
 
 
 

 

 
 
 

 
 
 

 

 
 

 
 
 
 

 
 
 

 

 

 

 
 
 
 

 
 
 

 
 



 
 
 

Copyright Notices 
 
 
 
Notice 1 
 
Under the Copyright Act 1968, this thesis must be used only under the normal 
conditions of scholarly fair dealing. In particular no results or conclusions should be 
extracted from it, nor should it be copied or closely paraphrased in whole or in part 
without the written consent of the author. Proper written acknowledgement should be 
made for any assistance obtained from this thesis. 
 
Notice 2 
 
I certify that I have made all reasonable efforts to secure copyright permissions for 
third-party content included in this thesis and have not knowingly added copyright 
content to my work without the owner's permission. 
 



 

 1 

 

Abstract 
 
A central question in complexity theory is how large-scale phenomena, such as such as self-
organisation, perpetual novelty, and sustained diversity, emerge. Complex systems can be 

understood as networks of interacting components. The focus of this research is the role that the 
properties of such networks play in self-organisation and emergence in complex systems. 
 
Based on the previously known concept of Dual Phase Evolution (DPE), I propose a theoretical 
framework, within which recurrent phase transitions in network connectivity underlie emergent 
phenomena in many systems. This DPE framework extends and refines the original concept. 

 
Networks can exist in two general connectivity phases: well connected and poorly connected. DPE 
relates each of the two connectivity phases and the transition events between them to typical 
system dynamics. I analyse empirical and experimental evidence from published studies in areas 
as diverse as physics, biology, socio-economics, mathematics and computer science. The analysis 

implies that DPE is widespread and operates in many kinds of complex systems, where it drives 
emergence and self-organisation. What is more, the analysis uncovers hitherto unstudied deep 
similarities and common underlying processes between different complex systems. 
 
To further understand the theoretical concepts of the DPE framework, I apply DPE in studies of 
mechanisms behind particular emergent properties in several types of complex systems: 

 
Seeking to better understand the emergence of novelty and diversity in ecosystems, I develop and 
study an individual-based simulation model of adaptive radiation (speciation) in landscapes. 
Simulation results imply that recurrent external disturbances facilitate perpetual novelty and 
diversity in landscape populations through two complementary mechanisms: One mechanism 
constitutes recurrent DPE phase changes in landscape connectivity on several levels. The other 

mechanism is alteration of the environment in disturbed areas leading to modified selection 
regimes.  
 
As a result of the simulation studies of landscape evolution, I develop a new genetic model that 
combines the advantages of two existing genetic models. The new model allows individual-based 
simulation studies of genetics on holey fineness landscapes (HFLs). Such fitness landscapes result 

from biochemical constraints to genetic viability and have previously only been studied 
analytically. Simulation studies of reproductive isolation uncover that when HFLs are considered, 
common predictions about maintenance of reproductive isolation in migrating populations change. 
Results also show that HFL-genetics can facilitate the emergence of stable hybrid populations, and 
the evolution of social selection though reinforcement. 
 

Continuing to study and apply DPE, I investigate how DPE processes can lead to the emergence of 
important network topologies. Using simulations models, I demonstrate two possible mechanisms 
behind emergent connectivity phase transitions without facilitation by external stimuli. A study of 
social network models reveals simple mechanisms that lead to structures typical of some real 
social networks and points towards general principles for emergence of important topologies such 

as modularity. A study of a network model of co-operations in markets reveals further 
mechanisms behind the emergence of complex and hierarchical modularity. 
 
Generative models for scale-free networks, that are ubiquitous in many natural systems, are well 
known, however, such models apply to growing networks. I propose and examine a generative 
model for scale-free topologies that can account for some scale-free networks of constant size 

found in nature. 
 
A wider context for DPE as a framework for reasoning about complexity is provided by examining 
the relationship between DPE and other established concepts such as Self-Organised Criticality and 
the Adaptive Cycle. In conclusion, DPE complements other established theories. 
 

In general, network-theoretical approaches, such as DPE, are powerful paradigms in 
understanding complexity. This thesis shows that recurrent changes in connectivity of component 
interaction networks constitute a broad mechanism for emergence and self-organisation in 
complex systems, and demonstrates this mechanism in several specific biological and socio-
economic systems. 
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Part I 

 

Introduction 

 
 

 
 
 
In this thesis I study the role of networks and their properties in complex systems. I highlight some 
previously undescribed underlying mechanisms common to many systems and apply these 
findings to gain new insights into some specific processes in biological evolution and in self-
organisation of socio-economic groups. Part I lays out the thesis structure, summarises the main 
research contributions and discusses the tools and methods used in this research. 

 
 

 
Chapter 1: Introduction. 
 
This thesis studies mechanisms for emergence and self-organisation in complex systems. It 
concentrates on the role of networks and argues that recurrent connectivity changes represent a 
previously undescribed underlying mechanism common to many systems. These findings are used 
to gain new insights into some specific processes in biological evolution and in self-organisation 
of socio-economic groups. The first chapter provides an outline of this thesis, sets out the main 
goals, and summarises the key research contributions and published works. 

 

 
 
Chapter 2: Methodological context. 

 
Work presented in this thesis is located at the crossroads of complexity science, evolutionary 
biology, artificial life and network theory. Two main methods of study are employed: analysis and 
re-interpretation of existing literature aimed at identifying and highlighting shared mechanisms and 
common properties in known phenomena; and simulation models aimed at studying the effects of 
particular network properties in specific complex systems. I sketch out a science-philosophical 
context to motivate the employed methods and to qualify the results obtained on their basis. 

 
 

 

Chapter 3: The LiveGraph framework for exploratory data analysis and 
visualisation. 
 
An important contribution of this thesis is a software framework of research tools that was 
originally developed to facilitate research presented in this thesis. This framework – LiveGraph – is 
a suite of software tools and libraries for real-time data visualisation and exploratory analysis that 
incorporates features not available in other packages. After its initial publication as an open-
source project, LiveGraph has been used by thousands of people and in several academic peer-
reviewed publications. This chapter provides an outline of the frameworks and its capabilities. 
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Chapter 1: 

1. Introduction 
 
 

Our world is dominated by complex, networked systems of many kinds. Studying how 
large-scale features and properties emerge in such systems is crucial to improve our 
understanding of nature and our ability to advance science and society. In this thesis I 
study the role played by networks and their properties in natural and artificial complex 
systems. I uncover some previously undescribed mechanisms that govern behaviour of 
many systems and apply my findings to better understand some specific processes in 
biological evolution and in self-organisation of socio-economic groups. This chapter 
provides an outline of this thesis, sets out the main goals, and summarises the key 
research contributions and published works. 

 
 
From finance markets to the World Wide Web, from genetic regulatory networks to food 

webs, science and society are dominated by complex, networked systems of many kinds. 
Studying how these systems self-organise, acquire features and properties, such as 
perpetual novelty and sustained diversity, is crucial in trying to understand and manage such 

systems. 
 
It is increasingly recognised that large-scale, complex systems display emergent features 

that result not from the properties of individual system components, but from the cumulative 

effects of their interactions (see literature review in section 4.1). A fruitful paradigm is to 
represent components and their interactions within complex systems of different kinds as 
networks and to apply network and graph theory to study such systems (see review in 

chapter 5). This inter-disciplinary approach allows explicit characterisation of common 
mechanisms and aids cross-fertilisation between disciplines. Network theory and related 
methods from statistical physics found useful applications in fields as diverse as social 

sciences, evolutionary biology and cognitive neuroscience (chapter 5).  
 
Abstracting complex systems as networks of component interactions raises many questions. 
For instance, what structures promote important properties such as resilience, diversity, 

modularity and novelty? What processes give rise to common topologies? And how do 
network properties influence the behaviour of systems? 
 

In this thesis I approach these and related questions (section 1.1), and study the role played 
by networks in natural and artificial systems. Networks are inherent in all complex systems 
(chapter 5), and patterns and processes that occur within the underlying networks play a 

major role in the emergence of system wide features (chapter 7). Perhaps the most widely 
felt network processes are changes in edge density, especially the connectivity avalanche 
(section 5.3). My research shows (chapter 8) that phase changes occur in a wide range of 
complex systems. What is more, those phase changes can typically be traced to connectivity 

avalanches within underlying networks.  

 
Focusing on the role of network connectivity in systems reveals many deep similarities 

between superficially unrelated systems and processes, pointing to common causal 
mechanisms. Different connectivity phases display characteristic features, such as apparent 
balance and stabilising selection in high connectivity phases, and vivid variation and 

exploration in low connectivity phases. In this thesis I argue that recurrent phase changes in 
connectivity of system components constitute a general mechanism behind some emergent 
phenomena in both, biological and other complex adaptive systems, as well as in non-living 
complex systems. As a consequence, I extend the concept of Dual Phase Evolution (DPE) and 

formulate it as a universal framework useful for reasoning about complexity (chapter 7). 
Interpreting processes as DPE reveals new useful insights, for instance about patterns in 
species evolution (chapter 10). It also suggests new methodologies, such as new generative 

models for important network architectures (chapter 13).  
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1.1. Research goals 
 

 
The central aim of this thesis is to provide new insights into mechanisms behind emergence 
and self-organisation in complex systems. Primarily, I concentrate on the role of networks 
and network connectivity in self-organisation and emergence of complex properties such as 

perpetual novelty and sustained diversity. 
 
To address this objective I focus on the following specific goals: 

 
1) Elicit mechanisms by which network connectivity influences dynamics in different 

complex systems and facilitates self-organisation and emergence of large-scale 

properties. 
 
2) Formulate the insights won by addressing goal (1) as general principles that describe 

relationships between network connectivity and system dynamics. Describe the role of 

these mechanisms in emergence and self-organisation in complex systems. 
 

3) Investigate how the general principles formulated in goal (2) facilitate the emergence 

of specific complex properties in particular complex systems. 
 

4) Investigate how the general principles formulated in goal (2) facilitate self-organisation 
towards complex underlying structures in particular complex systems. 

 
5) Compare the general principles formulated in goal (2) with other established 

approaches to describing and reasoning about self-organisation and emergence in 

complex systems. Provide a critical comparison between the new insights and the 
established approaches. 

 

 

Methodology: 

 
The following approach is taken to address the above goals: 

 
Goal 1: I examine a wide range of previous studies from different disciplines and highlight 
shared underlying similarities and mechanisms within the studied systems (chapter 8). 

 
Goal 2: I extend the previously known concept of Dual Phase Evolution (DPE) and formulate 
it as a general framework for reasoning about complex systems rooted in network theory. 
The DPE framework describes two different connectivity phases in networks that underlie 

complex systems, and how these phases and the transitions between them relate to system 
dynamics (chapter 7). 
 

Goal 3: I investigate how recurrent phase changes in landscape connectivity facilitate the 

emergence of perpetual novelty and sustained diversity in landscape ecosystems. The 
investigation is based on a simulation model of adaptive radiation (speciation) in a 

landscape, where connectivity is affected my intermittent disturbances (chapter 10). 
 
Goal 4: I investigate how recurrent changes in density (connectivity) of interactions between 
system components lead to important topological structures in social and socio-economic 

networks. The investigation is based on several simulation models, where recurrent phase 
transitions in density of interactions between agents result in important topologies, such as 
modular and scale-free structures (chapter 13). 

 
Goal 5: I compare the DPE framework to two other well-known frameworks for reasoning 
about complex systems (Self-Organised Criticality and the Adaptive Cycle), and highlight 

similarities and differences. DPE appears to be complementary to the other frameworks 
(chapter 14). 
 
In the following section 1.2 I provide a brief overview of the thesis structure. Thereafter, in 

section 1.3, I highlight the key results and relate them to the above objectives. 
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1.2. Overview 
 

This thesis is organised in six major parts. In the current part I, I set out the scene for the 
thesis, lay out the research objectives, highlight the key contributions and describe primarily 
employed research methods. I also discuss an additional contribution that results from work 
described in this thesis: the LiveGraph software framework for exploratory analysis and 

visualisation of scientific simulation data. LiveGraph is suite of research tools. Originally 
developed within the scope of the work presented here, it is now employed by thousands of 
people worldwide and thus presents a significant contribution in itself. Aiming at conciseness, 

I avoid reviewing relevant background literature in part I; instead, I refer to appropriate 
sections in part II where important background literature is reviewed in detail. 
 

In part II, I review the background literature and highlight established concepts and theories 
that are at the centre of this research. I begin with a brief general overview of complexity 
theory and its key results (chapter 4), and specifically consider the philosophical issues 
arising from studies of emergence (section 4.3). I continue with an overview of network 

theory (chapter 5), specifically of the results most relevant to the research described here. 
Finally, in chapter 6, I review some biological concepts that play a role in my work that 
applies network theory to studies of ecological systems and speciation. 

 
My original research contributions are discussed beginning in part III. In chapter 7 I 
introduce the main theoretical concept of this thesis – the framework of Dual Phase Evolution 
(DPE) – and discuss some of the theoretical corollaries that arise from the DPE framework. 

In chapter 8 I apply the DPE framework to a wide range of previously studied natural and 
artificial complex systems and elicit the new insights that DPE reveals about those systems. 
 

In part IV, I investigate mechanisms for the emergence of self-organisation, perpetual 
novelty and sustained diversity in biological complex adaptive systems. The diversity and 
multiplicity of species is one of the most prominent attributes that signify novelty and 

diversity in biology. Thus, in chapter 10 I study the dynamics of adaptive radiation 
(speciation) in landscape ecosystems using simulation experiments. In this study I 
concentrate on the role of interaction networks within landscapes and their connectivity. 
Results reveal that the role of network connectivity in determining speciation dynamics 

depends on assumptions about genetic properties of individuals made in the simulation 
experiments. Most notably, the fitness landscape that results from these genetic assumptions 
has strong influence on system behaviour. Thus, in chapter 11, I undertake a detour from 

the network-theoretical theme of this thesis, and study in more detail, how assumptions 
about genetic fitness landscapes can influence predictions about the emergence and 
sustainability of novelty and diversity in biological ecosystems. These studies employ 

simulation models based on recent results from evolutionary speciation theory. 
 
In part V I study processes that facilitate the emergence of important network topologies and 
structures. Connectivity phase transitions govern many system properties and an important 

question is thus,- what mechanisms facilitate such transitions? Simulation studies in chapter 

12 demonstrate different mechanisms by which recurrent connectivity transitions can 
emerge in network systems without facilitation by external events. However, connectivity 

density is not the only important network property that drives system dynamics. Other 
topological properties, including modular organisation (section 13.2) and power-law degree 
distributions (section 13.3) are known to facilitate emergent phenomena such as resilience, 

fault-tolerance and criticality. Thus, in chapter 13, I study generative models for modular 
and scale-free networks. 
 
In part VI I draw the results of work discussed in this thesis together and put them in a 

wider context through a critical comparison with other established frameworks for reasoning 
about complexity (chapter 14). In particular, I consider the concepts of Self-Organised 
Criticality and the Adaptive Cycle. In chapter 15, I summarise the findings, identify gaps 

within my studies and discuss future research directions. 
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Overall, the structure of the thesis can be sketched as a loop touching on several aspects of 
network theory in complex systems research. That loop follows the key realisation that 

system behaviour and the topology of underlying networks interact in a feedback process 

that influences both, local component interactions and large-scale, emergent system 
properties (Figure 1.1). 
 

 
 
 

 
 

 
 

Figure 1.1. Thesis structure. The thesis is organised in a metaphorical loop that follows the feedback 

circuit between system dynamics and the topology of underlying networks. 
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1.3. Main research contributions 
 

In this section I summarise the key contributions of this theses. As the thesis chapters group 
the different pieces of work together into common focus areas, this summary follows the 
chapter structure, whilst concentrating on chapters that provide key results. Where 
applicable, I relate each result to the research goals defined in section 1.1. 

 
 

Chapter 3. The LiveGraph framework for exploratory data analysis and visualisation. 

 

This chapter describes a new data analysis tool that has become widely used is several 
areas: 
 

 LiveGraph is a software framework for exploratory data analysis and real-time 
visualisation. Initially developed to facilitate research presented in this thesis, 
LiveGraph has been used by thousands of people and in several scientific publications 

(by unaffiliated authors). LiveGraph is a tool that allows performing tasks around 
simulation experiments more efficiently and is thus in itself an important contribution. 

 
 

Chapter 7. Dual Phase Evolution. 

 
This chapter establishes key relationships between connectivity phases in networks that 

underlie complex systems and system dynamics (research goal 2): 
 

 Dual Phase Evolution (DPE) – the central theoretical concept of this thesis – originally 
described recurrent transitions between different kinds of dynamics in complex 

adaptive systems. In this chapter, DPE is extended and formulated as a general 
framework rooted in network theory. The framework relates connectivity of networks 
that underlie complex systems to typical system behaviour, and associates recurrent 

transitions between network connectivity phases to a number of emergent properties 
in complex systems.  

 

 

Chapter 8. Connectivity Phase Transitions in Natural and Artificial Systems. 

 
This chapter demonstrates how network connectivity phases influence behaviour of many 

complex systems and relates the results to concepts established by the DPE framework 
(research goal 1): 
 

 An examination of a wide range of systems from physics, biology, sociology, 

economics, mathematics and computer science, based on previous studies, reveals 
that recurrent phase changes in network connectivity facilitate the emergence of many 

complex properties. 

 
 Interpreting known and new phenomena within the DPE framework reveals previously 

undescribed underlying mechanisms and processes shared between many systems. 

 
 

Chapter 10. DPE and Perpetual Novelty and Sustained Diversity in Landscape Ecosystems. 

 

This chapter provides new insights into the relationship between disturbances, landscape 
connectivity, and the intermittent nature of species evolution in landscapes. It also sheds 
new light on mechanisms involved in perpetual novelty and sustained diversity observed in 

landscape ecosystems (research goal 3): 
 

 A simulation model of adaptive radiation in landscapes shows that intermittent 
disturbances facilitate complex diversity and perpetual novelty in the ecosystem 

through two main mechanisms: 
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 First, disturbances affect the connectivity of two important interaction networks within 
the landscape. One is a network of reproductive interactions between individuals that 
facilitates gene flow and acts against adaptive radiation. Disasters separate 

populations and disrupt gene flow, which facilitates divergence through genetic drift. 

The second is a network of unoccupied cells. Disturbances free up additional cells thus 
providing connected invasion paths and aiding percolation by new species. 

 

 The second mechanism through which disturbances facilitate continuous novelty and 
high diversity in the model, is alteration of the environment in affected areas. Altered 
conditions result in directional selection towards new niches for extended periods of 

time, thus aiding local adaptations to establish stable populations. 
 
 

Chapter 11. Evolution on Holey Fitness Landscapes: 

 
This chapter takes a detour from the network theme of the thesis and considers the role of 
holey fitness landscapes in species evolution. I introduce a new genetic modelling technique 

that allows applying holey fitness landscapes, a hitherto purely analytical concept, in 
individual-based modelling, and use this technique to attain new insights into the 
maintenance of evolutionary diversity in parapatric populations (these results address 

research goal 3, and also provide additional insights): 
 

 By combing two existing techniques, I introduce a genetic model that incorporates 
both, an explicit, biologically realistic treatment of genetic (in-)viability issues, and an 

inherent approach for relating genotype fitness to the ecological environment. 

 
 Previously, holey fitness landscapes were not used in individual-based simulations due 

to inherent difficulties in crating a suitable, computationally efficient viability function. 
On the basis of the introduced genetic model, I demonstrate how these difficulties can 
be managed to create simulation models incorporating HFL-genetics. 

 
 A numerical analysis of the genetic fitness landscape exhibited by the new model 

shows that the model exhibits many biologically realistic properties. This analysis can 
potentially inform and direct the design of future studies. 

 
 Previous studies suggest that ecologically-based reproductive isolation will rapidly 

collapse under migration. However, based on the new techniques, I show that HFL can 

often maintain diversity and may facilitate exploration of new niches and speciation. 
Simulation results also point towards an important role of HFL-genetics in evolution of 
social selection through reinforcement. 

 
 I discuss how the techniques developed in this chapter may prove useful in 

biologically-inspired engineering, for instance for combating premature convergence in 
evolutionary optimisation algorithms.  

 
 

Chapter 12. Emergent connectivity phase transitions in complex networks: 

 

This chapter demonstrates mechanisms for the emergence of connectivity phase changes 
without facilitation by external disturbances (research goal 4): 
 

 In a model of resource flow in complex systems, connectivity transitions arise through 
a feedback between the properties of the resource distribution network and edge 
density. 

 
 Simple behavioural rules, such as the human tendency to copy peer behaviour, can 

lead to emergent connectivity phases in a social network model. A causal mechanism 
for these phase transitions is identified in slow accumulation of specific small-scale 

structures and intermittent releases. 
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Chapter 13. Generative models for important network topologies: 

 
This chapter introduces new generative models for key network architectures (e.g. modular 

and scale-free networks) that are found in social groups, as well is an various other systems 

(research goal 4): 
 

 A social network model shows that both, modular structures, and circuit and chain 
structures emerge according to different parameter values. Several of the resulting 
structures bear close resemblance to some empirical social networks. 

 
 A network model of an economy demonstrates the emergence of multi-level modules 

organised in complex hierarchies. The simple rules governing network evolution in this 
model imply that similar mechanisms may be present in other systems. 

 
 A model of interactions in human and animal groups demonstrates a hitherto 

unknown, natural generative mechanism for scale-free networks that do not grow in 

size. Previous generative models for scale-free networks either operate on growing 
networks (e.g. preferential attachment) or are highly synthetic and unlikely to 
correspond to natural processes. 

 

Chapter 14. DPE and other frameworks for reasoning about complex systems: 

 
This chapter relates the theoretical concepts developed in this thesis to other established 

frameworks for reasoning about complex systems (research goal 5): 
 

 DPE complements the notion of Self-Organised Criticality (SOC). SOC implies that CAS 
tend to self-organise towards a critical attractor. On contrary, DPE proposes that 

systems develop towards a simple attractor, and are repeatedly perturbed away by 
internal and external disturbances, thereby repeatedly crossing the critical threshold. 
In many instances these two cases may result in equivalent observations. 

 
 The Adaptive Cycle (AC) theory describes recurrent transitions in dynamics of socio-

economic systems between exploration of new development directions and exploitation 

of available resources. DPE generalises this concept in terms of network-theory and 
applies it to a wider range of systems. 

 
 

 
The next section provides a brief overview of publications of the above key results. 
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1.4. List of publications 
 

Most of the findings presented in this thesis have been published in peer-reviewed journals 
and conference proceedings. Some material presented in part V is currently in preparation 
for publication. An extended paper that summarises the key findings of this thesis, and 
reviews most of the material discussed here has been accepted for review by the Royal 

Society Journal Interface. 
 
Throughout this thesis, I seek to avoid self-citations. Instead, at the beginning of every 

chapter or top-level section, I list publications that contain material presented in the 
respective chapter or section. 
 

Here, I list all peer-reviewed publications containing material that results from my work 
undertaken during the time period when I was engaged in research presented in this thesis. 
Most of these publications (marked with ―‖) contain material that has been incorporated 

into this volume. 
 
Abstracts and additional details for the publications listed here, as well as the full text for 

most of these papers can be obtained from http://www.paperin.org/publications . 

 
 
 

Legend: 

 

 - journal paper  - edited volume 

 - book chapter  - conference paper 

 - conference poster  - publication is used in this thesis 

 
 

 G. Paperin, D. Green, S. Sadedin (2010): ―Dual Phase Evolution in Complex Adaptive 
Systems‖. Journal of the Royal Society Interface. Accepted for review.  

 

 G. Paperin, S. Sadedin (2010): ―Dual Phase Evolution as a Framework for 
Understanding Complex Adaptive Systems‖. Springer. In press.  

 

 G. Paperin (2010): ―The Role of Networks in Computational Complex Systems‖. 
International Transactions on Systems Science and Applications. In press.  

 

 G. Paperin, S. Sadedin (2009): ―The Dual Phase Evolution Framework for Understanding 

Evolutionary Dynamics in Complex Adaptive Systems‖. In: ―Proceedings of the 2009 
International Conference on Evolutionary Computation (ICEC'09)‖.  

 
 G. Paperin, S. Sadedin (2009): ―Towards formalising the theory of Dual Phase 

Evolution‖. Presented at the 10th European Conference on Artificial Life (ECAL’09).  

 

 S. Sadedin, G. Paperin (2009): ―Implications of the social brain hypothesis for evolving 
human-like cognition in digital organisms‖. In ―Proceedings of the 10th European 

Conference on Artificial Life (ECAL’09)‖. Springer. 
 

 S. Sadedin, G. Paperin, T. G. Leishman, eds. (2008): ―Proceedings of the 12th Asia-

Pacific Symposium on Intelligent and Evolutionary Systems (IES'08)‖. Monash University. 
ISBN 978-0-646-50671-5. 

 

 G. Paperin, D. G. Green, T. G. Leishman (2008): ―Dual Phase Evolution and Self-

Organisation in Networks‖. In ―Proceedings of the 7th International Conference on 
Simulated Evolution And Learning (SEAL'08)‖. Springer.  

 

 G. Paperin, S. Sadedin, D. Green, A. Dorin (2008): ―Holey Fitness Landscapes and the 
Maintenance of Evolutionary Diversity‖. In ―Proceedings of the 11th International 
Conference on Artificial Life (ALife XI)‖, MIT Press, Cambridge, MA.  

 

http://www.paperin.org/publications


1. Introduction 

 21 

 G. Paperin (2008): ―Using Holey Fitness Landscapes to Counteract Premature 
Convergence in Evolutionary Algorithms‖. In ―Proceedings of the Graduate Student 
Workshop at the Genetic and Evolutionary Computation Conference 2008 (GECCO’08)‖. 
ACM Publishing.  

 
 G. Paperin (2008): ―Evolving sequence patterns for prediction of sub-cellular locations 

of eukaryotic proteins‖. In ―Proceedings of the Genetic and Evolutionary Computation 
Conference 2008 (GECCO’08)‖. ACM Publishing. 

 

 G. Paperin, D. G. Green, A. Dorin (2007): ―Fitness Landscapes in Individual-Based 
Simulation Models of Adaptive Radiation‖. In: ―Proceedings of 2007 International 
Symposium on Computational Models for Life Sciences (CMLS’07)‖, AIP Conf. Proc., Vol. 
952, pp. 268-278.  

 

 T. G. Leishman, D. G. Green, G. Paperin (2007): ―Dual Phase Evolution – a mechanism 
for self-organisation and optimisation‖. In: ―Asia-Pacific Symposium on Intelligent and 
Evolutionary Systems 2007 (APSIES’07)‖.  

 

 G. Paperin, D. G. Green, S. Sadedin, T. Leishman (2007): ―A Dual Phase Evolution 
model of adaptive radiation in landscapes‖. In: ―Proceedings of the 3rd Australian 
Conference on Artificial Life (ACAL’07)‖, Springer LNCS, Vol. 4828/2007, pp. 131-143.  

 

 G. Paperin, D. G. Green, S. Sadedin, T. G. Leishman (2007): ―Complexity in Speciation: 
Effects of disasters on adaptive radiation in a Dual Phase Evolution model‖. In: 
―Proceedings of the 8th Asia-Pacific Complex Systems Conference (Complex’07)‖.  

 

 G. Paperin (2007): ―The LiveGraph framework for exploratory data analysis and 
visualisation‖. Software demonstration at the ―8th Asia-Pacific Complex Systems 
Conference (Complex’07)‖.  

  

 G. Briscoe, S. Sadedin, G. Paperin (2006): ―Biology of Applied Digital Ecosystems‖. In: 

―Proceedings of Inaugural IEEE International Conference on Digital Ecosystems and 
Technologies 2007 (DEST’07) ‖. 

 
 G. Paperin (2006): ―Security of Communication and Quantum Technology‖. In: M. 

Quigley (ed.), ―Encyclopaedia of Information Ethics and Security‖. Idea Group Publishing, 
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Chapter 2: 

2. Methodological context 
 
 

A central point of this thesis is a theoretical framework (termed DPE) for reasoning about 
complex systems that is centred around the role of connectivity in underlying interaction 
networks. In order to motivate and support the framework I conduct a study of literature 
from a wide range of disciplines aimed to identify and highlight shared mechanisms and 
common properties in different complex systems (chapter 8). The re-interpretation of 
existing literature provided in this study and the identification of hitherto unstudied 
common principles and mechanisms is an original contribution and constitutes a key 
result of this thesis. Further results presented in this thesis are obtained through 
simulation studies that apply insights gained from the theoretical DPE framework to 
models of particular complex systems (parts IV and V). This methodology is central to 
several sciences that study complexity. This chapter provides a brief science-
philosophical context to motivate the employed methods and to qualify the results 
obtained on their basis. 

 
 
Two research methodologies are central to this thesis. The first methodology is the review 

and re-interpretation of previous work aimed at revealing concealed mechanisms and 
previously unnoticed parallels in known phenomena. The second methodology is simulation 
modelling of complex systems aimed to study how the identified mechanisms drive specific 

behaviours in natural systems. In this chapter I motivate the applied methodology by 
providing a brief science-philosophical context. 
 
Complexity theory aims to reveal deep similarities between superficially unrelated systems 

and processes by drawing together ideas from many different disciplines into a coherent and 
unified methodology [Nicolis & Prigogine, 1977a; Manson, 2001]. A key challenge therein is 
overcoming incompatible terminologies, competing theories of equivalent content and 

sometimes also entrenchment by traditionalists within different cradle sciences of complexity 
(chapter 4). Scientists tend to pay attention to problems defined by the concepts and 
methods readily available [Kuhn, 1977]. Thus, some facts, although known, are pushed to 

the periphery of scientific investigation, either because they are deemed irrelevant, or 
because their study would demand unavailable data or techniques. Bringing the relevance of 
these facts into focus presents a valuable and important contribution to science: it can 
catalyse re-conceptualisation and cause impacts that can range from an undramatic 

reorganisation of concepts to a scientific revolution [Di Paolo et al., 2000]. 
  
In chapter 7 I introduce a theoretical framework (termed DPE) for reasoning about complex 

systems. The framework is centred around the realisation that recurrent phase changes in 
connectivity of underlying networks play a key role in emergence and self-organisation within 
many kinds of systems. In chapter 8 I provide evidence for the theoretical ideas presented in 

chapter 7 through a study of a large body of literature from different fields that highlights 

common processes and re-interprets some of the original results. This literature study is a 
key contribution of this thesis. It does not only motivate and direct the simulation studies 
conducted in the later chapters. It also demonstrates that DPE is a diverse and useful 

interpretation framework for future research. What is more, it uncovers underlying 
mechanisms and deep similarities between systems, not always noticed by the original 
authors. Thus, the literature study is not a literature review. A literature review that provides 

a context and motivation for the research described in this thesis is provided in chapters 4, 
5, and 6. Conversely, the literature study in chapter 8 takes the role of data analysis 
performed on existing ideas and results rather than on newly collected data. 

 
In parts IV and V of this thesis I study the applications of the DPE framework to different 
complex systems. The main method of these studies is simulation. Simulation, particularly 
computer simulations, is a relatively new method of scientific enquiry that only became 

available with the advent of affordable computing power provided by modern IT systems. 
Thus, simulation models as a scientific method are actively discussed by science philosophers 
and practicing researchers [e.g. Maynard Smith, 1974; Kawata & Toquenaga, 1994; Bedau, 
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1998; 1999; Di Paolo et al., 2000; Grimm et al., 2005]. It is useful to sketch out some of the 
points made in such discussions. 
 

The traditional approach to system modelling is to express system dynamics in terms of 

equations, usually differential equations. Commonly, such approach describes large-scale, 
average system behaviour [Castiglione, 2006]. Mathematical assumptions made to construct 
tractable equation-based models can often be relaxed in a simulation model [Taylor & 

Jefferson, 1995]. For instance, traditional models in population biology often assume random 
mating and unstructured populations. Simulations models, however, allow for structured, 
spatially explicit populations and other evolutionary phenomena that are difficult to treat 

analytically, such as frequency dependent selection [Di Paolo et al., 2000]. 
 
Simulation models can be classified in two broad categories: traditional numerical 

simulations and individual-based models (also termed agent-based models) [Grimm & 
Railsback, 2005; Castiglione, 2006]. The distinction is not always clear-cut and combined 
approaches are possible. Numerical simulations are mainly based on routines for solving the 
equations that describe the behaviour of a system. For instance, they are employed when an 

analytical solution to the equations is intractable or when the behaviour of a system over 
time is studied. The numerical approach is often limited to modelling the average behaviour 
of systems [Castiglione, 2006]. Individual-based models emphasise individual low-level 

system components and their interactions [Kawata & Toquenaga, 1994]. They have the 
potential to explore high-level aggregate behaviours and can be used to model phenomena 
that exhibit self-organisation and emergence [Taylor & Jefferson, 1995]. For instance, 

individual-based simulations have become widespread in ecosystems modelling after it 
became common to treat ecosystems as CAS [Di Paolo et al., 2000; Grimm et al., 2005]. 

 
The view of the role of simulation experiments varies among researchers. One extreme 

position is that simulation models need to act as maximally realistic replicas of systems 
[Maynard Smith, 1974; Kitano et al., 1997]. Such models must be validated against 
empirical or experimental data and can then be used for quantitative predictions. Models 

calibrated and validated in this way can be used for virtual experiments and for exploring 
what-if scenarios [Kitano et al., 1997; Di Paolo et al., 2000]. 
 

Conversely, Bedau [1998; 1999] sees simulation models as abstract, computational thought 
experiments that may be far away from actual natural systems. Such models can capture 
essential processes and thus provide instances of phenomena of interest, while abstracting 
away from micro-details gaining simplicity and universality [Bedau, 1999]. Many researchers 

(e.g. see Di Paopo et al. [2000] for a discussion) take an intermediate position between 
seeing simulations as tools for realistic numerical predictions and as computational thought 
experiments. 

 
Simulation models that do not make exact quantitative predictions of system behaviour that 
can be calibrated against empirical data can be used to study qualitative patterns in systems 

dynamics. How can such models be validated? Grimm et al. [2005] suggest an approach 
termed ―pattern-oriented modelling‖: Simulation models should not only reproduce the 
qualitative behaviour it was designed to study, but also other emergent behaviours observed 

in the real system that were not at the focus during model design. This is not an obligatory 

requirement in all cases, particularly as model simplicity may need to be traded off against 
the complexity required for multiple emergent patterns, however, when qualitative models 
exhibit multiple large-scale behaviours that are also present in the real system, it can be 

taken as a strong sign of model validity. 
 
Due to the nature of complex systems, some hypotheses about their internal mechanisms 

are inherently difficult to test empirically. Such testing requires accurate empirical data over 
extended time periods, which can stretch into years or even millennia. Explanatory variables 
are typically numerous and cannot be manipulated, experiments are frequently unfeasible 
and are replaced by observations and data often collected for other purposes. As a result, 

thought experiments and simulation models are essential tools in complexity research. 
However, the power of qualitative individual-based models goes beyond their role as 
computational thought experiments. They can be used to assess and verify intuition and 

reasoning about emergent phenomena. Di Paolo et al. [2000] exemplify this by considering a 
thought experiment discussed by Gould [1990]: If the Earth’s geological history was 
replayed, would today’s Earth look similar to what we observe, or would it have strongly 

diverged due to differences in small random events? In particular, would intelligent life have 
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evolved? Gould’s assessment [1990] is that evolution of intelligent life forms in such case 
would be highly unlikely. However, Di Paolo et al. [2000] follow Bedau [1998] in that such a 
thought experiment is inconclusive until a computer simulation can verify either conclusion. 

 

There are numerous examples of how qualitative simulation models solved key problems by 
demonstrating how particular theoretical concepts can work in dynamical systems [Di Paolo 
et al., 2000]. An example is the Daisyworld model (section 4.3) of a planet inhabited by only 

two species. The model demonstrates that global self-regulation can emerge from only local 
interactions without a global controller – a concept that was considered highly controversial 
before the model was published (section 4.3). Another example is the demonstration of the 

Baldwin effect by Hinton and Nowlan [1987]. The Baldwin effect, which suggests that 
evolving increased ability for life-time learning can speed-up evolution, received limited 
attention for over 9 decades since its original publication [Baldwin, 1896]. The scepticism 

was partly due to an incorrect association with Lamarckism, partly due to the absence of a 
convincing argument showing the Baldwin effect would work [Di Paolo et al., 2000]. Hinton 
and Nowlan [1987] presented a simple individual-based simulation model that demonstrated 
the effect. Although the model did not lead to any novel results, it gave a clear and 

convincing demonstration of the Baldwin effect and sparked a large wave of exploration in 
the area [Di Paolo et al., 2000]. 
 

Individual-based simulation models present one of the main research methods in many 
sciences studying complex systems including ecology [Di Paolo et al., 2000; Grimm et al., 
2005] and Artificial Life [Kawata & Toquenaga, 1994]. As such, they are a well suited tool to 

study concepts central to this thesis. 
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Chapter 3: 

3. The LiveGraph framework for exploratory 
data analysis and visualisation 

 
 

LiveGraph is a software framework for real-time data visualisation and exploratory 
analysis that incorporates features not available in other packages. Initially, it has been 
developed to facilitate research presented in this thesis. However, since its publication, 
LiveGraph has been used by thousands of people and in several academic peer-reviewed 
publications. Thus, the framework and its software tools are in themselves an important 
contribution to the area of scientific modelling. This chapter provides an outline of the 
frameworks and its capabilities. 

 
 

Any scientific progress depends on the availability of appropriate tools and methods required 
to achieve it. Thus, not only the discovery of new insights, but also the development of new 
tools that make such insights possible must be considered important contributions to the 
respective scientific areas. Using computer simulations, in particular individual-based 

computer simulations, for research in large-scale natural systems is a methodology that is 
still young (chapter 2), and the set of tools and methods has not yet reached the level of 
maturity and standardisation, as it is the case for some traditional sciences. 

 

One important contribution of work described in this thesis is the development of the 
LiveGraph framework. LiveGraph is a software system directed towards efficient exploratory 

analysis of data produced by computer simulations. It has been developed in order to 
facilitate the research presented in this thesis, but has been used by thousands of people 
since for both, research and engineering purposes. In this chapter I give a brief overview of 
the system. 

 

3.1. Modelling technologies 
 
When building simulation models, researchers have the general choice between using a 
specialised individual-based modelling platform (see examples in Table 3.1), or developing 

their models from the first principles using any suitable programming language. The decision 
towards one or the other approach depends primarily on the capabilities of available choices, 
on suitability for the specific research task, availability and compatibility of additional tools 
and existing modules, and on the prior knowledge and expertise of the researcher. Typically, 

modelling platforms provide higher-level modelling and analysis tools of varying complexity, 
while general purpose programming languages allow more freedom and flexibility in model 
design. Most models presented in this thesis have been built using the Java™ programming 

language. This choice reflects several considerations: 

 
 Java™ is a general-purpose programming language that allows maximum flexibility in 

model design and does not lock the user into a specialised framework. 
 

 Java software can be executed on a common office PC and on a high-performance grid 
without modifications. When developed wisely, the runtime-performance of Java 

programs is very high, far above most high-level agent-modelling platforms. 
 

 High proficiency and prior experience of the author in Java and related technologies. 

 
Title Web site Title Web site 

    

AnyLogic http://www.xjtek.com SeSAm http://www.simsesam.de 

EcoLab http://ecolab.sourceforge.net Swarm http://www.swarm.org 

NetLogo http://ccl.northwestern.edu/netlogo/ Repast http://repast.sourceforge.net 

    

Table 3.1. Agent-based modelling platforms. Listed is a small selection of popular software 

suites for individual-based simulations. 
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3.2. Use case 
 

Due to the nature of complex systems, early stages of modelling work require developing 
intuition for a system at the focus of investigation. Before a research hypothesis can be 
formulated and rigorous experiments can be performed, it is necessary to gain an initial 
understanding of the model and to explore its behaviour in many scenarios and under 

different parameter values. 
 
Such preliminary analysis typically involves eyeballing techniques which rely on an 

appropriate visual representation of simulation data. Often, the conclusion of such analysis is 
that the simulation must be repeated with a different set of parameters. Simulation runs can 
be lengthy, taking many hours, or even several days. However, in many cases it is possible 

to recognise that simulation parameters must be changed already soon after starting the 
simulation, provided it is possible to inspect the data instantly, while the simulation is being 
executed.  
 

During early work on simulation models discussed in this thesis I realised that almost every 
time I created a new simulation model, a new data visualisation module needed to be 
created, in order to allow watching how the simulation variables change during the model 

runtime. Typically, such data visualisation modules are graph plotters that display data 
directly known to the simulation, or immediately derived variables (e.g. number of agents, 
relative proportions of populations, fitness and so on). More advanced data analysis functions 
and statistical measures typically become important during later analysis stages, when 

rigours experiments are performed and completed simulation runs are analysed. 
  
Repeated development of software modules for exploratory data visualisation is an inefficient 

approach that requires time are resources that could otherwise be invested into the 
development of the primary model. Thus, the need for an appropriate, re-usable tool was 
apparent. Such tool needed to be generic, useful for a wide range of different modelling 

techniques, and applicable by researchers with varying backgrounds and levels of 
programming expertise. 
 

3.3. Available alternatives 
  
A wealth of data plotting software tools of varying capabilities are available. Some of such 

systems provide advanced features for comprehensive data analysis in a post-simulation 

phase. For instance, GNUPlot (www.gnuplot.info) is a very powerful plotter system 

featuring its own scripting language. Computer algebra and numerical computation packages 

such as Mathematica (www.wolfram.com), Maple (www.maplesoft.com) or Mathlab 

(www.mathworks.com) also offer advanced plotting facilities along with powerful statistical 

and mathematical analysis tools. However, such tools (unless directly used to develop the 
entire simulation) require significant effort in data preparation and provide a powerful, but 

slow-to-use user interface. Fast, exploratory data visualisation in real-time is not the primary 

focus of such software packages. 
 
Extensive research revealed a number of available tools for real-time data visualisation. Most 

notably: 
 

 RealView (www.virtualworkbench.com/realview.html): This package combines 

some convenient data analysis features in an easy-to-use interface. However, the 
software is not available for free and it primarily targeted towards visualisation of real-

time data produced by hardware devices, making it not straight forward to use with 
computer simulations. 

 

 Universal Real-Time Software Oscilloscope Library (www.oscilloscope-lib.com): This 

free package provides a library that can be used for integration into 3rd-party software, 

and also includes a stand-alone demo version. However, its user interface lacks a 
straight-forward possibility for concurrently selecting and comparing many data series 
in an efficient way. 
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 RtPlot (members.surfbest.net/dbai@surfbest.net/RtPlot/): This package was in 

an early stage of development at the time this investigation was undertaken. The 
current version (April 2010) includes powerful features for real-time monitoring of 

simulation data, however, the user interface is not targeted towards quickly switching 

and comparing of different data series, particularly in cases when there are dozens of 
series to explore, as is often the case in individual-based models. 

 

In summary, no suitable software for efficient exploratory data visualisation analysis was 
available.  
 

3.4. Solution outline 
 
Based on the above research of available tools, I have scoped and developed a new software 

system for exploratory and real-time data analysis, specifically directed towards scientific 
simulations that produce dozens and hundreds of data series, with thousands and millions of 
data points per series. The package is titled ―LiveGraph‖. It is available (along with source 

code and documentation) from http://www.live-graph.org [Livegraph Open Source 

Project, 2008]. 

 
 
 

 
 

Figure 3.1. LiveGraph framework for exploratory data analysis. Depicted is a 

screenshot of the real-time plotter module from an early software version. 

 

 
 
The LiveGraph framework includes the following distinctive features, not otherwise available 

in a single free or commercial software product: 

 
 A real-time plotter that can automatically update graphs of data while it is still being 

computed by an application. 

 
 Concise and simple point-and-click interface that allows quickly selecting and 

comparing data series even in applications that output over 1000 series 

simultaneously. 
 

 Transformation of data series for visual comparison by the virtue of a single click. 
Transformations include: all-on-the-same-scale, linear, logarithm, unit interval, and 

time-plot transformations. 
 

 The framework is Java-based and can run on any computer system. However, it is 

easily integrated with applications written in any programming language. Examples 
and tutorials are provided on the web site. 
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 LiveGraph reads files in a simple CSV-style format. For applications developed in Java, 
LiveGraph additionally provides an API that handles all data logging and persistency 
issues. 

 

The LiveGraph framework consists of three major components: a real-time plotter program, 
an open data file standard and several integration APIs. 
 

Real-time plotter: 

 
The key component of LiveGraph the real-time plotter application (Figure 3.1). The plotter 

reads the LiveGraph data file (or any other CSV file) and plots the data series contained 
therein on the screen. 
 
The plotter has two distinctive features which are not available elsewhere in this 

combination: 
 

 LiveGraph can automatically re-examine the data file at short time intervals (anything 

between 100 Hz and once per hour) and update the graphs on the screen in real-time. 
By using specialised caching techniques specifically developed for this purpose, 
LiveGraph uses only very few computational resources for the updates, even if the 

data file grows very large and fast (e.g. several gigabytes). 
 

 LiveGraph has an efficient graphical user interface optimised for 100s of data series. 
While many plotters trade off powerful functions for a complex, slow-to-use user 

interface, LiveGraph offers only a few data transformation functions and makes them 

available by a single click in the main legend window. LiveGraph also automatically 
detects data series and their headings in the data file and provides a very concise user 

interface for selecting the graphs to display by virtue of a single click. This allows 
keeping an overview over hundreds or even thousands of graphs. 

 

Open data file definition: 

 
The LiveGraph framework provides an open standard for data files containing transferable 
data logs. The file format is closely based on the comma separated values (CSV) text file 

format. LiveGraph defines a few small but important extensions, such as data column header 
definitions and file description annotations. 
 
This open format definition allows creating LiveGraph compatible data files in any 

programming language extremely easily. 
 
In addition, this format is readily understood by other frameworks that can read CSV data, 

including the standard office software. 
 

Integration APIs: 

 

LiveGraph provides an open and thoroughly documented API. This allows researchers and 

programmers to seamlessly integrate any of LiveGraph's functionality into their own 
software. LiveGraph can be integrated on several levels: 

 
 Integrate LiveGraph into any (non-Java) application. LiveGraph can be customised via 

settings files and command line parameters. Any application can start a LiveGraph 

process and automatically set up all options that are otherwise available through the 
user interface. In addition, the simplicity of the data file format makes it straight 
forward for developers who use programming languages other than Java to create 
appropriate data files using their own routines. 

 
 Writer & logger API for Java. This API provides application developers with a flexible, 

fast and easy way for writing data generated by an application into LiveGraph CSV 

files. The API offers advanced functions such as caching and log file management. 
 

 Application interface. Java developers have the option to start LiveGraph as a separate 

process or to start it within the same process as the main application. The latter allows 
taking advantage of the application interface exposed by LiveGraph. The application 
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interface provides an API to control a LiveGraph instance while it runs. This includes 
full real-time control over all settings. 

 

 LiveGraph plotter API - LiveGraph's user interface can be fully integrated into a Java 

application or into a web-applet. The API exposes all settings windows as well as the 
plot window allowing integrating a LiveGraph instance seamlessly into 3rd party user 
interfaces. Data can be passed through memory and without a detour via a hard drive 

file. 
 

 LiveGraph is open source. It is well documented and commented. Researchers and 

developers can modify and re-distribute the source code according to their needs.  
 

3.5. Impact 
 
I made LiveGraph first publicly available in March 2007. Since then, I released several 
updates and fixes. The currently publicly available version was released in late 2008, 

however, future updates are planned for 2010. As of April 2010, LiveGraph has been 
downloaded over 27500 times in total, averaging at about 900 downloads over the last 12 
months (Figure 3.2). 

 
As a tool for analysis and visualisation of scientific simulation data, the LiveGraph framework 
has made a significant contribution. This is signified by the large number of downloads and 
active users. The framework was presented at an international conference for complex 

systems [Paperin, 2007], and became an essential tool that facilitated work explored in this 
thesis, as well as related and unrelated work of many of my colleagues. The framework has 
been applied in a number of engineering contexts (see web), and has been referenced by 

authors who are not affiliated with me in several peer-reviewed publications [e.g. Escobar, 
2007; Sain et al., 2009a; 2009b; Tadele, 2009; Jung & Lim, 2010].  
 

 
 
 
 

 
 

Figure 3.2. LiveGraph download statistics. The current statistics can be obtained from: 

http://sourceforge.net/project/stats/detail.php?group_id=191061&ugn=live-graph&type=prdownload&mode=alltime&file_id=0 
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Part II 

 

Background 

 
 

 
 
 
This part provides the context for the research presented in this thesis. I provide a general 
overview of the research areas that deal with the key questions tackled in this thesis, review the 
background literature and describe the key concepts. 
 

 

 
Chapter 4: Complex Systems. 

 
Complexity science is an interdisciplinary research area that studies the general properties of 
natural and artificial systems that exhibit properties such as non-linear dynamics, adaptation, self-
organisation, perpetual novelty and emergence. I review some of the key discoveries of complexity 
science and describe some of the key concepts, in particular the concept of emergence.  

 
 
 
Chapter 5: Networks in Complex Systems. 

 
Complex systems are composed of many components that interact in intricate patterns which can 
be represented as networks. Topological properties of these networks have profound effects on 
the dynamics of the systems they underlie. Such effects are one of the foci of this thesis. I thus 
provide a brief review of network theory from the perspective of complexity research and highlight 
the key relationships between widespread network structures and complex system dynamics. 

 

 
 
Chapter 6: Speciation theory and biological fitness landscapes. 

 
The multiplicity of species – reproductively isolated populations – is a primary example for 
biological variety and diversity. Mechanisms leading to speciation differ according to type of 
reproductive isolation and to geographical factors. A key concept in evolutionary speciation theory 
is the fitness landscape. Recent research reveals that many biological fitness landscapes are well 
represented by nearly neutral fitness networks in genotype space. Such fitness landscapes have 
been termed holey. This chapter briefly develops some key biological concepts used in this thesis, 
including common modes of reproductive isolation and speciation. The concept of fitness 
landscapes, in particular, holey fitness landscapes, is developed from the perspective of 
speciation theory. 
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Chapter 4: 

4. Complex Systems 
 
 

Complex systems are systems that display emergent properties that cannot be fully 
understood by a reductionist analysis of system components. Complexity science is a 
research agenda that uses inter-disciplinary approaches and new methodologies to fill 
this gap. This chapter sets a general context for the work presented in this thesis. It 
presents a brief overview of complexity theory and its hallmark achievements, and 
provides a critical discussion of the phenomenon of emergence. 

 

 

4.1. The science of complex systems 
 

Since the ancient Greeks western science has been dominated by strict, hierarchical 
separation of subject domains. The dominance of the reductionist approach to the world lead 
to a an increasing separation of research areas into a rigid classification with little cross-

fertilisation [Anderson, 1972]. This has been a fruitful approach as long as the systems 
studied were relatively simple and the experts could benefit from a concentration on their 
domain and from non-interference caused by consideration of phenomena ―outside the scope 

of interest‖. As a result, different sciences have developed incompatible terminologies for 
similar phenomena, reinvented similar theories and introduced similar methodologies under 
different names, thus impeding inter-disciplinary exchange [Hjorland & Pedersen, 2005; 
Szostak, 2008]. 

 
However, as modern science embraces larger systems in more dynamic and complex 
environments, the drawbacks of traditional scientific reductionism and rigid disciplinary 

ontology are increasingly recognised. Systems such as landscapes and ecosystems, insect 
colonies, organisms, cells, human economies and organisations, telecommunication networks 
and many others including our planet and our civilisation cannot be understood as a whole 

by reducing them to their constituents [Anderson, 1972]. The complexity of these entities 
and their insusceptibility to traditional techniques call for new inter-disciplinary approaches 
and non-traditional methodologies. Such approaches, directed towards cross-fertilisation 
between natural, social, mathematical and computational sciences contributed to a new 

thinking paradigm and a new research agenda of complexity science. Complexity science 
aims to draw together ideas from many different disciplines into a coherent and unified 
methodology. Complexity research has revealed many deep similarities between superficially 

unrelated systems and processes. For example, epidemics, wildfires and nuclear fission differ 
enormously in terms of the objects involved, yet they can all be usefully treated as instances 
of percolation [Isichenko, 1992; Grimmett, 1999]. 

 
The term complexity has been used in various contexts. For instance, Manson [2001] breaks 

the term down into three major divisions: algorithmic complexity, deterministic complexity, 
and aggregate complexity. 

 
Algorithmic complexity expresses the difficulty to describe a particular system. The 
mathematical complexity theory, for instance, expresses the effort required to solve a 

mathematical problem [Hartmanis & Stearns, 1965]. Other information-theoretical 
definitions treat complexity as the size of the simplest computer program that can reproduce 
the behaviour of a given system (e.g. [Solomonoff, 1964; Kolmogorov, 1965; Wallace & 

Boulton, 1968; Chaitin, 1969]). 
 
Deterministic complexity is a notion that incorporates a number of concepts including 
feedback controls, sensitivity, bifurcation, deterministic chaos and fractals [Manson, 2001]. A 

well-known notion in deterministic complexity is the ―Butterfly Effect‖,- the realisation that a 
flap of a butterfly’s wings can affect a distant major weather system through a series of 
chained consequences, or, in general, that small changes in initial conditions can lead to 

major changes in system behaviour. The technical repertoire of deterministic complexity is 
dominated by non-linear and fractal mathematics and statistics. 
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Aggregate complexity concentrates on how individual elements work together to create 
larger systems with complex behaviour. It emphasises the importance of component 

interactions, dynamic structure and the surrounding environment for the behaviour and the 

emergent properties of complex systems. Aggregate complexity is primarily concerned with 
mathematically untreatable aspects of natural and artificial systems. Researchers employ 
traditional along with non-reductionist approaches and rely on computational methods and 

simulations as analysis tools [Gligor & Ignat, 2001; Ehrhardt et al., 2005]. This view of 
complexity is increasingly at the focus of complexity research and shall also be the main 
focus of this thesis. 

 
In this context, the etymological roots of the word complexity are curious. The word 
originated from the Latin complexus, which comes from the Greek pleko meaning to twine or 

to plait. Philologically, a complex system is thus something consisting of interwoven parts 
[Lenton & Van Oijen, 2002].  
 
