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Addendum 
1. Page iv para 3  line 3: replace “localized” with “localize” 

2. Page 1, three lines from the bottom: replace “supervise” with “supervised”.  

3. Page 1, line 7 from the bottom, add new sentences after “… from an environment.”: There are approaches 

[56-58, 114] that consider novelty as experiences that are seen once and will not be considered novel if they 

are seen again. However, in general, these approaches are not suited to on-line learning. The reason for this 

is given in [16]. Marsland et al. highlighted the fact that the type of novelty filter that is suitable for on-line 

training and also for use on an autonomous mobile robot must have a degree of robustness to accidental 

training (i.e. occasionally seeing features during training that should be identified as novel). This thesis will 

particularly address the problem of novelty detection for on-line training and for use on an autonomous 

mobile robot. For this reason, the definition of novelty as given in [16] is more suited to this thesis.  

4. Page 1: Add a new paragraph at the end of Section 1.1: It is impossible for a machine learning system to 

learn all possible object classes whose data the system is likely to encounter. That is why novelty detection is 

required as the system training is based only on available data. Different novelty detection methods have 

been discussed extensively in [56-58]. There is no single best model for novelty detection as the success of 

detection is based on the type of application and data handled. The methods in novelty detection are 

generally divided into two different approaches; statistical and neural network. Statistical approaches are 

based on modeling data based on its statistical properties and use this to test whether new information 

belongs to the same distribution or not. Prior data is needed to model its distribution [56]. Unlike a statistical 

approach, neural network approaches are based on machine learning of normal data and comparing what it 

learns with new inputs to find whether they belong to the normal class or not. The neural network approach 

has the advantage that a very small number of parameters need to be optimized for training networks and no 

priori assumptions on the properties of data are made [57]. These features suited the requirement of the 

system developed in this thesis. For that reason a novelty detection system that uses the neural network 

approach was chosen for this project. The selection and description of the novelty detection method used in 

this thesis is further discussed in Section 2.5. 

5. Page 2: Add line 3 of para 2 in Section 1.2, after “for collision detection [6-8]”: “, in assisting human robot 

interaction [114]” 

6. Page 2 para 3 line 9: Add: “a” different level of competence 

7. Page 2 para 3 line 12: replace “wander” with “wandering”, “explore” with “exploring”, and “build” with 

“building” 

8. Page 3: Add a new para at the top of the page: The difference between the works in the novelty detection 

field that do not consider applications on mobile robots [2-5] and those used on a mobile robot [6-16] is the 

need to take into account that the normal situation usually varies from place to place. The work described in 

[7-16] did consider the application of novelty on a moving mobile robot, but it used no map by assuming that 

there was only one normal condition for the whole environment. In [17], the variety of normal conditions at 

different places in the environment is considered by storing the information at fixed intervals along the 

robot‟s path. In [6], all normal state information is stored using a grid map, meaning that they are stored at 

fixed intervals throughout the whole of the robot‟s working environment (not only on the robot path). 

However, the author finds these methods [6, 17] waste memory space because in novelty detection 

application, there are many quantities that do not vary rapidly over space like temperature and pressure. In 

other robotics work [114], novelty detection is used but it does not address the problem of storing different 

normal quantities at different locations in the environment. This thesis proposes to address the variation of 

the normal situation in the mobile robot environment while taking into account the memory consumption to 

store this information. In addition, the author proposes that the novelty detection system should be adaptable 

to new changes in the environment to allow on-line learning and inspection, similar to the work in [16] but 

more challenging since the normal situation affecting a finite space is considered. On top of that, to the best 

of the author‟s knowledge, there is no work on mobile robots that takes advantage of mobility to reduce false 

alarms. This will also be introduced in this thesis. 

9. Page 4 line 8: Add after “… unusual at others.”: A map requires memory and reducing memory size is an 

important consideration when using onboard memory. Onboard memory is needed especially when a mobile 
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robot cannot communicate or transfer data wirelessly due to signal blockage (being underwater, inside a cave 

etc.) or due to physical constraints that do not allow the robot to carry a wireless module. 

10. Page 22: Add a new paragraph after para 2 (after line 10 from the top): To summarize what has been 

discussed in this section, the limitation of space-driven maps such as grid maps and Quadtrees require 

predefined boundaries before they can be used and this information would not be available for an unknown 

environment. Grid maps also have a fixed size and thus require a maximum amount of memory. A quad tree 

map could change size but it still wastes memory by allocating unused regions for areas not visited by the 

robot. A map using landmark locations is not suitable to represent regional data as it requires a number of 

locations which can use as much storage as a grid map or perception based map to represent a region. Map 

representation using the geometry of objects is restricted to systems that have sensors that can extract 

geometry information from the environment. Perception based maps might waste memory by storing the 

same information redundantly in a region as samples are indexed at regular intervals. Lastly, novelty 

detection systems that use no map are restricted to environments with a single normal condition. As we can 

see, these methods of mapping have limitations in terms of memory requirement as well as practicality 

issues for novelty detection application. These memory issues can be solved if the maps are data driven and 

at the same time have flexible and adaptable region size. For this reasons, a mapping system where size is 

flexible, adaptable, data driven and suitable for storing different types of measurements for novelty detection 

systems is proposed. 

11. Page 24: Add at the end of para 2: This relatively high standard deviation setting allows fast convergence 

during initialization and it does not affect the performance of the localization system in the simple 

environment used for the experiment. 

12. Page 26: line 1: replace “detail” with “detailed” 

13. Page 27: line 9 from the bottom: Add after “… is used here”: (see Section 2.5 for a detailed explanation) 

14. Page 29: Add at the end of para: The expansion of a region happens when the measurement taken from areas 

near a region is similar to the measurement taken from within the region. 

15. Page 30 line 4: replace “direction” with “directions” 

16. Page 33 line 3 from the top: Replace n with nr 

17. Page 33 Equation (2.15): Replace n with nr 

18. Fig 2.11 : replace “believe” with “believes”, “fro” with “from” and “becau” with “because” 

19. Page 43 line 6 from the bottom: replace “reduced” with reduce”. line 4 from the bottom: replace “used” with 

“use” 

20. Page 50 line 4 from the bottom: Add after “accuracy is calculated.”: The minimum region tolerance can be 

calculated using Equation ( 2.32 ). 

21. Page 55 line 3 from the bottom: Delete: From the author‟s experience,  in such situations, objects as small as 

0.1m2 can be readily detected if the object is about a meter from the laser range finder 

22. Page 61 para 1 line 3: Add after “ambient temperature of 24o C.”: The sensor was allowed to stabilize for a 

minute before taking a measurement at each marked distance from the source. 

23. Page 63 Algorithm 2.1 Between coding line12 and line13: Add: End 

24. Page 68 line 2 from the bottom: Add after “are shown in Table 2.4.”: From the table, door 1 could be in the 

open or closed state when the robot took the measurement (both are considered normal) and since there is no 

other alternative state, the unusual state is not applicable (n/a). 

25. Page 68: Add at the bottom of the page: In environments where walls are rough and uneven such as caves 

the number of regions will reduce little for certain measurements such as laser range scans. However, there 

will be quantities that do not vary very rapidly (such as temperature and pressure) and for these a flexible 

region map will be useful. 

26. Page 68 line 3 from the top: Add after “… into several regions”: (Ro1, Ro2 and Ro3) 

27. Page 85 para 2 line 1: replace “describe” with “described”  

28. Page 87 line10 from the top: Add after “(GWR)” : [16] 

29. Page 90 line2 from the bottom: Add after “… introduced.”: An „epoch‟ here means one tour of the entire 

robot environment. 

30. Page 99 line 2: replace “detail” with “detailed” 

31. Page 103: Add at the end of para 3: The clustering deals with different data (anomaly points) taken from 

different locations by any single type of sensor. 
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32. Page 107 Add at the end of para 2: The data values plotted in the figures were calculated. Note that accuracy 

here shows the degree of closeness of measurements of a quantity to its actual value. The figures do not 

show accuracy with respect to number of samples. Rather, they show how the accuracy could change when 

the number of affected sectors and the distance of the object from the sensor are varied. For Figure 4.5, the 

calculation is normalised to the maximum measurement of the laser i.e. when the object surface is close to 

the laser‟s maximum range. For Figure 4.7, the calculation is normalised to the maximum difference 

between the surface of the object and the value of the anomaly point. 

33. Page 123: line1 from the bottom - Add after “…to each other.”: Clustering has a useful effect for a moving 

object depending on the rate of measurement. If the rate is low, a moving object would not be detected; 

hence the algorithm could act as a filter for identifying only non moving objects. If the moving object moves 

about within the same area, there is a possibility that the anomaly points will be scattered and fail to be 

clustered. One possible solution is to increase the rate of measurement until the system can track the 

movement of the object. 

 By using the repetitive observation strategy, it would take a considerable amount of noise to produce a 

cluster. This reduces the possibility of false detection.  

In general, relatively old and new data are of equal importance for the repetitive observation strategy. 

However, the system has a finite amount of short term memory, where data are organized in a first in first 

out (FIFO) manner. Old data that are displaced out of the memory bank would be discarded. 

There are possibilities where two or more clusters might be caused by the same as well as different 

objects. However, in general, for the anomaly detection application, the most important thing is that 

anomalies can be detected.  

34. Page 143: Add at the end of para: As discussed earlier, with respect to the laser scan, scanning convex, non 

convex or even irregular shaped objects would give different results. The anomaly points would appear 

closer or further away from the object‟s surface depending on the surface profile. However, when using the 

repetitive observation strategy, observations are made from several different viewpoints. As a result, it is 

expected that, the resulting anomaly points will originate from different regions of the object‟s surface. For 

this reason, the clustering results for any relatively compact object are expected to be quite similar. 

35. Page 158: Add at the end of para: Over inspect could terminate navigation at non goal points but this will not 

defeat the purpose of the navigation which is to ensure total inspection coverage.  

36. Page 184: In publications number [4] and [5], replace “accepted to” with “in”. 

37. Page 194: Add a new reference: [114] Bruce MacDonald and Toby Collett, “Novelty processing in human 

robot interaction,” Symposium on Processing Novelty, Elam School of Fine Arts, University of Auckland, 

New Zealand, April 8 2004. 
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ABSTRACT 

Novelty detection is a method which highlights unusual data gathered from an 

environment. The use of novelty detection on a mobile system is an attractive idea. 

An important aspect of an intelligent robot is the ability to monitor changes as this is 

one of the important capabilities that are possessed by all biological systems. There 

are many applications that could benefit from this such as surveillance and inspection 

applications. However, there are also challenges that arise from implementing 

novelty detection on a mobile platform. One of them is the problem of mapping 

sensor measurements that are normally perceived (normal data) from the 

environment. Most conventional maps require some prior information about the 

environment to construct their structure, thus they are not readily adaptable to any 

environment. They also require a large amount of storage space and consequently 

require similar processing capability, and consume more power which as a whole 

constrains the design and size of the mobile system.  

This thesis presents an alternative mapping system for storing and learning 

normal data in the environment namely the flexible region mapping system. Its 

structure can change to accommodate the distribution of normal data. As a result, 

data are mapped where they are measured and according to the size of the affected 

area. This thesis also investigates approaches for reducing false positives and to 

estimate the position of anomalous objects by taking advantage of the system’s 

mobility. A close range inspection strategy has also been developed to demonstrate 

how an autonomous mobile robot could use the results of novelty detection to 

perform further investigation of anomalous objects. 

The work in this thesis has been targeted to be applicable to any mobile 

systems that could localized themselves, particularly those that have limited 

resources in terms of data storage, physical size, processing power and power supply. 

The solution of mapping normal sensor measurements that is demonstrated in this 



A B S T R A C T  

v | P a g e  

thesis is most suitable for structured environments but it could be extended to more 

complex environments.  

Experiments were conducted in an artificial L-shaped environment as well as 

in a real office corridor. A mobile robot that carries different types of sensors 

particularly a laser range finder, an anemometer, a temperature sensor, an ambient 

light sensor, a chemical concentration sensor and an electromagnetic radiation sensor 

was used.  The results show that the flexible region map used as few as 0.7% and 

3.3% of the storage space required for a conventional grid map and a perception 

based map. The map can autonomously accommodate to changes in the normal 

condition of the environment. The implementation of the false positive filter 

developed in this thesis reduces the false positive rate by up to 20% compared to the 

unfiltered novelty detection results, when using noisy sensors at the highest 

sensitivity settings. Apart from that, the close range inspection strategy is shown to 

be capable of achieving up to 100% close range inspection coverage near the vicinity 

of an anomaly. 
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Chapter 1  

 

Introduction 

This chapter presents the motivation and objectives of this research project. The 

philosophy behind the design of the various elements of this project is detailed to 

give an idea of the expected results. The contributions of the research are also 

described here. This chapter ends with an overview of the structure of the thesis. 

1.1 What is Novelty Detection? 

The adjective ‘novel’ is defined in Merriam-Webster [1] as: 

new and not resembling something formerly known or used, 

and novelty is defined as: 

the quality of being novel. 

Novelty detection is the process of identifying new/unusual/abnormal data 

gathered from an environment. As described by the definition of the adjective 

‘novel’, in order to identify new/unusual data, the novelty detection system must 

have knowledge of what is normal beforehand. The term ‘normal’ is used to describe 

the regular pattern or the norm. In this thesis, the normal condition of the 

environment is known through supervised or unsupervised learning. For supervise 

learning, a human supervisor sets a period of time where any measurement taken 

during the period is considered as normal. For unsupervised learning, a robot makes 
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repeated observation of the same environment and considers a regularly observed 

quantity over the many observations as normal. 

1.2 Motivation and aim 

There are many applications such as fault detection [2, 3], identification of masses in 

mammograms [4] and internet security [5] that would benefit from using novelty 

detection. For such applications, unusual data are scarce as faults or errors only 

happen occasionally which makes it difficult to gather data for training purposes. 

Also, sometimes it is difficult to determine in advance the features which indicate the 

items of interest to the detection system. For that reason, it is more practical to use a 

novelty detection approach and learn normal data instead of the abnormal data. Then 

any new data which differ from the normal data are considered as anomalies. 

Recently, the novelty detection approach is becoming more popular among 

researchers from the mobile robot field. Several works have been reported using 

novelty detection for collision detection [6-8] and to assist a learning process [9, 10]. 

Others have used novelty detection for focusing a robot’s attention [11, 12] and for 

inspection and surveillance tasks [11, 13-17]. Brooks in his paper [18] suggested that, 

in order to appear intelligent, a robot needs to display a number of different behaviors 

that operate in parallel, with more complex behaviors subsuming more primitive 

behaviors as required by the application and environment. The behaviors were ranked 

using different level of competence of which the higher level implies a more desired 

behavior that is expected from an intelligent robot when reacting to its environment. 

Some of the behaviors (in order of the level of competence) include avoiding objects, 

wander around the environment, explore and build maps of the environment. Placed 

at level 5 of his suggested task achieving behaviors is monitoring changes, of which 

novelty detection is an important example. This is why, in the future all 

domestic/office robots should be generally aware of their environment and although 

they may be cleaning/delivering/etc. robots, they should also be able to monitor 

changes and report anomalies just as we would expect a human doing the same task 

to do.  
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The work described in this thesis is motivated by the many benefits and 

challenges of developing an autonomous mobile robot system that employs novelty 

detection. Some of the challenges and benefits will be describe in the following 

subsections. 

1.2.1 The benefits 

There are many benefits of performing novelty detection using a mobile robot. The 

mobility of the novelty detection system overcomes the limitations of using static 

sensors. For example, it is easier to implement mobile robot surveillance than to 

setup and adapt static sensors to a new environment. It does not require the 

installation of fixtures on the building structure. Mobility also increases the effective 

working range of a sensor. As a consequence, it opens up the possibility of using 

sensors that have a very limited work range [19-21]. For these sensors, static 

installation would be impractical as too many units would be required to cover the 

whole environment [22] and they will cost too much. By using a mobile robot, a 

single expensive sensor can be used to monitor many locations in the environment.  

Sensing from close range benefits almost any sensor because in general the 

closer a sensor is to the source of the sensed entity, the more sensitive it will be. For 

example, chemical concentration is more diluted the further from the source it is 

measured. The same holds true for radiation level, magnetic field and light sources. 

Even with images from a camera, a close range viewpoint will highlight more 

detailed features such as the fine texture of the object surface. Apart from bringing 

sensors close to the object of interest, the mobile robot could also diversify the angle 

of perception of the sensors. A camera would certainly benefit from this, as any 

object usually looks different from different angles. Other examples where change of 

viewpoint can benefit perception include the situation where the airflow carries a 

chemical plume in a specific direction. 

Another advantage of using an autonomous mobile novelty detection system 

is that immediate action can be taken upon detecting an unusual situation. The action 
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could be further investigation of the detected entity. In a scenario which involves 

intruders, the mere presence of the robot would certainly discourage the intruders and 

the robot could also pursue or intercept them [23]. 

1.2.2 The challenges 

In order to perform novelty detection in an extended environment, a robot needs to 

refer to a map, which associates locations in the environment with their normal 

condition. Without a map, the robot will have difficulty evaluating conditions which 

are normal at one place but unusual at others. The size and dimension of a 

conventional grid based map need to be predefined. It also requires a lot of memory, 

which in turn constrains the robot minimum physical size, limits the size of the 

environment for any given memory, demands more computational resources, as well 

as consumes more energy. Hence, one of the challenges is to make the mapping data 

driven so that no prior knowledge of the environment is needed and to reduce the 

memory requirement of a map for novelty detection without sacrificing the detection 

performance. 

Another challenge is that the performance of novelty detection is affected by 

robot localization errors and deviation from a predefined inspection route. As a 

consequence, a great many false positives would be detected especially when the 

measured entity is sensitive to change in the sensor’s pose. 

Last but not least, learning the normal condition of an environment is a time 

consuming effort. The problem is exacerbated by the fact that the environment may 

change from time to time. The challenge is how to make the surveillance system 

easily adaptable to a new or a changed environment. 
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1.2.3 The aim of this thesis 

The overall aim of this research project is to investigate how to overcome the 

challenges and how to benefit from using novelty detection on a mobile robot. To be 

more specific, the following is a list of the objectives of this thesis: 

1. To reduce the memory requirements of a novelty detection map from what is 

required by the conventional mapping approach use by the current mobile 

robot system.  

2. To make the mapping data driven by adjusting the map to the needs of the 

normal measurements produced by different types of sensors in different 

locations in an environment. 

3. To make novelty detection maps autonomously adaptable to a new or 

changed environment. 

4. To reduce the number of false alarms from the results of the novelty detection 

by benefiting from the mobility of the surveillance system. 

5. To develop a method to allow a robot to perform close range inspection near 

the perimeter of the detected anomalous object using information from 

novelty detection. 

1.3 Design philosophy 

The author proposes a spatial novelty detection system which can function as a 

supporting subsystem. This will result in a system which could be easily added to any 

mobile robot system at any stage of the robot’s life. The proposed system is indicated 

in Figure 1.1 and requires no prior information about the environment. The only 

information it requires is its current sensor measurements and the robot’s pose. The 

output of the system is the condition of the environment and perhaps a sample of 

what is taken to be the normal sensor measurements at specific location in the 

environment (in case that the robot learns what is normal in the environment by 
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itself). Training of the spatial novelty detection system should also be made 

autonomous. Without any modification to the robot’s original task, the proposed 

system should be capable of autonomously learning the normal condition of the 

environment with a minimum or even no supervision. 

 

Figure 1.1: The proposed novelty detection system. 

The author believes that there are many applications which would benefit 

from this design philosophy. For example, a robot’s ability to monitor changes could 

be easily enhanced with new sensors. As a result, an old but functional robot could be 

retrofitted, a current inspection robot could be upgraded with new sensing technology 

[24] or any mobile robot could be designed without the need to allocate resources 

from its main system for monitoring changes. As the system does not require prior 

information about its environment and due to its ability to adapt, it could be easily 

used by any mass produced mobile robot without any knowledge of their future 

working environment.  

In addition to that, as depicted in Figure 1.1, any mobile object like vehicles, 

humans, cyborgs or even animals could be mounted with the system as long as they 

could localize themselves, probably by using GPS, beacons or other methods. Rats 

for example could be trained (or tricked) to follow a certain route in sewers or pipes. 

When mounted with the novelty detection system, they could be used to monitor the 

chemical content of the sewage or inspect cracks in pipes. Pets at home could carry 

the novelty detection system to monitor changes in noise level, temperature, smells 

and other parameters. When a novelty is detected the owner could be informed 

directly through wireless communication, perhaps direct to his/her mobile phone.  
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Apart from monitoring changes, another possible use from this novelty 

detection system is perhaps for observing the distribution of normal conditions in the 

environment. For example, cars that travel to work every weekday using the same 

route at about the same time could be used to observe the normal average speed 

pattern along different segments of the route. This information would be useful for 

the development of semi-autonomous ‘smart’ car which has become popular lately. 

As a supporting subsystem, the novelty detection system is preferably made 

standalone and external to the main system. As a result, this puts some constrains on 

the storage size, processing capability, power supply, cost and the physical size of the 

system, especially if the mobile system that carries the novelty detection system has 

space and weight limitations. This problem has been addressed before as one of the 

challenges of this project. 

1.4 Contributions of the Research 

The proposed autonomous mobile novelty detection system is illustrated in Figure 

1.2 where the main contributions and their related chapters are highlighted using bold 

text. The following subsections describe the contribution of this project. 

1.4.1 Development of flexible region map systems for novelty detection 

The main contribution of this thesis is a new approach for mapping normal data 

gathered from an environment, namely the flexible region map. This map acts as a 

reference for a mobile novelty detection system. The original idea about the map is 

that the size of its regions can change to accommodate the requirements of the entity 

that is mapped. The significant contribution of the map is that it reduces the amount 

of memory required to map normal data while maintaining the performance of the 

novelty detection system. 

As part of the contribution, a detail theoretical study of the use of a laser 

range finder sensor and the Flexible Region Map on the mobile novelty detection 
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system is also presented. There is also consideration of novelty detection with other 

sensors including an anemometer, ambient light sensor, gas concentration and 

temperature sensors. 

 

Figure 1.2: Overview of the autonomous mobile novelty detection system with indication of 

where the subsystems are presented in the thesis. The supporting subsystems (with no chapter 

label) that are employed for conducting the experiments are described in Chapter 2. 

1.4.2 Autonomous mapping using a flexible region map 

The next contribution of this thesis is the development of a method for making a 

flexible region map autonomously adapt to a new or changed environment. The map 

accommodates to changes in the environment by resizing, separating, creating or 

deleting region cells as well associating each cell with a normality measure.  

1.4.3 Repetitive observation strategy: Confirming the presence of an anomaly 

The repetitive observation strategy was also developed as part of this project. This 

strategy is a method which filters out false positive detections by rejecting isolated 
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events. A true detection is confirmed after repeated detection of an anomaly from the 

same vicinity. 

1.4.4 Close range inspection strategy  

This thesis also introduces a navigation strategy for close range inspection. By using 

the strategy, a robot would be able to navigate near the perimeter of anomalous 

objects. In contrast with the work by others, the aim of the path planning is to 

increase the inspection coverage near the perimeter of the object and not to find the 

shortest route from one point to another. The strategy uses information gathered from 

the novelty detection system when using the laser range finder. As part of the 

contribution of this thesis, an electromagnetic sensor which can sense electronic 

devices in packages was developed to demonstrate the close range inspection 

strategy. 

1.5 Thesis Organization 

In Chapter 2, the statement of the problem of mapping for novelty detection is 

described after providing a review of different map structure commonly used by 

traditional mobile robot system. Then the proposed flexible region mapping system is 

presented. Chapter 3 presents an extension of the work in Chapter2 where a method 

that allows the flexible region map to be autonomously updated is given. 

Chapter 4 discusses the repetitive observation strategy which takes advantage 

of the capability of a mobile robot which can take measurement from different 

position in the environment. Then a noise filtering method based on the repetitive 

observation strategy is presented in Chapter 5 where a filter which can reduce the 

number of false positive from the results of the novelty detection is described. 

Chapter 6 describes the close range inspection strategy which uses the system 

developed based on the work in Chapter 2 to Chapter 5 to perform inspection near 
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the vicinity of the detected anomalous object. Finally, Chapter 7 concludes the thesis 

with a discussion and some future direction for the research. 

Since a number of different topics are discussed in this thesis, the associated 

literature review is presented at the beginning of each chapter. 
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Chapter 2  

 

Flexible Region Map 

This chapter presents the main contribution of this dissertation; the flexible region 

map. The chapter starts with an overview of the application area. Then the flexible 

region map is presented. Following that the novelty detection mechanism used in this 

project and the practical considerations when mapping different types of sensor 

measurements are discussed. Experimental results show how the flexible region map 

can be adjusted to suit different types of measured entity as well as different novelty 

detection sensitivity settings while still achieving good performance. 

2.1 Introduction 

In order for novelty detection to be used on a mobile platform, the normal data from 

sensor measurements need to be associated with a map because they usually vary 

from place to place. Without a map, false detections might occur due to 

misclassification of data which is normal only at certain places in the environment. 

Producing a map as a reference for performing novelty detection is not a trivial task. 

The challenge is that, in some environments, the normal data for some quantity such 

as the ambient temperature is very much the same throughout the environment. In 

this case using a map seems to be unnecessary. However, sometimes there are 

exceptions at certain places in the environment, such as at locations near a heater. In 

such environments with isolated hot spots, by not using a map, false positives might 

occur if only a cool temperature is registered as normal. False negatives might occur 

if both the cooler temperature and the hotter temperature near the heater are 
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registered as normal for the whole environment and a hot temperature is detected at 

locations far from the heater.  However, if a grid based map is employed, memory 

will be wasted to store large amounts of redundant information about a quantity that 

varies only for a few distinct locations. 

Although memory size is not an issue for some applications, there are many 

where this is a constraint due to some limiting factor. One of the limiting factors is to 

minimize cost when the system is mass produced. Other factors, which are more 

technical, include limited computing resources, physical weight, physical size and 

power supply of the robot. For example, flying miniature robots or other micrometer 

or nanometer size robots might be very particular on the shape and weight of its 

physical body and there is a limitation on the power supply that they could carry. So, 

even though memory is cheap nowadays, the designer of these types of robots still 

considers ways which could optimize the robot’s resources. In addition to that, given 

any particular size of memory, reducing the amount of memory required per area 

means more area can be mapped. This is especially important for multi-purpose 

robots, which perform novelty detection as well as other processes which form their 

main task. 

Motivated by this challenge, the author has proposed a new mapping method 

called the flexible region map. This map can adjust the size of its cells which divide 

up the mapped space depending on the distribution of the normal condition in the 

environment. The flexible region map adjusts its memory requirements depending on 

the characteristics of the entity being mapped. In addition, the performance of 

novelty detection (i.e. measured using sensitivity) when using the flexible region map 

is comparable to using a grid based map. Sensitivity is defined as the proportion of 

actual positives which are correctly identified as such. The goal is to create a general 

spatial referencing method which could be used for any type of data for novelty 

detection purposes. 

This chapter presents a detail description of the flexible region map and 

practical aspects that must be considered when implementing novelty detection using 

the map. An in depth investigation of the use of the main sensor for this project (i.e. 
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the laser range finder) is given. Discussions of how to map normal data from entities 

detected by other sensors such as ambient light, ambient temperature, combustible 

gas concentration, electromagnetic radiation and wind data are also provided. 

The remainder of this chapter is organized as follows. Section 2.2 presents 

related work concerning map building and the uses of novelty detection in mobile 

robot applications. An overview of the mobile robot novelty detection system is 

given in Section 2.3. Section 2.4 describes the flexible region map approach. Section 

2.5 introduces the type of novelty detection used for this project. Section 2.6.1 

discusses case studies used to determine the parameters of the novelty detection 

system particularly for laser range finder data. In Section 2.6.2 details of other 

sensors that are used in this project are presented. Section 2.7 gives experimental 

results and this is followed by discussion and conclusions in the last section. 

2.2 Related Work 

A lot of previous work has been done in the area of mapping of spatial information. 

This section is dedicated to reviewing literature related to map representations in 

general.  The main purpose of the review is to consider the available map 

representations especially those that are used by mobile robots, in order to find the 

most appropriate map for storing novelty detection data (normal data gathered from 

the environment which is used for performing novelty detection). An example 

scenario and the requirements of novelty detection data will be considered to give an 

idea of the advantages and limitations of some of the map representations. The map 

that is sought should be able to accommodate different kinds of novelty detection 

data from different types of sensors and be as general as possible.  

The maps used for novelty detection will be thematic maps. A thematic map 

is a map which associates theme or feature information to their spatial location. In 

[25], Petchenik described thematic maps as "in place, about space". What illustrates 

the main difference between thematic maps and general reference maps is that while 

the general reference maps show where something is in space, thematic maps tell a 
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story about the place. For novelty detection, the theme is the normal data which 

comes from the robot’s sensors (such as temperature, distance, air flow velocity and 

direction, ambient light etc.) and which are taken in the robot’s environment. Some 

maps used for navigation could also be called thematic maps since the robot 

indirectly uses mapped signatures (list of features) perceived in the environment to 

determine its position [26]. 

