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Abstract 

Corporate failure is one of the most popular prediction problems because early identification of 

at-risk companies presents such a clear economic benefit to creditors, investors and society as 

a whole. Throughout the years statistically based classification systems, intelligent systems 

such as Neural Networks with its many variants, and newer techniques such as Genetic 

Programming have been applied to this problem. Indeed when a new variation or technique is 

proposed, the prediction of corporate failure is often one of the first test domains for the new 

methodology. Likewise, the cause of corporate failure is a topic that has received much 

academic and literary attention, including case studies investigating the trajectories that failing 

companies take or post hoc qualitative analysis as to whether certain fundamental causes such 

as one-man-rule can be attributed to the subsequent collapse of a company. However, 

throughout the history of this topic a number of challenges emerge that remain unaddressed 

within the literature. 

 

The first challenge is that while many papers outlining new classification techniques compare 

results with another popular classification system as a baseline, little research exists that 

comprehensively compares many classification techniques across multiple datasets. This thesis 

finds that intelligent techniques such as Neural Networks, Genetic Programming and Support 

Vector Machines outperform statistical techniques such as Discriminant Analysis and Logistic 

Regression. 

 

The second challenge is that the desire of researchers to compare results has resulted in the 

use of the same cross-section of factors, with little analysis as to whether or not the factors 

being used are impacting on the classification accuracy of the method. This thesis finds that an 

objective factor selection methodology leads to performance gains. 
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The third is that far less research exists that considers whether share market or macroeconomic 

data can have a positive impact on classification accuracy. While this research did find some 

performance gains when including share market information, the difficulty of linking financial 

information with share market information leads to data loss that outweighs the small 

performance improvement. 

 

The fourth is that while most classificatory research on this problem focuses on the accuracy of 

the technique, less attention is given to whether the subjective clustering methods used (e.g. by 

“industry”) are effective, and this research finds that an objective clustering technique improves 

classification accuracy. Furthermore, this research builds on the existing cluster visualisation 

methods by developing a new and more effective cluster visualisation algorithm. 

 

Finally this research attempts to contribute to the theoretical understanding of corporate failure 

by analysing the classificatory surface of the resulting predictive models and performing a case 

study analysis of failed companies. In doing so, the model’s strengths and limitations are 

discussed and some of the causes of failure from the literature are identified. 

 

In summary, this research makes the following contributions to the field of bankruptcy 

prediction: a literature review of notable bankruptcy prediction research, a comparison of 

popular classification techniques, the development and testing of a new objective factor 

selection methodology, an examination of the effect of share market and macroeconomic data 

on classification accuracy, the development and testing of a new cluster visualisation method 

that overcomes limitations in existing methods, an examination of the effect of objective 

clustering on classification accuracy utilising the new visualisation method, and a case-study 

analysis on selected failed companies that relates the reasons for failure outlined in secondary 

sources to the company’s failure prediction trajectory. 
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1. Introduction 

Between 1999 and 2001, the Australian telephone carrier One.Tel consumed over $1 billion in 

cash before entering voluntary administration. More recently, American Airlines’ parent 

company filed for Chapter 11 bankruptcy protection, and the bankruptcies of WorldCom and 

Enron preceded the Global Financial Crisis. Predicting financial distress is a well-researched 

problem, though one in which there is no consensus on the methodology to use. Research into 

ratio analysis dates back as far as 1935 (Smith & Winakor, 1935), and building predictive 

models dates back to 1966 (Beaver, 1966). With a trend away from linear, statistical analysis 

techniques towards non-linear intelligent systems, developments that seek to improve predictive 

accuracy continue today. Not only do these new techniques demonstrate greater accuracy, but 

some allow opportunities to build a greater understanding of corporate failure, its causes and its 

symptoms.  

 

Many of these developments focus on the modelling system itself, using financial ratios from 

key previous research, such as Altman (1968) with small, hand-picked samples known to be 

similar. Very little of the literature, with the notable exception of Edmister (1972), advocates 

alternative sets of inputs to the classification system. Furthermore most research considers only 

one dataset, and questions are therefore raised as to whether or not the methodology proposed 

in such research is extendable to alternative datasets.  

 

Due to this focus on the classificatory model itself, little research exists on the effect of 

clustering bankruptcy data. Specifically Deboeck & Kohonen (1998) utilise a Self-Organising 

Feature Map, which was then subsequently shown to be an excellent clustering algorithm, but 

employ the methodology only as an unsupervised learning algorithm, leaving an opportunity for 

the hybridisation of this technique and supervised learning algorithms to measure the effect of 

objective clustering. 
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Finally, while Altman’s Z-Score (1968) can be used to better understand the key performance 

indicators of corporate failure, many of today’s proposed models of corporate failure prediction 

are highly complex non-linear algorithms, from which it is difficult or impossible to gain an 

understanding into the nature of corporate failure and therefore it can be difficult to trust the 

resulting model. 

 

1.1 Goals of this Research 

The goals of this thesis can be roughly divided into a number of sections. Firstly, this thesis 

seeks to examine the current state of corporate failure prediction and corporate failure theory to 

identify opportunities to make contributions to both fields. To this end, specific questions will be 

developed that shape the direction of this thesis.  

 

Secondly, this thesis seeks to prepare the data, evaluate the available modelling techniques, 

and develop an objective factor-selection methodology that improves classification accuracy. 

Then through the use of multiple datasets support or refute the proposition that a particular set 

of factors can be utilised in different scenarios without needing to re-perform the objective factor 

search. 

 

Thirdly, this thesis aims to consider whether additional external information, such as share 

market data and macroeconomic data, provides additional information above and beyond that 

located in a company’s annual financial statements, in regards to the company’s failure 

classification. 

 

Fourthly, it considers whether clustering, specifically building on the works of Deboeck & 

Kohonen (1998), can be used to improve classification accuracy, in particular when hybridised 

with supervised learning algorithms. This thesis is distinctive in that it specifically compares 

objective clustering versus the effect of using the industry standard classification systems 
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typically employed within corporate failure classification research. To do this, this thesis 

examines common cluster visualisation methods and considers whether improvements can be 

made in this area. 

 

Finally this thesis considers whether the results of the objective factor selection, clustering, and 

the use of classification systems that result in successful models can be used to build a greater 

understanding of the key indicators of corporate failure and how they relate to the theoretical 

causes of failure as outlined by authors such as Argenti (1976). 

 

1.2 Summary of Findings 

This thesis demonstrates that the objective factor selection methodology proposed significantly 

increases out-of-sample accuracy on both a U.S.-centric and an Australian-centric dataset. It 

supports the findings of Edmister (1972) that the best selection of factors is unique to that 

particular dataset, that therefore it is necessary to re-perform factor selection when the dataset 

changes. 

 

It is found that neither the inclusion of the chosen share market data nor macroeconomic data 

reliably increase the accuracy of the classification models and in the case of share market data 

in fact severely limits the availability of data. 

 

While investigating the objective clustering of companies, this thesis identifies theoretical and 

practical weaknesses in a common cluster visualisation technique, then goes on to develop, test 

and utilise a new cluster visualisation methodology. It then uses that methodology to perform an 

objective clustering of companies using a multi-level Self-Organising Feature-Map, hybridised 

with supervised learning algorithms, finding that it significantly increases the classification 

accuracy beyond un-clustered data. It further finds that the grouping of companies by industry, a 
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technique often used for research into corporate failure, can in fact decrease the net accuracy 

of the model. 

 

This research finds that while new and useful key performance indicators of corporate failure 

can be identified, they are often utilised by the model in a non-linear sense which helps explain 

the generally poorer performance of linear classification models. It finds evidence for some of 

the commonly believed causes of failure such as overtrading, but that income or sales related 

data is often the best predictor of corporate failure. 

 

1.3 Thesis Structure 

This research proceeds with chapter 2 which is an analysis of literature in the area of predicting 

corporate failure, identifying three major styles of modelling systems used from 1966 through to 

today. Chapter 3 goes beyond the modelling of failure to identify the theorised causes and 

symptoms of failure to identify opportunities for contributions to the literature. 

 

Chapter 4, Methodology, includes an assessment of the available data and the preparation of 

that data, followed by an evaluation of available modelling techniques, including Discriminant 

Analysis, Neural Networks, Support Vector Machines, Genetic Programming and Logistic 

Regression. It then outlines the methodology that will be used for objective factor selection in 

the following chapters, and compares the classification accuracy of that methodology to one in 

which objective factor selection is not performed. 

 

The data analysis is divided into two halves. The first half, found in chapter 5, examines the 

effect of adding additional data such as share market or macroeconomic data, while the second 

half, in chapter 6, builds a new cluster visualisation technique and then uses that technique to 

test the effect of objective clustering on bankruptcy data. 
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Having determined the effective techniques in the previous chapters, chapter 7 uses these 

techniques to predict corporate failure and selects specific cases within those datasets for 

additional analysis. 

 

Finally chapter 8 summarises the findings of this thesis and presents opportunities for additional 

research. 

 

This structure can be visualised in Figure 1-1. 

 

Figure 1-1 - Thesis Stucture 
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2. Review of Predictive Modelling Literature 

The “problem” of corporate failure prediction covers two fields of study: firstly the building of 

predictive computer models sits comfortably in the field of information technology, or more 

specifically, intelligent computing, while the theoretical model of corporate failure sits more 

comfortably in the field of finance. While this chapter will address the development of corporate 

failure predictive models, chapter 3 looks at the finance aspect. 

 

The arena of quantitative prediction of corporate failure spans back to Beaver (1966, p. 91), 

“Financial Ratios as Predictors of Failure” which found that “ratio analysis can be useful in the 

prediction of failure for at least five years before failure”. This finding spurred two key pieces of 

research, Altman (1968) and Beaver (1968), which in turn has led to a collection of papers 

referenced in almost any publication to do with the prediction of corporate failure (Edmister, 

1972; Deakin, 1972; Wilcox, 1973; Blum, 1974; Libby, 1975; Altman, et al., 1977; Ohlson, 1980; 

Odom & Sharda, 1990; Coats & Fant, 1993; Altman, et al., 1994; Wilson & Sharda, 1994). 

 

The evolution of corporate failure prediction initially began with statistically based Univariate 

Analysis, progressed to Multivariate and Multiple Discriminant Analysis, Probabilistic Theory, 

Logit Regression and Rough Sets Theory. Since then, the techniques typically used have begun 

to fall into Mitchell’s now widely-cited definition of machine learning (Mitchell, 1997, p. 2) by 

using techniques such as Artificial Neural Networks and Genetic Algorithms. This classification 

of techniques as “statistical” or “intelligent” is often used in the modern literature, such as Chen 

et al. (2011) who state “these models have progressed from statistical methods to the artificial 

intelligence (AI) approaches” and so this research’s structure reflects those commonly accepted 

classifications of techniques. 

 

While this thesis has roughly divided popular techniques into “statistical” or “intelligent”, it must 

be acknowledged that iterative “statistical” techniques could be argued to meet the definition of 
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machine learning, and that many “intelligent” techniques such as Support Vector Machines 

utilise many statistical methods. Nevertheless, the following sections are broken up into each of 

the major areas with the goal of maintaining a degree of structure while introducing research 

papers in a sequential manner. 

 

Within each section, the major dimensions of the research are discussed, including research 

type, data collection technique, sample, theory, findings, strengths and weaknesses. Each 

section will attempt to analyse, compare and critique the pieces of research within. 

 

2.1 Selection of Literature to Review 

Since it is not reasonable to review every piece of research that has been written about 

corporate failure, it is necessary to clearly identify the scope of the review, and outline the 

method for selecting which of the available sources should be examined. 

 

Papers on corporate failure prediction were selected on the following criteria: 

 Must be predicting corporate failure using a computational methodology 

 Must be published in an academic journal 

 Must be referenced by other peer-reviewed papers 

 

To build an initial population of papers on corporate failure prediction, searches were performed 

on the following online databases for articles: 

 ProQuest – http://www.proquest.com 

 EBSCOhost – http://ejournals.ebsco.com 

 ScienceDirect – http://www.sciencedirect.com 

 Wiley InterScience – http://www.interscience.wiley.com 
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These databases were chosen as they contained a higher number of related journals than other 

sources. 

 

From these searches, recent papers relevant to predicting corporate failure were selected and 

their references noted. From the list of references in each of those publications, other relevant 

articles were accessed, added to the review and their own references similarly followed. From 

this population of research, the “reverse citations” feature of the above databases were utilised. 

Research was selected for review based on its relevance to this thesis and perceived 

contribution to the body of knowledge. 

 

In an attempt to compare each paper, a number of criteria common across corporate failure 

prediction research have been specified and investigated. Those criteria are: 

 The definition of corporate failure used 

 The sample selection used 

 The dimension reduction method used 

 The variables ultimately chosen for the model 

 The research methodology 

 The key findings 

 

It should be noted the dimension reduction is typically two separate stages: feature selection 

plus feature extraction. However in the literature included in this study, these two stages are 

often executed using the one algorithm (such as Principal Component Analysis), and as such it 

is convenient to consider it one “stage” in the following literature review. 

 

This process resulted in the 34 highly relevant articles found in each of the below sections 

within this chapter. Of those articles, a pattern of the evolution of corporate failure prediction 

starts to emerge. The selected papers can be roughly divided into those from 1966 to 1989 that 
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focus on the use of statistical analysis, those that are generally from 1990 to 1999 that focus on 

Neural Networks and those that utilise more recent developments in the field of corporate failure 

prediction from 2000 onwards. This structure has been represented in the design of this chapter 

and each section.  

 

2.2 Prediction by Statistical Analysis 

Statistical analysis includes the use of univariate and multivariate statistical techniques, 

including Discriminant Analysis, as a means of predicting corporate failure. While Discriminant 

Analysis is by far the most popular predictive statistical technique in the field of statistical 

analysis, there are some exceptions that will also be analysed in this section. 

 

Discriminant Analysis is a statistical methodology that forms a (generally quadratic) equation 

that can be used to describe the separation of groups of data. In this case, the quadratic 

equation describes the separation between failed and non-failed corporations, and uses an 

array of input variables, such as financial ratios, to do so. Discriminant Analysis can be traced 

back to the early 1900’s, though it was Beaver’s paper (1966) that first applied it to the field of 

corporate failure prediction. Since then it has been used as the benchmark for all other 

techniques, such as in Altman et al.’s paper (1994), “Corporate distress diagnostic: 

Comparisons using linear Discriminant Analysis and Neural Networks (the Italian experience)”. 

 

Though Discriminant Analysis is a somewhat older methodology for calculating the probability of 

group membership, it has a number of benefits such as a simple discriminant function and 

extremely fast processing time. Compare this to the discriminant function that results from a 

fully trained multi-layered Neural Network (discussed in more detail later on), in which each 

neuron represents a generally sigmoidal function, the cross-connectivity of neurons creates a 

highly complex algorithmic result and it becomes clear that a simpler discriminant function is far 

more “explainable” when discussing group assignments. Furthermore, Discriminant Analysis 
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can be highly accurate. Altman’s exploratory paper (1968), “Financial Ratios, Discriminant 

Analysis and the Prediction of Corporate Bankruptcy” identified a discriminant function that was 

95% accurate in the dataset in the year prior to failure. 

 

Given the strengths and impact of statistical analysis, especially that of Discriminant Analysis, 

statistical analysis in general is a principal methodology in the field of corporate failure 

prediction. The following subsections examine each of the elements of the various papers 

based on statistical analysis, with the intention of critically analysing and comparing them, and 

also providing an overall insight into the evolution of the field in general. 

 

2.2.1 Definition of Corporate Failure 

Prior to any statistical analysis taking place, it is necessary for the research to establish which 

companies within the sample selection (see section 2.2.2 below) have failed, and which have 

not. In turn this can be used for pairing the samples and deducing an algorithm to predict failure. 

To establish which companies have failed and which have not, a definition of corporate failure 

needs to be established. The different definitions used within the relevant literature have been 

outlined in Table 2-1 below. 

 

Author Title Year Definition of Corporate Failure 
Beaver, W. Financial Ratios as Predictors of 

Failure 
1966 “’Failure’ is defined as the inability of a firm 

to pay its financial obligations as they 
mature. Operationally, a firm is said to have 
failed when any of the following events have 
occurred: bankruptcy, bond default, an 
overdrawn bank account, or non-payment of 
a preferred stock dividend.” 

Altman, E. 
 

Financial Ratios. Discriminant 
Analysis and the Prediction of 
Corporate Bankruptcy 

1968 “The bankrupt group (1) are manufacturers 
that filed a bankruptcy petition under 
Chapter X of the National Bankruptcy Act”. 

Beaver, W. Market Prices, Financial Ratios, 
and the Prediction of Failure 

1968 Same definition as Beaver (1966) used. 

Edmister, R. An Empirical Test of Financial 
Ratio Analysis for Small 
Business Failure Prediction 

1972 Businesses reporting a “loss loan” case to 
the Small Business Administration. 

Deakin, E. A Discriminant Analysis of 
Predictors of Business Failure 

1972 Firms that “experienced bankruptcy, 
insolvency, or were otherwise liquidated for 
the benefit of creditors.” 
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Author Title Year Definition of Corporate Failure 
Wilcox, J. A Prediction of Business Failure 

Using Accounting Data 
1973 Firms that had made a “court filing for 

Chapter X or XI bankruptcy”. 
Blum, M. Failing Company Discriminant 

Analysis 
1974 “The operational definition of failure is based 

on the criteria of International Shoe, that is, 
events signifying an inability to pay debts as 
they come due, entrance into a bankruptcy 
proceeding, or an explicit agreement with 
creditors to reduce debts.”  

Elam, R. The Effect of Lease Data on the 
Predictive Ability of Financial 
Ratios 

1975 “[F]irms are defined as bankrupt when they 
have undertaken at least one of the 
following actions: (1) filed for reorganization 
under Chapter XI of the Federal Bankruptcy 
Act (Chandler Act); (2) filed for 
reorganisation under Chapter X of the 
Chandler Act; (3) voted in a stockholders’ 
meeting to file either under Chapter X or 
Chapter XI; (4) reached agreement with 
creditors to reduce firm’s liabilities at a loss 
to the creditors.” 

Altman, et al. A new model to identify bankrupt 
risk of corporations 

1977 Defined as a company that has filed a 
“bankruptcy petition”. 

Ohlson, J. Financial Ratios and the 
Probabilistic Prediction of 
Bankruptcy 

1980 “The failed firms must have filed for 
bankruptcy in the sense of Chapter X, 
Chapter XI, or some other notification 
indicating bankruptcy proceedings.” 

Chen, K. & 
Shimerda, T. 

An Empirical Analysis of Useful 
Financial Ratios 

1981 Failure not explicitly defined. 

Barniv, R. & 
Raveh, A. 

Identifying financial distress: a 
new nonparametric approach 

1989 Definition of failure adopted from the study 
that is being used as the benchmark. 

Table 2-1 - Comparison of Definition of Corporate Failure for Statistical Analysis Methodologies 

 

The majority of this research has opted for a bankruptcy court filing definition, though including 

firms that are unable to meet loans that are due is often used. Note that the small sample sizes 

used (see section 2.2.2), allow the researchers to manually identify failed companies according 

to whatever criteria they see fit. 

 

While the differences in chosen definitions make comparing the research more difficult, it is 

certainly not surprising as different stakeholders will have different perspectives on when the 

company that they have an interest in should be considered “failed”. 

 

Regardless, assuming the resulting model is able to provide some kind of index describing the 

mathematical “closeness” to failure, even a model using a conflicting definition of failure should 
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be able to provide great insight into the overall risk of the firm for creditors or investors with 

different perspectives. 

 

2.2.2 Sample Selection 

In any quantitative research, sample selection is a key foundational aspect that impacts on the 

entire research process. A poor sample selection method can lead to results that are not 

indicative of the population. 

 

The sample selection techniques used by the statistical analysis research this literature review 

is critiquing is outlined in Table 2-2, below. 

 

Author Title Year Sample Selection Method 
Beaver, W. Financial Ratios as Predictors of 

Failure 
1966 Moody’s Industrial Manual identified 79 

failed firms, which were paired with 79 non-
failed firms with the “same industry and 
asset size”. 

Altman, E. 
 

Financial Ratios. Discriminant 
Analysis and the Prediction of 
Corporate Bankruptcy 

1968 33 manufacturing firms that filed a 
bankruptcy petition, paired with 33 non-
failed firms selected on a “stratified random 
basis”. 

Beaver, W. Market Prices, Financial Ratios, 
and the Prediction of Failure 

1968 Same sample as Beaver (1966) used. 

Edmister, R. An Empirical Test of Financial 
Ratio Analysis for Small 
Business Failure Prediction 

1972 42 small businesses selected from data 
provided by Small Business Administration 
and Robert Morris Associates using 
restrictive criteria, and 562 small businesses 
selected based on less restrictive criteria, 
ensuring an “equal number of loss and non-
loss cases”. 

Deakin, E. A Discriminant Analysis of 
Predictors of Business Failure 

1972 32 failed firms selected and matched 
against 32 non-failed firms from the same 
“industry classification, year of the financial 
information provided and asset size”. 

Wilcox, J. A Prediction of Business Failure 
Using Accounting Data 

1973 Moody’s Industrial Manual identified 52 
failed firms, which were paired with 52 non-
failed firms selected alphabetically within the 
same industry, asset size, and met data 
availability criteria. 

Blum, M. Failing Company Discriminant 
Analysis 

1974 “Paired sample of 115 failed and 115 
nonfailed firms” of unknown origin. 
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Table 2-2 - Comparison of Sample Selection Methods for Statistical Analysis Methodologies 

 

In all cases examined here, extreme case and stratified sampling has been used (Patton, 2002) 

to select as many failed firms as possible and select an approximately equal number of non-

failed firms. In most cases, paired sampling has been used, such as in Beaver (1966), but in a 

few cases independent samples have been used such as in Altman et al. (1977). 

 

Given the deviant nature of corporate failure, extreme case sampling is to be expected, and to 

ensure a lack of model bias towards non-failed firms stratified sampling is the obvious choice for 

selecting non-failed firms. The weakness in using this approach is that the frequency of non-

failed firms to failed firms is no longer representative of the population, disallowing many types 

Elam, R. The Effect of Lease Data on the 
Predictive Ability of Financial 
Ratios 

1975 48 failed firms that were listed as bankrupt 
by The Wall Street Journal Index and a Dun 
and Bradstreet supplied list of >$1M failures, 
met criteria such as having financial 
information available in Moody’s Industrial 
Manual as well as having leave data 
available, were matched with 48 non-failed 
firms selected from the Compustat Annual 
Industrial Tape and met criteria such as 
being in the same industry as well as having 
leave data available. 

Altman, et al. A new model to identify bankrupt 
risk of corporations 

1977 “Two samples of firms consist of 53 
bankrupt firms and a matched sample of 58 
non-bankrupt entities. The latter are 
matched to the failed group by industry and 
year of the data” of unknown origin. 

Ohlson, J. Financial Ratios and the 
Probabilistic Prediction of 
Bankruptcy 

1980 “The data were obtained … from 10-K 
financial statements as reported at the time”, 
with the “final sample [being] made up of 
105 bankrupt firms”, compared with “a 
sample of nonbankrupt firms obtained from 
the Compustat tape.”  

Chen, K. & 
Shimerda, T. 

An Empirical Analysis of Useful 
Financial Ratios 

1981 All 1053 firms from the COMPUSTAT tape 
during the specified time period. 

Barniv, R. & 
Raveh, A. 

Identifying financial distress: a 
new nonparametric approach 

1989 “The first sample includes 200 industrial 
firms and was employed by FAK (1985). 
They randomly selected 142 non-bankrupt 
manufacturing firms and retailing companies 
from the COMPUSTAT files as their control 
group, while the analysis subsample 
composed 58 bankrupt companies”. “The 
second sample includes 69 non-life 
insurance companies which failed during 
1975-1983. The solvent group consists of 69 
non-life insurers randomly selected from A. 
M. Best files.” 
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of statistical analysis. This does not necessarily translate to a weakness in the research itself, 

due to the comparative nature between failed and non-failed firms, but does make it difficult to 

apply such models to the greater non-paired population. 

 

2.2.3 Variable Selection & Dimension Reduction 

The process of dimension reduction in most statistical analysis techniques is highly resource 

intensive. Unless the researcher intends to perform their choice of predictive technique on every 

available combination of variables, it becomes necessary to reduce down the hundreds of 

variables, ratios and indicators to a small number of key parameters that can be used to 

formulate a classificatory model. 

 

There is a vast array of variable selection and dimension reduction methods shown in Table 

2-3. 
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Author Title Year Variable Selection Method 
Beaver, W. Financial Ratios as Predictors of 

Failure 
1966 30 financial ratios selected based on 

popularity in the literature, performance in 
previous studies, or “that the ratio be 
defined in terms of a ‘cash flow’ concept”. 

Altman, E. 
 

Financial Ratios. Discriminant 
Analysis and the Prediction of 
Corporate Bankruptcy 

1968 An array of 22 ratios selected by popularity, 
potential relevancy, “and a few ‘new’ ratios”. 
From this, 5 ratios were selected based on 
predictive performance. 

Beaver, W. Market Prices, Financial Ratios, 
and the Prediction of Failure 

1968 Annual rates of return computed for all firms 
included in the study. 

Edmister, R. An Empirical Test of Financial 
Ratio Analysis for Small 
Business Failure Prediction 

1972 Ratios “advocated by theorists” or found to 
be “significant predictors of business failure 
in previous empirical research”. 

Deakin, E. A Discriminant Analysis of 
Predictors of Business Failure 

1972 Replicated the Beaver (1966) study.  

Wilcox, J. A Prediction of Business Failure 
Using Accounting Data 

1973 Used net income, dividends, stock issued, 
cash, current assets, total assets, total 
liabilities, adjusted cash flow and adjusted 
cash position. 

Blum, M. Failing Company Discriminant 
Analysis 

1974 Selected ratios using a “cash-flow 
framework”, grouped into “liquidity, 
profitability, and variability”. 

Elam, R. The Effect of Lease Data on the 
Predictive Ability of Financial 
Ratios 

1975 Used ratios that are “commonly discussed in 
financial literature and textbooks”. 

Altman, et al. A new model to identify bankrupt 
risk of corporations 

1977 Variables “found in other studies to be 
helpful”, as well as “several ‘new’ measures 
that were thought to be potentially helpful as 
well”.  

Ohlson, J. Financial Ratios and the 
Probabilistic Prediction of 
Bankruptcy 

1980 “The criterion for choosing among different 
predictors was simplicity.” 

Chen, K. & 
Shimerda, T. 

An Empirical Analysis of Useful 
Financial Ratios 

1981 From “thirty-four financial ratios [that had] 
been found by researchers to be significant 
variables in the prediction of firm failure in 
recent studies”, principal component 
analysis was used to identify key variables. 

Barniv, R. & 
Raveh, A. 

Identifying financial distress: a 
new nonparametric approach 

1989 Variable selection method adopted from the 
study that is being used as the benchmark. 

Table 2-3 - Comparison of Variable Selection Methods for Statistical Analysis Methodologies 

 

In all cases, the initial ratio selection method was highly subjective, ranging from the 

researcher’s perception of popularity to ratios found in a proposed theoretical cash flow model. 

 

The importance of ratio selection is somewhat de-emphasised when developing a “proof of 

concept”, such as Beaver’s (1966; 1968) or Altman’s (1968) papers. In these instances the goal 

is simply to demonstrate the potential of the technique for corporate failure prediction. Fine 

tuning the model to ensure maximum predictive ability is not of great concern. However, by the 
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1970’s papers such as Elam’s paper (1975) were being published, which aimed to test the 

effect of lease data on the predictive model. Arguably there would be value in ensuring a good 

initial ratio selection technique has been used. By Barniv & Raveh’s (1989) paper, the standard 

of adopting variables that are identical to that used in a benchmark study had been set, and as 

will be discussed in the following chapters, in general, the benchmark study is often Beaver’s 

(1966) or Altman’s (1968) paper. 

  

Of particular interest is the paper of Chen & Shimerda (1981), which examined all the ratios 

used by various key pieces of research in the past, and empirically identifies the importance of 

these variables, making the broader statement that any single variable from each factor (such 

as liquidity, profitability etc.) tends to cover the majority of the available information. 

 

Some variables are arguably more popular than others in these studies. Table 2-4 below 

outlines the variables that were selected by each of the major research papers for inclusion in 

their statistical analysis. 

 

Author Title Year Variables
Beaver, W. Financial Ratios as 

Predictors of Failure 
1966 Cash flow to sales, cash flow to total assets, 

cash flow to net worth, cash flow to total debt, 
net income to sales, net income to total assets, 
net income to net worth, net income to total 
debt, current liabilities to total assets, long-term 
liabilities to total assets, current plus long-term 
liabilities to total assets, current plus long-term 
plus preferred stock to total assets, cash to total 
assets, quick assets to total assets, current 
assets to total assets, working capital to total 
assets, cash to current liabilities, quick assets to 
current liabilities, current assets to current 
liabilities, cash to sales, accounts receivable to 
sales, inventory to sales, quick assets to sales, 
current assets to sales, working capital to sales, 
net worth to sales, total assets to sales, cash to 
fund expenditures for operations, defensive 
assets to fund expenditures for operations, 
defensive assets minus current liabilities to fund 
expenditures for operations. 



2. Review of Predictive Modelling Literature 
 

 

Page 17 

Author Title Year Variables
Altman, E. 
 

Financial Ratios. 
Discriminant Analysis 
and the Prediction of 
Corporate Bankruptcy 

1968 Working capital to total assets, retained 
earnings to total assets, earnings before interest 
and taxes to total assets, market value equity to 
book value of total debt, sales to total assets. 

Beaver, W. Market Prices, Financial 
Ratios, and the 
Prediction of Failure 

1968 Cash dividend paid on security during previous 
period plus current price for security minus 
adjusted price for security during previous 
period to adjusted price for security during 
previous period, residual rate of return during 
previous period,  

Edmister, R. An Empirical Test of 
Financial Ratio Analysis 
for Small Business 
Failure Prediction 

1972 Current assets minus inventory to current 
liabilities, current assets to current liabilities, 
inventory to net working capital, net working 
capital to total assets, current assets to total 
debt, total debt to equity, fixed assets to equity, 
cash flow to current liabilities, current liabilities 
to equity, equity and long-term debt to fixed 
assets, inventory to sales, fixed assets to sales, 
total assets to sales, net working capital to 
sales, equity to sales, earnings before taxes to 
sales, earnings before taxes to total assets, 
earnings before taxes to equity, earnings before 
taxes plus depreciation to total debt. 

Deakin, E. A Discriminant Analysis 
of Predictors of Business 
Failure 

1972 Cash flow to total debt, net income to total 
assets, total debt to total assets, current assets 
to total assets, quick assets to total assets, 
working capital to total assets, cash to total 
assets, current assets to current liabilities, quick 
assets to current liabilities, cash to current 
liabilities, current assets to sales, quick assets 
to sales, working capital to sales, cash to sales. 

Wilcox, J. A Prediction of Business 
Failure Using Accounting 
Data 

1973 Net income, dividends, non-cash current assets, 
long-term assets, stock issued, total liabilities. 

Blum, M. Failing Company 
Discriminant Analysis 

1974 Cash plus notes receivable plus market 
securities plus sales to cost of goods sold minus 
depreciation plus selling and administrative 
expense plus interest, net quick assets to 
inventory, cash flow to total liabilities, market 
value to total liabilities, book value to total 
liabilities, rate of return to stockholders, 
standard deviation of net income, trend breaks 
for net income, slope for net income, standard 
deviation of net quick assets to inventory, trend 
breaks for net quick assets to inventory, slope 
for net quick assets to inventory. 



2. Review of Predictive Modelling Literature 
 

 

Page 18 

Author Title Year Variables
Elam, R. The Effect of Lease Data 

on the Predictive Ability 
of Financial Ratios 

1975 Cash to current liabilities, current assets to 
current liabilities, current assets minus 
inventories to current liabilities, cash flow to 
sales, cash flow to total assets, cash flow to net 
worth, cash flow to current liabilities, net worth 
to total liabilities, net worth to long-term 
liabilities, net worth to fixed assets, net 
operating profit to interest, sales to inventory, 
sales to accounts receivable, sales to working 
capital, sales to current assets minus 
inventories, sales to cash, net operating profit to 
sales, net profits to sales, sales to fixed assets, 
sales to total assets, sales to net worth, net 
income to net worth, net operating profit to total 
assets, net operating profit to total debt, current 
liabilities to total assets, long-term liabilities to 
current assets, current plus long-term liabilities 
to total assets, current plus long-term liabilities 
plus preferred stock to total assets. 

Altman, et al. A new model to identify 
bankrupt risk of 
corporations 

1977 Earnings before interest and taxes to total 
assets, net available for total capital to total 
capital, sales to total assets, sales to total 
capital, earnings before interest and tax to 
sales, net available for total capital to sales, log 
tangible assets, interest coverage, log interest 
coverage and working capital to long-term debt, 
fixed charge coverage, earnings to debt, 
earnings to 5 year mats, cash flow to fixed 
charges, cash flow to total debt, working capital 
to long-term debt, current assets to current 
liabilities, working capital to total assets, 
working capital to cash expenses, retained 
earnings to total assets, book equity to total 
capital, market value equity to total capital, 5 
year market value equity to total capital, 
standard error of estimate of earnings before 
interest and taxes to total assets (norm), 
earnings before interest and taxes drop, margin 
drop, capital lease to total assets, sales to fixed 
assets. 

Ohlson, J. Financial Ratios and the 
Probabilistic Prediction of 
Bankruptcy 

1980 Total assets to GNP price-level index, total 
liabilities to total assets, working capital to total 
assets, current liabilities to current assets, 
boolean test for total liabilities being greater 
than total assets, net income to total assets, 
funds provided by operations to total liabilities. 

Chen, K. & 
Shimerda, T. 

An Empirical Analysis of 
Useful Financial Ratios 

1981 Any single ratio “to represent a factor can 
account for most of the information provided by 
all the ratios of that factor.” “Still, the question of 
which ratio should represent a factor has yet to 
be resolved.” 
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Author Title Year Variables
Barniv, R. & 
Raveh, A. 

Identifying financial 
distress: a new 
nonparametric approach 

1989 For industrial companies: Net income to total 
assets, current assets to total assets, log of total 
assets, market value of equity to total 
capitalization, current assets to total assets, 
cash flow to total debt, quick assets to total 
assets, quick assets to total liabilities, earnings 
before interest and taxes to total assets, log of 
interest coverage. 
For insurance companies: Stability of the ratio 
of earnings to revenues, liability size 
decomposition measures, absolute value of the 
decomposition measures on the liability size. 

Table 2-4 - Comparison of Selected Variables for Statistical Analysis Methodologies 

 

There are many financial ratios in common between these research papers, however it is 

limiting that this consensus is generally built through subjective ratio choices rather than 

objective variable selection. 

 

2.2.4 Research Methodology 

While many of the papers found in this analysis have used Multiple Discriminant Analysis, it is 

apparent from Table 2-5 that many different research methodologies were used. 

 

Author Title Year Research Methodology
Beaver, W. Financial Ratios as 

Predictors of Failure 
1966 Beaver uses a dichotomous classification test as 

follows, “the data are arrayed (i.e., each ratio is 
arranged in ascending order). The array of a given 
ratio is visually inspected to find an optimal cutoff 
point–a point that will minimize the percent of 
incorrect predictions. If a firm’s ratio is below (or 
above, as in the case of the total debt to total-
assets ratio) the cutoff point, the firm is classified as 
failed. If the firm’s ratio is above (or below, for the 
total debt to total-assets ratio) the critical value, the 
firm is classified as nonfailed.” “Trial and error” was 
used to find the optimal cutoff points. 

Altman, E. 
 

Financial Ratios. 
Discriminant Analysis and 
the Prediction of Corporate 
Bankruptcy 

1968 Profiles the available variables using basic 
statistical tests, before “observation of the statistical 
significance of various alternative functions”, 
“evaluation of inter-correlations”, “observation of the 
predictive accuracy” and “judgement of the analyst” 
is used to develop a variable profile, and develop a 
discriminant function. 



2. Review of Predictive Modelling Literature 
 

 

Page 20 

Author Title Year Research Methodology
Beaver, W. Market Prices, Financial 

Ratios, and the Prediction 
of Failure 

1968 Beaver compares a cross-sectional analysis on the 
market prices with a cross-sectional analysis of 
ratios. A time-series analysis is then used, and the 
results from both are used to compare the 
predictive ability of market prices and financial 
ratios. 

Edmister, R. An Empirical Test of 
Financial Ratio Analysis for 
Small Business Failure 
Prediction 

1972 “Multiple discriminant analysis (MDA) is used to 
form a linear model which classifies individual 
cases based upon historic financial ratios.” “In this 
research a limitation is placed on variables entering 
a discriminant function through the normal step-
wise procedure in order to limit multicollinearity 
while systematically selecting variables.” 

Deakin, E. A Discriminant Analysis of 
Predictors of Business 
Failure 

1972 Deakin expands on Beaver’s (1966) research, but 
modifies the definition of failure somewhat. The 
research finds “linear combinations of the 14 ratios 
used by beaver” using MDA, and generates a 
“decision rule” that is tested on the selected firms. 

Wilcox, J. A Prediction of Business 
Failure Using Accounting 
Data 

1973 Expanding on earlier work, Wilcox outlines a 
theoretical framework for calculating the probability 
of a business failing. The results are used to 
generate scatter plots, on which regression 
analysis or Discriminant Analysis could be 
performed. The results are used to refine the 
theoretical framework and allow Wilcox to explore 
the theory of business failure. 

Blum, M. Failing Company 
Discriminant Analysis 

1974 The research uses a cash flow framework to 
identify financial ratios that will be used in the 
analysis. Blum uses Discriminant Analysis to 
develop the Failing Company Model, before 
comparing its accuracy with a non-ratio model, 
market anticipation, Altman’s multivariate analysis, 
and Beaver’s univariate model.  

Elam, R. The Effect of Lease Data 
on the Predictive Ability of 
Financial Ratios 

1975 The paper outlines the methods used to calculate 
the “amounts to be paid for leases during each 
year”, before performing some univariate statistical 
analysis on the data. Elam uses single-ratio, multi-
ratio predictive models and Multiple Discriminant 
Analysis to test the effects of adding lease data. 

Altman et al. A new model to identify 
bankrupt risk of 
corporations 

1977 “Bankruptcy classification is attempted via the use 
of a multivariate statistical technique known as 
discriminant analysis. In this study, the results 
using both linear and quadratic structures are 
analyzed.” Altman et al. used “forward stepwise 
discriminant analysis”, “backward stepwise 
discriminant analysis”, “scaled vector test”, 
“separation of means test”, “conditional deletion 
test”, and the “univariate F-statistic” to “reduce [the] 
variable set to an acceptable number. 

Ohlson, J. Financial Ratios and the 
Probabilistic Prediction of 
Bankruptcy 

1980 Ohlson develops a probabilistic model of 
bankruptcy and then performs some analysis on 
the initially selected ratios. “Three sets of estimates 
were computed for the logit model”, the models are 
compared and the results are used to draw 
conclusions on the performance of each model. 
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Author Title Year Research Methodology
Chen, K. & 
Shimerda, 
T. 

An Empirical Analysis of 
Useful Financial Ratios 

1981 A number of “factors” are identified (e.g. liquidity, 
profitability), and each of the factors are discussed. 
Principal Component Analysis is used on the ratios 
within each of the factors, and conclusions 
regarding which ratios should be used are drawn.  

Barniv, R. & 
Raveh, A. 

Identifying financial 
distress: a new 
nonparametric approach 

1989 The “classical approach to discriminant analysis is 
based on choosing linear combinations of the 
variables that will maximize the ratio of the 
between-groups (1 and 2) to within-group 
variances.” “The method proposed in this paper is 
based on a different ‘separation’ rule, namely a 
different quantity to be maximised. We suggest 
using a linear combination of the observations, and 
choosing the coefficients so that the scores Z1, 
given to group 1 will be greater than (or less than) 
the scores Z2, of group 2. The method searches for 
an optimal linear combination which yields 
minimum overlapping between the two groups of 
scores.” 

Table 2-5 - Comparison of Research Methods for Statistical Analysis Methodologies 

 

While the various research papers tend to seek the answers to varying questions – such as 

Elam (1975) examining the effect of lease data, compared with earlier papers such as Altman 

(1968) which tend to develop a proof of concept of corporate failure prediction – there are some 

aspects of the research that are more directly comparable between papers. For example, while 

Discriminant Analysis is by far the most popular statistical technique used in this field, there are 

exceptions such as Beaver (1966), but even these exceptions follow the basic premise of MDA 

with slightly different statistical processes. For example, Barniv & Ravea (1989) use a technique 

that is based on MDA, but they modify the separation rule to minimise overlap between 

distressed and non-distressed firms. 

 

Of particular note is the techniques used for eliminating collinear variables. The stepwise 

procedure appears to be the most popular technique, though backwards stepwise and the F-

statistic were also used, especially in Altman et al. (1977). These techniques, being an objective 

means for variable elimination, represented an opportunity to strengthen the research as a 

whole. Unfortunately, these techniques were only used on the limited list of subjectively 

selected variables, rather than on a broader selection of available factors. 
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2.2.5 Key Findings 

Each of the papers examined concluded their research by outlining the findings that the 

researchers felt is of most importance. It is these key findings that are used to develop the 

academic knowledge in the field, and so they are outlined below in Table 2-6. 

 

Author Title Year Key Findings
Beaver, W. Financial Ratios as 

Predictors of Failure 
1966  “That the ratio can convey useful information in 

determining solvency for at least five years 
before failure.” 

 “It is slightly more risky for a firm to have a very 
high cash-flow to total-debt ratio than to have a 
lower one in a range where the bulk of the 
nonfailed firms appear.” 

 “The profile analysis indicated that the mean 
current ratio of the failed firms was above the 
magic ‘2:1’ standard in all five years.” “The 
evidence hints that failed firms may appear to 
window dress.” 

 “Attempts to window dress may tend to improve 
the predictive power of ratios rather than impair it, 
as is often suggested.” 

 “Not all ratios predict equally well. The cash-flow 
to total-debt ratio has excellent discriminatory 
power throughout the five-year period. However, 
the predictive power of the liquid asset ratios is 
much weaker.” 

 “In the first year before failure the error is only 13 
per cent, while in the fifth the error percentage is 
22” 

Altman, E. 
 

Financial Ratios. 
Discriminant Analysis and 
the Prediction of Corporate 
Bankruptcy 

1968  “Based on the above results it is suggested that 
the bankruptcy prediction model is an accurate 
forecaster of failure up to two years prior to 
bankruptcy and that the accuracy diminishes 
substantially as the lead time increases.” 

 “All of the observed ratios show a deteriorating 
trend as bankruptcy approached”, “that the most 
serious change in the majority of these ratios 
occurred between the third and second years 
prior to bankruptcy.” 

 “The discriminant-ratio model proved to be 
extremely accurate in predicting bankruptcy 
correctly in 94 per cent of the initial sample with 
95 per cent of all firms in the bankrupt and non-
bankrupt groups assigned to their actual group 
classification.” 
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Author Title Year Key Findings
Beaver, W. Market Prices, Financial 

Ratios, and the Prediction 
of Failure 

1968  “In both analyses, the conclusion was the same 
as that of the initial test–the financial ratio had 
superior discriminatory power.” 

 “The lack of perfect association between the 
forecasts indicates that investors either respond 
to nonratio sources of information, they did not 
use the ratios as they are used here, or both.” 

 “The findings of the cross-sectional and time 
series analysis are uniformly consistent with 
respect to the two major contentions: (1) 
Investors recognize and adjust to the new 
solvency positions of failing firms. (2) That price 
changes of the common stocks act as if investors 
rely upon ratios as a basis for their assessments, 
and impound the ratio information into the market 
prices.” 

 “In every instance, the ratio has a lower error 
[min 13%] than either of the return variables [min 
22%]”. 

Edmister, R. An Empirical Test of 
Financial Ratio Analysis for 
Small Business Failure 
Prediction 

1972  “The research yields results that generally affirm 
the advocates’ belief in the value of ratio analysis 
and that lend some support for numerical credit 
scoring.” 

 “The seven-variable function correctly 
discriminates in the 39 out of 42 cases (93 
percent) when the decision rule is to predict 
failure if z < .520”. 

 “Dividing a ratio by its respective industry 
average is show to be a desirable technique.” 

 “Classifying ratios by quartile is a particularly 
valuable tool”. 

 “The predictive power of ratios is cumulative. No 
single ratio predicts nearly as well as a small 
group, and some ratios that are not significant 
predictors by themselves serve to improve 
discriminant ability when added to a function.” 

 “Reliable functions are most likely formed with a 
set of independent predictors.” 

 “The small business function fails to discriminate 
when only one statement is available.” 

Deakin, E. A Discriminant Analysis of 
Predictors of Business 
Failure 

1972  “Error rates of 22%, 6%, 12%, 23%, and 15% 
were observed for each of the five years prior to 
failure.” 

 “The deterioration [of predictive accuracy] of the 
first year is rather severe and cannot be 
explained by the presence of any unusual events 
peculiar to the sample used.” 

 “The application of statistical techniques, 
particularly discriminant analysis, can be used to 
predict business failure from accounting data as 
far as three years in advance with a fairly high 
accuracy.” 

Wilcox, J. A Prediction of Business 
Failure Using Accounting 
Data 

1973  “The statistics x, N, and (1-x/1+x)N, derived from 
an explicit stochastic cash flow model of the 
firm’s financial progress, yielded an improvement 
in risk-ranking power over the various financial 
ratios tested by Beaver.” 
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Author Title Year Key Findings
Blum, M. Failing Company 

Discriminant Analysis 
1974  “Predictive accuracy of the Failing Company 

Model is 93-95 percent at the first year before 
failure, 80 percent at the second year, and 70 
percent at the third, fourth and fifth years before 
failure.” 

 “The cash flow to total debt ratio, found to be the 
best predictor by Beaver’s research, received 
generally high rankings.” 

 “In comparison with other studies of business 
failure, the Failing Company Model was 
demonstrated to be more reliable than a reported 
multivariate model. However, its accuracy was 
only approximately that of the leading univariate 
study to date.” 

 “Inventory declined rapidly for failing companies, 
which shows that, in general, firms do not seem 
to fail for reasons of excess accumulation of 
inventory, at least as shown by annual financial 
reports.” 

 “Total liabilities of nonfailed firms increased more 
steadily than those of failed firms, indicating that 
debt was a usual way for nonfailing firms to 
finance growth.” 

Elam, R. The Effect of Lease Data 
on the Predictive Ability of 
Financial Ratios 

1975  “The conclusion indicated by the single-ratio 
research is that the inclusion of lease data does 
not appear to improve the predictive power of 
individual ratios for any of the first five years 
before bankruptcy.” 

 “Only one attempt of the fourteen indicated that 
lease data significant improved the model’s 
predictive power. Based on this evidence it 
appears impossible to conclude that lease data 
improve the predictive power of multiple 
discriminant models.” 

Altman, et 
al. 

A new model to identify 
bankrupt risk of 
corporations 

1977  “The ZETA model for assessing bankruptcy risk 
of corporations developed in this paper 
demonstrates significantly improved accuracy 
over an existing failure classification model and, 
perhaps more importantly, is based on data most 
relevant to current conditions.” 

