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Abstract

The regime nature of tropical convection occurring over Darwin Australia is explored

in an attempt to condense the large variety of cloud types that occur over a tropical

region in to a discrete and manageable number. The regimes are defined by their

precipitation structure as observed by a CPOL radar and their links with known

features of the tropical atmosphere are investigated.

Numerical simulations of tropical convection during the Tropical Warm Pool Inter-

national Cloud Experiment were made using the Weather Research and Forecasting

(WRF) model. The data used to provide the initial and boundary conditions for

the model simulations was found to contain a large warm bias in the upper tropo-

sphere that detrimentally affected the simulated convection. The simulations were

then evaluated against observations from a CPOL radar where it was found that

the choice of microphysics scheme had a large impact on the quality of the sim-

ulations. One of the microphysics schemes used was found to have a significant

problem simulating the precipitation coverage below the freezing level, while the

other overestimated graupel coverage and underestimated snow.

The precipitation regimes previously defined were used to evaluate the model sim-

ulations. It was found that by themselves the regimes were of limited use. The

technique used to originally define the regimes was then extended to include model

and radar data, which proved to be a more useful (and objective) method for evalu-

ating the statistical representation of precipitation in the simulations. It was found

that the biggest problem with the WRF simulations was the representation of weak

convective time periods. The second biggest problem with the WRF model is its

ability to simulate periods of strong deep convection with large coverage of strati-
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form precipitation, this was attributed to the incorrect forcing data.
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Chapter 1

Introduction

1.1 Tropical Convection

Tropical rainfall is largely controlled by convective processes. At the local scale trop-

ical convection directly affects the environment though the generation of precipita-

tion, providing the annual water supply for growing crops and human consumption

for millions of people living in tropical regions. On much larger scales, numerous

studies have shown (Orlanski, 1975; Rickenbach and Rutledge, 1998; Nesbitt et al.,

2000, 2006; Houze et al., 1981; Houze and Churchill, 1984, 1987; Mapes and Houze,

1993; Mapes, 1993; Houze et al., 1980) that convection is often organized, varying

from the local to meso-scale (e.g., topographically driven convection) to the large-

scale in convectively coupled tropical waves (e.g., the Madden-Julian Oscillation).

Tropical convection also affects the environment indirectly; detrainment from trop-

ical convection leads to the formation of stratiform and cirriform clouds (Chou and

Neelin, 1999). These clouds have much larger horizontal dimensions and lifetimes

than the initial convection that lead to their generation, consequently they can have

a significant impact on a region’s radiation budget. At the global scale, deep con-

vection is the primary mechanism for transporting water vapor and energy from

the tropical boundary layer to the extra-tropics via the general circulation. The

latent heat release associated with the stratiform component of tropical convection

is likely to play an important role in the interaction of convection with large-scale

dynamical features of the tropical atmosphere (Lin et al., 2004; Schumacher et al.,

2004; Mapes and Lin, 2005; Tao et al., 2006).
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While tropical convection directly and indirectly affects the environment from

the local to the global scale, accurately representing tropical convection in numerical

simulations has been long recognized as a difficult challenge. Before high resolution

cloud resolving models were developed the only method for incorporating tropical

convection in numerical models was via convective parameterisation (and it still is in

many global, climate and large-scale models). Convective parameterisation attempts

to incorporate the effects convection (water transport, energy transport, latent heat

release etc) in models that are unable to resolve convection explicitly (due to low

resolution of the numerical model). Although pameterisation has been shown to be

a useful tool in numerical weather simulations (Arakawa, 2004), the complex nature

of convection means that any given pameterisation will not work optimally under

all meteorological conditions, and may not include important physical processes and

feedback mechanisms.

One of the major problems with understanding, modeling, or parameterizing

tropical clouds is that they come in many different forms. There are arguably infi-

nite possible variations in the meteorological conditions that can lead to an infinite

variation in clouds types (no two clouds are the same). In most cases these differ-

ences are likely not important to our understanding of tropical clouds or our ability

to make accurate numerical predictions. The trick is to know when differences be-

tween clouds are important and when they are superficial. One methodology often

employed to deal with this overwhelming complexity is define a number of regimes

that contain or encompass clouds with similar properties. Previous research has

shown that the wet season in Northern Australia (roughly November to March) can

be roughly split into three regimes: the transition period, the monsoon period and

the break period. The aptly named transition period describes a time of transition

between the wet and dry seasons, typically between November - December (dry to

wet) and Feburary-March (wet to dry). The active monsoon is defined by a deep,
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westerly, lower tropospheric flow. Convection during the active monsoon often re-

sembles that occurring over tropical oceans, producing large regions of stratiform

precipitation and widespread rainfall (Keenan and Carbone, 1992; May et al., 2008).

Within any given monsoon period the low level zonal winds temporarily revert to

an easterly direction, these periods are referred to as break conditions. Convec-

tion during break conditions is typical of that occurring over continental areas, it

is generally smaller in scale, more intense (compared with the active monsoon) and

has a pronounced diurnal cycle with maximum convective activity occurring in the

afternoon (Keenan and Carbone, 1992).

While the monsoon and break regimes have proven useful when studying con-

vection over Northern Australia, an arguable downside of these regimes is that they

are rather broad, all clouds are encompassed by only two regimes. Furthermore,

the regimes are defined by the large-scale environment (lower tropospheric wind

direction) rather than the properties of the clouds themselves. With the intent of

objectively defining a number of regimes based on the properties of clouds, Jakob

and Tselioudis (2003) and Rossow et al. (2005) used a simple clustering algorithm

applied to data from the International Satellite Cloud Climatology Project (ISCCP)

(Schiffer and Rossow, 1983) to show that tropical cloudiness on a 280x280 km2 scale

(the size of the ISCCP grid box) appears to be organized into six major regimes -

three convectively active (and hence likely precipitating) and three suppressed. By

their very nature the regimes identified in this fashion are based on the radiative

signature of the tropical cloud systems, and further work (Jakob et al., 2005) estab-

lished that the ISCCP-based regimes show distinct signatures in their radiative and

thermodynamic properties. However, due to a lack of suitable data no conclusions

on the precipitation characteristics of the ISCCP-based regimes could be drawn.

More recently (Pope et al., 2009) applied a clustering algorithm to 49 seasons of

radiosonde data from Darwin airport to define five regimes that occur over North
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Australia during the wet season. The large-scale precipitation patterns associated

with these thermodynamic regimes were then explored by linking each regime with

the GPCP version 2 rainfall dataset (Adler et al., 2003).

Based on the success of these studies it is valid to ask the question if a simi-

lar regime character can be found using precipitation as the primary variable for

discriminating between regimes. Previously Boccippio et al. (2005) used clustering

analysis on vertical profiles derived from the Tropical Rainfall Measuring Mission

(TRMM) precipitation radar to define a number of archetypal vertical structures

for the entire tropics. The profiles used by Boccippio et al. (2005) were essentially

vertical columns with a horizontal diameter of 4km, consequently very little spatial

information entered into their regime definition.

An ideal tool to observe the spatial structure of convective cloud systems is

the centimeter wavelength radar. Ground-based radars are routinely deployed by

weather services worldwide (Demott and Rutledge, 1998; Kawashima et al., 2006)

for research and forecasting purposes. The Australian Bureau of Meteorology has

operated a polarimetric research C-band radar (C-Pol) (Keenan et al., 1998; May

et al., 1999; Carey and Rutledge, 2000), in Darwin (Australia) since 1995. The

combination of the availability of many years of radar data, and the ability to observe

a variety of convective systems makes Darwin an ideal location to study the possible

regime character of tropical precipitation on scales of a few hundred kilometers. The

research of defining, describing, and comparing the regimes to known features of the

tropical atmosphere is shown in chapter 2.

In addition to exploring the possible regime nature of convection in the Darwin

region, this thesis will evaluate the Weather Research and Forecasting (WRF) model

in a tropical environment. Evaluation of the WRF model to date has focused pri-

marily on the extra-tropics (Cheng and Steenburgh, 2005; Done et al., 2004; Jankov

et al., 2005). Where evaluation has taken place in the tropics, much of the research
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has focused on tropical cyclones (Pattanayak and Mohanty, 2006; Rogers et al.,

2007).

Darwin is the logical place to perform simulations in this study as it has a

rich history of hosting intensive field campaigns, observational data gathered from

field campaigns is extremely useful when evaluating a numerical model. During the

1986-1987 wet season the Australian Monsoon Experiment (AMEX) was run by the

Australian Bureau of Meteorology Research Centre (BMRC) with “the aim of im-

proving the understanding of the way that cumulonimbus convection and tropical

cloud clusters interact with the larger-scale circulation; of air-sea interactions in the

tropics; and of specific weather phenomena in the north Australian region.” (Hol-

land et al., 1986). The Marine Continental Thunderstorm Experiment (MCTEX)

was held in between November and December 1995 with the aim of investigating

the life cycle of island based thunderstorms that occur over the Tiwi Islands lo-

cated north of Darwin (Keenan et al., 2000). The Darwin Area Wave Experiment

(DAWEX) was held between October and December of 2001; the aim of this field

campaign was to “study aspects of the atmospheric dynamics from the ground to

the lower thermosphere, focusing on wave perturbations in the middle atmosphere

in conjunction with detailed observations of tropical moist convection” (Hamilton

et al., 2004).

The most recent field experiment to occur in Darwin was the Tropical Warm

Pool - International Cloud Experiment (TWP-ICE), which ran between the 19th

January and the 15 February 2006. TWP-ICE was a collaborative endeavor between

the Australian Bureau of Meteorology (BoM), the U.S. Department of Energy -

Atmospheric Radiation Measurement program (ARM) and a number of universities

and research organizations worldwide. One of the primary aims of the experiment

was “to examine convective cloud systems from their initial stages through to the

decaying and thin high level cirrus and measure their impact on the environment”
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(May et al., 2008). Over the course of the experiment radio sondes were launched

every 3 hours from five ground-based sites and the Southern Serveyor, a research

vessel patrolling the ocean around Darwin. Two radars were operating over the

course of the experiment taking measurements of the cloud/precipitaiton structure

and a number of flux sites were operating in the region. In addition to the ground-

based observations a number of research aircraft were taking in-situ microphysical

measurements.

As the WRF simulations presented in this thesis simulate convection that oc-

curred during TWP-ICE, a brief overview of the synoptic conditions during the

experiment is presented below, for further information about TWP-ICE a full de-

scription may be found in May et al. (2008). TWP-ICE began on the 19th of

January 2006. During the first few days Darwin experienced typical monsoon con-

ditions, with deep westerly winds, widespread convection and high cloud coverage.

On approximately the 23rd of January a Mesoscale Convective System (MCS) devel-

oped in the region (May et al., 2008) dominating the local winds and precipitation.

Between the 25th of January and the 4th of February a low pressure system to

the south of Darwin (previously associated with the MCS) had a large effect on

the weather in the TWP-ICE domain. The geostrophic winds about the low pres-

sure system wrapped air from over the Australian continent around and into the

experimental domain from the west (the classical definition of the Australian mon-

soon (Drosdowsky, 1996)). However, because the air-mass had continental origins it

contained relatively low quantities of water vapor, leading to suppressed monsoon

conditions with low cloud tops and relatively little precipitation. Towards the end

of the experiment (approximately the 5th of February) Darwin experienced typi-

cal monsoon break conditions, with easterly winds and deep but relatively isolated

convection, these conditions continued until the end of the experiment on the 12th

Febuary.
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Thus the TWP-ICE can be roughly split into 3 regimes or phases, the first being

the active monsoon which occurred roughly between the 19th and 24th of January,

the second being the suppressed monsoon between the 25th of January and the 4th

of February and final phase between the 5th and the 12th of February where the

region experienced typical monsoon break conditions. WRF simulations were chosen

to coincide with the TWP-ICE field campaign to take advantage of the observational

data collected during a variety meteorological conditions.

Figure 1.1: TWP-ICE experimental setup

1.2 Science Questions

The first aim of this thesis is to determine if rainfall over Darwin naturally divides

into regimes. An attempt is made to define the regimes in an objective fashion, to

base the regimes solely on the precipitation structures of clouds as seen by a CPOL

radar, and to assume no a priori knowledge of the previously defined Monsoon and

Break regimes. The research of defining, describing and comparing the regimes to
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known features of tropical convection is shown in chapter 2.

A secondary aim of this thesis is to evaluate the performance of the WRF model

in simulating the wide variety of clouds present in a typical wet season. The use

of radar data to validate the WRF model will feature strongly in the analysis, and

the models ability to simulate the four precipitation regimes defined in chapter 2

will be investigated. Further aims of this thesis are to explore additional ways that

radar data can be used to evaluate the WRF model. As polarization data from the

CPOL radar was not used in the definition of the precipitation regimes, an attempt

to utilize the polarization information for model evaluation purposes will be shown

in chapter 6.
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Chapter 2

Precipitation Regimes

2.1 Introduction

The aim of this chapter is to determine if a number of regimes can be objectively

defined from radar data and used to describe the rainfall/precipitation properties of

convective systems occurring over long periods of time (e.g. seasons), for the region

surrounding Darwin. In order to establish if tropical rainfall exhibits such regime

character this study applies a cluster algorithm similar to that used in Jakob and

Tselioudis (2003) and Rossow et al. (2005) to Frequency with Altitude diagrams

(FADs) (Yuter and Houze, 1995; Neiman et al., 2005) of radar reflectivity derived

from four wet seasons of radar data. The properties of the regimes identified by this

algorithm are investigated and their relationship to the main circulation regime in

tropical Australia - the monsoon - is established. The relationship of the radar-based

regimes to the ISCCP-based tropical cloud regimes is also investigated.

2.2 Data Description and Method

The dataset used in this study is comprised of reflectivity values observed by the

scanning C-band polarimetric (C-Pol) radar located near Darwin (Keenan et al.,

1998). Figure 2.1 shows a map of the radar domain indicating land areas (gray)

and the maximum coverage of the radar footprint (achieved at 3 km in the vertical)

used in this study. The radar performs a full volume scan every ten minutes. Given

the aim of studying possible precipitation regimes as they occur over long periods of
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time it was necessary (because of computational limitations) to reduce the volume

of information by using only one scan per hour. The hourly dataset used in this

investigation is comprised of the four wet seasons (NDJFMA) of 1999/2000, 2001/02,

2002/03 and 2003/04, bringing the total number of sampled radar volumes to just

over 13500.

Figure 2.1: Constant-Altitude Plan Position Indicator (CAPPI) showing
the maximum coverage of the Gunn Point radar, near Darwin, Australia.
CAPPI is valid at 3 km in the vertical. Land is shaded gray and oceans
are white.

As a first step in calculating frequency with altitude diagrams (FADs - Yuter

and Houze (1995)) of radar reflectivity for each of the 13500 sampled volumes, the

volume scans were interpolated into a cartesian space consisting of 40 vertical levels

with a grid spacing of 500m, and 121 grid points in each horizontal direction with

a grid spacing of 2.5 km. The change in the horizontal extent of the radar domain
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with height is taken into account by applying masks of the actual observed area at

each vertical level. The histograms forming the basis of the FADs were then created

by iteratively searching through all valid reflectivity values at each vertical level

and calculating the frequency with which these values fall into reflectivity bins of

width 2 dBZ. Reflectivity values below 0 dBZ are excluded from the analysis as they

are considered at the detection limit of the radar, especially at longer ranges. At

each vertical level the relative frequency of occurrence of each reflectivity bin was

then calculated by dividing the number in each bin by the total number of observed

points defined by the radar mask at that level. Consequently, summation over

the frequencies for each vertical level can be thought as a measure for the fractional

coverage with radar signal (or precipitation) at that level. This deliberately deviates

from the standard normalization of CFADS (the graphical representation of FADS

i.e. Contoured Frequency with Altitude Diagrams) (Yuter and Houze, 1995), where

each level is normalized by its fractional coverage. This choice was made to maintain

area coverage information in the regime analysis that follows, as this provides a

crucial distinction between regimes.

For illustrative purposes Figure 2.2 shows the mean FAD over all samples used in

this study. An important summary measure used throughout the study is the total

volume coverage (TVC) with radar echo. This quantity is calculated by summing

the number of radar returns over all levels and reflectivity values then dividing

by the total number of observable points. It therefore represents the fractional

coverage of radar signal over the entire three dimensional domain. The TVC for the

mean histogram is 0.04, indicating that on average approximately 4% of the volume

scanned by the radar has a reflectivity value above the 0 dBZ threshold. It can also

be seen that, on average, the maximum echo top height reaches approximately 16

km and reflectivity values greater than 40 dBZ are observed up to 8 km. A large

fraction of the returns have reflectivity values less than 18 dBZ. As this is the cutoff
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threshold for the TRMM radar, Figure 2.2 gives some indication of the number of

hydrometeors the TRMM radar will not observe.

Figure 2.2: Frequency with altitude diagram (FAD) showing the mean
of all time periods used in the study (13508 histograms). The total
volume coverage (TVC) is shown at the top of the diagram, indicating
that on average 4% of the volume scanned by the radar is covered by
hydrometeors.

Each of the more than 13500 histograms provides an input into the definition of

objectively derived regimes. In order to focus the clustering algorithm (see below)

onto the major regimes, first all (trivial) null cases, i.e., those with little or no radar

return anywhere in the volume were removed from the analysis. For this purpose

any histogram which did not have at least 1% coverage in at least one of the vertical

levels was defined as no-precipitation histogram and was removed. This eliminated
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roughly 5000 histograms from the analysis. While these “no precipitation” cases do

not enter the regime definition algorithm, they do nevertheless provide important

physical information about the state of the atmosphere. Their high frequency of oc-

currence and their “trivial” nature justifies their removal to avoid them dominating

the outcome of the cluster algorithm.

A K-Means clustering algorithm (Anderberg, 1973) was applied to the remaining

histograms to identify possible reoccurring patterns in the FADs that could be in-

dicative of recurring precipitation regimes. The choice of algorithm is largely driven

by it’s successful application in previous studies (Jakob and Tselioudis, 2003) and

efficiency requirements due to the large sample size used here. As discussed in Jakob

and Tselioudis (2003) and Rossow et al. (2005) a feature of this particular algorithm

is that it requires the user to predefine the number of clusters searched for, k. This

is overcome by repeating the analysis several times with varying values of k. Here

2 ≤ k ≤ 10 are used. The basic concept of the iterative K-Means algorithm is as

follows:

• randomly choose k “seed vectors” from the dataset as initial cluster centroids,

• assign each input histogram to one cluster by finding the minimum Euclidean

distance to any of the cluster centroids,

• calculate new cluster centroids by averaging over all histograms assigned to a

cluster,

• use the newly calculated centroids as seed vectors, and

• iterate the algorithm.

With each iteration the difference between the old and new centroids decreases

and the clusters are said to be stable when this difference is less than a prescribed

threshold value. The histograms associated with each cluster are known to be closer
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to the centroid of this cluster than to those of any of the others. Each regime is

then characterized by its centroid or mean histogram. The regimes defined by the

clustering algorithm should not depend on initial histograms chosen at random and

tests were performed to ensure this was the case.

The advantage of using the K-Means algorithm is that it provides an objective

method for defining regimes from large sets of data. However, as discussed above,

the number of clusters, k, searched for in the algorithm needs to be prescribed. It

is therefore necessary to define a strategy for choosing the optimal set of clusters

from the application of the algorithm to values of 2 ≤ k ≤ 10. Here the same

“quasi-objective” method as in Rossow et al. (2005) is used. For each increase in

cluster number the stability of the solution to the (randomly chosen) initial seeds

is investigated. Furthermore, the emerging new cluster in the k + 1-analysis is

compared to the existing k clusters of the previous application. The optimal number

of regimes in this study, K, is then defined as the smallest possible number of

clusters for which i) the algorithm provides stable solutions with respect to initial

seeds and ii) the addition of further clusters leads to regimes similar to the already

existing ones. Here it is found that K = 4. Note, that since “no-precipitation”

histograms have been excluded from the analysis to begin with, the total number of

physical regimes defined in this study is five. Nevertheless, the rest of the paper will

continue to refer to four precipitation regimes, treating the no-precipitation regime

as a “zeroth” regime due to its trivial character. The main features of the four

major precipitation regimes identified will now be described. It should be noted

a particular storm event or mesoscale convective system (MCS) may and indeed

does fall into multiple precipitation regimes. Transition of a storm event or MCS

between regimes occurs when the temporal evolution of the event is captured within

the domain of the radar. Transition between regimes may also occur when a storm

event or MCS enters and leaves the domain of the radar.
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2.3 Tropical precipitation regimes as identified in

radar data

The application of a cluster algorithm to the FADs derived from hourly volume

scans using the polarimetric C-Pol radar located near Darwin reveals four major

precipitation regimes in that region. To determine the robustness of the precipitation

regimes each wet season was analyzed separately. The regimes defined when using

individual seasons (not shown) were found to be very similar in structure to the

precipitation regimes defined here, although the RFO of the four regimes does vary

from year to year.

The mean FADs for each of the four regimes are shown in Figure 2.3. The order

of the panels in this figure is in terms of the relative frequency of occurrence (RFO)

of each regime, which is shown in the top left-hand corner of each panel. Due to its

trivial nature the no-precipitation regime is not plotted, however for completeness

the RFO of this “zeroth” regime is displayed on the right hand side of each panel.