There are many forms of thematic maps. The user of the map and the main 

purpose of the map help characterize the most suitable representation for a thematic 

map. Thematic maps are traditionally used in the field of geography to show the 

distribution of data such as population densities, barometric pressure, land elevation 

and other uses [27]. The main difference between these maps and the ones described 

here is the audience, as well as the cartographer. While all the traditional thematic 

maps are created by humans for humans, the cartographer and the audience of the 

novelty detection map is the robot itself. 

The measured quantities of any entity will not deviate too much if they are 

observed from within a region of a certain size. This is especially true for ambient 

entities like room temperature, light intensity and air flow velocity. This can also be 

true for measurements that are pose sensitive such as laser range finder 

measurements, by lowering the sensitivity of the novelty detection in exchange of 

allowing a small difference in measurements at neighboring poses. In this light, a 

regional thematic map is more appropriate for novelty detection applications. The 

following section will discuss different representations of maps especially for storing 

data affecting a region. 

2.2.1 Spatial Indexing 

The problem of spatial databases and indexing has been explored extensively 

especially in the field of computer science. A spatial database is a database that is 

optimized to store and query data related to objects in space while spatial indexes are 

used by spatial databases to optimize spatial queries. As the main concern is to 
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optimize spatial queries, a major part of the work in this field focuses on developing 

reference system which could be accessed or searched easily and on developing 

efficient searching algorithms. Although these are some of the motivations of the 

work in this chapter, the main concern is to find a suitable map representation for 

data to be used for novelty detection. For this reason, attention is given to map 

representations covered in the field of spatial indexing. Common spatial indexing 

methods that could represent data in regions include grids [28], Quadtrees [29, 30] 

and R-trees [31-33].  

A grid is a 2-D surface that is divided into a series of contiguous cells. The 

shape of the cells can be in many forms such as triangular and hexagonal [28]. 

However, square or rectangular grids are the most commonly used for their 

simplicity of representation using Cartesian coordinate. The grid map is perhaps the 

simplest form of spatial indexing to manage as its cell size and arrangement are 

fixed, and independent of the data. 

Quadtrees [29, 30] are a form of grid map where the resolution is varied 

according to the position and distribution of the data to be fitted. They are based on 

the successive subdivision of a 2-D region into four equally sized quadrants. Another 

commonly used variant of Quadtrees is the Octree where 3-D space is partitioned by 

subdividing it into eight octants. Although quadtrees and their variants reduce the 

storage space compared to a grid, they still have rigid geometries and relatively 

coarse steps of resolution. 

Unlike grids and Quadtrees, R-trees [31-33] have flexible geometry. When 

using R-trees, data are grouped using the minimum bounding rectangle (MBR). The 

MBR is an expression of the maximum extent of a 2-dimensional object within its 2-

D (x, y) coordinate system, (i.e. min(x), max(x), min(y), max(y)). One of the 

advantages of using R-trees for spatial indexing is that the size and the number of 

MBRs used is determined by the data. This means the storage size as well as the cells 

resolution is optimized to fit the data by contrast with grids or Quadtrees.  

In summary, some spatial index methods are ‘space driven’ like the grids, 

others like R-trees are ‘data driven’. While space driven indexing is easier to create, 
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the data driven approach is more storage efficient. The following section will discuss 

how some of the popular approaches involving spatial indexes and other methods are 

employed to produce maps that are used for mobile robot applications. 

2.2.2 Maps Used by Mobile Robots 

In the field of mobile robotics, a lot of work relating to mapping is mostly for 

navigation purposes. Maps for navigation are used to determine the robot position in 

the environment and also for performing path planning. Maps are also used by robots 

for purposes other than navigation such as to perform novelty detection. Although 

many of the examples given are related to simultaneous localization and mapping 

(SLAM) problems and some are related to path-planning, this chapter does not 

address these problems. The main purpose of the review is to see how different maps 

are represented. This will help the choice of the most suitable representation for 

storing novelty detection data. 

Different robot mapping approaches and their respective map representations 

are discussed in [34]. These include the Occupancy Grid [35, 36] which uses grid (or 

metric) maps and Kalman filtering [37, 38] that stores landmark locations. Others 

that specifically use laser scanner data like Lu/Millios [39] and Expectation 

Maximization [40] represent the map using point obstacles. There are also multi-

planar maps [41, 42] that store the geometry of objects instead of grids. For path 

planning, maps such as grids and Quadtrees [43] are used. These maps will be 

discussed from the perspective of how they are constructed and in terms of the 

amount of storage space required. 

2.2.2.1 Space-Driven Maps 

Grid maps (see Figure 2.1(a)) are one of the most common map representations for 

mobile robot use. They are commonly used to represent the presence of obstacles and 

free space at locations in the environment. One of the popular approaches is to 

associate each grid element in the grid map with its state of occupancy. This is often 
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presented probabilistically. Elfes and Moravec were among the first to use this 

approach. The map was named the occupancy grid map [35] and has been widely use 

by many others [44, 45]. Other researchers also employ grid based maps to map other 

physical entities such as gas plumes [46]. 

 

Figure 2.1: Possible number of cells and their arrangement when storing normal sensor 

measurements using different map representations. The path of the robot is shown as dashed 

lines. 

As mention before, grid maps are the easiest to create and manage since the 

map consists of evenly spaced grid elements and the size and the boundary of each 

grid element is predefined before the map is created. However, this also means that 

the memory requirement to store information in the grids is fixed and maximized. 

The resolution of the grid influences the accuracy of the spatial distribution of the 

information. This means that in order to gain a more accurate representation, more 

memory is required. As an example, as reported in [47], the state space to represent 

(a) Grid map (64 cells) (b) Quadtree (38 cells) 

(c) Perception based map (21 cells) (d) No map (no cells) 
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an environment of size 30 × 30m
2
 with an angular resolution of 2º and cell size of 

15×15cm
2
 consists of (30x0.15)

2 
x (360/2) = 7,200,000 states. Handling such a large 

number of states requires a lot of processing time and is a very demanding task with 

current computer speeds. 

Quadtrees reduce the amount of space required compared with grid maps and 

provides a means to efficiently access stored data and to be able to adjust the 

resolution of its cells. Like grids, the initial square cell of Quadtrees is predefined 

with a size that should cover the whole environment. The cell is divided into four 

equal areas if the data it needs to store is affecting only part of the cell. This is 

repeated until the data can be represented by a single cell or until the division meets 

the highest map resolution. Although this will reduce some storage space, as can be 

seen from the example in Figure 2.1(b), due to its rigid geometry and coarse step 

resolution, some cells are still unnecessarily created. As shown in the example in 

Figure 2.1, for some mobile robot applications, the robot navigation route may be 

planned such that it does not visit most of the reachable area covered by the map. 

This will waste the memory required to map unvisited areas. It is natural for a 

surveillance robot to follow a predefined route [17] or to use wall following behavior 

[16] as many human security officers do. The reason is that to visit all discreet 

positions in the environment would take too much time and effort. 

2.2.2.2 Data-Driven Map 

Some maps used by mobile robots only store information when and where it becomes 

available. The advantage of this is that no memory is wasted for empty cells as with 

the grid map or Quadtrees. Examples of such map representations includes landmark 

locations [37, 38] and the geometry of objects [41, 42]. As the representations are 

data dependent, the types of representations are chosen to suit the nature and purpose 

of the data. Landmark locations refer to the points where features are extracted from 

vision or laser range finder data in 2-d or 3-d space (see the example in Figure 2.2). 

However, landmark data is represented at points which means that this method is not 

suitable for representing data affecting a region.  
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Figure 2.2: Example of a map representation using landmark locations (red dots) and point 

obstacles (green dots that appear as lines). The positions of the robot when it takes the laser 

measurements are represented as the white squares. Courtesy of Fredy Tungadi of the 

Intelligent Robotic Research Centre (IRRC) at Monash University. 

An example of representations using the geometry of objects is shown in 

Figure 2.3. The surface of objects such as walls and doors are represented using 

planes. In addition to that, other characteristics such as their textures are associated 

with these planes. This map representation could be used to represent regional data 

such as the texture given in the example. However, its application is limited to 

representing the position of structured objects in space and a range sensor such as the 

laser range finder is required to acquire the geometry of the plane. 



Flexible Region Map | C h a p t e r  

20 | P a g e  

 

 

Figure 2.3: An example of a map representation using planes (left) with the texture of the planes 

(right). Courtesy of Nghia Ho of the Intelligent Robotic Research Centre (IRRC) at Monash 

University [48]. 

As the novelty detection task is actually to compare perceptions taken at a 

certain location but at different times, a perception based map is perhaps more 

suitable for representing the data. This means that the information is simply 

referenced to the position where the robot acquires it. One example of this type of 

representation is called point obstacles (see the example in Figure 2.2). Point obstacle 

representation is used in [49] where the laser measurements are indexed at the 

position of the robot when it takes the measurements. For point obstacle 

representation, the laser measurements need to be taken and indexed at closely space 

points. This is done to allow a high percentage of overlapping to align and correct the 

laser scans.  

Another example of a perception based map is described in [17] and is 

actually used for novelty detection. The robot navigates by following a path, and 

information which is observed from the route is mapped onto the position of the 

robot. This type of map is illustrated in Figure 2.1 (c). Unlike grid maps, this map 

saves a large amount of memory by only storing information on the robot path. In 

this particular example, panoramic images are stored at regular intervals along the 

route, as it is expected that in most environments this information is sensitive to 

changes in position. 

From these examples of perception based representation, it can be seen that 

due to requirement of the techniques and/or the sensors, samples are indexed at 
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regular intervals. However, many sensed quantities such as ambient temperature and 

combustible chemical concentration can have the same value throughout an area such 

as an office environment, except for certain exceptional locations. Even high 

dimensional sensors return the same measurement in certain situations. For example, 

successive laser range finder distance measurements are similar in a long corridor. 

Another example is the histogram features of images taken by a camera in a 

monotonous colored room which will look the same. In such situations, storing 

perceptions at a regular interval will waste memory by storing redundant information 

in neighboring positions when these elements could actually be merged together. The 

following section will discuss some related work which uses no map when 

performing novelty detection in these types of situation. 

2.2.2.3 Mobile Novelty Detection Using No Map 

In some environments, all data are assumed to be distributed evenly or if they are not, 

it is assumed that each group of data is unique and therefore no referencing to the 

environment space is needed (see Figure 2.1(d)). Examples of this can be found in 

Marsland’s work for novelty detection purposes [16, 50, 51]. 

In these examples, the possible unusual data is assumed to have no 

resemblance to the normal data. While this approach minimizes the memory 

requirement, the assumption made is limited to environments like inside pipes or 

sewers. In most environments such as in corridor and offices, there are many 

different conditions which are normally observed in the environment but might be 

unusual at certain locations.  

In [52], Marsland introduces an approach suggesting how to select the 

appropriate novelty filter (each novelty filter stores normal data related to a specific 

environment) to use in different environments by using a familiarity vector. 

However, this approach requires the robot to travel a certain distance before it has 

enough confidence to select the appropriate novelty filter. By the time it is able to 
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choose the appropriate filter to use it might already have missed highlighting some 

unusual measurements. 

2.2.3 Summary 

Different types of map representations have been discussed, especially ones that are 

commonly used in the mobile robotic field. From the literature many maps used for 

navigation are available but only a few are used for novelty detection, as novelty 

detection is not often implemented on a mobile robot. To the best of the author’s 

knowledge, no effort has been given to investigating the type of map representation 

that is suitable for novelty detection applications and is sufficiently general that it can 

be used for referencing different types of data in a wide range of situations.  

The proposed map representation for novelty detection using a mobile robot 

is as follows:  

1. Data driven indexing like the R-tree is used, although the hierarchical aspect 

(the tree) is not implemented as optimized searching of data is beyond the 

scope of this work. To the best of the author’s knowledge, it has never been 

used before for novelty detection using a mobile robot. 

2. Regions that have a flexible size are used to accommodate the requirement of 

different types of data in a range of possible situations. 

3. Minimum Bounding Rectangle (MBR) is used for representing the region as 

it is the computationally simplest of all linear bounding containers [53].  

4. Regions can be changed (created, expand, merge and separated) in response 

to dynamic data. 

The expected kind of maps that store measurements from different sensors are 

illustrated in Figure 2.4. 



Flexible Region Map | C h a p t e r  

23 | P a g e  

 

 

Figure 2.4: Possible number of cells and their arrangement when storing different types of 

normal sensor measurements using the flexible region map. 

2.3 Overall System Design 

This section provides a description of the overall system. A schematic diagram of the 

functional system design is shown in Figure 2.5. This consists of three main 

components; the navigation system, thematic mapping/referencing system and 

novelty detection mechanism. 

The navigation system provides position and heading information to the main 

controller. The robot determines its position using odometry and corrects 

accumulated position errors using a particle filter localization approach. The 

availability of the hardware and software for developing the particle filter 

localization made the author chose the technique over others. In practice, any 

localization technique can be use instead of the particle filter approach. 

The robot navigates with a wall-following behavior using feedback from its 

laser range finder as described in [54]. It maintains a distance of 400 mm from the 

wall either on its left or on its right, depending on the direction of travel. During 

inspection from the starting point to the stopping point, the robot pauses every 100 
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mm of travel and then aligns itself parallel to the wall before taking measurements 

from its sensors.  

Particle filter localization was used to determine the position of the robot. A 

detail explanation of the approach is presented in [55]. For this project, laser 

measurements were employed as the sensory information used by the method. A 

constant number of 1000 particles was used and the weighted mean of the states of 

these particles was used to estimate the robot position. The position estimate is 

accepted only if the standard deviation of the distribution of the robot position in x 

and y directions are both below 100 mm and 5º for the heading. 

The main contribution of this chapter is in the development of the thematic 

mapping system. It requires two types of information; robot heading and position 

together with normal sensor measurements. Any type of novelty detection 

mechanism can be employed to represent the normal sensor measurement. For this 

project, the Habituating Self Organizing Map was employed. The novelty detection 

mechanism and the flexible region map are described in detail in the following 

sections. 

 

Figure 2.5: Functional diagram of the surveillance robot with its main system components for 

performing novelty detection and mapping normal data using a flexible region map. 
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The mobile robot used for the experiments was a Pioneer 3 DX manufactured 

by MobileRobots Inc. The robot carries several sensors including a Hokuyo URG-

400LX laser range finder, a TGS2600 chemical sensor, an LDR for measuring light 

intensity, a TS8000 Anemometer and a SMT 160-30 ambient temperature sensor. 

The detail features of the sensors are mentioned in Section 2.6 Implementation of 

Different Sensor Types. 

 

 

Figure 2.6: The Pioneer 3 mobile robot used for the experiments and the positioning of its 

various sensors.  
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2.4 Flexible Region Map 

This section presents a detail description of the flexible region map which is the main 

contribution of this thesis.  

2.4.1 Definition and design considerations 

2.4.1.1 Definition 

A flexible region is defined as a geometrically specified area which can change its 

size to shrink or grow, as well as merge with other regions. These changes are 

performed based on the similarity between perceptions at neighboring spatial 

positions of the robot. 

2.4.1.2 Shape and description of a region  

In principal a flexible region could be represented using any spatial footprints like a 

bounding diamond, the minimum bounding parallelogram, the convex hull, the 

bounding circle or bounding ball, and the bounding ellipse. For this project, the 

bounding box, also known as Minimum Bounding Rectangle (MBR) is used as it is 

known to be the computationally simplest of all the linear bounding containers [53]. 

Rectangular shapes are also relatively easy to combine into a map compared to other 

shapes. Another reason is that since grid based maps and perception based maps use 

rectangular cells as well, direct comparison could be made between these maps and 

the flexible region maps.  A rectangle is described using its width, w and length, l 

extending from a reference point (Px_region, Py_region). 

2.4.1.3 Information associated with a region 

1. Reference point (Px_region, Py_region) - A reference point referred to the bottom 

left corner of a rectangle. 
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2. Region size - The size of a region is described using the width and the length 

extending from the reference point (Px_region, Py_region). 

3. Heading states – The robot’s heading also needs to be associated with the 

map especially if a sensor measurement is sensitive to the change of the 

robot’s heading. In this project, laser range finder and air flow direction 

measurements are two of the measurement types that are sensitive to change 

of the robot’s heading. As the intended working environment for the 

surveillance robot developed for this project is mostly rectangular in shape, 

the author decided that it was sufficient to reduce the number of states for the 

robot heading to 4 i.e. 0, 90, 180 and 270. 

4. Normal measurements - Normal measurements are sensor measurements that 

are commonly observed (autonomously by robot) or labeled as normal by a 

human expert. In this project, normal sensor measurements are represented 

using neurons in a Habituating Self Organizing Map (HSOM). The HSOM is 

discussed in detail in Section 2.5 Novelty Detection Mechanism: An 

Introduction to the Habituating Self Organizing Map. 

2.4.1.4 Region tolerance, RT 

Region tolerance, RT is the maximum allowable difference between measurements 

taken (or ‘neurons’ since neural network based novelty detection is used here) from 

anywhere in a region and measurement at the centre of the region when it is initially 

created. In the case where a measured quantity should remain unchanged, there are 3 

reasons why measurements at the same position could differ from each other: 

1. Robot localization error – the deviation between the robot actual position and 

estimated position. 

2. Robot path-following repeatability – the degree of offset between the robot 

actual path and the planned path. 

3. Sensor measurement error and fluctuation. 
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These are the factors to be considered in choosing the value of a region 

tolerance.  

A more general form of region tolerance is the similarity threshold, ST. ST is 

the maximum allowable difference between two measurements that belong to the 

same group. More information about the similarity threshold is provided in Section 

2.5 Novelty Detection Mechanism: An Introduction to the Habituating Self 

Organizing Map. 

2.4.1.5 Trade-off between number of regions and sensitivity of detection 

Region tolerance can be set higher than its minimum value so that measurements at 

neighboring locations that are less similar to each other can be referenced using one 

region. This decreases memory requirement by reducing the number of regions in the 

map. However, by doing this the sensitivity of the novelty detection will also be 

reduced. A detail explanation of the concept of sensitivity relating to novelty 

detection is given in Section 2.5.4 Measure of the performance of HSOM. 

2.4.2 Initiation of a region 

When required, a new region (Ri) is initiated by establishing a winit mm wide and linit 

mm long rectangle with the centre being the position of the sensor (see Figure 2.7). 

As mention earlier, the values of the initial width, winit and the initial length, linit 

depend on the minimum value of the region tolerance. 

A region is initiated if both of the following conditions are true: 

1. At the current robot position, the robot observes a normal sensor 

measurement. 

2. There is no existing region at the current robot position which maps the 

normal sensor measurement. 
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Figure 2.7: Initiation of a region. 

2.4.3 Expansion of a region 

A region grows by increasing its width or length by the width or length extension 

value, w or l (see region Ri in Figure 2.8). The sensor receptive angle influences 

the expansion direction of the region unless the sensor is insensitive to direction. A 

region should be expanded if the difference between a measurement taken 

immediately outside of a region and measurement at the center of the initial region is 

less than the region tolerance, RT. 
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Figure 2.8: Expansion of a region. 

The parameter that needs to be changed (Px_region, Py_region, l or w) and the 

amount by which it changes depends on the direction of expansion. The main 

consideration is that the region tolerance is maintained below its set value. The 

following are the parameter values that need to change for different direction of 

extension.  

1. If the extension is in the positive y direction. 

𝑙𝑖(𝑡 + 1) =   𝑃𝑦_𝑟𝑜𝑏𝑜𝑡 − 𝑃𝑦_𝑟𝑒𝑔𝑖𝑜𝑛    ( 2.1 ) 
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2. If the extension is in the positive x direction. 

𝑤(𝑡 + 1) =    𝑃𝑥𝑟𝑜𝑏𝑜𝑡
− 𝑃𝑥_𝑟𝑒𝑔𝑖𝑜𝑛       ( 2.2 ) 

 

3. If the extension is in the negative y direction. 

𝛿𝑙 =    𝑃𝑦_𝑟𝑒𝑔𝑖𝑜𝑛 − 𝑃𝑦_𝑟𝑜𝑏𝑜𝑡    ( 2.3 ) 

𝑙 𝑡 + 1 =  𝑙 𝑡 +  𝛿𝑙   ( 2.4 ) 

𝑃𝑦_𝑟𝑒𝑔𝑖𝑜𝑛 (𝑡 + 1) =  𝑃𝑦_𝑟𝑒𝑔𝑖𝑜𝑛 _𝑝𝑟𝑒𝑣 (𝑡) −  𝛿𝑙   ( 2.5 ) 

  

4. If the extension is in the negative x direction. 

𝛿𝑤 =    𝑃𝑥_𝑟𝑒𝑔𝑖𝑜𝑛 − 𝑃𝑥_𝑟𝑜𝑏𝑜𝑡    ( 2.6 ) 

𝑤 𝑡 + 1 =  𝑤 𝑡 +  𝛿𝑤  ( 2.7 ) 

𝑃𝑥_𝑟𝑒𝑔𝑖𝑜𝑛 (𝑡 + 1) =  𝑃𝑥_𝑟𝑒𝑔𝑖𝑜𝑛 _𝑝𝑟𝑒𝑣 (𝑡) −  𝛿𝑤  ( 2.8 ) 

2.4.4 Merging two regions 

Two regions Ri and Rj (see Figure 2.9 for an example) are merged by combining 

either the width or the length of both regions. The regions Ri and Rj could be merged 

if they fulfill the following requirements: 
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1. Both are close to each other, such that the gap between both regions, n is 

less than a threshold, nT. Depending on the direction of the mergence, the 

threshold value is taken to be half of the region’s initial width or length. As 

explained earlier, this is to ensure that the region tolerance is maintained to be 

below the set value. 

 

2. The length of both regions is about the same size given that their y 

coordinates are similar, or the width of both regions is about the same size 

given that their x coordinates are similar as shown in Equation ( 2.13 ) and 

Equation ( 2.14 ). 

   𝑃𝑥_𝑅𝑖 + 𝑤𝑖 − 𝑃𝑥_𝑅𝑗   ≤ 0.5𝑤𝑖𝑛𝑖𝑡  ( 2.9 ) 

   𝑃𝑥_𝑅𝑗 + 𝑤𝑗  − 𝑃𝑥_𝑅𝑖  ≤ 0.5𝑤𝑖𝑛𝑖𝑡  ( 2.10 ) 

   𝑃𝑦_𝑅𝑖 + 𝑙𝑖 − 𝑃𝑦_𝑅𝑗   ≤ 0.5𝑙𝑖𝑛𝑖𝑡  ( 2.11 ) 

   𝑃𝑦_𝑅𝑗 + 𝑙𝑗  − 𝑃𝑦_𝑅𝑖  ≤ 0.5𝑙𝑖𝑛𝑖𝑡  ( 2.12 ) 

 𝑤𝑖 − 𝑤𝑗  ≤ 0.5𝑤𝑖𝑛𝑖𝑡  𝑔𝑖𝑣𝑒𝑛 𝑡𝑕𝑎𝑡  𝑃𝑥_𝑅𝑖 − 𝑃𝑥_𝑅𝑗  < 0.5𝑤𝑖𝑛𝑖𝑡  ( 2.13 ) 

or  

 𝑙𝑖 − 𝑙𝑗  ≤ 0.5𝑙𝑖𝑛𝑖𝑡  𝑔𝑖𝑣𝑒𝑛 𝑡𝑕𝑎𝑡  𝑃𝑦_𝑅𝑖 − 𝑃𝑦_𝑅𝑗  < 0.5𝑙𝑖𝑛𝑖𝑡  ( 2.14 ) 
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3. Both regions contain the same set of neurons as shown in Equation ( 2.15 ) 

where Ni and Nj are two sets of data from region Ri and region Rj respectively 

which consist of the value of normal neurons n observed from within the 

regions.  

𝑁𝑖 = 𝑁𝑗 =  𝑛1, 𝑛2, … , 𝑛𝑛  ( 2.15 ) 

 

Figure 2.9: Merging two neighboring regions. 

2.5 Novelty Detection Mechanism: An Introduction to the Habituating Self 

Organizing Map 

This section describes the novelty detection mechanism that is used in this project. 

As mentioned before, novelty detection is a mechanism which highlights sensor 

measurements that deviate from the normal condition of the environment. The 

considerations that should be taken into account when selecting an appropriate 
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novelty detection method vary from case to case and depend on the type of 

application [56-58]. In this project, the main considerations are: 

1. The novelty detection is implemented on a mobile platform. 

2. Many different types of data are used including laser distance measurements, 

temperature, humidity, air flow direction, air flow velocity and chemical 

concentration.  

Based on these considerations, the Habituating Self Organizing Map (HSOM) 

[51] was chosen. HSOM is a neural network type novelty detection mechanism 

which can readily adapt to a new environment. A small number of runs are sufficient 

for the system to learn the pattern of measurements found in an environment. This 

makes the learning process for different types of sensor measurements relatively 

simple. HSOM also has been proven to work for mobile robot applications [51].  

Figure 2.10 illustrates an example of an Habituating Self Organizing Map 

(HSOM) neural network consisting of 4 neurons in its hidden layer. It is a novelty 

detection mechanism based on the Self Organizing Map (SOM) and consists of two 

separate parts: 

1. A clustering network (i.e. SOM) 

2. A set of habituating synapses that connect the network neurons to the output 

neuron (i.e. habituation function). 

As can be seen from the figure, each of its neurons is connected to the output 

via an habituable synapse. The output neuron carries the value of the habituable 

synapse of the best matching neuron, nBMU. The input measurement is considered as 

normal if the value is below the habituation threshold, hT. 
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Figure 2.10: A neural network consisting of an input layer, a hidden layer and an output layer.  

2.5.1 Self Organizing Map 

The Self Organizing Map (SOM) [59] is one of the most commonly used 

unsupervised neural networks. Its function is to cluster input measurements from 

each of the sensors by adapting its neuron weight vectors to resemble the different 

input patterns. Instead of just adapting the winning neuron, the SOM also adapts the 

neurons that are similar to the winner, although to a lesser extent. Because of this, a 

SOM network has the self organization property. This means that similar perceptions 

are close to each other in the neural network map space or in other words, it is 

topology preserving. The benefit of this is that the novelty detection mechanism can 

generalize between similar perceptions. 

Weight initialization. 

Prior to performing the clustering process, the neuron weight vectors need to be 

initialized. One of the limiting factors when using a SOM is that its success in 

representing the environment depends on a good initialization of its weight vectors. 

For this reason, in this project the weight vector of each neuron is initiated by 

applying K-mean clustering [60] on data gathered from the environment. This is done 
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to ensure that the distribution of the weight vector lies within the principal 

component of the data gathered from the environment. 

Clustering process. 

The clustering can be performed either online or offline. In this project, this process 

is performed offline. This means that, the sensor measurements were gathered from 

several passes through the environment and following that they were used as the 

input to the SOM network.  In this project, data from each sensor are treated 

separately and each sensor has its own SOM network.  

The SOM clustering process is as follows: 

1. For a given input, i, the distance between the input and each neuron in the 

hidden layer, j is calculated using the Euclidean distance measure, dj as given 

by Equation ( 2.16 ) where vi is a component of the input vector and wij is a 

component of the neuron weight vector (refer to Figure 2.10). 

𝑑𝑗  =   𝑣𝑖 𝑡 − 𝑤𝑖𝑗  𝑡  
2

N

i=1

 ( 2.16 ) 

 

2. The neuron that has the minimum distance is selected as the winner, or the 

Best Matching Unit (BMU). 

3. The weight for the BMU and its neighbors (i.e. neurons that have a distance 

similar to the BMU) are updated using Equation ( 2.17 ). In the equation, Θ is 

the neighborhood function which describes the relationship between the BMU 

and its neighbors and α is the learning rate. 

𝑤𝑖𝑗  𝑡 + 1 = 𝑤𝑖𝑗  𝑡 + Θ(𝑡)𝛼 𝑡 (𝑣𝑖 𝑡 − 𝑤𝑖𝑗  𝑡 ) ( 2.17 ) 
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Neighborhood and learning function. 

To ensure that the SOM network preserves its topological ordering, the adaptation of 

its weight vectors is controlled by a neighborhood function, Θ and a learning 

function, α. The neighborhood function defines the amount of influence a BMU has 

over its neighbors. The more similar a neuron is to the BMU, the higher the value of 

Θ. The similarity between a neuron weight vector and a BMU weight vector is 

calculated using the Euclidean distance as given by Equation ( 2.18 ). 

 

𝑑𝑗𝐵𝑀𝑈 (𝑤𝑖𝑗 ) =    𝑤𝑖𝑗 − 𝑤𝑖𝐵𝑀𝑈  
2

𝑁

𝑖=1

 ( 2.18 ) 

 

The neighborhood size, r also decreases over time to make the network 

stabilize after some times as given by Equation ( 2.19 ) where τ is a constant the 

controls the rate of the decay. 