 “The model’s bankruptcy classification accuracy 
ranges from over 96 (93% holdout) percent one 
period prior to bankruptcy to 70% five annual 
reporting periods prior.” 

Ohlson, J. Financial Ratios and the 
Probabilistic Prediction of 
Bankruptcy 

1980  “Both sets of variables [financial state and 
performance] contribute significantly and 
independently of each other” 

 “Size appears as an important predictor” 
 “Misclassified bankrupt firms seem to lack any 

‘warning signals’ of impeding bankruptcy” 
 “Significant improvement probably requires 

additional predictors.” 
 The statistic "Percent Correctly Predicted"' equals 

96.12 percent; it is tabulated on the basis of a 
cutoff point of .5.” 
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Author Title Year Key Findings
Chen, K. & 
Shimerda, 
T. 

An Empirical Analysis of 
Useful Financial Ratios 

1981  “Thirty-four financial ratios have been found by 
researchers to be significant variables in the 
prediction of firm failure in recent studies.” 

 “[T]he financial ratios investigated can be 
classified by a substantially reduced number of 
factors”. 

 “[T]he selection of one ratio to represent a factor 
can account for most of the information provided 
by all the ratios of that factor.” 

Barniv, R. & 
Raveh, A. 

Identifying financial 
distress: a new 
nonparametric approach 

1989  “It is demonstrated that the [nonparametric] 
models slightly outperform [8% error rate] the 
three other models for almost all costs and risks 
three years prior to the event” 

 “The [nonparametric] models substantially 
outperform the [Discriminant Analysis] and 
logit/probit models in terms of validation results.” 

Table 2-6 - Comparison of Key Findings for Statistical Analysis Methodologies 

 

Perhaps the most interesting comparison is the startlingly different success rates experienced 

by each of the predictive models. While each has used different datasets, different ratios, 

different pre-processing and different statistical methodologies, it highlights the fact that this 

classification technique, as with any other, is highly dependent on the data provided to make 

accurate classifications. 

 

It is worthwhile to note that Deakin (1972) has used the smallest sample size. Furthermore, 

Deakin’s research has used organisations across multiple industries while other models have 

restricted their larger samples to a single industry. Deakin (1972) has mostly replicated the 

methodology of the Beaver (1966) study, and as a result has not modified the choice of 

variables. 

 

The research analysed is consistent in many of the conclusions drawn out. For example: 

 Financial ratios are generally an effective predictive indicator. 

 Financial analysis, and Multiple Discriminant analysis especially, is a generally effective 

predictive methodology. 
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 A larger set of financial variables increases the predictive power of the model, except 

where the variables are highly correlated. 

 Ratios that describe cash and liabilities tend to be of greater predictive power. 

 

2.2.6 Conclusion 

While the research in this area is generally high quality and rigorous, the subjective selection of 

financial data, subjective choice of firms to analyse and small sample sizes indicate that there 

are still a number of opportunities to further develop models using a statistical methodology. For 

example, Altman et al. (1977) developed the “ZETA” model, which is still widely used in both 

research and practice even to this day, yet the ZETA model suffers from some limitations such 

as subjectively choosing financial variables to consider in the model. 

 

2.3 Prediction by Artificial Neural Networks 

By the late 1980’s, Artificial Neural Networks were the popular choice for bankruptcy prediction. 

The Backpropagation Learning Algorithm (LeCun, 1985; Parker, 1985) quickly became the de-

facto methodology, and a number of Neural Network journals had been founded. By the early 

1990’s, all commonly referenced papers in the field of corporate failure prediction were using 

Neural Networks of one form or another, and they continue to be used today. 

 

The principal behind Artificial Neural Networks is the modelling of a highly simplified version of 

the organic brain. Neurons connected by synapses that activate when sufficient input is 

received from other neurons, are used to model the brain’s decision-making processes. A 

“learning algorithm” that modifies the weights of the connecting synapses is used to model the 

brain’s natural learning processes which strengthen and weaken synapses as they are used. 

 

While Neural Networks are one of many types of intelligent techniques, the technique 

represents one of the most diverse and popular areas within intelligent computing. There are 
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many different network structures available to a researcher, in combination with many different 

learning algorithms. Further still, Neural Networks can be combined with many other statistical 

and intelligent techniques to address weaknesses and capitalise on other techniques’ strengths. 

 

Neural Networks have a number of distinct advantages over the statistical methodologies used 

in the papers analysed earlier in this thesis, such as group memberships not needing to be 

linearly separable, the ease of incorporating a larger number of input variables, and the ease of 

building a highly accurate model on both in-sample and out-of-sample data. The popularity of 

Neural Networks in corporate failure prediction is certainly not surprising. 

 

Neural Networks, however, are limited in their “explainability”. Even in the very smallest of 

networks the resulting output function from a Neural Network is highly complex due to the many 

cross-connections between neurons. This limits the network’s usefulness in being able to justify 

its prediction to a human, no matter how accurate that prediction might be. Furthermore Neural 

Networks that are too simple can be unable to sufficiently model the data, while networks that 

are too complex can become so specialised in the prediction of the dataset on which they were 

trained that they become unable to provide reasonable accuracy on a set of data that they have 

not previously been exposed to, a condition known as “over-fitting” (Fine, 1999, p. 231), though 

there are techniques that can be used to address this. The Neural Networks algorithm is 

explained in more detail in section 4.2. 

 

Even with these limitations, Neural Networks represent a major step forward in the field of 

corporate failure prediction. The following subsections will look at each of the elements of 

notable papers that utilise Neural Networks to predict business failure, in order to compare and 

contrast them. 
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2.3.1 Definition of Corporate Failure 

Predictive Neural Networks are used in a “supervised” manner, that is, the network is trained on 

data where the correct answers have been provided to give the network an opportunity to learn 

relationships between inputs and outputs. In order to do so, the researcher needs to establish 

which firms within the training data should be classified as failed or non-failed. Like statistical 

analysis, a definition of failure is required. Table 2-7 below outlines the different definitions used 

within the literature. 

 

Author Title Year Definition of Corporate Failure 
Odom, M. & 
Sharda, R. 

A neural network model for 
bankruptcy prediction 

1990 When “the firms declared bankruptcy” 

Raghupathi, W., 
Schleade, L. & 
Raju, B. 

A neural network approach to 
bankruptcy prediction 

1991 Adopted from the Wall Street Journal Index, 
and companies that are deleted from 
Moody’s Industrial Manual. 

Coats, P. & 
Fant, L. 

Recognising financial distress 
patterns using a neural network 
tool 

1993 Opted to identify “financially troubled firms”, 
using “auditors’ reports rather than the 
traditional bankruptcy filings”. 

Altman, E., 
Marco, G. & 
Varetto, F. 

Corporate distress diagnostic: 
Comparisons using linear 
discriminant analysis and neural 
networks (the Italian experience) 

1994 “(1) some form of bankruptcy proceeding, 
(2) were wound up in temporary 
receivership or (3) had stated that they were 
in dire straits with regard to their payments 
to the banks.” 

Wilson, R. & 
Sharda, R. 

Bankruptcy prediction using 
neural networks 

1994 Wilson & Sharda used “bankruptcy”, but did 
not specifically define it. They did use 
Moody’s Industrial Manual as a data source, 
which may indicate the identification of 
deleted companies within it, as with other 
similar studies. 

Fanning, K & 
Cogger, K. 

A comparative analysis of 
artificial neural networks using 
financial distress prediction 

1994 “[F]iling for Chapter X or XI bankruptcy”. 

Boritz, J. & 
Kennedy, D. 

Effectiveness of neural network 
types for prediction of business 
failure 

1995 “The sample consisted of 171 companies 
which filed for bankruptcy between 1971 
and 1984 inclusive.” 

Lee, K., Han, I. 
& Kwon, Y. 

Hybrid neural network models 
for bankruptcy predictions 

1996 “We define the state of bankruptcy as 
follows: 1. The firms which applied for, have 
started, or are under the process of 
corporate clearance. 2. The firms which quit 
or closed business. 3. The firms which have 
had losses for the consecutive three years 
and are currently under legal control. 4. The 
firms which reported the withdrawal of listing 
or terminated to be listed by the Korea Stock 
Exchange.” 

Yang, Z., Platt, 
M. & Platt, H. 

Probabilistic Neural Networks in 
Bankruptcy Prediction 

1999 Does not explicitly define bankruptcy, but it 
is implied that the definition is the same as 
in “Platt, Platt, and Pedersen’s (1994)” 
study, as the data from this study is used. 
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Author Title Year Definition of Corporate Failure 
Lee, K., Booth, 
D. & Alam, P. 

A comparison of supervised and 
unsupervised neural networks in 
predicting bankruptcy of Korean 
firms 

2005 “Korean firms that filed for bankruptcy during 
1995–1998” 

Table 2-7 - Comparison of Definition of Corporate Failure for Neural Network Methodologies 

 

Much like in section 2.2, the definitions between papers vary somewhat. Again the majority of 

papers have adopted the legal definition of bankruptcy, while some have chosen to classify 

distress rather than collapse. One paper of particular interest is that of Coats & Fant (1993) 

which relied on auditor’s reports, therefore their intelligent system was not predicting financial 

distress so much as predicting what auditors classify as financial distress – correct or otherwise. 

 

This review now focuses its attention on the sample selection used within the Neural Network 

methodology. 

 

2.3.2 Sample Selection 

The following table outlines the different sampling selection techniques used by papers that 

focused on Neural Networks as a model for predicting corporate failure. 

 

Author Title Year Sample Selection Method 
Odom, M. & 
Sharda, R. 

A neural network model for 
bankruptcy prediction 

1990 “The sample, obtained from Moody's 
Industrial Manuals, consisted of a total of 
129 firms, 65 of which went bankrupt during 
the period and 64 nonbankrupt firms 
matched on industry and year.” 

Raghupathi, W., 
Schleade, L. & 
Raju, B. 

A neural network approach to 
bankruptcy prediction 

1991 51 bankrupt firms “chosen from listings in 
the Wall Street Journal Index for the years 
1980-1988 and from a list of deleted 
companies in the Moody’s Industrial 
Manual”, paired with 51 non-bankrupt firms 
from “the same industry and approximately 
the same asset size”, selected from “the 
same sources”. 

Coats, P. & 
Fant, L. 

Recognising financial distress 
patterns using a neural network 
tool 

1993 94 “distressed” firms “collected from the 
Standard and Poor’s COMPUSTAT financial 
database covering the period 1970-1989”, 
and listed in the “Industrial Research File”. 
188 “viable” firms selected “from the Full 
Coverage File”. “These firms were matched 
2-to-1”. 
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Altman, E., 
Marco, G. & 
Varetto, F. 

Corporate distress diagnostic: 
Comparisons using linear 
discriminant analysis and neural 
networks (the Italian experience) 

1994 “404 each of healthy, unsound and 
vulnerable firms. A second independent 
sample of 453 companies was used, 151 of 
each type, with data limited to the last year 
prior to bankruptcy. A final sample, 
independent of the other two, was analysed 
comprising 900 healthy and 900 vulnerable 
companies for three years of historical 
series.” 

Wilson, R. & 
Sharda, R. 

Bankruptcy prediction using 
neural networks 

1994 “The sample of firms for which these ratios 
were obtained consisted of firms that either 
were in operation or went bankrupt between 
1975 and 1982. The sample, obtained from 
Moody’s Industrial Manuals, consisted of a 
total of 129 firms, 65 of which went bankrupt 
during the period and 65 non bankrupt firms 
matched on industry and year.” “We created 
three proportions (or base rates) for each of 
the training and testing set compositions. 
The first factor level (or base rate) was a 
50/50 proportion of bankrupt to non 
bankrupt cases, the second level was a 
80/20 proportion (80% non-bankrupt, 20% 
bankrupt), and the third factor level, an 
approximate 90/10 proportion”. 

Fanning, K & 
Cogger, K. 

A comparative analysis of 
artificial neural networks using 
financial distress prediction 

1994 “[T]he author tested this theory on a sample 
of matched pairs of 52 failed firms with 52 
non-failed firms from one to five years prior 
to failure. Firms were matched in terms of 
size and industry characteristics.” 

Boritz, J. & 
Kennedy, D. 

Effectiveness of neural network 
types for prediction of business 
failure 

1995 “The sample of bankrupt companies used 
for the present study was obtained from 
Boritz et al. 1995 which was based on the 
dataset developed by Kennedy and Shaw 
(1991). The sample consisted of 171 
companies which filed for bankruptcy 
between 1971 and 1984 inclusive.” “The 
non-bankrupt companies used in the 
present study also were obtained from 
Boritz et al., 1995. The sample was 
collected from the Compustat II Database 
and consisted of 6,153 non-bankrupt 
companies selected from the same time 
period as the bankrupt companies.” 

Lee, K., Han, I. 
& Kwon, Y. 

Hybrid neural network models 
for bankruptcy predictions 

1996 “Bankruptcy cases reported in Korea from 
1979 through 1992. We collected a sample 
of 83 bankrupt firms”, “listed in the Korea 
Stock Exchange”. “A failed firm was 
matched with a nonfailed firm in terms of (1) 
asset size, (2) capital size, (3) number of 
employees, and (4) age.” 

Yang, Z., Platt, 
M. & Platt, H. 

Probabilistic Neural Networks in 
Bankruptcy Prediction 

1999 “Platt, Platt, and Pederson (1994) built an 
early warning bankruptcy model for the U.S. 
oil and gas industry. Their data for 122 
companies for the period 1984 to 1989 are 
used in this study.” 
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Table 2-8 - Comparison of Sample Selection Methods for Neural Network Methodologies 

 

It can be seen that the sample selection techniques have remained fairly constant since the first 

few corporate failure prediction papers that utilised statistical analysis. The most interesting 

difference is the number of papers that used different sample sizes for failed and non-failed 

firms, presumably due to Neural Networks ability to deal with unpaired data, unlike many 

statistical techniques. 

 

The size of the samples is also generally larger in comparison to previous research, possibly 

due to the increasing availability of data on failed firms between 1990 and 2000, though still 

surprisingly small especially for more recent research. For example, Lee et al. (2005) used just 

168 firms. 

 

The following section will examine the dimension reduction techniques used. 

 

2.3.3 Variable Selection & Dimension Reduction 

Author Title Year Variable Selection Method 
Odom, M. & 
Sharda, R. 

A neural network model for 
bankruptcy prediction 

1990 “We have chosen to use the same financial 
ratios that Altman used in his 1968 study.” 

Raghupathi, W., 
Schleade, L. & 
Raju, B. 

A neural network approach to 
bankruptcy prediction 

1991 “Thirteen financial ratios used”, “selected 
from ratios proven popular (and useful) in 
earlier research [Harris (1989)] on 
bankruptcy prediction”. 

Coats, P. & 
Fant, L. 

Recognising financial distress 
patterns using a neural network 
tool 

1993 “The financial information we chose to 
describe each firm is the set of five ratios 
from Altman’s Z score model”.  

Lee, K., Booth, 
D. & Alam, P. 

A comparison of supervised and 
unsupervised neural networks in 
predicting bankruptcy of Korean 
firms 

2005 “Each failed firm is matched with a non-
failed firm in terms of (1) asset size and (2) 
a two-digit Standard Industrial Classification 
(SIC) code as control measures. The asset 
size of a non-failed firm is matched with that 
of a failed firm using the 3-year period prior 
to bankruptcy filings. As a result, we have a 
matched sample of 168 firms, 84 failed firms 
and 84 non-failed firms.” 
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Author Title Year Variable Selection Method 
Altman, E., 
Marco, G. & 
Varetto, F. 

Corporate distress diagnostic: 
Comparisons using linear 
discriminant analysis and neural 
networks (the Italian experience) 

1994 The best network in the first series of tests 
contained “ten financial ratios: four relative 
to the firms’ financial structure and 
indebtedness, two to liquidity, and four 
representative of company profitability and 
internal-financing”. The second series of 
networks used “fifteen business ratios; these 
are a broader set than the one in the ten-
ratio network described in the previous 
section.” The third series of networks used 
the “ones used in discriminant functions”. 
The final series of networks used “ratios that 
are representative of [each respective] 
characteristic”. 

Wilson, R. & 
Sharda, R. 

Bankruptcy prediction using 
neural networks 

1994 “We used the same financial ratios as 
Altman [1].” 

Fanning, K & 
Cogger, K. 

A comparative analysis of 
artificial neural networks using 
financial distress prediction 

1994 “To fairly compare all methods, only the 
three variables, X, N, T, can be used” (note 
these are defined in the following 
subsection). 

Boritz, J. & 
Kennedy, D. 

Effectiveness of neural network 
types for prediction of business 
failure 

1995 Variables used by Altman (1968) and 
Ohlson (1980) were used both separately 
and combined to compare the results from 
these studies. 

Lee, K., Han, I. 
& Kwon, Y. 

Hybrid neural network models 
for bankruptcy predictions 

1996 “A MDA-assisted neural network is a neural 
network model operating with input variables 
selected by MDA method. Similarly, an ID3-
assisted neural network indicates a neural 
network model operating with input variables 
selected by the ID3 method. A SOFM-
assisted neural network is a neural network 
model combining a supervised neural 
network model with an unsupervised neural 
network model. We use a SOFM model as 
preprocessing mechanism.” 

Yang, Z., Platt, 
M. & Platt, H. 

Probabilistic Neural Networks in 
Bankruptcy Prediction 

1999 Used the ratios used in “Platt, Platt, and 
Pederson (1994)”. 

Lee, K., Booth, 
D. & Alam, P. 

A comparison of supervised and 
unsupervised neural networks in 
predicting bankruptcy of Korean 
firms 

2005 “Each firm is described by Altman’s five 
variables since the prediction capabilities of 
these ratios are well documented in the 
previous literature” 

Table 2-9 - Comparison of Variable Selection Methods for Neural Network Methodologies 

 

Even though the field of corporate failure is maturing by this stage, the variable selection 

techniques have still remained highly subjective, with Altman (1968) becoming the de-facto 

choice across multiple datasets. In many cases, the same variables have been used as in prior 

(statistical) research, as a means of comparing the two techniques. 
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The most notable paper in this respect is Lee et al. (1996), which used Multiple Discriminant 

Analysis, ID3 (a decision-tree algorithm), and Self Organising Feature Map assisted techniques 

to select variables. Moreover, Lee et al. (1996) found that more objective variable selection 

techniques may improve the performance of other researcher’s models. 

 

The following table notes the variables used within each piece of analysed research. 

 

Author Title Year Variables
Odom, M. & 
Sharda, R. 

A neural network model for 
bankruptcy prediction 

1990 Working Capital/Total Assets, Retained 
Earnings/Total Assets, Earnings before 
Interest and Taxes/Total Assets, Market 
Value of Equity/Total Debt, Sales/Total 
Assets 

Raghupathi, W., 
Schleade, L. & 
Raju, B. 

A neural network approach to 
bankruptcy prediction 

1991 Current assets to current liabilities, cash 
plus short term investments plus net 
receivables to current liabilities, income from 
operations plus depreciation plus depletion 
plus amortization to current liabilities plus 
long-term debt, current liabilities plus long-
term debt to total assets, current assets less 
current liabilities to total assets, income from 
operations to total assets, income from 
operations plus taxes plus interest expense 
to total assets, net sales to total assets, 
retained earnings to total assets, current 
assets to net sales, current assets less 
current liabilities to total sales, current 
assets to total assets, cash plus short-term 
investments to total assets. 

Coats, P. & 
Fant, L. 

Recognising financial distress 
patterns using a neural network 
tool 

1993 Working capital to total assets, retained 
earnings to total assets, earnings before 
interest and taxes to total assets, market 
value of equity to book value of total debt, 
sales to total assets. 

Altman, E., 
Marco, G. & 
Varetto, F. 

Corporate distress diagnostic: 
Comparisons using linear 
discriminant analysis and neural 
networks (the Italian experience) 

1994 Variables used not explicitly specified. 

Wilson, R. & 
Sharda, R. 

Bankruptcy prediction using 
neural networks 

1994 Working capital to total assets, retained 
earnings to total assets, earnings before 
interest and taxes to total assets, market 
value of equity to total debt, sales to total 
assets. 

Fanning, K & 
Cogger, K. 

A comparative analysis of 
artificial neural networks using 
financial distress prediction 

1994 The mean adjusted cash flow divided by its 
standard deviation, the firm's adjusted cash 
position divided by its standard deviation. 
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Table 2-10 - Comparison of Selected Variables for Neural Network Methodologies 

 

This thesis will now briefly discuss the research methodologies used by papers using the Neural 

Network approach. 

 

2.3.4 Research Methodology 

Author Title Year Research Methodology 
Odom, M. & 
Sharda, R. 

A neural network model for 
bankruptcy prediction 

1990 Compared discriminate analysis (SAS 
DISCRIM) with a 5-node hidden layer using 
the back propagation learning algorithm. 

Raghupathi, W., 
Schleade, L. & 
Raju, B. 

A neural network approach to 
bankruptcy prediction 

1991 Normalized the input variables, applied the 
“backpropagation algorithm” to half of the 
sample selection, using trial and error to 
determine the optimum combination of 
hidden layers and hidden nodes.” 

Boritz, J. & 
Kennedy, D. 

Effectiveness of neural network 
types for prediction of business 
failure 

1995 Working capital to total assets, retained 
earnings to total assets, earnings before 
interest and taxes to total assets, market 
value of equity to total debt, sales to total 
assets, total assets to GNP price-level 
index, total liabilities to total assets, working 
capital to total assets, current liabilities to 
current assets, 1 if total liabilities > total 
assets, net income to total assets, funds 
provided by operations to total liabilities, 1 if 
net income negative for last two years, 
change in net income, 1 if listed on 
exchange. 

Lee, K., Han, I. 
& Kwon, Y. 

Hybrid neural network models 
for bankruptcy predictions 

1996 “For Group 1, 10 financial variables were 
selected as important input variables for 
predicting bankruptcy. Similarly, 18 and 17 
financial variables were chosen for Group II 
and II, respectively.” “The number of 
financial variables chosen by ID3 is 7 for 
Group I”, “7 and 9 financial variables were 
selected by using ID3 for Group II and III, 
respectively.”  

Yang, Z., Platt, 
M. & Platt, H. 

Probabilistic Neural Networks in 
Bankruptcy Prediction 

1999 Net cash flow to total assets, total debt to 
total assets, exploration expenses to total 
reserves, current liabilities to total debt, and 
the trend in total reserves. 

Lee, K., Booth, 
D. & Alam, P. 

A comparison of supervised and 
unsupervised neural networks in 
predicting bankruptcy of Korean 
firms 

2005 Working capital to total assets, retained 
earnings to total assets, earnings before 
interest and taxes to total assets, market 
value of equity to book value of total debt, 
sales to total assets. 
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Author Title Year Research Methodology 
Coats, P. & 
Fant, L. 

Recognising financial distress 
patterns using a neural network 
tool 

1993 Applied “a learning paradigm called 
‘Cascade-Correlation’ (or ‘Cascor’)”. Used 
“four models [to] represent four different 
lead times, i.e., the year for which distressful 
conditions in a firm are reported by auditors, 
and the one, two, and three years prior.” 

Altman, E., 
Marco, G. & 
Varetto, F. 

Corporate distress diagnostic: 
Comparisons using linear 
discriminant analysis and neural 
networks (the Italian experience) 

1994 “The method considered here is the well-
known Error Back Propagation Algorithm by 
Rumelhart et. al (1986).” Altman et al. also 
attempted to develop a model “sensitive to 
the passing of time, and the changes of the 
companies’ business patterns.” Different 
styles of models were built, starting with 
networks designed to separate healthy from 
unsound companies, progressing to multi-
layer networks, progressing to a comparison 
of Neural Networks to discriminant function 
using the same ratios, and finally to 
breaking the model up into “simpler 
networks connected to each other.” 

Wilson, R. & 
Sharda, R. 

Bankruptcy prediction using 
neural networks 

1994 Used the “backpropagation training 
algorithm”, with “5 input neurons (one for 
each financial ratio), 10 hidden neurons and 
2 output neurons (one indicating bankrupt 
firm, the other indicating non-bankrupt firm) 
was used. Such a network structure was 
chosen on the basis of previously espoused 
heuristic guidelines”. 

Fanning, K & 
Cogger, K. 

A comparative analysis of 
artificial neural networks using 
financial distress prediction 

1994 Trained a Neural Network on the first 40% of 
cases using a NN with six nodes in the first 
hidden layer and seven in the second 
hidden layer using sigmoidal activation 
functions and a backpropagation learning 
algorithm, and a Generalised Adaptive 
Neural Network using quadratic functions. 

Boritz, J. & 
Kennedy, D. 

Effectiveness of neural network 
types for prediction of business 
failure 

1995 Uses “Back-Propagation and Optimal 
Estimation Theory”. “Within the back-
propagation training method, four different 
models (Back-Propagation, Functional Link 
Back-Propagation With Sines, Pruned Back-
Propagation, and Cumulative Predictive 
Back-Propagation) are tested.”  

Lee, K., Han, I. 
& Kwon, Y. 

Hybrid neural network models 
for bankruptcy predictions 

1996 Divided the sample data into three groups 
separated by date. Used different variable 
selection techniques before constructing a 
“3-layer network”, with “the number of 
hidden units are set to the same as the 
number of input units”. Results were 
obtained for MDA-only techniques, ID3-only 
techniques, MDA-assisted NN, ID3-assisted 
NN, SOFM(MDA)-assisted NN and 
SOFM(ID3)-assisted NN. 
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Author Title Year Research Methodology 
Yang, Z., Platt, 
M. & Platt, H. 

Probabilistic Neural Networks in 
Bankruptcy Prediction 

1999 Uses a probabilistic NN which “employ 
Bayesian decision-making theory based on 
an estimate of the probability density in data 
space.” Used 33 non-bankrupt and 11 
bankrupt companies in the training set, 26 
non-bankrupt companies and 14 bankrupt 
companies in the validation set, and 30 non-
bankrupt and 8 bankrupt companies in the 
test set. 

Lee, K., Booth, 
D. & Alam, P. 

A comparison of supervised and 
unsupervised neural networks in 
predicting bankruptcy of Korean 
firms 

2005 A three-layered (one hidden layer) back-
propagation Neural Network was used with 
a logistic transfer function, testing one to ten 
hidden nodes with a Levenberg-Marquardt 
algorithm. This is compared with a two-
dimensional Kohonen Self-Organising 
Feature Map (SOM) using 200 output nodes 
with 4 clusters as well as compared with 
Quadratic Discriminant Analysis and Logistic 
Regression. 

Table 2-11 - Comparison of Research Methods for Neural Network Methodologies 

 

In almost all of the instances of Neural Networks being used, the standard feed-forward model 

was selected using a back-propagation learning algorithm (this methodology is discussed in 

section 4.2. Coats & Fant (1993) break from this mould by using the Cascade-Correlation 

learning paradigm which dynamically adds hidden neurons as algorithms. Boritz & Kennedy 

(1995) also deviate by employing a number of different learning techniques. 

 

Key findings from the various analysed papers will now be outlined. 

 

2.3.5 Key Findings 

Author Title Year Research Methodology
Odom, M. & 
Sharda, R. 

A neural network 
model for bankruptcy 
prediction 

1990  “The neural network appears to be more robust, 
performing better than the discriminant analysis 
method in each of the three situations. The neural 
network also appears to be more consistent than 
the discriminant analysis method.” 

 “When the training sample was reduced to the 
90/10 proportion, the discriminant analysis had a 
correct prediction rate of 59.26% and the neural 
network had a correct prediction rate of 77.78% for 
the holdout subsample.” 
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Author Title Year Research Methodology
Raghupathi, W., 
Schleade, L. & 
Raju, B. 

A neural network 
approach to 
bankruptcy prediction 

1991  “The configuration with 15 nodes in the first hidden 
layer and 2 in the second seems to have the best 
percentage of correct classifications (86%). 

 “Neural networks might provide suitable models for 
the bankruptcy prediction process.” 

Coats, P. & 
Fant, L. 

Recognising financial 
distress patterns 
using a neural 
network tool 

1993  “Some networks required up to 1,400 training 
cycles and installed as many as eight hidden 
nodes” to achieve 100% accuracy on the training 
data. 

 “Test results suggest that the NN approach is more 
effective than MDA for pattern classification.” 

Altman, E., 
Marco, G. & 
Varetto, F. 

Corporate distress 
diagnostic: 
Comparisons using 
linear discriminant 
analysis and neural 
networks (the Italian 
experience) 

1994  “The best results were obtained with a three-layer 
network: one initial hidden layer of ten neurons, a 
second layer with four neurons and an output layer 
consisting of a single neuron” in the first series of 
tests. 

 “The most satisfactory results were obtained with a 
three-layer network, comprising fifteen neurons in 
the first hidden layer, six neurons in the second 
hidden layer and one neuron in the output layer” in 
the second series of tests. 

 “At the end of training, the [best second series] 
network was able to recognize correctly 97.7% of 
healthy and 97% of unsound companies.” 

 “The greatest problem concerns the existence of 
non-acceptable types of behaviour in the network, 
combining a large number of variables several 
times over in a complex fashion. These behaviour 
patterns are characteristic of networks of any 
complexity that have at least two inputs.” 

Wilson, R. & 
Sharda, R. 

Bankruptcy prediction 
using neural networks 

1994  Achieved 95%+ accuracies with models trained 
from a 50/50 training set. 

 Accuracy dropped to low 70%s as the training set 
composition moved to 90/10. 

 “In every instance, neural networks outperformed 
discriminant analysis in classification accuracy, 
especially in the prediction of bankrupt firms”.  

Fanning, K & 
Cogger, K. 

A comparative 
analysis of artificial 
neural networks using 
financial distress 
prediction 

1994  Artificial Neural Networks and Generalised 
Adaptive Neural Networks rivalled predictive 
accuracy of model-based approaches. 

 No single approach was uniformly superior 
 Generalised Adaptive Neural Network seems 

preferable to Artificial Neural Networks due to not 
imposing a priori network architecture 
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Author Title Year Research Methodology
Boritz, J. & 
Kennedy, D. 

Effectiveness of 
neural network types 
for prediction of 
business failure 

1995  “The Optimal Estimation Theory neural networks 
had the lowest rate of Type I error but the highest 
rate of Type II error.” 

 “The Back-Propagation neural networks had high 
Type I error but lower rates of Type II error.” 

 “While the neural network models’ performance is 
in line with that of the more conventional 
techniques such as discriminant analysis and 
logit/probit, it is noteworthy that their performance 
is not a dramatic improvement over those 
conventional techniques.” 

 “Comparing results across the three sets of 
variables shows that the relative performance of 
neural networks and traditional statistical 
techniques is affected by the choice of variables in 
the learning sample. We demonstrate that the 
performance of the neural networks tested is 
sensitive to the choice of variables selected and 
that the networks cannot be relied upon to “sift 
through” variables and focus on the most important 
variables.” 

Lee, K., Han, I. 
& Kwon, Y. 

Hybrid neural network 
models for 
bankruptcy 
predictions 

1996  “On the average, the SOFM(MDA)-assisted neural 
network model performs the best. This model 
shows an outstanding prediction accuracy (84%) 
for Group I.” 

 “Hybrid neural network models perform better than 
MDA and ID3.” 

Yang, Z., Platt, 
M. & Platt, H. 

Probabilistic Neural 
Networks in 
Bankruptcy Prediction 

1999  Best overall results obtained using Fisher MDA and 
deflated data, achieving 87% accuracy. 

 “Deflation improves the discriminant ability of 
bankruptcy prediction models.” 

Lee, K., Booth, 
D. & Alam, P. 

A comparison of 
supervised and 
unsupervised neural 
networks in predicting 
bankruptcy of Korean 
firms 

2005  “The [back-propagation] network consistently 
outperforms logistic regression as well as other 
classification techniques” and “the prediction 
accuracy of the Kohonen self-organizing feature 
map, as expected, is lower than the other 
supervised classification techniques”. 

Table 2-12 - Comparison of Key Findings for Neural Network Methodologies 

 

Presenting the key findings of each of these research papers in the above format demonstrates 

some interesting similarities and differences. 

 

Almost all of the research analysed concluded that Neural Networks present themselves as an 

equal or superior methodology in their predictive ability. Most of the research found that a 3-

layered network was most effective, and this is a particularly interesting finding since a trained 

two-layer network has an output function that uses the same structure to that of Discriminant 

Analysis. Most of the results found huge disparity in the optimum number of hidden neurons, 
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which is expected considering the differences of datasets and their relative complexities, though 

this can present a difficult problem for networks that need to adapt to an environment where the 

complexity of the data is changing. 

 

Having analysed the papers focusing on the use of Neural Networks, some broader conclusions 

can be drawn. 

 

2.3.6 Conclusion 

Given the broad nature of Neural Networks and the different combinations of model structure 

and learning algorithm, it is surprising just how few papers analysed here deviate from the feed-

forward backpropagation method, especially given the findings of Coats & Fant (1993) and 

Boritz & Kennedy (1995) which demonstrate the predictive ability of the alternatives. While more 

specialised papers, such as Chauhan, et al.’s (2009) paper “Differential evolution trained 

wavelet neural networks: Application to bankruptcy prediction in banks”, such methodology’s 

remain rare.  

 

Furthermore, it is surprising that of all the papers considered here, only one author (Lee, et al., 

1996) and (Lee, et al., 2005) utilised an unsupervised Neural Network to assist the model. 

 

Given the number of Neural Network techniques, datasets and factor selection methodologies 

that remain untested in this field, and the lack of consensus on the best approach to use and 

expected outcomes, it appears there are still avenues of research yet to be undertaken using 

Neural Networks. 

 

2.4 Recent Developments in Predicting Corporate Failure 

While Discriminant Analysis and Neural Networks represent the two most popular 

methodologies for predicting corporate failure, they are not the only methodologies available. 
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Rough Set Theory (RST), Genetic Algorithms (GA), Genetic Programming (GP) and Support 

Vector Machines (SVM) are some of the alternatives that have recently received much 

attention. This section will examine relevant recent papers to finalise the analytical aspect of this 

literature review, and identify weaknesses in the current academic state of corporate failure 

prediction. In doing so, the direction that the rest of this thesis will take can be defined. 

 

Around 1998 there was a fairly sudden reduction in the number of published papers using 

Neural Networks, and a corresponding rise in the number of published papers using alternative 

methods. Therefore papers published after 1998 that use statistical analysis or Neural Networks 

but focus on a non-methodological aspect of the research – such as Kane et al. (1998), which 

focuses on the pre-processing of data – have also been included in this section. 

 

Firstly, some background into some of the more popular alternative techniques will be provided. 

This is not an exhaustive list of available methodologies or an in-depth analysis of each method, 

simply sufficient background that the following literature review has enough context to be useful. 

 

One of the more popular alternatives to Neural Networks is Genetic Algorithms (GA), 

discovered by Holland (1975) and based on the idea of natural selection. The assumption 

behind Genetic Algorithms is that there is a sequence of data that represents the “best” solution 

to a given problem. The best sequence of data could be the optimum stock levels to minimise 

inventory costs while maximising product availability, or the most appropriate parameters for a 

Multiple Discriminant Analysis function, or the weights for the synapses joining the neurons in a 

Neural Network. Each datum is considered to be a “gene” and a process of reproduction, 

natural selection and random mutation is used to move towards the result with the least error. In 

this respect, Genetic Algorithms is a learning algorithm, with the structure of the solution left to 

the researcher to decide. One of the strengths of Genetic Algorithms is that in comparison with 

the learning algorithms typically used with Neural Networks, their random mutations tend to 
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perform a more complete search of the error surface theoretically resulting in a better solution 

over a longer period of time. On the other hand Genetic Algorithms do not attempt to identify 

individual genes for their role in the resulting error and therefore do not follow the path of 

steepest decent down the error surface. Therefore it could be argued that the process is less 

“intelligent” than that of Neural Networks, yet more “exhaustive”. 

 

Further utilising the concept of natural selection is that of Genetic Programming. Like Genetic 

Algorithms, Genetic Programming is based on reproduction, natural selection and mutation –

 but unlike Genetic Algorithms, Genetic Programming uses a mathematical operation as the 

gene, as opposed to discrete or continuous values. In doing so, Genetic Programming is 

designed to discover a mathematical function that generates the minimum error. This 

overcomes a weakness in both Neural Networks and Genetic Algorithms which both require a 

predefined equation structure, but potentially at the cost of a large increase in the search space 

because each gene can now take on non-numerical forms such as mathematical operators or 

functions. 

 

Another popular tool used in recent corporate failure prediction research is that of Rough Sets. 

Rough Sets Theory (RST) is credited to Pawlak (1982) and is a tool that is used to describe 

incomplete, uncertain or inconsistent data by way of building decision rules that can describe 

relationships between attributes and outcomes in large volumes of information. The premise of 

rough set theory is that for a given array of data with input variables and decision variables, 

classes can be approximated using upper bound and lower bound sets. In doing so, rule 

induction can be performed on the incomplete and inconsistent data. While Rough Sets Theory 

does not explicitly define a learning algorithm that should be used, ROSE2 is a popular software 

application that applies rough set theory to classify data, which uses “a modified version of the 

LEM2 algorithm” (Prosoft, 1999). The LEM2 learning algorithm serves a similar purpose as the 
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backpropagation learning algorithm does to Neural Networks, which is to efficiently train the 

model through an iterative error-based approach. 

 

Finally, Support Vector Machines (SVM) are most easily understood when explained as two 

groups of two-dimensional data-points, in which an SVM linear algorithm seeks to find the line 

with the greatest margin that separates two groups. In dimensions greater than two, the line 

becomes a hyperplane but in fact still linearly separates the groups. Mathematically, the optimal 

hyperplane can be calculated by way of optimising a quadratic function. To deal with non-

linearly separated data, a “kernel function” is used to map the data-points into a higher 

dimensional space in which they become linearly separable. 

 

Having provided some background to some of the more popular recent methodologies, the 

following subsections will examine the various recent papers used in the field of corporate 

failure prediction. Due to the more recent papers not yet having had sufficient time to become 

highly cited (one of the conditions for being included in this literature review), this section 

contains an additional sub-section that briefly discusses notable research to provide the 

necessary context to the work contained within this thesis.  

 

2.4.1 Definition of Corporate Failure 

Like the papers published that utilise statistical analysis or Neural Networks, a definition of 

failure is required to establish which firms have failed and which firms have not failed. Table 

2-13 below outlines the different definitions used within the literature. 

 

Author Title Year Definition of Corporate Failure 
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Kane, G., 
Richardson, F. 
& Meade, N. 

Rank transformations and the 
prediction of corporate failure 

1998 “The failure event is defined as the date of 
occurrence of the Chapter 7 or Chapter 11 
bankruptcy petition filing, or the date of 
initiation of an involuntary liquidation 
proceeding, as provided by the Wall Street 
Journal Index. Because the initiation dates 
of involuntary liquidation are not usually 
available, the COMPUSTAT delisting date 
was typically used as an approximation.” 

Dimitras, A., 
Slowinski, R., 
Susmaga, R. & 
Zopounidis, C. 

Business failure prediction using 
rough sets 

1999 While not explicitly defined, “healthy” firms 
were defined as “firms that did not [file] for 
bankruptcy”. 

Varetto, F. Genetic algorithms applications 
in the analysis of insolvency risk 

1999 “The definition of unsound companies 
includes not only those actually declared 
bankrupt but also those that have been 
considered insolvent by the member banks 
of the Centrale dei Bilanci (bank credits 
defined as “overdue”). 

McKee, T. Developing a bankruptcy 
prediction model via rough sets 
theory 

2000 “Non-bankruptcy companies were defined 
as those companies that had positive cash 
flow from operations for the most recent 
five-year period. Bankrupt companies were 
defined as companies that have either filed 
for bankruptcy or had a significant 
subsidiary file for bankruptcy.” 

Anandarajan, 
M., Lee, P., & 
Anandarajan, A. 

Bankruptcy prediction of 
financially stressed firms: an 
examination of the predictive 
accuracy of artificial neural 
networks 

2001 While bankruptcy was not explicitly defined, 
the phrase “filed for bankruptcy” is used, 
implying the definition used. 

McKee, T. & 
Lensberg, T. 

Genetic programming and rough 
sets: A hybrid approach to 
bankruptcy classification 

2002 Bankruptcy not explicitly defined, but 
assumed to be the same as the research 
that it being built upon, McKee (2000), that 
is “companies that have either filed for 
bankruptcy or had a significant subsidiary 
file for bankruptcy.” 

Wang, Z. Financial Ratio Selection for 
Default-Rating Modelling: A 
Model-Free Approach and Its 
Empirical Performance 

2004 “[The research considers] the firms whose 
long-term domestic issuers are rated as 
default (D) or selected default (SD) by 
Standard & Poor’s as firms under distress. 
In S&P’s definition, a firm is rated default 
when interest payments or principal 
payments are not made on the due date 
even if the applicable grace period has not 
expired, unless S&P believes that such 
payments will be made during such grace 
periods. S&P also assigns default rating to a 
firm upon the filling of bankruptcy petition if 
debt service payments are jeopardized.” 

Wu, C. Using non-financial information 
to predict bankruptcy: a study of 
public companies in Taiwan 

2004 Failed – “judicially declared a special 
arrangement company by authorities when 
the company has operational difficulties” 
Non-Failed – “no special stock arrangement, 
which are listed on the TSE market. Their 
stocks are allowed to trade publicly.” 

Shin, K., Lee, T. 
& Kim, H. 

An application of support vector 
machines in bankruptcy 
prediction model 

2005 Korean manufacturing firms which “filed for 
bankruptcy” “from 1996 to 1999”. 
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Table 2-13 - Comparison of Definition of Corporate Failure for Recent Research 

 

2.4.2 Variable Reduction & Sample Selection 

Author Title Year Sample Selection Method 
Kane, G., 
Richardson, F. 
& Meade, N. 

Rank transformations and the 
prediction of corporate failure 

1998 “The sample consists of firms from the New 
York Stock Exchange (NYSE), the American 
Stock Exchange (AMEX), and the National 
Association of Securities Dealers Automated 
Quotation System (NASDEQ).” “’Non-failed’ 
firms are those contained in a randomly 
selected sample of 2,000 companies.” 

Dimitras, A., 
Slowinski, R., 
Susmaga, R. & 
Zopounidis, C. 

Business failure prediction using 
rough sets 

1999 “A large number of firms which failed in 
Greece in the years 1986-1990 were 
collected. From this large set, 40 firms from 
13 industries meeting the criteria of (a) 
having been in business for more than five 
years and (b) data availability were 
selected.” “The 40 failed firms were matched 
one by one to 40 “healthy” firms”. “The 
healthy firms were chosen among those of 
the same industry and having also similar 
total assets and number of employees for 
the year -1 to the corresponding failed firm.” 

Varetto, F. Genetic algorithms applications 
in the analysis of insolvency risk 

1999 “The GAs for the identification of linear 
functions were applied to the sample of 
3840 firms, with tests on an independent 
sample of 898 companies." 

McKee, T. Developing a bankruptcy 
prediction model via rough sets 
theory 

2000 100 bankrupt and 100 non-bankrupt firms 
were “randomly selected for the fiscal years 
1986 to 1988 from Compact Disclosure 
(Disclosure Inc, 1990).” 

Anandarajan, 
M., Lee, P., & 
Anandarajan, A. 

Bankruptcy prediction of 
financially stressed firms: an 
examination of the predictive 
accuracy of artificial neural 
networks 

2001 “[The] final sample resulted in 265 distress 
firmed with dividend omission or reduction, 
319 distress firms with technical defaults or 
default on loan payments, 91 distress firms 
restructuring their debt and 104 firms that 
filed for bankruptcy.” 

Lensberg, T., 
Eilifsen, A., & 
McKee, T. 

Bankruptcy theory development 
and classification via genetic 
programming 

2006 While the definition of failure is not explicitly 
defined, it appears to adopt the definition 
used in previous research (McKee & 
Lensberg, 2002). 

Etemadi, H., 
Rostamy, A. & 
Dehkordi, H. 

A genetic programming model 
for bankruptcy prediction: 
Empirical evidence from Iran 

2009 “Paragraph 141 of Iran Trade Law” 

Chen, H., Yang, 
B., Wang, G., 
Liu, J., Xu, X., 
Wang, S., Liu, 
D. 

A novel bankruptcy prediction 
model based on an adaptive 
fuzzy k-nearest neighbor 
method 

2011 The Wieslaw dataset defines failure as 
bankruptcy, while the Australian credit 
dataset is not related to corporate failure 
and is not relevant to this research.  
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Author Title Year Sample Selection Method 
McKee, T. & 
Lensberg, T. 

Genetic programming and rough 
sets: A hybrid approach to 
bankruptcy classification 

2002 “Used data from Disclosure Incorporated 
(1997) to identify 146 bankruptcy 
companies”, “matched to 146 non-
bankruptcy companies first by industry and 
then by assets size”. “One non-bankrupt 
company was subsequently dropped due to 
missing data, resulting in a total sample size 
of 291 companies.” 

Wang, Z. Financial Ratio Selection for 
Default-Rating Modelling: A 
Model-Free Approach and Its 
Empirical Performance 

2004 “The data used in [the] analysis is from 
Compustat of Standard & Poor’s (S&P).” 
Firms without complete data entries for 
financial ratio calculation were deleted, as 
were firms with negative equities (“because 
they usually generate negative ratios”). 1992 
firms were present in the sample, of which 
46 were rated as default or selected default. 

Wu, C. Using non-financial information 
to predict bankruptcy: a study of 
public companies in Taiwan 

2004 “There are 31 failed companies and 31 non-
failed companies that qualify according to 
the above definition by TSE, during 1995 to 
2000 in the study.” “The failed and non-
failed companies are matched up, whereby 
the samples are matched by some 
characters, such as they belong to the same 
industry, their sizes are similar, and/or they 
sell a similar product.” 

Shin, K., Lee, T. 
& Kim, H. 

An application of support vector 
machines in bankruptcy 
prediction model 

2005 “externally non-audited 2320 medium-size 
manufacturing firms” 

Lensberg, T., 
Eilifsen, A., & 
McKee, T. 

Bankruptcy theory development 
and classification via genetic 
programming 

2006 Used the “Norwegian Register of 
Bankruptcies” to identify 1953 entities, 
before finding the corresponding entry in a 
financial accounting database developed by 
Dun and Bradstreet. Eliminating the private 
companies and the companies where the 
required 6 variables were not available left 
568 bankrupt companies which were 
matched with non-bankrupt companies by 5-
digit industry code. 

Etemadi, H., 
Rostamy, A. & 
Dehkordi, H. 

A genetic programming model 
for bankruptcy prediction: 
Empirical evidence from Iran 

2009 “The dataset used for this research consists 
of 144 Iranian companies. All of them were 
or still are listed on the Tehran Stock 
Exchange (TSE). 72 companies went 
bankrupt under paragraph 141 of Iran Trade 
Law from 1998 through 2005. The other 72 
companies are ‘matched’ companies, from 
the same period of listing on the TSE.” 

Chen, H., Yang, 
B., Wang, G., 
Liu, J., Xu, X., 
Wang, S., Liu, 
D. 

A novel bankruptcy prediction 
model based on an adaptive 
fuzzy k-nearest neighbor 
method 

2011 The Wieslaw dataset “which contains 30 
financial ratios and 240 cases in total”, and 
the Australian credit dataset, “307 instances 
of creditworthy applicants and 383 instances 
where credit is not creditworthy”. 