The above classification lays out various approaches to defining a complex system. Here, I 

concentrate on aggregate and emergent aspects of complexity. Various similar definitions of 
complexity concentrating on these aspects have been given (e.g. [Coveney & Highfield, 
1996; Dent, 1999; Goldstein, 1999; Casti, 2009]). Here, I follow the definition provided in 

Paperin et al. [2010]: 
 
Complex systems are systems that are composed of many interacting components and 

display behaviour that is difficult to explain through an analysis of the systems’ constituent 
parts. Such behaviour is called “emergent”. Complex adaptive systems (CAS) are complex 

systems that have the capacity to adapt to their environment through an evolution-like 
process. 
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4.2. Key outcomes of complexity science 
 

In this section I provide a brief overview of the most important achievements and seminal 
works of complexity science, roughly grouped by the cradle sciences of complexity. A 
comprehensive account of contributions to complexity science originating from all the 
relevant disciplines is far beyond the scope of this work. The current overview is merely 

intended to sketch out the broad scope of complexity research. The choice of literature cited 
here largely follows a citation frequency analysis by Heylighen [1997] with some focus on 
work that is particularly relevant to the issues discussed in later chapters. More 

comprehensive reviews are provided by [Manson, 2001], [Heylighen, 1997], [Dent, 1999], 
as well as [Coveney & Highfield, 1996]. 
 

4.2.1. Natural sciences 
 
On the search for biochemical origins of life, Eigen introduced the concept of autocatalytic 

hyper-cycles of chemical reactions that contain other autocatalytic cycles, and the concept of 
quasispecies – groups of self-reproducing genotypes or chemical molecules that are subject 
to very high mutation rates [Eigen & Schuster, 1979].  
 

The modern understanding of our living environment is largely due to Darwin’s theory of 
evolution by natural selection [Darwin, 1859]. It took seventy years until the evolutionary 

theory received an in-depth mathematical underpinning by Fisher [1930]. The metaphor of a 

biological fitness landscape, a visualisation of individuals’ and populations’ adaptedness to 
their environment, was coined by Wright [1932]. Eldredge and Gould [1972] have showed by 
an analysis of the fossil record that species evolution on earth underwent a pattern of 

punctuated equilibria, i.e. long periods of stasis punctuated by bursts of change. An 
explanation for this pattern remains a debated research topic and work presented in this 
thesis may shed additional light on this question. 
 

Many principles and laws that are apparent in biological systems appear to be generic and 
are known to govern other complex systems: 
 

Prigogine along with colleagues demonstrated that systems can exists in a non-equilibrium 
state as they self-organise at the expense of increasing entropy on the outside of the system 
[Nicolis & Prigogine, 1977b; Prigogine, 1980]. Such systems are called dissipative. This 

insight allows drawing important parallels between biological CAS, which are known to 
develop internal order, and thermo-dynamical systems.  
 
Research into non-linear physical systems lead to the concept of deterministic chaos, a 

deterministic process that is extremely sensitive to initial conditions [Poincaré, 1890; 
Crutchfield et al., 1986]. Closely related is catastrophe theory developed by Thom [1975] 
and others. Catastrophe theory provides a mathematical treatment of dynamical systems 

that can exhibit large-scale changes in response to small-scale triggers. Among others, 

chaotic systems were studied by Feigenbaum [1983] who coined the term bifurcation, a 
mathematical concept describing a drastic change in qualitative behaviour in response to a 

small change of control variables. 
 
A related area of mathematics that bears key importance for complexity is the field of fractal 
mathematics, founded by Mandelbrot, that studies self-similar entities of ―broken‖ 

dimensionality. Mandelbrot [1983] has noticed that many natural objects exhibit self-
similarity, e.g. the structure of a tree trunk and the main branches is reflected on scales of 
small brunches trough to leaf veins. Fractals are mathematical objects in which similar 

patterns occur on different scales, often, according to power laws. Power laws are also widely 
found in natural systems. Bak introduced the term self-organised criticality that describes 
systems that have a critical attractor and produce power-law distributed data [Bak et al., 

1988; Bak, 1999].  
 



 

 38 

4.2.2. Cybernetics 
 
Insights gained from studying specific natural complex systems have been abstracted and 

generalised by cybernetics and general systems theory. Traditionally, systems theory focuses 
on equilibrium systems. Although complexity science’s prime focus is on non-equilibrium 
dynamics, it has been strongly influenced by cybernetics. For instance, Ashby [1964] 

introduced the law of requisite variety, a notion that dynamical systems always self-organise 
and that any system regulator seeking to stabilise a system, is also required to be (or 
incorporate) a model of that system. Von Foerster’s second-order cybernetics principle [Von 

Foerster, 1981] states that many self-regulating complex systems are bound to change 
themselves by the very process of self-modelling and self-regulation. His crucial work on 
self-organisation and self-reproduction [Von Foerster, 1960] has been extended by other’s 
work on autonomous reproducing systems (e.g. [Varela, 1979]). Bateson [1972] established 

several crucial parallels between natural evolution and human mind.  
 

4.2.3. Computer science and Artificial Life 
 
The necessity of simulation tools for the study of complex systems along with increasing 
availability of computing power lead to a strong interest in the field by computer scientists 

and information theorists. Classical information theory, coined by Shannon [1993], is a basis 
for various formal treatments of complexity. Ideas expressed by the economist and 
philosopher Friedrich Hayek, the psychologist Donald Hebb and other researchers have 

eventually lead to the construction of artificial neural networks [Bishop, 1995]. Insights from 

biology lead to the field of evolutionary computation, of which genetic algorithms [Holland, 
1992; 1995] are perhaps the most widely known example. Kauffman’s theoretical and 
computational work on Boolean abstractions of gene regulatory networks and on fitness 

landscapes [Kauffman, 1993] resulted in a further argument that an ability to self-organise is 
a required factor in open-ended evolutionary systems.  
 

The successful application of simulation experiments to complexity lead to the emergence of 
a new discipline of Artificial Life [Langton, 1986; Bedau et al., 2000; Bedau, 2002]. Artificial 
Life is concerned with the development of artificial systems (either in software or in hardware 

or in ―wetware‖) that exhibit life-like properties. This new science lead to important results 
and new understanding of evolution (e.g. [Ray, 1991; Adami & Brown, 1994]), cognition 
(e.g. [Steels & Brooks, 1995; Sadedin & Paperin, 2009]) and other processes in biology and 
in human societies (e.g. [Axelrod & Hamilton, 1981; Palmer et al., 1994]). 

 
A popular modelling methodology for chaotic systems used by Artificial Life researchers are 
cellular automata [Von Neumann, 1966], a spatially explicit model of a discrete process, 

commonly used in conjunction with computer simulations. Wolfram [1984; 2002] developed 
a classification of cellular automata according to their dynamical behaviour and potential for 
universal information processing capability. Langton [1990; 1991] used cellular automata to 

study self-organised criticality and coined the term edge of chaos to describe their critical 
attractor. Critical phase transitions have previously been described by Erdös & Rényi [1960] 

in their analytical random network model. 
 

At the end of the first decade of the new millennium, complexity researches increasingly 
recognise the importance of network theory in explaining many complex phenomena [Albert 
& Barabasi, 2002; Barabasi, 2003; Newman, 2003]. The role of networks, specifically 

network connectivity, in system dynamics is a central topic of this thesis. Chapter 5 provides 
a further context for this work through a brief review of relevant network-theoretical 
research. 
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4.3. Emergence in complex adaptive systems 
 

The definition of a complex system given in section 4.1 above is used in that or a similar 
form by many authors (e.g. [Coveney & Highfield, 1996; Levin, 1998; Dent, 1999; Goldstein, 
1999; Lenton & Van Oijen, 2002; Casti, 2009]). However, a critical consideration of this 
definition and of the phenomenon of emergence, which is central to the definition, is useful 

for a better understanding of the term’s scope. 
 
Dynamical systems can be classified in terms of their behaviour into simple, chaotic, ordered 

and critical systems [Lenton & Van Oijen, 2002]. Simple systems (i.e. not complex systems) 
are systems whose properties can be fully explained in terms of their components (e.g. a 
pendulum). Chaotic systems exhibit unpredictable behaviour described by non-linear 

equations that model their dynamics, giving high sensitivity to initial conditions. Ordered 
systems exhibit a tendency to reside in one state of a limit cycle of a small number of states. 
Critical systems exhibit behaviour ―between‖ the frozen balance of ordered systems and the 
unpredictability of chaotic systems. These are the systems that commonly exhibit emergence 

and self-organisation [Langton 1991; Kauffman, 1993; Bak, 1999]. Complexity theory and 
Artificial Life can be seen as extensions of control theory and cybernetics, which focus on 
predictable feedback and feed-forward systems. Conversely, chaos theory focuses on 

systems with unpredictable behaviour [Lenton & Van Oijen, 2002]. 
 
The concept of emergence has been defined differently by various researchers from different 
cradle sciences of complexity and thus there is some philosophical controversy about the 

precise meaning of the concept [Kawata & Toquenaga, 1994]. For instance, in ecology the 
term is related to the debate of holism versus reductionism [Wilson, 1988]. A possible 
definition is that emergent properties are properties that are inherently not derivable from 

the parts of a system [Allen & Starr, 1982]. Generally, the term of emergence implies the 
appearance of higher-level phenomena that are ―unexpected‖ from the organisation, the 
behaviour or the rules at lower levels [Lewin, 1992]. 

 
The use of terms such as ―unexpectedness‖ or ―unpredictability‖ to define emergence has 
been criticised as they may arguably represent not an a priory property of a phenomenon, 
but merely our inability to explain it, for instance due to insufficient knowledge or lack of 

data [Edson et al., 1981; Allen & Starr, 1982]. Gödel’s incompleteness theorems [Gödel, 
1931] imply that in formal systems, for any set of rules (axioms) there are true statements 
that cannot be proven on the basis of those rules, and that for some true statements it 

cannot be determined in finite time whether they are provable under any given set of 
axioms. The philosophical implication for natural systems is that for some phenomena it may 
be impossible to determine whether they are emergent. 

 
What are, specifically, these properties and behaviours that we call ―emergent‖? A 
comprehensive list of such properties is inevitably arguable, but there is a maturing 
consensus in the literature about some of these properties [Kauffman, 1993; Holland, 1995; 

Levin, 1998; Manson, 2001; Lenton & Van Oijen, 2002]: 

 
 Sustained diversity of local components 

 Non-equilibrium dynamics in the absence of a global controller 
 Perpetual novelty 
 Permanent adaptation 

 Modular and hierarchical organisation across many orders of magnitude 
 Resilience and robustness towards disturbances 

 
A common attribute to all of the above properties is that they are observed in systems that 

are capable of adapting to their environment. In fact, Levin [1998] defines complex adaptive 
systems (CAS) as systems that exhibit the above properties. Some researchers (e.g. 
[Langton 1991; Kawata & Toquenaga, 1994; Taylor, 2003]) go further to suggest that a 

necessary condition for emergence is adaptation and self-regulation through feedbacks 
across different levels of magnitude. Thus, a global phenomenon is emergent from the local 
dynamics of a set of interacting components when such phenomenon adjusts its own 

environment by manipulating the local dynamics from which it emerges. 
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A hallmark concept in emergent self-regulation is the Gaia theory [Lovelock, 1972; Lenton & 
Van Oijen, 2002]. Gaia is postulated as a ―living‖ complex entity that includes the planet 
Earth along with its atmosphere, oceans, soil and the biosphere – a complete control system 

that seeks an optimal environment for life and maintains it in a homeostasis through 

feedback and feed-forward interactions. Gaia’s biota maintains a complex structure and 
constantly modifies its physical and chemical environment to improve and sustain conditions 
suitable for life. This happens in spite of significant disturbances such as meteor impacts, 

increase in the sun’s luminosity or changes in earth mantle. 
 
Gaia is an open system. The second law of thermodynamics implies that true self-

organisation cannot occur since growing order is possible only in thermodynamically open 
systems. Thus, Gaia as well as any self-organising system must be dissipative, taking in 
energy and putting out entropy [Lenton & Van Oijen, 2002]. 

 
The Gaia theory has been challenged to explain how global-scale order and self-regulation 
can arise without planet-level selection or teleology (global controller) [Doolittle, 1981]. Such 
queries led to the formulation of the Daisyworld model [Lovelock, 1972; Watson & Lovelock, 

1983] – a simple model that shows how self-regulation can arise on an imaginary planet that 
contains populations of only two species: black daisies and white daisies. Black daisies 
absorb sunlight and thus heat their local environment; white daisies reflect sunlight, which 

has a cooling effect. All daisies can only exist when the environment temperature is within a 
certain interval suitable for life. The Daisyword planet orbits a sun that steadily increases its 
luminosity (as all stars do [Lovelock, 1972]) and heats the planet. Thus, the temperature of 

a bare planet is suitable for life only during a short interval of the planet’s entire life span. 
However, the Daisyworld planet not only significantly widens the time interval where life-

suitable temperature is sustained, but also maintains the temperature at a near constant 
optimal level: Initially, Daisyworld is dominated by black daisies that retain extra heat from 

the young star and improve their living conditions. As the star brightens, Daisyworld 
becomes dominated by white daisies that cool the planet to optimal living conditions. No 
global controller is involved – the daisies are subject to selection according to their local 

environment only. A large number of variations of the original Daisyworld model have been 
created to explore more complex scenarios and self-regulation has repeatedly been found in 
many cases (see [Wood et al., 2008] for a review). 

 
Daisyworld is a very simple model of Gaia. Should the self-organisation that arises in the 
model be called emergent? The model exhibits cross-level feedback between daisies which 
modify their local environment and the global planet climate, as well as adaptation to the 

external environment – the heating star. But does the temperature regulation process qualify 
as ―unexpected‖, let alone ―unpredictable‖? The model is not sufficiently complex to include a 
number of other typical CAS properties, for instance perpetual novelty or hierarchical 

organisation. Whether self-regulation in Daisyworld is truly emergent may remain arguable 
[Lenton & Van Oijen, 2002]. Here, I qualify specific differences between the dynamics of 
Daisyworld and Gaia (i.e. the planet Earth). 

 
Complex systems can be described in terms of their order dynamics and control [Jørgensen 
& Straskraba, 2000; Lenton & Van Oijen, 2002]: 

 

1) First-order dynamical systems have fixed parameters and fixed structure. The 
properties of system components and their interactions do not change. Thus, such 
systems can only achieve feedback control. An example is the original Daisyworld 

model described above. 
 

2) Second-order dynamical systems have variable parameters and variable states, but 

fixed structure. They can adjust to external conditions through self-adaptation of 
parameters of their internal functions. For instance, second-order control can be 
enabled in the Daisyworld model by providing a mechanism for black and white daisies 
to adjust the amount of temperature absorbed or retained (this is fixed for each type 

of daisies in the original model). 
 

3) Third-order dynamical systems have variable structure as well as variable parameters 

and states. They can self-organise by varying their structure over time as a response 
to changing state or external conditions. An example is a social group where 
individuals can leave and join and where different collaborative interactions between 

individuals can appear and disappear over time. 
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4) Fourth-order dynamical systems are systems where changes in parameters, states and 

structures lead to changes in the goal functions that affect selective pressures and 

determine the long-term trajectory of the system. Such systems can thus exhibit 

evolutionary dynamics. Examples include real large-scale ecosystems, human societies 
and economies, as well as Gaia itself. 

 

Third-order, and particularly fourth-order systems tend to exhibit complex feedback 
interactions between control mechanisms of various orders. Changes in internal structure can 
affect evolutionary constrains. New evolutionary constrains can in-turn affect lower-level 

control mechanisms and facilitate changes in properties of individual system components and 
in their interaction structures [Lenton & Van Oijen, 2002].  
 

One of the key questions in Artificial Life is to understand the requirements of open-ended 
evolution and to create a system capable of open-ended evolution in a computer [Bedau et 
al., 2000; Green & Newth, 2001]. Although limited progress has been made towards this 
goal (e.g. [Ray, 1991; Adami & Brown, 1994]), no artificial evolutionary system so far has 

been able to demonstrate all of the key emergent properties listed earlier. I believe, that an 
issue inherent in most models intended to reproduce life-like evolution is that they 
concentrate on providing mechanisms for some of the above emergent properties, while 

neglecting others. Many such models fail to allow for fourth-order control mechanisms 
[Kawata & Toquenaga, 1994].  
 

First and second-order dynamical systems can usually be fairly well understood. Even when a 
formal analysis appears intractable, such systems can usually be modelled using different 

simulation techniques [Jørgensen & Straskraba, 2000]. Multi-level self-regulation can arise 
already in first-order control systems (e.g. Daisyworld). Whether or not such phenomena are 

unexpected and thus emergent remains to be settled by science philosophers. Here, I use 
the term emergence loosely for any complex process in which not all causal mechanisms are 
understood, either due to an inherent inability to understand a process with available 

methods, due to lack of data, or merely due to insufficient concentration of research efforts 
to date. In a sense, the central focus of this thesis is to contribute towards limiting the 
abundance of emergence in our world: by identifying and describing some of the causal 

mechanisms behind emergent phenomena. 
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Chapter 5: 

5. Networks in Complex Systems 
 
 

Networks are inherent in all complex systems, and patterns and processes that occur 
within the underlying networks play a fundamental role in the emergence of system wide 
properties. Networks play different roles in complex systems models and can be used to 
describe system structure as well as system dynamics. Particular topological properties 
of underlying networks are associated with specific large-scale behaviours. This chapter 
presents a brief review of network theory from the perspective of complexity science and 
provides a specific context for key questions approached in this thesis. 

 
 

Material presented in all sections of this chapter is based on the following publications: 

 
 G. Paperin (2010): 

The Role of Networks in Computational Complex Systems. 
International Transactions on Systems Science and Applications. In Press. Ref: [Paperin, 2010]. 

 
 
A network (also graph) is a collection of entities with connections between them. The entities 

are termed vertices or nodes. The connections are termed edges or links. Networks are 

abundant in the world. Examples include networks of social acquaintances, communication 
networks (e.g. the internet), transportation networks (e.g. a road network) organisational 

networks, ecological food webs, gene interaction networks, neural networks and many others 
[Newman, 2003]. A central point of this thesis is to show that networks influence and govern 
a wide range of emergent properties in complex systems. 
 

In this chapter I briefly review the current state of research in network theory. I concentrate 
on the role of networks in complex systems. A complete review of network theory is outside 
the scope of this work. Comprehensive accounts of general network theory including basic 

terminology and mathematical models can be found in review papers such as [Newman, 
2003] or [Albert & Barabasi, 2002], and in textbooks on graph theory (e.g. [Biggs et al., 
1986; Gross & Yellen, 2003]).  

 

5.1. Background 
 

Network theory has historically emerged as a branch of graph theory [Newman, 2003]. 
Science historians (e.g. [Biggs et al., 1986]) traditionally attribute the roots of the graph 
theory to Euler’s seminal 1735 presentation on the Seven Bridges of Königsberg Problem 

(published in [Euler, 1741]). However, the term ―graph‖ has only been introduced by 

Sylverster [1878] in a paper that brought together related ideas from algebra and chemistry. 
Since then it became increasingly apparent that networks underlie a wide range of systems 

and processes. Green [1993] has shown that systems studied by complexity science are 
isomorphic to directed graphs. This realisation led to an increasingly fruitful paradigm of 
abstracting complex systems as networks of simple elements. It is now recognised that 
studying the topological properties of networks provides important insights into the 

functioning of complex systems, and that such studies are essential steps towards general 
theories of complexity [Bedau et al., 2000; Alon, 2003]. 
 

The mathematical graph theory is a fundamental notion in discrete mathematics [Newman, 
2003]. Beginning in the second half of the 20th century, a new paradigm in network research 
has emerged: Previously, researchers focused on small graphs and the properties of 

individual nodes and edges. The availability of modern-day computing power, storage and 
communication allows gathering and process previously unseen amounts of data. This 
allowed studying large-scale topological and statistical properties of networks containing 
thousands and millions of nodes. The new approach led to a change in the kind of questions 

asked by network scientists: For instance, efficiently finding the shortest path length 
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between two given nodes is a key problem in a small graph; but in a graph consisting of 
millions of nodes, efficiently estimating the mean shortest path length between any two 
vertices can be more relevant. Similarly, in a small graph an analyst may want to determine 

the particular node that is most critical for the graph connectivity if removed; in a giant 

network it may be more relevant to determine the proportion of nodes that can be removed 
before the connectivity structure of the network is significantly affected in some specific way 
[Newman, 2003].  

 
Modern network theory has three important foci [Barabasi, 2003; Newman, 2003]:  
 

 Identifying important statistical properties (e.g. degree distributions, connectivity 
densities) and describing appropriate measures. 

 

 Creating models to investigate how important properties arise and how they relate to 
each other. For instance, random networks with high connection density tend to 
exhibit low average path length. 

 

 Understanding how the behaviour of networked systems is affected by specific network 
properties and why specific properties are dominant in certain kinds of natural 
networks. For instance: How does the average path length affect the stability and 

efficiency of communication networks? Or why do degree distributions in many social 
networks follow a power law? 

 

Although significant research potential remains in all three of the above themes, network 
theory has made significant progress in the first two areas, and studies of the effects of 

network structure on system behaviour bear the largest potential for new discoveries 
[Newman, 2003]. One of the central topics of this thesis is to investigate how changes in 

network connectivity affect the dynamics of complex systems. 
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5.2. Roles of networks 
 

In the context of ubiquity of networks it is important to distinguish the different roles that 
networks can play within systems. As the term implies, a particular network can assume 
different roles in different situations. Here, I distinguish 4 general roles: component 
interaction networks (primary and secondary), information networks and state transition 

networks. 
 

5.2.1. Component interaction networks  
 
Complex systems are systems that are composed of many interacting components (chapter 
4). Thus, interaction networks underlie all complex systems [Green, 1993]. Nodes (vertices) 

in such networks represent system components, and links (edges) represent pair-wise 
interactions between the components. Broadcast-style interactions can be represented as 
several pair-wise interactions. 

 
I refer to interactions as ―local‖ or ―global‖. Local interactions are interactions between nodes 
within a defined neighbourhood. There are various possible ways of defining a neighbourhood 
relation for nodes, including the nodes’ spatial location in the real world, node similarity, or 

affiliation to a common subsystem. Many systems contain several distinct networks and the 
scope of some interactions can be described in terms of another network. For example, in an 

online social network, where nodes represent individuals and edges represent friendship ties, 

an email communication between two friends can be seen as a local interaction and an email 
between unconnected participants without common friends can be seen as distant or global 
interaction. In this sense, I use the term global interactions for pair-wise interactions 

between any nodes in the network, that do not belong to the same neighbourhood.  
 

5.2.2. Primary and secondary interaction networks 
 
When studying the role of networks in complex systems, it is crucial to keep in mind that in 
most natural systems networks do not exist a priori. Much rather, they are analytical 

constructs that our mind creates in order to make sense of structures present in complex 
systems. For instance, it is common to speak of one’s friends as of a social network. 
However, a person’s group of friends is not connected to each other in any physical way. 
Rather, the social friendship network is a mental construct formed on the basis of opinions 

and attitudes people may have towards their friends and acquaintances. Some systems, 
however, possess an obvious physical network structure. For instance, a circuit board is a 
physical network of electronic components connected by conducting links. Notably, however, 

a circuit board can contain several other ―less obvious‖ physical or non-physical networks, for 
instance a network of sub-circuits that perform common tasks, a network carrying clocking 
signals, a network carrying data signals (for digital boards), or a network of cooling air flow 

across the board. 
 
For many studies it is convenient to differentiate between primary and secondary interaction 
networks. A primary network is a network that for the purpose of a particular study describes 

the fundamental structure of a system. Other interaction networks in a system are 
secondary. Consider again the example of an online social network, where nodes represent 
individuals and edges represent friendship ties. A study may consider this a primary network 

and study several secondary interaction networks that arise within the system (e.g. who 
emails whom – communicative interactions, who personally knows whom – off-line 
interactions and so on). However, a different study may represent the same system on the 

basis of a different primary network. For instance, communication may represent the primary 
interaction (nodes still represent individuals, links connect people who exchange email). A 
study may then ask how communication affects friendship ties, i.e. the friendship network is 
secondary in this context. 

 
In summary, the distinction between primary and secondary interaction networks is not an 
inherent property of a particular system, but of the model used to study it. As complex 
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systems can contain many different interaction networks, a clear conceptual distinction 
between primary and secondary networks can be crucial for formulating concise and useful 
models (e.g. see simulation models in part V). 

 

5.2.3. Information networks 
 

A state change in a system component can cause an interaction with a neighbouring 
component that can in turn lead to a chain of mutual interactions with other components. 
This can eventually affect components that never directly interact with the initially modified 

component. Although the nodes at the ends of such chain of interactions may not be directly 
connected in an interaction network, they can still exchange information. Thus, every 
interaction network has a corresponding information network with the same nodes, where a 
pair of nodes have a common edge exactly when there is a path between those nodes in the 

interaction network. In other words, while interaction networks imply direct interaction, 
information networks describe direct or indirect transmission of stimuli as a result of one or 
more interactions (Figure 5.1). 

 
The distinction between information and interaction networks can relate to the order of 
magnitude at which a system is studied. For instance, in a study of the internet as a physical 

network, computers in different cities do not interact directly, even when exchanging 
information. However, in a study of the internet as a means of personal communication, any 
two computers exchanging digital messages may be considered to interact directly. 
 

5.2.4. State transition networks 
 
These networks describe the dynamics of a system rather than its internal organisation. 

Nodes correspond to system states and edges to possible transitions between the states. 
State transition networks are discussed in section 5.7.  
 

 
 
 

 

  
  

Figure 5.1. Interaction and information networks. 

Left: An interaction network consisting of two clusters. 

Right: The corresponding information network (same nodes). Every pair of nodes that is 

connected by a path in the interaction network, is connected directly in the information 

network. 
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Figure 5.2. Critical connectivity phase transition in networks. Random additions of 

edges to a network lead to a critical transition from many separate components to a 

single super-component. 

Top blue line: Proportion of node pairs that are connected to the same component as a 

function of the number of edges, averaged over 1000 random networks.  

Bottom red line: Standard deviation of the proportion of connected node pairs in the 

same 1000 networks. 

Plotted using the LiveGraph framework [Livegraph Open Source Project, 2008]. 
 
 

 

 
 
Figure 5.3. Unpredictable dynamics near critical threshold. In very sparse 

networks the paths length are short because only very small connected components 

exist. As edge density approaches the critical threshold, the network becomes largely 

connected, and path lengths become very long and highly stochastic. As further edges 

are added, path lengths become shorter and more predictable. 

Top blue line: Mean shortest path length between all node pairs in a network with 30 

nodes as a function of the number of edges, averaged over 1000 random networks. 

Bottom red line: Standard deviation of the mean shortest path length in the same 1000 

networks. 

Plotted using the LiveGraph framework [Livegraph Open Source Project, 2008]. 
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13 edges / 17 components 25 edges / 6 components 

  

  

  
  

38 edges / 4 components 100 edges / 1 component 

  
Figure 5.4. Connectivity avalanche in networks. Random additions of edges to a network 

lead to a critical transition from a poorly connected to a well connected state. Depicted is a 

typical network with 30 nodes with random edges progressively added to it. Nodes that belong 

to the same connected component are coloured in the same colour. As more edged are added, 

the network components merge. 

Plotted using the Pajek software [Batagelj & Mrvar, 1996]. 
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5.3. Phase changes and connectivity 
 

Perhaps the most important consequence of the universality of networks is the connectivity 
avalanche. Erdös and Rényi [1960] showed that random additions of edges to a graph lead 
to a critical transition from disconnected to largely connected dynamics (Figure 5.4). This 
mechanism underlies phase changes in many systems, such as freezing of water, 

crystallization, and nuclear chain reactions [Schroeder, 1991]. At the critical threshold point, 
the probability of a percolation process spreading throughout the entire system (e.g. of a 
disease spreading throughout a population) undergoes an abrupt change from near 0 to near 

1 (for sufficiently large systems). Below the critical connectivity threshold, networks typically 
consist of many small separate components. Above the critical density, most such 
components become connected into a single giant component that includes most of the 

network nodes (Figure 5.2). Therefore, connectivity patterns of interaction networks can 
determine whether stimuli propagate locally or globally in the system. When the connectivity 
of networks falls near the critical percolation threshold, propagation of stimuli is highly 
stochastic [Grimmett, 1999] (Figure 5.3). 

 
In networks where the connectivity density is near the critical threshold, the sizes of 
subsystems affected by stimuli propagations follow a power-law distribution. That is – small 

effects are more common, but effects of an n-fold magnitude occur with a frequency in the 

order of n-1. This scale-free effect can be observed in a variety of systems [Bak, 1999]. Bak 

[1988] has thus argued that many systems organise the density of their internal interactions 
towards the critical threshold. This phenomenon has been termed self-organised criticality 

(SOC). Since power-law distributions in empirical data can arise for a number of different 

reasons [Newman, 1997; Eliazar & Klafter, 2009], the SOC theory remains actively debated 
(see section 14.1). 
 

5.4. Topological properties of networks 
 
Topological network structures (patterns of connections among nodes) play important roles 

in systems and can influence their behaviour. Such patterns include circuits, trees, modules 
and clusters, scale-free networks, and small-world structures. For instance, circuits produce 
feedback (both positive and negative); and trees (networks containing no circuits) are 

associated with hierarchies, encapsulation and modularity [Paperin et al., 2010]. 
 
One important topological network property is the distribution of node degrees. (The degree 

of a node is the number of edges connected to that node.) Erdös and Rényi [1960] studied 
Poisson random graphs – networks in which links are created between randomly and 
independently selected nodes. Such networks show a binomial node degree distribution (or a 
Poisson degree distribution in the limit of a large graph size). Much of the common intuition 

about network topology as well as many analytic results have been obtained on the basis of 
these simple networks [Newman, 2003]. However, the informative value of Poisson random 

graph models is limited, as such networks are rarely found in natural systems, and they do 

not exhibit many of the statistical properties found in natural networks. For instance, Poisson 
random graphs exhibit a low level of clustering, there is no degree correlation and they are 
not suitable for local navigation using heuristics [Newman, 2003].  

 
Most real-world networks exhibit strongly right-skewed degree distributions: They have a 
large number of low degree nodes and a smaller number of high degree nodes that act as 
hubs. Some such networks exhibit an exponential node degree distribution, i.e. the 

proportion of nodes with degree k falls off as -λλ ke , for some constant λ . An example is the 

power distribution grid in the western United States [Watts & Strogatz, 1998].  

 
A particularly well studied class of networks exhibit a node degree distribution that follows a 
power-law [De Solla Price, 1965; Barabasi & Albert, 1999; Albert & Barabási, 2000], i.e. the 

number of k-degree nodes falls as k- for some constant  (Figure 5.5, a). Such networks are 

termed scale-free networks [Barabasi & Albert, 1999]. Scale-free networks are frequently 
related to systems with SOC-style behaviour [Albert & Barabasi, 2002]. They are found in a 
variety of complex systems including scientific collaboration networks [De Solla Price, 1965], 
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protein interaction networks [Wuchty, 2001], telecommunication networks including the 
WWW [Barabasi et al., 2000], and many others [Barabasi, 2003]. Scale-free networks play 
an important role in the emergence of some widespread complex properties. For instance, 

they influence epidemic spreads [Pastor-Satorras & Vespignani, 2001], exhibit a high random 

fault tolerance [Jeong et al., 2000], and show the small world property [Watts & Strogatz, 
1998].  
 

Small-world networks are networks with predominantly local connections and a few non-local 
cross-connections (Figure 5.5, b). This topology occurs in scale-free networks, as well as in 
networks with other degree distributions. Formally, the small-world property is present in 

networks where the average shortest path length between nodes grows logarithmically (or 
slower) as a function of network size (for a given mean node degree) [Newman, 2003]. 
Natural small-world networks tend to be highly clustered and have a small average shortest 

path length between the nodes [Watts & Strogatz, 1998]; they are robust against random 
edge deletions [Wang & Chen, 2003]. Small-world networks play an important role in many 
complex phenomena. They have been discovered in a variety of systems including many 
social networks [Davidsen et al., 2002], biological metabolic networks [Wagner & Fell, 2001], 

disease spread, telecommunication and distribution networks [Watts & Strogatz, 1998; 
Newman, 2003; Wang & Chen, 2003]. 
 

 
 
 

 
 

 
   

 

  
   

(a) Scale-free network (b) Small world network (c) Modular network 

   
Figure 5.5. Some common structures in networks. 

(a) A scale free network has a negative exponential distribution of edges per node. 

(b) A small world has a regular structure of local connections with some randomly placed long-range 

connections. 

(c) A modular network consists of sub-components (modules) that are well connected internally, but 

poorly connected to the rest of the network. 
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5.5. Clusters and modules 
 

Community structure is another key attribute of network topology. Two particular measures 
are often applied in this context – the level of node clustering and modularity. 
 
Clustering is a measure of the abundance of transitive structures in a network, i.e. of how 

often it is the case that two nodes that share a neighbour are themselves connected. Girvan 
and Newman [2002] have determined the clustering in many natural networks. Formally, 
clustering is measured by the clustering coefficient C [Newman, 2003]: 

 
C = 3  (number of triangles in the network) / (number of connected node triples) 

 

Modules are network substructures that exhibit a significantly higher connection density 
within themselves compared to the rest of the network (Figure 5.5, c). Modules can be 
hierarchical, i.e. they can consist of sub-modules. In opposite to clustering, modularity 

appears harder to define, detect and quantify in a generic context. Some methods for 
discovering modular structures in networks have been developed (e.g. [Van Dongen, 2000b; 
Newman & Girvan, 2004]), but many open questions remain, particularly in regard to 

discovering hierarchical modules.  
 
Modular structures facilitate reusability of parts and constrain feedbacks. Such structures are 
thought to enhance various emergent system properties including stability [Variano et al., 

2004], robustness [Kitano, 2004; Ma et al., 2006], as well as evolvability and capacity to 

adapt [Wagner, 1996; Yang, 2001]. Modularity is also ubiquitous in human problem solving. 
Various engineering techniques seek to ensure modularity in processes (e.g. divide-and-

conquer algorithms [Knuth, 1998]) and in structures (e.g. object-oriented software [Booch et 
al., 2007]). Some mechanisms that may produce modularity in biological systems have been 
proposed [Wagner, 1996; Wagner & Altenberg, 1996], however, the generic mechanisms 

involved are still poorly understood (however, see section 13.2). 
 
 

5.6. Network motifs 
 
Network properties discussed in the above sections are global, they relate to the large-scale 

topology of a network. Recent research suggests that widely occurring local network 
structures may also play a role in system dynamics. For instance, Milo et al. [2002] 
determined that in many natural networks certain small sub-graphs occur significantly more 

often than other sub-graphs. These frequent sub-graphs – termed motifs – also occur 
significantly more often than in random networks that have otherwise similar properties. 
 
Specific motifs are particularly abundant in diverse systems that share specific functional 

similarities. For instance, Milo et al. [2004] found that networks that share similar 

requirements for information processing also share motifs. An example are gene regulatory 
networks in bacteria and stimuli response networks in yeast, which both perform sensory 

transcription tasks. Some topical link networks in WWW share motifs with particular social 
networks. Co-location networks from different unrelated languages exhibit clear similarity of 
local structures [Milo et al., 2004]. 

 
It has been conjectured [Milo et al., 2002; Kashtan et al., 2004] that network motifs perform 
specific, small-scale, functional roles. Based on this idea, Itzkovitz et al. [2005] used motifs 
to detect coarse-grained structures and super-motifs that allow analysis of network patterns 

that are otherwise difficult to detect. 
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5.7. State spaces as networks 
 

The state spaces of dynamic systems form networks in which the states are nodes and the 
transitions define edges [Green, 1993]. Thus, system dynamics can be modelled in terms of 
state transition networks, allowing the application of graph-theoretical analysis techniques 
(see also section 5.2 above, in particular sub-section 5.2.4). 

 
The way in which walker can navigate along a state transition network depends on the 
network topology. Thus, understanding topological properties of state transition networks in 

particular systems can help understand the system behaviour. Sparse connectivity of state 
transition networks often implies simple behaviour, while richly connected state transition 
networks are associated with chaotic behaviour. A connectivity phase change between 

disconnected and connected state transition networks often marks a transition between 
simple and chaotic behaviour. Langton [1990; 1991] coined the term edge of chaos when 
investigating such phase transitions in systems using cellular automation models. Langton as 
well as some other researchers (e.g. [Langton 1990; 1991] [Packard, 1988]) have 

speculated that only systems whose state space connectivity is close to the critical threshold 
are capable of universal computation. However, later studies (e.g. [Mitchell et al., 1993]) 
have shown that the evidence is not conclusive. 

 
A widely used state transition network model is a Markov network [Markov, 1906]. Markov 
networks are used primarily for modelling state transitions in discrete stochastic systems 
(e.g. see [Meyn & Tweedie, 2009] for a review). In a Markov state transition network, every 

node represents a complete state of the entire system and the edges, annotated with 
transition probabilities, represent potential changes of state at any given time. Similar state 
transition graphs have also been applied to non-discrete systems, for instance under the 

term configuration state network [Gfeller et al., 2007].  
 
The concept of state transition networks is related to two other widely used concepts: 

stability landscapes and fitness landscapes.  
 
Fitness is a notion of relative adaptedness to an environment or a task, or of relative success 
under competitive selection. The fitness landscape is a mapping of possible states of an 

entity (e.g. individual genes, parameter values) to the corresponding fitness values. Stability 
landscapes can be seen as ―inverted‖ fitness landscapes (section 6.2). Entities evolving 
under selection on a fitness landscape tend to ―climb‖ fitness peaks and to ―avoid‖ fitness 

valleys. Thus, fitness landscapes can be used to describe and predict system dynamics 
(section 6.2). 
 

State transition networks represent system dynamics directly rather than modelling 
fitness/stability topology. However, the these concepts are closely related because the 
dynamics of systems are directly influenced by their fitness/stability landscapes. Systems 
located close to an attractor (fitness peak) reside in areas with likely transitions to states 

closer to the attractor and fewer or less probable transitions away from the attractor. 

Crossing stability ridges (fitness valleys) amounts to traversing from one region of a state 
network into another region where transition probabilities are biased towards a different 

attractor (fitness peak).  
 
 

 
 



 

 53 

Chapter 6: 

6. Speciation theory and biological fitness 
landscapes 

 
 

The multiplicity of species is a primary example for biological variety and diversity. 
Species can be understood as reproductively isolated (sub-)populations and the 
mechanisms leading to speciation differ depending on the type of reproductive isolation 
and geographical relation of habitats. A key concept in evolutionary speciation theory is 
the fitness landscape (FL). Recent research reveals that the traditional view of rugged 
FLs is flawed, and that biological FLs can be modelled as (nearly) neutral fitness 
networks in genotype space, termed holey fitness landscapes (HFL). This chapter 
provides a brief overview of key biological concepts that are central to the work 
presented in this thesis. 

 
 

The material presented in this section is based on the following publications: 

 
 G. Paperin, S. Sadedin, D. Green, A. Dorin (2008): 

Holey Fitness Landscapes and the Maintenance of Evolutionary Diversity. 
11th International Conference on Artificial Life (ALife XI). Ref: [Paperin, Sadedin, et al., 2008]. 

 G. Paperin, D. G. Green, A. Dorin (2007): 
Fitness Landscapes in Individual-Based Simulation Models of Adaptive Radiation. 
2007 International Symposium on Computational Models for Life Sciences (CMLS’07). Ref: [Paperin, Green & Dorin, 2007]. 

 

 
In this chapter I briefly review the key biological concepts that are central to the work 
presented in this thesis. Biological diversity is primarily expressed in the striking multiplicity 

of different varieties and adaptations. In section 6.1 I discuss the different modes of 
reproductive isolation and speciation known in biology. A key concept in speciation theory is 
the fitness landscape (FL). In section 6.2 I discuss FLs with a specific concentration on the 
biological perspective. A brief overview of the development of the FL concept in evolutionary 

theory arrives at the modern understanding that high-dimensional biological FLs form holey 
rather than rugged topographies. Such adaptive landscapes can be understood as (nearly) 
neutral networks and are known under the term holey fitness landscapes (HFLs). 

 

6.1. Speciation 
 

The modern evolutionary theory takes origin from Darwin’s seminal book on the origin of 
species [Darwin, 1859]. An accessible introduction into theoretical evolutionary biology from 

today’s perspective is provided by Schilthuizen [2001]. An excellent technical overview of the 

field from the perspective of mathematical modelling and numerical simulations is provided 
by Gavrilets [2004].  
 

Speciation is the event or the process leading to the formation and establishment of new 
species [Schilthuizen, 2001]. So, what is a species? Intuitively, a species is a group of 
individuals that have biological characteristics that are different from the characteristics of all 
other individuals. A precise species definition remains a topic of current debate. Various 

definitions have been suggested (for instance [Mallet, 1995; De Queiroz, 1998; Harrisson, 
1998; Shaw, 1998; Templeton, 1998]), and each has their pros and contras is specific 
research contexts. Here I follow the mainstream literature [Dobzhansky, 1937; Mayr, 1942] 

in the understanding that: two populations are considered different species if they are 
reproductively isolated. I further agree with Gavrilets [2004] that the reproductive isolation 
does not need to be absolute and some gene flow may be permitted between species. 
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Reproductive isolation is a reduction or prevention of gene flow between (sub-)populations. 
[Futujama, 1987; Gavrilets, 2004]. There are different types of reproductive barriers that 
can prevent gene flow: 

 

Prezygotic reproductive barriers (barriers that prevent fertilisation) include geographical or 
seasonal separation that prevents encounters, as well as behavioural or mechanical 
differences that prevent copulation, and incompatibility of gametes that prevents 

fertilisation. Postzygotic barriers (barriers acting after fertilisation) include inviability of the 
embryo or the developed hybrid, sterility, and inviability of hybrid offspring. Such barriers 
may be caused by genetic incompatibilities or by hybrid maladaptedness to the ecological 

environment [Gavrilets, 2004]. 
 
The dynamics of biological evolution and speciation can be influenced by factors such as 

natural and social (e.g. sexual) selection, mutation, recombination and random genetic drift. 
Deterministic factors, such as natural and social selection, exhibit stronger effects on large 
populations. Stochastic factors, such as random genetic drift, particularly affect smaller 
populations [Maynard Smith, 1958; Gavrilets, 2004]. 

 
Three geographical modes of speciation are usually differentiated. 
 

Allopatric speciation occurs when two populations of the same species become geographically 
isolated by some means, and then diverge to become different species. This form is the most 
common type of speciation [Mayr, 1942; Schilthuizen, 2001]. 

 
Sympatric speciation is speciation without geographic isolation or speciation within a single 

population. Formally, it can be defined as speciation within a population where mating is not 
dependent on the birth location of mating partners [Gavrilets, 2004]. This type of speciation 

is considered rare, although various examples have been observed [Schilthuizen, 2001]. 
 
Parapatric speciation can be considered as the intermediate case, where the diverging 

(sub-)populations are partially geographically isolated. It can also be viewed as the general 
case. If the migration rate between two diverging populations is near zero, it is a case of 
allopathy, if the migration rate is very high, it is a case of sympatry, otherwise it is a case of 

parapatry [Endler, 1977; Schilthuizen, 2001]. 
 
Notably, the terms allopatric, sympatric and parapatric are not used consistently in the 
literature. Sometimes, the term sympatric is used as the opposite of allopatric, and thus 

includes both, the sympatric and the parapatric modes described above [Schilthuizen, 2001]. 
At some occasions other meanings are associated with these terms. Here, I use these terms 
in-line with the above descriptions. 

 
A more comprehensive overview of speciation modes and the conditions under which they 
may or may not lead to the formation of a new species can be found in [Gavrilets, 2004]. A 

less technical discussion is available in [Schilthuizen, 2001]. 
 
Adaptive radiation is the diversification of one or a few ancestral species into a larger number 

of species that evolve to use different ecological niches [Gavrilets, 2004]. In a sense, 

adaptive radiation can be viewed as the ―bigger picture‖ of speciation. The term speciation 
normally refers to a single speciation event (that may actually be taking place over many 
thousands of years); the term adaptive radiation is used to refer to the dynamics affecting 

the development of a variety of species within a larger biological environment. Some writers, 
however, use these terms fairly loosely. For instance, speciation can sometimes refer to a 
particular speciation event, to the process of appearance of a new species, to the adaptive 

radiation process in some environment, or all three of these things at the same time 
[Schilthuizen, 2001]. 
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6.2. Fitness landscapes 
 

The material presented in this section is based on the following publications: 

 
 G. Paperin, S. Sadedin, D. Green, A. Dorin (2008): 

Holey Fitness Landscapes and the Maintenance of Evolutionary Diversity. 
11th International Conference on Artificial Life (ALife XI). Ref: [Paperin, Sadedin, et al., 2008]. 

 G. Paperin, D. G. Green, A. Dorin (2007): 
Fitness Landscapes in Individual-Based Simulation Models of Adaptive Radiation. 
2007 International Symposium on Computational Models for Life Sciences (CMLS’07). Ref: [Paperin, Green & Dorin, 2007]. 

 

 
Fitness landscape (FL) is a concept that originated in evolutionary biology and has found 
wide applicability in other areas, such as evolutionary computation. In evolutionary biology 
the fitness of an individual is a measure of the survival and reproductive success of that 

individual’s offspring relative to others [Gavrilets, 2004]. More generally, fitness is a notion 
of relative adaptedness to an environment or a task, or of relative success under competitive 
selection. The fitness landscape is a mapping of possible system states (e.g. phenotypic 

traits, parameter values, strategy choices) to the corresponding fitness values. Entities 
evolving under selection tend to ―climb‖ fitness peaks and to ―avoid‖ fitness valleys [Wright, 
1932; Gavrilets, 2004]. Fitness landscapes play a key role in chapters 10 and 11 that 

investigate mechanisms behind the emergence of sustained diversity and perpetual novelty 
in biological CAS. 

 
Concepts that are very similar to FLs are known in many sciences. In physics, spin-glasses 

can be described in similar form [Mezard et al., 1987; Stadler, 2002]. Chemical potential 
energy surfaces are a further related concept [Mezey, 1987], as well the energy landscapes 
used in models of protein and nucleotide sequence folding [Dill et al., 1995; Flamm et al., 

1999]. Kollman et al. [1992] demonstrate how the metaphor is used to develop a notion of 
an electoral landscape in a social voting model. In ecology, stability landscapes map system 
states to relative stability, with attractors represented as sinks and ridges representing 

thresholds between basins of attraction. The basin of an attractor is the area of the stability 
landscape (i.e. set of system states) from which from which the system tends to develop to 
that attractor. Systems are generally resilient against forcing that drives them away from the 
attractor of the basin in which they are currently located. [Scheffer & Carpenter, 2003]. 

Thus, systems are said to ―fall‖ towards the nearest attractor. Metaphorically, stability 
landscapes can be seen as ―inverted‖ FLs. Peaks on a fitness landscape correspond to 
attractors and fitness valleys correspond to the ridges between basins of attraction. 

 
In this section I concentrate on biological FLs and briefly review FL concept from the 
perspective of evolutionary biology. 

 

6.2.1. Overview 
 

In biology, the term fitness landscape (FL) was coined by Wright [1932] to represent the 
fitness of all conceivable individuals relative to their traits. He envisaged a rugged landscape, 
where peaks represented combinations of traits with high fitness separated by valleys of low-

fitness trait combinations (Figure 6.1). On this landscape, selection drives populations uphill. 
 
There are several related, but different definitions for FLs in the literature. A general 
overview over the area is given by Stadler [2002]; Gavrilets [2004] provides a detailed 

discussion that focuses on evolutionary speciation theory. There, some definitions assign a 
fitness value to every individual, while others assign a single average fitness value to a 
whole (sub-)population. The work discussed here is based around individual-based 

simulation experiments, thus I define a FL over the space of all possible individual 
genotypes. 
 

Generally, a FL can be visualised as a plot of a ―goodness‖ function that assigns a fitness 
value to every possible individual genotype. The genotypes are ordered in an abstract space 
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in which the distance between the genotypes describes the probability or easiness of the 
transformation of one genotype into another. In many cases, FLs are used as a metaphorical 
concept that aids an intuitive understanding of evolutionary dynamics. However, in 

evolutionary biology, a formally defined construct is often used for mathematical models (see 

overview by Gavrilets [2004]). 
 
In evolutionary biology the notion of FLs has been criticised (e.g. [Provine, 1986; Arnold et 

al., 2001]). FLs are usually considered static. In reality, fitness is the ability to survive and 
reproduce in a dynamic environment that is constantly changing through co-evolutionary 
dynamics and external disturbances. The effect of phenotypic traits in such environments, 

and therefore of the gene complexes affecting the traits will change over time. Therefore the 
assumption that the corresponding FLs are static is a simplification. Some models account for 
this by using a FL that changes with time to reflect changes in the environment (e.g. 

[Kauffman, 1993]). However, the genes underlying species differences and reproductive 
isolation are, in general, not strongly affected by the environment and FLs are, therefore, 
widely accepted as a useful abstraction in theoretical biology [Gavrilets, 2004].  
 

 

 
 
Figure 6.1. Adaptive fitness landscape metaphor. Wright [1932] envisaged a rugged 

landscape representing the fitness of all conceivable individual genotypes, where peaks 

corresponding to high-fitness genotypes are separated by valleys of low-fitness genotypes. 

(Original figure from http://www.compapp.dcu.ie/~humphrys/Notes/GA/evolution.html. 

Modified and reproduced with permission by Mark Humphrys, Dublin City University, 

Ireland.) 

 
 

6.2.2. Formal model 
 
A genotype is the complete set of all genes carried by an individual. In the models discussed 

here, individuals are represented by their genotypes, thus a genotype is equivalent to an 

individual. A genotype consists of an ordered set of loci. A locus is stretch of an individual’s 
DNA (i.e. an individual’s genotype) at a specific location. The actual DNA sequence at a given 

locus is an allele. In the models discussed here, a genotype is represented as a fixed-length 
string. Every position of the string corresponds to a locus and the set of characters or values 
permitted at that position corresponds to the set of possible alleles at that locus. 

 
Formally, let  be the set of all possible genotypes. A genotype G   of an individual  is 

represented as G = (g1, ..., gk, ..., gL), where L is the number of loci and gk are the alleles at 

loci k. Assume that each locus can accommodate one of A different alleles: gk  {a1, a2, ..., 

aA}. Note, however, that the model assumption that each of the L loci can accommodate the 

same number A of distinct alleles does not generally apply in real organisms. 

 

This model only describes the gene configuration of an individual and says nothing about the 
reproduction mechanism or the genes relationship to each other. Hence, within this model a 
diploid organism with L alleles is equivalent to a haploid organism with 2L alleles. For 

simplicity I will thus only consider haploid individuals. 
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For any genotype G   let neighbours(G)   denote the set of all genotypes that can be 

obtained from G by a single atomic mutation. 

 
Here, I define an atomic mutation as a single one-point mutation: G’   is a neighbour of G 

iff G’ and G are same except at some locus g and the allele of G at locus g can directly 

mutate into allele of G’ at locus g. 

 
Let gdist(G1, G2) be the minimum number of atomic mutations required to obtain G2   from 

G1  . Then: 

 
G2  neighbours(G1)    gdist (G1, G2) = 1 

 
Here, I assume that mutations are reversible, i.e. the probability of a mutation from an allele 
a to allele a’ at some locus g is the same as the probability of mutation from a’ to a at g. In 

general, this is not always be the case in biological organisms, however, this does not affect 

the following discussion. Thus, dist is symmetric: 

 
G2  neighbours(G1)    G1  neighbours(G2)    gdist (G1, G2) = 1    gdist (G2, G1) = 1 

 
The genotype space is the set  of all genotypes with the distance function gdist:     . 

 
The fitness of a genotype is a notion of relative adaptedness of the genotypic traits to an 

environment or a task, or of relative success under competitive selection. Biologists use 
fitness as a measure of the survival and reproductive success of individuals carrying a certain 
genotype relative to others. A fitness function is a function that assigns some fitness value to 
every genotype. Formally: fitness:   . The fitness landscape is the hyperplane that 

contains all points fitness(G) for all G   ordered under gdist. 

 

6.2.3. Fitness landscapes in speciation models 
 
In this subsection I give a brief summary of the historical development of the FL concept in 
evolutionary biology and highlight the issues arising from viewing adaptive radiation as a 

process of adaptation on a FL. In section 6.2.4 below I discuss how some the issues raised 
here can be resolved. 
  

If every individual genotype can accommodate A alleles at each of L loci, then there are AL 

possible distinct genotypes. The number of neighbours of a genotype G   is 

|neighbours(G)| = L  (A – 1) (because any of the L loci can change to any of the possible A 

alleles except the one that is currently at that locus). 

 
The dimensionality of a space is (roughly speaking) the number of (linearly independent) 
coordinates required to describe a point in that space. Gavrilets [2004] provides an in-depth 

discussion of FL dimensionality. Here, I concentrate on issues relevant for the discussion in 
the following chapters. The dimensionality of the above FL construct is by one larger than the 

dimensionality of the genotype space (the additional fitness dimension): 

 
dim(fitness:   ) = L  (A - 1) + 1 

 
The implication of this is that the dimensionality of biological FLs is typically extremely high. 
Consider, for instance, a population of individuals with L = 100 loci and A = 3 alleles (these 

are very low numbers, even the genotypes of primitive bacteria are much larger). The 
number of possible genotypes is then 3100  5  1047. This number is by far larger than the 

size of any natural population, implying that only a small proportion of possible genotypes 

can actually occur in individuals. The dimensionality of the corresponding FL is 
100  (3 - 1) + 1 = 201.  

 
Wright’s original FL metaphor implied that a FL is a ―rugged‖ surface, with many fitness 
peaks separated by fitness valleys (Figure 6.1). Peaks represent genotypes posing ―good‖ 

solutions to the problem of survival, and valleys represent low-fitness genotypes, that may 
arise either due to deleterious mutations or because they include incompatible genes. 
Selection drives species populations up the peaks and away from the valleys. In such model, 
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distant peaks corresponding to distant genotypes can be thought of as different species – the 
further, the less related.  
 