𝑟 𝑡 = 𝑒 
−𝑡
𝜏

 
 ( 2.19 ) 

The neighborhood function, Θ(d,r) takes the form of a Gaussian function and 

is given by Equation ( 2.20 ) where d is the distance between the weight vector of a 

neuron and the BMU and r is the neighborhood size. 

Θ 𝑑, 𝑟 = 𝑒
−

𝑑
2𝑟2  ( 2.20 ) 
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The learning function, α is given by Equation ( 2.21 ) where τ1 is a constant 

that controls the rate of decay. 

𝛼 𝑡 = e
−t
τ1  ( 2.21 ) 

2.5.2 Habituation function 

The second part of the Habituating Self Organizing Map (HSOM) is the habituation 

function. To modify a SOM network to become a HSOM, each of the neurons in the 

hidden layer is linked to the output through an habituable synapse (refer to Figure 

2.10). The synapse habituates every time a neuron becomes the best matching unit 

(BMU).  

There are various models of habituation described in the literature [61-63]. 

However, as commented by Marsland in [13], all that is required for simulating an 

habituation behavior is a curve that shows decay as the number of perceptions 

increases. For that reason, in this thesis, a decaying exponential function is used for 

habituating the synapses, given by Equation ( 2.22 ). In the equation, o is the number 

of times the neuron becomes the BMU and τ2 is a time constant which governs the 

rate of habituation. A neuron is considered as normal if its habituation synapse, nj(o) 

is less than the habituation threshold, hT (see Figure 2.10). 

𝑛𝑗 (𝑜) = 𝑒
−𝑜
𝜏2  ( 2.22 ) 

2.5.3 Similarity threshold, ST 

Similarity threshold, ST is the maximum allowable difference between two 

measurements that belong in the same group. If the similarity measure between an 
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input vector and a neuron weight vector is bigger than ST, the pair is not considered as 

a significant match. 

One of the limitations of the Habituating Self Organizing Map (HSOM) is 

that when it finds the best matching neuron, even a very poor match can become the 

best match. In this project, this drawback is resolved by rejecting a match that is not 

significant. In this case, the input measurement should be classified as a novel 

measurement.  

2.5.4 Measure of the performance of HSOM 

Sensitivity is a common performance measure of a binary classification test such as 

the Habituating Self Organizing Map novelty filter. In order to clarify the concept of 

sensitivity, imagine a surveillance scenario where an environment is tested for the 

presence of a novel object. The test outcome can be positive (a novel object is 

present) or negative (a novel object is not present), while the actual status of the 

environment may be different. In that setting the following can be defined: 

True positive (TP): Environment that has a novel object is correctly observed to have 

a novel object. 

False positive (FP): Environment that does not have a novel object is wrongly 

identified as having a novel object. 

True negative (TN): Environment that does not have a novel object is correctly 

recognized as having no novel object. 

False negative (FN): Environment that has a novel object is wrongly identified as 

having no novel object. 

The state of detection as described in the previous list is summarized using a 

confusion matrix as shown in Table 2.1. 

Table 2.1: Confusion matrix representing the possible outcomes of the novelty detection. 
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Is the state novel? 
Actual state  

Yes No 

Measured state 
Yes TP FP 

No FN TN 

 

Based on the confusion matrix, the sensitivity is given as: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑃

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑃 + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑁
 ( 2.23 ) 

 

2.6 Implementation of Different Sensor Types 

This section discusses the issues relating to the sensors used in this project. As 

mentioned before, region tolerance, RT is affected by: 

1. Localization error 

2. Path-following error 

3. Sensor measurement error and fluctuation. 

First, as part of the contribution of this thesis, this section presents the effect 

of robot localization error and path-following error on the value of the region 

tolerance for laser range finder normal measurements. There follows an evaluation of 

the minimum size of a new object that a HSOM novelty filter of the laser range 

finder measurement could detect. Finally, this section discusses ways to determine 

the value of region tolerance for other sensor measurements. 
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2.6.1 Determining the Value of the Region Tolerance for the Laser Range 

Finder  

The laser range finder is considered in more depth compared to the other types of 

sensors that are used in this project for two reasons:  

1. The laser range finder is the main sensor used in this project 

2. Being sensitive to changes in position and direction, it provides a good 

example to consider when using novelty detection on a mobile platform. 

2.6.1.1 Problem definition 

Figure 2.11 shows an example of a region in a flexible region map of a corridor 

environment. Normal reference pose is the position and heading of the robot when it 

maps the normal sensor measurements.  

Laser range finder measurements are affected by any change in the sensor’s 

pose. As depicted in Figure 2.11, the pose of a laser range finder could differ from 

the normal reference pose due to robot localization error and poor path-following 

repeatability.  
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Figure 2.11: The effect of path-following accuracy and odometry error on the laser range finder 

pose. 

This section examines the minimum value of the region tolerance, RT of a 

laser range finder measurement after considering the robot localization error and 

limitation of its path-following repeatability. Since there is a trade-off between 

region tolerance and detection sensitivity, the study also looks into the effect of 

variation in the value of the region tolerance on the sensitivity of detection. The 

following are the objectives of the study: 

1. To determine the difference between the laser range finder measurements at 

the true pose and at the estimated pose. 

2. To determine the difference between the laser range finder measurements on 

the true path and on an estimated path. 

3. To estimate the minimum detectable size of object after considering the 

region tolerance. 

The outcomes of the study are vital for: 

1. Choosing the appropriate region tolerance, RT to classify normal or unusual 

sensor readings. 

2. Identifying the initial size of the length, li and the width, wi of a flexible 

region. 
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3. Identifying the effect of translational and rotational displacement on the laser 

range finder measurements.    

2.6.1.2 Modeling the average laser distance measurement, 𝒅𝒂𝒗𝒆_𝒊 

The Hokuyo URG-04LX has an angular resolution of 0.315º. This project used 240º 

of its angular range which consists of exactly 682 adjacent laser measurements. The 

angular range is divided into M sectors. Each sector contains an equal number of 

laser measurements, N. The average measurement from each sector, dave_i forms the 

input vector for the neural network (see Figure 2.12).  

In a real world application, one could say that a laser range finder allows the 

construction of the detailed surface geometry of any objects in the field of view, and 

their localization in the model frame of reference. If such low resolution data is 

desired, cheaper sensors such as low-end sonar systems may be more appropriate. 

One of the major advantages of the laser range finder is its measurement accuracy; 

applying a naive sample averaging technique to such data loses this major strength. 

By dividing laser range measurements into sectors, it may seem that the system does 

not take full advantage of having such high resolution information. However, there 

are several strong reasons why in this project the laser measurements are down 

sampled. First, the sensitivity of the laser needs to be reduced to allow for variations 

of measurements especially due to the robot’s inability to achieve the target pose 

(refer CASE 2 in Figure 2.11). Second, one of the motivations of the work in this 

thesis is to reduced storage, and averaging groups of sensor readings would certainly 

reduce the amount of storage required by the system. Third, the down sampling 

demonstrates that the system is robust for used with other cheaper but less accurate 

alternatives like sonar and infra red sensors. Finally, all the calculations are presented 

in a general form so that the user can decide the appropriate size of a sector (from 1 

up to the maximum number of laser measurements available).  
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Figure 2.12: An example of an HSOM network that takes inputs from laser range finder 

measurements. In this example, the angular range of the sensor is divided into M=3 sectors, 

producing 3 average readings.  

 

The decision regarding the number of sectors to use depends on the particular 

project’s requirement. If the angular range is divided into too many sectors, the size 

of the input vector will be increased and this will increase the memory requirement 

as well as reducing processing speed. If the angular range is divided into too few 

sectors, the environment will be poorly represented and the system will not be 

sensitive to small objects.  

In this project, for the benefit of easier explanation and to show that the 

system is robust, most of the examples in this thesis divide the Hokuyo URG-04LX 

laser angular range into 8 sectors. Through the analysis introduced in a later section, 

as well as through experience, it was found that this setting allows the detection of 

objects as small as 0.1m
2
 (such as bags, trash bins and small boxes) from about a 

meter away from the sensor. This is sufficient to detect the changing patterns 

introduced in the project’s experimental environment as well as in a typical 

surveillance task. 
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Figure 2.13 depicts an example of a laser range finder measurement where the 

pose of the sensor is denoted by 𝑥𝑙 , 𝑦𝑙  and 𝜃𝑙 . The laser angular range is divided into 

8 sectors. 

Figure 2.13: Defining the input vector from the Hokuyo URG-04LX laser scan. 

 

The path of the laser beam for any particular measurement j is modeled by a 

linear equation (see Equation ( 2.24 )) where slope, m is calculated using Equation ( 

2.25 ) and y-intercept, c is found using Equation ( 2.26 ). The laser angular resolution 

is denoted by α. 

𝑦 = 𝑚𝑗 𝑥 + 𝑐𝑗  ( 2.24 ) 

𝑚𝑗 = tan((𝑗 − 1)𝛼 + 𝜃𝑙) ( 2.25 ) 

𝑐𝑗 = 𝑦𝑙 − 𝑚𝑗 𝑥𝑙  ( 2.26 ) 

In order to estimate the minimum value of the region tolerance, a rectangular 

room was considered with dimensions not exceeding the maximum range of the laser 
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range finder. The author chose a rectangular room because rotational and 

translational error in any direction will affect the laser range finder measurements. 

Another reason is that a rectangular shaped room is similar to the shape of the 

intended working environment for the system which will consist of offices and 

corridors. To model a rectangular room, the walls of the room are represented by 4 

straight lines (Equation ( 2.27 ) ) where k  denotes the 4 rectangle edges. 

𝑦 = 𝑚𝑘𝑥 + 𝑐𝑘  ( 2.27 ) 

By solving Equation ( 2.24 ) and Equation ( 2.27 ) simultaneously, the 

intersection between both lines can be determined. The intersection between the line 

representing laser beam j and the line representing the walls is shown by Equation ( 

2.28 ) and Equation ( 2.29 ). 

𝑦𝑖𝑛𝑡 =
−

𝑚𝑗

𝑚𝑘
𝑐𝑘 + 𝑐𝑗

1 −
𝑚𝑗

𝑚𝑘

 ( 2.28 ) 

𝑥𝑖𝑛𝑡 =
𝑦𝑖𝑛𝑡 − 𝑐𝑘

𝑚𝑘
 ( 2.29 ) 

 

The distance value of the individual laser beam, 𝑟𝑗  is calculated using 

Equation ( 2.30 ) where 𝑟𝑚𝑎𝑥  is the maximum laser range. 

𝑟𝑗 =  
  𝑥𝑖𝑛𝑡 − 𝑥𝑙 2 +  𝑦𝑖𝑛𝑡 − 𝑦𝑙 2, 𝑟𝑗 < 𝑟𝑚𝑎𝑥

𝑟𝑚𝑎𝑥 , 𝑟𝑗 ≥ 𝑟𝑚𝑎𝑥

  ( 2.30 ) 

The average laser distance measurement in a sector i which consists of N laser 

measurements is calculated using Equation ( 2.31 ). 
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𝑑𝑎𝑣𝑒 _𝑖 =
1

𝑁
 𝑟𝑗

𝑁

𝑠=1

           𝑤𝑕𝑒𝑟𝑒 𝑗 = 𝑠 + 𝑁(𝑖 − 1) ( 2.31 ) 

2.6.1.3 Difference between Laser Measurements from the Estimated and 

Actual Sensor Pose 

The average laser distance measurement taken at the actual pose, 𝑑𝑎𝑣𝑒 _𝑖_𝑎𝑐𝑡𝑢𝑎𝑙  can be 

calculated by replacing 𝑥𝑙 , 𝑦𝑙  and 𝜃𝑙  in Equation ( 2.24 ), Equation ( 2.25 ), Equation 

( 2.26 ) and Equation ( 2.30 ) with the actual pose of the laser 𝑥𝑎𝑐𝑡𝑢𝑎𝑙 , 𝑦𝑎𝑐𝑡𝑢𝑎𝑙  and 

𝜃𝑎𝑐𝑡𝑢𝑎𝑙 . Similarly, the average laser distance measurement taken at the estimated 

pose with localization error, 𝑑𝑎𝑣𝑒 _𝑖_𝑒𝑟𝑟𝑜𝑟  can be found by replacing 𝑥𝑙 , 𝑦𝑙  and 𝜃𝑙  with 

the estimated pose 𝑥𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 , 𝑦𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒  and 𝜃𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 . 

The difference between the laser range finder measurements at the actual pose 

and at the estimated pose can be calculated using the Euclidean distance similarity 

measure as given by Equation ( 2.32 ), where 𝑑𝑎𝑣𝑒 _𝑖_𝑒𝑟𝑟𝑜𝑟  represents the laser 

measurement when there is error in the robot’s pose estimation and 𝑑𝑎𝑣𝑒 _𝑖_𝑎𝑐𝑡𝑢𝑎𝑙  

represents the laser measurement taken at the robot actual pose. M is the number of 

sectors. 

𝑑𝑒𝑢𝑐  =   𝑑𝑎𝑣𝑒 _𝑖_𝑒𝑟𝑟𝑜𝑟 − 𝑑𝑎𝑣𝑒 _𝑖_𝑎𝑐𝑡𝑢𝑎𝑙  
2

𝑀

𝑖=1

 ( 2.32 ) 

At this stage, by assuming that the path-following is perfect, the actual pose 

of the sensor should be same as the target pose as shown before in Figure 2.11.  
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2.6.1.4 Validating the Average Laser Distance Measurement Model 

The model was validated by comparing theoretical and simulation results (see Table 

2.2). The same actual and estimated poses were introduced to both theoretical and 

simulation models. The theoretical values were calculated by using the equations 

described in the previous sections.  

The simulations were carried out using MobileSim i.e. simulation software 

provided by MobileRobots Inc. for simulating robots and their environment. This 

software is used for debugging and experimentation purposes. The software only 

provides a simulation of the SICK LMS-200 laser range finder. Its specifications are 

slightly different from the laser range finder that was used for this project i.e. 

Hokuyo UR-04LX. The SICK LMS-200 provides either 100 or 180 degree angular 

range with 0.25, 0.5 or 1.0 degree angular resolution. However, as comparison is 

made between theoretical and simulation analyses, as long as both theory and 

simulation use the same type of sensor, the comparison is considered as valid. 

A 4m
2
 square room was constructed using the Mapper 3 (Basic) software 

which is also provided by MobileRobots Inc. The robot/SICK laser system was 

positioned at the center of the room (see Figure 2.14) and this is considered as the 

actual pose of the sensor. Poses other than this are taken as estimated poses with 

localization error. 

For theoretical calculations, the square room was modeled using 4 straight 

line equations as given by Equation ( 2.27 ). 
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Figure 2.14: The MobileSim simulation is shown in the figure on the left. The figure on the right 

shows the laser beams, the value of the simulated robot’s position and heading together with the 

Euclidean distance between the laser measurement and the measurement taken from the center 

of the room. 

The Euclidean distance value is normalized over the maximum possible value 

of the Euclidean distance. In the simulation, the maximum range was set to be 

4000mm with 180 range values measured over 180º which is the maximum angular 

range for the SICK LMS-200 laser range finder. The laser measurements are divided 

evenly into 6 sectors. Using Equation ( 2.32 ), given that the input measurement 

when there is no localization error, 𝑑𝑎𝑣𝑒 _𝑖_𝑎𝑐𝑡𝑢𝑎𝑙  has a minimum value (at the center 

of the square room) and the input measurement when there is localization error, 

𝑑𝑎𝑣𝑒 _𝑖_𝑒𝑟𝑟𝑜𝑟  has a maximum value (at one corner of the room), the maximum possible 

difference between these parameters is  40002 × 6 = 9798mm. 

The actual values of the robot pose at the center of the room are 𝑥𝑎𝑐𝑡𝑢𝑎𝑙 =

0𝑚𝑚, 𝑦𝑎𝑐𝑡𝑢𝑎𝑙 = 0𝑚𝑚 and 𝜃𝑎𝑐𝑡𝑢𝑎𝑙 = 0°. The results of the comparison between the 

theoretical and simulation Euclidean distance values are given in Table 2.2. 

Table 2.2: Comparison between simulation and theoretical Euclidean distance values in 

different robot poses. 
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 𝑥𝑒𝑟𝑟𝑜𝑟 = 63.5𝑚𝑚 
𝑦𝑒𝑟𝑟𝑜𝑟 = 34.6𝑚𝑚 

𝜃𝑒𝑟𝑟𝑜𝑟 = 28.9° 

𝑥𝑒𝑟𝑟𝑜𝑟 = 555.8𝑚𝑚 
𝑦𝑒𝑟𝑟𝑜𝑟 = −546.6𝑚𝑚 

𝜃𝑒𝑟𝑟𝑜𝑟 = −44.9° 

𝑥𝑒𝑟𝑟𝑜𝑟 = 10.7𝑚𝑚 
𝑦𝑒𝑟𝑟𝑜𝑟 = −53.8𝑚𝑚 

𝜃𝑒𝑟𝑟𝑜𝑟 = −78.9° 

 Theory Simulation Theory Simulation Theory Simulation 

Euclidean 

distance, 

deuc 

473.0 453.5 1542.4 1535.5 192.0 182.7 

Normalized 

Euclidean 

distance, 

deuc_norm 

0.048 0.046 0.157 0.156 0.019 0.018 

2.6.1.5 Estimating the Region Tolerance Due to Localization Error and Path-

following Error 

In this project, the robot localizes itself by using Particle Filter localization. At any 

given localization step, the robot only accepts heading and position estimates when 

the particle standard deviation is not more than ±100 mm in the x and y directions 

and ±5º for the heading. 

Due to path-following error, the robot and hence the laser range finder can be 

offset from the planned route. A wall following behavior is used by the robot to 

navigate and a wall alignment behavior aligns the robot’s heading parallel to the 

wall. This strategy allows the robot to maintain its pose within the limits of ±100mm 

in x and y directions and ±5º for the heading from the intended route.  

The Euclidean distance value due to localization error, plus the path-

following accuracy is calculated. By setting the actual values of the robot pose i.e. 

𝑥𝑎𝑐𝑡𝑢𝑎𝑙 = 0𝑚𝑚, 𝑦𝑎𝑐𝑡𝑢𝑎𝑙 = 0 𝑚𝑚 and 𝜃𝑎𝑐𝑡𝑢𝑎𝑙 = 0° and using the maximum deviation 

of Particle Filter localization plus the path-following error as the maximum error i.e. 

𝑥𝑒𝑟𝑟𝑜𝑟 = 200𝑚𝑚, 𝑦𝑒𝑟𝑟𝑜𝑟 = 200𝑚𝑚 and 𝜃𝑒𝑟𝑟𝑜𝑟 = 10°, we get a minimum region 
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tolerance value of RT = 824.67mm (normalized to 0.084 i.e. over the maximum 

possible value of the Euclidean distance of 9798mm as described in the previous 

section).  

2.6.1.6 Region Initial Dimension 

When a region is initiated the robot should ensure that any measurement taken within 

the boundary of the region should be below the region tolerance. In this project, 

based on the values of localization error and path-following error of the robot, the 

total error is expected to be ±200mm in x and y directions and ±10º for the heading. 

Since the position of the robot is at the center of a region when it is first created, the 

robot needs to ensure that the difference between the sensed quantities taken at the 

center and at the furthest position in that region is less than the region tolerance 

value. With this in mind the initial width and length of the laser flexible region can 

be defined to be 400 mm (i.e. ±200mm from the center of the region). The maximum 

difference of the heading of the robot should be ±10º from the actual state of the 

heading (i.e. 0 º, 90 º, 180º or 270º).  

2.6.1.7 Estimating minimum detectable object size in the worst case scenario 

An object is most difficult to detect when it is near to the outer most boundary of the 

laser scan area and when it lies in-between two sectors as shown in Figure 2.15. For 

this reason, in order to find the minimum detectable size of an object, the object is 

modeled as a portion of a sector, with an area defined by Equation ( 2.33 ). In this 

equation, 𝜃𝑠𝑒𝑐𝑡  is the angle of the sector influenced by the object, R is the maximum 

laser range and lobj is the object length in a radial direction. 

𝐴 =
𝜃𝑠𝑒𝑐𝑡

360
𝜋 𝑅2 − 𝑟2  where 𝑟 = 𝑅 − 𝑙𝑜𝑏𝑗  ( 2.33 ) 

In a circular room as depicted in Figure 2.15 where room radius is equal to 

laser maximum range and the laser range finder is positioned at the center of the 
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circle, the average laser reading within each sector that does not contain an object is 

equal to the maximum laser range i.e. 4000 mm. Thus Euclidean distance from 

Equation ( 2.32 ) can be simplified to be Equation ( 2.34 ) where P is the maximum 

laser range.  

𝑑𝑒𝑢𝑐  =   𝑑𝑎𝑣𝑒 _𝑖 − 𝑃 
2

𝑀

𝑖=1

 ( 2.34 ) 

 

 

Figure 2.15: The effect of object size on the Euclidean distance between measurements when 

there is no object and when an object exists. The object is modeled as a portion of a sector. 

As the object in Figure 2.15 affects two sectors only, Equation ( 2.34 ) can be 

simplified to become Equation ( 2.35 ) where da and db are the average laser readings 

in the two affected sectors. 

𝑑𝑒𝑢𝑐
2 = 𝑑𝑎 − 𝑃 2 +  𝑑𝑏 − 𝑃 2 ( 2.35 ) 

Portion of a sector Sector a 

Sector b 
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Given that the minimum Euclidean distance is achieved when da and db have 

the same value, Equation ( 2.35 ) can be further simplified to Equation ( 2.36 ) by 

equating  𝑑𝑎 = 𝑑𝑏 = 𝑑𝑎𝑣𝑒 _𝑖 : 

𝑑𝑒𝑢𝑐
2 =2 𝑑𝑎𝑣𝑒 _𝑖 − 𝑃 

2
 ( 2.36 ) 

 By referring to Equation ( 2.33 ), the relationship between the object size and 

the average laser reading d is given by Equation ( 2.37 ). 

𝜃𝑠𝑒𝑐𝑡 ∝ 𝑑,  𝑔𝑖𝑣𝑒𝑛 𝑙𝑜𝑏𝑗  𝑖𝑠 𝑓𝑖𝑥𝑒𝑑 

or 

𝑙𝑜𝑏𝑗 ∝ 𝑑,  𝑔𝑖𝑣𝑒𝑛 𝜃𝑠𝑒𝑐𝑡  𝑖𝑠 𝑓𝑖𝑥𝑒𝑑 

( 2.37 ) 

 By fixing the sector angle, 𝜃𝑠𝑒𝑐𝑡 , the average laser distance measurement in 

sector i which consists of N laser readings is calculated using Equation ( 2.38 ). The 

distance value of the individual laser reading, 𝑟𝑗  is calculated using Equation ( 2.30 ). 

𝑑𝑎𝑣𝑒 _𝑖 =
1

𝑁
 𝑟𝑗

𝑁

𝑠=1

 ( 2.38 ) 

The distance values of the individual laser beams, 𝑟𝑗  in the affected sector are 

of two types; one that is affected by the object and the other that is not. The one that 

is not affected by the object has the maximum range of the laser, 𝑟 = 𝑅 and the one 

that is affected has the value of 𝑟 = 𝑅 − 𝑙𝑜𝑏𝑗 . By referring to Figure 2.16, given that 

the laser angular resolution is 𝛼, the number of laser readings that are affected by the 

object in a sector (either sector a or b) is given by 𝜃𝑠𝑒𝑐𝑡 2𝛼 . Equation ( 2.38 ) then 

can be expanded to Equation ( 2.39 ). 
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𝑑𝑎𝑣𝑒 _𝑖 =
1

𝑁

 

 
 

 (𝑅 − 𝑙𝑜𝑏𝑗 )

𝜃𝑠𝑒𝑐𝑡
2𝛼

𝑠=1

+  𝑅

𝑁

𝑠=
𝜃𝑠𝑒𝑐𝑡

2𝛼  

 
 

 ( 2.39 ) 

 

 

Figure 2.16: An object is modelled as a portion of a sector.  

Equation ( 2.39 ) can be simplified to produce Equation ( 2.40 ) by 

multiplying the number of laser measurements (with and without object) by their 

length.  

𝑑𝑎𝑣𝑒 _𝑖 =
1

𝑁
 
𝜃𝑠𝑒𝑐𝑡

2𝛼
(𝑅 − 𝑙𝑜𝑏𝑗 ) +  𝑁 −

𝜃𝑠𝑒𝑐𝑡

2𝛼
 𝑅  ( 2.40 ) 

By using Equation ( 2.40 ), to replace 𝑑𝑎𝑣𝑒 _𝑖 in Equation  ( 2.36 ) and 

knowing that P=R, 𝑙𝑜𝑏𝑗  becomes:  

𝑙𝑜𝑏𝑗 =-
N2α

 2θsect

𝑑𝑒𝑢𝑐  ( 2.41 ) 

In the previous section, the value of the minimum region tolerance after 

considering localization error was found to be 𝑑𝑒𝑢𝑐 _𝑒𝑟𝑟 = 824.67mm. This means 

𝜃𝑠𝑒𝑐𝑡  

Sector a 

Sector b 

𝑟 = 𝑅 

𝜃𝑠𝑒𝑐𝑡

2
  

Object is modelled as a portion 

of a sector. The portion is 

drawn using dashed lines. 
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that the maximum allowable difference between two measurements that belong to a 

region is 𝑑𝑒𝑢𝑐 _𝑒𝑟𝑟 =  824.67mm. By solving Equation ( 2.41 ) using this value 

together with other parameter values, α = 1,  𝜃𝑠𝑒𝑐𝑡 = 20° 𝑎𝑛𝑑 𝑁 = 30, the object 

length, 𝑙𝑜𝑏𝑗 = 1749.13mm is determined. A minimum detectable object size of 

approximately 1.91m
2 

is determined by subtituting this value into Equation ( 2.33 ). 

It should be pointed out that this value is the minimum size in the worst case 

scenario. In practice, there are ways to improve the minimum detectable object size 

including reducing the sector size (N) and using a higher resolution (smaller value of 

α). For example, with α = 0.356 𝑎𝑛𝑑 𝑁 = 10, the object length becomes 𝑙𝑜𝑏𝑗 =

207.56 mm with object size of 𝐴 = 0.27m
2
. On top of this, there are a lot of 

situations where the robot can perform a laser scan while it is closer to the object and 

where the object lies fully within a sector as depicted in Figure 2.17. As can be seen 

from the figure, the average value of Sector 1 and Sector 2 changed depending on the 

position of the object with respect to the sector. The Euclidean distance value is 

highest when the object fully lies within Sector 2. From the author’s experience, in 

such situations, objects as small as 0.1m
2
 can be readily detected if the object is about 

a meter from the laser range finder.  

 

Figure 2.17: As the robot travels past an object, different sectors of its laser scan are affected by 

the object. 
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Another major factor that can influence the ability to detect an object is the 

size of the sector. As can be seen from Figure 2.18, the test result shows that the size 

of the sector influenced the value of the Euclidean distance when detecting a 0.16m
2
 

box. The graph shows that the smaller the size of the sector, the more sensitive the 

system will be. 

 

Figure 2.18: Effect on the value of Euclidean distance of using different sizes of sector (sector 

size = 10 degree is shown in the simulation example above the graph) when detecting a 400X400 

mm
2
 box. 
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2.6.2 Determining the Value of the Region Tolerance for Other Sensor Types 

This section presents the work done to find suitable region tolerances for objects 

measured by the other sensors used in this project. As mention before in the detailed 

discussion of the laser range finder, the value of the region tolerance will influence 

novelty detection sensitivity. In turn, the sensitivity of the novelty detection will 

influence the number of false positives produced during inspection [64]. The more 

sensitive a system is, where even a small change will be highlighted, the higher the 

number of false positives.  

The factor that influences the region tolerance for the sensors described in 

this section is measurement fluctuation, and not localization error and path-following 

error. As many of the types of quantity being measured for this section are ambient 

quantities (except for air flow direction) and insensitive to direction, localization and 

path-following error do not affect the sensed quantity very much. The appropriate 

values of region tolerance are determined by observing the sensor measurements at 

different positions along the robot inspection route in the test environment as 

depicted in Figure 2.19 (except for gas concentration sensor measurements). 

 

Figure 2.19: The corridor environment where the sensor measurements were taken. This 

corridor is used in one of the experiments. 

L1 L2 L3 
S

tart, 0 m 

E

nd, 11 m 

Air duct 

Door 2 
Robot navigation route 

Door 1 

West end of 

the corridor 

East end of the 

corridor 

Note: Reference for wind 

direction. Arrow indicates 0º. 
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2.6.2.1 Ambient light 

Ambient light is measured using a light dependent resistor (LDR). As depicted in 

Figure 2.20, the output voltage of the LDR circuit was a local maximum when the 

sensor was directly beneath the light. The output voltage decreased gradually as the 

sensor moved further away from the light source until it became near to zero. 

However, if there is another light source nearby, the output voltage will decrease to a 

local minimum before it rises up again as now it is influenced by the nearby light 

source. Using the circuit shown in Figure 2.20, the difference in output voltage 

between well-lit and poorly-lit areas of the corridor is greater than 0.25 V. For this 

reason the minimum value of the region tolerance for the ambient light sensor 

measurement was set to be RT = 0.25. 