It is evident that for the dataset used here - hourly data for four wet seasons (ND-

JFMA) - this regime has the second highest frequency of occurrence (about 38%),

highlighting the well-known fact that even on the scale of the radar footprint used

here (about 300 km diameter) there are many times with no precipitation. Most

of those occur in the transition season early and late in the wet-season definition

used here (see Section 2.4). Another important regime characteristic displayed in

Figure 2.3 is the total volume coverage (TVC) of the radar signal introduced in the

previous section. The TVC provides a useful first indication for the differences be-

tween regimes. TVC increases steadily from 2% for the most frequent precipitation

regime to 26% for the least frequent regime, indicating that in the Darwin region the

tropical atmosphere exhibits regimes with small precipitation coverage significantly

more frequently than those with large precipitation coverage.
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Below follows a brief description of each of the regimes displayed in Figure 2.3.

In describing the regimes, “low” reflectivities will refer to values between 0 and

20 dBZ, “medium” reflectivities will refer to values between 20 and 40 dBZ and

“high” reflectivities will refer to values between 40 and 60 dBZ. Those ranges are

indicated in the figures by vertical lines. To further aid conceptualization of the

precipitation regimes Constant-Altitude Plan Position Indicators (CAPPI) examples

of each regime are shown in Figure 2.4 for both 2.5 and 10 km in the vertical. These

specific examples are representative of each regime and were chosen by finding those

histograms with the minimum Euclidian distance from the cluster mean histograms

displayed in Figure 2.3. These CAPPI examples confirm that the regimes are well

differentiated by TVC and distribution of reflectivity values.
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(a) Precipitation Regime 1 (b) Precipitation Regime 2

(c) Precipitation Regime 3 (d) Precipitation Regime 4

Figure 2.3: The four precipitation regimes defined by K-means algorithm.
Regimes are ordered (most to least) by their relative frequency of occur-
rence (RFO). The RFO of the “zeroth” regime, the regime containing
time periods that have no precipitation over the entire radar domain, is
shown for completeness.
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Regime 1 at 2.5km Regime 1 at 10km

Regime 2 at 2.5km Regime 2 at 10km

Regime 3 at 2.5km Regime 3 at 10km

Regime 4 at 2.5km Regime 4 at 10km

dBZ

Figure 2.4: CAPPI examples deemed representative of the four precipita-
tion regimes, examples are given for both 2.5 and 10 km in the vertical.
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Regime 1 is the dominant weather condition occurring over Darwin during the

four wet seasons analyzed. It occurs approximately 45% of the time. The precipita-

tion associated with this regime is weak and shallow. It has the lowest frequency of

reflectivity values above 40 dBZ and a maximum echo top height 2 km lower than

the other regimes. The TVC for this regime is 2%, which is an order of magnitude

smaller than the next closest regime. The low TVC value and absence of a bright

band at the freezing level (approximately 5km) indicates that the convection has

a low spatial/volume coverage and is therefore probably patchy and contains only

a small proportion of stratiform precipitation. Average convective and stratiform

rain contributions for each regime will be analyzed below to further investigate this

hypothesis. On average higher rain rates occur over the continent than over the

ocean in this regime (see Figure 2.5). This is an important feature of regime 1 and

will be investigated further below.

Regime 2 has a RFO of approximately 10%. The TVC of this regime is an order

of magnitude greater than in regime 1 indicating that the precipitation covers a much

larger volume of the radar domain. In this regime the maximum echo top height

extends to just over 16 km and there is a greater frequency of high reflectivity values

at low levels, indicating that the convection is of greater intensity than was found

for regime 1. It should be noted that regime 2 actually has the highest reflectivity

values of all four regimes. Another defining feature of regime 2 is the increased

occurrence of medium reflectivity values (20-40 dBZ) from the lowest level to about

13 km, with the greatest frequency occurring between 6 and 12 km.

As was the case in regime 1, the absence of a strong bright-band signal near 5

km is indicative of precipitation that is likely to be predominately convective, which

will be further investigated below.

Regimes 3 has a RFO of approximately 4%. A significant increase can be seen in

both TVC and echo coverage at low levels. The low occurrence of high reflectivity
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values below 5 km and decreased echo top height indicates that the convective

component of this regime is weaker than the convection associated with regime 2.

Oceanic convection tends to be shallower and have lower maximum reflectivity than

continental convection (Toracinta et al., 2002; Nesbitt et al., 2000), the possibility

that regime 3 could be influenced by precipitating systems with oceanic origins will

be investigated in section 2.4. The large increase in frequency of low and medium

reflectivity values is likely due to the presence of significant areas of stratiform

precipitation and would explain the relatively high TVC for this regime, evidence of

stratiform precipitation can be seen in the form of a bright band at approximately

5km for medium reflectivity values. However, as the regime is an average of many

time periods and contains both stratiform and convective precipitation, the bright

band is less pronounced than would normally be the case for purely stratiform states.

Further evidence of the stratiform component of this regime will be provided below.

Regime 4 is the rarest of all the regimes and has a RFO of under 3%. In

contrast to regime 3 there is a large occurrence of high reflectivity values below

5 km. The maximum echo top height for this regime is higher than in regime 3

and is even slightly higher than was found for regime 2. The spread of reflectivity

values at 15 km is larger than in regime 2 and extends to much higher reflectivity

values than those found in regime 3. Regime 4 has the largest TVC and by far the

greatest frequency of medium reflectivity values, indicating the presence of large

amounts of stratiform precipitation with greater vertical extent than the stratiform

precipitation seen in regime 3. The bright band in regime 4 is more pronounced than

was seen in regime 3 and can be seen up to approximately 46 dBZ. Another defining

feature of regime 4 is the large frequency of medium reflectivity at the lowest levels,

particularly between reflectivity values of 24 and 36 dBZ.

Figure 2.5 shows the average rain rate in millimeters per hour for the four

regimes. For each time period used in the study (approximately 13500 samples)
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the 2.5 km reflectivity data was converted to rain rate maps using the relationship

Z = 305R1.36 (Bringi et al., 2001), where Z is the absolute reflectivity and R is the

rain rate in mm/hour. Averaged rain rate maps for each regime were then created

by summing the n rain rate maps associated with each regime and dividing by n.

Rtotal is displayed in the top right hand corner of each figure, calculated by summing

the rain rates over the entire radar domain and dividing by the number of valid grid

points, thereby giving some measure (spatially averaged) of the rain rate of each

regime. The rainfall distribution shown in Figure 2.5 a) shows that on average more

rainfall occurs over land than over the ocean for regime 1, this is especially true over

the Tiwi Islands. As expected this regime has the lowest rain rate of all the regimes,

approximately 0.3 mm per hour averaged over the entire domain.

Figure 2.5 b) supports the assertion that regime 2 contains convection initiated

by convergence due to land / sea breezes, a slightly higher rain rate can be seen

orientated parallel to the coast line of the mainland. Slightly higher rain rates can

also be seen over the ocean in the west of the radar domain. Analysis of the diurnal

cycle of rain rate for regime 2 (not shown) helps explain the patterns seen in figure

2.5 b). During the afternoon precipitation occurs preferentially over land areas,

while during the night and early morning precipitation occurs over the ocean. The

higher rain rates over the ocean in the west of the domain in figure 2.5 b) is due

almost exclusively to precipitation occurring at night. Although Rtotal of regime

2 is approximately 4 times that of regime 1 (1.1 compared with 0.3), its RFO is

approximately 1/4 times that of regime 1 (approximately 11% for regime 2 compared

with 45% for regime 1). Thus regime 1 and regime 2 contribute approximately equal

amounts of rainfall to the region.
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(a) Rainfall rate for regime 1 (b) Rainfall rate for regime 2

(c) Rainfall rate for regime 3 (d) Rainfall rate for regime 4

Figure 2.5: Average rainfall rates for the four precipitation regimes in
mm/hour
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Regime 1 Regime 2 Regime 3 Regime 4

Land 0.3518 1.0824 0.5844 2.0265
Ocean 0.2252 1.1261 0.6656 2.6141

Table 2.1: Rain intensity of each Regime split into land and ocean contri-
butions.

Figure 2.5 c) shows that in regime 3 rainfall is fairly constant throughout the

domain of the radar, with perhaps a slight increase in rainfall over the ocean to the

west. An interesting feature of this regime is that Rtotal is much lower than was

found for regime 2, despite the fact that the volume coverage of hydrometeors is

much larger for regime 3 than regime 2. This might be explained by the finding that

the convection associated with regime 3 is weaker than the convection associated

with regime 2.

Figure 2.5 d) shows that in regime 4 high rainfall rates occur preferentially over

the ocean. As expected Rtotal for this regime is the largest of all four regimes, owing

to the large amounts of stratiform precipitation and intense convection found within

this regime.

To further test the spatial distribution of the precipitation within the regimes

a land/ocean mask was applied and the rain intensities over land and ocean were

calculated for each regime. The land (ocean) rain intensity is defined as the sum

of the rainfall over the land (ocean) divided by the number of land (ocean) points.

Table 2.1 shows that the rain intensity is greater over land in regime 1. Regime 2

has approximately the same rain intensity over land and ocean, as discussed above

this regime contains contributions from convection occurring over land (during the

afternoon) and over the ocean (during the night). Both regimes 3 and 4 have greater

rain intensity over the ocean than the land.

Figure 2.6 shows the average rain rate for each regime split into convective and

stratiform components. The rain fields measured with the C-Pol radar have been

dis-aggregated into convective and stratiform areas using the algorithm described
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by Steiner et al. (1995). The only modification to this was to utilise the polari-

metric rain estimates obtained with the C-Pol radar using algorithms described by

Bringi et al. (2001, 2004). These rain estimates were then converted to an effective

reflectivity using a simple Z-R relation (Zeff=305R1.36) in order to apply the Steiner

et al. algorithms. This had the benefit of the classification being less sensitive to

variations in measured reflectivity associated with drop-size distributions, attenua-

tion of the sampled reflectivity, and hail contamination as well as being consistent

simple mapping of the observed field. The convective and stratiform rain was then

summed over the radar domain (a 300 km diameter circle) to calculate the contribu-

tions of convective and stratiform rain areas to the total rain accumulation. Figure

2.6 indicates that regime 1 is predominately a convective regime, with stratiform

precipitation contributing 24% to the over all rain rate. Regime 2 is also predom-

inately convective in nature, however the stratiform component of this regime has

increased to 35%. Regime 3 contains the most stratiform precipitation relative to

convective precipitation, 64% of the precipitation in regime 3 is stratiform in nature.

Regime 4 also contains a large proportion of stratiform precipitation (53%), however

the convective component of this regime is quite large, almost as high as the total

rain rate for regime 2.

In summary, analysis of the CFAD’s and convective/stratiform rain rates leads to

the conclusion that regime 1 contains shallow, patchy and relatively weak convection.

Furthermore, the average rain rate map for regime 1 and land/ocean rain intensities

indicates that the convection associated with regime 1 preferentially occurs over

land areas. Regime 2 was found to be a relatively strong convective regime that

precipitates preferentially over the land during the day and over the ocean at night.

The convection in this regime has greater intensity and scale than the convection

in regime 1, with a greater proportion of the convection likely initiated by land/sea

breezes. The convective nature of this regime was confirmed by the relatively large
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Figure 2.6: Area Averaged stratiform and convective rain rates for the
four precipitation regimes.

proportion of convective rain as seen in figure 2.6 and absence of a bright band

signature in Figure 2.3. Regime 3 was found to contain a mixture of relatively weak

convection and large amounts of stratiform precipitation. The temporal evolution

of regimes (not shown), indicates that regime 3 is likely to occur from maturing

systems associated with regime 2 and 4. Regime 4 was found to be a mixture of

relatively strong convection with large amounts of stratiform precipitation.

Having discovered some of the basic characteristics of the regimes the next section

aims to shed further light on their characteristics by studying their seasonal and

diurnal cycles, and their link to the monsoon.
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2.4 Some characteristics of the precipitation regimes

The previous section has objectively identified four (five if the no precipitation

is included) major convective regimes in the Darwin region. The four non-trivial

regimes show characteristic distributions of radar reflectivity both in the horizontal

and vertical on the scale of a typical weather radar footprint. While it was possible

to link the regimes to known features of tropical convection, their link to large-scale

features of the tropics as they affect the Darwin region remain to be elucidated.

This section is aimed at establishing links between the regimes identified above and

known features of the tropical atmosphere. First their response to the main forced

modes of the atmosphere, namely the seasonal and diurnal cycles are investigated.

This is followed by establishing the regime characteristics as a function of monsoon

activity in the Darwin region.

2.4.1 The seasonal cycle

In the Darwin region the seasonal mode is dominated by the Australian summer

monsoon, which dominates the region’s weather usually from the second half of De-

cember into early March (Drosdowsky, 1996). Active monsoon periods are interlaced

with monsoon breaks. The monsoon period is bordered by a build-up and decay

period on the order of 1-2 months each, while the rest of the year has a distinct

dry-season character.

Here the signature of the seasonal cycle on the convective regimes is investi-

gated by studying the seasonal variation of their frequency of occurrence. Figure

2.7 shows the relative frequency of occurrence of the five regimes (including the no-

precipitation regime) as a function of month. The no-precipitation regime (Regime

0) shows the expected seasonal cycle with a minimum in January, the month with the

largest influence of the Australian summer monsoon, and maxima in the months of

March and April, those in which the Darwin region transits into the dry season. The
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RFO of the patchy convection regime (Regime 1), is remarkably constant through-

out November through February with a decline in occurrence in March and April.

The stronger convective regimes (Regimes 2-4) show an increase in their RFO from

November to January, a decline in February and are virtually absent in March and

April. The most notable change from November to January occurs for regimes 3

and 4, confirming the impression gained in the previous section that these regimes

probably have a more monsoonal character (Steiner et al., 1995). This provides a

further indication that the objectively identified precipitation regimes may repre-

sent physically relevant states of the atmosphere around Darwin, a claim that will

be further investigated below.

Figure 2.7: Seasonal cycle of the precipitation regimes showing the relative
frequency of occurrence of each regime, for the months November to
April.
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2.4.2 The diurnal cycle

Figure 2.8 shows the diurnal cycle of the relative frequency of occurrence (RFO)

of the four precipitating regimes. The RFO for each regime has been normalized

including the no-precipitation regime. The diurnal cycles of the four precipitation

regimes appear to be separated into two distinct patterns. Regimes 1 and 2 (top

panels) have a peak in their RFO in the late afternoon, while regimes 3 and 4 (bottom

panels) show a peak in the late at night and in the early hours of the morning. The

two distinct patterns seen in the diurnal cycles may indicate a physical difference

between the precipitation regimes. One possible explanation for this difference would

be that the ratio of land to oceanic convection is different for the different regimes (as

seen in table 2.1). Convection tends to peak during the late afternoon/early evening

over land while over oceans convection tends to peak during the early morning (Yang

and Slingo, 2001; Gray and Jacobson, 1977; Mapes and Houze, 1993). However,

the nature of the convection associated with each regime (continental vs maritime)

cannot be concluded solely from the diurnal cycle. Mapes and Houze (1993) have

shown that the diurnal cycle of cold cloud clusters depends on the size of the cluster

and Yang and Slingo (2001) showed that the diurnal signal over land often extends

to the adjacent oceans. Furthermore Nesbitt and Zipser (2003) found that MCS

rainfall over land peaks in the early morning. As regimes 3 and 4 both have high

TVC values it is likely that MCS occurring over land are also associated with regimes

3 and 4.

Apart from the late afternoon maximum, regime 1 is equally likely to occur at

any other hour of the day. This may be indicative for the fact that while land

heating strongly influences regime 1, this relatively weak convection may well occur

over the ocean and at other times of the day. Earlier it was postulated that regime

2 has a larger proportion of convection initialised by sea breezes. If this is the case,

the minimum in the diurnal cycle for regime 2 (around 10 am) may well be due to
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(a) Regime 1 (b) Regime 2

(c) Regime 3 (d) Regime 4

Figure 2.8: Diurnal Cycle of the four precipitation regimes (in local time),
the RFO has been normalised including the “zeroth” regime.

the lack of the sea breeze at this time. Regime 2 also displays a secondary peak in

the early hours of the morning, this is likely due the precipitation that occurs over

the ocean in the western part of the domain.

2.4.3 Regime occurrence and monsoon activity

Another well-known indicator for the character of convection in the Darwin area is

the synoptic meteorology of the Australian summer monsoon. A simple but effec-

tive definition of monsoon activity is wind-direction in the lower troposphere, with

westerly winds indicative for an active phase of the monsoon, while easterly winds
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dominate the break as well as pre-and post monsoon periods (Drosdowsky, 1996).

Convection tends to be shallower and more representative of that found over oceans

during periods when a westerly wind places Darwin in an oceanic air mass. Easterly

wind conditions bring air from North East Australia to the region and the convec-

tion is often more representative of that occurring over continents. Here the concept

of an east/west split in wind direction that previously proved useful in other inves-

tigations e.g. (Keenan and Carbone, 1992) is utilized with the aim of determining if

wind direction has any influence on the occurrence of the four precipitation regimes

defined. The purpose of the analysis is not to find a clear delineation between the

regimes, but rather to compare how the precipitation regimes found using cluster

analysis compare to traditional methods. For the analysis, wind data from Dar-

win airport at 700 hPa is defined as easterly or westerly if the wind direction has

any component in those directions. The frequencies of occurrence of wind direction

within each regime are shown in Figure 2.9.
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Figure 2.9: Relative frequency of occurrence of the four precipitation and
“zeroth” regimes for a given wind direction (defined as either easterly or
westerly).
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It is evident from the figure that there are major differences between regimes

in their relationship with wind direction and hence monsoon activity. Regimes 0

through 2 show a predominance in their occurrence during times when the wind

is coming from the east (break conditions). During break conditions precipitat-

ing cloud systems are known to be typical of those with continental origin (Steiner

et al., 1995). The no-precipitation regime shows the strongest association with east-

erly flow. As indicated in Figure 2.7 this regime occurs most frequently in the

monsoon build-up and decay phases of the season. Although regime 2 is predomi-

nately an easterly regime, it contains more westerly flow than regime 1. This may

help to explain why regime 2 was found to have to be a mixture of oceanic and land

convection. In contrast, regimes 3 and 4 are most strongly associated with westerly

conditions; westerly flow is typical for active monsoon periods, which have previ-

ously been shown to be associated with convection of maritime character (Keenan

and Carbone, 1992).

While simple, analyzing the predominant wind direction in each of the precipi-

tation regimes has further supported the findings of the previous sections, that the

precipitation regimes identified in this study are physically sensible. While proba-

bly following intuition, this constitutes a non-trivial finding, as there is no physical

a-priori information that supports that division entering into the cluster algorithm.

The fact that the four (five) regimes could be objectively identified and match phys-

ical characteristics of convection rather well enables their use for further studies of

convective systems in the Darwin area and possibly beyond.

2.5 Precipitation vs ISCCP-based cloud regimes

The previous section has established that the convective regimes identified in this

study for the Darwin area exhibit two distinctly different patterns of their diurnal

cycles and that the objectively defined regimes are able to naturally separate when
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analyzing the synoptic scale winds. Furthermore, the strength of the convection and

the presence and size of the stratiform precipitation component all constitute infor-

mation contained in the convective regimes. This enables the use of these regimes

for further studies of tropical convection and its interaction with the large-scale

circulation. Given this and the fact that this work was partially motivated by the

success of finding tropical regimes based on cloud properties retrieved from satel-

lites, it appears worthwhile to investigate the relationship of the six ISCCP-based

tropical cloud regimes of Rossow et al. (2005) with the “precipitation-based” regimes

identified here. This will provide some insight into the precipitation structure (in

a statistical sense) of the cloud regimes, which in turn have already been shown to

have links to tropical circulation features (Rossow et al., 2005; Höglund, 2005).

To set the context for further discussion a brief summary of the six ISCCP

weather states is given below, for a detailed discussion of the regimes the reader

is referred to Rossow et al. (2005). Based on their cloud signature, three of the

six regimes can be described as suppressed with respect to the occurrence of deep

convection, whilst the other three have been identified as convectively active. Of

the active regimes the deep anvil cloud (CD) regime exhibits a large coverage with

optically thick clouds, most likely a mix of thick anvils and convective towers, while

the convective cirrus (CC) regime is dominated by a large coverage with cirrus clouds

of small to medium optical thickness. Probably the weakest (in terms of convection)

of the three convectively active regimes is the mixed cloud (MIX) regime, termed

because it likely consists of a mixture of shallow, congestus and deep convection

without significant anvil and cirrus coverage. The suppressed thin cirrus (STC)

regime is categorized as a suppressed regime and is dominated by a large coverage

with thin cirrus clouds. As shown by Rossow et al. (2005) this regime occurs close

to convection without containing significant amounts of convective clouds in the

area over which the ISCCP histogram is calculated. The suppressed shallow cloud
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regime (SSCL) regime has high frequencies of occurrence for clouds with high cloud

top pressure (low tops) and is interpreted as consisting in most part of suppressed

shallow clouds with a low total cloud cover as is typically found in shallow cumulus

cloud fields. The suppressed shallow cloud regime with high cloud cover (SSCH) is

also dominated by low clouds, but generally shows a much higher total coverage with

clouds indicative of stratocumulus clouds. Stratocumulus is almost never observed

in the Darwin area resulting in an extremely low frequency of occurrence of the

SSCH satellite regime in the study region. To avoid sampling biases this regime was

excluded from further analysis.