Due to selection pressures populations cannot ―escape‖ fitness peaks without additional 

forces, and thus, a population that reached such a peak will stop evolving. This poses an 
important question for evolutionary theory: In order for a new species to arise, part of the 
population must escape a local fitness peak and develop towards a different region in the 

gene space, so what are the factors that facilitate this process? An obvious approach is to 
critically consider the simplifying assumption that FLs are static. As this is not always the 
case in reality, peak regions may become less fit as the environment changes over time, and 

populations located around such areas can evolve towards better adaptations. However, 
genes underlying reproductive isolation and thus species differences are, in general, not 
strongly affected by the environment [Gavrilets, 2004]. Hence, the mechanisms causing 

different parts of a population to evolve towards different adaptations and to develop 
reproductive isolation must be clarified.  
 
Stochastic factors such as genetic drift may act against natural selection and help 

overcoming fitness valleys, particularly for small populations, however such factors can only 
account for selected types of speciation [Gavrilets, 2004]. 
 

A key consideration relates to the topological structure of FLs. Much of intuition about 
evolutionary dynamics is obtained by considering the metaphor or a 3-dimensional FL. 
However, the mathematical properties of high-dimensional spaces are often different from 

the properties of the 3-dimentional world [Gavrilets, 2004], and some of the intuition won in 
3 dimensions may not apply. 

 
Indeed, peaks in a low-dimensional spaces become saddle points in higher-dimensional 

spaces (Figure 6.2). As a result, it hast been suggested that the FLs may actually possess a 
single global maximum that can me reached by hill climbing from (almost) any point 
[Provine, 1986]. However, the local-maxima-to-saddle-point transformations are 

outnumbered by the appearance of new peaks in higher dimensions. The single-peak model, 
although does not apply in general, is nevertheless useful as an approximation when 
investigating the local behaviour of a population close to a fitness peak [Gavrilets, 2004]. 

 
Kimura [1983] suggested that most genetic changes on the biochemical level may actually 
be fitness-neutral and that FLs are thus (almost) flat. This neutral theory implies that the 
main forces behind speciation are stochastic genetic divergence, in particular due to genetic 

drift. However, in nature, a vast number of gene combinations are inviable because they 
contain deleterious genes or groups of incompatible genes. Neutral fitness landscapes fail to 
account to this fact. 

 
 

 
 
Figure 6.2. Local maxima can become saddle points in higher dimensions. The 

yellow point is a maximum of the 2-dimensional curve (yellow), however, it becomes a 

saddle point between the two hills in 3 dimensions. Two new maxima (the hill peaks) 

appear in 3 dimensions. 

(Original image, obtained from http://en.wikipedia.org/wiki/File:Saddle_pt.jpg, is in the 

public domain.) 
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A well known FL model that can mediate between smooth and rugged surfaces is the N-k 
landscape introduced by Kaufman [1993]. There, each of the L diallelic (binary) loci belongs 

to an epistasis-group with k other loci (epistatic loci are loci whose effects influence each 

other). (In the original paper the number of loci was denoted by N, not L, thus the term N-k 

landscape.) Each locus gi (i = 1...L) has a fitness contribution 

 

fi = fitness(gi, (gi,1, gi,2, ..., gi,k)) 

 
where gi,1, gi,2, ..., gi,k are the loci with which gi interacts epistatically. The fitness values fi are 

independently drawn from a uniform random distribution for all possible gene combinations. 

The total fitness of a genotype is: 
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The parameter k that defines the size of epistatic groups has a direct effect on the 

ruggedness of the FL. Small k yield smooth landscapes and large k yield very rugged 

landscapes. N-k landscapes find a wide use in biological modelling because the k parameter 

may be conveniently used to tune the ruggedness of the landscape to the requirements of 

the respective problem at hand. However, N-k landscapes suffer from the same issues as the 
previous models: Small values of k do not account for the large proportion of inviable 

genotypes found in nature, and large values of k produce rugged FLs in which stochastic 

crossing of fitness valleys is unlikely. 
 

6.2.4. Nearly neutral networks 
 
In the previous sections I introduced the notion of FLs and discussed several FL models. 

Gavrilets [2004] reviews various speciation models on rugged FLs and concludes that on 
such landscapes the transition between fitness peaks required for speciation, is, in general, 
unlikely. Two alternative FL configurations (single peak and flat landscapes) attempt to 

address some of the drawbacks of the original rugged FL concept. However, such models are 
appropriate only in specific speciation scenarios. In this section, I describe the concept of 
evolution on nearly neutral networks that combines key ideas of rugged and neutral FLs. The 

notion of evolution on nearly neutral networks lead to the formulation of the holey fitness 
landscape (HFL) concept [Gavrilets & Gravner, 1997; Gavrilets, 2003; 2004]. Generally, a 
HFL is ―an adaptive landscape where relatively infrequent high-fitness genotypes form a 
contiguous set that expands throughout the genotype space‖ [Gavrilets, 2003]. 

 
To build some intuition for the HFL model, recall a few results from percolation theory which 
plays an important role in the analytical treatment of HFLs. Consider a 2-dimensional lattice 

of cells which can assume one of two states: ―black‖ or ―white‖ (Figure 6.3). Let every cell be 
black with some probability p independently of all other cells, or white with probability 1 – p. 

If p is small, the lattice will contain a few black cells, which may be grouped in a number of 

small, isolated components. As p increases, these components grow and merge. Once p 

crosses a certain threshold pc, most of the black cells merge together into a single giant 

component that percolates the whole lattice (Figure 6.3). This process of lattice percolation is 

closely related to the process of network percolation described in section 5.3. For a 2-
dimensional square lattice the percolation threshold is known to be pc  0.5927 [Newman & 

Ziff, 2000]. However, for higher dimensional lattices the percolation threshold lies around the 
reciprocal of the lattice dimension [Gavrilets & Gravner, 1997; Grimmett, 1999], meaning 
that for a high dimension lattice a small proportion of black cells is sufficient for the 

emergence of a giant percolating component of connected black cells. 
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Figure 6.3. Percolation on a square lattice. The cells are black with probability p = 0.1 (left), 

p = 0.3 (middle) and p = 0.6 (right). 

 

 
For the HFL model, assume that a genotype is viable with probability p independent of all 
other genotypes, and inviable with probability 1 – p. Let    be the set of all viable 

genotypes (in reality, because p is small,   ). Two viable genotypes G1, G2   are 

connected, iff G2 can be obtained from G1 by successive atomic mutations such that all 

genotypes along the mutational path are also viable (note, that connectivity is a symmetric 
relation under the current assumptions). Similarly to the above lattice model, when p is 

small, the viable genotypes will generally not be connected. As the number of viable 
genotypes grows (p increases), viable genotypes merge into connected components. There is 

a threshold pc, such that if p > pc, a giant connected component of viable genotypes 

emerges. Recall that the dimensionality of the genotype space is dim() = L  (A – 1), where 

L is the number of loci and A is the number of alleles at each locus. It can be shown 

[Gavrilets, 1997; 2004] that a positive proportion of all viable genotypes G   belong to a 

single connected component if: 

 

1 1

( ) ( -1)
cp p

dim L A
  


 

 
In that case  is said to percolate . It can be shown [Reidys, 1997], that all viable 

genotypes will belong to a single component if: 
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Recall the previous example with L = 100 loci and A = 3 alleles. In that case  percolates  

already when p  pc  1 / 200. For a biologically more realistic, but still small genotype size 

with L = 105 and A = 5, the giant connected component emerges at pc  20  10-7. The 

implication for high-dimensional FLs is that even very small values of p will result in an 

extensive network of viable ridges extending through the genotype space. The traditional 

picture of rugged highly-dimensional FLs is therefore misleading, as high-dimensional 
landscapes are characterised by the existence of percolating networks. In the next few 

paragraphs I summarise the arguments presented by Gavrilets [2004, chap. 4] to show that 

if the fitness of the genotypes is not restricted to viable or inviable, a large number of such 
networks emerges, each containing genotypes from a narrow fitness band. Such networks 
are thus termed nearly neutral (in respect to fitness changes). Among these networks, those 
with high fitness are particularly important as adaptive walks along such networks can 

proceed very far without any substantial loss to fitness. 
 
Assume that the fitness of the genotypes is uniformly randomly distributed in [0, 1]. Let 
f1   and f2 = f1 +  for some small positive , such that f2  [0, 1]. A genotype G   is in the 

fitness interval [f1, f2] iff f1 < fitness(G)  f2. Note that belonging to a certain fitness interval is 

analogous to being viable in the previous argumentation, so if dim() is large and 

 > 1 / dim(), there exists a percolating network of genotypes that belong to the 

[f1, f2]-fitness-interval [Gavrilets & Gravner, 1997; Gavrilets, 2004]. The smaller , the more 

similar will be the fitness values of the genotypes that belong to such a network, forming 

therefore, a (nearly) neutral network. Note that there will be several non-overlapping such 
networks. In fact, there will be approximately 1 /   dim() of them. 
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More generally, let the fitness values of the genotypes be independently randomly 

distributed according to some distribution with the probability density function (f), where 

f = fitness(G) and G  . The genotypes within the fitness interval [f1, f2] form a percolating 

network iff : 
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That is, iff the proportion of genotypes in [f1, f2] is larger than 1 / dim(). 

 

Gavrilets [2004] provides a variety of evidence for the existence of nearly neural networks in 
his book. He coins the term holey fitness landscape, a landscape that encompasses a nearly 
neural network of genotypes in a relatively high fitness interval. The holes in the landscape 

represent genotypes that to not belong to the interval, including both, lower fitness valleys, 
as well as largely inaccessible fitness peaks. Evolutionary models on HFLs combine the 
desirable properties of rugged and flat landscapes. 
 

 
 
 

 
 

 
 

Figure 6.4. Holey fitness landscape (HFL) concept. HFL is an adaptive landscape where 

relatively infrequent high-fitness genotypes form a contiguous network that expands throughout 

the genotype space. The holes represent both, lower fitness valleys as well as largely inaccessible 

fitness peaks. 

(Original figure obtained with permission to modify and reproduce from Prof. S. Gavrilets, 

personal communication.) 
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Part III 

 

Phase Transitions 

and Network Connectivity 

in Complex Systems 

 
 
 

 
 
This part establishes the core terminology that is introduced in this thesis and explains the main 
theoretical concept proposed in this work – the Dual Phase Evolution framework (DPE). A wide 
range of evidence for DPE processes in complex systems is discussed and an understanding of 
how DPE processes can be identified and described in particular systems is developed. 

 
 

 
Chapter 7: Dual Phase Evolution. 
 
The topology of networks that underlie complex systems is a key factor that influences system 
dynamics. Networks can exist in two general connectivity phases: well connected and poorly 
connected. The DPE framework relates network connectivity to typical system behaviour and 
associates recurrent transitions between network connectivity phases to a number of emergent 
properties in complex systems. This chapter introduces DPE, and explores important related 
issues, such as the mechanisms behind connectivity phase transitions.  

 

 
 
Chapter 8: Connectivity Phase Transitions in Natural and Artificial Systems. 

 
This chapter examines a wide range of empirical and experimental evidence from physical, 
biological, social, economic, mathematical and computational systems drawn from previous 
studies. The evidence supports the central ideas of the DPE framework by demonstrating that DPE 
phase changes can drive the emergence of different complex system properties. Moreover, the 
evidence uncovers that many of the examined systems share underlying DPE mechanisms and 
processes that were not previously described. 
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Chapter 7: 

7. Dual Phase Evolution 
 
 

Complex systems can be understood as networks of interacting components, and the 
topology of component interaction networks is a key factor that drives system dynamics. 
Networks can exist in two general connectivity phases: well connected and poorly 
connected. The Dual Phase Evolution (DPE) framework relates each of the two 
connectivity phases in interaction networks to typical system dynamics and postulates 
that recurrent transitions between the connectivity phases may account for a number of 
emergent properties in complex systems. After introducing DPE, this chapter explores 
some related issues, such as the general mechanisms that can cause connectivity phase 
transitions.  

 
 

Material presented in all sections of this chapter is based on the following publications: 

 
 G. Paperin, D. Green, S. Sadedin (2010): 

Dual Phase Evolution in Complex Adaptive Systems. 
Journal of the Royal Society Interface. Accepted for review. Ref: [Paperin et al., 2010]. 

 G. Paperin, S. Sadedin (2009): 
Towards formalising the theory of Dual Phase Evolution. 
10th European Conference on Artificial Life (ECAL’09). Ref: [Paperin & Sadedin, 2009b]. 

 G. Paperin, S. Sadedin (2009): 
The Dual Phase Evolution Framework for Understanding Evolutionary Dynamics in Complex Adaptive Systems. 
2009 International Conference on Evolutionary Computation (ICEC'09). Ref: [Paperin & Sadedin, 2009a].  

 G. Paperin, D. G. Green, T. G. Leishman (2008): 
Dual Phase Evolution and Self-Organisation in Networks. 
7th International Conference on Simulated Evolution And Learning (SEAL'08). Ref: [Paperin, Green, et al., 2008]. 

 G. Paperin, D. G. Green, S. Sadedin, T. Leishman (2007): 
A Dual Phase Evolution Model of Adaptive Radiation in Landscapes. 
3rd Australian Conference on Artificial Life (ACAL’07). Ref: [Paperin, Green, et al., 2007b]. 

 G. Paperin, D. G. Green, S. Sadedin, T. G. Leishman (2007): 
Complexity in Speciation: Effects of Disasters on Adaptive Radiation in a Dual Phase Evolution Model. 
8th Asia-Pacific Complex Systems Conference (Complex’07). Ref: [Paperin, Green, et al., 2007a]. 

 
 

7.1. Introduction 
 
In this chapter I present a theoretical framework for reasoning about complex systems. The 

framework implies that recurrent phase changes in interaction density of system components 
(i.e. in connectivity of underlying interaction networks) constitute a general mechanism for 

self-organisation and underlie many emergent phenomena. The framework identifies 
properties that are typical of systems in different connectivity phases as well as 

characteristics commonly associated with the phase transitions.  
 
Inspired by the two general connectivity phases in which networks that underlie developing 

systems can exist (well connected and poorly connected), the framework is termed Dual 
Phase Evolution (DPE). The term Dual Phase Evolution has been previously coined by Green 
[e.g. Green, 2000; Green et al., 2000; Green & Sadedin, 2005; Green et al., 2006] to 

generally refer to recurrent changes between connectedness and separation in the 
development of systems. Here, I formulate DPE as a well-defined framework rooted within 
network theory. 
 

In subsequent chapters I will show that DPE is a universal framework that is widely useful for 
reasoning about complexity. 
 

 
 



 

 66 

7.2. Connectivity phases in interaction networks 
 

Networks are inherent in all complex systems, and patterns and processes that occur within 
the underlying networks play a fundamental role in the emergence of system wide features 
(chapter 5). Perhaps the most widely felt network processes are changes in edge density, 
especially the connectivity avalanche (section 5.3). Evidence presented in chapter 8 

demonstrates that phase changes occur in dynamics of complex systems of virtually every 
kind. What is more, such phase changes can be traced to phase transitions between well 
connected and poorly connected phases in underlying interaction networks. 

 
In the well connected phase, typified by high edge density and short characteristic path 
lengths, direct interactions can occur between most system components. Thus, the well 

connected phase is typified by global interactions in the sense of section 5.2.1. Since 
processes can spread rapidly in well connected networks (see chapter 5, in particular 
network theory reviews cited there), such systems often exhibit little local variation, but may 
be highly variable1. Dense interactions among control variables tend to stabilise systems, but 

also lead to increased coupling thereby reducing robustness towards external perturbations 
(see also section 14.2). This makes highly connected systems hard to predict in their 
responses to external stimuli. Evolutionary selection in well connected systems acts globally 

and has stabilising effects: Local perturbations, if advantageous, spread rapidly, generating 
uniformity. Consequently, state space exploration is reduced and systems tend to converge 
towards the nearest basin of attraction. 
 

In the poorly connected (or disconnected) phase edge density is low, characteristic path 
lengths are long, and the network typically consists of several sub-networks. Interactions in 
the poorly connected phase mainly occur locally or only within sub-networks (see local 

interactions defined in section 5.2.1). Propagation of stimuli is locally constrained in poorly 
connected systems (section 5.3). Systems of this kind typically exhibit strong local variation, 
but little large-scale variability. Such decoupled dynamics imply that large-scale responses to 

external stimuli can be described in terms of sub-systems and are thus easier to predict. For 
CAS, evolutionary competition in poorly connected systems is locally constrained permitting 
exploration of alternative adaptation strategies and directional selection towards novel 
niches.  

 

Definition: 

 

Dual Phase Evolution (DPE) occurs when networks that dominate the dynamics of an 
evolving system repeatedly switch between well connected and poorly connected phases 
(Figure 7.1). 
 

DPE phase transitions are common to adaptive as well as to other complex systems that 
exhibit self-organisation (e.g. physical systems discussed in section 8.1). The term Dual 
Phase Evolution thus implies a general process of complex development, rather than 

evolution in a strict biological sense. In the following chapters I argue that DPE-driven self-

organisation can account for properties widely observed in complex systems, including 
sustained diversity, perpetual novelty, modularity and scale-free topologies (see parts IV and 

V throughout). 
 
While topological properties of underlying interaction networks can drive system dynamics, 
the topologies of state transition networks are an emergent property of the system (section 

5.7). DPE phases of local interactions and enhanced evolutionary exploration often 
correspond to phases of dense connectivity in state networks with increased transition 
possibilities between attractor basins.  

 

                                               
1 Wagner & Altenberg [1996] attribute precise and different meanings to the terms variation and 

variability: Variation refers to the actually present differences among components in a system. In 

contrast, variability describes the potential to vary. Thus, variation is a property of a set of items that 

can be observed directly. Variability is a dispositional concept that describes the way in which a system 

behaves as a whole, for instance in response to external stimuli.  
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The transition between poorly connected and well connected dynamics does not always 
require that the critical percolation density threshold is crossed. For instance, some networks 
above the critical threshold may still be sparse and exhibit long path lengths between nodes. 

Thus, stimuli may lose their significance by the time they are transmitted via a series of 

interactions, leading to poorly connected dynamics. An increase in connectivity can reduce 
path lengths and cause a transition to global (well connected) dynamics. Examples can be 
found in collaborative social groups: Although information can always be transferred between 

members via common collaborators, this is often perceived as inefficient, and projects are 
usually organised as a succession of work in small groups (sparse interactions) and larger 
meetings (dense interactions). 

 
 

 
 

Figure 7.1. The mechanism of Dual Phase Evolution. Systems flip between poorly connected and 

well connected phases. Perturbations or slow forcing – arising externally or internally - disrupt systems 

causing connectivity phase transitions in underlying networks. Internal processes restore old and create 

new interactions. 

 
 

7.3. Considering multiple networks 
 
An important consideration when linking network phases to system dynamics is that at any 

one time different networks within a system may be in different connectivity phases. For 
example, a cell can be viewed as an ensemble of various networks, e.g. protein-protein, 
protein-DNA, and protein-metabolite networks [Alon, 2003]. Specific system properties may 

be generated by single networks or by feedback between multiple networks. 
 
For instance, at least two major networks can be identified for plant evolution in landscapes 

[Paperin, Green, et al., 2007b]. One is a network of reproductive interactions between 
patches of interbreeding plants. It facilitates gene flow and acts against adaptive radiation. 
The second is a network of unoccupied patches. An increased presence of such patches 
disrupts gene flow and aids percolation by newcomer species through increasing the 

connectivity of their invasion paths. A well connected phase in the first network (reproductive 
interactions) is signified by predominant stability in landscape composition, while the poorly 
connected phase is signified by variation and evolutionary exploration. However, the impact 

of connectivity in the second network (invasion paths) is essentially opposite. Crucially, from 
either perspective, connectivity phase transitions are linked to significant changes in system 
dynamics (DPE processes in landscape evolution are considered in more detail in chapters 9 

and 10). 

Poorly Connected Phase 
 
- Low connectivity 
- Predominantly local interactions 
- High local variation 
- Low global variability 
- Selection is local 

(directional effects) 

Perturbation or Forcing 
 
- modifies components 
- modifies connectivity patterns 

Well Connected Phase 
 
- High connectivity 
- Predominantly global interactions 
- Little local variation 
- High global variability 
- Selection is global 

(stabilising effects) 

Evolution towards stability 
 

- selection 
- feedback loops 
- self-organisation 
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7.4. Mechanisms for phase transitions 
 

There are at least three kinds of processes that can cause connectivity phase changes in 
systems: external disturbance events, slow external forcing and internal feedback processes. 
A wealth of specific examples of all three of these mechanisms are discussed in chapter 8. 
Here, I discuss some of the general mechanisms through which those processes may affect 

system dynamics. 
 
External disturbances are a very common mechanism behind critical transitions in system 

dynamics. Disturbances can influence system behaviour by affecting system components or 
their interactions (give examples showing what you mean by ―external‖? I assume things like 
a volcano or the sun going out… i.e. phenomena that are not actually generated by the 

elements of the system itself.), as well as by affecting the external system environment (see 
section 15.1.4.1 for a further discussion of environmental influences). For example: 
 

 Components: Keystone species are important components in ecological systems. A 

disturbance of a keystones species can affect a complete food web have far reaching 
consequences for an ecosystem [Paine, 1969; 1995]. 

 

 Interactions: Landscape composition is known to persist against strong external 
forcing, but changes dramatically when perturbations affect landscape connectivity 
thus changing the topology if internal interactions. This issue is explored in detail in 
chapter 10. 

 
 Environment: Environment changes can affect system constraints and selective 

pressures (e.g. warmer climate, less sunlight, etc.). Thus, disturbances can influence 

the evolutionary development of a system even if they do not directly affect it. (See 
also section 15.1.4.1 and section 8.6.) 

 

Slow forcing caused by external factors can lead to critical phase transitions in system 
dynamics [Gunderson & Holling, 2002]. Typically, this occurs when a system is pushed 
across a bifurcation threshold between alternate attractor basins. For example, in drylands, 
when rainfall declines or grazer populations increase beyond a threshold, erosion removes 

topsoil leading to a shift from savannah to desert as ecological attractor states [Phillips, 
1993]. 
 

Internal feedback processes can result in recurrent phase transitions in connectivity of 
intrinsic interaction network without any external stimuli. Such feedbacks are possible since 
the relationship between system behaviour and the topology of internal interactions is 

bidirectional: component interactions drive system behaviour, but are also shaped by 
emergent system dynamics [Newman, 2003; Garlaschelli et al., 2007]. Intrinsically emerging 
connectivity transitions can be observed in systems as diverse as stellar systems (section 
8.1), social networks (section 8.5) and the human brain (section 8.4). In chapter 12 I 

discuss two simulation models that demonstrate such processes. 
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7.5. Summary 
 

The Dual Phase Evolution framework presented in this chapter is the central topic of this 
thesis. It is thus useful to summarise the key points raised in this chapter. 
 

 Complex systems can be understood as networks of interacting components, and the 

topology of component interaction networks is a key factor that drives system 
dynamics. 

 

 Networks can exist in two general connectivity phases: well connected and poorly 
connected. 

 

 Each of the two connectivity phases in underlying interaction networks relates to 
specific typical system dynamics. 

 
 DPE occurs when networks that drive system dynamics recurrently switch between the 

two connectivity phases. Such recurrent connectivity phase transitions may account for 
a number of emergent properties of complex systems. 

 

 Systems can be understood by reference to multiple interaction networks that may be 
in different connectivity phases at any one time. 

 
 Mechanisms causing connectivity phase transitions may be system internal or external 

and include disturbances, slow forcing and feedback processes. 
 

 Connectivity phases in interaction networks can often be related to the density of the 

current region of system’s state transition network. Phases of sparse component 
interactions are associated with strong variation within systems; phases of dense 
component interactions are associated with uniformity and balance. 

 
In the next chapter I will present a large body of empirical and experimental evidence, drawn 
from previous studies, to further support the DPE framework and to demonstrate how its 
application can be useful for uncovering similarities and common causal mechanisms 

between seemingly unrelated systems. The subsequent chapters concentrate on how DPE 
processes may account for specific emergent properties in complex systems. 
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Chapter 8: 

8. Connectivity Phase Transitions in Natural 
and Artificial Systems 

 
 

The DPE framework associates different connectivity phases in networks that underlie 
complex systems and transitions between these phases with specific system 
behaviours. In this chapter I examine empirical and experimental evidence from physical, 
biological, social, economic, mathematical and computational systems drawn from 
previous studies. The evidence demonstrates how DPE phase changes can drive the 
emergence of different complex properties in systems. Moreover, the evidence uncovers 
that many of the examined systems share underlying DPE mechanisms and processes 
that were not previously described. 

 

 

Material presented in all sections of this chapter is based on the following publications: 

 
 G. Paperin, D. Green, S. Sadedin (2010): 

Dual Phase Evolution in Complex Adaptive Systems. 
Journal of the Royal Society Interface. Accepted for review. Ref: [Paperin et al., 2010]. 

 G. Paperin, S. Sadedin (2009): 
The Dual Phase Evolution Framework for Understanding Evolutionary Dynamics in Complex Adaptive Systems. 
2009 International Conference on Evolutionary Computation (ICEC'09). Ref: [Paperin & Sadedin, 2009a].  

 
 
 

In the previous chapter I introduced the DPE framework for reasoning about complex 
systems. The central idea of DPE is that recurrent phase changes in connectivity of 
interaction networks facilitate a general mechanism for self-organisation and emergence in 

many complex systems. DPE identifies properties that are typical of systems in different 
connectivity phases and highlights characteristics commonly associated with phase 
transitions.  

 
In this chapter I present a wide range of empirical and experimental evidence for DPE 
processes in complex systems. In many cases, this evidence allows new insights into the 
behaviour of such systems by accentuating hitherto overlooked mechanisms and highlighting 

previously unknown parallels and common mechanisms. 
  
Beginning with physical complex systems, I examine biological and socio-economic systems, 

as well as mathematical and computational systems. The evidence presented here is drawn 
primarily from previous studies. In later chapters I discuss detailed simulation experiments 
directed to investigate how DPE can account for specific emergent properties of complex 

systems. 
 

8.1. Non-living systems 
 
DPE phase changes play a key factor for self-organisation in physical systems across many 
scales. Here, I discuss examples spanning geomorphologic processes in landscapes through 

to star formation in galaxies back to DPE processes at the molecular level employed in 
manufacturing and biotechnology. 
 
Recurrent changes in connectivity of underlying networks play an important role in landscape 

geomorphology. For instance, repeated flips in connectivity between water bodies drive the 
formation of many typical geographical features within river basins. For instance, 
backswamps are moist, swampy areas of a floodplain located away from the main stream 

[Ritter, 2006]. They are formed and sustained through recurrent connections to the main 
channel occurring during floods. Heavier sediment particles are dropped by the flood water 
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close to the main channel and form natural levees [Hudson, 2005], while finer alluvium is 
carried a greater distance. The fine material can hold significant amounts of water and drains 
slowly creating wetland areas. After the flood retreats, the alluvium becomes denser and 

swamps can develop. Backswamps can increase in size and volume through repeated 

restoring and breaking of water connectivity to the main channel by subsequent floods 
[Summerfield, 1991; Leopold et al., 1995]. 
 

Recurrent water connectivity also affects the morphology of braided river channels [Reinfelds 
& Nanson, 1993; Warburton, 1994]. These are initially formed when a stream is divided into 
several smaller channels by the accumulation of in-channel deposits. When water levels rise, 

for instance through seasonal discharge increase, the braids can become reconnected; when 
water levels falls subsequently, the stream often settles on a new, more efficient, layout of 
channel braids. Such repeated transitions of between-channel connectivity contribute to 

continual morphological diversity within a floodplain [Summerfield, 1991; Reinfelds & 
Nanson, 1993; Warburton, 1994; Leopold et al., 1995; Ritter, 2006]. 
 
On larger scales, geomorphologic landscape connectivity describes the extent to which 

sediments are transported between distant sites by erosive processes, such as streams and 
flows [Brierley et al., 2006]. Such landscape connectivity has crucial impacts on landscape 
morphology [Fryirs et al., 2007; Hazel, 2008] and biophysical fluxes [Brierley et al., 2006]; 

it affects the transmission of perturbation responses through catchments and is thus a key 
factor for landscape sensitivity towards disturbances [Thomas, 2001; Brierley et al., 2006; 
Fryirs et al., 2007]. 

 
A number of factors can impede or facilitate sediment transportation, resulting in constant 

fluctuations in regional connectivity patterns [Brierley et al., 2006; Fryirs et al., 2007]. For 
instance, slope-channel connectivity transitions relate to the frequency with which channel 

processes rework materials derived from hillslopes, and channel-floodplain connectivity is 
driven by frequency and magnitude of flooding events [Fryirs et al., 2007]. Dynamically 
occurring landscape features affect sediment transportation to and through channels, 

effectively adding and removing transportation links. For instance, gully systems, which 
facilitate sediment transportation towards larger channels, often demonstrate disconnecting 
and reconnecting behaviour [Heede et al., 1988]. Conversely, buffers or barriers can impede 

sediment flow with different frequencies [Fryirs et al., 2007]. 
 
Intrinsic changes in spatio-temporal landscape connectivity patterns cause changes to 
operation of geomorphologic processes and are thus a significant source of morphological 

variety [Hazel, 2008]. Such connectivity phases influence size and location of catchment 
areas [Fryirs et al., 2007], as well as composition patterns of sediment deposits [Hazel, 
2008]. Landscape connectivity phases thus bears profound significance for inferences about 

past climates and the nature and mechanisms of landscape change [Thomas, 2001; Fryirs et 
al., 2007]. 
 

DPE processes can also be observed at a cosmological scale, where network phase 
transitions appear to play an important role: Smolin [1995] proposes that the pattern of star 
formations in spiral galaxies can be modelled as a propagation process along a network of 

dense gas clouds. For stars to form, a cloud of molecular gas must cool to a temperature 

that permits gravitational collapse. Cold cloud formations tend to be stable, but external 
perturbations can initiate a collapse [Smolin, 1995]. A primary source of such perturbations 
are other recently formed stars and supernovae [Elmegreen, 1991]. Consequently, star 

formation may be self-propagating [Seiden & Schulman, 1986; 1990]. Smolin [1995] 
suggests that the pattern of observed star formations in many spiral galaxies can be 
explained if the connectivity of the propagation network repeatedly fluctuates across the 

critical density. Temperature oscillations required for these fluctuations may arise by 
feedback between two processes [Parravano, 1988; Parravano et al., 1990]: As the 
temperature falls, giant molecular clouds condense. External shocks then trigger the 
formation of new stars. Radiation from these stars heats the surrounding molecular gases, 

inhibiting further star formation. When the fuel of the heating stars is exhausted, radiation 
declines and the surrounding gases cool again to a level permitting star formation. Given 
enough molecular clouds, such a self-propagating network of star formation can maintain 

itself throughout large parts of a galaxy [Smolin, 1995]. 
 
Alternating phases are common in advanced manufacturing, especially in metallurgical 

processes involving manipulation of atomic lattices. The process of repeated annealing is a 
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standard technique for increasing material stability in products manufactured from many 
solid materials [Henley, 1916; Van Vlack, 1980]. It works by rapid heating and slow cooling 
of the material thus quickly breaking the connectivity of molecular bonding networks and 

letting them settle to a more stable configuration. The process must be repeated several 

times to achieve the stabilising effect. 
 
Polymerase Chain Reaction (PCR) is a widely used biochemical technique that produces large 

numbers of copies of a DNA sequence. Cycles of heating and cooling break the molecular 
bonding of DNA double-strands, and then rebuild the strands using single-stranded DNA 
fragments, free-floating DNA molecules and specific helper-chemicals. Every cycle doubles 

the amount of DNA and many heating-cooling transitions are necessary to obtain a useful 
amount of DNA [Mullis, 1990]. 
 

8.2. Ecosystems 
 
Interactions among organisms form spatial networks that are structured by many processes, 

ranging from climatic to geological to ecological to socio-economic. For example, plants are 
confined to networks of habitat sites that are connected by dispersal. Processes that 
structure landscapes, such as fire, often induce phase changes in habitat connectivity for 

particular species [Saunders et al., 1991]. Such phase changes may have profound 
ecological and evolutionary consequences, which we discuss below. 
 
Ecological and evolutionary dynamics differ strongly between fragmented and connected 

habitat networks. Highly-connected habitat networks allow processes such as population 
explosions, adaptive genes, diseases and predators to spread throughout a landscape, 
homogenizing selection pressures and potentially inhibiting local adaptation or even 

triggering extinction. Conversely, fragmented habitat networks may increase species 
extinctions through the gradual loss of isolated demes, increase genetic drift, reduce genetic 
diversity, and reduce adaptive response to selective pressure [Young et al., 1996]. For 

species that are adapted to disturbed or marginal habitat (e.g. weeds), fragmentation of 
undisturbed habitat often provide a connected network of disturbed habitat, hastening their 
spread [Kruess & Tscharntke, 1994; With, 2002]. 
  

The ecological impact of repeated cycles of phase transitions in habitat connectivity is 
illustrated by postglacial pollen records of North American forests [Davis, 1979]. Species 
composition in forests remained largely static (―pollen zones‖) despite gradual climate 

change during this time, but underwent dramatic transitions following major fires [Green, 
1982]. Migrating species were constrained spatially due to the overwhelming abundance of 
seed sources from dominant species, even though a changing climate might favour better-

adapted invaders: it was only when dominant species were cleared away by fire that 
invading species could succeed. Fire mediated zone boundaries have since been found at 
sites in many regions [Singh & Geissler, 1985; Tinner et al., 1999; Kershaw et al., 2002].  
 

8.3. Living systems at evolutionary scales 
 

For long-term evolutionary dynamics, the effects of repeated phase transitions in habitat 
networks are less transparent but no less crucial. Glacial cycles present a well-studied 
example. Cooling climates can result in falling sea levels, which create land bridges among 

islands, forming a connected habitat for many coastal species. Simultaneously, many 
widespread continental species have undergone repeated, drastic reductions in range during 
glacial periods. Due to topography and other geographic factors, their habitats fragmented 
and these species became confined to a small number of isolated refugia [Willis et al., 2004]. 

While isolated in refugia, these species diverged genetically such that their modern-day 
descendents, although now well connected throughout their geographic range, still exhibit 
marked patterns of population differentiation reflecting these periods of isolation [Hewitt, 

1996].  
 
Parallel patterns of post-glacial migration by multiple species out of the same refugia can 

explain genetic suture zones, which are geographic regions where numerous hybrid zones in 
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different species co-occur along the same geographic lines [Hewitt, 2004; Swenson & 
Howard, 2005]. These lines often also correspond to habitat barriers and range boundaries 
for adjacent-living sister species, suggesting that repeated glacial cycles act as an engine of 

speciation [Hewitt, 1996]. For example, meta-analysis of mitochondrial DNA studies in 63 

bird species suggested that their adaptive radiations resulted from repeated population 
fragmentation events triggered by glacial cycles over the last 3 million years [Avise & 
Walker, 1998]. Similarly, the evolution of new grasshoppers, macaques, pond-skaters, 

cicadas, bees, butterflies and beetles on Sulawesi has been attributed to habitat 
fragmentation caused by climate change [Butlin et al., 1998].  
 

Increasing habitat connectivity allows species to spread and diversify, implying that phase 
changes in habitat connectivity may rapidly transform biota across very large areas. Rapid 
evolution of new ecotypes and species is often traceable to invasion of new habitats, 

especially when selection pressures are spatially distinct and mating is local [Lande, 1981; 
Gavrilets & Vose, 2005]. For example, the shore-dwelling snail Littorina saxatilis underwent 
repeated parallel ecotype evolution within islands that arose in the last ten thousand years 
[Johannesson, 2001]. Similarly, replicate adaptive radiations in African cichlids followed their 

invasion of unoccupied lakes [Sturmbauer, 1998]; distinct stickleback ecotypes have arisen 
repeatedly following migration into streams [Rundle et al., 2000]; and the apple maggot fly, 
an invader that arrived in the United States during the 1800s, has since diverged into several 

specialised forms that mate and feed on different native plants [Filchak et al., 2000]. In each 
case, increased habitat connectivity allowed invasion of novel environments, triggering 
diversification.  

 
Large-scale habitat fragmentation thus influences evolutionary novelty and diversity in 

several ways. Long-term isolated habitat patches are vulnerable to extinction [Andren, 
1994], but facilitate genetic divergence through drift, local selection, and sexual selection 

[Endler, 1977]. Newly connected habitats allow invasions by species which may then 
diversify through ecological speciation (but also drive existing species to extinction) 
[Schluter, 2000]. Habitats that are connected over long periods permit the global spread of 

adaptations and well-adapted species, but eliminate less competitive forms. Thus each 
connectivity phase, and the transition between the phases, provides fundamentally different 
evolutionary conditions. 

 
A phase transition may also occur in evolutionary state transition networks. Eldredge and 
Gould [1972] documented the pattern of punctuated equilibrium: at large timescales, the 
fossil record is dominated by long periods of apparent stasis punctuated by mass extinctions, 

which are followed by brief periods of rapid change and diversification. Remarkably, the 
resultant qualitative pattern resembles that of the pollen record data described above, but on 
much larger timescales [Gunderson & Holling, 2002]. Gould [2002] argued that evolving 

species rapidly reach local optima due to the constraints of existing adaptations. 
Consequently, evolution of novel adaptations is confined to periods of reduced competition 
occurring mainly after mass extinction. In other words, the state transition network for 

evolving species becomes sparser and ultimately fragments in the absence of disturbance; 
by deleting competitors, mass extinction provides a richly connected state transition network 
for the survivors.  

 

8.4. Perception and cognition 
 

A number of seminal studies suggest that mechanisms involving connectivity phase changes 
may play an important role in human perception and cognitive development.  
 
One of the most influential theories in twentieth century psychology was Piaget’s theory of 

cognitive development [Piaget et al., 1985; Piaget & Inhelder, 2000], which is built around 
schemas: mental constructs used in perception, memory, and problem solving. Schemas are 
formed by two processes: assimilation and accommodation. Assimilation is the incorporation 

of new experiences into existing schemas, thereby refining and reinforcing them. 
Accommodation is the process of coping with novel situations by creating, combining and 
forming new schemas. Piaget proposed a development mechanism (equilibration) that 

mediates between phases of assimilation and accommodation. In a network model, where 
nodes represent schemas and edges their relationships, assimilation involves mainly local 
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interactions, allowing new concepts to develop in relative isolation. In contrast, 
accommodation is a ―global‖ phase in which links can form between any relevant schemas. 
 

Experiments conducted by Freeman [1975] show that cognition involves sudden transitions 

in cortical EEG oscillations. Sensory stimuli trigger rapid, chaotic firing of neurons. 
Subsequently, feedback loops gradually re-synchronise neural firing via a process of pattern 
selection. These changes suggest two apparent phases: the sensory stimulus flips the neural 

network into a phase of high connectivity and chaotic activity, followed by gradual decline in 
overall activation and increasingly constrained local activity. Freeman conjectured that the 
sensitivity to initial conditions displayed by the cortex during these phase changes enhances 

the brain’s ability to discriminate sensory inputs [Freeman, 1991; 1992]. 
 
Sergent and Dehaene [2004] postulated that consciousness acts as a ―global workspace‖ for 

brain activity. In their model, sensory stimuli are normally processed subconsciously within 
local neural circuits. However, specific stimuli may become amplified by the local network, 
activating long-range connections, particularly via the fronto-parietal cortex which connects 
many different brain regions. This long-range activation can trigger a sudden, global 

activation at the whole-brain scale typical of conscious processing. 
 
Extending the above ideas, the daily sleep-wake cycle suggests the possibility of other 

alternating phase transitions in the brain. In particular, dreams appear to play a crucial role. 
The nature of dreams is still far from clear, but amongst the many theories a common theme 
is to treat memory implicitly as a network. The nodes of this network are variously 

interpreted as mental schemas [e.g. Coutts, 2008], semantic memories [e.g. Stickgold et al., 
2001] or other instances of perceptions and experiences. Waking hours can therefore be 

regarded as a growth phase in which new nodes and edges are added to the network and 
dreaming as a sorting phase, in which nodes and edges are reinforced or removed [e.g. 

Blechner, 2001]. Several authors have likened dreams to maintenance operations carried out 
when an information system is off-line [e.g. Crick & Mitchison, 1983]. Bar-Yam [1997] 
proposed that the different alternating sleep modes observed in humans, signified by typical 

EEG patterns, directly correspond to different levels of connectivity between subdivisions 
within the brain. 

8.5. Socio-economic systems 
 
Network thinking is becoming increasingly important in social sciences [Bianconi et al., 2005] 
and researchers find methods from statistical physics useful for analysing socio-economic 

network structures [Hors & Lordon, 1997; Roehner, 2005].  
 
In economics, some recent research has focused on emergent phenomena [Marengo & 

Willinger, 1997] that cannot always be understood with established analytical methods and 
traditional theories such as the general equilibrium theory or game theory [Kirman, 1997; 
Morel & Ramanujam, 1999]. These theories concentrate on specific kinds of interactions: In 
competitive general equilibrium theory individuals interact with the market – global 

interactions; in game theory individuals interact with each other – local interactions [Davis, 

2007]. Many authors [e.g. Kirman, 1997; Davis, 2007] stress that consolidating theories of 
economic interactions on different scales is central to understanding economy as a complex 

adaptive system. 
 
Local and global interaction patterns have been identified in various empirical studies. Cobb 

[1999], for instance, analyses the role of local (personal) and global (corporate) networks in 
creation of reputation among competing offshore financial centres. Iori et al. [2008] analyse 
the network topology of Italian overnight bank transactions and find recurrent increases in 
transaction density close to common month-end closing dates implying increased systemic 

risk due to higher dependence and exposure. On a wider scale, Mann [1997] analyses 
threats posed to nation-states by modern socio-economical and geo-political developments. 
He classifies political and socio-economic interactions into distinct networks according to their 

―distance‖: local, national, inter-national, trans-national and global. For instance, capitalist 
globalisation increases the significance of inter-national and trans-national networks, as a 
result weakening the northern states (e.g. the EU), yet strengthening southern nation-states 

by facilitating their economic development. 
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Some researchers see drastic social phenomena as phase transitions [Gligor & Ignat, 2001; 
Levy, 2005] and empirical studies show that social systems can exhibit basins of attraction. 
For example, Crane [1991] shows that ghetto-like conditions spread through neighbourhoods 

in a way suggesting the presence of a critical threshold between constrained and global 

propagation dynamics. It has been suggested [Kuran, 1989] that political revolutions are 
motivated by ―preference falsification‖ – a critical transition in mass attitude resulting from a 
mismatch between individuals’ preferences drawn from their personal interactions (private 

preference) and from their global interactions (public preference). This situation can occur 
when people support a regime (e.g. for fear of prosecution) despite privately hating it. 
 

Social networks lend themselves particularly well to approaching social phase transitions with 
graph-analytical techniques due to their explicit network structure. Since the seminal study 
[De Solla Price, 1965] that led to the discovery of scale-free topologies (see also section 5.4 

and section 13.3) scientific co-authorship networks have attracted much interest. Numerous 
snapshot [e.g. Newman, 2001b] and longitudinal studies [e.g. Newman, 2001a] have been 
undertaken, including efforts to relate collaboration connectivity to geographical distance 
[Katz, 1994]. Connectivity transitions are observed in some, but not all social networks. For 

instance, since co-authorship links do not disappear, connectivity of such networks tends to 
increase monotonically. 
 

Links in other types of social networks, however, can decay over time, and such networks 
tend to exhibit recurrent connectivity changes: A study of professional affiliations in biotech 
industry [Casper, 2007] has shown that over time network density alternates around very 

low values while average path length increases, implying the dominance of local connections, 
probably influenced by company associations. A study of an email communication network in 

a university [Kossinets & Watts, 2006] has shown significant seasonal changes in 
connectivity density leading to variations in size of the giant component. A longitudinal study 

of the Enron corporation email corpus [Diesner & Carley, 2005] concluded that the 
communication networks become significantly denser and less hierarchical at times of crisis. 
 

Detecting dynamic effects such as phase transitions in empirical data is inherently more 
difficult than detecting static properties such as scale-free or small world structures. It 
requires accurate empirical data over extended time periods, which is rarely available in 

socio-economic sciences [Ehrhardt et al., 2005]. Explanatory variables are typically 
numerous and cannot be manipulated, experiments are frequently unfeasible and are 
replaced by surveys and data often collected for other purposes [Gligor & Ignat, 2001]. As a 
result, simulation models of social networks have received wide attention. 

 
For instance, Ehrhardt et al. [2005] and Marsili et al. [2004] have found that many social 
networks can exhibit discontinuous phase transitions in their structure. Ehrhardt et al. 

[2005] demonstrate that in volatile environments social networks can exhibit emergent 
recurrent phase transitions in connectivity density that are caused through internal 
feedbacks and without any external forcing or disturbances. Solomon et al. [2000] studied a 

market percolation model of products through social influence and conclude that under 
simplifying assumptions the connectivity density converges towards the critical threshold, 
and population sizes affected by products follow a power-law distribution. In many markets 

the distribution of such product impacts is bimodal [Solomon et al., 2000]. It can be 

expected that under relaxed assumptions the connectivity of the social influence network will 
fluctuate across the critical density leading to such distribution. 
 

Castellano et al. [2000] studied a model previously introduced by Axtell, Axelrod et al. 
[1996] that investigates social consensus and demonstrates emergent dual phase dynamics. 
In the model, agents exist on a lattice and communicate with their neighbours. 

Communication links are only active if agents agree and differ on at least one of their 
―cultural beliefs‖ each, and agents become more similar in their beliefs during 
communication. Depending on parameter values, the model either converges on a dominant 
belief set or on a highly fragmented belief landscape with no active communication links 

remaining. In cases where a single belief set dominates, the active link density displays 
emergent connectivity phase transitions: Initially it declines until it reaches a very low value, 
then it rises well over the percolation threshold and subsequently declines again until it 

reaches zero. In the real-world social groups do not exist in isolation. When groups that 
reached consensus come into contact, new active communications links appear. Thus, 
repeated cycles of creating active links and then using them to achieve new consensus can 

be expected to occur in real societies. 
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8.6. Models of modularity 
 

Changing environmental conditions affect the fitness landscape of evolving entities and thus 
the structure of the state transition networks (section 5.7). Moreover, as evolution can be 
seen as a search problem for better adapted individuals, changing environments can affect 
the connectivity structure of the corresponding search space (see also section 8.8). 

 
Arguments from theoretical biology imply that environmental changes that affect selection 
pressures acting on different traits may be the mechanism behind genetic modularity 

[Wagner, 1996]: Most individual traits are subject to stabilising selection. However, 
depending on current environmental conditions, specific groups of traits can be subject to 
directional selection. Such trait groups are likely to evolve pleiotropic genes (genes that 

influence multiple traits). Conversely, genes that simultaneously influence traits that are 
subject to directional and stabilising selection are likely to be selected against. Thus, genes 
involved in traits that are often selected for at the same time, may organise themselves into 
modules that are relatively independent from other trait modules.  

 
The difficulty in formal mathematical and experimental treatment of biological CAS has 
promoted simulation models as a popular tool for their analysis. Several simulation models 

support the argument that environmental changes that induce connectivity transitions 
underlie the evolution of modularity. For instance, Kashtan and Alon [2005] investigated the 
effect of changing environments on network evolution. They evolved digital circuits and 
neural networks with objective functions that repeatedly switched between different goals 

thus recurrently altering the connectivity structure of the search space. Each goal was 
composed of a different combination of sub-goals. The evolved networks contained densely 
connected functional modules that were loosely connected to the rest of the network. 

Network evolution in varying environments also led to the formation of network motifs [Milo 
et al., 2002] found in real systems such as signal transduction and synaptic neuronal 
networks [Kashtan & Alon, 2005]. Subsequent work [Kashtan et al., 2007] showed that 

variability in environmental constraints increased the speed of evolution (decreased the 
number of generations required to match the objective function). Further experiments 
[Kashtan et al., 2009] showed that phase changes in habitat connectivity caused by induced 
extinctions lead to less specialisation and increased modularity in internal structure of 

simulated organisms. 
 
Similar results have also been obtained in numerical simulations of mathematical systems. 

For instance, Lipson et al. [2002] represented individuals as matrices. With increasing rate of 
change of the target requirements, evolving matrices became less coupled and more 
modular. Variano et al. [2004] investigated network properties of linear systems evolved 

using a genetic algorithm. They evolved directed graphs, each represented as an edge 
weight matrix M, and selected for linear stability of the resulting dynamical system x’ = Mx. 

The resultant networks were more modular and hierarchical than random networks with 
similar structural properties, and were robust to random rewiring. These simulations make 

few assumptions about the individuals or their environment, implying that modularity in 

network structures may be fundamentally associated with recurrent phase transitions in 
search spaces caused by varying environments [Variano et al., 2004]. 
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8.7. Optimisation problems 
 

Phase transitions occur in the complexity of optimisation problems. The k-SAT problem 

[Cook, 1971] requires finding an assignment for a set of Boolean variables that satisfies a 
number of constraints (such assignments are called ―ground-states‖). Such problems can be 
seen as networks where nodes represent variables and links connect variables that 

participate in the same constraint. In general, k-SAT can only be solved in a timeframe that 

is exponential in the order of participating Boolean variables (assuming the NP-completeness 
conjuncture [Cook, 1971] holds). However, if the number of constraints is small (the density 
of the constraint network is low), k-SAT instances can often be solved efficiently. Numerical 

experiments performed on k-SAT [Achlioptas et al., 2005; Hartmann & Weigt, 2006], graph 

colouring [Achlioptas et al., 2005] and other problems show that as the number of 

constraints (i.e. the connectivity of the constraint network) increases, the probability that all 
constraints can be satisfied concurrently undergoes a sharp transition from near 1 to near 0. 
Simultaneously, the complexity of determining the ground-states undergoes a sharp 

transition from ―easy‖ to ―complex‖. Because these problems are NP-complete, a large body 
of practically occurring constraint optimisation problems can be reduced to these. The 
complexity phase transition is thus thought to be a widely occurring phenomenon. The 

review by Martin at al. [2001] treats complexity phase transitions in optimisation in detail. 
 

8.8. Heuristic algorithms 
 
Phase transitions within interaction networks are implicit in many optimisation algorithms. 
They take the form of mediation between local and global search. For instance, in simulated 

annealing [Kirkpatrick et al., 1983; Cerný, 1985] the temperature schedule is used to 
arbitrate between local and global search steps. This corresponds to mediating between 
neighbourhood interactions (short search steps) and global interactions (distant search 
steps) between candidate solutions. Another example is the great deluge algorithm [Dueck, 

1993] that uses the analogy of a walker who walks around the solution space avoiding water 
floods of different levels. The water level thus controls the connectivity of the transportation 
network in the solution space acting similar to an annealing schedule and thus mediating 

between local (high water level, poorly connected transportation network) and global (low 
water levels, well connected transportation network) search. Similar ideas have been 
employed to improve the performance of a variety of optimisation techniques that are prone 

to being caught in undesirable local optima when applied to non-smooth search spaces. This 
includes for instance the backpropagation learning algorithm for artificial neural networks 
[e.g. Ramamoorthy & Shekhar, 1989], the particle swarm optimisation algorithm [e.g. Wang 
& Li, 2004; e.g. Liua et al., 2005], genetic programming [e.g. Cordon et al., 2002] and 

support vector machines [e.g. Sun & Sun, 2005; Lin et al., 2008]. In all these cases the 
connectivity of the search space is changed from well connected (global search, exploration) 
to poorly connected or disconnected (local search, exploitation). The phase transition occurs 

in that direction and only once or a few times. However, natural processes are typified by 

repeated connectivity phase transitions in both directions. 
 

Arguably, optimisation algorithms supplemented with simulated annealing style techniques 
may be improved by incorporating repeated connectivity phase transitions in both directions. 
For instance, this has been demonstrated by Kirley et al. in a modified version of the cellular 
genetic algorithm [Whitley, 1993; Alba & Dorronsoro, 2008] based on insights from 

population dynamics and landscape ecology [Kirley et al., 1998; Kirley, 2002]. A population 
of individuals (candidate solutions) evolves on a grid with local competition and mating. The 
grid is subjected to intermittent ―disasters‖ that wipe out areas of the grid and make them 

temporarily unhabitable. This cellular genetic algorithm modified in this way outperforms the 
standard algorithm on a number of hard test problems [Kirley et al., 1998; Kirley, 2002]. 
Two interaction networks are important here: The network of populated grid cells determines 

the amount of gene (information) flow. When it is fragmented, the population evolves not as 
a whole, but as divergent sub-populations, which can slow premature convergence. The 
second is the network of the free grid cells. When this network is well connected, free cells 
can be repopulated without substantial fitness competition. Despite an initial fitness 

disadvantage such candidate solutions can potentially evolve towards a different, possibly 
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better local optimum. Similar ideas have been employed in a number of different parallel 
genetic algorithms; a comprehensive review is provided by Cantú-Paz [1998].  
 

Another way to take advantage of repeated changes in connectivity of the search space is 

based on combining genetic algorithms with Lamarckian Evolution or the Baldwin Effect. 
Lamarckian Theory [Lamarck, 1815] held that traits acquired (learned) during a life time can 
be inherited into the next generation; the Baldwin Effect [Baldwin, 1896] emphasises the 

importance of selection for learning ability rather than for specific genetically ―hardcoded‖ 
abilities. In biology, Lamarckism has been displaced by Darwin’s evolutionary theory and the 
Baldwin Effect remains debated, but both ideas have been applied successfully in computing 

[e.g. Morris et al., 1998]. Artificial Lamarckian Evolution uses local search at every 
generation to improve candidate solutions which are then recombined through genetic 
operations that permit more distant (global) jumps in the search space [Gen & Cheng, 

1997]. Conversely, when Baldwin Effect is applied to artificial evolution, results of local 
search performed at every generation are used to evaluate the fitness of candidate solutions, 
but are not fed back into the evolving genotypes. In non-smooth search spaces, the resulting 
selective pressure towards good starting points for local optimisation helps directing the 

global evolutionary search [Hinton & Nowlan, 1987]. For some optimisation problems, hybrid 
methods between Lamarckism and the Baldwin Effect have proven successful [e.g. Ishibuchi 
et al., 2005]. 