Table 2-14 - Comparison of Sample Selection Methods for Recent Research 

 

The samples used for this research are much more varied. Kane et al. (1998), Varetto (1999), 

Wang (2004) and Lensberg (2006) all used large sample sizes, often in the thousands of cases. 
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By comparison, Dimitras et al. (1999), used a sample size of 40. Typically, data that was 

matched was matched by industry and size, though a large amount of research was not 

matched at all. 

 

Having discussed the samples used, the following section will discuss the variable selection 

techniques adopted by the analysed papers. 

 

2.4.3 Variable Selection & Dimension Reduction 

Like the papers that focus on statistical analysis or Neural Networks, the need to identify a 

reasonably sized set of input variables is recognised. 

 

Author Title Year Variable Selection Method 
Kane, G., 
Richardson, F. 
& Meade, N. 

Rank transformations and the 
prediction of corporate failure 

1998 “[W]e constructed two logistic regression 
models: one using the variables 
recommended by Hopwood, et al. 1994 and 
a second (for confirmation of results) using 
the variables from the classic Altman 1968 
linear discriminant model with a variable 
added to control for size differences.” 

Dimitras, A., 
Slowinski, R., 
Susmaga, R. & 
Zopounidis, C. 

Business failure prediction using 
rough sets 

1999 “The credit manager of a large Greek bank 
was employed to act has a decision maker 
(DM)”, the DM “played an important role in:” 
“the choice of the attributes (financial ratios) 
entering the information table.” 

Varetto, F. Genetic algorithms applications 
in the analysis of insolvency risk 

1999 While the GA was responsible for the 
selection of ratios, a “financial analyst 
establishes, on the basis of economic 
reasoning”, the “list of ratios which belong to 
each family”. 

McKee, T. Developing a bankruptcy 
prediction model via rough sets 
theory 

2000 “Prior research (McKee, 1995a, b) used 
both theoretical work concerning bankruptcy 
theory and prior bankruptcy research to 
identify the following eight potential 
predictive variables:” “The first six ratios 
were selected from the Hopwood et al. 
(1989) study to build on the stream of prior 
research. The last two ratios were selected 
from a publication (McKee, 1989) which 
suggested they might be significant in 
analyzing the financial liquidity of a 
company.” “In the prior research (McKee, 
1995b) couple recursive partitioning with 
continuity theory to reduce this set of eight 
potential predictive variables to two 
variables.” 



2. Review of Predictive Modelling Literature 
 

 

Page 47 

Author Title Year Variable Selection Method 
Anandarajan, 
M., Lee, P., & 
Anandarajan, A. 

Bankruptcy prediction of 
financially stressed firms: an 
examination of the predictive 
accuracy of artificial neural 
networks 

2001 Quantitative: “Rather than use a multiplicity 
of financial ratios as in previous studies we 
used a model that incorporates ratios 
measuring profitability, solvency, and 
liquidity. The model selected is the 
Zmijewski score. Zmijewski (1984) 
developed a weighted probit bankruptcy 
prediction model.” 
Qualitative: Selected qualitative variables, 
“According to evidence provided by prior 
research (e.g. Gajpal et al., 1994; Gilson et 
al, 1990; Giroux and Wiggins, 1984; 
Turetsky, 1997)” 

McKee, T. & 
Lensberg, T. 

Genetic programming and rough 
sets: A hybrid approach to 
bankruptcy classification 

2002 “Factors were selected [from the literature] if 
they were highly significant predictors in 
multiple studies and had significant 
theoretical support from continuity theory.” 
“This process led to the identification of 
eleven predictive factors”. “Rough sets 
theory was then used to develop a 
bankruptcy prediction model from the 11 
variables representing the 11 factors.” From 
the model, four key variables were 
identified. 

Wang, Z. Financial Ratio Selection for 
Default-Rating Modelling: A 
Model-Free Approach and Its 
Empirical Performance 

2004 “[The research used] the financial ratios 
used in Frydman, Altman, and Kao (1985), 
were a classification tree is constructed by 
[recursive partition tree], as a candidate to 
start my ratio selection.” 

Wu, C. Using non-financial information 
to predict bankruptcy: a study of 
public companies in Taiwan 

2004 “Independent variables consist of two 
categories, one is the financial ratio related 
group, and the other is the non-financial 
group. The financial-related group consists 
of 18 financial ratios from the database of 
Taiwan Economic Journal. After using factor 
analysis, the study selects some variables 
which have the highest loadings”. The non-
financial-related group consists of three 
variables that describe the board holding 
ratio, the use of an external auditor and the 
stock price trend, but the research does not 
discuss why these variables were chosen. 

Shin, K., Lee, T. 
& Kim, H. 

An application of support vector 
machines in bankruptcy 
prediction model 

2005 “We apply two stages of the input variable 
selection process. At the first stage, we 
select 52 variables among more than 250 
financial ratios by independent-samples t-
test between each financial ratio as an input 
variable and bankrupt or non-bankrupt as an 
output variable. In the second stage, we 
select 10 variables using a MDA stepwise 
method to reduce dimensionality.” 
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Author Title Year Variable Selection Method 
Lensberg, T., 
Eilifsen, A., & 
McKee, T. 

Bankruptcy theory development 
and classification via genetic 
programming 

2006 “We judgmentally selected 15 basic ratios 
which were strong bankruptcy indicators in 
multiple prior bankruptcy prediction models 
studies”, “we decided to include the prior 
audit opinion”, “we decided to include 10 
possible fraud indicators”, and “we used a 
dummy variable in this study to reflect start-
up status.” “We performed an initial variable 
analysis on the sample” (using a Genetic 
Programming tournament), which “reduced 
the number of variables from 28 to 6”. 

Etemadi, H., 
Rostamy, A. & 
Dehkordi, H. 

A genetic programming model 
for bankruptcy prediction: 
Empirical evidence from Iran 

2009 “At the first stage, bankruptcy prediction 
literature was reviewed and 65 variables 
among more than 250 financial ratios were 
selected as predictive variables. These 
financial ratios were chosen based on 
popularity in literature. In the second stage, 
43 variables were selected based on 
availability of the necessary data. Table 1 
shows the selected variables. In the third 
stage, using stepwise discriminant analysis 
(SDA) was used to select final variables.” 

Chen, H., Yang, 
B., Wang, G., 
Liu, J., Xu, X., 
Wang, S., Liu, 
D. 

A novel bankruptcy prediction 
model based on an adaptive 
fuzzy k-nearest neighbor 
method 

2011 “We fill focus on exploring the PSO-based 
[Particle Swarm Optimization] parameter 
optimization and feature selection approach. 
The continuous PSO algorithm will be 
employed to evolve an adaptive [Fuzzy K-
means Neural Network], where the 
neighbourhood size k and the fuzzy strength 
parameter m are adaptively specified. On 
the other hand, the binary PSO will be sued 
as a feature selection vehicle to identify the 
most informative features as well”. 

Table 2-15 - Comparison of Variable Selection Methods for Recent Research 

 

Perhaps the most interesting aspect of this subsection is that only two papers (Shin, et al., 

2005; Chen, et al., 2011) began the variable selection process with more than 18 factors. While 

many other reviewed papers can be commended for their usage of objective ratio selection 

techniques, papers such as Kane et al. (1998), Varetto (1999), McKee (2000), Anandarajan et 

al. (2001), McKee & Lensberg (2002), Wang (2004), Wu, (2004) and Lensberg et al. (2006) all 

use subjectively selected ratios or simply use the ratios used in prior research. This situation 

represents a limitation in the available literature on corporate failure prediction. 

 

That being said, some objective ratio selection techniques were used on the limited set of initial 

factors, from Logistic Regression (Kane, et al., 1998), Genetic Algorithms (Varetto, 1999), 
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Rough Sets Theory (McKee & Lensberg, 2002), Recursive Partitioning Trees (Wang, 2004), 

Factor Analysis (Wu, 2004), Multiple Discriminant Analysis (Shin, et al., 2005), Genetic 

Programming (Lensberg, et al., 2006) and Particle Swarm Optimization (Chen, et al., 2011). 

 

The following table outlines the different variables that were used. 

 

Author Title Year Variables
Kane, G., 
Richardson, F. 
& Meade, N. 

Rank transformations and 
the prediction of corporate 
failure 

1998 “The Hopwood, McKeown, and Mutchler (1994) 
model”, net income to total assets, current 
assets to total assets, current assets to current 
liabilities, cash to total assets, current assets to 
sales, long-term debt to total assets, natural log 
of firm sales. “The Altman (1968) model”, 
working capital to total assets, retained earnings 
to total assets, operating income to total assets, 
sales to total assets, market value equity to 
book value debt, natural log of firm sales 
(“added to allow for possible size effects”). 

Dimitras, A., 
Slowinski, R., 
Susmaga, R. & 
Zopounidis, C. 

Business failure prediction 
using rough sets 

1999 Net income to gross profit, gross profit to total 
assets, net income to total assets, net income to 
net worth, current assets to current liabilities, 
quick assets to current liabilities, long term debt 
plus current liabilities to total assets, net worth 
to net worth plus long term debt, net worth to 
net fixed assets, inventories to working capital, 
current liabilities to total assets, working capital 
to net worth. 

Varetto, F. Genetic algorithms 
applications in the analysis 
of insolvency risk 

1999 List of financial ratios made available to the GA 
not published. 

McKee, T. Developing a bankruptcy 
prediction model via rough 
sets theory 

2000 Current assets to current liabilities, net income 
to total assets. 

Anandarajan, 
M., Lee, P., & 
Anandarajan, A. 

Bankruptcy prediction of 
financially stressed firms: an 
examination of the predictive 
accuracy of artificial neural 
networks 

2001 Quantitative: Net income to total assets, total 
debt to assets, current assets to current 
liabilities. 
Qualitative: Negative cash flows, reduction or 
omission of dividends, debt default, troubled 
debt restructuring (1 for true, 0 for false) 

McKee, T. & 
Lensberg, T. 

Genetic programming and 
rough sets: A hybrid 
approach to bankruptcy 
classification 

2002 Working capital to net worth, net income to total 
assets, cash to current liabilities, investment 
cash flow to net income. 
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Author Title Year Variables
Wang, Z. Financial Ratio Selection for 

Default-Rating Modelling: A 
Model-Free Approach and Its 
Empirical Performance 

2004 Cash to total assets, cash to total sales, cash 
flow to total debt, current assets to current 
liabilities, current assets to total assets, current 
assets to total sales, earnings before interest 
and taxes to total assets, log of interest 
coverage plus 15, log of total assets, market 
value of equity to total capitalization, net income 
to total assets, quick assets to current liabilities, 
quick assets to total assets, quick assets to total 
sales, retained earnings to total assets, total 
sales to total assets, total debt to total assets, 
working capital to total assets, working capital to 
total sales, standard deviation of earnings 
before interest and taxes to total assets. 

Wu, C. Using non-financial 
information to predict 
bankruptcy: a study of public 
companies in Taiwan 

2004 Long-term capital ratio to fixed assets, current 
ratio, quick ratio, times interest earned, 
inventory turnover, total assets turnover, return 
on assets, return on total equity, net profit 
before taxes to capital issued, cash 
reinvestment ratio, board holding ratio to capital 
issued, does the sample firm change its 
external auditor?, stock price trend. 

Shin, K., Lee, T. 
& Kim, H. 

An application of support 
vector machines in 
bankruptcy prediction model 

2005 Total asset growth, contribution margin, 
operating income to total asset, fixed asset to 
sales, owner’s equity to total asset, net asset to 
total asset, net loan dependence rate, operating 
asset constitute ratio, working capital turnover 
period, net operating asset turnover period. 

Lensberg, T., 
Eilifsen, A., & 
McKee, T. 

Bankruptcy theory 
development and 
classification via genetic 
programming 

2006 Audit opinion (coded 1, 2 or 3), log of total 
assets, cash plus short-term investment to 
current liabilities, log of year founded, share 
capital to total assets, operating income plus 
interest expenses to interest expense. 

Etemadi, H., 
Rostamy, A. & 
Dehkordi, H. 

A genetic programming 
model for bankruptcy 
prediction: Empirical 
evidence from Iran 

2009 “(1) Operational income to sales ratio (X36), (2) 
Total liability to total assets (X9), (3) Sales to 
current assets ratio (X43), (4) Interest expense 
to gross profit (X25), and (5) Quick assets to 
total assets (X20).” 

Chen, H., Yang, 
B., Wang, G., 
Liu, J., Xu, X., 
Wang, S., Liu, 
D. 

A novel bankruptcy 
prediction model based on 
an adaptive fuzzy k-nearest 
neighbor method 

2011 Cash to current liabilities, cash to total assets, 
current assets to current liabilities, current 
assets to total assets, working capital to total 
assets, working capital to sales, sales to 
inventory, sales to receivables, net profit to total 
assets, net profit to current assets, net profit to 
sales, gross profit to sales, net profit to 
liabilities, net profit to equity, net profit to equity 
plus long term liabilities, sales to receivables, 
sales to total assets, sales to current assets, 
365 receivables to sales, sales to total assets, 
liabilities to total income, current liabilities to 
total income, receivables to liabilities, net profit 
to sales, liabilities to total assets, liabilities to 
equity, long term liabilities to equity, current 
liabilities to equity, EBIT to total assets, current 
assets to sales. 

Table 2-16 - Comparison of Selected Variables for Recent Research 
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While the sets of variables used are generally similar to those used in the research studied in 

the previous sections, one exception is that Anandarajan et al. (2001), Wu (2004) and Lensberg 

et al. (2006) used some qualitative variables such as boolean variables for things such as 

“troubled debt restructuring” or “audit opinion”. 

 

2.4.4 Research Methodology 

Unlike in the previous research methodology sections above, this section deals with a number 

of fundamentally different techniques used to predict corporate failure. Therefore, unlike the 

previous research methodology sections, this section will discuss not only the methodology 

used within the chosen technique, but also the technique itself. In doing so, conclusions can be 

drawn from comparisons between techniques across some of the more recent research. 

 

Author Title Year Research Methodology
Kane, G., 
Richardson, F. 
& Meade, N. 

Rank transformations and 
the prediction of corporate 
failure 

1998 Used the statistical methodology logistical 
regression to formulate two models with the two 
sets of variables as specified in Table 2-16. The 
two models were tested both with the raw data 
and with data that was ranked in comparison to 
other values for the same variable. 

Dimitras, A., 
Slowinski, R., 
Susmaga, R. & 
Zopounidis, C. 

Business failure prediction 
using rough sets 

1999 Used “the credit manager of a large Greek 
bank” as a decision maker to identify the 
“choice of attributes”, the “discretization of the 
continuous attributes”, the “selection of a 
satisfactory reduct of attributes from among all 
reducts calculated for the learning sample”, and 
“the test of decision rules on the testing 
sample”. Rough set analysis was performed on 
the coded data using RoughDAS and ProFIT. 
The analysis yielded a number of “reducts” 
(predictive models), which were presented to 
the decision maker to select the best one. From 
this, three sets of decision rules were 
generated, and the results were then compared 
with the results from discriminant analysis and 
logit analysis. 
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Author Title Year Research Methodology
Varetto, F. Genetic algorithms 

applications in the analysis 
of insolvency risk 

1999 Genetic algorithms were used to create both a 
linear function that could be used to model 
corporate health, and a credit score that could 
be used to identify an organisations risk. In 
cases were continuous values were identified, 
the continuous values were broken down into n 
discrete values, where n is the number of 
intervals chosen between the high and low 
bounds of the continuous variable. All values 
now being discrete, they were coded within the 
model using binary representation. 

McKee, T. Developing a bankruptcy 
prediction model via rough 
sets theory 

2000 Continuous variables were recoded into discrete 
variables, before the RoughDAS software was 
used to implement Rough Sets Theory and 
create atoms for the decision model. The 
RoughDAS software was then used to generate 
a 27-rule decision model. “The 27-rule decision 
model was then run against both the 100-
companies sample from which it was developed 
and a separate holdout sample of 100 
companies.”  

Anandarajan, 
M., Lee, P., & 
Anandarajan, A. 

Bankruptcy prediction of 
financially stressed firms: an 
examination of the predictive 
accuracy of artificial neural 
networks 

2001 Compares the effectiveness of backpropagation 
Neural Networks (using sigmoid transfer 
function) in comparison with a Genetic 
Algorithm Neural Network and Multiple 
Discriminant Analysis, including “qualitative ‘bad 
news’ variables” (negative cash flows from 
operations, dividend reductions or omissions, 
debt default or troubled debt restructuring) into 
the model, while using “only financially 
distressed firms [in the] control sample”. 

McKee, T. & 
Lensberg, T. 

Genetic programming and 
rough sets: A hybrid 
approach to bankruptcy 
classification 

2002 “In this paper, we suggest dealing with the lack 
of a causal basis for bankruptcy prediction by 
means of a two-stage hybrid model: Stage 1 
uses a rough sets model (Pawlak, 1982) to 
identify subsets of potentially important 
explanatory variables, and Stage 2 a genetic 
programming algorithm (Koza, 1992) to develop 
a structural model of bankruptcy based on those 
variables. The aim is to let the data speak for 
itself as far as possible, by minimizing the 
amount of a priori structure imposed by 
functional forms and statistical selected 
procedures.” 



2. Review of Predictive Modelling Literature 
 

 

Page 53 

Author Title Year Research Methodology
Wang, Z. Financial Ratio Selection for 

Default-Rating Modelling: A 
Model-Free Approach and Its 
Empirical Performance 

2004 The research aims to identify the key financial 
ratios when faced with the problem of predicting 
corporate failure, but acknowledges the 
weakness of Principal Component Analysis, 
“[T]he components identified by PCA will not be 
sensitive to corporate failure indicators and will 
not be able to uncover which ratios distinguish 
these two distributions.” Therefore the research 
uses sliced average variance estimation (SAVE) 
to “construct a set of factors and to identify the 
financial ratios that are informative and will be 
used to model firm failure.” To test the SAVE 
methodology, “multivariate discriminant 
analysis”, “generalized smoothing spline” 
models, and “recursive partition tree methods” 
were used as a predictive models. 

Wu, C. Using non-financial 
information to predict 
bankruptcy: a study of public 
companies in Taiwan 

2004 The research uses factor analysis to reduce the 
initial number of financial ratios, before using 
Logistic Regression on models both with and 
without non-financial information to predict 
corporate failure. 

Shin, K., Lee, T. 
& Kim, H. 

An application of support 
vector machines in 
bankruptcy prediction model 

2005 Used Support Vector Machines with a radial 
basis function as the kernel function, varying the 
upper bound and kernel parameters to find 
optimal prediction performance. For comparison 
a back-propagation Neural Network was 
designed using the standard 3-layer model with 
10 hidden nodes and a sigmoidal transfer 
function. 

Lensberg, T., 
Eilifsen, A., & 
McKee, T. 

Bankruptcy theory 
development and 
classification via genetic 
programming 

2006 Used a Genetic Programming tournament firstly 
to identify key variables, and secondly to 
develop a predictive model using an expanded 
sample (due to there being more companies 
with data available for the key variables). 
2,020,000 tournaments were used, some 
random noise was introduced to avoid over 
training, and a penalty was applied for 
complexity. Two logit models were also 
developed to “benchmark” the Genetic 
Programming methodology using the same 6 
variables. 

Etemadi, H., 
Rostamy, A. & 
Dehkordi, H. 

A genetic programming 
model for bankruptcy 
prediction: Empirical 
evidence from Iran 

2009 Compared a Genetic Programming model that 
was using number-of-hits as a fitness function 
to Multiple Discriminant Analysis model. For 
both models, a randomised division of training 
and holdout sample was used. 

Chen, H., Yang, 
B., Wang, G., 
Liu, J., Xu, X., 
Wang, S., Liu, 
D. 

A novel bankruptcy 
prediction model based on 
an adaptive fuzzy k-nearest 
neighbor method 

2011 “Based on an adaptive fuzzy k-nearest neighbor 
(FKNN) method, where the neighborhood size k 
and the fuzzy strength parameter m are 
adaptively specified by the continuous particle 
swarm optimization (PSO) approach.” 

Table 2-17 - Comparison of Research Methods for Recent Research 

 

As discussed in the introduction for this section, the four major techniques used include Genetic 

Algorithms, Rough Sets Theory, Support Vector Machines and Genetic Programming. 
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Generally speaking, the existing research has not made many comparisons between major 

research techniques, though Anandarajan et al. (2001) compared Neural Networks, Genetic 

Algorithms and Discriminant Analysis, while Shin et al. (2005) compared Support Vector 

Machines with Neural Networks and Chen et al. (2011) compared various forms of Neural 

Networks and Support Vector Machines with their proposed algorithm. 

 

2.4.5 Key Findings 

Author Title Year Key Findings
Kane, G., 
Richardson, F. 
& Meade, N. 

Rank transformations and the 
prediction of corporate failure 

1998  “Comparison of the results reveals that 
the use of ranked predictor variables 
improves the explanatory and prediction 
capabilities of both models.” 

Dimitras, A., 
Slowinski, R., 
Susmaga, R. & 
Zopounidis, C. 

Business failure prediction using 
rough sets 

1999  “The attribute with the highest frequency 
of occurrence in reducts is a11 
[managerial performance ratio] 

 “The reduct selected was the #16, which 
includes: a4 (profitability ratio), a5 
[current assets to total liabilities], a7 
[long term debt plus current liabilities to 
total assets], a9 (solvency ratios) and a11 
(managerial performance ratio).” 

 Achieved 76.3% test set accuracy in the 
year prior to failure (correctly classified 
94.7% of bankrupt firms and 57.9% of 
healthy firms) using the “’strong’, partly 
discriminating rules”. 

Varetto, F. Genetic algorithms applications 
in the analysis of insolvency risk 

1999  Achieved 96.94% accuracy on sound 
companies and 92.97% accuracy on 
unsound companies using Genetic 
Algorithms to generate a linear function. 

 Achieved 89.96% accuracy on sound 
companies and 94.98% accuracy on 
unsound companies using Genetic 
Algorithms to generate a credit score. 

 “Our overall results indicate that the 
discriminant analysis technique proved 
to be slightly better than those obtained 
with the GAs.” 
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McKee, T. Developing a bankruptcy 
prediction model via rough sets 
theory 

2000  Achieved 88% accuracy when using 
valued closeness relation matching 
strategy when neither Exact Match or 
non-deterministic matching strategy 
match is possible. 

 “The rough sets model from the current 
research, therefore, appears to be more 
robust than the recursive partitioning 
model since it had a 23% higher 
prediction accuracy on the 100-
company validation sample.” 

Anandarajan, 
M., Lee, P., & 
Anandarajan, A. 

Bankruptcy prediction of 
financially stressed firms: an 
examination of the predictive 
accuracy of artificial neural 
networks 

2001  “The genetic algorithm neural network 
(ANN-GA) had the highest accuracy 
[95% for bankrupt firms, 94% for non-
bankrupt]” for the holdout sample. 

McKee, T. & 
Lensberg, T. 

Genetic programming and rough 
sets: A hybrid approach to 
bankruptcy classification 

2002  “The preferred genetic program utilized 
only three of the four variables selected 
by the rough sets algorithm as the 
variable investment cash flow to net 
income was not picked up by the 
genetic model. This presumably 
occurred because this variable did not 
contain additional information beyond 
that in the other three variables.” 

 Achieved 80% accuracy on the 
validation sample using Genetic 
Programming in comparison to the 67% 
achieved through rough sets theory. 

 “[N]ot only negative profits, but also 
abnormally high ones, are a signal of 
high bankruptcy risk, except in very 
small companies.” “[T]he risk of 
bankruptcy decreases with companies 
size only if profits are positive” “[A] 
currently unprofitable company may still 
be considered a good risk if it is small 
and liquidity [is] good.” 

Wang, Z. Financial Ratio Selection for 
Default-Rating Modelling: A 
Model-Free Approach and Its 
Empirical Performance 

2004  “Based on [the sliced average variance 
estimation] results, return on investment 
([Earnings before interest and taxes to 
total assets], [standard deviation of 
earnings before interest and taxes to 
total assets]), capital turnover ([working 
capital to total sales], [current assets to 
total assets]), short-term ([quick assets 
to current liabilities]), cash position 
([cash to total sales], [cash to total 
assets]), inventory turning ([current 
assets to total sales]), and receivables 
turnover ([quick assets to total assets], 
[quick assets to total sales]) contribute 
to the two factors.” 

 “For both the [principal component 
analysis] and [sliced average variance 
estimation] ratio selection methods, 
[generalized smoothing spline] and 
[recursive partition tree] predict default-
rated firms more accurately compared to 
[multiple discriminant analysis]. 
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Table 2-18 - Comparison of Key Findings for Recent Research 

 

Unlike the research studied in the previous sections of this thesis, the key findings in this 

research are of particular interest because of the new research directions that their findings 

create. 

 

Aside from the (generally high) accuracies shown by the research, of particular note are findings 

that discuss the relationships between variables and bankruptcy risk as calculated by the 

model. McKee & Lensberg (2002) comment, “[N]ot only negative profits, but also abnormally 

high ones, are a signal of high bankruptcy risk, except in very small companies”, “the risk of 

Wu, C. Using non-financial information 
to predict bankruptcy: a study of 
public companies in Taiwan 

2004  “The correct classification results for the 
prediction model, which is based upon 
both financial and non-financial 
information, are superior to the 
prediction model, which is based upon 
financial information.” 

 “The model is able to correctly predict 
some 87.1% of the companies in the 
sample.” 

Shin, K., Lee, T. 
& Kim, H. 

An application of support vector 
machines in bankruptcy 
prediction model 

2005  “[Support Vector Machines] approach 
outperforms [Backpropagation Neural 
Networks]”. 

 “The choice of the kernel function and 
the determination of optimal values of 
the parameters have a critical 
importance on the performance of the 
resulting system”. 

Lensberg, T., 
Eilifsen, A., & 
McKee, T. 

Bankruptcy theory development 
and classification via genetic 
programming 

2006  Achieved 81% accuracy on the 
validation sample. 

 Genetic programming performed better 
than the logic models 

 “An unfavourable audit report has a 
more negative bankruptcy status impact 
for a large company than a small one.” 
Interest paying ability has a more 
positive bankruptcy status impact for 
large firms than small ones. 

Etemadi, H., 
Rostamy, A. & 
Dehkordi, H. 

A genetic programming model 
for bankruptcy prediction: 
Empirical evidence from Iran 

2009  Found the GP model had a 90% 
accuracy in the holdout sample while 
MDA achieved 73% in the holdout 
sample. 

Chen, H., Yang, 
B., Wang, G., 
Liu, J., Xu, X., 
Wang, S., Liu, 
D. 

A novel bankruptcy prediction 
model based on an adaptive 
fuzzy k-nearest neighbor 
method 

2011  “PTVPSO-FKNN [the new method] 
outperforms all other methods with the 
AUC of 81.69%, except the type II error 
which slightly higher than that of PNN.” 

 The proposed approach are 
implemented in a parallel environment 
which reduces computational time. 
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bankruptcy decreases with companies size only if profits are positive”, and “a currently 

unprofitable company may still be considered a good risk if it is small and liquidity [is] good.” 

Conversely Lensberg et al. (2006) comment, “An unfavourable audit report has a more negative 

bankruptcy status impact for a large company than a small one”, and that the firm’s ability to pay 

interest has a more positive bankruptcy status impact for large firms than small ones. 

 

Perhaps unsurprisingly, each piece of research – with the exception of Veretto (1999) – found 

that more modern techniques such as Genetic Programming or Support Vector Machines 

outperform less modern techniques such as Neural Networks or Multiple Discriminant Analysis. 

 

2.4.6 Research Limitations 

Unlike sections 2.2 and 2.3 above, this section focuses on the more recent developments in the 

field of corporate failure prediction. Therefore, the limitations of individual papers are of greater 

importance, as those limitations are less likely to be addressed in newer papers and thus 

represent opportunities for future research. Consequently, the following section will outline 

important limitations that are worth drawing attention to. 

 

Author Title Year Research Limitations 
Kane, G., 
Richardson, F. 
& Meade, N. 

Rank transformations and the 
prediction of corporate failure 

1998  Only compared the effect of rank 
transformations on a “recent model 
(Hopwood, et al. 1994) and a classic 
model (Altman 1968)”. Since rank 
transformation primarily addresses the 
limitations inherent in using non-
normalised data, this research is 
assuming that the data in these two 
papers lacked normality. 

 Limited choice of initial variables. 
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Author Title Year Research Limitations 
Dimitras, A., 
Slowinski, R., 
Susmaga, R. & 
Zopounidis, C. 

Business failure prediction using 
rough sets 

1999  While the acknowledgement of many 
other methodologies is made, the paper 
focuses on a comparison between 
rough sets and “discriminant analysis 
and logit analysis”. This is unusual since 
it could easily be argued that Neural 
Networks were the defacto standard for 
corporate failure prediction by 1999. 

 This application of rough set theory had 
a large dependence on the subjective 
opinions of an expert. 

 Subjective choice of initial variables. 
Varetto, F. Genetic algorithms applications 

in the analysis of insolvency risk 
1999  Did not publish the original or reduced 

selection of variables, nor discuss which 
variables the GA selected. 

 Did not publish the resulting linear 
function that was generated or the 
resulting ruleset for the credit scoring 
system. 

 Subjective choice of initial variables. 
McKee, T. Developing a bankruptcy 

prediction model via rough sets 
theory 

2000  While the research was generally 
sound, it did not compare the results 
with those that would have been 
achieved by using Neural Networks or 
Discriminant Analysis. This severely 
limits its comparative ability. 

 Limited choice of initial variables. 
Anandarajan, 
M., Lee, P., & 
Anandarajan, A. 

Bankruptcy prediction of 
financially stressed firms: an 
examination of the predictive 
accuracy of artificial neural 
networks 

2001  Used only distressed firms in the 
sample, which limits the models ability 
to evaluate the financial status of a firm 
that does not meet the researchers 
criteria of distressed. 

 Did not discuss the structure of the 
Neural Network used. 

 Limited choice of initial variables. 
McKee, T. & 
Lensberg, T. 

Genetic programming and rough 
sets: A hybrid approach to 
bankruptcy classification 

2002  The use of rough sets theory to reduce 
the variables given to the Genetic 
Programming technique is an objective 
technique, but there would have been 
benefit to giving all the ratios to the 
technique. 

 Subjective choice of initial variables. 
Wang, Z. Financial Ratio Selection for 

Default-Rating Modelling: A 
Model-Free Approach and Its 
Empirical Performance 

2004  Sliced Average Variance Estimation is a 
relatively esoteric means of financial 
ratio selection. 

 Neural networks was a popular 
predictive technique available at the 
time that was not tested with the chosen 
variables. 

 Limited choice of initial variables. 
Wu, C. Using non-financial information 

to predict bankruptcy: a study of 
public companies in Taiwan 

2004  Neural networks was a popular 
predictive technique available at the 
time that was not tested with the chosen 
variables. 

 Limited choice of initial variables. 
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Author Title Year Research Limitations 
Shin, K., Lee, T. 
& Kim, H. 

An application of support vector 
machines in bankruptcy 
prediction model 

2005  Optimised input variable selection using 
something other than the accuracy of 
the model in question, potentially 
selecting the non-optimal factors. 

 On the complete training dataset, the 
SVM parameters that yielded the best 
accuracy resulted in a very poor out-of-
sample accuracy. 

Lensberg, T., 
Eilifsen, A., & 
McKee, T. 

Bankruptcy theory development 
and classification via genetic 
programming 

2006  Neural networks was a popular 
predictive technique available at the 
time that was not tested with the chosen 
variables. 

 Limited choice of initial variables. 
Etemadi, H., 
Rostamy, A. & 
Dehkordi, H. 

A genetic programming model 
for bankruptcy prediction: 
Empirical evidence from Iran 

2009  Limited sample size. 
 No comparison with other intelligent 

techniques such as Neural Networks. 
 Optimised factors based on Stepwise 

Discriminant Analysis, with no evidence 
that a factor set optimised to Genetic 
Programming would not have performed 
better. 

Chen, H., Yang, 
B., Wang, G., 
Liu, J., Xu, X., 
Wang, S., Liu, 
D. 

A novel bankruptcy prediction 
model based on an adaptive 
fuzzy k-nearest neighbor 
method 

2011  Limited sample size when using 
bankruptcy data, and acknowledgement 
that the proposed method may not yield 
increased accuracy on large data sets. 

 Limited initial choice of variables. 

Table 2-19 - Comparison of Limitations for Recent Research 

 

One common research limitation is the lack of comparison between major techniques such as 

Neural Networks. While this is understandable since most research tends to focus on a 

particular methodology, a greater comparison of techniques would help bring some unity to the 

area of corporate failure prediction. 

 

Another common limitation, as discussed previously in 2.4.3, is the subjective choice of original 

variables, as only Shin et al. (2005) used a wide array of factors and applied an objective factor 

selection methodology. There is definite insight to be gained by performing some kind of 

objective dimension reduction on a larger array of available variables. 
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2.4.7 Additional Recent Noteworthy Research 

Beyond the research identified previously in this section are a number of recent papers that 

should be highlighted as they provide context to the rest of this thesis. 

 

In “Bankruptcy prediction models based on multinorm anlaysis: An alternative to accounting 

ratios” (Andrés, et al., 2012), the authors find that by computing industry norms using non-

parametric quantile regression, and then detecting deviations from those industry norms, some 

improvements using existing classifiers can be obtained on their dataset of Spanish firms. 

“Enhanced default risk models with SVM+” (Ribeiro, et al., 2012) examines the effect of non-

financial information from additional sources on a selection of French companies and finds that 

prediction performance using SVM can be increased using from the baseline SVM that did not 

include such additional data. In “Simple instance selection for bankruptcy prediction” (Tsai & 

Cheng, 2012), a study is undertaken in which outliers in the data are identified and filtered out 

across four datasets using Neural Networks, Decision Trees, Logistic Regression and Support 

Vector Machines, finding that removing some outliers can improve performance but that 

removing outliers can in some scenarios decrease predictive accuracy.  

 

“Performance of corporate bankruptcy prediction models on imbalanced dataset: The effect of 

sampling methods” (Zhou, 2013) investigates the effect of various forms of oversampling (re-

using the minority class to achieve distribution balance), various forms of under-sampling (using 

only some of the majority class to achieve distribution balance), and in general finds that under-

sampling performs better than over-sampling. “The application of brute force logistic regression 

to corporate credit scoring models: Evidence from Serbian financial statements” (Nikolic, et al., 

2013) uses clustering to identify highly correlated variables across 350 financial ratios to 

generate a shortlist of 24 ratios, and then tests all possible variable combinations that contain 

between 5 and 14 variables to find an optimum combination of those 24 ratios in a Logistic 

Regression model, finding the highest scoring model to contain 8 ratios. 
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2.4.8 Conclusion 

McKee & Lensberg (2002) comment, “A common approach to bankruptcy prediction is to review 

the literature to identify a large set of potential predictive financial and/or non-financial variables 

and then develop a reduced set of variables, through some combination of judgmental and 

mathematical analysis, that will predict bankruptcy. However, a problem exists in that the 

various models developed normally use both different variables and different forms to specify 

the relationships between these variables. Thus, after 30 years of research on this topic, there 

is no generally accepted model for bankruptcy prediction that has its basis in a causal 

specification of underlying economic determinants. Clearly, research convergence will be 

necessary for this situation to improve.” This situation remains largely unresolved over 10 years 

later. Many papers such as those included in the previous sections use arbitrarily selected ratios 

(though some papers do use an objective variable selection method), use small sample sets 

(though some do use large sample sizes), compare just one or two newer methodologies 

(though some compare more), use just one data set (though some use two), and very few 

perform any kind of post-prediction analysis that investigate how or why their models have 

classified the cases in the datasets correctly or incorrectly. 
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3. Review of Corporate Failure Theory 

So far, the literature review has drawn attention to academic work focused on the prediction and 

classification of corporate failure. While some of those papers utilise their findings to develop 

overall theory on corporate failure, such as Lensberg et al. (2006), with "Bankruptcy theory 

development and classification via genetic programming", the theoretical framework behind 

bankruptcy is generally not examined in the scope of corporate failure prediction. It is 

worthwhile to review the theory of corporate failure from an finance viewpoint, as doing so 

highlight opportunities to forge links between corporate failure prediction and corporate failure 

theory. 

 

Unlike the prediction of corporate failure however, the theory of bankruptcy is a much more 

matured area. While the Journal of Banking & Finance, for instance, yields many more journal 

articles focusing on the prediction of failure than discussing the underlying theory of failure, the 

number of published books in relation to general corporate failure far outnumbers the number of 

published books on bankruptcy prediction. The motivations for reviewing the literature are also 

different. Instead of critically analysing the research to identify potential weaknesses and 

develop a new direction, the analysis of corporate failure theory instead aims to identify a 

commonly accepted theoretical framework that can be used to develop questions that relate to 

corporate failure prediction. 

 

As a result of this review, there is an opportunity to put a magnifying glass to some of the 

recurring themes discussed and identify questions that can potentially be answered by this 

thesis. 

 

3.1 The Literature 
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3.1.1 Selection Methodology 

There were not a sufficient number of books on the topic to develop specific criteria such as 

those used for corporate failure prediction journal articles. Instead, texts were selected by a 

combination of subjective and objective criteria including the number of sources referencing the 

material, how recently the text was published, its contribution to the overall body of knowledge 

and its availability. For example Ross & Kami (1973) has been included in the literature review 

because that research appears to have heavily influenced the findings of Argenti (1983), which 

in turn has become the basis of a generally accepted theory of corporate failure. 

 

3.1.2 Ross & Kami (1973) 

Ross & Kami’s “Corporate Management in Crisis: Why the Mighty Fall” is heavily referenced in 

Argeni (1976), Kharbanda & Stallworthy (1985), and Clarke et al. (1997), and was one of the 

first texts to build a theoretical framework of corporate failure. Ross & Kami propose that while 

there are a number of circumstances surrounding a company failing, the ultimate cause is bad 

management. 

 

Ross & Kami identify the “Ten Commandments of Management” (p. 21), as follows: 

1. Develop and communicate a strategy …a unified sense of direction to which all 

members of the organisation can relate. 

2. If you want to achieve plans, programs, and policies, then overall controls and cost 

controls must be established. 

3. Exercise care in the selection of a Board of Directors and require that they actively 

participate in management. 

4. Avoid one-man rule. 

5. Provide management depth. 

6. Keep informed of change and react to change. 

7. Don’t overlook the customer and the customer’s new power. 
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8. Use but don’t misuse computers. 

9. Do not engage in accounting manipulations. 

10. Provide for an organizational structure that meets the need of people. 

 

The book goes on to study numerous cases of corporate crisis, finding that in each situation 

most of the Ten Commandments have been violated. 

 

In each case, Ross & Kami discuss the “lessons to be learned”. Of those lessons, some are 

worth noting since they go beyond the above Ten Commandments and come up so regularly in 

future research. 

 “If you take the calculated risk of losing money–you usually do” 

 “The acquisition chain letter can’t go forever” 

 “Change is accelerating and so must the company’s reaction to changing times” 

 

3.1.3 Argenti (1976) 

This book, “Corporate Collapse: the causes and symptoms” is particularly useful because it is 

one of the first theory-focussed texts on corporate failure, and has come to be a very popular 

secondary source for future corporate failure research. 

 

Through an extensive literature review and interviews with a number of notable experts, Argenti 

found that there was agreement between experts and the literature on a number of causes and 

symptoms of business failure, such as problems with management, lack of accounting 

information, overtrading, lack of adaptation to change, and creative accounting. On the other 

hand there were possible causes of failure that were found in one source but not the other; for 

example the experts discussed high gearing while the literature discussed economic cycles.  
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Argenti also documented the findings of his analysis on two significant corporate failures of the 

time, Rolls-Royce and Penn Central. In doing so, Argenti found evidence to support 

management problems, accounting information, change, creative accounting, a big project, 

inflation and gearing as possible causes and symptoms at Rolls-Royce. Meanwhile the research 

at Penn Central uncovered evidence to support management problems, accounting information, 

change, constraints, economic cycle, a big project, creative accounting, and gearing. 

 

Argenti went on to claim, “no one seems ever before to have tried to coordinate all the 

knowledge about failure that lies scattered through the literature and in the minds of 

innumerable experts all over the world”, but that is not what makes Argenti’s research so 

unique– the text goes beyond a simplistic list of causes and symptoms, instead to the 

“dynamics of failure, the sequencing of events” (p. 121). After discussing a combined list of 

causes and symptoms of failure, he identified three main “trajectories” of corporate failure as 

follows in Figure 3-1. 
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Figure 3-1 - The three types of Failure Trajectory (Argenti, 1976, p. 150) 

 

Argenti wrote, “Type 1 failures occur only to companies newly formed and, almost invariably 

therefore, affect only small ones. Argenti, however, describes a company which could almost 

certainly have been classified as Type 1, launched with a capital outlay of $17m” (p. 153). It 

could be argued that even companies with a capital outlay of $17m are vulnerable to Type 1 

failure. 
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Argenti goes on to say that the launch of a company often brings with it a number of key defects 

such as one-man rule, lack of management depth, an unbalanced top team, no budget, no cash 

flow plan, no costing system, loan interest and depreciation are not considered by management, 

there has been no allowance for losses, no knowledge of marginal cost or contribution, high 

gearing, and of course the big project. The cash flows and profits are negative, resulting in poor 

financial ratios. Creative accounting may begin, overtrading may begin in a vain attempt to 

control the crises, a further loan may increase gearing, but finally capital is exhausted and the 

company fails (pp. 154-156). 

 

“Type 2, on the other hand, shoots upwards to ‘fantastic’ heights before crashing down again as 

did IOS, Atlantic Acceptance, Stirling Homex, and others” (p. 151). Similarly to Type 1 

companies, the same management defects are present, “but there is one very prominent and 

identifiable difference, namely that while the proprietor of a Type 1 company is not notable for 

his outstanding personality, the proprietor of a Type 2 is.” “While the Type 1 proprietors are 

engineers, technicians, marketing men, hairdressers, welders, builders and other mortals, Type 

2 proprietors are super-salesmen; they are leaders of men, flamboyant, loquacious, restless 

and bubbling with ideas. The scale of their ambition is almost pathological. They never accept 

advice, they ‘know it all’” (p. 158). The Type 2 trajectory differs from Type 1 due to the 

personality traits of the proprietor and a great product, resulting in a monumental increase in 

sales. As sales grow, capital resources are required. Argenti notes that so far, the trajectory is 

not so different from the non-failing trajectory. But instead of levelling off, the sales, profits and 

capital all continue to expand. The press gets involved and soon the company becomes so 

large that formal management is required. But one-man-rule continues, as do a number of other 

key defects. It is not long before turnover is continuing to increase but profits are not, 

immediately resulting in creative accounting. “In a frantic attempt to keep turnover and profits 

rising… [the proprietor] now reaches into the absurd” (p. 159). Argenti gives the example of 

Atlantic Acceptance beginning to lend money to those who could not afford to give it back, 
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having lent money to everyone that could, an example that is reminiscent in the 2008 Global 

Financial Crisis, the effects of which continue today. The result in this case was overtrading, 

and all it takes is a normal business hazard and failure is not far away. The press draw attention 

to the problems, the banks and stock market punish the company, and so the capital runs dry. 

 

Finally Type 3 failure occurs in companies that have been successfully trading for a long time. 

Argenti notes some key defects very early in the trajectory such as “one-man rule or chairman-

chief executive or unbalanced top team or non-participating board or lack of management depth 

or weak finance function” (p. 161). Further to this is a lack of attention to budgetary control or 

lack of a timely cash flow forecast. At some point a change in the market occurs, but 

management do not respond to the change. As a result of these defects, perhaps years later, a 

big project will be launched or overtrading will occur. Argenti argues that the first crash takes 

place as a result of two things going wrong at the same time, such as a failed project and a 

business hazard, resulting in a profit fall that is reflected in financial ratios. Morale begins to 

falter and profits do not recover. Creative accounting starts, a loan is obtained and gearing 

rises. Once the competitive edge is lost and the gearing has risen, Argenti calls the company 

waterlogged (p. 162). The high gearing results in high interest repayments and therefore low 

profits, and the lack of competitive edge means that it won’t take much to cause an 

unrecoverable spiral toward failure. A big project is undertaken to try and slingshot the company 

back into the black, but the project is too resource intensive for the company to handle. On the 

other hand, “a small project would be safe but, of course, it would be too small to solve the 

problem” (p. 164). The company is in a fix. 

 

Argenti states “while refusing to admit that more than three trajectories are needed to explain 

the vast majority of failures that occur, I do feel bound to admit that a company following one 

trajectory could switch to another” (p. 166). That could, if the right changes in the company were 

made, include switching to a non-failure trajectory. 
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Two particularly recurring themes in this text are creative accounting, and a focus on whether 

the company is currently profitable, however hidden by creative accounting. 

 

3.1.4 Kharbanda & Stallworthy (1985) 

While Kharbanda & Stallworthy’s book, “Corporate Failure: Prediction, Panacea and Prevention” 

has not been as heavily referenced as Argenti (1976), it is useful to review because it 

acknowledges the Argenti trajectories and causes of failure, but focuses entirely on the effect of 

management. 

 

The chapter “Management is the Crux” breaks the success of a company down into a number of 

important qualities including “’back to basics’ management’”, “consisting of the assimilation of 

news, information and comment, leading to knowledge”, which in turn is associated with 

“commitment and discipline”; interpersonal relations; effective communication; the company 

culture; company excellence, which includes “a bias for action”, being “close to the customer”, 

“autonomy and entrepreneurship”, “productivity through people”, “hand-on, value-driven”, 

staying “close to the business they know”, an “elegant structure”, and a “subtle combination of 

centralized and decentralized control”; acknowledgement of management lessons taken from 

eastern cultures; teamwork; and finally, a good leader. 

 

One interesting comment made in Kharbanda & Stallworthy is that “one-man rule can be a 

success, but it depends so much on the man”. Kharbanda & Stallworthy have appeared to 

support one-man rule in some circumstances, while previous authors have discredited it. 

Argenti acknowledges the instances of one-man rule that have not failed, but instead of 

qualifying the personality of the autocrat, attributes these cases to an insufficient number of 

other management defects to cause major problems (Argenti, 1976, p. 124). 
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Kharbanda & Stallworthy have used a number of cases to test their hypotheses. The first being 

Penn Central, the finding was made that while a “hostile environment” and “low profits” were 

contributing factors, faulty management “is the only item on which action could have been 

taken”. The next case is Rolls-Royce, where the findings of Argenti are discussed. However, 

rather than structuring the blame back to “the big project” or “lack of accounting information”, 

these causes are instead attributed to management problems. 

 

3.1.5 McRobert & Hoffman (1997) 

“Corporate Collapse: An Early Warning System for Lenders, Investors and Suppliers” was 

published as a direct follow-on to Argenti (1976). The forward, written by Argenti, acknowledges 

some of the weaknesses that are present in his own theoretical framework, mainly in Asian 

environments, and praises McRobert & Hoffman for having “updated my studies into the 

modern world”, but also having “shifted the centre of gravity from the Anglo-American economic 

areas” (McRobert & Hoffman, 1997, p. v). 