As in previous studies (Höglund, 2005) one ISCCP weather state per day is

defined for each ISCCP grid-box. As Darwin straddles several ISCCP grid-boxes,

sensitivity studies to the choice of grid point were carried out, but showed little

sensitivity with regard to the main conclusions. Hence the analysis presented here

uses four ISCCP grid boxes each having an area of 280x280 km2 located roughly

between 10◦-15◦S and 128.5◦-133◦E. The relationship of the ISCCP-based cloud

regimes to the precipitation regimes of this study, which are identified hourly, is

investigated by calculating the mean frequencies of occurrence of each precipitation

regime on all days that fall into a particular ISCCP regime. Note that the C-Pol

radar detects precipitation sized particles and is unlikely to observe cirrus and non-

precipitating clouds.

Figure 2.10 shows the RFO of the five regimes of this study for each ISCCP-based

cloud regime. The cloud regimes are sorted as in Rossow et al. (2005) from what is

considered the most convectively active regime (CD) to the most suppressed regime

(SSCL). Several noteworthy features are evident in Figure 2.10. The occurrence of

no precipitation (Regime 0) increases steadily from CD to SSCL. This supports the

intuitive interpretation used in earlier work defining the ISCCP-based cloud regimes

as convectively active vs suppressed. Of the suppressed regimes, SSCL clearly shows
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the least occurrence of deep convective regimes (2-4) and is mostly characterized by

the relatively shallow precipitation regime 1. There is a steady increase in the deep

convective regimes (2-4) for the MIX and CC regimes, mostly at the expense of the

no-precipitation regime. Nevertheless, both these cloud regimes remain dominated

by the regimes with low precipitation coverage (regimes 1 and 2). The only cloud

regime with a significant occurrence of the regimes with high precipitation coverage

(regimes 3 and 4) is the CD regime. In this regime the frequency of occurrence of no

precipitation at all has dropped to around 10 % indicating the frequent occurrence

of precipitation in that regime. In earlier studies (Rossow et al., 2005; Höglund,

2005) it was found that the ISCCP-based CD regime occurs predominantly in active

phases (i.e., convergence zones) of large-scale tropical circulation features such as

the Madden-Julian Oscillation (MJO) or the Australian summer monsoon. This and

the identification of the CD regime as the only regime containing high frequencies of

regimes 3 and 4 leaves the intriguing possibility that what is thought of as “typical”

maritime precipitating convection is in fact a convective type that is enabled and

supported only by larger-scale circulation features.

An in depth study into the precipitation characteristics of the ISCCP regimes is

beyond the scope of this investigation, however for completeness a simplistic calcula-

tion is performed to determine the average rain rate per hour of each ISCCP regime.

As the rain rates for the ISCCP regimes have been derived from data obtained from

the region surrounding Darwin, they are not intended to be applied to the tropics

as a whole. The rain rate for each of the ISCCP regimes was calculated by mul-

tiplying the rain rate for each precipitation regime (Figure 2.5) by the frequency

with which the radar regimes occur within the given ISCCP regime (Figure 2.10).

These results are displayed in Table 2.2 and show that the rain rates for the ISCCP

regimes is highest for the most convective regime CD, and decreases corresponding

to convective intensity, with the suppressed regimes having the lowest rain rates. It
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Figure 2.10: Comparison between satellite and radar regimes. Relative
frequency of occurrence as a function of radar regime, for the satellite
regimes defined by Rossow et al. The SSCH satellite regime has not been
included due to an extremely low frequency of occurrence.

is interesting to note that the CC and the MIX regimes both have approximately the

same rain rates. Although simplistic, associating an average rain rate with each of

the ISCCP regimes can be thought of as a first step in creating/assessing parameter-

izations for numerical modeling. For example Figure 2.10 and Table 2.2 show that

from a precipitation point of view regimes CC and MIX are quite similar. Therefore

it may be useful to create parameterisations for tropical weather conditions based

on the ISSCP regimes (which represent distinct and different states of the tropical

atmosphere that can distinguish the four main classes found here), using the radar

regimes to estimate of the total rainfall and latent heating associated with each

regime.
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CD Regime CC Regime MIX Regime STC Regime SSCL Regime

0.8007 mm/h 0.4325 mm/h 0.3981 mm/h 0.2729 mm/h 0.1994 mm/h

Table 2.2: Calculated average rain rate of each ISCCP regime in mm/hour.

2.6 Summary

This chapter has investigated if the three dimensional structure of precipitation

in the Darwin area as measured by a scanning polarimetric weather radar can be

objectively classified into regimes. It has furthermore posed the question if those

regimes have physical connections to known features of the tropical atmosphere in

the region. A cluster algorithm was applied to two-dimensional histograms of reflec-

tivity with height derived from quasi-instantaneous radar volumes. After excluding

a regime with virtually no radar returns in the volume (a “no-precipitation” regime)

the analysis revealed the existence of four precipitation regimes in the Darwin region:

• Regime 1:- a patchy convective regime of medium intensity and low

area coverage. This regime occurs most frequently in the afternoon

and during break conditions.

• Regime 2:- a strong convective regime with relatively small area cov-

erage. This regime has a peak in the diurnal cycle in the afternoon

and a secondary peak in the early morning.

• Regime 3:-a weak convective regime with large area coverage and

large stratiform regions. This regime occurs most frequently during

the late night / early morning and during monsoon conditions.

• Regime 4:- a strong convective regime with large area coverage and

large stratiform regions. This regimes has a peak in the diurnal cycle

in the late night/early morning and has links to monsoon conditions.
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The overall statistics of the occurrence of these regimes once again highlights that

even during convectively active periods such as the Australian Summer Monsoon,

the spatial coverage with precipitation is small overall (cf. Figs. 2.2 and 2.3).

Linking the regimes identified by the algorithm to known features such as the

seasonal and diurnal cycle and a simple description of monsoon activity through

wind direction has confirmed their different physical character. Regime 1 and 2

show signs of a strongly land-induced diurnal cycle with an afternoon peak and

occurs throughout the wet season. They are largely associated with winds from the

East, typical for monsoon build-up and decay as well as monsoon break conditions,

during which convection is often observed to be of continental character. Regimes

3 and 4 have their largest frequency of occurrence in January - the peak of the

monsoon season. Their diurnal variation peaks at night or in the early morning and

they are largely associated with westerly winds, as is typical for monsoon conditions.

Combining the precipitation regimes with tropical cloud regimes previously iden-

tified from ISCCP data reveals interesting relationships between the two. Arguably

there exist probably three (maybe four) broad precipitation regimes across the five

ISCCP-based regimes present at Darwin. The suppressed shallow cloud regime

(SSCL) is dominated by the no-precipitation and the patchy convection regimes.

The stronger convection regimes, in particular the maritime ones, do not feature

strongly in this cloud regime. Whilst still dominated by the patchy convection

regimes, the convective cirrus (CC) and mixed (MIX) cloud regimes and to a lesser

extent the suppressed thin cirrus (STC) regime show larger frequencies of occurrence

than the stronger precipitation regimes. The fraction of maritime versus continen-

tal precipitation regimes shifts steadily to more and more maritime with increasing

convective character as identified in the cloud regimes themselves. By far the most

active and most “maritime” regime is the convective deep anvil cloud regime (CD).

About 50% of the time in this cloud regime one of the three strong convective pre-
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cipitation regimes is present and this is the only regime where the strong maritime

regime occurs with almost equal frequency to its weaker counterpart. The occur-

rence of no precipitation or patchy convection in this cloud regime are significantly

reduced compared to any other cloud regime, showing the significantly different

character of this regime. Given the aforementioned strong links of the CD cloud

regime to large-scale circulation features (Rossow et al., 2005; Höglund, 2005) fur-

ther investigations into the precipitation characteristics using the regimes definitions

derived here seem warranted.

The objective identification of precipitation regimes from radar data and the

establishment of some of their physical characteristics opens several avenues for fur-

ther research. Their simplest application is in the objective identification of the

overall character, i.e., mostly maritime versus mostly continental, and intensity, i.e.,

strong versus weak. Such characterization obviously already exists and is used regu-

larly, but has so far largely been based on subjective criteria and/or the use of wind

direction to identify convective character. The use of radar data as suggested here

is both objective and more directly based on the precipitation features themselves.

An obvious question for future research is how general the regimes found at Darwin

are for the wider tropical region. Applying the techniques proposed here to other

radar locations in the tropics, such as Kwajalein (Cetrone and Houze, 2006), would

be a natural extension of this study. Another possibility would be the application

to data collected by the TRMM precipitation radar. It would also be interesting to

investigate if regimes defined in a similar way to those used here could helpful in ob-

jectively determining some of the “building blocks” used in the Stretched Building

Block conceptual model described by Mapes et al. (2006).

The regimes identified here represent the statistical characteristics of convection

at the spatial scale of the radar footprint (roughly 300 km2). Studying the regime

identification as a function of scale is therefore another possible extension of this
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work. As has been highlighted here, combining the precipitation regime informa-

tion with data from different types of instruments is another promising avenue of

research. The brief example of the ISCCP-based cloud regimes emphasizes the po-

tential of such investigations. The presence of a large suite of instruments deployed

by the US Department of Energy’s ARM program (Ackerman and Stokes, 2003) as

well a recently conducted field studies such as TWP-ICE (May et al., 2008) make

Darwin the ideal location for such studies. On a longer time-scale objectively defined

precipitation regimes may also prove useful when studying local changes in rainfall

patterns due to changes in synoptic conditions and seasonal weather patterns (e.g.

El Niño). A similar analysis could be performed over a much larger time scale to

determine how or if the precipitation regimes change with time and determine any

possible links with climate change. Finally it would be very interesting to investigate

if models, in particular those that resolve deep convection, are able to reproduce the

observed regimes when forced with realistic large-scale conditions. Recent field data

will enable such studies in the near future.
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Chapter 3

The Weather Research and Forecasting (WRF)

Simulations and Thermodynamic Evaluations

In this chapter the numerical model used to simulate tropical convection over Darwin

is introduced, the model domains and physical packages used in each simulation are

detailed, and the five simulated periods within TWP-ICE are defined. Data from

TWP-ICE is then used to evaluate the forcing data used to initialise and provide

the boundary conditions for the mesoscale simulations.

3.1 The WRF model

One of the aims of this thesis is use a numerical weather prediction model to simulate

the wide variety of cloud types present during a typical wet season over Darwin,

Australia. The model simulations will be evaluated primarily on the precipitation

associated with these cloud systems, taking advantage of data from the TWP-ICE

field campaign and the Bureau of Meteorology’s (BoM) research radar. However,

ultimately we wish to use the precipitation regimes defined in chapter 2 in the

evaluation process.

The WRF model is a publicly available non-hydrostatic model that can be run

either as a research model, or as an operational numerical weather prediction model.

It has been designed to simulate the atmosphere on a variety of length scales ranging

from meters to hundreds of kilometers, and comes with multiple physics modules

that can be chosen to suit the needs of a researcher/forecaster in their specific

application. When used for mesoscale numerical weather prediction WRF requires
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data from another model (usually a global model or another mesoscale model) to

provide the initial and boundary conditions. The WRF model has the option of

two-way nesting, where information from the high resolution domain is passed back

to the low resolution domains, or one-way nesting, in which information flows only

from the low resolution domains to the high resolution domain. All simulations

presented in this document were made using WRF version 2.2.1.

3.1.1 Model Domains

The domains used in all simulations are shown in Figure 3.1. The outermost domain

(d01) has a grid spacing of 34 km and each successive domain is nested (one-way)

with a grid spacing ratio of 3:1 to its parent domain. Thus the grid spacing for d02,

d03 and d04 is ∼ 11.3, ∼ 3.8 and ∼ 1.3 km respectively. Domain four (d04) has

been chosen to coincide with the domain of the BoM research CPOL radar used in

chapter 2.

3.1.2 Model Physics

The WRF model (version 2.2.1) comes with 7 microphysics schemes, 3 cumulus pa-

rameterization schemes, 2 surface layer schemes, 3 land surface models, 3 planetary

boundary layer schemes, 2 longwave radiation schemes and 3 shortwave radiation

schemes. A list of the physics modules common to all simulations presented in this

thesis is provided below, for further information see Skamarock et al. (2005). The

surface layer scheme used in all simulations is the Similarity theory (Eta) scheme

(option 2). The Land-Surface Model used in all simulations is the Noah LSM (op-

tion 2). The Planetary Boundary Layer scheme used is the Mellor-Yamada-Janjic

scheme (option 2). The long wave radiation scheme used is the Rapid Radiative

Transfer Model (RRTM) (option 1). The short wave radiation scheme used is

the Goddard Shortwave (option 2). Cumulus Parameterization is used only in
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Figure 3.1: Domains used in all simulations. The grid spacing in domain
1 (d01) is 34 km, the grid spacing in domain 2 (d02) is ∼ 11.3, the grid
spacing in domain 3 (d03) is ∼ 3.8 and the grid spacing in domain 4 (d04)
is ∼ 1.3 km.

domains 1 and 2 where the grid spacing is too large to resolve convective updrafts.

The cumulus Pameretization scheme used in domains 1 and 2 is the Betts-Miller-

Janjic scheme (option 2).

Each of the simulations presented in this thesis have been run using two dif-

ferent microphysics schemes to evaluate how sensitive the simulations are to the

microphysics module used, all other physics modules have been kept static and are

listed above. The two microphysics schemes used are the Purdue Lin scheme (Lin

et al., 1983; Chen and Sun, 2002) (hereafter referred to as Lin) and the Thompson

et al. scheme (Thompson et al., 2004) (hereafter referred to as Thompson).
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The Lin microphysics scheme is a single-moment microphysics scheme with six

classes of water including water vapor, cloud water, rain, cloud ice, snow, and grau-

pel. The Lin microphysics uses a Marshall-Palmer distribution to represent the drop

size distribution of the precipitating categories, which is dependent on the mixing

ratio of each category and a number of set parameters such as the densities and

intercept parameters for each category.

The Thompson scheme is a more sophisticated microphysics scheme that was

developed primarily to improve forecasts of supercooled liquid water, and has been

tuned to the results of the bin microphysics scheme of Rasmussen et al. (2002).

The Thompson scheme includes the same six water classes as the Lin microphysics.

However, in the Thompson scheme the size distributions for each category are spec-

ified by a generalized gamma distribution and the intercept parameters for each

distribution change as a function of temperature or mixing ratio. Furthermore, a

number concentration for cloud ice is also included.

3.1.3 Simulations

Five simulations during the TWP-ICE period were run so that the broad range of

meteorological conditions that occur during a typical wet season could be simulated.

The simulations have been named according to the meteorological conditions during

the time of the simulation. Each simulation was initialized and ended at 12 UTC

on the date listed in table 3.1. From table 3.1 it can be seen that there is some

overlap between the simulations e.g. the monsoon ends on the 24th of January and

Monsoon/Suppressed simulation begins on the 23rd of January. Whenever results

are displayed in a time series spanning multiple simulations, data from the end of

a simulation is chosen in preference to data from the beginning of a simulation (to

remove spin-up period).
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Monsoon Monsoon/Suppressed Suppressed Suppressed/Break Break
start date 18/01/06 23/01/06 28/01/06 03/02/06 09/02/06
end date 24/01/06 29/01/06 03/02/06 09/02/06 15/02/06

Table 3.1: Start and end dates of the 5 simulations during the TWP-ICE
period

3.2 Initialisation data

The initial and boundary conditions used to force the WRF simulations are pro-

vided by the National Centers for Environment Prediction (NCEP) Global Forecast

System (GFS) Final Analysis (FNL), hereafter referred to as forcing or input data.

The skill of any forecast or simulation is dependent on the quality of the initial and

boundary conditions used to drive the model. Therefore, before assessing the WRF

model in detail the data used to force the model is compared with observations to

determine if any biases exist that could lead to inaccuracies in the simulations. The

observational data used for comparison is called the Xie-Klein Forcing dataset; this

dataset was created using the constrained variational analysis technique described

in Zhang and Lin (1997) and Zhang et al. (2001) for the purpose of forcing single col-

umn models and for model evaluation Xie et al. (2009). The observational data used

to create the Xie-Klein dataset comes from the radiosondes, flux sites and radars

depicted in Figure 1.1. The valid domain of the Xie-Klein dataset is technically

defined as the area bounded by the five outer radiosonde sites (pentagram region).

However, for the analysis described below it is assumed that the forcing applies to

the entire region and observations from the Xie-Klein dataset are compared directly

with average quantities calculated over domain 4.

Figure 3.2 shows the results for a) input zonal wind (red westerly) b) input

meridional wind (red southerly) c) observed zonal wind, d) observed meridional

wind, e) the WRF zonal wind and f) WRF meridional wind over the entire TWP-ICE

period. Figures 3.2 a), b), e) and f) are a composite of five simulations, where the
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black lines on all figures indicate the end of a simulation. Where there is an overlap

between simulations data from the first 24 hours of the overlapping simulation is

excluded to minimize any spin up effects.

Figures 3.2 indicates that the winds provided by the NCEP FNL agree qualita-

tively well with the observational data. There are only a few times during which

there is an obvious difference between the NCEP and observed winds. Some of

these differences include an underestimation of the low level easterly winds during

the passage of the MCS (23rd-24th). An overestimation of the low level easterly

winds during the end of the experiment (7th-12th) and an underestimation of the

easterly winds in the stratosphere, especially during the suppressed monsoon period

(25 January to the 2nd of February).

The WRF simulated zonal and meridional winds, Figure 3.2 e) and f), are quite

similar to the NCEP winds; perhaps the most interesting feature of note is that

after the passage of the MCS (approximately the 23rd of Jan), the simulated zonal

winds (easterly) are much weaker than observed. Even though the zonal wind in

the NCEP data is weaker than the observations during this time, the WRF model

has further weakened the zonal wind during the course of the simulation.

Figure 3.2 illustrates the three regimes or phases that occurred during TWP-

ICE. Phase 1) is described as the active monsoon and occurs between roughly the

18-21th of January (first simulation) during which the lower tropospheric winds are

westerly (positive numbers, red). Towards the end of the simulation (22nd -24th)

a MCS dominated the large-scale wind flow changing the average winds over the

regime from westerly to easterly. Phase 2) occurs between roughly the 25th of

January to the 5th of February, during this time a low pressure system was located

to the south of Darwin. Due to the circulation around the low pressure system the

low level average winds over the domain were westerly (the classical definition of

the active monsoon), however the air had continental origins and was consequently
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very dry, which lead to suppressed conditions. Phase 3 occurs between roughly the

6th-12th of February during which the low level tropospheric winds have reverted

to an easterly direction typical of a monsoon break period.
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(a) GFS FNL Zonal wind (b) GFS FNL Meridional wind

(c) Observed Zonal Wind (d) Observed Meridional wind

(e) WRF Zonal Wind (f) WRF Meridional Wind

Figure 3.2: Domain-averaged vertical profiles of Zonal and Meridional
Winds derived from a) and b) the GFS FNL data. c) and d) the Xie
Klein forcing dataset and e) and f) the WRF simulations



49

Figure 3.3 shows the temperature profiles for a) the input temperature c) the

observed temperature and e) the WRF temperature for the entire TWP-ICE period.

Figure 3.3 b) shows the difference between the input and observations temperature

over the TWP-ICE period and Figure 3.3 d) shows the difference between the WRF

simulated and observed temperature over the TWP-ICE period.

Figure 3.3 b) shows that the NCEP data has two layers at different altitudes that

have a large positive temperature bias, one centered at approximately 15 and the

other at 17 km. The bias at 17 km level (stratosphere) reaches as much as 5 degrees

and is consistently present throughout the TWP-ICE period. The temperature

difference between the input data and observations is approximately 1-2 degrees at

15 km during the first half of the experiment and decreases towards the end of the

experiment (although it is still present). Given the magnitude of these temperature

differences it is expected that any simulation forced with these data will be adversely

effected. For example during times of deep convection it would be expected that

the temperature bias would limit updrafts or perhaps even cap convection.

Figure 3.3 d) shows the temperature difference between WRF simulations and

observations for the TWP-ICE period. As was the case for the NCEP data there

is a large difference between the simulated and observed temperatures at 17 km.

However the temperature bias has spread vertically in the simulation and ranges

from approximately 15.5 km to 18.5 km, compared with 16 km to 18 km in the

NCEP data. The temperature bias in the NCEP data at 15 km is not present

in the simulations at that altitude. There is however a large temperature bias at

approximately 11-12 km at the beginning of the simulation that decreases in altitude

and spreads vertically as the simulation progresses, by the 24th of January the bias

is centered at approximately 8 km and ranges from around 5 to 12 km.

