstaclePos_z++)=obstaclePosition.z[j];
(*obstaclePos_y++)=obstaclePosition.y[j];

}

205

APPENDIX C. PARALLEL PROCESSING

//---//
// initialize the molecule to be assembled points' coordinates
for(j=0;j<moleculeTotal;j++)
{ (*molPos_x++)=molPosition.x[j];

(*molPos_z++)=molPosition.z[j];
(*molPos_y++)=molPosition.y[j];

}
//---//
// initialize the delivery points' coordinates
for(j=0;j<InletTotal;j++)
{ (*Inletposition_x++)=Inletposition.x[j];

(*Inletposition_z++)=Inletposition.z[j];
(*Inletposition_y++)=Inletposition.y[j];
// Protein_level in percentual
(*ProteinDecrease)=InletSocket[j].Protein*100/InletSocket[j].maxProtein;
(*ProteinIncrease++)=InletSocket[j].Protein*100/InletSocket[j].maxProtein;

}
//---//
// agent start position
(*baseposition_x)=basePosition.x;
(*baseposition_z)=basePosition.z;
(*baseposition_y)=basePosition.y;
// reagent start position
(*robotBasePosition_x)=robotBasePosition.x;
(*robotBasePosition_z)=robotBasePosition.z;
(*robotBasePosition_y)=robotBasePosition.y;
//---//

}

LeaveCriticalSection(&cs);

return(wait);
}
//***//
//***//
int CParallelManager::updateRoute3D(int *Inletsequence, int *totalinRoute,int agent)
{ int wait;

EnterCriticalSection(&cs);

// update dynamically the world state

// update the Protein levels

// update the trajectory route for Decrease and the Increase agents
if(agent)
{

if(!IncreasePathSolution.waitNeural)
{ (*totalinRoute)=IncreasePathSolution.totalInlet;

for(int i=0;i<IncreasePathSolution.totalInlet;i++)
{ (*Inletsequence++)=IncreasePathSolution.whatInlet[i];
}
IncreasePathSolution.waitNeural=1;
wait=0;

}
else
{ wait=1;
}

}
else

206

APPENDIX C. PARALLEL PROCESSING

{
if(!DecreasePathSolution.waitNeural)
{ (*totalinRoute)=DecreasePathSolution.totalInlet;

for(int i=0;i<DecreasePathSolution.totalInlet;i++)
{ (*Inletsequence++)=DecreasePathSolution.whatInlet[i];
}
DecreasePathSolution.waitNeural=1;
wait=0;

}
else
{ wait=1;
}

}

LeaveCriticalSection(&cs);

return(wait);
}
//***//
//***//
int CParallelManager::neuralRouteSolution(int *Inletsequence, int nInletinRoute,int agent)
{ int wait;

EnterCriticalSection(&cs);

if(agent)
{

if(IncreasePathSolution.waitNeural)
{

IncreasePathSolution.totalInlet=nInletinRoute;
for(int i=0;i<IncreasePathSolution.totalInlet;i++)
{ IncreasePathSolution.whatInlet[i]=(*Inletsequence++);
}
wait=IncreasePathSolution.waitNeural=0;
setTime[agent].timerNeural++;

}
else
{ wait=IncreasePathSolution.waitNeural;
}

}
else
{

if(DecreasePathSolution.waitNeural)
{

DecreasePathSolution.totalInlet=nInletinRoute;
for(int i=0;i<DecreasePathSolution.totalInlet;i++)
{ DecreasePathSolution.whatInlet[i]=(*Inletsequence++);
}
wait=DecreasePathSolution.waitNeural=0;
setTime[agent].timerNeural++;

}
else
{ wait=DecreasePathSolution.waitNeural;
}

}

LeaveCriticalSection(&cs);

return(wait);
}
//***//

207

APPENDIX C. PARALLEL PROCESSING

//***//
void CParallelManager::putInletPosition(int startBase,

int *Inletposition_x,
int *Inletposition_z,
int *Inletposition_y,
int InletTotal,
int sizeworld)

{
 EnterCriticalSection(&cs);

sizeworld3D=sizeworld;

switch(startBase)
{ case 0:

{
for(int j=0;j<InletTotal;j++)
{ Inletposition.x[j]=(*Inletposition_x++);

Inletposition.z[j]=(*Inletposition_z++);
Inletposition.y[j]=(*Inletposition_y++);

}
break;

}
case 1:
{

basePosition.x=(*Inletposition_x);
basePosition.z=(*Inletposition_z);
basePosition.y=(*Inletposition_y);

break;
}
case 2:
{

robotBasePosition.x=(*Inletposition_x);
robotBasePosition.z=(*Inletposition_z);
robotBasePosition.y=(*Inletposition_y);

wait1_initworld3D=0;

break;
}

}

LeaveCriticalSection(&cs);
}
//***//
//***//
void CParallelManager::putMoleculePosition(int kind_of_Obj,

int *object_x,
int *object_z,
int *object_y,
int objTotal,
int sizeworld)

{ int j;

 EnterCriticalSection(&cs);

switch(kind_of_Obj)
{ case 0:

{ // molecules to be assembled
for(int j=0;j<objTotal;j++)
{ molPosition.x[j]=(*object_x++);

208

APPENDIX C. PARALLEL PROCESSING

molPosition.z[j]=(*object_z++);
molPosition.y[j]=(*object_y++);
wait2_initworld3D=0;

}
break;

}
case 1:
{ // obstacles

for(int j=0;j<objTotal;j++)
{ obstaclePosition.x[j]=(*object_x++);

obstaclePosition.z[j]=(*object_z++);
obstaclePosition.y[j]=(*object_y++);
wait3_initworld3D=0;

}
break;

}
case 2:
{ // other objects

break;
}

}
LeaveCriticalSection(&cs);

}
//***//
//***//
void CParallelManager::putInletDistances(int n,int *distance,int InletTotal, int startBase)
{ int j;

 EnterCriticalSection(&cs);

switch(startBase)
{

case 0:
{ for(j=0;j<InletTotal;j++)

{ DecreaseBaseConnection.NM[j]=distance[j];
}
break;

}
case 1:
{ for(j=0;j<InletTotal;j++)

{ IncreaseBaseConnection.NM[j]=distance[j];
}
break;

}
case 2:
{ for(j=0;j<InletTotal;j++)

{ MyInletConnection[n].NM[j]=distance[j];
}
break;
// the distances was fully initialized

}
}
LeaveCriticalSection(&cs);

}
//***//
//***//

209

Appendix D

Motion Control

APPENDIX D. MOTION CONTROL

Source Code

The sequence discloses the source code for the class CNeural that contains the dynamic feed-

forward neural network used in motion control for simulated nanorobots. The mathematical model and

neural network concepts were described in Chapter 5. The calculation is based on agents theory for

each nanorobot interacting within the 3D workspace, and uses memory behavior and task

decomposition for environment sensing as described in Chapter 8. The source code here interacts

directly with the class CrobotDecisionSensing, which is presented in Appendix A.

CLASS: CNeural

//***//
//***//
// Artificial Neural Networks
//***//
//***//
class CNeural
{

private:
int *whatInlet,*neuronSelect;
int agent;
int sizeSampleNeural;
long neuralTime;

struct data_nm
{ int *baseNM;
}distance;

struct distanceInlet
{ int *nm;
}*distanceInlet;

struct sequenceNeural
{ int *sequence;

int cost;
}best,search;

210

APPENDIX D. MOTION CONTROL

struct sampleCost
{ int cost;
}*sampleSearch;

int *searchSequence;

FILE *neuralMatrix;
FILE *fileANN;

public:
CNeural() {}
~CNeural() {}

// random methods
CRandomize randNeural;

int *InletMatrixDistance,*distanceSocketBase;
int nInletRoute;

void neuralAPI(int nanorobotID);
void allocMemory(void);
void initData(int nanorobotID);
void freeMemory(void);
void setupNeural(void);

int neuralForward(void);
int reckonNeuralCost(int output);
void searchEngine(int timer);

friend CCritical;

};
//***//
//***//
void CNeural::allocMemory(void)
{ int i;

whatInlet=(int*)malloc(setup.NumberInlettotal*sizeof(int));
 if(whatInlet == NULL)

{ printf("\n not enough memory for whatInlet");
 exit(1);
}
//---//
neuronSelect=(int*)malloc(setup.NumberInlettotal*sizeof(int));

 if(neuronSelect == NULL)
{ printf("\n not enough memory for neuronSelect");
 exit(1);
}
//---//
InletMatrixDistance=(int*)malloc(setup.NumberInlettotal*sizeof(int));
if(InletMatrixDistance == NULL)
{ printf("\n not enough memory for InletMatrixDistance");
 exit(1);
}
//---//
distanceSocketBase=(int*)malloc(setup.NumberInlettotal*sizeof(int));

 if(distanceSocketBase == NULL)
{ printf("\n not enough memory for distanceSocketBase");
 exit(1);
}

211

APPENDIX D. MOTION CONTROL

//---//
distance.baseNM=(int*)malloc(setup.NumberInlettotal*sizeof(int));

 if(distance.baseNM == NULL)
{ printf("\n not enough memory for distance.baseNM");
 exit(1);
}
//---//
distanceInlet=(struct distanceInlet*)malloc(setup.NumberInlettotal*sizeof(
 struct distanceInlet));

 if(distanceInlet == NULL)
{ printf("\n not enough memory for distanceInlet");
 exit(1);
}
for(i=0;i<setup.NumberInlettotal;i++)
{ distanceInlet[i].nm=(int*)malloc(setup.NumberInlettotal*sizeof(int));

if(distanceInlet[i].nm == NULL)
{ printf("\n not enough memory for distanceInlet[i].nm",i);
 exit(1);
}

}
//---//
searchSequence=(int*)malloc(setup.NumberInlettotal*sizeof(int));

 if(searchSequence == NULL)
{ printf("\n not enough memory for searchSequence");
 exit(1);
}
//---//
best.sequence=(int*)malloc(setup.NumberInlettotal*sizeof(int));

 if(best.sequence == NULL)
{ printf("\n not enough memory for best.sequence");
 exit(1);
}
//---//
search.sequence=(int*)malloc(setup.NumberInlettotal*sizeof(int));

 if(search.sequence == NULL)
{ printf("\n not enough memory for best.sequence");
 exit(1);
}
//---//
sampleSearch=(struct sampleCost*)malloc(sizeSampleNeural*sizeof(

 struct sampleCost));
 if(sampleSearch == NULL)

{ printf("\n not enough memory for sampleSearch");
 exit(1);
}
//---//

}
//***//
//***//
void CNeural::freeMemory(void)
{ free(whatInlet);

free(InletMatrixDistance);
free(distanceSocketBase);
free(distance.baseNM);
free(distanceInlet);
free(searchSequence);
free(sampleSearch);
free(neuronSelect);

}
//***//
//***//

212

APPENDIX D. MOTION CONTROL

void CNeural::setupNeural(void)
{

// determine how long to process in seconds
neuralTime=setup.timeProcessingSeconds;
// size of sizeSampleNeural
sizeSampleNeural=100;

}
//***//
//***//
void CNeural::initData(int nanorobotID)
{

int wait,j,Inlet;
agent=nanorobotID;

for(Inlet=0;Inlet<setup.NumberInlettotal;Inlet++)
{

do
{ wait=criticSection.initSocketNeural(agent,

Inlet,
InletMatrixDistance,
distanceSocketBase);

if(wait)
{ printf("\nsleep#2 agent = %d initData ",agent);

Sleep(10000);
}

}while(wait);

for(j=0;j<setup.NumberInlettotal;j++)
{ distanceInlet[Inlet].nm[j]=InletMatrixDistance[j];

distance.baseNM[j]=distanceSocketBase[j];
}

}
}
//***//
//***//
void CNeural::neuralAPI(int nanorobotID)
{ int timer,wait,status;

int dayID;

setupNeural();
allocMemory();
initData(nanorobotID);

for(dayID=0;dayID<setup.Ndays;dayID++)
{

//---//
// strings for the dynamic file name
char saveLife[3];
char probl[5];
char file_name[25]={"resultANN"};

char extension[5];
for(int i=0;i<setup.sizeExtension;i++)
{ extension[i]=setup.extension[i];
}

sprintf(saveLife,"%d",agent);

strcat(file_name,saveLife);

sprintf(probl,"%d",dayID);

213

APPENDIX D. MOTION CONTROL

strcat(file_name,probl);

strcat(file_name,extension);

fileANN=fopen(file_name,"w");
//---//

for(timer=0;timer<setup.Nhours;timer++)
{

do
{ wait=criticSection.setupNeural(agent,&nInletRoute,whatInlet);

if(wait)
{ printf("\nsleep#3 agent = %d time = %d",agent,timer);

Sleep(15000);// sleep time in milliseconds
}

}while(wait);
searchEngine(timer);

}
}

printf("\n executed neural - agent = %d",agent);

fclose(fileANN);

freeMemory();

status=criticSection.keepSimulator(1);
}
//***//
//***//
void CNeural::searchEngine(int timer)
{

int i,Inlet,solution,sample;
time_t time_begin, time_end;

// do for “n” seconds (n = neuralTime) the Neural Forward
 time_begin = time(NULL);

sample=0;
best.cost=99000;

do
{ // make 100 network analyses and take the better result

for(solution=0;solution<100;solution++)
{ // take the result if it is better than prior

if(neuralForward())
{

int trash=reckonNeuralCost(1);

for(Inlet=0;Inlet<nInletRoute;Inlet++)
{ best.sequence[Inlet]=search.sequence[Inlet];
}
best.cost=search.cost;
sampleSearch[sample++].cost=search.cost;

fprintf(fileANN,"\n===========================\n");
fprintf(fileANN,"sequence\t");
for(i=0;i<nInletRoute;i++)
{ fprintf(fileANN,"%d\t",best.sequence[i]);
}
fprintf(fileANN,"\n route price\t");

214

APPENDIX D. MOTION CONTROL

fprintf(fileANN,"%d\n",best.cost);

fprintf(fileANN,"\n===========================\n");
}

}

time_end = time(NULL);
}while(time_end - time_begin < neuralTime);

for(i=0;i<sample;i++)
{ fprintf(fileANN,"%d\n",sampleSearch[i].cost);
}
fprintf(fileANN,"\n===== BEST SOLUTION - timer: %d =======\n",timer);
for(i=0;i<nInletRoute;i++)
{ fprintf(fileANN,"%d\t",best.sequence[i]);
}
fprintf(fileANN,"\n%d\n",best.cost);
fprintf(fileANN,"\n=======================================\n");

criticSection.neuralRouteSolution(best.sequence,nInletRoute,agent);
}
//***//
//***//
int CNeural::neuralForward(void)
{ int Inlet,neuronActive,j,i;

for(Inlet=0;Inlet<nInletRoute;Inlet++)
{ neuronSelect[Inlet]=whatInlet[Inlet];
}

j=0;
// generate a Sigmoid Belief Neural Network Solution
for(Inlet=0;Inlet<nInletRoute;Inlet++)
{ neuronActive=randNeural.randomizeAPI(nInletRoute-Inlet);

// take the activated neurons
search.sequence[j++]=neuronSelect[neuronActive];

for(i=neuronActive;i<(nInletRoute-Inlet)-1;i++)
{ neuronSelect[i]=neuronSelect[i+1];
}

}

return(reckonNeuralCost(0));
}
//***//
//***//
int CNeural::reckonNeuralCost(int output)
{ int i;

search.cost=0;
// sum the cost relative at the start point to basePosition
search.cost+=distanceSocketBase[search.sequence[0]];

if(output)
{ fprintf(fileANN,"\n cost from one point to next point in the route");

fprintf(fileANN,"\n%d",distanceSocketBase[search.sequence[0]]);
}

// sum the cost on the middle route
for(i=0;i<nInletRoute-1;i++)
{ search.cost+=distanceInlet[search.sequence[i]].nm[search.sequence[i+1]];

215

APPENDIX D. MOTION CONTROL

if(output)
{ fprintf(fileANN,"\t%d",distanceInlet[search.sequence[i]].nm[

 search.sequence[i+1]]);
}

}
// sum the cost relative at the end point to basePosition
search.cost+=distanceSocketBase[search.sequence[nInletRoute-1]];

if(output)
{fprintf(fileANN,"\t%d\n",distanceSocketBase[search.sequence[nInletRoute-1]]);
}

if(search.cost<best.cost)
{ i=1;
}
else
{ i=0;
}

return(i);
}
//***//
//***//

216

APPENDIX E. THREE DIMENSIONAL RENDERING

Source Code

The sequence discloses the CObjNanorobot3D source code used to model and render the 3D

nanorobots. The concept of bounding boxes and 3D modelling is presented in Chapter 3. The

nanorobot interactions inside the virtual environment are based on real time physically based

simulation. The nanorobot as an agent receives input about the actions to be performed from the

classes CrobotDecisionSensing and CNeural, which were presented in Appendix A and C. The model

uses a modular approach, and the communications from the distinct parts of the system transfers

events through the critical section, which uses the class CParallelManager – present in Appendix B.

CLASS: CobjNanorobot3D

//***//
//***//
// Nanorobot 3D Rendering with OpenGL and C++
//***//
//***//
class CObjNanorobot3D:public CObjBase3D
{

private:

float color_r,color_g,color_b;
float pos_x,pos_z,pos_y,movePos_x,movePos_z,movePos_y;

void Nanorobot(int NanorobotID);
void drawNanorobot(int NanorobotID);
void sensor(int NanorobotID);
void sensingField(int colorBoundBox,float position2);

void directinalPropeller(void);
void backPropeller(void);
void middlePropeller(int whatPropeller);

void headNanorobot(int NanorobotID);
void externalNeck(int NanorobotID);

217

Appendix E

Three Dimensional Rendering

APPENDIX E. THREE DIMENSIONAL RENDERING

void propellerNanorobot(NanorobotID);
void armNanorobot(float positionedY,

 float positionedZ,
 float degree,
 int armID);

void mouthNanoRobot(void);
void connectHead(float baseCylinderRadius,

 float topCylinderRadius,
 float locateX,
 int setConnection);

void updateLocation(float take_x,float take_y,float take_z);

public:

// contructor
CObjNanorobot3D() : CObjBase3D(){}

void NanorobotAPI(int NanorobotID,float take_x,float take_y,float take_z);
void initNanoRobot(void);

};
//***//
//***//
void CObjNanorobot3D::initNanoRobot(void)
{

initCObj3DCBase();
color_r=(float)setup->r;
color_g=(float)setup->g;
color_b=(float)setup->b;

}
//***//
//***//
void CObjNanorobot3D::NanorobotAPI(int NanorobotID,

 float take_x,float take_y,float take_z)
{

updateLocation(take_x,take_y,take_z);

Nanorobot(NanorobotID);
}
//***//
//***//
void CObjNanorobot3D::updateLocation(float take_x,float take_y,float take_z)
{

pos_x=(float)setup->x;
pos_z=(float)setup->z;
pos_y=(float)setup->y;

movePos_x=take_x;
movePos_y=take_y;
movePos_z=take_z;

}
//***//
//***//
void CObjNanorobot3D::Nanorobot(int NanorobotID)
{

drawObj3DAPICBase(NanorobotID);
drawNanorobot(NanorobotID);

}
//***//

218

APPENDIX E. THREE DIMENSIONAL RENDERING

//***//
void CObjNanorobot3D::drawNanorobot(int NanorobotID)
{

float positionedY,positionedZ,degree;
int i;
int armID;
// begin the drawing
glPushMatrix();

// here is located the main linking parts of the robot
glTranslatef((float)movePos_x, (float)movePos_y, (float)movePos_z);
// method from class base
motionPerformedCBase(NanorobotID);
// put the starting rotation for the nanoRobot
glRotatef(setup->degree, 1.0, 0.0, 0.0);
//-----------------------------------//
headNanorobot(NanorobotID);
externalNeck(NanorobotID);
propellerNanorobot(NanorobotID);
sensor(NanorobotID);

armID=0;
degree=(float)0;
positionedY=(float)0.0;
positionedZ=(float)0.13;
armNanorobot(positionedY,positionedZ,degree,armID);

armID=1;
degree=(float)90;
positionedY=(float)0.13*(1-2);
positionedZ=(float)0.0;
armNanorobot(positionedY,positionedZ,degree,armID);

armID=2;
degree=(float)180;
positionedY=(float)0.0;
positionedZ=(float)0.13*(1-2);
armNanorobot(positionedY,positionedZ,degree,armID);
//-----------------------------------//

// dispose the current matrix
glPopMatrix();

}
//***//
//***//
void CObjNanorobot3D::armNanorobot(float positionedY,float positionedZ,float degree, int armID)
{

float stack,open,sphereSize;
float closeArmDegree, rotOuterArm;
float color_r,color_g,color_b;
int setConnection;
float cylinderHight=(float)setup.rotorSize*0.7;
float baseCylinderRadius=(float)(setup.rotorSize/5)*1.5;
float topCylinderRadius=(float)(setup.rotorSize/5)*1.5;
float breakCylinderParts=(float)32;

closeArmDegree=(float)90;
// inner arm
sphereSize=(float)baseCylinderRadius/9*1.7;
glPushMatrix();