 
The Markov clustering algorithm (MCL) [Van Dongen, 2000b; 2000a; 2000d; 2000c] is a 
further example for a heuristic algorithm based on repeated phase changes. The MCL 

algorithm finds cluster structure in graphs by simulating random walks without the need for 
additional information such as number of clusters or distances between cluster items. The 

algorithm is based on two alternating operations: The first operation (―expansion‖) computes 
a power of the Markov matrix that defines the graph. This computes the probability of multi-

step transitions along the graph and reinforces intra-cluster links. The second operation 
(―inflation‖) computes a power > 1 of each matrix element. This re-enforces stronger links in 
relation to weak links. This process of repeated flips between intra-cluster interactions and 

direct neighbour interactions eventually leads to the separation of the graph into different 
clusters. The MCL algorithm has proven successful in identifying cluster structure in networks 
obtained from empirical data [e.g. Enright et al., 2002] and from simulation studies (e.g. 

section 11.4.2). 
 

8.9. Summary 
 
In this chapter I highlighted the role played by networks in natural and artificial systems. As 
this analysis shows, phase changes occur in complex systems of virtually every kind. What is 

more, in almost every case, those phase changes can be traced to connectivity avalanches 
within underlying networks. This uncovers a common pattern across many kinds of systems: 
Recurrent phase changes in network connectivity facilitate emergence and self-organisation. 
 

In the following chapters I will use this insight to study specific systems. Using simulation 

models I first investigate the role of connectivity changes on evolution of landscape 
ecosystems (part IV). In part VI I research the role of changes in connectivity in the 

formation of important network structures, such as modular and scale-free topologies. 
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Part IV 

 

Perpetual Novelty and 

Sustained Diversity in 

Biological Systems 

 
 
 

 
 
Here I seek to improve our understanding of mechanisms behind the emergence of two crucial 
properties of CAS – perpetual novelty and sustained diversity. I concentrate on two key areas: 
First – recurrent external disturbances that alter local environments, unbalance systems away from 
attractor states, and cause DPE connectivity transitions in interaction networks that underlie bio-
ecosystems. 
Second – complex, biologically realistic fitness landscapes. Resent research provides new insights 
into topology of biological fitness landscapes, and models based on these insights offer new 
conclusions about genetic diversity and discovery of novel ecological habitat niches. 

 
 

Chapter 9: Background. 
 
Theoretical implications about novelty and diversity in biological CAS provided by the DPE 
framework stress the role of external disturbances in causing connectivity phase changes and 
pushing systems away from attractors. Empirical evidence from previous studies supports these 
implications.  
 

 
Chapter 10: DPE and Perpetual Novelty and Sustained Diversity in Landscape 
Ecosystems. 

 
A simulation model of adaptive radiation in landscapes is presented. Model organisms normally 
exist within a connected landscape, intermittent disturbances (fires, impacts, etc.) flip the system 
into a poorly connected phase and affect the environment in disturbed areas. Results show that 
this DPE mechanism facilitates complex diversity and perpetual novelty in the ecosystem. An 
analysis of the fitness landscape employed in the simulation provides a richer context for the 
results, and shows that the employed genetic model exhibits biologically unrealistic properties, 
which, however, do not affect validity of the results.  
 

 
Chapter 11: Evolution on Holey Fitness Landscapes. 
 
Based on the discussion in the previous chapter and recent results in speciation theory, a new 
genetic model is proposed that combines the advantages of existing techniques, while avoiding 
some of their drawbacks. A numerical analysis of the genetic fitness landscape exhibited by the 
new model informs future studies and shows that the model exhibits many biologically realistic 
properties, including properties implied by the holey fitness landscape concept. A simulation of 
parapatric populations with holey fitness genetics provides new insights into maintenance of 
reproductive isolation and diversity under migration. Techniques used in the simulation 
experiments may also be employed for to improve some evolutionary optimisation algorithms. 





 

 83 

 

Chapter 9: 

9. Background 
 
 

CAS exhibit sustained diversity and perpetual novelty, however, the mechanisms behind 
the emergence of these properties are not well understood. DPE provides a key 
mechanism for novelty and diversity in biosystems – recurrent connectivity phase 
changes caused by intermittent external disturbances. Previous studies reveal a wealth 
of empirical evidence for the role that connectivity changes caused by disturbances play 
in species variety and other kinds of ecosystem diversity. Subsequent chapters use 
simulation experiments to investigate the theoretical ideas developed in this chapter in 
more detail. 

 
 

The material presented in this chapter is based on the following publications: 
 

 G. Paperin, D. Green, S. Sadedin (2010): 
Dual Phase Evolution in Complex Adaptive Systems. 
Journal of the Royal Society Interface. Accepted for review. Ref: [Paperin et al., 2010]. 

 G. Paperin, D. G. Green, S. Sadedin, T. Leishman (2007): 
A Dual Phase Evolution Model of Adaptive Radiation in Landscapes. 
3rd Australian Conference on Artificial Life (ACAL’07). Ref: [Paperin, Green, et al., 2007b]. 

 
 

9.1. Introduction 
 
CAS exhibit a sustained diversity of their locally interacting components. In the absence of a 

global controller CAS exhibit far-from-equilibrium dynamics, and permanent novelty and 
adaptation [Holland, 1995; Levin, 1998]. However, our understanding of how these 
properties emerge remains limited. In this part of the thesis I investigate some of the 

mechanisms that facilitate and maintain sustained diversity and perpetual novelty in 
biological CAS. In particular, I concentrate on two of such mechanisms: DPE phase changes 
in habitat connectivity (chapter 10) and complex biological fitness landscapes (chapters 10 

and 11). 
 
I begin by discussing the insights that the DPE framework provides into diversity and novelty 
in CAS (section 9.2). External disturbances play a key role in the emergence of sustained 

diversity and novel adaptations in at least two respects: First, recurrent disturbances alter 
the organisation of component interactions in systems resulting in ever new self-re-
organisation of interaction networks. Second, disturbances unbalance systems away from 

local optima states thereby pushing them into phases of evolutionary exploration and re-
organisation. Section 9.3 discusses a number of previously published empirical studies that 
provide evidence for the role of disturbances in facilitation of biological novelty and diversity. 

 
To support my findings, I introduce an individual-based simulation model of species evolution 
in landscapes (chapter 10). In the simulation, recurrent phase transitions in landscape 
connectivity caused by intermittent disturbances lead to continuous usage of new habitat 

niches and to increased diversity. Analysis of simulation results reveals that adaptive 
radiation is facilitated not only though changes in landscape connectivity, but also through 
environmental alterations in disturbed areas that affect the evolutionary FL. Thus, I conclude 

chapter 10 with a detailed examination of the model FL and its evolutionary properties. The 
examination shows that the model FL exhibits a number of properties not found in biological 
FLs, however, these differences do not affect the validity of simulation results. 

 
Based on examination of the model FL and on recent results in speciation theory, I propose 
and apply an improved genetic model (chapter 11). The model combines existing techniques 
and incorporates both, an explicit, biologically realistic treatment of biochemical genotype 

viability, as well as an approach for relating genotype fitness to the ecological environment 
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(section 11.1). A numerical analysis of the FL structure exhibited by the proposed genetic 
model confirms that the model results in several biologically realistic properties (section 
11.3). 

 

Application of the analytical HFL concept within individual-based computer simulations is 
problematic due to differences between analytical and numerical approaches (section 11.2.2) 
and due to the exponential-time algorithms involved (section 11.2.3), however I develop 

techniques that allow creating and using explicit HFL models with acceptable run-time 
performance (section 11.2.3). Based on the new techniques I examine how HFL-genetics 
change our understanding of the maintenance of genetic diversity in parapatric (partially 

separated) populations in the face of migration (section 11.4). Earlier studies implied that 
reproductive isolation caused by ecological factors will collapse under migration. However, 
simulation results show that HFL-genetics can often maintain diversity and facilitate 

exploration of new niches and speciation. 
 
The new simulation techniques may also prove useful in biologically-inspired engineering. For 
instance, I speculate that the technique used for creating HFLs suitable for individual-based 

simulations of biological systems can also be useful for combating premature convergence in 
evolutionary optimisation algorithms (section 11.5). More generally, work presented in 
chapter 11 allows to conclude that HFL-genetics provide a fruitful concept in future studies of 

adaptation and diversity in natural and artificial systems. 
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9.2. Perpetual novelty and diversity in CAS 
 

The material presented in this section is based on the following publications: 

 
 G. Paperin, D. Green, S. Sadedin (2010): 

Dual Phase Evolution in Complex Adaptive Systems. 
Journal of the Royal Society Interface. Accepted for review. Ref: [Paperin et al., 2010]. 

 G. Paperin, D. G. Green, S. Sadedin, T. Leishman (2007): 
A Dual Phase Evolution Model of Adaptive Radiation in Landscapes. 
3rd Australian Conference on Artificial Life (ACAL’07). Ref: [Paperin, Green, et al., 2007b]. 

 

 
There is a large amount of evidence (section 9.3) that CAS generally tend to self-organise 
towards a stable, balanced state. A number of adaptive mechanisms present in CAS cause 
these systems to exhibit little large-scale variation over long periods of time: For instance, 

analytical [Watson & Lovelock, 1983; Weber, 2001] and computational [Lenton & Van Oijen, 
2002] models show that lower-order local dynamics (e.g. feedback processes) can stabilise 
systems over a large range of external forcing, and that higher order local dynamics (e.g. 

evolutionary processes) can greatly increase the stabilising effect (see section 4.3 for a 
discussion of different orders of system dynamics). Established ecosystems, for example, 
tend to be resilient against forcing that could drive them away from current attractors 

[Gunderson & Holling, 2002; Scheffer & Carpenter, 2003; Walker et al., 2004]. 
 

However, the adaptive forces that underlie global stability of CAS also inhibit novelty. 
Stabilising selection acting on system components at various scales, as well as on topology 

and interactions, may drive a system as a whole to a local optimum state, halting innovation 
[Holland, 1995]. At least two mechanisms that can act against such long-term stasis can be 
identified: 

 
One such mechanism is co-evolution. Local adaptation of system components driven by 
selection may affect the selection criteria (the fitness landscape) for other components, 

which will also adapt as a result. The adaptation of the components affected in such a way 
may in turn cause changes in the fitness landscapes of other components, including the 
components which initiated the changes in the first place. The feedback loops which can arise 
in this way may function as sources of perpetual novelty because the selection acts on 

random variation and the results of such feedbacks may be different for each loop. However, 
it is not clear that co-evolution is capable of providing the degree of innovation observed in 
many natural CAS. For instance, current models suggest that selection, not variation, drives 

speciation and that co-evolutionary feedback loops are likely to rapidly (on evolutionary 
timescales) lead to stable local optimum states [Gavrilets, 2004]. 
 

The second mechanism that may function as a source of continual novelty in CAS is recurrent 
external disturbance. Disturbances can cause systems to flip from high connectivity phases 
dominated by stabilising selection to low connectivity phases of evolutionary exploration 

leading to ever new and diverse adaptations.  

 
It has been shown, that evolutionary innovations in various natural CAS often coincide with 
external perturbations (e.g. [Green, 1982], and section 9.3 below). External disturbances 

can affect both system components and interaction networks, thus moving systems away 
from local optima (and so increasing the connectivity of corresponding state transition 
networks). While a disturbed system remains far from a fitness optimum, any chance 

variation of local components or substructures may provide a better adaptation to the local 
constraints and selection will facilitate the proliferation of such change. Over time, 
components and their interactions at multiple scales are driven towards new local optima and 
selection again inhibits variation and stabilises the system (state transition network 

connectivity decreases). Future perturbations continuously affect the system and flip it 
between different connectivity phases leading to ever new and diverse adaptations. 
 

The above mechanism results in a fruitful interpretation of the DPE phase change 
mechanism: CAS develop towards a balanced phase, where they exhibit little large-scale 
variation (on evolutionary timescales). In this state they are stabilised through self-
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organisational processes of various orders (section 4.3) including feedback and selection. The 
balance phase is recurrently disturbed by external perturbations, which unbalance systems 
and flip them into a phase in which they exhibit variation on all scales. Over time, stabilising 

processes drive systems into a new balance-state (Figure 9.1).  

 
 
 

 

 
 
Figure 9.1. DPE phase transition cycles from the perspective of CAS dynamics. Systems flip 

between balance and variation phases. External disturbances unbalance stable systems, variation 

facilitates evolutionary exploration, internal pressures drive the system into a new stable state. Compare 

this figure to Figure 7.1 on page 67. 
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9.3. Evidence: Recurrent environmental perturbations in 

biological evolution 
 

The material presented in this section is based on the following publications: 

 
 G. Paperin, D. G. Green, S. Sadedin, T. Leishman (2007): 

A Dual Phase Evolution Model of Adaptive Radiation in Landscapes. 
3rd Australian Conference on Artificial Life (ACAL’07). Ref: [Paperin, Green, et al., 2007b]. 

 

 
In chapter 8 I discussed a large amount of empirical evidence for the role of DPE phase 
transitions in the emergence of different complex system properties. Here, I add to that 

evidence by reviewing a range of previous studies, while concentrating in particular on the 
role that connectivity changes caused by external environmental perturbations play in 
speciation and ecosystem diversity. 

 
Evolution occurs in fits and starts. This pattern of change is clear in the geologic record. The 
system of geologic classification reflects a history in which similar assemblages of fauna and 
flora predominated for long time periods of time, often tens of millions of years. These 

periods are punctuated by abrupt changes in species composition. Research has revealed 
that the changes between geologic eras are associated with mass extinction events. 
Recognising this pattern led Eldredge and Gould [1972] to put forward the idea of 

punctuated equilibrium, in which the general pattern of evolution is constant composition 
punctuated by mass extinctions, followed by brief periods of rapid adaptive radiation. 
 

Alvarez et al. [1980] found evidence that the Cretaceous-Tertiary boundary was associated 
with an impact of a large comet. Research since then has produced evidence that asteroid 
impacts, volcanic activity and climate change are associated with many other geological 
boundaries as well. 

 
Green et al. [2000] proposed a mechanism to explain the above observations: For most of 
the time, competition for space or niches within a landscape impose selective pressure. 

Established populations restrict the spread of invaders. Widespread populations are 
genetically connected and genetic variation is suppressed. When a major disturbance occurs, 
the above patterns are reversed: vast areas of free space are opened up; suppressed species 

are free to expand into the new territory; selective pressure becomes negligible; and 
established populations become fragmented.  
 
There are striking similarities between species evolution, on a scale of millions of years, and 

forest change, which occurs on a scale of thousands of years. Forest history, as recorded by 
preserved pollen, shows that during postglacial (the last 12,000 years), forest composition 
changed in fits and starts. This pattern is reflected by the systematics used by 

palaeontologists, who divide the postglacial history into pollen zones. The zones have more 

or less constant composition, with rapid changes from one zone to another. Studies have 
shown forest composition remained resilient against climatic changes, and that major forest 
fires triggered rapid transformations, with the new species composition being determined by 

climate at the time [Green, 1982]. 
 
In certain regions, recurrent fluctuations in landscape connectivity have been linked to the 

evolutionary radiation of whole groups of animals. In lakes of east Africa, for instance, the 
explosive speciation in cichlid fishes has been linked to intermittent changes in water level 
[Sturmbauer & Meyer, 1992; Kornfield & Smith, 2000]. During periods of high water level, 

environments are connected, but become fragmented when water levels are low. Similarly, 
Hewitt [2004] argues that repeated glaciations throughout the Quaternary (period from ca. 
2.6  106 years ago to present) caused species ranges in North America and Europe to 

fragment, leaving surviving populations in isolated refugia. These isolated populations 
diverged genetically, but later reunited, creating a complex genetic patchwork within some 

species, and sometimes leading to speciation. Affected species include the European 
hedgehog, Chorthippus grasshoppers and bears. Numerous similar parapatric species occur 
in the mountains of Sulawesi, Indonesia, that are thought to have diverged during periods of 
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habitat fragmentation [Butlin et al., 1998]. Taxa include Chitaura grasshoppers, macaques, 
pond-skaters, cicadas, carpenter bees, butterflies, limacodid moths and tiger beetles. 
Likewise, Amazonian insects are thought to have diversified in response to fluctuating 

connectivity in forest canopy density [Cowling et al., 2001]. 

 
Habitat fragmentation at fine temporal scales does not always lead to speciation: instead, 
the outcome may be formation of genetic suture zones, where populations that have 

diverged while separated meet and interbreed. Some authors suggest that fragmentation 
may even contribute to evolutionary stasis. For example, Bennet [2004] argues that 
Milankovitch climate oscillations, which occur on the order of 104–105 years, cause continual 

changes in the direction of selection, preventing (sub-)populations from adapting locally and 
therefore speciating. Similarly, Coope [2004] notes the prevalence of stasis among 
temperate Quaternary insect species despite the appearance of incipient ecological species in 

modern fragmented fauna. Clearly, there is still much to be discovered about the impact of 
habitat fragmentation on evolution. The simulation model investigates in the next chapter is 
one step in this direction. 
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Chapter 10: 

10. DPE and Perpetual Novelty and Sustained 
Diversity in Landscape Ecosystems 

 

 
A simulation model of adaptive radiation in landscapes is presented. In the model, 
organisms normally exist within a connected landscape in which selection maintains 
them in a stable state. Intermittent disturbances (such as fires, commentary impacts) flip 
the system into a poorly connected DPE phase, in which populations become 
fragmented, freeing up areas of empty space in which selection pressure changes and 
genetic variation predominates. The simulation results show that this DPE mechanism 
facilitates the appearance of complex diversity and perpetual novelty in a landscape 
ecosystem. A detailed analysis of the FL that emerges from the genotype model 
employed in the simulation provides a better interpretation context for the results, 
assesses the role of directional selection caused by environmental alterations in 
disturbed areas. The analysis shows that the genetic FL employed in the simulation 
model exhibits several biologically unrealistic properties, however, these issues do not 
affect the validity of the results. The subsequent chapter discusses improvements to the 
genetic FL utilised here. 

 
 

The material presented in this chapter is based on the following publications: 

 
 G. Paperin, D. G. Green, S. Sadedin, T. Leishman (2007): 

A Dual Phase Evolution Model of Adaptive Radiation in Landscapes. 
3rd Australian Conference on Artificial Life (ACAL’07). Ref: [Paperin, Green, et al., 2007b]. 

 G. Paperin, D. G. Green, A. Dorin (2007): 
Fitness Landscapes in Individual-Based Simulation Models of Adaptive Radiation. 
2007 International Symposium on Computational Models for Life Sciences (CMLS’07). Ref: [Paperin, Green & Dorin, 2007]. 

 
 

One mechanism that can facilitate perpetual evolutionary novelty in ecosystems is 
environmental disturbance. It acts by affecting the connectivity of interactions within 
ecosystems and by unsettling systems away from local optima states (sections 9.2 and 9.3). 

To support this proposition I use a series of simulation-based experiments with a landscape 
ecosystem model. The experiments concentrate of the role that DPE phase changes caused 
by disturbances play in evolutionary dynamics of landscapes.  
 

The experiments are performed on an individual-based simulation model of species evolution 
in landscapes. In the simulation, recurrent phase transitions in landscape connectivity caused 
by intermittent disturbances lead to continuous usage of new habitat niches and to increased 

diversity. Analysis of simulation results reveals that adaptive radiation is facilitated not only 

though changes in landscape connectivity, but also through environmental alterations in 
disturbed areas that affect the evolutionary FL. Thus, I conclude this chapter with a detailed 

examination of the model FL and its evolutionary properties. The examination shows that the 
model FL exhibits a number of properties not found in biological FLs, however, these 
differences do not affect the validity of simulation results. Based on examination of the 
model FL and on recent results in speciation theory, I propose and apply an improved FL 

model in the next chapter. 
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10.1. Simulation model of adaptive radiation in landscapes 
 

The material presented in this section is based on the following publications: 

 
 G. Paperin, D. G. Green, S. Sadedin, T. Leishman (2007): 

A Dual Phase Evolution Model of Adaptive Radiation in Landscapes. 
3rd Australian Conference on Artificial Life (ACAL’07). Ref: [Paperin, Green, et al., 2007b]. 

 
 
In order to further investigate the effect of the DPE-process on evolutionary ecosystems, I 

use an individual-based simulation model. The model investigates the consequences of 
recurrent DPE phase changes caused by disturbances on adaptive radiation exhibited by a 
population of organisms in a landscape. The current model is based on a previous model of 

adaptive radiation [Gavrilets & Vose, 2005] that did not incorporate DPE. 
 

10.1.1. Overview 
 
Here I describe the model and give parameter values used in the basis scenario. In appendix 
A I provide additional details. Sensitivity analysis that systematically varied parameter values 

is discussed in appendix A and section 10.1.2.3, as applicable. 
 

The model consists of a population of haploid individuals situated on a two-dimensional 
landscape. The landscape consists of a 100100 grid of cells. Each cell has a maximum 

carrying capacity of up to 4 individuals 

 
The environment allows 60 possible habitat niches, where each niche is represented by a 
string of 20 bits; a bit represents the requirement, that a particular trait must be present (1) 
or absent (0) in an individual in order to be well adapted to that niche. The niches are not 

location specific (section A.1.1). Individuals’ genotypes are also represented by bit-strings of 
length 20; the bits represent the presence (1) or absence (0) of the above traits (i.e. 
genotype = phenotype). The individuals evolve to adapt to one of the niches. At each time-

step an individual is assumed to occupy the niche which best matches the individual’s traits 
(section A.1.2).  
 

The fitness of an individual is determined in proportion to the hamming distance between the 
individual’s genotype and its niche and is scaled by the niche condition (section A.1.2). The 
niche condition is a number between 0 and 1 that describes how appropriate a particular 
niche is within the current environment (e.g., in a desert environment, the niche ―hot & dry 

sand‖ may have condition = 1 and individuals well adapted to that niche will have a high 

fitness; individuals which are equally well adapted to the niche ―cold and wet soil‖ will have a 
low fitness as such niche will have a much lower condition in this climate). 30 out of the 60 
model niches are called normal, they have a condition = 1. The other 30 niches describe the 

environmental conditions short after a disaster. In the basis setup, in which there are no 
disturbances, the condition of these disaster-niches is set to 0.2. 
 

The life-cycle of the model organisms is reproduction — selection — dispersal (section A.1.3), 
the generations are non-overlapping. Individuals mate within their occupied cell only. Each 
individual in a cell is selected once as mother. A father is then randomly selected from the 
remaining individuals of the cell (regardless of their niche). If there is only one individual in a 

cell, it will engage in hermaphroditism. The number of offspring each couple produces is 
Poisson-distributed with λ  = 5. Reproduction is through free recombination with each trait 

being inherited from either parent with equal probability. Each offspring is subject to a 
mutation rate of 10-5 per gene, which corresponds to background mutation rate in nature 

[Russell, 1994]. Individuals mate regardless of their habitat niche. As only 60 of all possible 
20-bit strings represent actual niches, the density of well-adapted genotypes is low. Hence, 
offspring of individuals existing in different niches are likely poorly adapted to either niche 

and have low fitness. Sub-populations adapted to different niches are thus postzygotically 
reproductively isolated and represent different species (section A.1.5).  
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Once all individuals have mated, the old population is replaced by the offspring. It is then 
determined which individuals of the new population will survive to the age of reproduction, 
by reducing the number of individuals in each cell to its carrying capacity. The probability of 

survival is given directly by an organism’s fitness (section A.1.6). Finally, the surviving 

individuals may disperse across the landscape. With probability of 0.1, each individual will 
migrate to one of the neighbouring cells (section A.1.7). After all individuals have migrated, 
the current generation will engage in reproduction and complete the live-cycle. 

 
The model is initialised with a small population of clones of 2 randomly chosen individuals 
and thereafter simulated for 40 000 generations (section A.1.4). 

 
There are three basic measurements that describe the general behaviour of the model: 
 

 The number of utilised niches (or the number of species) at any given generation t is 

the number of distinct niches at time t occupied by at least one individual. 

 
 The niche proportion (species proportion) of niche M at generation t is the proportion 

of individuals that occupy niche M out of the total modal population at time t. 

 

 The average niche fitness of niche M at time t is the average fitness of all individuals 

that occupy M at time t. 

 

10.1.2. Scenarios 
 

10.1.2.1. Basis scenario 

 
Initially, a series of model runs was performed without any disturbances. The results are 

generally in line with intuitive expectations and with the dynamics observed by Gavrilets and 
Vose [2005]. Here I outline the basis dynamics of the model in sufficient detail to interpret 
further experimental results. A more detailed description and an analysis is given in appendix 

section A.2. 
 
At the beginning of the simulation there is a burst of adaptive radiation which leads to a 
large number of niches being utilised. After a while (typically 5 to 10 thousand generations), 

the number of utilised niches begins to decline slowly. Most niche proportions fall below 0.1 
and then either engage in uncorrelated fluctuations or decline to 0. The proportions of 1 to 3 
niches typically remain above the threshold of 0.1. Out of these ―dominating‖ niches, one 

typically grows in proportion slowly, while the others decline accordingly. Sometimes, two 
rather than one niches gain a stable proportion while the others decline (Figure 10.1, Top). 
 

In addition, some patterns occurred that were not initially expected from the model, but are 
known to occur in nature. These patterns include the dominance of lower-fitness populations 
over closed spatial patches [Green, 1989] and the occurrence of stable hybrid zones [Barton 
& Hewitt, 1985] maintained by a balance between dispersal and selection against hybrids. 

These observations provide an indication that the model correctly captures the relevant 
landscape dynamics and support the validity of experimental results (chapter 2 and [Grimm 
et al., 2005]). 

 

10.1.2.2. Disturbances 

 
The basis scenario was modified such that at each generation a disaster occurred with 
probability 510-5. During each disaster, all individuals in most landscape cells are wiped out. 

The affected cells are selected by setting a random point in the landscape as disaster centre 
and wiping out all cells within a certain radius around the centre. The radius is drawn from a 
normal distribution with a mean of 30 cells. Analysis (section 10.1.4) reveals that if the 
average radius exceeds a certain threshold, the model behaviour is not sensitive to the 

impact radius. Then, a new impact centre is randomly selected. This process is repeated until 
95% of cells are wiped out. Whatever the nature of a disaster (bush fire, volcanic eruption, 
disease, etc) it does not only wipe out the population in affected areas, but also alters the 

local environment. To model this, the conditions of normal niches in areas affected by the 
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disaster are reduced to 0.2, and the conditions of the disaster-niches in these areas are 
raised to 1. Sensitivity analysis (section 10.1.4) reveals that reducing the normal niche 
condition to any value below 0.5 does not significantly affect the qualitative system 

behaviour. This altered environment is maintained at the impact sites for several thousand 

generations and then stepwise returned to normal using a linear interpolation between the 
disaster environment and the normal environment. This strategy is similar to a number of 
cellular landscape models that incorporate disturbances (e.g. [Green, 1989]). 

 
The general model behaviour in the disaster scenario can be described as follows: A disaster 
kills a large part of the population, wiping out entire niche-populations. The number of 

utilised niches therefore drops. However, the remaining population can now expand into the 
freed-up areas and colonise the disaster-niches available in the disturbed landscape, which 
leads to a quick growth of utilised niches. As the disturbed areas recover from the disaster, 

some of the normal niches are re-populated. In addition, some of the normal niches not used 
before the disturbance are also utilised. By the time the landscape has fully recovered, the 
number of utilised niches is typically large. As the landscape is fully populated at this point, 
selection now slowly reduces the number of utilised niches until the next disturbance (Figure 

10.1). 
 
 

 
 
 

  
  

  
  

Figure 10.1. Typical model runs. 

Basis case (top). Left: All niche proportions are displayed. An initial burst of adaptive radiation is 

followed by populations of 3 niches taking over the entire population. After 40,000 generations it can be 

expected that a single niche will soon take over the entire landscape. Right: Number of utilised niches at 

each generation from the same simulation run. The graphs suggests that at any time, there are several 

niches that are occupied but have very low proportions. 

Disaster case (bottom). Left: All niche proportions are displayed. While in long phases between 

disturbances the dynamics are similar to the basis scenario, disasters are followed by phases of intense 

variation. After the effects of a disaster have faded out, new niches appear to be colonised. Right: the 

number of utilised niches drops immediately after a disaster as some niche populations are wiped out. 

Reduced competition in the freed-up areas allows new genetic variations to colonise new niches. 
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10.1.2.3. Sensitivity analysis 

 
Sensitivity analysis reveals that the model is sensitive to extremely small parameter values. 

For instance, the disaster dynamics described here could not always be observed on grids of 
size 3030 and smaller. This may be because the spatial distribution of genotype differences 

is too small on grids of this size. Runs involving 8 and less niches also did not always 
produce the disaster scenario dynamics. This was mostly due to the fact that all niches were 
utilised and no further diversification was possible. In addition, selection will always drive the 
genotypes towards the available niches and a very small number of niches will work strongly 

against diversification. A very small number of traits (< 10) also tended to not produce 
interesting dynamics. This is probably due to the small number of possible genotypes in such 
a setup and a small mutation probability per genotype. Once the parameters exceed some 

threshold, the qualitative dynamics of the model are not sensitive to specific values. In 
general, the parameters used for both, the basis and the disaster scenario, lie well above 
these thresholds. Of course, particularly large parameter values lead to unreasonably long 

simulation run times. The strategy for choosing parameter values was therefore to choose 
values as large as possible, while still achieving a reasonable computation time (one model 
run on a workstation – Pentium 4 Prescott, 3.2 GHz, 1GB RAM – takes approx. 9 hours). 
 

10.1.3. Results 
 

 

  
  

Figure 10.2. Measurement results of typical runs. Measurements were taken every 250 
generations. Measurements taken during variation phases (when crowedness < 0.9) are removed. 

Basis scenario (left): Initially, a burst in niches turnover, Shannon diversity as well as species richness 

can be observed. After a while, selection inhibits diversity and further turnover of niches. 

Disaster scenario (right): Variation phases induced by disasters are followed by a jump in diversity as 

well as the discovery of new habitat niches. 

 
 

The main research question posed to the current model is to investigate the connection 

between disturbances and evolution in landscapes. The hypothesis is that by affecting 
landscape connectivity disturbances facilitate novelty and diversity. Two quantities measured 

in the model offer insights into this connection: niche turnover and diversity. 
 
Niche turnover is the number of niches that have been utilised throughout the history of the 
landscape up to a certain point of time. Note that as niche populations are expected to be 

reproductively isolated (section A.1.5), this corresponds to species turnover. 
 
Diversity is a necessary basis on which selection acts. While continual evolutionary 

innovation does not necessarily lead to increased diversity, a certain degree of diversity is 
required for such innovation. There are various ways to measure diversity [Purvis & Hector, 
2000; Rojas, 2004]. As phylogeny (taxonomy) based measures are not meaningful within 

the model, I apply several information theoretic measures: species richness (taken here as 
niches richness) as well as the Simpson, Shannon and Pielou measures of diversity [Rojas, 
2004]. 
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In order to ensure the comparability of results between the scenarios, I calculate the 
turnover of all niches as well as the turnover of normal niches only. This is because disaster-
niches are expected to be rarely utilised in the basis scenario. 

 

 

 

Simpson diversity Shannon diversity Pielou diversity 

Min 

val. 

Max 

val. 
Mean 

Std. 

div. 

Min 

val. 

Max 

val. 
Mean 

Std. 

div. 

Min 

val. 

Max 

val. 
Mean 

Std. 

div. 

Basis 

scenario 
0.01 0.75 0.42 0.19 0.04 2.20 1.10 0.50 0.03 0.58 0.35 0.13 

Disaster 

scenario 
0.18 0.90 0.60 0.17 0.47 3.81 1.87 0.76 0.26 0.69 0.46 0.11 

 

 

Species richness Niches turnover (all) Niches turnover (normal) 

Min 

val. 

Max 

val. 
Mean 

Std. 

div. 

Min 

val. 

Max 

val. 
Mean 

Std. 

div. 

Min 

val. 

Max 

val. 
Mean 

Std. 

div. 

Basis 

scenario 
0.09 1.89 0.82 0.52 2 9 5.38 1.88 2 9 5.29 1.79 

Disaster 

scenario 
0.09 4.15 1.86 1.06 6 22 14.8 3.7 3 11 8.05 1.88 

 
Table 10.1. Niche turnover and diversity measured at the end of each run. 20 control 

runs were performed for each scenario. Given are the minimum and the maximum values, the 

average, and the standard deviation. Measurements taken during variation phases (when 

crowedness < 0.9) are discounted. Two-sample t-tests confirm with confidence 99% ( = 0.01) 

that all means are higher in the disaster scenario. 

 
 

 
 

Figure 10.3. Niche turnover and diversity measured at the end of each run. 20 control runs 

were performed for each scenario and measurements were taken at the end of each run. Plotted are 

the mean values for the different diversity and turnover measures over the 20 runs (data from Table 
10.1). Two-sample t-tests confirm with confidence 99% ( = 0.01) that all means are higher in the 

disaster scenario. 

 
 

During variation phases following disasters, the model population exhibits increased 
diversity. This is expected and the primarily question in this context is whether this diversity 
persists into the next balance phase. To verify that, diversity measurements taken during 

variation phases need to be discounted. As selection in the model is due to restricted 
carrying capacity of the landscape cells, selection is inhibited while the landscape is under-
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populated. Let crowdness be the degree to which the landscape is populated relative to its 

maximum possible population. Then, variation phases in the model are defined as phases 
during which crowdness < 0.9. 

 

crowdness  
current population current population

maximum population number of grid cells×cell carrying capacity
 

 

For both, the basis and the disaster scenarios, 20 control runs are performed. At intervals of 
250 generations, the turnover of utilised niches and the four measures of diversity described 
above are measured. Measurements taking during variation phases (when crowdness < 0.9) 

are discounted. The results are shown in Table 10.1 and Figure 10.3. Characteristic 

simulation dynamics are shown in a plot of a typical experimental run (Figure 10.2). 
 

10.1.4. Discussion 
 
The results of the simulation experiments show that recurrent disturbances facilitate 
perpetual novelty and diversity in the model. Indeed, all four measures of diversity as well as 

both measures of niche turnover are consistently higher in the disaster scenario compared to 
the scenario without disasters. Two-sample t-tests confirm with confidence 99% ( = 0.01) 

that in the disaster scenario, the means of all of the above statistics are significantly higher 
(Table 10.1 and Figure 10.3). 
 

Theoretical arguments (section 9.2) and the emergence of several of nature-like dynamics 

within the model (section A.2) imply that these results are likely applicable to real landscape 
ecosystems [Grimm et al., 2005]. 

 
As discussed in section 9.2, co-evolution is a possible mechanism behind natural novelty. 
However, the present model does not include any species interactions, supporting the earlier 

argument that sustained novelty does not depend on co-evolution. Although such 
investigation is beyond the scope of this study, it would nevertheless be interesting to see 
this work extended to incorporate co-evolution in some form. For instance, this may be done 
by varying the normal niches over time through introducing new niches, removing existing 

niches or varying the niche conditions.  
 
It is important to consider the specific means in which disturbances facilitate novelty and 

diversity in the model. Are these mechanisms the DPE phase changes suggested in section 
9.2, or are there other forces at work? There are two ways in which disturbances facilitate 
continuous novelty in the model. 

 
First, disturbances affect the connectivity of two important interaction networks within the 
landscape. One is a network of reproductive interactions between individuals in different cells 
that occur through migration. It facilitates gene flow and acts against adaptive radiation. By 

wiping out large areas, disasters separate the remaining populations in disconnected islands, 
preventing gene flow between sub-populations. This can lead to divergence of two population 

islands through genetic drift. The second is a network of unoccupied cells. An increased 

presence of such cells, cased by disturbances, disrupts gene flow and aids percolation by 
new species through providing invasion paths and areas with altered selection regimes. In a 
well-adapted population, random mutations are likely to be selected out. As selection is 

temporarily inhibited after a disaster (because the freed-up cells are not filled to their 
carrying capacity), mutations can lead to adaptations to new niches, even if the fitness 
within those niches it initially low. 
 

The second mechanism through which disturbances facilitate continuous novelty in the 
model, is the altering of the environment that leads to increased condition of disaster-niches 

and poorer condition of normal niches in disturbed areas. The altered conditions result in 

directional selection towards disaster niches even after the disturbed areas are repopulated. 

By themselves, altered niche conditions are not expected to lead to increased adaptive 
radiation: even lower-fitness populations can persist once they occupy a significant habitat 
area for a long time (section A.2). However, when altered niche conditions occur is areas 
that have previously been freed-up by disasters, they can facilitate the establishment of new 

species adapted to the disaster environment. Such adaptations will be amplified by the high 
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condition of disaster-niches in disturbed areas, thus allowing new species to establish stable 

habitats against competition from readily established, more numerous populations. 
 
In order to further investigate the relative importance of the two above mechanisms for 

facilitation of adaptive radiation through disturbances, I performed a short series of 
additional experiments. 
 

In the first set of experiments I varied the radii of disaster impacts. In large, the results 
show that when the radii of the disasters are small, the dynamics of the disaster scenarios 
cannot be observed. Small disaster sizes are essentially equivalent to selecting the cells 
affected by disasters in an independently randomly distributed manner (Figure 10.4). Rather 

than freeing up large areas, such method leads to feeing up many small patches which will 
be immediately repopulated by individuals from remaining population sites, which will, on 
average, be close by. The resulting variation phase of inhibited selection will be very short 

and not sufficient for sub-populations to diverge. In nature, sites affected by disasters are 
not independently distributed. If a landscape patch was affected by a disaster, the nearby 
patches are more likely to be affected than those far away. Although further research of the 

relationship between particular disaster types (impact distribution, size, etc.) and their 
effects (diversity, niche utilisation, etc.) is beyond the scope of this work, such research may 
provide interesting insights. 
 

 

  
  

Figure 10.4. Schematic representation of different disaster sizes. Areas cleared by a disaster 

are white, remaining vegetation – black. 

Left: Large radii of disaster impacts free up to vast continuous areas. Due to limited migration such 

areas take tong time to be re-colonised and the altered selection regime lasts longer. 

Right: Small radii of disaster impacts result in an even distribution of remaining unaffected patches 

across the landscape. Starting from these patches, extinction areas can be re-colonised quickly and 

the altered selection regime lasts for a shorter time. 

 

 
In a further set of experiments I modified the disasters to affect the niche conditions without 
killing off existing individuals. As expected, the dynamics of this scenario do not differ 

significantly from the basis scenario that does not incorporate any disturbances at all (data 
not shown). 

 

Finally, I performed a set of experiments where disasters free up the affected areas, but do 
not alter the environment (i.e. niche conditions remain constant). In large, new species occur 
after disturbances in the same way as in the original disaster scenario. However, they 
typically do not establish stable populations and are quickly displaced by previous species. 

After measurements performed when crowdness < 0.9 are discounted, the increase in niche 

turnover and diversity is not significant relative to the basis scenario. 
 
In summary, the results show that both, recurrent DPE phase changes in landscape 

connectivity as well as alteration of the environment in disturbed areas are necessary for 
sustained perpetual novelty and diversity to emerge in the model. This conclusion 
corresponds to previous research on evolution of landscape composition. For instance, Green 

[1982; 1989] has arrived at similar conclusions when analysing the effects of forest fires on 
the basis of empirical data. 
 

In the next section I examine the FL used in the model. The analysis is aimed to elicit a 
better context for the simulation results by achieving a better understanding of the FL.  
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10.2. Detailed analysis of the model fitness landscape 
 

The material presented in this section is based on the following publications: 

 
 G. Paperin, D. G. Green, S. Sadedin, T. Leishman (2007): 

A Dual Phase Evolution Model of Adaptive Radiation in Landscapes. 
3rd Australian Conference on Artificial Life (ACAL’07). Ref: [Paperin, Green, et al., 2007b]. 

 G. Paperin, D. G. Green, A. Dorin (2007): 
Fitness Landscapes in Individual-Based Simulation Models of Adaptive Radiation. 
2007 International Symposium on Computational Models for Life Sciences (CMLS’07). Ref: [Paperin, Green & Dorin, 2007]. 

 G. Paperin (2007): 
PhD candidature confirmation report. 
Report reviewed and accepted by an independent examination panel of the Faculty of IT, Monash University. 

 
 
The simulation model presented in the previous section showed that recurrent disturbances 

facilitate perpetual novelty and diversity in landscape ecosystems through two main 
mechanisms: recurrent DPE phase transitions in landscape connectivity, and alteration of the 
environmental conditions in disturbed areas. Such alterations affect the FL and change local 
evolutionary dynamics. This result prompts for a further analysis of the FL used in the 

simulation. In this section I discuss the FL that results from the genotype model employed in 
the simulation and perform analytical and numerical analyses of evolutionary properties of 
the FL. 

 

10.2.1. Choice of the genetic model 
 

The genetic model employed here is based on a previous study of adaptive radiation in 
landscapes that uses a standard genetic model (section 10.2.2), however, there are other 
standard FL models frequently used in simulation studies of evolutionary dynamics. For 

instance, the N-k FL model is frequently employed due to its simplicity and theoretical 
relevance, as well as due to a convenient possibility to tune the ruggedness of the FL via the 
k parameter (section 6.2.3). However, the present simulation concentrates on creation of 

novelty by means of adaptive radiation. Hence, it requires a notion of species and thus of 

reproductive isolation. 
 
Genetic models such at the N-k FL do not incorporate a notion of reproductive isolation 

necessary to investigate adaptive radiation. A common approach to defining reproductive 
isolation in such models is to assume that two genotypes that have sufficiently diverged from 
one another are incompatible (see [Gavrilets, 2004] for examples); i.e. reproductive isolation 
is a (possibly smoothed) threshold function of genetic divergence between individuals. This 

threshold can have great impact on the model’s dynamics, but any threshold is necessarily 
arbitrary – a highly undesirable situation. 

 

An alternative approach to determining the genetic compatibility of two model individuals is 
to simulate a number of hypothetical mating events and to determine the viability of 
offspring. However, as the number of individuals in simulations may be large, and the 

number of possible mating pairs even larger, this approach is often impractical. Moreover, 
many simulations, such as the model presented here, are not only interested in reproductive 
isolation between pairs of individuals, but also in separating the individuals in reproductively 
isolated groups (species). Determining such groups, their number and their spatial 

distribution may require further arbitrary parameters and can be computationally infeasible, 
even if pair-wise genetic compatibility is known. (Note – determining a degree of 
reproductive isolation in simulations incorporating a relatively small number of individuals 

may be feasible – see model in section 11.4.) 
 
The above arguments imply that a genetic FL model suitable for simulations such as the one 

discussed in this chapter must at least fulfil the following requirements: 
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 It must be computationally feasible to determine whether any two individuals are 
reproductively isolated. 

 

 It must be computationally feasible to cluster the entire population in reproductively 

isolated groups. 
 

 Unsupported or arbitrary parameters (e.g. divergence thresholds) must be avoided 

where possible. 
 
The study by Gavrilets and Vose [2005] has a focus that is related to the current study 

(adaptive radiation dynamics in landscapes) and utilises a standard genetic model that fulfils 
the above requirements. Thus, a modified, but equivalent (section 10.2.2) genetic 
configuration was chosen for the current model. 

 

10.2.2. Equivalence between the employed genetic model and a 

standard niche-based additive quantitative trait model 
 
The significance of the analysis of the FL employed in the current simulation goes beyond the 
study presented in this chapter. The analysis also applies to a standard genetic model 

employed in other studies. This correspondence is shown in this sub-section. 
 
The genotype model used in the present simulation study is inspired though a previous study 

by Gavrilets and Vose [2005]. The FL in that study is based on a standard genetic model – 

the additive quantitative trait model [Gavrilets, 2004, chap. 2 and 8]. Unlike the approach 
taken here, the additive quantitative trait model has an explicit genotype-phenotype 
distinction. That genetic model has been used in a number of previous studies (e.g. see 

several listed by Gavrilets [2004]), in particular it can be applied to environmental 
requirements towards individual traits, such as niche requirements, as it is done here. 
 

The genetic model employed in the simulation described in this chapter is equivalent, and 
computationally more efficient, to the additive quantitative trait model. The equivalence 
applies when number of traits in the current simulation model equals to number of traits  

number of loci per trait in the standard model. 
 
In the additive quantitative trait model with niches, the phenotype Ph of an individual  is 

represented by T real values between 0 and 1. Each value describes the degree to which a 

certain trait is expressed in the phenotype. The genotype G of  is represented by a 

sequence of L diallelic loci (say, 1 or 0). The genotype is split into non-overlapping groups of 
r loci per group (L = r  T), the loci in each trait group control the expression value of one 

trait, which is determined by the proportion of 1s in that group. 
 

Populations adapt to live in ecological niches. A niche M is represented by a binary string: 
M = (m1, m2, …, mT), where mi  {0, 1}, i = 1…T. The binary values mi are the trait 

requirements of the niche M: if mi = 1, then trait i must be present in an individual in order 

to be fully adapted to niche M; if mi = 0 – absent. The niche-distance of an individual  with 

respect to a niche M is the average distance between the trait values of  and the trait 

requirements of M. 

 
For example, let r = 3, G = (000 001 011 010 110 111 101 100), M = (10011101): 

 

Genotype G: 0 0 0 0 0 1 0 1 1 0 1 0 1 1 0 1 1 1 1 0 1 1 0 0 

Phenotype Ph: 0.000 0.333 0.667 0.333 0.667 1.000 0.667 0.333 

Niche M: 1 0 0 1 1 1 0 1 

Niche-distance: 1 1/3 2/3 2/3 1/3 0 2/3 2/3 

 

dist(Ph, M) = 
1 1 2 2 1 2 2

× 1+ + + + +0+ +
8 3 3 3 3 3 3

 
 
 

=
1 13

×
8 3

 = 
13

24
 0.54167 

 
The fitness of  is then a continuous, non-increasing function of dist(Ph, M).  
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Observe that the proportion of 1s in a trait-group of size r is equivalent to the hamming 

distance of such trait group to a sequence of r 0s normalised by r. For a niche M, generate a 

niche M’ by replacing each 0 with a sequence of r 0s and each 1 with a sequence of r 1s. 
Now, instead of calculating the distance between Ph and M, calculate the distance between 

G and M’ and normalise by the number of components. 

 
In the above example, M’ = (111 000 000 111 111 111 000 111) and: 

 
 

Genotype G: 0 0 0 0 0 1 0 1 1 0 1 0 1 1 0 1 1 1 1 0 1 1 0 0 

Niche M’: 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 

Niche-distance: 1 1 1 0 0 1 0 1 1 1 0 1 0 0 1 0 0 0 1 0 1 0 1 1 

 
 

dist(Ph, M’) = 
1+1+1+0+0+1+0+1+1+1+0+1+0+0+1+0+0+0+1+0+1+0+1+1

8 3
 

 
and 

dist(Ph, M’) = 
13

8 3
= 

13

24
 

 
as before. Observe that the ordering of the traits does not play a role in the model. Flipping 
any one bit in the genotype will either increase or decrease the niche distance by 1/24 
(generally, by 1/L). Clearly, this is also the case under any permutation of the trait order. 

Therefore, it is not necessary to group the trait requirements of M’ into consecutive 
sequences of r 1s or 0s. The fitness of  in M’ can be calculated directly as a function of its 

genotype G: fitnessM’() is a continuous, non-increasing function of dist(G, M’). Gavrilets 

[2004, chap. 2 and 8] uses a Gaussian function, but other choices are possible. Note that 
when L is constant, the niche-distance function may not require normalisation, if a suitable 

fitness function is used. 
 
As a result, the additive quantitative trait model with niches described above is equivalent to 
a modified model that does not explicitly incorporate a phenotype. Instead, a larger number 

of discrete-valued traits, which are directly determined from the genotype, can be used. In 
the above notation this means: 
 

TNewModel  =  LNewModel  =  LOldModel  =  rOldModel  TOldModel 

 

The above modification simplifies the original genetic model and makes both, an analytical 
treatment and a computer implementation much easier. In addition, a computer 
implementation of the modified model can largely be realised using bit-arithmetic, which 

executes greatly faster than the floating point calculations required for the original approach. 
 

10.2.3. Analytical examination 
 
Let  be the set of all bit-sequences of length L and assume that there are S distinct goal 

sequences M1, M2, ..., MS (Mi  , i = 1...S). Denote the set of all goal sequences as , i.e. 

 = { M1, M2, ..., MS }  . Let dist(G, Mi) be the hamming distance between a sequence 

G   and a goal sequence Mi. 

 

A closest goal *MG  of a bit-sequence G is any goal Mi such that: 

 

*MG  =  , 
argmin

dist G M
M i
i

 

 

Note that a sequence G may have multiple closest goals. 

 
The closest-goal distance dmin(G) of a bit-sequence G is the hamming distance between G and 

any closest-goal *MG  of G: 
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dmin(G) = dist(G, *MG ) =   
1

min
dist G,M

i ...S
i  

 

The process of evolutionary adaptation towards habitat niches in the current simulation 
model can be formulated as an optimisation problem as follows: 
 
Starting with two initial bit-sequences randomly and independently drawn from , use an 

evolutionary algorithm (i.e. the model lifecycle) to evolve a population of bit-sequences 
G   while seeking to minimise the closest-goal distances towards a fixed set  of 60 goal 

sequences randomly and independently drawn from . 

 
In this formulation, a bit-sequence corresponds to a genotype and represents a point in the 

genotype space. Each of the S goal sequences corresponds to a niche and represents one 

global optimum on the fitness landscape. 
 
For the purpose of the following discussion, assume that that L is not small. Say, L > 10. 

 

Lemma 10.1: 

 
Let S = 1. Then, the number cd of possible bit-sequences G with the goal distance 

d = dist(G, M1) is: 

 

cd = 
L

d

 
 
 

 = 
 
L

d L d 

!

! !
 

 
Indeed: 
 

Consider d = 0. Clearly, there is exactly one sequence such that d = 0: M1 itself. 

 
Consider d = 1. There are L distinct sequences such that d = 1. Each can be obtained by 

flipping any one bit of the goal sequence. 

 
Consider 1 < d  L. For any such d, a corresponding bit-sequence can be obtained from the 

goal sequence by flipping any d bits, but no more than L bits can be flipped. There are 

L

d

 
 
 

 distinct ways to choose the bits to flip, q.e.d. 

 

Lemma 10.2: 

 
Let S = 2. Then, the largest possible closest-goal distance of any bit-sequence is 

max2(dmin) = L – 1.  

 
Indeed: 
 

There is exactly one bit-sequence G1 that has a hamming distance dist(G1, M1) = L towards 

M1, and only one bit-sequence G2 that has a hamming distance dist(G2, M2) = L towards M2 

(Lemma 10.1). Since M1 and M2 are distinct, G1 and G2 are also distinct. But as there is only 

one bit-sequence at distance L to M1 (namely G1), G2 must be closer to M1 than G1: 
dist(G2, M1)  L – 1. By an analogous argument, dist(G1, M2)  L – 1. 

 
Indeed, there may be a bit-sequence with the hamming distance dmin = L – 1: assume M1 

and M2 differ only at one bit. Consider a bit-sequence G’ obtained from M1 by reversing all 

bits. For such sequence, dist(G’, M1) = L and dist(G’, M1) = L – 1, so the distance of G’ to its 

closest goal is dmin(G’) = L – 1, q.e.d. 

 

Lemma 10.3: 

 
The previous results are now generalised. Let S   be the number of distinct goal sequences 

such that 1 < S  2L. Let maxs(dmin) be the largest possible closest-goal distance. Then, 

maxs(dmin) = L – k for a k such that 
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1

L

k

 
 

 
 + 1  <  S    

L

k

 
 
 

 + 1 

 
Indeed, this can be seen as a generalisation of Lemma 10.2: 

 
For S = 3, max3(dmin) = L – 1 by the same argument as in Lemma 10.2. In fact, that 
argument applies for all 1 < S  L + 1, because there are up to L – 1 goal sequences that 

have a hamming distance 1 to some arbitrary goal sequence M1. 

 
For S = L + 2, the largest possible closest goal distance is L – 2. This follows from the same 

argument as above, only in this case there are goal sequences that have a hamming 

distance 2 towards each other. This applies for all cases where the distance between any two 
goal sequences is not larger than 2. By Lemma 10.1, this is the case when: 
 

L + 1 <   S    
 1

2

L L 
 + 1 

 

or 

1

L 
 
 

 + 1 <   S    
2

L 
 
 

 + 1 

 
Exactly the same argument can be extended to any number S of goal sequences. When there 

are at least two goal sequences that have a distance k to each other, the largest possible 

closest goal distance is L – k. By setting d = k in Lemma 10.1 it is clear that it applies 

exactly when 

 

1

L

k

 
 

 
 + 1  <  S    

L

k

 
 
 

 + 1 

, q.e.d. 
 

 
The above analysis determines the maximum possible closest-goal distances. The closest-
goal distances are at maximum, when the goal sequences differ by the least possible amount 

of bits. The maximum possible closest-goal distance corresponds to the smallest possible 
genotype fitness and hence determines a limit for the valley depth and the slope steepness 
of the FL. The primary point of interest is, however, the distribution of genotype fitness when 
the goal sequences are randomly and independently selected from . This corresponds to 

distribution of closest-goal distances dmin(G) when the sequence space  contains S randomly 

and independently distributed goal sequences. 
 

Lemma 10.4: 

 
Let S = 1 and recall that cd is the number of bit-sequences G   such that dist(G, M1) = d. 

Then, cd is binomially distributed with the probability parameter p = 0.5, i.e. cd ~ Bin(L, 0.5). 