One of the most interesting features of the temperature bias can not be seen in

Figure 3.3 d) because the initial spin-up period for the WRF model is not shown
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in this figure (the simulation was started on the 18th of January at 12 UTC, while

the Xie-Klein forcing dataset begins on the 19th of January at 0 UTC). In order

to assess the temperature bias during the initial spin-up period a plot showing the

difference between the observations and a simulation that was initialized on the 21st

of January at 12 UTC is shown in Figure 3.3 f). During the first 12 hours of the

simulation the temperature bias initially centered around 15 km (as in the input

data) is seen to rapidly decrease in altitude to approximately 12 km and spread

vertically. Figure 3.3 f) indicates that the temperature bias at 12 km is linked with

the NCEP bias at 15 km and is likely not an indication of a problem with the

WRF model, but rather a consequence of incorrect forcing. As the magnitude of

the temperature bias is quite large (2-3 degrees) it is expected that the simulations

will be negatively affected by the incorrect temperature forcing, making it hard to

determine whether the WRF model itself is performing poorly due to inaccurate

physics modules or if any inaccuracies stem from incorrect forcing. It would be

useful to run further simulations that have been forced with data from another

source, perhaps the Australian Bureau of Meteorology’s Tropical Cycle Limited

Area Prediction Scheme (TCLaps) or ECMWF, however such an analysis will be

left to future work.1

1Some preliminary results of a simulation initialised with the ECMWF interim re-analysis data
is provided in the appendix. The simulation shown was run using WRF version 3.0.1 for the
monsoon period. This simulation was run purely for interest and at this stage no analysis has been
performed (the simulation has not been quality checked either)
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(a) GFS FNL Temperature (b) GFS FNL Temperature Difference

(c) Observed Temperature (d) WRF Temperature Difference

(e) WRF Temperature (f) WRF Temperature Difference

Figure 3.3: Domain-averaged Temperature profiles over the entire TWP-
ICE period for a) the GFS FNL data, c) the Xie-Klein forcing dataset,
e) the WRF simulation. Differences in temperature between the Xie-
Klein data and b) the GFS FNL data, d) The WRF simulations over the
entire TWP-ICE period and f) a WRF simulation starting on the 21st of
January.
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3.3 Vertical Velocity

Figure 3.4 shows the vertical velocity profiles for both the WRF model and obser-

vations for the entire TWP-ICE period. In Figures 3.2 and 3.3 the difference in

winds and temperature between simulations using Lin and Thompson microphysics

were so small that only the results for the Lin microphysics scheme were displayed.

Vertical velocity is the exception to this rule, therefore vertical velocity profiles for

a) Lin microphysics b) Observed vertical velocity and c) Thompson simulation are

displayed in Figure 3.4. These figures have been included to give an overview of the

domain-averaged vertical motions over the entire TWP-ICE period, the monsoon

and break period will be assessed in more detail below. In general it appears from

Figure 3.4 that the simulations using Lin microphysics perform better at simulating

the strength of the observed domain-averaged upward motion. Domain-averaged

upward vertical motion is consistently underestimated throughout the TWP-ICE

period in the Thompson simulation, especially during the active monsoon.

Figure 3.5 shows the domain-averaged vertical velocity profiles for the monsoon

simulation only. During the first part of the monsoon simulation (19th to the 21st)

both the Lin and Thompson simulations have similar vertical velocity profiles, both

show subsidence between 11 km and 16 km that is not seen in the observations

and both simulations underestimate the upward motion below 11 km. On the 21st

of January the simulations begin to differ; the Lin simulation has stronger upward

motions (that extend higher) during the first half of the 21st followed by stronger

subsidence between 11 and 15 km during the second half of the 21st. The timing

of the upward motion in both simulations is out of phase with the observations,

on the 21st the observations show strong upward motion around 0 UTC while the

simulations have weak upward motion approximately 6 hours later.

While in general the Lin simulation seems to perform better than the Thompson

simulation during the first half of the monsoon period, it does suffer some of the
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same problems i.e. subsidence in the 11-16km levels that is not present in the

observations and a shift in the timing of convection. However, the strength of the

domain-averaged upward motion in the Lin simulation is closer to the observed

values.

On the 23rd of January the Thompson scheme shows strong subsidence between

11 and 16 km that is not seen in either the observations or the Lin simulation. The

strength of the upward motion below the subsidence layer is significantly weakened

and the large-scale ascent during the passage of the MCS is not well captured in

the Thompson simulation. During the passage of the MCS the Lin microphysics

performs much better in simulating the observed updraft strengths, however the

large-scale ascent occurs over a longer period of time (between roughly the 23rd

to the end of the simulation), whereas the observations show more intense upward

motion between 12 UTC on the 23rd to 0 UTC on the 24th.

Figure 3.5 b) d) and f) show the domain-averaged vertical velocity for the break

simulation only. The main difference between the Lin and Thompson simulations

during this period is the strength of the vertical motion; as was the case in the

monsoon simulation the Lin microphysics produces stronger vertical motion that is

closer to the observed values. Both the Lin and the Thompson simulations have a

significant problem in the timing of the events throughout the break period. On

the 9th of February both simulations completely miss the convection seen in the

observations. However, this period falls into the first 12 hours of the simulation

and is therefore affected by the initial spin-up period for the model. On the 10th

and the 11th of February both simulations show convection occurring around 6

UTC (approximately 3 p.m. local time), the observations do show some vertical

ascent on the 10th of February and a hint of upward vertical motion between 5 and

12 km on the 11th, however agreement between model and observations is poor.

Both simulations completely miss the nocturnal ascent on the 10th (low level),
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11th and 12th seen in the observations between 18 and 0 UTC (3-am -9-am local

time). Instead the simulations show subsidence between 10 and 15 km during this

time (after the afternoon convection), this may be responsible for suppressing any

nocturnal convection.

3.4 Summary

In summary the zonal and meridional winds provided by the GFS FNL data correlate

well with the observed winds from the Xie-Klein dataset. The temperature data on

the other hand differers by as much as 5 degrees in the stratosphere, and between 2-3

degrees at approximately 15 km. The WRF simulations forced with this temperature

data were also found to have a large temperature bias, however the bias had shifted

to approximately 12 km. The height and magnitude of this temperature bias is

expected to have a detrimental affect on the WRF simulations.

Lin simulation seems to perform better than the Thompson simulation when

compared with the observations of vertical velocity (though Lin simulation still

underestimates the strength of the upward vertical motion). Both simulations show

strong subsidence between 10 and 16 km (especially during the active monsoon) that

is not seen in the observations. Subsidence at this level is likely responsible for the

large temperature difference seen at these altitudes, while also suppressing ascent

at the lower levels. Differences in the vertical velocity profiles between the Lin and

Thompson simulations cannot be attributed to any problems with the forcing data,

because both use the same model setup. The fact that such large differences are

produced by changing only the microphysics scheme indicates that the microphysics

schemes are behaving differently enough to feed-back into the dynamics of the model.

Differences in the latent heating or the vertical profiles of latent heating are the likely

cause of these dynamical differences. Chapters 4 and 6 will look more closely at the

microphysics of the simulations.
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(a) Lin Vertical Velocity

(b) Observed Vertical Velocity

(c) Thompson Vertical Velocity

Figure 3.4: Domain-averaged vertical velocity profiles over the entire
TWP-ICE period for a) the Lin simulations, b) the Xie-Klein forcing
dataset and c) the Thompson simulations.
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(a) Lin Vertical Velocity (b) Lin Vertical Velocity

(c) Observed Vertical Velocity (d) Observed Vertical Velocity

(e) Thompson Vertical Velocity (f) Thompson Vertical Velocity

Figure 3.5: Domain-averaged vertical velocity profiles over the Monsoon
period for a) the Lin simulations, c) the Xie-Klein forcing dataset and
e) the Thompson simulations. Domain-averaged vertical velocity profiles
over the Break period for b) the Lin simulations, d) the Xie-Klein forcing
dataset and f) the Thompson simulations.
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Chapter 4

Model Simulated Radar Reflectivity

4.1 Introduction

Ground-based radars are able to observe precipitation/hydrometeors over a large

spatial scale (up to 150 km horizontally and 20 km vertically) allowing observations

of precipitation over a significant proportion of a typical cloud resolving domain.

While point observations such as rain gauges will always be useful, especially in

dense networks, the sheer quantity of information made available from a weather

radar makes its use an attractive choice when validating a numerical model. This

chapter describes the how data from the WRF model are converted into a form

that can be compared with observations from a weather radar. A simple analysis

(domain-averaged results) is provided to demonstrate the effect of the conversion

algorithm. More complicated comparisons between the radar and model are per-

formed in chapters 5, 6 and 7.

4.2 Simulated Reflectivity

To compare radar reflectivity data (in dBZ) to the WRF simulations an algo-

rithm provided by the Read/Interpolate/Plot (RIP) graphical package (developed

at NCAR) was used to convert the model microphysical data into simulated radar

reflectivity. The algorithm assumes that all particles are spheres of constant density,

and for single moment bulk microphysics schemes (such as the Lin scheme) that the

particle size distribution for each of the precipitating category (rain, graupel and
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snow) follows an exponential function such as that depicted in equation 4.1.

N(D) = N0e
(−λD)

(4.1)

where N(D) is the number concentration of particles with diameter D, N0 is the

intercept parameter and λ is the slope parameter which is defined as

λcat = (πN0ρcat

ρairqcat
)

1
4 (4.2)

ρair is the density of dry air and ρcat and qcat are the density and mixing ratio of

the hydrometer category.

The equivalent reflectivity factor for rain (Ze) is taken as the 6th moment of the

size distribution. Thus

Ze =
∫
D6N0e

−λD
dD (4.3)

Assuming the rain droplets are perfectly spherical and after some calculation

(see Appendix) the equivalent reflectivity for rain becomes

Ze = 720(ρairqr)
7
4

N
3
4
r (πρr)

7
4

(4.4)

Equation 4.4 describes the equivalent reflectivity factor for rain in terms of vari-

ables available from standard numerical model output. The equivalent reflectivity

factors for both snow and graupel are derived by modifying 4.4 with the assumption

that the snow and graupel particles are spheres of solid ice. Equation 4.5 relates
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the diameter that a solid ice sphere would have to obtain the same reflectivity as a

particle of snow (or graupel) that does not have constant density.

Dsolid = Ds(
ρS

ρI
)

1
3 (4.5)

where ρI is the density of ice and ρs is the density of snow.

Taking the 6th power of equation 4.5 and including a factor that accounts for

ice having a different reflective capacity than water (0.224) we have for snow

Ze = 720(ρairqs)
7
4

N
3
4
s (πρs)

7
4

× 0.224(ρs

ρI
)2

(4.6)

and for graupel

Ze = 720(ρairqg)
7
4

N
3
4
g (πρg)

7
4

× 0.224(ρg

ρI
)2

(4.7)

The reflectivity factors for rain, snow and graupel (equations 4.4, 4.6 , 4.7) can

then be added to obtain the total reflectivity factor for each model grid cell. As

reflectivity factors are typically measured in mm6m−3 the total reflectivity factor is

multiplied by 1018 to convert it from m6m−3 to the standard units used for radar

data. Finally, to convert the reflectivity factor measured in dB to the standard

dimensionless unit (dBZ), the logarithm of the total equivalent reflectivity factor is

multiplied by 10.
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Ze (in dBZ) = 10log10[Ze(in mm6m−3)] (4.8)

The dBZ conversion algorithm has been designed to accept output from the WRF

model (originally designed for MM5, the predecessor of WRF) and can be used to

create simulated radar reflectivity fields for simulations using different microphysics

scemes. When applied to simulations using Lin microphysics the intercept parame-

ters N0 must be provided for each precipitation category (Ns = 3×106 Ng = 4×106

Nr = 8× 106) . When applied to simulations using Thompson microphysics the in-

tercept parameters for each category must be calculated. In the Thompson scheme

the snow intercept is a function of temperature (equation 4.9) and the rain and

graupel intercepts are a function of the rain and graupel mixing ratios respectively

(equations 4.10 and 4.11).

Ns = min{3× 108, 2× 106 × exp[−0.12min(−0.001, Tc)]} (4.9)

Ng = max{1× 104, 2.38( πρg

ρairqg
)0.92} (4.10)

Nr = (1×1010−8×106

2 )tanh[4(1×10−4−qr)
1×10−4 ] + (1×1010+8×106

2 ) (4.11)

After applying the conversion algorithm to both the Lin and Thompson simu-

lations the simulated radar reflectivity data was interpolated to 20 equally spaced

vertical levels (every 500m) and averaged horizontally (taking care to do this in
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absolute reflectivity) so that the horizontal and vertical resolution of the simulated

reflectivity data was comparable to the gridded radar data (see chapter 2 for more

details).

The process of converting the microphysical data to simulated reflectivity de-

scribed above is not fully consistent with the particle size distribution for snow

within the Thompson microphysics scheme. The Thompson microphysics scheme

uses the sum of two gamma functions to model the particle size distribution for

snow particles. However, it has been discovered that the version of the Thomp-

son microphysics code used in the simulations presented in this thesis contains a

coding bug that produces unphysical results. Given that results derived from the

Thompson simulations will remain unphysical even if the correct reflectivity conver-

sion algorithm is used, the figures and text in the following chapters will continue

to be based on results derived from reflectivity data generated using particle size

distributions represented by the exponential distribution shown in Equation 4.1. In

the summary section at the end of each chapter an attempt will be made, where

possible, to outline how the results presented in this thesis are modified when the

correct particle size distribution for snow is used in the reflectivity conversion algo-

rithm. A new reflectivity conversion algorithm (received from Greg Thompson via

private communication) has been used to recalculate figures for the Monsoon period

only. Please note that as well as including the correct particle size distribution for

snow, the new reflectivity conversion algorithm also contains a more sophisticated

treatment of melting snow and graupel. Updated Figures for the monsoon period

have been included in the Appendix.

4.3 Domain Averaged Results

As a first check to determine how the conversion algorithm was performing, maxi-

mum reflectivity and total precipitation coverage plots were created for both model
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simulated and radar reflectivity data. As reflectivity is proportional to the diameter

of the hydrometeors to the power of six, maximum reflectivity plots give an indi-

cation of how the model is performing during the most intense convective events.

Maximum reflectivity plots were created by searching through the domain (either

model or radar) and finding the maximum reflectivity value at each level. The total

precipitation coverage plots were created by calculating the fraction of the domain

(at each level) that was covered by a reflectivity value greater than 0 dBZ.

4.3.1 Monsoon Simulation

Figure 4.1 shows the maximum reflectivity and total precipitation coverage during

the monsoon simulation for the radar a) and b), the Lin microphysics scheme c)

and d) and the Thompson microphysics scheme e) and f). Besides some notable

differences, the model simulated maximum reflectivity compares quite well with

the radar derived maximum reflectivity profiles for both the Lin and Thompson

simulations. During the first half of the simulation the drop-off of high reflectivity

values (50-60 dBZ in red) above the freezing level (approximately 5km) is captured

well for both the Lin and the Thompson simulations. In general the Lin simulation

produces larger reflectivity values at higher altitudes than observed by the radar;

during the passage of the MCS the Lin simulation has reflectivity values between 50

and 60 dBZ (red) all the way up to 9 km whereas the radar observes these values

up to approximately 7 km. Reflectivity values between 40-50 dBZ (orange) can be

seen all the way up to 15 km in the Lin simulation compared with 12 km for the

radar.

The Thompson scheme performs better than the Lin scheme for maximum re-

flectivity values between 40-60 dBZ (red to orange), but starts to differ from the

observations in the 30-40 dBZ range (yellow), underestimating the height of these

values/particles by as much as 6 km. At lower reflectivity values (below 30 dBZ i.e.
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blueish colors) the Lin scheme seems to perform quite well in terms of the height

that hydrometeors with these reflectivity values reach.

Figures 4.1 b) d) and f) highlight some important difference between the Lin

and the Thompson simulations that cannot be seen in the maximum reflectivity

plots. The Thompson simulation has a drastic drop-off of precipitation coverage

below 5 km that is not present in either the radar observations or the Lin sim-

ulation. Furthermore, coverage above the freezing level is actually higher in the

Thompson simulation on the 24th of January than occurs at any stage during the

Lin simulation. As the freezing level is at approximately 5 km the drop-off in cov-

erage is likely an indication of a problem with the conversion between snow and

rain/graupel in the Thompson scheme. However, at this stage all that can be said

is that the Thompson simulation appears to have a significant problem representing

the coverage of precipitating particles below the freezing layer.

In general both simulations underestimate the precipitation coverage during the

first half of the monsoon period (specifically the 20th-22nd). In chapter 3 the vertical

velocity profiles were found to be much too weak during this time period (possibly

due to subsidence in the 12-18km layer due to incorrect forcing data). Hence, it is not

unexpected that precipitation coverage would be underestimated during this time.

During and after the passage of the MCS the Lin simulation produces precipitation

coverage profiles that are in general agreement with the observations. There are

however some notable differences: the observed increase in precipitation coverage

just before the 23rd is present in the Lin simulation at the correct time, but drops

off too quickly above the freezing level and is significantly underestimated by the

7 km level. During the first 12 hours on the 23rd of January the radar observes

relatively little precipitation coverage (approximately 10-20% except at the lowest

levels). While the Lin simulation shows a slight drop-off of coverage for a few hours,

it soon begins to increase again and never reaches the values that are observed by
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the radar.

In summary the Lin simulation overestimates the coverage in time (it starts

too early) and underestimates the precipitation coverage with height, especially at

higher altitudes. The underestimation of precipitation at higher altitudes is likely

due to the incorrect forcing in the GFS data. The overestimation in time may also

be linked to the bias, a decrease in the convective strength due to capping of the

convection by the warm layer may lead to a decreased rain efficiency. Precipitation

in the Thompson simulation appears to suffer from both the bias in the large-scale

forcing and an inherent problem within the microphysics scheme itself. The coverage

of precipitation appears to be sandwiched between 5 and 10 km, the temperature

bias above 10 km and a problem with rain below the freezing level.
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(a) Max reflectivity Radar (b) Precipitation Coverage Radar

(c) Max reflectivity Lin (d) Precipitation Coverage Lin

(e) Max Reflectivity Thompson (f) Precipitation Coverage Thompson

Figure 4.1: Maximum Reflectivity and Precipitation Coverage profiles for
the Monsoon period derived from the radar a) and b, the Lin simulation
c) and d) and the Thompson simulation e) and f)
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4.3.2 Monsoon/Suppressed Simulation

Suppressed monsoon conditions occurred during TWP-ICE when the MCS that

spun up during monsoon period moved to the south of Darwin and transitioned into

a tropical low. Circulation about the low wrapped dry air from over the continent

into the domain, suppressing much of the convection typically present during the

westerly wind conditions.

Figure 4.2 shows the maximum reflectivity and total precipitation coverage dur-

ing the suppressed monsoon simulation for the radar a) and b), the Lin microphysics

scheme c) and d) and the Thompson microphysics scheme e) and f). This simulation

was initialised on the 23rd of Jan (12 UTC) as the MCS was passing through the

model domain. As a consequence of the model spin-up the precipitation event is

delayed somewhat in this simulation and the precipitation associated with the MCS

does not finish until the 25th, see figure 4.2 b) and e). As the domain enters the

suppressed monsoon period the Lin microphysics captures the low level (below 2km)

precipitation coverage well.

Both the Lin and Thompson microphysics overestimate the highest maximum

reflectivity values (red), that regularly extend all the way to the freezing level, a

feature rarely observed by the radar (except at the start of the simulation when

the MCS is still in the TWP-ICE domain). As with the monsoon simulation the

Thompson microphysics has major problems below the freezing level during the first

two days of the simulation, however the problem is much less obvious in the sup-

pressed conditions. Precipitation events during the suppressed conditions are likely

to be very different to those occurring during the monsoon conditions. During sup-

pressed conditions it is expected that precipitation is generated primarily through

weak convection, typical of that associated with regime 1 in chapter 2. Whereas in

monsoon conditions the precipitation generated is likely to be similar to regimes 3

and 4. It is difficult to tell from figure 4.2 f) whether the Thompson microphysics is
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underestimating precipitation below the freezing level, chapters 5 and 6 will inves-

tigate the possibility that the problem below the freezing level is dependent on the

synoptic conditions or the types of clouds present.
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(a) Max reflectivity Radar (b) Precipitation Coverage Radar

(c) Max reflectivity Lin (d) Precipitation Coverage Lin

(e) Max Reflectivity Thompson (f) Precipitation Coverage Thompson

Figure 4.2: Maximum Reflectivity and Precipitation Coverage profiles for
the Monsoon/Suppressed period derived from the radar a) and b, the
Lin simulation c) and d) and the Thompson simulation e) and f)
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4.3.3 Suppressed Simulations

Figure 4.3 shows the maximum reflectivity and total precipitation coverage between

the 28th of January to the 9th of Feburary for the radar a) and b), the Lin micro-

physics scheme c) and d) and the Thompson microphysics scheme e) and f). The

results shown in Figure 4.3 are derived from two simulations, the first initialized on

the 28th of January and the second initialized on the 3rd of February; the black

vertical line denotes the begining/end of the second/first simulation.

Throughout the entire period (28th January - 9th of February) the radar observes

relatively high precipitation coverage capped at 2 km, on 3 occasions (1st, 6th and

9th of Feb) deeper convection can be seen breaking through the 2 km level and then

past the freezing layer. During the first 5 days the Lin simulation does better than

the Thompson simulation at producing the low level precipitation coverage, however

the convection often reaches 3-4 km rather than being capped at 2 km.