 

It is not necessary to rehash the elementary similarities between Argenti (1976) and McRobert 

& Hoffman (1997). Being based on the same theoretical framework it is not surprising that the 

fundamental model is the same. However, McRobert & Hoffman identify “inadequate strategic 

understanding”, under the management heading, as one of the primary causes of failure. 

 

While similar to overtrading (which also features), McRobert & Hoffman identify diversification 

as a cause of failure. The argument is made that “those who succeed on the first, steep 

segment of the development curve often have difficulty with the second”, as a result the 

organisation diversifies into areas of business that allow it to focus on that same development 

curve. The result is that the new operations lead to overtrading and loss of control. It is possible 

that the addition of this cause of failure to the theoretical framework is in response to many 

recent company’s failures through over-diversification. The example is given in the book of the 
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Westpac Banking Corporation, which between 1987 and 1993 very nearly reached insolvency 

for this reason. 

 

McRobert & Hoffman highlight the need for internal controls in an organisation. They comment, 

“the controls may be absent because an autocratic chief executive has over-ridden them, or 

because the industry or company culture chooses to disregard them, or because a rapid growth 

in activity has outpaced the usefulness of the existing system”. While both the first and third 

reasons for controls being absent are in themselves causes of failure, it is a valid point that the 

presence of internal controls can help identify, avoid and rectify problems caused by one of the 

many other causes of failure. 

 

Overtrading features heavily in both Argenti (1976), and in McRobert & Hoffman (1997). 

However McRobert & Hoffman break overtrading down into the exhaustion of one of three types 

of resources: physical, human and financial. Comment is also made on the possible exhaustion 

of management structure resources. McRobert & Hoffman argue that while these resources can 

be stretched, the situation becomes “very unstable”.  “A critical piece of machinery will fail 

suddenly and expensively through lack of maintenance. A key executive, unable to withstand 

the pressure, will collapse or resign. A major creditor will lose faith and/or patience and will 

present the company with an ultimatum. Each of these instances can lead to and has led to 

failure and collapse.” 

 

Unlike Argenti, McRobert & Hoffman separate the causes of failure and their symptoms. Instead 

of repeating their findings, Figure 3-2 will summarise the relationships they theorise exist 

between causes and symptoms. 
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Figure 3-2 - Causes & Symptoms of Failure Part 1 (McRobert & Hoffman, 1997) 
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inflating profits on the financial statements. Furthermore there is evidence given of high gearing. 

Clarke, Dean & Oliver also comment, “At the management level, the RMH Board was 

dominated by its founding chief executive” – yet another Argenti cause of failure. Finally, the 

comment is made “The pattern of the rise and fall of Reid Murray is familiar”; it “shows what 

John Argenti described as a trajectory pattern of ‘remarkable ascent and rapid demise’”. 

Interestingly, the comments of B.L. Murray QC and B.J. Shaw QC, “reporting to the Victorian 

Parliament in 1963 on the causes of Reid Murray’s collapse”, are highlighted. “They concluded 

that the defects in RMH’s accounts were partly responsible for the collapse”. 

 

Perhaps the most relevant finding to this thesis is the effectiveness with which the current 

accounting system allows for insolvent companies to appear perfectly healthy – even after a 

perfectly legitimate audit. Clarke, Dean & Oliver take the position that the prediction of failure 

cannot be accurate when it is based on financial ratios since the ratios themselves are so open 

to manipulation. This opinion seems to be at odds with the findings of Beaver (1966), Altman 

(1968) and the journal articles on corporate failure prediction that followed. 

 

This disparity can be resolved somewhat by acknowledging two key points. First that not all 

companies fail like those in Clarke, Dean & Oliver (1997). Altman’s predictive mechanism may 

be highly successful at predicting failure, but may not be so accurate when faced with a 

company that has gone so far out of its way to act fraudulently. Second, that even though a high 

profit, and good quick ratio may fool some people into thinking a company is healthy, statistics 

can be harder to trick, especially if it is designed to find not just poor performance, but also 

abnormal performance. 
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3.1.7 Probst & Raisch (2005) 

This journal article, published in the Academy of Management Executive and titled, 

“Organizational crisis: The logic of failure”, is one of the few more recent journal articles that 

discusses the causes of organisational failure. 

 

In acknowledgement of six major bankruptcies from the year 2000, Probst & Raisch (2005) 

undertake a multiple case study of “the 100 largest organizational crises of the last five years” 

with the aim of achieving a “more complete theoretical explanation of the failure of successful 

firms”. 

 

What makes this publication so unique is that regardless of the considerable amounts of 

bankruptcy research and the maturity of the area, Probst & Raisch have undertaken exploratory 

research, and this is reflected by their choice of the multiple case study as a research 

technique. Yet their findings are quite different to the findings of other exploratory research. 

 

The choice of exploratory research appears to be in response to a surprisingly large number of 

big company bankruptcies. The article begins, “Reports of crises in once highly regarded 

companies dominated the business news during the first three years of the new millennium. 

WorldCom, Enron, Conseco, Global Crossing, United Airlines, Kmart… each month brought the 

sound of another titan crashing to earth.” The logic follows, if corporate failure and how to avoid 

it is well understood, why does it unexpectedly happen with companies that are thought to be 

financially sound? 

 

Through the case study, Probst & Raisch identify two primary causes for unexpected crash or 

bankruptcy, “The Burnout Syndrome”, and the “Premature Aging Syndrome”. These syndromes 

are identified by a number of characteristics, as demonstrated in Figure 3-3. 
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Figure 3-3 - Theoretical Framework for Probst & Raisch (2005) 
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particular it is argued that other measurements of a company’s financial health will be more 

useful in classifying failure. 

 

Fusaro & Miller (2002, p. 146) note that on news that Enron’s quality of earnings might be lower 

than anticipated their share price fell from $42 to $40 per share, suggesting that the market is 

able to assess a firm’s financial health better than is reflected in the company’s annual financial 

statements themselves. Therefore the question is asked “Does the inclusion of share market 

information increase the classification accuracy?” 

 

3.2.2 Accounting Manipulation 

Very much related to a lack of accounting information is the deliberate reporting of misleading 

accounting information, designed to make the company look healthier than it actually is. It is 

argued therefore that, like section 3.2.1 above, the inclusion of non-financial information such as 

share market information will increase accuracy of a predictive model. It is further argued that 

companies in which accounting manipulation is known to have occurred are likely to be 

misclassified as non-failure when only accounting information is available to the model.  

 

3.2.3 Overtrading 

Overtrading is generally accepted in the literature to be a major cause of failure for Argenti Type 

2 failures. While it is difficult to measure the exhaustion of physical or human resources from 

outside the company, insight into a company’s financial resources – in particular its cash 

position – can be gained from annual financial statements. The question is therefore raised, 

“What impact does cash have a model’s ability to predict failure?” However to simply identify 

cash factors as a useful predictor does not prove that overtrading was present, or whether or 

not it was a cause of failure. If a model is developed that appears to detect overtrading, it is 

necessary to identify a case for which overtrading occurred and validate the results of the model 

against it. 
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3.2.4 High Gearing 

Another common cause of failure identified in the literature is the level of debt a company faces 

relative to its earning ability. As gearing increases, a firm’s survivability is expected to decrease. 

Loans have interest repayments, and often clauses that make the entire loan due at the most 

difficult of times. Even Enron’s use of pre-pays, while classified as “trading liabilities”, had their 

own sequence of interest-like expenses (McLean & Elkind, 2003, p. 159). 

 

As gearing increases, so does the company’s cost of interest, until eventually the loan related 

expenses exceed the company’s gross profit. Alternatively, high gearing can leave a company 

profitable but cause cash flow problems as the various forms of credit become due. A recent 

Australian example is that of the Nine Network, which in 2012 faced external administration with 

“forecast earnings before interest, tax, depreciation and amortisation (EBITDA) of $253 million” 

(Gluyas, 2012). The problem, however, was the “$3.2 billion debt” (Whalley, 2012), which was 

resulting in interest repayments of “$379 million in 2010-11” (Shoebridge, 2011). 

 

Therefore this thesis asks the question “Is gearing an important factor in the successful 

classification of company failure?”, and furthermore, “Is there evidence of high gearing in cases 

that were correctly classified?” 

 

 

3.2.5 Industry Classifications 

The previous chapters touched on the lack of industry-specific discussion in the existing 

research. While the fundamental causes of corporate failure may be the same in all companies, 

some industries (such as manufacturing which has high initial capital costs) may be more prone 

to overtrading, while other industries (such as the highly regulated airline industry) may be more 
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susceptible to external constraints. In turn, these industries are expected to exhibit different 

failure symptoms. 

 

Furthermore, there are market-wide forces that influence all industries simultaneously, such as 

a general downturn in the economy. There are also forces that simultaneously affect a cross-

section of industries, such as industries that deal internationally being heavily affected by 

changes in the value of the dollar. There are also external forces that simultaneously affect a 

number of specific businesses, such as businesses with a small number of employees being 

similarly affected by changes to unfair dismissal laws, even though they may come from 

different industries. Finally there are forces that influence an individual organisation. Thus, 

forces have a “scope”, as follows in Figure 3-4. 

Figure 3-4 - Scope of Forces on Organisations 
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As can be seen from this figure, a given company may be under the influence of market-wide 

forces, cross-industry forces, industry-wide forces, cross-organisational forces and organisation-

wide forces. Meanwhile a different company is under the influence of the same market-wide 

forces, some of the same cross-industry forces, the same industry-wide forces, some of the 

same cross-organisational forces, with entirely different organisation-wide forces. 

 

While two companies may have very different causes (and therefore symptoms) of failure, a 

predictive model can only be successful on the assumption that companies exhibit similar 

symptoms prior to failure or non-failure. The question then becomes, how can a predictive 

model accurately classify companies, when the symptoms of failure between companies may 

vary so greatly? 

 

A possible solution to this problem is to use different models on groups of companies. However, 

as the number of models increases, the number of cases within each group that the model can 

learn from is reduced. In the extreme case of developing a different model for every company, 

the models would not be exposed to even a single bankruptcy condition until the company in 

question had already failed, and therefore the models would not be predicting anything at all. 

 

It is tempting to manually classify companies into groups, perhaps based on industry and size 

as much predictive research in the literature review with small sample sizes have done, but this 

method is arbitrary and subjective, and as shown in the above figure companies in the same 

industry may be under the influences of different forces. 

 

This thesis therefore asks the question, “Can objective clustering be used to improve 

classification accuracy?”, “Is such a clustering method more effective than grouping by 

industry?”, and “Does the inclusion of market-wide macroeconomic factors increase 

classification accuracy?” 
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4. Methodology 

With a review of the existing research complete, it becomes necessary to outline the 

methodology that will be used by this thesis to address the questions raised in section 3.2. 

 

4.1 Data Preparation 

4.1.1 Data Sources 

For this research, two data sources have been considered. The first data source is companies 

with the country code “USA” from the Compustat “Legacy” Global Industrial/Commercial dataset 

provided by Wharton Research Data Services (WRDS). WRDS provides many datasets, and at 

first glance it may seem unusual to select the “Legacy” dataset which only contains from 1989 

to 2008 inclusive, when there are many similar alternatives including the Compustat North 

American Annual database which includes data up until the current year. However, when 

compiling data, it became apparent that in some datasets key fields required for the following 

chapter had low data availability. For example, many fields had 70% data availability in the 

North American Annual dataset, and 95% data availability in the Legacy Global 

Industrial/Commercial dataset which allowed for a more comprehensive testing of factors. 

 

The Legacy Global Industrial/Commercial data source is provided as a comma separated file 

(CSV), with each row representing a given company at a given date, and uses field names such 

as “data75” as the label for the data “Current Assets – Total”. This dataset includes 

approximately 93,220 company-years represented as rows, with each containing some or all of 

189 financial variables represented as columns. 

 

Within the dataset, companies are uniquely identified by their “GVKEY”, a proprietary number 

assigned to each corporate entity that does not change even when the company name or the 

stock ticker symbol are changed over the company’s life. Companies in the Compustat 
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database also contain a “CUSIP” code which is a 9 character code that is assigned by a third 

party, in which the first 6 characters identify the company (stored separately as the field 

“CNUM”), the next two characters identify the asset issued by that company, and the last 

character serves as a check digit. This CUSIP code becomes important when joining this 

dataset with others, as will be done when investigating the effect of stock market information in 

chapter 5. 

 

Date information within this Compustat data source is stored through a number of fields, 

including “FYR” which indicates the month that ends that financial statement’s fiscal year, and 

the “YEAR” field which indicates either the year starting the fiscal period (if the FYR field is 

between 1 and 5 inclusive) or the year ending the fiscal period (if the FYR field is between 6 and 

12). The Compustat Legacy data also includes the field “SCALE” which indicates whether the 

data is stored in millions (scale 3), billions (scale 6) or trillions (scale 9). 

 

The second data source has been provided by Lincoln Indicators, who have provided data files 

from Aspect Financial Pty Ltd (referred to as “Aspect”) from 1987 through 2006 inclusive: 

 AspectFullReplace.mdb – The original file of companies from Aspect 

 FailedData.mdb – An addendum file of failed companies from Aspect 

 AspectFailed2006-07-13.mdb – An addendum to FailedData.mdb 

 

The data, in Microsoft Access Format, contains a number of related tables – notably: 

 tblFinancialValueAnnualRaw – “Raw” data supplied by the company 

 tblFinancialValueAnnualTotal – Data modified by Aspect to create consistency 

 tblFinancialItemRaw – a data definition of ItemIDs 

 tblFinancialItemTotal – a data definition of TotalItemIDs 
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Once the data had been pre-processed (see section 4.1.2) this dataset contains 11,239 

company-years with 670 financial variables. 

 

4.1.2 Data Pre-processing 

The Compustat data source requires some modification prior to using it within the research. 

Firstly, some USA companies report in currencies other than the United States dollar, so any 

companies reporting in currencies other than USD were excluded. Secondly, the Compustat 

data source includes the variable “scale” which indicates the multiplier of the inputs contained 

within and needed to be applied to each row. 

 

Within each financial variable, some items contained non-numeric information. For example, 

data19, “Interest and Related Income” sometimes contains the value “C”. These non-numeric 

data fields generally indicate some kind of missing data, and are able to be substituted with 

NULL for simplicity. 

 

Unlike Compustat, the Aspect data source arrived in multiple files. In order for the data to be 

analysed by various software, the disparate data sources and tables needed to be combined. 

As such, a large amount of pre-processing was needed to create a file with a horizontal format 

with company-years appearing as each row, and each financial variable appearing as each 

column. 

  

The method used for pre-processing the Aspect dataset is shown in Figure 4-1, resulting in 706 

variables that become columns, and 12,193 company-years that become rows: 
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Figure 4-1 – Initial Pre-processing of Aspect Data 
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4.1.3 Definition of Failure 

As this thesis will utilise a number of supervised learning techniques such as Neural Networks, 

it is necessary to include a single output column that indicates “failure”, and the calculation of 

that column requires an operationalised definition of failure. Beaver (1966) defined failure as 

bankruptcy, bond default, overdrawn bank account or non-payment of a preferred stock 

dividend, while Altman (1968) used “Chapter X of the National Bankruptcy Act”. While the 

definitions of failure vary, particularly within Australia where only individuals can become 

bankrupt, what holds true across previous research is that a firm that fails outside of a specific 

period of time is considered “non-failed” though there is little discussion about what that period 

of time should be. The research identified in sections 2.2.1, 2.3.1 and 2.4.1 sometimes use a 

“failed in 12 months” definition, sometimes classifies every company-year as failed if the firm 

ever fails, or sometimes uses a different failure horizon. 

 

Argenti (1976) outlines how failure manifests itself in the years leading up the actual bankruptcy 

event, and that research highlights how symptoms of bankruptcy will begin to appear well 

before the actual bankruptcy event, something that this research intends to test. The definition 

of failure that is selected here will change the nature of supervised learning algorithms in that 

the system will optimise towards successful predictions of the chosen definition, so it is 

important not to select a failure horizon that is too short and will therefore be unable to perceive 

longer term symptoms. Likewise selecting a failure horizon that is too long will cause a learning 

algorithm to perceive a company that was healthy at that time to be treated as a company-year 

that exemplifies a company that will fail, which would reduce accuracy of the predictive model. 

This hypothesis is supported in many papers which examine the effect of modifying the failure 

horizon, for example in Deakin (1972). Because this thesis is, among other things, interested in 

examining the links between corporate failure theory and bankruptcy prediction research, it was 

decided to utilise a medium-term horizon of failure (a “failure event” within a 4-year period), this 

research can therefore avoid the unnecessary exclusion of long-term failure symptoms in the 
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factor selection process. There is existing evidence that failure can be successfully identified 

within this time period (Beaver, 1966). 

 

As with the research reviewed in section 2, it is also necessary to clearly define what constitutes 

a “failure event” within the dataset. Within a United States based dataset, bankruptcy filing is a 

commonly used definition. Within an Australian dataset, the close equivalent “external 

administration” can be used. While these are perfectly adequate definitions of failure, it must be 

acknowledged that this decision was primarily driven by the available data as will be examined 

in the following subsections. For example, the Compustat data source includes information for 

each company-year on whether that unique company is still active, and if not the reason and 

date for its inactive status. This provides an excellent source of failure data that does not require 

the combining of disparate data sources. 

 

Note that the definition of failure within each dataset causes some inconsistencies between the 

United States and Australian cases. In the case of Australian data, external administration 

typically occurs when a company is no longer able to meet its debts as they fall due, and to 

trade a company while “insolvent” is a criminal act under section s588G(3) of the Corporations 

Act. Conversely, Chapter 11 bankruptcy protection in the United States allows management to 

continue trading while protecting the company from its creditors during restructuring, and is 

therefore typically used earlier in the failure cycle. 

 

The Compustat financial data source includes failure data by way of the field “INCO”, which 

contains a number as to why that particular company is no longer listed, and “INCOD” that 

contains the date that the company was delisted. Only some INCO codes are relevant to failure, 

however, so a brief analysis of the failure codes is presented here. Within the data source of 

93,220 rows, 46,620 contain an inactive code representing just over 50% of the dataset. 

However, of those inactive codes, 36,560 company-years were delisted due to “Acquisition or 
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merger”, while only 1,880 were delisted due to “Bankruptcy”, 1,140 due to “Liquidation”, and 

7,040 due to other reasons such as becoming a private company or otherwise not specified. 

While it is certain that some financially troubled companies are included in the “Acquisition or 

merger” set, there are certainly companies in this set that were not in financial difficulty and 

therefore this INCO code cannot be used in either failure or non-failure data. The reduced set 

therefore contains 3,020 company-years of failed companies, and 46,600 company-years of 

non-failed companies, which means that failed company-years constitute approximately 6.5% of 

the dataset. 

 

By comparison, the Aspect dataset does not include any indication regarding whether a given 

company has been delisted or gone into administration, and it therefore becomes necessary to 

source such data elsewhere. To this end, the Australian Securities and Investments 

Commission (ASIC) maintain accurate records of both private and public companies entering 

administration, the date on which it occurred, and the Australian Company Number (ACN) used 

as the unique identifier. This dataset was purchased by Monash University and funded by the 

Australian Research Council’s Australian Postgraduate Award Industry (APAI), project ID 

0453884.  

 

The ASIC data then needed to be cross-referenced to the resulting Aspect dataset. Both 

datasets contain the Australian Company Number (ACN), which can be cross referenced 

against the list of companies that have entered administration. This allowed the status code, the 

date the company entered this status, and the failure date to be included in the Aspect dataset 

as additional columns, however there were some companies in the Aspect dataset which did 

not include the ACN and had to be excluded from the dataset entirely. As a result of this 

process, the Aspect dataset contained 1,322 of failed company-years and 9,917 of non-failed 

representing approximately 11.8% of the sample as failed. 
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Once the failed and non-failed company-years had been identified within each dataset, the 

failed and non-failed sets were randomly divided into equal sets of in-sample training data, in-

sample validation data, and out-of-sample validation data (“applied data”). While the in-sample 

training data is used to directly train the models, the in-sample validation data is used by many 

techniques (such as Genetic Programming) to measure the performance of a solution on data 

that the technique has not been directly exposed to, and thus determine whether that solution 

has successfully identified underlying relationships in the data. However, as solutions that 

perform well on the in-sample training data but poorly on the in-sample validation data are 

automatically discarded, the model is also being trained on the in-sample validation data 

(though indirectly). It therefore becomes necessary to use an out-of-sample validation set to 

independently measure the methodology’s accuracy. Some techniques, such as the Neural 

Network method used in this chapter, use techniques that do not require an in-sample validation 

set, and in these cases the in-sample training and in-sample validation sets are combined, but 

the out-of-sample set is still reserved to independently measure accuracy. 

 

There are two things worth highlighting regarding the division of these sets. The first is that the 

division of data into equal portions was done to ensure sufficient failure cases were present in 

each set to provide an accurate percent-hit and percent-miss result. The second is that when 

using time series data such as this it is generally accepted to use the most recent in the out-of-

sample set (with either random or sequential attribution used only for training and testing sets). 

The implicit assumption in this practice is that the out-of-sample set is used to ensure that the 

predictive system is able to predict future cases from past data (in spite of the environment 

changing) – that is, that the resulting predictive accuracy is indicative of how the predictive 

system would perform on real out-of-sample data in a changing environment. While this will be 

tested in chapter 7 of this thesis, for now the changing environment (such as the lead up to the 

Global Financial Crisis) could impact on the results, so hence random sampling across time-

series data is used. 
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4.2 Evaluation of Modelling Techniques 

It is important to perform an analysis and selection of available modelling techniques that are 

appropriate to the datasets being used. As it is impossible to evaluate every possible modelling 

technique, this thesis will focus on modelling techniques that have been popularly or recently 

used in the literature review in section 2, which can be summarised as follows: 

 Discriminant Analysis 

 Linear Regression 

 Neural Networks 

 Genetic Algorithms 

 Genetic Programming 

 Support Vector Machines 

 

Unlike the other techniques noted here, Genetic Algorithms are generally used as a component 

in a larger classifier algorithm, rather than acting as a standalone classification technique. Once 

exception is Varetto (1999), who predefined a Genetic Linear Score (GLS) as: 

GLS ൌ ܽ଴ ൅ ܽଵܴ௛ଵ ൅ ܽଶ ௝ܴଶ ൅ ⋯൅ ܽ௡ܴ௠ 

“in which ܽ଴ indicates the constant, ௝ܽ the ith coefficient, ܴ௞௜ the kth variable (ratio) of the ith 

family of variables”, therefore building in the assumption that corporate failure can be effectively 

modelled by this arbitrarily selected linear classification algorithm. More commonly however are 

examples such as Anandarajan et al. (2001) who utilise Genetic Algorithms as the learning 

algorithm within a Neural Network solution, or Min et al. (2006) who predominantly use the 

Genetic Algorithm component to optimise the parameters of Support Vector Machines. As it is 

not commonly used as a standalone classification algorithm, but as a component in other 

classification algorithms, it has been excluded from this comparison. 
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To ensure a fair comparison, it was necessary to define ahead of time exactly how the data was 

to be presented to each technique. Firstly, a selection of factors is required, but until the 

modelling techniques have been chosen, the experiments which identify key factors that are 

outlined in section 4.3 cannot be performed, creating somewhat of a “catch 22”. Therefore this 

chapter will use the financial ratios from Altman (1968) for which data is consistently available 

as follows: 

 

 Working capital to total assets 

 Retained earnings to current assets 

 Earnings before interest and taxes to current assets 

 Sales to total assets 

 

Another question that needs to be answered is whether the provided financial ratios should be 

normalised prior to being presented to each modelling technique. To assist in this decision, 

normalised with default parameters, normalised with optimised parameters and unnormalised 

data from the datasets was provided to all available techniques. 

 

4.2.1 Data Normalisation 

Some of the techniques in question, particularly statistically based methods such as 

Discriminant Analysis, are highly sensitive to data where the distribution is non-normal. For this 

reason, it is common to apply a number of normalisation techniques in which the goal is to 

transform the data to a normal distribution while minimising the loss of information. For 

example, linearly scaling data to values between 0 and 1 has the effect of preventing outliers 

from dominating the statistical functions used, but if most of the data is centred on the mean 

then the ability to differentiate between cases can be reduced. By comparison, logistic 

normalisation has the effect of maintaining a mostly linear relationship around the mean, but 

becoming more and more non-linear as the extremes of the data are reached. This has the 
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effect of allowing a modelling system to differentiate between the majority of cases, but 

potentially hiding the size of outliers in the dataset. 

 

For the purposes of an example, the ratio working capital to total assets from the Compustat 

database is presented in Figure 4-2 as a histogram, showing that almost all cases have values 

between zero and one, but outliers cause the histogram to require buckets that can span 

between -250 and 50, so for convenience a histogram with buckets showing only between -1 

and 1 is presented as well. 

  

Figure 4-2 - Histograms of Working Capital to Total Assets 

 

It can be seen that a normal curve is apparent, though outliers could potentially cause issues for 

modelling systems. The question then becomes one of deciding which normalisations to apply. 

The most commonly used normalisations with their respective algorithms are shown below, and 

these normalisations are supported by most data modelling implementations: 

 Variance ቀݔ௡௢௥௠ ൌ
௫ି௫̅

ఙ
ቁ 

 Range ቀݔ௡௢௥௠ ൌ
௫ି௫೘೔೙

௫೘ೌೣି௫೘೔೙
ቁ 

 Logarithmic ൫ݔ௡௢௥௠ ൌ ݈݊ሺ݃݀ܽݎሺݔ െ ሻݐ݁ݏ݂݂݋ ൅ 1ሻ൯ 

 Logistic ቀݔ௡௢௥௠ ൌ
ଵ

ଵା௘ష೒ೝೌ೏ሺೣష೚೑೑ೞ೐೟ሻ
ቁ 

 Sigmoidal ൫ݔ௡௢௥௠ ൌ tanh൫݃݀ܽݎሺݔ െ  ሻ൯൯ݐ݁ݏ݂݂݋
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The logarithmic function applies a mostly linear mapping around ݔ௠௜௡, becoming less linear as 

values of ݔ increase, which makes it an excellent choice for exponentially distributed values. 

The sigmoidal and logistic functions are mathematically similar, due to the fact that tanh ݔ ൌ

௘ೣି௘షೣ

௘ೣା௘షೣ
, though when applied with a default gradient of 1 and an offset of 0 the logistic function 

maps non-linearly between 0 and 1 and has a higher resolution around outliers, while the 

sigmoidal function maps non-linearly between -1 and 1 and has a higher resolution around the 

mean. 

 

In terms of which normalisations to apply, different implementations use different rules, and 

have different algorithms for determining the gradient and offset. For example the SOM Toolbox 

software exclusively uses default parameters (e.g. a gradient of 1 and an offset of 0), then 

leaves it to the user to decide which normalisation to apply to each input. By comparison the 

SOMine Viscovery software uses a gradient of 
ଶ

௦
 for sigmoidal normalisations, where ݏ is the 

standard deviation, and an offset of ̅ݔ, where ̅ݔ is the mean (Viscovery Software GmbH, 2007, 

p. 65). In any case, the goal of the functions are to make the distribution normalised, and this 

can be measured by comparing the maximum distance between the Cumulative Distribution 

Function (CDF) of the normalised variable and the CDF of the standard normal distribution. In 

Figure 4-3, the variable working capital to total assets has been normalized using a sigmoidal 

function with a gradient of 1 and an offset of 0, and the resulting histogram and CDF (with a 

maximum distance of 0.16629) are shown with an overlay of the normal distribution (shown in 

red) for comparison purposes. 
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Figure 4-3 - Histogram and CDF of Sigmoidal Normalisation on Compustat Working Capital to Total 

Assets 

 

Differing normalisation functions, offsets and gradients will have different maximum distances 

between the cumulative distribution function and the standard normal distribution, so this 

measure can be used to test functions and function parameters with the goal of minimising that 

distance. This process was performed on all variables used for this chapter, and the resulting 

normalisation function and parameters for each variable can be found in Appendix A. By way of 

example, the variable working capital to sales is used in Figure 4-4, this time using a logistic 

function with a gradient of 11.5279 and an offset of 0.0685, reducing the maximum distance 

between the CDF and the CDF of the normal distribution to 0.10443. 

 

  

Figure 4-4 - Histogram and CDF of Logistic Normalisation on Compustat Working Capital to Total 

Assets 
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To test the effectiveness of the normalisation process, the variables are presented to each 

technique as a set of unnormalised, a set of normalised with default parameters, and a set of 

normalised with optimised parameters. 

 

4.2.2 Discriminant Analysis 

Discriminant Analysis is a methodology for determining a discriminant function for each class of 

training objects that can be used to classify additional objects that were not part of the original 

training set. Discriminant Analysis assumes that the observations are part of a multivariate 

normal distribution, which allows the formula ܲሺݔ|݅ሻ ൌ ቆ
ଵ

ሺଶగሻ
೙
మ|஼೔|

భ
మ
ቇ exp ൬െ

ଵ

ଶ
ሺݔ െ ௜ܥ௜ሻ்ߤ

ିଵሺݔ െ  ௜ሻ൰ߤ

for the probability of an observation given a class membership to be calculated based only on 

the mean and covariance matrices of each of the classes, where ߤ௜ is the mean and ܥ௜ is the 

covariance of group i. In turn Bayes Theorem, ܲሺ݅|ݔሻ ൌ
௉ሺ௫|௜ሻ.௉ሺ௜ሻ

∑ ௉ሺ௫|௝ሻ.௉ሺ௝ሻೕ
, can be used to calculate the 

inverse probability – that is the probability of class membership given an observation. The 

application of Bayes Theorem to the formula for a multivariate normal distribution results in the 

“quadratic discriminant function”, and if it can be further assumed that the covariance matrices 

are equal, as is the case if the discrimination between classes is to be linear, then many of the 

terms in the quadratic discriminant function cancel out resulting in the “linear discriminant 

function”. Whether the quadratic or linear discriminant function is used the function for each 

class is calculated on each unknown observation, with the largest class membership being used 

to identify which class the observation should belong to. 

 

The resulting memberships for each observation in each class are often referred to as the 

parameters of the discriminant functions, and can be considered data points in an n-

dimensional space for which each discriminant function is an axis. In this respect Discriminant 

Analysis is often said to be similar to Principal Component Analysis (PCA) as both methods 
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transform the observations into a multi-dimensional space based on the differences between 

the observations. A detailed explanation of the implementation of Discriminant Analysis can be 

found in Fisher (2011). 

 

Discriminant Analysis is a very fast and effective supervised algorithm for the classification of 

data points. Like any method, a number of well documented limitations exist, including the 

assumption that the observations are normally distributed. That being said, Discriminant 

Analysis has been used with great success even when the assumptions of normality are 

violated (Altman, 1968). On a more practical level, Discriminant Analysis has repeatedly been 

shown to perform more poorly than other techniques, most notably Neural Networks (Odom & 

Sharda, 1990; Coats & Fant, 1993; Wilson & Sharda, 1994; Lee, et al., 1996) though exceptions 

do exist (Yang, et al., 1999). 

4.2.3 Logistic Regression 

Logistic Regression is a classification method that uses “Maximum Likelihood Estimation” to 

determine the best set of parameters that linearly separates classes of observations. Logistic 

Regression assumes that a set of independent variables and their resulting dependant variable 

can be modelled probabilistically as a logistic function, that is: ܲሺݔ|ݕሻ ൌ ଴ݓሺߪ ൅ ଵݔଵݓ ൅ ଶݔଶݓ ൅

	…൅ ሻߙሺߪ ௡ሻ whereݔ௡ݓ ൌ
ଵ

ଵା௘షഀ
. Maximum Likelihood Estimation is a method for determining the 

best set of parameters ݓ given the set of observations ݔ and known classifications ݕ. More 

specifically, the probability that the data comes from any choice of ݓ can be calculated, so 

maximum likelihood estimation seeks to find the maximum probability for the given data ,ݔ	ݕ for 

each possible ݓ: arg	max௪ ܲሺݔ,  ሻ. However, in terms of maximising this probability, theݓ|ݕ

observations ݔ and their classifications ݕ are fixed, so in fact Logistic Regression is seeking to 

maximise the likelihood function arg	max௪ ,ݔ|ݓሺܮ  ሻ. The likelihood function itself can be definedݕ

as the product of the function for each observation, but applying the natural log allows the 

product to be converted into a summation. Given that the natural log is a monotone 
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transformation, it is therefore mathematically simpler to maximise the “log-likelihood” rather than 

the likelihood. 

 

Unlike Linear Regression in which it is possible to solve analytically for the parameters that give 

the maximum likelihood, the use of the non-linear logistic function means that it must be solved 

algorithmically, “[Ordinary Least Squares] estimation is in this sense a special case of maximum 

likelihood estimation, one in which it is possible to calculate a solution directly without iteration” 

(Menard, 2002). In this respect, Logistic Regression is less computationally efficient than Linear 

Regression, but the Linear Regression Algorithm builds in the assumption that that the 

dependent variable is continuous. In many problems (including bankruptcy prediction) the 

dependent variable is nominal (failure versus non-failure). Furthermore Linear Regression 

includes issues such as predicted outcomes that are greater than one or less than zero (which 

in categorical data is inadmissible), an assumption that the variance is constant, and the 

assumption that prediction errors will be normally distribution. So while Logistic Regression is a 

very common methodology for building classificatory or predictive models, similarly to 

Discriminant Analysis is restricted to modelling linearly separable data which means that in 

complicated datasets, its performance is often poorer than other techniques (Lee, et al., 2005). 

 

4.2.4 Artificial Neural Networks 

Neural Networks attempt to model the structure of the biological brain by interconnecting 

artificial neurons (with links referred to as synapses) and modifying the strength of respective 

synapses to allow the model to “learn”. 

 

In the biological brain, a neuron “fires” according to the type of neuron, it’s respective discharge 

pattern, and the strengths of the signals coming from connected neurons – so this is modelled 

computationally by applying a mathematical function, called an activation function, to the sum of 

input values. The mathematical function is the choice of the user, though the most common 
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choice is a sigmoidal activation function because it ensures that the output of the neuron is 

between 0 and 1 and will never result in an undefined output as might be the case if a 

logarithmic function was used. 

 

The interconnections between the neurons are weighted, and it is these weights that are 

modified to find a model that can effectively differentiate between observations in the training 

data. The methodology that is used to update the weightings of the synapses is referred to as 

the learning algorithm, and the learning algorithms can be roughly classified into two types: 

supervised and unsupervised. In supervised learning, the learning algorithm allows a naïve 

Neural Network to process an observation, and then identifies the error between the networks 

output and the actual output from some training data. The learning algorithm is then tasked with 

identifying the weights that most contributed to the error and adjusting them by a small amount, 

such that if that if the same observation was provided to the network the output error would be 

slightly smaller. In unsupervised learning, model’s weights are adapted to reflect the training 

data distribution, and each neuron’s output is calculated as the degree of similarity of its 

synapse structure to an input pattern. As observations are provided iteratively, the model learns 

to activate the same output neurons for similar inputs. The learning algorithms available will be 

outlined once the structure of the Neural Network model has been discussed. 

 

The structure of the Neural Network changes the networks ability to model any underlying 

relationships between observations: If the structure of the network is inappropriate or too 

simple, the network will be unable to achieve good classification or good clustering (supervised 

and unsupervised respectively) on the observations provided to it. If the network is too complex, 

then the learning algorithm can “overfit” to the training data in which case the network has 

essentially memorised each individual case rather than learn any underlying relationships. This 

can be detected by testing the model on data that it has not been exposed to during training. 

Many structures of network are available to the user, including the most common supervised 
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“feed-forward” structure in which there is an input neuron for each dimension of the 

observations, which feed into an optional layer of “hidden” neurons (the number of hidden 

neurons is the choice of the user), and these feed into the output layer which can be a single 

neuron for binary classifications or multiple neurons for multiclass classifications. Extensions 

and alternatives to the feed-forward structure abound, including structures in which neurons 

outputs feedback into earlier neurons, neurons whose synapses skip layers, structures that do 

not use layers at all, and so on. In many cases the structure also implies an activation function 

for how the inputs to a neuron are converted to outputs, for example the Radial Basis Function 

(RBF) Neural Network uses an input layer, a hidden layer and an output layer, but the hidden 

layer uses the nonlinear RBF. 

 

An example of a typical feed-forward Neural Network is shown diagrammatically in Figure 4-5. 

 

Figure 4-5 - Example of a Single Output Feedforward Neural Network 

 

The choice of learning algorithm is another aspect of Neural Networks in which choices abound, 

with the most ubiquitous choice for a supervised network being the “backpropagation” algorithm 

(LeCun, 1985). The backpropagation algorithm works using a method called “steepest gradient 

descent” in which the gradient of the error versus the weight of a synapse can be calculated, 

and the weight of each synapse can be adjusted in the direction that most reduces the error. 

This algorithm of course has limitations, one of which is that the global error minimum cannot be 

found without a complete search of the error surface (network error versus the weight of each 

synapse), so the steepest gradient descent method can tend to find local minima, rather than 

global minimum, in the error surface. To address this, the backpropagation algorithm allows 

x1 x2 x… xn

   
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parameters and methods to be chosen to try and avoid the network converging on small local 

minima. 

 

In an unsupervised network, a common choice of learning algorithm is that used by Self-

Organising Maps (SOM), which is a kind of “Winner Takes Most” learning in which the winning 

output neuron’s (and its neighbours) most similar synapses to the input pattern are rewarded by 

strengthening their weights to make them more connected to the winning neuron and its 

neighbours, while the least connected synapses are updated to make them less connected to 

the winning neuron and its neighbours. This can result in neurons that become entirely 

disconnected from the network if they do not assist in classifying any of the observations. 

 

A somewhat hybridised supervised technique, used in Coats & Fant (1993), and the one used in 

this thesis when utilising Neural Networks, is the “Cascade-Correlation” algorithm (Fahlman & 

Lebiere, 1990) which starts with no neurons in the hidden layer and incrementally add neurons 

to find the optimum number of hidden neurons in an attempt to incorporate an element of “self-

organising” into an otherwise supervised network. 

 

In comparison to Logistic Regression, Neural Networks are far more flexible because they can 

model data that is not linearly separable, thanks to the use of the hidden layer of neurons. This 

increased flexibility comes with a decrease in computational efficiency, as will be seen in the 

methodology comparison in the conclusion of this chapter. Similar to Logistic Regression 

however is the predefined mathematical structure that is enforced on the eventual solution, for 

example the use of a sigmoidal activation function which may or may not be ideal for the 

problem at hand, leading to alternatives such as Gaussian activation functions. 
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4.2.5 Genetic Programming 

Like Neural Networks, Genetic Programming (and Genetic Algorithms) model a biological 

process to achieve machine learning. Genetic Programming and Genetic Algorithms use the 

principles of Darwin’s natural selection to pass genetic information from the “fittest” parents to 

children, who go on to be evaluated for fitness and in turn may become parents. Genetic 

Algorithms consider the “genes” to be a representation of a possible solution such as 

combinations of values for key financial ratios that cause bankruptcy. However Genetic 

Algorithms require the fitness algorithm to be pre-defined – information which is often not readily 

available. Genetic Programming on the other hand considers that the “genes” can be inputs as 

well as mathematical operations, constants or functions, and the fitness of the model is simply 

defined by how close the output of the model is to the known solution in the training data. In this 

respect, Genetic Programming does not require the fitness function to be known a priori, and 

also does not enforce a mathematical structure on the solution like Neural Networks, Logistic 

Regression or Discriminant Analysis. 

 

Genetic Programming begins by randomly generating an initial population of solutions, which 

can be represented as trees of inputs, operations, constants or functions, then evaluating the 

error for each solution against each observation. From this population, the best performing 

programs are selected for reproduction. Parents reproduce to generate child solutions that have 

undergone “crossover”, in which tree branches of the parents are combined or replaced in the 

children, plus some degree of random mutation. Each occurrence of this process is a 

“generation”, and programs are free to evolve for as many generations as is necessary until the 

stopping criteria for a “run” is met. An example stopping criteria might be a certain number of 

generations, or a number of Generations Without Improvement (GWI). Runs are often 

performed a number of times from different random initial populations, after which the stopping 

criteria can be re-evaluated. Similarly to Neural Networks, the parameters of the Genetic 

Program model, such as the GWI stopping criteria, directly influence whether the model is 
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sufficiently complex to find an adequate solution to the problem, or conversely allow the model 

to become overly complex and begin memorising cases. 

 

An example of two parents resulting in two children is given in Figure 4-6, where the underlying 

training data is the values of a, b, and dependent variable c, from Pythagoras’ Theorem, is 

used. In this example, one parent (top left) is a representation of the algorithm ට
௔
భ
್

, another 

parent (top right) is the representation of the algorithm ܾ ൅ ܽଶܾଶ, and these two parents result in 

one child (bottom left) with 
௔

௕
൅ ܾ, and a second child (bottom right) with a small mutation that 

has resulted in √ܽଶ ൅ ܾଶ, therefore successfully discovering Pythagoras’ algorithm. 

 

Figure 4-6 - Example of Genetic Programming Evolution to find Pythagoras’ Theorem 

 

Due to the fact that Genetic Programming is solving for the mathematical equation that gives 

the best fitness, the search space for Genetic Programming is exponentially larger meaning that 

it can take a much longer time for the stopping criteria and an adequate solution to be found. 

Since all mathematical solutions are within the search space, all of the solutions from other 

techniques such as Neural Networks, Logistic Regression or Discriminant Analysis could in 
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theory be tested by the Genetic Program, however in practicality the search space is so large 

that the probability of testing any randomly selected mathematical structure approaches zero. 

 

4.2.6 Support Vector Machines 

Support Vector Machines (SVM), like Genetic Programming, is a comparatively new technique 

that can address a classification or regression problem. Support Vector Machines work by 

mapping non-linear classification problems into a higher linearly separable dimensionality using 

a “kernel function”, and then attempting to find the linear division between the data points that 

maximises the margins of that division (the maximum-margin hyperplane). In the simplest 2-

dimensional linear problem with no higher dimensional mapping, SVM is simply seeking the 

widest line possible that accurately separates the data, as seen in Figure 4-7. The points which 

bound the margin of the division are referred to as the support vectors. 

 

Figure 4-7 - Support Vector Machines Maximum-Margin Hyperplane 

 

Finding the optimal hyperplane in an n-dimensional space, such as the above diagram, can be 

treated as a quadratic optimisation problem for which there are a number of well-known 

algorithms including the Interior Point Method (Mehrotra, 1992). However to classify points that 

are non-linearly separable it becomes necessary to map the n-dimensional space into a higher 

dimensionality using a “kernel function” (Aizerman, et al., 1964). There are many kernels 

available to users of Support Vector Machines including “Quadratic”, “Polynomial”, “Gaussian 

Radial Basis Function” and so on, with each having strengths and drawbacks, so ultimately it 

becomes a matter of choosing the most appropriate kernel for the task at hand (Scholkopf, et 

al., 1998), though work exists to automatically select the best kernel based on the features of 
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the data (Ali & Smith-Miles, 2006). Support Vector Machines also require the user to specify 

parameters for “upper bound C and the bandwidth of the kernel function” (Shin, et al., 2005). 

Similarly to Neural Networks, the resulting classification solution from Support Vector Machines 

can be very difficult to interpret, in particular because the kernel function can be quite 

mathematically complex, however Support Vector Machines have been shown to provide good 

classificatory performance in bankruptcy prediction (Shin, et al., 2005). 

 

4.2.7 Comparison of Modelling Techniques on Available Data 

Perhaps the most telling aspect of the literature reviewed in chapter 2 is that there is no 

consensus on the best technique to use for a corporate failure classification problem. While 

various models have various strengths and benefits, such as the interpretability of the resulting 

classificatory equation or the time required to train the model, it is best to consider these in light 

of the performance of these techniques on the available data. As noted earlier in the chapter, 

the analysis cannot cover every possible classificatory system available, but the methodologies 

chosen in this comparison are popular in bankruptcy prediction literature. To ensure fairness, all 

techniques are given sufficient time to “converge”, that is the algorithm has either completed its 

computations (such as in Discriminant Analysis), or its continuation is no longer producing 

better results (such as in Genetic Programming). When comparing the results, the time required 

for the model to reach convergence can be compared. One thing noted in the literature review is 

that some techniques, for example Support Vector Machines, are highly sensitive to the 

parameters selected prior to training the model, so it is necessary to briefly discuss and justify 

the choice of parameters for each technique before comparing results. 

 

As discussed previously, Discriminant Analysis builds in a number of assumptions about the 

data, including that the measurements for each class are distributed normally. In Linear 

Discriminant Analysis there is a further assumption that the covariance between classes is the 

same, but Quadratic Discriminant Analysis does not require this assumption to be met so it has 
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been selected for this experiment. Quadratic Discriminant Analysis is also a very popular 

Discriminant Analysis technique for bankruptcy prediction, probably due to the relaxed 

assumptions being made on the data. Discriminant Analysis requires the covariance matrices to 

be estimated, and in situations where there are many dimensions available the covariance 

matrix may not be positive definite. For this reason it is often necessary to use a “stepwise” 

algorithm which is similar to the best-first forwards accuracy based search that will be carried 

out using the chosen modelling techniques in section 4.3, however the limited number of factors 

being considered in this section meant that such an algorithm was unnecessary. Similarly, the 

Logistic Regression algorithm is often found not to converge when exposed to many factors, but 

again the reduced dimensionality of the data in this section meant that a stepwise algorithm was 

not required and allowed for a fair comparison of techniques. 

 

As discussed earlier in this chapter, the Neural Network model that will be used is the 

“Cascade-Correlation” algorithm because it eliminates the need to specify the number of hidden 

neurons a-priori. Instead, the Cascade-Correlation algorithm starts with a Neural Network model 

that contains no hidden neurons, and sequentially determines the optimum number of hidden 

neurons for the training dataset (Fine, 1999). Furthermore for this technique this thesis will 

utilise the “Jack-Knife” method for cross-validation, in which the observation the network has 

trained on is left out when calculating the accuracy of the network for that observation (Rojas, 

1996), thus the combined in-sample training and in-sample validation sets are combined as 

discussed in section 4.1.3. The Neural Network algorithm was configured to use a maximum of 

80 hidden neurons, as it was experimentally found that convergence of the model was reached 

within that limit. 

 

For the Genetic Programming model used in this chapter it was opted to configure the algorithm 

to perform runs with a “Generations Without Improvement” (GWI) stopping criteria of 80. Once 

ten runs had been performed, the GWI was doubled, and this process was repeated until the 
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model reached convergence. The GP fitness during training was calculated using squared error, 

using an instruction set that included addition, arithmetic, comparison, condition, transfer, 

division, multiplication, subtraction and trigonometric operators, using randomised constants 

and a population size within each run of 500. 

 

For Support Vector Machines, it was decided to use the Radial Basis Function (RBF) kernel due 

to its proven effectiveness at classifying bankruptcy cases, such as in Shin (2005), using the 

implementation box constraint parameter default of “N/(2*N1) for the data points of group one 

and by N/(2*N2) for the data points of group two, where N1 is the number of elements in group 

one, N2 is the number of elements in group two, and N = N1 + N2” with a scaling parameter of 1 

(The MathWorks, Inc, 2011). 