 
 

Indeed. There are 2L bit-sequences of length L, and by Lemma 10.1, there are cd = 
L

d

 
 
 

 

sequences at distance d. Hence, the frequency f of bit-sequences at distance d to M1 is 
2L

cd :  

 

1 1 1 1 1
1

2 2 2 2 22 2

L d L d d L d

L L

L

L L Ldc
f

d d d

 
 
                                                             

d  ~ Bin(L, 
1

2
) 

 
, q.e.d. 
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The mean of this distribution is 
2

L
 and the variance is 

4

L
. When both, L and the mean are 

large, this distribution can be approximated by a Gaussian distribution: f ~ Norm(
2

L
,

4

L
). 

Then, ca. 68% of goal distances lie within one standard deviation of the mean and ca. 95% 

of goal distances lie within 2 standard deviations of the mean. 
 
In other words, the distance to the goal of about 68% of sequences lies in the interval 

   1 1

2 2
L L , L L

 
  

 
, and of about 95% – in the interval    1 1

2 2
2 2
L L , L L

 
  

 
. 

 
For L = 15 it means respectively [6, 9] and [4, 11]; for L = 20, [8, 12] and [6, 14]; 

for L = 100, [45, 55] and [40, 60]. 

 
This implies that for a single habitat niche, the fitness of most genotypes is very similar and 
average. There are a few low fitness genotypes and a few high fitness genotypes with the 

global optimum being reachable from any point via a sequence of advantageous atomic 
mutations. As fitness in the model is a linear function of the closest-goal distance, the FL 
landscape around the majority of genotypes is nearly flat and selection pressures are thus 

weak.  
 
For S > 1 there are fewer genotypes of very low fitness (maximum closest-goal distance) 

(Lemma 10.3). For an independent distribution of goal sequences, the FL structure is 

expected to be even flatter. An analytical treatment of this general case is complex due to a 

large number of conditional probabilities involved. Instead, I perform a numerical analysis 
through a series of Monte Carlo simulations in the next section. 
 

10.2.4. Numerical examination 
 
In the previous section I provided an analytical examination of the FL used in the simulation 

study. The analysis also applies to a more general additive quantitative trait model with 
niches (section 10.2.2). Here I continue the analysis with numerical techniques. A range of 
statistical analysis techniques that can be used for FLs is discussed by Stadler [2002]. Here, 

use some of such techniques, as well as some methods specifically designed for the current 
investigation. The main objective is to obtain qualitative results about the FL structure that 
affect the interpretation of the experimental results. 

 

10.2.4.1. Fitness distribution 

 
The fitness distribution corresponds to the distribution of closest-goal distances. To 
determine this distribution, a complete genotype space  is created for L = 10, 15 and 20 

loci. For each genotype space S = 2, 10, 50, 100 and 500 random goal sequences (niches) 
are randomly and independently selected from  and the resulting frequency distribution 

(dmin) of the closest-goal distance dmin(G) for all G   is generated. 20 runs are 

undertaken for each pair (L, S) with new randomly created goal sequences for each run, the 
results are averaged. Over the 20 runs, the mean (dmin), the variance 2(dmin) and the 

standard deviation (dmin) are computed. The results are shown in Table 10.2, Table 10.3, 

Table 10.4 and in Figure 10.5. 
 

The measurements show that the distribution (dmin) is bell-shaped and slightly skewed 

towards smaller values. As the number of goal sequences increases, largest closes-goal 

distance shrinks slowly, however, still faster than the largest possible closest-goal distance 
determined in section 10.2.3. 
 

The fitness is a linear function of the closest-goal distance, thus (dmin) allows to draw 

conclusions about the fitness distribution on the simulation FL and the resulting evolutionary 
dynamics. 
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In cases where the number of niches is not very small (say, say S  10), the poorest fitness 

is fairly high, which means that fitness hills are gently sloped, and hence, selection is weak. 

This conclusion confirms the assumption made at the end of section 10.2.3. The majority of 
genotypes have similar fitness. This is an indication for the existence of neutral networks 

within the FL, although with very shallow canyons around the network ridges. Also, the small 

variance of the fitness distribution means that a recombination of two randomly selected 
genotypes is likely to have a fitness value that is close to its parents fitness. 
 

 
 
 
 

dmin 
Average number of genotypes 

S = 2 S = 10 S = 50 S=100 S=500 

0 2  10 50 100 500 

1 20 95 384 597 523 

2 88 338 532 324 1 

3 214 430 58 3 0 

4 305 143 0 0  

5 252 8    

6 115 0    

7 26     

8 2     

9 0     

 (dmin) 4.11 2.61 1.58 1.22 0.51 

2(dmin) 1.69 0.81 0.45 0.37 0.25 

 (dmin) 1.30 0.90 0.67 0.61 0.50 

      

Table 10.2. Frequency distribution of the closest-goal distance dmin on 

the model fitness landscape for L = 10 loci, averaged over 20 runs. 

 

 
 
 
 

dmin 
Average number of genotypes 

S = 2 S = 10 S = 50 S=100 S=500 

0 2 10 50 100 500 

1 30 150 741 1464 6650 

2 209 1029 4744 8549 20546 

3 899 4126 13719 17070 5068 

4 2623 9632 11946 5482 4 

5 5379 11409 1557 74 0 

6 7740 5519 10 0  

7 7699 859 0   

8 5171 33    

9 2270 0    

10 627     

11 107     

12 11     

13 1     

14 0     

 (dmin) 6.42 4.56 3.27 2.81 1.92 

2(dmin) 2.55 1.25 0.74 0.61 0.41 

 (dmin) 1.60 1.12 0.86 0.78 0.64 

      

Table 10.3. Frequency distribution of the closest-goal distance dmin on the 

model fitness landscape for L = 15 loci, averaged over 20 runs. 
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dmin 
Average number of genotypes 

S = 2 S = 10 S = 50 S=100 S=500 

0 2 10 50 100 500 

2 40 200 999 1998 9949 

3 380 1897 9447 18800 89929 

4 2278 11317 54940 106037 397708 

5 9658 46870 203227 342670 469104 

6 30639 137339 410223 450539 54354 

7 74739 271224 314757 125744 32 

8 141081 322906 53936 2686 0 

9 204699 198448 986 1  

10 225234 52997 1 0  

11 184756 5203 0   

12 110686 164    

13 47241 2    

14 13959 0    

15 2781     

16 369     

17 32     

18 2     

19 0     

 (dmin) 8.73 6.60 5.08 4.53 3.47 

2(dmin) 3.38 1.68 1.01 0.84 0.59 

 (dmin) 1.84 1.30 1.00 0.92 0.77 

      

Table 10.4. Frequency distribution of the closest-goal distance dmin on 

the model fitness landscape for L = 20 loci, averaged over 20 runs. 

 

 
 
 

 

 
 

Figure 10.5. Frequency distribution of the closest-goal distance. The 

mean (dmin) (top red line) and the standard deviation (dmin) (bottom blue 

line) of the closest goal distances for L = 20 loci and S = 2, 10, 50, 100 and 

500 goal sequences. Other values of L yield a qualitatively similar picture. 

X-axis: number of goal sequences. Y-axis: mean and standard deviation. 

(The rounding artefacts on axes labels are due to an issue in an early version 

of LiveGraph that was used to render this figure (chapter 3).) 
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10.2.4.2. Genotype reach cluster size 

 
In this and the following sub-sections I continue the analysis of the FL structure. All of the 

described experiments were initially performed for the same pairs (L, S) as in the previous 

section. The qualitative results are consistent across all pairs. The particular values of L and 

S are model specific and the main objective is to obtain a qualitative description of the FL. 

Thus, I illustrate the following discussion with data for a configuration of small values 
(S = 10, L = 15) only. For all measurements, the variation of values over different runs is 

small, implying consistent results. 

 
Define the reach cluster reach(G)   for a genotype G   as the set of all genotypes that 

can be reached from G by a number of successive atomic mutations without lowering the 

fitness. I independently choose 5000 random distinct genotypes and determine the size 
|reach(G)| of the corresponding reach cluster. The upper bound on the reach cluster size of 

any G   is || – 1 = 2L – 1 = 215 – 1 = 32767. Results are shown in Table 10.5. 

  

The spike in genotype frequency for large cluster sizes indicates that there is a large number 
of genotypes for which the reach cluster includes almost all genotypes. As reach(G) contains 

only genotypes that are no less fit than G, these must be low-fitness genotypes. This implies 

that most low-fitness genotypes can evolve into almost any genotype by a series of 

advantageous mutations. 
 
The spiky nature of the distribution in the face of the fact that most genotypes are of 
average fitness (section 10.2.4.1), implies that once a low-fitness genotype improved fitness 

along some evolutionary path, many alternative evolutionary paths become unavailable. 
 
 

Cluster size  
Number of genotypes  

from to 

0 3 24 (0.48%) 

4 10 642 (12.84%) 

11 50 856 (17.12%) 

51 200 182 (3.64%) 

201 2000 140 (2.80%) 

2001 5000 0 (0.00%) 

5001 10000 0 (0.00%) 

10001 15000 875 (17.50%) 

15001 20000 0 (0.00%) 

20001 25000 0 (0.00%) 

25001 30000 1573 (31.46%) 

30001 32768 708 (14.16%) 

    

Table 10.5. Frequency distribution of 5000 random 

genotypes according to the corresponding reach 

cluster sizes. 

 

 

10.2.4.3. Genotype distances along adaptive paths 

 

The next experiment elicits information about fitness canyons and the ruggedness of the FL 
by measuring the shortest adaptive paths that do not include deleterious mutations between 
pairs of genotypes. 
 

The average number of mutations separating two random genotypes is L / 2 = 15 / 2 = 7.5. 

I compare this with the number of non-deleterious mutations separating two random 
genotypes. A mean of this number that is significantly larger than L / 2, would indicate that 

detours must be taken to avoid valleys and thus a high degree of FL ruggedness.  

 
Table 10.6 shows the lengths of the shortest adaptive walk with non-deleterious mutations 
for 5000 randomly selected genotype pairs. The mean of the path lengths is larger than 
L / 2, but variance is also large, implying that detours are being taken consistently, but they 

are not long. Over 50% of the random genotype pairs do not have a non-deleterious 
mutational connection at all. In combination with the previous result, this means that 
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although a low-fitness ancestor may evolve to use almost any niche, two diverged sub-
populations will continue to diverge. This is an indication for decreased gene flow between 
diverged high fitness populations. 

 

 
Path length Number of pairs  Path length Number of pairs 

0 0 (0.00%)  9 397 (7.89%) 

1 1 (0.02%)  10 320 (6.36%) 

2 4 (0.08%)  11 152 (3.02%) 

3 49 (0.97%)  12 68 (1.35%) 

4 64 (1.27%)  13 32 (0.64%) 

5 153 (3.04%)  14 16 (0.32%) 

6 284 (5.65%)  15 4 (0.08%) 

7 412 (8.19%)  17 1 (0.02%) 

8 499 (9.92%)  18 0 (0.00%) 

Mean length: 8.01  No path: 2574 (51.17%) 

Std. Dev.: 2.07     

       

       

Table 10.6. Frequency distribution of 5000 random genotype pairs 

according to the length of the shortest adaptive walk between the 

genotypes that contains non-deleterious mutations only. 

 

 

10.2.4.4. Number of advantageous mutations 

 

Next, consider the number of advantageous atomic mutations for each genotype. For each 

G  , generate all L = 15 possible atomic mutations and determine N+(G) – the number of 

such mutations that have a fitness strictly higher than G. A typical result is presented in 

Table 10.7. The distribution of genotypes according to N+ is strongly skewed towards smaller 

values and the small number of better-fitness neighbours typically does not exceed L / 3. 

 

The genotypes G with N+(G) = 0 correspond to the S = 10 goal sequences representing 

global fitness maxima. It is easy to see that the FL has no local maxima that are not also 

global: 

Assume *MG  = (m1, …, mi, …, mL) is a closest goal for a genotype G = (g1, …, gi, …, gL) such 

that dmin(G) = dist(G, *MG ) > 0. Then, there is at least one bit gq in G that is different from 

the corresponding bit mq in *MG . By flipping gq in G, a new genotype G’ is obtained such that 

dist(G’, *MG ) < dist(G, *MG ). Thus G is not a local fitness optimum, q.e.d. 

 
The presence of non-global maxima is typical and important feature of biological FL (section 
6.2) and the absence of such maxima in the simulation FL indicates that some of 

evolutionary dynamics of the model may not fully reflect circumstance found in nature. 
 

 

 
N+(G) Number of genotypes  N+(G) Number of genotypes 

0 10 (0.03%)  8 1762 (5.38%) 

1 150 (0.46%)  9 2209 (6.74%) 

2 1008 (3.08%)  10 1783 (5.44%) 

3 3758 (11.47%)  11 942 (2.88%) 

4 7702 (23.51%)  12 805 (2.46%) 

5 7282 (22.22%)  13 635 (1.94%) 

6 2764 (8.44%)  14 422 (1.29%) 

7 1156 (3.53%)  15 380 (1.16%) 

       

Table 10.7. Frequency distribution of genotypes according to the number of 

better fitness neighbours. 

 
 



10. DPE and Perpetual Novelty and Sustained Diversity in Landscape Ecosystems 

 107 

10.2.4.5. Number of closest niches 

 
It is possible that a bit-sequence G   has multiple closest-goal sequences. Formally, if 

*MG    is a closest goal of G, then there may be another goal sequence #MG    such that 

*MG   #MG  and dist(G, *MG ) = dist(G, #MG ). 

 
For all genotypes G, I measure the number G of equidistant closest-goal sequences. Results 

(Table 10.8) show that ca. two thirds of genotypes have a unique closest-goal sequence, 

however, the remaining genotypes have two or more equidistant goals. 
 
The implication for the simulation model is that care must be taken to always assign a 

genotype that has multiple closest goals to the same niche. For the calculation of fitness, the 
choice of any of the closest-goal sequences is irrelevant, however, this choice is important 
for an determining of the number of species (utilised niches), species diversity and turnover, 
and habitats occupied by niche populations. The approach taken uses an arbitrary ordering of 

goal sequences that is fixed throughout the simulation. For genotypes with multiple closest 
goals, the goal with the smallest index in that ordering is always chosen. The resulting 
preference may affect the model dynamics in the sense that populations of niches with 

smaller indices have a selective advantage via niche choice. This, however, does not affect 
any of the research results. 
 

 
 

G 
Number of 

genotypes 

 

 1 20670 (63.08%)  

 2 7457 (22.76%)  

 3 3018 (9.21%)  

 4 1112 (3.39%)  

 5 393 (1.20%)  

 6 113 (0.34%)  

 7 5 (0.02%)  

     

Table 10.8. Frequency distribution of genotypes according to G – 

the number of equidistant closest-goal sequences. 

 
 

10.2.4.6. Hybrid fitness 

 
In a final series of tests I investigate the offspring of random pairs of individuals from 
different groups. In particular, I verify whether the hybrid fitness (the fitness of progeny of 

individuals from different habitat niches) is lower than the parents fitness. These tests will 
determine whether the species concept in the model is justified and whether populations 
adapted to different niches can be considered different species. 
 

Every measurement is averaged over 100000 independently selected random pairs of 

parents, for which offspring are created using free recombination (as in the simulation 
model) and no mutation.  

 
When completely random parents are considered, the mean offspring fitness is similar to the 
mean fitness of the population (as any child can be expressed as a mating outcome). 11% of 

random individual pairs belong to the same niche, 89% of pairs belong to different niches. I 
differentiate these cases and perform measurements for 100000 random pairs from the 
same niche, and for 100000 random pairs from different habitat niches. 
 

Offspring from parents existing in the same habitat niche: 

 
65% of offspring from parents that exist in the same habitat niche have the same fitness as 
their parents (or a fitness that is between the fitness values of parents). 

 
72% of offspring exist in the same niche as their parents, 28% of offspring exist in a 
different niche. Out of those who remain in the parents’ niche, 27% have a higher fitness, 

and 7% have a lower fitness, which means that fitness can be increased through 
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recombination. From offspring that exist in a different closest niche from their parents, 21% 
have higher fitness (in the new niche), and 14% have lower fitness. 
 

The informative value of these measurements is limited because parent pairs of any fitness 

are selected, and thus no specific niche adaptation is expected. Thus, I repeat the 
experiment while selecting only parents with closest-niche distance  4 (i.e. a fitness higher 

than population average, section 10.2.4.1). 
 

For such parents, a larger proportion (82%) of offspring belong to the same niche as their 
parents. This was expected for mating between better adapted individuals. For the offspring 
that exist in a different niche from their parents, the proportion of progeny with fitness lower 
than parents grows (34%), and the proportion of higher-fitness progeny (15%) falls. 

 

Offspring from parents existing in different habitat niches (hybrids): 

 
In total, 55% of hybrid progeny from any-fitness different-niches parents exist in the same 

niche as one of the parents, 45% exist in a niche that is different to the habitat niche of 
either parent. 
 

66% of hybrids have a fitness value that is either the same or between the fitness values of 
their parents. 16% have a higher fitness compared to their parents, 18% have a lower 
fitness. This shows that hybrids are not more likely to have a lower fitness than a random 

individual. In fact hybrid fitness distribution is similar to the fitness distribution of the entire 
population (section 10.2.4.1). However, since measurements are performed on parents of 
any fitness, offspring properties were expected to be similar to the general population. 
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Figure 10.6. Proportion of hybrids with lower fitness than both parents. For 

100000 random pairs of parents from different habitat niches, the proportion of offspring 

that have a larger closes-goal distance than either parent is calculated 
(L = 15, S = 10). Parents are chosen randomly and independently from different niches 

such that the largest closest-goal distance of either parent is not larger than 15, 4, 3, 2 

or 1 bits. 

 
 
As previously, the measurements are repeated while selecting only parents with 
closest-niche distance  4. For such pairs, only 47% of offspring have the same fitness as the 

parents, 13% have a higher fitness, and 40% have a lower fitness. This is higher than the 

proportion of lower-fitness offspring from same-niche parents, indicating that gene flow 
between adapted niche populations is reduced, but is still significant. 
 
Compared to any-fitness-parents, a higher proportion (62%) of hybrid offspring belong to 

one of the parents’ niches. From these hybrids, 37% have a lower fitness than the parents, 
and 14% have higher fitness. 
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For hybrids that do not belong to either of the parents’ niches, 46% have lower fitness, and 
10% have higher fitness than the parents. This shows that hybridisation leading to a new 
habitat niche is associated with a drop in fitness. 

 

The above measurements reveal that even for above-average pairs of parents from different 
niches, only 40% of offspring are less fit than the parents. I repeat the measurements for 
hybrids of parents with even higher fitness. For pairs with closest-niche distance  3, 65% of 

hybrids have lower fitness than both parents. For closest-niche distance  2, 81% of hybrids 

are less fit; and for closest-niche distance  1 – 91%. The results are shown in Figure 10.6. 

 
The measurements indicate that for highly adapted populations one can speak of reduced 
gene flow between niches. However, only for very-high-fitness populations the gene flow is 

reduced to a minimum.  
 

10.2.5. Conclusion 
 
The above discussion reveals several evolutionary properties of the adaptive FL used in the 
simulation. The particular genotype model was chosen for the experiments because it was 

used in previous simulation studies of adaptive radiation in landscapes (section 10.2.1), and 
because it is equivalent to a standard additive trait model (section 10.2.2). 
 

When fitness is a linear function of the closest-niche distance of a genotype and there is only 
one habitat niche available, the distribution of genotype fitness is binomial (section 10.2.3). 

As the number of niches increases, the distribution remains approximately bell-shaped, but 
becomes increasingly skewed towards higher fitness values (section 10.2.4.1). 

 
Low-fitness genotypes can potentially evolve towards any niche, but once adaptation steps 
towards some niche have been made, the number of potential adaptive trajectories fall 

quickly in a non-smooth fashion (section 10.2.4.2). The majority of genotype pairs do not 
have a connecting adaptive path (section 10.2.4.3). These properties reflect the general 
characteristics found in biological FLs (section 6.2). 

 
However, contrary to biological FLs, the FL employed in the simulation has no local optima 
that are not also global. The number of advantageous mutations resulting in viable 
genotypes is a significant proportion of the number of loci (section 10.2.4.4). When adaptive 

paths between genotypes exist, their shortest lengths tend to be similar to direct mutational 
paths (section 10.2.4.3). Thus, the FL has a low degree of ruggedness (i.e. there are few 
sudden fitness jumps), and fitness canyons are shallow if present at all (sections 10.2.4.1 

and 10.2.4.3). All possible genotypes are viable. 
 
A significant proportion of genotypes have multiple closes niches. Such genotypes can be 

interpreted as generalist or undifferentiated. Hybrids between genotypes adapted to different 
niches have a high probability to be not less fit than their parents, unless the parents are 
very high fitness individuals. Such hybrids can facilitate significant gene flow between 
different niche populations. This indicates that the assumption that niche populations within 

the simulation exhibit postzygotic isolation and are thus equivalent to species (section A.1.5) 
does not hold. However, this realisation does not affect the conclusions based on the 
simulation results about the effects of disturbances and changes in landscape connectivity on 

diversity and continuous discovery of habitat niches. Simply, the term species is not 
appropriate. The above FL analysis reveals that simulation results allow drawing conclusions 
about continuous discovery and turnover of new habitat niches, not new species; as well as 

about lasting diversity of adaptations to different niches, not different species. 
 
The dynamics observed in the simulation did not depend on reproductive isolation of niche 
populations. It is thus likely that if the utilised genotype model was modified to increase 

reproductive isolation of individuals from different niches and to minimise gene flow between 
niche populations, same general results were observed. 
 

In the next chapter I propose a new genotype model based on the additive trait model 
utilised here and the HFL model (section 6.2.4). I analyse the proposed technique and show 
that it does not exhibit many of the drawbacks of the genotype model used in this chapter. 
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Chapter 11: 

11. Evolution on Holey Fitness Landscapes 
 
 

Simulation models of evolution often incorporate disruptive (diversifying) selection while 
ignoring the viability and genomic compatibility issues. Other methods, such as the HFL, 
provide a biologically realistic model of genetic (in-)compatibilities, but do not 
incorporate ecological selection and are not explicitly spatial. Here, I combine existing 
techniques and introduce a genetic model that incorporates both, an explicit, biologically 
realistic treatment of genetic (in-)viability issues, and an inherent approach for relating 
genotype fitness to the ecological environment. The proposed model is can be used for 
within simulations studies incorporating HFL-genetics. A numerical analysis of the 
genetic FL exhibited by the model informs future studies and shows that the FL exhibits 
many biologically realistic properties. 
Based on the new techniques I examine how the HFL changes predictions for the 
maintenance of genetic diversity in the face of migration. Previous models suggest that 
ecologically-based reproductive isolation will rapidly collapse under migration. However, 
my simulation results indicate that an underlying HFL can often maintain diversity and 
may facilitate exploration of new niches and speciation. The techniques employed may 
also prove useful in biologically-inspired engineering, for instance for combating 
premature convergence in evolutionary optimisation algorithms. More generally, the 
results imply that HFL genetics should not be neglected in studies of adaptation and 
diversity. 

 
 

The material presented in this chapter is based on the following publications: 

 
 G. Paperin, S. Sadedin, D. Green, A. Dorin (2008): 

Holey Fitness Landscapes and the Maintenance of Evolutionary Diversity. 
11th International Conference on Artificial Life (ALife XI). Ref: [Paperin, Sadedin, et al., 2008]. 

 G. Paperin (2008): 
Using Holey Fitness Landscapes to Counteract Premature Convergence in Evolutionary Algorithms. 
Satellite Workshop at the Genetic and Evolutionary Computation Conference 2008 (GECCO’08). Ref: [Paperin, 2008b]. 

 G. Paperin, D. G. Green, A. Dorin (2007): 
Fitness Landscapes in Individual-Based Simulation Models of Adaptive Radiation. 
2007 International Symposium on Computational Models for Life Sciences (CMLS’07). Ref: [Paperin, Green & Dorin, 2007]. 

 
 
In the previous section I used a simulation model to investigate the role of DPE connectivity 

changes caused by environmental disturbances in facilitation of evolutionary diversity in 
landscapes. The simulation employed a genotype model known as additive qualitative trait 
model. The model has been used in a range of previous studies (sections 10.2.1 and 10.2.2) 

due to a number of advantages. In particular, it offers a convenient way of relating genotype 

fitness to the environment, for instance by providing a natural approach to defining 
adaptedness to habitat niches. This can be applied in a variety of individual-based simulation 
experiments. Environmental conditions such as niches can be varied geographically and over 

time allowing to investigate a wide range of evolutionary scenarios. 
 
However, the fitness landscape (FL) that emerges from the genotype model used in the last 

chapter also suffers from a number of drawbacks (section 10.2): It has a low degree of 
ruggedness and there are no local optima. Fitness valleys are shallow and all possible 
genotypes are viable. Recombinations of genotypes adapted to different habitat niches are 

likely to have an average fitness. These features are not found in biological FLs (section 6.2). 
Models based on FL of this kind tend to ignore viability and genomic compatibility issues or 
make strong simplifying assumptions about such incompatibilities (e.g. [Orr, 1995]) 
[Paperin, Sadedin, et al., 2008].  

 
In section 6.2.4 I described the concept of holey fitness landscapes (HFLs). HFLs are thought 
to underlie the evolution of lasting, effective barriers to gene flow that appear during 

adaptive radiation and they do not exhibit the above drawbacks. However they do not 
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provide some of the advantages of the additive trait model. There are a number of analytic 
models of adaptive radiation based on HFLs (e.g. see [Gavrilets, 2004, part 1]), however 
they do not incorporate ecological selection and are not explicitly spatial. HFL is an analytical 

concept that is difficult to apply in individual based simulations (section 11.2.2). There is no 

implicit notion of fitness (except a binary viable/inviable distinction), and no natural 
approach for relating genotypes to phenotypes or to adaptedness to particular environmental 
conditions. 

 
In this chapter introduce a new genotype model that combines the advantages of HFL and 
the additive trait model, and avoids many of their drawbacks. After formally defining the new 

model (section 11.1), I identify the difficulties that arise when using the model in individual-
based simulations and discuss how these difficulties can be overcome (section 11.2). 
 

Using an implementation based on that discussion I perform a detailed analysis of the FL that 
results from the proposed genotype model (section 11.3). The analysis considers both, 
adaptation and speciation properties of the FL. While concentrating on the combined model 
introduced in this chapter, the analysis also allows to draw conclusions about some 

topological properties of HFLs. In large, the analysis shows that the FL of the proposed 
genotype model successfully combines several desired properties of the qualitative trait and 
the HFL models while avoiding many drawback. Future studies based on the proposed 

genetic model are informed by this analysis. 
 
In order to further investigate the role of HFLs in evolutionary dynamics, I introduce an 

individual-based, spatially explicit simulation model that investigates the ability of HFL-
genetics to facilitate and maintain reproductive isolation between populations (section 11.4). 

In the model, populations of individuals with HFL-genotypes evolve in isolation for a large 
period of time and then come into contact. The results show that despite a significant 

amount of migration between the reconnected populations and random mating, the 
populations can remain reproductively isolated due to genetic incompatibilities resulting from 
the HFL. This has important implications for mechanisms for evolution of sexual selection and 

speciation. 
 
The techniques used in the HFL-simulation may be applied in other, non-biological 

computation studies. For instance, I propose a mechanism for using HFL structures to tackle 
the problem of premature convergence in genetic and other evolutionary optimisation 
algorithms (section 11.5).  
 

Overall, this chapter demonstrates that representing FLs within individual-based simulation 
models in a biologically plausible way can improve predictions about emergent diversity and 
perpetual novelty in nature. The approach described here may also be usefully adapted into 

engineering to tackle diversity-related problems in evolvability and evolutionary search.  
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11.1. A genotype model with environment adaptation traits 

and holey fitness landscape 
 

The material presented in this section is based on the following publications: 

 
 G. Paperin, D. G. Green, A. Dorin (2007): 

Fitness Landscapes in Individual-Based Simulation Models of Adaptive Radiation. 
2007 International Symposium on Computational Models for Life Sciences (CMLS’07). Ref: [Paperin, Green & Dorin, 2007]. 

 

 
In this section I introduce a new genotype model that combines several advantages of the 
additive trait model (section 10.2.2) and the HFL model (section 6.2.4), while avoiding 

several of their drawbacks. The advantages provided by the new model include for instance 
the requirements outlined in section 10.2.1, such as the possibility to efficiently asses the 
degree of reproductive isolation between individuals and populations, and the absence of 

arbitrary tuning parameters. 
 
The genotype is represented in the same way as in the previous simulation model (section 
A.1.1). To recap: A genotype is modelled as a collection of diallelic loci, although the model 

can be easily extended to any number of alleles. Each locus determines the value of a 
phenotypic trait. Here, there is a 1:1 correspondence between the diallelic loci and the 
presence or absence of a corresponding trait, however, in section 10.2.2 I showed that this 

is equivalent to using several loci per real-valued trait with fewer traits. Each trait 
contributes to the fitness of the individual within the current environment and the overall 
fitness of a genotype is based on the average of the fitness contributions of individual traits. 

 
Formally, the genotype G   of an individual  is represented by a binary string of length L, 

where  is the set of all possible genotypes, and L is the number of loci: G = (g1, g2, ..., gL), 

gk  {0, 1}, k = 1…L. Each locus gk determines whether the trait k is expressed in the 

phenotype of . 

 
Individuals adapt to live in ecological niches. A niche M is represented by a binary string: 
M = (m1, m2, …, mL), where mi  {0, 1}. The binary values mi are the trait requirements of 

the niche M: if mi = 1, then trait i must be present in an individual in order to be fully 

adapted to niche M; if mi = 0, then trait i must be absent. 

 
The degree of adaptation of an individual  to a niche M is described by the niche-distance of 

 with respect to M. The niche distance is defined as the as the hamming distance between 

the trait values of G and the trait requirements of M: 

 

 
1

L

i

dist G ,M m g



  i i  

 
For example, assume L = 10, G = (1010100111) and M = (1001010100). We have: 

 
Genotype G: 1 0 1 0 1 0 0 1 1 1 

Niche M: 1 0 0 1 0 1 0 1 0 0 

Niche-distance at each locus: 0 0 1 1 1 1 0 0 1 1 

 
dist(G, M) = 0 + 0 + 1 + 1 + 1 + 1 + 0 + 0 + 1 + 1 = 6 

 
The fitness fitnessM() of an individual  within a niche M can be defined as any continuous, 

non-increasing function of dist(G, M). Gavritels [2004, chap. 2 and 8] uses a Gaussian 

function, but other choices are possible. For the rest of this chapter I assume that fitness is a 

real number within the unit interval with larger values describing fitter individuals 
(0  fitness()  1,  fitness()  ). 
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Assume that there are S distinct niches M1, …, MS. A closest niche *M  for an individual  is a 

niche with the smallest distance: 
 

*M  =  , 
argmin

dist G M
M  j
j

,  j = 1...S 

 

Note that an individual may have more than one closest niche. Assume that individuals 
always exist within a closest habitat niche. Thus, fitness is calculated with respect to such 

niche: fitness() =  *M
fitness


 . Observe that if an individual has multiple equidistant closest 

niches it does not affect its fitness. Individuals that do not have a unique closest niche are 
called undifferentiated. 

 
Recall the notion of HFL (section 6.2.4). That notion can be applied to the above genotype 
model as follows: 

 
Let    be the set of all viable genotypes and assume that a genotype G   is viable 

(G  ) with probability p and inviable (G  ) with probability (1 – p). 

 
For each G  , set some small fitness value fitness(G) = fitInv  0. For the viable genotypes, 

define a minimum fitness fitV (fitInv  fitV < 1). For each G  , let fitness(G) be a continuous, 

non-increasing function of dist(G, *M ), such that mfitV  fitness(G)  1. 

 

In other words, the fitness of inviable genotypes is a small, constant, non-negative value 
fitInv; the fitness of viable genotypes is a value ranging between fitV and 1, where fitV is 

significantly larger than fitInv (it can be shown [Gavrilets, 2004, chap. 4] that holey FL 

models are not particularly sensitive to the difference between fitInv and fitV). Notably, for the 

special case fitV = 1, this model corresponds to the standard HFL model. 
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11.2. Holey fitness landscapes in simulations 
 

The material presented in this section is based on the following publications: 

 
 G. Paperin, S. Sadedin, D. Green, A. Dorin (2008): 

Holey Fitness Landscapes and the Maintenance of Evolutionary Diversity. 
11th International Conference on Artificial Life (ALife XI). Ref: [Paperin, Sadedin, et al., 2008]. 

 G. Paperin, D. G. Green, A. Dorin (2007): 
Fitness Landscapes in Individual-Based Simulation Models of Adaptive Radiation. 
2007 International Symposium on Computational Models for Life Sciences (CMLS’07). Ref: [Paperin, Green & Dorin, 2007]. 

 

 
There is a number of models of adaptive radiation based on HFLs, however they are analytic 
and do not consider ecological selection, spatial distribution and other scenarios that are 
better explored with simulation models. The absence of in silico models of HFLs may be due 

to a number of difficulties that arise then realising a HLF in a computer model. 
 

11.2.1. Feasibility of truly random distributions in computer 

simulations 
 

Recall that in a HFL, every genotype G   is viable with a small probability p independently 

of all other genotypes. Before discussing approaches to creating any set of entities that are 

randomly and independently selected using a computer, it is important to highlight the 
general limitations of modern computers in this respect. The usual source of random 
numbers in computers are pseudo-random number generators. These are functions, that 

generate values that approximate the properties of truly random numbers. Usually, these are 
realised by iterative algorithms, which, when initialised with a unique seed, produce a 
sequence of numbers with an approximately uniform distribution and a long cycle period 
within some target interval. Good pseudo-random number generators produce sequences 

that are indistinguishable from truly random numbers for most purposes. Still, specialised 
tests can detect statistical artefacts in sequences produced by many common pseudo-
random number generators. Also, when initialised with the same seed, such generators 

produce exactly the same sequence every time, and the sequence repeats once the period 
length, however long, has been reached. Truly random number generators can be 
implemented in hardware, however these tend to be slow and expensive and are thus not 

generally available on systems commonly used for scientific simulations. Modern main-
stream programming languages include algorithms for pseudo-random number generation in 
their standard libraries. For most purposes, these algorithms provide sufficiently randomly 
and independently distributed values, when initialised with a unique seed drawn from the 

computer clock. In all experiments described here I use the generator provided by the 

standard Java 6 API (java.util.Random) that uses the algorithm described by Knuth [1998, 

vol. 3, section 3.2.1]. Sequences produced by this pseudo-random number generator are 

sufficiently uncorrelated and have a sufficiently long cycle for all present purposes. Thus, 

throughout the following discussion I use the term random to refer to both, truly random and 
pseudo-random values. 
 

11.2.2. Difficulties in building HFL models suitable for individual-

based simulations 
 
Let viable(G):   {0, 1} be a binary function that determines whether G is viable 

(viable(G) = 1), or inviable (viable(G) = 0). In a simulation, a particular G may be 

encountered at many occasions and the value of viable(G) for a given G must always be the 

same. Generally, there are two ways to achieve that. The first approach is to design the 
function viable(G) so that is can be computed in a computationally efficient manner. Then, 

the function value can be recomputed at every occasion G is encountered without 

compromising an acceptable run-time performance. The second approach is to compute the 
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value of viable(G) only once, either when G is first encountered, or at the prior to the 

simulation, and then to look up and reuse the computed value every time G is encountered 

again. 
 

When using the first approach, it must be ensured that viable(G) always results in the same 

value for the same G and yet produces independent random values for different G. This can 

be achieved by assigning a constant random real number dice uniformly distributed in [0, 1[ 

to every G independent of all other genotypes. When dice < p, then viable(G) = 1; otherwise 

viable(G) = 0. A technique that ensures that the same dice value with the above properties is 

always assigned to a given G can be borrowed from pseudo-random number generators 

available on all modern computers (section 11.2.1). Such generators produce the same 
sequence of (pseudo-)random numbers for any given seed, but a different sequence for 

different seeds. Thus, when a pseudo-random generator is seeded with G, it will produce a 

dice value with the above desired properties. As only one random number per genotype is 

required, this approach can be implemented very efficiently. 
 
Recall that  denotes the set of viable genotypes. By definition,   , however, since p is 

small, in practice   . It can be shown [Gavrilets & Gravner, 1997] that in a HFL the 

majority of viable genotypes G   belong to a single largest connected component ’  . 

The size of ’ is of the order of 2L  p, and ’ percolates . The proof uses the idea of a 

surviving branching process to estimate the size of ’. 

 
Assume that p = pc = 1 / (L – 1). The probability that the branching process dies at any 

specific branching point is given by 
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This means that the above statement holds with probability 1 when L  . For finite but 

large L this probability is close to 1; however, for smaller L, the probability of the emergence 

of the giant connected component is smaller. 
 
In natural populations, L is very large, but in an individual-based simulation, the genotype of 

each individual must be modelled explicitly, held in computer memory and processed by 

various operations. In practice, this limits the number of loci L to relatively low values. If L is 
small, ’ can be expected to be small relative to , i.e.  can be expected to consist of a 

large number of small clusters that are not connected to each other. In such case, an 
adaptive walks starting at some G   cannot proceed far and many key evolutionary 

properties of HFLs do not hold. 

 
Thus, although a suitable algorithm for re-computing viable(G) each time G is encountered 

can be developed as shown above, such approach is not feasible for practical values of L, 

because the resulting neutral fitness network is not likely to be connected. 

 
Note, however, that even when L is small, the probability that ’ contains most of  is not 

large, but positive. For any given L and p  pc, consider all possibilities for selecting  from . 

For most of such possibilities, ’ is small, but there are some choices for which ’ is large 

(Figure 11.1). 
 
Any selection of  from , for which the giant connected component ’ emerges, is an 

approximation of a HFL for large L. For any such selection, all crucial features of ’,  and  

hold and no assumptions are violated. The key evolutionary properties of HFLs [Gavrilets & 
Gravner, 1997; Gavrilets, 2004] hold in these cases. In the next sub-section I describe an 
algorithm for selecting  from  such that the giant connected cluster ’ is guaranteed to 

emerge. The resulting set of genotypes can be used as a basis for individual-based 
simulations exploring HFL genetics, in particular for the genotype model proposed in section 

11.1 above. The algorithm is based on the second type of approach to creating the function 
viable(G) discussed earlier: all viable genotypes are determined before any individual-based 

simulation commences. During the simulation, the value viable(G) is determined through a 

look-up. 
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Figure 11.1. Approach to independent random selection of viable genotypes for a HFL 

suitable for computer modelling. 

 
 

11.2.3. Creating a HFL suitable for individual-based simulations 
 
Here I describe an approach to implementing the FL model described in section 11.1. As 
discussed in the previous section, the main challenge is to select a set of viable genotypes 
   such that most G   belong to a single connected component ’  . Once this task is 

accomplished, it is relatively straight forward to determine the closest niche(s) for each 

genotype and thus the fitness. Finally, an efficient look-up table can be built to contain all 
G  . Such table can be used to quickly determine whether G is viable at later occasions. 

 

Formally, the problem is to creating a component  in a 2L-dimensional discrete space , 

which has the following properties: (1)  is connected;  (2)  percolates , i.e. any point 

I  ( \ ) comes near a point V  ;  (3) the points V   are uniformly distributed in . 

 
First determine the ―target‖ size v of  (v = ||). Note that v is binomially distributed: 

v  Bin(||, p). This can be approximated by a Gaussian, and v can be drawn from a normal 

distribution provided by a standard random number generator.  
 

Phase one: 

 
Begin with an empty . Randomly pick points in  and assign them to . After a point is 

picked, group all points in  are into connected components and determine the largest 

component ’. If the size of the largest component is smaller than v, repeat the procedure 

(Figure 11.2). At some time, the largest connected component ’ will contain v or more 

points. At this time, discard all other components, now  = ’ is a single connected 

component. As all points are picked independently and randomly,  is also uniformly 

distributed in , and as shown in [Gavrilets & Gravner, 1997],  percolates  even for 

relatively small p. 

 

Phase two: 

 
While  consisted of several disconnected components, adding a single point to  increased 

the size of the largest component by one or more points, since the inserted point could 
connect the largest component with another component. Therefore, after the first phase is 
complete, it is likely that || > v. In such case, a number of points must be removed from . 

 

 

Out of all possibilities to choose  

from  (for given L and p) 

 

 

 

consider those for which a giant 

connected component ’   

emerges. 

 

 

 

Any such selection is an 
approximation of a HFL for large L, 

and all crucial HFL features are 
present. 
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In order to do that, randomly select a point V   and check whether removing V would split 

 in two disconnected components. If  \ V is still connected, then V is removed, otherwise a 

new point is picked (Figure 11.3). This procedure is repeated until || = v. 

 

The described procedure is computationally intensive, particularly as v grows exponentially 

with L. However, as in practice L is often not large, the algorithm can run in acceptable time. 
Once  is created, all subsequent look-ups are fast. Moreover, various optimisations can be 

used for the algorithm. For instance, the clustering operations during the first phase do not 
need to occur after each point is added to , but can be carried out at larger intervals. In 

specific cases during the second phase, it is possible to remove several points from  at 

once. Additionally, v does not need to be fixed up-front. Instead, during the second phase it 
can be estimated whether the current size || is likely to be drawn from Bin(||, p) and thus 

to accept a larger number of possible v. 

 
A reference implementation of the above algorithm in Java 6 creates a  for L = 22 in 

approximately 2.5 minutes when executed on a 3.2 GHz Pentium Prescott PC with 1GB RAM 

running Win XP. The initial study was conducted in 2007, and advances in hardware 
performance and memory availability that occurred since then allow creating  for L = 26 in 

approximately the same time. Since the exponential-time algorithm to create  only needs to 

be run once (for every simulation run), and subsequently look-up is fast, simulation models 

with genotype length L = 32 on the basis of the above technique are feasible today.  
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Figure 11.2. Phase 1 of algorithm for selection of viable genotypes for a HFL 

computer model. Randomly pick points in  and assign them to . After a point is 

picked, all points in  are grouped into connected components and the largest component 

’ is determined. Repeat until ’ contains a sufficient number of points, and discard all 

other components except ’. Now = ’ is a single connected component. 

 
 

 
 

 
 

Figure 11.3. Phase 2 of algorithm for selection of viable genotypes for a HFL 

computer model. While  consisted of several components, adding a point to  could 

increase the size of ’ by more than 1 point (may connect two clusters). Thus, after 

phase 1 || may be too large. Need to remove some points: Randomly select a V   

and check whether removing V would split  in two disconnected components. If not - 

remove V, otherwise pick a different point. Repeat until  has the right size. 
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11.3. Evolutionary properties of the genotype model with 

environment adaptation traits and holey fitness 

landscape 
 

The material presented in this section is based on the following publications: 

 
 G. Paperin, D. G. Green, A. Dorin (2007): 

Fitness Landscapes in Individual-Based Simulation Models of Adaptive Radiation. 
2007 International Symposium on Computational Models for Life Sciences (CMLS’07). Ref: [Paperin, Green & Dorin, 2007]. 

 
 

Here, I perform an extensive numerical analysis of the evolutionary properties of the FL that 
results from the genotype model proposed in section 11.1. The aim is to provide detailed 
information about the FL in order to inform the design and the analysis of evolutionary 
models based on this method. A range of different techniques for FL analysis is discussed by 

Kaufman [1993] and Stadler [2002]. Here I use a mixture of such techniques as well as 
some approaches developed specifically for this case. Note that while the analysis in section 
10.2 above was specifically targeted to provide a better context for the simulation results 

presented in that chapter, here I aim for a more generic discussion that shall inform future 
studies. Thus, I explicitly list data for more different combinations of (L, S) values and 

provide statistically significant averages where possible. Note that the following analysis is 

also significant for the standard HFL model, as the standard HFL model is a special case of 

the current FL when the fitness function has a constant high-fitness value for all viable 
genotypes. 
 

Recall that L is the number of traits in the model. Due the employed representation of 

genotypes and niches, L is also the number of trait requirements of a niche, the number of 

loci in a genotype and the length of bit-strings that represent genotypes and niches. Recall 
that S is the number of distinct habitat niches. 

 
The fitness of all V   is significantly higher than the fitness of all I  ( \ ). In fact, all 

I  ( \ ) are inviable. Thus all evolutionary dynamics involve V   only. In all following 

measurements I therefore only consider the viable genotypes V  . For each set of 

parameters all quantities discussed below are measured on 20 random FLs. This means that 
for every type of measurement, a new set    is selected from scratch according to the 

algorithm described in section 11.2.3 20 times, and a new random set  of niches is selected 

in  at each occasion. The results are averaged. The possible parameters are L, S, and p - 

the probability that a genotype is viable. As p merely affects the size of , not its structure, 

the value p = 1.05 / (L – 1) is used throughout. L takes the values 12, 14, 16, 18, 20 and 

22. For each L, S takes the values 10, 50, 100 and 250. Various choices of the fitness 

function and the values for fitInv and fitV affect the smoothness of the FL, but not its 

structure. In order to avoid artefacts introduced by those values, the measurements relate to 

the closest-niche distance of genotypes, rather than their fitness. 

 

11.3.1. Adaptation properties 
 
The expected number of viable genotypes is 1.05  2L / (L – 1)  2L / L, which I confirmed 

experimentally. As shown in Table 11.1, the proportion of local optima in  drops when S 

becomes larger. This suggests that the FL becomes less rugged as the number of niches 

increases. 
 
The number of viable neighbours of a V   does not depend on the number of niches (Table 

11.2, left). The number of neighbours decreases as L increases, which is expected as p is a 

reciprocal of L. Table 11.2 (left) shows that the proportion of viable neighbours is 

approximately 2p. The number of neighbours with smaller closest-niche-distance reflects the 

number of advantageous mutations for a genotype. Equally, the number of neighbours with 

smaller or equal closest-niche-distance reflects the number of non-deleterious mutations. 
Similarly to the total number of possible mutations, the numbers of advantageous and non-
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deleterious mutations weakly depends on L (Table 11.2, centre & right). For a fixed L, the 

number of non-deleterious mutations grows when S increases (Table 11.2, right), which can 

be expected since the FL becomes smoother. The number of advantageous mutations 
decreases when S increases (Table 11.2, centre) which suggest that when the number of 

niches is large, a larger number of mutations are neutral. 

 
The length of a random adaptive walk measures the number of non-deleterious mutations 
that occur before a local optimum is found. 10 random walks are simulated using each of the 
viable genotypes as a starting point. At each step, one of the non-deleterious neighbour 

genotypes of the current genotype is chosen with equal probability. To avoid infinite loops, a 
walk is prevented from visiting a genotype more than once. Table 11.3 (left) shows that for a 
fixed L, the average walk length increases as S grows, which is what can be expected for 

increasingly smooth FLs. A related measure is the reach cluster size – the total number of 

genotypes that can be potentially reached by an adaptive walk starting from each of the 
viable genotypes. Table 11.3 (centre) shows that the reach cluster sizes behave similarly to 
the lengths of adaptive walks. This means, that when the number of niches becomes larger 

and the FL becomes smoother, a random viable genotype can evolve into a larger number of 
different genotypes. A similar observation applies to the basin sizes of local optima: for 
larger S, more genotypes may evolve towards a given local optimum (Table 11.3, right). 

 

 
 
 

 L S % local optima  

 
12 

10 17%  

 50 14%  

 p  

0.096 

100 15%  

 250 9%  

 
14 

10 20%  

 50 15%  

 p  

0.081 

100 13%  

 250 13%  

 
16 

10 21%  

 50 18%  

 p = 

0.070 

100 16%  

 250 13%  

 
18 

10 24%  

 50 21%  

 p  

0.062 

100 20%  

 250 18%  

 
20 

10 24%  

 50 22%  

 p  

0.055 

100 21%  

 250 20%  

 
22 

10 24%  

 50 23%  

 p = 

0.050 

100 22%  

 250 21%  

   

Table 11.1. Percentage of local optima genotypes in respect to all viable 
genotypes. Results averaged over 20 random FLs for each combination of L and S. 
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L S 

Viable 

neighbours 

Better 

neighbours 

Better or equal 

neighbours 

 

 
12 

10 2.5 (0.204) 1.0 (0.081) 1.5 (0.124)  

 50 2.5 (0.206) 0.9 (0.076) 1.6 (0.130)  

 p  

0.096 

100 2.4 (0.204) 0.9 (0.073) 1.6 (0.150)  

 250 2.4 (0.202) 0.6 (0.052) 1.8 (0.106)  

 
14 

10 2.4 (0.175) 1.0 (0.069) 1.5 (0.111)  

 50 2.5 (0.176) 0.9 (0.064) 1.6 (0.113)  

 p  

0.081 

100 2.5 (0.176) 0.9 (0.063) 1.6 (0.113)  

 250 2.5 (0.176) 0.9 (0.063) 1.6 (0.092)  

 
16 

10 2.5 (0.154) 1.0 (0.062) 1.5 (0.098)  

 50 2.5 (0.154) 0.9 (0.056) 1.6 (0.100)  

 p = 

0.070 

100 2.5 (0.154) 0.9 (0.054) 1.6 (0.101)  

 250 2.5 (0.154) 0.8 (0.053) 1.6 (0.073)  

 
18 

10 2.2 (0.123) 0.9 (0.050) 1.3 (0.079)  

 50 2.2 (0.123) 0.8 (0.044) 1.4 (0.080)  

 p  

0.062 

100 2.2 (0.123) 0.8 (0.043) 1.4 (0.082)  

 250 2.2 (0.123) 0.7 (0.041) 1.5 (0.065)  

 
20 

10 2.2 (0.111) 0.9 (0.046) 1.3 (0.070)  

 50 2.2 (0.111) 0.8 (0.041) 1.4 (0.072)  

 p  

0.055 

100 2.2 (0.111) 0.8 (0.039) 1.4 (0.073)  

 250 2.2 (0.111) 0.8 (0.038) 1.5 (0.059)  

 
22 

10 2.2 (0.100) 0.9 (0.042) 1.3 (0.063)  

 50 2.2 (0.100) 0.8 (0.038) 1.4 (0.064)  

 p = 

0.050 

100 2.2 (0.100) 0.8 (0.036) 1.4 (0.066)  

 250 2.2 (0.100) 0.8 (0.034) 1.4 (0.130)  

   

Table 11.2. Number of possible adaptive mutations per genotype. Shown are: 

Number of viable neighbours per genotype; Number of neighbours with smaller closest-

niche-distance per genotype; Number of neighbours with smaller or equal closest-niche-

distance per genotype. In brackets: The respective number of neighbours normalised by 
L. Results averaged over 20 random FLs for each combination of L and S. 

 
 

 
L S 

Random 

adaptive 

walks length 

Reach 

clusters size 

Basin size of 

local optima 

 

 
12 

10 84 9 14  

 50 230 11 19  

 p  

0.096 

100 423 10 13  

 250 825 35 5  

 
14 

10 60 10 15  

 50 97 13 21  

 p  

0.081 

100 173 13 24  

 250 337 12 21  

 
16 

10 54 12 17  

 50 91 15 21  

 p = 

0.070 

100 106 19 28  

 250 138 22 35  

 
18 

10 70 7 9  

 50 112 8 11  

 p  

0.062 

100 129 9 12  

 250 148 10 13  

 
20 

10 56 7 9  

 50 105 8 11  

 p  

0.055 

100 124 9 12  

 250 142 10 13  

 
22 

10 58 7 9  

 50 96 8 11  

 p = 

0.050 

100 114 9 11  

 250 134 10 13  

   

Table 11.3. Measures of possible adaptation trajectories. Shown are: Mean length 

of random adaptive walks; Mean size of reach clusters for each viable genotype; Mean 

size of (possibly overlapping) attraction basins of local optima. Results averaged over 20 
random FLs for each combination of L and S. 



11. Evolution on Holey Fitness Landscapes 

 123 

11.3.2. Speciation properties 
 
It is possible for a genotype to have the same niche-distance from many niches. Genotypes 

that have more than one unique closest niche must are considered undifferentiated (note 
that such genotypes may still have high fitness if their niches are sufficiently similar). 
Important questions are: What proportion of viable genotypes are undifferentiated? and; 

How do their niche distances differ from the niche distances of genotypes which have a 
unique niche? When the number of niches is large, a larger part of the genotype space is 
expected to become ―border lines‖ between the niche basins. Table 11.4 confirms this 

intuition: when L is fixed, the number of genotypes with unique niches falls when S 

increases. An exception occurs when L is low. This may be due to the very low 

genotypes/niches ratio. The table also shows that the proportion of undifferentiated 
genotypes does not tend to vary with L. 

 
Table 11.5 shows that the genotypes differentiated towards a unique niche are on average 

fitter than undifferentiated genotypes. Other measurements (not shown) demonstrate that 
the minima and maxima of closest-niche distances also tend to be lower for differentiated 
genotypes. It can therefore be expected, that populations evolving on this FL will tend to 

adapt towards unique niches. 
 
Now, I verify the assumption that genotypes from different niches are likely to produce 

inviable offspring causing reproductive isolation between niche populations. For each viable 
genotype differentiated towards a unique niche, 5 random mating partners are selected from 
the same niche and 5 from a different niche (a pair may be chosen more than once if a niche 

contains less than 6 genotypes). For each of the resulting pairs, an offspring is created using 

free recombination (i.e. each locus is inherited from either parent with equal probability). 
Offspring viability is determined. As before, all measurements are repeated on 20 random 
FLs and averaged. In order to investigate how the degree of adaptation affects the result, I 

repeat the measurements for parents with a closest-niche distance smaller or equal to 
different values dmin. 

 
The measurements show that the proportion of viable offspring of parents from different 

niches does not depend on the number of niches S (Table 11.7). Conversely, the proportion 

of viable offspring of parents from the same niche increases with S (Table 11.6). This is 

because a larger number of niches leads to smaller, more specialised and constrained niche-
populations with more similar organisms within each population.  

 
For parents from the same niche, the proportion of viable offspring varies between ca. 40% 
(L = 12) and ca. 8% (L = 22). For parents from different niches, the proportion is 

significantly lower (from ca. 20% for L = 12 it falls to ca. 6% for L = 22). 