On the 1st of February the radar observes convection breaking through the freez-

ing level leading to significant precipitation coverage (for suppressed conditions).

The Lin simulation does show an increase in precipitation coverage at the correct

time, but the coverage drops off way too quickly above the freezing layer. The

Lin and the Thompson simulations capture well the transition from the suppressed

monsoon conditions to the “clear” regime on approximately the 3rd of February, but

fail to stay in the clear regime as long as is observed. Relatively deep convection

(past 10 km) occurs in both simulations on the 5th of February, a day earlier than

observed. It is interesting to note that while the problem in the Thompson physics

below the freezing level is still present, it is much less obvious in these simulations.

This will be further investigated in chapter 6.
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(a) Max reflectivity Radar (b) Cloud cover Radar

(c) Max reflectivity Lin (d) Precipitation Coverage Lin

(e) Max Reflectivity Thompson (f) Precipitation Coverage Thompson

Figure 4.3: Maximum Reflectivity and Precipitation Coverage profiles for
the Suppressed and Suppressed/Break period derived from the radar a)
and b, the Lin simulation c) and d) and the Thompson simulation e) and
f)
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4.3.4 Break Simulation

Figure 4.4 shows the maximum reflectivity and total precipitation coverage during

the break simulation for the radar a) and b), the Lin microphysics scheme c) and d)

and the Thompson microphysics scheme e) and f). The maximum reflectivity plots

show that the convection is very intense during this period, the radar observes high

reflectivity values (red) up to 7 km daily. On the 10th and the 15th of February

high reflectivity values (red) reach 8 km and reflectivity values between 40-50 dBZ

(orange) can be seen all the way up to 15 km. These reflectivity values extend

much higher than any other period in this study, which is consistent with break

period convection being more intense than convection occurring in active monsoon

conditions. The simulated maximum reflectivity values (red and orange) also extend

to higher altitudes than in previous simulations. However, the height that the

highest reflectivity values (red) reach is actually overestimated in both simulations

by as much as 2-3 km.

The timing of the convection in the model simulations is particularly poor during

the break period. The spin-up period for the model is likely the reason that the

convection observed by the radar on the 9th is not present in either simulation. How-

ever, the model simulations are out of phase with the radar observations until the

14th of February. The model simulations produce convection during the afternoon

when the radar observes no deep convection, then the radar observes convection

during the night which the simulations fail to capture. The reason the WRF model

is unable to simulate the nocturnal precipitation during this period will be explored

in Chapter 5. If the timing issue of the convection is ignored the Thompson simula-

tion seems to be producing more realistic precipitation coverage above the freezing

level than the Lin simulation.
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4.4 Summary

This chapter has explored how data from the WRF microphysics schemes can be con-

verted into simulated radar reflectivity. Domain-averaged results have highlighted a

number of differences between the WRF simulations and radar observations. Some

of these differences include an underestimation of precipitation coverage at higher

altitudes in both the Lin and the Thompson simulations, an overestimation of max-

imum reflectivity values at higher altitudes in the Lin simulations, and a significant

problem in the Thompson scheme at simulating precipitation coverage below the

freezing level. Some of these differences are likely due to inaccuracies in the WRF

simulations themselves, rather than an artifact of the dBZ conversion algorithm.

For example the underestimation of precipitation coverage at higher altitudes can

be explained as a consequence of the inaccurate forcing data used to drive the model

simulations. Therefore, despite the differences stated above, the general agreement

between the observed and simulated reflectivity data provides enough incentive to

continue using the simulated reflectivity data for model evaluation.

Results for the Thompson simulation when the correct particle size distribution

is used in the reflectivity conversion algorithm are shown in Figure 5 of the ap-

pendix. These figures show that while some details differ, the conclusions of this

chapter remain largely unchanged. Specifically, the under-representation of precip-

itation below the freezing level is still evident. Some notable changes that do occur

include decreased precipitation coverage at higher altitudes (above approximately

10 km) and increased maximum reflectivity at and above the freezing level. The

increased maximum reflectivity values around the freezing level is likely due to the

more sophisticated treatment of melting snow and graupel in the new reflectivity

conversion scheme, while the decreased precipitation converge at higher altitudes is

a consequence using the correct particle size distribution for snow.
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(c) Max reflectivity Radar (d) Precipitation Coverage Radar

(a) Max reflectivity Lin (b) Precipitation Coverage Lin

(e) Max Reflectivity Thompson (f) Precipitation Coverage Thompson

Figure 4.4: Maximum Reflectivity and Precipitation Coverage profiles for
the Break period derived from the radar a) and b, the Lin simulation c)
and d) and the Thompson simulation e) and f)



74

Chapter 5

Precipitation

5.1 Introduction

Using rain gauges to evaluate the precipitation in a numerical model is of limited

value as individual rain gauges cannot be resolved in a numerical model, and using

the closest model grid-point to the rain gauge location is not ideal; a point by point

correlation between model simulations and reality is well beyond the capacity of

current numerical models. Furthermore, to accurately represent the spatial distri-

bution of precipitation over a large region, particularly during convective showers,

large dense rain gauge networks are required. One of the major advantages of radar

is the large spatial extent over which hydrometeors can be detected. By exploiting

Z-R relationships (relationships between absolute reflectivity and rain rate) it is pos-

sible to derive precipitation rates on the ground (in mm/h). Many authors of have

investigated Z-R relationships at different locations and used large dense rain gauge

networks to calibrate and evaluate the performance of the statistical relationships

used (Gunn and Marshall, 1958; Fujiyoshi et al., 1990; Brandes et al., 2002; Crosson

et al., 1996; Bringi et al., 2001). In this study the 2.5 km level radar reflectivity

values are converted to rain rates on the ground using the formula Z = 305R1.36,

where Z is the absolute reflectivity and R is the rain rate in mm/hour. This formula

was calibrated using rain gauge and data from the Gunn Point radar in Darwin

(Bringi et al., 2001) and should therefore be ideal for use in this study.

This chapter explores whether the spatial distribution of precipitation averaged

over each simulation can be used to evaluate the WRF simulations, as well as high-
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light any differences between the Lin and Thompson microphysics schemes. By

linking the spatial distribution of precipitation averaged over each simulation with

the maps derived for the four precipitation regimes in chapter 2, a first attempt at

linking the simulations with these regimes is provided. Links between the simula-

tions and precipitation regimes will be explored in more detail in chapter 7.

5.2 Results

5.2.1 Monsoon Simulation

Figure 5.1 a) shows the time series of domain-averaged precipitation rates (left

axis) and accumulated precipitation (right axis) for the radar as well as the Lin and

Thompson simulations. In Chapter 4 the Thompson simulation was found to under-

estimate precipitation coverage below the freezing level, consequently precipitation

rates derived from the 2.5 km model data are also likely to be underestimated. Any

differences between the Lin and Thompson precipitation rates may provide valu-

able insight into the representation of precipitation below the freezing level in the

Thompson microphysics scheme.

During the first half of the monsoon period there is very little difference between

the two simulations. Both drastically underestimate the precipitation produced on

the 20th of January and the precipitation event on the 21st of January is delayed by

approximately 3-4 hours in both simulations. The main difference between simula-

tions occurs after the 22nd of January. The Thompson simulation underestimates

the peak rain rates on the 22nd, but adequately captures the observed decrease in

precipitation on the 23rd. The Lin simulation overestimates the peak precipitation

rates on the 22nd and fails to capture the full extent of the decreased precipitation

observed on the 23rd. During the passage of the MCS the Lin simulation fails to

reach the peak rainfall rates observed by the radar. However, higher precipitation
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rates over the 24 hour period between 12 UTC on the 22nd and 12 UTC on the

23rd lead to an overestimation of the accumulated precipitation by as much as 50

mm. The Thompson simulation on the other hand drastically underestimates the

precipitation generated during the passage of the MCS, leading to an underestima-

tion of the accumulated precipitation by approximately 70 millimeters. That the

Thompson simulation underestimates precipitation rates comes as no surprise when

considering the deficiency in precipitation coverage highlighted in chapter 4. How-

ever, precipitation rates do not appear to be severely affected during the first 4 days

of the simulation. Only during the passage of the MCS do significant differences

between the precipitation rates in the Thompson and Lin simulation occur.

It therefore seems plausible that the problem in the Thompson microphysics

may be linked with a physical property or process associated with the precipitation

generated by the MCS. During the passage of the MCS it was seen that precipitation

coverage (in particular that of stratiform precipitation) was significantly higher than

any other time in the simulation (see Figure 4.1 f)), while precipitation coverage was

a minimum during the first 4 days of the simulation. At this stage there is not enough

information to determine whether the problem with the Thompson microphysics is

primarily associated with stratiform precipitation. It will be treated as a working

hypothesis and left to later chapters to explore.

Figure 5.1 b), c) and d) show the spatial distribution of precipitation averaged

over the entire simulation for the radar, Lin and Thompson simulation respectively.

Domain-averaged precipitation rates are shown on the top of each figure. The Lin

simulation is able to roughly simulate the spatial distribution of precipitation, cor-

rectly capturing the high precipitation rates observed over the ocean in the west of

the domain (although the region of high precipitation rate extends too far north).

In general precipitation is over estimated everywhere in the Lin simulation, lead-

ing to an overestimate of the domain-averaged rain rate (2.1 mm/hour compared
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with 1.7 mm/hour observed by the radar). Low precipitation rates observed by the

radar over land in the east of the domain are not present in the Lin simulation.

The Thompson simulation shows little skill in predicting the spatial distribution of

precipitation, there is no sign of the observed precipitation maximum in the west of

the domain and erroneously high precipitation rates occur to the north of the Tiwi

Islands.

Comparing figures 5.1 b), c) and d) with the rain rate maps found for the four

precipitation regimes (Figure 2.5) it can be seen that the spatial distribution of the

radar and Lin precipitation appears quite similar to the precipitation pattern for

regime 4. In Chapter 2 it was found that regime 4 was comprised of strong convection

with large quantities of stratiform precipitation. Assuming the hypothesis that the

Thompson physics has problems simulating stratiform precipitation is correct, it

naturally follows that the higher precipitation rates seen in the west of the domain

in the Lin and radar figures are due to stratiform precipitation.
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(a) Time Series (b) Radar

(c) Lin (d) Thompson

Figure 5.1: a) Time series of domain-averaged precipitation rates and accu-
mulation over the monsoon period for the radar, Lin and Thompson sim-
ulations. b) Spatial distribution of precipitation rates averaged over the
monsoon period for the radar c) the Lin simulation and d) the Thompson
simulation.
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5.2.2 Monsoon / Suppressed Simulation

Figure 5.2 shows the average precipitation rates derived from radar and model

simulated reflectivity over the monsoon / suppressed monsoon simulation. Once

again the Lin simulation produces more precipitation than the Thompson simula-

tion. However, during this period the domain-averaged precipitation rate in the

Thompson simulation is much closer to the radar derived rain rates. This does not

necessarily mean that the Thompson microphysics is simulating precipitation in a

more realistic fashion than the Lin microphysics scheme. One possible cause for the

close agreement is compensating errors. Figure 5.2 a) shows that the Thompson sim-

ulation underestimates the precipitation associated with the event on the 23rd, but

this deficiency is made up by the precipitation generated between the 24th and 25th

of January. The high precipitation rates between the 23rd and the 24th are likely

artifacts of the model as they do not correspond to precipitation events observed by

the radar. It is probably good fortune that the underestimation of precipitation on

the 23rd (most likely due to the problem in precipitation below the freezing level)

is made up the precipitation during the 23rd to the 24th (which is not observed and

would likely be even be higher if not for the problem below the freezing level).

Figures 5.2 b) c) and d) show that the model simulations do not agree well

with the observed spatial precipitation pattern. The simulations fail to capture the

observed decrease in precipitation in the eastern half of the domain and a line of high

precipitation rates orientated along the coast (more obvious in the Lin simulation)

is not observed by the radar. To investigate the differences between the model and

radar precipitation patterns in more detail Figure 5.3 shows precipitation maps for

the radar and model simulations over different time periods.

Figures 5.3 a), d), and g) show precipitation maps for the 12 hour period between

the start of the simulation and 0 UTC on the 24th of January, during which the

largest precipitation event occurs. Figures 5.3 b), e) and h) show the precipitation
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maps for the 36 hour period between 0 UTC on the 24th and 12 UTC on the 25th,

during which both model simulations produce unobserved precipitation events and

Figures 5.3 c), f) and i) show the precipitation maps between 12 UTC on the 25th

and the end of the simulation. From these figures it can be seen that the high

precipitation rates orientated along the coast-line occur primarily during the first 12

hours of the simulation. Normally the first 12 hours of a simulation would be defined

as the spin-up period for the model and the data would be rejected. However, in this

simulation the unrealistic convection generated during the spin-up period (which has

the appearance of a land/sea breeze effect) appears to affect the precipitation for

the next 36 hours. After 12 UTC on the 25th both simulations appear to perform

quite well, both capture the patchy nature of convection throughout the domain

and the higher precipitation rates in the south west of the domain. During this

time the Thompson simulation actually produces more precipitation than the Lin

simulation. Given that stratiform precipitation has little to no effect on precipitation

rates during suppressed conditions, this result appears consistent with the previous

stratiform hypothesis.

During suppressed conditions it would be expected that regime 1 would be the

most prevalent of the four precipitation regimes, regime 1 was found to be the weak-

est of the convective regimes and had low precipitation coverage and low domain-

averaged precipitation rates. Indeed the spatial distribution of the radar and both

model simulations appears similar to that found for regime 1 (see Figure 2.5) for

the period between 12 UTC on the 25th and the end of the simulation.

In conclusion the first 48 hours in these simulations are greatly affected by the

initial spin-up period in the model. Given that the model was initialized during

the passage of the MCS is is not surprising that the model would be affected by

the spin-up period. However, the duration of the spin-up effect is well beyond what

would normally be expected for the WRF model. After the first 48 hours both
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model simulations perform well and are able to simulate the spatial distribution of

precipitation with some skill. Similarities between the spatial patterns of precipi-

tation and regime 1 indicate that stratiform precipitation contributes little to the

overall rain rate during the latter half of the simulations, and during this period the

Thompson simulation does not seem to be adversely affected by the problem below

the freezing level highlighted in chapter 4.
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(a) Time Series (b) Radar

(c) Lin (d) Thompson

Figure 5.2: a) Time series of domain-averaged precipitation rates and ac-
cumulation over the monsoon/suppressed period for the radar, Lin and
Thompson simulations. b) Spatial distribution of precipitation rates av-
eraged over the monsoon/suppressed period for the radar c) the Lin
simulation and d) the Thompson simulation.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.3: Spatial distribution of precipitation for the first 12 hours of the
monsoon/suppressed monsoon simulation for a) radar, d) Lin simulation
g) Thompson simulation. Spatial distribution of precipitation occuring
between the 0 UTC on the 24th to 12UTC on the 25th of January for
b) radar, e) Lin simulation h) Thompson simulation. Spatial distribution
of precipitation occuring between 12UTC on the 25th till the end of the
simulation for c) the radar, f) Lin simulation i) Thompson simulation.
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5.2.3 Suppressed and Suppressed/Break Simulations

Figure 5.4 shows the precipitation rates derived from radar and model simulated

reflectivity averaged over the suppressed monsoon to break period (two simulations

spanning the 28th of January to the 9th of February). In contrast to the previous

periods investigated, both the Thompson and Lin microphysics schemes produce

similar precipitation rates throughout the entire period. However, both overesti-

mate the precipitation generated when compared with the radar. Accumulated pre-

cipitation is greater in the Thompson simulations from the 28th of January till the

6th of February, but during the last three and a half days higher precipitation rates

in the Lin simulation leads to a higher total accumulation by the end of the period.

In general both microphysics schemes capture the timing of the precipitation events

well, with their biggest error being the overestimation of precipitation between the

30th and 31st of January. Following this period of overestimated precipitation both

models completely miss the observed precipitation event that occurs just before the

1st of February. During the last 12 hours of this period the Lin simulation over

estimates the precipitation rate by a factor of two. The Thompson simulation also

over estimates the precipitation during this time, but not by as much as the Lin

simulation. Both the Thompson and the Lin simulation miss the precipitation event

during the night on the 8th of Feb.

The spatial patterns of precipitation show that the Lin and the Thompson sim-

ulations overestimate the precipitation on the mainland. The Lin simulation clearly

shows the region of high precipitation centered around the Tiwi Islands (in the north

of the domain), but slightly overestimates the precipitation rates there. Given that

there is a preference for precipitation over land and precipitation rates are quite

low, it appears that the majority of the precipitation produced during this period is

diurnally driven weak convection. The spatial distribution of precipitation in both

models and the radar resembles that found for regime 1. Given that regime 1 was
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found to be a convective regime with very little stratiform precipitation, the similar

precipitation rates/accumulations between the Lin and Thompson simulations seem

to indicate that stratiform hypothesis has some merit. During times where there is

relatively little stratiform precipitation the Lin and Thompson simulations are most

similar.

(a) Time Series (b) Radar

(c) Lin (d) Thompson

Figure 5.4: a) Time series of domain-averaged precipitation rates and ac-
cumulation over the suppressed period for the radar, Lin and Thompson
simulations. b) Spatial distribution of precipitation rates averaged over
the suppressed period for the radar c) the Lin simulation and d) the
Thompson simulation.
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5.2.4 Break Simulation

Figure 5.5 shows the average precipitation rates derived from radar and model sim-

ulated reflectivity over the break period. Unlike the previous simulations where the

biggest problem with the simulations was an over/under estimation of the precipi-

tation produced within an event, in these simulations there are serious timing issues

associated with the precipitation. The models perform well on the 10th, 13th, 14th

and 15th of February, when the precipitation is diurnal in nature and occurs during

the afternoon, though the Lin simulation does overestimate the precipitation on the

10th. When the observed precipitation occurs during the night both models fail to

simulate the events, instead they continue to produce precipitation during the day

that is not observed by the radar. On the 11th and 12th the radar does produce a

small spike in precipitation associated with the diurnal heating, however very little

precipitation is produced.

Figures 5.5 b), c) and d) show that the precipitation in both model simulations

occurs almost exclusively over land and both simulations fail capture the oceanic

precipitation observed by the radar. Both the model simulations underestimate

the domain-averaged precipitation over the break period simulation, which is not

surprising considering the simulations fail to capture the correct number of precip-

itation events. To help explain why the model is performing so poorly during the

break period Figure 5.6 shows CAPPI images from the radar during the beginning

of each nocturnal precipitation event. Figures 5.6 a), b) and c) show the 2.5 km

CAPPI on the 10th of February at 20, 21 and 22 UTC respectively. Figures 5.6 d),

e) and f) show the 2.5 km CAPPI on the 11th of February at 18, 19 and 20 UTC

and Figures 5.6 g), h) and i) show the 2.5 km CAPPI on the 12th of February at 16,

17 and 18 UTC. From these figures it can be seen that the systems producing the

nocturnal precipitation are not initiated in the TWP-ICE domain. On the 10th of

February a squall line enters the domain from the south east and on the 11th and
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12th of February convective systems enter the domain from the east. The fact that

these systems are initiated elsewhere and propagate into the domain explains why

the model completely misses the events. If these systems require high resolution

to initiate and/or propagate, then the model would be unable to correctly simulate

these systems in the outer domains, and consequently they would not enter the

cloud resolving domain.

5.3 Summary

In this chapter it was shown that the Lin microphysics had a tendency to overes-

timate precipitation, but was able to adequately capture the spatial distribution of

precipitation in most cases. Times in which the model was unable to simulate the

spatial distribution of precipitation were attributed to either model spin-up, during

the first 48 hours of the Monsoon/suppressed monsoon simulation, or the models

inability to initiate convective systems in the outer domains and propagate these

systems into the cloud resolving domain.

Despite the underestimation of precipitation coverage found in earlier chapters,

the Thompson simulations were found to be remarkably similar to the Lin simula-

tions, with the exception of the last two days in the monsoon period. During the last

two days of the monsoon period a MCS generated large amounts of precipitation

that was drastically underestimated by the Thompson microphysics. It was hypoth-

esized that the deficiency in the precipitation coverage first seen in Chapter 4 may

be associated with poor representation of stratiform precipitation in the Thompson

scheme.

Figure 6 of the appendix shows updated figures for the Monsoon period. The

conclusions of this chapter remain unchanged when the correct particle size distri-

butions for snow is used in the reflectivity conversion algorithm. The precipitation

rates averaged over the domain (Figure 6 a)) are very similar to those obtained when
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the exponential particle size distribution was used. Likewise, the spatial distribution

of precipitation is also similar to the results obtained when exponential particle size

distributions were used. However, the results obtained using the new conversion

algorithm show that the variability of rainfall within the domain has increased. Re-

gions of high rainfall rates (above 2 mm/hour) tend to be heavier than previously

documented, while regions with low rainfall rates tend to be lighter.
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(a) Time Series (b) Radar

(c) Lin (d) Thompson

Figure 5.5: a) Time series of domain-averaged precipitation rates and ac-
cumulation over the break period for the radar, Lin and Thompson sim-
ulations. b) Spatial distribution of precipitation rates averaged over the
break period for the radar c) the Lin simulation and d) the Thompson
simulation.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.6: 2.5 km CAPPI’s during the break period showing three convec-
tive systems that propergated into the radar domain. Figures are shown
at at 20, 21, 22 UTC on the 10th of February a), b), c) . 18, 19, 20 UTC
on the 11th of February d), e), f) and 16, 17, 18 UTC on the 12th of
February h), i), j)
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Chapter 6

Hydrometeor Classification

In chapter 2 radar data and a clustering algorithm were used to objectively define

a number of precipitation regimes that occur over Darwin during the wet season.