 

Figure 2.20: Light intensity measurements (taken when the robot was travelling along the path 

shown in Figure 2.19). The LDR output voltage was produced by the circuit shown in the figure. 

L1, L2 and L3 indicate the positions of the light sources. 

2.6.2.2 Ambient temperature 

The ambient temperature is measured using the SMT 160-30 temperature sensor. The 

ambient temperature in the environment changes when the ventilation system is in 

L1 L2 L3 
+5V 

L

DR 

LDR Output Voltage 

100k 
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operation. Temperature readings shown in Figure 2.21 were gathered on two 

different days; Day A and Day B. As can be seen, on one day, the normal 

temperature in the environment was 21.5ºC while on the other day; the temperature 

was about 1ºC higher.  

The day when the corridor temperature was a bit low, the ventilation unit was 

turned off. This explains why the temperature was the same throughout the corridor. 

However, the day with the slightly higher temperature, the ventilation unit was 

turned on and sucked in air, mostly fresh air coming from the West end of the 

corridor in Figure 2.19. As can be seen from Figure 2.21, the air flow cools the 

corridor temperature from 22.5ºC down to 21.5ºC. However, since there is little air 

flowing at the East end of the corridor, the temperature in that area remained the 

same. 

Under these conditions, it can be seen that the data fluctuated. The minimum 

value of the region tolerance for the ambient temperature is set based on the 

maximum fluctuation about the average value which was about 0.5ºC. 

 

Figure 2.21: Ambient temperature measurements (taken when the robot was travelling along 

the path shown in Figure 2.19). 
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2.6.2.3 Air flow velocity and direction 

Air flow velocity and direction are measured using a Young Model 81000 

anemometer. As shown in Figure 2.22, the airflow in the environment is below 

measurable limits when the air ventilation is turned off (the air flows to the air duct 

as indicated in Figure 2.19), thus registering 0m/s for air velocity and no air flow 

direction. When the air ventilation unit is turned on and exhausting air, the air seems 

to flow mainly from the West end of the corridor (Figure 2.19) which explains why 

the air velocity in that region is about 1m/s but in the rest of the corridor, the velocity 

is less and in certain places, 0m/s. In the area where the air is flowing, the air flow 

direction fluctuated between 150º and 200º (refer to Figure 2.19 to see the reference 

air flow direction). Since air flow is so dynamic, in this project, the minimum value 

of the region tolerance of the air flow velocity and direction was determined by 

ensuring that they are above the average fluctuation of both quantities which is 

approximately 0.5m/s and 50º. 

 

Figure 2.22: Airflow velocity measurements (taken when the robot was travelling along the path 

shown in Figure 2.19).  
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 Figure 2.23: Airflow direction measurements (taken when the robot was travelling along the 

path shown in Figure 2.19). Note: Air flow direction is not meaningful when there is no 

measurable velocity. 

2.6.2.4 Combustible gas concentration 

An experiment was conducted to see how a TGS2600 chemical sensor reacts to 

ethanol from different distances to the source. The experiment was conducted in a 

controlled environment with still air and ambient temperature of 24ºC. As depicted in 

Figure 2.24, the sensor’s output voltage reduces as the source is further away from 

the sensor. The relationship is almost linear to a distance of 500 mm. After 500 mm, 

the reading is about the same even though the source of ethanol is taken further away 

from the sensor. From this it can be seen that the sensor is only sensitive to the 

ethanol concentration when the source is a short distance (about 500mm) from the 

sensor. Within that distance the gradient is approximately 0.005V/mm. Since during 

navigation, the robot’s inspection step size is 100mm, it is expected that the reading 

should change at most by 0.5V after each step. For this reason, the minimum value 

for the region tolerance for the gas concentration measurement is set to 0.5V. 
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Figure 2.24: The ethanol concentration in a room with still air reduces almost linearly over 

distance before it stabilizes at a distance of more than 500 mm. The TGS2600 output voltage was 

produced by the circuit shown in the figure. 

2.7 Summary of the Mapping Process 

This section summarizes the process of creating, expanding, merging and using the 

flexible regions. The HSOM network should be trained prior to performing this 

process. 

Algorithm 2.1: The creation and expansion of the thematic map using flexible regions. 

Notation: 

HSOM – Habituating Self Organizing Map 

BMU – Best matching unit 

dBMU – Euclidean distance between input and the BMU 

ST – Similarity threshold 

RT – Region tolerance 

NBMU – Novelty measure of the BMU 

HT – Habituation threshold 

dNmax - Maximum Euclidean distance between the current 

input and any of the region’s neurons 

 

1: Get trained HSOM neurons 
2: Get new input 

+5V 

GAS 

Output Voltage 

5k 
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3: Find BMU 
4: If (dBMU<ST) AND (NBMU>HT) 
5:  If (a region exists at the location) 

6:   If (dNmax < RT) 

7:    If (input was taken at the boundary of the 

   region) 

8:     Expand region 

9:    Else 

10:     Include BMU as normal member of region 

11:   Else 

12:    Create a new region 

13:  Else 

14:   Create new region 

15:  End 

16: End 

 

Algorithm 2.2: The mergence process. 

1: Repeat for all regions 
2: Find the nearest neighboring region 
3: If ( neighboring region has same content ) AND ( 

neighbors are aligned with each other ) 

4:  Merge regions 

5: End 
 

Algorithm 2.3: Novelty detection using the flexible region map. 

1: Get input 
2: Find the BMU 
3: If (dBMU>ST) 
4:  Novelty = 1 

5: Else 
6:  If (a region exist at location) 

7:   If (BMU is normal in region) 

8:    Novelty = 0 

9:   Else 

10:    Novelty = 1 

11:  Else 

12:   Novelty = 0 // No decision because of having 

no reference 

13:  End 

14: End 

 



Flexible Region Map | C h a p t e r  

64 | P a g e  

 

2.8 Experiments 

2.8.1 Experiment 1: Memory requirement when using the flexible region map 

The first experiment was conducted in the L-shaped environment shown in Figure 

2.25 that was constructed from polystyrene blocks. The dimensions of the L-shaped 

environment are shown in Figure 2.26. The objectives of this experiment were: 

1. To see the effect of changing the value of the region tolerance, RT on the 

number of regions created. 

2. To determine the amount of memory required for storing information when 

using a flexible region map and to compare this with memory required when 

using a grid based map, a perception based map and when not using a map at 

all. 

Figure 2.26 shows the distribution of flexible regions in the environment used 

for mapping normal conditions of laser range finder measurements. It can be seen 

how the regions only cover places visited along the path-following route of the robot. 

Some of the regions are elongated as a result of region expansion and mergence. 

The maps in Figure 2.26 were created using different values of region 

tolerance, RT. Increasing RT decreases the sensitivity of classification between 

different input patterns. As a result, smaller numbers of regions were created. 

Generally, it can be seen that in areas where the measurement varies highly with 

change of position, such as near the corners or at a dead end, many regions were 

created. However, this was not the case with maps created using a higher RT. As 

depicted in Figure 2.27, increasing the region tolerance, RT will decrease the number 

of regions but at the same time will sacrifice the sensitivity of the system. 

Nevertheless, in places where the sensor measurements do not vary much over space, 

such as in long corridor, the number of regions required to map the normal patterns is 

always reduced.  
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Figure 2.25: The L-shaped environment used for the first experiment. 

Some of the regions shown in Figure 2.26 overlapped with other regions. One 

of the reasons was two regions were created for different robot headings particularly 

at the corners in the L-shaped environment. In practice, only one of the regions will 

be referred to at any current state of the robot as the robot will find the region which 

matches its current position as well as its heading. Another reason of the overlapping 

was that different values were measured at the same position and heading but at 

different times during the training, prompting the robot to create new or expand 

available regions. In this case, a position can have two or more normal conditions 

(see more examples in Figure 2.30 (a) near Door A). 
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Figure 2.26: The flexible regions created for mapping normal laser measurement. The maps 

shown were created using different region tolerance (RT) settings. 

 

Figure 2.27: The effect of changing the region tolerance, RT value to the number of regions 

created and the minimum detectable object size as shown in Equation ( 2.33 ) and Equation ( 

2.41 ) with the following parameter values: 𝜶 = 𝟏,  𝜽𝒔𝒆𝒄𝒕 = 𝟐𝟎 𝐚𝐧𝐝 𝑵 = 𝟏𝟎. 

For the grid based and the perception based mapping approaches, the number 

of grid cells used to map information is predefined. Thus the amount of memory 

required when using these approaches can easily be estimated by dividing the 

(a) RT = 0.05 (b) RT = 0.25 (c) RT = 0.5 

regions regions regions 
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environment area by the minimum size of a region/cell. The size of the cells for these 

maps was set to be equal to the initial grid size of the flexible region map since this 

has taken into account the localization error and the path-following error of the robot. 

A grid map has a fixed number of cells and requires the maximum amount of storage. 

Perception based maps also have a fixed number of cells but less than the grid map 

because they only map information perceived from the robot route. The result of the 

comparison of the memory size required by different mapping approaches is given in 

Table 2.3. 

As shown in Table 2.3, the number of cells required for the flexible region 

map depends on the distribution of the pattern of measurements in the environment. 

For sensors which are highly sensitive to change in position and direction such as the 

laser range finder, at a lower region tolerance settings (RT = 0.05), the flexible region 

map only used 24.6% and 62% of the storage required for the  grid map and  the 

perception based map. At a higher region tolerance setting (RT = 0.5), the flexible 

region map reduced the storage further by only used 9.4% and 20% of what was 

required by the grid and perception based map. The results show that the flexible 

region map gives the user the flexibility to reduce the storage size by changing the 

value of the region tolerance. However, as increasing region tolerance value reduces 

the sensitivity of the novelty detection, there is a trade-off between reducing the 

storage size and acquiring higher detection sensitivity. 

Table 2.3: The storage requirements when using different mapping approaches for mapping the 

environment shown in Figure 2.26. 

Type of 

sensor 

Storage requirement (no. of regions) 

Grid 

map 

Perception 

based map 

Flexible region (ST) 
No map 

0.05 0.25 0.5 

Laser range 

finder 
106 50 31 19 10 1 

2.8.2 Experiment 2: Performance and memory requirements of different 

sensors 

The objectives of the second experiment are: 
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1. To see how the flexible region map accommodates the requirements of 

different types of sensor in the same environment. 

2. To evaluate the performance of novelty detection when normal data is 

mapped using the flexible region map. 

The second experiment was conducted in a real environment in a corridor in 

front of Room G10 in Building 36 at Monash University (see Figure 2.28). The 

learning was partly supervised in the sense that the robot was ‘told’ that the 

conditions in which it gathered information during HSOM training and during the 

creation of the flexible region map was normal. The anomalies which were 

introduced after training the normal condition are shown in Table 2.4. The corridor in 

its normal state is depicted in Figure 2.29.  

 

Figure 2.28: The corridor environment. 

Table 2.4: Environmental setup. 

  States 

Object 

 Normal Unusual 

Door 1 Open and Closed n/a 

Door 2 Closed Open 

Lighting 
L1, L2 = off, 

L3 = on 

L1, L2 = on, 

L3 = off 

Air ventilation Off On 

Door 2 

Door 1 
Air duct 

L3 

L2 

L1 
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Figure 2.29: The corridor environment in its normal condition. 

Figure 2.30 shows the regions created for different types of sensors and the 

novelty inspection results when unusual conditions were introduced. When compared 

to the laser range finder, the storage requirement is much less when mapping ambient 

entities such as temperature, ambient light, air flow direction and air flow velocity. In 

a stable environment such as in office corridors, these entities usually have a single 

fixed value except for exceptions at a few unusual locations such as near an air duct 

or a heater.  

Table 2.5 shows how the flexible region map accommodated to the different 

storage requirement from different types of measured quantities in the environment. 

The number of regions required by the grid and the perception based map are 

estimated based on the dimension of the corridor and the minimum size of a region. 

As can be seen, to store the temperature, air flow velocity, air flow direction and 

chemical concentration measurements, the flexible region map only used 0.7% and 

3.3% of the storage size required for the grid and the perception based map. To map 

the laser range finder data, the flexible region map used 4% and 20% of the storage 

required for the grid and the perception based map. Finally, to map the ambient light 

measurements, the flexible region map used 2.7% and 13.3% of what was required 

for the grid and the perception based map. Overall, the results show that the flexible 

region map made a significant reduction in the amount of storage space required to 

store the normal sensor measurement when compared to the conventional maps 

 
L1 off L2 off L3 on 

S

tart 

E

nd 

Air duct 

Door 2 
Robot navigation route 

Door 1 

11.7m 

1.8m 
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particularly the grid and the perception based map. This is particularly true for 

quantities that are the same throughout the environment. 

 

Table 2.5: The storage requirements when using different mapping approaches for mapping 

different type of measured quantities in the environment shown in Figure 2.29. 

Sensor Type 

Storage requirement (no. of regions) 

Grid Map 
Perception 

based map 

Flexible 

region map 
No map 

Laser Range Finder 

150 30 

6 

1 

Temperature 1 

Air Flow Velocity 1 

Air Flow Direction 1 

Chemical Concentration 1 

Ambient light 4 

 

The corridor with its unusual conditions and the results of novelty detection 

are depicted in Figure 2.31. Without a map, the difference between laser 

measurements at Door 1 and Door 2 when both are open or closed cannot be 

determined. Since both locations have different normal states, by not knowing which 

states belong to which position, a false alarm will be given or even worse, a false 

negative which means the inability to detect true anomalies. This problem was 

overcome by using a map. In all mapped areas, anomalies have been detected 

successfully.  

The sources of novelty represented by using the red lines are an indicator of 

where the quantities being measured were changed. It is an estimate of where the 

robot should highlight anomalies when the state of the environment was changed. 

The author realizes that the position of some of the highlighted anomalies do not 

exactly match his expectation. This is due to the fact that it is almost impossible to 

predict the complex behavior of the different quantities being measured especially as 

they reacted with the rest of the environment. 

For example, in the situation where lights L1 and L2 are turned on and light 

L3 is turned off, the combination of light from sources L1 and L2 increased the level 
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of illumination in the area in between them. Similarly, illumination is also reduced at 

the position directly under L2 because of the absence of light from L3. Another 

example is the air flow velocity measurement. The air always flows from the West 

end of the corridor and not so much from the East end when the ventilation unit is 

turned on. Acquiring prior knowledge of all of the quantities being measured in all 

possible scenarios is difficult. This demonstrates exactly why novelty detection using 

a mobile robot and a thematic map is a worthwhile study because the scheme only 

requires normal data to model the environment. 
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Figure 2.30: The regions created for different types of sensors. The rectangles shown are the 

regions which associate the location with normal conditions. The smallest dots on the inspection 

route indicate where the robot detected unusual measurements using one or more of its sensors.  

 

  

(a) Sensor: Laser range finder. An unusual situation where door D2 was opened.  

 

(b) Sensor: Ambient light sensor. An unusual situation where lights L1 and L2 

were turned on while light L3 was turned off. Abnormal measurements were 

detected at all areas near L1, L2 and L3. 

(d) Sensor: Air flow direction. Similar to the situation in (c). 

(c) Sensor: Air flow velocity. An unusual situation where the air ventilation was 

turned on and air was flowing to the air duct. 



Flexible Region Map | C h a p t e r  

73 | P a g e  

 

 

 

 

 

 

 

 

 

Figure 2.31: The corridor in its unusual condition and the results of novelty detection using the 

laser range finder, ambient light sensor and anemometer. The red lines indicates the source of 

novelty; including the open door, the position of the lights, and the expected areas where the 

wind changes. 
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2.9 Discussion and Conclusion 

The flexible regions reduce the amount of memory required to map information 

about the environment. In principal, the fewer the changes of sensor measurements 

over an extended region, the less memory is required to map the region. The amount 

of memory required to store information is adjusted autonomously according to the 

requirements of the sensor data and the environment. A flexible region map also 

needs no pre-allocation of the space of the grids/cells like the space-driven map, 

making it easier to be used in any new environments. This is particularly useful if the 

novelty detection system is developed as a standalone system to be used by any used 

or new mobile robots. 

The main objective of having a map is to reduce false negative detections and 

this has been achieved. The system is now able to detect anomalies which appear 

normal at other locations in the environment. The performance of novelty detection 

when using a flexible region map is comparable with using a fixed perception-based 

map. 

Although detail investigation on the processing speed required for different 

types of maps is beyond the scope of this thesis, it is worth to mention the general 

expectation of the processing speed of different type of maps. A search will be 

involved for the data-driven map as they do not associate the data directly to the 

localization index thus requiring the robot to first find which of the region best match 

the current robot pose. The speed for accessing data from a flexible region map can 

be better than other data driven map like the perception based map as if it has fewer 

number of regions to look for. However, in general, space driven maps like the grid 

maps have faster accessing speed as there is no search involved to access the data. 

Nevertheless, as mention in the summary of the related work (Section 2.2.3), with the 

implementation of the tree structure from the R-tree spatial indexing approaches, the 

search can be made efficient. This can be one of the possible extension of the work 

describe in this chapter.  
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One limitation of the flexible region map is that changing the content of a 

region is not as easy as updating grid based map cells. This is especially true if the 

changes only affect part of a region. This limitation is discussed in the following 

chapter. 

For future work, other than surveillance applications, the flexible region map 

could be useful for scientific exploration in hazardous environments such as in caves, 

deep sea or other planets. For example, Spirit and Opportunity [65] which were the 

mobile robots used for the Mars exploration project in year 2004, could benefit from 

the flexible region map for mapping different types of measurement data. For 

autonomous exploration, the novelty detection mechanism can be used as an 

attention selection tool, to select appropriate information to process or requiring 

further investigation. The fact that Mars is a barren planet means many types of 

quantities being measured such as temperature, images, types of soils and others are 

similar over extended regions. This information could be mapped in the limited 

memory space that the autonomous robot carries using the flexible region map.  
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Chapter 3  

 

Autonomous Mapping 

This chapter presents enhancements that were implemented to make a flexible region 

map adaptable to changes in the environment. The chapter begins with a brief 

introduction describing the aims and motivation of the work in this chapter. Then the 

method for changing part of a region in a flexible region map in response to changes 

in the environment is presented. This is followed by an explanation of the process of 

updating the map. Experimental results show that autonomous update was achieved 

by allowing the flexible region to reshape itself to accommodate to changes in the 

environment. 

3.1 Introduction 

A flexible region map has the ability to change the size of its regions to suit the 

distribution of different entities in different situations. However, once a region has 

been created, updating the normal condition of a mapped area is not a trivial task. A 

grid based map such as the occupancy grid map [35] has fixed sized cells. Updating 

them is just a matter of changing the information within each cell. On the other hand, 

the flexible region map has variable sized regions and this makes it difficult to update 

a region when the new information only affects part of the region. 

 Motivated by this challenge this chapter presents an approach to updating a 

flexible region map. The objectives and contributions of the work in this chapter are: 
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1. To develop a method that allows changes of information to be made to part of 

a region within a flexible region map. 

2. To produce an autonomous mapping technique using a flexible region map 

that allows the robot to learn the normal condition of the environment without 

any human supervision or with minimal supervision. 

There are two types of actions that are required to perform autonomous 

mapping using a flexible region map. The first action is restructuring of the map. In 

the previous chapter, creation, expansion and mergence functions have been 

described. These functions allow regions in the map to change their size according to 

the data that they are associated with. In this chapter, an additional separation 

function is introduced to allow changes to be made to a part of an established region. 

The second action is updating the status of regions. This action determines the 

conditions of sensor measurements (normal/novel) represented by regions covering 

different areas of the environment. 

3.2 Region Separation 

Region separation is required for updating a flexible region map. A region should 

hold the same information throughout the space within its boundary. If new changes 

affected only part of a region or if part of a region is not accessible by a robot 

anymore, it should be separated into smaller regions. The robot can then update each 

region’s status separately. 

The solution discussed here is focused on maps created by a robot that travels 

by following the same specified route. This means that the regions will be elongated 

along the route. In the context of autonomous mapping of normal data for novelty 

detection, there are two situations where a region should be separated. The first 

situation is when a robot detects a different perception rather than the one that is 

associated with the region it is currently in. The term old region is used here to 

represent the already created region. The second situation is when the robot deviates 

from its path due to a blockage or other reasons, which makes it unable to visit part 
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of the existing region. Examples of both cases are shown in Figure 3.1.  As can be 

seen from the examples, if one of the two situations occurs, the old region, Ro, will 

be separated into several regions.   

 

Figure 3.1: An example of how it perceives new measurement (left) and how a robot deviates 

from its path (middle) while travelling inside region Ro. As a result, three separated regions are 

created (right). 

The separation process proceeds as follows. When a new region, Rn is created 

it is allowed to expand but only during the epoch it is created. Once Rn stops 

expanding, any old regions which coincide with one or both (see Figure 3.2) of the Rn 

edges perpendicular to the old region elongation direction is/are separated. In the 

case when the robot deviates from its path and is unable to visit the area on its 

original path, an imaginary line projected perpendicular to the elongation direction of 
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the old region is established based on the robot position when it exits or enters the 

old region. This line is used as a guideline to separate the old region.  

 

 

Figure 3.2: Examples of three forms of overlapping. 

The method of changing from the old region to the separated regions depends 

on the situations discussed earlier. For each of the separated regions, the parameters 

of their bounding box need to be determined but their content is automatically 

inherited from the old region. In order to determine their parameters, the region 

elongation line and separation line need to be formulated first. Region elongation 

line, 𝑙𝑅 given by Equation ( 3.1 ) is the projected line from the region reference point 

in the elongation direction and separation line, 𝑙𝑆 given by Equation ( 3.2 ) is the 

projected line from the separation point which is perpendicular to 𝑙𝑅. The reference 

point of the old region is denoted by 𝑥𝑅 , 𝑦𝑅 , 𝜃𝑅  where 𝜃𝑅  represents the robot heading 

as well as the elongation direction of the region. In the case where a new region is 

created, the separation points are ( 1 ) the new region reference point and ( 2 ) the 

new region reference point plus its length. In the case where a robot deviates from its 

path, the separation point is the point where the robot exits from or enters into the 

side of the old region. The separation point is denoted by 𝑥𝑆 , 𝑦𝑆. Given that 

𝑥𝑅 , 𝑦𝑅 , 𝜃𝑅 , 𝑥𝑆  and 𝑦𝑆 are known; b and d can be determine (see Equation ( 3.3 ) and 
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Equation ( 3.4 )). The reference points of the separated regions 𝑥𝑅1, 𝑦𝑅1 and 𝑥𝑅2, 𝑦𝑅2 

could be found where 𝑥𝑅1, 𝑦𝑅1 is equivalent to 𝑥𝑅 , 𝑦𝑅  and 𝑥𝑅2, 𝑦𝑅2 is the intersection 

𝑃𝑅𝑆  between the two lines (lS and lR) given by Equation ( 3.5 ). 

𝑙𝑅:  𝑦 = 𝑚𝑥 + 𝑏 ( 3.1 ) 

𝑙𝑆:  𝑦 = −
1

𝑚
𝑥 + 𝑑 ( 3.2 ) 

𝑏 = 𝑦𝑅 − 𝑚𝑥𝑅  ( 3.3 ) 

𝑑 = 𝑦𝑆 +
1

𝑚
𝑥𝑆 ( 3.4 ) 

𝑃𝑅𝑆 : 𝑥 =
𝑚(𝑑 − 𝑏)

(1 + 𝑚2)
,   𝑦 =

𝑚2(𝑑 − 𝑏)

(1 + 𝑚2)
+ 𝑏 ( 3.5 ) 

In this project, Equation ( 3.1 ), Equation ( 3.2 ) and Equation ( 3.5 ) can be 

simplified due to the fact that the regions are elongated only in four directions 0º, 90º, 

180º and 270º which makes the slopes of the equations either zero or non-existent. If 

the slope is zero (which is the case for 0º and 180º) then 𝑙𝑅 and 𝑙𝑆 are given by 

Equation ( 3.6 ) and Equation ( 3.7 ) and 𝑃𝑅𝑆  becomes Equation ( 3.11 ). On the other 

hand, if the slope is non-existent (which is the case for 90º and 270º) then 𝑙𝑅 and 𝑙𝑆 

become Equations ( 3.9 ) and ( 3.10 ) where 𝑃𝑅𝑆  is given by Equation ( 3.11 ).  

𝑙𝑅:  𝑦 = 𝑦𝑅  ( 3.6 ) 

𝑙𝑆:  𝑥 = 𝑥𝑆  ( 3.7 ) 

𝑃𝑅𝑆 : 𝑥 = 𝑥𝑠   ,   𝑦 = 𝑦𝑅  ( 3.8 ) 

𝑙𝑅:  𝑦 = 𝑦𝑠 ( 3.9 ) 
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𝑙𝑆:  𝑥 = 𝑥𝑅  ( 3.10 ) 

𝑃𝑅𝑆 : 𝑥 = 𝑥𝑅   ,   𝑦 = 𝑦𝑠 ( 3.11 ) 

Now that the reference points for the separated regions 𝑅1 and 𝑅2 have been 

determined, other parameters which are the width and the length of the separated 

regions can be identified. For this project, the width and the length are associated 

with the size of the rectangle edges in x and y directions. For this reason, if the 

regions are elongated in the 90º or 270º directions, the width remains the same but 

the length varies. On the other hand, if the regions are elongated in the 0º or 180º 

directions, the opposite situation occurs. For the first case, the width of both regions 

𝑤𝑅1 and 𝑤𝑅2 are equal to the width of the old region, 𝑤𝑅 as given by Equation ( 3.12 

). The length of 𝑅1, 𝑙𝑅1 is the distance between 𝑥𝑅1, 𝑦𝑅1 and 𝑥𝑅2, 𝑦𝑅2 which is given 

by Equation ( 3.13 ). The length of 𝑅2, 𝑙𝑅2 is the remaining length of the old region 

after subtracting 𝑙𝑅1which is given by Equation ( 3.14 ). For the latter case, the length 

and the width of the regions are given by Equation ( 3.15 ), Equation ( 3.16 ) and 

Equation ( 3.17 ). 

𝑤𝑅1 = 𝑤𝑅2 = 𝑤𝑅 ( 3.12 ) 

𝑙𝑅1 = |𝑥𝑆 − 𝑥𝑅| ( 3.13 ) 

𝑙𝑅2 = 𝑙𝑅 − 𝑙𝑅1 ( 3.14 ) 

𝑙𝑅1 = 𝑙𝑅2 = 𝑙𝑅  ( 3.15 ) 

𝑤𝑅1 = |𝑤𝑆 − 𝑤𝑅| ( 3.16 ) 

𝑤𝑅2 = 𝑤𝑅 − 𝑤𝑅1 ( 3.17 ) 
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3.2.1 Separation Algorithm 

The following algorithms summarize the discussion on region separation. 

Algorithm 3.1: Region separation 

1:  Separate(){ 

2:   Find_lS and all affected regions() 

3:   Find_lR() 

4:   Find_PRS() 

5:   Determine_xywl of separated regions() 

6:   Delete affected region() 

7:  } 

 

 

Algorithm 3.2: Find_lS and all affected regions (separation due to the creation of a new region) 

Notation: 

sp = separation point 

re = region elongation 

xy = x or y coordinate 

wl = width or length 

 

Algorithm: 

1:  xy_sp1 = xy_new_region 

2:  xy_sp2 = xy_new_region + wl_new_region 

3:  For all sp 

4:   For all old region i = 1 to N 

5:    If (re = 0 OR 180 AND x_region<x_sp AND   

    x_sp <(x_region+x_length)) 

6:     Affected region = region_i  

7:     lS = x_sp 

8:    EndIf 

9:    If (re = 90 OR 270 AND y_region<y_sp AND  

   y_sp<(y_region+y_length) ) 

10:    Affected region = region_i 

11:    lS = y_sp 

12:   EndIf 

13:  EndFor 

14: EndFor 
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Algorithm 3.3: Find_lS and all affected regions (separation due to deviation of robot from its 

path) 

Notation: 

sp = separation point 

re = region elongation 

xy = x or y coordinate 

wl = width or length 

 

Initialization:  

out_of_path = 0 

 

Algorithm: 

1:  xy_sp = xy_robot 

2:  For all old regions i = 1 to N 

3:   If (re = 0 OR 180 AND x_region<x_sp AND   

   x_sp <(x_region+x_length) ) 

4:    Affected region = region_i  

5:    If (out_of_path==0 AND robot outside 

region_i) 

6:     out_of_path = 1  

7:     lS = x_sp 

8:    EndIf 

9:    If (out_of_path==1 AND robot inside 

region_i) 

10:    out_of_path = 0 

11:    lS = x_sp 

12:   EndIf 

13:  EndIf 

14:  If (re = 90 OR 270 AND y_region<y_sp AND  

   y_sp<(y_region+y_length) ) 

15:   Affected region = region_i 

16:   If(out_of_path==0 AND robot outside 

region_i) 

17:    out of path = 1 

18:    lS = y_sp 

19:   EndIf 

20:   If (out_of_path==1 AND robot inside 

region_i) 

21:    out of path = 0 

22:    lS = y_sp 

23:   EndIf   

24:  EndIf 

25: EndFor 
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Algorithm 3.4: Find_lR 

1:  For all affected region 

2:   If ( heading = 0 OR 180) 

3:    lR = y_region 

4:   EndIf 

5:   If ( heading = 90 OR 270) { 

6:    lR = x_region 

7:   EndIf 

8:  EndFor 

 

 

 

Algorithm 3.5: Find_PRS (intersection between lS and lR). 