 

For fitter parents from the same niche, the proportion of viable offspring rises sharply, 
however, for parents from different niche-populations the corresponding increase is 
negligible. For L = 22 and dmin = 3, ca. 20% of offspring are viable for same niche parents, 

and only ca. 5.5% for different niche parents; for dmin = 2: ca. 40% for same niche parents, 

and ca. 5.6% for different niches. In summary, recombination between viable genotypes 

with above-average fitness from different niches is only marginally more likely to lead to 
viable offspring than a random genotype (recall, p = 0.05 = 5%). On contrary, 

recombination within the same niche is significantly more probable to result in viable 

genotypes. This implies that the assumption that niche populations on this FL are 
reproductively isolated is indeed correct. 
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 L S % differentiated  % undifferentiated   

 
12 

10 66% 34%  

 50 60% 40%  

 p  

0.096 

100 63% 37%  

 250 78% 22%  

 
14 

10 68% 32%  

 50 58% 42%  

 p  

0.081 

100 57% 43%  

 250 60% 40%  

 
16 

10 68% 32%  

 50 58% 42%  

 p = 

0.070 

100 56% 44%  

 250 55% 45%  

 
18 

10 69% 31%  

 50 59% 41%  

 p  

0.062 

100 56% 44%  

 250 53% 47%  

 
20 

10 69% 31%  

 50 61% 39%  

 p  

0.055 

100 57% 43%  

 250 54% 46%  

 
22 

10 72% 28%  

 50 62% 38%  

 p = 

0.050 

100 58% 42%  

 250 55% 45%  

   

Table 11.4. Proportions of differentiated and undifferentiated genotypes. 

Shown are: Percentage of viable genotypes adapted to a unique niche in respect to all 

viable genotypes; Percentage of viable genotypes that have a multiple equidistant 
closest-niches. Results averaged over 20 random FLs for each combination of L and S. 

 
 

 
 

 L S dmin of differentiated G dmin of undifferentiated G  

 
12 

10 2.73 3.84  

 50 1.30 2.44  

 p  

0.096 

100 0.76 1.89  

 250 0.19 1.25  

 
14 

10 3.63 4.75  

 50 2.18 3.26  

 p  

0.081 

100 1.63 2.75  

 250 0.95 2.07  

 
16 

10 4.52 5.62  

 50 3.05 4.08  

 p = 

0.070 

100 2.49 3.54  

 250 1.79 2.87  

 
18 

10 5.41 6.56  

 50 3.89 4.90  

 p  

0.062 

100 3.33 4.33  

 250 2.65 3.67  

 
20 

10 6.21 7.39  

 50 4.65 5.68  

 p  

0.055 

100 4.09 5.08  

 250 3.41 4.38  

 
22 

10 7.06 8.31  

 50 5.41 6.47  

 p = 

0.050 

100 4.83 5.84  

 250 4.14 5.09  

   

Table 11.5. Average closest-niche distances of genotypes. Shown are: Mean closest-

niche distances of genotypes adapted to a unique niche; Mean closest-niche distances of 

genotypes that have a multiple equidistant closest-niches. Results averaged over 20 random 
FLs for each combination of L and S. 
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 L S dmin =  dmin = 5 dmin = 4 dmin = 3 dmin = 2 dmin = 1  

 
12 

10 37.4 37.8 38.0 43.4 59.2 92.1  

 50 68.1 68.0 67.9 68.0 71.5 93.6  

 p  

0.096 

100 84.1 84.2 84.2 84.3 84.4 95.1  

 250 98.1 98.2 98.4 98.2 98.2 98.6  

 
14 

10 23.6 23.8 26.1 33.9 53.9 91.1  

 50 42.2 42.2 42.4 43.4 57.7 92.1  

 
p  0.08 

100 55.7 55.7 55.7 55.9 62.6 92.4  

 250 78.2 78.1 77.7 78.0 78.5 94.3  

 
16 

10 15.8 16.9 20.1 29.0 50.9 90.9  

 50 25.2 25.4 25.7 31.3 51.7 91.0  

 p = 

0.070 

100 33.0 32.9 33.1 35.0 52.6 91.4  

 250 48.4 48.6 48.8 48.3 57.0 91.9  

 
18 

10 10.2 11.7 15.2 23.1 46.1 92.0  

 50 14.7 14.6 16.3 23.8 46.2 91.4  

 p  

0.062 

100 18.1 18.1 18.5 24.8 46.3 91.3  

 250 25.8 25.9 25.9 28.0 47.2 91.8  

 
20 

10 7.7 9.8 13.1 21.1 43.8 91.5  

 50 10.1 10.6 13.5 21.2 43.4 91.7  

 p  

0.055 

100 11.9 12.0 14.1 21.4 43.4 91.3  

 250 15.5 15.7 15.9 22.0 44.3 91.5  

 
22 

10 6.4 8.4 11.4 18.9 41.7 91.0  

 50 7.6 8.7 11.5 19.0 41.4 91.6  

 p = 

0.050 

100 8.4 9.1 11.7 19.1 41.8 91.1  

 250 10.3 10.4 12.2 19.4 41.5 91.2  

   

Table 11.6. Proportion of viable offspring of parent genotypes from the name niche. 

Shown are the percentages of viable offspring from random parents originating from the 

same habitat niche. dmin is the maximum closest-niche distance permitted for each parent. 

Results averaged over 20 random FLs for each combination of L and S. 

 
 
 

 L S dmin =  dmin = 5 dmin = 4 dmin = 3 dmin = 2 dmin = 1  

 
12 

10 19.4 19.4 19.6 19.9 21.3 22.1  

 50 19.9 20.0 20.1 20.0 20.3 21.3  

 p  

0.096 

100 20.1 19.8 20.1 19.9 20.1 20.6  

 250 20.3 20.2 20.1 20.3 20.3 20.3  

 
14 

10 13.5 13.6 13.8 14.5 15.0 14.6  

 50 14.3 14.3 14.2 14.3 14.9 15.3  

 
p  0.08 

100 14.6 14.8 14.4 14.4 15.0 15.4  

 250 14.4 14.2 14.3 14.3 14.3 15.0  

 
16 

10 10.5 10.4 10.7 11.3 11.6 11.7  

 50 10.7 10.8 10.7 11.1 11.6 11.3  

 p = 

0.070 

100 10.7 10.6 10.8 11.1 11.3 11.7  

 250 10.7 10.7 10.9 10.7 11.2 11.4  

 
18 

10 7.6 7.6 7.6 7.8 8.1 8.0  

 50 7.7 7.8 7.7 8.0 8.2 8.0  

 p  

0.062 

100 7.9 7.7 7.7 7.8 8.2 8.1  

 250 7.8 7.9 7.9 7.8 8.1 8.0  

 
20 

10 6.4 6.3 6.5 6.4 6.6 6.6  

 50 6.3 6.3 6.5 6.7 6.5 6.6  

 p  

0.055 

100 6.4 6.6 6.5 6.6 6.6 6.5  

 250 6.4 6.4 6.5 6.5 6.6 6.7  

 
22 

10 5.4 5.5 5.5 5.5 5.8 5.6  

 50 5.5 5.5 5.5 5.7 5.7 5.5  

 p = 

0.050 

100 5.5 5.4 5.6 5.4 5.7 5.7  

 250 5.6 5.5 5.4 5.6 5.6 5.6  

   

Table 11.7. Proportion of viable offspring of parent genotypes from different niches. 

Shown are the percentages of viable offspring from random parents originating from different 

habitat niches. dmin is the maximum closest-niche distance permitted for each parent. Results 

averaged over 20 random FLs for each combination of L and S. 
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11.3.3. Conclusion 
 
The above results show that the FL of the genotype model introduced in this chapter exhibits 

a number of desirable nature-like properties [Kauffman, 1993; Gavrilets, 2004]. In 
particular, is improves on the structure of the FL employed in the simulation from chapter 10 
in several respects: The majority of the genotypes are inviable. For viable genotypes, the 

number of atomic mutations leading to viable adaptations is small; the proportion of non-
deleterious mutations is even smaller. The number of local optima is large, and fitness 
canyons are numerous and deep. The overall surface of the FL is rugged. Moreover, the 

proportion of viable recombinations of genotypes that have an average or above-average 
fitness within the same habitat niche is by an order of magnitude higher than the proportion 
of viable recombinations of genotypes adapted to different niches. The latter proportion is 
only marginally higher than the total proportion of viable genotypes. This implies that 

different niche populations exhibit postzygotic reproductive isolation and that individuals can 
be grouped into species according to their habitat niche without the use of arbitrary 
parameters. In section 11.4 I discuss a series of individual-based simulation experiments 

that show that postzygotic reproductive isolation between different populations based on a 
HFL genetic model is indeed strong and persistent. 
 

The present model does not attribute any meaning to specific traits, however such meaning 
may be introduced. This can allow an investigation of a number of speciation scenarios, that 
combine postzygotic reproductive isolation inherent in this model with other kinds of 
reproductive isolation, for instance according to trait preference. This model is thus 

particularly exciting for potential investigations of the relationship between reproductive 

isolation caused by social selection (e.g. sexual selection) and genetically based reproductive 
isolation.   

 
Moreover, the present model can be used in scenarios that incorporate dynamical 
environments or co-evolution. The survival viability of specific genetic sequences in nature is 

determined by biochemical constraints and does not change over time, however the fitness 
given by the degree of adaptation to different environmental niches may change quickly (on 
evolutionary timescales). This is conveniently reflected in the structure of the model. While 
the set  of viable genotypes remains constant over time in most evolutionary scenarios, the 

number and availability of habitat niches can change dynamically. Additionally, niche-specific 
fitness functions may be used in a way similar to the simulation model from chapter 10: For 

instance, in a hot and dry environment with only a few water patches, the ecological niche of 
living in a wet environment will provide low fitness, even to individuals that are well adapted 
to such a niche. This can be modelled by introducing niche-specific constraints to the fitness 

function that determines the fitness of an individual based on its niche distance. This 
approach allows realising spatially-explicit models in which the environment varies in space 
as well as in time. 
 

The current FL reduces to the standard HFL model in the case when the fitness function does 
not depend on the closest-niche distance. Thus, the above analysis of the FL properties bears 
wider significance as it provides insights into the topology of HFLs. The above numerical 

analysis is generally in-line with analytical insights into HFLs [Gavrilets & Gravner, 1997]. It 

also provides new numerical results that could not be obtained analytically. For instance, the 
measurement of the number of viable mutants (Table 11.2) and the proportion of viable 

recombinations (Table 11.7) have a meaningful interpretation without a niche context. 
 
In summary, the family of FL models presented in this paper provides a useful tool for the 
investigation of a wide range of biologically plausible evolutionary scenarios. I am looking 

forward to seeing future research that combines individual-based simulations with the 
genetic model presented here. In the next section I begin laying the ground and introduce an 
individual-based simulation model aiming to investigate the degree and the robustness of 

reproductive isolation provided by HFL-genetics. 
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11.4. Holey fitness landscapes and the maintenance of 

evolutionary diversity 
 

The material presented in this section is based on the following publications: 

 
 G. Paperin, S. Sadedin, D. Green, A. Dorin (2008): 

Holey Fitness Landscapes and the Maintenance of Evolutionary Diversity. 
11th International Conference on Artificial Life (ALife XI). Ref: [Paperin, Sadedin, et al., 2008]. 

 

 
Recent results in theoretical evolutionary biology show that high-dimensional FL form ―holey‖ 
rather than ―rugged‖ topographies. This lead to the formulation of the HFL model (section 

6.2.4). However, the implications of this finding for biological and artificial life systems 
remain largely unexplored. One of the reasons for this gap can be attributed to serious 
difficulties in the implementation of individual-based HFL models (section 11.2.2). Previously, 

I introduced a method for integrating HFLs in individual-based models that overcomes these 
difficulties (section 11.2.3) and performed a detailed numerical analysis of the properties of 
HFLs created using that method (section 11.3). Here, I use an individual-based, spatially 
explicit simulation model to examine how HFL changes predictions for the maintenance of 

genetic diversity in the face of migration. Previous models suggest that ecologically-based 
reproductive isolation will rapidly collapse under migration. However, my results indicate that 
an underlying HFL can often maintain diversity in this situation. Additionally, hybrid species 

emerge frequently when HFL genetics are simulated, but are usually doomed to extinction 

because of small population sizes. However, hybridisation can also lead to novel adaptations 
and potentially the exploitation of new ecological niches. More generally, the results imply 

that HFL genetics should not be neglected in studies of adaptation and diversity. 
 

11.4.1. Background 
 
The processes underlying the emergence and persistence of diversity form a key topic in 
evolutionary theory. Analytical models have provided considerable insight into these issues, 
but integrating the findings from different theoretical approaches remains a formidable 

challenge. In particular, the relationship between genetic diversity and reproductive isolation 
– widely considered the defining feature of biological species [Dobzhansky, 1937; Mayr, 
1942] – remains controversial [Mallet, 1995; De Queiroz, 1998; Harrisson, 1998; Shaw, 

1998; Templeton, 1998]. Here, I explore the dynamics of reproductive isolation on HFLs, a 
genetically realistic FL, within an individual-based, spatially explicit model. 
 

Reproductive isolation is often seen as a requirement for biological diversification because it 
permits the coexistence of different lineages with co-adapted genomes. However, the origin 
and persistence of reproductive isolation requires special circumstances. A mutant individual 
that is reproductively isolated from the surrounding population will rarely be successful. For 

this reason, speciation is usually thought to occur between spatially separated populations 
that acquire incompatible alleles through drift or selection [Orr, 1995; Gavrilets, 2003; 
2004]. However, even in this scenario, the maintenance of reproductive isolation presents a 

theoretical challenge: even moderate migration between two populations leads to selection 
against incompatible alleles, and the extinction or merging of incipient species is likely. 
Likewise, when reproductive isolation is based on ecological divergence or mating barriers, it 

is often transient, collapsing when selection pressures change. 
 
Recent theoretical advances suggest that assumptions about the relative fitness of different 
combinations of traits have profound implications for our understanding of these problems 

[Gavrilets & Gravner, 1997; Gavrilets, 2004]. Several implications of this insight and the 
resulting HFL model for speciation theory are explored analytically by Gavrilets [2004].  
 

It is known that diversification occurs easily in large spatial environments with disruptive 
ecological selection, and there will often be restricted gene flow between the resultant 
ecotypes, but how enduring reproductive isolation occurs remains unclear. Gene flow barriers 

induced by mating barriers – even with strong ecological selection – appear to be transient. 
Models of adaptive radiation and ecological speciation in general deal with this simply by 
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setting a threshold level of gene flow that they regard as acceptable, but this is 
unsatisfactory in that such species can merge back together as soon as selective pressures 
change. HFLs are thought to underlie the evolution of lasting, effective barriers to gene flow 

that appear during adaptive radiation, however this has not been further explored in silico 

(section 11.2.2). 
 

11.4.2. Methods 
 
My objective is to investigate the extent to which HFL can sustain existing reproductive 

isolation between spatially isolated populations under different levels of migration. For this I 
created an individual-based simulation model in which the individuals are located on a 
homogeneous landscape consisting of cells. Genotype fitness is defined by the HFL, and no 
habitat niches are unitised. Thus, an individual is either viable (fitness = 1), or inviable 

(fitness = 0). Individuals mate with other individuals within the same cell and then migrate 
to a neighbouring cell with a certain probability. I use a number of neutral loci to measure 
the level of gene flow between the populations in different cells for different migration rates. 

This technique is widely employed in simulation models of this kind (e.g. [Gavrilets & Vose, 
2005]). 
 

Individuals: 

 
In this model the individuals are represented by their genotype, which consists of two 
sections: a coding section and a neutral section. The coding section consists of a number of 

diallelic loci that are assumed to code for vital traits. The coding section of a genotype is 
used as a parameter to the viable function of the HFL in order to determine whether an 

individual is viable. I experimented with 20 to 28 coding loci (not shown here) and found that 
the particular number does not affect the results significantly. In the experiments reported 

here I use L=26, which represents a trade-off between richer genotypes and the 

computational resources required to complete a large number of simulation runs. The neutral 
genotype section consists of 5 loci with 128 different alleles possible at each locus. The 
neutral loci do not affect the fitness (viability) of an individual and are used to measure the 

genetic divergence between individuals (Figure 11.4). 
 
The lifecycle of a model individual is reproduction – selection – migration. Generations are 
non-overlapping. 

 
 

 
 

Figure 11.4. An example of a model genotype. 

 

 

Reproduction: 

 

Individuals mate only with other individuals within the same cell of the spatial landscape. 
Each individual in a cell is selected once as a mother. For each mother, a partner is randomly 
selected from the same cell (selfing is permitted). The number of offspring for each pair is 
drawn from a Poisson distribution with a parameter λ  = 4 (values in range λ  = 2..10 did 

not affect the results significantly). The genotype of each offspring is determined through 
free recombination of the parents’ genotypes (i.e. the allele at each locus is inherited from 
each parent with equal probability independent of other loci). Each locus of the offspring is 
mutated with a probability 10-4 (values in the range 10-3 to 10-5 are commonly used in 

biological models of this kind, e.g. [Gavrilets & Vose, 2005; Paperin, Green, et al., 2007b]). 
If a coding locus is mutated, its binary value is flipped. The neutral loci are subject to a 
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circular stepwise mutation model [Ohta & Kimura, 1973]. If the coding section of an 
offspring’s genotype is determined to be viable by the HFL model, the offspring is added to 
the new generation, otherwise it is discarded immediately. After all offspring for all pairs of 

parents have been determined, the old generation is discarded and replaced with the new 

population. 
 

Selection: 

 
All individuals within a single cell of the spatial landscape compete to survive to the age of 
reproduction (note that this approach of selecting individuals for survival is different from the 

approach commonly used in genetic algorithms, where all individuals survive and then 
compete to be selected for reproduction). All surviving individuals reproduce and their 
progeny compete to reach a mature age, which normally requires acquiring environmental 
resources. Each landscape cell is assumed to have a certain maximum carrying capacity 

CapMax, i.e. to provide enough resources for the survival of CapMax mature individuals. If a 

cell is inhabited by no more than CapMax individuals, all survive. Otherwise CapMax 

individuals are selected with equal probability and the rest are discarded (as in this HFL 
model a particular individual is either fit or inviable). 

 

Dispersal: 

 
Individuals that reach maturity have a certain probability of migrating to one of the 

neighbouring spatial landscape cells. To avoid edge artefacts the landscape is represented as 
a torus. The effect of different migration rates is discussed in section 11.4.3, Results. 
 

Experimental scenarios: 

 
In order to investigate how spatial distance affects the results I consider different grid 
layouts. The simplest case is a 12 grid. Other investigated grid sizes are 22 cells and 33 

cells. The results (section 11.4.3 below) allow to draw conclusions on how the dynamics of 
reproductive isolation will behave on larger landscapes. Each cell is initialised with a random 

viable individual with alleles at neutral loci all set to 0. Initially, I disable any migration 
between the cells and iterate the model for 100 thousand generations in order to allow the 
allele distribution to reach equilibrium. I then turn on migration at a specific rate (see section 
11.4.3) and iterate the model for 300 thousand further generations. Measurements are taken 

every 1000 generations. 
 

Measured quantities: 

 
A quantity of prime interest in this model is the number of reproductively isolated groups (RI 
groups) present in the model at any one time as well as various attributes of such groups. I 
am interested in groups of genotypes that could inter-mate successfully producing likely 

viable offspring, not in groups of individuals who actually do so. Finding such groups is 
difficult as the groups may be partially overlapping (e.g., a genotype can successfully mate 
with two genotypes that cannot mate with each other) and the genetic distance between 

groups is initially unknown and may vary. In order to cluster the genotypes of a population 
into RI groups I employ the Markov Clustering algorithm (MCL) [Van Dongen, 2000b], as it 
does not require a distance threshold parameter and because it has been successfully applied 

to a similar task – clustering protein sequences into families [Enright et al., 2002] (here, I 
essentially cluster gene sequences into families). For that I first calculate a reproductive 
success probability matrix for all genotypes in the population. The probability of reproductive 
success of two genotypes is estimated by simulating a large number of crossovers between 

the genotypes and considering the proportion of crossovers that result in viable offspring. 
The matrix is then used as input to the clustering algorithm. To further verify the 
applicability of MCL to the model, I apply this algorithm the model discussed in chapter 10. 

Recall that that model uses a similar genotype representation (a string of diallelic loci). 
There, RI groups were determined simply by asserting to which habitat niche genotypes 
were best adapted. Tests show that the RI groups determined by the clustering correspond 

to the groups determined by assigning the genotypes to niches (Figure 11.5). 
 
On the basis of the RI groups I measure the average genetic divergence in neutral loci 
between the groups using the fixation index Fst. A number of slightly different approaches to 
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calculating Fst have been proposed in literature. Here I follow the approach taken by Hudson 

et al. [1992], who defines Fst as the ratio of genetic divergence within a group and the 

divergence between the groups. More specifically, for every pair of genotypes within a group 
C, measure the stepwise genetic distance at neutral loci, i.e. the minimum number of 

stepwise mutations necessary to obtain one genotype (the neutral section thereof) from the 

other. This allows calculating the average genetic distance dW(C) within a group C. To 

calculate the average genetic distance dB(C) between C and all other groups, measure the 

pair-wise distances between all genotypes that belong to C and all genotypes that do not 

belong to C. 

 

The group fixation index is then Fst(C) = 1 – dW(C) / dB(C) and the overall fixation index Fst is 

the average of Fst(Ci) for all groups Ci. Note that groups of different sizes are treated equally 
in this approach. Fst  1 implies high divergence, and Fst  0 implies low divergence. 

 
Another important quantity is the number of distinct coding sections. This essentially 
corresponds to the number of distinct phenotypes in the population (recall, the neutral 

genotype sections can be thought of as introns and are used only to measure divergence). 
The number of distinct coding sections is expected to be higher than the number of RI 
groups (because some coding sections are reproductively compatible), but significantly lower 

than the number if distinct neutral sections (because phenotypes are constrained by 
selection for viability and reproductive compatibility with others).  
 
The turnover of viable coding genotype sections (i.e. turnover of viable phenotypes) in the 

population is the number of distinct viable coding sections that have been present in the 
model population from the start until a given time. This value can be used to describe the 

rate at which novel adaptive phenotypes are evolved. On this basis, I relate the degree of 

reproductive isolation and the migration rate to evolutionary novelty within the system. 
 
For each of the scenarios discussed below I performed 10 independent model runs and 

averaged the results. 
 
 

 
 

Figure 11.5. Using Markov Clustering (MCL) for determining reproductively isolated 

groups. Depicted is a snapshot of a spatial landscape (100100 grid) from the model in chapter 

10. Each cell is coloured according to the cluster to which the majority of the genotypes 

inhibiting the cell belong. Left: the genotypes were assigned to RI groups using the MCL 

algorithm. Right: the genotypes were assigned to RI groups according to the ecological niche to 

which they are best adapted. Although represented by different colours, both groupings are 

largely the same. 

 
 

11.4.3. Results 
 
Consider first the 22 layout. As a basis for comparison I performed a set of runs with a 

migration rate of 0%. As expected, the number of reproductively isolated groups (RI groups) 
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corresponds to the number of cells (i.e., 4), the divergence at neutral loci grows (Fst 

approaches 1) and the number of distinct coding genotype sections in the population 
fluctuates around a value slightly higher than the number of RI groups – due to viable 
mutants and drift (see Figure 11.7). In one of the runs, two of the cells appeared not to be 

reproductively isolated as the random founder individuals were genetically similar by chance. 
 
In the next scenario I increased the migration rate to 1% after the first 100,000 generations. 

This lead to a slight increase in the number of distinct coding sections in the population 
which is due to viable hybrids resulting from breeding with immigrants. Some of these 
hybrids spontaneously form RI groups, however such groups cannot persist due to low 

population numbers in comparison to native populations. These viable hybrids facilitate a 
limited gene flow between the populations: after 300,000 generations Fst has decreased to 

ca. 0.8 (Figure 11.7, D). 
 

In the first 100,000 generations, when migration rate is 0%, the turnover of viable coding 
genotype sections increases at a small rate due to genetic drift. Once migration is enabled, 
the turnover grows at a higher rate which suggests that more new viable genotypes are 

discovered through hybridisation than through generic drift. Indeed, this behaviour is even 
more pronounced for higher migration rates (Figure 11.7, C). 
 
In the next scenario the migration rate was set to 5% after the first 100,000 generations. 

Qualitatively, the results are similar to the 1% scenario. Quantitatively, the gene flow 
between the populations is higher (Fst falls to ca. 0.7). The higher migration rate leads to an 

increased probability for formation of reproductively isolated hybrid groups (Figure 11.7, A). 
Genetic drift within a larger number of RI groups as well as hybridisation between more 

diverse individuals leads to a larger number of coding genotype sections in the population 
(Figure 11.7, B) and to a higher rate of discovering new viable adaptations (Figure 11.7, C). 
Further rises in the migration rate to 10% (not shown), 15% and 20% (Figure 11.7) increase 

the strength of the above effects.  
 
When the migration rate is set to 25% or more, reproductive isolation between groups can 

no longer be sustained. A large number of reproduction events that lead to inviable offspring 
have a destabilising effect on the population size. Under such conditions, there is a high 
chance of extinction for any native cell population. Once an immigrant population has 
become established in a cell, a positive feedback loop is created: For individuals of the native 

population, the chance of having viable offspring is decreased by the presence of the 
invaders who may be selected as mating partners. At the same time, the chance of new 
invaders to successfully reproduce increases in a growing immigrant population. As seen in 

Figure 11.7, A, the number of RI groups collapses to 1 under 25% migration. Sporadically, 
small RI groups arise due to drift, but do not persist long enough to achieve a significant 
divergence in neutral loci (Figure 11.7, D). The main population evolves as a single RI group. 

As a consequence, the number of distinct coding sections in the population is very small 
(Figure 11.7, B and Figure 11.7, C).  
 
In order to investigate how spatial distance affects the above results I repeated the 
experiments on a 12 grid. In large, the model behaviour is similar, however the migration 

rate has a larger impact on the smaller landscape: 
 
Readily a migration rate of 1% causes Fst to decrease to ca. 0.5 after 300,000 generations of 

migration (Figure 11.6, C). A migration rate of 10% causes the generic divergence of the two 

present RI groups to decrease to insignificant levels within 50,000 generations of migration. 
However, reproductive isolation can be sustained at 10% and 15% migration – the number 
of RI groups stays around 2 which shows that the significant gene flow is not sufficient to 

break reproductive isolation and must occur through viable hybrids, who, however, cannot 
establish a separate reproductively isolated population. This is apparent in the fact that the 
number of distinct coding sections in the population remains small (not shown) suggesting 
that hybrids occur between the same genotypes. This conclusion is further supported by the 

turnover rate of the coding sections (Figure 11.6, B): After an initial increase similar to the 
22 scenarios, the turnover rate slows down to a level close to the rate before migration was 

turned on, showing that the two populations have reached an equilibrium and that further 
genetic innovation is due to drift. At 20% migration reproductive isolation collapses rapidly 
and the entire model population evolves as a single reproductive group (Figure 11.6). 
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Next, I repeated the experiments on a 33 grid. As expected, a larger grid makes it possible 

to sustain reproductive isolation at higher migration rates. At 30% migration, reproductive 

isolation is sustained and the number of RI groups lies above 40. At 35% migration, 
reproductive isolation collapses in a way similar to the previous scenarios (data not shown). 

 

In order to assert that the above dynamics are caused by the HFL genetics, I simulated all of 
the above scenarios without the HFL. In these control runs all individuals are viable and 
selection is thus random. In this context, reproductive isolation cannot be defined and the 

number of RI groups and Fst cannot be measured. However, a related measure is the 

average genetic divergence DB at neutral loci between all individuals of the entire model 

population. In the presence of groups without gene flow between them, DB is expected to 

grow as the neutral loci in such groups will diverge. I measured DB for all grid sizes discussed 

earlier. As expected, for a migration rate of 0%, DB steadily grows. However, for all grid 

sizes, a migration rate of 1% is sufficient to cause DB to drop sharply and to remain low for 

the rest of the simulation (Figure 11.8). This indicates that without HFL-genetics (or other 
reproductive barriers occurring in nature) reproductive isolation cannot be sustained even for 
small migration rates. 

 
 
 

 

 

 

   

Figure 11.6. Evolution on a 12 grid for different migration rates. Shown migration 

rates: 0% (red), 1% (orange), 5% (green), 10% (green) and 20% (red). Data averaged 

over 10 runs. Some values omitted for clarity. 
A (top): Number of RI groups. 

B (middle): Turnover of viable coding genotype sections. 

C (bottom): Genetic divergence measured using the Fst. 
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Figure 11.7. Evolution on a 22 grid for different migration rates. Shown migration 

rates: 0% (red), 1% (orange), 5% (green), 15% (blue), 20% (red) and 25% (blue). Data 

averaged over 10 runs. Some values omitted for clarity. 
A (top): The number of RI groups increases when the migration rate is higher. For very 

high migration rates the whole model population collapses into a single reproductive group. 

B (2nd from top): The number of distinct coding genotype sections in the population 

increases when the migration rate is high. As the population collapses to a single 

reproductive group at very high migration rates, the number of distinct coding sequences 

falls. 

C (3rd from top): The rate of evolving new viable coding genotype sections increases when 

migration rate is higher due to drift in a larger number of IR groups and due to 

hybridisation between more RI groups. As the population collapses into a single 

reproductive group at very high migration rates, the number of coding sequences falls. 

D (bottom): Genetic divergence between RI groups measured using the fixation index Fst. 

Higher migration rates lead to increased gene flow and thus lower genetic divergence. 



 

 134 

 
 

 

 

 

   

Figure 11.8. Average genetic divergence DB at neutral loci between the individuals 

of the entire population in neutral evolution (without HFL). The average genetic 

distance grows when migration rate is 0%. The average genetic distance quickly collapses 

to a small value above 0 (due to drift) for all other migration rates (1%, 5%, 25% are 

shown). This behaviour is largely the same for all grid sizes considered (12 grid shown 

here). 

 
 

11.4.4. Conclusion 
 
The role of spatial separation in facilitating reproductive isolation is well known [Wright, 
1932]. The difference between the three spatial scenarios demonstrates this effect. In order 

for an allele to pass from one cell to another non-adjacent cell it must first become 
established in the intermediate locations. Strong reproductive isolation induced by the HFL 
enhances this effect. Thus, hybrid zones and divergent satellite populations may provide a 

stronger barrier to gene flow than often assumed. 
 
The effect of higher mutation rates on the number of distinct viable coding sections in the 
population is stronger than on the number of RI groups. This suggests that despite HFL, a 

small proportion of hybrids is viable and does not exhibit reproductive isolation from the 
main population. It is these viable hybrids that facilitate the gene flow between 
reproductively isolated populations. However, the small effect of an increasing migration rate 

on the number of RI groups implies that some hybrid populations exhibit real reproductive 
isolation and are not simply fuelled by repeated hybridisation with immigrants. 
 

The common assumption is that hybrid zones are maintained by an interaction between 
continuous hybridisation and selection against hybrids. Reproductive isolation between the 
hybrids and the main population is often attributed to ecological preferences to a specific 
environment within the hybrid zone and not to genetic incompatibility. If such a specific 

ecological environment is altered, the hybrids become disadvantaged. As a result they 
become extinct either through selection against them or by adapting to the main 
environment thus removing reproductive isolation between the hybrids and the main 

population. However, hybrid populations that have strong genetic incompatibilities with the 
main population caused by HFL-genetics are more likely to persist. In the present 
simulations, such populations are short-lived because their small initial population size and 

the absence of prezygotic isolation (i.e., reproductive isolation caused by not mating with 
members of other groups rather than by offspring inviability) make it unlikely that they 
successfully reproduce for a large number of consecutive generations. However, in the 
presence of a free ecological environment niche within the hybrid zone, hybrid groups can 

multiply in numbers and persist. These populations, once numerous, are less likely to be 
affected by a disturbance of their specific ecological niche due to the strong genetic 
reproductive isolation between the hybrids and the main population. This can allow the 

hybrid population to further diverge eventually forming prezygotic reproductive isolation and 
thus to speciate. Although further data are required, this observation provides potential 
support for the analogy of novel species to point mutations implicit in some recent ecological 

[Hubbell, 2001] and macro-evolutionary [Gould, 2002] theories. 
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As discussed in section 11.4.3 above, for relatively high migration rates, an immigrant (not 
hybrid) population that became established in a new environment is likely to induce a 

positive feedback loop leading to the extinction of the native population: A large number of 

immigrants who act as potential mating partners in the absence of prezygotic reproductive 
isolation decreases the chance of native inhabitants to have viable offspring and increases 
the chance of further invaders to successfully reproduce. This may lead to reinforcement – 

the evolution of sexual selection and thus prezygotic mating barriers in response to selection 
against hybrids (Figure 11.9). Reinforcement is a controversial topic in speciation theory 
[Spencer et al., 1986; Butlin, 1987]. However, as argued in the previous paragraph and 

supported by current results, reproductive isolation generated by the HFL is often resistant to 
mutations reducing hybrid disadvantage. Thus, reinforcement may be more likely in the 
context of HFL-genetics than previous models indicate [Spencer et al., 1986; Butlin, 1987]. 

 
 
 
 

 
 

 
 

Figure 11.9. Reinforcement and evolution of sexual selection as a result of selective 

pressure to avoid mating with immigrants. Immigrant population becomes established in a cell. 

As mating is random, the chance of native individuals having viable offspring is decreased since 

hybrid offspring are likely inviable. Conversely, as the immigrant population grows, the invaders’ 

chance to successfully reproduce increases. The resulting positive feedback loop is likely to drive the 

native population to extinction unless they develop a form of sexual selection to mate only with 

other native individuals. The resulting prezygotic reproductive barrier leads to speciation. 

 
 

Prezygotic reproductive 
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11.5. Applications outside evolutionary biology 
 

The material presented in this section is based on the following publications: 

 
 G. Paperin (2008): 

Using Holey Fitness Landscapes to Counteract Premature Convergence in Evolutionary Algorithms. 
Satellite Workshop at the Genetic and Evolutionary Computation Conference 2008 (GECCO’08). Ref: [Paperin, 2008b]. 

 
 
In the previous section I showed that a genotype model that results in a HFL can facilitate 

and maintain strong reproductive isolation and thus diversity. In biological systems, on-going 
diversity is a widely emerging phenomenon that we seek to understand. In some engineering 
problems, creating and maintaining diversity is a fundamental challenge. Here, I seek to 

apply insights about natural diversity gained earlier to computational optimisation problems. 
 
A key problem in evolutionary optimisation, for instance – in genetic algorithms, is 

premature convergence. While a number of methods exist to approach this issue, they 
usually require problem specific calibration or only partially resolve the issue, at best by 
delaying premature convergence of an evolving population. In this section, I speculate that 
the genetic model employed in the simulation experiments in section 11.4 above can be used 

to combat premature convergence in evolutionary optimisation algorithms. 
 

11.5.1. Premature convergence in genetic algorithms 
 
Premature convergence is a common problem in genetic and other evolutionary algorithms. 
A number of approaches have been introduced to counter against it, however, solutions are 

subject of on-going research. In nature, populations often maintain a resilient genetic 
diversity under strong selection pressures (e.g., see throughout part IV of this thesis). Thus, 
various generic approaches to achieving diversity in evolutionary optimisation have been 

inspired by mechanisms thought to facilitate and maintenance diversity in nature. Most of 
these methods are variants of the so-called niching approach [Mahfoud, 1995] (e.g. 
crowding [De Jong, 1975], sharing [Goldberg & Richardson, 1987], island model [Whitley et 

al., 1999]). Other approaches attempt to vary environmental factors such as maximum 
population size [Liu et al., 2000], or the evolutionary goal [Kashtan et al., 2007], however 
the latter processes are not always present in diverse natural populations. 
 

In general, niching aims to introduce a degree of reproductive isolation between groups of 
candidate solutions in order to concentrate the evolutionary search on different regions of 
the solution space. A recurring difficulty in applying niching-based algorithms is that the 

optimal degree of reproductive isolation and the number of reproductively isolated groups 
(RI groups) are usually problem-specific and must be artificially tuned or set arbitrary. In 
addition, while often successfully delaying or slowing premature convergence, niching 

algorithms are rarely successful at preventing it completely [Mahfoud, 1995]. This difficulty 
corresponds to a number of results from theoretical biology: In biological terms, niching 
introduces prezygotic reproductive isolation. However, the maintenance of sustained 
prezygotic reproductive isolation presents a theoretical challenge for biologists. To recap 

from section 11.4.1: Prezygotic reproductive isolation based on ecological divergence or 
physical barriers is often transient, collapsing when selection pressures change; even 
moderate migration between populations leads to high gene flow making the extinction or 

merging of RI groups likely. On the contrary, reproductive isolation is likely to be sustained 
once postzygotic reproductive barriers have evolved and genetic incompatibilities make 
hybrid viability unlikely (section 11.4). Previously in this chapter I have shown that such 

postzygotic reproductive barriers emerge for instance when a fitness function is employed 
that results in a HFL. 
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11.5.2. Employing HFL genetics in optimisation algorithms 
 
In nature the ―holey‖ structure of HFLs arises implicitly through gene incompatibilities. In the 

computer models described in this chapter, HFL was modelled explicitly. This explicit model 
may be used to support and, in some circumstances, to replace traditional niching 
algorithms. In particular, the island model [Whitley et al., 1999] bears resemblance to the 

simulation in section 11.4 above. There, I used the neutral loci only to measure genetic 
divergence. However, in a genetic algorithm, these loci may be used to encode candidate 
solutions instead (Figure 11.10). The fitness of such composite solutions may be measured 

as follows: If the HFL-section is inviable, the overall fitness of the composite candidate 
solution is zero. If the HFL-section is viable, then the overall fitness is determined by 
evaluating the loci that encode the candidate solution in a problem-specific way. In that 
case, terming these loci neutral would be inappropriate as they are crucial to fitness of HFL-

viable candidate solutions. Reproduction of such composite individuals can be realised 
according to the two different genotype sections: The HFL-sections can reproduced similar to 
the earlier model – through free recombination and bit-flip mutations. The problem-specific 

sections can be reproduced in a problem-specific way. 
 
The small effect of an increasing migration rate on the number of RI groups observed in the 

earlier experiments implies that some hybrid populations exhibit real reproductive isolation 
and are not simply fuelled by repeated hybridisation with immigrants. In population biology, 
hybrid populations that have strong genetic incompatibilities with the main population (such 
as those caused by HFL-genetics) are thought to be most stable. In the current simulations 

such populations are short-lived because their small initial population size and the absence of 

prezygotic isolation make it unlikely that they successfully reproduce for a large number of 
consecutive generations. However, in the presence of a free niche, these hybrid groups can 

reproduce and persist. Such a niche may be given by under-explored areas of the solution 
space of an optimisation problem. Thus, the current model may be used as a mechanism for 
dynamic discovery and maintenance of multiple search directions in genetic and other 

evolutionary algorithms. 
 
Because a large proportion of genotypes is HFL-inviable, advantageous adaptations in 
problem specific sections may be prematurely discarded when paired with inviable HFL-

sections. Thus, the speed of discovery of good solutions with the proposed approach is 
expected to be slow. However, the candidate population is expected to exhibit strong and 
robust diversity and maintain multiple foci in the search space. This approach is thus best 

suited to problems where the speed of search is not of crucial significance and where 
premature convergence and local optima present important challenges. Evolution on HFLs in 
nature leads to diverse populations that perform robustly under unexpected disturbances and 

are able to adapt to unforeseen circumstances. It is this type of tasks where engineering 
methods often fail and where nature-inspired HFL-based methods may yield a substantial 
benefit. 
 

Recall that the HFL model discussed here is explicit, while in nature, HFL arises implicitly 
because the majority of biochemically conceivable genotypes gives rise to inviable 
phenotypes. It is important to note that this is paralleled by many optimisation problems in 

which a valid solution encoding can result in an illegal or irrelevant solution. For instance, 
candidate solutions to the travelling salesman problem that contain incomplete loops or 
duplicate stops are inviable. Candidate solutions to multiobjective optimisation problems that 

conflict with one or more constrains can also be assumed inviable. In such problems, 
evolutionary search is carried out in an HFL-like search space, if viable genotypes 
(representations) build a connected component. Thus, a better understanding of structure 
and dynamics of HFLs may provide new insights for the solution of such problems. A step in 

this direction is undertaken in section 11.3, where I discussed a numerical analysis of a 
biological niche model with HFL genetics. 
 

Further experiments on particular optimisation problems are necessary to access the benefits 
of the proposed approach more specifically. Although that research is beyond the scope of 
this particular work, I would be remarkably excited to see further results in this area. A 

presentation of these proposals at a satellite-workshop of a major evolutionary computation 
conference [Paperin, 2008b] received significant interest from delegates. 
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Figure 11.10. Hypothetical approach to using HFLs to combat premature 

convergence in genetic algorithms. Candidate solutions are encoded in two sections. 

Problem-specific section encodes the actual candidate solution that has a specific fitness. HFL-

section is a bit-string that is viable or inviable according to the HFL model. If HFL-section is 

inviable, overall candidate fitness is 0, otherwise fitness is determined normally from the 

problem-specific section. Both sections may be changed during reproduction. This approach is 

expected to result in slower adaptation, but also in high and robust diversity of candidate 

solutions and in maintenance of multiple search directions. Compare this figure to Figure 
11.4 on page 128. 
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11.6. Summary 
 

In this section chapter I introduced a genotype model based on a combination of the 
quantitative trait model with ecological niches and the HFL model (section 11.1). The 
application of the proposed model in a computer simulation is not straight forward due to a 
number of constraints and differences between the analytical HFL concept and the 

requirements posed by feasible simulation experiments (section 11.2.2). I show an approach 
to overcome these difficulties and build a computer model that can be employed in 
individual-based simulations (section 11.2.3). On this basis I perform a structural analysis of 

the proposed genetic model that will inform future studies based on this work (section 11.3). 
The structural analysis concludes that the new model exhibits many desired nature-like 
properties while avoiding several drawbacks of the quantitative trait and the HFL models. 

 
Based on the new technique for incorporating HFL-genetics into individual-based simulations, 
I describe a computer model that investigates the degree and the robustness of reproductive 
isolation provided by HFL-genetics (section 11.4). Simulation results clearly show that 

genetic incompatibilities caused by the HFL lead to maintenance of reproductive isolation 
between parapatric sub-populations despite significant migration and the absence of 
prezygotic mating barriers. These results may have important implications for the 

understanding of the role of reinforcement in evolution of sexual selection and speciation. 
 
The techniques employed in the simulation model may be adapted for engineering problems, 
for instance for maintenance of diversity within populations of candidate solutions in various 

evolutionary algorithms (section 11.5). 
 
The notion of HFLs, while largely unchallenged, has arguably received insufficient attention 

from theorists. The work presented here shows that simulating plausible FLs can 
considerably change predictions about the maintenance of diversity and the emergence of 
new adaptations in natural and artificial systems. The current approach may be useful in 

further exploring these issues and related problems of adaptive radiation, evolvability and 
evolutionary search. From the perspective of evolutionary biology, representing FLs in a 
more plausible way may facilitate the acceptance of individual-based techniques along with 
traditional, differential-equations based simulations. These techniques can help resolving 

many questions that are difficult to approach with conventional approaches, such as 
questions related to spatially-explicit scenarios, and scenarios where analytical models are 
not available. From the perspective of Artificial Life research, representing fitness landscapes 

in a biologically plausible way may facilitate ongoing adaptive exploration and the continuous 
generation of novelty in evolving populations. From the perspective of complexity science, 
representing fitness landscapes in a biologically plausible way may help understanding 

general mechanisms behind diversity, perpetual novelty and robustness in CAS. 
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Part V 

 

Self-Organisation in 

Complex Networks 

 
 
 

 
 
 
Topological properties of networks that underlie complex systems influence system behaviour in a 
fundamental way. Thus, understanding mechanisms behind dynamic and static topologies is 
essential for understanding complex system behaviour. Here, I discuss several network models 
that facilitate in emergence of key topological constructs from simple local rules. Studied dynamic 
and static network constructs include large-scale recurrent connectivity transitions, modularity, 
and scale-free networks. 

 
 
 
Chapter 12: Emergent connectivity phase transitions in complex networks. 
 
Connectivity phase transitions can emerge through mechanisms such as external disturbances, 
slow forcing and internal feedback. Simulation experiments on a model of resource flow in 
complex systems indicate connectivity changes facilitated by feedback between flow network 
properties and edge density. A social network model demonstrates recurrent non-linear transitions 
in connectivity and dynamical behaviour caused by slow accumulation of specific small-scale 
structures and intermittent releases. 

 
 

 
Chapter 13: Generative models for important network topologies. 
 
Modular structures, circuit, and chain structures found in real social networks, emerge according 
to different parameter values in a social network model. In a network model of an economy, the 
emergence of multi-level modules organised in complex hierarchies is facilitated by growth of 
certain types of local interactions. An affiliation network model of human and animal groups 
demonstrates a previously unstudied natural process resulting in scale-free networks of constant 
size. 
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Chapter 12: 

12. Emergent connectivity phase transitions in 
complex networks 

 
 

Recurrent phase transitions in connectivity density of interaction networks that underlie 
complex systems can emerge through different mechanisms including external 
disturbances, slow forcing and internal feedback. Preliminary experiments on a 
simulation model of resource flow in different complex systems demonstrates how 
connectivity phase transitions can emerge through a feedback between efficiency-
properties of the resource distribution network and edge density. Another abstract social 
network model demonstrates how recurrent non-linear connectivity phase transitions 
can emerge through simple local rules that govern individual actions and relationships. 
In the model, slow accumulation of specific small-scale structures leads to stochastic 
large-scale transitions between phases of different model dynamics and connectivity. 

 

 

Some of the material presented in this chapter is based on the following publications: 
 

 G. Paperin, D. Green, S. Sadedin (2010): 
Dual Phase Evolution in Complex Adaptive Systems. 
Journal of the Royal Society Interface. Accepted for review. Ref: [Paperin et al., 2010]. 

 G. Paperin, S. Sadedin (2009): 
The Dual Phase Evolution Framework for Understanding Evolutionary Dynamics in Complex Adaptive Systems. 
2009 International Conference on Evolutionary Computation (ICEC'09). Ref: [Paperin & Sadedin, 2009a].  

 
 

12.1. Introduction 
 
Throughout this thesis I have argued that topological properties of networks that underlie 

complex systems play a fundamental role for the behaviour of such systems. Specifically, 
connectivity (density) of interaction networks is a key factor in facilitating many emergent 
phenomena. In this and the next chapter I am closing the loop by considering mechanisms 
that lead to emergence of particular important network topologies. 

 
Previously have argued that recurrent phase transitions in connectivity of networks that 
underlie systems facilitate the emergence of many complex properties. In section 7.4 I 

identified three mechanisms that can cause recurrent connectivity phase transitions: external 
disturbances, slow forcing, and internal feedbacks. In part IV I investigated some of the 
effect of the first of these mechanisms – external disturbances – in detail. In this chapter I 

use simulation models to provide examples of how recurrent phase changes in system 

connectivity can emerge without facilitation by external disturbances. 
 
The discussion in this chapter is brief. The main objective is to demonstrate that recurrent 

connectivity changes can emerge through the above processes. In the next chapter I discuss 
in more detail, how such emergent connectivity transitions may be responsible for the 
emergence of important network topologies, such as modular and scale-free structures. 
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12.2. Connectivity phase transitions in an abstract resource 

flow network model 
 

The material presented in this section is based on the following publication: 
 

 G. Paperin, S. Sadedin (2009): 
The Dual Phase Evolution Framework for Understanding Evolutionary Dynamics in Complex Adaptive Systems. 
2009 International Conference on Evolutionary Computation (ICEC'09). Ref: [Paperin & Sadedin, 2009a].  

 

 
In this section I present a model that captures some of the major features of resource flow in 
real-world CAS. For instance, the energy flow through food webs in ecosystems follows 

patterns similar to those described here. Resource flow between primary and intermediate 
producers, and end-consumers in economies also follows a similar pattern. Thus, the results 
obtained from this abstract model allow conclusions about a different real-world CAS. 

 
In large: A system is represented as a network of component nodes. Such nodes require 
resources (here – energy) to exist. Energy enters the system through a source node and is 
distributed through directed edges that connect component nodes to the source and to each 

other. When several nodes are connected downstream to a node, they compete for the 
energy that flows out from that node. The competition incurs an energy cost and the 
remaining energy is distributed between the downstream nodes. The transfer of energy from 

one node to another corresponds to energy conversion in nature (e.g. trophic interactions in 
an ecosystem, asset transfer in an economy) and incurs an energy cost. Thus, every time 
energy flows across an edge from one node to another, some of that energy is used up. Over 

time, new component interactions are established, components enter and leave the system, 
and components that collect large amounts of energy can reproduce. 
 
The preliminary results presented here indicate that the network structure that emerges in 

this model shares many parallels predicted by the DPE framework and by the framework of 
Adaptive Cycles (section 14.2): Over time, the network develops towards a robust 
configuration where a relative small number of edges can distribute the energy between the 

network components efficiently. Once such robust and efficient configuration is discovered, it 
persists for a long time, while additional relationships and interactions (edges) within the 
system develop. Such ever denser interactions around the stable core-configuration incur 

additional maintenance costs and make the resource distribution increasingly inefficient. 
Eventually the network reaches a state where the dense interactions can no longer be 
sustained, and a catastrophic collapse occurs, during which many components and resource 
distribution paths fail and disappear. Following such collapse, new stable system 

configurations are discovered and the cycle re-iterates. 
 

12.2.1. Model details 
 
The model is a network that consists of a single source node and several component nodes 
connected via directed edges that transport energy. Component nodes require energy to 

sustain themselves. The source node does not require energy, instead it produces a constant 
amount of energy at each iteration. Each model iteration consists of three stages: energy 
propagation, node maintenance and structural modification. 

 

Energy propagation:  

 
At the start of each iteration each component node c passes a proportion of its stored energy 

fc along its downstream connections (i.e. outgoing edges). Total energy propagated 

downstream by c is dc = fc  (1 - rc), where the retention factor 0  rc < 0 is a random number 

drawn when c is created. The remaining energy (fc – dc) is retained within the node. If c has 

no outgoing links, all of fc is retained. Nodes at the end of downstream edges of c compete 

for the energy propagated by c. Competition for resources in real systems requires energy. 

This is modelled by a competition cost factor kc = 1 / (1 + e2(lc – ic)), where lc is the number of 
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downstream edges from c, and ic > 0 is a random number drawn when c is created, it is the 

maximum value of lc such that most energy is not wasted by competition expenses. Each of 
the lc downstream edges receives an equal amount of (dc  kc / lc) units of energy from c. Any 

energy conversion in nature comes with a loss. To model this, every edge g has a flow 

efficiency value wg associated with it, such that the amount of energy actually arriving at 
node cq from node cp is uq,p = (dc  kc / lc) – wg(p,q), where g(p, q) is the edge from cp to cq and 

wg(p,q) is a random number drawn when g is created. 

 

Node maintenance and reproduction:  

 

After all nodes have propagated energy downstream, the total available energy fc at each 

component node c is equal to the amount of energy retained by c during the propagation 

stage plus the sum of the incoming energy from all upstream edges. Every c has an 

associated maintenance cost mc > 0 selected randomly when c is created. To maintain its 

existence, every c expends mc energy units per iteration. If mc > fc, then c dies and is 

removed from the system along with all connected up- and down-stream edges. The source 
node never dies. If c accumulates a large amount of energy, it reproduces. This happens by 

creating a duplicate copy h of c. The offspring h receives the same number of edges as c. 

Each of these edges may be connected either to the respective partner of c, or to any other 

random node with equal probability, thus modelling random mutation. The reproduction 
process consumes an amount of energy significantly larger than mc and remaining energy is 

divided evenly between c and h.  

 

Structural modification:  

 
At every iteration, a new component or a new edge is introduced into the network with a 

small probability. When a new component cn is introduced, for every existing node p, an edge 

g(p, cn) is added with a small probability. New edges connect two randomly selected existing 

nodes. Similarly, nodes and edges are removed from the network with a small probability at 
each iteration simulating external disturbances. 

 

12.2.2. Results 
 

Model dynamics, explored under a range of parameter values, demonstrate a DPE-behaviour 
with phases of high and low network connectivity. A detailed treatment of the presented 
model, including sensitivity analysis, and an investigation of which particular model features 

and parameter values facilitate the behaviour discussed here, is beyond the scope of this 
discussion. Preliminary results indicate that some features of the model may be simplified 
without compromising the DPE-behaviour discussed here. Such simplifications can make the 

model both, easier to analyse, and more applicable as a model of several natural CAS. That 
work is likely to lead to interesting insights and may result in a future publication of the 
findings. Here, I concentrate on three patterns in the dynamics of this model that can be 
observed under a range of parameter values. The key observation in the context of this 

thesis is the occurrence of recurrent connectivity phase transitions. In this model, such 

transitions are caused by internal feedback between the efficiency of the energy 
transportation network, and the edge density in the model (pattern C below). 

 
Some of the indicators of network dynamics in this model are the number C of component 

nodes, the total amount E of energy stored by all component nodes in the system, and the 

network edge density D. The maximum node age B is an indicator on internal stability of the 

system as it shows how long nodes can persist. 

 

A. External stress facilitates internal stability: 

 
In the absence of structural modifications (external disturbances), when probability of 

random node and edge removal is zero, the number C component nodes and amount E of 

energy in the system are lower on average compared to cases with structural modifications. 
This initially unexpected result can be explained within the scope of the DPE framework: In 
the absence of disturbances, unfavourable configurations can only be removed through node 

starvation. In the presence of structural modifications that propagate through the system by 
cutting off nodes and reducing connectivity, the remaining network sub-structures exhibit 
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more efficient and robust connectivity patterns. Additionally, newly created nodes can better 
compete with established nodes that stored significant amounts of energy, when all nodes 
can be affected by disturbances equally well. This increases potential for innovation and for 

discovery of more stable configurations. 

 

B. Preference for efficient connectivity patters: 

 

Another consistently emerging pattern is that low values of edge density D strongly correlate 

with high numbers C component nodes and high amounts E of energy in the system: A small 

number of connections is enough to efficiently distribute the energy across the components 
and additional edges lead to excessive energy expenditure due to unnecessary competition 
and flow friction along the edges (Figure 12.1).  