Chapters 4 and 5 then showed how data from the WRF model could be converted

into simulated reflectivity so that radar data could be used to evaluate the WRF

model. In the analysis presented so far a major capability of the Gunn Point radar

has been overlooked - the polarization information available from a CPOL radar.

The Gunn Point radar uses a polarized beam in both the horizontal and vertical

directions (Keenan et al., 1998). The advantage of using a polarized radar is that

different hydrometeors (in shape and composition) have different effects on various

properties of the polarized beam. The additional information available from a CPOL

radar can be used to estimate the dominant species of observed hydrometeors (more

detail provided in section 6.1). Knowledge of the observed hydrometeor species of-

fers a unique opportunity for model evaluation because the observed quantities are

closely associated with simulated variables in the microphysics schemes. Although

the simulated reflectivity data described in chapter 4 is derived from the model mi-

crophysics variables (i.e. mixing ratios of rain, graupel and snow), the final result is

a combination of the reflectivity factors for each precipitation category. Therefore

even if the model simulated reflectivity data closely matches the observed reflectiv-

ity data, it is impossible to tell whether the contributions from each precipitation

category are in the correct proportions.

Before the radar derived hydrometeor classifications can be used for model evalu-

ation a number of assumptions are required to manipulate the data (both model and
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radar) into a form that can be compared directly. The basic problem is that the

radar classification algorithm produces ten different microphysical categories and

the model microphysics schemes produce five, of which only three are precipitating

and of sufficient size to be detected by C-band radar. Furthermore, the model data

is in the form of mixing ratios and each model grid point can have positive values

for all three precipitation categories. Therefore a method for determining the domi-

nant precipitation category for a model grid point is required. The following section

outlines how the classification algorithm works, as well as detailing the assumptions

and methods used to manipulate the model and radar data into a form where they

can be compared directly.

6.1 Assumptions and Method

The algorithm used to estimate the dominant species of the observed hydromete-

ors uses five polarimetric variables from a CPOL radar to produce ten hydrometer

classifications, plus an additional unclassified category. Temperature profiles from

a nearby atmospheric sounding are also used by the algorithm to discriminate be-

tween hydrometeor types. Below is a brief description of the polarimetric variables

used by the classification algorithm, including some examples of how these variables

can aid discrimination between hydrometeor species. It should be noted that the

examples given are not sufficient in and of themselves to determine the hydrometer

species, each polarimetric observation is used in conjunction with the others in the

classification process. For a full description of the classification process please refer

to Straka et al. (2000) and May and Keenan (2005).

One of the polarimetric variables used by the classification algorithm is the re-

flectivity factor for horizontally polarized waves (ZH). Particles of the same medium

(e.g. liquid water) that have larger horizontal dimensions produce larger values of

ZH . Furthermore, the dielectric constant and hence reflectivity factor changes as
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a function of ice density, consequently, ZH can be used (in conjunction with other

variables) to distinguish between hydrometeors that have different densities. For

example dry low-density graupel typically has ZH values < 35 dBZ, while wet high-

density graupel typically has ZH values > 45 dBZ (Straka et al., 2000).

The ratio between horizontal and vertical reflectivity factors provides information

about the shape of the observed hydrometeors. As spherical particles have similar

horizontal and vertical dimensions, the ratio of the horizontal and vertical reflectivity

factors will be closer to unity than for non-spherical particles. The polarimetric

variable used by the classification algorithm (ZDR) is the logarithm of this ratio

multiplied by 10. ZDR can be used to discriminate between different types of rain

(i.e. drizzle and rain) as raindrops with a diameter less than 1 mm typically have

values between 0-0.7, while raindrops with D > 2 mm typically have values greater

than 2 (Straka et al., 2000).

The correlation between the signals at the two polarizations (ρHV ) can be used

to determine when there is a mixture of different types of hydrometeor species. ρHV

is lower when there is a mixture of hydrometeors present rather than just one type.

Rain/hail mixtures typically have ρHV less than 0.95, while rain-only hydrometeors

produce ρHV > 0.95 (Straka et al., 2000).

The specific differential phase (KDP ), which is the rate of change of the phase

difference between the vertically and horizontally polarized waves, can be used to

differentiate between different types of snow aggregates. Wet snow aggregates have

KDP values between 0-0.2 whereas dry snow aggregates have KDP values between

0-0.5. (Straka et al., 2000).

For further details on the procedure of classifying hydrometers from polarimetric

values and the definitions of the polarimetric variables the reader is referred to

Straka et al. (2000) and May and Keenan (2005) for a comprehensive description.

Here it will simply be stated that the rationale behind the classification procedure
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comes from the notion that different hydrometer species occupy different parts of

the ZH , ZDR, ρHV , KDP , T emperature phase space (May and Keenan, 2005).

6.1.1 Radar Assumptions/Simplifications

Applying the hydrometeor classification algorithm to data from a CPOL radar pro-

duces the ten (eleven if the unclassified category is included) hydrometeor classifica-

tions shown in column two of table 6.1. As the model microphysics schemes simulate

only three precipitating categories (rain, graupel and snow) the ten categories de-

rived by the classification algorithm are much too detailed for a straight comparison.

Therefore the ten observed categories were grouped into the three broader categories

of rain, graupel and snow. The third column of Table 6.1 shows the results of this

grouping process. Note that the graupel category defined in column 3 of Table 6.1 is

not graupel in the strict definition, but rather encompasses a range of hydrometeors

that would likely fit the definition of graupel in the model microphysics schemes

(i.e. precipitating ice hydrometeors such as hail or hydrometeors that are a mixture

of ice and water).

With the observed hydrometeors grouped into these categories the only remain-

ing radar classification that could not be compared with the model microphysical

data was the unclassified category. During the monsoon period unclassified hy-

drometeors account for between 40-80 percent of the total hydrometeors detected,

whereas during the suppressed and break conditions the fraction of unclassified hy-

drometeors is less, ranging from approximately 20-60 percent. Figure 6.1 shows the

percentage of classified hydrometeors (rain, graupel and snow) to the total number

of observed hydrometeors for the entire TWP-ICE period (rain, graupel, snow and

unclassified). In the analysis below two methodologies were used to deal with the

unclassified data, when cross sections were taken through convective cells the un-

classified data was kept as a separate category and displayed in each figure. Average
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profiles were created, then times that had greater than 60% coverage of unclassi-

fied hydrometeors were excluded from the averaging process. During times with

less than 60% coverage of unclassified hydrometeors, the unclassified data was es-

timated by calculating the ratio of each classification (rain, graupel and snow) to

the total number of classified hydrometeors at each level. The unclassified data (at

each level) was then assumed to be contain hydrometeors in the same proportion as

the ratios calculated for the classified species. For example if the domain contained

300 grid points of rain, graupel, snow and unclassified, then the ratio of rain to the

total number of classified hydrometeors is one third, consequently one third of the

classified data is assumed to be rain.

# Observed Category Final category

0 unclassified unclassified
1 drizzle rain
2 rain rain
3 dry low density snow snow
4 dry high density snow snow
5 melting snow graupel
6 dry graupel graupel
7 wet graupel graupel
8 small hail graupel
9 large hail graupel
10 rain hail mix graupel

Table 6.1: The hydrometeor species derived from the classification algo-
rithm (column 2) and the final designations of these categories after each
species were grouped into broader categories (column 3).

6.1.2 Model Assumptions/Simplifcations

After applying the assumptions described in section 6.1.1 to the polarimetric radar

data an estimate of the bulk hydrometeor species (rain, graupel or snow) for each

grid point in the radar domain was obtained. To compare the model microphysical

data with these observed quantities a number of assumptions and simplifications
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Figure 6.1: Time series for the TWP-ICE period showing the fraction of
classified hydrometeor data.

were also required. To determine whether or not a model grid point contained a de-

tectable amount of hydrometeors the simulated reflectivity data described in chapter

4 was used. If the simulated reflectivity value for the grid point was below 0 dBZ

the grid point was assumed to be clear and if the grid point had a reflectivity value

above 0 dBZ the grid point was said to contain a detectable amount of hydrometeors.

Once a grid point was defined as containing a detectable amount of hydrometeors

the dominant hydrometeor species for the grid point was estimated by determining

which of the three precipitation categories contributed most to the reflectivity for a

given grid point. The category that had the largest individual reflectivity factor (i.e.

equations 4.4, 4.7 and 4.6) was assumed to be the dominant hydrometeor species

for the grid point.



97

6.2 Cross sections

Using the above rules both the radar and model data were in a form directly com-

parable with each other, i.e. each grid point was declared to contain either snow,

graupel, rain, or no hydrometeors.

To investigate how the WRF model performs during the different conditions

that occurred during the TWP-ICE period, cross sections through convective cells

are shown for the radar and WRF simulations during the Monsoon, Break and

Suppressed conditions. In all figures displaying cross sections the top 3 panels show

results for the radar, the middle panels show the results for the Lin simulation and

the bottom panels show the results for the Thompson simulation. From left to right

is displayed the 5 km CAPPI showing reflectivity in dBZ, a cross section through

the estimated hydrometeor data along the East-West orientated line depicted in

the CAPPI, and a cross section through the estimated hydrometeor data along the

North-South orientated line depicted in the CAPPI.

Figure 6.2 shows cross sections through convective cells during the monsoon pe-

riod. As convection in the model simulations sometimes precedes or lags convection

observed by the radar, the model cross sections are often taken at slightly different

times to the radar cross sections. The radar panels in Figure 6.2 correspond to 1700

UTC on the 23rd of January, while the Lin and Thompson simulations correspond

to the 21 UTC and 16 UTC on the 23rd of January respectively.

The cross sections through the radar data show that within a convective cell

substantial amounts of graupel are observed up to approximately 14 km, and a

small amount of graupel is detected as high as 18 km. Obvious differences between

the simulated and the observed distribution of graupel are apparent in Figure 6.2.

In general the Thompson simulation underestimates graupel and where graupel does

exist the height that it reaches is underestimated by up to 10 km. The Lin simulation

on the other hand produces graupel as high as 18 km, and even at cloud top graupel
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is defined as the dominant hydrometeor species. In regions of active convection the

radar observes graupel as low as 2 km, while both model simulations show a sharp

cut-off of graupel at approximately 5 km (the freezing level).

Outside regions of active convection the radar observes graupel uniformly in a

layer between approximately 4.5 and 6.5 km (although some of the data is unclas-

sified). The Lin simulation is able to capture the horizontal extent of the graupel

well, but performs rather poorly in simulating the vertical distribution graupel. The

height that graupel reaches is overestimated everywhere in the Lin simulation and

can be seen as high as 10 km in non-convective regions.

The larger dimensions of graupel particles (due to their low density ice core),

coupled with a larger dielectric constant (due to a liquid outer skin), mean that

graupel particles produce higher reflectivities than snow or water particles of the

same mass. Thus the overestimation of maximum reflectivity values above 40 dBZ

found in Chapter 4 (Figure 4.1) can be explained as a product of the Lin microphysics

overestimating graupel at higher altitudes.

Both the radar and the Lin simulations show wide spread coverage of all three

precipitation categories and in general the vertical distribution of the dominant

hydrometers (top down) transitions from snow to graupel to rain. The Thompson

simulation on the other hand produces very little graupel, and regions exist where

snow transitions into rain without going through the graupel phase. Furthermore,

there are regions in the Thompson simulation where snow exists above the freezing

level with no rain below.

During the break period there were two main type of convection observed by the

radar - convection that occurred over land during the afternoon (diurnally forced)

and convective systems that propagated into the domain. As discussed in Chapter 5

a number of the systems that propagated into the domain were not captured by the

WRF model, leading to serious timing issues in the model simulations. One squall
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line that was captured by the simulations occurred at approximately 12 UTC on the

10th of February. Figure 6.3 shows cross sections through the squall line at this time

(the model cross sections are taken at 9 UTC on the 10th of February). The radar

cross sections show that within the squall line graupel is observed all the way up to

cloud top, as this was not observed in the cross section during the monsoon period

it is possible that these results are examples of microphysical differences that exist

between monsoon and break convection. However, as these figures represent only a

single time period no solid conclusions can be made from these figures alone. The

Thompson microphysics seems to have picked up on a difference between monsoon

and break type convection. Figures 6.3 i) and j) show that significantly more graupel

is produced in the squall line than was seen in the monsoon cross sections. Although

the Lin simulation produces graupel up to the cloud top, this was also the case during

the monsoon period when graupel was not observed at cloud top.

Perhaps the most interesting feature in Figure 6.3 b) is an anvil that can be

seen between roughly 50 to 100 km, the majority of which is non-precipitating.

Thompson simulation produces a large non-precipitating anvil but for the most

part the clouds in the Lin simulation rain uniformly. Note that a small anvil is

produced by a convective cell located at approximately -50 km in Figure 6.3 e). This

convective cell has a lower cloud top than the other convective cells and graupel

reaches approximately 11 km. The fact that the Lin microphysics overestimates

graupel may be contributing to the underestimation of snow and anvil outflow. The

fall speed of graupel particles is significantly higher than that of snow, therefore if

graupel is produced at the expense of snow then the higher fall speeds will mean

that the graupel particles will precipitate out too quickly, instead of producing an

anvil.

The other type of convection that occurred regularly during the break period

was diurnally forced land based convection. Figure 6.4 shows cross sections through
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the convection occurring over the Tiwi islands (colloquially referred to as Hector).

Similar results are observed during Hector as were seen in the squall line. Again

the radar observes graupel up to the cloud top, however here the graupel is patchy

and non-continuous. The Lin simulation drastically overestimates graupel during

this time - almost everything above the freezing level is classified as graupel leading

to unrealistic hydrometeor distributions. In contrast the Thompson simulations

produces a more realistic vertical profile of hydrometeors for the most part, however

there are some regions where rain and or graupel exist with no snow at higher

altitudes.

Figure 6.5 shows cross sections through convective cells during the suppressed

period. The patchy nature of the convection can be seen by the thin columns

of precipitation inter-spaced with clear regions. Both the Lin and the Thompson

simulations appear to capture the patchy nature of the convection well. However,

the height of the convection appears to be significantly underestimated, with only

a small amount of graupel (snow) produced above the freezing layer in the Lin

(Thompson) simulation.

The cross sections presented above are useful for determining how the hydrome-

teors are distributed within observed and simulated clouds. However, these results

represent only a snap shot within the entire simulation. Therefore to determine if

these snap shots are representative of the convection that occurs during each pe-

riod the next section will look at average profiles created for the radar and model

simulations.
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(a) 5 km CAPPI (b) East-West Slice (c) North-South Slice

(d) 5 km CAPPI (e) East-West Slice (f) North-South Slice

(h) 5 km CAPPI (i) East-West Slice (j) North-South Slice

Figure 6.2: CAPPI showing the reflectivity values at 5 km for the radar a),
the Lin simulation d) and the Thompson simulation h). East-West and
North-South cross sections through the estimated hydrometeor data are
shown for the radar b) and c), Lin simulation e) and f), and Thompson
simulation i) and j) during the Monsoon Period
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(a) 5 km CAPPI (b) East-West Slice (c) North-South Slice

(d) 5 km CAPPI (e) East-West slice (f) North-South Slice

(h) 5 km CAPPI (i) East-West slice (j) North-South Slice

Figure 6.3: CAPPI showing the reflectivity values at 5 km for the radar a),
the Lin simulation d) and the Thompson simulation h). East-West and
North-South cross sections through the estimated hydrometeor data are
shown for the radar b) and c), Lin simulation e) and f), and Thompson
simulation i) and j) through a squall line during the Break period
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(a) 5 km CAPPI (b) East-West slice (c) North-South Slice

(d) 5 km CAPPI (e) East-West slice (f) North-South Slice

(h) 5 km CAPPI (i) East-West slice (j) North-South Slice

Figure 6.4: CAPPI showing the reflectivity values at 5 km for the radar a),
the Lin simulation d) and the Thompson simulation h). East-West and
North-South cross sections through the estimated hydrometeor data are
shown for the radar b) and c), Lin simulation e) and f), and Thompson
simulation i) and j) through storms over the Tiwi islands during the
Break period
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(a) 5 km CAPPI (b) East-West slice (c) North-South Slice

(d) 5 km CAPPI (e) East-West slice (f) North-South Slice

(h) 5 km CAPPI (i) East-West slice (j) North-South Slice

Figure 6.5: CAPPI showing the reflectivity values at 5 km for the radar a),
the Lin simulation d) and the Thompson simulation h). East-West and
North-South cross sections through the estimated hydrometeor data are
shown for the radar b) and c), Lin simulation e) and f), and Thompson
simulation i) and j) during the suppressed period.
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6.3 Average Hydrometeor Profiles

At each hour within a simulation the fractional coverage of rain, graupel and snow

was calculated at each level for the radar and model data. Average profiles of

hydrometeor coverage vs height were then created for each simulation period. The

first 24 hours were excluded from the averages to remove any spin-up effect and

times in which the radar data had more than 40 % of the observed hydrometeors in

the unclassified category were also excluded.

6.3.1 Monsoon Simulation

Figure 6.6 shows the hydrometeor profiles averaged over the Monsoon and Mon-

soon/Supressed period for a) and d) the radar, c) and d) the Lin simulation, and

e) and f) the Thompson simulation. The Lin simulation appears to capture the

coverage of rain and graupel quite well in both these simulations. However, the

overestimation of graupel at higher altitudes previously seen in the cross sections is

apparent even in the average profile, especially above 10 km. As discussed earlier the

overestimation of graupel is one possible reason that snow is underestimated in the

Lin simulation. The greater fall speed of graupel particles means that the residence

time for graupel will be much lower than would be the case if the hydrometeors were

correctly simulated as snow. Therefore too much mass is precipitating out which

leaves a deficiency of water above the freezing level.

The most striking difference between the simulations and the radar profiles is the

underestimation of rain below the freezing level in the Thompson simulations. This

is most obvious in the monsoon simulation where the maximum coverage of rain

approximately 20% compared with 50% in the Lin simulation and observed by the

radar. Underestimation of rain below the freezing level in the Thompson simulation

comes as no surprise with considering the results in Chapter 4, where precipitation

coverage below the freezing level was found to be significantly underestimated in
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the monsoon simulation. However, Figure 6.6 e) and f) show that in addition to

underestimating the coverage of rain at the lowest levels (greater than a factor of 2

difference in the monsoon simulation) there is a significant underestimation of grau-

pel in the Thompson scheme as well. Figures 6.6 e) and f) show that Thompson

simulation actually overestimates the coverage of snow directly above the freezing

level. Earlier it was postulated that the Thompson scheme may have a problem

converting stratiform precipitation above the freezing level into rain. From these

figures it would appear that the problem is also associated with the production of

graupel. In section 6.2 both the radar and Lin cross sections showed that snow

transitioned through a graupel phase when falling through the melting layer. The

underestimation of graupel in the Thompson scheme may indicate that the process

of snow turning into rain via the graupel category may be inhibited in the Thomp-

son microphysics. However, when the 10 hydrometeor species were grouped into the

three broader categories, melting snow was assigned to the graupel category. This

assignment appeared to produce nice correlations between the Lin and observed

graupel coverage (at least in the horizontal dimensions). However, if the Thomp-

son microphysics sticks to the strict definition of graupel then melting snow would

likely be assigned to the rain category (the assignment of melting snow is rather

arbitrary). Changing the assignment of melting snow from graupel to rain should

not change any of the conclusions drawn from the above results, however one would

have to conclude that the process of snow melting into rain is the problem with the

Thompson microphysics.

To further shed light on this problem Figure 6.7 shows mixing ratio profiles for

the Lin and Thompson schemes during the passage of the MCS (12 UTC on the

23rd). Comparison of the Lin and Thompson mixing ratios show that the mixing

ratios for rain and graupel are substantially smaller in the Thompson simulation,

while the maximum mixing ratio for snow is almost four times greater. At approxi-
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mately 6 km the graupel mixing ratio reaches its peak value in the Lin simulation,

at the exact level where the Lin simulation has large values of graupel mixing ratio

the Thompson simulation shows a secondary bulge in the mixing ratio for snow,

indicating that snow at this level is not being converted into graupel, or, if graupel

in the Thompson simulation represents the strict definition of graupel, then snow

is simply not melting into rain. Either way it can be seen that significantly more

water mass exists above the freezing level in the Thompson scheme compared with

the Lin scheme.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.6: Hydrometeor profiles averaged over the Monsoon period for a)
the radar, c) the Lin simulation e) the Thompson simulation. Hydrom-
eteor profiles averaged over the Monsoon/suppressed period for b) the
radar, d) the Lin simulation f) the Thompson simulation.
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(a) Lin (b) Thompson

Figure 6.7: Mixing ratios averaged at 12 UTC on the 23rd of January for
a) the Lin simulation and b) the Thompson simulation
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6.3.2 The Suppressed Simulations

Figure 6.8 shows the hydrometeor profiles averaged over the suppressed and sup-

pressed/break period for a) and b) the radar, c) and d) the Lin simulation, and e)

and f) the Thompson simulation. The hydrometeor profiles during the suppressed

conditions show a marked difference to those during the monsoon period, here there

is a pronounced decrease in hydrometeor coverage with height. During the monsoon

period all three categories had roughly the same peak coverage, whereas during the

suppressed conditions the peak coverage of snow is roughly half the peak coverage

of rain. While the Lin microphysics does produce less snow coverage (and graupel)

than rain, both snow and graupel are greatly underestimated in these simulations.