219

APPENDIX E. THREE DIMENSIONAL RENDERING

glMateriali(GL_FRONT_AND_BACK, GL_SHININESS, rand() % 128);

glColor3f(1,1,0);
glTranslatef((float)pos_x-2.75,

 (float)pos_y+positionedY,
 (float)pos_z+positionedZ);//0.4);

glRotatef(degree, 1.0, 0.0, 0.0);
glRotatef(closeArmDegree, 0.0, 1.0, 0.0);
glRotatef(rotInnerArmCBase, 0.0, 1.0, 0.0);
gluSphere(g_normalObject, sphereSize*1.2, 32, 20);
//---//
// inner arm
glPushMatrix();

glMateriali(GL_FRONT_AND_BACK, GL_SHININESS, rand() % 128);

glColor3f(0,0,1);
glTranslatef((float)pos_x,(float)pos_y, (float)pos_z);
gluCylinder(g_normalObject,

baseCylinderRadius/9,
topCylinderRadius/9,
cylinderHight/2,
breakCylinderParts, 4);

glPopMatrix();
//---//
//---//
// outer arm
switch(armID)
{

case 0:
{ rotOuterArm=rotOuterArm0CBase;

break;
}
case 1:
{

rotOuterArm=rotOuterArm1CBase;
break;

}
case 2:
{

rotOuterArm=rotOuterArm2CBase;
break;

}
}

glPushMatrix();
glMateriali(GL_FRONT_AND_BACK, GL_SHININESS, rand() % 128);

glColor3f(1,1,0);
glTranslatef((float)pos_x,(float)pos_y, (float)pos_z+cylinderHight/2);
glRotatef(rotOuterArm, 0.0, 1.0, 0.0);
gluSphere(g_normalObject, sphereSize, 32, 20);
//---//
// inner arm
glPushMatrix();

glMateriali(GL_FRONT_AND_BACK, GL_SHININESS, rand() % 128);

glColor3f(0,1,1);
glTranslatef((float)pos_x,(float)pos_y, (float)pos_z);
gluCylinder(g_normalObject,

baseCylinderRadius/9,
topCylinderRadius/9,

220

APPENDIX E. THREE DIMENSIONAL RENDERING

cylinderHight*1.3,
breakCylinderParts, 4);

glPopMatrix();

glPushMatrix();
glMateriali(GL_FRONT_AND_BACK, GL_SHININESS, rand() % 128);

glColor3f(1,1,0);
glTranslatef((float)pos_x,(float)pos_y, (float)pos_z+cylinderHight*1.3);
gluSphere(g_normalObject, sphereSize, 32, 20);

glPopMatrix();
//---//

glPopMatrix();
//---//
//---//

glPopMatrix();
}
//***//
//***//
void CObjNanorobot3D::sensor(int NanorobotID)
{

int minus,colorBoundBox;
float degree;

float position2=(float)(setup->rotorSize*1.5)*1.5;
position2*=(float)1.0735;

// first sensor
colorBoundBox=0;
minus=1-2;
position2*=minus;
sensingField(colorBoundBox,position2);
// second sensor
colorBoundBox=1;
position2*=minus;
sensingField(colorBoundBox,position2);

// first sensor
colorBoundBox=0;
minus=1;
position2*=minus;

degree=180;
glRotatef(degree, 0.0, 0.0, 1.0);

glTranslatef((float)pos_x+1.5,
 (float)pos_y,
 (float)pos_z+2.4);

position2=0;
sensingField(colorBoundBox,position2);

degree=90;
glRotatef(degree, 0.0, 0.0, 1.0);
glTranslatef((float)pos_x-1.4,

 (float)pos_y-3.7,
 (float)pos_z-2.4);

sensingField(colorBoundBox,position2);

221

APPENDIX E. THREE DIMENSIONAL RENDERING

degree=180;
glRotatef(degree, 0.0, 0.0, 1.0);
glTranslatef((float)pos_x-1.4*2,

 (float)pos_y,
 (float)pos_z);

sensingField(colorBoundBox,position2);

}
//***//
//***//
void CObjNanorobot3D::sensingField(int colorBoundBox,float position2)
{

float degree,minus;
float color_r,color_g,color_b;
float innerRadius,outerRadius,slices,loops, sphereSize;

float breakCylinderParts=(float)32;
float cylinderHight=(float)setup->rotorSize*1.5;
float baseCylinderRadius=(float)setup->rotorSize*0.5;
float topCylinderRadius=(float)setup->rotorSize*0.5;

float positioning=(float)((2*(setup->rotorSize*1.5*2))*1.2)/5;

cylinderHight=(float)12.0;
baseCylinderRadius=(float)2.8;
topCylinderRadius=(float)0;

degree=(float)270;

color_r=(float)0.9;
color_g=(float)0.0;
color_b=(float)0.0;

cylinderHight=(float)0.4;
baseCylinderRadius=(float)0.2;
topCylinderRadius=(float)0.2;

degree=90;

//---//
// sensingField light: metalic base - outer
glPushMatrix();

glMateriali(GL_FRONT_AND_BACK, GL_SHININESS, rand() % 128);

glColor3f((float)0.0,(float)0.0,(float)1.0);
glTranslatef((float)pos_x+3.5,

 (float)pos_y-position2,
 (float)pos_z);

glRotatef(degree, 0.0, 1.0, 0.0);

gluCylinder(quadratic->g_normalObject,
baseCylinderRadius,
topCylinderRadius,
cylinderHight,
breakCylinderParts, 4);

glPopMatrix();
//---//
// sensingField light: metalic base - inner mouth
cylinderHight=(float)0.17;

222

APPENDIX E. THREE DIMENSIONAL RENDERING

baseCylinderRadius=(float)0.04;
topCylinderRadius=(float)0.2;

glPushMatrix();
glMateriali(GL_FRONT_AND_BACK, GL_SHININESS, rand() % 128);

glColor3f((float)0.9,(float)0.9,(float)0.9);
glTranslatef((float)pos_x+3.72,

 (float)pos_y-position2,
 (float)pos_z);

glRotatef(degree, 0.0, 1.0, 0.0);

gluCylinder(quadratic->g_normalObject,
baseCylinderRadius,
topCylinderRadius,
cylinderHight,
breakCylinderParts, 4);

glPopMatrix();
//---//

}
//***//
//***//
void CObjNanorobot3D::propellerNanorobot(NanorobotID)
{

float degree;
float innerRadius,outerRadius,slices,loops,startAngle,sweepAngle;
float stack,open;
float color_r,color_g,color_b;
int setConnection,i,j;
float cylinderHight=(float)setup->cylinderHight;
float baseCylinderRadius=(float)setup->baseCylinderRadius;
float topCylinderRadius=(float)setup->topCylinderRadius;
float breakCylinderParts=(float)setup->breakCylinderParts;

degree=-90;

// propeller neck
glPushMatrix();

glMateriali(GL_FRONT_AND_BACK, GL_SHININESS, rand() % 128);

glColor3f(1,1,1);
glTranslatef((float)pos_x-cylinderHight,(float)pos_y, (float)pos_z);

glRotatef(degree, 0.0, 1.0, 0.0);
glRotatef(rotRotorCBase/3, 0.0, 0.0, 1.0);
gluCylinder(g_normalObject,

(baseCylinderRadius*0.2)*2,
(topCylinderRadius*0.2)*2,
(cylinderHight)/3,
breakCylinderParts, 4);

//--//
// propellers
innerRadius=(float)(baseCylinderRadius*0.2)*2;
outerRadius=(float)(baseCylinderRadius*0.2)*5;
slices=(float)32;
loops=(float)20;
startAngle=(float)0;
sweepAngle=(float)45;
for(i=0;i<2;i++)

223

APPENDIX E. THREE DIMENSIONAL RENDERING

{
for(j=0;j<4;j++)
{

startAngle=(float)90*j+45*i;
// partial disk 1
glPushMatrix();

glMateriali(GL_FRONT_AND_BACK,GL_SHININESS,rand());

glColor3f(1,1*i,0);

glTranslatef((float)pos_x,(float)pos_y, (float)pos_z+0.10+i*0.10);

glRotatef(30, 0.0, 0.0, 1.0);
gluPartialDisk(g_normalObject,

innerRadius,
outerRadius,
slices,
loops,
startAngle,
sweepAngle);

glPopMatrix();
}

}
//--//

glPopMatrix();
}
//***//
//***//
void CObjNanorobot3D::externalNeck(int NanorobotID)
{

float degree;
float stack,open;
float color_r,color_g,color_b;
int setConnection;
float cylinderHight=(float)setup.rotorSize*0.7;
float baseCylinderRadius=(float)setup->baseCylinderRadius;
float topCylinderRadius=(float)(setup.rotorSize/5)*1.5;
float breakCylinderParts=(float)32;

degree=-90;

stack=(float)3.3;
open=(float)(baseCylinderRadius*0.2)*2;

// middle body
glPushMatrix();

glMateriali(GL_FRONT_AND_BACK, GL_SHININESS, rand() % 128);

glColor3f(1,1,0);
glTranslatef((float)pos_x-cylinderHight*1.3,(float)pos_y, (float)pos_z);

glRotatef(degree, 0.0, 1.0, 0.0);
gluCylinder(g_normalObject,

baseCylinderRadius*0.2,
topCylinderRadius*0.2,
cylinderHight*2.5,
breakCylinderParts, 4);

glPopMatrix();

setConnection=1;
connectHead((baseCylinderRadius*0.2),

224

APPENDIX E. THREE DIMENSIONAL RENDERING

open,
cylinderHight*(3.8),
setConnection);

glPushMatrix();
glMateriali(GL_FRONT_AND_BACK, GL_SHININESS, rand() % 128);

glColor3f(1,0,0);
glTranslatef((float)pos_x-cylinderHight*stack,(float)pos_y, (float)pos_z);

glRotatef(degree, 0.0, 1.0, 0.0);
gluCylinder(g_normalObject,

(baseCylinderRadius*0.2)/2,
(topCylinderRadius*0.2)/2,
(cylinderHight*2.5)/2,
breakCylinderParts, 4);

glPopMatrix();

setConnection=1;
connectHead((baseCylinderRadius*0.2)/2,

0,// middle body
cylinderHight*(1.25+stack),
setConnection);

}
//***//
//***//
void CObjNanorobot3D::headNanorobot(int NanorobotID)
{

float degree;
float color_r,color_g,color_b;
int setConnection;
float cylinderHight=(float)setup.rotorSize*0.7;
float baseCylinderRadius=(float)(setup.rotorSize/5)*1.5;
float topCylinderRadius=(float)(setup.rotorSize/5)*1.5;
float breakCylinderParts=(float)32;

degree=-90;
// external body
glPushMatrix();

glMateriali(GL_FRONT_AND_BACK, GL_SHININESS, rand() % 128);

glColor3f((float)0.9,(float)0.7,(float)0.7);
glTranslatef((float)pos_x,(float)pos_y, (float)pos_z);

glRotatef(degree, 0.0, 1.0, 0.0);
gluCylinder(g_normalObject,

baseCylinderRadius,
topCylinderRadius,
cylinderHight,
breakCylinderParts, 4);

glPopMatrix();

setConnection=1;
connectHead(baseCylinderRadius,

0,
cylinderHight,setConnection);

setConnection=0;
connectHead(baseCylinderRadius,

0,
cylinderHight,setConnection);

225

APPENDIX E. THREE DIMENSIONAL RENDERING

}
//***//
//***//
void CObjNanorobot3D::mouthNanoRobot(void)
{

float degree;
float cylinderHight=(float)setup.rotorSize*1.5*2;
float baseCylinderRadius=(float)setup.rotorSize*1.5;
float topCylinderRadius=(float)setup.rotorSize*1.5;
float breakCylinderParts=(float)32;

degree=-90;
glPushMatrix();

glMateriali(GL_FRONT_AND_BACK, GL_SHININESS, rand() % 128);

glColor3f(1,0,0);
glTranslatef((float)pos_x+4,(float)pos_y, (float)pos_z);

glRotatef(degree, 0.0, 1.0, 0.0);
gluCylinder(g_normalObject,

baseCylinderRadius*1.5,
topCylinderRadius*0.7,
cylinderHight*0.6,
breakCylinderParts, 4);

glPopMatrix();
}
//***//
//***//
void CObjNanorobot3D::directinalPropeller(void)
{ middlePropeller(0);

middlePropeller(1);

backPropeller();
}
//***//
//***//
void CObjNanorobot3D::connectHead(float baseCylinderRadius,

 float topCylinderRadius,
 float locateX,
 int setConnection)

{
float degree;
float denominator;
float cylinderHight=(float)setup.rotorSize;
float breakCylinderParts=(float)32;

if(setConnection)
{

denominator=(float)1-2;
locateX*=denominator;
degree=-90;

}
else
{

denominator=(float)1;
locateX=0;
degree=90;

}

226

APPENDIX E. THREE DIMENSIONAL RENDERING

glPushMatrix();
glMateriali(GL_FRONT_AND_BACK, GL_SHININESS, rand() % 128);

glColor3f(1,1,1);
glTranslatef((float)pos_x+locateX,(float)pos_y, (float)pos_z);

glRotatef(degree, 0.0, 1.0, 0.0);
gluCylinder(g_normalObject,

baseCylinderRadius,
topCylinderRadius,
cylinderHight*0.3,
breakCylinderParts, 4);

glPopMatrix();
}
//***//
//***//
void CObjNanorobot3D::middlePropeller(int whatPropeller)
{

float degree,minus;
float color_r,color_g,color_b;

float positioning=(float)(2*(setup.rotorSize*1.5*2))*1.2;
positioning/=(float)5;
float breakCylinderParts=(float)2;
float cylinderHight=(float)setup.rotorSize*1.5;
float baseCylinderRadius=(float)setup.rotorSize*0.5;
float topCylinderRadius=(float)setup.rotorSize*0.5;
cylinderHight=(float)3.9;
baseCylinderRadius=(float)0.8;
topCylinderRadius=(float)1.9;
float position2=(float)(setup.rotorSize*1.5)*1.5;
degree=(float)270;//90+180

if(whatPropeller)
{ minus=(float)-1;
}
else
{ minus=(float)1;
}

color_r=(float)0.9;
color_g=(float)0.9;
color_b=(float)0.0;

position2*=(float)1.2;

glPushMatrix();
glMateriali(GL_FRONT_AND_BACK, GL_SHININESS, rand() % 128);

glColor3f(0,0,1);
glTranslatef((float)pos_x+(positioning*1.2),

 (float)pos_y-position2*minus,
 (float)pos_z);

glRotatef(degree, 0.0, 1.0, 0.0);
glRotatef(rotateMiddlePropeller,0.0, 1.0, 0.0);

gluCylinder(g_normalObject,
baseCylinderRadius,
topCylinderRadius,
cylinderHight,

227

APPENDIX E. THREE DIMENSIONAL RENDERING

breakCylinderParts, 4);
glPopMatrix();

}
//***//
//***//
void CObjNanorobot3D::backPropeller(void)
{

float degree;
float rotor_r,rotor_g,rotor_b;

float positioning=(float)2*(setup.rotorSize*1.5*2)*1.2;
float breakCylinderParts=(float)2;
float cylinderHight=(float)setup.rotorSize*1.5;
float baseCylinderRadius=(float)setup.rotorSize*1.5;
float topCylinderRadius=(float)setup.rotorSize*1.5;

baseCylinderRadius*=0.7;
topCylinderRadius*=0.7;
cylinderHight*=1.2;
baseCylinderRadius*=(float)0.7;
cylinderHight*=0.5;
positioning-=cylinderHight*1.4;
baseCylinderRadius*=1.2;
topCylinderRadius*=1.4;
degree=(float)90;

glPushMatrix();
glMateriali(GL_FRONT_AND_BACK, GL_SHININESS, rand() % 128);
glColor3f(0.9,0.9,0.0);
glTranslatef((float)pos_x-positioning*1.2,

 (float)pos_y,
 (float)pos_z);

glRotatef(degree, 1.0, 0.0, 0.0);
degree=(float)270;
glRotatef(degree, 0.0, 1.0, 0.0);
glRotatef(rotateBackPropeller, 0.0, 1.0, 0.0);
gluCylinder(g_normalObject,

baseCylinderRadius,
topCylinderRadius,
cylinderHight,
breakCylinderParts, 4);

glPopMatrix();
}
//***//
//***//

228

Publication List

PUBLICATION LIST

Journals
11 Adriano Cavalcanti, Bijan Shirinzadeh, Toshio Fukuda, Seiichi Ikeda, “Nanorobot for Brain

Aneurysm”, International Journal of Robotics Research, Sage, Vol. 28, no. 4, pp. 558-570,
April 2009.

10 Adriano Cavalcanti, Bijan Shirinzadeh, Luiz C. Kretly, “Medical Nanorobotics for Diabetes
Control”, Nanomedicine: Nanotechnology, Biology and Medicine, Elsevier, Vol. 4, no. 2, pp.
127-138, June 2008.

9 Adriano Cavalcanti, Bijan Shirinzadeh, Mingjun Zhang, Luiz C. Kretly, “Nanorobot Hardware
Architecture for Medical Defense”, Sensors, MDPI(Basel), Vol. 8, no. 5, pp. 2932-2958, May
2008.

8 Adriano Cavalcanti, Bijan Shirinzadeh, Robert A. Freitas Jr., Tad Hogg, “Nanorobot
Architecture for Medical Target Identification”, Nanotechnology, IOP, Vol. 19, no. 1, 015103
(15p.), January 2008.

7 Adriano Cavalcanti, Bijan Shirinzadeh, Robert A. Freitas Jr., Luiz C. Kretly, “Medical
Nanorobot Architecture Based on Nanobioelectronics”, Recent Patents on Nanotechnology,
Bentham Science, Vol. 1, no. 1, pp. 1-10, February 2007.

6 Adriano Cavalcanti, Robert A. Freitas Jr., Luiz C. Kretly, “Nanobotics Control Design: A
Practical Approach Tutorial”, Robotics Today, Dearborn, Mich.: SME Society of Manufacturing
Engineers, 4th Quarter, Vol. 18, no. 4, October 2005.

5 Adriano Cavalcanti, Robert A. Freitas Jr., “Nanorobotics Control Design: A Collective Behavior
Approach for Medicine”, IEEE Transactions on Nanobioscience, Vol. 4, no. 2, pp. 133-140,
June 2005.

4 Adriano Cavalcanti, “Nanorobotics”, In 3-D Simulations, Topic In Depth, NSF - The NSDL
Scout Report for Math, Engineering and Technology, Vol. 4, no. 8, The University of
Wisconsin-Madison, Madison WI, USA, April 2005.

3 Adriano Cavalcanti, “Assembly Automation with Evolutionary Nanorobots and Sensor-Based
Control applied to Nanomedicine”, IEEE Transactions on Nanotechnology, Vol. 2, no. 2, pp.
82-87, June 2003.

2 Adriano Cavalcanti, Robert A. Freitas Jr., “Nanosystem Design with Dynamic Collision
Detection for Autonomous Nanorobot Motion Control using Neural Networks”, Computer
Graphics and Geometry, MEPhI, Vol. 5, no. 1, pp. 50-74, May 2003.

1 Adriano Cavalcanti, Robert A. Freitas Jr., “Autonomous Multi-robot Sensor-Based Cooperation
for Nanomedicine”, International Journal of Nonlinear Science and Numerical Simulation, Vol.
3, no. 4, pp. 743-746, August 2002.

229

PUBLICATION LIST

Conference Proceedings
18 Adriano Cavalcanti, Bijan Shirinzadeh, Toshio Fukuda, Ikeda Seiichi, “Hardware Architecture

for Nanorobot Application in Cerebral Aneurysm”, IEEE Nano Int'l Conf. on Nanotechnology,
Hong Kong, China, pp. 237-242, Aug. 2007.

17 Adriano Cavalcanti, Bijan Shirinzadeh, Tad Hogg, Julian A. Smith, “Hardware Architecture for
Nanorobot Application in Cancer Therapy”, IEEE-RAS Int'l Conf. on Advanced Robotics, Jeju,
Korea, pp. 200-205, August 2007.

16 Adriano Cavalcanti, Bijan Shirinzadeh, Declan Murphy, Julian A. Smith, “Nanorobots for
Laparoscopic Cancer Surgery”, IEEE ICIS Int'l Conf. on Computer and Information Science,
Melbourne, Australia, pp. 738-743, July 2007.

15 Adriano Cavalcanti, Bijan Shirinzadeh, Tad Hogg, Luiz C. Kretly, “CMOS-based Nanorobot to
Combat Cancer”, Australian Workshop on Fluid Mechanics, A Complex Dynamical System,
Melbourne, Australia, December 2006. (invited talk)

14 Adriano Cavalcanti, Tad Hogg, Bijan Shirinzadeh, Hwee C. Liaw, “Nanorobot Communication
Techniques: A Comprehensive Tutorial”, IEEE ICARCV Int’l Conf. on Control, Automation,
Robotics and Vision, Grand Hyatt, Singapore, pp. 2371-2376, December 2006.

13 Adriano Cavalcanti, Lior Rosen, Bijan Shirinzadeh, Moshe Rosenfeld, “Nanorobot for
Treatment of Patients with Artery Occlusion”, Springer Proceedings of Virtual Concept,
Cancun, Mexico, November 2006.