1:   If ( heading = 0 OR 180) 

2:    xRS = lS 

3:    yRS = lR  

4:   EndIf 

5:   If ( heading = 90 OR 270) { 

6:    xRS = lR 

7:    yRS = lS 

8:   EndIf 

 

 

Algorithm 3.6: Determine_xywl of separated regions 

1:  If ( heading = 0 OR 180) 

2:   x1 = x_region  

3:   y1 = y_region 

4:   w1 = |xRS-x_region| 

5:   l1 = l_region 

6:   x2 = xRS 

7:   y2 = yRS 

8:   w2 = |w_region-w1| 

9:   l2 = l_region 

10: EndIf 

11: If ( heading = 90 OR 270) { 

12:  x1 = x_region  

13:  y1 = y_region 

14:  w1 = w_region  

15:  l1 = |yRS-y_region| 

16:  x2 = xRS 

17:  y2 = yRS 
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18:  w2 = w_region 

19:  l2 = |l_region-l1| 

20: EndIf 

 

 

3.3 Autonomous Mapping 

A robot that performs noncritical tasks such as cleaning and tour guiding could have 

full autonomy over the update of its flexible region map. Full autonomy means the 

robot decides which region should remain and which should be deleted, based on 

their status as either normal or unusual. For a robot that does more critical tasks such 

as security and surveillance, autonomous mapping could still be employed but should 

be closely monitored by a human expert/supervisor.  

As mentioned before, the scope of the work describe here is limited to a robot 

which travels by following a path. The main reason for this is that a normal condition 

is defined as a measurement that is perceived consistently over a certain number of 

passes through an environment. In order to make a fair assessment on the status 

(normal/novel) of each region, the robot should visit all regions within an epoch (i.e. 

a single pass through its environment). Following a fixed path will ensure that the 

robot visits all the regions available. A path could be divided into smaller segments 

so that the robot does not need to wait until it travels through the entire environment. 

Instead, the robot can update the status of the regions in a segment as it has moved 

pass the segment. 

3.3.1 Added Features of the Flexible Region Map 

Several features are added to make the flexible region map described in Chapter 2 

able to adapt autonomously to new changes in the previously mapped environment. 

First, each region is associated with a novelty measure, n as given by Equation ( 2.22 

) where o denotes the number of occurrences of an event and τ is a time constant 
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which controls the rate of habituation. A novelty measure graph is depicted in Figure 

3.3.  

The concept of habituation is described in Chapter 2. By using habituation, 

the greater the number of perceptions that match the information stored about a 

region, the less novel the region becomes. The principal of habituation is based upon 

the accumulation of observations over time. In this work, a unit of time is a learning 

epoch, or a single pass of a robot along its path in the environment. Occurrence, o of 

a region is updated only once during each epoch, regardless of the region size. This 

means that larger regions that are visited more often during a single pass than a 

smaller sized region will be habituated at the same rate as the smaller sized region.  

𝑛(𝑜) = 𝑒
−𝑜
𝜏  ( 3.18 ) 

 

Figure 3.3: Decaying novelty function with thresholds.  

The use of the maximum threshold, hTmax and minimum threshold, hTmin 

depicted in Figure 3.3 allows the habituation process to exhibit hysteresis. The 

hysteresis introduces a delay when changing states from normal to novel and vice 

versa. When a new region is created, the novelty measure is set to be equal to hTmax. 

The region remains novel until the value decreases below hTmin. After that, the region 

will remain normal until its novelty measure rises above hTmax. The state of the region 

Novelty 

measure, n  

hTmax 

hTmin 

1 

The rate of decay is 

controlled by τ 

Occurrences, o 0 



Autonomous Mapping | C h a p t e r  

87 | P a g e  

 

when its novelty measure is between hTmin and hTmax depends on the last threshold that 

it crossed. This effect is vital to avoid switching states (from novel to normal or vice 

versa) due to noisy inputs. A region will be deleted only if the novelty measure 

reaches 1. 

Another added feature is the ability of the neural network to increase the size 

of its representation. New neurons should be created if the available neurons in the 

neural network cannot represent the changes in the environment. In this thesis, the 

Habituating Self Organizing Map (HSOM) was modified so that it can add a new 

neuron when there is a new perception. In practice, other methods such as the Grow 

When Required (GWR) network could also be employed to replace the HSOM.  

Finally, preconditions are added to the expansion and mergence processes. 

Expansion is only for newly created regions and is not allowed for established 

regions. The reason is that there will be a conflict in determining the value of the 

novelty measure if a region is already established and the extended area is new. 

Another point regarding expansion involves separation of an old region and this 

should only be done after a new region has been fully expanded. For the mergence 

process, two neighboring regions with the same content could be merged only if both 

are habituated (where their novelty measures are below hTmin). The novelty measure 

of the merged region is the average of the novelty measures of the regions before 

they are merged.  

3.3.2 Autonomous Mapping Algorithm 

The algorithms for autonomous mapping are given here. The modification made to 

allow autonomous mapping in Algorithm 3.7 is highlighted as bold text.  

Algorithm 3.7: Autonomous mapping using a flexible region map. 

Notation: 

BMU – best matching neuron 

SBMU – distance between BMU and sensor measurement 

ST – similarity threshold 
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Initialization: 

Train HSOM using perception during the first few runs 

in a new environment 

Set Vi = 0 

 

Main process: 

1:  Move_within_a_segment() 

2:  While_in_segment() 

3:   Get_pose() 

4:   Get_sensor_measurement() 

5:   Find BMU() 

6:   If(SBMU > ST) 

7:    newHSOMneuron = current perception 

8:   EndIf 

9:   Create() 

10:  Expand() 

11:  Separate() 

12:  Mark_visited_region() 

13: EndWhile 

14: Update_region_status() 

15: Delete() 

16: Merge() 

 

 

Algorithm 3.8: Mark visited regions 

Initialization: 

is_region_i_visited = 0 

  

1:  If (robot occupies region_i AND current 

perception  matches  region content) 

2:   is_region_i_visited = 1 

3:  EndIf 

 

 

Algorithm 3.9: Update region status. 

1:  For all regions 

2:   If marked 

3:    Increase its occurrences 

4:   Else 

5:    Decrease its occurrences 

6:   EndIf 

7:  EndFor 
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8:  is_region_i_visited = 0 

9:  If (n==1) 

10:   Delete region 

11:  Else if (n>=hTmax) 

12:  State of region i = novel 

13: Else if (hTmin <n<hTmax) 

14:  State of region i = current state 

15: Else  

16:  State of region i = normal  

17: EndIf 

 

3.3.3 Mapping with Minimal Supervision 

In critical applications such as a surveillance task, a human should be the arbiter 

when making any decisions. When a surveillance robot highlights a novelty, at some 

stage of the process a human expert (such as a security officer etc.) should be 

informed and he or she should then make the final decision on the appropriate action 

that should be taken by the robot. One of the actions that the robot could take is to 

adapt to the novelty and to consider it as part of the normal environment. In 

particular, the role of the human in the update process is to decide whether the new 

region represents a normal perception and whether the affected old region should be 

deleted or remain as it is. This could be done by having a human to monitor the 

sensor measurements and use the information to update the status of the regions 

given by line 14 in Algorithm 3.7. 

3.4 Experiments 

The experiments were conducted in an L-shaped room made of polystyrene blocks. 

For the setup of the ‘old’ environment, the room was empty. The room was changed 

to a ‘new’ environment by introducing a 100x800 mm
2
 polystyrene block at the 

center of the room. The first experiment was conducted to: 

1. Observe the results of region separation due to the creation of new regions. 
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2. Observe the value of novelty measure of a newly created region and separated 

regions during unsupervised update. 

3. Test the performance of novelty detection using the updated flexible region 

map. 

First the robot was made to perform wall following with the old environment 

settings from the start to the end points and this was repeated several times (see 

Figure 3.4). Then, the room was changed to the new setup and the learning process 

was repeated several more times. During wall following, the robot logged its laser 

measurements taken at every inspection step i.e. every 100mm along the path. The 

mapping and updating were done offline using the logged data. The flexible region 

map of the old environment was produced by following the standard procedure 

described in the previous chapter. The region tolerance of the flexible region map 

was set to a high value of 0.2 to create a reduced number of regions in the map. This 

was done to make observation of the results easier. 

The only difference between a supervised and unsupervised update is in the 

way the status of a region is established. Other than the region separation process 

which was already tested during the experiments for the unsupervised update 

method, the performance of the supervised update method depends on the decisions 

of the human supervisor. For this reason, the experiment was conducted only to 

prove the feasibility of the unsupervised update method. 

The results of the unsupervised update are as expected and are depicted in 

Figure 3.5. Figure 3.5 (a) shows the region created during inspection of the old 

environment while Figure 3.5 (b) shows the resulting regions due to the creation and 

separation of regions after a new object was introduced to the environment. Some of 

these regions (1, 2, 3 and 4) were deleted during the epoch when the new object was 

introduced. Other regions (8, 9 and 12) were deleted after they were dis-habituated 

while at the same time others (5, 6, 7, 10 and 11) were habituated. 
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Figure 3.4: Environmental setup for the experiment. The lines coming out from the robots (the 

red circles) are the average laser measurements from 8 sector divisions of the 270º laser angular 

range. 

A detail description of the experimental results is as follows. The robot 

traveled through the old environment during the first five epochs. A polystyrene 

block was introduced starting from epoch 6. During epoch 6, regions were created 

and separated. This is what happened during epoch 6. When the robot was near the 

polystyrene block, Region 2 was created. Then, Region 1 was separated into Regions 

3, 4 and 5, based on the position and dimensions of Region 2. Later after several 

inspection steps, Region 6 was created. Region 6 partly coincided with Region 2, 

Region 4 and Region 3. As a result, these regions were separated into 6 other regions. 

Region 2 was separated into Regions 7 and 8. Region 4 was separated into Regions 9 

and 10. Region 3 was separated into Regions 11 and 12. Regions 1, 2, 3 and 4 were 

immediately deleted after separation.  

Figure 3.6 shows the novelty measure value of each region over the whole 15 

epochs. As described in the algorithm, the initial value for a newly created region is 

(a) The old environment setting (b) The new setting with the addition 

of a 100x800 mm polystyrene block 
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set to hTmax = 0.9. Depending on the decay rate, the novelty measure should become 

less than this value after a region is created the first time. This is why the starting 

value of the novelty measures in Figure 3.6 is approximately 0.81.  

 

Figure 3.5: Results show new regions and the resulting separated regions during epoch 6 

(displayed in several frames for better visualization). New region 2 separated region 1 into 

regions 3, 4 and 5. Region 6 separated three regions. Region 2 was separated into regions 7 and 

8, region 4 into 9 and 10 and finally region 3 into 11 and 12. 

The novelty measure of separated regions is copied from the novelty value of 

the original region during the epoch before separation. For example, in Figure 3.6 

(see Figure 3.7 for a better visualization of overlapping lines), the novelty measure of 

R3, R4, R5, R11 and R12 are copied from R1’s novelty measure, and thus they are 

the same. Although these regions are only created during epoch 6, as they are derived 

from R1, they still carry the history of R1. It can be seen that at locations covered by 

(a) 

Epoch 5 

(b) 

Epoch 6 
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all regions in 
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two or more regions, regions with content that does not match the current perception 

will have their novelty measure increased. Eventually the value of their novelty 

measure becomes 1 and as a result, they are deleted (see R8, R9 and R12). In 

contrast, the novelty measure of regions with content that matches the current 

perception gradually decreases over several epochs. According to the algorithm, if 

the value falls below hTmin, the perceptions (sensor measurements or neurons) which 

are associated with the region are considered normal. Similarly, for increasing values 

of the novelty measure, when it rises above hTmax, the perceptions mapped onto the 

regions do not represent the normal environment anymore. 

 

Figure 3.6: Values of novelty measures over 15 learning epochs. The discontinuation of old lines 

or the start of new lines is due to the deletion of regions or creation of new regions. When a new 

region is first created, its novelty measure is 0.81.  

Figure 3.7 depicts individual graphs of each of the novelty measures shown in 

Figure 3.6 for easier visualization. It can be seen that R2 was deleted immediately 

after its creation. This occurs due to the creation of R6 which coincided partly with 

R2. As a result, R2 is separated into R7 and R8. Similarly, regions R3 and R4 were 

also deleted during the same epoch that they were separated from R1. Region R4 was 

separated into regions R9 and R10 whereas region R3 was separated into regions R11 

and R12. 

R5,R10 and R11 

R1 

R9 and R12 

R8 

R6 and R7 

Note: R2, R3 and R4 were 
created and then deleted 
during Epoch 6 
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Figure 3.7: Individual graphs showing the novelty measure of all regions. 

The main goal of the update procedure is to maintain good performance in the 

novelty detection system so that it can detect unusual conditions in a changed 

environment. For this reason, this experiment is designed to see the performance of 

Novelty Measure (n) 

Epoch 
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the novelty detection system, before and after the changes. The new environment was 

changed back to the old environment by removing the polystyrene block at the center 

of the room. Then the robot was made to perform inspection in the old environment 

by following the same route shown in Figure 3.4. This checks whether the robot was 

able to discard old information and adapt to a new situation. The experiment was 

conducted by using the repetitive observation strategy (ROS) described in Chapter 4. 

ROS is used to highlight the position of missing objects (object that are normally 

present) and unusual measurements caused by seeing the previously occluded wall. 

The performance of novelty detection using the updated map is shown in Figure 3.8. 

The anomaly event that occurred during the experiment was the removal of the 

polystyrene block from the middle of the room. By using the updated map, the robot 

was able to highlight this unusual condition. The position of the missing object is 

highlighted using the red dots and the unusual measurements are represented using 

the black dots. 

 

Figure 3.8: Results of novelty detection during epoch 15. The location of normal measurements 

(red dots where the block used to be) and unusual measurements (black dots indicating a 

portion of the wall that usually cannot be detected) are determined using the repetitive 

observation strategy described in Chapter 4. 

A second experiment was conducted to see the result of the separation 

algorithm due to deviation of the robot from its original path. The deviation was 

caused by a blocked path which had prevented the robot from accessing and 

monitoring conditions in  parts of an old region. As a result, the affected old region 
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was separated and the inaccessible region was dis-habituated or in other words the 

robot gradually forgot the condition of that area. This resembles an aspect of memory 

in biological systems.  

The experiment was conducted using temperature data where values were not 

affected by the introduction of the object. This was done to make the visualization of 

the separation results more comprehensible. As can be seen from Figure 3.9, the 

robot was made to follow the wall of part of the environment for the first 5 epochs. 

Region 1 was created and its novelty measure was gradually decreasing. During 

epoch 6, a 300x400mm
2
 object was placed in the robot’s path, forcing the robot to 

deviate from its original path. Region 2 and 5 were created as the robot tried to 

navigate around the obstacle. This were an automatic decision by the robot as it was 

programmed to create regions when its heading changed to approximately 0º, 90º, 

180º, or 270º. Immediately after the robot exited from region 1 on the original route, 

region 1 was separated into regions 3 and 4. Then when the robot entered into region 

4 (now that region 1 no longer existed), region 4 was separated into regions 6 and 7. 

The position of the robot when it entered/exited the old region was used as the 

guideline for the separation. 

 

Figure 3.9: Results of autonomous mapping due to deviation from the original path. 

Temperature data is used to make the visualization of the regions easier. 

Obstacle on the  

original path 
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After epoch 6, the robot was made to run for several more epochs. After 

every epoch, the inaccessible region i.e. region 6 became more and more novel. 

Eventually, the region was deleted after epoch 11 (see Figure 3.10). 

 

Figure 3.10: Values of novelty measures for 15 epochs. Region 6 is eventually deleted after it was 

inaccessible by the robot for several epochs.  

3.5 Discussions and Conclusions 

This chapter has presented one of the challenges in performing novelty detection 

using a mobile robot, which is how to maintain a representation of the true state of a 

changing environment. A solution to the problem of autonomous mapping of a 

flexible region map has been given. The results show that region separation makes 

changing part of an extended region possible. By associating each region with a 

novelty measure, it is possible to autonomously determine their status through an 

habituation process over several measurement epochs. As a result, the flexible region 

map was able to adapt to a new changed environment. A test using the repetitive 

observation strategy (ROS) demonstrated that the robot was able to unlearn an old 

representation and adapt to the new condition of the environment. The work in this 
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R2 and R5 
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chapter shows that extra effort is needed (i.e. restructuring of regions) to update a 

flexible region map as compared to the common grid based map. However, examples 

from the experimental results highlight the ability of the flexible region map to 

accommodate to changes in the environment to change its size to the requirements of 

the data. 

One possible application for the unsupervised update is that a region’s 

novelty measure could be use to study or filter dynamic changes at specific locations 

in the environment. For example, a quantity that is commonly measured will have its 

region fully habituated. A quantity that is only observable at particular regular 

intervals will make its region’s novelty measure produce a periodically fluctuating 

pattern. The level of a novelty measure itself indicates how common a perception is 

in an environment.  

The following chapters will investigate how using a mobile robot which 

employs a novelty detection approach can benefit surveillance work. 
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Chapter 4  

 

Repetitive Observation Strategy 

This chapter presents the framework of the repetitive observation strategy. First a 

detail description of anomaly points (i.e. the estimated positions of the sources of 

novelty) is presented. This is followed by a description of the method used to cluster 

anomaly points. The chapter concludes with a discussion and conclusion. 

4.1 Introduction 

The repetitive observation strategy (ROS) is a method that gathers and groups 

observations of the sensed quantities from different sensor poses. Specific to this 

project, the term observation refers to determination of the position of the source of 

novelty. The term repetitive not only means that the observation is performed many 

times but also from different poses. This strategy uses the ability of a mobile robot to 

carry sensors to different positions, which makes it possible to observe the sensed 

quantities from different viewpoints. 

The strategy is inspired by the natural behavior of animals when reacting to 

the perception of an anomaly.  The first instance of an unusual perception using any 

sense such as vision, hearing or smell is usually followed by more attentive 

observations [66] using the same mode of sensing as well as others [67]. The 

observation is usually done from different viewing angles and positions to gather 

more information about the anomaly. For example, a bird’s head movements in a 

novel situation (peering movements) are apparently due to the restricted field of 

vision of the birds. This results in the birds needing to move their heads in order to 
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permit a complete survey of their total surroundings [68]. Also, the findings of the 

work in [69] suggest that, when detecting novel objects, chickens investigate them by 

moving their head and looking at the objects with different parts of their eyes.  

A higher level reaction to the detection of anomalies involves exploration and 

manipulation, which also allows animals to perceive an object from different angles 

and using different sensing modes. For example, a study presented in [70] has found 

that baboons react to spatial novelty by performing exploration in an unfamiliar or 

changed environment. In [71], it was found that a baboon’s reaction to novel objects 

mainly involves manipulation by touching, grasping and transporting (apart from 

using other senses such as vision and hearing) where more familiar objects are 

investigated in a less detailed manner usually through looking or sniffing.  

For some of these animals, the anomaly detection behavior saves them from 

being attacked in an ambush. At the same time, the repetitive observation strategy 

prevents unnecessary panic, and waste of energy in hiding or running from a false 

alarm i.e. a trade-off between conserving energy and avoiding predation [72]. When 

this behavior is adopted by an autonomous mobile robot surveillance system, it helps 

in reducing the number of false alarms, which in turn, saves the robot from wasting 

its limited energy performing further investigations of a false alarm. 

In this project, measurements from different positions along the inspection 

route are considered as repetitive observation. In the initial stage, unlike the behavior 

of the animals, the robot does not purposely react to an anomaly, but merely 

performs inspection based on its original route. However, for sensors such as the 

laser range finder, by simply following the intended route, the robot can take 

measurements from different positions and headings as it moves past anomalous 

objects. 

The contribution of this chapter comes from the investigation of two aspects 

of the repetitive observation strategy: 

1. Estimating the position of the source of novelty and identifying factors that 

influence the distribution of anomaly points. 
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2. Processing data from repetitive observations (clustering algorithm). 

The remainder of this chapter is organized as follows. Section 4.2 presents 

related work concerning the repetitive observation strategy. Then an overview of the 

system is given in Section 4.3. Section 4.4 discusses the approach used for estimating 

the position of the source of the novelty and detailed investigation of the distribution 

of the anomaly points. This is followed by Section 4.5 which describes the approach 

to clustering the observations. Finally the content of this chapter is discussed and 

conclusions given in Section 4.6. 

4.2 Related work 

To the best of the author’s knowledge, there is no direct comparison in terms of 

functionality and working principal of the repetitive observation strategy with other 

work in the robotics field. However, there are many methods available which use 

repeated measurements to achieve their goals. Some of these which have some 

similarity with the work presented in this chapter are discussed in this section.  

In 3-d scanning, measurements are performed repetitively often from different 

viewpoints to build a 3-d image of an object using techniques such as time-of-flight, 

triangulation (using laser striper and a camera), photometry [73] and stereovision. 

These techniques use active sensors such as laser scanners and passive sensors such 

as stereo cameras. Data from these sensors are used to re-construct a 3-d 

representation of the object. Some example applications include rapid prototyping, 

geographic information system (GIS) mapping, quantity surveying etc. Unlike the 

situation with novelty detection, in these applications, the object position is known, 

so the human operator knows in advance where to position the scanner to get the best 

scanning angle. 

 The concept of triangulation has also been used to locate the position of the 

source of a gas leak [22]. Gas concentration sensors were distributed at known 

positions in a factory environment and communicated using a wireless sensor 

network. In the factory environment, gas leaks are assumed to spread evenly in all 



Repetitive Observation Strategy | C h a p t e r  

102 | P a g e  

 

direction from their source. By knowing the value of gas concentration (measured by 

the sensor) and the type of gas (from prior information), the source’s distance from 

the sensors can be calculated using the gas diffusion equation. As measurements 

from at least three sensors are required to locate the source using triangulation, it can 

be said that this is a form of repetitive observation. However this solution is more 

suitable for static sensors and not for a single sensor that is mounted on a mobile 

platform. 

Repetitive observation is also used as part of the search strategy used by a 

mobile robot to locate gas leaks by following the concentration of a chemical plume 

[74]. The robot is programmed to move toward positions that have a higher gas 

concentration. Its sensor reading is updated when it pauses during every inspection 

cycle. In this example, movement of the robot is only based on the current and the 

immediately previous measurement. However, for the strategy described in this 

chapter, the estimated position of the source of every positive detection of novelty is 

recorded and analyzed collectively.  

A repeated observation is also used when updating information in a map like 

the status of occupancy of an occupancy-grid map [35, 44] and the covariance of 

landmark locations in a feature based map[37, 38]. This is to allow a robot to 

autonomously develop a navigational map from noisy and uncertain sensor 

measurement data. In terms of their objective, that is to determine the presence of 

obstacles and the position of a landmark using noisy sensor data, they are similar to 

the work presented in this chapter. However, its working principal is fundamentally 

different. The occupancy-grid map uses grid cells, and keeps track of the number of 

times an obstacle appears present or absent from the cell. Similarly for landmark 

location, repeated observation is used to make a statistical analysis on the position of 

the landmark. Unlike these two applications, in this thesis the repetitive observation 

strategy is used to examine the spatial distribution of the anomaly points. This means 

that the repeated measurements are not necessarily refer to the same location or cell 

but on different but neighboring positions in space. 
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In novelty detection applications which use mobile robots [11, 16, 51], 

repetitive observation is used to model the normal environment. This is done by 

habituating the neural network neurons which frequently match the input patterns 

that are observed in the environment. When training the neural network, the robot 

travels through the same environment repeatedly, until the neurons are habituated. In 

this particular work, repetitive observation is not implemented for training purposes. 

Rather, the method is used during inspection to gather spatial information about the 

detection of anomalies. 

In summary, many of the implementations of repetitive observation in the 

work of others are fundamentally different in their working principal as well as their 

application compared to this work. However, they highlight some of the benefits of 

using a repetitive observation strategy i.e. to confirm the presence and position of an 

object as well to gather other related information. 

4.3 System Overview 

Figure 4.1 shows an overview of the system used for the repetitive observation 

strategy. The system consists of the autonomous mobile robot surveillance system 

described in Chapter 2 with an additional on-line clustering functional block. First, 

an autonomous mobile robot surveillance system is required to check for any unusual 

measurement. This is followed by estimation of the position of the source of novelty. 

The estimated positions of anomalous objects (anomaly points) are then clustered 

using an on-line clustering method.  



Repetitive Observation Strategy | C h a p t e r  

104 | P a g e  

 

 

Figure 4.1: System overview. 

4.4 Estimating the Position of the Source of Novelty 

An anomaly point is an estimate of the position of an anomaly or the source of 

novelty using the results of novelty detection. This section describes how anomaly 

points are acquired from a laser range finder and other sensors. 

4.4.1 Directional Sensors 

Laser range finders are a good example of the type of sensor that can provide 

information about the position of an anomaly (anomaly point). To show that the 

method is robust, the laser range finder is down sampled by dividing its angular 

range into 8 sectors. This is to emulate other noisier range sensors with less dense 

angular resolution like an array of sonar or infra red sensors. Detailed discussion on 

this design consideration has been given in Chapter 2. With the limitation that is 

imposed on the laser range finder, it could not get a clear description of the anomaly 

just from a single scan, just like other type of range sensors that are arranged 

sparsely. Repetitive observations overcome this limitation by considering collective 

information from a number of scans instead of relying solely on a single scan. 
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In this project, the robot monitor changes by comparing (using the Euclidean 

dissimilarity measure) a current measurement with a normal measurement stored in 

the flexible region map. For the laser range finder, a measurement consists of a 

vector of the average of the laser measurements in the sectors (see Figure 4.2), where 

an average of a sector becomes a component of the vector. An anomaly is highlighted 

when the Euclidean distance value is higher than the region tolerance. In order to 

estimate the position of the source of the anomaly, first the robot finds which of the 

sectors causes the dissimilarity. This is done by performing individual comparisons 

of the vector components between the current and the normal measurements. The 

robot then determines which of them has value bigger than the region tolerance 

before estimating their position. As can be seen in Figure 4.2, the distance and 

direction from the anomaly to the sensor is represented by a vector 𝑑  where its 

magnitude, d is the average value of the laser measurements in the sector and its 

direction, β is the angle of the center of the sector with respect to the sensor’s 

heading.  

 

Figure 4.2: The laser angular range is divided into 8 sectors where the average value of laser 

measurements from Sector 2 is shown to have the highest dissimilarity. The vector 𝒅  carries the 

directional information and average distance value of the detected anomaly. 

The magnitude of the distance, d from the sensor to the vicinity of the 

anomaly depends on whether the highlighted anomaly is due to a missing object or 

the appearance of an additional object. The actual distance measurement resulting 
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from a missing object is longer than the distance measurement of the normal neuron 

(see Figure 4.3). In contrast, the appearance of an additional object makes the actual 

distance measurement less than the distance in the normal neuron. Because of this, 

the estimated distance (d) to the anomaly can be determined by Equation ( 4.1 ). 

From the equation, di is the average laser distance of the sector which has the highest 

dissimilarity during novelty inspection and dn is the average laser distance of the 

same sector if the laser measurement is taken during the normal condition. 

 

Figure 4.3: The magnitude of the vector 𝒅 , depends on the relation between the average value of 

the laser measurements taken during inspection 𝒅𝒊 and during the normal situation, 𝒅𝒏. 

𝑑 =  
𝑑𝑖 , 𝑑𝑖 < 𝑑𝑛

𝑑𝑛 , 𝑑𝑖 > 𝑑𝑛

  ( 4.1 ) 

As mentioned before, the direction of the anomaly with respect to the sensor 

heading 𝜃𝑙  is denoted by β.  By using the direction and distance to the anomaly, the 

anomaly point location  𝑥𝑎𝑝 , 𝑦𝑎𝑝  can be determined using Equation ( 4.2 ) and 

Equation ( 4.3 ) where  𝑥𝑙 , 𝑦𝑙  is the position of the laser range finder. 

𝑥𝑎𝑝 = 𝑥𝑙 + 𝑑 sin 𝛽  ( 4.2 ) 
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𝑦𝑎𝑝 = 𝑦𝑙 + 𝑑 cos 𝛽  ( 4.3 ) 

 

The Accuracy of the Anomaly Point 

The accuracy of the anomaly point represents how close the estimated position of the 

object surface is to the actual surface. The accuracy is only as good as how well the 

average value represents the actual laser measurements in a sector. This is affected by 

the difference between the laser measurements changed by the anomaly and the value 

of the unaffected laser measurements. Another factor that affects its accuracy is the 

number of laser measurements in a sector that scan the surface of the anomalous 

object. 