The cross sections in section 6.2 appear to be representative of the convection during

the suppressed conditions i.e. coverage of snow and graupel is underestimated at

higher altitudes.

Of all the time periods simulated during TWP-ICE, the simulation beginning on

the 28th of January appears to be least affected by the lack of rain and graupel in the

Thompson scheme. As this simulation was initialised in the middle of the suppressed

conditions where deep convection is inhibited and stratiform precipitation is likely

to contribute little to the overall rainfall on the ground, a link between stratiform

precipitation and the problem below the freezing level appears plausible. However

this period is not entirely unaffected, compared with the radar and Lin simulation

the coverage of rain is underestimated in the Thompson simulation. Stratiform

precipitation may indeed be linked with the problem below the freezing level, it is

just that the problem will be more obvious during periods containing large quantities

of stratiform precipitation.
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6.3.3 The Break Period

Figure 6.9 shows the hydrometeor profiles averaged over the break period for a) the

radar, b) the Lin simulation and c) the Thompson simulation. In this period the

observed peak snow coverage is approximately the same as the peak coverage of rain.

The Lin simulation fails to produce the observed snow coverage and instead produces

an average profile similar to those produced during the suppressed conditions. Both

simulations underestimate the coverage of the three hydrometeor species, however

the Thompson simulation is much closer to simulating the correct coverage of snow

(the Lin simulation underestimates snow by approximately 50%).

6.4 Summary

Polarimetric variables from a CPOL radar can be used to estimate the dominant

species of the precipitation particles observed by the radar. In order to use these

observations for model evaluation a number of assumptions were required to ma-

nipulate both the radar and model data into a form that would allow a direct

comparison. The assumption which is perhaps the weakest in the analysis presented

here is the assignment of melting snow in the graupel category. In future work it

would be useful to investigate how sensitive results are to the categories outlined in

column 3 of table 6.1. Despite the ambiguity of where to place melting snow, the

observed hydrometeors provided valuable insight into how the model microphysics

packages performed in terms of hydrometeor coverage. In general the Lin simulation

was found to overestimate the coverage of graupel and underestimate the coverage

of snow. It was hypothesized that by incorrectly simulating too much graupel, water

mass precipitates much too quickly, thereby removing water mass from the upper

levels of the atmosphere. Conversely, the Thompson simulation underestimated

graupel and was found to produce way too much snow.
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Figure 7 and 8 of the appendix show updated figures for the Thompson simula-

tion when the correct particle size distribution for snow is used within the reflectivity

conversion algorithm. The conclusions in this chapter for the Thompson simulations

are somewhat different to the conclusions drawn when exponential particle size dis-

tributions were used. The more sophisticated treatment of graupel and melting snow

within the reflectivity conversion algorithm appears to have produced the most no-

table difference. Within a convective cell graupel is now more frequently defined as

the dominant hydrometeor species and can now be seen up to the cloud top. The

averaged profiles also show the coverage of graupel has increased and extends much

higher than observed previously. However, the averaged profiles (Figure 8) show

that even with the more sophisticated treatment of graupel, compared with both

the Radar and Lin simulations graupel is still significantly underestimated in the

Thompson simulation. The averaged profiles show a maximum coverage of approx-

imately 5% compared with approximately 40% observed by the radar. Using the

correct particle size distribution for snow within the conversion algorithm leads to

a more realistic profile of snow coverage above 10 km. The rapid and unrealistic

decrease in snow coverage previously seen between approximately 13 and 10 km

is now a smooth transition. The coverage of rain below the freezing level is still

significantly under-estimated and consistent with the updated Figure in Chapter 4.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.8: Hydrometeor profiles averaged over the suppressed period for
a) the radar, c) the Lin simulation e) the Thompson simulation. Hy-
drometeor profiles averaged over the suppressed/break period for b) the
radar, d) the Lin simulation f) the Thompson simulation.
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(a) Radar

(b) Lin

(c) Thompson

Figure 6.9: Hydrometeor profiles averaged over the Break period for a)
the radar, b) the Lin simulation c) the Thompson simulation.
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Chapter 7

Precipitation Regimes

This thesis has explored how data from the WRF model can be converted to simu-

lated radar reflectivity and compared with radar data to assess the model’s perfor-

mance in a tropical environment. In this chapter an attempt is made to continue the

evaluation process by using the precipitation regimes defined in Chapter 2. Each of

the four precipitation regimes represent distinct and reoccurring states of the atmo-

sphere, based on the statistical distribution of precipitation produced by convective

systems that occur over Darwin. Together the four regimes encompass the wide

range of precipitation structures produced during a typical wet season, and each

have been shown to have physical links with the tropical atmosphere. It is hoped

that conditions under which the model performs poorly (or well) will become evi-

dent by determining how well the WRF model is able to simulate each precipitation

regime.

One of the methods often used to compare model simulations with regimes cre-

ated using the KMEANS algorithm is to create histograms from model data in the

same format as the observational data, then assign the model histograms to one of

the regimes (Hume and Jakob, 2007; Gordon et al., 2005). However as the 2006

wet season was not used in the definition of the precipitation regimes, it was first

necessary to assign histograms of reflectivity vs height from the TWP-ICE period

to one the precipitation regimes (see Chapter 2 for how the histograms are created).

Assigning a histogram to a precipitation regime involves calculating the euclidian

distance between the histogram and each of the four precipitation regimes, then

associating the histogram with the regime that had the most similar reflectivity
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structure (defined by the minimum euclidian distance). Note that this is how his-

tograms are assigned to centroids in the clustering algorithm used in Chapter 2,

the only difference is that in the clustering process after all histograms have been

assigned to a centroid, new centroids are calculated and the algorithm is iterated

until the clusters become stable. Assigning histograms to the precipitation regimes

this fashion has the benefit of leaving the regimes unaltered by the additional data,

while also being computationally efficient.

After the radar histograms from TWP-ICE were assigned to the precipitation

regimes a similar process was used to assign model data to the precipitation regimes.

Conceptually there is little difference between the model simulated reflectivity data

and data obtained from the Gunn Point radar, only the methods that lead to the

data generation differ. Therefore the model simulated reflectivity data described in

chapter 4 were used to create histograms of simulated reflectivity vs height, which

were assigned to the precipitation regimes using the same method described above.

The following section uses the precipitation regime assignments for both model

and radar derived histograms to determine how well the WRF model performs

during different conditions.
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7.1 Time Series of Model and Radar Regimes

7.1.1 Monsoon Period:- Lin microphysics

Figure 7.1 a) shows the regimes that the radar (black), Lin (red) and Thompson

(green) histograms were assigned to during the monsoon period. Domain-averaged

vertical velocity profiles derived from the Xie-Klein forcing dataset have been repro-

duced in Figure 7.1 b), c) and d) to aid discussion. The following text is dedicated

to the results from Lin simulation only, any reference to the “model histograms”

refer to the Lin histograms. A separate section analyzing the Thompson time series

is provided in section 7.1.2.

In chapter 2 the convective intensity of each regime was inferred from the re-

flectivity structure of the regime centroids by considering the maximum echo top

height and maximum reflectivity in the lowest 5 km for each regime. There it was

found that regime 1 contained weak/medium convective periods, regime 2 contained

strong convective periods, regime 3 contained weak convective periods with large

stratiform regions and regime 4 contained strong convective periods with large strat-

iform regions.

Comparing the time-series of radar regime assignments (black) with the domain-

averaged upward motion derived from the Xie-Klein dataset (Figure 7.1 d) there

appears to be a nice correlation between the domain-averaged vertical ascent and

the assignment of the radar histograms to regimes 2 and 4. Just before 0 UTC on the

20th of January the radar derived histograms change their assignment from regime

1 to regime 2 (indicating a change from weak to strong convective updrafts) at the

same time that an increase in the domain-averaged upward motion is observed in

figure 7.1 d). While it may appear obvious that regimes 2 and 4 should be linked

with stronger domain-averaged vertical ascent, vertical motion was never used in

the definition or analysis of the regimes in chapter 2.
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In addition to providing information about convective updraft strengths, the

precipitation regime assignments also offer information about the amount and type

of precipitation generated. For example the change from regime 2 to regime 4 (just

after 0 UTC on the 20th of January) in the radar assignments indicates that signif-

icant amounts of stratiform precipitation were produced in the convective outflow.

Furthermore, by the continued assignment of the radar histograms to regime 3, it

can be concluded that even after the convective updrafts have weakened (see Figure

7.1 d)) the stratiform precipitation previously generated is still present. A similar

pattern occurs at around 0 UTC on the 21st of January, the radar histograms are

first assigned to the strong convective regime (regime 2), followed by a period of

strong convection and stratiform precipitation (regime 4), followed by a sustained

assignment of regime 3 when the convective event has weakened.

From the time series of regime assignments for the model (red), it can be seen

that the Lin histograms are assigned to regime 1 during the first three days of

the simulation despite the frequent occurrence of the higher precipitation regimes

observed by the radar. From this incorrect assignment it can be concluded that the

convective updraft strengths (and precipitation) are underestimated by the model

during this time, a finding that is consistent with the results found in chapter 3 and

5.

At approximately 6 UTC on the 21st of January the Lin derived histograms

leave regime 1 for the first time. While the model is correctly assigned to a stronger

convective regime, the timing of this convection appears to be delayed, the radar

histograms are assigned to the strong convective regimes approximately 4-6 hours

earlier. Judging from the regime assignments alone, it can be concluded that the

model underestimates the precipitation during this period. The model histograms

are assigned to regimes 2 and 3 for only a few hours before returning to regime 1,

whereas the radar histograms are continually assigned to regime 3.
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Comparing the time series of the model and radar histograms to figures 7.1

b) and d) it can be seen that whenever strong domain-averaged vertical ascent

occurs, the histograms are assigned to either regime 2 or 4. Using the precipitation

regimes instead of the vertical velocity profiles has the added benefit of providing

information about the precipitation produced in the convective events, as well as

providing information about the persistence of stratiform precipitation after the

convective event has finished. For example the model fails to capture the decrease

in precipitation observed by the radar on the 23rd of January, and is then assigned

to regime 4 earlier than the radar. From these incorrect regime assignments it would

be expected that the model has overestimated the precipitation during the last two

days of the simulation.

From the regime assignments it can be concluded that the Lin simulation has two

main problems during the monsoon period. Firstly the convective updraft strength

and precipitation is underestimated during the first half of the simulation, as indi-

cated by the incorrect assignment of the model histograms to regime 1. Secondly

the model overestimates precipitation during the last 2 days of the simulation, as

indicated by the assignment of the model histograms to regimes 3 and 4 more often

than observed by the radar. While this analysis is qualitative in nature and does

not provide any additional information than has already been discovered in previ-

ous chapters, the results are just the first step in using the precipitation regimes

to evaluate the models performance. Section 7.2 will provide a more quantitate

and useful method for evaluating the models performance, however before showing

these results section 7.1.2 will continue to investigate if assigning the model derived

histograms to the precipitation regimes can provide useful information about the

models performance.
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Figure 7.1: a) Time series of radar and model assigned precipitation
regimes for the monsoon period. b) Domain-averaged vertical velocity
profiles for the Lin simulation. c) Domain-averaged vertical velocity pro-
files for the Thompson simulation. d) Observed vertical velocity profiles
from the Xie-Klein forcing dataset.
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7.1.2 Monsoon Period:- Thompson microphysics

Looking at the time series of regime assignments for the Thompson derived his-

tograms it can be seen that the occurrence of the regimes with strong convection

(2 and 4) again correlate well with the domain-averaged vertical velocity profiles in

figure 7.1 c). One of the major differences between the Lin and the Thompson his-

tograms for this period appears to be the infrequent assignment of the Thompson

histograms to regime 3 and 4. The Thompson histograms are rarely assigned to

regime 3, and the rapid change between regime 2 and 4 during the last 12 hours on

the 23rd gives some indication that the assignment of the Thompson histograms to

a given regime is unstable.

Chapters 4 and 6 have shown that the Thompson simulations have a significant

problem below the freezing level. To investigate if this problem may be linked with

infrequent assignment of the Thompson histograms to regime 3 and the unstable

assignment of the Thompson histograms to regimes 2 and 4, Figure 7.2 a) shows the

average of all histograms during the monsoon period for the Thompson simulation

(the average Lin histogram and precipitation regimes 3 and 4 from chapter 2 are

shown for completeness).

The average Thompson histogram shows that the problem below the freezing

level occurs primarily between 5 and 30 dbz. Comparing figures 7.2 a) and c) it

can be seen that regime 3 has a high frequency of particles with reflectivity values

in the same range that the Thompson simulation is deficient. This would explain

why regime 3 appears to be under represented when the Thompson histograms are

assigned to the precipitation regimes. It should be noted that regime 4 also has a

high frequency of particles with reflectivity values in the range that the Thompson

physics has a problem simulating, however regime 4 also has a high frequency of par-

ticles above the freezing layer. If the Thompson simulation correctly produces large

amounts of precipitation above the freezing level, then the Thompson histograms
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may be assigned to regime 4 if the correct simulation above the freezing layer makes

up for the lack between 5 and 30 dbz below the freezing layer (however such an

assignment would likely be unstable, as was observed).

Earlier it was postulated that the problem with the Thompson simulation below

the freezing level was linked with stratiform precipitation. As stratiform precipita-

tion usually falls within the 5-30 dBz range (Houze, 1997; Steiner et al., 1995), figure

7.2 a) provides the best evidence so far that stratiform precipitation is contributing

to the underestimation of precipitation in the Thompson simulations. While it is

possible that some of the convective precipitation is affected by the problem below

the freezing level, the most intense convective precipitation (35 dBz and greater)

appears to be relatively unaffected. Therefore only during periods in which strati-

form precipitation contributes significantly to the overall rain rate will the problem

with the Thompson microphysics be obvious.
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(a) Average histogram - Thompson (b) Average histogram - Lin

(c) Regime 3 (d) Regime 4

Figure 7.2: a) Average histogram for the Thompson simulation over the
monsoon period. b) Average histogram for the Lin simulation over the
monsoon period. c) Precipitation regime 3. d) Precipitation regime 4.
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7.1.3 Regime assignments for TWP-ICE

Figure 7.3 shows the time series of regime assignments for the Lin and Thompson

simulation during the entire TWP-ICE period. Data from all five simulations de-

scribed in section 3.1.3 have been used to create the time series. During suppressed

conditions convection is generally patchy, relatively weak, and produces relatively

small amounts of precipitation. It would be therefore be expected that the sup-

pressed period would be dominated by the occurrence of regime 1. Indeed both

model simulations appear to be performing well during the suppressed conditions,

the model and the radar histograms are assigned to regime 1 for the majority of

the time, and both model simulations capture the transition from monsoon to sup-

pressed conditions with only a slight delay.

During the break period the WRF model does not appear to be performing well,

both the Lin and Thompson simulations rarely leave regime 1 despite the frequent

assignment of the radar histograms to regime 2 and 3. The Thompson simulation is

assigned more frequently to the zero precipitation regime than the Lin simulation,

but strangely is also assigned more frequently to regime 2. Insight into why the

Thompson simulation has a higher occurrence of regime 2 during the break period,

even though it was found to have weaker vertical velocity profiles during this time

can be gained by recalling Figure 6.9) in chapter 6. There it was found that the

Thompson simulation performed poorly in simulating the coverage of rain below the

freezing level, but the coverage of snow above the freezing level was much closer to

the observed values than the Lin simulation. Thus it would appear plausible that

even with the poor representation of rain below the freezing level, a more accurate

representation of snow above the freezing level makes up for this deficiency, and the

histograms are assigned to regime 2. Indeed this is exactly what has occurred, figure

7.4 shows the difference between the model histogram and the first two precipitation

regimes on the 11 of February at 11 UTC. In the top of each figure is shown the
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total difference between the histogram and the precipitation regime. Recall that

the histogram is assigned to the regime with the minimum euclidian distance. Here

we can see why the Lin histogram is assigned to regime 1 for this time period

(it has a difference of 4.14 compared to 5.3 for regime 2), whereas the Thompson

histogram is assigned to regime 2 with a difference of 6.07 compared with 7.45 for

regime 1. Although there is a larger difference below the freezing level for medium

reflectivity values (20-40 dbz) in the Thompson histogram, it more closely matches

reflectivity values above the freezing level (5-10 km). This figure also shows that

the Lin histogram is actually closer to regime 2 than the Thompson histogram (5.29

compared with 6.07), however the lack of reflectivity values above the freezing level

means that the histogram is assigned to regime 1.

Judging purely from how the model derived histograms are assigned to the four

precipitation regimes it would seem that the Lin simulation performs well in the

Monsoon period and not so well in the break period, and the Thompson simulation

performs poorly in the Monsoon period but “better” in the break period. Quotations

are used because the above analysis highlights a potential problem with assigning

the model histograms to a precipitation regime. On first glance it would appear

the Thompson simulation performs better than the Lin simulation during the break

period because it is assigned to the stronger convective regime more often. However

looking at the differences it could be seen that the Lin histogram is actually closer

to regime 2 than the Thompson histogram (it has a difference of 5.29 compared

with 6.07). Therefore simply assigning a histogram to the regime with the smallest

euclidian distance has a problem, it gives potentially misleading information about

how realistic the simulated histograms are. No matter how un-realistic the histogram

it will always be assigned to one of the four precipitation regimes. Even a fictitious

histogram with 100 % coverage of 30 dbz reflectivity values at all levels would still

be assigned to a regime (regime 4).
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Therefore is must be concluded that while the assignment histograms to the pre-

cipitation regimes are useful as a first indication of how well a simulation performs,

a separate analysis is required to determine the validity of the simulated histograms

in terms of a realistic precipitation structure. This is the focus on the next section

of this chapter.

(a) Time Series of Precipitation Regimes:- All TWPICE

Figure 7.3: Time series of radar and model assigned precipitation regimes
for the TWP-ICE period.
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(a) Lin regime 1 diff (b) Lin regime 2 diff

(a) Thompson regime 1 diff (b) Thompson regime 2 diff

Figure 7.4: Difference between the Lin histogram and regime 1 on the 23rd
of January 11 UTC. b) Difference between the Lin histogram and regime
2 on the 23rd of January 11 UTC. c) Difference between the Thompson
histogram and regime 1 on the 23rd of January 11 UTC. d) Difference
between the Thompson histogram and regime 2 on the 23rd of January
11 UTC.
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7.2 Cluster Analysis with Model and Radar His-

grams

The previous section has shown that the histograms derived from model simulated

reflectivity data can be assigned to each of the four precipitation regimes at some

point over the TWP-ICE period. It has also been shown that even if a histogram is

assigned to a given precipitation regime this does not necessarily mean the histogram

is physically sensible. In an attempt to overcome this problem and derive a more

useful method for evaluating a models performance, the clustering technique used

to define the four precipitation regimes in chapter 2 is employed a second time.

Unlike previous studies where model derived data was clustered separately (Williams

et al., 2005; Williams and Tselioudis, 2007), here it was decided that both radar and

model histograms for the entire TWP-ICE period should be used as inputs into the

KMEANS algorithm. The rationale behind the decision came from the notion that

the clustering algorithm does not differentiate between model and radar derived

histograms, it assigns each histogram to a cluster based purely on how similar the

reflectivity structures in each histogram are to the cluster centroids.

It is hoped that information about how well (or poorly) the model performs

in different conditions can be gained by looking at how the clustering algorithm

assigns the model and radar histograms to the cluster centroids. For example, if

the model performs well under certain conditions then it would be expected that

the clustering algorithm would assign both model and radar histograms to the same

cluster centroid, indicating that the model is able to produce precipitation structures

that are similar to those observed by the radar. If however the model performs poorly

under certain conditions (is unable to simulate certain types of convection), then

it would be expected the clustering algorithm would “see” the model and radar

histograms as different and assign each to seperate clusters, one that represents
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reality and is comprised purely of radar histograms, and the other representing a

distorted model version of the same conditions. Finally, if the model is unable to

simulate certain meteorological conditions completely, then it would be expected

that a radar-only cluster would be produced that contained no model histograms

and has no model-equivalent.

Using both model and radar histograms as input in the clustering algorithm

has the potential to allow conditions in which the model performs poorly to be

ranked in terms of their importance, or their difference from reality. Recall that the

KMEANS algorithm requires the user to choose the number of defined clusters. This

is often seen as a disadvantage because the act of choosing the number of clusters the

algorithm searches for includes a subjective step in an otherwise objective process.

However in this case it can be turned into an advantage. By initially searching

for a low number of clusters, model and radar histograms will separate first during

the conditions in which the model performs the “worst”, i.e. the histograms with

the most unrealistic precipitation structures compared with observations will be the

first to separate. The number of clusters the algorithm will search for can then be

increased, and if the model and radar histograms again separate, then conditions in

which the model “second worst” have been found. This process can be continued

for as long as the user believes benefit is gained.