 

A dataset of the sizes outlined in the previous section is unlikely to suffer from systematic bias 

as a result the random division of the dataset into in-sample training, validation, and out-of-

sample. As noted in Zhu & Davidson (2007, p. 249), “given a succinctly large dataset, a simple 

train-and-test technique is a perfectly acceptable method for estimating the true error rate”. 

However, to ensure no bias is introduced at this early stage, this research performs 5-fold cross 

validation (Stone, 1974), providing the raw results in Appendix B and noting the mean results in 

this chapter. 

 

Once the choice of methodologies and parameters to use had been established, it was possible 

to perform a classification using these methods on the dataset outlined earlier in this chapter. It 

was found that on the CompuStat dataset, the best mean in-sample validation accuracy of 

77.2% was achieved using Neural Networks (normalised with optimised parameters), followed 

by Genetic Programming with 75.9% (normalised with optimised parameters). Of these results, 

Neural Networks appeared to experience over-fitting when using normalised with optimised 

parameters with accuracy dropping to 72.4%, however when using unnormalised data Neural 
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Networks achieved just 73.6% on the in-sample data, but increased out-of-sample accuracy to 

72.6%. Furthermore, the normalised data improved out-of-sample accuracy by just 0.7%. 

 

On the Aspect dataset, the best in-sample accuracy was also Neural Networks (normalised with 

optimised parameters) with 66.3%, then Genetic Programming (normalised with optimised 

parameters) at 66.2%. Again, the normalising of the data has had very little impact on the out-

of-sample results, accuracy increased by just 0.2% and 1.8% using Genetic Programming and 

Neural Networks respectively. 

 

To test significance, the McNemar’s test was used on the first fold (Everitt, 1977) as this is the 

most appropriate statistical test when comparing classifiers in a large dataset (Salzberg, 1997). 

Comparing pair-wise accuracy between techniques, all results were found to be statically 

significant to p<0.01 with the exception of SVM (normalised with optimised factors) to NN 

(normalised with optimised factors) in the CompuStat dataset which was found to be significant 

to p<0.05. 

 

One interesting development was the time required for the models to converge. Discriminant 

Analysis and Logistic Regression returned results in under one second, while the Neural 

Network model took approximately 20 seconds to complete as it tested each number of hidden 

neurons. While the Genetic Programing parameters selected gave it no predetermined stopping 

criteria, it was found on completion that the best performing models were discovered on run 5 in 

both datasets. On the CompuStat dataset 5 runs took less than 8 minutes while on the Aspect 

dataset 5 runs took less than 1 minute to complete. SVM took a similar amount of time to 

complete training for any given kernel and parameter set. 

 

Therefore it was decided that due to the consistently good accuracy of both Neural Networks 

and Genetic Programming, the adequate speed of convergence of both techniques, the 
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popularity of Neural Networks and the simplicity of the resulting predictive function in Genetic 

Programming, that the experiments carried out in this thesis over the following chapters would 

use these two techniques. That is not to say that the other techniques are inferior, just that it is 

critical when examining the predictive capabilities of a dataset to choose an appropriate tool not 

only based on the accuracy of the model but also given the usefulness of the final output and 

the processing time required to achieve that output. Furthermore by selecting these two 

techniques, both a deterministic and a non-deterministic modelling technique have been 

selected, and the non-deterministic behaviour of Genetic Programming makes it an ideal choice 

for identifying low-contributory factors with the goal of classification accuracy (as addressed in 

section 4.3.5). When looking exclusively at these two techniques, it was found that while the 

best in-sample accuracy is achieved when using normalisation, in particular normalization with 

optimised parameters, out-of-sample results were generally comparable. For example on the 

CompuStat dataset when using Neural Networks, out-of-sample accuracy decreased from 

73.3% to 72.6%, while in the Genetic Programming environment on the Aspect Dataset, out-of-

sample accuracy increased from 62.8% to 63.0%. Other techniques, such as Discriminant 

Analysis, benefited greatly from normalisation, with in-sample accuracy increasing from 53.0%, 

only marginally higher than a weighted naïve model, to 66.2%, with out-of-sample accuracy 

increasing from 53.8% to 63.4%. However, unnormalised data has the benefit of being more 

readily interpretable and this will make analysis in section 7.2 notably easier. Thus, it was 

decided that Genetic Programming and Neural Network models would be training and validated 

using unnormalised data in the following sections and chapters. 

 

Having now evaluated a number of available modelling techniques, this chapter can conclude 

by using the selected techniques to perform factor-selection, before the following chapters can 

perform an in-depth analysis on the effects of share market data, macroeconomic data, and the 

effect of objective clustering on accuracy using these techniques. 
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4.3 Identifying Initial Key Variables 

For the purpose of demonstrating a new application of multiple discriminate analysis (MDA), 

Altman et al. (1968) used an array of 22 ratios selected by popularity, potential relevancy, “and 

a few ‘new’ ratios” – from this, 5 ratios were selected based on predictive performance for their 

dataset (working capital to total assets, retained earnings to total assets, earnings before 

interest and taxes to total assets, market value equity to book value of total debt, sales to total 

assets). Meanwhile Beaver (1968) used 30 factors and required “that the ratio be defined in 

terms of a ‘cash flow’ concept”. By comparison, Edmister (1972) examined 10 ratios “found to 

be significant predictors of business failure in previous empirical research”, finding that many 

ratios adopted by one study are not necessarily adopted in others. 

 

The motivation for this chapter is therefore focussed on addressing the factor selection process 

and identifying whether an optimal set of factors is specific to a dataset, and whether an 

objective factor selection methodology can be used to increase classification accuracy.  

 

4.3.1 The Cost of Information 

While all financial variables contain information, the inclusion of additional information in a 

classification system has the effect of exponentially increasing the size of the error surface – in 

turn this reduces how much of the error surface can be adequately searched in a given 

timeframe, dramatically increases the timeframe required to search it or decreases the 

probability that the outcome will be near the global error minimum. In many cases, a dataset 

with too many dimensions will simply take too long to find a reasonable solution or cannot be 

solved for using statistical methods such as Discriminant Analysis. Thus, the inclusion of 

information comes at a cost. Furthermore, due to the relationships between financial ratios, 

there is some degree of overlap in the information provided by any two ratios. Therefore there 

can be diminishing informational returns with the addition of each subsequent financial variable 
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to the classification system. It therefore becomes useful to objectively minimise the number of 

factors while maximising the informational gain with each input. 

 

4.3.2 Background on Factor Selection Strategies 

Liu & Motoda (1998) discusses three principal dimensions of feature selection. The first being 

an evaluation measure, the second being a search strategy and the third being a generation 

scheme. Each dimension has a number of alternatives within it, depicted in Figure 4-8: 

 

Figure 4-8 - Dimensions of Factor Selection 

 

Information measures, the first evaluation measure, seek to calculate how much information is 

being added to the situation with the introduction of the factor in question. Liu outlines an 

information measure by calculating the difference between the prior uncertainty and the 

expected posterior uncertainty to find the information gain (IG) of factor X, 

ሺܺሻܩܫ ൌ ∑ ܷ൫ܲሺܿ௜ሻ൯ െ ∑ൣܧ ܷ൫ܲሺܿ௜|ܺሻ൯௜ ൧௜ , where ܷ is an uncertainty function and ܲሺܿ௜ሻ is the prior 

class probability for ݅ ൌ 1,2, … , ݀. Liu also outlines a commonly used uncertainty function 

െ∑ ܲሺܿ௜ሻlogଶܲሺܿ௜ሻ௜ . 

 

The second evaluation measure, distance measures, are “derived from distances between the 

class-conditional density functions” (Liu & Motoda, 1998). That is, a feature is of higher value if 

it separates two classes more easily. 
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The third kind, dependence measures, examine associations or correlations – which while 

similar to an information measure, focus instead on the ability to predict one measure given 

another over a posterior class probability. 

 

Fourthly, consistency measures seek to minimise the number of factors while maintaining 

consistent class separation as when a full set of features is being used, that is ܲሺܥ|FullSetሻ ൌ

ܲሺܥ|Subsetሻ. 

 

Finally, accuracy measures rely on selecting a subset whereby the most accurate class 

membership can be obtained on sample testing, and therefore can only be used in a supervised 

manner. 

 

Interested readers are directed to Liu & Motoda (1998) for a more detailed explanation. 

 

Having outlined the available evaluation measure, it now becomes necessary to examine 

search strategies. The first possible search strategy is a complete search of all possibilities, and 

this strategy can be performed depth-first or breadth-first. In a case with just two factors, a 

forward depth-first search would try feature a, then features a with b together, before looking at 

feature b alone; whereas breadth-first examines a first, then b, before moving on to a with b 

together. 

 

The second possible search strategy is a deterministic heuristic search, an example of which is 

a best-first (or “greedy”) strategy. The best-first strategy evaluates each feature in a breadth-first 

manner, and the highest-ranking feature is selected to have additional features added to it. 

Each combination at that level is evaluated, following the path of best sample accuracy. The 

limitation of this strategy is that the optimum combination of features may not be tested if it is 
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not on the same path as that which is taken by the search strategy, which will take the most 

gain at each step without looking ahead. Liu & Motoda (1998) outline other deterministic 

heuristic search strategies that are far too numerous to comprehensively evaluate within the 

scope of this thesis, but they include popular techniques such as a Beam Search. One of the 

largest limitations of these search strategies is that interdependence between features can be 

missed, as each feature individually is worth little but the inclusion of both may be worth much 

(Liu & Motoda, 1998). On the other hand, a deterministic heuristic search enforces an a priori 

structure that can massively decrease processing cost while maintaining a high-probability that 

useful combinations are tested. 

 

The third search strategy is a non-deterministic search that is designed to overcome the 

deterministic search interdependence limitation by introducing an element of randomness into 

the search function. For example, Genetic Algorithms could be used, where chromosomes with 

possible mutations represent the inclusion or exclusion of a given feature. Genetic 

Programming is another example of a non-deterministic search strategy, whereby well 

performing predictive algorithms become the parents of new algorithms with mutation built 

directly. A more detailed explanation of Genetic Programming can be found in section 4.2.5. 

 

Whatever search strategy is selected, the underlying problem is finding an optimal feature 

subset in a large, hyper-dimensional search space that is defined by the choice of evaluation 

measure. 

 

The last dimension is the factor selection methodology is the generation scheme. Factor sets 

can be produced forward, backwards, or randomly. Where a forward generation scheme starts 

with an empty set and adds features for evaluation, a backwards generation scheme starts with 

a complete set and removes features. In the case of a non-deterministic search strategy, the 
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generation scheme must be random to avoid becoming trapped in local mimima within the 

search space (Liu & Motoda, 1998). 

 

Of course it is not necessary to limit a search methodology to any single one of the strategies 

outlined above, and Guyon, et al. (2006) provide a more comprehensive review of the available 

strategies. As will be demonstrated in the following section, there is benefit to building a 

hybridised search strategy that combines elements of non-deterministic search strategies with a 

heuristic search of factors that are shown to perform well. 

 

4.3.3 Initial Population of Factors 

The first stage of the variable selection process is to identify an initial population of candidate 

variables. Research that uses statistical or algorithmic methodologies to analyse data often 

deals with massive datasets, and in many of these cases it is not practical to approach the 

dataset holistically. Too many factors cause some techniques to become prone to over-fitting, 

exponentially increase the processing time or reduce accuracy, and such models also reduce 

the explainability of the resulting model. “By choosing a minimal subset of features, irrelevant 

and redundant features are removed according to the criterion. When [the data dimensionality] 

is reduced, the data space shrinks and in a sense, the data set is now a better representative of 

the whole data population” (Liu & Motoda, 1998). 

 

The question therefore becomes, “Which factors should be selected?” As this research focuses 

on the ability to classify failed companies, the simplest answer to this question is “the factors 

that give the best results” – and indeed this is perhaps the most important consideration, but the 

testing of every possible combination of inputs is simply not possible. For example, in the case 

of corporate failure, it is not unreasonable to have access to some 200 pieces of raw data per 

company per year, for example the Compustat data source used for this research (see section 

4.1.1) contained 189 raw inputs. One of those raw pieces of data, net profit for example, can be 
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used as part of a financial ratio: net profit over total expenses. In turn, the resulting ratio may be 

of more use than either piece of raw data alone, as the ratio now describes a relative difference 

that can be compared between two companies of vastly different net profit. To ensure a 

complete set of data, a researcher could take each of the 200 or so available variables and use 

them as the numerator, then for each numerator use the 199 remaining variables as the 

denominator. It is therefore possible to calculate every 2-value ratio available given the dataset. 

Even excluding reciprocals (net profit over total expenses excludes the reciprocal total 

expenses over net profit), this results in 20,100 ratios, and excludes potentially useful 3-value 

ratios (such as net profit less tax expense over total expenses). 

 

Furthermore, the use of classification accuracy in the selection of factors would require each of 

those ratios to be tested by including them in a classification model and calculating the resulting 

accuracy. To ensure the optimal combinatorial selection of those 20,100 ratios, a classification 

system would need to be exposed to 5.045 x 106050 combinations of those 20,100 ratios, 

calculated through the binomial coefficient. Given the enormous number of possibilities, it is 

likely that factors are found which are highly predictive of the in-sample set by chance, and do 

not reflect any underlying relationships in the data resulting in poor out-of-sample accuracy. 

Therefore it is worthwhile including only variables for which there is at least some theoretical 

relationship to corporate failure. This of course comes at a cost. It is entirely possible that there 

is a sound theoretical basis for including one of the many 2 or 3-variable ratios in the final model 

that is excluded due to the subjective process of ratio selection. This cost increases as the 

number of ratios considered decreases, highlighting the need to examine as many factors as is 

reasonably possible. 

 

In an attempt to overcome this weakness, a wide array of ratios were considered. Rather than 

selecting a single piece of research and utilising just those variables, such as the ever popular 

Beaver (1966) or Altman (1968), this research instead considered all variables that were used 
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across many notable publications. An initial selection of corporate failure prediction research 

was selected by following the path of citations from recent publications back to the initial work of 

Beaver (1966) and Altman (1968). From this selection, each paper was considered from oldest 

to newest and each paper that utilised a new factor was added to the population. As factors 

were added to the sample in chronological order, each new paper contributed fewer new factors 

to the population. While papers after Wang (2004) were examined, they did not promote factors 

that had not already been added to the sample. The following papers contributed new factors to 

the population: 

• Beaver, 1968 

• Altman et al., 1968 

• Edmister, 1972 

• Deakin, 1972 

• Wilcox, 1973 

• Blum, 1974 

• Elam, 1975 

• Altman et al., 1977 

• Ohlson, 1980 

• Chen, S, 1981 

• Barniv & Raveh, 1989 

• Raghupathi et al. 1991 

• Coats, & Fant. 1993 

• Altman, et al., 1994 

• Wilson & Sharda, 1994 

• Lee, et al., 1996 

• Yang, 1999 

• Kane, et al., 1998 

• Dimitras, et al. 1999 

• Varetto, 1999 

• McKee, 2000 

• Anandarajan, et al., 2001 

• McKee & Lensberg, 2002 

• Wang, 2004 

 

From the resulting selection of variables outlined in these papers, factors for which no data was 

available were removed. Within the Compustat dataset, this resulted in 77 inputs as a 

combination of raw inputs, 2-variable and 3-variable ratios while in the Aspect dataset this 

resulted in 79 factors to consider. These factors are listed in Appendix C and Appendix D. 

 

4.3.4 Removal of Missing Data and Dataset Creation 

Missing values then had to be removed from the dataset. This could of course be achieved by 

removing all factors with missing data, but there were very few factors with 100% data 

availability. Alternatively this could be achieved by removing all cases with missing data, but 
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again there were very few individual cases with no missing values. Rather, most cases and 

most factors had a high but not entirely complete set of data. 

 

While this research has opted to use deletion as a method of dealing with missing data, there 

are many alternatives that could have been used that would have resulted in higher data 

availability. From the simplest mean substitution methods through to highly mathematical 

methods such as multiple imputation (Rubin, 1987), an analysis of the different methods of 

dealing with missing data and their resulting predictive accuracy on the modelled data would be 

an interesting complement to this research. Such an analysis, however, is beyond the goals of 

this thesis. 

 

It could be argued that mean substitution might be the most appropriate method for the problem 

of corporate failure classification, and this may be true, however the later chapters of this thesis 

analyse in depth the relationships between variables, the resulting failure classification, and the 

eventual actual failure or non-failure of the company. Mean substitution, in these cases, would 

likely create scenarios in which a company is correctly (or incorrectly) classified, and the 

justification for this decision comes down to a variable that did not exist in the original dataset. It 

is much more difficult to make a case for the explainability of a model if the justification includes 

data that was non-existent in the original data. Therefore, deletion has been used to ensure that 

such methods do not compromise this eventual analysis. 

 

 

It is therefore a matter of achieving the best balance of factors versus available data. This was 

achieved by plotting the number of factors versus the number of remaining company-years that 

met the definition of failure outlined in 4.1.3, and then choosing the number of factors that would 

maintain at least 85% of the failure data. The plots for the Compustat and Aspect dataset are 

shown in Figure 4-9 and Figure 4-10. 
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Figure 4-9 - Factors versus Availability of Compustat Failed Data 
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Figure 4-10 - Factors versus Availability of Aspect Failed Data 

 

Within the Compustat dataset, this process resulted in 38 remaining factors, with 293 failed 

company-years and 46,160 non-failed company years. Within the Aspect dataset, this process 

resulted in 48 remaining factors with 351 failed company-years and 4,884 non-failed company-

years, which were then divided into an in-sample training set, an in-sample validation set and an 

out-of-sample validation set, as per section 4.1.3. 

 

4.3.5 Removal of Low-Contributory Factors 

By selecting factors from a wide range of previous research into corporate failure prediction, 

and further limiting the choice of factors as a means of dealing with missing data, the number of 

factors to consider has shrunk from the hypothetical 20,100 possible factors to just 38 and 48 

on the Compustat and Aspect datasets respectively. Even still a best-first heuristic search, as 

discussed in the following section, on a 38 factor set requires 741 combinations to be tested – 

and on a 48 factor set the number of combinations grows to 1,176. While not necessarily 
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prohibitive, depending on the time required for a classification model to converge, there was an 

opportunity to use a non-deterministic search strategy to estimate which factors contribute the 

“most” to successful bankruptcy prediction to further minimise the combinations to test, while 

minimising the likelihood of removing factors that contain useful information. 

 

Given that the ultimate goal for this chapter is the identification of factors for bankruptcy 

prediction, the best choice of evaluation measure is one of classification accuracy. In turn this 

raises the question of how accuracy should be determined. In line with the work of Liu & Motoda 

(1998), a non-deterministic embedded based method is an ideal choice, and such properties 

are found in one of the modelling techniques selected in chapter 4.2, Genetic Programming 

(GP). 

 

The strength of the Genetic Programming modelling algorithm for this problem lies in its random 

generation of an initial population for each run, and the use of randomly selected variables 

within each program. While it is almost certain that factors which contain useful information will 

be randomly excluded due to poor combinations of operators, constants and other factors, each 

factor can be trialled in hundreds of thousands of potential combinations. It was therefore 

necessary to ensure that the Genetic Programming algorithm was configured with sufficiently 

conservative stopping criteria such that it is unlikely well-performing factors are excluded. 

 

Similarly to the parameters used in section 4.2.7, this section used a Genetic Programming 

algorithm for each dataset performing 10 runs with stopping criteria of 80 Generations Without 

Improvement (GWI). Once these 10 runs had been completed, the GWI was doubled and 

another 10 runs performed. This process was repeated until the model had converged, such 

that doubling the GWI was no longer having any effect on the accuracy of the in-sample 

validation training set. This particular method for determining convergence is very resource 

inefficient, for example the runs after the GWI has been doubled 5 times take 32 times as long, 
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but it was important to minimise the likelihood of excluding a factor due to a poor choice of 

stopping criteria. 

 

Once the model reached convergence it was necessary to determine which factors had 

contributed to the winning programs and which ones had been excluded. To that end, the 

“average input impact” was calculated across the winning programs, which attributes a score to 

factors that relates to how well they have contributed towards the model. From this, any inputs 

with an average input impact of 0.00 were excluded as they have essentially been made 

“extinct” by the evolutionary process. The full results are available in Appendix E and Appendix 

F. The Compustat dataset converged after 125 minutes and 516,687,603 programs had been 

evaluated, with the algorithm stopping after 10,240 generations without improvement. Of the 

winning programs, 77% were found within 80 GWI, and 90% were found within 160 GWI. The 

factors that survived the evolutionary process are compared with the factors found in (Beaver, 

1966) and (Altman, 1968) in Table 4-1.  The time to reach convergence appears high and in 

turn raises questions about whether the low-efficiency nature of a Genetic Program is the best 

choice. However, as demonstrated by the fact that the vast majority of winning programs were 

identified within the first tens or hundreds of generations (as opposed to the tens of thousands 

that were run), the low efficiency of Genetic Programming in this case is a product of the criteria 

used for “convergence”. Hindsight shows that a much more aggressive convergence criteria 

could have been used without adversely affecting the results. 
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Factor Survived Beaver (1966) Altman (1968)

current plus long‐term liabilities to total assets ✓ ✓

total liabilities ✓

log of total assets

cash to total assets ✓

net income to total assets ✓ ✓

Net income ✓

net income to net worth ✓ ✓

cash to fund expenditures for operations ✓ ✓

book value to total liabilities

cash flow to total assets ✓ ✓

cash flow to total liabilities

log tangible assets

cash flow to net worth ✓

current liabilities to total assets ✓ ✓

long‐term liabilities to total assets ✓

current liabilities to equity

net income to sales ✓ ✓

total assets to sales ✓ ✓

earnings before interest and taxes to total assets ✓

sales to total assets ✓ ✓

earnings before taxes to sales ✓

net operating profit to sales ✓

net worth to sales ✓

earnings before taxes to equity

sales to net worth ✓

cash to current liabilities ✓

cash to sales ✓ ✓

sales to cash

current assets to total assets ✓

long‐term assets ✓

cash flow to sales ✓

fixed assets to equity

non‐cash current assets

retained earnings to total assets ✓

working capital to total assets ✓ ✓

current assets to current liabilities ✓

long‐term liabilities to current assets

current liabilities to current assets ✓  

Table 4-1 - Survivors of Evolutionary Process in CompuStat Dataset 

 

By comparison, the Aspect dataset converged after 153 minutes and 1,499,777,476 programs 

had been evaluated, with the algorithm stopping after 40,960 generations without improvement. 

10% of programs had reached convergence within 80 GWI and 23% of programs had reached 

convergence within 160 GWI, with the results shown in Table 4-2. 
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Factor Survived Beaver (1966) Altman (1968)

cash flow to sales ✓

cash flow to total assets ✓

cash flow to net worth ✓

net income to sales ✓

net income to total assets ✓ ✓

net income to net worth ✓

current liabilities to total assets ✓ ✓

long‐term liabilities to total assets ✓

current plus long‐term liabilities to total assets ✓ ✓

cash to total assets ✓ ✓

current assets to total assets ✓

working capital to total assets ✓ ✓

cash to current liabilities ✓ ✓

current assets to current liabilities ✓ ✓

accounts receivable to sales ✓

net worth to sales ✓

total assets to sales ✓

cash to fund expenditures for operations ✓ ✓

defensive assets to fund expenditures for operations ✓

defensive assets minus current liabilities to fund expenditures for operations ✓

retained earnings to total assets ✓ ✓

earnings before interest and taxes to total assets ✓ ✓

sales to total assets. ✓

fixed assets to equity

cash flow to current liabilities

current liabilities to equity

fixed assets to sales

equity to sales ✓

earnings before taxes to sales

earnings before taxes to equity

cash to total assets ✓ ✓

Net income

non‐cash current assets

long‐term assets

total liabilities.

cash flow to total liabilities ✓

book value to total liabilities

sales to working capital

sales to cash ✓

net operating profit to sales ✓

sales to net worth ✓

net operating profit to total assets ✓

long‐term liabilities to current assets

log tangible assets

current liabilities to current assets

funds provided by operations to total liabilities. ✓

log of total assets

income from operations to total assets   

Table 4-2 - Survivors of Evolutionary Process in Aspect Dataset 

 

At this point some preliminary comparisons can be drawn, as the factors net income to total 

assets, current liabilities to total assets, current plus long-term liabilities to total assets, cash to 

fund expenditures for operations, net operating profit to sales, and sales to net worth survived in 
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both the Compustat and the Aspect evolutionary models. Interestingly 2 of those 6 ratios, net 

operating profit to sales and sales to net worth, are not found in the usual Beaver (1966) or 

Altman (1968) factors, which demonstrates that there was useful information that was being 

excluded in chapter 4.2 which utilised only factors from Beaver (1966) and Altman (1968). 

  

4.3.6 Best-First Forwards Search 

Having reduced the search space, alternatives to the non-deterministic search strategy may be 

employed. The 17 Compustat factors that survived the evolutionary process yield 131,071 

possible combinations of those factors as inputs to a classification model, so even with a very 

limited subset of factors some kind of heuristic search was required. There are many search 

algorithms that could be used to address this problem, such as a Beam Search (Liu & Motoda, 

1998), which is an optimisation of a best-first forwards search, but to maintain consistency with 

forward stepwise Discriminant Analysis and forward stepwise Logistic Regression used in 4.2.7 

this chapter will use an accuracy based, breadth-first heuristic search strategy, commonly 

referred to as a “greedy search” which resulted in 153 combinations of factors to test for the 17 

factor scenario. 

 

Where a forwards approach adds the best performing factor at each step, a backwards worst-

first approach could trial the removal of each factor from the complete set. However Genetic 

Programming systems often find the best performing offspring do not necessarily use all inputs 

made available to it, meaning that removing one of the many unused variables from a complete 

set will not change the resulting classification accuracy. As this makes it difficult to choose 

between two factor choices, it was best in this case to use a forward generation scheme. 

 

Unlike the previous section which required the non-deterministic qualities of Genetic 

Programming, this section has no such requirement so each dataset can be examined using 

both the Genetic Programming and Neural Network algorithms outlined in section 4.2.7 
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For the Genetic Programming-based forward search, each combination in the best-first strategy 

of the selected variables from the previous section will be run through a Genetic Programming 

environment with consistent parameters – this time for 15 runs of 150 generations without 

improvement. By hard limiting the number of runs each combination of variables can undergo, 

combinations with a large number of variables are penalised due to the inability to spend 

enormous amounts of time experimenting with any one given combination, thus driving the 

system towards finding the smallest number of useful inputs. The parameters of 15 runs for 150 

GWI were selected because the results from section 4.3.5 indicated that GP models with much 

higher dimensionality were able to reach convergence within as little as 10 runs of 80 GWI and 

10 runs of 160 GWI, and it was important to ensure the model was not prematurely stopped due 

to overly constrained stopping criteria. Similarly to the Neural Network algorithm used in 4.2.7 

this chapter will use a Cascade Correlation Neural Network with up to 80 hidden neurons. On 

the Compustat dataset the Genetic Programming algorithm using these stopping criteria took 

approximately 9 minutes per combination to complete, while the Neural Network algorithm took 

approximately 2 minutes per combination. 

 

For the Genetic Programming environment, each factor was chosen based on the resulting best 

program’s weighted hit-rate on in-sample validation dataset, whereas for the Neural Network 

environment the Jack-Knife method meant that the in-sample training and in-sample validation 

sets had been combined, so the best factor was selected based on the accuracy of the 

combined in-sample training and validation datasets. In either case, the out-of-sample data was 

not exposed to any of the models during the factor search.  

 

4.3.7 Diagram of Factor Selection Model 

The methodology outlined in the previous sections are summarised in Figure 4-11: 
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Figure 4-11 - Diagram of Factor Selection Model 

 

4.3.8 Results & Discussion 

For the Compustat dataset, the Genetic Programming algorithm found the best results on the in-

sample validation dataset once the 5th factor had been added to the best-first search, yielding a 

validation accuracy of 76.4%. When tested on the out-of-sample dataset, the accuracy was 

reduced to 73.8%, indicating that some over fitting has occurred. By comparison, when all 

surviving factors from section 4.3.5 are included, validation accuracy drops to 75.1% and out-of-

sample accuracy drops to 71.4% (p<0.01). When using only the factors from Beaver (1966) or 

only the factors from Altman (1968), accuracy drops to 75.7% and 72.6% on the in-sample set 

with 73.8% and 72.1% on the out-of-sample (p<0.01). When all available factors are used the 

model achieved 74.5% on the in-sample and 71.3% on the out-of-sample (p<0.01). 

 

Using Neural Networks on the other hand found the best in-sample accuracy once the 13th 

factor had been added, with a combined training and validation accuracy of 75.1% and an out-

Initial Population of Factors 

Dataset Creation Removal of Missing 
Data 

Removal of Low-Contributory Factors (Non-Deterministic, 
accuracy based, random generation search strategy)  
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of-sample accuracy of 70.4%. By comparison when all surviving factors from section 4.3.5 are 

included the accuracy of the in-sample set drops slightly to 75.0% and the out-of-sample 

accuracy drops just slightly to 70.1% (p<0.01). When using only the factors from Beaver (1966) 

or only the factors from Altman (1968), accuracy drops to 72.2% and 73.1% on the in-sample 

set with 69.8% and 67.1% on the out-of-sample (p<0.01) and when using all available factors, 

accuracy is approximately equal to that of from Beaver (1966) factors or Altman (1968) factors, 

achieving 74.0% with 69.8% on the out-of-sample (p<0.01). 

 

A table of the full results can be found in Appendix G. 

 

A plot of validation accuracy versus number of factors for each method is shown in Figure 4-12, 

and can be found numerically in Appendix H and Appendix I. 

 

 

Figure 4-12 - Number of Factors versus In-Sample Accuracy for Compustat Dataset 
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validation accuracy of 68.4% with 65.3% on the out-of-sample. When all surviving factors are 

used, accuracy drops to 66.1% with 60.0% on the out-of-sample (p<0.01), indicating that over-

fitting is occurring more when there are more factors for the model to consider. Furthermore, 

while most models noted so far had approximately equal accuracy for failure and non-failure, 

the out-of-sample accuracy was very unbalanced only on this result, detecting just 38.5% of 

failure cases but detecting 83.0% of non-failure cases. When using only the factors from Beaver 

(1966) or only the factors from Altman (1968), accuracy drops to 66.9% with 63.4% (p<0.01) on 

the out-of-sample, and when using all available factors accuracy drops to 66.0% with 63.2% on 

the out-of-sample (p<0.01). 

 

When using Neural Networks, the 12th factor resulted in the best in-sample accuracy of 66.0% 

with 64.0% on the out-of-sample, but when all surviving factors were used the model 

performance decreased to 59.7% with 52.3% on the out-of-sample (p<0.01). When using 

Altman (1968) factors, the network accuracy was decreased to 61.2% (p<0.01), though this also 

was very unbalanced detecting 85.4% of failure cases but just 37.0% of non-failure cases, with 

60.4% on the out-of-sample in more balanced result of 57.0% and 70.3% on failure and non-

failure cases respectively. When using Beaver (1966) factors the network accuracy was 

decreased to 58.8% with 57.5% on the out-of-sample (p<0.01), and when using all available 

factors the accuracy was decreased to 65.8% with 62.5% on the out-of-sample (p<0.01).  

 

A table of these results can be found in Appendix G. 

 

A plot of accuracy versus the resulting in-sample accuracy is shown Figure 4-13 for both the 

Genetic Programming and Neural Network models and the numerical results can be found in 

Appendix J and Appendix K. 
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Figure 4-13 - Number of Factors versus Accuracy for Aspect Dataset 

 

 

4.3.9 Conclusion 

This chapter has found that a forward generation heuristic search using classification accuracy 

as an evaluation measure is an effective tool for finding a better subset of factors. Not only does 

this result in a simpler model, but this research finds it yielded a small (but statistically 

significant) increase in accuracy. In one case the Beaver (1966) factors resulted in an 

approximately equal out-of-sample accuracy, and in one case using all available factors 

resulted in an approximately equal out-of-sample accuracy but in no cases did the best-first 

search reduce accuracy in either in-sample or out-of-sample datasets. 

 

More importantly, this research has supported the findings of Edmister (1972), that classification 

models (and the factors used within them) are tied very strongly to the particular dataset used. 

That is, the consistent utilisation of factors from prior research into new research without first 

testing the effectiveness of that factor set can easily become a limitation on research 

undertaken today. 
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5. Analysis Part I (Data) 

The methodology outlined in the previous chapter is used throughout this and the following 

chapter. This chapter, Analysis Part I, takes the opportunity to consider the inclusion of 

additional data, while the following chapter, Analysis Part II, considers the clustering of data. 

 

5.1 The Effect of Share Market Data 

This research has shown that factors which stem from a company’s financial information can be 

used to classify failure in a holdout sample with a higher accuracy than a naïve model. 

However, a company’s financial information is not necessarily the only information that is 

available. As far back as Beaver (1968), researchers have examined whether share market 

information can be used instead or in addition to financial data. Agarwal & Taffler (2008) 

identified that because accounting statements address previous performance not future 

expectations accounting values may not necessarily be a true representation of the financial 

situation of the company, or manipulation may be present, and that financial statements are 

prepared on the expectation that the company is not facing imminent bankruptcy and so goes 

on to include information in a contingent-claims valuation approach. Another example is Atiya 

(2001) which states, “A problem faced by a firm will typically be reflected in the stock price well 

before it shows up in its balance sheet and income statement”. These statements are consistent 

with the theoretical framework of failure identified in chapter 3. 

 

It appears that some of the main motivations for using share market information is based on the 

belief that it is a distillation of all available knowledge including recent news, auditor opinion and 

of course accounting statements. If bankruptcy is perceived by the market, then the share price 

should change appropriately.  Agarwal & Taffler (2008) make the argument, “in efficient 

markets, stock prices will reflect all the information contained in accounting statements and will 

also contain information not in the accounting statements”. 
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If this is true, then key market information should assist a classification or prediction model, 

particularly one that is identifying failing companies. This of course comes at the cost of 

increased dimensionality, whereby the increase in factors in the dataset drastically increases 

the size of the error surface. In turn this reduces the probability that the optimal solution will be 

found and so potentially decreases the accuracy of the model. The issue of over-dimensionality 

has already been addressed in chapter 4.3, and so the same methodology that has been shown 

to address this issue can be used here. 

 

The addition of market information has been investigated by others. As noted earlier, the works 

by Agarwal & Taffler (2008) and that of Atiya (2001) showed mixed results, so this chapter 

seeks to extend the usefulness of a market-inclusive versus market-exclusive comparison by 

performing an objective factor-selection methodology on both a market-inclusive pool of factors 

and a market-exclusive pool of factors, and then comparing the effectiveness of the factor-

optimised models. In doing so, this chapter aims to identify which, if any, market factors are 

most useful in the model. 

 

Like the previous chapter, this chapter has opted to utilise Genetic Programming and Cascade-

Correlation Neural Networks, due to their performance and qualities outlined in section 4.2.7, 

and it is not necessary to further justify their choice in this chapter. However, the dataset that 

was used previously does not include share market information, so the next section of this 

chapter will discuss the combination of available financial information with available share 

market information. 

 

5.1.1 Share Market Data 

Being US-centric data, the Compustat dataset was combined with the annual US stock data 

available from the Centre for Research in Security Prices (CRSP), though there is some 



5. Analysis Part I (Data) 
 

 

Page 129 

difficulty in linking the two datasets. The US share market regularly reuses “ticker” symbols as 

companies come into and leave the market. Compustat provides the variables “CNUM” and 

“CIC” which in turn match against the variable “CUSIP” from CRSP, but that can only be used to 

link the non-unique “PERMCO” variable, not the unique “PERMNO” variable that is needed to 

identify a single stock for a single company in a single year. Using such a non-unique variable 

results in matches of 81% of Compustat cases and 82% of CRSP cases (Palacios, 2007). 

However CRSP provide a “CCM linking file” which contains the Compustat primary identifier 

(“GVKEY”), the CRSP primary identifier (“PERMNO”), and the start date and the end date of the 

link. Using this file results in an 85% and 87% match rate against Compustat and CRSP 

respectively (Palacios, 2007). 

 

This is an important note because much research in this area, for example the earlier cited 

Agarwal & Taffler (2008) as well as Atiya (2001), do not discuss that increasing the number of 

factors and the number of data sources often creates challenges in the form of missing or poorly 

linked data. Oftentimes, as discussed in chapter 2, previous research carefully selects 

companies or cases with full data availability which masks the real-world challenges of dealing 

with large datasets. 

 

Similarly to the US-centric Compustat dataset, the Australian-centric Aspect dataset does not 

include share market information. To this end, this chapter turned to the “Stock Doctor” 

database which is a proprietary product produced by Lincoln Indicators Pty Ltd, Melbourne. The 

Stock Doctor database includes information such as the opening price, the daily high/low and 

the volume of shares traded on that day for each security. 

 

Similarly to the Compustat/CRSP dataset, some manipulation was required to make the data 

ready to use. Specifically, because the available Stock Doctor data was reported daily it was 

necessary to determine the “closest” trading day to the date that the company’s annual financial 
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statement was released to determine things such as the closing price, and it was also 

necessary to calculate the nearest trading day a year prior to determine annual returns. Also 

similarly to the Compustat/CRSP dataset, a portion of company-years (26.7%) in the Aspect 

dataset could not be matched to share market information in the Stock Doctor database and 

was removed from the dataset. 

 

5.1.2 Addition of Share Market Factors 

Unlike financial information, share price data represents a comparatively small set of potential 

additional factors. Similarly to the identification of potentially useful financial data factors in 

section 4.3.3, this chapter examined other research in this area including Queen & Roll (1987), 

Agarwal & Taffler (2008) and Atiya (2001), and in combination with looking at the available data 

in the CRSP and Stock Doctor datasets, the share market factors that were selected were end 

of year share price (adjusted), volume (adjusted), market capitalization, annual return, variance 

(the expected value of the squared deviation from the mean) and beta (the correlated volatility 

of the share with an index). 

 

As noted in 5.1.1, there was not 100% data availability when linking the existing annual financial 

data to the available share market data, and so it was felt that the factor choice from chapter 4.3 

may no longer be optimised. Therefore the removal of low-contributory factors (section 4.3.5) 

and the accuracy-based best-first forwards search (section 4.3.6) was repeated on both the 

Compustat and Aspect datasets. Differences between the datasets used for this chapter and 

the datasets used in chapter 4.3 also meant that it was inappropriate to compare the accuracy 

of this model directly with the results from chapter 4.3, so it was also necessary to re-perform 

the factor search on the same dataset but with a set of factors that did not include the additional 

share market information. 
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5.1.3 Results & Discussion 

The evolutionary factor selection process on the reduced Compustat dataset, without share 

market data, resulted in the following factors, and is documented in Appendix L: 

 current plus long-term liabilities to 

total assets 

 net income to total assets 

 net income 

 net income to net worth 

 cash to fund expenditures for 

operations 

 current liabilities to total assets 

 net income to sales 

 sales to total assets. 

 earnings before taxes to sales 

 net operating profit to sales 

 net worth to sales 

 retained earnings to total assets 

 current liabilities to current assets 

 

While many of the factors remain the same as those found in section 4.3.5, such as net income 

to sales, some factors such as cash flow to total assets are no longer found to be contributory. 

Likewise some factors, such as retained earnings to total assets, are now found to be useful 

where previously they were not. This is further evidence of Edmister’s (1972) statement that the 

optimal choice of factors is extremely sensitive to the dataset being used. 

 

Within the reduced Aspect dataset, the following factors survived the evolutionary process: 

 long-term liabilities to total assets 

 current plus long-term liabilities to 

total assets 

 cash to total assets 

 current assets to total assets 

 working capital to total assets 

 cash to current liabilities 

 cash to fund expenditures for 

operations 

 defensive assets to fund 

expenditures for operations 

 defensive assets minus current 

liabilities to fund expenditures for 

operations. 

 retained earnings to total assets 
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 earnings before interest and taxes 

to total assets 

 cash flow to current liabilities 

 sales to cash 

 net operating profit to sales 

 net operating profit to total assets 

 

Again some new factors are found to survive on this dataset, such as long-term liabilities to total 

assets, while some factors from chapter 4.3 did not survive, such as net income to total assets, 

and again some are found in both cases, such as cash to current liabilities. 

 

With the surviving factors identified, the best-first forward search could be carried out. For the 

Compustat dataset with share market data, the Genetic Programming best-first model had the 

highest in-sample performance when the 6th factor had been added, with accuracy on the in-

sample validation set achieving 77.2% and an out-of-sample accuracy of 79.0%. However when 

the share market data was not available to this best-first model the in-sample validation set 

accuracy and the out-of-sample accuracy actually increased to 77.4% and 80.9% respectively 

(p<0.01).  

 

When using Neural Networks, the inclusion of share market data resulted in an in-sample 

validation accuracy of 80.3% with 81.2% on the out-of-sample, quite a bit higher than that of 

Genetic Programming, but this time decreasing to 78.2% with 69.5% on the out-of-sample when 

share market data was excluded (p<0.01). Interestingly while Neural Networks performed better 

than Genetic Programming when share market data was available, it appears that the Neural 

Network model was over-fitting when share market data was not available which resulted in a 

very low out-of-sample accuracy. 

 

The results on the in-sample data are shown in Figure 5-1 and Figure 5-2, and the numerical 

results are available in Appendix N, Appendix O, Appendix P and Appendix Q. 
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Figure 5-1 - Number of Factors versus In-Sample Accuracy for Compustat Dataset with Share 

Market Data 

 

 

Figure 5-2 - Number of Factors versus In-Sample Accuracy for Compustat Dataset without Share 

Market Data 

 

For the Aspect dataset, using Genetic Programming with share market data available the model 
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accuracy of 68.9% with 62.6% on the out-of-sample, but since none of the best-first 4 factors 

included any share market information, there was no benefit (or drawback) to the share market 

data being added. 

 

When using Neural Networks the model achieved the best accuracy once the 8th factor had 

been added with an in-sample accuracy of 70.7% with 63.6% on the out of sample. When share 

market information was not available to the model, the maximum accuracy decreased to 69.6% 

with 59.4% (p<0.01). Again the Neural Network model appears to have undergone over-fitting, 

evidenced by the large disparity between the in-sample and out-of-sample accuracy. 

 

The results on the in-sample data are shown in the Figure 5-3 and Figure 5-4, and the 

numerical results are available in Appendix R, Appendix S, Appendix T, Appendix U. 

 

 

Figure 5-3 - Number of Factors versus Accuracy for Aspect Dataset with Share Market Data 
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Figure 5-4 - Number of Factors versus Accuracy for Aspect Dataset without Share Market Data 

 

Beyond a comparison of classification accuracy when share market data is added, it is 

worthwhile to consider the order of the share market data. In three out of four experiments in 

which share market data was available, the variable “share price” was included as a useful 

factor by the objective best-first heuristic factor search. In the one experiment in which it was 

not, the Compustat dataset using Neural Networks, no share market data was found to be 

useful at all. Neither volume nor variance, on the other hand, was found to be useful by the 

objective factor search in either of the datasets using either of the classificatory models. 

 

5.1.4 Conclusion 

This chapter has found that while share market data such as the end of financial year share 

price can contribute to the classification accuracy of bankruptcy models, the increases of up to 

2.1% on in-sample accuracy come at a cost of up to 26.7% data loss due to difficulties in 

matching end of fiscal year financial data to share market data. Furthermore, the addition of 

share market data was shown to sometimes cause decreases in both in-sample and out-of-

sample accuracy, or in one case to have no impact on the classification accuracy of the model 
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at all. Given the theoretical framework behind the inclusion of share market data, these results 

are somewhat surprising. Due to the mixed results using the Compustat and Aspect datasets 

with Genetic Programming and Neural Network classification models, this thesis will revert to 

using datasets that do not include share market information. 

 

5.2 The Effect of Macroeconomic Data 

While certainly the factors examined in chapter 4.3, and the inclusion of share market data in 

section 5.1 are often considered in corporate failure prediction research, the inclusion of 

macroeconomic data is overlooked in key research such as Lensburg, et al. (2006), one of the 

first papers to utilise Genetic Programming on this problem domain. This is surprising because 

a body of theory exists which links macroeconomic factors with corporate failure prediction, Liu 

(2004) references some seven papers that “sought to determine bankruptcies and insolvencies 

of UK companies at the aggregated level”. That is not to say that no research on this topic 

exists, for example Rose, et al. (1982) used stepwise regression, applied correlation analysis 

and lead-lag relationships to conclude that macroeconomics conditions are highly correlated 

with business failure, while Rösch & Scheule (2005) found that “the inclusion of macroeconomic 

factors renders the systematic unobservable factors less important and diminishes the impact of 

correlations”. It is therefore reasonable to hypothesise that the inclusion of macroeconomic data 

in the best-first forward search model, now shown to increase both in-sample and out-of-sample 

accuracy, would benefit from the inclusion of macroeconomic factors. 

 

5.2.1 Macroeconomic Data 

This research examines macroeconomic factors that have been found to be useful in prior 

research, specifically the GDP Growth Rate (Rösch & Scheule, 2005; Nam, et al., 2008), the 

Retail Price Index/Consumer Price Index (Liu, 2004), the Interest Rate (Rösch & Scheule, 2005; 

Liu, 2004), as well as two factors that were used in the generation of aggregate indexes 

including the Exchange Rate and the Dow Jones Composite/Australian All Ordinaries. While 
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this is far from an exhaustive list of macroeconomic factors, these factors were easily obtainable 

from the Development Data Group (World Bank Group, 2012), Morningstar (Morningstar 

Australasia Pty Limited, 2012) and Standard & Poor’s (CME Group Index Services, 2011). 

 

Similarly to the share market data used in the previous section, the macroeconomic data was 

taken at the time of the financial statement creating essentially distinct values for each 

macroeconomic factor that are repeated across all company-years from the same year of data. 

Since some factors (such as the Interest Rate) are typically larger than other factors (such as 

GDP), this research performed the last step of the best-first search on both range normalised 

and unnormalised data, finding that normalising the data decreased accuracy on the in-sample 

dataset, and therefore the results from the unnormalised data are used in the following sections. 

 

5.2.2 Results & Discussion 

Unlike the inclusion of share market data, which resulted in a portion of company-years being 

excluded due to a lack of share market data, the inclusion of macroeconomic data did not 

change the existing data in any way, and it is therefore unnecessary to carry out the removal of 

low-contributory factors. Instead, the factors identified from the methodology in section 4.3.5 

can be used for performing the best-first forward search as outlined in section 4.3.6. 

 

Notably, the Genetic Programming methodology on the Compustat dataset discovered the 

same first 3 factors in the same order with a very similar in-sample accuracy of 75.9% (earnings 

before taxes to sales, net income to total assets, cash to fund expenditure from operations). 

However in this experiment, the fourth factor was discovered to be net income to net worth, 

rather than sales to total assets. This is not entirely surprising because Genetic Programming is 

a non-deterministic methodology, and the information gain from the addition of the fourth factor 

is small or possibly negative (section 4.3.8 shows an accuracy decrease of 0.05% on the in-
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sample data). Moreover, cash flow to total assets, a factor discovered to be useful in the best-

first search from section 4.3.6 is also found to be useful in this experiment. 