A test was conducted to investigate the relationship between measurements in 

a sector and the accuracy of the calculated anomaly point. An object was positioned 

so that half of the laser measurements in a sector were affected while the rest 

registered a fixed maximum range. The object’s distance to the laser was varied so 

that the difference between the laser measurements of the object and the unaffected 

laser measurements also varied. The anomaly point is always assumed to be 

positioned in the center of the sector. The results in Figure 4.4 and Figure 4.5 show 

that when all the measurements in a sector are almost the same value, the average 

gives a fair representation of the actual distance. However, when the difference 

between them increases, the accuracy of the calculated anomaly point decreases.  
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Figure 4.4: Examples of the resulting anomaly points as the position of the anomaly surface was 

varied. 

 

Figure 4.5: The accuracy of the anomaly point decreases when the difference between distance 

to the surface and the rest of the laser scan increases. 

(a) Small difference 

(b) A bigger difference 

(c) The maximum difference  

Object’s surface 

Anomaly point 
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The accuracy of the anomaly point also depends on the number of affected 

laser scans in a sector. A test was conducted to see the effect of changing the number 

of affected laser measurements on the accuracy of the anomaly point. A surface was 

positioned at a fixed distance of 3000mm from the sensor. The number of affected 

laser scans was increased gradually from none to the total number of scans. The 

results are shown in Figure 4.6 and Figure 4.7. As expected, the accuracy of the 

anomaly point increases the higher the number of affected laser scans in a sector. 

 Several conclusions can be made from the results of the tests. One of them is 

that the positioning of the surface of the anomalous object in the sector influences the 

accuracy of the anomaly point. The best position would be when the surface affects 

all laser scans in a section. If this is not the case, then the accuracy is better if the 

difference between the distance to the surface and the laser scans that are not affected 

by the surface is minimized. One example of this kind of situation would be when the 

anomalous object is positioned near a permanent fixture such as wall. 

 

Figure 4.6: Examples of anomaly points when the number of laser scans affected by the object is 

varied. 

Object’s surface 

Anomaly point 

(b) Half the number affected 

(c) All laser scans are affected 

(a) A few are affected 
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Figure 4.7: The accuracy of the estimated position of an anomaly point increases when the 

number of affected laser scans in a sector increases. 

Anomaly Points During Actual Detection 

The shape of the surface of an object also influences the outcome of the averaging. In 

practice, it is not possible to determine the shape of the anomalous object before it is 

detected. However, it can be generalized into three categories: concave, neutral or 

convex shapes. As depicted in Figure 4.8, the resulting anomaly point for a concave 

shape is positioned at the front of the object. In contrast, the anomaly point for a 

convex shape is positioned behind the object surface. The only case where the 

anomaly point coincides with the object surface is when the shape of the object is 

neutral which means its surface is parallel to the sector’s arc. Out of the three shapes, 

most objects found in the man-made environment have a convex shape such as 

rectangular boxes and circular rubbish bins. 
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Figure 4.8: Convex, neutral and concave surfaces detected within a sector of a laser range finder 

scan. 

 

Another practical aspect in determining the anomaly points is that the robot 

inspection route influences how an anomalous object is perceived. In most situations, 

it is assumed that the robot will move passed the object, with the opportunity to take 

measurement from different angles and distances. Note that by changing the sensor’s 

perception angle, the accuracy of the anomaly points actually changes because of the 

variation of the number of affected laser scans and the difference in distance between 

the affected and unaffected laser scans in a sector.  For this reason, in order to see the 

effect of the averaging of the laser measurements for a convex shape, an experiment 

was conducted in a simulated environment by placing a 400x800mm
2
 rectangular 

shaped object at different positions along a 2400mm wide corridor (see Figure 4.9). 

The simulation then produced sensor measurements that would have resulted as the 

robot moved past the object. The objectives of the experiment were: 

1. To see the relationship between the positioning of a convex object in a laser 

sector and the resulting average value of the laser measurement in the sector. 

Convex Laser origin 

Anomaly point 

Neutral Laser origin 

Concave Laser origin 
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2. To see the relationship between the sensor’s perception angle and the 

anomaly points. 

 

Figure 4.9: Test environment for investigating the difference between the average of laser 

measurements within a sector and the actual measurement at the center of the sector. A 

rectangular shaped object is shifted 10mm at a time along the bold line shown in the figure. 

The average value of laser measurements in a sector is projected at the 

average angle of the laser beams in the sector (the center of the sector). This value is 

compared with the actual value of the laser measurement at the center of the sector. 

As depicted in Figure 4.10, the results show that the detection of the convex surface 

of a rectangular box produced an average laser measurement that was further than the 

actual distance. It can be seen that the average value of a sector is maximized when 

the object lies fully within the sector. With respect to the perception angle, the 

difference between the average and the actual distances depends on the angle of view 

of the laser and this ranges between 200 mm to 600 mm.  

Figure 4.11 shows an example of the results of detection of a rectangle box. It 

can be seen how averaging of the laser measurements and the angle of perception 

affects the position of the anomaly point. As shown by the results, the detection of 

convex surfaces that are commonly found in a typical man-made environment 

produces anomaly points that are distributed beyond the surface of the object.  
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Figure 4.10: Comparison between the average laser measurement in two neighboring sectors 

and the actual laser measurement at the center of each sector.  

 

 

 

Figure 4.11: Results of anomaly detection from three inspection steps. The lines coming out from 

the robot show the average value of laser measurements within the respective sectors. The angle 

of each line is positioned at the center of each sector. The average distance is longer than the 

actual distance to the object. 
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4.4.2 Modeling the Distribution of Laser Range Finder Anomaly Points 

Since the laser range finder provides a lot of useful information and because it is also 

the main sensor used in this project, it is important to study the distribution of 

anomaly points derived from the laser data. For this reason, a model of the 

distribution of anomaly points is described in this section. The model is developed to 

gain a thorough understanding of the distribution of anomaly points as well as its use 

for simulation work. 

To predict the outcome of the detection of an unknown convex shaped object, 

the distribution of anomaly points is modeled using points on the perimeter of an 

ellipse. The reason why an ellipse was chosen is that its shape can approximate the 

shape of many typical objects found in the robot’s environment such as rectangular 

boxes, indoor plants, circular bins and uneven shaped bags. The equations of the 

ellipse perimeter points are given by Equation  ( 4.4 ) and Equation ( 4.5 ), where a 

and b are the semimajor and semiminor axes,  denotes the mean of  x,  is the mean 

of y,   is the major axis angle and α is restricted to the interval of -   α  . The 

term 𝜀𝑎𝑣𝑒  denotes the offset due to averaging. 

𝑥 = 𝜇 + 𝑎 cos 𝛼 cos 𝜃 − 𝑏 sin 𝛼 sin 𝜃 +  𝜀𝑎𝑣𝑒  ( 4.4 ) 

𝑦 = 𝜐 + 𝑏 sin 𝛼 cos 𝜃 + 𝑎 cos 𝛼 sin 𝜃 +  𝜀𝑎𝑣𝑒  ( 4.5 ) 

To clarify the idea, if the robot observes the object from all sides, the 

resulting anomaly points will approximate the ellipse perimeter points shown in 

Figure 4.12. As can be seen from this figure, the mean of the ellipse points equates to 

the center of the anomalous object. The major and the minor axes are approximated 

using the length and the width of the object. If the object is observed only from a 

certain angle, only the corresponding ellipse points will be highlighted. The angle 

over which the object is observed is called the observation span, α.  
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Figure 4.12: Anomaly point model of a rectangle shaped anomalous object. 

Observation span, α is modeled as the angle between two vectors which have 

the same origin located at the center of the object (see Equation ( 4.6 )). The first 

vector points to the position of the sensor location when the anomaly was first 

detected and the second vector points to the last position where the anomaly was 

detected. Only the points which are positioned within the span,  φA  α  φB  are 

considered as anomaly points (drawn as the hollow circles in Figure 4.12), where φA 

and φB are the angles of vectors A and B.  

𝛼 = cos−1  
𝐴 ∙ 𝐵

 𝐴  𝐵 
  ( 4.6 ) 

The last parameter for the model is the averaging error, 𝜀𝑎𝑣𝑒 . The averaging 

error is the error resulting from averaging sensor measurements in a sector. As 

discussed earlier, the value of 𝜀𝑎𝑣𝑒 depends on the shape of the object and the angle of 

perception of the sensor. Given that the difference between the average and the actual 

distance to the object surface is denoted by 𝜀𝑧_𝑎𝑣𝑒 , the averaging error in the x 

direction, 𝜀𝑥_𝑎𝑣𝑒  and the averaging error in the y direction, 𝜀𝑦_𝑎𝑣𝑒  are given by 

Equation ( 4.7 ) and Equation ( 4.8 ). The term γ is the angle of the projection of the 

vector, 𝑑  to the individual ellipse perimeter point or namely the perception angle. 
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The value of γ depends on the pose of the laser range finder with respect to 

the detected object. Given that we know the inspection route of the robot, the vector 

can be estimated (see Figure 4.12) from which the sector with the highest 

dissimilarity should be used to find γ. As an example, Figure 4.12 shows the position 

of the sensor at the start and the end of the robot inspection route. At the start and the 

end positions, the anomaly points should be determined from vector 𝑑 
3 and vector 𝑑 

1 

respectively. In between the start and the end positions, the anomaly points should be 

determined from vector 𝑑 
2. 

𝜀𝑥_𝑎𝑣𝑒 = 𝜀𝑧_𝑎𝑣𝑒 cos 𝛾 ( 4.7 ) 

𝜀𝑦_𝑎𝑣𝑒 = 𝜀𝑧_𝑎𝑣𝑒 sin 𝛾 ( 4.8 ) 

Table 4.1 presents a guide for systematically determining the input 

parameters for estimating the value of the perception angle and the averaging effect 

for a given observation span. Similar to the example from Figure 4.12, the 

observation span is divided into smaller spans. Then in each smaller span, the 

perception angles that will affect the span are determined together with their 

respective averaging effects. The value of the averaging effect is approximated from 

the result of the test presented in the previous section, where a narrower perception 

angle should have smaller  𝜺𝒛_𝒂𝒗𝒆. A span can be influenced by more than one 

perception angle. If this happens, the averaging effect should be distributed equally 

among the respective ellipse perimeter points within the span. 

Table 4.1: A guide to determine the input parameter for estimating the distribution of the 

anomaly points. 

Observation Span, α 
Perception 

angle, γ 

Averaging 

effect, 𝜺𝒛_𝒂𝒗𝒆 

angle_min<α<angle_a Angle of 𝑑 
3 ~ 𝑑 

3_𝑎𝑣𝑒 − 𝑑 
3_𝑎𝑐𝑡   

angle_a <α<angle_b Angle of 𝑑 
2 ~ 𝑑 

2_𝑎𝑣𝑒 − 𝑑 
2_𝑎𝑐𝑡   

angle_b <α<angle_max Angle of 𝑑 
1 ~ 𝑑 

1_𝑎𝑣𝑒 − 𝑑 
1_𝑎𝑐𝑡   
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In order to validate the anomaly point distribution model, the results of 

repetitive observations from the actual environment (the same environment as the 

one shown in Figure 4.11) are compared with the prediction from the model. The 

covariance of the distribution of both anomaly points for three different observation 

angles is presented in Table 4.2. The results show that the model has similar 

statistical attributes when compared with the actual distribution. 

Table 4.2: The comparison between the distribution of the anomaly points from the model and 

from the actual detection for 3 different cases of observation span. 

 

Anomaly points distribution 

Case1: 

330 < α < 60 

Case2: 

300 < α < 60 

Case3: 

290 < α < 70 

Robot motion Upward direction Downward direction Bi direction 

Param. Actual Model Actual Model Actual Model 

Mean x 381.2 361.8 355.1 360.0 383.0 338.8 

Mean y 2999.2 2976.5 2840.0 2839.5 2933.6 2882.7 

Std. dev x 57.8 36.6 42.4 38.5 61.8 48.2 

Std. dev y 152.2 138.1 231.8 160.7 211.1 216.3 

Corr xy -0.75 -0.85 0.84 0.35 0.19 -0.315 

 

As depicted in Figure 4.13, the ellipses produced using the distribution of 

both the actual and the model anomaly points have approximately the same shapes 

and orientations. This shows that the model can approximately represent the actual 

distribution of anomaly points.  

Figure 4.13 shows that the distribution of anomaly points improves with 

increased observation span and more variation of the robot pose (robot perceives the 

anomaly while travelling in both upward and downward directions). However, the 

spread of the anomaly points from observation by the robot as it travels in both 

directions is similar to observation from one direction. This suggests that the latter 

strategy is sufficient when only information about the spread of the data is needed. 

These findings are vital for assisting the proposed path planning strategy for close 

range inspection since path planning relies on the distribution of anomaly points. It is 
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also important for determining the appropriate threshold value for clustering the 

anomaly points. 

 

 

Figure 4.13: Comparison of ellipses generated using the model and actual distributions when the 

robot is moving in different directions. The model data is presented using the blue circular dots 

and dashed ellipses. Experimental data is indicated with red dots and solid red ellipses. 

4.4.3 Anomaly Points using Data from Other Types of Sensors 

For directional sensors such as the laser range finder described in the previous 

section, it is obvious that the anomaly points refer to the position of the detected 

anomaly. However for many ambient quantities being measured such as temperature 

and air velocity, the measurements do not return any direction information that can 

be used to identify the position of the source of the novelty. In these cases, one of the 

approaches that will benefit from repetitive observation is to identify the position of 

the sensor itself when it detects anomalous measurements. Thus for these types of 

sensors, their anomaly points are the position of the sensor when it detects anomalous 

measurements. Since the position of all sensors that belong to this category can be 

assumed to be at the center of the robot, the sensor position is the same as the robot 

position. 

(b) Case 2: 

Downward direction 

(c) Case 3:  

Bi-directional 
(a) Case 1: 

Upward  direction 
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4.5 Clustering Anomaly Points 

Clustering is the process of partitioning a dataset into subsets or groups without 

having a prior knowledge of the appropriate way of grouping the samples in the 

dataset [60]. In this project, clustering is used to group estimated anomaly detection 

points based on their spatial separation. The discussion in this section focuses on the 

clustering of anomaly points resulting from novelty detection using laser range 

finders.  

Each anomaly point is detected during a different inspection cycle i.e. at a 

different time and robot pose. If an anomalous object is static, the robot should 

observe it positioned at approximately the same location, during successive 

inspection cycles, as long as the anomaly is within the detection range of the sensor. 

The following are the characteristics of the anomaly points derived from laser 

measurement data that are being considered. Their characteristics affect the design of 

the clustering method: 

1. Clustering needs to be applied while the surveillance task is performed as the 

robot might need to take immediate action on the detected anomaly. This 

means that it needs to be done even before all anomaly points are present. 

This implies that the clustering must be done on-line. The method must allow 

the creation of new clusters if the data warrants it. 

2. An anomaly point represents the estimated position of the surface of a 

detected object. Thus the distribution of anomaly points depends on the shape 

of the surface of the object (see Figure 4.14). 
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Figure 4.14: The robot observes anomalies from different positions on its route using a laser 

range finder. The distribution of the anomaly points approximates the shape of the surface of 

the object. 

4.5.1 Similarity Measures 

This section describes the approach to partitioning a set of samples into clusters. As 

mentioned before, the distribution of anomaly points depends upon the shape of the 

surface of the object. For this reason, an on-line clustering technique to group 

anomaly points based on the distance from the latest point to any existing group 

member 𝑑𝑖𝑗  (see Figure 4.14) was developed. The minimum neighbor distance 

parameter, 𝑑𝑚𝑎𝑥  determines the maximum allowable distance between group 

members. The choice of 𝑑𝑚𝑎𝑥  is very important. If the value is too small all anomaly 

points will be allocated to isolated clusters. If the value is too large, all points will be 

grouped into a single cluster.  

The minimum value of 𝑑𝑚𝑎𝑥  could be based on the robot inspection step size. 

This is especially true for sensors where anomaly points are based on the sensor or 

the robot position. For anomaly points generated by the laser range finder, assuming 

that the surface of the object has no sudden changes in depth, then the distance 

between neighboring anomaly points should be of the same order as the inspection 
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robot step size. However, in practice anomaly point observation from different 

perception angles can result in uneven distribution. This means that the distance 

between the neighboring anomaly points could be larger than the robot inspection 

step size.  

The distance between the anomaly points is measured using the Euclidean 

distance. The choice of Euclidean distance as a similarity measure is appropriate as 

the feature space (x and y dimension) is isotropic and data are expected to spread 

evenly in all directions. The Euclidean distance measure is given by Equation ( 4.9 ) 

where 𝑥𝑖 , 𝑦𝑖  and 𝑥𝑗 , 𝑦𝑗  are two anomaly points in a 2-d Cartesian space and 𝑑𝑖𝑗 is the 

Euclidean distance between them.  

𝑑𝑖𝑗  =  𝑥𝑖 − 𝑥𝑗   
2

+  𝑦𝑖 − 𝑦𝑗   
2
 ( 4.9 ) 

 

Algorithm 4.1 summarizes the clustering procedure. 

Algorithm 4.1: Clustering algorithm. 

Notation: 

𝑑𝑖𝑗 _𝑛𝑒𝑤  – Spatial distance between a new anomaly point 

and an anomaly point in existing groups 

𝑑𝑚𝑎𝑥  – Maximum allowable spatial distance between 

anomaly points in the same group 

 

Initialization:  

Membership = 0 

 

 

Procedure:  

1:  Get new anomaly point 

2:  For all groups 

3:   For all anomaly points in the group 

4:     If ( 𝑑𝑖𝑗 _𝑛𝑒𝑤 < 𝑑𝑚𝑎𝑥  ) 

5:     Join group (new anomaly point) 

6:     Membership = 1 

7:     Break 
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8:    EndIf 

9:   EndFor 

10: EndFor 

11: If ( Membership = 0 ) 

12:  Create_new_group (latest_detection_position) 

13: End 

 

 

4.5.2 Challenges of On-line Clustering 

The on-line clustering technique uses a threshold i.e. the minimum neighbor distance 

parameter, 𝑑𝑚𝑎𝑥  for the creation of a new cluster. The drawback of this approach is 

that it depends on the order of data presentation. There is a possibility that a new 

cluster is created based on an anomaly point that eventually turns out to be near to a 

point in an available cluster (see the example illustrated in Figure 4.15). 

 

 Figure 4.15: An example of the drawback of using the distance threshold for creation of a new 

cluster. Ideally, point no. 3 should be grouped into the first cluster. The numbering represents 

the order of data presentation. 

One solution to this problem is that during each iteration, the algorithm 

merges two clusters if the distance between an anomaly point in one cluster and 

another anomaly point in another cluster is below the threshold as given by 

Algorithm 4.2. 

Algorithm 4.2: Combining nearby groups. 

Notation: 
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𝑑𝑚𝑎𝑥  – Maximum allowable spatial distance between 

anomaly points in the same group 

𝑑𝑖𝑗 _𝑔𝑟𝑜𝑢𝑝  – Spatial distance between an anomaly point in 

one group and another anomaly point in a different 

group 

 

Procedure: 

1:  For all groups 

2:   For_all_ anomaly_points_in_a_group 

3:     If ( 𝑑𝑖𝑗 _𝑔𝑟𝑜𝑢𝑝 < 𝑑𝑚𝑎𝑥 ) 

4:     Combine_groups (groups which the two 

anomaly     points belong to) 

5:    EndIf 

6:   EndFor 

7:  EndFor 

 

Algorithm 4.2 involves exhaustive search which is not an ideal solution 

especially if the size of the dataset is large. Fortunately, in the discussion in the 

following chapters, it can be seen that based on experience, the effect of the 

dependency on order of data presentation on on-line clustering is negligible 

especially for the specific applications developed for this project. For this reason, the 

above algorithm is not an absolute necessity. However, the improvement of the 

method would still be worthwhile. 

4.6 Discussion and Conclusions 

This chapter draws together the key considerations involved in the quantification of 

anomaly point distribution especially for the laser range finder. The anomaly point 

distribution model is presented to identify parameters which affect the distribution of 

the anomaly points. The anomaly point model takes the form of points on the 

perimeter of an ellipse so they could represent the surface of common 2D shapes in 

the environment. An on-line clustering method is also introduced together with 

important implementation issues relating to the appropriate clustering threshold and 

the order of data presentation. Clustering is used to group together anomaly points 

based on their distance to each other. The next chapters ventures into the application 
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of the repetitive observation strategy in filtering false positives and in providing 

information to perform close range inspection. 



 False Positive Filter | C h a p t e r  

125 | P a g e  

 

Chapter 5  

 

False Positive Filter 

This chapter examines the task of reducing the number of false positives in the 

novelty detection results. First an overview of related work in the field is given 

followed by an overall description of the proposed system. Then a detail description 

of the false positive filter and experimental results are presented followed by some 

discussion and conclusions. 

5.1 Introduction 

Novelty detection procedures can suffer from two kinds of errors: missed detection 

when novelty is not highlighted and when measurements are erroneously considered 

novel when a situation is normal. The work described in this chapter tries to 

overcome the latter problem, which is also called false positive detection. 

False positives could create unnecessary alarm and waste energy and time. 

For an autonomous surveillance mobile robot, this could mean wasting its own 

resources by performing further investigation of a false alarm. Also, by focusing its 

attention towards the false alarm, the time that should be spent covering other areas is 

sacrificed and hence this reduces the productivity of the surveillance robot. The robot 

would also send a false alarm to its human controllers and thus waste their time also. 

To make the situation worse, if the false alarm occurs too often, the warning message 

would lose its urgency and when a true alarm is received, the human controller would 

delay in taking the necessary action. 
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Motivated by this, the work in this chapter is dedicated to reducing the 

number of false positives in novelty detection performed by autonomous mobile 

surveillance robots. The method benefits from the ability of the surveillance system 

to move and make repeated observations from different locations. The positions of 

the detected anomalies are identified and the distribution of these positions is used to 

identify false positives. 

 The rest of this chapter is organized as follows. Section 5.2 describes related 

work which is followed by an overview of the system in Section 5.3. The criteria 

used to filter false positive detections are discussed in Section 5.4. Section 5.5 gives 

experimental results. The chapter closes with the discussions and conclusions given 

in Section 5.6. 

5.2 Related Work 

Other researchers have investigated ways to reduce false positive detection. Usually, 

the problem is tackled at the machine learning level [2, 11, 75-78]. One of the 

common approaches is applied during detection. Performance of the novelty 

detection process is optimized by tuning the threshold (i.e. the sensitivity) used to 

classify the input pattern. The tradeoff between having high and low sensitivity is as 

follows. If the system’s sensitivity is low, it will have difficulty detecting anomalies 

but if the system is too sensitive, it will make a lot of false positive detections.  

For this reason an external filter has the advantage that it can improve the 

performance of the novelty detection mechanism regardless of its sensitivity settings. 

External filters work by further analyzing the results of the novelty detection to 

identify false detection. In [79] the residual optic flow measure was used to remove 

false positive detection of an anomalous person using data from a camera on a 

moving mobile robot. Sequences of images of a moving human have a higher value 

of residual optic flow measure than stationary objects (due to local optic flow caused 

by the limbs which move somewhat independently of the rest of the human body). 

Thus objects which were miss-identified as a person were filtered out based on their 
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low optic flow error rate. Similarly, in a fiber detection application in medical 

imaging [80], additional test were applied to detected fibers to reduce the false 

positive rate. The tests use unique characteristics of the fibers to identify them. In 

these examples, the target object to be detected is known (i.e. a moving human and a 

tissue fiber) thus their characteristics could be identified in advanced. 

 In a slightly different application [81, 82], a filter was used not to reduce false 

positives but to remove corrupted laser measurements causes by  dynamic objects 

when performing Markov localization. Since the work uses a similar sensor to the 

one use in this project (i.e. the laser range finder), it is appropriate to mention the 

work here. The robot filters out moving objects by categorizing sensor readings into 

two groups; one which contains readings that are assumed to originate from people 

(corrupted), and one which are is assumed to correspond to static obstacles in the 

map (authentic). Given the robot pose, the robot uses a novelty detection mechanism 

to identify which of the laser readings do not match the expected values of the laser 

measurements at that pose.  

In conclusion, as suggested in [57], the most suitable approach to reducing 

false positives for any system very much depends on the particular application. For 

example, for the work described here, the target object to be detected is unknown and 

thus this limits the characteristics that can be used to identify a true detection. Also 

the strategy proposed in this chapter requires active observation from different view 

points and thus needs the ability to move sensors to different positions. Mobile robots 

have this capability hence making the strategy suitable for mobile robot applications. 

5.3 System Overview 

Figure 5.1 shows an overview of the false positive filter. The repetitive observation 

strategy provides information of the size of each anomaly point group. False positive 

filtering then uses this information to filter the false positive detections based on the 

number of anomaly point that each group contains. 
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Figure 5.1: The system for filtering false positives. 

5.4 Filtering false positive detections 

Attributes of false positive detections 

The nature of the application in hand (i.e. novelty detection) makes it unlikely to 

have any prior knowledge of the anomalies to be detected. Thus for the external filter 

to work it needs to make use of general properties that are common for most 

anomalies. In this case, the problem of anomaly detection is confined to the problem 

of detecting static sources of novelty. An attribute that is true for any static source of 

novelty is that repeated observations of the anomaly should point to approximately 

the same location in space.  

In contrast, false positive detections should point to random locations. Thus 

over repeated observations, the distribution of the estimated position of the source of 

novelty (anomaly points) for false positives should be low in number and the 

anomaly points should be positioned in isolation. This is especially true if the false 

positive is caused by random errors which are due to random and inherently 

unpredictable fluctuations in the measurement apparatus or the system being studied. 

This characteristic is the determining factor used by the false positive filter 

introduced in this chapter. Figure 5.2 shows an example of the expected results of 

novelty detection using a laser range finder. The robot pauses at regular intervals on 

its inspection route to scan and compare the input measurements with the 

Repetitive Observation Strategy [Ch4]: 

Observe anomaly from different angles and 

positions then group anomaly points based on 

spatial distance between them. 

False Positive Filter: 

Identifying groups that only have a 

single anomaly point. 

Size of each group 
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prerecorded normal measurements. As can be seen, it is expected that the presence of 

an anomalous object would result in several anomaly points positioned close to each 

other unlike a single anomaly point caused by false positive detection. 

 

Figure 5.2: The robot observes anomalies from different positions on its route using a laser 

range finder. The single anomaly point that forms Group 1 is from a false positive detection. 

Filtering Process 

As depicted in Figure 5.1, the process of false positive filtering begins with repetitive 

observation by a mobile robot. The robot moves on its inspection route and pauses at 

regular intervals to take sensor measurements. Novelty detection is performed where 

the sensor measurements are compared with the prerecorded normal measurements. 

In this project, the robot employs the Habituating Self Organizing Map novelty filter 

and maps normal sensor measurements using the flexible region map. However, as 

the false positive filter works externally, in practice any type of novelty detection 

mechanism or mapping technique could work with the filter. Then, for any detected 

anomalies, the estimated position (i.e. anomaly point) is determined if possible. If it 

is not possible to locate the anomaly point then the position of the sensor, which is 

usually the same as the robot position, is used instead. On-line clustering is used to 

group the anomaly points based on their distance to their nearest neighbor. 
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 The repetitive observation strategy (ROS) is followed by the false positive 

filter. This filter uses information regarding the size of each cluster provided by ROS. 

Based on the assumption that anomaly points caused by false positive detections are 

positioned in isolation, any singleton cluster is then filtered out and is regarded as a 

false positive. It can be seen in the results of experiments presented in the following 

section that clusters which have 2 or less and 3 or less members could also indicate a 

false detection, depending of the threshold used to cluster the anomaly points. 

Consideration for On-line Clustering 

Basically, if a group contains only one anomaly point (i.e. a singleton cluster) then it 

is labeled as a false positive detection. During inspection the robot makes repetitive 

observations by following its planned route and taking measurement at regular 

intervals. However, as the clustering is performed on-line, the size of a group also 

changes over time. Any group will naturally start having one member and will 

eventually grow to its final size. In order to avoid these groups being filtered out 

before they get to their final size, filtering is only applicable to areas which are 

already beyond the working range of the sensor as shown in Figure 5.3. 
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Figure 5.3: The filter is only applicable to groups of anomaly points that are already out of the 

working range of the laser range finder (shown using the black dots). The white dots are 

anomaly points which are still within the working range of the sensor. 

5.5 Experiments 

Objectives 

The experiments were conducted in a corridor environment in Building 36, Monash 

University (Clayton campus). During the training and inspection period, the robot 

navigated using a wall following behavior and corrected its position using particle 

filter localization. A real corridor environment was used to challenge the robot with 

real world data so that a significant number of false positives detections would be 

detected.  

The objectives of the experiments were:  

1. To visually observe the result of repetitive observation and singleton cluster 

filtering. 