12 Adriano Cavalcanti, Warren W. Wood, Luiz C. Kretly, Bijan Shirinzadeh, “Computational
Nanomechatronics: A Pathway for Control and Manufacturing Nanorobots”, IEEE CIMCA Int’l
Conf. on Computational Intelligence for Modelling, Control and Automation, IEEE Computer
Society, Sydney, Australia, pp. 185-190, November 2006.

11 Adriano Cavalcanti, Tad Hogg, Bijan Shirinzadeh, “Nanorobotics System Simulation in 3D
Workspaces with Low Reynolds Number”, IEEE-RAS MHS Int’l Symposium on Micro-
Nanomechatronics and Human Science, Nagoya, Japan, pp. 226-231, November 2006.

10 Adriano Cavalcanti, Tad Hogg, Luiz C. Kretly, “Transducers Development for Nanorobotic
Applications in Biomedical Engineering”, IEEE NDSI Nanoscale Devices and System
Integration, Houston TX, USA, April 2005. (invited talk)

9 Adriano Cavalcanti, Lior Rosen, Luiz C. Kretly, Moshe Rosenfeld, Shmuel Einav, “Nanorobotic
Challenges in Biomedical Applications, Design and Control”, IEEE ICECS Int’l Conf. on
Electronics, Circuits and Systems, Tel-Aviv, Israel, December 2004.

8 Lior Rosen, Adriano Cavalcanti, Moshe Rosenfeld, Shmuel Einav, “Pro-Inflammatory
Cytokines and Soluble Adhesion Molecules as Activating Triggers for Nanorobots”, BMES
Conf. on Biomedical Engineering: New Challenges for the Future, Philadelphia PA, USA,
October 2004.

7 Adriano Cavalcanti, Robert A. Freitas Jr., Luiz C. Kretly, “Nanorobotics Control Design: A
Practical Approach Tutorial”, ASME 28th Biennial Mechanisms and Robotics Conference, Salt
Lake City Utah, USA, September 2004.

6 Adriano Cavalcanti, Tad Hogg, “Simulating Nanorobots in Fluids with Low Reynolds Number”,
11th Foresight Conf. on Molecular Nanotechnology, Burlingame CA, USA, October 2003.

5 Arancha Casal, Tad Hogg, Adriano Cavalcanti, “Nanorobots as Cellular Assistants in
Inflammatory Responses”, IEEE BCATS Biomedical Computation at Stanford 2003 Symposium,
IEEE Computer Society, Stanford CA, USA, October 2003.

4 Adriano Cavalcanti, “Nanorobotics Control Techniques with NanoCAD for Biomedical
Applications”, Int’l Symposium Frontiers of NanoEngineering 2003, Campinas, Brazil, pp. 24-
27, October 2003.

3 Adriano Cavalcanti, Robert A. Freitas Jr., “Collective Robotics Coherent Behaviour for
Nanosystems with Sensor-Based Neural Motion”, IEEE - Int’l Conf. on Artificial Intelligence
Systems, IEEE Computer Society Press, Divnomorskoe, Russia, pp. 185-190, September 2002.

230

PUBLICATION LIST

2 Adriano Cavalcanti, Robert A. Freitas Jr., “Autonomous Multi-robot Sensor-Based Cooperation
for Nanomedicine”, ASME/IEEE ICMNS Int’l Conf. on Micro and Nano Systems, Kunming,
China, pp. 139-142, August 2002.

1 Adriano Cavalcanti, “Assembly Automation with Evolutionary Nanorobots and Sensor-Based
Control applied to Nanomedicine”, IEEE - Nano 2002 Int’l Conf. on Nanotechnology,
Washington D.C., USA, pp. 161-164, August 2002.

Plenary Lectures
3 Adriano Cavalcanti, “Robots in Surgery”, Plenary Lecture, Euro Nano Forum 2005,

Nanotechnology and the Health of the EU Citizen in 2020, Edinburgh, Scotland, UK, September
2005. (invited talk)

2 Adriano Cavalcanti, “Neural Motion and Evolutionary Decision in Robotic Competition applied
for Molecular Machine System Design”, Plenary Lecture, IEEE - CACSD Int’l Conf. on
Computer Aided Control System Design, Glasgow, Scotland, UK, pp. 5-14, September 2002.
(invited plenary)

1 Adriano Cavalcanti, Robert A. Freitas Jr., “Nanosystem Design with Dynamic Collision
Detection for Autonomous Nanorobot Motion Control using Neural Networks”, Plenary
Lecture, ACM SIGGRAPH - Graphicon Int’l Conf. on Computer Graphics, Novgorod, Russia,
pp. 75-80, September 2002. (invited plenary)

Referenced in Post-Graduate Programs
9 Adriano Cavalcanti, Lior Rosen, Luiz C. Kretly, Moshe Rosenfeld, Shmuel Einav, “Nanorobotic

Challenges in Biomedical Applications, Design and Control”, In ECE2195 Biomedical
Computing, Fall 2007, Department of Electrical and Computer Engineering, University of
Pittsburgh, Pittsburgh PA, USA, November 2007.

8 Adriano Cavalcanti, Robert A. Freitas Jr., Luiz C. Kretly, “Nanorobotics Control Design: A
Practical Approach Tutorial”, In ECE5930 Nanomechatronics, Spring 2006, Department of
Electrical and Computer Engineering, Utah State University, Logan UT, USA, April 2006.

7 Adriano Cavalcanti, “Nanorobotics”, In HUAS 6375 Imagery and Iconography, 3D Simulation
as Visual Language: Explaining Complex Ideas Simply, Fall 2004, Graduate Program in Arts
and Technology, The University of Dallas, Dallas TX, USA, February 2005.

6 Adriano Cavalcanti, Robert A. Freitas Jr., “Autonomous Multi-robot Sensor-Based Cooperation
for Nanomedicine”, In CS 549 Nanorobotics Course, Simulation of Nanorobots, Fall 2004,
Department of Computer Science, University of Southern California, Los Angeles CA, USA,
October 2004.

5 Adriano Cavalcanti, Tad Hogg, “Simulating Nanorobots in Fluids with Low Reynolds Number”,
Nanorobotics: Nanotechnology, Chemistry Biology, Info Center ETHZ, Swiss Federal Institute
of Technology, Zurich, Switzerland, September 2004.

4 Arancha Casal, Tad Hogg, Adriano Cavalcanti, “Nanorobots as Cellular Assistants in
Inflammatory Responses”, Nanorobotics: Nanotechnology, Chemistry Biology, Info Center
ETHZ, Swiss Federal Institute of Technology, Zurich, Switzerland, September 2004.

3 Adriano Cavalcanti, “Assembly Automation with Evolutionary Nanorobots and Sensor-Based
Control applied to Nanomedicine”, In Nanorobotics Lab, Mechanical Engineering Department,
Carnegie Mellon University, Pittsburgh, USA, July 2004.

2 Adriano Cavalcanti, “Assembly Automation with Evolutionary Nanorobots and Sensor-Based
Control applied to Nanomedicine”, In EE 821 Biomedical Engineering Systems Course, Get Ten
Papers to Review, Department of Electrical Engineering, National Central University, Jhongli
City, Taiwan, China, February 2004.

1 Adriano Cavalcanti, Robert A. Freitas Jr., “Autonomous Multi-robot Sensor-Based Cooperation
for Nanomedicine”, In CS 599 Papers, Nanorobotics Course, Lecture on Simulation of
Nanorobots, Department of Computer Science, University of Southern California, Los Angeles
CA, USA, March 2003.

231

PUBLICATION LIST

Invited Seminars
3 Adriano Cavalcanti, “Computational Nanomechatronics for Nanorobots in Medicine”, Special

Seminar, Department of Bioengineering, Rice University, Houston TX, USA, April 2005.
2 Adriano Cavalcanti, “Nanorobotics: Virtual Environments and Control Techniques”, Seminary

on Computer Science, Computational Laboratory, Swiss Federal Institute of Technology,
Zurich, Switzerland, May 2003.

1 Adriano Cavalcanti, “Autonomous Nanorobotic Control for Competitive Molecular System
Design”, Seminary in Dynamics, Department of Mechanical Engineering, Darmstadt University
of Technology, Darmstadt, Germany, May 2002.

Invited Interviews/Article
20 Nanorobot for Brain Aneurysm, Emerging Technology Trends, Chris Jablonski, ZDNet, March

2009.
19 Nanorobots to improve health care, Roland Piquepaille’s Technology Trends, May 2008.
18 Software Provides Peek into the Body – and the Future, Special Feature: Emerging

Technologies, Medical Product Manufacturing News, Canon Communications LLC, Vol. 12,
no. 2, pp. 22-23, March 2008.

17 Nanorobot Manufacturing for Medicine, Advanced Manufacturing Technology, Technical
Insights, Frost & Sullivan, January 2008.

16 Researchers Eye Software for Nanorobots, Featured Articles, NanoScienceWorks.Org, Taylor &
Francis Group, January 2008.

15 Nanorobots for drug delivery?, Emerging Technology Trends, Roland Piquepaille, ZDNet,
December 2007.

14 Virtual 3D nanorobots could lead to real cancer-fighting technology, Science Physics Tech
Nano News, PhysOrg, December 2007.

13 Nanorobot for Drug Delivery and Diagnosis, Lab Talk, Nanotechweb, IOP, December 2007.
12 Medical Nanorobotics for Diabetes, Nanotechnology Interviews, The International

Nanotechnology Business Directory, NanoVIP, January 2007.
11 Manufacturing Technology for Medical Nanorobots, News Journal, APNF Asia Pacific

Nanotechnology Forum, Vol. 6, n. 1, January 2007.
10 Nanorobots for Cardiology, NanoScience Today, November 2006.
9 Developments on Nanorobots with System on Chip May Advance Cancer Diagnosis, Cancer

Treatment, Health Care News Articles, eMaxHealth, October 2006.
8 Medical Nanorobotics Feasibility, Interviews, Your Gateway to Everything Nanotech,

Nanotechnology Now, November 2005.
7 Nanorobot pioneer reveals status of simulator, stem cell work, Views on Nanotechnology,

NanoDelta, February 2005.
6 New Nanorobotic Ideas, Big Things Happen in Small Places, Nanotechnology News Network,

October 2004.
5 Nanorobot pioneer reveals status of simulator, stem cell work, The Global Nanobiotechnology

Intelligence Source, NanoBiotech News, NHI Publications, Vol. 2, n. 36, pp. 4-5, September
2004.

4 Nanorobotics, NanoScience Today, September 2004.
3 Nanorobots Inside our Bodies?, Roland Piquepaille’s Technology Trends, August 2004.
2 Robots in the Body, Genome News Network, August 2004.
1 Nanorobotics Control, Infosatellite News, July 2004.

232

Citation List

CITATION LIST

Citations
List of works with citations to Adriano Cavalcanti's research:
82 A. O. Tarakanov, L. B. Goncharova, Y. A. Tarakanov, “Carbon nanotubes towards medicinal

biochips”, Nanomedicine & Nanobiotechnology, Wiley Interdisciplinary Reviews, Vol. 2, no. 1,
pp. 1-10, November 2009.
http://www3.interscience.wiley.com/journal/122684364/abstract

81 Z. Chen, L. Zhang, Y. Sun, J. Hu, D. Wang, “980-nm Laser-Driven Photovoltaic Cells Based on
Rare-Earth Up-Converting Phosphors for Biomedical Applications”, Advanced Functional
Materials, Wiley InterScience, Vol. 19, no. 23, pp. 3815-3820, November 2009.
http://www3.interscience.wiley.com/journal/122671477/abstract

80 S. Bewick, R. Yang, M. Zhang, “Complex mathematical models of biology at the nanoscale”,
Nanomedicine & Nanobiotechnology, Wiley Interdisciplinary Reviews, Vol. 1, no. 6, pp. 650-
659, October 2009. http://www3.interscience.wiley.com/journal/122615953/abstract

79 R. Torrecillas, J. S. Moya, L. A. Díaz, J. F. Bartolomé, A. Fernández, S. Lopez-Este,
“Nanotechnology in joint replacement”, Nanomedicine & Nanobiotechnology, Wiley
Interdisciplinary Reviews, Vol 1, no. 5, pp. 540-552, September 2009.
http://au.wiley.com/WileyCDA/Section/id-397791.html

78 J. S. Murday, R. W. Siegel, J. Stein, J. F. Wright, “Translational nanomedicine: status
assessment and opportunities”, Nanomedicine: Nanotechnology, Biology and Medicine,
Elsevier, Vol. 5, no. 3, pp. 251-273, September 2009.
http://www.nanomedjournal.com/article/S1549-9634%2809%2900106-3/abstract

77 M. Shahini, W. W. Melek, J. T. W. Yeow, “Micro-force compensation in automated micro-
object positioning using adaptive neural networks”, Smart Materials & Structures, IOP, Vol. 18,
no. 9, 095023 (14pp), September 2009. http://www.iop.org/EJ/abstract/0964-
1726/18/9/095023

76 S. H. Kang, M. S. Islam, “Biosensors on Array Chip by Dual-color Total Internal Reflection
Fluorescence Microscopy”, Biochip Journal, Vol. 3, no. 2, pp. 97-104, June 2009.
http://biochips.or.kr/website/04journal04.php?code=in_journal&mode=vie&number=95

75 C. Stephanidis, “The Universal Access Handbook”, CRC Press, Taylor & Francis, June 2009.
http://www.amazon.com/gp/product/0805862803

74 M. Eshaghian-Wilner, “Bio-Inspired and Nanoscale Integrated Computing”, Wiley, June 2009.
http://www.amazon.com/Bio-Inspired-Nanoscale-Integrated-Computing-Nature-
Inspired/dp/0470116595

233

http://www.amazon.com/Bio-Inspired-Nanoscale-Integrated-Computing-Nature-Inspired/dp/0470116595
http://www.amazon.com/Bio-Inspired-Nanoscale-Integrated-Computing-Nature-Inspired/dp/0470116595
http://www.amazon.com/gp/product/0805862803
http://biochips.or.kr/website/04journal04.php?code=in_journal&mode=vie&number=95
http://www.iop.org/EJ/abstract/0964-1726/18/9/095023
http://www.iop.org/EJ/abstract/0964-1726/18/9/095023
http://www.nanomedjournal.com/article/S1549-9634(09)00106-3/abstract
http://au.wiley.com/WileyCDA/Section/id-397791.html
http://www3.interscience.wiley.com/journal/122615953/abstract
http://www3.interscience.wiley.com/journal/122671477/abstract
http://www3.interscience.wiley.com/journal/122684364/abstract

CITATION LIST

73 S. V. Dorozhkin, “Calcium orthophosphate-based biocomposites and hybrid biomaterials”,
Journal of Material Science, Springer, Vol. 44, no. 9, May 2009.
http://www.springerlink.com/content/l0g172523566qv74

72 M. Hamdi, A. Ferreira, “Multiscale Design and Modeling of Protein-based Nanomechanisms for
Nanorobotics”, International Journal of Robotics Research, Vol. 28, no. 4, pp. 436-449, April
2009. http://ijr.sagepub.com/cgi/content/abstract/28/4/436

71 G. S. Nitschke, “Neuro-Evolution for Emergent Specialization in Collective Behavior Systems”,
PhD Thesis, Doctoral Theses Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands,
March 2009. http://dare.ubvu.vu.nl//handle/1871/13153

70 O. Elhage, N. Hegarty, “Robotic Technology”, Urologic Robotic Surgery in Clinical Practice,
Springer London, March 2009. http://www.springerlink.com/content/k61860wl3n241583

69 R. Majumdar, J. S. Rathore, N. N. Sharma, “Simulation of Swimming Nanorobots in Biological
Fluids”, IEEE ICARA Int'l Conf. on Autonomous Robots and Agents, Wellington, New Zealand,
pp. 79-82, February 2009. http://www.ieeexplore.ieee.org/xpl/freeabs_all.jsp?
isnumber=4803907&arnumber=4803912

68 B. Fisher, “Biological Research in the Evolution of Cancer Surgery: A Personal Perspective”,
Cancer Research, American Association for Cancer Research, Vol. 68, no. 24, pp. 10007-
10020, December 2008. http://cancerres.aacrjournals.org/cgi/content/abstract/68/24/10007

67 G. Pistoia, “Battery Operated Devices and Systems: From Portable Electronics to Industrial
Products”, Elsevier, December 2008. http://www.amazon.com/Battery-Operated-Devices-
Systems-Electronics/dp/0444532145

66 C. Hill, A. Amodeo, J. V. Joseph, H. R. H. Patel, “Nano- and microrobotics: how far is the
reality?”, Expert Review of Anticancer Therapy, Vol. 8, no. 12, pp. 1891-1897 December 2008.
http://www.expert-reviews.com /doi/abs/10.1586/14737140.8.12.1891

65 K.H.S. Hla, Y. Choi, J. S. Park, “Mobility Enhancement in Nanorobots by Using Particle Swarm
Optimization Algorithm”, IEEE Int'l Conf. on Computational Intelligence and Security, Suzhou,
China, pp. 35-40, December 2008. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?
arnumber=4724610

64 L. Žlajpah, “Simulation in robotics”, Mathematics and Computers in Simulation, Vol. 79 , no. 4,
pp. 879-897, December 2008.
http://linkinghub.elsevier.com/retrieve/pii/S0378475408001183

63 K. Haymar S. Hla, Y. S. Choi, J. S. Park, “Obstacle Avoidance Algorithm for Collective
Movement in Nanorobots”, IJCSNS International Journal of Computer Science and Network
Security, Vol. 8, no.11, pp. 302-309, November 2008.
http://search.ijcsns.org/02_search/02_search_03.php?number=200811043

62 N. Solomon, “System, methods and apparatuses for integrated circuits for nanorobotics”, US
Patent 20080244500, October 2008.
http://www.freepatentsonline.com/y2008/0244500.html

61 N. Solomon, “System and methods for collective nanorobotics for medical applications”, US
Patent 20080241264, October 2008.
http://www.freepatentsonline.com/y2008/0241264.html

60 N. Solomon, “System and methods for collective nanorobotics for electronics applications”, US
Patent 2008024330, October 2008. http://www.freepatentsonline.com/y2008/0243303.html

59 C. A. Ouzounis, “The Emergence of Bioinformatics: Historical Perspective, Quick Overview
and Future Trends”, Bioinformatics in Cancer and Cancer Therapy, Humana Press, October
2008. http://www.springerlink.com/content/k53r31532155020j

58 C. A. Piña-García, E.-J. Rechy-Ramírez, V. A. García-Vega,, “Comparing Three Simulated
Strategies for Cancer Monitoring with Nanorobots”, Lecture Notes in Computer Science,
Springer Berlin, October 2008. http://www.springerlink.com/content/l70703751p71m752

234

http://www.springerlink.com/content/l70703751p71m752
http://www.springerlink.com/content/k53r31532155020j
http://www.freepatentsonline.com/y2008/0243303.html
http://www.freepatentsonline.com/y2008/0241264.html
http://www.freepatentsonline.com/y2008/0244500.html
http://search.ijcsns.org/02_search/02_search_03.php?number=200811043
http://linkinghub.elsevier.com/retrieve/pii/S0378475408001183
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4724610
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4724610
http://www.expert-reviews.com/doi/abs/10.1586/14737140.8.12.1891
http://www.expert-reviews.com/doi/abs/10.1586/14737140.8.12.1891
http://www.amazon.com/Battery-Operated-Devices-Systems-Electronics/dp/0444532145
http://www.amazon.com/Battery-Operated-Devices-Systems-Electronics/dp/0444532145
http://cancerres.aacrjournals.org/cgi/content/abstract/68/24/10007
http://www.ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=4803907&arnumber=4803912
http://www.ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=4803907&arnumber=4803912
http://www.springerlink.com/content/k61860wl3n241583
http://dare.ubvu.vu.nl//handle/1871/13153
http://ijr.sagepub.com/cgi/content/abstract/28/4/436
http://www.springerlink.com/content/l0g172523566qv74

CITATION LIST

57 T. L. Dawson, “Nanomaterials for textile processing and photonic applications”, Coloration
Technology, Wiley-Blackwell, Vol. 124, no. 5, pp. 261-272, October 2008.
http://www.ingentaconnect.com/content/bpl/cte/2008/00000124/00000005/art00001

56 K. A. Eaton, P. A. Reynolds, S. K. Grayden , N. H. F. Wilson, “A vision of dental education in
the third millennium”, British Dental Journal, Nature, Vol. 205, no. 5, pp. 261-271, September
2008.
http://www.nature.com/bdj/journal/v205/n5/abs/sj.bdj.2008.736.html

55 B. Nerlich, “Powered by Imagination: Nanobots at the Science Photo Library”, Science as
Culture, Taylor & Francis, Vol. 17, no. 3, pp. 269-292, September 2008.
http://www.informaworld.com/smpp/content~db=all?
content=10.1080/09505430802280743

54 F. Walsh, S. Balasubramaniam, D. Botvich, T. Suda, T. Nakano, S. F. Bush, M. Ó Foghlú,
“Hybrid DNA and Enzymatic based Computation for Address Encoding, Link Switching and
Error Correction in Molecular Communication”, ACM Nano-Net Int'l Conf. on Nano-Networks,
Boston, USA, September 2008.
http://www.ece.gatech.edu/research/labs/bwn/nanos/papers/HybridDNA.pdf