 

A similar situation is found with the Aspect dataset also using Genetic Programming, the first 

three factors, net income to net assets, cash to current liabilities and cash flow to total liabilities, 

are discovered in the same order, but as the information gain diminishes (a 0.12% accuracy 

decrease on the in-sample data) the non-deterministic nature of Genetic Programming yields a 

different fourth factor. While this finding is somewhat of a tangent from the original purpose of 

this chapter, it is an interesting validation of the results from section 4.3 that demonstrates 

experimentally that appropriate stopping criteria were used for the algorithms. 

 

Within the Compustat dataset using Genetic Programming, the peak in-sample accuracy was 

discovered after the inclusion of earnings before taxes to sales, net income to total assets, cash 

to fund expenditures for operations, net income to net worth, and cash flow to total assets, with 

an in-sample accuracy of 76.9% and an out-of-sample accuracy of 73.6%. While the in-sample 

result is marginally better than when the experiment was run without macroeconomic data of 

76.4%, the out-of-sample accuracy has decreased marginally from 73.8%. These differences 

are entirely due to the non-deterministic nature of Genetic Programming because at this stage 

the datasets are identical. What is most illuminating in this instance is that the peak accuracy in 

the best-first model includes no macroeconomic factors at all. By comparison when using 

Neural Networks, peak in-sample accuracy was achieved with the inclusion of the 17th factor 

which did in fact include some macroeconomic factors (exchange rate and the Dow Jones 

industrial index) as factors, but while the in-sample accuracy increased from 75.1% to 75.6%, 

out-of-sample accuracy fell from 70.4% to 68.2%, indicating that the higher dimensionality has 

resulted in more over-fitting. The results of the best-first search are shown in Figure 5-5 with the 

numerical results available in Appendix V and Appendix W. Note that this is the only result of 

this section that included macroeconomic factors in the best-first forward search (resulting in 
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two methods to compare), and is therefore the only result in which McNemar’s test for statistical 

significance can be applied, finding p<0.01. 

 

 

Figure 5-5 - Number of Factors versus Accuracy for Compustat Dataset with Macroeconomic Data 

 

The Aspect dataset yields similar results. When using Genetic Programming the peak in-sample 

accuracy diminished from 68.4% to 68.1% and the out-of-sample accuracy reduced from 65.2% 

to 62.3%. When using Neural Networks, peak accuracy reduced accuracy on the in-sample 

data from 66.0% to 65.7%, and from 64.0% to 63.5% on the out-of-sample dataset, and also 

found that the peak results were obtained when macroeconomic factors were not incorporated 

into the network.  These results are shown in Figure 5-6 and can be found numerically in 

Appendix X and Appendix Y. 
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Figure 5-6 - Number of Factors versus Accuracy for Aspect Dataset with Macroeconomic Data 

 

5.2.3 Conclusion 

This section has examined the effect of adding macroeconomic data to the factors identified in 

chapter 4.3 to validate the findings of research such as Rösch & Scheule (2005). However, this 

chapter has found that the best-first forwards search approach included macroeconomic factors 

in only one of the four experiments, and in that case it appears that the increased accuracy on 

the in-sample dataset was due to over-fitting as evidenced by the decreased out-of-sample 

accuracy. While this result is surprising it does not indicate that companies fail independently of 

the circumstances of the macroeconomy, it indicates only that in the datasets used for this 

research the macroeconomic factors used contributed less information than the cost of 

increasing the dimensionality. This could be because the factors chosen were not a good 

representation of the macroeconomy, or more likely because the effect of the macroeconomy 

on the company is represented within the company-specific financial information also available 

to the model. 

 

0.5

0.55

0.6

0.65

0.7

0.75

0.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

A
cc
u
ra
cy

Number of Factors

Genetic Programming Neural Network



5. Analysis Part I (Data) 
 

 

Page 141 

Furthermore, this chapter has validated the results of the methodology outlined in section 4.3.6, 

finding that re-performing the non-deterministic experiments yields highly similar results, 

showing that the stopping criteria selected did not prevent the model from finding near-optimal 

results on the in-sample data. 

 

Given that previous research has found macroeconomic factors to be a useful lead indictor for 

corporate failure, there is certainly value in expanding the range of factors available to the 

Genetic Programming and Neural Network models used in this research, as well as considering 

other classification and prediction systems such as Support Vector Machines (SVM) before 

concluding that macroeconomic indicators provide no additional information to the datasets 

used in this research. However, having considered a set of reasonably popular 

macroeconomics factors across two classification systems and two datasets, the findings from 

this section are sufficiently robust to continue onto part II of the analysis without the inclusion of 

the macroeconomic factors used here. 
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6. Analysis Part II (Methodologies)  

Having considered the effect of including additional data in chapter 5, this chapter will 

concentrate on the methodologies that can be applied to the data to increase classification 

accuracy. 

  

6.1 Improving the Visualisation of Clusters 

A potential improvement to the classificatory accuracy of bankruptcy data comes in the form of 

clustering. Certainly other research, including both Beaver (1966) as well as Altman (1968) 

indicated that company “similarity” should be considered, as both papers paired companies by 

industry. However, if the effect of clustering or even simply grouping companies by industry is to 

be considered in chapter 6.2 as planned, some measure of clustering effectiveness will need to 

be used. However, this chapter goes on to identify a number of limitations in the clustering 

effectiveness measure and visualisation that would otherwise be an ideal choice, and so this 

chapter seeks to address those limitations. In doing so, this chapter develops the SpecVCMV 

algorithm that will then be used in section 6.2. As such, this chapter is a seemingly distant (but 

necessary) tangent to the stated purpose of this thesis. 

 

Clustering algorithms are automated systems for the grouping of unlabelled data points based 

on some predefined similarity or distance measure. For example, the length and width of a 

sample of flowers’ sepals and petals could be measured, as was the case in the popular Iris 

flower dataset (Fisher, 1936). A clustering algorithm would seek to determine whether a number 

of distinct species of flowers exist within the sample, independently of any labelling performed 

by experts. This process is distinct to classification, where the sample would contain labelled 

data points, allowing a classification system to learn what properties are typical of each group 

and therefore classify additional unlabelled data points with some degree of accuracy. Unlike 

classification, one of the difficulties in clustering is that there is no label to measure how well the 
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items have been clustered. This chapter will begin by discussing clustering validity indexes, 

moving on to clustering visualisations, and addressing some of the major visualisation methods 

along with their limitations. This chapter will go on to propose and test a new visualisation 

method, Visual Cluster (Membership) Validity, which can be used in future sections to test the 

effectiveness of clustering annual financial company information. 

 

6.1.1 Cluster Validity Indexes 

There are many metrics that can be used for comparing the effect of clustering. One of the most 

popular is the Davies-Bouldin index (DB) (Davies & Bouldin, 1979), which measures the within-

cluster scatter, the between-cluster separation, and returns the maximum ratio of within-cluster 

scatter versus between-cluster separation. A lower value indicates smaller within-cluster scatter 

or larger between-cluster separation hence a low DB indicates better clustering. Prior to the 

Davies-Bouldin index, a popular method was the Dunn Index (DI) (Dunn, 1974), which can 

measure the maximum distance across clusters, the mean distance between all pairs of points 

in a cluster, the distance from all points in the cluster to the mean or some other measure of 

maximal within-cluster distance, and builds a ratio against minimal inter-cluster distance using 

the same formulations. There are, in fact, so many metrics that at this point Hubert (1985) is 

often cited, “We will not try to review this literature comprehensively since that task would 

require the length of a monograph”. One of the issues that arise with so many methods for 

measuring cluster validity is that, as noted in Bezdek & Pal (1998), even when the same 

clustering algorithm is used on the same dataset, the optimum number of clusters varies 

depending on the cluster validity measurement that is used. 

 

6.1.2 Cluster Validity Visualisations 

One of the issues with such cluster validity measurements is that by reducing an entire dataset 

to a single number, much information is lost (Hathaway & Bezdek, 2003), and it becomes 

difficult to understand the underlying structure of the data. Visualisations such as scatter plots 
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can be used when the data is 2 or 3-dimensional, but as the number of dimensions increase so 

does the difficulty in perceiving the clusters. To overcome these limitations, various clustering 

visualisation methods have been proposed which can project hyper-dimensional data as 

abstractions of the data, for example visualising pairwise distance rather than the data itself. In 

many ways the work of Huang et al. (2001), Bezdek & Hathaway (2002), Chen & Liu (2003) and 

Hathaway & Bezdek (2003) have spearheaded this field. This section will begin by outlining a 

number of the visualisation methods that are in use today, before discussing the motivations for 

developing an alternative. 

 

The Visual Assessment of (Cluster) Tendency (VAT) method (Bezdek & Hathaway, 2002) 

begins by calculating the pairwise dissimilarity matrix between each data point and every other 

data point. The dissimilarity matrix is sorted by way of Minimum Spanning Trees (MST) (Prim, 

1957) and the resulting pairwise distances are displayed as greyscale pixels with the maximum 

distance between points shown as white pixels and the minimum distance (zeros along the 

main diagonal as these represent the distance between a point and itself) shown as black 

pixels. The use of MST makes the VAT method excel at visualising clusters of odd shapes, 

such as concentric circles. Figure 6-1 shows such a dataset, with the points joined by lines in 

the order that the MST algorithm sorted them, and the diagram also shows the resulting VAT 

visualisation. The VAT visualisation makes it apparent that the distance between point 20 and 

30 is relatively small because the colour of the VAT diagram at x=20, y=30 is dark grey, 

whereas the distance between point 20 and point 60 is high because the colour of the VAT 

diagram at x=20, y=60 is white. The black diagonal band from top-left to bottom-right is 

representative of each point being near to its immediate neighbours but comparatively far from 

its more distant neighbours. The two apparent blocks along the top-left to bottom-right diagonal 

is indicative of two clusters, and is caused by the MST algorithm “jumping” to the inside circle 

while ordering the data points. 
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Figure 6-1 - VAT of Concentric Circle Dataset 

 

The MST algorithm however is susceptible to the “chaining effect”, whereby the path of least 

distance does not necessarily maintain cluster homogeny. The dataset used in Figure 6-2 below 

is two Gaussian distributions centred around (-2, -2) and (2, 2), with the points joined in the 

order the MST algorithm sorted them, and the VAT algorithm which appears to identify a 

spurious third cluster. This a result of the MST algorithm doubling back to data points missed in 

the previous pass. Had the two Gaussian clusters been in multi-dimensional space, the 

spurious cluster would appear as a legitimate cluster and it would not be immediately possible 

to identify that this had occurred. 

 

 

Figure 6-2 - VAT of Volumetric Cloud Dataset 
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Visual Cluster Validity (VCV) (Hathaway & Bezdek, 2003) is a generalisation and extension of 

the VAT algorithm that begins by outsourcing the clustering of the data to an external clustering 

algorithm of the user’s choice. In doing so, the VCV method is confined to visualising the results 

of a clustering algorithm and does not cluster the data itself. For the external algorithm, 

Hathaway & Bezdek (2003) used Fuzzy c-Means (FCM) and Fuzzy c-Regression Models 

(FCRM) to illustrate the ability to visualise volumetric clouds as well as clusters that are 

identified using a linear or non-linear regression function which seek define clusters by findings 

lines of best fit that minimise squared error. 

 

Hathaway & Bezdek’s VCV algorithm specifies that each cluster must be sorted using MST so 

that similar clusters are located close together on the resulting visualisation, and so if a fuzzy 

clustering method has been used then the cluster membership must be “hardened”. 

Furthermore if fuzzy clustering has been used, the VCV algorithm then sorts the data points 

within each cluster by cluster membership to each point’s nearest cluster. Like VAT, the VCV 

algorithm visualises pairwise distance, but the distance function (which defines the colour of the 

pixel) is specified as the minimum sum of distances to each cluster prototype (ܴ௜௞
∗ ൌ

minଵஸ௝ஸ௖൛ ௝݀௜ ൅ ௝݀௞ൟሻ rather than the Euclidean distance between the two points. This method has 

gone on to produce variations, such as the “relational” VCV method (Ding & Harrison, 2007) 

which can be used in more specific circumstances. 

 

The VCV algorithm can be summarised as a comparison to VAT as shown in Table 6-1: 

 VAT VCV
Initial Clustering Algorithm None User’s choice 
Extra-Cluster Sorting None Minimum Spanning Trees of 

cluster prototypes in Euclidean 
space 

Intra-Cluster Sorting Minimum Spanning Trees of 
data points in Euclidean space 

Winning cluster degree of 
membership (if fuzzy) 

Distance Measure 
(Visualisation of) 

Euclidean pair-wise distance Euclidean distance to cluster 
prototype 

Table 6-1 - Summary of VAT and VCV 
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In example Figure 6-3 below, fuzzy c-means clustering has been used on three volumetric 

clouds, but the number of clusters specified for the clustering algorithm to find is 4 (c=4), and as 

a result the cluster in the top left corner has been spuriously split into two micro-clusters. Due to 

the algorithm visualising the distance to the cluster prototype (in this case the cluster centroid), 

the visualisation shows just three clusters and demonstrates that the first two clusters are in fact 

the product of one larger cluster. 

 

 

Figure 6-3 - Clustered and VCV for 3 Volumetric Clouds (c=4) 

 

By visualising the distance to the cluster prototype, rather than the pairwise distance, VCV is 

able to display linear and non-linear regression clusters, such as in the example in Figure 6-4 in 

which two intersecting lines are identified by the FCRM algorithm. 

 

 

Figure 6-4 - Clustered Data and VCV for 2 Intersecting Lines (c=2) 
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However the VCV algorithm has some underlying assumptions that can theoretically lead to 

situations where the results are misleading. The first assumption in VCV is caused by the 

choice of distance measure. There are times when a data point that is “far” from its cluster 

prototype is indicative of a poorly clustered point; however this is not always the case. In the 

example given in Figure 6-5, two points are highlighted that are of equal distance from their 

cluster centroids. These would have very different cluster memberships when clustered using 

FCM because one of those two points is quite close to the competing cluster, while one of those 

points is far away from the competing cluster. However the VCV algorithm, which visualises 

distance, would not communicate the different cluster memberships calculated by the 

underlying FCM algorithm.  

 

 

Figure 6-5 - Distance does not always equate to Cluster Membership 

 

The second assumption is caused by the algorithm with which clusters are sorted. VCV’s cluster 

sorting method, while based on Minimum Spanning Trees, arbitrarily keeps the cluster with 

arbitrary label “1” as the first cluster (Hathaway & Bezdek, 2003). In doing so, VCV may split 

similar clusters due to the order that the clusters are selected by the algorithm. In the example 

given in Figure 6-6 two very nearby clusters in the two left of the diagram are split because one 

of them happened to be arbitrarily labelled “1”. 

cluster centroids 

Low distance, low cluster membership 

Low distance, high cluster membership 
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Figure 6-6 - Similar clusters separated by VCV 

 

The third assumption in the VCV algorithm is that the cluster prototypes are used for sorting and 

are assumed to be in Euclidean space, but this may not always be a valid assumption. In 

situations where the external clustering algorithm returns non-Euclidean parameters (such as 

FCRM, which returns polynomial parameters), cluster similarity cannot be measured by simply 

calculating Euclidean distance of cluster prototype parameters, as is done by the VCV 

algorithm. 

 

For example in the diagram Figure 6-7, three clusters of data have been successfully identified 

as ݕ ൌ ݔ1 ൅ ݕ ,3 ൌ ݔ1 ൅ 1 and ݕ ൌ ݔ0 ൅ 1. It is apparent that cluster ݕ ൌ ݔ1 ൅ 3 and ݕ ൌ ݔ1 ൅ 1 

are more similar than ݕ ൌ ݔ0 ൅ 1. However when these cluster prototypes, (1,3), (1,1) and (0, 1) 

respectively, are treated as if they’re in Euclidean space as shown on the right hand side, the 

VCV algorithm treats ݕ ൌ ݔ1 ൅ 3 to be less similar with ݕ ൌ ݔ1 ൅ 1 and ݕ ൌ ݔ0 ൅ 1 to be more 

similar. Therefore there may in theory be situations in which the clusters are sorted incorrectly 

due to the assumption that cluster prototypes are Euclidean in nature.  

Similar clusters 
separated by VCV 
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Figure 6-7 - Polynomial parameters presented in Euclidean Space 

 

To demonstrate the impact of these assumptions, a set of data is crafted with two volumetric 

clouds centred around (5, 2.5) and (10, 2.5) and shown in Figure 6-8, with the resulting VCV 

visualisation (c=5). In particular note the dark area in the bottom left corner of the visualisation 

showing a small distance between the top left and bottom right clusters caused caused by the 

VCV algorithm spuriously separating the left hand volumetric cloud in the original dataset. 

 

 

Figure 6-8 - Clustered Data and VCV for 2 Volumetric Clouds (c=5) 

 

Finally the VCV algorithm requires the user to choose the external clustering method, and in 

high-dimensionality datasets this can be difficult as the data often cannot be perceived directly. 
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The SpecVAT algorithm (Wang, et al., 2008) uses the external clustering algorithm Spectral 

Clustering (Shi & Malik, 1997) to map the data points into an abstracted space, then uses the 

VAT algorithm outlined earlier in this section on the points in the spectrally mapped abstraction. 

Spectral Clustering is a well-accepted mechanism to perform clustering, and works by using an 

affinity function (usually an exponential function of Euclidean distance) to calculate an “affinity 

matrix” between pairwise points. The affinity function ensures that neighbouring points have a 

pairwise affinity approaching 1 while points that are not neighbouring have a pairwise affinity 

approaching 0, essentially creating a mathematical graph of the “connectedness” of each point 

to every other point. Graph theory then allows the eigenvectors of the normalised Laplacian 

matrix to be calculated, and taking the first k parameters of each eigenvector has the effect of 

mapping each point into a k-dimension space in which highly connected data points are located 

nearby, even if they were distant in the original Euclidean space. This means that odd shapes, 

such as the concentric circles example used in Figure 6-1 are mapped into volumetric clouds in 

the spectral space, and can then be visualised using the VAT algorithm. 

 

The use of Spectral Clustering is an excellent method for avoiding the need for the user to 

choose the external clustering algorithm, particularly when the data cannot be perceived 

directly. However the use of the VAT algorithm introduces VAT’s limitations, including the 

chaining phenomenon, which in k-dimensional volumetric clouds now becomes difficult to 

identify. In the example shown in Figure 6-9, three volumetric clouds centred around (0, 0), (0, 

3) and (3, 0) are clustered using Self-Tuning Spectral Clustering (Zelnick-Manor & Perona, 

2004) (which uses k-means on the points in the abstracted space), the abstracted space in k-

dimensions, and the resulting SpecVAT visualisation are shown, demonstrating that the 

SpecVAT algorithm has identified a number of spurious clusters. 
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Figure 6-9 – Clustered data (top left), VAT sorted eigenvectors transformed to eigenspace (top 

right), and resulting SpecVAT for three volumetric clouds (bottom left, with c=3, K=7) 

 

To address these issues, it is tempting to simply apply the improved VCV algorithm as opposed 

to VAT, but to do so would re-introduce the assumptions found in the VCV algorithm that have 

already been demonstrated, so an alternative is proposed in this thesis. 

 

6.1.3 Spectral Visual Cluster (Membership) Validity 

Spectral Visual Cluster (Membership) Validity (SpecVCMV) incorporates a number of 

adaptations to the VCV algorithm to address the assumptions outlined in the previous section. 
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The structure of Hathaway & Bezdek’s VCV algorithm is maintained, specifically “(s1) [step 1] 

the clusters themselves are (possibly) reordered; and then (s2) the data in each cluster are 

reordered” (Hathaway & Bezdek, 2003). Step 0 (s0) is inferred to be computing the U 

membership (ܷ௢௤, where ݋ is a data point and ݍ is a cluster), and the cluster prototypes (ܸ) as 

the cluster centre in Euclidean space or parameters of a when applying an external clustering 

algorithm such as fuzzy c-means (FCM) or fuzzy c-regression models (FCRM). A more detailed 

explanation of the above algorithm can be found in Hathaway & Bezdek (2003). 

 

It is therefore proposed in this study that the external clustering’s own cluster membership 

(confidence) be used as the measure of distance instead of the Euclidean distance to cluster 

prototypes. Thus the limitation outlined in the previous section is overcome; however this adds 

the additional requirement that the external clustering algorithm be fuzzy. Within Spectral 

Clustering, the clustering itself is typically performed using k-means on the spectrally mapped 

data points, but Fuzzy C-Means (FCM) allows cluster membership (ܷ௢௤) to be used instead. 

Therefore the pair-wise dissimilarity from Hathaway & Bezdek (2003) can be redefined as 

ܴ௜௞
∗ ൌ minଵஸ௝ஸ௖ ቄ൫1 െ ௝ܷ௜൯

ଶ
൫1 െ ௝ܷ௞൯

ଶ
ቅ. 

 

It is argued that a visualisation of clustering confidence is a stronger indication or successful or 

unsuccessful clustering than to visualise distance, which has been shown in some circumstance 

to mask potential issues. However it is now assumed that poor clustering on behalf of the 

external clustering algorithm will be reflected in the clustering confidence. That is to say that if 

the external clustering algorithm returns highly confident results on poor clustering outcomes, 

this high degree of confidence will be reflected in the visualisation. 

 

The cluster sorting algorithm, designed to separate clusters that are different and unite clusters 

that are similar, can now be considered. As the external clustering algorithm may return cluster 

prototypes that are not in Euclidean space, it is necessary to consider non-Euclidean based 
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sorting algorithms. Cluster similarity can be measured as the sum of cluster membership, that is 

if cluster ݅ has a high sum of cluster membership to cluster ݆, and cluster ݆ has a high sum of 

cluster membership to cluster ݅, cluster ݅ and ݆ are similar. This can be expressed as: Cluster ݌ 

contains objects (݋) after hardening, and each data-point has ܷ membership to every cluster ݍ, 

thus represented as ܷ௢௤. Summing the ܷ௢௤ membership for cluster ݌ results in ܷ௣௤, the extra-

cluster U membership between clusters ݌ and ݍ. That is, ܷ௣௤ ൌ ∑ ܷ௢௤௢∈௣ . 

 

This algorithm generates a dissimilarity matrix of generated clusters, and this allows the VAT 

algorithm, based on Prim’s MST, to be used to order the clusters. For easy comparison, a 

similar format to Bezdek & Hathaway (2002) is used in the following algorithm, however ܲ is 

used as the cluster dissimilarity matrix to differentiation from the original algorithm which used 

data-point dissimilarity.  

 

Step 1 Set	ܭ ൌ ሼ1,2, … , ܿሽ; ܫ ൌ ܬ ൌ ∅; ܲሾ0ሿ ൌ ሺ0,… ,0ሻ 

Step 2 Select	ሺ݅, ݆ሻ ∈ argmin௣∈௄,௤∈௄൛ܷ௣௤ൟ 

 Set	ܲሺ1ሻ ൌ ݅; ܫ ൌ ሼ݅ሽ; and	ܬ ൌ ܭ െ ሼ݅ሽ 

Step 3 For	ݎ ൌ 2,… , ܿ: 

 Select	ሺ݅, ݆ሻ ∈ argmax௣∈ூ,௤∈௃൛ܷ௣௤ൟ 

 Set	ܲሺݎሻ ൌ ݆; Replace	ܫ ← ܫ ∪ ሼ݆ሽ; and	ܬ ← ܬ െ ሼ݆ሽ 

 Next	ݎ 

 

With cluster sorting performed (s1), the sorting of the data-points within each cluster needs to 

be performed (s2). Assuming that fuzzy clustering has been used, the VCV algorithm uses 

cluster membership, but it is instead proposed that “distance to cluster prototype” from 

Hathaway & Bezdek (2003) can be reintroduced, but as a sorting rather than visualisation 

dimension as a way of highlighting microclusters within the larger clusters. To do this, is it 

necessary to calculate proximity in the spectral mapping space. Hathaway & Bezdek (2003) 



6. Analysis Part II (Methodologies) 
 

 

Page 155 

define the distance in a two-dimensional space (when c=2) to be ݀௜௞ ൌ ሺሺݒ௜ଵ െ ௞ଵሻଶݔ ൅

ሺݒ௜ଶ െ  .௞ଶሻଶሻ଴.ହݔ

 

At this point, the algorithm can be thought of as the VCMV component of the SpecVCMV 

algorithm. Incorporating Spectral Clustering into this and the algorithm can be formatted 

similarly to that of SpecVAT (Wang, et al., 2008) for easy comparison: 

 

Input: D = [݀௜௝]: an ݊ ൈ ݊ scaled matrix of pair-wise dissimilarities, with 1 ൒ ݀௜௝ ൒ 0; ݀௜௝ ൌ

௝݀௜; ݀௜௜ ൌ 0, for 1	 ൑ 	݅ and ݆	 ൑ 	݊ where ݇ is the number of eigenvectors used (the dimension of 

the embedding subspace), which is the number of clusters to find. 

(1): Compute a local scale ߪ௜ ൌ ݀ሺ݋௜, ௄ሻ݋ ൌ ݀௜௄ where ݋௄ is the ܭ-th nearest neighbour of ݋௜. 

(2): Construct the weighting matrix ࢃ ∈ Ը௡ൈ௡ by defining ݓ௜௝ ൌ exp	ሺ
ିௗ೔ೕௗೕ೔
ఙ೔ఙೕ

ሻ for ݅ ് ݆ and ݓ௜௜ ൌ 0. 

(3): Let ࡹ be a diagonal matrix with ݉௜௜ ൌ ∑ ௜௝ݓ
௡
௝ୀଵ  (i.e. the ሺ݅, ݅ሻ element of ࡹ is the sum of ࢃ’s 

݅-th row), and construct the matrix ࡸᇱ ൌ ࡹ
షభ
మ ࡹࢃ

షభ
మ  which is a normalised version of the 

Laplacian matrix. 

(4): Choose ݒଵ, ,ଶݒ … , ࢂ to form the matrix ′ࡸ ௞, the ݇ largest eigenvectors ofݒ ൌ ሾݒଵ, … , ௞ሿݒ ∈

Ը௡ൈ௞by stacking the eigenvectors in columns. 

(5): Normalise the rows of V with unit the Euclidean norm to generate ࢂ′ ∈ Ը௡ൈ௞, i.e., ݒ′௜௝ ൌ
௩೔ೕ
‖௩೔:‖

. 

(6): For ݅ ൌ 1,2, … , ݊ let ݑ௜ ∈ Ը௞be the vector corresponding to the ݅-th row of ࢂ′ and treat it as a 

new instance in the ݇-dimensional embedding space (corresponding to original ݋௜), then apply 

the FCM algorithm with ݇ clusters to ࢂ′, treating each element ݑ௜ as a distinct data point to be 

clustered to obtain the cluster prototype ࡼ in spectrally mapped space, and the cluster 

memberships ࢁ for each data point. 

(7): Using the Euclidean distance between each point ݑ௜ in ࢂ′ and each cluster prototype ࡼ, 

construct the sorting distance vector ݏᇱ ൌ ௜ݏ
ᇱ ൌ minଵழ௖ழ௞ሺ‖ݑ௜ െ  .௖‖ሻ݌
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(8): Using the cluster memberships in ࢁ, construct the pairwise dissimilarity matrix ࡰ′ between 

objects by defining ݀௜௝
ᇱ ൌ minଵஸ௖ஸ௞ ቄሺ1 െ ௖ܷ௜ሻଶ ൅ ൫1 െ ௖ܷ௝൯

ଶ
ቅ 

(9): Construct a new pairwise dissimilarity matrix ࡼ′ between clusters by defining ݌௜௝
ᇱ ൌ ∑ ܷ௢௝௢∈௜ , 

and then apply the VAT algorithm to ࡼ′ to obtain the new cluster order 	ࡼ෩′. 

(10): In the order of clusters found in ࡼ෩′, identify the objects in ࡰ′ to be sorted when ௜ܷ௞ ൌ

maxଵஸ௞ஸ௖ሺܷ௞ሻ, and sort the datapoints within each cluster by ݏᇱ, resulting in the reordered 

dissimilarity matrix ࡰ෩′ and its corresponding greyscale image ܫ൫ࡰ෩′൯. 

Output: Spectrally-mapped and reordered dissimiliarity matrix ࡰ෩′ and its corresponding 

greyscale image ܫ൫ࡰ෩′൯. 

 

Similar to Wang, et al. (2008), Otsu’s (1979) threshold selection method can be used on the 

output of SpecVCMV,	ܫ൫ࡰ෩′൯, to determine the optimum number of clusters. The “goodness 

measure” (GM) is defined as as ܯܩሺ݇ሻ ൌ ଶ஻ሺߪ ௞ܶ
∗ሻ where ߪଶ஻ ൌ ߱ଵ߱ଶሺߤଶ െ ଵߤ ,ଵሻଶߤ ൌ

ఓሺ்ሻ

ఠሺ்ሻ
, 

ଶߤ ൌ
ఓಽିఓሺ்ሻ

ଵିఠሺ்ሻ
,߱ଵ ൌ ∑ ௟݌

்
௟ୀଵ , ߱ଶ ൌ ∑ ௟݌

௅
௟ୀ்ାଵ , and ௞ܶ

∗ ൌ argmaxଵஸ்ஸ௅  ଶ஻ሺܶሻ, and so is maximisingߪ

between-class variance in the histogram of ܫ൫ࡰ෩′൯ for each threshold (ܶ). The optimum number 

of clusters is calculated according to ܿ ൌ argmaxଵஸ௞  .ሺ݇ሻܯܩ

 

To aid in a more general understanding of the proposed VCMV algorithm and how it can be 

hybridised with Spectral Clustering, Table 6-2 compares VAT, VCV, the proposed VCMV, 

SpecVAT, how SpecVCV may be implemented, and the proposed SpecVCMV. 
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 VAT VCV VCMV 
Clustering None External (e.g. k-means, 

FCM, FCRM) 
Fuzzy (e.g. FCM, 
FCRM) 

Inter-Cluster Sorting None Arbitrarily keep 1st 
cluster, calculate pair-
wise distance in 
Euclidean space, sort 
remainder using MST as 
if cluster prototypes are 
Euclidean 

Calulate pair-wise 
distance by sum of 
cluster membership, 1st 
cluster is one of two 
most distant clusters, 
sort remainder by MST 

Intra-Cluster Sorting Start with one of the two 
most distant points, sort 
using MST 

If fuzzy clustering used, 
sort by cluster 
membership 

Sort by Euclidean 
distance to cluster 
prototype 

Visualise on Euclidean pair-wise 
distance 

Euclidean distance to 
cluster prototype 

Cluster membership 

Table 6-2 - Summary of VAT, VCV and VCMV 

 

 SpecVAT SpecVCV SpecVCMV 
Mapping to Spectral 
Space 

Self-Tuning Spectral 
Clustering 

Self-Tuning Spectral 
Clustering 

Self-Tuning Spectral 
Clustering 

Clustering None k-means from Spectral 
Clustering 

Fuzzy Volumetric Cloud 
(e.g. FCM) 

Inter-Cluster Sorting None Arbitrarily keep 1st 
cluster, using k-means 
cluster prototypes 
calculate pair-wise 
distance in Euclidean 
space, sort remainder 
using MST 

Calulate pair-wise 
distance by sum of 
cluster membership, 1st 
cluster is one of two 
most distant clusters, 
sort remainder by MST 

Intra-Cluster Sorting Start with one of the two 
most distant points in 
Spectral space, sort 
using MST 

None Sort by Euclidean 
distance to FCM cluster 
prototype in Spectral 
Space 

Visualise on Euclidean pair-wise 
distance in Spectral 
Space 

Euclidean distance to 
cluster prototype in 
Spectral Space 

Cluster membership 

Table 6-3 - Summary of SpecVAT, SpecVCV and SpecVCMV 

 

It is of course necessary to demonstrate the effectiveness of the SpecVCMV algorithm. While 

there is no improvement in the other examples used so far, using the two examples that were 

chosen to highlight the limitations of the VCV best demonstrates the improvements of the 

proposed visualisation. Applying SpecVCMV to the example used in used in Figure 6-8 with c=5 

results in a visualisation that is much more representative of the underlying FCM clustering and 

is shown in Figure 6-10. The light colour, particularly in the bottom right of each cluster block, 

successfully communicates the lack of low cluster memberships returned by the underlying 
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FCM algorithm for many of the points, caused by the inappropriate number of clusters selected 

for the purpose of exposing the assumptions built into the VCV algorithm. 

 

Figure 6-10 - SpecVCMV sorted eigenvectors (c=5) 

 

Applying SpecVCMV to the example in Figure 6-9, now shown in Figure 6-11 shows that cluster 

homogeneity is now maintained, grey is shown in the visualisation when the FCM clustering 

algorithm indicates indecision in cluster membership, and the ADNC algorithm has successfully 

identified the number of clusters in the underlying data. 

 

 

Figure 6-11 - SpecVCMV sorted eigenvectors (c=3) and GM for 1≤c≤5 
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When there is a large class separability there is little to no benefit in using SpecVCMV over 

SpecVAT as the only visible difference will be the cluster ordering, this makes it difficult to 

demonstrate the superiority of the technique using a dummy dataset. In cases where the 

clusters are more ambiguous, such as the examples used here, the cluster membership 

confidence is more clearly communicated, and the grouping technique increases confidence 

that microclusters have been identified. 

 

The datasets used in Wang et al. (2008) have been replicated here. Originally from Zelnik-

Manor & Perona (2004), the first 6 “synthetic” datasets can be downloaded from the Internet, 

while the “real” datasets are available through the UCI Machine Learning Repository. Wang et 

al. (2008) describes the real datasets as follows: 

 

a) R-1: Breast-cancer database includes 699 instances, each of which has 9 attributes and 

belongs to one of 2 classes. Since there are 16 instances that contain a single missing 

attribute value, we removed them and used the remaining 683 instances for our experiment. 

b) R-2: This data set was used in [4]. It contains single light- source Face images of 3 

different individuals, each seen under 585 viewing conditions. Each original image was down-

sampled to 30×40 pixels, thus providing in total 1755 images with 1200 dimensions (i.e., 30 × 

40). c) R-3: Genetic data set is originally from the work in [18], which is a 194 × 194 matrix 

consisting of pair-wise dissimilarities from a set of 194 human gene products that were 

clustered into three protein families. d) R-4: Iris data set contains 3 physical classes, 50 

instances each, where each class refers to a type of iris plant and the attributes of each 

instance include 4 numeric values. e) R-5: Voting data set consists of 435 US House of 

Representatives members’ votes on 16 key votes (267 democrats and 168 republicans). 

Votes were numerically encoded as 0.5 for “yea”, -0.5 for “nay” and 0 for “unknown 

disposition”, so that the voting record of each congressman is represented as a ternary-

valued vector in R16. f) R-6: Wine data set contains the results of a chemical analysis of 
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wines grown in the same region, but derived from 3 different cultivars. The analysis 

determines the quantities of 13 constituents found in each of three types of wines. The total 

number of instances is 178. 

 

Figure 6-12, Figure 6-13, Figure 6-14 and Figure 6-15 now demonstrate the SpecVCMV 

algorithm on those same datasets, in comparison to the SpecVAT algorithm. 

 

 
 

 
 

 
 

Figure 6-12 - SpecVAT images of synthetic data S-1 through S-9 (Wang, et al., 2008) (note red are 

present in Wang but are not part of the algorithm) 
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Figure 6-13 - SpecVCMV images of synthetic data S-1 through S-9 
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Figure 6-14 - SpecVAT images of real data R-1 through R-6 (Wang, et al., 2008) 

 

 

 

Figure 6-15 - SpecVCMV images of real data R-1 through R-6 

 

Particular attention should be paid to R-4 and R-5 in which the SpecVCMV visualisations are 

comparatively crisp, though the large sections of grey indicate some low clustering confidence 

on a number of datapoints. This demonstrates that there are some data points in these sets that 

have a high Euclidean distance to their respectively cluster prototypes, but that the external 
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clustering algorithm is confident in the choice of cluster nevertheless. R-3 contains a grey lines 

in the middle and bottom right clusters, the SpecVCMV algorithm is communicating that there 

are some data points that have a high cluster membership to a competing cluster, allowing for 

identification of possible miss-classified data points from the Spectral Clustering algorithm.  

 

The chaining phenomenon noted earlier becomes more problematic as the number of clusters 

increase, however the above cases demonstrate no more than three clusters. However as the 

number of clusters increase the chaining phenomenon becomes more of an issue but it 

becomes increasingly difficult to visualise as the eigenspace dimensionality also increases. A 

good indicator of the chaining phenomenon is when the number of dark blocks in the 

visualisation is larger than the parameter c, as is the case with Figure 6-16’s UCI “image 

segmentation” dataset (Frank & Asuncion, 2010) – which contains 7 underlying classes. This 19 

parameter, 2310 instance dataset is highly complex. As can be seen in the figure, a number of 

spurious divisions have taken place as a result of chaining, creating a very noisy visualisation. 

By comparison, the SpecVCMV algorithm visualisation more clearly shows how the clustering 

algorithm has segmented the data. 

 

 

Figure 6-16 - SpecVAT and SpecVCMV for "image segmentation" dataset (c=7) 
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6.1.4 Conclusion 

The SpecVAT algorithm (Wang, et al., 2008) is a powerful method for visualising hyper-

dimensional data, however the algorithm introduces limitations found in the minimum spanning 

trees (MST) algorithm. Using VCV, the generalisation and extension of VAT is the natural 

progression for this line of work, but as demonstrated the VCV method builds in underlying 

assumptions about the data that may not hold true. This section has demonstrated that an 

extension of the VCV algorithm, VCMV, addresses those assumptions and when combined with 

Spectral Clustering, SpecVCMV represents a powerful visualisation method that can 

successfully visualise the clustering of both synthetic and real datasets. 

 

6.2 The Effect of Objective Clustering 

At this stage it is worth re-capping the purpose of grouping companies together. As has been 

discussed in section 3.2.5, there is a need to identify companies that behave similarly on the 

basis that such companies are likely to exhibit similar symptoms of failure. Certainly the 

literature review in chapter 2 showed that researchers tend to build classification models only 

within a particular industry. This kind of stratification shows that it is commonly accepted that 

company similarity is a useful quality in a classification model. 

 

To utilise a grouping technique it is necessary to answer the question, what makes a company 

“similar” in a given year versus another company in a given year? The concept of similarity is 

defined by the distance function. That is, if the distance function were defined to be related to 

the letters in the company code, the companies ALU and ALW may be considered more 

“similar” than to the company ZCP. Clearly such a distance function is not going to achieve the 

goal of finding companies that are financially similar. Interested readers are directed to the ugly 

duckling theorem (Watanabe, 1985), where the clustering of three one-dimensional data points 

{0, 1, 1} can be performed by grouping data points based on their location within the set, or 

alternatively by their value, with equally valid (but opposite) cluster results. The need to select a 
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useful distance function, and therefore the selection of appropriate inputs, is highlighted. 

Fortunately, chapter 4.3 has provided a cross-section of factors that have demonstrated their 

relationship to corporate health for each dataset in use. 

 

There is a multitude of clustering techniques available, from simple algorithms such as the k-

means algorithm through to intelligent systems approaches such as Winner-Takes-All Neural 

Networks or Self-Organising Feature Maps. Section 6.1 for example utilised Fuzzy C-Means, 

Fuzzy C-Regression Models as well as Spectral Clustering (which typically uses k-means on 

the spectrally mapped data). One of the issues in clustering this dataset is its size. For example, 

Spectral Clustering requires the affinity matrix and Laplacian matrix to be calculated from a 

dissimilarity matrix. A moderately sized 50,000 company-years stored as 64-bit floating point 

numbers would require 18.63 gigabytes of random access memory (RAM) just to store the 

pairwise distance matrix. Furthermore, such a clustering technique would only identify similarity 

between company-years at given instants in time, instead of clustering the behaviour of a 

company over time. 

 

To address these issues, Deboeck & Kohonen (1998) propose mapping each company-year of 

data to a cell by training a Neural Network based Self-Organising Map, the first-level SOM, then 

using the co-ordinates from the first-level SOM at different time periods to train a second-level 

SOM. In doing so, the clustering of companies becomes based on similar movement across the 

first-level SOM rather than on a single point in time. This methodology will be outlined in the 

following section. 

 

6.2.1 Clustering with a Two-Level SOM 

As noted in section 4.2.4, Self-Organising Maps are a type of unsupervised Neural Network that 

uses a “Winner Takes Most” algorithm to strengthen the synapses that activate the winning 

output neuron (and its neighbours) for each set of inputs, such that similar sets of inputs 
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activate the same or nearby output neurons. Being a Neural Network, each case is presented to 

the Self-Organising Map individually and the learning algorithm applied, rather than performing 

matrix operations on the entire dataset. This allows large datasets to be processed without 

requiring enormous computational resources, making Neural Networks a suitable choice for an 

unsupervised learning algorithm. 

 

However, as outlined in Deboeck & Kohonen (1998), “it has been found that an analysis of one 

year’s financial statements is insufficient to give a reliable picture of the state of the company”. It 

is argued that it is necessary to use data from multiple years, and that this can be performed “by 

using two SOMs in a hierarchy” (Deboeck & Kohonen, 1998). 

 

The first-level SOM is trained with yearly financial statements, so that for a given year a 

company can be positioned on the first-level SOM based on its financial statement for that 

year. The second-level SOM is then trained with the company’s coordinates on the first-level 

SOM during two or three consecutive years, as illustrated in [Figure 6-17]. This way, each 

unit on the second-level SOM corresponds to a trajectory on the first-level SOM, capturing 

one typical pattern of change in a company’s financial statements from year to year. 

(Deboeck & Kohonen, 1998) 
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Figure 6-17 – Deboeck-Kohonen Multi Level SOM (the letter x is used to show a location) 

 

Deboeck & Kohonen (1998) found that the second-level map exposed information that was not 

captured in the first-level map, and that there were areas from which failing companies 

generally did not leave. In summary, it was found that it is possible “to recognize different 

patterns of corporate behaviour”, and so this chapter will utilise the Deboeck-Kohonen Multi-

Level Self-Organising Map (DK-ML-SOM) as the basis of an objective clustering algorithm. 

 

As demonstrated in section 4.3, the optimised subset of factors for each of the Genetic 

Programming and the Neural Network classification algorithms differs, and both the Genetic 

Programming and Neural Network algorithms were shown to increase classification accuracy 

when using a reduced subset of factors. Therefore two DK-ML-SOM’s were trained for each 

dataset, one using the GP-optimised factors and one using the NN-optimised factors. The 

SOM’s output neurons were then clustered using Spectral Clustering, visualised with 

SpecVCMV with the optimum number of clusters determined using the ADNC algorithm, with 

the cases assigned to clusters according to which output was most activated by the SOM. The 

DK-ML-SOM clustering methodology used requires a company to be clustered according to its 
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movement over 3 years. To allow comparisons of the effect of objective clustering against 

alternative grouping methods outlined in this chapter, a dataset that contains only company-

years with 3 consecutive years of data is used in these experiments, representing 81.1% of 

available Compustat data and 60.9% of available Aspect Data. 

 

In order to fairly compare the effects of the DK-ML-SOM, the commonly used “industry 

grouping” method will be used as the basis for comparison. There are many industry 

classification schemes used across the globe. The United States, and the Compustat Legacy 

Global dataset for instance, primarily uses NAICS, the North American Industry Classification 

System. NAICS uses an industry-specific description to define which companies will be grouped 

together. For example, “The Agriculture, Forestry, Fishing and Hunting sector comprises 

establishments primarily engaged in growing crops, raising animals, harvesting timber, and 

harvesting fish and other animals from a farm, ranch, or their natural habitats”, while “The 

Mining, Quarrying, and Oil and Gas Extraction sector comprises establishments that extract 

naturally occurring mineral solids, such as coal and ores; liquid minerals, such as crude 

petroleum; and gases, such as natural gas” (Census Bureau, 2007). 

 

Not being based in the United States, the Aspect dataset uses GICS, the Global Industry 

Classification Standard. GICS is developed by Standard & Poor’s, and for the purposes of this 

chapter serves an equally useful purpose in grouping companies by industry. 

 

Both NAICS and GICS are taxonomical systems that rely on the manual assignment of 

companies to a particular industry code, based on information such as reported sources of 

revenue. These systems therefore represent an opportunity to test the hypotheses outlined in 

section 3.2.5. 
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It is also necessary to test the effect of both objective clustering of company-years and the 

industry groupings assigned through NAICS or GICS against the classification accuracy of not 

performing any grouping at all. As outlined in 3.2.5, dividing the data in any way has the side 

effect of reducing the number of cases available for training of the classifier and if the groups to 

classify are too small then the classification system may be unable to establish relationships 

between dependent and independent variables. Therefore the very act of dividing the dataset 

potentially has an impact on classification ability that requires investigation. 

 

Once clustering has taken place, whether by the objective DK-ML-SOM or by industry grouping, 

the use of the forward best-first search outlined in 4.3.6 will be used to ensure that comparisons 

are drawn between the best combination of factors for each cluster or group, rather than 

assuming that the best factors before dividing the data would remain the best choice of factors 

in each subdivision. 

 

6.2.2 Experimental Results 

The first-level DK-ML-SOM’s were initialised using normalised factors that had resulted in the 

highest in-sample validation accuracy from section 4.3. Hexagonal map units were used which 

were initialised using the largest eigenvectors of the input dataset, and the SOM was trained 

using the Batch training algorithm (Kohonen, 1995). 

 

Using the GP-optimised factors on the Compustat dataset this resulted in a 42 by 110 map. This 

map is visualised in Figure 6-18 with the Euclidean distance from each unit to its neighbours 

shown in the U-matrix, along with the values for each input factor for each output neuron on the 

map. 
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Figure 6-18 – Level 1 SOM of GP-optimised Factors on Compustat Dataset 

 

The above map can be interpreted in quadrants: The top left quadrant generally has high cash 

flow to total assets, the top right quadrant generally has low net income to total assets and low 

earnings before taxes to sales, the bottom left quadrant has high sales to total assets, and the 

bottom right quadrant has moderate sales to total assets with moderate cash flow to total 

assets.  

 

The output coordinates (L1-x, L1-y), the coordinates from 12 months prior (L1-x minus1, L1-y 

minus1), and the coordinates from 24 months prior (L1-x minus2, L2-y minus2) were then 

trained on the second level DK-ML-SOM, resulting in the Figure 6-19, with the clustering and 

SpecVCMV visualisation shown in Figure 6-20. It is expected that the visualisations of how the 

input factors are mapped to the output neurons are similar for each year, due to the fact that 
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while individual companies may move around the map the overall profile of the market doesn’t 

drastically change from year to year. 

 

 

Figure 6-19 - Level 2 SOM of GP-optimised Factors on Compustat Dataset 

 

Figure 6-20 - Level 2 Cluster Map & SpecVCMV of GP-optimised Factors on Compustat Dataset 
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The SpecVCMV algorithm has found a fairly clear clustering, though the results are now much 

more abstract. A company in the bottom right corner of the level 2 SOM has had coordinates 

around (41, 107) for 3-years running (low net income to total assets, low cash to fund 

expenditures from operations, low cash flow to total assets, medium sales to total assets and 

high earnings before taxes to sales), while a company in the bottom left corner has had 

coordinates around (1, 108) for 3 years running (high net income to total assets, high sales to 

total assets and earnings before taxes to sales, low cash to fund expenditures from operations 

and low cash flow to total assets), companies in the other areas of the level 2 map represent 

companies that fluctuate more around the level 1 map over the 3 year period. The SpecVCMV 

algorithm has identified a band of map units (approximately 200 units) for which the fuzzy c-

means algorithm is indicating indecision. While this could identify a poor choice of clusters, the 

ADNC algorithm showed that clusters greater than 2 created greater indecision in the fuzzy c-

means algorithm and resulted in a SpecVCMV histogram with less contrast. 