2. To compare the performance of novelty detection when using and not using 

the singleton cluster filter.  

3. To compare the performance of the singleton cluster filter with filters that are 

based on clusters with up to 2 and up to 3 members. 

4. To see the effect of changing the maximum neighbor distance parameter, 

𝑑𝑚𝑎𝑥  on the performance of novelty detection with the singleton cluster filter. 

5. To observe the results of novelty detection with singleton cluster filtering 

when using other types of sensors. 

Procedures 

Firstly, the robot was trained to learn normal sensor measurements in its 

environment. The sensor measurements were the 8 values of the average distance 



 False Positive Filter | C h a p t e r  

132 | P a g e  

 

measurement from the laser range finder as describe in Chapter 4 as well as 

measurements from other sensors including an anemometer and an ambient light 

sensor. As depicted in Figure 5.4, the robot navigated autonomously from point A to 

point B using a wall following algorithm. While travelling between the two points, it 

took distance measurements using its laser range finder and recorded its heading and 

current position at each 100mm step. All of the measurements were logged. The 

process was repeated five times during the period that the environment was 

considered to be in its normal state. The process was also repeated several times 

while part of the environment was changed and therefore unusual. The environment 

settings during the normal and unusual situations are summarized in Table 5.1. 

 

 

Figure 5.4: State of the robot’s environment in its normal state. Door D1 was normally both 

closed and open while door D2 was always closed. Rectangular box labeled P1 represents the 

approximate position of the rubbish bin which was introduced during the experiment. 

Table 5.1: Environmental settings during the experiments. 

 
 Situation 

Object Normal Unusual 

States 

Door 1, D1 Closed or Open Open 

Door 2, D2 Closed Open 

Rubbish bin Missing At  P1 

Lighting 
L1, L2 = off, 

L3 = on 

L1, L2 = on, 

L3 = off 

Air ventilation Off On 

 

The logged training data gathered from the normal environment was used to 

train the HSOM network offline by following the training process described in 
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Chapter 2. Then, the anomaly estimation algorithm was tested using the logged data 

from the changed environment which represented environmental settings that were 

either normal or unusual. For easy visualization, the distributions of anomaly points 

are represented using covariance ellipses. The number of anomaly points that are 

highlighted as a true anomaly or a false positive was counted for the different 

situations listed in Table 5.1. Then the true positive rate, TPR, the false positive rate, 

FPR and the false negative rate, FNR were calculated using the method describe in 

Section Chapter 2. 

The experiments were repeated with different values of maximum neighbor 

distance parameter dmax (see Chapter 4) and different sensitivity settings for the 

novelty detection mechanism which was achieved by changing the similarity 

threshold value, ST. The maximum distance parameter determines the size of a 

cluster. The performance of the novelty detection mechanism is analyzed using 

Receiver Operating Characteristic (ROC) analysis [83].  

Visual observations 

As can be seen in Figure 5.5, the estimated anomaly points that are enclosed by an 

ellipse are assumed to represent a true anomaly, based on the singleton cluster filter. 

Singleton clusters (anomaly points which have no neighbors) are categorized as false 

anomalies. In Figure 5.5 (b), a group consisting of 2 anomaly points was created. 

They are false positive detections but were recognized as true anomalies. 
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(a) A normally empty space is occupied by a box. 

 

(b) A normally closed door is open during inspection. 

Figure 5.5: Examples of detection results using the Singleton Cluster Filter. The clustering 

process groups nearby estimated anomaly points (the red dots) and represents the groups 

visually using ellipses. Note that in (a), some of the estimated anomaly points appear to be on the 

far side of the wall and others inside the box. This is mainly due to the fact that the laser 

measurements are taken as average readings. 
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Receiver Operating Characteristic Curve 

An ROC graph depicts the tradeoff between detecting true positives and false 

positives when changing the sensitivity settings of the system [83]. Sensitivity is 

defined as the number of true positives over the total number of true positives and 

false negatives. The sensitivity of a novelty detection mechanism can be tuned by 

changing the value of the similarity threshold, ST. The similarity threshold 

determines the maximum allowable distance (i.e. in terms of measure of similarity) 

between two patterns (sensor measurements) that belong in the same category. By 

reducing ST, the sensitivity will increase as the system leaves no room for false 

negatives (not highlighting an actual threat). However, at the same time, the number 

of false positives will also be increased.  

Particularly for laser range measurements, due to averaging error as discussed 

in Chapter 4, the anomaly points that represent a true source of novelty will not be 

positioned exactly on the surface of the object. For this reason, in the experiments, 

anomaly points that are closer to the surface of the anomalous object by a distance of 

less than 200mm are considered as true detections. This value is chosen after 

considering the size of the object, its distance from the robot and the size of the laser 

measurements sector as described in Chapter 4. When any of the anomaly points that 

represent a true detection is filtered out, they are counted as a false negative 

detection. On the other hand, those that are not filtered out are counted as true 

positives. Similarly, anomaly points that are positioned more than 200mm from the 

surface of the anomalous object are considered as false detections. If anomaly points 

that represent false detections are filtered out, they are counted as true negatives but 

if they are not, they are counted as false positives. 

The ROC curve was constructed by plotting the false positive and the true 

positive rate of novelty detection using different values of similarity threshold, ST. 

The maximum neighbor distance, dmax was set to a fixed value of 200mm. For easy 

reference, the novelty detection mechanism is given the acronym of RHSOM which 

stands for Regional Habituating Self Organizing Map and the Singleton Cluster Filter 
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is given the acronym SCF. Figure 5.6 shows the comparison of the ROC curve 

between RHSOM and RHSOM with SCF. 

As can be seen, at the highest sensitivity setting, the SCF reduces the false 

positive detection by more than 20%. The result is very desirable since this allows 

the novelty detection mechanism to be set to a higher sensitivity setting without 

having to suffer a high false positive rate. By using the Singleton Cluster Filter 

(SCF), there is a possibility that RHSOM would not achieve a higher true positive 

rate because of the problem of the dependency on the ordering of data presentation 

when performing on-line clustering. In the experiment, an anomaly point referring to 

the box was first observed in isolation. Its neighboring anomaly points were 

produced only after several further observations and they were grouped into a 

different cluster. Thus the first anomaly point remained in a singleton cluster. 

However, in practice, as can be seen from the example of novelty detection results in 

Figure 5.7(c), repetitive observation produces many anomaly points that highlight the 

position of the novel box. Missing a few of the anomaly points that refers to the box 

will not affect the overall performance of the novelty detection system. 

 

Figure 5.6: Comparison of ROC curves for RHSOM and RHSOM with SCF. 
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Figure 5.7 shows how the results of novelty detection change with different 

sensitivity settings. When using the singleton cluster filter, at lower sensitivity 

settings, fewer false positives are detected. However, when the sensitivity is 

increased, more false positives together with true positives are produced. A few of 

the false positives are near each other and are grouped into clusters of 2 members. 

Since only singleton clusters were filtered these remain as false positives. 

Beyond Singleton Clusters 

A comparison was made to determine the effect of filtering beyond singleton 

clusters. This means that clusters that have 2 or less members and clusters that have 3 

or less members were also filtered out. A receiver operating characteristic curve was 

plotted for RHSOM with SCF, RHSOM with 2CF (2 or less member cluster filter) 

and RHSOM with 3CF (3 or less member cluster filter). 

The results show that when compared to the singleton filter, the false positive 

rate improves by 20% when filtering is done on all clusters with 2 or less members. 

A better result is achieved by filtering clusters with 3 or less members and in this 

case there were no false positives at all. However, the true positive rates for both 

filters were reduced by about 25% compared with the singleton cluster filter. 

Nevertheless, as can be seen in Figure 5.9, the anomalous object was detected 

successfully as a result of the many observations made during the inspection. 
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Figure 5.7: Results of different sensitivity tuning. The anomaly points are represented by the red 

dots while the purple dots represent singleton clusters. The ellipses created near the rubbish bin 

indicated by the box are considered to represent true positive detection. 

 

(a) Low sensitivity (ST = 0.15). 

 
(b) Medium sensitivity (ST = 0.10). 

 

(c) High sensitivity (ST = 0.05). 
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Figure 5.8: Comparison of ROC curves for RHSOM with SCF, RHSOM with 2CF and RHSOM 

with 3CF. 

 

Figure 5.9: Filtering using SCF and 2CF. By filtering clusters with 2 or less anomaly points, a 

lower false positive rate was achieved but the true positive rate was also reduced. Although the 

true positive rate was reduced, as a result of many observations the anomalous object was still 

highlighted. 

(a) SCF 

 
(b) 2CF 
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Changing the Clustering Threshold 

An investigation was performed to see the effect of changing the clustering threshold 

i.e. the maximum neighbor distance parameter dmax. Using the same sensitivity 

setting (ST = 0.05), dmax was set to 4 different values (see Figure 5.10). From the 

results it can be seen that the higher the value of the maximum neighbor distance, the 

larger the groups become. It is seen that, almost all anomaly points resulting from the 

anomalous object were successfully clustered into non-singleton clusters when dmax 

was set to be equal and higher than the robot inspection step size (which was 100mm 

for this experiment). 

 

Figure 5.10: The maximum neighbor distance parameter dmax affects the size of the groups 

formed. 

(a) dmax  = 50mm.  

 

(b) dmax  = 100mm.  

 

(c) dmax  = 200mm.  

 

(d) dmax  = 400mm.  
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A receiver operating characteristic was used to see the effect of different 

values of dmax on the performance of the filter. With reference to Figure 5.11, as 

observed previously, the best value for dmax is approximately equal to the robot 

inspection step size which is 100mm. 

 

Figure 5.11: ROC curves for the RHSOM with SCF when using different values for dmax (value 

indicated by the numbers near the markers).  

 

Results for other types of sensors 

Another sensed value that is more likely to suffer from fluctuation in its 

measurements and thus causes many false positives is air flow velocity. Figure 5.12 

shows the results of singleton cluster filtering of novelty detection applied to airflow 

velocity measurements in the corridor. The anomaly points are based on the position 

of the sensor when it detected the anomalous measurement. 
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Figure 5.12: Filtering false positives for novelty detection of airflow velocity. 

Measurements by other sensors mounted on the robot were less noisy than the 

laser range finder and the air flow velocity sensor. An example of the results of 

repetitive observation and false positive filtering of ambient light measurements is 

given in Figure 5.13. Only one false positive is detected. 

 

 

Figure 5.13: Filtering false positives resulting from novelty detection of ambient light 

measurements. 

5.6 Discussion and Conclusions 

This chapter has presented false positive filtering which is a novel method for 

reducing false alarms during surveillance using a mobile robot. The method works by 

taking measurements repeatedly from different robot positions to confirm the 
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presence of true anomalies. Isolated anomaly points, indicated by clusters which have 

small size are filtered out. 

The experimental results show that the filter improved the overall 

performance of novelty detection using Regional Habituating Self Organizing Maps 

(RHSOM) for a range of sensitivity settings. The advantage of the filter is that it 

allows a novelty detection system to be tuned to a higher sensitivity. This means that 

the novelty detection system is able to detect a true anomaly while maintaining a low 

false alarm rate. Since the filter works externally, it can be coupled with any novelty 

detection approach. 

One of the drawbacks of using the filter is that it adds another parameter to 

the system that must be adjusted i.e. the maximum neighbor distance parameter dmax. 

However, with correct tuning as described earlier, the filter should increase the 

overall performance of novelty detection.  

Currently the robot does not actively observe detected anomalies. Instead, it 

just takes measurements by following its programmed navigation route. 

Nevertheless, the angle and position of the sensor still changes with respect to the 

detected anomalous object position as required for the repetitive observation strategy. 

In the next chapter, the inspection strategy will be further developed to actively 

observe detected anomalous objects by performing actions based on the results of 

repetitive observation and false positive filtering.  
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Chapter 6  

 

Close Range Inspection Strategy 

This chapter presents a strategy for performing a further investigation of an 

anomalous object based on the output of the novelty detection system that has been 

described thus far. The chapter starts with an introduction and discussion of related 

work. Next there is an outline of the overall system followed by a detailed 

description of the close range inspection strategy. The section finishes with 

experimental results followed by a discussion and conclusion. 

6.1 Introduction 

In surveillance tasks, using sensors on a mobile robot has many advantages over 

using static sensors alone. One of the advantages is that the robot could bring the 

sensors closer to the target area, effectively increasing their sensitivity and resolution. 

In contrast, since static sensors are positioned at fixed locations, a vast number of the 

sensors would be required to cover the whole surveillance area [22]. This makes it 

impractical to use the type of sensors which have a very limited working range [20, 

21, 24] as this would require too many of the sensors. They also would need to be 

placed at inconvenient locations because of their short sensing range.  

All sensors including those which have a large work range would benefit 

from being closer to the target object as this would increase their sensitivity. For 

example, chemical concentration is more diluted the further it travels from the 

source. The same dependency can be found with other measured quantities such as 

radiation level, magnetic field or ambient light. Even with images from a camera, a 
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close range snapshot will provide information of more detailed features like the 

texture of the object. 

Another benefit of mobility is that it provides an opportunity to investigate 

the source of the sensed quantities from different angles. A camera would certainly 

benefit from this, as many objects look different from different angles. In situations 

where air flow carries a chemical plume in a specific direction, bringing the sensor to 

different points around the source object will increase the chances of detecting the 

chemical. 

Motivated by these benefits, a novel approach to planning a close range 

inspection operation using a mobile robot and range sensor data was developed. The 

strategy utilizes information from the repetitive observation strategy and false 

positive filter which was presented in previous chapters. Close range inspection is 

performed only when an anomaly is detected using sensors which have a larger work 

range and can provide position information. 

The rest of the chapter is organized as follows. Section 6.2 outlines related 

work. An overview of the system is presented in Section 6.3. The method is 

described in Section 6.4. Section 6.5 discusses the results of the experiments. A 

demonstration of close range inspection using sensors with limited working range is 

presented in Section 6.6. The chapter is concluded in Section 6.7. 

6.2 Related work 

The scope of the work described in this chapter is focused on how a mobile novelty 

detection system that has been described thus far could fully utilize its capabilities 

and overcome its limitations in order to perform a close range inspection. These 

make the work in this chapter unique. Thus far, the robot is capable of performing 

novelty detection on extended areas, identifying the location of the source of novelty 

using the repetitive observation strategy and filtering noise using the false positive 

filter. On the other hand, the system also has some limitation. As it is designed for 

mobile robots or standalone novelty detection systems with limited capabilities, it is 
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expected that the robot will use non-sophisticated and noisy sensors that don’t 

require too much processing power, use a small amount of storage and are not 

expensive. As mention before, this is one of the reasons why the laser range finder 

that is used in this thesis is down sampled in order to emulate these more limited 

sensors. The discussion in this section will be based on these capabilities and 

limitations, as well as the nature of the task which is close range inspection.  

Close range inspection requires a navigation strategy. One of the simplest 

navigation methods is the bug algorithm and its variants [84-90]. A primary 

advantage of the bug algorithm is that minimum information is needed, that is a start 

and a goal position and sensor measurements for obstacle avoidance. A more 

advanced navigation approaches involves planning of the path. Some of the popular 

approaches for path planning includes visibility graph (e.g. A*[91] and the Dijkstra 

algorithm [92]), grid based (e.g. distance transform [93]), potential fields [94] and 

sampling based. These methods require additional information that is the position of 

the robot and details of the space that it occupies (i.e. configuration space). Unlike 

the algorithms in the bug family [95], path planning requires prior knowledge of the 

obstacles before the robot can move toward a goal.  

Traditionally the objective of path planning is to determine the best path to 

use between start and goal points. Focus is usually given to finding the lowest cost 

path from the robot’s start state to the goal state. Cost can be in terms of the distance 

travelled, energy spent etc. However, unlike the common objective of path planning, 

the objective of close range inspection is to maximize the inspection coverage. The 

objective of the coverage path planning [96] is closer to the problem at hand because 

it gives more attention to the layout of the path itself. This type of path planning 

places emphasis on the space swept out by the robot. Examples of robotic 

applications that benefit from coverage path planning are lawn mowing [97], 

harvesting[98], mine hunting [99]  and floor cleaning [100]. In order to accomplish 

their task, they must cover all reachable points in the environment. Coverage path 

planning usually involves breaking down the target region into cells through a 

process called decomposition. The problem is then simplified to visiting all cells 
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within the target region [101, 102]. This is done to provide some form of guarantee 

or measureable proof of either the completeness or optimality of the coverage.  

Close range inspection is unique in its objectives and in the challenges that 

arise in achieving them. First, unlike any path planning strategy, the aim is to travel 

as close to and to cover as much of the perimeter of the anomalous object as possible. 

Secondly, there is no prior information available for performing the navigation, 

including the start and goal position. Thus, for whatever navigation approach that is 

employed by the close range inspection strategy, the robot needs to autonomously 

determine the start and goal position. By using novelty detection and the repetitive 

observation strategy, some information could be acquired about the approximate 

position of the object. Assuming that no other prior information is available, a 

reactive algorithm similar to the bug navigation method is the best option. However, 

some modification is needed to achieve the objective of close range inspection, 

which is fundamentally different from the standard bug algorithm.  

6.3 System Overview 

Figure 6.1 shows an overview of the system for implementing the close range 

inspection strategy. The strategy uses information from the repetitive observation 

strategy and the false positive filter.  

 

Figure 6.1: Overall close range inspection strategy. 
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6.4 Close Range Inspection 

6.4.1 Problem Definition 

As mention in Chapter 4, when using range sensors, the anomaly could be the 

appearance of novel objects or the disappearance of normally seen objects in the 

environment. First the situation when a novel object is detected is discussed. When a 

novel object appears, the object could be fully or partially accessible. Close range 

inspection is defined as the problem of maximizing the inspection coverage of an 

autonomous mobile robot near the accessible perimeter of an anomalous object. 

Accessible perimeter is the area near the perimeter of an object which could be 

access by a robot taking into account the size of the robot and the safety distance 

between the robot and the inspected object in order to avoid collisions. Inspection 

coverage is the proportion of the accessible perimeter that is visited when performing 

the close range inspection. It is assumed that the amount of coverage is proportional 

to the chances of gathering new information. For this reason, the performance of the 

close range inspection strategy or the coverage could be indicated by measuring the 

perimeter covered, 𝑝𝑐𝑜𝑣𝑒𝑟𝑒𝑑 , and dividing by the maximum accessible perimeter of 

the object, 𝑝𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒 ,  as given by Equation ( 6.1 ). 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑝𝑐𝑜𝑣𝑒𝑟𝑒𝑑

𝑝𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒
 × 100%    ( 6.1 ) 

For the situation where a normally seen object disappears, the coverage could 

still be defined by using Equation ( 6.1 ). However, since a missing object has no 

physical boundary, 𝑝𝑎𝑐𝑐𝑒 𝑠𝑠𝑖𝑏𝑙𝑒  is simplified to be a straight line between the nearest 

and the furthest anomaly points. An example application of close range inspection of 

a missing object is the detection of clues such as chemical residue left by a thief. In 

this project, all the situations described here i.e. fully accessible, partially accessible 

and missing object will be tackled by the same general algorithm. 
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6.4.2 Navigation Strategy 

The easiest strategy to get close to the inspected object is by having the robot moves 

as close as possible to a point near the surface of the object. However, if this is the 

total strategy inspection coverage is limited to a single point on the perimeter of the 

object. If the size of the object is bigger than the working range of some of the 

robot’s sensors, this simple approach is not enough to ensure a thorough inspection. 

The inspection coverage could be increased by having the robot 

circumnavigate the object of interest. As can be seen from Figure 6.2, the aim of the 

inspection is to visit all positions along the accessible perimeter of the object. The 

path is offset from the actual surface of the object to allow a minimum safety 

distance, DS between the robot and the object.  

 

Figure 6.2: Coverage is defined using the length of the accessible perimeter path. 100% coverage 

is achieved if the robot encircles the whole object by following the path. 

The accessible perimeter of an object could be constrained by the layout of 

surrounding objects as well as the physical size of the robot. As can be seen from the 

example in Figure 6.3, the path around the object is reduced because the object is 

positioned near a wall. Although there is a gap between the object and the wall, it is 

too small for the robot to go through. Thus the robot could only perform close range 

inspection on part of the perimeter of the object.  
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For navigating around the object to perform close range inspection, the robot 

needs to know the size and the position of the object in order to define the boundary 

of the target area and to identify a start and a goal position. Since the nature of the 

task at hand is to perform a further investigation of an unknown object, acquiring 

information regarding the size and layout of the object is not a trivial task. One 

solution is to use feature extraction to differentiate the object from its environment as 

in [103]. However, since the features of the anomalous object are unknown, this 

option is not applicable.  

This is where the distribution of the estimated positions of the sources of 

novelty (anomaly points) becomes useful. By using the repetitive observation 

strategy, the position and the size of the source of the novelty can be approximated. 

The repetitive observation strategy will especially benefit range sensors which do not 

produce dense data. With enough observations, the distribution of the anomaly points 

can represent the position and the size of the perimeter of an anomalous object or at 

least part of the object. By using the anomaly points as a guide, it is assumed that 

during close range inspection, the robot would cover at least the part of the object 

which was observed when it performed novelty detection on its original inspection 

route (see Figure 6.4). The problem of navigation for close range inspection is then 

simplified to the problem of finding appropriate start and goal points from the 

anomaly point distribution and ensuring the robot remains close to the perimeter of 

the object while traveling between the two points.  
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Figure 6.3: The accessible perimeter of an object could be constrained by an adjacent wall and 

the minimum safety distance to objects.  

 

Figure 6.4: The anomaly points represent part of the perimeter of an anomalous object. 
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For navigating between the two points, the robot should move straight 

between the start and goal position while avoiding any obstacles in between. This 

strategy will cover the problem of close range inspection of missing object as well as 

for appearing novel object. If a novel object exists, it becomes like an obstacle for the 

robot to avoid. By using a wall following behavior for obstacle avoidance, the 

distance between the robot and the novel object is maintained at a close distance. In 

order to ensure that the robot maximized its inspection coverage, the robot is 

programmed to return to its starting position once it has reached its goal position. 

While travelling along its close-range inspection path, the robot could operate its 

close-range sensors.  

6.4.3 Practical Consideration for Terminating Navigation at a Goal Point 

From the discussion in the previous section, PA and PB are represented as points in 2-

d space and the robot task is to move between these two points. However, this is not 

practical in a real world scenario because the anomaly points could be positioned 

inside an object. In addition, the robot positioning accuracy is not 100%, the robot 

size is bigger than a point and the robot is restricted to move within a safety distance 

from the object. For this reason a distance threshold, DT is introduced so navigation 

could be terminated when a robot is within a certain radius from the points. 

There are two scenarios where DT is not ideal for ensuring termination. First 

the robot could not be within the required radius from the goal point if DT is smaller 

than the nearest position that the robot could physically navigate to. Secondly, if DT 

is set too big then there is a possibility that robot does not achieved 100% coverage 

as the inspection is terminated some distance before it reaches the goal point. To 

avoid facing these problems, another termination criterion is introduced where the 

distance between robot’s starting position and the goal position, DRG is used. 

Navigation is terminated if the distance covered by the robot (as it travels towards the 

goal position) is more than DRG plus a threshold DE. DE is required as the robot needs 

to travel a longer distance to move pass the goal position when it circumnavigates an 

anomalous object.  
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 In a practical scenario, there is a possibility that the robot moves away from 

its goal position when it reacts to obstacles. For example, consider what would 

happen if there is a wall on the left side of the object in Figure 6.5. When the robot 

moves from PB to PA, avoiding obstacles (the wall) this will make the robot move 

away from PA. To solve this problem, navigation is terminated if the robot moves 

away from the goal position by the same distance as DE. This is necessary to 

guarantee termination of the close range inspection. In short, DE is the threshold 

distance for terminating navigation as the robot moves past or away from the goal.  

6.4.4 Algorithm for Close Range Inspection 

Algorithm 6.1 describes the close range inspection algorithm. The following are the 

conditions which are used in the algorithm (see notation in Algorithm 6.1 for the 

description of the notation (note: DRG indicates distance between robot and goal. 

Goal, G could be point A or point B)):   

1. DRG`>DRG+DE indicates that the robot is moving further away from its target 

destination.  

2. DTravel>DRG+DE indicates that robot has move past its target destination.  

3. DRG`<DT indicates that robot has arrived at its target destination. 

Algorithm 6.1: Close Range Inspection (see illustration in Figure 6.5): 

Notations:  

PC  – Position where the robot confirms the presence 

of a true anomaly and starts close range 

inspection. 

PG  - Goal position 

PA  – Nearest anomaly point position from PC. 

PB  – Furthest anomaly point position from PC. 

PR  – Current robot position. 

DAB  – Distance between PA and PB. 

DLDA - Distance travel since robot last detected an 

anomaly point which belongs to a confirmed 

detection. 
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DFPF  – Threshold distance for confirming a true 

positive detection. This is to increase the 

observation  span and helps in confirming the 

presence of a  true anomaly (see Chapter 5). 

DRG  - Distance between PR to PG 

DRG’  - Current distance between PR to PG 
DRA  – Initial distance between PR and PA. 

DRA’  – Current distance between PR and PA. 

DRB  – Initial distance between PR and PB. 

DRB’  – Current distance between PR and PB. 

DRO  – Current distance between PR and object. 

DTravel- Robot’s distance travel. 

DE  – Threshold distance for stopping the robot as it 

 moves past or further away from the goal. 

DT  - Threshold to indicate that robot has reached 

the target position. 

DS  – Minimum safety distance between PR and object. 

Reach goal - DRG`<DT 

Pass goal - DTravel>DRG+DE 

Move away from goal - DRG`>DRG+DE 
Safe - DRO>DS 
 

Parameter values (note: distance to target position is 

measured from the center of robot): 

DE = 500mm. 

DT = 300mm. 

DS = 600mm.  

 

Main() 

1:  While Perform common (non close range) inspection 

2:   If (DLDA>DFPF) 

3:    PC = PR 

4:    Close Range Inspection() 

5:    Move to PC 

6:   EndIf 

7:  EndWhile 

 

 

Navigate(G=A/B,W=left/right) 

1:  Set DRG = DRG’. Reset DTravel = 0.  

2:  Turn to PG 

3:  While (Not Past goal AND Not Move away from goal) 

4:   If (obstacles) 

5:    Follow W wall 

6:   Else 

7:    Move straight to PG 

8:   EndIf 

9:   Operate close range sensor 
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10: EndWhile 

 

Close Range Inspection() 

1:  Find PA and PB.  

2:  While (Safe AND Not Reached goal) 

3:   Navigate(A,left) 

4:  EndWhile 

5:  Navigate(B,left) 

6:  If (Past goal) 

7:   Navigate(A,left) 

8:   If (Past goal) 

9:   Terminate CRI 

10:  Else (i.e. Moved away from goal) 

11:   Navigate(A,right) 

12:   If (Past goal OR Moved away from goal) 

13:    Terminate CRI 

14:   EndIf 

15:  EndIf 

16: Else (i.e. Moved away from goal) 

17:  Navigate(B,right) 

18:  If (Past goal) 

19:   Navigate (A,right) 

20:   If (Past goal OR Moved away from goal) 

21:    Terminate CRI 

22:   EndIf 

23:  Else (i.e. Moved away from goal) 

24:   Terminate CRI 

25:  EndIf 

26: EndIf 
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Figure 6.5: Illustration of the close range inspection algorithm. 

6.5 Experiments 

This section describes a robotic experiment investigating the close range inspection 

of an anomalous object. The experiment was designed to demonstrate that the 

proposed algorithm can be used to perform close range inspection of anomalous 

objects. The objective of the experiment is to examine the route generated by the 

algorithm. 

Procedures 

The robot explored the L-shape environment described in Chapter 2 using a wall 

following behavior. An Habituating Self Organizing Map was used to build a model 

of the perceptions that it received from the environment and mapped it to a flexible 

region map. The robot localized itself using a particle filter localization method. 

After the map had been established, anomalous objects were introduced into or a 
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normal object was removed from the environment (see Figure 6.6). The robot was 

then made to perform surveillance in the environment by following the original 

inspection route. The robot was expected to autonomously perform close range 

inspection on any foreign or missing object. The performance of the close range 

inspection is measured using Equation ( 6.1 ). The length of the accessible perimeter, 

paccessible is measured taking into account a safety distance of 400mm from the robot 

center to the object or the wall. 

Results 

In the following figures, different colors are used to represent the robot inspection 

trails in order to clarify the trails when the robot was moving in different directions. 

Figure 6.7 shows the results of the close range inspection algorithm when 

investigating an object with limited accessible perimeter. After considering the 

physical size of the robot and safety distance of 400mm from walls and objects, the 

length of the accessible perimeter was determined to be approximately 2200mm and 

is shown using the dashed line. By using the close range inspection strategy, the 

robot managed to visit 100% of the accessible perimeter of the object.  

 

Figure 6.6: Positions of the anomalous object introduced into or missing from the environment. 
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Figure 6.7: The resulting inspection path when the anomalous object is on the wall. The circled 

red dots indicate inspection starting and termination points. 