Figure 7.5 a) shows the results from the clustering algorithm when 5 clusters

were sought using histograms derived from the radar and Lin simulations as input

into the algorithm (similar results were obtained for 4 clusters). It appears that

the clustering process has indeed sorted the model and radar histograms in a way

that provides useful information about the model’s performance. Looking at the

histograms that make up each cluster it can be seen that cluster 2 is comprised

solely of radar derived histograms. This type of separation is exactly what would

be expected of a model unable to simulate conditions/convection with statistical
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properties similar to those observed. Insight into the type of convection associated

with cluster 2 can be gained by looking at the centroid of this cluster. Although

it is not necessary to have performed prior analysis using only radar histograms as

input to the clustering algorithm, the regimes defined in chapter 2 represent the

four dominant reflectivity structures that occur over a wet season and should prove

useful when analyzing the current cluster centroids.

Figure 7.5 b)-f) shows the centroids produced when 5 clusters are required from

the KMEANS algorithm. The reflectivity profile associated with cluster 2 (Figure

7.5 c)) appears similar in structure and coverage to what would be expected of

weak/medium intensity convection. Comparing this centroid to the regimes defined

in chapter 2 it can be seen that this cluster is most similar to precipitation regime

1. Likewise, the centroid for cluster 1 (Figure 7.5 b)) also has a similar reflectivity

structure to regime 1. Thus it appears that clusters 1 and 2 represent the same

physical conditions, cluster 2 is comprised solely of the observed reflectivity struc-

tures associated with weak/medium convection, while centroid 1 contains the model

version of weak/medium convection. It should be noted that some of the time the

model is able to produce reflectivity structures that are similar enough to the radar

histograms to allow concurrent assignment to cluster 1. However, the fact that

clusters 1 and 2 were the first clusters to naturally separate shows that the biggest

problem with the WRF model is its ability to simulate weak convection (or regime

1).

Looking at the histograms that make up the other three clusters it can be seen

that both model and radar derived histograms are assigned to clusters 3, 4 and 5 at

some stage of the simulation. Therefore it can be concluded that the model is able

to create histograms with statistical properties similar to the radar histograms to al-

low concurrent assignment within these clusters. Of course searching for additional

clusters are may lead to further separation and highlight additional deficiencies in
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the models performance. However before searching for additional clusters a simi-

lar analysis will be performed using input from the radar and Thompson derived

histograms.

Figure 7.6 a) shows the results from the clustering algorithm when 5 clusters were

sought using histograms derived from the radar and the Thompson simulations as

input into the algorithm. As was the case with the Lin simulation there are no model

histograms assigned to cluster 2, indicating that the WRF model has a problem

simulating weak convective periods (or regime 1) independent of the microphysics

scheme used. It is possible that the grid spacing used in these simulations is not

sufficient to accurately resolve this type of convection. Models that use grid spacings

of approximately 1 km are often referred to as cloud resolving models, however the

patchy convection associated with regime 1 may be too small to be resolved by grid

spacings of this size. It would be interesting to see if increasing the resolution model

has an effect on how the model and radar histograms are assigned to centroids by

the clustering algorithm, however such an analysis is beyond the scope of the current

investigation.

Previous chapters have shown that in the tropics the Thompson microphysics

has a problem simulating precipitation coverage below the freezing level. In section

7.1.2 this deficiency was seen as a decrease in reflectivity values between 5 and 30

dBZ in the average histogram for the Thompson simulation (Figure 7.2 a)). The

clustering algorithm appears to have picked up on differences in the reflectivity

structure between the Thompson and radar histograms and created a second radar-

only cluster (cluster 4) that was not created when Lin histograms were used instead

of the Thompson histograms. Figure 7.6 b)-f) shows the centroids for the 5 clusters.

Cluster 3 shows the characteristic “forbidden” zone in the reflectivity values first

discovered in section 7.1.2. While some of the radar histograms have been assigned to

this cluster (likely because their reflectivity structure is somewhere between cluster
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2 and cluster 4), the unrealistic structure in the model histograms can clearly be

seen to dominate this cluster.

Using the clustering algorithm to sort the radar and model histograms into clus-

ters it can be concluded that the biggest problem with the model simulations (both

Lin and Thompson) is the unrealistic representation of weak convection. Further-

more, the Lin microphysics scheme produces more realistic histograms than the

Thompson microphysics scheme, as evidenced by the creation of a second radar-

only cluster when the radar and Thompson histograms are used as input into the

KMEANS algorithm.

The fact that the histograms separate into radar-only and model-equivalent clus-

ters allows information about the models performance to be easily obtained, and

provides a nice way of determining under which circumstances the model is per-

forming poorly. The algorithm was able to pick out the problem below the freezing

level in the Thompson histograms, as seen by the creation second radar-only clus-

ter. The “forbidden” range of reflectivity values between 6 and 30 dBZ is easily seen

in clusters 1 and 3 of figure 7.6, whereas the Lin simulation appears overestimate

precipitation at low levels during periods of weak convection.

There is nothing special about 5 clusters, if one wanted to highlight further

problems with the WRF model the algorithm could be set to find more clusters and

run again. Figure 7.7 shows the time series of clusters assignments when 6 clusters

were sought using histograms derived from the radar and a) the Lin simulations, and

b) the Thompson simulations. By searching for an additional cluster the algorithm

now produces two radar-only clusters when the Lin histograms are used (cluster 2

and cluster 6), and three radar-only clusters when the Thompson histograms are

used (cluster 2, cluster 4 and cluster 6). Figures 7.8 shows the cluster centroids

produced when the radar and Lin histograms were used as input into the clustering

algorithm and Figure 7.9 shows cluster centroids produced when the radar and
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Thompson histograms were used as input into the algorithm. From these figures it

can be seen that the cluster centroids for clusters 1 and 2 are practically the same as

those found when 5 clusters where sought. Again cluster 1 is a shared radar/model

cluster and cluster 2 is a radar only cluster representing convection typical of that

associated with regime 1. Cluster 6 appears to be an extremely strong convective

regime with very large coverage of precipitation, reflectivity values of 60 dbz are

observed below 3 km and reflectivity values up to 30 dbz are observed all the way

up to 20 km. In chapter 3 it was found that the model simulated vertical velocity

was always underestimated, therefore it is not unexpected that both microphysics

schemes are unable unable to produce histograms with this converge and intensity.

The Lin simulation is however able to produce strong convection with large regions of

stratiform precipitation; cluster 5 is a shared model/radar cluster and has reflectivity

values of 60 dbz below 3 km, an echo top height of 19.5 km and a TVC of 0.42.

Depending how well or poorly a model performs will dictate how useful it will be

to continue searching for additional clusters, a possible application of this type of

analysis involves determining how successful a change to the model setup will be. For

example if one were to change the resultion of the model and weak convective periods

were assigned to the same cluster as the radar histograms (without detrimentally

effecting the other clusters) then one could state rather objectively that progress

had been made. The process of evaluating a new microphysics scheme (or changes

to a microphysics scheme) may involve trying to get all k clusters to be shared

radar/model centroids. One could then investigate the differences or spread of the

histograms within these clusters to determine if the model contains a systemic bias,

or one could chose to search for additional clusters until radar or model only clusters

are produced.

Figure 9 in the appendix shows the average histogram over the monsoon period

derived from a) simulated reflectivity data generated using an exponential functions
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to represent the particle size distribution for snow and b) simulated reflectivity

data generated using gamma functions to representing the particle size distribution

of snow. Figure 9 indicates that although the reflectivity structure has changed,

the unrealistic nature of the precipitation within the Thompson simulation is still

present. The under-representation of precipitation can still be seen in this figure,

although the reflectivity range most effected has shifted slightly (now between 12

and 40 dBZ rather than 5 and 35 dBZ seen previously).

Given that reflectivity structure in the Thompson derived FAD’s change slightly

when the correct gamma functions are used in the simulated reflectivity algorithm,

it is expected that the clusters created in section 7.2 would also be slighted modified

were this data used as input the KMEANS algorithm. However, as this chapter

focuses primarily on the methodology used for model evaluation rather than specifi-

cally focusing on the performance of the Thompson microphysics scheme, the general

conclusions remain the same. The FADs derived from the simulated reflectivity data

generated using the incorrect particle size distribution for snow can be thought of

as providing simplified test case for a bad simulation.



135

(a) Lin histograms: 5 clusters (b) Centroid 1

(c) Centroid 2 (d) Centroid 3

(e) Centroid 4 (f) Centroid 5

Figure 7.5: a) Time series and centroids for the Lin and radar cluster
analysis with 5 centroids. b)-f) the five centroids from the clustering
algorithm
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(a) Thompson histograms: 5 clusters (b) centroid 1

(c) centroid 2 (d) centroid 3

(c) centroid 4 (d) centroid 5

Figure 7.6: a) Time series and centroids for the Thompson and radar clus-
ter analysis with 5 centroids. b)-f) the five centroids from the clustering
algorithm
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(a) Time Series - Lin histograms: 6 clusters

(b) Time Series - Thompson histograms: 6 clusters

Figure 7.7: a) Time series for the Lin and radar cluster analysis with 6
centroids. b) Time series for the Thompson and radar cluster analysis
with 6 centroids.
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(a) centroid 1 (b) centroid 2

(c) centroid 3 (d) centroid 4

(e) centroid 5 (f) centroid 6

Figure 7.8: a)-f) Centroids for the Lin and radar cluster analysis with 6
centroids
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(a) centroid 1 (b) centroid 2

(c) centroid 3 (d) centroid 4

(e) centroid 5 (f) centroid 6

Figure 7.9: a)-f) Centroids for the Thomson and radar cluster analysis
with 6 centroids
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Chapter 8

Conclusions

Tropical convection is known to have a significant impact on the environment from

the local to the global scale. The complex nature and wide variety of clouds that

occur in the tropics makes accurately simulating tropical convection in numerical

models is a notoriously difficult task. This thesis has investigated the regime nature

of tropical convection in an attempt to simplify the large range of cloud types that

occur over a tropical region into a discrete and manageable number.

Chapter 2 has shown that by using a simple clustering algorithm on multiple

seasons of hourly radar data it was possible to objectively define four precipitation

regimes that had physical connections to the known tropical atmosphere. Regimes

1 and 2 were found to be predominately convective in nature and diurnally driven,

showing a distinct peak in the afternoon and occurring most frequently during break

conditions. Regimes 3 and 4 contained precipitating clouds with a larger fraction

of stratiform precipitation. Furthermore, regimes 3 and 4 had links with monsoon

conditions and tended to peak in the late night or early morning, typical of con-

vection occurring over tropical oceans. By linking the precipitation regimes with

the tropical cloud regimes previously identified from ISCCP data it was possible to

estimate the precipitation rates associated with each of the ISCCP regimes.

The remainder of the thesis was dedicated to evaluating the WRF model’s perfor-

mance in tropical north Australia, specifically, evaluating the simulated precipitation

with data from a CPOL radar. Five consecutive simulations were run during the

TWP-ICE period with the aim of capturing the large range of meteorological condi-

tions present during a typical wet season over Darwin. The sequence of simulations



141

was run twice using both Lin and Thompson microphysics schemes.

A major source of inaccuracies in the model simulations was found to come not

from the model itself, but rather the data used to force the model. In chapter 3 it was

found that the GFS data used to force the WRF model contained significant biases

in the temperature fields. Comparison of the GFS forcing data with observations

taken from TWP-ICE revealed a warm bias at 17 km (stratosphere) reaching as

high as 5 degrees, and a second bias of approximately 2 degrees at 15 km. Evidence

of the detrimental effect these biases was found in the resulting analysis of the WRF

model’s performance. vertical velocity profiles indicated convection was capped by

the warm bias and precipitation coverage was underestimated at higher altitudes.

The choice of microphysics scheme was found to have a large impact on the

quality of the simulations. The Thompson scheme was shown to have a significant

problem simulating the precipitation coverage below the freezing level, as demon-

strated in chapter 4 where an unrealistic drop-off in precipitation coverage below

5 km was seen in the domain-averaged results. Chapter 6 then showed that the

problem extended to both the coverage of rain and graupel production. Finally, in

chapter 7 the average Thompson FAD showed that the reduction in precipitation

coverage below the freezing level occurred primarily in values below 30 dbz. Times in

which quantities of stratiform precipitation contributed significantly to the domain-

averaged rain rates, such as during the passage of the MCS during the monsoon

period, were most strongly affected by the problem in the Thompson microphysics.

Using the polarimetric variables available from a CPOL radar to estimate the ob-

served hydrometeor species provided valuable information that could not be gained

by using radar reflectivity alone. In chapter 6 it was found that the Lin microphysics

significantly overestimated graupel, which was then hypothesized to be a cause of

the underestimation of snow in the Lin simulations (the higher fall speeds of graupel

particles allowed water mass to precipitate too quickly).
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One of the main goals of the thesis was to determine whether the precipitation

regimes defined in chapter 2 could be used to evaluate the model’s performance. In

chapter 7 each of the radar and model simulated FADs were assigned to one of the

precipitation regimes and the time series of these regime assignments allowed for a

quick and easy analysis of the models performance. Information about the strength

of convection, presence of stratiform precipitation and duration of the stratiform

precipitation associated with a convective event was evident in the time series. As-

signing model and radar FADs to the precipitation regimes was a useful first check of

the models performance. However, a limitation of this technique is that it gives no

indication of how realistic the model simulated precipitation structure is when com-

pared with observations of real clouds. In an attempt to gain such information the

clustering algorithm used to initially derive the precipitation regimes was employed

again, using both model and radar FADs as inputs to the clustering algorithm. This

technique allowed model and radar FADs to naturally separate into a different clus-

ters due to differences in their precipitation structure. As the clustering algorithm

is objective in the way it assigns FADs to each centroid, this technique provides an

objective method for determining where efforts should be focused when improving

model performence. By initially searching for a low number of clusters then incre-

mentally increasing this number, conditions in which the model performs poorly can

be seen by the order in which the FADs separate into different clusters. One pos-

sible outcome of this technique is that two clusters representing the same physical

conditions are produced, one containing radar FADs and the other containing model

FADs. This occurred when 5 clusters were sought using input from the Lin and radar

FADs. Cluster 1 contained all the model FADs associated with low/medium convec-

tive intensity and low precipitation coverage (although some radar FADs were also

assigned to this cluster), while cluster 2 was purely a radar cluster. As these were

the first clusters to naturally separate, one can draw the conclusion that the biggest
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problem with the WRF model’s performance in simulating the tropical atmosphere

over Darwin (initialised with GFS data) is the representation of weak convective

time periods (or regime 1). A second possible outcome of this technique is that a

radar-only cluster is produced that has no model-equivalent. This occurred when 6

clusters were sought using both Lin and radar FADs as input in the clustering algo-

rithm, cluster 6 was a radar-only cluster that had very high precipitation coverage

and contained extremely strong convection. As there was no model-equivalent of

cluster 6 one can objectively state that the second biggest problem with the WRF

model is its inability to simulate periods strong deep convection with large coverage

of stratiform precipitation.

While it is possible to continue searching for additional clusters and further

highlighting inconsistencies in the WRF model, searching for additional problems

with the model in the current setup was deemed an inefficient use of resources. As the

temperature bias in the GFS data used to force the model simulations was found to

have a large effect on the simulations, the logical next step in any research would be

to run the WRF model initialised with a different source. The clustering technique

described in chapter 7 could then be used to determine if any improvements were

gained by using the additional data source, as well as investigating any deficiencies

the model produces in the new model setup.

In summary it would seem that the use of the precipitation regimes by themselves

are useful, but of limited value for model evaluation. By far the greatest potential is

to the use precipitation regimes in conjunction with the clustering algorithm applied

to both model and radar derived FADs. Such a process appears to have potential to

be used as an objective method in determining where efforts are needed to improve

model performance. Furthermore, this technique has a much wider applicability

than was demonstrated in this thesis, any variable or quantity that can be both

observed and simulated by a numerical model can be used to create histograms and



144

used as input into the clustering algorithm.
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Appendix

Ze =
∫
D6N0e

−λD
dD (A1)

Setting U = D6 and
dV

dD
= N0e

−λD ⇒ V = −N0e−λD

λ
and integrating equation

A1 by parts we have

∫
D6N0e

−λD
dD = −D6N0e

−λD

λ +
∫ 6D5N0e

−λD

λ dD (A2)

where we integrate by parts again with U = 6D5 and
dV

dD
=

N0e
−λD

λ
⇒ V =

−N0e−λD

λ2 thus

∫ 6D5N0e
−λD

λ dD = −6D5N0e
−λD

λ2 +
∫ 30D4N0e

−λD

λ2 dD (A3)

where we integrate by parts again with U = 30D4 and
dV

dD
=

N0e
−λD

λ2
⇒ V =

−N0e−λD

λ3 thus

∫ 30D4N0e
−λD

λ2 dD = −30D4N0e
−λD

λ3 +
∫ 120D3N0e

−λD

λ3 dD (A4)

where we integrate by parts again with U = 120D3 and
dV

dx
=

N0e
−λD

λ3
⇒ V =

−N0e−λD

λ4 thus

∫ 120D3N0e
−λD

λ3 dD = −N0120D3e−λD

λ4 +
∫ 360D2N0e

−λD

λ4 dD (A5)
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where we integrate by parts again

with U = 360D2 and
dV

dD
=

N0e
−λD

λ4
⇒ V = −N0e−λD

λ5 thus

∫ 360D2N0e
−λD

λ4 dD = −360D2N0e
−λD

λ5 +
∫ 720DN0e

−λD

λ5 dD (A6)

where we integrate by parts again with U = 720D and
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dD
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λ6 thus
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where
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−λD
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−λD

λ7 (A8)

Combining equations A8 - A2 gives

Ze =
∫

D6N0e
−λD dD =

−D6N0e−λD

λ
−6D5N0e−λD

λ2
−30D4N0e−λD

λ3
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−360D2N0e−λD

λ5
−720DN0e−λD

λ6
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=
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(D6λ6 + 6D5λ5 + 30D4λ4 + 120D3λ3 + 360D2λ2 + 720Dλ + 720)

with D << 0 we have



156

Ze =
−720N0

λ7



157

(a) (b)

(c) (d)

Figure 1: Difference between the Xie-Klein forcing dataset and a)
EWMWF input data. b) GFS input data. c) WRF model using ECMWF
data. d) WRF model using GFS data.
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(a) ECMWF Vertical Velocity

(b) GFS Vertical Velocity

(c) Observed Vertical Velocity

Figure 2: Domain-averaged vertical velocity profiles for a) The WRF
model forced with ECMWF data. b) the WRF model forced with GFS
data. c) the Xie-Klein forcing dataset
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(a) Max reflectivity Radar (b) Precipitation Coverage Radar

(c) Max reflectivity Lin (d) Precipitation Coverage Lin

(e) Max Reflectivity ECMWF (f) Precipitation Coverage EWMWF

Figure 3: Maximum reflectivity and precipitation coverage plots for a,b)
the Lin simulation forced with GFS data. c),d) the radar and e) f) the
Lin simulation forced with ECMWF data.
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Figure 4: Time series of radar and model assigned precipitation regimes
for the monsoon period. Black line shows the radar assignments. Red
line shows the GFS forced WRF assignments and the green line shows
the ECMWRF forced WRF assignments
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(a) Thompson-gamma (b) Thompson-gamma

(c) Thompson-exponential (d) Thompson-exponential

Figure 5: Maximum Reflectivity and Precipitation Coverage profiles for
the Monsoon period (Thompson simulation) using gamma equations for
the particle size distributions a) and b), and using exponential equations
for the particle size distributions c) and d)
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(a) Time Series (b) Radar

(c) Thompson-gamma (d) Thompson-exponential

Figure 6: a) Time series of domain-averaged precipitation rates and ac-
cumulation over the monsoon period for the radar and Thompson sim-
ulations using two versions of the reflectivity conversion algorithm. b)
Spatial distribution of precipitation rates averaged over the monsoon pe-
riod for the radar, c) the Thompson simulation using gamma equations to
represent the particle size distributions and d) the Thompson simulation
using exponential equations to represent the particle size distributions
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(a) 5 km CAPPI (b) East-West Slice (c) North-South Slice

(d) 5 km CAPPI (e) East-West Slice (f) North-South Slice

(h) 5 km CAPPI (i) East-West Slice (j) North-South Slice

Figure 7: CAPPI showing the reflectivity values at 5 km for the radar
a), the Thompson gamma simulation d) and the Thompson exponen-
tial simulation h). East-West and North-South cross sections through
the estimated hydrometeor data are shown for the radar b) and c), the
Thompson gamma simulation e) and f), and the Thompson exponential
simulation i) and j) during the Monsoon Period
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(a) (b)

(c) (d)

Figure 8: Hydrometeor profiles averaged over the Monsoon period for a)
the radar, b) the Lin simulation, c) the Thompson exponential simulation
and d) the Thompson gamma simulation.
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(a) Exponential (b) Gamma

Figure 9: a) Average histogram for the Thompson simulation over the
monsoon period with exponential functions modeling the particle size
distributions, b) average histogram for the Thompson simulation over
the monsoon period with gamma functions modeling the particle size
distributions.
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