 

Each company-year was then assigned to one of the two clusters by determining the best 

matching map unit and allocating the unit’s cluster number, the resulting clusters were trained 

separately using the Genetic Programming algorithm within the forward best-first accuracy 

based factor search methodology outlined in section 4.3, the numerical results for which are 

available in Appendix Z. The Genetic Programming algorithm achieved an in-sample accuracy 

of 76.5% and 84.5% on each cluster, with 77.4% and 83.4% on the out-of-sample. Combined, 

the clustered GP-optimised Compustat dataset achieved a weighted accuracy of 78.9% with 

79.2% on the out-of-sample. 

 

Similarly the Neural Network-optimised factors were clustering using the DK-ML-SOM, resulting 

in the following maps (Figure 6-21 and Figure 6-22), cluster map and SpecVCMV (Figure 6-23). 
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Figure 6-21 - Level 1 SOM of NN-optimised Factors on Compustat Dataset 
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Figure 6-22 - Level 2 SOM of NN-optimised Factors on Compustat Dataset 

 

Figure 6-23 - Level 2 Cluster Map & SpecVCMV of NN-optimised Factors on Compustat Dataset 

 

The clustered cases were then presented to the Neural Networks based best-first forwards 

search, found in Appendix AA, resulting in an in-sample accuracy of 89.5% and 79.1% with 

73.5% and 80.6% respectively on the out-of-sample. Combined, the clustered NN-optimised 

Compustat dataset achieved a weighted accuracy of 84.0% with 77.3% on the out-of-sample. 
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As the ADNC algorithm determined the optimum number of clusters to be 2 in both the GP and 

NN-optimised models, it was decided to use NAICS industry codes to also divide the data into 

two groups to provide the best comparison. The most natural division in the data appeared to be 

along the line of manufacturing versus non-manufacturing, so company-years with a NAICS 

code of 31 through 33 were included in group 1 and the rest were placed into group 2. When 

using Genetic Programming in a best-first forward search, an accuracy of 80.8% 

(manufacturing) and 80.5% (non-manufacturing) was achieved on the in-sample data, with 

78.5% and 67.6% on the out-of-sample. Combined, the grouped GP-optimised Compustat 

dataset achieved a weighted accuracy of 80.6% with 71.6% on the out-of-sample. When using 

Neural Networks in a best-first forward search, an accuracy of 84.2% and 81.1% was achieved 

with 72.2% and 68.9% on the out-of-sample, resulting in a net weighted accuracy of 82.2% with 

73.8%. In both the Genetic Programming and Neural Network best-first forward searches, the 

clustered data outperformed the industry grouped data on the out-of-sample dataset. Both the 

Genetic Programming and Neural Network based best-first forward search results are found in 

Appendix BB. 

 

Finally for comparison purposes, the unclustered and ungrouped data was re-optimised using 

the same best-first forward search, with Genetic Programming resulting in an in-sample 

accuracy of 77.6% with 74.5% (p<0.01) on the out-of-sample, and with Neural Networks 

resulting in 77.7% and 72.0% (p<0.01). Interestingly the Genetic Programming unclustered and 

ungrouped results here outperformed the dataset that was grouped by industry, showing that at 

least in some scenarios the act of grouping by industry can inhibit the performance of a 

classification system. The results of this best-first forward search can be found in Appendix CC.  

 

The results are summarised in the table Table 6-4: 
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Method Dataset In‐Sample Out‐of‐Sample

Genetic Programming Unclustered & Ungrouped 77.6 74.5

Genetic Programming Cluster 1 76.5 77.4

Genetic Programming Cluster 2 84.5 83.4

Genetic Programming Manufacturing 80.8 78.5

Genetic Programming Non‐Manufacturing 80.5 67.6

Neural Networks Unclustered & Ungrouped 77.7 72.0

Neural Networks Cluster 1 89.5 73.5

Neural Networks Cluster 2 79.1 80.6

Neural Networks Manufacturing 84.2 82.2

Neural Networks Non‐Manufacturing 81.1 68.9  

Table 6-4 - Summary of Objective Clustering on Compustat Dataset 

 

Within the Aspect dataset, the first-level DK-ML-SOM’s were initialised using normalised factors 

that had resulted in the highest in-sample validation accuracy using Genetic Programming from 

chapter 4.3, resulting in a 20 by 97 map as shown in Figure 6-24. 

 

Figure 6-24 – Level 1 SOM of GP-optimised Factors on Aspect Dataset 
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In turn the 3-year map coordinates were used to train the second level SOM, resulting in the 

Figure 6-25 and Figure 6-26’s map, clusters, and SpecVCMV. 

 

Figure 6-25 - Level 2 SOM of GP-optimised Factors on Aspect Dataset 

 

Figure 6-26 - Level 2 Cluster Map & SpecVCMV of GP-optimised Factors on Aspect Dataset 
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The clustered data was then optimised using the GP best-first forwards search, the results for 

which can be found in Appendix DD, resulting in an in-sample accuracy of 81.6% and 71.6% on 

each of the two clusters, and an out-of-sample accuracy of 65.3% and 68.4% respectively. 

When combined, this results in a weighted net accuracy of 75.9% with 67.1% on the out-of-

sample. 

 

The process was repeated using the NN-optimised factors, resulting in the Figure 6-27, Figure 

6-28 and Figure 6-29’s first and second level map, and second level clusters with SpecVCMV. 
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Figure 6-27 – Level 1 SOM of NN-optimised Factors on Aspect Dataset 
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Figure 6-28 – Level 2 SOM of NN-optimised Factors on Aspect Dataset 

 

 

Figure 6-29 - Level 2 Cluster Map & SpecVCMV of NN-optimised Factors on Aspect Dataset 

 

Once company-years had been clustered according to the cluster of their best matching SOM 

unit, each cluster was processed using the forward best-first algorithm, see Appendix EE, 
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yielding an in-sample accuracy of 74.7% and 71.9% on the in-sample set and 62.2% and 60.7% 

on the out-of-sample. Combining the two clusters results gives a weighted in-sample accuracy 

of 73.4% with 61.5% on the out-of-sample. 

 

Again the ADNC algorithm found the greatest SpecVCMV contrast with 2 clusters, so the 

Aspect dataset used for these experiments was similarly divided into manufacturing and non-

manufacturing company-years by using the GICS sectors provided in the Aspect Data. Again 

the forward best-first algorithm was applied to both grouping using both Genetic Programming 

and Neural Networks, the results for which can be found in Appendix FF and Appendix GG. 

Using Genetic Programming, the industry grouped data achieved 71.7% and 70.8% on the in-

sample with 59.1% and 65.5% on the out-of-sample, resulting in a combined weighted accuracy 

of 71.2% with 62.7% on the out-of-sample, a large decrease in comparison to the objectively 

clustered result. When using Neural Networks, the grouped data achieved 65.5% and 70.4% on 

the in-sample with 56.8% and 59.4%, resulting in a combined weighted accuracy of 68.3% on 

the in-sample and 58.3%, again a decrease in comparison to the objectively clustered data. 

 

Finally the forward best-first algorithm is applied to the same dataset that has not been 

clustered or grouped, using both Genetic Programming and Neural Networks, the results for 

which can be found in Appendix HH. The best in-sample accuracy achieved was 72.9% with 

70.8% on the out-of-sample when using Genetic Programming (p<0.01), and 69.3% with 61.9% 

on the out-of-sample when using Neural Networks (p<0.01). While the out-of-sample results are 

approximately equal to that of the clustered dataset when using Neural Networks, the clustered 

dataset’s out-of-sample accuracy is noticeably increased for Genetic Programming when using 

the clustered dataset. 

 

The results are summarised in Table 6-5. 
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Method Dataset In‐Sample Out‐of‐Sample

Genetic Programming Unclustered & Ungrouped 72.9 60.8

Genetic Programming Cluster 1 81.6 65.3

Genetic Programming Cluster 2 71.7 68.4

Genetic Programming Manufacturing 71.7 59.1

Genetic Programming Non‐Manufacturing 70.8 65.5

Neural Networks Unclustered & Ungrouped 69.3 61.9

Neural Networks Cluster 1 74.7 62.2

Neural Networks Cluster 2 71.9 60.7

Neural Networks Manufacturing 65.5 56.8

Neural Networks Non‐Manufacturing 70.4 59.4  

Table 6-5 - Summary of Objective Clustering on Aspect Dataset 

 

6.2.3 Conclusion 

This chapter has found that for both datasets using both Genetic Programming and Neural 

Networks, objectively clustering data using a combination of Doeboeck-Kohonen Multi-Level 

Self-Organising Maps and Spectral Visual Cluster Membership Validity significantly improves 

out-of-sample accuracy when the forward best-first search for an objective factor set is used. 

 

Furthermore this chapter has found that there is little to no benefit to out-of-sample accuracy 

when arbitrarily dividing the dataset into manufacturing versus non-manufacturing companies 

based on the NAICS or GICS industry classification. It is possible that a different arbitrary 

division of the data such as retail versus non-retail, or greater divisions of the data such as 

mining versus utilities versus construction versus manufacturing etc. would have yielded a 

higher out-of-sample accuracy than the manufacturing versus non-manufacturing grouping used 

in this section, but a true application of domain knowledge for grouping of companies should 

also consider company asset size, number of employees, geographical location and so-on, 

which creates an enormous burden of work and was the very motivation for introducing an 

objective clustering procedure. 
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7. Results 

This thesis has shown that across two datasets, both Genetic Programming and Neural 

Networks are powerful classification methods. It has found that out-of-sample classification 

accuracy can be increased by first performing a non-deterministic embedded accuracy-based 

factor search, then refining those factors using a forward best-first accuracy-based factor 

search. It has been demonstrated that including share market information or macroeconomic 

data does not reliably increase out-of-sample accuracy. It has proposed a new method of 

clustering and visualisation which are effective on both synthetic and real additional datasets, 

and used that method in combination with the Deboeck & Kohonen Multi-Level Self-Organising 

Map to objectively cluster company-years, finding that this methodology is superior in improving 

classification accuracy to both the arbitrary grouping of company-years by industry as well as 

leaving the data entirely ungrouped. 

 

It is now necessary to test the effectiveness of the methodology outlined in the previous 

chapters, and analyse the outcomes to draw broader conclusions that can be related back to 

bankruptcy failure theory.      

 

7.1 Using the Methodology to Predict Failure 

While this thesis has built an effective model for bankruptcy classification, it has not yet shown 

that the methodologies proposed are useful for bankruptcy prediction. As noted in chapter 4.3, 

the data used in the experiments thus far has been divided randomly into thirds, an in-sample 

training set, an in-sample validation set (though the Neural Networks Cascade-Correlation 

algorithm allows these to be combined), and an out-of-sample “applied” set. This was done 

because it allowed experiments to be performed without possible changes in the environment to 

impact on out-of-sample accuracy. 
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But it is probable that changes in the environment mean that what once was an effective 

predictor of failure is no longer an optimum choice. For example the codification of Accounting 

Standards by the Australian Accounting Standards Board’s (AASB) in the Corporations Act 

2001 may change the effectiveness of a classification algorithm, or the increasing cost of credit 

as a result of the Global Financial Crisis 2008 may mean that previously high leverage had a 

lower impact on a firm’s likelihood of failure. As a proxy for determining whether a classification 

algorithm used on current data will be useful for future (currently unavailable) data, it is common 

to reserve the out-of-sample “applied” dataset from the most recent data, and therefore the in-

sample training and validation data includes only the least recent data. If a classification 

algorithm performs well on randomly divided data but poorly on sequentially divided data, then it 

can be reasonably concluded that the underlying relationship between the independent and the 

dependent variables in the most recent data is very different to the relationship between the 

independent and dependent variables in the least recent data – highlighting the difficulty in 

predicting something in a fast-changing environment. 

 

Conversely similar classification performance demonstrates that the underlying relationships 

between independent and dependent variables do not change quickly, and that classification 

models developed earlier are likely to be able to predict future cases. 

 

Therefore this chapter will implement the methods found to improve accuracy on a dataset from 

which the most recent third of cases have been reserved for the out-of-sample set. It will begin 

by performing the non-deterministic and best-forward factor search to identify key variables, 

using those factors as the inputs for the Deboeck & Kohonen Multi-Level Self-Organising Map, 

then using the proposed Spectral Visual Cluster Membership Validity method to cluster cases. 

The out-of-sample accuracy will then be compared to the results from chapter 6.2. 
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7.1.1 Removal of Low-Contributory Factors 

As outlined in section 4.3.5, this section uses a Genetic Programming environment configured 

to perform 10 runs with a stopping criteria of 80 Generations Without Improvement (GWI), then 

doubling the GWI and allowing the model to continue doubling the GWI until such as time as the 

model has converged. While this was shown to be unnecessary due to the most accurate 

solutions being found within a small GWI, it was important to maintain the choice of parameters 

so that the results could be fairly compared with those outlined in section 6.2. The following 

factors survived the evolutionary process in the Compustat dataset with the full results available 

in Appendix HH: 

 cash to total assets 

 net income to total assets 

 net income 

 net income to net worth 

 cash flow to total liabilities 

 current liabilities to total assets 

 net income to sales 

 total assets to sales 

 sales to total assets 

 net worth to sales 

 cash to current liabilities 

 current assets to current liabilities 

 current liabilities to current assets 

 

The following factors survived the evolutionary process in the Aspect dataset with the full results 

available in Appendix II: 

 cash flow to total assets 

 net income to sales 

 net income to net worth 

 current liabilities to total assets 

 current plus long-term liabilities to 

total assets 

 cash to total assets 

 cash to current liabilities 

 retained earnings to total assets 

 earnings before interest and taxes 

to total assets 

 cash flow to current liabilities 

 current liabilities to equity 

 earnings before taxes to equity 

 total liabilities 

 book value to total liabilities 
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 net operating profit to sales 

 sales to net worth 

 net operating profit to total assets 

 income from operations to total 

assets 

 

7.1.2 Best-First Forward Search 

As outlined in section 4.3.6 the best-first search was then performed using Genetic 

Programming on the Compustat dataset (Appendix JJ), Neural Networks on the Compustat 

Dataset (Appendix KK), Genetic Programming on the Aspect Dataset (Appendix LL) and Neural 

Networks on the Aspect Dataset (Appendix MM), with the graphical results shown in Figure 7-1 

and Figure 7-2. 

 

 

Figure 7-1 - Number of Factors versus Accuracy for Compustat Dataset (Sequential Division) 
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Figure 7-2 - Number of Factors versus Accuracy for Aspect Dataset (Sequential Division) 

 

On the Compustat dataset, Genetic Programming achieved 77.8% with 71.3% on the out-of-

sample, while Neural Networks achieved 77.1% with 72.6% on the out-of-sample. On the 

Aspect dataset, Genetic Programming achieved 66.5% with 66.7% on the out-of-sample while 

Neural Networks achieved 65.9% with 64.8% on the out-of-sample. 

 

7.1.3 Clustering with a Two-Level SOM 

The methodology identified in section 6.2.1 is applied using the factors identified in the previous 

section, resulting in the level 1 maps, level 2 maps, cluster maps and SpecVCMV found in 

Figure 7-3 through Figure 7-14. 
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Figure 7-3 – Level 1 SOM of GP-optimised Factors on Compustat Dataset (Sequential Division) 

 

 

Figure 7-4 - Level 2 SOM of GP-optimised Factors on Compustat Dataset (Sequential Division) 
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Figure 7-5 - Level 2 Cluster Map & SpecVCMV of GP-optimised Factors on Compustat Dataset 

(Sequential Division) 

 

 

Figure 7-6 – Level 1 SOM of NN-optimised Factors on Compustat Dataset (Sequential Division) 

 

net income net income to sales 

total assets to sales net worth to sales cash to sales 

 



7. Results 
 

 

Page 190 

 

Figure 7-7 - Level 2 SOM of NN-optimised Factors on Compustat Dataset (Sequential Division) 

 

  

Figure 7-8 - Level 2 Cluster Map & SpecVCMV of NN-optimised Factors on Compustat Dataset 

(Sequential Division) 

 

In particular, note the small size of one of the clusters when using Neural Networks on the 

Compustat data (Sequential Division) in Figure 7-8. 
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Figure 7-9 – Level 1 SOM of GP-optimised Factors on Aspect Dataset (Sequential Division) 

 

Figure 7-10 - Level 2 SOM of GP-optimised Factors on Aspect Dataset (Sequential Division) 
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Figure 7-11 - Level 2 Cluster Map & SpecVCMV of GP-optimised Factors on Aspect Dataset 

(Sequential Division) 

 

 

Figure 7-12 – Level 1 SOM of NN-optimised Factors on Aspect Dataset (Sequential Division) 
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Figure 7-13 - Level 2 SOM of NN-optimised Factors on Aspect Dataset (Sequential Division) 

 

 

Figure 7-14 - Level 2 Cluster Map & SpecVCMV of NN-optimised Factors on Aspect Dataset 

(Sequential Division) 

 

Following the methodology outlined in 6.2.1, each cluster of the data requires the forward best-

first search to be re-performed, the numerical results for which can be found in Appendix NN, 
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Appendix OO, Appendix PP and Appendix QQ. Of particular note is the clustering that has 

occurred using the Neural Networks methodology on the Compustat dataset, in which cluster 2 

is a small cluster (approximately 30% of the cases) and contains just 0.03% of failure cases. 

This has resulted in the Neural Network model simply classifying all cases in cluster 2 as non-

failure. As the out-of-sample set for cluster 2 contains no failure cases at all, this results in both 

the within and out-of-sample accuracies approaching 100%. However the out-of-sample 

accuracy for cluster 1 has decreased. This is directly contrary to the findings of Deboeck & 

Kohonen (1998) which identified regions in the SOM from which failing companies do not 

emerge, this study found a region in the SOM from which healthy companies never emerge.  

 

A table of results from this chapter is shown in Table 7-1 and Table 7-2. 

 

Method Dataset In‐Sample Out‐of‐Sample

Genetic Programming Cluster 1 77.1 73.1

Genetic Programming Cluster 2 89.1 79.9

Neural Networks Cluster 1 76.2 65.4

Neural Networks Cluster 2 100.0 100.0  

Table 7-1 - Summary of Corporate Failure Prediction on Compustat Dataset 

 
Method Dataset In‐Sample Out‐of‐Sample

Genetic Programming Cluster 1 72.6 61.6

Genetic Programming Cluster 2 76.8 73.6

Neural Networks Cluster 1 73.3 59.7

Neural Networks Cluster 2 77.1 65.1  

Table 7-2 - Summary of Corporate Failure Prediction on Aspect Dataset 

 

Combining the results of the clusters, using the GP methodology on the Compustat dataset 

resulted in an in-sample weighted accuracy of 82.3% with 76.3% on the out-of-sample, using 

the NN methodology results in a 84.7% in-sample accuracy with 79.2% on the out-of-sample. 

On the Aspect dataset, when using Genetic Programming the weighted combined in-sample 

accuracy achieved 74.9% on the in-sample and 67.3% on the out-of-sample, whereas with 

Neural Networks the in-sample achieved 75.0% with 62.0% on the out-of-sample. 
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In comparison to the accuracy on the randomly divided dataset used in chapter 6.2, using the 

GP methodology on the Compustat data in this sequentially divided dataset resulted in a 2.9% 

reduction in accuracy on the out-of-sample, while the Neural Network methodology is 1.9% 

higher on the out-of-sample. On the Aspect data, the GP methodology on this dataset is 0.2% 

higher, and the NN methodology is 0.5% higher. Higher out-of-sample accuracies than the 

randomly divided dataset is a very unexpected outcome, and is possibly caused by the 

sequential division of data having the side effect of ensuring each company is equally 

represented in the in-sample and out-of-sample datasets. 

 

Until this point in the thesis all of the results obtained have been comparative analysis, such as 

examining the effect on classification accuracy by adding share market data or comparing 

classification algorithms for example. These aspects of the research have been undertaken with 

the underlying goal being to build a greater understanding of the overall relationship between 

bankruptcy and the available information. It had been assumed that if the corporate 

environment was changing, sequentially divided data may prevent the detection of new 

relationships between the available data and corporate failure. This chapter, on the other hand, 

which uses the previously tested methodology on sequentially divided data, is examining 

whether or not the methodology can genuinely be used to predict a company’s survivability. 

That is to say that by reserving the “most recent” portion of data, the model can be trained on 

hypothetical “past” information and the out-of-sample set becomes hypothetical “future” 

information, such that the predictive performance of the model is calculated. It is therefore 

appropriate to present the above results in a confusion matrix (Kohavi & Provost, 1998), in 

particular because it highlights the difficulty of dealing with rare event detection (Choe, et al., 

2000). Four confusion matrices are shown in Table 7-3, Table 7-4, Table 7-5 and Table 7-6, one 

for each of the two datasets with each of the two tested methodologies. 
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Failure Non‐Failure Accuracy

Failure 182 81 69.2%

Non‐Failure 4548 25738 85.0%

Precision 3.8% 99.7% 84.8%

Actual

Predicted

 

Table 7-3 - Confusion Matrix for Genetic Programming on Compustat Dataset (Seq Division) 

 

Failure Non‐Failure Accuracy

Failure 185 78 70.3%

Non‐Failure 5036 25250 83.4%

Precision 3.5% 99.7% 83.3%

Actual

Predicted

 

Table 7-4 - Confusion Matrix for Neural Network on Compustat Dataset (Seq Division) 

 

Failure Non‐Failure Accuracy

Failure 243 83 74.5%

Non‐Failure 1822 3449 65.4%

Precision 11.8% 97.7% 66.0%

Actual

Predicted

 

Table 7-5 - Confusion Matrix for Genetic Programming on Aspect Dataset (Seq Division) 

 

Failure Non‐Failure Accuracy

Failure 209 117 64.1%

Non‐Failure 1030 4237 80.4%

Precision 16.9% 97.3% 79.5%

Actual

Predicted

 

Table 7-6 - Confusion Matrix for Neural Network on Aspect Dataset (Seq Division) 

 

Certainly the final accuracy, particularly of the Compustat dataset using the Genetic 

Programming methodology of 84.8%, is a result that demonstrates this particularly methodology 

is able to achieve classifications well beyond that of the naïve model. Looking at just the actual 

failure cases, the methodology was able to successfully classify 69.2% of cases, and of the 

non-failure cases the methodology achieved 85.0% accuracy. However, the sheer number of 

non-failed cases versus failed cases means that a 15% error rate on the non-failed cases 
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results in approximately 25 times as many classified non-failed cases for every correctly 

identified failure case, or a positive predictive value (PPV) of 3.8%. That is, just 3.8% of all 

cases classified as failed will actually fail. In the Aspect dataset, the larger number of failed 

cases relative to non-failed cases mean the precision is higher, but even using the Neural 

Network methodology for which the net unweighted accuracy was 79.5%, the PPV of 16.9% 

means that for the successfully identified failure case there will be more than 6 times as many 

incorrectly predicted to be a failure. 

 

Low PPV values are common in studies where there is a low prevalence of the condition being 

predicted. For example an algorithm that is 90% accurate on 10,000 cases of class 1 (9,000 

correct with 1000 incorrectly classified as class 2) and 90% accurate on 100 cases of class 2 

(90 correct with 10 incorrectly classified as class 1) will result in the 1000 cases incorrectly 

classified as class 2 overshadowing the 100 cases correctly classified as class 2, a precision of 

8.3%. For example in Kerlikowske et al. (1993), 31,000 women underwent mammography 

screening, and a PPV of 9% was reported. To overcome this limitation, many classification 

systems (including both Genetic Programming and Neural Networks), are in fact classifying 

cases with a continuous output variable, then using an arbitrary threshold to harden the 

continuous output variable into a binary output variable. This threshold can be adjusted to 

favour type-I or type-II error. This thesis assumes that misclassifying a non-failing company as 

high risk is of lower cost than misclassifying a failing company as low risk, this is especially true 

of a creditor, and so the threshold used is acceptable. Provided the limitations of rare event 

detection are acknowledged, low PPV values do not necessary invalidate the usefulness of the 

classification system. 

 

This section has therefore shown that the classification methodology outlined throughout this 

thesis can be successfully applied to a bankruptcy prediction problem. Having done so, the 
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outcomes of the classification methodology can be examined to gain insights into corporate 

failure itself. 

 

7.2 Analysis of Classifiers and their Classifications 

Using the classification methodology outlined in chapter 6.2 and validated as a useful predictive 

system in section 7.1, there is an opportunity for deeper analysis into when and why the 

classification system is successful, and when it is not. In doing so, this chapter aims to build a 

greater understanding of the limitations of the methodology and gain some useful insights into 

any relationships between corporate failure and the successful classification of corporate failure. 

 

To this end, the output from the Genetic Programming classification methodology outlined in 

section 7.1 will be analysed, as this methodology results in (comparatively) simple mathematical 

algorithms from which insight can be gained. The Neural Network training algorithm results in 

highly complex multi-dimensional visualisations that make it very difficult to gain meaningful 

insight using the methodology, so this chapter focuses on the outputs from the Genetic 

Programming algorithm. 

 

7.2.1 Compustat Dataset Cluster 1 

While there are many companies within the Compustat dataset that could have been selected 

within this cluster, it was opted to analyse Bethlehem Steel Corporation, which filed for 

bankruptcy protection in 2001, due to its size providing more than adequate secondary sources 

that examine the company’s failure in more detail. 

 

While the 4th year prior to failure was found in cluster 2, incorrectly classified, the final 3 years of 

the company prior to bankruptcy were located in cluster 1 and were correctly classified using 

the algorithm that is documented in Appendix RR. The output of the algorithm from its 3 input 

parameters can be visualised in  Figure 7-15 with net income to net worth on the x axis, net 
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income to sales on the y, multiple values of net worth to sales shown as parameter n across 

multiple plots, and the model’s output value displayed on the z axis (where z>0.5 indicates 

classified failure). Furthermore the 3 cases from the final 4 years of the company which are 

located in this cluster can be added as data labels. In doing so, an understanding of how the 

model perceives the underlying relationships can be built. 

 

  

Figure 7-15 - Compustat Cluster 1 Failure Classification Surface 
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It is immediately apparent that n, net worth to sales, is the dominating factor as anything with 

n<0.04 is immediately classified as a failure across this domain used for these cases. However 

assuming net worth to sales to be greater than 0.04, as net income to sales changes from a 

positive to a negative value this has the effect of inversing the effect of net income to net worth. 

Thus when net income to sales is negative (as it is in the examples here) the model considers 

net income to net worth values around 1 to be least likely to fail. As net income to net worth 

deviates away from 1, the model finds an increasing likelihood of failure. 

 

There is now an opportunity to examine secondary sources that may shed light on the causes of 

Bethlehem Steel’s bankruptcy. Warren’s detailed analysis of Bethlehem Steel identified issues 

as far back as the 1960’s: “New circumstances in international trade, in technology, and in the 

trends and structure of demand henceforward would provide a less satisfactory business 

environment” (Warren, 2008, p. 181). While the late 1960’s saw reinvestment in shipbuilding 

and repairs, these efforts were late and net income continued to decline. Various crises went 

unmanaged, such as the 1973 energy crisis, court ordered fines for illegal billing practices, and 

a favourable U.S. government offer to buy ships being rejected in the late 1980’s. While there 

were many indicators of success, “the trend of net income, though it followed an uneven course 

year to year, was downward overall” (p. 196), and is perceived by the model. The 1980’s saw 

managerial issues taking place with inexperienced staff at the helm, increasing environmental 

standards and overseas competition from newer more advanced plants increasing. “Net sales 

were down by 28 percent and there was a deficit on a previously unequalled scale: nearly 

$1.5billion” (p. 217), again this fall in net sales was perceived by the model. In response, 

management halved the workforce which saw a positive net profit in 1987 through 1989, new 

investments in modernisation initiatives, and the paring down of many operations. In the early 

1990’s, Bethlehem engaged a project to equip with electric furnaces, which while successful 

went $145 million over budget (p. 243), and the president of competitor Nucor on the topic of 
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the new furnaces is quoted as saying “It’s a joke, we’ll kill them” (The Morning Call, 2010). By 

1994, Bethlehem was again engaging in retrenchment to reduce costs, and by 1995 many 

production centres had closed. “In the ten years through 1999, on net sales of $44.94 billion, 

only four years showed a net income; the net loss over the whole period was $1.92 billion”. By 

comparison U.S. Steel, in the same period seven years showed a positive net income (Warren, 

2008, p. 246). In hindsight, CEO of Bethlehem, Walter Williams said in an interview with 

Fortune, “We were all stuck with our basic steelmaking—just too much to write off and too much 

to shut down” (Loomis, 2004). Macroenvironmental forces and increased competition meant 

that by 2000 revenues were falling well faster than reductions in cost, resulting in a net loss of 

$118 million. “By the third quarter of 2001, Bethlehem shipments of steel products of all kinds 

were 117,000 tons less than the levels of the third quarter of 2000, average prices were some 

$40 a ton lower, and sales, $160 million lower. A net third quarter deficit of $35 million in 2000 

had become a loss of $134 million a year later, or more than $1.4 million a day. Such a drain on 

company resources could not long be sustained.” (Warren, 2008, p. 261)  

 

Bethlehem Steel is in fact a classic example of an Argenti Type 3 failure, as there were 

management issues many years prior to failure, a change in the market to which management 

does not respond, a big project, and a two-phase failure in which the first crash waterlogs the 

company a number of years before the failure that puts the company into bankruptcy (Argenti, 

1976, p. 162). While Argenti (1976) also identifies creative accounting, no evidence for such 

was found in Bethlehem Steel. This is interesting because the three contributory factors in the 

model use ratios that are likely targets for window dressing, however the shape of the 

classificatory surface shows that this particular model identifies deviations from an optimal 

value, making creative accounting a much more difficult prospect than if linear Discriminant 

Analysis had been used as the predictor. 
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Given the long period of time over which Bethlehem Steel descended into bankruptcy, it is 

interesting to look at the classifications for Bethlehem Steel in other years. In fact, of the 4 “non-

failure” years in which this company was classified in this cluster, 3 of them were incorrectly 

classified as failure. This indicates that at least some of the error in the algorithm for this cluster 

is due to companies exhibiting failure symptoms but simply failing over a longer period of time 

than the failure horizon allowed for. 

 

7.2.2 Compustat Dataset Cluster 2 

Cluster 2 failed companies tended to be smaller than those found in cluster 1, making the 

analysis of secondary sources more difficult. For the purpose of analysing cluster 2, Cone Mills 

Corporation was selected which was a textile company that failed in 2003. What makes this 

particular example interesting is that while in the 2nd and 3rd year out the company was correctly 

classified as a failing company, in the final year of available data the cluster 2 algorithm 

incorrectly classified the company as non-failure. The output from the algorithm located in 

Appendix SS is shown in Figure 7-16, with the three year company-years found in this cluster 

shown on the plot with the x axis representing net income (in millions), the y-axis representing 

current liabilities to current assets, and the z-axis again showing the model’s output value.  
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Figure 7-16 – Compustat Dataset Cluster 2 Failure Classification Surface 

 

The surface shows that companies with a positive net income in cluster 2 are immediately 

considered non-failed, and those with a negative net income are classified as failed if current 

liabilities to current assets > 0.5. This has led to the misclassification of the company in the year 

immediately prior to its failure, due to it having a positive net income in that year. The error 

surface shows that a company in this cluster that misrepresents its net income to be positive 

when in fact it should have been negative would be misclassified as non-failed. 

 

After some years of mixed results as a private company, Cone Mills Corporation returned to 

public offering in 1992, while simultaneously withdrawing from corduroy manufacturing to boost 

net profits (Gray, 1992). However by just 1995, with sales peaking at $910 million, the company 

had started posting net losses. A restructuring effort was undertaken in 1998 in an attempt to 
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recover the situation, and the company defended against a takeover by Summit Capital Corp by 

using a shareholder rights plan. It wasn’t until 2002 before the restructure meant that the 

company posted another profitable year ($7.2 million), and things on the surface appeared to 

have recovered. CEO John Bakane is quoted as saying “2002 fulfils the commitment that we 

made last year to return Cone Mills to profitability and achieves our $50 million EBITDA goal set 

two years ago”, while the CFO, Gary Smith, said “We continue to operate with daily liquidity of 

more than $20 million” (Textile News, 2003). Indeed as noted earlier, the positive net income in 

the year of its failure caused the classification system to move Cone Mills into the “non-failed” 

category. However in just 2003, Cone Mills was unable to make a $4.1 million bond interest 

payment. Bakane said, “While we returned the company to profitability in 2002, the events of 

this year have been such that we simply cannot support our present capital structure in the fact 

of current market conditions” (Beltran, 2003). W.L. Ross & Co, who went on to buy Cone Mills 

and some of its liabilities for $46 million on the condition that Cone Mills entered bankruptcy, 

blamed the trade liberalisation pact of that year with Vietnam, citing a large influx of cheap 

denim (Beltran, 2003), however Cone Mills financials show write-downs in excess of $123 

million in the company’s final quarter, not including goodwill (Wharton Research Data Services, 

2003), indicating that the profit and loss statements have been overstating the company’s 

viability. 

 

Like Bethlehem Steel, Cone Mills Corporation appears to be an Argenti Type 3 failure (Argenti, 

1976, p. 162), there is certainly evidence of changes to the marketplace that management did 

not respond to, a two-stage crash, rising leverage (long-term debt rose to over $177 million in 

2001) and there is some evidence of creative accounting. However, through all of this the most 

accurate predictors of failure for the company-years in cluster 2 was simply net income and 

current liabilities and current assets, so the model did not find the cash flow issues or evidence 

of creative accounting to be a predictor. 
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7.2.3 Aspect Dataset Cluster 1 

While the dataset contained 3 years of One.Tel’s data, only one had three years of consecutive 

data and this one was incorrectly classified as a non-failure in cluster 1, making it a particularly 

interesting case to analyse. For the purpose of context, all 3 years of One.Tel data are shown 

on the plot in Figure 7-17, though only the one located at x=0.115 and y=0.9 was available to 

the classification model. In the diagram the x-axis represents cash flow to total assets, the y-

axis represents cash to current liabilities, and the z-axis represents the output of the algorithm. 

 

 

Figure 7-17 - Aspect Dataset Cluster 1 Failure Classification Surface 

 

The above diagram indicates that companies in this cluster are considered likely to survive 

when they have a high cash to current liabilities: as cash to current liabilities decreases below 

approximately 0.4 the likelihood of failure climbs exponentially. One.Tel’s cash to current 
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liabilities 3 years prior to failure was approximately 0.19 and the resulting position on the 

diagram is striking. A more linear relationship also exists for cash flow to total assets, showing 

that as cash flow increases relative to current assets, the likelihood of failure increases. One.Tel 

had a cash flow to total assets ratio of 0.31 two years prior to its failure, which pushes its failure 

score over 0.5 and would have resulted in a failure classification. However in the year 

immediately prior to its failure One.Tel had increased their cash to current liabilities to 0.89, and 

increased their total assets relative to their cash flow which decreased the ratio cash flow to 

total assets to 0.11, resulting in the incorrect non-failure classification. 

 

Launched in 2005, One.Tel began under agreement with Optus for network services, SIM cards 

and so on, meaning that One.Tel’s gross profit came in the form of the margin it made from 

reselling Optus services. By the start of 1997 One.Tel had over 160,000 customers, revenue 

approaching $150 million and a net profit after tax of over $3.5 million (Monem, 2011). One.Tel 

soon floated on the Australian Stock Exchange and engaged in a strategy to expand 

internationally, purchasing spectrum to build its own mobile network while its share price 

continued to rise. As later documented in the New South Wales Supreme Court, One.Tel’s 

strategy was to be the dominant mobile phone provider, securing $710 million from News Ltd 

and PBL in exchange for shares (Australian Securities and Investments Commission v Rich, 

2009), and having Lucent Technologies build an Australian mobile network for $1.15 billion and 

a European mobile network for $20 billion. By November 1999, One.Tel’s market capitalisation 

was over $5 billion (Barry, 2002, p. 417), and had operating profits after tax approaching $7 

million (Monem, 2011). For the 1999-2000 financial year One.Tel reported losses of over $290 

million with $335 million in cash reserves (Monem, 2011). Part of this was due to ASIC requiring 

One.Tel to declare $173 million of advertising and customer acquisition costs that had been 

hidden in the balance sheet in breach of Corporations Law (Barry, 2002). Monem (2011) argues 

that creative accounting existed from as early as 1998, as the annual report “claimed that the 

company was cash flow positive from normal operations”, but that “after 1996-97, One.Tel’s 
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cash flow from operations was never positive”, that “One.Tel was not collecting cash fast 

enough to finance its aggressive corporate expansion” and provides evidence that the ratio of 

cash collected to incremental sales revenue had dropped to 55% by 2000, by making “ever-

increasing cash payments to suppliers and to a growing pool of employees”. Monem (2011) 

goes on to document decreasing sales revenue per customer from $933 in the financial year 

ending 1997, down to $508 by the year ending 1999, while cash paid to employees and 

suppliers increased by 51% over the same period, stating “Clearly One.Tel was pricing its 

services even below it’s ‘cash costs’ for at least 1998-99 and 1999-2000”. It is documented that 

Jodee Rich and Mark Silbermann did not review finance journals, trial balances or ledgers  

(Australian Securities and Investments Commission v Rich, 2009), and the enormous loss in the 

financial year ending 2000 is justified in part by a change in accounting policy, “Previously the 

Company followed a method of accounting, in compliance with Australian GAAP, where these 

costs were deferred over periods appropriate to the nature of each asset, whereas in the UK 

these costs are generally written off as incurred. The Company has decided to adopt a policy 

acceptable under UK GAAP and from the current year these costs are written off as incurred” 

(Connect 4, 2000). “Thus, One.Tel’s operating profits reported in all the past years were largely 

due to non-conservative accounting policy choices” (Monem, 2011). In mid-2000, the 

company’s cash flows were under pressure due to being unable to send any bills for six weeks 

as a result of problems in the implementation of GST, call centres were “under siege” from 

angry customers which was failing to answer up to 80% of callers, with staff turnover “running at 

300 per cent a year” (Barry, 2002, p. 213). The “Next Gen” network was behind schedule but 

launched in 1999 regardless, and an agreement with Telstra meant that customers who did not 

have One.Tel coverage would automatically roam onto Telstra’s network, who in turn would 

charge One.Tel full retail prices. Combined with “Free Time”, which allowed One.Tel customers 

to call each other for free, even when roaming, meant that One.Tel’s profit per customer 

continued to fall. “Even towards the end, in April 2001, one-third of calls were being carried for 

free, almost half were still roaming on Telstra, and a good proportion of the rest were being 
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charged at uncommercial rates. For much of the time, the company was either collecting no 

revenue from calls or giving the revenue away to its biggest rival. Meanwhile it was paying out 

millions of dollars on dealer commissions, advertising, marketing, sales, handset subsidies and 

administration—before it even began to think about paying the interest and repayments on the 

$1.15 billion cost of the network and the $523 million it had spent on spectrum.” (Barry, 2002, p. 

260). In May 2001, One.Tel entered receivership with its share price closing at 16c. 

 

One.Tel is an excellent example of a company which engaged in overtrading, in all three of 

McRobert & Hoffman’s (1997) dimensions: Physical, as the Next-Generation network was 

launched before completion; human, as evidenced by the enormous staff turnover and an 

inability to man their call centres; and financial as evidence by their poor cash to current 

liabilities ratio as indicated on Figure 7-17. 

 

One.Tel is also an example of an Argenti Type 2 company, noting that “Type 2 proprietors are 

super-salesmen; they are leaders of men, flamboyant, loquacious, restless and bubbling with 

ideas. The scale of their ambition is almost pathological. They never accept advice, they ‘know 

it all’” (Argenti, 1976, p. 158), and this was certainly the case for One.Tel. There is evidence for 

one man rule, Barry (2002, p. 248) argues that “despite its supposedly democratic nature, 

One.Tel had always been a thinly disguised autocracy in which Jodee made all the key 

decisions”. Argenti (1976) cites creative accounting as turnover increases but profits do not, 

resulting in overtrading and failure. 

 

7.2.4 Aspect Dataset Cluster 2 

To demonstrate the final cluster, Auto Group Limited was selected because it appears that the 

company may have been intentionally overstating net profit and this had a considerable effect 

on the company’s viability. Of the six years of data available for Auto Group, the first two years 

were incorrectly classified as failed, while the final four years were correctly classified as failed. 
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On the diagrams in Figure 7-18 the x-axis represents current plus long-term liabilities to total 

assets, the y-axis represents earnings before interest and taxes to total assets, n (for which 

multiple values are shown) represents net operating profit to sales, and the models output value 

is shown on the z-axis. 

 

  

  

  

Figure 7-18 - Aspect Dataset Cluster 2 Failure Classification Surface 

 



7. Results 
 

 

Page 210 

While it is difficult to see in the above diagrams due to the small range of n used, as n increases 

the surface moves linearly downward along the z axis, indicating that small values of profit to 

sales make companies more likely to fail. The surface also shows that for all values of n, failure 

increases linearly as liabilities to assets increase, and decreases as earnings before interest 

and taxes to assets increases, none of which is particularly surprising. It appears that in order 

for Auto Group Limited to be classified as a non-failed company, it would have had to increase 

profit to sales to 0.1, decrease long-term liabilities to total assets to 0.68, or increase to earnings 

before interest and taxes to total assets to 0.095. 

 

Being a smaller company, though still Australia’s largest auctioneer (Australian Associated 

Press, 2006), the number of secondary sources that examine the failure of Auto Group Limited 

is comparatively small. Established in 1988 and listed on the Australian Stock Exchange in 

1993, by 2005 Auto Group was selling “over 80,000 vehicles per annum, employing almost 600 

full time employees and operating in every mainland state of Australia” (Connect 4, 2005). In 

1998, Auto Group published a net profit after tax of $1.9 million, increasing to $2.5 million in 

1999. 2002 saw profit decrease to $1.8 million, decreasing a further 62% to $682,000 in 2003 

while revenue decreased by less than 1%. Richard Moffitt, in the Chairman’s annual report 

noted “aggressive new vehicle marketing and pricing strategies undertaken by most, if not all 

local distributors forced significant pressures upon used vehicle demand and consequently 

pricing”. 2004 saw a three-fold net profit increase to $2.4 million, on an increase in revenue of 

just 7% after the acquiring of Frankston Mitsubishi and Bayside Honda and Kia in Brisbane. But 

2005 saw profits down to lowest levels yet, just $562,000 even though revenue increased 

another 17%. Borrowing costs nearly doubled, and the chairman noted in the annual report, “a 

large over supply of used vehicles and a significant drop in demand diminished both sales 

volumes & gross margins” (Connect 4, 2005). 2005 saw the group acquire more dealerships 

including Cranbourne Suzuki and Sydney City Kia & Mitsubishi as well as a controlling interest 

in National Finance Choice. October 2005 saw an agreement between A.P. Eagers to explore a 
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merger (A.P. Eagers, 2005). Certainly evidence that a chain of acquisitions is present, a 

highlighted failure cause in Ross & Kami (1973). This was quickly followed by the statement 

“While it is too early to know for certain, it is possible that irregularities may exist in those 

financial statements and that they may have a material impact on Auto Group's financial 

position as stated in its 2005 Annual Report” (RWE Australian Business News, 2005). The 

company was placed into administration and, “following preliminary investigations into the 2005 

Financial Statements by the newly appointed Chief Financial Officer of Auto Group, the board of 

Auto Group has formed the view that the consolidated net profit of Auto Group and its controlled 

entities for the year ended 30 June 2005 was overstated in the 2005 Financial Statements by 

approximately $4.5 million before tax”. Then “following the appointment of SJ Parbery and MJ 

Robinson of PPB as administrators - in the opinion of the company's board the company and its 

subsidiaries are insolvent or likely to become insolvent” (Investogain Limited, 2012). In 2008 the 

liquidators advised that they would not pursue potential claims for breaches of the Corporations 

Act (Investogain Limited, 2012), unfortunately denying this research the opportunity to 

investigate further the nature of the net profit overstatement. 

 

The failure of Auto Group could be weakly classified as a Type 3 failure (Argenti, 1976), as the 

benefit of hindsight shows the acquisition of dealerships when the company was already facing 

financial difficulty. However at the time it is possible that management were simply unaware of 

the profit overstatements, or it could be that the acquisitions were an attempt to bring the 

company back to profitability at a time when there was demonstrable creative accounting 

occurring. There is certainly evidence that the accounting irregularities fed back into the 

management decisions made by the directors, who opted to pursue a merger based on this 

information. 

 

Regardless, it is interesting to note that while the irregular 2005 financial year showed a better 

net operating profit to sales (0.0025) than the 2000 financial year, it was not sufficiently better to 
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prevent the model from classifying 2005 as an imminent failure risk. In fact, the 2005 financial 

year had the highest model output of all six years of data (0.64), primarily due to having the 

highest liabilities to total assets of any of the six years. 

 

7.2.5 Conclusion 

This section has demonstrated that the relationships between financial statements and the 

model’s expectation of failure are often non-linear, which explains the increased accuracy of 

Genetic Programming over other classification systems shown in chapter 4.2. In particular, this 

section demonstrates that there is value in an analysis of how a classification came to be made 

as it allows further and deeper analysis into what aspects of a company’s financial statements 

should be given attention, in addition to making a prediction on the company’s risk of failure 

within the given failure horizon. 

 

This section has shown that the causes of bankruptcy are certainly found in the cases selected, 

and it has been shown that symptoms of failure generally appear in a company’s financial 

statements many years before its ultimate failure. While this chapter serves as evidence to 

support Argenti (1976), it falls short of proving a causal relationship. While there would be value 

in collecting data identifying underlying causes of bankruptcy such as “one man rule”, “creative 

accounting” and so on, to do so while a company remains operational is difficult if not 

impossible to someone without insider information. However if models such as those presented 

in this chapter can be used to identify at-risk companies, and those companies can be further 

investigated by potential investors or creditors for underlying causes of failure, then external 

parties will be better informed and empowered to make sound financial decisions. 
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8. Conclusion 

8.1 Summary of Results 

This thesis has set out to answer a number of questions, originally outlined in section 3.2, which 

are reconsidered here with a presentation of the relevant findings from each chapter. 

 

Section 3.2.1 questioned the effect of a lack or quality of accounting information and the 

possibility of accounting manipulation, considering whether or not information from the stock 

market might be more useful than financial data alone. However chapter 5 found that the 

inclusion of share market information had mixed results in improving the classification accuracy 

of the model. Furthermore, chapter 7 showed that reasonable predictive accuracies could be 

attained using the methodology outlined in this thesis, and section 7.2.4 demonstrated that even 

in cases where net profit is known to be overstated, a predictive model is able to accurately 

detect these anomalies and identify failing companies. In particular this finding is in contrast to 

Clarke et al. (1997) in which it is claimed that financial ratios are an ineffective mechanism for 

the prediction of failure, particularly when companies are acting to intentionally misrepresent 

their financial position.  