53 K.H.S. Hla, Y. Choi, J. S. Park, “Self Organized Mobility in Nanosensor Network Based on
Particle Swarm Optimization and Coverage Criteria”, IEEE Int'l Conf. on Networked
Computing and Advanced Information Management, Gyeongju, Korea, pp. 636-641, September
2008. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4624083

52 H. Ahari, F. Dastmalchi, Y. Ghezelloo, R. Paykan, M. Fotovat, J. Rahmannya, “The application
of silver nano-particles to the reduction of bacterial contamination in poultry and animal
production”, Food Manufacturing Efficiency, IFIS, Vol. 2, no. 1, pp. 49-53, August 2008.
http://www.atypon-link.com/IFIS/doi/abs/10.1616/1750-2683.0028

51 I. F. Akyildiz, F. Brunetti, C. Blázquez, “Nanonetworks: A new communication paradigm”,
Computer Networks, Vol. 52, no. 12, pp. 2260-2279, August 2008.
http://linkinghub.elsevier.com/retrieve/pii/S1389128608001151

50 A. L. Despotuli, A. V. Andreeva, “Prospects of Deep-Sub-Voltage Nanoelectronics and Related
Technologies”, Nanoelektronika, no. 2, pp. 1-15, August 2008.
http://www.nanometer.ru/2008/02/08/nanoelektronika_5900/PROP_FILE_files_2/subvo
lt.pdf

49 B. L. Jennings-Spring, “Methods, treatments, and compositions for modulating Hedgehog
pathways”, US Patent 20080138379, June 2008.
http://www.freepatentsonline.com/y2008/0138379.html

48 J. B. Elder, D. J. Hoh, B. C. Oh, A. C. Heller, C. Y. Liu, M. L. J. Apuzzo, “The future of
cerebral surgery: A kaleidoscope of opportunities”, Neurosurgery, Vol. 62, no. 6, pp. 1555-
1579, June 2008. http://www.ncbi.nlm.nih.gov/pubmed/18695575

47 B. Layton, “Recent Patents in Bionanotechnologies: Nanolithography,Bionanocomposites, Cell-
Based Computing and Entropy Production”, Recent Patents on Nanotechnology, Vol. 2, no. 2,
pp. 72-83(12), June 2008.
http://www.ingentaconnect.com/content/ben/nanotec/2008/00000002/00000002/art0000
1

46 J. Jeon, J.-B. Lee, M.J. Kim, “A 20 μm movable micro mobile”, Technical Proceedings of the
2008 NSTI Nanotechnology Conference and Trade Show, NSTI-Nanotech, Nanotechnology
2008, Vol. 3, pp. 190-193, June 2008.
http://www.nsti.org/Nanotech2008/showabstract.html?absno=1426

45 N. Wickramasinghe, E. Geisler, “Encyclopedia of Healthcare Information Systems”, June 2008.
http://www.amazon.com/Ency clopedia-Healthcare-Information-Systems-
Wickramasinghe/dp/1599048892

235

http://www.amazon.com/Encyclopedia-Healthcare-Information-Systems-Wickramasinghe/dp/1599048892
http://www.amazon.com/Encyclopedia-Healthcare-Information-Systems-Wickramasinghe/dp/1599048892
http://www.amazon.com/Encyclopedia-Healthcare-Information-Systems-Wickramasinghe/dp/1599048892
http://www.nsti.org/Nanotech2008/showabstract.html?absno=1426
http://www.ingentaconnect.com/content/ben/nanotec/2008/00000002/00000002/art00001
http://www.ingentaconnect.com/content/ben/nanotec/2008/00000002/00000002/art00001
http://www.ncbi.nlm.nih.gov/pubmed/18695575
http://www.freepatentsonline.com/y2008/0138379.html
http://www.nanometer.ru/2008/02/08/nanoelektronika_5900/PROP_FILE_files_2/subvolt.pdf
http://www.nanometer.ru/2008/02/08/nanoelektronika_5900/PROP_FILE_files_2/subvolt.pdf
http://linkinghub.elsevier.com/retrieve/pii/S1389128608001151
http://www.atypon-link.com/IFIS/doi/abs/10.1616/1750-2683.0028
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4624083
http://www.ece.gatech.edu/research/labs/bwn/nanos/papers/HybridDNA.pdf
http://www.informaworld.com/smpp/content~db=all?content=10.1080/09505430802280743
http://www.informaworld.com/smpp/content~db=all?content=10.1080/09505430802280743
http://www.informaworld.com/smpp/content~db=all?content=10.1080/09505430802280743
http://www.nature.com/bdj/journal/v205/n5/abs/sj.bdj.2008.736.html
http://www.ingentaconnect.com/content/bpl/cte/2008/00000124/00000005/art00001

CITATION LIST

44 N. Solomon, “Nanorobotic System”, World International Patent WO/2008/063473, May 2008.
http://www.wipo.int/pctdb/en/wo.jsp?WO=2008063473

43 J. S. Murday, S. O. Moldin, “Re-Engineering Basic and Clinical Research to Catalyze
Translational Nanoscience”, NSF Report, University of Southern California, March 2008.
http://www.nsf.gov/crssprgm/nano/reports/reengineering_basic_and_clinical_4_9_09.pd
f

42 N. N. Sharma, R. K. Mittal, “Nanorobot Movement: Challenges and Biologically inspired
solutions”, International Journal on Smart Sensing and Intelligent Systems, Vol. 1, no. 1, March
2008. http://www.s2is.org/Issues/v1/n1/papers/paper6.pdf

41 J. B. Elder, C. Y. Liu, M. L. J. Apuzzo, “Neurosurgery in The Realm of 10-9, Part 2:
Applications of Nanotechnology to Neurosurgery-Present and Future”, Neurosurgery, Vol. 62,
no. 2, pp. 269-285, February 2008. http://www.neurosurgery-
online.com/pt/re/neurosurg/abstract.00006123-200802000-00009.htm

40 R. J. Andrews, “Neuroprotection at the Nanolevel - Part I Introduction to Nanoneurosurgery”,
Annals of the New York Academy of Sciences, Vol. 1122, pp. 169-184, Dec. 2007.
http://www.blackwell-synergy.com/doi/abs/10.1196/annals.1403.012

39 S. Das, A. J. Gates, H. A. Abdu, G. S. Rose, C. A. Picconatto, J. C. Ellenbogen, “Designs for
Ultra-Tiny, Special-Purpose Nanoelectronic Circuits”, IEEE Transactions on Circuits and
Systems I, Vol. 54, no. 11, pp. 2528-2540, November 2007.
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4383238

38 Tad Hogg, “Distributed Control of Microscopic Robots in Biomedical Applications”, Advances
in Applied Self-organizing Systems, Springer, part II, pp. 147-174, November 2007.
http://www.springerlink.com/content/w50k3338v0417130

37 V. Shanthi, S. Musunuri, “Prospects for Medical Robots”, Journal of Nanotechnology Online,
Azonano, Vol. 3, pp. 1-9, November 2007. http://www.azonano.com/Details.asp?
ArticleID=2035

36 C. Chibaya, S. Bangay, “A probabilistic movement model for shortest path formation in virtual
antlike agents”, ACM Int'l Conf. of the South African institute of computer scientists and
information technologists, Sunshine Coast, South Africa, Vol. 226, pp. 9-18, October 2007.
http://portal.acm.org/citation.cfm?id=1292491.1292493

35 J. Goicoechea, C. Ruiz Zamarreño, I.R. Matias and F.J. Arregui, “Minimizing the
photobleaching of self-assembled multilayers for sensor applications”, Sensors and Actuators B:
Chemical, Elsevier, Vol. 126, no. 1, pp. 41-47, September 2007.
http://linkinghub.elsevier.com/retrieve/pii/S0925400506007209

34 M.O. Killijian, N. Rivière, M. Roy, “Experimental Evaluation of Resilience for Ubiquitous
Mobile Systems”, Workshop on Ubiquitous Systems Evaluation, Innsbruck, Austria, pp. 283-
287, September 2007. http://www.laas.fr/~mkilliji/publications.html

33 H. Heusala, “Technology Trends and Design Aspects of Data Processing Cores of Future Small
Smart Objects”, Int'l Workshop on Design and Integration Principles for Smart Objects,
Innsbruck, Austria, September 2007. http://www.nanorobotdesign.com/references/DIPSO-
Paper4.pdf

32 E. Brickner, “The Populating Problem A Study In Multi-Nano-Robotics”, Master Thesis,
Computer Science Department, Technion Israel Institute of Technology, September 2007.
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2007/ MSC/MSC-2007-
09.pdf

31 H. Heusala, “Technology Trends and Design Aspects of Data Processing Cores of Future Small
Smart Objects”, Int’l Workshop on Design and Integration Principles for Smart Objects,
Innsbruck, Austria, September 2007.
http://eis.comp.lancs.ac.uk/workshops/dipso/dipso2007/pdf/DIPSO-Paper4.pdf

236

http://eis.comp.lancs.ac.uk/workshops/dipso/dipso2007/pdf/DIPSO-Paper4.pdf
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2007/MSC/MSC-2007-09.pdf
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2007/MSC/MSC-2007-09.pdf
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2007/MSC/MSC-2007-09.pdf
http://www.nanorobotdesign.com/references/DIPSO-Paper4.pdf
http://www.nanorobotdesign.com/references/DIPSO-Paper4.pdf
http://www.laas.fr/~mkilliji/publications.html
http://linkinghub.elsevier.com/retrieve/pii/S0925400506007209
http://portal.acm.org/citation.cfm?id=1292491.1292493
http://www.azonano.com/Details.asp?ArticleID=2035
http://www.azonano.com/Details.asp?ArticleID=2035
http://www.springerlink.com/content/w50k3338v0417130
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4383238
http://www.blackwell-synergy.com/doi/abs/10.1196/annals.1403.012
http://www.neurosurgery-online.com/pt/re/neurosurg/abstract.00006123-200802000-00009.htm
http://www.neurosurgery-online.com/pt/re/neurosurg/abstract.00006123-200802000-00009.htm
http://www.neurosurgery-online.com/pt/re/neurosurg/abstract.00006123-200802000-00009.htm
http://www.s2is.org/Issues/v1/n1/papers/paper6.pdf
http://www.nsf.gov/crssprgm/nano/reports/reengineering_basic_and_clinical_4_9_09.pdf
http://www.nsf.gov/crssprgm/nano/reports/reengineering_basic_and_clinical_4_9_09.pdf
http://www.wipo.int/pctdb/en/wo.jsp?WO=2008063473

CITATION LIST

30 M. Shahini, W. W. Melek, J. T. W. Yeow, “A Neural Network-based Learning Controller for
Micro-sized Object Micromanipulation”, IEEE IJCNN 2007 Int'l Conf. on Neural Networks,
Orlando FL, USA, pp. 3035-3040, August 2007. http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=4371444

29 N. Wickramasinghe, S. Choudhary, E. Geisler, “Bionanotechnology: its applications and
relevance to healthcare”, International Journal of Biomedical Engineering and Technology,
Inderscience, Vol. 1, no. 1, pp. 41-58, June 2007.
http://www.ingentaconnect.com/content/ind/ijbet/2007/00000001/00000001/art00003

28 X. Yuan, S. X. Yang, “Multirobot-Based Nanoassembly Planning with Automated Path
Generation”, IEEE/ASME Transactions on Mechatronics, Vol. 12, no 3, pp. 352-356, June
2007. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4244399

27 P. Caamaño, A. Prieto, J. A. Becerra, R. Duro, F. Bellas, “Evolutionary Tool for the Incremental
Design of Controllers for Collective Behaviors”, Lecture Notes in Computer Science, Springer,
Vol. 4527, pp. 587-596, June 2007.
http://www.springerlink.com/content/r2ph304169153734

26 D. Murphy, B. Challacombe, T. Nedas, O. Elhage, K. Althoefer, L. Seneviratne, P. Dasgupta,
“Equipment and technology in robotics”, Arch. Esp. Urol., Vol. 60, no. 4, pp. 349-354, May
2007. http://www.ncbi.nlm.nih.gov/pubmed/17626526

25 J.Q. Liu, K. Shimohara, “Molecular Computation and Evolutionary Wetware: A Cutting-Edge
Technology for Artificial Life and Nanobiotechnologies”, IEEE Transactions on Systems, Man
and Cybernetics Part C-Applications and Reviews, Vol. 37, no. 3, pp. 325-336, May 2007.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4154945

24 T. Hogg, P. J. Kuekes, “Mobile microscopic sensors for high resolution in vivo diagnostics”,
Nanomedicine: Nanotechnology, Biology and Medicine, Elsevier, Vol. 2, no. 4, pp. 239-247
December 2006.
http://www.nanomedjournal.com/article/ PIIS1549963406001444/abstract

23 S. Hede, N. Huilgol, “Nano: The new nemesis of cancer”, Journal of Cancer Research and
Therapeutics, Vol. 2, no. 4, pp. 186-195, December 2006.
http://www.cancerjournal.net/article.asp?issn=0973-
1482;year=2006;volume=2;issue=4;spage=186;epage=195;aulast=Hede

22 J. R. Vaughn, “Over the Horizon: Potential Impact of Emerging Trends in Information and
Communication Technology on Disability Policy and Practice”, National Council on Disability,
Washington DC, December 2006.
http://www.ncd.gov/newsroom/publications/2006/pdf/emerging_trends.pdf

21 T. Hogg, “Coordinating Microscopic Robots in Viscous Fluids”, Autonomous Agents and Multi-
Agent Systems, Springer, Vol. 14, no. 3, pp. 271-305, Jun. 2007.
http://www.hpl.hp.com/research/idl/papers/microSensors

20 D. Murphy, B. Challacombe, M. S. Khan, P. Dasgupta, “Robotic Technology in Urology”,
Postgraduate Medical Journal, BMJ, Vol. 82, n. 973, pp. 743-747, November 2006.
http://pmj.bmj.com/cgi/content/abstract/82/973/743

19 P. Couvreur, C. Vauthier, “Nanotechnology: Intelligent design to treat complex disease”,
Pharmaceutical Research, Vol. 23, no. 7, pp. 1417-1450 July 2006.
http://nano.cancer.gov/resource_center/sci_biblio_enabled-therapeutics_abstracts.asp

18 S. P. Leary, C. Y. Liu, M. L. I. Apuzzo, “Toward the emergence of nanoneurosurgery: Part III -
Nanomedicine: Targeted nanotherapy, nanosurgery, and progress toward the realization of
nanoneurosurgery”, Neurosurgery, Vol. 58, no. 6, pp. 1009-1025 June 2006.
http://www.neurosurgery-online.com/pt/re/neurosurg/abstract.00006123-200606000-
00001.htm

237

http://www.neurosurgery-online.com/pt/re/neurosurg/abstract.00006123-200606000-00001.htm
http://www.neurosurgery-online.com/pt/re/neurosurg/abstract.00006123-200606000-00001.htm
http://nano.cancer.gov/resource_center/sci_biblio_enabled-therapeutics_abstracts.asp
http://pmj.bmj.com/cgi/content/abstract/82/973/743
http://www.hpl.hp.com/research/idl/papers/microSensors
http://www.ncd.gov/newsroom/publications/2006/pdf/emerging_trends.pdf
http://www.cancerjournal.net/article.asp?issn=0973-1482;year=2006;volume=2;issue=4;spage=186;epage=195;aulast=Hede
http://www.cancerjournal.net/article.asp?issn=0973-1482;year=2006;volume=2;issue=4;spage=186;epage=195;aulast=Hede
http://www.nanomedjournal.com/article/PIIS1549963406001444/abstract
http://www.nanomedjournal.com/article/PIIS1549963406001444/abstract
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4154945
http://www.ncbi.nlm.nih.gov/pubmed/17626526
http://www.springerlink.com/content/r2ph304169153734
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4244399
http://www.ingentaconnect.com/content/ind/ijbet/2007/00000001/00000001/art00003
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4371444
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4371444
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4371444

CITATION LIST

17 A. S. G. Curtis, M. Dalby, N. Gadegaard, “Cell signaling arising from nanotopography:
implications for nanomedical devices”, Nanomedicine Journal, Future Medicine, Vol. 1, no. 1,
pp. 67-72, June 2006. http://www.futuremedicine.com/doi/abs/10.2217/174 35889.1.1.67

16 E.-Y. Kwon, Y.-T. Kim, D.-E. Kim, “Study on the Elastic Characteristics of Living Cells using
Atomic Force Microscope Indentation Technique”, KSTLE International Journal, Vol. 7, no. 1,
pp. 10-13, June 2006. http://www.dbpia.co.kr/view/ar_view.asp?arid=757571

15 J. D. Bronzino, “Tissue Engineering and Artificial Organs, The Biomedical Engineering
Handbook”, Taylor & Francis CRC Press, May 2006. http://www.amazon.com/Tissue-
Engineering-Artificial-Biomedical-Handbook/dp/0849321239

14 G. M. Patel, G. C. Patel, R. B. Patel, J. K. Patel, M. Patel, “Nanorobot: A versatile tool in
nanomedicine”, Journal of Drug Targeting, Vol. 14, no. 2, pp. 63-67, February 2006.
http://www.ncbi.nlm.nih.gov/pubmed/16608733

13 H.-W. Jiang, S.-G. Wang , W. Xu, Z.-Z. Zhang, L. He, “Research and progress in bio-nano-
robot”, Robot, Vol. 27, no. 6, pp. 569-574. Nov-December 2005.
http://md1.csa.com/partners/viewrecord.php?
requester=gs&collection=TRD&recid=2006056126991MT

12 N. A. Weir, D. P. Sierra, J. F. Jones, “A Review of Research in the Field of Nanorobotics”,
Sandia Report, Office of Scientific and Technical Information, US Department of Energy,
October 2005. http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=875622

11 R. J. Narayan, “Pulsed laser deposition of functionally gradient diamond-like carbon-metal
nanocomposites”, Diamond and Related Materials, Elsevier, Vol. 14, no. 8, pp. 1319-1330
August 2005. http://top25.sciencedirect.com/index.php?
cat_id=5&subject_area_id=15&journal_id=09259635

10 H. Jiang, S. Wang, W. Xu, Z. Zhang, L. He, “Construction of medical nanorobot”, IEEE Int'l
Conf. on Robotics and Biomimetics, Hong Kong, China, pp.151-154, July 2005.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1708613

9 A. Cuschieri, “Laparoscopic Surgery: Current Status, Issues and Future Developments”,
Surgeon, Vol. 3, no. 3, pp. 125-138, June 2005.
https://www.thesurgeon.net/site/CMD=ORA/ArticleID=c5e9ca42-b108-4ac4-b74d-
0e01cc0e2adc/1008/default.aspx

8 W. W. Wood, “Nanorobots: A New Paradigm for Hydrogeologic Characterization?”, Ground
Water, Wiley InterScience, Vol. 43, Issue 4, pp. 463, July 2005.
http://www3.interscience.wiley.com/journal/118644114/abstract

7 A. Galstyan, T. Hogg, K. Lerman, “Modeling and Mathematical Analysis of Swarms of
Microscopic Robots”, IEEE Swarm Intelligence Symposium, pp. 201-208, Pasadena CA, USA,
June 2005. http://www.isi.edu/~lerman/ papers/lerman05SIS.pdf

6 I. D. Villar, I. R. Matias, F. J. Arregui, R. O. Claus, “ESA-based in-fiber nanocavity for
hydrogen-peroxide detection”, IEEE Transactions on Nanotechnology, Vol. 4, no. 2, pp. 187-
193 March 2005. http://cat.inist.fr/? aModele=afficheN&cpsidt=16598341

5 A. Ummat, G. Sharma, C. Mavroidis, A. Dubey, “Bio-Nanorobotics: State of the Art and Future
Challenges”, Biomedical Engineering Handbook, Bio-Nano Robotics, CRC Press, March 2005.
http://www.coe.neu.edu/Research/robots/papers/2123.pdf

4 M. Zhang, C. L. Sabharwal, W. M. Tao, T. J. Tarn, N. Xi, G. Li, “Interactive DNA sequence
and structure design for DNA nanoapplications”, IEEE Transactions on Nanobioscience, Vol. 3,
no. 4, pp. 286-292 December 2004. http://www.ncbi.nlm.nih.gov/pubmed/15631140

3 R. J. Narayan, P. N. Kumta, C. Sfeir, D.-H. Lee, D. Olton, D. Choi, “Nanostructured ceramics in
medical devices: Applications and prospects”, JOM, Vol. 56, no. 10, pp. 38-43 October 2004.
http://www.springerlink.com/content/y30717j73442k2ng

238

http://www.springerlink.com/content/y30717j73442k2ng/
http://www.ncbi.nlm.nih.gov/pubmed/15631140
http://www.coe.neu.edu/Research/robots/papers/2123.pdf
http://cat.inist.fr/?aModele=afficheN&cpsidt=16598341
http://cat.inist.fr/?aModele=afficheN&cpsidt=16598341
http://www.isi.edu/~lerman/papers/lerman05SIS.pdf
http://www.isi.edu/~lerman/papers/lerman05SIS.pdf
http://www3.interscience.wiley.com/journal/118644114/abstract
https://www.thesurgeon.net/site/CMD=ORA/ArticleID=c5e9ca42-b108-4ac4-b74d-0e01cc0e2adc/1008/default.aspx
https://www.thesurgeon.net/site/CMD=ORA/ArticleID=c5e9ca42-b108-4ac4-b74d-0e01cc0e2adc/1008/default.aspx
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1708613
http://top25.sciencedirect.com/index.php?cat_id=5&subject_area_id=15&journal_id=09259635
http://top25.sciencedirect.com/index.php?cat_id=5&subject_area_id=15&journal_id=09259635
http://top25.sciencedirect.com/index.php?cat_id=5&subject_area_id=15&journal_id=09259635
http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=875622
http://md1.csa.com/partners/viewrecord.php?requester=gs&collection=TRD&recid=2006056126991MT
http://md1.csa.com/partners/viewrecord.php?requester=gs&collection=TRD&recid=2006056126991MT
http://www.ncbi.nlm.nih.gov/pubmed/16608733
http://www.amazon.com/Tissue-Engineering-Artificial-Biomedical-Handbook/dp/0849321239
http://www.amazon.com/Tissue-Engineering-Artificial-Biomedical-Handbook/dp/0849321239
http://www.amazon.com/Tissue-Engineering-Artificial-Biomedical-Handbook/dp/0849321239
http://www.dbpia.co.kr/view/ar_view.asp?arid=757571
http://www.futuremedicine.com/doi/abs/10.2217/17435889.1.1.67
http://www.futuremedicine.com/doi/abs/10.2217/17435889.1.1.67

CITATION LIST

2 K. E. Drexler, “Nanotechnology: From Feynman to Funding”, Sage Bulletin of Science
Technology and Society, Vol. 24, no. 1, pp. 21-27 February 2004.
http://www.metamodern.com/d/04/00/FeynmanToFunding.pdf

1 W. J. Li, N. Xi, W. K. Fung, T. S. Wong, “Nanorobotics and Nanomanipulation”,
Encyclopedia of Nanoscience and Nanotechnology, American Scientific Publishers,
Vol. 7, no. 15, pp. 351-365, 2004.
http://www.ingentaconnect.com/content/asp/enn/2004/00000007/00000001/art00018

239

http://www.ingentaconnect.com/content/asp/enn/2004/00000007/00000001/art00018
http://www.metamodern.com/d/04/00/FeynmanToFunding.pdf

References

REFERENCES

[1] L. M. Adleman. On Constructing a Molecular Computer. DNA Based Computers, 1995,
http://olymp.wu-wien.ac.at/usr/ai/frisch/local.html .