 

C. Feedback between network efficiency and edge density causes connectivity phase transitions: 

 
In typical runs with or without structural modifications, the maximum present node age B is 

normally low (< 1000), indicating internal instability. Over time, robust network 
configurations are discovered, signified by a growing value of B ( 1000). Edge density in 

these stable configurations grows, making them less efficient and more susceptible to 
catastrophic change. Eventually, the amount E of energy stored in the system reaches a very 

low value and the stable configurations collapse leading to the next variation phase of low 
connectivity (Figure 12.1). The low-connectivity variation phase is typically long, indicating 

that it takes many iterations until stable structures that can support growing connectivity are 
discovered. This may be due to the absence of higher order stabilising control mechanisms 

such as selection between network configurations.  

 

12.2.3. Conclusion 
 

The preliminary simulation results presented here indicate the presence of connectivity phase 
changes and cycles in system dynamics. Such behavioural cycles are predicted by DPE and 
the Adaptive Cycles theory (section 14.2). The current abstract model of resource flow in a 

network may represent a variety of CAS, however further research on the model is necessary 
to adequately describe the key mechanisms responsible for the emergent phase changes. 
Here, I used the model as an example of how recurrent connectivity phases can result from 
internal feedbacks between system configurations, and not be immediately caused by 

external disturbances. In the next section, I present another model as a further example for 
emergence of recurrent connectivity transitions that are not facilitated by disturbances. 
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Figure 12.1. A typical simulation run. Shown are (from top to bottom): edge 
density D (red), total stored energy E (green), number of component nodes C 

(bbllaacckk), oldest node age B (yellow). Mean node age (not shown) strongly 

correlates with B. The x-axes represent iterations. The vertical dashed lines are a 

visual aid to stress apparent phase changes. 
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12.3. Connectivity phase transitions in a copycat network 

model 
 
In this section I present a simple simulation model that demonstrates how recurrent 
transitions between phases of high and low connectivity can emerge in networks without 

facilitation by external disturbances. The model is based within a context of social groups. 
However, the simple mechanisms that drive behaviour of this model are also present in other 
systems, making the results applicable to a wider range of CAS. 

 
The central idea of the current simulation is that individuals tend to behave similarly to their 
peers and copy their behaviour. Consider a network where nodes represent individuals and 
links represent friendship or acquaintance relationships. Over time, individuals forge new 

relationships, which is represented by a steady addition of links. At rare occasions, 
individuals leave the social group, for instance by moving to another city. In this model, all 
relationship links of individuals that leave the group are destroyed. For simplicity I assume 

that the group has a constant size, so whenever an individual leaves the group, a new 
individual joins (new individuals nave initially no acquaintances). Relationships strengthen 
with time. Old relationships may become so important that individuals begin to copy the 

behaviour of peers to whom they have such important relationships. If an individual is 
related in this way to another individual who leaves the group, they follow and also leave. In 
principle, this can result in large numbers of individuals leaving at once. 
 

Results show that the density of relationships in this model undergoes recurrent transitions 
between well connected and poorly connected phases. The mechanism leading to such 
transitions is the slow accumulation of links that cause individuals to copy each other’s 

behaviour (copycat links) . When a certain copycat link density is reached, the system 
undergoes a critical transition towards different dynamics. The system returns to original 
dynamics once a number of individuals leave. 

 

12.3.1. Model details 
 

Individuals: 

 
Model individuals are represented by network nodes. In the experimental results reported 
here, the network consists of N = 200 nodes.  

 

Relationships: 

 
Common relationships between individuals are represented through normal links in the 

model. To account for the fact that individuals tend to forge new relationships over time, new 
links between uniformly randomly selected nodes are added to the network at a rate of one 

link per model iteration. 
 

Copycat relationships: 

 
When relationships between individuals mature, they are likely to begin copying each other’s 
behaviour. In this model, relationship links that cause such copying are called copycat links. 

At each iteration, a link e is randomly selected. If that link is a copycat link, it remains a 

copycat link. If e is a normal link, it becomes a copycat link with a probability pc = 1 – (FC)ae 

where ae is the age of link e counted in model iterations, and FC is a parameter such that 
FC = 1 -  for some small . As a result, recently created normal links are unlikely to become 

copycat links, but as links become older, their probability to turn copycat increases. Below, I 
report on the model behaviour for different values of FC. 
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Group dynamics: 

 
At rare occasions, individuals leave the social group. To model this, nodes are removed from 
the network at a rate of 10-3 per iteration. When a node leaves the network, all its links are 

also removed. For simplicity I assume here that the social group is of constant size. Thus, 
when an individual leaves the group, another individual is added. The newly added individual 
has initially no relationships, but such relationships can be forged over time (see 

relationships above). 
 

Copycat behaviour: 

 

If an individual node that leaves the group has copycat relationships to other individuals, 
they also leave the group. In the model, all nodes that are connected to a departing node 
through copycat links, also leave the network. In turn, all further nodes connected by 

copycat relationships to any of the leaving individuals, leave as well. Thus, a large number of 
nodes may depart at once. 
 

12.3.2. Results 
 
I simulate the above model for different values of FC. For each FC I perform 25 independent 

model runs. The results are summarised in Figure 12.2 and Figure 12.3. For lower values of 
FC ( 0.999), the number of links in the model network varies hectically, but remains low. 

This is signified by a relatively small variation in link counts over the model runs. This is due 

to the fact that links are likely to turn copycat soon after their creation. When nodes leave 
the network, large numbers of nodes are frequently drawn along, breaking their links to 
remaining nodes and keeping link density low. 

 
For large values of FC ( 0.9999999), the network becomes saturated with links, i.e. every 

node interacts with almost every other node. This behaviour is consistent across runs as 
shown by the small variation in link numbers. This effect occurs because links are unlikely to 
turn copycat even after a large number of iterations. Thus, when nodes leave the network, 

their interaction partners are not drawn along. Links lost due to single nodes leaving the 
system are quickly restored when newly arriving replacement nodes become connected to 
the network. 

 
Interesting behaviour from the perspective of the current discussion occurs for intermediate 
values of FC between 0.9999 and 0.999999, with most pronounced effects occurring for 

FC = 0.9999. There, the network undergoes recurrent transitions between phases with high 

and low numbers of links relative to each other (i.e. high and low connectivity density). The 

transitions are strong and occur stochastically, as shown by the large variation in link 
numbers over the model runs. As a result, the network remains in each connectivity phase 
for a prolonged period of time. This behaviour is due to the non-linear effects introduced by 

the copycat links: In a network with predominantly young links, the probability for links 
turning copycat is small, which allows the overall link density to increase. As links age, the 

rate at which they become more likely to turn copycat increases. Eventually, the average 

probability of links becoming copycat reaches a value for which a significant proportion of 
links are likely to turn copycat. This causes the system to transition to a state where a single 
node departure can propagate to a large number of nodes, drawing them along and thus 
significantly reducing link density. Both, normal and copycat links are removed during such 

departure events, but they are replaced with normal links of young age. Thus the model 
arrives back in a state dominated by young normal links and a new phase-transition cycle 
begins. 
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Figure 12.2. Number of edges in the copycat model (part A). Shown are typical runs (left) and 
averages over 25 independent runs (right) for different values of FC between 0.1 and 0.9999. See 

the description of Figure 12.3 on page 151 for more information. 

 
 



12. Emergent connectivity phase transitions in complex networks 

 151 

 
 

F
C
 =

 0
. 

0
.9

9
9
9
9
 

  

   

F
C
 =

 0
. 

0
.9

9
9
9
9
9
 

  

   

F
C
 =

 0
. 

0
.9

9
9
9
9
9
9
 

  

   

F
C
 =

 0
. 

0
.9

9
9
9
9
9
9
9
 

  

 

Figure 12.3. Number of edges in the copycat model (part B). Shown are typical runs (left) and 
averages over 25 independent runs (right) for different values of FC between 0.99999 and 

0.99999999. (This figure supplements Figure 12.2 on page 150 that shows data for FC-values 

between 0.1 and 0.9999.) 

Left (typical model run): Total number of links (dark red), number of normal links (blue) and 

number of copycat links (green). 

Right (average of 25 independent model runs): Average total number of links (dark red) with 

grey lines showing the range of  one standard deviation in the total number of links over the 25 

runs. 

For small FC ( 0.999), link density / number of links remains small and the standard deviation is not 

significant. For large FC ( 0.9999999), the network is saturated with links and the variance of link 

density in very small. Interesting behaviour occurs for intermediate values of FC 

(0.9999  FC  0.999999). For such FC, the network continuously undergoes significant transitions in 

links density with prolonged phases with higher and lower connectivity relative to each other. This is 

signified by large variation in link numbers over the independent runs. This effect is particularly 
pronounced for FC = 0.99999. 
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12.3.3. Conclusion 
 

In this section I discussed a simple abstract social network model that exhibits recurrent 

connectivity phase transitions that emerge due to slow accumulation of particular structural 
elements (links of type copycat). This behaviour occurs only for a specific range of the 
FC-parameter, however, this range spans three orders of magnitude. 

 
The current model was motivated within the context of social groups. However, the simple 
principle governing the model dynamics also occur in other systems. For instance, older (in 
evolutionary terms) genetic interactions are thought to incur higher dependence between 

genes [Kauffman, 1993]. This implies that the principles exemplified here may have wider 
applications. A detailed discussion of parallels between the current model and particular 
natural systems may result in useful insights, however, it is beyond the scope of the current 

discussion. Here, the key objective was to demonstrate simple principles for emergence of 
connectivity phase transitions without facilitation by external disturbances. In the next 
chapter I consider a number of generative models for key network topologies based on both, 

emergent and explicitly facilitated transitions between high and low interaction densities. 
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Chapter 13: 

13. Generative models for important network 
topologies 

 
 

Large-scale network topology influences systems behaviour. Thus, understanding 
generative mechanisms for important topological patterns is essential for understanding 
system dynamics. Several of such generative models are considered. A social network 
model shows that both, modular structures, and circuit and chain structures found in 
real social networks, emerge according to different parameter values. A network model 
of an economy demonstrates the emergence of multi-level modules organised in 
complex hierarchies. A model of interactions in human and animal groups demonstrates 
a hitherto unknown, natural generative mechanism for scale-free networks that do not 
grow in size. 

 
 

Some of the material presented in this chapter is based on the following publications: 
 

 G. Paperin, D. Green, S. Sadedin (2010): 
Dual Phase Evolution in Complex Adaptive Systems. 
Journal of the Royal Society Interface. Accepted for review. Ref: [Paperin et al., 2010]. 

 G. Paperin, D. G. Green, T. G. Leishman (2008): 
Dual Phase Evolution and Self-Organisation in Networks. 
7th International Conference on Simulated Evolution And Learning (SEAL'08). Ref: [Paperin, Green, et al., 2008]. 

 T. G. Leishman, D. G. Green, G. Paperin (2007): 
Dual Phase Evolution – a mechanism for self-organisation and optimisation. 
Asia-Pacific Symposium on Intelligent and Evolutionary Systems 2007 (APSIES’07). Ref: [Leishman et al., 2007]. 

 G. Paperin (2008): 
Dual Phase Evolution in Natural and Artificial Computational Systems. 
Invited talk at the12th Asia-Pacific Symposium on Intelligent and Evolutionary Systems (IES'08). Ref: [Paperin, 2008a]. 

 
 

13.1. Introduction 
 

Previously I have argued at several occasions that topological properties of networks 
underlying complex systems are a fundamental factor in facilitating many emergent 
phenomena. In this chapter I consider generative mechanisms that facilitate the emergence 

of important large-scale network topologies. I thereby continue the discussion began in the 
previous chapter, where I used simulation models to demonstrate mechanisms leading to 
recurrent connectivity phase transitions. 
 

In this chapter, I seek to apply the DPE framework where possible by keeping the role of 
local and global interactions and the role of different connectivity phases in focus. 
 

Several large-scale network topologies have received particular attention from researchers 
over the last decade. Recall briefly the review in chapter 5: 
 

 Random networks: The ―classic‖ network model is obtained by adding edges at 
random to a set of nodes. Much of the intuition and many analytical results in network 
theory are obtained from this model, however, random networks (also: Poisson 
graphs) are not thought to be a good model of most naturally occurring networks, 

which exhibit other edge topologies. 
 

 Trees: A network that has no loops or circuits is a tree. Trees are naturally associated 

with hierarchies and taxonomies. Tree structures are ubiquitous in human analytical 
thinking; they lie as the basis of concepts as diverse as biological phylogenetics, 
military command structures, linguistic grammars and the organisation of XML and 

HTML documents on the web. However, tree structures are not often found in natural 
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interaction networks. Complex systems rarely adhere to strict taxonomic rules and 
although modular organisations are common, loops and feedbacks occur frequently. 

 

 Modular networks: A modular network consist of groups of nodes (modules) where 

the internal connectivity is significantly higher than the connectivity between the 
module and the rest of the network (Figure 5.5, C). Modular structures are a common 
way by which natural and artificial systems reduce complexity through functional 

encapsulation and decoupling. The abundance of modular topologies in complex 
natural networks implies that mechanisms behind self-organisation into modular 
structures must be common. However, such mechanisms are not well understood. 

Section 13.2 discusses some possible mechanisms behind the emergence of modular 
network topologies. 

 

 Scale-free networks: Scale-free networks consist of many nodes with a few edges 
and a few nodes with many edges (Figure 5.5, A). More precisely, the node degree 
distribution in scale-free networks follows a power-law. Scale-free interaction 
topologies have been discovered in a variety of systems as diverse as scientific 

collaborations, the World Wide Web and inter-protein interactions in cells. Scale-free 
networks are thought to play a role in systems that exhibit self-organised criticality 
(section 14.1), they have been extensively studied, and several generative 

mechanisms are known. However, in section 13.3 I discuss hitherto unknown 
generative models for scale-free networks that can produce some scale-free structures 
that do not arise from other known models. 

 
 Small-world networks: Networks exhibit the small-world property if the length of 

the shortest paths between nodes increases slowly as the network size grows. A 
typical small-world network is dominated by local links with a few long-range 

connections (Figure 5.5, B), however, other topologies, including scale-free as well as 
random Poisson networks, typically exhibit this property. Examples range from many 
biological within-cell interactions to modern data-communication networks to the 

famous six degrees of separation principle that implies that any two people on earth 
(presently alive) are connected to each other through a chain of acquaintances that is 
not longer than 6 steps. However, not all natural networks have small-world 

topologies. For instance, networks where connectivity is constrained by the location of 
components in physical space or it time are often not small-world: E.g., the six 
degrees of separation principle does not apply to individuals that lived during different 
periods. Gene flow connectivity of stationary plants with small seed dispersal range 

relies on close proximity. Pre-industrial communication networks were constrained by 
line-of sight distance between repeater stations (early telegraphs, Indian or Chinese 
smoke signals) or by the need to physically carry written messages (on foot or on 

horse). 
Small-world networks can easily arise through DPE processes through recurrent 
transitions between locally constrained and global links-building interactions. For a 

simple thought experiment, recall the terminology for primary and secondary 
interactions from chapter 5. Consider a system whose primary structure arises as a 
result of some secondary interactions (e.g. friendship relationship structure (primary) 

arising from communicative interactions (secondary)). In such system, the distance 

(locality) of secondary interactions can be described in terms of the primary structure 
(e.g. friends communicate – local interaction, non-fiends communicate – global 
interaction). Recurrent transitions between local and global interaction phases in such 

system will result in a primary network topology with local links supplemented with 
some global links (local phase, low connectivity – friends talk to friends only; global 
phase, high connectivity – everyone talks to anyone; result: new members are added 

to a person’s friendship network leading to a small-world network of friendships). 
 
In the following sections I discuss some generative mechanisms for modular and scale-free 
networks. 
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13.2. Modular networks 
 

Some of the material presented in this section is based on the following publications: 
 

 G. Paperin, D. Green, S. Sadedin (2010): 
Dual Phase Evolution in Complex Adaptive Systems. 
Journal of the Royal Society Interface. Accepted for review. Ref: [Paperin et al., 2010]. 

 G. Paperin, D. G. Green, T. G. Leishman (2008): 
Dual Phase Evolution and Self-Organisation in Networks. 
7th International Conference on Simulated Evolution And Learning (SEAL'08). Ref: [Paperin, Green, et al., 2008]. 

 T. G. Leishman, D. G. Green, G. Paperin (2007): 
Dual Phase Evolution – a mechanism for self-organisation and optimisation. 
Asia-Pacific Symposium on Intelligent and Evolutionary Systems 2007 (APSIES’07). Ref: [Leishman et al., 2007]. 

 G. Paperin (2008): 
Dual Phase Evolution in Natural and Artificial Computational Systems. 
Invited talk at the12th Asia-Pacific Symposium on Intelligent and Evolutionary Systems (IES'08). Ref: [Paperin, 2008a]. 

 
 

In this section I discuss generative models that can lead to emergence of modular network 
structures. The proposed models are informed by the DPE framework – they are based on a 
succession of phases dominated by local or by global interactions. The models discussed here 

act on abstract networks, however, I show how the described processes correspond to 
processes that occur in natural biological or social systems. 

 

13.2.1. Social network structures resulting from explicit dual phase 

processes 
 

In this sub-section I discuss a simple abstract model of a social network. Analysis shows that 
for different parameters, the model produces different patterns observed in real social 
networks. 

 
The main process captured by the model in this section is the succession of interactions 
within the immediate social field, and interactions with larger groups that occur for most 

people. Normally, people interact with other people with whom they are already acquainted 
or with likeminded people. Mutual relationships are strengthened through these interactions. 
On rare occasions, such as social or business meetings or conventions, people interact with 
anyone who they encounter during the event, thus forming new links. When a personal 

relationship is not maintained through repeated contact, it slowly decays and eventually 
disappears. 
 

13.2.1.1. Model details 

 
The above process can be described by an abstract network model, where nodes represent 
people and links represent friendship or acquaintanceship relations. 

 

Individuals: 

 

As the focus is on the network organisation, the representation of individuals (nodes) is as 
simple as possible. Each node possesses a set of L attributes, with each attribute having A 

possible discrete states. 
 

Relationships: 

 
Social relationships (edges) between individuals have a weight w  , indicating the strength 

of the relationship. Each interaction reinforces the connection by an amount +; but when not 

reinforced, the strength of a connection decreases by an amount – at each time step. 

Connections are broken when their weight falls to zero. When two unconnected individuals 

interact, a link with an initial weight w0 is created between these individuals. 
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Global phase: 

 
Individuals interact by a series of encounters between pairs of individuals. During the global 

phase all individuals interact randomly. Per iteration of the global phase, each individual is 
chosen once as the 1st partner, and a 2nd interaction partner is chosen randomly and 
independently from all other individuals. The global phase occurs at a rate of fG iterations. 

 

Local phase: 

 
During this phase the individuals interact with other individuals to whom they are connected 

or with the individuals connected to their neighbours. In addition, individuals also interact 
with other unlinked individuals that have similar attribute values. The local phase occurs at a 
rate of fL iterations. 

 

Experiments: 

 
The model is run with the parameters listed in Table 13.1 for 3 different scenarios: local 
interactions only, global interactions only, global and local interaction phases as defined by fG 

and fL. 

 
 
 

Parameter Notation Value 

   

Network size in nodes N 50 

Initial edge density D0 0.1 

Frequency of global interactions fG 0.05 

Frequency of local interactions fL 0.95 

Number of node attributes L 1 

Number of distinct values per attribute A 5 

Weight for newly created edges w0 5 

Weight increase for reinforces relationships + 5 

Weight decrease for not reinforced relationships – 1 

   

Table 13.1. Parameter values used in the experiments in section 

13.2.1 resulting in modular network topologies. 

 
 

13.2.1.2. Results 

 

The results of the above experiments show very distinct outcomes from one scenario to 
another (Figure 13.1). 
 

In networks with local interactions only, existing connections rapidly disappear. Only 
connections between agents with the same attributes remain, and no new connections can 

be formed between individuals with different attribute states. As a result, connectivity 

remains low and network components held together by the same attribute value remain 
disconnected. The network falls into a stable structure in which it remains.  
 
In networks with global interactions only, new connections form continually, so the edge 

density increases rapidly. As connections are formed faster then they decay, the network 
eventually becomes fully connected. 
 

In contrast, the DPE scenario of recurring local and global interactions leads to formation of 
modules in an initially random network. The continuous reinforcement of local links and the 
decay of intra-modular links during local phases maintain a stable structure within the 

modules. Simultaneously, modules become partially or completely disconnected from each 
other. During the subsequent global phase the modules become connected in new ways 
forming novel and complex structures (). 
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Time Steps 

 0 1000 10 000 

Local 

   
    

Global 

  
 

 

 

    

Local and 

Global 

   
    

Figure 13.1. The effect of local and global interactions on the formation of network 

structure. Each row shows the evolution of a typical network under different conditions. In the top 

row, individuals interact only locally, with individuals to whom they are already connected. In the 

centre row, all interactions are randomly selected from the entire network. In the bottom row, 

individuals normally interact locally, but global interaction events occur at regular intervals. 

 

 
 

Sensitivity analysis: 

 

To investigate the effect of the assumptions made about the parameter values, sensitivity 
analysis on two parameters is performed: the frequency of global interaction phases and the 

number of different values that can be assigned to the node attribute. 
 

The analyses of both parameters investigate the effect on modularity, measured by 
compartmentalisation as suggested by Pimm [1982]. This measure M’ is defined as the 

average of the compartmentalisation ratio Sj,k that is described for each pair of nodes j and k 

in a network by the quotient of the number of neighbours j and k share in common over the 

total number of neighbours of j and k: 

 

M’ = 
 
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1

1

1
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and x is the set of neighbours of a node x. The value of M’ ranges between 0 and 1 with 

higher values implying higher modularity.  
 

The analysis shows that the modularity M’ of the networks produced is greater when global 

phase events are more frequent (Figure 13.3, Left). Over the range tested, M’ decreases 

rapidly at first, as the interval between events increases, then in approximately linear 
fashion. The presence of high M’ values for small intervals between global events is a result 

of high edge density. The smaller rate of decrease for greater intervals reflects the shifting 

balance between edge formation and edge removal during the two phases. 
 
Increases in the number of attribute states led to a decrease in modularity (Figure 13.3, 

Right), but the decrease was at a much faster rate, following a power law within the tested 
range. 
 
 

 
 

  

 

(a) Global phase (b) Local Phase (c) Subsequent global phase 

 
Figure 13.2. DPE process leading to a modular network topology. The continuous 

reinforcement of neighbourhood edges and the decay of intra-modular edges during the local 

phase maintain a stable local structure and may cause the modules to become poorly connected 

or disconnected from each other over time. During the global interaction phases the modules 

become connected in new ways. 
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Figure 13.3. Sensitivity analysis of modularity in the network after 5000 simulation 

iterations. 
Left: Decrease in network modularity M’ as the interval between global events increases. The 

interval directly relates to the rate fG of occurrence of a global phase, e.g.: 

fG = 0.05 = 1/20  interval = 20 iterations; fG = 0.02 = 1/50  interval = 50 iterations. 

Right: Decrease in modularity as the number of attribute states (possible attribute values) 

increases. 
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Parameter Notation Value  

    

Network size in nodes N 50  

Initial edge density D0 0.1  

Frequency of global interactions fG 0.05  

Frequency of local interactions fL 0.95  

Number of node attributes L 5 * 

Number of distinct values per attribute A 1 * 

Weight for newly created edges w0 10 * 

Weight increase for reinforces relationships + 10 * 

Weight decrease for not reinforced relationships – 1  

    

Table 13.2. Parameter values used in the experiments in section 13.2.1 

resulting in circuit and chain-dominated network topologies. Compare 

these values to Table 13.1. Values that differ in this table are highlighted. 

 

 

13.2.1.3. Parameter configurations leading to other network topologies 

 
Seeking to investigate the sensitivity of the network towards the number and the type of 

node attributes, the experiments are repeated with the values described in Table 13.2. The 
main change is that instead if a single attribute that can assume several values, several 
binary attributes are now used. 

 

The resulting networks show a different topology. They are dominated by chain, tree and 
circuit sub-structures. The common features between the resulting networks are difficult to 
quantify, however, a visual inspection makes the similarities apparent (Figure 13.4). There is 

an intriguing parallel between the networks resulting from this experiment and some social 
networks occurring in real societies. Recently, a research paper [Bearman et al., 2004] 
attracted much attention, in which the romantic relationships between students at a US high 

school were mapped and represented as a network. The similarity between that network and 
the current simulation results is striking (Figure 13.5). The unexpected emergence of this 
similarity patters suggests that the current simple and abstract model captures some 

essential aspects of the formation of some real social networks. 
 
 

 

 

 

 

 
     

 

 

 

 

 

     

Figure 13.4. Typical networks resulting from the model with several binary attributes 

per node. 
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Figure 13.5. Typical network resulting from the simulation model (left) and an 

empirical social network of romantic relationships in a high school (right). The 

similarity of the network is intriguing. The right figure is reproduced from Bearman et al. [2004] 

with permission by Prof. P. S. Bearman, Columbia University, USA. 

 

 

13.2.2. Modular networks resulting from implicit dual phase 

processes 
 
The model presented in the previous section was based on an explicit dual phase process: 

The mediation between the global and local interaction phases was enforced by a global 
controller, in that case – the model algorithm. In this section, I consider another generative 
model for modular networks. In this model, both, the recurrent fluctuations in connectivity 
density, as well as the modular topology, emerge from local interaction rules. 

 
Recall the discussion of the DPE framework (chapter 7). According to DPE, underlying system 
networks flip between selection-dominated balance phases (high connectivity) and variation-

dominated exploration phases (low connectivity). Subsystems that remain internally stable 
during a variation phase – either by chance or though some stabilising force – can form new 
interactions to other subsystems and assume new roles in a changing system. In this way, 

they become functional components during subsequent variation phases. This can lead to the 
emergence of modular structures. When emerging functional components already exhibit 
modular structure internally, the above mechanism can lead to hierarchical organisation. 
 

The model presented here demonstrates the above mechanism. Consider a network of 
interacting components, for instance agents in an economy (e.g. companies, people, 
organisations), connected by edges representing business relations or trade co-operations. 

Organisations forge co-operations at random. At occasions, particular organisations are 
struck by crises, resulting in a loss of co-operation links. Such crises can propagate trough 
the system affecting all connected organisations. However some co-operative links between 

organisations with particular common interests can withstand crises, and the more crises a 

link survives, the stronger it becomes. Results show that over time, stable co-operations 
self-organise into well connected market segments (modules) with weaker links to other 
segments. In detail: 

 

Agents: 

 
The model consists of N agents (business organisations) represented by nodes. Every node 

has an attribute that can assume one of A discrete values (e.g. a particular attribute value 

can represent a type of particular trade interests an organisation has). In the basis scenario, 
attributes can assume one of A = 5 different values. 

 

Relationships: 

 
Relationships (business dependencies or co-operations) are represented by links (edges). At 
each discrete model iteration, a new link is forged between two randomly selected nodes. 
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Crises: 

 
Organisations can be struck by crises. Crises occur at a rate CR = 0.05 per iteration. When a 

crisis occurs, a node is randomly selected and all the links between that node and its 

neighbours are removed. Unless certain conditions occur (see below under crisis 
weathering), the crisis also affects all of the node’s neighbours who also lose their links, and, 

in turn, their neighbours, and so on. This way, a crisis can propagate through large parts of 
the network recursively removing links. 
 

Crisis weathering by links: 

 
If organisations have strong mutual business interests, a co-operative link may withstand a 
crisis. In the model, if two nodes share the same attribute value, the link between the two 
nodes may withstand a crisis with probability s = 1 – dI (where dI = 0.9 is the ―link death 

probability‖). If a link survives, it is not removed and the crisis does not propagate through 
that link. Relationships that weather crises become stronger: if a link survives a crisis, the 

probability s that it will survive future crises grows: s = dI  (dF)C , where C is the number of 

crises survived by the link and dF = 0.75, regardless of the respective node attribute values. 

 

13.2.2.1. Basis scenario 

 

In the basis scenario I perform 25 independent runs of the above model, each run lasts for 
1,000,000 iterations. The parameters used are summarised in Table 13.3. 
 

Through continuous addition of new links, the network connectivity grows steadily with 
intermittent collapses caused by propagating crises. However, on contrary to initial intuition, 
the edge density does not settle close to the critical percolation density. Instead, it fluctuates 
with an amplitude of several hundred edges (Figure 13.6, top). This effect can probably be 

accounted for through link fixation (see also below). 
 
Over time, some links survive crises co-incidentally and their stability is increased. As a 

result, the crisis propagation becomes more constrained and the edge density increases. 
However, the magnitude of density fluctuations remains high (Figure 13.6, bottom). This 
shows that the emergent modularity (see discussion below) is not merely due to link fixation. 

 

Modularity in this model can be measured as follows: Let a be the set of all nodes that 

have the attribute value a. Then, modularity M is the proportion of all network edges that 

begin and end within the same set a, for all a = 1…A, out of all edges: 

 

M = 

 
e

inner e




 

 

where  is the set of all edges, || is the number of all edges, and inner(e) = 1 iff both nodes 

connected by e   have the same attribute value and 0 otherwise. In a random network, the 

expected value of M is 1/A; in this case, M = 1/5 = 0.2 is expected. Higher values of M 

imply a modular network. The value M = 1 shows that the network modules are not 

connected to each other, as there are no cross-module links. 
 
(Note that the above estimation M in a random network applies in cases where the expected 

module size is the same for all modules. In a general case, M must be computed for each 

module separately, and combined in an average that is weighted by the module sizes relative 

to the size of the entire network. However, here, the modules are equally large on average, I 
thus choose the simpler approach. Moreover, the value M = 1 also occurs when the network 

consists of a single module. However, as A > 1, I disregard this special case.) 

  
Figure 13.7 (left) shows the average modularity obtained over 25 independent model runs. 

High M values show that modular structures emerge within the model. These structures are 

apparent and can be recognised by a simple visual inspection (Figure 13.7, right). 
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The modules reflect groups of organisations that share common interests (same attribute 
values). However, Figure 13.7 (right) shows that the resulting structure of the network is not 
constrained to segregation of nodes according to attribute values. Instead, organisations 

self-organise into a complex modular networks with dense interactions within market 

segments, but also with significant interactions across segments. In section 13.2.2.3 I 
consider variations on this model to investigate how changes of link-fixation rules affect 
predictions about the topology of the emergent economy-network. 

 
 
 

 

  
  

  
 

Figure 13.6. Edge density and number of nodes. Shown is the edge density (left, red) and the 

number of edges (right, dark red) for the first 200,000 (top) and the last 200,000 (bottom) 

iterations of a typical model run with 1,000,000 total iterations. Over the runtime of the model, the 

edge density increases approximately by a factor of 3. Fluctuations of several hundred edges occur 

thought the entire model run. 

 
 

 
 

 

 
 

Figure 13.7. Emergent modularity in model network (basis scenario). Shown is the modularity 

throughout a model run (left), averaged over 25 independent model runs (the grey lines show the 

range of  one standard deviation in modularity over the 25 runs). On the right: a typical network 

resulting at the end of a model run, automatically laid out with the algorithm introduced by 

Fruchterman and Reingold [1991], as implemented in the Pajek software [Batagelj & Mrvar, 1996]. 
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Parameter Notation Value 

   

Number of nodes N 150 

Number of attributes per node L 1 

Number of values per attribute A 5 

Initial edge density D0 0 

Crises frequency CR 0.05 

Probability of edge ―death‖  dI 0.9 

Edge stability increase factor base after survivals dF 0.75 

   

Table 13.3. Parameter values used in the basis scenario experiments 

in section 13.2.2. 

 

 
 

13.2.2.2. Sensitivity analysis 

 
The model is not sensitive to specific attribute values. In particular, sensitivity tests reveal: 
 

Number of nodes: 

 
A network size N > 30 has no significant effect on model behaviour. (However, it influences 

the runtime of the simulation.) Very small values of N do not provide enough nodes, and 

thus links, for statistically representative measurements of modularity. 

 

Number of modules: 

 
Due to the way M is defined above, the number of modules corresponds to the number A of 

different attribute values. Varying the number of A between 2 and 15 does not affect the 

model behaviour significantly. It is expected, that if N is increased to allow a significant 

number of nodes per module, higher values of A will not affect the results either. 

 

Initial edge density: 

 
Due to frequent propagating crises the model does not appear to be dependent on the initial 

edge density D0. 

 

Crises frequency: 

 

The value of CR controls the speed of model dynamics, but not its qualitative behaviour. 

Lower or higher values of CR result in the same model behaviour, but after a larger or a 

smaller number of iterations respectively. The value of CR also affects the magnitude of the 

fluctuations of edge density with higher values of CR resulting in smaller fluctuations. 

However, tests with CR values ranging between 0.001 and 0.2 (not shown) reveal that that 

relationship is slower than linear.  

 

Link stability: 

 

The probability of the initial random survival of links between same-attribute nodes affects 
the rate of increase in link density, but not the quality of the model behaviour. This is 
expected since lower values of dI result in more links being stabilised per time period, and 

vice versa. The value of dF defines how fast the probability that a link survives a crisis grows 

as a function of the number of previously survived crises by that link. Tests reveal that dF 

values close to 1 (slow stabilisation rate) fail to produce the above model dynamics. This is 
because links that survived several crises are then hardly more likely to survive a future 
crisis than ―inexperienced‖ links. Very low values of dF lead to rapidly increasing link density 

as a few random survivals make it unlikely that a link will fall victim to a crisis in future. 

 
 



 

 164 

13.2.2.3. Complex and hierarchical modules 

 
In the next series of experiments I consider the capability of the model to produce more 

complex modular structures. In the basis scenario, the modularity resulted from a higher 

probability to withstand a crisis for links between organisations sharing common business 
interests (nodes sharing same attribute values). However, in reality an organisation may 
have more than a single business interest overall. To account for this in the model, I extend 

the number L of attributes per node. In the experiments reported below, I set L = 3. 

 

13.2.2.3.1. Scenario 1 

 

Initially, I assume that organisations prefer to concentrate on a particular business interest 
at any one time. For this, I introduce a parameter   {1, …, L} that describes which 

attribute is active at the current time (i.e., here   {1, 2, 3}). At the beginning of the 

simulation I set  = 1, and then change the value of  every R generations. 

 
In section 13.2.2.1 above, modularity was measured in respect to segmentations implied by 

node attribute values. Here, there are 3 attribute values, and I thus measure M in respect to 
each of the respective segmentations. M then denotes the modularity measured in respect 

to the currently active attribute. 
 

Results: 

 
Figure 13.8 shows results of a model run for 10,000,000 generations with R = 500,000. 

Similar to the basis scenario, the overall link density steadily increases. At any one time, M 

grows, while the modularity Mk in respect to other attributes declines. This is expected: 

Previous experiments (section 13.2.2.1) established that M increases over time, and as 

module boundaries in respect to different attributes likely do not coincide, increase in inner-
module links density for attribute  likely results in an increase in cross-module links in 

respect to other attributes. 
 
During every cycle of , modularity in respect to each attribute rises to a smaller maximum 

value than in the previous cycle. Similarly, the modularity of non-active attributes falls to a 
higher minimum value then previously (Figure 13.8). This may be due to fixation of links 
over time: If during a period with any specific  value a link happened to survive several 

crises, it is likely to continue wreathing future crises during subsequent periods of other -

values. As a result, its ability to survive further crises increases exponentially. Links fixed in 
this way are likely to be cross-modular in respect to periods of most -values except the -

value during which they were fixed initially. This process imposes an increasing lower limit of 
cross-modular links, thus providing an upper limit on M. At the same time, fixed links also 

provide a lower limit on Mk as such links are not removed. 

 
Notable is the attractor value MS for modularity in respect to all attributes. For the parameter 

values used here, MS  0.42. This implies a complex modular topology: For each attribute k, 

the proportion of inner-modular links is lower than 50% (k  {1, …, L}: 

Mk < 0.5), however, significantly higher than would be expected if links were random 
( k  {1, …, L}: Mk  1 / A = 0.2 ). Initial tests suggest that the speed of convergence of 

upper and lower limits on M towards MS follows a power-law, however, a detailed 

investigation of this behaviour for different parameter values remains an open question for 

future research. Also, the dependence of MS on specific parameters, and the underlying 

causal mechanism present an interesting open question. 
 

Sensitivity: 

 
A detailed quantitative investigation of the convergence behaviour of M, and the dependence 

of MS on parameter values is already identified as an open question for future research. The 

qualitative model behaviour, however, is investigated here and found not to be sensitive to 
particular parameter values: 

 
Experiments with L-values between 2 and 5 show that the general behaviour pattern of the 

model is not sensitive to the number of attributes. For larger values of L, the results are less 

pronounced. However, when the number of nodes is increased and the model is run for a 
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larger number of generations with a higher value of R, the dynamics are again similar to the 

case L = 3 that is reported here. 

 
The point of time when  is changed is not probabilistic in the above experiments. Instead,  

is changed every R generations. In addition, when  is changed, it is not chosen randomly, 

but updated according to new = (old + 1) mod 3. This strategy is chosen mainly in order to 

achieve results that can be conveniently averaged over several runs and presented 
graphically (e.g. see Figure 13.8). When the value of  or the point of time when it is 

changed are chosen randomly, trajectories for Mk differ widely between runs and averaged 

plots are only meaningful to investigate the asymptotic behaviour. The general asymptotic 

behaviour and the convergence of all modularity measures on MS is not affected. In 

particular, a range of sensitivity tests show that: 
 

 When changes of  remain deterministic, but R is increased (decreased), the speed of 

convergence on MS becomes slower (faster) at the beginning of the simulation and 
faster (slower) towards the end. I.e., higher R makes the convergence curve steeper. 

 
 When the point in time when  changes remains deterministic, but the next value of  

is chosen randomly, the convergent oscillations for each of the different Mk are less 

regular, but the overall convergence on MS’ is not affected. 

 
 When instead of regular changes of  every R generations,  can change at every 

generation with the probability 1 / R, the convergence curves become further 

irregular, but the overall convergence behaviour is not affected. 

 

 

  
 
Figure 13.8. Model behaviour with L = 3 attributes with one attribute active at any given 

time (scenario 1). Shown are modularity values in respect to each of the 3 attributes (left) and the 

average edge density (right, red), averaged over all runs. Standard deviation is small and not shown 

for clarity. 

 
 

13.2.2.3.2. Scenario 2 

 

In the previous scenario the overall edge density in the model increased steadily. However, 
in the real world, the density of relationships between organisations never saturates: 

everyone does not co-operate with everybody directly. Even old relationships that weathered 

many crises may come to an end. To account for this, I alter the model: 
 
At every generation, a single link is removed from the network with a probability pk that does 

not depend on the number of crises withstood by that link. The link is selected randomly and 

uniformly from the network without regard for the attributes of the nodes it connects. The 
probability pk is: 

 

pk = 
 

1

max

min v D D

p
p

e   




k
k  

 

where
min

pk and 
max

pk are a bounds resulting in  min max min
p p p p  k k k k , D is the current 

overall network edge density, and D = 0.1 and v = 50 are parameters. 
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The consequence of this approach is that pk transitions sharply from very low values (close to 

min
pk ) to very high values (close to 

max
pk for small 

min
pk ) when the link density D grows 

above D. The parameter v defines the sharpness of this transition. Here, I set 
min

pk = 10-4 

and 
max

pk = 10-2 meaning that when link density is low, the probability of forced link 

removal is near zero; and when link density grows larger than D = 0.1, the probability of 

forced link removal transitions to approximately 0.01 per iteration. 
 

Results: 

 

I perform 25 independent runs of this scenario, each run lasts 10,000,000 model iterations. 
R is set to 750,000. The averaged results are shown in Figure 13.9. In this scenario the 

effect of link fixation discussed in section 13.2.2.3.1 is neglected by the forced removal of 
links that does not depend on previous history of a link. As a result, the modularity 
computed in respect to non-active attributes falls quicker than in the previous scenario and 

almost reaches 0.2 (Figure 13.9, left) – a value that indicates no modularity compared to a 
random network. 
 

The implications of these results are twofold. First, they confirm that the emergence of 
complex market modules in scenario 1 (section 13.2.2.3.1) was facilitated through the ability 
of co-operative links to mature and stabilise by weathering external pressures. Second, they 
show that when relations remain transient despite relative stabilisation through successful 

crisis weathering, market segments become more dynamic. When organisations loose 
interest in particular areas, previously forged relationships wear off slowly, and market 

segments eventually dissolve. 

 
 

  
 

Figure 13.9. Model behaviour with forced edge removal (scenario 2). Shown are modularity 

values in respect to each of the 3 attributes (left) and the average edge density (right, red) with the 

grey lines showing the range of  one standard deviation. 

 
 

Sensitivity: 

 
Tests show that the sensitivity of the model discussed here in respect to -related 

parameters follows the same pattern as in the previous scenario (section 13.2.2.3.1). Here, I 
concentrate on model sensitivity towards parameters related to forced link removal that was 

introduces in this sub-section: 
 

 Sensitivity analysis reveals that the key model dynamics are not significantly affected 

by changes of 
max

pk  and v, as long as these values are sufficiently large. Small values 

of these variables neglect the effect of the logistic function that controls pk, the 

probability of forced link removal. 
 

 Large values of 
min

pk result in a significant probability of link removal even at very low 

densities. In such case, a sufficient number of links necessary to obtain meaningful 
modularity measures does not occur.  

 
 The value of D influences the overall edge density around which the network remains. 

If D is high, the model dynamics are similar to the previous scenario 1; if D is low, 

not sufficiently many links can develop for complex modules to emerge. 
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The ―interesting‖ value range of D depends on network size N, the number L of 

attributes and the number A of values per attribute. This is because these three 

parameters influence the mean number of nodes per module. For the parameter 
values used in the above experiments (N = 150, L = 3, A = 5), the model has been 

verified not to be sensitive to values of D in range [0.8, 0.15]. For comparison: for 

parameters N = 500, L = 3 and A = 5, a similar behaviour was found at least in the 
range D  [0.02, 0.05]. 

 

13.2.2.3.3. Scenario 3 

 
In the above experiments I assumed that organisations concentrate at a single business 
interest at any one time. In the model, this was reflected through a parameter  that 

specifies the ―active‖ node attribute. However, real organisations typically pursue multiple 

business interests at any one time. To reflect this, I modify the model to allow all attributes 
to be active simultaneously at all times. The ability of a link to persist through crises is then 
based on the number of corresponding attribute values shared by the organisations 

connected by that link. In detail: 
 
Previously, a link ―survived‖ a crisis either if it had already survived one or more crises, or if 
it connected two nodes that had the same value for the currently active attribute. In the 

latter case, the survival-probability was s = 1 – dI, where dI = 0.9 was the ―link death 

probability‖. In this scenario, the ―link death probability‖ for links that have not yet withstood 
one or more crises is changed to: 

 

dI = 

1 , if  =0

0 999 , if  =1

0 99 , if  =2

0 9 , if  =3

.

.

.








 

 

 
where  is the number of attributes for which the nodes connected by that link have the 

same value in common. 
 

Results: 

 
I perform 25 independent model runs with and without edge removal that was introduced in 
the previous scenario. The results (Figure 13.10) show that modularity M measured in 

respect to each of the 3 attributes grows simultaneously (the graphs largely overlap). With 

forced edge removal, M is constrained by the edge density (Figure 13.10, top); without edge 

removal, M grows steadily (Figure 13.10, bottom). In both cases, M is significantly higher 

than 0.2, which is the expected value in a random network with A = 5. 

 
A simple consideration of various attribute permutations involved hints at the complexity of 

possible emerging topologies: Attribute values are assigned randomly and independently, so 
for L = 3, the network contains A3 node groups of approximately equal size that share all 

attribute values. Each of these groups represents a unique possible permutation of attribute 
values. Each such group shares 2 attributes with 3  (A – 1) other distinct attribute 

permutations, resulting in A3  3  (A – 1) / 2 possible pairs. Similarly, each unique attribute 

permutation shares a single attribute with 3  (A – 1)2 other distinct permutations, resulting 

in A3  3  (A – 1)2 / 2 pairs. Groups sharing attributes exhibit higher internal connectivity 

compared to the overall connectivity of the network, and the density of the internal 

connectivity depends on the number of shared attribute values. Groups that share 3 
attributes are more dense and can participate in several modules that are based on 2 
common attributes. In turn, groups that share 2 attributes can participate in several modules 

based on a single common attribute. The resulting topology parallels real economies where 
agents self-organise into higher order structures that play specific market roles, while the 
agents still continue behaving according to a local world-view without a global control 
function. 

 
Due to a large number of nodes and edges, networks resulting from the experiments 
described here are difficult to visualise. Thus I repeated the experiments for A = 2, L = 3 

and N = 75. While the overall dynamics are similar to Figure 13.10, the networks were small 
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enough to represent graphically. Figure 13.11 shows a typical network resulting from the 
model with some of emerging modules of different hierarchy levels highlighted. 
 

13.2.2.4. Summary 

 
In the models discussed in this section, modules emerged through an implicit DPE-process, 
where the transitions between poorly connected and well connected network phases resulted 

from a continuous addition of links and intermittent propagation of crises. However, due to 
the non-linear effects introduced through stabilisation and fixation of links that survived 
several crises, link density fluctuated strongly and deviated far from the critical propagation 

threshold, resulting in prolonged connectivity phases. This emergent DPE behaviour is in 
contrast to the models discussed in section 13.2.1, where phases of predominantly low and 
local connectivity and global phases where facilitated explicitly. 
 

In the basis scenario, modularity emerges through the tendency of nodes sharing attribute 
values to continue interacting despite crises. The modules thus correspond to segments 
defined by node sets with the same attribute values and modular structure incorporates a 

single level of hierarchy. 
 
When multiple attributes are present and act sequentially, multiple and overlapping modular 

structures emerge. Depending on whether link fixation is immutable (scenario 1, section 
13.2.2.3.1) or whether stable links can still fail randomly (scenario 2, section 13.2.2.3.2), 
the modular structures are either locked in a complex overlapping topology (scenario 1), or 
dynamically transition between periods where one segregation dominates over others and 

periods where several segregations create a complex web of more and less dense network 
regions. 
 

When multiple attributes act simultaneously in an additive fashion (scenario 2, section 
13.2.2.3.3), network topology develops overlapping modular structures of several 
hierarchical levels, with small and dense modules participating in multiple larger, less dense 

modules of higher hierarchy levels. Networks obtained in the experiments reported here 
contain modular structures of at least three hierarchy levels. 
 
Simple assumptions about network components and the nature of their interactions lead to 

the emergence of complex modular structures within the simulation models discussed in this 
chapter. The models were developed in the context of agents acting in economies. Clearly, 
the models present strong simplifications and lack many features of real economies. 

Nevertheless, they capture several features of self-organisation in real markets. The abstract 
nature of the models means that the insights obtained from this work may also apply to 
other areas. For instance, preferential stabilisation of interactions between entities that share 

common features and further stabilisation of interactions that weather disturbances can be 
found in systems such as genetic regulatory systems, protein-protein interactions, and other 
bio-chemical networks [Bower & Bolouri, 2004; Golemis & Adams, 2005]. The work 
discussed here thus presents a step towards a better understanding of mechanisms that lead 

to complex modular self-organisation in natural and social systems. 
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Figure 13.10. Model behaviour with simultaneous effects of all node attributes (scenario 

3) with forced edge removal (top) and without forced edge removal (bottom). Shown are 

(overlapping) modularity values in respect to each of the 3 attributes (left) and the average edge 

density (right, red). The grey lines show the range of  one standard deviation. 

 

 

  
  

 

 

 

Figure 13.11. Typical network resulting from a model with simultaneous effects of all node 
attributes (scenario 3). The parameters used here are N = 75, A = 2 and L = 3. The same 

network is shown with all nodes and links in black (top, left); nodes in black and links in shades of 

grey in proportion to the age of the link counted in iterations, older links are darker (top, right); 

links in shades of grey in proportion to age and nodes coloured according to the unique permutation 

of all attribute values (bottom, left). The graph on the bottom right shows the average age of all 

links in the network throughout the model life-time with grey lines showing the range of  one 

standard deviation over 25 runs. 
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13.3. Scale-free networks 
 

Some of the material presented in this chapter is based on the following publications: 
 

 G. Paperin, D. Green, S. Sadedin (2010): 
Dual Phase Evolution in Complex Adaptive Systems. 
Journal of the Royal Society Interface. Accepted for review. Ref: [Paperin et al., 2010]. 

 G. Paperin, D. G. Green, T. G. Leishman (2008): 
Dual Phase Evolution and Self-Organisation in Networks. 
7th International Conference on Simulated Evolution And Learning (SEAL'08). Ref: [Paperin, Green, et al., 2008]. 

 G. Paperin (2008): 
Dual Phase Evolution in Natural and Artificial Computational Systems. 
Invited talk at the12th Asia-Pacific Symposium on Intelligent and Evolutionary Systems (IES'08). Ref: [Paperin, 2008a]. 

 
 
Scale-free networks have received much attention by researchers due to their wide presence 

in nature and due to their relationship to self-organised critical systems implied by the 
power-law node degree distribution that signifies scale-free networks (chapter 5). 
 

Traditional generative models for scale-free networks are based on preferential attachment 
in growing networks [Barabasi & Albert, 1999], a process where new nodes are added to the 
network and connected to existing nodes with a probability proportional to their degree. 
However, scale-free structures also occur in many natural networks of fixed size. For 

instance, it has been found [Eguiluz et al., 2005] that functional networks in brains exhibit 
scale-free structures. The vertices of such networks (neurons) develop during fetal 
development, but the connections mature at latter stages when the number of neurons is 

largely constant. Some generative models for scale-free networks of fixed size have been 
proposed [e.g. Dangalchev, 2004; Catanzaro et al., 2005], however, these models are highly 
synthetic and unlikely to correspond to any natural process. 

 
Here I propose and examine two similar generative models for scale-free networks of 
constant size, and argue that these models may correspond to processes occurring in nature.  
 

13.3.1. Model overview 
 
A primary network structure is generated through a process of alternating local and global 

interactions. During local interactions, nodes selected randomly with a probability 
proportional to their degree interact with a neighbour selected randomly with a probability 
inversely proportional to its degree. A local interaction breaks edges of the primary structure. 

During global interactions, low degree nodes interact preferentially with high degree nodes 
anywhere in the network. A global interaction results in a new structural edge. Computer 
simulations discussed here show that over time the node degree distribution approaches a 

power-law, and that edge density converges on a value that depends on the fixed network 
size. 
 
A key feature of this abstract model is that it corresponds to processes occurring in nature. 

Recall, for instance, that many social interaction networks exhibit scale-free structures. In 
many societies (human or animal), individuals are under social selection for the ability to 
acquire social links with other individuals whose co-operation may be valuable. Determining 

the actual social value of an individual is a resource intensive task and individuals often use 
the assessment by others as a heuristic; i.e., the number of social links an individual already 
has is used by others as an estimate of that individual’s ―attractiveness‖ [Eder, 1985]. In a 

growing social group this mechanism corresponds to preferential attachment [Barabasi & 
Albert, 1999], however, most human and animal societies tend to keep an approximately 
constant size over time [Dunbar, 1993]. Due to selection pressure, individuals attempt to 
forge cooperative connections to popular individuals and tend to break connections with less 

popular group members that are not useful to them. This corresponds to the above abstract 
model: poorly connected entities seek to create edges to well connected entities, while well 
connected entities tend to break edges to poorly connected ones. 
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Other examples of natural processes bearing resemblance to the current model are possible. 
A key observation is that the interactions that create or destroy links of the primary network 

structure are not directed or organised by a global controller that aims to arrive at a power-

law degree distribution. Instead, such interactions occur according to local probabilistic rules 
and the scale-free structures are emergent. This is a fundamental difference between the 
current and previously known generative models [e.g. Dangalchev, 2004; Catanzaro et al., 

2005] for constant-size scale-free networks. 
 

13.3.2. Initial investigation 
 
For a preliminary investigation of the above model architecture I create a computer 
simulation consisting of a network of N=1000 nodes. The network is initialised with random 

connections. (Sensitivity analysis of this and other experiments described in this section has 
shown that the initial edge density  0 does not affect the result, except for the number of 

iterations required to approach the attractor edge density.) Thereafter, the network is 
subjected to structural modifications as follows: 
 

Local interactions: 

 
High-degree nodes preferentially interact with their low-degree neighbours. Local 
interactions are destructive. 

 

First, a random node a is selected with a probability pL,s proportional to the number of edges 

connected to a: 

 

pL,s(a) = 
 

  
1

1 1
N

i

degree a

degree n



  i

 

 
where pL,s(a) is the probability of the node a being selected and degree(ni) is the number of 

edges connected to a node ni. 

 
Then, if a has any connected neighbours, a neighbour b of a is randomly selected with a 

probability pL,e anti-proportional to the number of edges connected to b: 

 

pL,e(b) = 
 

  
1

1 1

k

degree b

degree k




 

j a

j

 

 

where a is the set of direct neighbours of a. 

 
Thereafter, the edge (a, b) is removed. 

 

Global interactions: 

 
Low-degree nodes preferentially interact with high-degree nodes. Global interactions are 
constructive. 

 
First, a node c is randomly selected with a probability pG,s anti-proportional to the number of 

connected edges: 

 

pG,s(c) = 
 

  
1

1

1 1
N

i

degree c

degree n





  i
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Then a second node d is chosen randomly and independently of c with a probability pG,e 

proportional to the number of edges connected to d: 

 

pG,e(d) = 
 

  
1

1 1
N

i

degree d

degree n



  i

 

 
If there is no edge (c, d) then such edge is added to the network. Self-connections are not 

allowed. 

 

Initial results: 

 
I run this model with N = 1000 nodes for several hundred thousand iterations with a phase 

change between global and local interactions every 10 iterations, and measure the edge 

density D and the distribution of node degrees at every iteration. 

 
To verify that the model produces a scale-free network, I perform a liner regression of the 
log of the degree distribution to a linear model and determine the coefficient of 

determination R2 (i.e. the square of the linear correlation coefficient between the log degree 

distribution and a linear model). A value of R2 close to 1 indicates a good fit between a 

power-law distribution and the distribution of node degrees in the model. 
 