Figure 6.8 shows the results of close range inspection of an object which is 

fully accessible. The robot successfully achieved 100% coverage. Figure 6.9 shows 

the result of close range inspection of a missing object. For the last experiment, result 

from the autonomous mapping from Chapter 3 was used as the normal model of the 

environment. As can be seen, the robot achieved 100% coverage of the area vacated 

by the missing object but it overly inspected the nearby area. This happened because 

it uses the same value of the stopping threshold, DE as in the two previous 

experiments. It can be seen that there is a tradeoff in choosing a high or low value of 

DE. A higher DE value guarantees total coverage but the robot might over inspect. On 

the other hand a lower DE value ensures that the robot navigates only near the 

vicinity of the anomalous object at the expense of the possibility of not achieving 

100% coverage.   
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Figure 6.8: The resulting inspection path when the object is fully accessible. The circled red dots 

indicate inspection starting and termination points. 

 

 

Figure 6.9: The resulting inspection path when performing close range inspection on a missing 

object. 
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6.6 Demonstration of using Sensors with Limited Work Range 

In order to demonstrate the functionality of the complete close range inspection 

system, sensors with limited work range were mounted on the robot. In an actual 

surveillance/inspection scenario, examples of close range sensors that are commonly 

used are ion mobility spectrometers and X-ray machines [104]. For this project, 

because of cost and safety issues, it was decided to use less expensive and safer to 

operate sensors. For this reason, a novel electromagnetic radiation (EMR) sensor was 

developed (see Figure 6.10). The sensor can detect working electronics inside a 

package. A lot of dangerous packages such as explosive devices or devices designed 

to release dangerous chemicals are controlled by electronics.  

Apart from being a practical choice for demonstration purposes with this 

project, the EMR sensor in itself is a useful development. While it is easy to develop 

countermeasures against an inspection system that uses a single type of sensor, it 

would be much more difficult to avoid detection by many different types of sensors. 

As the EMR sensor is not expensive, is safe to use and could sense operating 

electronics, it is ideal to be among the range of sensors that could be used by an 

inspection robot.  

 

Figure 6.10: Electromagnetic radiation sensor mounted on the mobile robot. 
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The electromagnetic radiation (EMR) sensor system is depicted in Figure 

6.11. The EMR sensors works by recognizing wave patterns of the amplified and 

rectified electromagnetic radiation emitted by operating electronic circuits. Circuits 

in electronic devices such as mobile phones and electronic timers produce periodic 

electromagnetic waveforms that are usually unique to the type of circuit. The sensor 

uses a loop aerial to receive the electromagnetic waves from the electronic devices.  

The aerial needs to be as close as 20cm from the devices to receive the 

electromagnetic radiation. The received waveform is analyzed using a number of 

algorithms and scores are given to the results that indicate the presence of operating 

electronic circuits. The development of the EMR sensor is described in detail in 

Appendix A. 

 

Figure 6.11: The EMR sensor system. 
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other sensors which work at close range and that have a high latency. The EMR 

sensor is an example of such sensors. Apart from being short range, the EMR sensor 

also takes time to operate as it needs to take samples of measurements for an 

extended period of time. It takes more than a minute for the sensor to take enough 

samples to extract signatures from the waveforms. In this chapter, the demonstration 

particularly highlights how a laser range finder complements the shortcomings of the 

EMR sensor. 

In order to demonstrate a close range inspection activity using an actual close 

range sensor, the same setup as in the previous experiment was used. During 

inspection, two objects were introduced; a box and a polystyrene block with a pocket 

file (see Figure 6.12). A hand phone (Nokia N93i) on standby mode was placed 

inside the pocket file. The robot was expected to detect the box and the polystyrene 

block, perform close range inspection on them and highlight the object that contained 

the hand phone. The sensor was also expected to detect and highlight the signal from 

the laptop that the robot was carrying, if signal from the hand phone or any other 

operating electronic devices was not detected. As the sensor was placed on the left 

side of the robot, it was used only when the inspected object to the left of the robot. 

In short, the sensor was turned on only when the robot perform close range 

inspection while navigating using left wall following.  

 

Figure 6.12: Positioning of the anomalous objects introduced into the environment. 
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Figure 6.13 shows the results of the close range inspection. The robot 

performed inspection on its original route. When it detected the box, it moved to it 

and performed close range inspection on the box using the electromagnetic radiation 

(EMR) sensor. The sensor only detected signals from the laptop (Dell XPS M1210 ) 

that was mounted on the robot. The detection of the laptop is indicated as the blue 

colored circles in Figure 6.13. The robot then returned to its original inspection route 

and detected the polystyrene block. The robot made a close range inspection on the 

block. Figure 6.13 shows that the hand phone was detected and highlighted on some 

of the positions near the perimeter of the polystyrene block. 

 

Figure 6.13: Outcome of the demonstration of a close range inspection using the EMR sensor. 
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angular resolution. This chapter demonstrates how the repetitive observation strategy 

and false positive filter described in the previous chapters could overcome this 

hardware limitation. Experimental results show that the algorithm successfully 

brought the robot close to the perimeter of the anomalous object and the vicinity of 

the missing object. The results show that the robot achieved 100% coverage in all the 

tests. The demonstration with the electromagnetic radiation (EMR) sensor that has a 

limited work range highlights the benefit of close range inspection. 

There are many advantages of using the close range inspection strategy. 

Firstly, this strategy opens up the possibility of using other types of sensors which 

were previously neglected for surveillance tasks because of their limited working 

range. Secondly, as the approach is robust and require minimal information, any 

range sensors including less expensive but noisier sensors with coarse angular 

resolution could be used.  

The close range inspection algorithm has room for improvement. Currently a 

threshold DE is used as a termination condition. However, the threshold does not 

guarantee total coverage. If it is set too high, the robot might inspect too much of the 

unrelated surrounding area. However if it set too low, the strategy might not achieved 

100% coverage. A better approach for terminating close range inspection is still open 

for investigation.  

Other than for surveillance, the close range inspection strategy could also be 

useful for autonomous learning. The robot could gather data about new objects using 

many of its sensors at close range. The robot could inspect new objects from different 

viewpoints by following the close range inspection route. Direction for future work 

include the possibility of using sensors other than range sensors to estimate the 

anomaly position and to perform further close range inspection. 
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Chapter 7  

 

Discussion and Conclusion 

This concluding chapter provides a review of the thesis and suggests areas of work 

that could be developed further. Finally, the conclusion of the thesis is given. 

7.1 An Overview of the Thesis 

Monitoring changes using a novelty detection approach has many potential 

applications for many different kind of robots. However, until now very few mobile 

robots have actually employed novelty detection. To date, the use of rigid map 

structures to map normal data of the environment makes it difficult to adapt to new 

and unknown environments. Current techniques also consume much of a robot’s 

valuable resources such as data storage and processing capacity, which in turn will 

put a limitation on the robot design.  

The flexible region map described in Chapter 2, addresses these problems. Its 

flexible structure adjusts to the distribution of the normal measured quantities in the 

environment and hence effectively reduces the storage requirement. It is also data 

driven, which means that the map structure need not be predefined. In addition to 

that, an autonomous mapping method that is presented in Chapter 3 allows the 

flexible region map to autonomously adapt to the normal condition in new or 

changed environments.  

In addition to proposing a flexible region map system and a method of 

autonomous mapping, this thesis also made contributions in making the results of 
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novelty detection of practical use for a mobile robot. The repetitive observation 

strategy and false positive filter discussed in Chapter 4 and Chapter 5 reduce the 

number of false detections and estimate the position of the source of any anomaly. 

The close range inspection strategy presented in Chapter 6 uses this information to 

guide the robot for performing close range inspection of anomalous objects. These 

methods were proven to work with relatively low resolution and noisy data as has 

been demonstrated using data from the down sampled laser scans. 

7.2 What is New in this Thesis 

The following list gives some of the main original ideas and contributions of this 

thesis: 

1. A novelty detection map which uses a flexible region structure. 

2. Investigation of using a number of different sensors when mapping and 

performing novelty detection with a flexible region map. The sensors include 

a laser range finder, an anemometer, an ambient light sensor, an olfaction 

sensor and a chemical concentration sensor. 

3. A novelty detection map with flexible region structure that quantifies the  

novelty of a region using the habituation principal. 

4. The first system that can autonomously produce a spatial mapping of normal 

sensor measurements in the environment for novelty detection purposes. 

5. A false positives filter based on the spatial distribution of the estimated 

positions of the sources of the anomaly. 

6. A navigation strategy for performing further close range investigation of any 

detected anomaly using a laser range finder. 

7. A new sensor for detecting operating electronic devices that are hidden inside 

any package. 
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7.3 Limitations and Future Work 

This section discusses some of the possibilities for further development of the work 

in this thesis in order to overcome some of the limitations and to improve the 

capabilities of the current system. 

7.3.1 A More Flexible Region Structure  

Currently, the regions in the flexible region map are limited to expand in 4 different 

directions (0º, 90º, 180º and 270º). As a result, the robot could only map and perform 

novelty detection when it is orientated to one of these four headings. In the future, the 

resolution of the heading could be increased so that the robot could map sensor 

measurements in more unstructured environments. In order to do this, the equations 

to represent and to restructure (expand, merge and separate) the regions would need 

to be made more general. 

7.3.2 Multi-sensor Synergy 

Having sensors that measure different entity that complements each other is an 

interesting idea. As fusion at measurement level is not possible for these sensors, 

novelty detection provides a way to associate information from these sensors. This 

has been demonstrated in Chapter 6, but there are plenty of room for improvement in 

this area. One of the possibilities is introducing a set of general rules that when two 

or more sensors produce novel measurements at the same time, the robot should react 

to them sequentially one after another based on the amount and the type of 

information content that they provide. In other words, priority should be given to 

measurements by sensors that have more information or to those that require urgent 

attention. 
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7.3.3 Extracting Information from Sensors 

In Chapters 4 and 5, estimating the position of the anomaly using novelty detection 

results of a laser range finder has been discussed. It is possible that other sensors 

could also be used for this purpose. For example, the level of chemical concentration 

gives an indication of the distance between an olfaction sensor and the source of a 

gas leak. If the robot could take measurements from different positions as suggested 

by the repetitive observation strategy, it could perhaps estimate the position of the 

source of the gas leak by using triangulation. Similarly, quantities like sound, light 

and others are also more intense when they are measured closer to the source. 

Although this naive approach has been considered by others, novelty detection 

mechanism makes the idea unique as it provides normal measurements information, 

which could be used to find the position of missing normal measurements such as 

missing objects (as presented in Chapter 6), missing light, missing sound of a broken 

machine etc.  

7.3.4 Commercialization: Novelty Detection Standalone Module 

The system could ultimately be use in the form of standalone novelty detection 

modules which could be mounted on new or existing mobile robots, functioning as a 

supporting sub-system. This is made possible by the fact that the mapping system 

described in Chapter 2 and 3 is designed to work with the limited data storage and 

processing capacity associated with an inexpensive system. A more interesting 

application would be to mount these novelty detection modules on systems other than 

robots such as animals, motor vehicles or mobile devices such as mobile phones, 

provided that they could estimate their position in space. Nowadays, this could easily 

be done with the existing global positioning systems (GPS) in motor vehicles and 

even in mobile phones. They could then be used as part of an inspection or 

surveillance system or for other applications. 
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7.4 Conclusion 

The aim of this thesis has been to investigate the challenges and benefits of using 

novelty detection for mobile robots. Firstly, an autonomous flexible region mapping 

methods has been developed to map novelty detection data at different locations in 

the environment. These techniques were tested in an L-shaped environment as well 

as in a real corridor environment and proved capable of significantly reduce the 

storage size when compared to conventional mapping systems. The results also show 

that it could autonomously update the normality status of its perception of its 

environment. All this was achieved while maintaining a low false positive and a low 

false negative rate for the novelty detection results.  

Next the benefit of using a mobile robot was highlighted by utilizing the 

mobility of the robot to achieve a lower false positive rate and to perform a further 

inspection action on the detected anomalies. The receiver operating characteristics 

(ROC) curves created using the novelty detection results show that the repetitive 

observation strategy together with the false positive filter was able to reduce false 

positive rate. The output of the filtering process was used for the close range 

inspection strategy. Experiments in the L-shaped environment show that by using the 

laser range finder novelty detection results, the robot was able to increase its 

inspection coverage near the vicinity of the source of the anomaly. 

These results lead to the conclusion that the autonomous mobile novelty 

detection system proposed in this thesis has solved some of the main challenges of 

performing novelty detection using a mobile robot, particularly the problem of 

mapping normal data of the environment. The results also highlighted the benefits of 

using a mobile system for novelty detection including to reduce false positives and to 

perform further investigations using close range inspection.  

Finally, the system offers many advantages including requiring relatively 

little data storage for the map, being able to autonomously adapt to new or changing 

environments and having a low false positive rate even with noisy sensors. These 

advantages can ultimately be exploited by developing a small and inexpensive 
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standalone commercialized unit for deployment on new robots, pre-existing robots or 

other mobile systems. 
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Appendix A  
 

Electromagnetic Radiation Sensor 

A.1 Introduction 

This section reports the development of a system to capture electromagnetic radiation 

(EMR) from electronic devices and algorithms that were developed for recognizing 

the sources of the EMR. Common methods used to trigger explosive devices 

electronically include mobile phones, remote controls, electronic timers and 

intelligent controls which will trigger in response to a particular set of conditions. 

Since any operating electronic devices including electronic triggering devices 

produced EMR, the main idea behind the explosion detection mechanism described 

in this work is to detect the EMR produce by these triggering devices.  

In the circuitry of electronic devices, current that flows induces some 

magnetic field. The flow of current depends on the state of the circuit and the 

magnetic field changes proportionally to the current. Depending on the activity of the 

circuit, the change in the pattern of the flow of current is repetitive hence producing a 

unique periodic waveform. Different attributes such as frequency and other patterns 

can be extracted from a periodic waveform generated by the EMR. These attributes 

form a signature that could uniquely represent each type of device, providing a robust 

and efficient method to differentiate between them.  

Several works using similar sensors has been reported. In [105, 106], mobile 

robots navigate by following dipole magnetic field signals produced by a transmitter 

and beacons. In other work [107] a similar approach is reported but using radio 

frequency identification transponders (RFID). The use of a magnetic field sensor on a 

mobile robot to monitor and locate the source of EMR in the environment has been 

described in [108]. In [109], a magnetic field sensor sheet was used to detect a 
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moving tunneling robot. In another application [110], an electromagnetic sensor is 

used for meteorite search by looking for their unique signature. Of all these work, 

none use the sensor to recognize objects that produced the EMR particularly coming 

from explosive triggering devices. 

The following sections discuss in detail the design and operating principal of 

the EMR sensor. First the method of capturing the EMR signal using a loop antenna 

is described. Then the algorithms that were developed to identify the source of the 

signal are presented. 

A.2 Sensor Design 

The use of loop antenna is most appropriate to capture the signals since EMR 

produced by electronic devices is mainly due to inductive coupling [110]. A loop 

antenna is chosen over other types of antenna in some other works [105-113] as well 

as for this project because of its directional property and because of its design 

simplicity. Being sensitive to direction of the electromagnetic field is useful for 

helping to locate the source of the magnetic field. At the optimum alignment between 

the loop aerial and the source of signal, the induced voltage Es is given by Equation ( 

A.1 ) where e is the field strength in µV/meter, N is the number of turns, A is the area 

of the loop in square meters and  is the wavelength of the signal in meters.  

𝐸𝑠  =
2𝜋𝑒𝑁𝐴

𝜆
 ( A.1 ) 

The signal captured by the loop aerial is amplified using a wide bandwidth op 

amp. It is then rectified and fed into a 10 bit A/D converter of the Infineon C167CS - 

LM processor. A computer is connected by serial link to the processor, and is used 

for signal processing. The sampling rate of the Infineon C167CS-LM is about 

15µsec, limiting the system to only process signals below 66 kHz. Figure A.1 shows 

a schematic diagram of the sensor. 
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Figure A.1: The EMR signature sensor system, the electronic device and the inductively coupled 

magnetic field between them. 

As the sensor is used on a mobile robot and requires the use of a laptop, the 

positioning of the sensor on the robot needs to be considered. In [110] it has been 

reported that EMR that comes from the laptop and the mobile robot contributed 

significantly to the ambient magnetic field. For this reasons, the loop antenna is 

positioned as far as possible from the electronics of the robot and the laptop. 

A.3 Data Processing 

Data processing is performed to extract the signature of the signals that are detected 

by the loop antenna. These signatures are used for recognizing different devices that 

are the source of the magnetic field. Several signatures were developed to recognize 

different electronic devices. For a more individual device specific signature, the 

number of peaks in the detected waveform and time between peaks are used. For a 

more general signature, the maximum and minimum time between peaks as well as a 

histogram of the time between peaks is used. Combinations of these signatures are 

used to recognize different devices. 

Observations of the EMR waveforms generated by a CD player and a mobile 

phone (HP1) were made using a digital oscilloscope (see Figure A.2) to assess the 

types of signatures that could be use to identify these devices. It can be seen that the 
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CD player produces a higher frequency signal than HP1 while the HP1 produced 

distinct peaks every 250 ms. A closer look at the mobile phone’s waveform in Figure 

A.2 shows that a peak actually consists of two separate peaks separated by 3.75 ms 

(see Figure A.3).  

There is a possibility that a single EMR waveform could produce a 

combination of low and high frequency signals. For this reason, the sampling rate 

must be high and the window period must be sufficient to avoid loss of information. 

Simple statistics were extracted from the waveform ‘on the fly’. This is to avoid the 

need to store a full set of data over a certain amount of time considering the large 

amount of data involved. 

 
CH1 200mV/div  M 250ms/div 

Figure A.2: The waveform of the CD player (top) and the mobile phone (bottom) EMR. 

 

 
CH1 500mV/div  M 2.5ms/div 

Figure A.3: A close up look at the mobile phone’s waveform. 
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There are four algorithms that were developed to extract different signatures 

from the EMR waveforms: 1. Time between peaks (TBP) (see Algorithm A.1), 2. 

Number of peaks (see Algorithm A.2), 3. Minimum and maximum time between 

successive peaks (see Algorithm A.3) and 4. Time between peaks histogram (see 

Algorithm A.4). 

 For the time between peaks, the system detects peaks in the EMR waveform 

and calculates the timing between them. The peak detection is independent of sensing 

range since the threshold is based on a certain percentage (80%) of the maximum 

amplitude, ESmax. However, if the maximum amplitude is below a minimum 

threshold level, Tmin, then they are ignored.  

The second algorithm is a measure of the number of peaks over a certain 

period of time. The third algorithm measures the maximum and the minimum time 

between successive peaks. Last but not least, the histogram of the time between 

peaks tabulates the frequency of the TBP over a certain period of time.  

 

Figure A.4: The illustration of the time between peak algorithm. 

Tmin 

𝐸𝑠 

t  

CH1 500mV/div  M 2.5ms/div 

 

80%xESmax E

Smax 

TBP 

𝑓(𝑡) 

t  

A=80%xESmax 

𝑡0 𝑡1 

𝑇𝐵𝑃 = 𝑡1 − 𝑡0 

(a) Illustration from the output of the oscilloscope 

(b) Resulting TBP function. 
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The TBP algorithm produces the below function: 

𝑓 𝑡 =  
𝐴,   𝑡 ∈ 𝑡𝑖−1, 𝑡𝑖 , … , 𝑡𝑛−1, 𝑡𝑛

0,   𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
  ( A.2 ) 

where  

𝑡𝑏𝑝 = 𝑡𝑖 − 𝑡𝑖−1 ( A.3 ) 

 a = 80%ESmax 

 n = the number of times that the time between peaks was observed. 

 

Algorithm A.1: Time between peaks (TBP). 

1: Determine the maximum amplitude, ESmax from the first 
x ms captured from a signal, ES. (In the experiments 

x was set to be 1000ms). 

2: Wait for any ES above the minimum threshold level, 
Tmin.  

3: If signal>80%xESmax, start timer. 
4: Signal will rise to maximum and fall below 

threshold. Continue timer until ES rise above 

80%xESmax. 

5: If signal>80%xESmax again, stop timer. TBP1 = timer.  
6: Start timer for the next TBP. Repeat 3-4 for y 

successive peaks. (In the experiments y = 40). 

 

Algorithm A.2: Number of Peaks. 

1: For a fix period of time, count number of signals 
going above the minimum threshold level. 

 

Algorithm A.3: Minimum and Maximum Time between successive peaks. 
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1: Capture the time between n successive peaks. 
2: Record the minimum and maximum amount of time 

between peaks among the n samples. 

 

Algorithm A.4: Time between peaks histogram 

1: Measure time between n successive peaks. 
2: Set the appropriate time range to cover high and low 

frequency signals. Subdivide range into several 

bins. 

3: Allocate all n samples into bins(produce a 

histogram). 

 

A.4 Performance 

In order to investigate the possibility of using the signatures to recognize electronic 

devices signatures were determined from a CD player, and two different hand phone, 

HP1 and HP2. The signatures were measurements of the number of peaks, the time 

between peaks and the minimum and maximum time between peaks. Histograms of 

40 samples of successive time between peaks were also produced.  

As depicted in Table A.1, the number of peaks varies due to the strength of 

the signal. The minimum and maximum time between peaks of the EMR from the 

devices is not significantly different. So it might be not practical to use minimum and 

maximum time between peaks to differentiate between these devices. The most 

reliable signature appeared to be the time between peaks of the devices. Each device 

produces more than one unique time between peaks which provides the EMR sensor 

with more signatures to recognize different signal sources.  

The performance of time between peaks was tested by performing EMR 

signal recognition of a CD player, HP1 and a digital oscilloscope. 40 measurements 

were taken from each device while they were operating. Only signatures of the CD 

player and HP1 were known. Measurements that matched these signatures were 

labeled as either CD player or HP1 while those that did not match any signatures 
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were labeled as an unknown device. Table A.2 shows the results of the experiment. 

As can be seen, 95% out of 40 attempts, HP1 was correctly identified while 87.5% 

out of 40 attempts, the CD player was correctly recognized. It was expected that the 

digital oscilloscope would be identified as an unknown device, but that only occurred 

50% out of the 40 measurements. 

Table A.1: The signature of devices used in the experiments recorded over 60 seconds. 

Actual signal source 
Number of 

peaks 

Min and max 

time between 

peaks (ms) 

Time between 

peaks (ms)* 

CD Player 50 – 650 
Min = 0.1 

Max = 500 
0.6, 14.4 

HP 1 20 – 150 
Min = 0.1 

Max = 450 

3.75, 154, 

250,450 

HP 2 5 – 100 
Min = 0.1 

Max = 800 
400, 800 

*There are many recorded time between peaks for each devices. However, the values listed were 

among highest occurrence of time between peaks among other observations 

Table A.2: Results of 40 measurements to recognize different devices using the time between 

peak signatures.  

Signal 

sources 

System interpretation 

HP 1 
CD 

player 
Unknown 

HP 1 38 1 1 

CD Player 0 35 5 

Digital 

Oscilloscope 
12 8 20 

 

Since a single device has several significant time between peaks which occur 

repetitively, a histogram of the distribution of the time between peaks can provide 

another signature of the device. This signature is an overview of the time between 

peaks signatures as it is a result of an analysis of the distribution of time between 

peaks. The histogram was created by using 40 successive measurements of the time 

between peaks of the devices. Two histograms were produced, one with bins of 50ms 

intervals, and one with 5ms intervals. 
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Figure A.5 and Figure A.6 show the resulting histograms. In Figure A.5, it 

can be seen that the CD player produced time between peaks of less than 50 ms while 

both hand phones have a more even distribution with more than 15 occurrences 

below 50ms and two small rises in between 200 ms to 250 ms and between 350 ms to 

400 ms. The second histogram shown in Figure A.6 was created because most of the 

time between peaks were within the lower range of the first histogram i.e. between 0 

ms to 50 ms. As can be seen from both histograms, the similarity between the hand 

phones is that both have time between peaks that are distributed from 0 to 400ms. 

The CD player’s time between peaks are 150ms and below with many actually below 

5ms. 

 

Figure A.5: The histogram of time between peaks from 0 to more than 450 ms. 
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Figure A.6: The histogram of time between peaks from 0 to more than 45 ms. 

The distribution of time between peaks differs from one device to another 

because of the way different devices operate. For example, it was expected that both 

hand phones produce quite similar histogram distributions because of the similar 

processing involve in the electronics of these two devices. Thus it can be concluded 

that the histogram of time between peaks provides a general signature of the type of 

electronic device. 

Since the sensor was intended for used on a mobile robot, an experiment was 

conducted to demonstrate the feasibility of using the sensor when it was carried on a 

mobile robot. The time between peaks and its histogram were used to detect and 

recognize different electronic devices; HP1, CD player and HP2. Although the 

signatures of all these devices were known from the previous experiments, the 

signature of HP2 was not registered in the look up table for recognition purposes. It 

was assumed that the result of the detection of HP2 would either belong to unknown 

device category, or to HP1 since both HP2 and HP1 have similar signatures 

especially with their histogram of time between peaks.  

To simulate the actual inspection scenario, the devices were placed inside 

cardboard boxes (see Figure A.7). From the figure, box A contained HP 1, box B 

contained a CD player, box C was empty and box D contained HP 2. During the 

experiment, the robot was programmed to move past the boxes while pausing every 
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50mm to take sensor measurements. During each pause, the measurement was taken 

for a period of 1200ms.  

In this particular experiment, the time between peaks histogram in Figure A.5 

was used to recognize the objects inside the boxes. In the explosive detection 

application, the type of device the sensor tries to detect is known. Particularly in this 

example, the target device that could be used for triggering an explosive is the hand 

phone. Based on this, a simple scoring scheme of the searched for device was used to 

decide whether one was detected. A device received a higher score if more attributes 

of the signature were detected. For experimental purposes, the signature of the CD 

player was also presented to see if the device was recognizable. During the 

experiment, HP2 was introduced as an unknown device to see if the signature of 

similar device (hand phone) could be generalized. Table A.3 shows the attributes that 

were used as the scoring points.  

Table A.3: Examples of the attributes used for the signature and the scoring scheme of the CD 

player and HP1 based on the histogram in Figure A.5. 

 
Device 

Attributes: TBP (ms) 

0 – 50 200 - 450 

Score 
CD player +1 -1 

HP 1 +0.5 +1 

 

Figure A.7: The mobile robot with the sensor attached is moved past several boxes that contain 

different electronic devices.  Box A contains HP1 and box B contains a CD player. Box C is 

empty while box D contains HP2.  

D 

A 

B 

C 
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Table 4 shows the results of 10 experimental runs. The system correctly 

detected HP 1 in box A 7 times. It mistakenly sensed a CD player in the same box 3 

times. The system correctly detected the presence of the CD player inside box B 8 

times. It mistakenly sensed HP 1 2 times. This is probably due to the similarity 

between the histograms of both devices at the lower time between peaks.  

As expected the system detected no electronic devices in box C. Interestingly, 

the system detected HP 2 in box D and recognized it as HP 1. As can be seen from 

the histogram in Figure A.5, both devices have a very similar signature and therefore 

this result is not surprising. 

Table A.4: Result of 10 measurements to recognize different devices using the time between 

peak signature and the histogram. 

Boxes 
System interpretation 

HP 1 CD player No Signal Unknown 

A 7 3 0 0 

B 2 8 0 0 

C 0 0 10 0 

D 10 0 0 0 

A.5 Discussion about the EMR sensor 

The experimental results show that when operating, different electronic devices could 

be recognized based on their EMR signature. Although from the results, 

misclassification occurred between a CD player and HP1, it is believed that more 

signatures could be used in order to be more specific in determining the type of 

electronic devices. In addition, in a real scenario, it will be unusual for any electronic 

devices to be left while they are still operating inside an unattended bags or boxes. So 

in practice, the detection of a strong EMR signal from an unusual object in an 

environment is already a strong indication of a possible explosive threat. 

The EMR sensor provides complementary information for the robot which 

would help to confirm the identity of some suspicious items. It provides a unique 

identification of features of electronic devices, which no other sensor can provide. 

However, due to noise from the environment that comes from known and unknown 
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sources, signature that depends on the amplitude of the signal will not be adequate as 

EMR signals from different sources are combined. On top of that, the field strength 

of many of the targeted electronic devices such as the timers is too weak when 

compared to ambient noise making them difficult to be detected, unless the sensor is 

very close to the devices. However, with further development the sensitivity and 

noise rejection of the EMR sensor could be improved. 
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[2] M. F. Miskon and R. A. Russell, "A Repetitive Observation Strategy for 

Recognizing a True Anomaly and Estimating its Position," in Austalasia 

Conference on Robotics and Automation Canberra, 2008. 

[3] M. F. Miskon and R. A. Russell, "Mapping Normal Sensor Measurement 

Using Regions," in IEEE International Conference of Industrial Technology 

Melbourne, Australia, 2009. 

[4] M. F. Miskon and R. A. Russell, "Autonomous mapping of Flexible Region 

Map for Novelty Detection," accepted to Second International Conference on 
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