[2] A.P. Alivisatos, K.P. Johnsson, X.G. Peng, T.E. Wilson, C.J. Loweth, M.P. Brchez, and P.G.
Schultz. Organization of Nanocrystal Molecules Using DNA. Nature, Vol. 382, pp. 609-611,
1996.

[3] J. S. Altman and J. Kien. New models for motor control. Neural Computation, Vol. 1, pp. 173-
183, 1989.

[4] N. Amato and Y. Wu. A randomized roadmap method for path and manipulation planning. In
Proc. of IEEE Int. Conf. Robotics and Automation, pp. 113-120, Minneapolis, MN, 1996.

[5] D. Andre, F. H. Bennett III, and J. R. Koza. Discovery by genetic programming of a cellular
automata rule that is better than any known rule for the majority classification problem. In
Proceedings of the First Annual Conference on Genetic Programming, pp. 3-11. Cambridge, MA:
MIT Press, 1996.

[6] D. Andre, F. H. Bennett III, and J. R. Koza. Evolution of intricate long-distance communication
signals in cellular automata using genetic programming. In Proceedings of the 5th International
Workshop on the Synthesis and Simulation of Living Systems - Artificial Live V, Cambridge, MA:
MIT Press, 1996.

[7] P. J. Angeline, G. M. Saunders, and J. B. Pollack. An evolutionary algorithm that constructs
recurrent neural networks. In IEEE Transactions on Neural Networks, Vol. 5, no. 1, pp. 54-65,
January 1994.

[8] D. M. Antonelli, and J. Y.Ying. Mesoporous Material. In Current Opinion in Colloid and
Interface Science, Vol. 1, pp.523-529, 1996.

[9] F. Arai, A. Kawaji, T. Sugiyama, Y. Onomura, M. Orgawa, and T. Fukuda. 3D
Micromanipulation System under Microscope. In MHS’98 Int. Symp. on Micromechatronics and
Human Science, pp.127-134, 1998.

[10] F. Arai, K. Morishima, T. Kasugai and T. Fukuda. Bio-Micro-Manipulation (New Direction for
Operation Improvement). In Proc. IEEE/RSJ Int. Conf. on Intelligent Robotics and Systems -
IROS, Vol. 3, pp. 1300-1305, 1997.

[11] F. Arai, D. Andou, Y. Nonoda, T. Fukuda, H. Iwata, and K. Itoigawa. Micro endeffector with
micro pyramids and integrated piezoresistive force sensor. In Proc. of the IEEE/RSJ Int. Con. on
Intelligent Robots and Systems, pp. 842-849, 1996.

[12] F. Arai, D. Ando, and T. Fukuda. Micro manipulation based on micro physics: Strategy based
on attractive force reduction and stress measurement. In Proc. of the IEEE Int’l. Conf. on
Robotics and Automation, pp. 236-241, 1995.

[13] R. C. Arkin and J. Diaz. Line-of-Sight Constrained Exploration for Reactive Multiagent Robotic
Teams. In Proc. of Int’l Conference on Autonomous Agents and Multi-Agent Systems, 2001.
www.cc.gatech.edu/ai/robot-lab/online-publications/aamas.pdf .

[14] T. Asano, D. Kirkpatrick, and C. K. Yap. D1-optimal motion for a rode. In Proc. of the 12th

Annual Symposium on Computational Geometry, New York, ACM Press, pp. 252-263, 1996.

240

REFERENCES

[15] K. J. Aström and B. Wittenmark. Adaptive Control. 2nd edition, Addison-Wesley Inc., NY,
1995.

[16] E. M. Atkins. Plan Generation and Hard Real-Time Execution with Application to Safe,
Autonomous Flight. PhD Thesis, Department of Computer Science and Engineering, The
University of Michigan, 1999.

[17] G. S. Attard. Mesoporous Platinum Films from Lyotropic Liquid Crystalline Phases. Science,
Vol.278, pp. 838, 1997.

[18] G. D. Bachand and C. D. Montemagno. Constructing organic/inorganic NEMS devices powered
by biomolecular motors. Biomedical Microdevices, Vol. 2, no. 3, pp. 179-184, 2000.

[19] S. Bandi. Discrete Object Space Methods for Computer Animation. PhD thesis, Swiss Federal
Institute of Technology, Lausanne, Switzerland, 1998.

[20] D. Bar-On, D. Gershon, A. Israeli, and G. Zuniga. TRACK II: A multi-processor robot
controller. In Proc. CompEuro Int. Conf. on Computers in Design, Manufacturing, and
Production, pp. 86-93, Prix-Erry, France, May 1993.

[21] D. Braha, Y. Bar-Yam. The Statistical Mechanics of Complex Product Development: Empirical
and Analytical Results. Management Science, Vol. 53, no. 7, pp. 1127-1145. July 2007.

[22] D. Baraff. Fast contact force computation for nonpenetrating rigid bodies. In ACM SIGGRAPH
Computer Graphics Proceedings, Annual Conf. Series, pp. 23-34, 1994.

[23] D. Barraf. Dynamic Simulation of Non-Penetrating Rigid Bodies. PhD Thesis, Department of
Computer Science, Cornell University, Ithaca, NY, 1992.

[24] D. Baraff. Curved surfaces and coherence for non-penetrating rigid body simulation. ACM
Computer Graphics, Vol. 24, no. 4, pp. 19-28, 1990.

[25] D. Baraff. Analytical methods for dynamic simulation of non-penetrating rigid bodies. In ACM
SIGGRAPH Computer Graphics Proceedings, Vol. 23, pp. 223-232, 1989.

[26] J. Barraquand, L. E. Kavraki, J. C. Latombe, T. Y. Li, R. Motwani, and P. Raghavan. A random
sampling scheme for path planning. In Int. J. of Robotics Research, Vol. 16, no. 6, pp. 759-774,
1997.

[27] J. Barraquand, B. Langlois, and J. C. Latombe. Numerical potential field techniques for robot
path planning. In IEEE Trans. Syst., Man, Cybern., Vol. 22, no. 2, pp. 224-241, 1992.

[28] J. Barraquand and J. C. Latombe. Robot motion planning: A distributed representation approach.
In Int. J. of Robotics research, Vol. 10, no. 6, pp. 628-649, December, 1990.

[29] R. Barzel and A. Barr. A modelling system based on dynamic constraints. ACM Computer
Graphics, Vol. 22, no. 4, pp. 31-39, 1988.

[30] T. Basar and P. R. Kumar. On worst case design strategies. Comput. Math. Applic., Vol. 13, no.
(1-3), pp. 239-245,1987.

[31] T. Basar and G. J. Olsder. Dynamic Noncooperative Game Theory. Academic Press, London,
1982.

[32] U. Bässler. The walking-(and searching-) pattern generator of stick insects, a modular system
composed of reflex chains and edogenous oscillators. In Biological Cybernetics, Vol. 69,
pp.305-317, 1993.

[33] K. Basye, T. Dean, J. Kirman, and M. Lejter. A decision-theoretic approach to planning,
perception, and control. IEEE Expert, Vol. 7, no. 4, pp. 58-65, August 1992.

[34] C. Baur and A. Bugaciv. Nanoparticle manipulation by mechanical pushing: Underlying
phenomena and real-time monitoring. Nanotechnology, Vol. 9, pp. 360-364, 1998.

[35] R. Beckers, O.E. Holland, and J.L. Deneubourg. From local actions to global tasks: Stigmergy
and collective robotics. In Proc. of the Fourth International Workshop on the Synthesis and
Simulation of Living Systems Artificial Life IV, pp. 181-189, 1994.

[36] R. D. Beer, H. J. Chiel, R. D. Quinn, K. S. Espenchied, and Patrick Larsson. A distributed neural
network architecture for hexapod robot locomotion. Neural Computation, Vol. 4, pp. 356-365,
1992.

[37] R. D. Beer, H. J. Chiel, and L. S. Sterling. An artificial insect. American Scientist, Vol. 79,
pp.444-452, 1991.

[38] R. D. Beer. Intelligent as Adaptive Behaviour: An Experiment in Computational Neuroethology.
Academic Press, 1990.

241

REFERENCES

[39] H. C. Berg. Dynamic properties of bacterial flagellar motors. Nature, Vol. 249, no. 452, pp. 77-
79, May 1974.

[40] G. Binnig. Atomic Force Microscope. In Phys. Rev. Letts., Vol. 56, no. 9, pp. 930-933, 1986.
[41] G. Binnig, H. Rohrer, C. Gerber, and E. Weibel. Surface Studies by Scanning Tunneling

Microscopy, In Phys. Rev. Letts., Vol. 49, no. 1, pp. 57-61, 1982.
[42] K. F. Bohringer, R. S. Fearing, and K. Y. Goldberg. Parallel microassembly. In Workshop on

Precision Manipulation at Micro and Nano Scales, IEEE Int. Conf. on Robotics and
Automation, pp. 110-135, 1998.

[43] V. Boor, M. Overmars, and A. F. van der Stappen. The gaussian sampling strategy for
probabilistic roadmap planners. In Proc. of IEEE Int. Conf. Robotics and Automation, Detroit,
MI, 1999.

[44] R. Boulic, R. Mas, and D. Thalmann. Complex character positioning based on a compatible flow
model of multiple supports. IEEE Transactions on Visualization and Computer Graphics, pp.
245-261, July-September 1997.

[45] W. Bouma and Jr. G. Vanecek. Collision detection and Analysis in a physically based
simulation. In Proceeding of the Second Eurographics Workshop on Animation and Simulation,
Vienna, Austria, 1992.

[46] P. Bourgine. Autonomy, abduction, adaption. In Proc. of Int. Conf. on Computer Animation’94
IEEE Computer Society Press, pp. 104-111, Los Alamitos, CA, 1994.

[47] R. A. Brooks. Intelligence without representation. Artificial Intelligence, 47, 139-159, 1991.
[48] R. A. Brooks. Intelligence without reason. In Mylopoulos, J., & Reiter, R. (Eds.), Proceedings

of the 12th International Joint Conference on Artificial Intelligence, San Mateo, CA, Morgarn
Kaufmann, 1991.

[49] R. A. Brooks. Elephants don’t play chess. Robotics and Autonomous Systems, 6, 3-15, 1990.
[50] R. A. Brooks. A robot that walks; emergent behaviors from a carefully evolved network. Neural

Computing, Vol. 1, pp. 253-262, 1989.
[51] R. A. Brooks. A robust layered control system for a mobile robot. IEEE Journal of Robotics and

Automation, Vol. 2, no. 1, pp. 14-23, March 1986.
[52] R. A. Brooks. Solving the find-path problem by good representation of free space. IEEE Trans.

Syst., Man, Cybern., Vol. 13, no. 3, pp. 190-197, 1983.
[53] R. C. Brost and A. D. Christiansen. Probabilistic analysis of manipulation tasks: A research

agenda. In IEEE Int. Conf. Robot. & Autom., Vol. 3, pp. 549-5556, 1993.
[54] L. Brus. Semiconductor Colloids: Individual Nanocrystals, Opals and Porous Silicon. Current

Opinion in Colloid and Interface Science, Vol.1, pp.197-201, 1996.
[55] D. P. Brutzman, Y. Kanayama and M. J. Zyda. Integrated Simulation for Rapid Development of

Autonomous Underwater Vehicles. IEEE Autonomous Underwater Vehicle Conference, IEEE
Oceanic Engineering Society, Washington DC, pp. 3-10, June 1992.

[56] A. E. Bryson and Y.C. Ho. Applied Optimal Control, Hemisphere Publishing Corp., New York,
NY, 1975.

[57] R. B. Byrnes, D. L. MacPherson, S. H. Kwak, M. L. Nelson, and R. B. McGhee. An
Experimental Comparison of Hierarchical and Subsumption Software Architectures for Control
of an Autonomous Underwater Vehicles. IEEE Oceanic Engineering Society Symposium on
Autonomous Underwater Vehicles, Washington D.C., pp. 135-141, 1992.

[58] T. Calvert, R. Ovans, and S. Mah. Towards the autonomous animation of multiple figures. In
Computer Animation’94, IEEE Computer Society Press, pp. 69-75, Los Alamitos, CA, 1994.

[59] S. A. Cameron. A study of the clash detection problem in robotics. In IEEE ICRA Proc. of the
Int’l Conf. on Robotics and Automation, pp. 488-493, 1985.

[60] G. Campa, M. L. Fravolini, B. Seanor, M. R. Napolitano, D. D. Gobbo, G. Yu, and S.
Gururajan. On-line learning neural networks for sensor validation for the flight control system
of a B777 research scale model. International Journal of Robust Nonlinear Control, Vol. 12, no.
11, pp. 987-1007, September 2002.

[61] J. F. Canny, M. C. Lin. An Opportunistic Global Path Planner. Algorithmica, Special Issue on
Computational Robotics, Vol. 10, no. 2-4, pp. 102-120, October 1993.

[62] J. F. Canny and M. C. Lin. An opportunistic global path planner. Algorithmica, Special issue on
Computational Robotics, Vol. 10, no. 2-4, pp. 102-120, Aug/Sept/Oct 1993.

242

REFERENCES

[63] J. F. Canny. On computability of fine motion plans. In IEEE Int. Conf. Robot. & Autom., pp.
177-182, 1989.

[64] J. F. Canny. The Complexity of Robot Motion Planning. MIT Press, Cambridge, MA, 1988.
[65] A. Cavalcanti, B. Shirinzadeh, T. Fukuda, S. Ikeda. Nanorobot for Brain Aneurysm.

International Journal of Robotics Research, Sage, Vol. 28, no. 4, pp. 558-570, April 2009.
[66] A. Cavalcanti, B. Shirinzadeh, L. C. Kretly. Medical Nanorobotics for Diabetes Control.

Nanomedicine: Nanotechnology, Biology and Medicine, Elsevier, Vol. 4, no. 2, pp. 127-138,
June 2008.

[67] A. Cavalcanti, B. Shirinzadeh, M. Zhang, L. C. Kretly. Nanorobot Hardware Architecture for
Medical Defense. Sensors, MDPI(Basel), Vol. 8, no. 5, pp. 2932-2958, May 2008.

[68] A. Cavalcanti, B. Shirinzadeh, R. A. Freitas Jr., T. Hogg. Nanorobot Architecture for Medical
Target Identification. Nanotechnology, IOP, Vol. 19, no. 1, 015103 (15p.), January 2008.

[69] A. Cavalcanti, B. Shirinzadeh, T. Fukuda, I. Seiichi. Hardware Architecture for Nanorobot
Application in Cerebral Aneurysm. IEEE Nano Int'l Conf. on Nanotechnology, Hong Kong,
China, pp. 237-242, Aug. 2007.

[70] A. Cavalcanti, B. Shirinzadeh, T. Hogg, J. A. Smith. Hardware Architecture for Nanorobot
Application in Cancer Therapy. IEEE-RAS Int'l Conf. on Advanced Robotics, Jeju, Korea, pp.
200-205, August 2007.

[71] A. Cavalcanti, B. Shirinzadeh, D. Murphy, J. A. Smith. Nanorobots for Laparoscopic Cancer
Surgery. IEEE ICIS Int'l Conf. on Computer and Information Science, Melbourne, Australia, pp.
738-743, July 2007.

[72] A. Cavalcanti, B. Shirinzadeh, R. A. Freitas Jr., L. C. Kretly. Medical Nanorobot Architecture
Based on Nanobioelectronics. Recent Patents on Nanotechnology, Bentham Science, Vol. 1, no.
1, pp. 1-10, February 2007.

[73] A. Cavalcanti, B. Shirinzadeh, T. Hogg, L. C. Kretly. CMOS-based Nanorobot to Combat
Cancer. Australian Workshop on Fluid Mechanics, A Complex Dynamical System, Melbourne,
Australia, December 2006.

[74] A. Cavalcanti, T. Hogg, B. Shirinzadeh, H. C. Liaw. Nanorobot Communication Techniques: A
Comprehensive Tutorial. IEEE ICARCV Int’l Conf. on Control, Automation, Robotics and
Vision, Grand Hyatt, Singapore, pp. 2371-2376, December 2006.

[75] A. Cavalcanti, L. Rosen, B. Shirinzadeh, M. Rosenfeld. Nanorobot for Treatment of Patients
with Artery Occlusion. Springer Proceedings of Virtual Concept, Cancun, Mexico, November
2006.

[76] A. Cavalcanti, W. W. Wood, L. C. Kretly, B. Shirinzadeh. Computational Nanomechatronics: A
Pathway for Control and Manufacturing Nanorobots. IEEE CIMCA Int’l Conf. on
Computational Intelligence for Modelling, Control and Automation, IEEE Computer Society,
Sydney, Australia, pp. 185-190, November 2006.

[77] A. Cavalcanti, T. Hogg, B. Shirinzadeh. Nanorobotics System Simulation in 3D Workspaces
with Low Reynolds Number. IEEE-RAS MHS Int’l Symposium on Micro-Nanomechatronics
and Human Science, Nagoya, Japan, pp. 226-231, November 2006.

[78] A. Cavalcanti, R. A. Freitas Jr., L. C. Kretly. Nanobotics Control Design: A Practical Approach
Tutorial. Robotics Today, Dearborn, Mich.: SME Society of Manufacturing Engineers, 4th
Quarter, Vol. 18, no. 4, October 2005.

[79] A. Cavalcanti, R. A. Freitas Jr. Nanorobotics Control Design: A Collective Behavior Approach
for Medicine. IEEE Transactions on Nanobioscience, Vol. 4, no. 2, pp. 133-140, June 2005.

[80] A. Cavalcanti. Assembly Automation with Evolutionary Nanorobots and Sensor-Based Control
applied to Nanomedicine. IEEE Transactions on Nanotechnology, Vol. 2, no. 2, pp. 82-87, June
2003.

243

REFERENCES

[81] Adriano Cavalcanti, Robert A. Freitas Jr. Nanosystem Design with Dynamic Collision Detection
for Autonomous Nanorobot Motion Control using Neural Networks. Computer Graphics and
Geometry, MEPhI, Vol. 5, no. 1, pp. 50-74, May 2003.

[82] A. Cavalcanti, R. A. Freitas Jr. Autonomous Multi-robot Sensor-Based Cooperation for
Nanomedicine. International Journal of Nonlinear Science and Numerical Simulation, Vol. 3,
no. 4, pp. 743-746, August 2002.

[83] D. Chalou and M. Gini. Parallel robot motion planning. In Proc. of IEEE Int’l Conf. on Robotics
and Automation, Atlanta, GA, pp. 24-51, 1993.

[84] W. Chen, K. Lewis. A Robust Design Approach for Achieving Flexibility in Multidisciplinary
Design. AIAA Journal American Institute of Aeronautics and Astronautics, Vol. 37, no. 8, pp.
982-990, 1999.