The results show (Figure 13.12) that the edge density D converges on a small value Ds. The 

initial random network is a common Poisson graph, and R2 is close to zero. As D approaches 

Ds, R
2 experiences a critical transition to a value close to 1. This indicates that the proposed 

generative process may indeed result in a scale-free network topology. To further verify this, 
as well as to investigate the relationship between network size N and the attractor edge 

density Ds, at which the network becomes scale-free, I perform a series of further 

experiments. 

 
 
 

 
 

 
 

Figure 13.12. Critical transition of the node degree distribution from random to 
scale-free. Depicted is a typical run for a network of N=1000 nodes. 
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13.3.3. Systematic investigation 
 

13.3.3.1. Relative length of local and global interaction phases 

 
A sensitivity analysis performed on this as well as on other models discussed later in this 
section shows that the models do not depend on the duration of phases of global and local 

interactions. Phase lengths between 1 and 100 iterations did not affect the general results, 
and only affected the speed of convergence (however, in most cases – by a statistically not 
significant amount). Long phases in smaller networks can lead to a breakdown in the model 
dynamics because an on-going local phase can lead to the removal of all edges from the 

network making preferential selection meaningless. 
 
When the phases are of different length, the model dynamics break down. Longer global 

phases lead to ever-increasing edge densities; longer local phases lead to an eventual loss of 
all edges. Thus, in all following experiments, the phase lengths are set to 1, i.e. local and 
global interactions alternate. 

 
 
 

13.3.3.2. Power-law goodness of fit and estimated exponent 

 
In order to thoroughly verify the initial results I repeat the initial experiment for different 

network sizes of N = 100, 200, 500 and 1000 nodes. For each network size I perform 35 

independent simulation runs and average the results (Figure 13.13). The R2 value between 

0.6 and 0.8 suggest that the distribution of node degrees resembles a power-law, however, 

better fits can be expected of truly scale-free networks. Particularly, for large networks 
(N=1000) a rough fit cannot be explained by a small number of sample nodes. Here, 

however, the R2 value rather slightly deteriorates for larger N. Figure 13.14 shows the 

distributions obtained in the last iteration of each run. 

 
The results in the right column of Figure 13.14 show that although there is a good 
agreement of larger node degree frequencies to a power-law, smaller-degree nodes are 
clearly under-represented relative to what can be expected in a scale-free network. A visual 

inspection of the left column in Figure 13.14 suggests a Poisson distribution of node degrees 
that is skewed towards smaller degrees in comparison to a classical random Poisson graph. 
 

Seeking to improve the generative model I repeated the series of experiments while allowing 
self-connections for nodes. The results (not provided for conciseness) show a better 
agreement between the resulting network structure and a scale-free topology: the resulting 

node degree frequencies do not fall for low degree values as above, and the R2 values 

outperform the above values by about 0.1. However, the low-degree node frequencies in the 
allow-self-connections scenario are still not as high as can be expected from a true power-
law distribution. Moreover, recall the real-world scenario that motivated the current model: 

poorly connected entities seek to associate with well connected entities, and well connected 
entities seek to avoid such associations. A self-connection does not have a natural 
interpretation within this scenario. In the next sub-section I describe a different modification 
to the current model that results in both, a better agreement with a power-law, and a wider 

applicable interpretation within natural systems. 
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Net size Goodness of fit (R2) Estimated exponent 
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Figure 13.13. Goodness of fit and estimated exponent of the node degree distribution to a 
power-law. The goodness of fit (green) is measured as a linear correlation coefficient R2 of the log 

degree distribution. The estimated exponent (dark yellow) is obtained on the basis of a least squares 

fit of the log degree distribution to a linear model. For each network size, 35 independent runs are 

performed and the results are averaged. The grey lines show the range of  one standard deviation of 

each value over the 35 runs. The x-axis shows the iteration number. 
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Net size Node degree distribution Log of the node degree distribution 
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Figure 13.14. Actual node degree distribution and its logarithm. Shown is the frequency 

distribution of node degrees (cyan) at the end of the simulation, averaged over 35 independent runs 

for each network size. The grey lines show the range of  one standard deviation in frequency for 

each observed node degree over the 35 runs. The right column shows node degree distribution on a 

log-log scale (bordeaux). All values in the right column are obtained by taking the natural logarithm 

of the corresponding values in the left column. 
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13.3.4. Improved generative model 
 

In the generative model described in section 13.3.2 above, low degree nodes seek to forge 

links to high degree nodes. This behaviour was motivated with natural scenarios where 
poorly connected entities gain advantage from interactions with well connected entities. 
However, it is not necessarily clear that poorly connected entities should gain a higher 

advantage from interactions with well connected nodes, than other entities. This prompts for 
a simplification of the model: Any node, regardless of its degree seeks to be connected to 
well connected nodes. 

 
Similarly, the previous model assumed that well connected entities are more likely to break 
links to poorly connected nodes, then other entities. This assumption can also be simplified 
for equivalent reasons: Any node, regardless of its degree seeks to break away from poorly 

connected nodes. The updated model is summarised in Table 10.7. 
 
As with the initial model, I simulate the updated process for network sizes N = 100, 200, 

500 and 1000 nodes, performing 35 independent simulation runs for each N, and average 

the measurements.  
 
The results of the updated model (Figure 13.15 and Figure 13.16.) show clearly that 
networks produced by that model are much closer to a scale-free topology than the networks 

produced by the original model, although small-degree nodes are still underrepresented. On 
contrary to the previous model, the goodness of fit improves slightly for larger networks. 

This is expected, as small networks do not have enough nodes for a smooth power-law 

distribution of degree frequencies. 
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Table 13.4. Probabilities of nodes to be selected as start or end nodes during local and global 

interactions in the original and the updated models. Local interactions: in the initial model, high-

degree nodes interact with their low degree neighbours; in the updated model, any nodes interact with 

their low-degree neighbours. Global interactions: in the initial model, low-degree nodes interact with 

high-degree nodes; in the updated model, any nodes interact with high-degree nodes. Refer to section 

13.3.2 on page 171 for variable notation. 
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Net size Goodness of fit (R2) Estimated exponent 
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Figure 13.15. Goodness of fit and estimated exponent of the node degree distribution to a 

power-law in the updated model. The goodness of fit (green) is measured as a linear correlation 
coefficient R2 of the log degree distribution. The estimated exponent (dark yellow) is obtained on the 

basis of a least squares fit of the log degree distribution to a linear model. For each network size, 35 

independent runs are performed and the results are averaged. The grey lines show the range of  one 

standard deviation of each value over the 35 runs. The x-axis shows the iteration number. 
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Net size Node degree distribution Log of the node degree distribution 
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Figure 13.16. Actual node degree distribution and its logarithm in the updated model. 

Shown is the frequency distribution of node degrees (cyan) at the end of the simulation, averaged 

over 35 independent runs for each network size. The grey lines show the range of  one standard 

deviation in frequency for each observed node degree over the 35 runs. The right column shows node 

degree distribution on a log-log scale (bordeaux). All values in the right column are obtained by 

taking the natural logarithm of the corresponding values in the left column. 
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13.3.4.1. Emergent two-phase dynamics in the updated model 

 
Interesting behaviour is observed for N = 1000 in Figure 13.15: The measured quantities 

approach an attractor value, but initially ―overshoot‖ and then return to the attractor. This 

behaviour is particularly apparent in the edge density of the network (Figure 13.17, left). A 
closer examination of the actual number of edges in the network (Figure 13.17, right) 
reveals that the point at which the system behaviour reverses (edge density stops falling and 
begins to grow towards the final attractor) is by several hundred edges smaller than the 

attractor. Moreover, it takes over 50,000 iterations for the edge density to reach the 
attractor value from the saddle point. The saddle point coincides in time with the transition of 
R2 from low to high values. This shows that this effect is not due to overshooting, but results 

from qualitatively different model dynamics that depend on the network structure at any 

given time. Close to the beginning of the simulation, the edge distribution is largely random 
and independent. In this configuration, the rewiring rules defined by local and global 
interactions rapidly remove edges. This process does not stop when the eventual attractor 

density is reached and continues until the edge density is significantly lower. Only when the 
network approaches a scale-free topology, the model dynamics change, which results in slow 
addition of edges. These changed dynamics persist at edge densities during which edges 

were removed previously. Once a certain attractor edge density is reached, the network 
begins to fluctuate around this density. Figure 13.18 verifies that the initial dynamics are not 
caused by high edge density, but indeed by the random network configuration at the 
beginning of the simulation: Even when the initial edge density is below the eventual 

attractor value, the edges are removed until the network enters an approximately scale-free 
configuration. Then the dynamics change and edges are added again. Notably, this complex 

dual-phase behaviour emerges from fixed simple rules that are based only on local node 

information. 
 
 

 

  
 

Figure 13.17. Edge density and number of nodes. Shown is the edge density (left, red) and the 
number of edges (right, dark red) for networks of size N = 1000, averaged over 35 independent runs 

of the updated model. The grey lines show the range of  one standard deviation over the 35 runs. 

 
 
 

  
 

Figure 13.18. The two different classes of dynamical behaviour do not depend on the initial 

edge density, but only on the network topology. Shown is the edge density (left, red) and the 
number of edges (right, dark red) for networks of size N = 850. Although the initial edge density is 

below the eventual attractor value, the edges are removed until the network enters an approximately 

scale-free configuration, then edges are added again. 
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13.3.5. Dependence of attractor edge density on network size 
 
In all of the above experiments the network settles at an approximately constant edge 

density Ds once an approximately scale-free configuration is reached. Sensitivity analysis 

shows that this attractor depends only on the network size measured as the number of 
nodes N.  

 

To investigate this relationship in more detail I repeat the simulations for both generative 
models for network sizes between N = 40 and N = 1100 in 50 nodes increments. For each N, 

I perform 25 independent runs for 2,000,000 iterations each. The results are averaged. 
Then, for each N, the mean edge density during the last 500,000 iterations is determined. 

The results are shown in Figure 13.19 (initial model) and Figure 13.20 (undated model). 

 
The relationship between N and Ds is clearly a power-law. For both models a power-law fit 

results in a value R2 > 0.99. For the initial model, the relationship within the measured range 
is given by Ds = 0.0416  N–0.7317; for the updated model, by Ds = 0.0808  N–0.484. 
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Figure 13.19. The dependence of the attractor edge density Ds on the network size N 

in the initial model. Shown are the measured values of Ds (solid red line) and a power-law fit 

(punctuated blue line). 
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Figure 13.20. The dependence of the attractor edge density Ds on the network size N 

in the updated model. Shown are the measured values of Ds (solid red line) and a power-law 

fit (punctuated blue line). 
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13.3.6. Summary 
 
In this section I analysed two similar generative model for scale-free networks of constant 

size. The first model (section 13.3.2) shows a good fit to a power-law distribution of node 
degrees for large degrees, however, the frequency of small-degree nodes does not follow a 
power-law. The second model (section 13.3.4) produces networks with a node degree 

distribution that is close to a power-law, with an exponential cut-off for small degrees (see 
Figure 13.21 for a typical network produced by this model). Explorative experiments suggest 
that if self-connections are allowed, a better power-law fit for low degrees may result. 

Arguably, self-connections do not have a meaningful interpretation within the natural 
processes that motivate the model. However, one possibility to interpret a network of co-
operations between social animals is to consider connections to represent investment of 
resources. In that case, investment in both, other individuals and oneself is meaningful. A 

further investigation of the current models with the presence of self-connections may provide 
useful results. 
 

When applied to larger networks, the second model produces topologies that are closer to 
truly scale-free structures, then when applied to smaller networks. This suggests that a large 
number of nodes may be necessary to produce a better power-law fit. In order to 

comprehensively describe the topologies produced by the models studied here, an analytical 
analysis of the generative processes is necessary. I would be excited to see this work 
extended in such way in future. 
 

Networks with power-law degree distributions are ubiquitous in many complex systems and 

may be responsible for various scale-free phenomena in nature. The work discussed in this 
chapter presents a step toward a better understanding of processes behind the appearance 

of this important class of network topologies. 
 
 

 
 
 

 
 

Figure 13.21. Example of a network obtained through the updated model. Shown is a typical 

result for N = 50. The sizes of the depicted nodes are chosen according to their degree: larger node 

size denotes higher node degree. 
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Part VI 

 

The Big Picture 

 
 

 
 
 
This part puts the research presented in this thesis into a wider context. Key findings are cross-
referenced, and the relationship to established frameworks for reasoning about complex systems 
is discussed. The implications for future research are considered and specific potential directions 
for future studies are laid out. 
 
 

 

Chapter 14: DPE and other frameworks for reasoning about complex systems. 
 
DPE relates to other frameworks for reasoning about CAS. For instance, Self-Organised Criticality 
(SOC) implies that CAS tend to self-organise towards a critical attractor, and DPE proposes that 
systems develop towards a simple attractor, but repeatedly cross the critical area when perturbed. 
Both mechanisms can result in similar observations. Another well-known framework, the Adaptive 
Cycle (AC) describes recurrent transitions in dynamics of socio-economic systems. DPE extends 
this concept to a wider range of systems. 
 
 
 

Chapter 15: Conclusions. 
 
This thesis identified some mechanisms by which underlying networks facilitate emergence and 
self-organisation in complex systems, distilled these mechanisms into the DPE-framework, and 
applied the findings to elicit new insights into concrete systems. Several questions remain. 
Applications and extensions of introduced simulation techniques can provide further insights into 
biological evolution. The DPE framework itself can be extended and further formalised. In this last 
chapter, I summarise the main research results on this thesis and discuss some future research 
directions in detail. 
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Chapter 14: 

14. DPE and other frameworks for reasoning 
about complex systems 

 

 
DPE relates to other frameworks for reasoning about CAS, such as Self-Organised 
Criticality (SOC) and the Adaptive Cycle (AC). SOC implies that CAS tend to self-organise 
towards a critical attractor. On contrary, DPE proposes that systems develop towards a 
simple attractor, and are repeatedly perturbed away by internal and external 
disturbances, thereby repeatedly crossing the critical threshold. In many instances these 
two cases may result in equivalent observations. The AC describes recurrent transitions 
in dynamics of socio-economic systems between exploration of new development 
directions and exploitation of available resources. DPE generalises this concept in terms 
of network-theory and applies it to a wider range of systems. 

 

 

Material presented in all sections of this chapter is based on the following publications: 

 
 G. Paperin, D. Green, S. Sadedin (2010): 

Dual Phase Evolution in Complex Adaptive Systems. 
Journal of the Royal Society Interface. Accepted for review. Ref: [Paperin et al., 2010]. 

 G. Paperin, S. Sadedin (2009): 
Towards formalising the theory of Dual Phase Evolution. 
10th European Conference on Artificial Life (ECAL’09). Ref: [Paperin & Sadedin, 2009b]. 

 G. Paperin, S. Sadedin (2009): 
The Dual Phase Evolution Framework for Understanding Evolutionary Dynamics in Complex Adaptive Systems. 
2009 International Conference on Evolutionary Computation (ICEC'09). Ref: [Paperin & Sadedin, 2009a].  

 
 

Throughout these thesis I focused on network-theoretical considerations to reason about 
emergence and self-organisation in CAS. I showed that the DPE framework that concentres 
on the role of connectivity phases in underlying networks is useful in uncovering common 

mechanisms in seemingly unrelated systems and for explaining mechanisms behind a range 
of complex phenomena. In this chapter I relate the DPE framework to two other frameworks 
that are widely applied for reasoning about CAS: Self-Organised Criticality (SOC) and the 
Adaptive Cycle (AC). By emphasising network-theoretical approaches and empirical 

observations from a variety of adaptive and non-evolutionary complex systems, I show how 
DPE complements both ideas. 
 

14.1. Self-Organised Criticality 
 
Self-Organised Criticality (SOC) [Bak et al., 1988; Bak, 1999] implies that CAS self-organise 

to a critical state, in which the complexity of system responses to external stimuli emerges 
through a propagation of the stimuli through an interaction network with thresholds at each 
component. The thresholds effectively control the propagation connectivity near the critical 

threshold between the connectivity phases, resulting in propagation avalanches of different 
sizes. In this sense, SOC suggests that CAS evolve to reside in a transitional state at the 
boundary between stasis and chaos. 

 
Langton coined the term edge-of-chaos to describe the above critical attractor state [Langton 
1990; 1991] in the context of studying cellular automata (for a comprehensive review of 
cellular automata, see Wolfram [2002]). He found that cellular automata of a certain class, 

termed Wolfram class 4 [Wolfram, 1984], exhibited dynamics similar to systems that are 
thought to be dominated by SOC processes. Langton conjectured [Langton 1991] that 
computationally universal and various other ―interesting‖ cellular automata are located within 

that class. This conjecture was supported by some studies [e.g. Packard, 1988], but later 
evidence [Mitchell et al., 1993] has shown that the arguments were not conclusive. 
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The size of propagation avalanches in SOC systems follows a power-law distribution. The 
presence of this distribution in data is often taken to indicate that a system may self-

organise to a critical state. A number of models [Bak, 1999] led to suggestions that various 

complex systems, including many CAS, exhibit SOC dynamics. For instance, it has been 
suggested [Bak & Sneppen, 1993] that since the sizes of extinction events observed in the 
fossil record follow a power law distribution, punctuated equilibria [Eldredge & Gould, 1972] 

may be a result of the biosphere’s self-organisation to a critical state. However, the extent to 
which SOC presents a general form for organisation of CAS remains unclear. Many SOC 
models concern complex systems that are not subject to selection, and in many cases there 

are several processes which may lead to power-law distributed data. For instance, Newman 
[1997] demonstrates a non-critical extinction model without any species interactions. That 
model yields a power-law with an exponent that is closer [Lenton & Van Oijen, 2002] to the 

empirical punctuated equilibria data than the SOC model [Bak & Sneppen, 1993]. Several 
authors [e.g. Sornette et al., 1995; De Carvalho & Prado, 2000] suggest that critical 
behaviour requires fine-tuning of an order parameter. Furthermore, it remains unclear 
whether SOC occurs in non-conservative systems [Kinouchi & Prado, 1999; De Carvalho & 

Prado, 2000]. The notion of nearly-critical behaviour avoids some of the problems related to 
SOC and can be applied to a wider range of systems [e.g. Kinouchi & Prado, 1999]. 
 

SOC has been associated with scale-free networks due to the apparent parallel between the 
power-laws present in such networks and in self-organised critical systems. Notably, some 
non-critical systems exhibit power-laws in system output sizes due to the scale-free topology 

of underlying networks. For instance, the distribution of sizes of random-fault affected 
subnets in some telecom networks follows a power law due to the scale-free nature of the 

networks and not due to any critical interactions [Albert et al., 2000]. 
 

Recently Eliazar and Klafter [2009] have shown analytically that 1-on-f noises, traditionally 
thought to indicate SOC dynamics, can generally emerge from a superimposition of many 
independent stochastic signals. In summary, the presence of power-law data may not always 

imply self-organisation towards critical dynamics. 
 
DPE mechanisms may be involved in non-critical systems that produce power-law data. 

Throughout this thesis I discussed and analysed a range of systems that tend to self-
stabilise, while external stimuli or internal phase changes perturb them away from their 
attractors and increase the connectivity of state transition networks. To describe this using 
SOC-vocabulary: Under SOC, systems self-organise towards a critical region; under DPE, 

systems rather develop towards a settled, balanced state, and are repeatedly pushed across 
the critical region, towards a chaotic state (in the sense that responses to random stimuli 
and variations are unpredictable), from which systems return to a new settled state, 

accumulating order and complexity on the way (Figure 14.1). 
 
Notably, the DPE and the SOC paradigms are complementary, not contradictory. The 

magnitude DPE-oscillations (i.e. how far underlying networks and system dynamics deviate 
from critical during different phases) may vary significantly according to specific 
circumstaces. Thus, recognising whether a particular phenomenon is caused by a truly 

critical attractor or by a repeatedly unsettled non-critical attractor may be difficult. 
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Self-Organised Criticality Dual Phase Evolution 

  

  
  

  
  

  
  

Figure 14.1. Self-Organised Criticality vs. Dual Phase Evolution. 

Top two rows: Contrast between SOC and DPE in terms of network connectivity. SOC-theory 

(left) suggests that networks that underlie CAS self-organise towards the critical percolation threshold 

at which the size of the giant connected component undergoes a critical transition (top row), during 

which it exhibits large variation (middle row). On contrary, according to DPE (right), underlying 

networks repeatedly flip between poorly connected and well connected phases.  

Bottom row: Contrast between SOC and DPE in terms of system dynamics. SOC-theory (left) 

suggests that CAS self-organise towards a critical transition state between the general stasis of 

equilibrium systems and the random behaviour of chaotic systems. According to DPE (right), CAS are 

repeatedly pushed from a balance-phase to a variation-phase and are thereafter driven to restore into 

a new balance phase. 
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14.2. The Adaptive Cycle 
 

Another influential concept in CAS theory is the adaptive cycle (AC) [Gunderson & Holling, 
2002]. The AC extends the idea of ecological succession [Gleason, 1927], and is 
predominantly applied to ecological and socio-ecological systems, especially with reference to 
ecosystem management. 

 
The AC is closely related to the concept of panarchies [Holling, 2001; Gunderson & Holling, 
2002] – a metaphor that describes the hierarchical relationships in dynamical systems of 

different scales. The AC is a metaphoric concept [Walker et al., 2004] suggesting that the 
behaviour of many socio-ecological systems exhibit cycles consisting of four qualitative 
phases: 

 
 A growth and exploitation phase (designated r), in which new or freed-up areas and 

niches are rapidly populated by opportunistic organisms. 
 

 A conservation phase (K) signified by competition, selection and resource 

accumulation. 
 

 A collapse or release phase (), in which accumulated resources are catastrophically 

released, often mediated by disturbances. 
 

 A reorganisation phase () in which the remains of an -collapse are reorganised and 

restructured. 

 
The bulk of the literature on ACs [Resilience Alliance, 2004] is concerned with empirical 
studies [e.g. Cumming, 2004; Taylor & Krawchuk, 2005], secondary data analysis [e.g. 

Anderies, 2005; Allen, 2006], and applications to human-managed systems [e.g. Folke et 
al., 1994; Crema et al., 2000; Carpenter & Gunderson, 2001]. However, some work has 
been undertaken to provide a causal explanation for the AC (see Gunderson & Holling [2002] 
for an overview). Most of this work concentrates on ecosystem resilience and threshold 

dynamics [Holling, 2001; Gunderson & Holling, 2002; Scheffer & Carpenter, 2003]. Empirical 
studies attribute typical CAS properties to each phase of the AC. For instance, resilience 
against external forcing is expected to be high during the r and  phases but low during K. 

Resource availability is high during  and K phases, but low during r and . Connectedness 

of control variables is maximal near the end of a K-phase. 

 
The AC and DPE concepts are complementary. The DPE framework aims to incorporate a 

wider range of CAS from different subject domains and has important parallels to the AC: 
  

 The balance (high connectivity) phase in DPE loosely corresponds to the r - K 

transition in AC. This phase is signified by stabilising selection, increasing connectivity, 

and growing potential for propagation of disturbances. 
 

 The variation (low connectivity) phase in DPE loosely corresponds to the  -  - r 

transition in AC. This is a phase of innovation and re-organisation of underlying 
networks. 

 
Notably, connectedness in AC refers to the richness of interactions of control variables 
[Holling, 2001; Gunderson & Holling, 2002]. In fact, however, there may be several 
interaction networks with different connectivity regimes within a system at any one time. For 

instance, species in food webs and populations in landscapes form interaction networks that 
act simultaneously on the same groups but may have very different topologies. The network 
of control variable interactions may thus have very different properties from the interaction 

network of specific system components. 
 
In summary, the DPE framework encapsulates many ideas from SOC and AC. It adds to their 

explanatory power, for instance by providing network-theoretically grounded explanation for 
power-laws in some non-critical systems and by extending the applicability of the balance-
variation cycles concept beyond socio-ecological systems. 
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Chapter 15: 

15. Conclusions 
 
 

This thesis has identified common mechanisms in which connectivity of underlying 
networks facilitates emergence and self-organisation in complex systems. It has distilled 
these mechanisms into a theoretical framework, DPE, and applied the findings to elicit 
new insights into concrete systems including landscape ecosystems and social 
networks. Several directions for future research arise from these findings. New 
applications and extensions of introduced simulation techniques can provide further 
insights into biological evolutionary dynamics. The DPE framework itself can be 
extended to a wider class of networks and further formalised. In this chapter, I 
summarise the main research results of this thesis and discuss some future research 
directions in detail. 

 
 

The material this chapter is based on the following publications: 

 
 G. Paperin, D. Green, S. Sadedin (2010): 

Dual Phase Evolution in Complex Adaptive Systems. 
Journal of the Royal Society Interface. Accepted for review. Ref: [Paperin et al., 2010]. 

 G. Paperin, S. Sadedin (2009): 
Towards formalising the theory of Dual Phase Evolution. 
10th European Conference on Artificial Life (ECAL’09). Ref: [Paperin & Sadedin, 2009b].  

 
 

In this thesis I set out to investigate the role played by networks in natural and artificial 
systems. Networks are inherent in all complex systems. Patterns and processes that occur 
within these underlying networks play a major role in the emergence of system wide features 
(chapter 5). Perhaps the most widely felt network processes are changes in edge density, 

especially the connectivity avalanche (section 5.3). As discussed in chapter 8, phase changes 
occur in complex systems of virtually every kind. Crucially, those phase changes can typically 
be traced to connectivity avalanches within underlying networks.  

 
Several important conclusions stem from this thesis: Recurrent phase changes in network 
connectivity play a key role in emergence and self-organisation within many kinds of 

systems. This thesis reveals several mechanisms that can lead to connectivity phase 
transitions. These mechanisms include external disturbances, slow forcing resulting in 
crossing of attractor basin boundaries, as well as internal feedback. The two connectivity 
phases usually display the features that characterise Dual Phase Evolution: a phase of 

apparent balance and stabilising selection, and a phase of vivid variation and exploration. 
 

Interpreting processes as DPE reveals new, useful insights. For instance, studies in part IV 

reveal mechanisms that may be responsible for the punctuated nature and continuity of 
landscape evolution. 
  

DPE also suggests new methodologies. For instance, the generative models in part V are a 
result of applying abstract DPE processes to concrete problems. These models are capable of 
generating networks that resemble several hitherto poorly understood topologies found in 
social and economical systems. 

 
An extended summary of the key contributions of this thesis is already provided in section 
1.3. Here, I concentrate on the implications of these findings and on the directions for future 

research they imply. 
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15.1. Directions for future research 
 

15.1.1. Biological modelling 
 
In response to an analysis of simulation results in chapter 10, in chapter 11 I took a detour 

from the main network-theoretical theme of this thesis and proposed a genetic model that 
combines some advantages of previous models. This genetic model was applied in an 
individual-based simulation that investigates the maintenance of biological diversity under 
migration (section 11.4). 

 
Simulation results implied that HFL genetics not only represent a strong factor in 
maintenance of reproductive isolation, but also that HFL genetics may facilitate the evolution 

of social / sexual selection through reinforcement. An extension of the simulation model that 
incorporates mechanisms that would permit such evolution (e.g. capability for selective mate 
choice) can test this hypothesis. 

 
Another key observation in section 11.4 was emergence of reproductively isolated hybrid 
populations. Such populations did not persist due to low population numbers in comparison 
to the main model populations, however extending the model by including habitat niches 

that may be occupied by hybrids can allow hybrid populations to grow. Such an extension 
will permit to explore scenarios of speciation through hybridisation. 

 

Another straight-forward application of the genetic model is to incorporate it into the larger-
scale simulation discussed in chapter 10 in order to test the earlier hypothesis that HFL 
genetics will reduce the dependence of emerging diversity on directional selection caused by 

environmental changes in disturbed areas. 
 
More generally, the proposed genetic model may be used to explore a wide range of 
biological simulation scenarios. An analysis of the FL of the genetic model of section 11.3 

provides detailed information about the FL structure and properties and can thus inform such 
research. 
 

15.1.2. Evolutionary computation 
 
In section 11.5 I speculated on methods for applying the computational HFL model 

developed in chapter 11 to approach the problem of premature convergence in genetic and 
other evolutionary algorithms. I would be excited to see an application of those ideas to 
concrete optimisation problems. 

 
The DPE framework implies some broad considerations in design of intelligent search 
algorithms. In section 8.8 I argued that many algorithms implicitly use connectivity phase 

transitions when mitigating between local and global search, however, most approaches 
perform this transition only once or a few times. In nature, however, such transitions are 
ongoing. Some algorithms explicitly use ongoing phase transitions to achieve better results 
(section 8.8). Further explicit application of DPE in future algorithm design may lead to 

improvements in optimisation techniques, particularly in areas where stable and adaptive 
approaches are more important than speed and precision, such as cases where objectives or 
constrains change over time. 

 

15.1.3. Network models 
 

In section 12.2 I presented only preliminary results of a simulation model of resource flow 
that applied to a diverse range of systems such as economies or trophic wood-webs. Those 
results exemplify the emergence of connectivity phase transitions from internal feedbacks. 

The presence of these complex patterns in the model indicates that further work on that 
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model may likely result in new general insights about self-organisation in systems such as 
the above. 
 

In section 13.2.1 I discussed an abstract social network model. Simple changes in model 

architecture (number of attributes per individual / node and number of possible values per 
attribute) resulted in different network topologies, and all such topologies can also found in 
real social networks. Research relating empirical studies of communities to further 

experiments with similar models may reveal insights into the relationship between different 
attributes of human behaviour and different social interaction structures. Such insight may 
allow predictions about group dynamics on large scales. For instance, what social settings 

lead to what kind of group structures? 
 
Section 13.2.2 concentrated on the emergence of modular structures in an abstract network 

model of business interactions and revealed qualitative insights into the mechanisms behind 
the emergence of modularity. A comparison between model results and empirical data may 
allow to extend the model to allow qualitative predictions about formation of co-operative 
communities. 

 
The work presented in section 13.3 introduces generative models for scale-free networks of 
constant size that may correspond to processes found in nature. Results show that in the 

emerging structures, low-degree nodes are under-represented compared to an ideal scale-
free topology. However, results indicate two directions for future investigation. First, 
preliminary experiments indicate that allowing self-connections in the model increase the 

number of low-degree nodes relative to average-degree nodes, thus improving the power-
law fit. Although self-connections do not have an immediate interpretation within the natural 

processes that inspire the model, a thorough investigation of self-connections in the model 
may reveal useful insights. Second, results of the enhanced model (section 13.3.4) show 

that the fit to a power-law distribution improves for larger network sizes. This prompts for an 
investigation of the enhanced model for even larger network sizes of many thousands of 
nodes. 

 
Finally, an analytic examination of the generative model from section 13.3 can assert the 
true distribution of node degrees in the resulting network in the limit of a large network size. 

Such investigation may also provide insights into the relationship between the rules for 
choice of interaction partners and the resulting network topology. 
 

15.1.4. DPE theory 
 

15.1.4.1. DPE-interactions with external system environments 

 

So far I have concentrated on discussing connectivity phase transitions in networks of 
interactions within systems. How can DPE be useful in considering environmental changes 
that take place outside the system?  

 

Processes can affect system behaviour by affecting the system directly, or by affecting its 
environment. Notably, the distinction between a system and its environment is not always 

obvious. Since complex systems are not closed (section 4.3) and constantly interact with 
their environment, the system boundaries are often not an intrinsic property, but an 
attribute assigned for the purpose of a particular theory or study. For instance, ecosystems 
can either be studied in isolation or as an integral part of the wider environment (e.g. a pond 

is often treated as a closed system, but there is always some interaction with the outside 
world – birds flying in, water-borne nutrients etc.; see also section 4.3). Nevertheless, 
assuming some clear distinction between the studied system and its environment is an 

overwhelmingly useful methodology [Allen & Starr, 1982; Coveney & Highfield, 1996].  
 
An obvious approach is to consider the density of the interaction network between a system 

and its environment. However, this effectively results in widening the system boundaries and 
applying the previous methodology. This may not always be possible, for instance when 
information about the components of a system environment and their interactions are not 
sufficiently available. 

 



 

 192 

Another approach, however, is to extend the ideas about network connectivity beyond 
component interactions. In particular, while topological properties of underlying interaction 
networks can drive system dynamics, the topologies of state transition networks are an 

emergent attribute of a system. Similarly to system boundaries, state transition networks 

are not actually existing tangible system properties, but abstract constructs created by 
humans to describe and understand system behaviour (section 5.2). In other words, 
topology of intrinsic component interaction networks influences processes that drive system 

dynamics, and state transition networks describe these emergent system dynamics.  
 
For example, consider the landscape model discussed in chapter 10. There, when landscape 

connectivity is high (i.e. the density of gene flow interactions is high), changes in ecosystem 
dynamics are infrequent (i.e. the connectivity of the state transition network is low). 
Conversely, disruptions in connectivity of gene flow interactions coincide with frequent 

changes in model ecosystem development (i.e. high connectivity of the state transition 
network). 
 
More generally, DPE relates some topological properties of interaction networks to 

characteristic system dynamics, and thus to characteristic properties of state transition 
networks. For instance, phases of high connectivity of component interactions often 
correspond to balance, uniform dynamics and thus to sparser state transition networks 

(balance phase). Conversely, DPE phases of local interactions and enhanced evolutionary 
exploration often correspond to phases of dense connectivity in state networks with 
increased transition possibilities between attractor basins (variation phase). 

 
Understanding how internal system processes as well as external environmental changes 

affect the connectivity of state transition networks of systems can help to describe, model 
and understand system behaviour. Thus, the future research on application of the DPE 

framework to state transition networks may likely result in new insights into the general 
patterns of emergence and self-organisation. 
 

When using state transition networks to model systems and understand their behaviour, it is 
important to consider the origins of changes in state networks. In particular, the way in 
which a state transition network of a given system is affected by internal system changes 

versus changes of the external environment. A state transition network describes the 
possible system states (the nodes) and the system potential to change between the states 
(the links). Thus, when a system changes, it ―traverses‖ one or more links of the state 
network to enter a new state (section 5.7). In doing so, the system may ―arrive‖ at a region 

of the state network with local connectivity properties that are different from the region 
where the previous state was located. Conversely, when an environmental change does not 
directly affect the system state, it may arguably be inappropriate to say that a system 

traversed a link in the state network. Such change can affect system dynamics by 
manipulating the state transition network directly and adding or removing some links or 
nodes thus shaping the topology of possible future state changes. Both interpretations may 

have similar consequences for system behaviour, however, explicitly differentiating these 
cases may be useful for uncovering underlying mechanisms behind complex phenomena. 
Crucially, state transition networks are a modelling methodology and not a naturally 

occurring phenomenon. Thus, the most appropriate approach of relating changes in system 

dynamics to the topology of a state network and the system location in it is dictated by a 
particular theory or study. 
 

15.1.4.2. Other directions 

 
Several other aspects of the DPE framework call for further investigation. For instance, 
should DPE be seen as a single underlying process or as a family of related classes of 

processes? An important practical problem is how to identify DPE processes from empirical 
observations. In particular, how can they be distinguished from other phenomena that can 
drive the emergence of complexity, such as criticality? A necessity to observe two distinct 

phases of system dynamics can be a starting point for such investigation, but detailed 
research is necessary to address this issue. 
 

Another important matter is the role of distinct phases dominated by local or global 
interactions. What phenomena depend on such phases with a well-defined transition, and 
what can also be caused by stochastic occurrences of local and global interactions, such as in 
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small-world networks? The network models in part V showed that in some cases, the relative 
duration and frequency of the two phases can affect the emergent behaviour. Can this 
dependency be formulated in general terms for a wider class of systems? 

 

The landscape model in chapter 10 implicitly included at least two interaction networks (the 
network of reproductive interactions and the network of free migration paths). However, 
these networks were essentially inverse of each other and thus closely related. Other models 

in this thesis concentrated on a single interaction network. However, real systems usually 
consist of many networks representing different kinds of interactions (section 7.3). Models 
explicitly investigating effects of DPE processes acting on several networks within the same 

system are necessary to shed light on feedbacks and other interactions between multiple 
underlying networks in systems. 
 

The term Dual Phase Evolution has been initially coined by Green [e.g. Green, 2000; Green 
et al., 2000; Green & Sadedin, 2005; Green et al., 2006] to generally refer to recurrent 
transitions between balance and variation, exploitation and exploration, connectedness and 
separation in the development of systems. Here, I have re-introduced the concept as a well-

defined framework rooted within network theory. However, this is only a first step towards a 
formal theory of DPE. Further theoretical, empirical and simulation studies are necessary to 
provide a formal theory with analytic, predictive power. I will be extremely excited to see 

future research extending my work in this way. 
 

15.2. Verdict 
 
There are a number of key questions that are of wide-spread interest to researchers in 
complex systems [Bedau et al., 2000]. What are the mechanisms behind emergence and 

self-organisation? Why are scale-fee structures ubiquitous, even in non-critical systems? How 
does perpetual novelty arise in adaptive systems? This thesis shows that DPE-phase-
transitions present one mechanism involved in these complex phenomena. 

 
Explicitly characterising common mechanisms aids cross-fertilisation between disciplines. 
Network theory and related methods from statistical physics found useful applications in 
evolutionary biology (part IV) and social sciences (part V). Other areas where DPE 

phenomena appear to occur are as diverse as cognitive neuroscience (section 8.4), geo-
morphology, cosmology (section 8.1) and computer science (sections 8.7 and 8.8). Such 
areas may also benefit from network-theoretical techniques.  

 
As a science, complexity theory still suffers from its recent origins. Related phenomena are 
still interpreted using a wide variety of terminology, concepts and methods that are usually 

specific to particular fields of research: ―Perhaps there can be a general theory of complex 
systems, but it is clear we don’t have one yet.‖ [Gordon, 2007]. Identifying common 
processes, such as Dual Phase Evolution, describing them in real systems, and generalising 
them in models, is an essential step towards the goal of understanding complexity, and the 

major contribution of this thesis. 
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Part VII: 

 

Appendix 

 
 

 
 
 
 
The appendices provide additional technical details, indices for quick reference and a list of cited 
literature. 

 
 
 

 

Appendix A: Technical details of the simulation model of adaptive radiation in 
landscapes. 
 
Additional details of the simulation model presented in chapter 10 are provided. The reader is 
advised to consult chapter 10, particularly sections 10.1.1 and 10.1.2 before reading this appendix.  
 
 
 
 

Appendix B: List of Figures. 
 
This appendix provides a list of figures for quick reference. 
 
 
 
 

Appendix C: List of Tables. 
 
This appendix provides a list of tables for quick reference. 
 
 
 
 

Appendix D: Index. 
 
This appendix provides an alphabetical index of terms and abbreviations for the entire thesis. 
 
 
 
 

Appendix E: References. 
 
This appendix provides a complete list of cited literature. 
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Appendix A: 

A. Technical details of the simulation model of 
adaptive radiation in landscapes 

 

 
In this appendix I discuss additional details of the simulation model presented in section 
10.1. Where applicable, I provide results of the sensitivity analysis. The reader is advised 
to consult sections 10.1.1 and 10.1.2 before reading this appendix, as those sections 
provide an essential context. 

 
 
In this appendix I discuss some additional details of the simulation model presented in 

section 10.1. The reader is advised to consult sections 10.1.1 and 10.1.2 before reading this 
appendix, as those sections provide an essential context. Where applicable, I provide the 
results of the sensitivity analysis. Additional details on model sensitivity are discussed in 

sections 10.1.2.3 and 10.1.4, where they provide a clearer context for the experimental 
results. In cases where qualitative model behaviour was not found to depend on specific 
parameter values, parameter were chosen as large as possible (to investigate dynamics of a 

larger system) while still considering the runtime performance of the simulation. 
 

A.1. Model configuration 

A.1.1. Landscape 
 
The model environment is a landscape represented by a 2-dimensional, rectangular grid of 
100  100 cells. The shape of the model universe is a torus. This means that the top row of 

cells is adjacent to the bottom row, and the most left column of cells is adjacent to the most 

right column. This approach helps avoiding any boundary effects, as there are no boundary 
cells and each cell has the same number of neighbours (8).  
 

Each grid cell has a carrying capacity of 4 individuals. Carrying capacity is chosen as large as 
possible to allow for larger interbreeding groups (see section A.1.5, Reproduction). However, 
larger carrying capacity significantly slows down the runtime performance of the model. 

Tests have shown that varying the carrying capacity between 5 and 8 does not affect the 
qualitative model dynamics. Larger carrying capacity was not possible without reducing the 
size of the landscape grid, which, however, must be large to allow disaster scenarios to clear 
sufficiently spacious areas (see section 10.1.4). As hardware becomes faster, it would be 

interesting to compare the current model results with a similar simulation that uses larger 
carrying capacities of tens and hundreds of individuals per cell. 

 

There are 60 habitat niches equally present in each cell. A niche is represented by a string of 
L = 20 bits and a condition  [0, 1] parameter. Each bit represents the requirement, that a 

particular trait must be present (1) or absent (0) in an individual in order to be well adapted 
to that niche. The niche condition describes the maximum fitness that an individual can 
obtain by being fully adapted to that niche. 

 

A.1.2. Individuals 
 

The model landscape is occupied by haploid individuals. An individual is represented by its 
genotype and there is no genotype-phenotype distinction in this model. Previous similar 
models (i.e. [Gavrilets & Vose, 2005] as well as several described in [Gavrilets, 2004]) use 

an additive quantitative genetic trait model that incorporates a genotype-phenotype 
distinction. In subsection 10.2.2 I show that for the current purposes, the employed 
approach is fully equivalent, and computationally more efficient, to the additive quantitative 
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trait model used by Gavrilets and Vose [2005]. The equivalence holds as long as the number 
of traits in the current model equals to number of traits  number of loci per trait in their 

model. 
 

An individual’s genotype is represented by a string of L = 20 bits. Each bit denotes the 

presence (1) or absence (0) of a certain traits. The traits represented in genotypes 

correspond to the traits represented in niches at the respective positions. 
 
The degree of adaptation of an individual  to any given niche M is defined by the hamming 

distance of the respective bit strings. It is assumed that individuals exist within a niche to 
which they are best adapted. Thus, the habitat niche M of an individual  is: 

 

( , )
argmin

M dist M
M   i
i

 

 
where Mi are all available the habitat niches and dist(, Mi) is the hamming distance between 

the bit-strings representing the individual  and the niche Mi respectively. 

 
The raw fitness fitnessraw() of an individual  is based on that individuals adaptation to its 

habitat niche linearly scaled into the unit interval such that fitnessraw() = 1 denotes perfect 

adaptation: 

( , )
( ) 1

dist M
fitness

L


  raw  

 

Note that an individual may be equally well adapted to more than one niche. This, however, 
does not affect the raw fitness of an individual. Other consequences arising from the possible 
existence of multiple equi-distant habitat niches are discussed in section 10.2.4.5 in more 

detail. In short, this ambiguity is resolved such that a niche is chosen arbitrary, but always 
the same niche is chosen for the same genotype. 
 

Recall that every niche Mi has a parameter conditionMi that describes the living conditions 
offered to the individuals adapted to that niche. Thus, the actual fitness fitness of an 

individual  is: 

 

( , )
( ) 1M M

dist M
fitness fitness condition condition

L 




 
      

 
raw  

 
Note that the habitat niche of an individual is chosen to optimise the individual’s adaptation 
to its habitat niche, with disregard to its condition. If a habitat niche has a poor condition, 

the actual fitness of an organism may be lower than if the individual existed in a different 
niche with better conditions. However, in nature, the individuals exist in habitats to which 
they are adapted, despite the fact that other habitats may in theory provide better living 

conditions. Over long periods, selection will drive the future populations towards niches with 
better conditions. 
 

A.1.3. Lifecycle 
 
The overall model lifecycle is as follows: 

 
Initialisation: initialise landscape, niches, and initial population. 
Repeat for 40000 generations { 

Measurement: collect measurements and statistics. 
Environment update: update niche conditions, simulate disasters if applicable. 
Reproduction: perform mating, replace old generation with the new generation. 
Selection: ensure cell carrying capacity by selecting survivors according to fitness. 

Dispersal: probabilistically migrate individuals to neighbouring cells. 
} 
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Analysis has shown that running the model for longer that 40000 generations does not 
produce any new model dynamics. The details of the lifecycle steps are considered in more 
details below. 

 

A.1.4. Initialisation 
 
The model is initialised with an empty homogeneous landscape grid of size 100  100 and 

with 60 niches (30 ―normal‖ + 30 ―disaster‖). In the bit-strings representing the niches, each 

bit is independently set to 0 or 1 with equal probability. For normal niches, condition is set to 

1; for disaster-niches, condition is set to 0.2. The qualitative model behaviour was not found 
to be sensitive to these values as long as 1  condition  0.8 for normal niches and 0.05  

condition  0.3 for disaster niches. Section 10.2 contains a discussion of how the number of 

niches may affect model dynamics. 

  
Two random founder individuals are created by setting each bit in the bit-strings 
representing the genotypes independently to 0 or 1 with equal probability. Several clones of 

these founder individuals are placed at randomly and independently selected cells. When a 
single founder individual is used, the population fails to speciate before the entire grid is 
populated in over 40% of runs due to lack of genetic diversity. In cases where speciation 

does occur early, model dynamics are largely similar to scenarios with two founder 
individuals. 
 

A.1.5. Reproduction 
 
Any individual can mate with any individual in the same cell and the same cell only, and 
mating in each landscape cell occurs independently from all other cells. Each individual in the 

cell is selected as a mother exactly once. If there is only one organism in a cell, it engages in 
hermaphroditism acting as mother and father at the same time. If there are more than one 
individual in a cell, for each mother, a father is selected with equal probability out of all 

remaining individuals. Generations are non-overlapping, i.e. offspring do not mate with 
parents and the new population replaces the old population once all mating in a cell is 
complete. 

 
Inline with the model of Gavrilets and Vose [2005], the number of offspring for each mating 
pair is selected randomly from a Poisson distribution with the mean λ  = 5. Sensitivity tests 

have shown that if λ  is very small, new generations may have consistently fewer individuals 

than previous generations, leading to frequent extinctions. If λ  is large dynamics are not 

affected, but the runtime performance deteriorates as selection must be performed on a 
large number of individuals. The value 5 ensures sufficient diversity in offspring with 
acceptable runtime performance. 

 
Each of the offspring is generated through free recombination of the parents genotypes. This 
means each bit (trait) in the offspring genotype is inherited from mother of father with equal 

probability. The offspring genotype mutates with a probability of 10-5 per bit. The mutation 

rate in natural genotypes lies in the range 10-4 to 10-6 per locus depending on the type of 
locus [Russell, 1994]. The model was found not to be sensitive to variations of the mutation 
rate within this range. 

 
Individuals mate regardless of their habitat niche. The habitat niche of every offspring is 
chosen on the basis of its genotype as described in section A.1.2 without consideration of the 

parents. As the number of possible niches is large (2L = 260  1.15  1018) and the number of 

actual niches is small (60), the density of well-adapted genotypes is low. Thus, offspring of 
two individuals well adapted to two different niches are expected to be poorly adapted to 
either niche. Such offspring will have a poor fitness and will unlikely survive under selection. 

Therefore, populations adapted to different niches likely exhibit postzygotic reproductive 
isolation. Thus, in this model, populations adapted to different niches are assumed to 
correspond to different species. Note, however, that this assumption is critically considered 

in section 10.2 (in particular, sub-section 10.2.4.6). 
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A.1.6. Selection 
 
If after the reproduction stage the number of individuals in a cell does not exceed the 

carrying capacity of 4 individuals, all individuals survive. Otherwise 4 survivors are 
probabilistically selected according to their fitness and the rest of the individuals is removed. 
Formally, selection is performed as follows (note, this algorithm is optimised in the actual 
model implementation to handle small values of fitness more efficiently): 

 

selection(cell) { 
 

maxCellCapacity = 4; 

oldPopulation = set of all individuals in cell; 

survivorPopulation = empty set of individuals; 
 

while (sizeOf(survivorPopulation) < maxCellCapacity) { 

choose an individual  from oldPopulation with equal probability; 

choose a random number R uniformly distributed in [0, 1[; 

if (R < fitness) { 

remove  from oldPopulation and add it to survivorPopulation; 
} 

} 

replace all individuals in cell with survivorPopulation; 
} 

 

Note that this approach where individuals are selected for survival is different from the 
approach commonly used in genetic algorithms, where all individuals survive and then 
compete to be selected for reproduction. 

 

A.1.7. Dispersal 
 

Each individual may migrate to one of the 8 neighbouring cells with the probability 0.1. An 
individual does not migrate more than once per generation. If an individual migrates, then 
one of the 8 neighbouring cells is chosen as destination with equal probability. All individuals 
migrate concurrently. Lower migration rates reduce interbreeding between cell populations 

and lead to slower model dynamics. High migration rates increase interbreeding and gene 
flow across the landscape. This reduces speciation and diversity in the model, as populations 
of high-fitness individuals tend to take over the landscape before other populations can 

adapt to their niches and increase their own fitness. 
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A.2. Analysis of the basis run scenario 
 

The initial founder genotypes are random and not yet adapted to any niche. Their mean 
fitness and the fitness of their offspring are similar on average, implying no significant 
reproductive isolation between niche populations. The habitat niche of the early offspring 
generations has little correlation to the ancestors’ niches which results in the observed initial 

burst of adaptive radiation. While the landscape is not fully populated, selection is weak, 
which further facilitates adaptive radiation, as even deleterious mutations can spread 
stochastically. 

 
Once the complete grid has been populated, selection pressure increases. Niche populations 
that by chance adapted quicker and achieved higher average fitness than other populations 

begin taking over the landscape until most niche proportions fall to insignificant levels. The 
remaining ―dominant‖ niche populations occupy large continuos areas of the landscape. In 
some model runs the average fitness of the dominant species is similar, but in a number of 
runs there are fitness differences. In such cases, the dominant species with the higher 

fitness is likely to eventually take over the entire landscape (Figure  A.1). However, on some 
occasions, once lower-fitness populations acquire a large stable habitat, they appear to 
maintain it. This somewhat unintuitive phenomenon is known to occur in nature [Green, 

1989]. Although the average fitness of a model species may be consistently higher than the 
average fitness of another species, the variance in the actual fitness of specific individuals 
may result in similar fitness values of individuals from different species at a particular 
location. Because selection is local, competition is limited to small border regions between 

habitats. As a result, significant fitness advantage at habitat borders may fail to occur, 
resulting in roughly stable habitats. 
 

 

  
  

Figure  A.1. Typical simulation run of the basis scenario. An initial burst of adaptive radiation is 

followed by two species quickly taking over the entire population. One of the two dominant species 

(blue) then slowly declines. After 40000 generations it is about to die out. 

Left: X-axis: generation number. Y-axis: average niche fitness and niche proportion (brown graph: 

proportion of the 1st dominant species; red graph: average fitness of the 1st species; dark blue graph: 

proportion of the 2nd dominant species; light blue graph: average fitness of the 2nd species). 

Right: X-axis: generation number. Y-axis: number utilised niches. 

(The rounding artefacts on axes labels are due to an issue in an early version of LiveGraph that was 

used to render this figure (chapter 3).) 

 

 
While the number of dominant species (i.e. occupied niches) typically ranges between 1 and 
3, the total number of species tends to remain higher. Analysis shows that these ―weak‖ 

species typically occupy the border regions between dominant species, which implies that 
they are likely to be hybrids. Organisms that arise through recombination of 2 parents from 
different species may have a genotype that is closer to a distinct third niche. A similar effect 

is observed in nature [Spaak & Hoekstra, 1997; Rosenthal et al., 2002]. In many model 
runs, hybrid individuals inhabiting a niche different from both their parents occur sporadically 
and do not manage to establish a stable population. However, during some runs, stable 
hybrid zones occur. Such zones are regions along the habitat borders of the parent species 

occupied by hybrid individuals that are adapted to an own unique niche (Figure  A.2). As a 
result, hybrid zones effectively separate the habitats of the main species. 
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Figure  A.2. Typical basis run with a developed tension zone. Each cell is coloured according to the 

majority-species in that cell. Two dominant species control the population. The proportion of the cyan 

species is stable around 0.75; the proportion of the violet species is stable around 0.2. Both their fitness 

values (light blue and red graphs respectively) are very similar and relatively high. The green hybrid 

species retains a stable proportion around 0.04, although its fitness it significantly lower. Other hybrid 

species sporadically emerge, but do not manage to establish a stable population. 
Left: X-axis: generation number. Y-axis: average niche fitness and niche proportion. 

Right: X-axis: generation number. Y-axis: number utilised niches. 

Bottom: A landscape snapshot of this simulation run at generation 30000. The tension zone is clearly 

visible. 

(The rounding artefacts on axes labels are due to an issue in an early version of LiveGraph that was used 

to render this figure (chapter 3).) 

 
 

 
In nature, there are two main mechanisms behind stable hybrid zones. The first occurs when 
hybrids adapt to some environmental condition that is local to the hybrid zone, thus gaining 
a fitness advantage to the parent species in that geographic area. The second mechanism 

occurs when the hybrids have a lower fitness than the two hybridising species and the hybrid 
zone is maintained by a balance between dispersal and selection against hybrids [Barton & 
Hewitt, 1985; Szymura & Barton, 1986; Stein & Barrington, 1990]. Hybrid zones of the latter 

kind are termed tension zones. There are indications that most hybrid sones in nature are of 
this type [Barton & Hewitt, 1985]. 
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As the model environment is homogeneous, there cannot be any local adaptation, and the 
hybrid zones in the model are tension zones. This conclusion is confirmed by fitness 
measurements: the average fitness of the hybrid species is typically lower than the average 

fitness of the hybridising species. The proportion of tension zone populations (when they 

occur) relative to total modal population is small but stable around 0.1 to 0.05. 
 
The observation of stable habitats of lower-fitness populations and of tension zones in the 

model is particularly interesting because these patterns were not originally expected. As 
similar emergent patterns are found in nature, these observations indicate that the model 
appropriately captures relevant dynamics of natural landscapes and supports the validity of 

experiments performed with the model (chapter 2 and [Grimm et al., 2005]). 
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