[85] S. Chenney. Sensing for autonomous agents in virtual environments.
http://http.cs.berkeley.edu/~schenney/autonomous/sensing.html, 1996.

[86] W. Ching and N. Badler. Fast motion planning for anthropometric figures with many degrees of
freedom. In Proc. IEEE Int. Conf. on Robotics and Automation, pp. 2340-2345, 1992.

[87] A. Codourey, M. Rodriguez, and I. Pappas. Human machine interaction for manipulations in the
microworld. In Proc. of the IEEE Int’l Workshop on Robot and Human Communication, pp.
244-249, 1996.

[88] R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter. Probabilistic Networks and
Expert Systems. Springer-Verlag, 1999.

[89] L. S. Crawford and S. S. Sastry. Learning controllers for complex behavioral systems. Technical
report, ERL Memo Number M96/73, U.C. Berkeley, 1996.

[90] L. S. Crawford and S. S. Sastry. Biological motor control approaches for a planar diver. In Proc.
of the 34th IEEE Int’l Conference on Decision and Control, pp. 3881-3886, December 1995.

[91] H. Cruse, D. E. Brunn, and C. Bartling. Walking: A complex behavior controlled by simple
networks. Adaptive Behavior, Vol. 3, no. 4, pp. 385-418, 1995.

[92] A. I. Csurgay, W. Porod. The Circuit Paradigm in Modelling Coupled Nanomechanic-
Nanoelectronic Dynamics. In Proc. of IEEE Nano 2002 Int’l Conf. on Nanotechnology,
Washington, USA, pp. 79-82, August 2002.

[93] J. G. Cyster. Chemokines and cell migration in secondary lymphoid organs. Science, no. 286,
2098-2102, December 1999.

[94] A. Czarn, C. MacNish. From Nanotechnology to Nano-Planning. In 9th Computer Science
Research Conf. in University of Western Australia, Nedlands, Western Australia, Department of
Computer Science, The University of Western Australia, Vol. 1, pp. 73-85, 1998.

[95] DARPA Neural Network Study. AFCEA International Press, 1988.
[96] R. Das, J. P. Crutchfield, M. Mitchell, and J. E. Hanson. Evolving globally synchronized

cellular automata. In L. J. Eshelman (Ed.) Proceedings of the Sixth International Converence on
Genetic Algorithms. San Francisco CA, Morgan Kaufmann, 1995.

[97] R. Das, M. Mitchell, and J. P. Crutchfield. A genetic algorithm discovers particle-based
computation in cellular automata. In Y. Davidor, H. P. Schwefel and R. Männer (Eds.), Lecture
Notes in Computer Science 866 – Parallel Problem Solving from Nature – PPSNIIIII,
International Conference on Evolutionary Computation, The Third Conference Parallel
Problem Solving from Nature, pp. 344-353. Berlin, Germany, 1994.

[98] T. L. Dean and M. P. Wellman. Planning and Control. Morgan Kaufman, San Mateo, CA, 1991.
[99] P. A. Devijver and J. Kittler. Pattern Recognition: A Statistical Approach. Prentice-Hall

Publications, Englewood Cliffs, NJ, 1982.
[100] M. H. Devoret, R. J. Schoelkopf. Amplifying Quantum Signals with the Single-Electron

Transistor. Nature, Vol. 406, pp.1039-1046, 2000.
[101] S. H. Dewitt, A. W. Czarnik. Combinatorial Organic Synthesis Using Parke-Davis’s

DIVERSOMER Method. Accounts Chem. Res., 29, pp. 114-122, 1996.
[102] D. M. Dilts, N. P. Boy, H. H. Whoirms. The evolution of control architectures for automated

manufacturing systems. In Journal of Manufacturing Systems, Vol. 10, 1991.
[103] D. Divincenzo. Quantum Computation. Science, Vol.270, p.255, 1995.

244

REFERENCES

[104] B. R. Donald. Error Detection and Recovery for Robot Motion Planning with Uncertainty.
PhD thesis, Department of electrical Engineering and Computer Science, Massachusetts
Institute of Technology, Cambridge, MA, 1987.

[105] L. X. Dong, F. Arai and T. Fukuda. 3D Nanorobotic Manipulations of Multi-Walled Carbon
Nanotubes. In ICRA’2001 - Proc. of the Int’l Conf. on Robotics and Automation, 2001.

[106] L. X. Dong, F. Arai and T. Fukuda. 3D Nanorobotic Manipulations of Nanometer Scale
Objects. J. of Robotics and Mechatronics, Vol. 13, no. 2, pp. 146-153, 2001.

[107] L. X. Dong, F. Arai and T. Fukuda. 3D Nanorobotic Manipulation of Nano-order Objects
inside SEM. Proc. of the 2000 Int’l Symp. on Micromechatronics and Human Science, pp.
151-156, 2000.

[108] P. A. O’Donnel and T. Lozano-Perez. Deadlock-free and collision-free coordination of two
robot manipulators. In IEEE Int. Conf. Robot. & Autom, pp. 484-489, 1989.

[109] H. A. Downing and R. L. Jeanne. Nest construction by the paperwasp, Plistes: a test of
stigmergy theory. Animal Behaviour, Vol. 36, pp. 1729-1739, 1988.

[110] K. E. Drexler, D. Forrest, R. A. Freitas Jr., J. S. Hall, N. Jacobstein, T. McKendree, R.
Merkle, C. Peterson. A Debate about Assemblers. Institute for Molecular Manufacturing,
2001, www.imm.org/SciAmDebate2/whitesides.html .

[111] K. E. Drexler. Nanosystems: molecular machinery, manufacturing, and computation. Wiley &
Sons, 1992.

[112] K. E. Drexler, C. Peterson, and B. Pergamit. Unbounding the future: the Nanotechnology
Revolution. William Morrow and Company, New York, USA, 1991,
http://www.foresight.org/UTF/Unbound_LBW/download.html .

[113] K. E. Drexler. Molecular Engineering: an Approach to the Development of General
Capabilities for Molecular Manipulation. Proc. Natl. Acad. Sci., USA, Vol.78, No.9, pp. 5275-
5278, 1981.

[114] X. F. Duan, Y. Huang, Y. Cui, J. F. Wang and C. M. Lieber. Indium Phosphide Nanowires as
Building Blocks for Nanoscale Electronic and Optoelectronic Devices. Nature, Vol. 409, pp.
66-69, 2001.

[115] H. F. Durrant-Whyte. Uncertain geometry in robotics. IEEE Trans. Robot. & Autom., Vol. 4,
no. 1, pp. 23-31, February 1988.

[116] H. Edelsbrunner. A new approach to rectangle intersections, part i&ii. Int’l J. Computer
Math., Vol. 13, pp. 31-45, 1984.

[117] D. M. Eigler and E. K. Schweizer. Positioning Single Atoms with a Scanning Tunnelling
Microscope. Nature, Vol. 344, pp.524-526, 1990.

[118] Ö. Ekeberg, A. Lansner, and S. Grillner. The neural control of fish swimming studied through
numerical simulations. Adaptive Behavior, Vol. 3, no. 4, pp. 363-384, 1995.

[119] A. Elfes. Using occupancy grids for mobile robot perception and navigation. IEEE Computer,
Vol. 22, no. 6, pp. 46-57, June 1989.

[120] EngeneOS, Inc.; http://www.engeneos.com .
[121] M. Erdmann and T. Lozano-Perez. On multiple moving objects. In IEEE Int. Conf. Robot. &

Autom., pp. 1419-1424, 1986.
[122] M. A. Erdmann. On motion planning with uncertainty. Master’s thesis, Massachusetts Institute

of Technology, Cambridge, MA, August 1984.
[123] B. Espiau, F. Chaumette, and P. Rives. A new approach to visual serving in robotics. IEEE

Trans. Robot. & Autom., Vol. 8, no. 3, pp. 313-326, June 1992.
[124] M. Falvo, R. Superfine, and S. Washburn. The nanomanipulator: A teleoperator for

manipulating materials at the nanometer scale. In Proc. of the Int. Symp. On the Science and
Technology o Atomically Engineered Materials, pp. 579-586, Nov. 1995.

[125] R. E. Fayek, R. Liscano, G. M. Karam. A system architecture for a mobile robot based on
activities and a blackboard control unit. In IEEE Int. Conf. on Robotics and Automation, Vol.
2, pp.267-274, 1993.

[126] R. S. Fearing. Survey of sticking effects for micro parts handling. In Proc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots and systems, pp. 212-217, 1995.

245

REFERENCES

[127] J. T. Feddema, P. Xavier, and R. Brown. Assembly planning at the micro scale. In Workshop
on Precision Manipulation at Micro and Nano Scales, IEEE Int. Conf. on Robotics and
Automation, pp. 56-69, 1998.

[128] J. Feldman, M. A. Fanty, and N. H. Goddard. Computing with structured neural networks.
IEEE Computer, pp 91-103, March 1988.

[129] R. P. Feynman. There’s Plenty of Room at the Bottom. Caltech’s Engineering and Science,
Feb., pp.22-36, 1960.

[130] G. Fishbine. The Investor’s Guide to Nanotechnology & Micromachines. Wiley & Sons, 2001.
[131] S. Fleury, M. Herrb, R. Chatila. Design of a modular architecture for autonomous robots. In

Proc. IEEE Int. Conf. on Robotics and Automation, pp. 3508-3513, 1994.
[132] D. Floreano. Reducing human design and increasing adaptivity in evolutionary robotics. In

Gomi, T. (Ed.), Evolutionary Robotics, AAI Books, Ontario, Canada, pp. 187-220, 1997.
[133] L. D. Floriani, G.G. Pieroni, V. Murino, E. Puppo. Virtual environment generation by CAD-

based methodology for underwater navigation. in Proceedings IX European Signal Processing
Conference, pp.1105-1108, Rodi, Greece, 1998.

[134] I. Foster. Ch.5 Compositional C++. Designing and Building Parallel Programs. Addison
Wesley, http://www.mcs.anl.gov/~itf/dbpp, 1995.

[135] A. Fox and S. Hutchinson. Exploiting visual constraints in the synthesis of uncertainty-
tolerant motion plans. IEEE Trans. Robot. & Autom., Vol. 1, no. 11, pp. 56-71, February
1995.

[136] N. R. Franks, A. Wilby, B. W. Silverman, and C. Tofts. Self-organizing nest contruction in
ants: sophisticated building by blind buldozing. Animal Behaviour, Vol. 44, pp. 357-375,
1992.

[137] N. R. Franks. Teams in social insects: Group retrieval of prey by army ants. Behavioral
Ecology and Sociobiology, Vol. 18, pp. 425-429, 1986.

[138] P. Fraundorf. Scanning Tunneling Microscope. 1997,
http://www.umsl.edu/~fraundor/stm97x.html .

[139] R. A. Freitas Jr., C. J. Phoenix. Vasculoid: A Personal Nanomedical Appliance to Replace
Human Blood. 2002, http://www.jetpress.org/volume11/vasculoid.html.

[140] R. A. Freitas Jr., The future of nanofabrication and molecular scale devices in nanomedicine.
Studies in Health Technology and Informatics, Published in: Renata Bushko, ed., Future of
Health Technology, pp. 45-59, IOS Press, Amsterdam, The Netherlands, 2002,
http//www.rfreitas.com/Nano/FutureNanofabNMed.htm.

[141] R. A. Freitas Jr., Microbivores: Artificial Mechanical Phagocytes using Digest and Discharge
Protocol. Zyvex preprint, March 2001, http://www.zyvex.com/Publications/articles/
Microbivores.html .

[142] R. A. Freitas Jr., Nanomedicine, Vol. I: Basic Capabilities, Landes Bioscience, Georgetown,
TX, 1999, http://www.nanomedicine.com .

[143] R. A. Freitas Jr., Exploratory design in medical nanotechnology: A mechanical artificial red
cell, Artificial Cells, Blood Substitutes, and Immobil. Biotech, Vol. 26, pp. 41-430, 1998
http://www.foresight.org/Nanomedicine/Respirocytes.html.

[144] T. Fukuda, F. Arai, L. Dong. Nano Robotic World - from Micro to Nano. Plenary Lecture,
ICRA 2001 Proc. of the Int’l Conf. on Robotics and Automation. http://www.icra2001.org

[145] T. Fukuda, F. Arai. Prototyping Design and Automation of Micro/Nano Manipulation System.
Proc. of IEEE Int’l Conf. on Robotics and Automation (ICRA’00), Vol. 1, pp.192-197, 2000.

[146] M. Gaedke, R. Wicke. Softwaretechnik für Entwicklung, Betrieb und Wartung von
Anwendungen in World-Wide Web. Master’s Thesis, Telecooperation Office, University of
Karlsruhe, Germany, 1997.

[147] L. Geppert. The Amazing Vanishing Transistor Act. Cover story, IEEE Spectrum Magazine,
pp. 28-33, October 2002.

[148] A. Ghosh, P. Fischer. Controlled Propulsion of Artificial Magnetic Nanostructured
Propellers. Nano Letters, Vol. 9, no. 6, pp. 2243-2245, March 2009.

[149] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-
Wesley, Reading MA, 1989.

246

REFERENCES

[150] K. Y. Goldberg. Stochastic Plans for Robotic Manipulation. PhD thesis, Department of
Computer Science, Carnegie Mellon University, Pittsburgh, PA, August 1990.

[151] A. Goldbeter. Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of
Periodic and Chaotic Behavior. Cambridge University Press, N.Y., 1996.

[152] T. Gomi. Evolutionary Robotics II - from Intelligent Robots to Artificial Life. AAI Books,
Kanata, Canada, 1998.

[153] T. Gomi. Non-Cartesian Robotics - the first 10 years. In Gomi, T. (Ed.), Evolutionary
Robotics, From Intelligent Robots to Artificial Life, Kanata, Canada, AAI Books, 1998.

[154] J. H. Graham. Special computer architectures for robotics: Tutorial and survey. In IEEE Int’l
Symp. on Industrial Electronics (ISIE’97), Guimaraes, Portugal, University of Minho, 7-11
July, pp. 702-707, 1989.

[155] P. Grassé. La reconstruction du nid et les coordinations interindividuelles chez bellicositermes
natalensiset cubitermes sp. La théorie de la stigmergie : essai d’interpré. Insectes Sociaux,
Vol. 6, pp. 41-81, 1959.

[156] J. J. Grefenstette, and A. Schultz. An evolutionary approach to learning in robots. Machine
Learning Workshop on robot Learning, New Brunswick, NJ, 1994.

[157] R. Grzeszczuk, D. Terzopoulos, and G. Hinton. NeuroAnimator: Fast neural network
emulation and control of physics-based models. In M. Cohen, ed., Proc. of ACM SIGGRAPH
98 Conf., pp. 142-148, 1998.

[158] A. Guillot and J.-A. Meyer. Computer simulations of adaptive behavior in animats. In
Computer Animation’94, IEEE Computer Society Press, Los Alamintos, CA, pp. 122-132,
1994.

[159] L. J. Guo. A single Electron Transistor Memory Operating at Room Temperature. Science,
Vol. 275, no. 5300, pp. 649-651, 1997.

[160] M. Guthold. Controlled Manipulation of Molecular Samples with the nanomanipulator.
IEEE/ASME Trans. on Mechatronics, Vol.5, No.2, pp. 189-198, 2000.

[161] M. Guthold, M. R. Falvo. Controlled manipulation of molecular samples with the
nanomanipulator. In Proc. of the IEEE/ASME Int’l Conf. on Advanced Intelligent
Mechatronics, 1999.

[162] M. T. Hagan, H. B. Demuth, O. D. Jesús. An introduction to the use of neural networks in
control systems. International Journal of Robust Nonlinear Control, Vol. 12, no. 11, pp. 959-
985, September 2002.

[163] M. Hagiya. From Molecular Computing to Molecular Programming. Proc. 6th DIMACS
Workshop on DNA Based Computers, held at the University of Leiden, Leiden, The
Netherlands, pp. 198-204, 2000.

[164] J. K. Hahn. Realistic animation of rigid bodies. ACM Computer Graphics, Vol. 22, no. 4, pp.
299-308, 1988.

[165] J. M. Haile. Molecular Dynamics Simulations, Elementry Methods. John Wiley and Sons,
New York, 1992.

[166] B. E. Hallam, J. R. P. Halperin, and J. C. T. Hallam. An ethological model for implementation
in mobile robots. Adaptive Behavior, Vol. 3, no. 1, pp. 51-79,1994.

[167] D. A. Handelman, S. H. Lane, and J. J. Gelfand. Integrating neural networks and knowledge-
based systems for intelligent robotic control. IEEE Control Systems Magazine, April 1990.

[168] L. T. Hansen and A. Kuhle. A technique for positioning nanoparticles using an atomic force
microscope. Nanotechnology, Vol. 9, pp. 337-343, December 1998.

[169] R. K. Hansen and P. A. Andersen. A 3-D underwater acoustic camera - properties and
applications. In P. Tortoli and L. Masotti, editors, Acoustical Imaging, Plenum Press, pp. 607-
611, 1996.

[170] S. Haykin. Neural Networks a Comprehensive Foundation. 2nd edition, Prentice Hall, New
Jersey, USA, 1999.

[171] R. M. Hazen. The Diamond Makers. Cambridge U.P., ISBN 0-521-65474-2, NY, 1999.
[172] A. Hellemans. German Team Creates New Type of Transistor-Like Device. News Analysis,

IEEE Spectrum Magazine, January 2003, pp. 20-21.

247

REFERENCES

[173] D. Henrich, and T. Höniger. Parallel processing approaches in robotics. In Proc. of the IEEE
Int. Symp. on Industrial Electronics (ISIE’97), Guimaraes, Portugal, University of Minho, pp
702-707, July 1997.

[174] D. Henrich and X. Cheng. Fast distance computation for on-line collision detection with
multi-arm robots. IEEE Int’l Conf. on Robotics and Automation, pp. 2514-2519, Nice, France,
May 1992.

[175] J. Hertz, A. Krogh, and R. G. Palmer. Introduction to the Theory of Neural Computation.
Addison-Wesley, Redwood City, 1991.

[176] B. V. Herzen, A. H. Barr, and H.R. Zatz. Geometric collisions for time-dependent parametric
surfaces. ACM Computer Graphics, Vol. 24, no. 4, pp. 39-48, August 1990.

[177] H. Hirukawa, T. Matsui, and K. Takase. Automatic determination of possible velocity and
applicable force of frictionless objects in contact from a geometric mode. IEEE Trans. on
Robotics and Automation, Vol. 10, no. 3, pp. 309-322, June 1994.

[178] R. L. Hoffman. A common sense approach to assembly sequence planning. In L. S. Homem
de Mello and S. Lee, editors, Computer-Aided Mechanical Assembly Planning, pp. 289-314,
Kluwer, 1991.

[179] H. Bojinov, A. Casal, T. Hogg,. Multiagent Control of Self-reconfigurable Robots. Proc. of
Int’l Conf. on Multiagent Systems, pp. 441-455, July 2001.

[180] J. H. Holland. Adaptation in natural and artificial systems. The University of Michigan Press,
Ann Arbor, 1975.

[181] R. L. Hollis, S. Salcudean, and D.W. Abraham. Toward a tele-nanorobotic manipulation
system with atomic scale force feedback and motion resolution. In Proc. Of the IEEE Int.
Conf. On MicroElectromechanical Systems, pp. 115-119, 1990.

[182] J. E. Hopcroft, J. T. Scwartz, and M. Sharir. Efficient detection of intersections among
spheres. International Journal of Robotics Research, Vol. 2, no. 4, pp. 77-80, 1983.

[183] J. J. Hopfield. Neural Networks and Physical systems with emergent collective computational
abilities. In Prof. Natl. Acad. Sci. USA 79, pp. 2554-2558, 1982.

[184] W. Hordijk, J. P. Crutchfield, and M. Mitchell. Embedded-particle computation in evolved
cellular automata. Physics and Computation’96, 1996.

[185] A. Hörmann. Steuerung und Systemarchitektur von Fortgeschrittenen autonomen Systemen.
Robotersysteme 5, Springer-Verlag, pp. 1723-185, 1989.

[186] T. Horsch, F. Schwarz, and H. Tolle. Motion planning for many degrees of freedom: Random
reflections at c-space obstacles. In Proc. of the IEEE Int. Conf. on Robotics and Automation
(ICRA’94), pp. 3318-3323, San Diego, CA, April 1994.

[187] S. Hosogi, N. Watanabe, and M. Sekiguchi. A neural network model of the cerebellum
performing dynamic control of a robotic manipulator by learning. Fujitsu Science and
Technology Journal, Vol. 29, no. 3, pp. 201-208, September 1993.

[188] D. Hsu, L. E. Kavraki, J. C. Latombe, R. Motwani, and S. Sorkin. On finding narrow passages
with probabilistic roadmap planners. In P.K. Agarwal, L.E.Kavraki, and M.T. Mason, editors,
Robotics: The Algorithms Perspective, Workshop on Algorithmic Foundations of Robotics, A.
K. Peters, Natick, MA, pp. 141-153, 1998.

[189] D. Hsu, J. C. Latombe, and R. Motwani. Path planning in expansive configuration spaces. Int.
J. of computational Geometry and Applications, Vol. 9, no. 4-5, pp. 495-512, 1997.

[190] H. Hu and M. Brady. A Bayesian approach to real-time obstacle avoidance for a mobile robot.
Autonomous Robots, Vol. 1, no. 1, pp. 69-92, 1994.

[191] Z. Huang, R. Boulic, N. Magnenat Thalmann, and D. Thalmann. A multi-sensor approach for
grasping and 3D interaction. In Proc. Computer Graphics International’95, Leeds, 1995.

[192] I. W. Hunter, S. Lafontaine, P. M. Nielsen, P. J. Hunter, and J. M. Hollerbach. Manipulation
and dynamic mechanical testing of microscopic objects using tele-micro-robot system. IEEE
Control Systems Magazine, Vol. 10, no. 2, pp. 3-9, 1990.

[193] Y. K. Hwang and N. Ahuja. Gross motion planning: A survey. ACM Computing Surveys, Vol.
24, no. 3, pp. 219-291, 1992.

[194] HyperChem. Computational Chemistry. Publication #HC40-00-03-00, Hypercube, Inc.
Waterloo, Ontario, Canada, 1994.

248

REFERENCES

[195] T. Inoue, K. Iwatani, I. Shimoyama, and H. Miura. Micromanipulation using magnetic field.
In Proc. of the IEEE Int. Conf. on Robotics and Automation, pp. 679-684, 1995.

[196] J. U. Intza, D. Floreano. Evolutionary Robots with fast Adaptive Behavior in New
Environments. In Proc. of Int’l Conf. on Evolvable Systems: from Biology to Hardware
(ICES2000), Edingurgh, Scotland (UK), pp. 251-256, April 2000.

[197] H. Ishibuchi, R. Fujioka, and H. Tanaka. Neural networks that learn from fuzzy if-then rules.
IEEE Transactions on fuzzy systems, Vol. 1, no. 2, pp. 85-97, May 1993.

[198] S. Ishikawa. A method of Autonomous Mobile Robot Navigation by using Fuzzy Control.
Advanced Robotics, Vol.9, no. 1, pp. 29-52,1995.

[199] N. Jakobi. Half-baked, ad-hoc and noisy: Minimal simulations for evolutionary robotics. In
Husbands, P., & Harvey, I. (Eds.), Advances in Artificial Life: Proceedings of the 4th
European Conference on Artificial Life, pp. 348-357, MIT Press, 1997.

[200] N. Jakobi. Harnessing morphogenesis. International Conference on Information Processing in
Cells and Tissues, Liverpool, UK, 1995.

[201] N. R. Jennings, K. Sycara, and M. Wooldridge. A roadmap of agent research and
development. Autonomous Agents and Multi-Agent Systems, Vol. 1, no. 1, pp. 7-38, 1998.

[202] F. Jensen. An Introduction to Bayesian Networks. Springer Verlag, 1996.
[203] C. Joachim. Electronics Using Hybrid-Molecular and Mono-Molecular Devices. Nature, Vol.

408, pp. 541-548, 2000.
[204] T. Junno, K. Deppert, L. Montelius, and L. Samuelson. Controlled manipulation of

nanoparticles with an atomic force microscopy. App. Physics Letters, Vol. 66, no. 26, pp.
3627-3629, June 1995.

[205] K. T. Kalveram. Controlling the dynamics of a two-joined arm by central patterning and
reflex-like processing. Biological Cybernetics, Vol. 65, no. 1, pp. 65-71, 1991.

[206] K. Kaneko, H. Tokashiki, K. Tanie, and K. Komoriya. A development of experimental system
for macro-micro teleoperation. In Proc. of the IEEE Int. Workshop on Robot and Human
Communication, pp. 30-35, 1995.

[207] K. Kant and S. W. Zucker. Toward efficient trajectory planning: the path-velocity
decomposition. Int. J. Robot. Res., Vol. 5, no. 3, pp. 72-89, 1986.

[208] R. Kargl. Die Computer der Zukunft: Wie ihre grenzenlose Power unser Leben erleichtern
soll. PM Magazin, pp. 28-32, August 2002.

[209] T. Kasaya, H. Miyazaki, S. Saito, and T. Sato. Micro object handling under SEM by vision-
based automatic control. In Proc. of the IEEE Int. Conf. on Robotics and Automation, pp.
2189-2196, 1999.

[210] S. Kauffman. Random Chemistry. Drug Discovery Design, Vol. 2, pp. 319-326, 1994.
[211] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars. Probabilistic roadmaps for

path planning in high-dimensional configuration space. IEEE Trans. On Robotics and
Automation, Vol. 12, no. 4, pp. 566-580, August 1996.

[212] L. E. Kavraki. Random networks in configuration space for fast path planning. PhD thesis,
Dept. of Computer Science, Stanford University, Stanford, CA, January 1995.

[213] L. E. Kavraki and J. C. Latombe. Randomized preprocessing of configuration space for fast
path planning. Technical report. Dept. of Computer Science, Stanford University, September
1993.

[214] M. Khatib, B. Bouilly, T. Simeon, R. Chatila. Indoor Navigation with Uncertainty using
Sensor Based Motions. Proc. IEEE Int'l Conf. on Robotics and Automation, pp. 3379-3384,
1997.

[215] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. International
Journal of Robotics Research, Vol. 5, no.1, pp. 90-98, 1986.

[216] K. H. Kim. The Distributed Time-Triggered Simulation Scheme Facilitated by TMO
Programming. IEEE Fourth International Symposium on Object-Oriented Real-Time
Distributed Computing, pp. 57-61, Magdeburg, Germany, May, 2001.

[217] Y. Kim, J. Y. Jo, V. B. Velasco, N. A. Barendt, A. Podgurski, G. Ozsoyoglu, F. L. Merat. A
flexible software architecture for agile manufacturing, In Proc. Int. Conf. on Robotics and
Automation, pp. 3043-3047, Albuquerque, USA, 1997.

249

REFERENCES

[218] Y. Koga. On Multi-Arm Manipulation Planning. PhD thesis, Stanford University, Stanford,
CA, USA, 1994.

[219] Y. Koga, K. Kondo, J. Kuffner, and J. C. Latombe. Planning motions intentions. In Proc.
SIGGRAPH’94, pp. 395-408, 1994.

[220] D. Koller and A. Pfeffer. Object-oriented bayesian networks. In Proc. of 13th Annual
Conference on Uncertainty in AI (UAI), Providence, Providence, Rhode Island, August 1997.

[221] N. Koumura, R. W. Zijlstra, R. A. van Delden, N. Harada, B. L. Feringa. Light-driven
monodirectional molecular rotor. Nature, Vol. 401, no. 6749, pp. 152-155, September 1999.

[222] K. Koyano and T. Sato. Micro object handling system with concentrated visual fields and new
handling skills. In Proc. of the IEEE Int. Conf. on Robotics and Automation, pp. 2541-2548,
1996.

[223] M. Krantz. Building a better world-atom by atom. Times, pp. 62-63, December 2, 1996.
[224] D. Kruglinski, G. Sheperd, and S. Wingo. Programming Microsoft Visual C++. 5th Edition,

Microsoft Press, Washington, USA, 1998.
[225] C. R. Kube and H. Zhang. Task Modelling in Collective Robotics. Autonomous Robots, Vol.

4, no. 1, pp. 53-72, 1997.
[226] J. J. Kuffner Jr., Goal-directed navigation for animated characters using real-time path

planning and control. In Proc. of CAPTECH’98 Workshop on Modelling and Motion Capture
Techniques for Virtual Environments. Springer-Verlag, November 1998.

[227] T. Kunii, S. Nishimura, T. Noma. The design of a parallel processing system for computer
graphics. In Parallel Processing for Computer Graphics Theory and Applications
(Proceedings of InterGraphics’83), pp. 360-373. Springer-Verlag, April 1983.

[228] H. Kwakernaak and R. Sivan. Linear Optimal Control Systems. Wiley, New York, NY, 1972.
[229] T. W. Längle. Verteilte Steuerungskonzept für kmplexe inhomogene Roboter-systeme. PhD

Thesis, University of Karlsruhe, VDI-Fortschriftts-berichte Nr. 8/776114, VDI-Verlag,
Düsseldorf, Germany, 1997.

[230] J. C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, MA, 1991.
[231] J. C. Latombe, A. Lazanas, and S. Shekhar. Robot motion planning with uncertainty in control

and sensing. Artificial Intelligence, Vol. 52, no. 1, pp. 1-47, 1991.
[232] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. In Proc. of the IEEE

International Conf. on Robotics and Automation (ICRA’99), Detroit, MI, May 1999.
[233] S. M. LaValle and R. Sharma. Motion planning in stochastic environments: Theory and

modelling issues. In IEEE Int’l Conf. On Robotics and Automation, pp. 3057-3062, 1995.
[234] S. M. LaValle and S. A. Hutchinson. An objective-base stochastic framework for

manipulation planning. In Proc. IEEE/RSJ/GI Int’l Conf. on Intelligent Robots and Systems,
pp. 1772-1779, September 1994.

[235] J. M. Lehn. Supramolecular chemistry and nanotechnology. In France-Japan workshop on
from Nano to Macroscale Science and Technology through Micro Systems, pp. 14-15, Apr.
1997.

[236] L. Lewis and A. Parkinson. Robust Optimal Design with a Second Order Tolerance Model.
Research in Engineering Design, no. 6, pp. 25-37, 1994.

[237] M. A. Lewis, A. H. Fagg, and G. A. Bekey. Genetic algorithms for gait synthesis in a hexapod
robot. In Yuan F. Zheng, editor, Recent trends in mobile robotics, Chapter 11, pp. 317-331.
World Scientific, 1993.

[238] M. A. Lewis and G. A. Bekey, “The Behavioral Self-Organization of Nanorobots Using Local
Rules”, In Proc. of IEEE Int’l Conf. on Intelligent Robots and Systems, pp. 1333-1338,
Raleigh, NC, 1992.

[239] T. Lozano-Perez, M. T. Mason, and R. H. Taylor. Automatic synthesis of fine-motion
strategies for robots. International Journal of Robotics Research, Vol. 3, no. 1, pp. 3-24, 1984.

[240] V. J. Lumelsky and A. A. Stepanov. Path planning strategies for a point mobile automaton
moving amidst unknown obstacles o arbitrary shape. Algorithmica, Vol. 2, pp. 403-430, 1987.

[241] M. I. Lutwyche. Highly Parallel Data Storage System Based on Scanning Probe Arrays.
Applied Physics Letters, Vol. 777, pp.3299-3301, 2000.

[242] I. W. Lyo and P. Avouris. Filed-induced nanometer to atomic-scale manipulation of silicon
surfaces with the STM. Science, Vol. 253, no. 5016, pp. 173-176, 12 July 1991.

250

REFERENCES

[243] M. A. Lyshevski. Brownian Motor Analysis and its Application to Nanosystems. IEEE Nano
2002 International Conference on Nanotechnology, Washington, USA, pp. 151-155, August
2002.

[244] P. Maes. Behavior-based artificial intelligence. In Maes, P. (Ed.), Designing Autonomous
Agents, MIT Press-Bradford Books, Cambridge, MA, 1990.

[245] J. H. Makaliwe and A. A. G. Requicha. Automatic planning of nanoparticle assembly tasks.
Proc. IEEE Int'l Symp. on Assembly and Task Planning, Fukuoka, Japan, pp. 288-293, 2001.

[246] J. Mao and A. K. Jain. Artificial neural networks for feature extraction and multivariate data
projection. IEEE Transactions on Neural Networks, Vol. 6, no. 2, pp. 296-317, March 1995.

[247] W. R. Mark, S. C. Randolph, and M. Finch. Adding force feedback to graphics systems:
Issues and solutions. In Computer Graphics Proceedings SIGGRAPH, pp. 447-452, 1996.

[248] S. Martel, P. Madden, L. Sosnowski, I. Hunter, and S. Lafontaine. NanoWalker: a fully
autonomous highly integrated miniature robot for nano-scale measurements. Proc. of the
European Optical Society and SPIE Int’l Symposium on Envirosense, Microsystems
Metrology and Inspection, Munich, Germany, Vol. 3825, pp. 64-76, 1999.

[249] V. Matellan, C. Fernandez, and J. M. Molina. Genetic Learning of Fuzzy Reactive
Controllers. Robotics and Autonomous Systems, Vol. 225, no. 1-2, 33-41, 1998.

[250] K. Matsumoto. Room-Temperature Single-Electron Memory Made by Pulse-Mode Atomic
Force Microscopy Nano Oxidation Process on Atomically Flat α-Alumina Substrate. Applied
Physics Letters, Vol. 76, no. 2, pp. 239-241, 2000.

[251] L. Matthies. Mars microrover navigation : Performance evaluation and enhancement.
Proceedings of the IEEE/RSJ International Conf. on Robots and Systems (IROS), August
1995.

[252] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanet in nervous activity.
Bulletin of Mathematical Biophysics, Vol. 5, no. 4, pp. 115-133, December 1943.

[253] D. McFarland and T. Bosser. Intelligent Behavior in Animals and Robots. Mit Press, 1993.
[254] U. Mehlhaus. Verteilte Programmierung zur Integration von Simulation und Steuerung von

Robotern. Reprinted in VDI Fortschrittsberichte, Vol. 10, 1994.
[255] F. Menczer, and R. K. Belew. Evolving sensors in environments of controlled complexity. In

Artificial Life IV: Proceedings of the 4th International Workshop on Synthesis and Simulation
of Living Systems, Cambridge, MA: MIT Press, pp. 210-221, 1994.

[256] R. C. Merkle. A New Family of Six Degree of Freedom Positional Devices. Nanotechnology,
Vol. 8, no. 2, pp. 47-52, 1997.

[257] R. C. Merkle. Nanotechnology and Medicine. Advances in AntiAging Medicine, Mary Ann
Liebert Press, Vol. 1, pp. 277-286, 1996.

[258] J. A. Meyer and P. Husbands. Autonomous mobile robotics architecture for a functional
approach. First European Workshop on Evolutionary Robotics. Springer Verlag, 1998.

[259] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Springer-
Verlag, New York, 1996.

[260] O. Miglino, H. H. Lund, and S. Nolfi. Evolving Mobile Robots in Simulated and Real
Environments. Artificial Life, Vol. 2, no. 4, pp. 417-434, 1996.

[261] S. A. Miller. Microelectromechanical Scanning Probe Instruments for Array Architectures.
Rev. Sci. Instrum., Vol. 68, no. 11, pp. 4155-4162, November 1997.

[262] W. T. Miller, R. Sutton, and Paul Werbos. Neural Networks for Control. MIT Press,
Cambridge, Massachusetts, 1990.

[263] S. C. Minne. Automated Parallel High-speed Atomic Force Microscopy. Appl. Phys. Lett.,
Vol. 72, no. 2340, pp.2340-2342, May 1998.

[264] M. Minsky. Logical versus analogical or symbolic versus connectionist or neat versus scruffy.
AI Magazine, Vol. 65, no. 2, pp. 34-51, 1991.

[265] M. Minsky and S. Papert. Perceptrons: An Introduction to Computational Geometry. MIT
Press, Cambridge, MA, 1969.

[266] B. Mirtich and J. Canny. Impulse-based simulation of rigid bodies. In Proc. of Symposium on
Interactive 3D Graphics, pp. 392-398, 1995.

251

REFERENCES

[267] H. Miyazaki and T. Sato. Pick and place shape forming of three-dimensional micro structures
form fine particles. In Proc. of the IEEE Int. Conf. on robotics and Automation, pp. 2535-
2540, April 1996.

[268] M. W. Moffett. Cooperative food transport by an asiatic ant. National Geographic Research,
Vol. 4, no. 3, pp. 386-394, 1988.

[269] N. Mokhoff. Education Overhaul Urged for Nanotech Revolution. EE Times, February 2003,
http://www.theworkcircuit.com/news/OEG20030206S0026 .

[270] J. M. Molina, A. Sanchis, A. Berlanga, and P. Isasi. An enhanced classifier system for
autonomous robot navigation in dynamic environments. Intelligent Automation and Soft
Computing, Autosoft Press, Vol. 6, no. 2, pp. 113-124, 2000.

[271] F. Mondada and P. I. Franzi. Mobile Robot Miniaturization: a tool for investigation in control
algorithms. Proc. of the Second International Conference on Fuzzy Systems, San Francisco,
USA, pp. 182-187, 1998.

[272] C. D. Montemagno and G. D. Bachand. Constructing nanomechanical devices powered by
biomolecular motors. Nanotechnology, Vol. 10, no. 3, pp. 225-231, 1999.

[273] M. Moore and J. Wilhelms. Collision detection and response for computer animation. ACM
Computer Graphics, Vol. 22, no. 4, pp. 289-298, 1988.

[274] S. K. Moore. Just One Word - Plastics. Special R&D Report, Organic Electronics, IEEE
Spectrum Magazine, pp.55-59, September 2002.

[275] J. C. Moser. Pheromones of social insects. In Control of Insect Behaviour by Natural
Products, Academic Press, pp. 161-178, 1970.

[276] V. Murino and A. Trucco. A Geometric Approach to the Surface Fitting Problem in
Underwater 3-D Acoustic Images. Measurement Science and Technology, Vol. 10, No. 12, pp.
1135-1141, December 1999.

[277] A. R. Mushegian. The minimal genome concept. Curr. Opin. Genet, Vol. 9, no. 6, pp. 709-
714, December 1999.

[278] Nasa Ames, NASA Ames Computational Molecular Nanotechnology Team, NAS
Nanotechnology Gallery, http://www.nas.nasa.gov/Groups/SciTech/nano .

[279] National Science Foundation, http://www.eng.nsf.gov/sbir .
[280] B. J. Nelson and Y. Zhou. Task-based micromanipulation control strategies for assembly of

hybrid mems. In Workshop on Precision Manipulation at Micro and Nano Scales, IEEE Int.
Conf. on Robotics and Automation, pp. 5-29, 1998.

[281] N. J. Nilsson. Learning Machines : Foundations of Trainable Pattern-Classifying Systems.
McGraw-Hill, New York, 1965.

[282] J. Nishi, Y. Uno, and Ryoji Suzuki. Mathematical models for the swimming pattern of a
lamprey: II. Control of the central pattern generator by the brainstem. Biological Cybernetics,
Vol. 72, no. 1, pp. 11-18, November 1994.

[283] J. Nishi, Y. Uno, and R. Suzuki. Mathematical models for the swimming pattern of a lamprey:
I. Analysis of collective oscillators with time-delayed interaction and multiple coupling.
Biological Cybernetics, Vol. 72, no. 1, pp. 1-9, November 1994.

[284] T. B. Norris. Nanoacoustics: towards imaging nanostructures using picosecond ultrasonics.
The Journal of the Acoustical Society of America, Vol. 119, no. 5, pp. 3284-3285, May 2006.

[285] R. E. Tuzun, D. W. Noid, and B. G. Sumpter. Dynamics of a laser driven molecular motor.
Nanotechnology, Vol. 6, no. 2, pp. 52-63, April 1995.

[286] M. Occello, M. C. Thomas. Intelligent control in robotics through real-time distributed
blackboards, In IMACS/SICE Int. Symp. on Robotics, Mechatronics and Manufacturing
Systems’92, pp. 567-572, Kobe, Japan, 1992.

[287] P. A. O’Dunlaing and C. K. Yap. A retraction method for planning the motion of a disc.
Journal of algorithms, Vol. 6, pp. 104-111, 1982.

[288] T. Ondarcuhu and C. Joachim. Combing a nanofiber in a nanojunction. Nanotechnology, Vol.
10, no. 1, pp. 39-44, January 1998.

[289] J. B. Oommen, S. S. Iyengar, N. S. V. Rao, and R. L. Kashyap. Robot navigation in unknown
terrains using learned visibility graphs. Part I: The disjoint convex obstacle case. IEEE J. of
Robot. & Autom., Vol. 3, no. 6, pp. 672-681, 1987.

252

REFERENCES

[290] M. Overmars. A random approach to motion planning. Technical report, Dept. Computer
Science, Utrect University, Utrect, The Netherlands, October 1992.

[291] I. J. Palmer and R. L. Grimsdale. REALISM: Reusable Elements for Animation using Local
Integrated Simulation Models. In Computer Animation’94, Los Alamitos, CA, 1994, IEEE
Computer Society Press, 1994.

[292] I. Pappas and A. Codourey. Visual control of a microrobot operating under a microscope. In
Proc. of the IEEE//RSJ Int. Conf. on Intelligent Robots and Systems, pp. 993-1000, 1996.

[293] A. Parkinson. Robust Mechanical design Using Engineering Models. Transactions of ASME
Journal of Mechanical Design, Vol. 117, issue B, pp. 48-54, June 1995.

[294] A. Pentland. Computational complexity versus simulated environment. Computer Graphics,
Vol. 22, no. 2, pp. 185-192, 1990.

[295] A. Pentland and J. Williams. Good vibrations: Modal dynamics for graphics and animation.
Computer Graphics, Vol. 23, no. 3, pp. 185-192, 1990.

[296] M. S. Phadke. Quality Engineering using Robust Design. Englewood Cliffs, New Jersey,
Prentice Hall, 1989.

[297] D. Porath, A. Bezryadin, S. Vries, and C. Dekker. Direct Measurement of Electrical Transport
Through DNA Molecules. Nature, Vol. 403, no. 6770, pp. 635-638, 2000.

[298] M. Ramia, D. L. Tullock, and N. P. Thien. The Role of Hydrodynamic interaction in the
locomotion of microorganisms. Biophys. J. , Vol. 65, no. 2, pp. 755-778, August 1993.

[299] C. L. Ramsey and J. J. Grefenstette. Cased-based anytime learning. In D. W. Aha (Ed.),
Cased-based Reasoning: Papers from the 1994 Workshop. Menlo Park, CA: AAAI Press,
1994.

[300] N. S. V. Rao, S. S. Iyengar, J. B. Oommen, and R. L. Kashyap. On terrain model acquisition
by a point robot amidst polyhedral obstacles. IEEE J. of Robot. & Autom., Vol. 4, no. 4, pp.
450-455, August 1988.

[301] RAPID Robust Accurate Polygon Interface Detection,
http://www.cs.unc.edu/~geom/OBB/OBBT.html.

[302] W. E. Red. Minimum distances for robot task simulation. Robotica, Vol. 1, pp.231-238,
October 1983.

[303] G. N. Reeke, O. Sporns, and G. M. Edelman. Synthetic neural modeling: The ‘Darwin’ series
of recognition automata. Proceedings of the IEEE Int’l Conf. on Automation and Control, Vol.
78, no. 9, pp. 1498-1530, September 1990.

[304] J. Reif and Z. Sun. Nano-Robotics Motion Planning and its Applications in Nanotechnology
and Biomolecular Computing. Department of Computer Science, Duke University, 2002,
http://www.cs.duke.edu/~reif/paper/sunz/NanoRobotics.html .

[305] O. Renault, N. M. Thalmann, and D. Thalmann. A vision-based approach to behavioural
animation. Visualization and Computer Animation, Vol. 1, no. 1, pp. 18-21, 1990.

[306] L. Reppesgaard. Nanobiotechnology: Die Feinmechaniker der Zukunft nutzen Biomaterial als
Werkstoff. Computer Zeitung, no. 36, pp. 22, 2 September 2002.

[307] A. A. G. Requicha. Nanorobots, NEMS and Nanoassembly. IEEE ICRA International
Conference on Robotics and Automation, Vol. 91, no. 11, pp. 1922-1933, December 2003.

[308] A. A. G. Requicha, R. Resch, N. Montoya, B. E. Koel, A. Madhukar, and P. Will. Towards
hierarchical nanoassembly. IEEE/RSJ Int'l Conf. on Intelligent Robots & Systems, Kyongju,
Korea, pp. 34-39, 1999.

[309] A. A. G. Requicha, C. Baur, and A. Bugacov. Nanorobotic assembly of two-dimensional
structures. In proc. of the IEEE Int. Conf. on Robotics and Automation, Vol. 4, pp. 3368-3374,
May 1998.

[310] R. Resch and C. Baur. Manipulation of nano particles using dynamic force microscopy:
Simulation and experiments. App. Phys. A, Vol. 67, no. 3, pp. 265-271, September 1998.

[311] E. A. Rietman. Molecular Engineering of Nanosystems. Biological Physics Series, Springer-
Verlag, New York, USA, 2001.

[312] Y. Rollot, S. Regnier, P. Bidaud, and J. C. Guinot. Some conditions of micromanipulation by
adhesion. In Proc. of the Symp. Franco-Israelien, France, 1998.

[313] T. Rueckes. Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular
Computing Science. Science, Vol. 289, no. 5476, pp. 94-97, July 2000.

253

REFERENCES

[314] D. E. Rumelhart and J. L. McClelland. Parallel Distributed Processing: Exploration in the
microstructure of cognition. MIT Press, Cambridge, MA, 1986.

[315] S. Russel and P. Norvig. Artificial Intelligence: a Modern Approach. Prentice-Hall, 1995.
[316] S. Saito, H. Miyazaki, and T. Sato. Pick and place operation of a micro object with high

reliability and precision based on micro physics under SEM. In Proc. of the IEEE Int. Conf.
on Robotics and Automation, Vol. 4, pp. 2736-2743, 1999.

[317] A. Sanchis, J. M. Molina, P. Isasi, and J. Segovia. RTCS: a Reactive with Tags Classifier
System. Jounal of Intelligent and Robotic Systems, Vol. 27, no. 4, pp. 379-405, April 2000.

[318] J. T. Jr. Santini. A Controlled-Release Chip. Nature, Vol. 397, pp.335-338, 1999.
[319] M. A. Sartori and P. J. Antsaklis. Implementations of learning control systems using neural

networks. IEEE Control Systems Magazine, Vol. 12, no. 2, pp. 49-57, April 1992.
[320] K. Sasaki, H. Fujiwara, and H. Masuhara. Optical manipulation of a lasing particle and its

application to near-field microsprectroscopy. J. Vac. Sci. Technol. B, Vol. 15, no. 6, pp. 2786-
2790, Nov./Dec. 1997.

[321] T. Sato, J. Ichikawa, M. Mitsuishi, and Y. Hatamura. A new micro-teleoperation system
employing a hand-held force-feedback pencil. In Proc. of the IEEE Int. Conf. on Robotics and
Automation, Vol. 2, pp. 1728-1733, May 1994.

[322] D. M. Schafer, R. Reifenberger, A. Patil, and R. P. Andres. Fabrication of two-dimensional
arrays of nanometric-size clusters with the atomic force microscopy. App. Physics Letters,
Vol. 66, no. 8, pp. 1012-1014, February 1995.

[323] J. Scheppach. Nanotechnik: Die Wunderwelt der winzigen Giganten. P.M. Magazin, pp. 18-
24, Oktober 2002 http://www.pm-magazin.de/de/heftartikel/artikel_id293.htm .

[324] Scientific American. O Brasil na era da nanotecnologia. Scientific American Brasil, 26
September 2002, http://www2.uol.com.br/sciam/brasil.htm .

[325] N. C. Seeman. Nucleic Acid Junctions and Lattices. J. Theor. Biol. Vol. 99, no. 2, pp. 237-
247, November 1982.

[326] T. D. Seely, S. Camazine, and J. Sneyd. Collective Decision-making in honey bees: how
colonies choose among nectar sources. Behavioral Ecology and Sociobiology, Vol. 28, no. 4,
pp. 277-290, April 1991.

[327] R. Sharma. Locally efficient path planning in an uncertain, dynamic environment using a
probabilistic model. IEEE Trans. Robot. & Autom., Vol. 8, no. 1, pp. 105-110, February
1992.

[328] A. Shill. DCE - Das OSF Distributed Computing Environment. Springer-Verlag, 1993.
[329] M. Sitti, S. Horiguchi and H. Hashimoto. Controlled Pushing of Nanoparticles: Modeling and

Experiments. IEEE/ASME Trans. on Mechatronics, Vol. 5, no. 2, pp. 199-211, 2000.
[330] M. Sitti and H. Hashimoto. Teleoperated nano scale object manipulation. In Recent Advances

on Mechatronics, Springer Verlag Pub., Singapore, pp. 322-335, 1999.
[331] M. Sitti and H. Hashimoto. Two-dimensional fine particle positioning under optical

microscope using a piezoresistive cantilever as a manipulator. J. of Micromechatronics, Vol.
1, no. 1, pp. 25-48, 2000.

[332] M. Sitti and H. Hashimoto. Two-dimensional fine particle positioning using a piezoresistive
cantilever as a micro/nano-manipulator. In Proc. of the IEEE Int. Conf. on Robotics and
Automation, Detroit, pp. 2729-2735, May 1999.

[333] M. Sitti, M. Hoummady, and H. Hashimoto. Trends on mechatronics for micro/nano
telemanipulation: Survey and requirements. In IFAC Information Control in Manufacturing
1998, edited by G. Morel and F.B. Vernadat, Pergamon Pub., Belgium, pp. 235-240, 1998.

[334] H. W. Six and D. Wood. Counting and reporting intersections of d-ranges. IEEE Trans. on
Computers, Vol. 31, no. 3, March 1982.

[335] V. Skala, M. Kuchar, and Jan Hradek. Geometry Reconstruction in Rapid Prototyping with
Hash Function. In Proc. of IASTED International Conference on Computer Graphics and
Imaging, Honolulu, USA, pp.240-245, August 2001.

[336] G. D. Skidmore, M. Ellis and J. von Ehr. Free Space Construction with Carbon Nanotubes.
Science and Application of Nanotubes, Springer-Verlag, NY, 2000.

[337] B. Soucek. Neural and Concurrent Real-Time Systems. John Wiley & Sons Inc., NY, 1989.

254

REFERENCES

[338] R. W. Stark and S. Thalhammer. The AFM as a tool for chromosomal dissection - the
influence of physical parameters. Appl. Phys. A, Vol. 66, issue S1, pp. 579-584, 1998.

[339] L. Steels. Building agents out of autonomous behavior systems. In L. Steels and R. Brooks
(Eds.), The “artificial life” route to “artificial intelligence”. Building situated embodied
agents, pp. 102-137, Lawrence Erlbaum, New Haven, 1993.

[340] R. Stenger. Who should explore space, man or machine?. CNN Technology, 18th Feb. 2003,
http://www.cnn.com/2003/TECH/space/02/18/sprj.colu.space.future/index.html .

[341] A. Stentz. Optimal and efficient path planning for partially-known environments. In IEEE Int.
Conf. Robot. & Autom., Vol. 4, pp. 3310-3317, May 1994.

[342] R. Stracke, K. J. Böhm, J. Burgold, H. Schacht, and E. Unger. Physical and Technical
parameters determining the functioning of a knesin-based cell-free motor system.
Nanotechnology 11, UK, pp. 52-56, 2000.

[343] J. A. Stroscio and D.M. Eigler. Atomic and molecular manipulation with the scanning
tunneling microscope. Science, Vol. 254, no. 5036, pp. 1319-1326, November 1991.

[344] D. Sturman. A discussion on the development of motion control systems. In SigGraph Course
Notes: Computer Animation: 3-D Motion Specification and Control, number 10, 1987.

[345] J. H. Sudd. The transport of prey by ants. Behaviour, Vol. 25, no. 3-4, pp. 234-271, 1965.
[346] J. H. Sudd. How insects work in groups. Discovery, Vol. 25, pp. 15-19, June 1963.
[347] J. H. Sudd. The transport of prey by an ant, pheidole crasindoa. Behaviour, Vol. 16, no. 3-4,

pp. 295-308, 1960.
[348] J. Sun, M. Gao, and J. Feldmann. Electric Field Directed Layer-by-Layer Assembly of Highly

Fluorescent CdTe Nanoparticles. Journal of Nanoscience and Nanotechnology, Vol. 1, no. 2,
pp. 21-27, 2001.

[349] P. Svestka, A probabilistic approach to motion planning for car-like robots. Technical report,
Dept. Computer Science, Utrect Univ., Utrect, The Netherlands, April 1993.

[350] K. R. Symon. Mechanics. Third Edition, Addison-Wesley, Reading, MA, 1971.
[351] H. Takeda and J. C. Latombe. Sensory uncertainty field for mobile robot navigation. In IEEE

Int. Conf. Robt. & Autom., pp. 2465-2472, Nice, France, May 1992.
[352] T. Tanikawa, T. Arai, and T. Masuda. Development of micro manipulation system with two-

finger micro hand. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Vol.
2, pp. 850-855, November 1996.

[353] S. L. Tanimoto. The Elements of Artificial Intelligence Using Common Lisp. 2nd Edition,
Computer Science Press, 1995.

[354] S. J. Tans. Individual Single-Wall Carbon Nanotube as Quantum Wires. Nature, Vol. 386,
pp.474, April 1997.

[355] G. Theraulaz and E. Bonabeau. Coordination in distributed building. Science, Vol. 269, no. 4,
pp. 686-688, August 1995.

[356] W. Thibault and B. Naylor. Set operations on polyhedra using binary space partitioning trees.
SIGGRAPH’87 Computer Graphics, Vol. 21, no. 4, pp. 153-162, July 1987.

[357] A. Thompson. On the automatic design of robust electronics through artificial evolution. In M.
Sipper (Ed.), Proceedings of the 2nd International Conference on Evolvable Systems: From
biology to hardware (ICES98), Spriger-Verlag, Berlin, pp. 13-24, 1998.

[358] D. A. Tomalia. Starburst Cascade Dendrimers - Fundamental Building-Blocks for a New
Nanoscopic Chemistry Set. Advanced Materials, Vol.6, no. 7-8, pp. 529-539, 1994.

[359] T. C. Tsao and M. G. Safonov. Unfalsified direct adaptive control of a two-link robot arm.
International Journal of Adaptive Control and Signal Processing, Vol. 15, no. 3, pp. 319-334,
May 2001.

[360] G. Turk. Interactive collision detection for molecular graphics. Master’s thesis, Computer
Science Department, University of North Carolina at Chapel Hill, 1989.

[361] S. W. Turner, A. M. Perez, A. Lopez and H. G. Craighead. Monolithic Nanofluid Sieving
Structures for DNA Manipulation. J. Vac. Sci. Technol. B, Vol. 16, no.6, pp.3835-3840, 1998.

[362] H. Uchida, D.H. Huang, J. Yoshinobu, and M. Aono. Single-atom manipulation on the
si(111)7x7 surface by the STM. Surface Science, Vol. 287-288, part 2, pp. 1056-1061, May
1993.

255

REFERENCES

[363] K. P. Unnikrishnan and K. P. Venugopal. Alopex: A correlation-based learning algorithm for
feedforward and recurrent neural networks. Neural Computation, Vol. 6, no. 3, pp. 469-490,
1994.

[364] Jr. G. Vanecek. Brep-index: A multi-dimensional space partitioning tree. ACM/SIGGRAPH
Symposium on Solid Modeling Foundations and CAD Applications, Austin Texas, pp. 35-44,
1991.

[365] S. Voss. Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization.
Meta-Heuristics International Conference, Kluwer Academic Pub, 1998.

[366] J. Walker. Pentagon: $1 million prize in robot race. CNN Technology, January 13, 2003.
http://edition.cnn.com/2004/TECH/ptech/03/14/darpa.race/index.html,
www.darpa.mil/grandchallenge .

[367] B. Watson, J. Friend, and L. Yeo. Piezoelectric ultrasonic resonant motor with stator diameter
less than 250 μm: the Proteus motor. Journal of Micromechanics and Microengineering, Vol.
19, no. 2, 022001 (5pp), January 2009.

[368] M. Wautelet. Scaling laws in the macro-, micro- and nanoworlds. European Journal of
Physics, Vol. 22, no. 6, pp. 601–611, 2001.

[369] L. Weber, S. Wallbaum, C. Broger, and K. Gubernator. Optimization of the Biological
Activity of Combinatorial Compound Libraries by a Genetic Algorithm. Angew. Chem. Int.
Ed. Engl., Vol. 34, no. 20, pp. 2280-2282, December 2003.

[370] L. L. Whitcomb. Underwater Robotics: out of the research laboratory and into the Field. IEEE
Int’l Conf. on Robotics and Automation, pp. 85-90, April 2000.

[371] D. Whitley and T. Starkweather. Genetic algorithms and neural networks: Optimizing
connections and connectivity. Parallel Computing, Vol. 14, no. 3, pp. 347-361, 1990.

[372] H. K. Wickramasinghe. Scanned-Probe Microscopes. Scientific American, Vol. 261, pp.98-
105, 1989.

[373] R. J. Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, Vol. 8, no. 3-4, pp. 229-256, May 1992.

[374] R. H. Wilson and J. F. Rit. Maintaining Geometric Dependencies in Assembly Planning. In L.
S. Homem de Mello and S. Lee, editors, Computer-Aided Mechanical Assembly Planning, pp.
217-242, Kluwer, 1991.

[375] S. W. Wilson. The animat path to AI. In First International Conference on Simulation of
Adaptive Behavior, MIT Press, pp. 15-21, 1991.

[376] M. Woo, J. Neider, T. Davis, and D. Shreiner. OpenGL Programming Guide. 3rd Edition,
Addison-Wesley, Boston, USA, 1999.

[377] C. Wurll, D. Henrich, H. Wörn. Parallel on-line Motion Planning for Industrial Robots. 3rd
ASCE Specialty Conf. on Robotics for Challenging Environments, Robotics 98, New Mexico,
USA, pp. 314-320, 1998.

[378] T. Yamamoto. Molecular surgery of DNA using restriction enzymes. In Proc. of the France-
Japan Workshop on from Nano to Macro Science and Tech. Through Microsystems, pp. 38,
1998.

[379] H. Yan, X. Zhang, Z. Shen, N. C. Seeman. A Robust DNA Mechanical Device Controlled by
Hybridization Topology. Nature, Vol. 415, no. 6867, pp. 62-65, January 2002.

[380] W. Zesch and R.S. Fearing. Alignment of microparts using force controlled pushing. In SPIE
Conf. on Microrobotics and Micromanipulation, Boston, Vol. 3519, pp. 148-156[, November
1998.

[381] Y. Zhou, B. J. Nelson, and B. Vikramaditya. Fusing force and vision feedback for
micromanipulation. In Proc. of the IEEE Int. Conf on Robotics and Automation, Vol. 2, pp.
1220-1225, May 1998.

256

	Nanorobotics Control Design for Nanomedicine
	Adriano Cavalcanti

	Contents
	Introduction
	Nanotechnology
	Physically Based Simulation
	3.3 Physically Based Simulation .
	3.4.1 Interval Tree for 2D Intersection Tests .
	3.4.2 One-Dimensional Sort and Sweep .
	Motion Control
	4.1 Introduction .
	4.2 Motion Control Description .
	4.3 Uncertainty Environments .
	4.4 Sensor Based Motion Control
	4.4.1 Perceptual Cue .
	4.4.2 Orthogonal Sensing .
	4.4.3 Additive Cue .
	4.5.1 Multiple Robot Coordination .
	Artificial Neural Networks
	8.1 Introduction .. .
	8.2 Virtual Environment
	8.3 Evolutionary Decision .
	8.6 Neural Motion Control .

	List of Tables
	Imaging devices used for micro/nano manipulation and their properties.
	List of Figures
	The diamond makers, left to right are respectively Drs. Francis P. Bundy, Herbert M. Strong, H. Tracy Hall, Robert Wentorf, Anthony Nerad and Jim E. Cheney
	Nanometer size comparisons: macro, micro and nano by EAMES Office.
	Barriers among macro, micro and nano worlds.
	Polyhedral convex vertex-convex vertex, vertex-convex-edge, and aligned-convex-edges contacts. .
	Sensing by orthogonal spatially sensors.
	Input’s stimulus and the robot’s output action.
	A neuron model. .
	Learning issues. .
	Navigation in the search space of a NP-Hard problem - each sphere represents a solution.
	Roulette-wheel parents selection for the next crossover. .
	Task graph for n nanorobots system with modified sense and response stages.
	Top camera view in the virtual environment.
	Robot obstacle avoidance: sensing obstacles.
	System architecture (nanorobot’s functional parallel architecture).
	Illustrated is the nondirected molecule-transport where the nanorobots catch the molecule from different directions.
	Chapter 1
	Introduction
	Figure 1.2: Nano-gear design by NASA Ames.
	1.6 Thesis Outline

	Chapter 2
	Nanotechnology
	2.2	Physical and Chemical Properties
	2.5 A New Robotics Field
	2.6 Nanomedicine
	Chapter 3
	Physically Based Simulation
	3.3 	Physically Based Simulation
	Chapter 4
	Motion Control
	Chapter 5
	Artificial Neural Networks
	Chapter 6
	Evolutionary Techniques
	6.5 Genetic Operators
	6.5.1 	Crossover
	6.5.2 	Mutation

	Chapter 7
	Parallel Processing
	Chapter 8
	Proposed Control Design
	8.1 Introduction
	8.2 	Virtual Environment
	Figure 8.1: Top camera view in the virtual environment.
	8.3 Evolutionary Decision
	Incorporating robust behaviour in a complex real-world system requires accurate and timely reactions to stochastic environmental events [236][293][84], thereby advances in artificial intelligence and real time systems have become important and successful tools dealing with such problems, therefore use of concepts derived from Evolutionary Techniques, Artificial Life and Ants have received special attention in the research community [75][66].

	8.5 	Environment Sensing
	8.6 	Neural Motion Control

	8.7 	Conclusion
	Chapter 9
	Results Discussion
	Table 9.13: Neural motion optimization for verification route - distance cost in nm.
	Table 9.14: Neural motion optimization with complete trajectory - distance cost in nm.

	Chapter 10
	Conclusion
	10.1 	Perspective
	10.2 	Dissertation Role
	10.3 	Research Achievements
	10.4 	Main Contribution
	10.5 	Conclusions and Future Works
	Appendix B
	Decision Control
	CLASS: CrobotDecisionSensing
	CLASS: CrobotDecisionEvolutionary
	Appendix C
	Parallel Processing
	Start: Parallel Processing
	Class: CParallelManager
	Appendix D
	Motion Control
	CLASS: CNeural
	Appendix E
	Three Dimensional Rendering
	CLASS: CobjNanorobot3D
	Publication List
	Citation List
	References