 

Section 3.2.3 questioned whether overtrading could be detected in a classification model and 

asked “What impact does cash have on a model’s ability to predict failure?” This research found 

cash-related ratios such as cash to sales, cash to total assets, etc. were found in both datasets 

using the heuristic factor search in chapter 4.3, but perhaps more importantly chapter 7.2 found 

that the only factor with an exponential impact on model output was cash flow to total assets, 

then demonstrated the position of One.Tel which clearly engaged in overtrading on this model. 

While the other three predictive models analysed in chapter 7.2 did not include cash-related 

factors in order to successfully predict corporate failure, there was also no evidence of 

overtrading in the cases analysed for these models. 
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Section 3.2.4 considered gearing, but unfortunately the typical measures for gearing such as 

debt to equity were excluded due to a lack of data in both datasets so this question is left 

unaddressed. 

 

Section 3.2.5 proposed an examination of the scope of forces across an organisation and it was 

therefore proposed that there may be value in incorporating macroeconomic factors and that 

there may also be value in performing an objective clustering of companies rather than simply 

using industry classifications. In order to test these, chapter 5.2 examined the effect of 

macroeconomic data but did not find that it assisted the classification model. However chapter 6 

developed an improved cluster visualisation technique which was then used in section 6.2, 

finding that objective clustering of company-years is superior to grouping by industry and not 

clustering at all. 

 

One interesting result for which no question was specifically posed, was that in three of the four 

predictive models analysed in section 7.2, the factors found to be useful were generally income 

or sales related. For example cluster 1 on the Compustat dataset achieved 77.1% accuracy 

(with 73.1% on the out-of-sample) using net income to net worth, net income to sales, and net 

worth to sales. The theoretical sources identified in chapter 3 tend to treat profitability as a late 

symptom of failure, while other factors such as availability of cash are given more importance, 

but this research shows that income and profitability were more critical to the firms’ risk of failure 

in these datasets.   

 

8.2 Contributions 

This thesis has demonstrated that while there is much literature on corporate failure prediction, 

such research can be improved both in accuracy and the underlying contribution to corporate 

failure theory by performing objective factor selection as well as objective clustering on the 
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cases that will be classified when using a supervised learning algorithm. To do so this research 

has proposed a new cluster visualisation technique, which has been demonstrated to overcome 

assumptions that are built into other visualisation methods, and the effectiveness of the 

visualisation has been shown on both synthetic and real datasets. 

 

It has also been demonstrated that while additional information, such as share price data, may 

intuitively contain useful information that is not available in end of year financial statements, the 

inclusion of such data may in some situations hinder the predictive systems ability to find the 

most accurate solution, and there is often an associated decrease in complete data availability 

when considering additional informational sources. 

 

Finally this research has performed an analysis on the resulting predictive models by examining 

classifications made with it, and therefore related the successful or unsuccessful classification 

of companies to the underlying causes of bankruptcy identified in the literature. 

  

8.3 Limitations and Directions for Future Research 

This research has utilised many factors for which data was consistently available, however 

many factors such as debt ratios had to be excluded due to a lack of complete data, which in 

turn prevented this study from addressing all posed questions. It would be worthwhile applying 

the demonstrated methodology to alternative datasets that have more complete data availability 

to determine whether better out-of-sample accuracy can be achieved. 

 

While this research opted to use a fixed failure horizon in the determination of a failure or non-

failure classification, it would be interesting to apply the methodology using different horizons of 

failure and examining whether some factors are more useful than others in a short-term 

prediction environment versus a long-term prediction environment. 
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The cluster visualisation methodology proposed in this study was performed on the map units 

from the Self-Organising Map as it was beyond reasonable processing limits to apply the 

clustering algorithm to the data itself. There is value in using a more computationally efficient 

external clustering methodology than Spectral Clustering and potentially clustering company-

years directly (both single year and multi-year).     

 

The small case studies undertaken provide some insight into whether or not the typical causes 

of failure were present, as well as how the model determined the failure score, however there is 

an opportunity to do further analysis on the financial statements across multiple years to support 

or refute the findings of this thesis.  
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Appendix A Optimised Normalisations Applied 

CompuStat Data 

Name Norm Grad Offset

Working capital to total assets logistic 11.5279 0.0685

Retained earnings to current assets logarithmic 2.0616 ‐0.0949

Earnings before interest and taxes to current assets logistic 0.9347 ‐0.7184

Sales to total assets logistic 2.559 0.2203

 
 

Aspect Data 

Name Norm Grad Offset

Working capital to total assets logistic 3.736 0.0227

Retained earnings to current assets logistic 2.3682 ‐0.3087

Earnings before interest and taxes to current assets logistic 1.6552 0.9427

Sales to total assets logistic 0.2001 ‐4.6394
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Appendix B 5-Fold Cross Validation Results 
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Appendix C Factors with Data in Compustat Dataset 

 * cash flow to sales 
 * cash flow to total assets 
 * cash flow to net worth 
 cash flow to total debt 
 * net income to sales 
 * net income to total assets 
 * net income to net worth 
 net income to total debt 
 * current liabilities to total assets 
 * long-term liabilities to total assets 
 * current plus long-term liabilities to total 

assets 
 * cash to total assets 
 quick assets to total assets 
 * current assets to total assets 
 * working capital to total assets 
 * cash to current liabilities 
 quick assets to current liabilities 
 * current assets to current liabilities 
 * cash to sales 
 accounts receivable to sales 
 inventory to sales 
 quick assets to sales 
 current assets to sales 
 working capital to sales 
 * net worth to sales 
 * total assets to sales 
 * cash to fund expenditures for operations 
 defensive assets to fund expenditures for 

operations 
 defensive assets minus current liabilities to 

fund expenditures for operations. 
 * retained earnings to total assets 
 * earnings before interest and taxes to total 

assets 
 * sales to total assets. 
 inventory to net working capital 
 current assets to total debt 
 total debt to equity 
 * fixed assets to equity 
 cash flow to current liabilities 
 * current liabilities to equity 
 equity and long-term debt to fixed assets 

 fixed assets to sales 
 * earnings before taxes to sales 
 * earnings before taxes to equity 
 earnings before taxes plus depreciation to 

total debt. 
 total debt to total assets 
 * Net income 
 dividends 
 * non-cash current assets 
 * long-term assets 
 * total liabilities. 
 net quick assets to inventory 
 * cash flow to total liabilities 
 * book value to total liabilities 
 net worth to long-term liabilities 
 net worth to fixed assets 
 net operating profit to interest 
 sales to inventory 
 sales to accounts receivable 
 sales to working capital 
 sales to current assets minus inventories 
 * sales to cash 
 * net operating profit to sales 
 sales to fixed assets 
 * sales to net worth 
 * long-term liabilities to current assets 
 sales to total capital 
 net available for total capital to sales 
 * log tangible assets 
 interest coverage 
 working capital to long-term debt 
 book equity to total capital 
 * current liabilities to current assets 
 funds provided by operations to total 

liabilities. 
 * log of total assets 
 quick assets to total liabilities 
 cash plus short term investments plus net 

receivables to current liabilities 
 current liabilities plus long-term debt to total 

assets 
 current liabilities to total debt 

* present after removal of missing data 
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Appendix D Factors with Data in Aspect Dataset 

 * cash flow to sales 
 * cash flow to total assets 
 * cash flow to net worth 
 cash flow to total debt 
 * net income to sales 
 * net income to total assets 
 * net income to net worth 
 net income to total debt 
 * current liabilities to total assets 
 * long-term liabilities to total assets 
 * current plus long-term liabilities to total 

assets 
 * cash to total assets 
 quick assets to total assets 
 * current assets to total assets 
 * working capital to total assets 
 * cash to current liabilities 
 quick assets to current liabilities 
 * current assets to current liabilities 
 cash to sales 
 * accounts receivable to sales 
 inventory to sales 
 quick assets to sales 
 current assets to sales 
 working capital to sales 
 * net worth to sales 
 * total assets to sales 
 * cash to fund expenditures for operations 
 * defensive assets to fund expenditures 

for operations 
 * defensive assets minus current liabilities 

to fund expenditures for operations. 
 * retained earnings to total assets 
 * earnings before interest and taxes to 

total assets 
 * sales to total assets. 
 inventory to net working capital 
 current assets to total debt 
 total debt to equity 
 * fixed assets to equity 
 * cash flow to current liabilities 
 * current liabilities to equity 
 equity and long-term debt to fixed assets 
 * fixed assets to sales 

 * equity to sales 
 * earnings before taxes to sales 
 * earnings before taxes to equity 
 earnings before taxes plus depreciation to 

total debt. 
 total debt to total assets 
 * cash to total assets 
 * Net income 
 dividends 
 * non-cash current assets 
 * long-term assets 
 * total liabilities. 
 net quick assets to inventory 
 * cash flow to total liabilities 
 * book value to total liabilities 
 net worth to fixed assets 
 sales to inventory 
 sales to accounts receivable 
 * sales to working capital 
 sales to current assets minus inventories 
 * sales to cash 
 * net operating profit to sales 
 sales to fixed assets 
 * sales to net worth 
 * net operating profit to total assets 
 net operating profit to total debt 
 * long-term liabilities to current assets 
 * log tangible assets 
 interest coverage 
 earnings to debt 
 working capital to long-term debt 
 book equity to total capital 
 * current liabilities to current assets 
 * funds provided by operations to total 

liabilities. 
 * log of total assets 
 quick assets to total liabilities 
 current liabilities plus long-term debt to 

total assets 
 * income from operations to total assets 
 income from operations plus taxes plus 

interest expense to total assets 
 current liabilities to total debt 

* present after removal of missing data 
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Appendix E Input Impacts for Compustat Data 

Factor Average Impact Maximum Impact

current plus long‐term liabilities to total assets 1.1140 1.1140

total liabilities. 0.1007 0.1007

log of total assets 0.0000 0.0000

cash to total assets 0.0000 0.0000

net income to total assets 26.2691 26.2691

Net income 22.3531 23.9426

net income to net worth 20.3685 20.3685

cash to fund expenditures for operations 6.7705 6.7705

book value to total liabilities 0.0000 0.0000

cash flow to total assets 0.0305 0.0305

cash flow to total liabilities 0.0000 0.0000

log tangible assets 0.0000 0.0000

cash flow to net worth 0.0000 0.0000

current liabilities to total assets 0.7015 0.9404

long‐term liabilities to total assets 0.0000 0.0000

current liabilities to equity 0.0000 0.0000

net income to sales 15.0076 22.3998

total assets to sales 5.5896 5.5896

earnings before interest and taxes to total assets 0.0000 0.0000

sales to total assets. 0.7772 0.7772

earnings before taxes to sales 25.5443 26.1653

net operating profit to sales 24.3035 24.3035

net worth to sales 0.0000 0.0000

earnings before taxes to equity 0.0000 0.0000

sales to net worth 4.9611 9.8443

cash to current liabilities 0.0000 0.0000

cash to sales 4.8641 4.8641

sales to cash 0.0000 0.0000

current assets to total assets 0.0000 0.0000

long‐term assets 14.1413 14.1413

cash flow to sales 0.0000 0.0000

fixed assets to equity 0.0000 0.0000

non‐cash current assets 0.0000 0.0000

retained earnings to total assets 0.0000 0.0000

working capital to total assets 0.0000 0.0000

current assets to current liabilities 0.0000 0.0000

long‐term liabilities to current assets 0.0000 0.0000

current liabilities to current assets 0.2003 0.2003
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Appendix F Input Impacts for Aspect Data 

Factor Average Impact Maximum Impact

cash flow to sales 0.0000 0.0000

cash flow to total assets 0.0000 0.0000

cash flow to net worth 0.0000 0.0000

net income to sales 0.0000 0.0000

net income to total assets 5.6848 9.3675

net income to net worth 0.0000 0.0000

current liabilities to total assets 4.9173 6.2280

long‐term liabilities to total assets 0.0000 0.0000

current plus long‐term liabilities to total assets 1.8953 1.8953

cash to total assets 1.4372 1.4372

current assets to total assets 0.0000 0.0000

working capital to total assets 0.0000 0.0000

cash to current liabilities 8.8947 15.6154

current assets to current liabilities 4.5936 6.4643

accounts receivable to sales 0.0000 0.0000

net worth to sales 0.0000 0.0000

total assets to sales 0.0000 0.0000

cash to fund expenditures for operations 5.5746 9.1386

defensive assets to fund expenditures for operations 0.0000 0.0000

defensive assets minus current liabilities to fund expenditures for operations. 0.0000 0.0000

retained earnings to total assets 10.6884 12.4457

earnings before interest and taxes to total assets 0.0890 0.0890

sales to total assets. 0.0000 0.0000

fixed assets to equity 0.0000 0.0000

cash flow to current liabilities 0.0000 0.0000

current liabilities to equity 0.0000 0.0000

fixed assets to sales 0.0000 0.0000

equity to sales 1.3610 1.3610

earnings before taxes to sales 0.0000 0.0000

earnings before taxes to equity 0.0000 0.0000

cash to total assets 2.2437 4.1109

Net income 0.0000 0.0000

non‐cash current assets 0.0000 0.0000

long‐term assets 0.0000 0.0000

total liabilities. 0.0000 0.0000

cash flow to total liabilities 7.3956 7.3956

book value to total liabilities 0.0000 0.0000

sales to working capital 0.0000 0.0000

sales to cash 0.4975 0.4975

net operating profit to sales 1.3531 1.3531

sales to net worth 1.8338 1.8338

net operating profit to total assets 8.9077 10.3130

long‐term liabilities to current assets 0.0000 0.0000

log tangible assets 0.0000 0.0000

current liabilities to current assets 0.0000 0.0000

funds provided by operations to total liabilities. 6.0390 6.0390

log of total assets 0.0000 0.0000

income from operations to total assets 0.0000 0.0000  
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Appendix G In-Sample and Out-of-Sample Accuracy for 

Experiments in Section 4.3 

Dataset Algorithm Factorset Accuracy Failed Non‐FailedAccuracy Failed Non‐Failed

CompuStat GP Best‐First 76.4 73.5 79.3 73.8 68.0 79.4

CompuStat GP Surviving 75.1 78.6 71.7 71.4 70.1 72.6

CompuStat GP Beaver 75.7 69.4 82.0 73.8 66.0 81.6

CompuStat GP Altman 72.6 73.4 71.7 72.1 72.2 72.0

CompuStat GP All Available 74.5 62.2 88.0 71.3 59.8 87.8

CompuStat NN Best‐First 75.1 83.3 66.8 70.4 66.3 77.3

CompuStat NN Surviving 75.0 84.1 65.8 70.1 65.6 78.3

CompuStat NN Beaver 72.2 81.5 62.8 69.8 65.9 76.1

CompuStat NN Altman 73.1 84.5 61.7 67.1 62.6 76.4

CompuStat NN All Available 74.0 78.6 69.4 69.8 66.8 74.1

Aspect GP Best‐First 68.4 77.6 58.4 65.3 70.5 59.7

Aspect GP Surviving 66.2 50.2 83.1 63.3 38.5 60.0

Aspect GP Beaver 66.9 61.2 73.0 63.4 55.0 72.3

Aspect GP Altman 64.6 72.6 57.5 61.1 63.5 58.6

Aspect GP All Available 66.0 57.7 74.9 63.2 63.5 65.0

Aspect NN Best‐First 66.0 76.7 55.2 64.0 61.2 68.7

Aspect NN Surviving 59.7 52.9 66.4 52.3 52.2 52.4

Aspect NN Beaver 58.8 61.2 56.5 57.5 57.2 57.9

Aspect NN Altman 61.2 85.4 37.0 60.4 57.0 70.3

Aspect NN All Available 65.8 60.2 71.4 62.5 63.3 61.8

In‐Sample Out‐of‐Sample
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Appendix H Validation Accuracy for Best-First Search Using 

Genetic Programming on Compustat Dataset 

1 earnings before taxes to sales 74.58

2 net income to total assets 76.01

3 cash to fund expenditures for operations 76.08

4 sales to total assets. 76.04

5 cash flow to total assets 76.39

6 total liabilities. 75.52

7 total assets to sales 75.50

8 long‐term assets 75.90

9 current plus long‐term liabilities to total assets 75.89

10 current liabilities to current assets 75.39

11 cash to sales 75.23

12 Net income 75.03

13 net operating profit to sales 75.30

14 net income to sales 75.17

15 net income to net worth 75.16

16 current liabilities to total assets 74.77

17 sales to net worth 75.13  
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Appendix I Validation Accuracy for Best-First Search Using 

Neural Networks on Compustat Dataset 

1 net income 73.01

2 net operating profit to sales 73.47

3 total assets to sales 74.43

4 net income to sales 74.01

5 total liabilities 73.85

6 cash to sales 73.78

7 net income to net worth 72.81

8 long‐term assets 71.75

9 current plus long‐term liabilities to total assets 72.31

10 net income to total assets 74.28

11 current liabilities to current assets 73.64

12 current liabilities to total assets 74.17

13 sales to total assets. 75.10

14 earnings before taxes to sales 74.96

15 cash flow to total assets 74.52

16 cash to fund expenditures for operations 74.66

17 sales to net worth 74.96  
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Appendix J Validation Accuracy for Best-First Search Using 

Genetic Programming on Aspect Dataset 

1 net income to total assets 63.74

2 cash to current liabilities 66.26

3 cash flow to total liabilities 68.14

4 cash to total assets 68.01

5 current plus long‐term liabilities to total assets 67.75

6 sales to net worth 68.33

7 funds provided by operations to total liabilities. 67.28

8 current liabilities to total assets 67.50

9 retained earnings to total assets 68.35

10 cash to fund expenditures for operations 67.21

11 net operating profit to sales 67.63

12 net operating profit to total assets 66.70

13 equity to sales 66.91

14 current assets to current liabilities 66.72

15 sales to cash 66.61

16 earnings before interest and taxes to total assets 66.13  
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Appendix K Validation Accuracy for Best-First Search Using 

Neural Networks on Aspect Dataset 

1 current plus long‐term liabilities to total assets 59.23

2 funds provided by operations to total liabilities. 60.77

3 current assets to current liabilities 64.17

4 cash flow to total liabilities 65.24

5 sales to cash 64.97

6 net operating profit to sales 64.94

7 equity to sales 64.98

8 net income to total assets 64.59

9 net operating profit to total assets 65.79

10 cash to current liabilities 65.58

11 cash to fund expenditures for operations 65.65

12 earnings before interest and taxes to total assets 65.96

13 sales to net worth 65.48

14 current liabilities to total assets 63.43

15 cash to total assets 61.49

16 retained earnings to total assets 59.65  
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Appendix L Input Impacts for Compustat Data without Share 

Market Information 

Factor Average Impact Maximum Impact

current plus long‐term liabilities to total assets 19.5509 19.5509

total liabilities. 0.0000 0.0000

log of total assets 0.0000 0.0000

cash to total assets 0.0000 0.0000

net income to total assets 16.6235 23.6853

Net income 24.0203 25.7024

net income to net worth 11.1084 19.8879

cash to fund expenditures for operations 0.2653 0.2653

book value to total liabilities 0.0000 0.0000

cash flow to total assets 0.0000 0.0000

cash flow to total liabilities 0.0000 0.0000

log tangible assets 0.0000 0.0000

cash flow to net worth 0.0000 0.0000

current liabilities to total assets 21.3722 21.3722

long‐term liabilities to total assets 0.0000 0.0000

current liabilities to equity 0.0000 0.0000

net income to sales 23.1147 26.5832

total assets to sales 0.0000 0.0000

earnings before interest and taxes to total assets 0.0000 0.0000

sales to total assets. 0.7228 1.4456

earnings before taxes to sales 22.5712 24.4147

net operating profit to sales 24.8536 25.8183

net worth to sales 15.9702 15.9702

earnings before taxes to equity 0.0000 0.0000

sales to net worth 0.0000 0.0000

cash to current liabilities 0.0000 0.0000

cash to sales 0.0000 0.0000

sales to cash 0.0000 0.0000

current assets to total assets 0.0000 0.0000

long‐term assets 0.0000 0.0000

cash flow to sales 0.0000 0.0000

fixed assets to equity 0.0000 0.0000

non‐cash current assets 0.0000 0.0000

retained earnings to total assets 18.6213 18.6213

working capital to total assets 0.0000 0.0000

current assets to current liabilities 0.0000 0.0000

long‐term liabilities to current assets 0.0000 0.0000

current liabilities to current assets 0.0033 0.0067  
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Appendix M Input Impacts for Aspect Data without Share 

Market Information 

Factor Average Impact Maximum Impact

cash flow to sales 0.0000 0.0000

cash flow to total assets 0.0000 0.0000

cash flow to net worth 0.0000 0.0000

net income to sales 0.0000 0.0000

net income to total assets 0.0000 0.0000

net income to net worth 0.0000 0.0000

current liabilities to total assets 0.0000 0.0000

long‐term liabilities to total assets 1.3378 1.3378

current plus long‐term liabilities to total assets 2.7932 2.7932

cash to total assets 0.7369 1.4739

current assets to total assets 1.1116 1.1116

working capital to total assets 2.5420 2.5420

cash to current liabilities 11.7603 16.9791

current assets to current liabilities 0.0000 0.0000

accounts receivable to sales 0.0000 0.0000

net worth to sales 0.0000 0.0000

total assets to sales 0.0000 0.0000

cash to fund expenditures for operations 18.2083 20.1963

defensive assets to fund expenditures for operations 18.1255 19.0433

defensive assets minus current liabilities to fund expenditures for operations. 17.7577 17.8143

retained earnings to total assets 10.6384 13.9324

earnings before interest and taxes to total assets 0.1815 0.1815

sales to total assets. 0.0000 0.0000

fixed assets to equity 0.0000 0.0000

cash flow to current liabilities 1.7019 1.7019

current liabilities to equity 0.0000 0.0000

fixed assets to sales 0.0000 0.0000

equity to sales 0.0000 0.0000

earnings before taxes to sales 0.0000 0.0000

earnings before taxes to equity 0.0000 0.0000

cash to total assets 0.0000 0.0000

Net income 0.0000 0.0000

non‐cash current assets 0.0000 0.0000

long‐term assets 0.0000 0.0000

total liabilities. 0.0000 0.0000

cash flow to total liabilities 0.0000 0.0000

book value to total liabilities 0.0000 0.0000

sales to working capital 0.0000 0.0000

sales to cash 2.4888 3.4528

net operating profit to sales 12.8921 12.9399

sales to net worth 0.0000 0.0000

net operating profit to total assets 6.7612 11.1859

long‐term liabilities to current assets 0.0000 0.0000

log tangible assets 0.0000 0.0000

current liabilities to current assets 0.0000 0.0000

funds provided by operations to total liabilities. 0.0000 0.0000

log of total assets 0.0000 0.0000

income from operations to total assets 0.0000 0.0000
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Appendix N Validation Accuracy for Best-First Search Using 

Genetic Programming on Compustat Dataset with Market Data 

1 earnings before taxes to sales 75.60

2 net income to total assets 76.01

3 cash to fund expenditures for operations 75.87

4 close price 76.26

5 market cap 76.23

6 sales to total assets. 77.16

7 net income to sales 76.01

8 volume 76.66

9 variance 75.75

10 net worth to sales 76.44

11 beta 76.47

12 net operating profit to sales 76.34

13 Net income 77.11

14 net income to net worth 76.27

15 current liabilities to current assets 76.27

16 current liabilities to total assets 76.09

17 return 76.27

18 current plus long‐term liabilities to total assets 75.71

19 retained earnings to total assets 74.56  
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Appendix O Validation Accuracy for Best-First Search Using 

Neural Networks on Compustat Dataset with Market Data 

1 close price 73.78

2 current liabilities to total assets 76.90

3 net income to total assets 78.34

4 retained earnings to total assets 79.47

5 cash to fund expenditures for operations 79.91

6 beta 80.04

7 current plus long‐term liabilities to total assets 80.22

8 net operating profit to sales 80.05

9 return 80.26

10 current liabilities to current assets 79.75

11 variance 79.28

12 earnings before taxes to sales 79.82

13 net income to sales 79.19

14 net worth to sales 79.25

15 sales to total assets. 79.24

16 Net income 78.89

17 market cap 78.61

18 volume 78.96

19 net income to net worth 79.01  
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Appendix P Validation Accuracy for Best-First Search Using 

Genetic Programming on Compustat Dataset without Market 

Data 

1 earnings before taxes to sales 75.60

2 net income to total assets 76.01

3 cash to fund expenditures for operations 75.87

4 current liabilities to total assets 76.09

5 current liabilities to current assets 76.25

6 net income to sales 77.42

7 net income to net worth 76.23

8 net worth to sales 76.82

9 sales to total assets. 76.27

10 Net income 76.27

11 current plus long‐term liabilities to total assets 76.27

12 net operating profit to sales 75.47

13 retained earnings to total assets 74.33  
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Appendix Q Validation Accuracy for Best-First Search Using 

Neural Networks on Compustat Dataset without Market Data 

1 Net income 73.23

2 net operating profit to sales 73.84

3 net worth to sales 75.85

4 net income to sales 76.66

5 earnings before taxes to sales 75.00

6 net income to net worth 75.21

7 current liabilities to total assets 72.26

8 net income to total assets 74.51

9 current plus long‐term liabilities to total assets 76.37

10 cash to fund expenditures for operations 76.78

11 current liabilities to current assets 78.19

12 retained earnings to total assets 75.28

13 sales to total assets. 75.49  



 
 

 

Page 234 

Appendix R Validation Accuracy for Best-First Search Using 

Genetic Programming on Aspect Dataset with Market Data 

1 net operating profit to sales 65.25

2 sales to cash 68.27

3 current plus long‐term liabilities to total assets 68.27

4 cash to fund expenditures for operations 68.88

5 current assets to total assets 68.47

6 retained earnings to total assets 68.31

7 net operating profit to total assets 68.65

8 cash to current liabilities 68.65

9 defensive assets minus current liabilities to fund expenditures for operations. 68.70

10 variance 68.50

11 volume 68.18

12 defensive assets to fund expenditures for operations 67.91

13 cash flow to current liabilities 68.54

14 beta 68.59

15 return 68.36

16 close 67.93

17 long‐term liabilities to total assets 67.48

18 market cap 67.52

19 cash to total assets 67.54

20 working capital to total assets 66.79

21 earnings before interest and taxes to total assets 66.63
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Appendix S Validation Accuracy for Best-First Search Using 

Neural Networks on Aspect Dataset with Market Data 

1 close price 61.87

2 working capital to total assets 65.19

3 net operating profit to total assets 68.00

4 long‐term liabilities to total assets 69.18

5 cash flow to current liabilities 69.16

6 cash to current liabilities 69.28

7 retained earnings to total assets 69.83

8 cash to fund expenditures for operations 70.67

9 earnings before interest and taxes to total assets 69.88

10 market cap 69.76

11 return 69.22

12 defensive assets minus current liabilities to fund expenditures for operations. 69.56

13 net operating profit to sales 69.52

14 beta 69.70

15 volume 68.62

16 defensive assets to fund expenditures for operations 69.64

17 variance 70.05

18 cash to total assets 68.68

19 sales to cash 69.00

20 current plus long‐term liabilities to total assets 69.34

21 current assets to total assets 68.78  
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Appendix T Validation Accuracy for Best-First Search Using 

Genetic Programming on Aspect Dataset without Market Data 

1 net operating profit to sales 65.25

2 sales to cash 68.27

3 current plus long‐term liabilities to total assets 68.27

4 cash to fund expenditures for operations 68.88

5 current assets to total assets 68.47

6 retained earnings to total assets 68.31

7 net operating profit to total assets 68.65

8 cash to current liabilities 68.65

9 defensive assets minus current liabilities to fund expenditures for operations. 68.70

10 earnings before interest and taxes to total assets 68.11

11 cash flow to current liabilities 67.27

12 working capital to total assets 68.25

13 long‐term liabilities to total assets 67.91

14 cash to total assets 66.91

15 defensive assets to fund expenditures for operations 66.75  
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Appendix U Validation Accuracy for Best-First Search Using 

Neural Networks on Aspect Dataset without Market Data 

1 net operating profit to total assets 61.83

2 cash to current liabilities 67.32

3 current plus long‐term liabilities to total assets 68.13

4 net operating profit to sales 68.85

5 cash to total assets 68.57

6 cash to fund expenditures for operations 69.40

7 working capital to total assets 69.44

8 defensive assets minus current liabilities to fund expenditures for operations. 68.78

9 defensive assets to fund expenditures for operations 69.00

10 earnings before interest and taxes to total assets 69.57

11 cash flow to current liabilities 70.30

12 sales to cash 67.71

13 long‐term liabilities to total assets 67.27

14 current assets to total assets 67.39

15 retained earnings to total assets 66.87  
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Appendix V Validation Accuracy for Best-First Search Using 

Genetic Programming on Compustat Dataset with 

Macroeconomic Data 

1 earnings before taxes to sales 74.76

2 net income to total assets 75.12

3 cash to fund expenditures for operations 75.86

4 net income to net worth 76.19

5 cash flow to total assets 76.88

6 Dow Jones Index 76.20

7 GDP Growth 76.12

8 sales to total assets. 75.90

9 net operating profit to sales 75.90

10 net income to sales 75.01

11 real effective exchange rate 76.20

12 current liabilities to current assets 75.59

13 current liabilities to total assets 75.42

14 consumer price index 75.03

15 total assets to sales 75.03

16 long‐term assets 74.59

17 cash to sales 75.78

18 interest rate 75.03

19 current plus long‐term liabilities to total assets 75.03

20 sales to net worth 75.03

21 total liabilities 75.03

22 net income 74.38  
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Appendix W Validation Accuracy for Best-First Search Using 

Neural Networks on Compustat Dataset with Macroeconomic 

Data 

1 Net income 73.01

2 net operating profit to sales 73.47

3 total assets to sales 74.43

4 net income to sales 74.01

5 total liabilities. 73.85

6 cash to sales 73.78

7 net income to net worth 72.81

8 long‐term assets 71.75

9 current plus long‐term liabilities to total assets 72.31

10 net income to total assets 74.28

11 real effective exchange rate 74.29

12 sales to net worth 74.09

13 sales to total assets. 73.49

14 dow jones industrial index 74.60

15 cash to fund expenditures for operations 74.62

16 current liabilities to current assets 74.28

17 current liabilities to total assets 75.61

18 earnings before taxes to sales 74.93

19 cash flow to total assets 74.84

20 GPD Growth 75.18

21 consumer price index 73.53

22 interest rate 74.94  
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Appendix X Validation Accuracy for Best-First Search Using 

Genetic Programming on Aspect Dataset with Macroeconomic 

Data 

1 net income to total assets 63.92

2 cash to current liabilities 66.81

3 cash flow to total liabilities 68.15

4 cash to total assets 67.94

5 net operating profit to sales 67.35

6 cash to total assets 67.24

7 GDP Growth 67.26

8 consumer price index 67.37

9 current assets to current liabilities 67.00

10 cash to fund expenditures for operations 67.62

11 current plus long‐term liabilities to total assets 67.54

12 current liabilities to total assets 67.26

13 equity to sales 67.00

14 sales to net worth 67.39

15 interest rate 66.89

16 sales to cash 66.56

17 australian all ordinaries 66.51

18 retained earnings to total assets 66.81

19 net operating profit to total assets 66.79

20 earnings before interest and taxes to total assets 66.43

21 real effective exchange rate 66.46

22 funds provided by operations to total liabilities. 66.07  
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Appendix Y Validation Accuracy for Best-First Search Using 

Neural Networks on Aspect Dataset with Macroeconomic Data 

1 current plus long‐term liabilities to total assets 59.23

2 funds provided by operations to total liabilities. 60.77

3 current assets to current liabilities 64.17

4 cash flow to total liabilities 65.24

5 sales to cash 64.97

6 net operating profit to sales 64.94

7 equity to sales 64.98

8 retained earnings to total assets 64.65

9 cash to current liabilities 64.85

10 net operating profit to total assets 65.01

11 cash to fund expenditures for operations 65.65

12 current liabilities to total assets 63.65

13 net income to total assets 63.92

14 earnings before interest and taxes to total assets 62.81

15 consumer price index 61.30

16 sales to net worth 62.12

17 real effective exchange rate 61.64

18 australian all ordinaries index 62.20

19 cash to total assets 61.76

20 cash to total assets 61.86

21 interest rate 61.13

22 GDP growth 61.95  
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Appendix Z Validation Accuracy for Best-First Search Using 

Genetic Programming on Cluster 1 & 2 on Compustat Dataset 

earnings before taxes to sales 75.06

cash to fund expenditures for operations 75.99

net income to sales 76.51

net income to net worth 76.28

cash flow to total assets 75.78

total assets to sales 76.11

net operating profit to sales 75.33

Net income 75.78

cash to sales 75.24

total liabilities. 75.76

current liabilities to total assets 75.83

long‐term assets 75.50

sales to net worth 75.68

net income to total assets 74.48

current liabilities to current assets 74.96

sales to total assets. 74.48

current plus long‐term liabilities to total assets 74.33  

earnings before taxes to sales 81.71

net income to net worth 82.34

Net income 82.71

current liabilities to total assets 82.34

net income to total assets 84.47

long‐term assets 82.82

net income to sales 82.97

sales to net worth 83.45

cash flow to total assets 82.58

current liabilities to current assets 82.58

current plus long‐term liabilities to total assets 82.71

total assets to sales 82.91

net operating profit to sales 82.55

cash to sales 82.77

sales to total assets. 82.17

total liabilities. 82.61

cash to fund expenditures for operations 81.98  
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Appendix AA Validation Accuracy for Best-First Search Using 

Neural Networks on Cluster 1 & 2 on Compustat Dataset 

earnings before taxes to sales 81.28

cash flow to total assets 83.06

current liabilities to current assets 83.67

net income to sales 83.69

total assets to sales 84.21

current plus long‐term liabilities to total assets 84.98

cash to sales 86.89

total liabilities. 88.06

net operating profit to sales 88.64

cash to fund expenditures for operations 88.21

net income to net worth 89.50

net income to total assets 87.73

Net income 88.49

long‐term assets 87.97

current liabilities to total assets 86.98

sales to net worth 85.82

sales to total assets. 80.86  

current plus long‐term liabilities to total assets 72.06

Net income 74.91

sales to total assets. 78.22

net income to sales 79.10

cash flow to total assets 78.86

total liabilities. 78.93

cash to sales 78.32

net operating profit to sales 78.75

sales to net worth 78.44

long‐term assets 78.58

net income to net worth 78.30

total assets to sales 78.40

earnings before taxes to sales 77.51

cash to fund expenditures for operations 77.94

current liabilities to total assets 77.37

current liabilities to current assets 76.68

net income to total assets 76.38  
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Appendix BB Validation Accuracy for Best-First Search Using 

Genetic Programming on Manufacturing and Non-

Manufacturing Companies on Compustat Dataset 

current plus long‐term liabilities to total assets 77.34

net income to total assets 78.50

current liabilities to total assets 80.81

total liabilities. 80.78

current liabilities to current assets 80.54

long‐term assets 80.48

net income to net worth 79.51

earnings before taxes to sales 79.97

Net income 78.31

cash to fund expenditures for operations 78.24

sales to net worth 78.50

sales to total assets. 79.86

net operating profit to sales 78.95

net income to sales 78.10

total assets to sales 77.09

cash to sales 77.49

cash flow to total assets 77.10  

earnings before taxes to sales 80.47

current liabilities to current assets 80.48

net income to total assets 80.48

current liabilities to total assets 80.47

cash to fund expenditures for operations 80.49

sales to total assets. 80.47

cash to sales 80.48

cash flow to total assets 80.36

sales to net worth 80.21

net income to net worth 80.48

long‐term assets 80.47

Net income 80.21

current plus long‐term liabilities to total assets 80.21

total liabilities. 80.01

net operating profit to sales 80.24

net income to sales 78.28

total assets to sales 78.69  



 
 

 

Page 245 

Appendix CC Validation Accuracy for Best-First Search Using 

Genetic Programming and Neural Networks on Unclustered and 

Ungrouped Compustat Dataset 

earnings before taxes to sales 76.68

net income to total assets 76.66

cash to fund expenditures for operations 76.84

current plus long‐term liabilities to total assets 77.62

sales to total assets. 77.61

cash flow to total assets 77.59

long‐term assets 77.21

net income to sales 77.15

current liabilities to total assets 77.46

cash to sales 77.29

current liabilities to current assets 76.35

sales to net worth 77.48

net operating profit to sales 77.34

total liabilities. 76.45

total assets to sales 76.93

Net income 76.45

net income to net worth 75.97  

Net income 73.23

net operating profit to sales 74.96

total assets to sales 75.62

net income to sales 75.64

cash to sales 75.62

net income to net worth 75.19

total liabilities. 75.29

earnings before taxes to sales 75.67

current plus long‐term liabilities to total assets 75.23

sales to total assets. 76.96

sales to net worth 77.65

long‐term assets 77.17

net income to total assets 75.48

current liabilities to total assets 76.67

current liabilities to current assets 76.69

cash to fund expenditures for operations 76.41

cash flow to total assets 75.78  
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Appendix DD Validation Accuracy for Best-First Search Using 

Genetic Programming on Cluster 1 & 2 on Aspect Dataset 

net operating profit to sales 80.59

net income to total assets 80.88

cash to total assets 81.57

funds provided by operations to total liabilities. 81.57

retained earnings to total assets 81.32

sales to cash 81.19

cash to fund expenditures for operations 81.24

sales to net worth 80.92

current plus long‐term liabilities to total assets 81.59

cash to current liabilities 81.07

earnings before interest and taxes to total assets 80.39

current assets to current liabilities 80.32

net operating profit to total assets 80.62

cash flow to total liabilities 80.32

current liabilities to total assets 80.32

equity to sales 80.07

cash to total assets 79.80  

cash to current liabilities 66.78

earnings before interest and taxes to total assets 69.67

current plus long‐term liabilities to total assets 70.76

current assets to current liabilities 70.76

net income to total assets 70.88

sales to net worth 71.48

sales to cash 70.88

funds provided by operations to total liabilities. 71.68

cash flow to total liabilities 71.31

current liabilities to total assets 70.76

net operating profit to sales 71.35

net operating profit to total assets 71.09

retained earnings to total assets 70.90

equity to sales 70.88

cash to total assets 70.18

cash to fund expenditures for operations 69.87

cash to total assets 69.45  
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Appendix EE Validation Accuracy for Best-First Search Using 

Neural Networks on Cluster 1 & 2 on Aspect Dataset 

current plus long‐term liabilities to total assets 65.06

net operating profit to total assets 69.37

current assets to current liabilities 70.93

cash to current liabilities 72.51

cash to fund expenditures for operations 74.22

cash to total assets 74.46

net operating profit to sales 73.45

cash flow to total liabilities 73.12

current liabilities to total assets 74.73

retained earnings to total assets 74.20

equity to sales 73.53

cash to total assets 74.41

sales to cash 73.79

net income to total assets 73.10

funds provided by operations to total liabilities. 71.86

earnings before interest and taxes to total assets 72.80

sales to net worth 71.54  

cash to current liabilities 64.91

earnings before interest and taxes to total assets 65.90

current plus long‐term liabilities to total assets 66.71

retained earnings to total assets 67.43

net operating profit to total assets 69.54

sales to cash 71.27

sales to net worth 70.84

net operating profit to sales 71.18

current liabilities to total assets 71.91

cash flow to total liabilities 70.32

current assets to current liabilities 68.90

equity to sales 68.55

cash to total assets 68.15

cash to fund expenditures for operations 67.49

net income to total assets 68.06

cash to total assets 68.38

funds provided by operations to total liabilities. 67.23  
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Appendix FF Validation Accuracy for Best-First Search Using 

Genetic Programming on Manufacturing and Non-

Manufacturing Companies on Aspect Dataset 

net operating profit to sales 69.47

funds provided by operations to total liabilities. 70.62

current plus long‐term liabilities to total assets 70.74

cash flow to total liabilities 70.73

current liabilities to total assets 70.69

retained earnings to total assets 70.51

earnings before interest and taxes to total assets 71.73

current assets to current liabilities 70.80

cash to current liabilities 70.08

net operating profit to total assets 70.15

net income to total assets 70.01

sales to net worth 70.66

equity to sales 71.53

cash to fund expenditures for operations 70.07

cash to total assets 68.65

sales to cash 69.10  

net income to total assets 66.49

current liabilities to total assets 69.92

cash flow to total liabilities 70.25

equity to sales 70.78

retained earnings to total assets 70.80

current assets to current liabilities 70.78

cash to total assets 70.78

sales to net worth 70.78

net operating profit to total assets 69.58

current plus long‐term liabilities to total assets 70.18

cash to total assets 70.78

funds provided by operations to total liabilities. 68.67

cash to fund expenditures for operations 69.84

sales to cash 69.58

cash to current liabilities 69.96

net operating profit to sales 68.98

earnings before interest and taxes to total assets 68.30  
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Appendix GG Validation Accuracy for Best-First Search Using 

Neural Networks on Manufacturing and Non-Manufacturing 

Companies on Aspect Dataset 

current liabilities to total assets 59.94

retained earnings to total assets 61.73

earnings before interest and taxes to total assets 61.85

net operating profit to total assets 62.79

funds provided by operations to total liabilities. 65.36

current assets to current liabilities 65.52

sales to cash 65.36

net operating profit to sales 64.02

current plus long‐term liabilities to total assets 63.13

cash flow to total liabilities 64.50

net income to total assets 62.55

sales to net worth 60.78

cash to current liabilities 62.77

equity to sales 60.66

cash to total assets 59.74

cash to fund expenditures for operations 61.08  

net operating profit to total assets 60.75

current liabilities to total assets 66.20

cash to total assets 67.40

retained earnings to total assets 68.61

funds provided by operations to total liabilities. 68.95

earnings before interest and taxes to total assets 69.27

sales to cash 69.70

current plus long‐term liabilities to total assets 69.35

cash to total assets 69.36

net income to total assets 70.38

equity to sales 69.61

cash flow to total liabilities 68.66

net operating profit to sales 69.15

cash to current liabilities 68.70

sales to net worth 68.27

current assets to current liabilities 68.37

cash to fund expenditures for operations 68.01  
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Appendix HH Input Impacts for Compustat Dataset (Sequential 

Division) 

Factor Average Input Maximum Input

current plus long‐term liabilities to total assets 0 0

total liabilities. 0 0

log of total assets 0 0

cash to total assets 0.00164 0.00328

net income to total assets 25.55919 25.97919

Net income 26.12919 27.66356

net income to net worth 0.97473 0.97473

cash to fund expenditures for operations 0 0

book value to total liabilities 0 0

cash flow to total assets 0 0

cash flow to total liabilities 0.00656 0.00656

log tangible assets 0 0

cash flow to net worth 0 0

current liabilities to total assets 0.05574 0.05574

long‐term liabilities to total assets 0 0

current liabilities to equity 0 0

net income to sales 21.42287 25.28689

total assets to sales 1.91939 2.93963

earnings before interest and taxes to total assets 0 0

sales to total assets. 1.45438 1.73074

earnings before taxes to sales 0 0

net operating profit to sales 0 0

net worth to sales 4.3959 4.3959

earnings before taxes to equity 0 0

sales to net worth 0 0

cash to current liabilities 0.44124 0.44124

cash to sales 0 0

sales to cash 0 0

current assets to total assets 0 0

long‐term assets 0 0

cash flow to sales 0 0

fixed assets to equity 0 0

non‐cash current assets 0 0

retained earnings to total assets 0 0

working capital to total assets 0 0

current assets to current liabilities 2.46238 2.46238

long‐term liabilities to current assets 0 0

current liabilities to current assets 1.4085 1.98745  



 
 

 

Page 251 

Appendix II Input Impacts for Aspect Dataset (Sequential 

Division) 

Factor Average Impact Maximum Impact

cash flow to sales 0 0

cash flow to total assets 0.82529 0.82529

cash flow to net worth 0 0

net income to sales 10.6382 10.6382

net income to total assets 0 0

net income to net worth 2.57258 4.12164

current liabilities to total assets 2.84101 7.19615

long‐term liabilities to total assets 0 0

current plus long‐term liabilities to total assets 4.81008 11.57592

cash to total assets 1.87549 3.49908

current assets to total assets 0 0

working capital to total assets 0 0

cash to current liabilities 8.69881 10.90395

current assets to current liabilities 0 0

accounts receivable to sales 0 0

net worth to sales 0 0

total assets to sales 0 0

cash to fund expenditures for operations 0 0

defensive assets to fund expenditures for operations 0 0

defensive assets minus current liabilities to fund expenditures for operations 0 0

retained earnings to total assets 9.80461 11.75483

earnings before interest and taxes to total assets 1.65357 3.30714

sales to total assets. 0 0

fixed assets to equity 0 0

cash flow to current liabilities 0.08754 0.08754

current liabilities to equity 5.30233 7.4393

fixed assets to sales 0 0

equity to sales 0 0

earnings before taxes to sales 0 0

earnings before taxes to equity 7.3822 9.26781

cash to total assets 0 0

Net income 0 0

non‐cash current assets 0 0

long‐term assets 0 0

total liabilities. 2.00188 2.00188

cash flow to total liabilities 0 0

book value to total liabilities 5.65332 9.14174

sales to working capital 0 0

sales to cash 0 0

net operating profit to sales 11.76429 11.76429

sales to net worth 0.46462 0.46462

net operating profit to total assets 7.94372 10.52194

long‐term liabilities to current assets 0 0

log tangible assets 0 0

current liabilities to current assets 0 0

funds provided by operations to total liabilities. 0 0

log of total assets 0 0

income from operations to total assets 1.27113 2.44036  
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Appendix JJ Validation Accuracy for Best-First Search Using 

Genetic Programming on Compustat Dataset (Sequential 

Division) 

net income 76.37

current liabilities to total assets 76.84

current liabilities to current assets 77.37

net worth to sales 76.95

net income to sales 77.81

cash to current liabilities 77.34

current assets to current liabilities 77.58

cash to total assets 77.37

sales to net worth 77.47

book value to total liabilities 77.15

total assets to sales 77.11

working capital to total assets 76.78

net income to total assets 77.12

cash flow to total liabilities 76.52

sales to total assets 76.98

cash to sales 76.20

net income to net worth 76.01  
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Appendix KK Validation Accuracy for Best-First Search Using 

Neural Networks on Compustat Dataset (Sequential Division) 

net income 71.91

net income to sales 74.85

total assets to sales 76.72

net worth to sales 76.64

cash to sales 77.13

book value to total liabilities 76.16

sales to net worth 74.94

net income to net worth 75.89

net income to total assets 73.43

cash to total assets 75.42

cash flow to total liabilities 76.13

cash to current liabilities 75.83

current liabilities to total assets 75.06

current assets to current liabilities 74.66

working capital to total assets 74.28

current liabilities to current assets 74.82

sales to total assets. 73.93  
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Appendix LL Validation Accuracy for Best-First Search Using 

Genetic Programming on Aspect Dataset (Sequential Division) 

net operating profit to total assets 63.11

current liabilities to total assets 64.70

net operating profit to sales 65.06

earnings before taxes to equity 65.00

cash to current liabilities 65.04

retained earnings to total assets 66.53

cash flow to total assets 65.99

cash flow to current liabilities 65.86

current plus long‐term liabilities to total assets 66.32

income from operations to total assets 65.65

total liabilities. 65.79

current liabilities to equity 65.55

sales to net worth 65.23

net income to sales 65.08

book value to total liabilities 64.97

earnings before interest and taxes to total assets 64.97

cash to total assets 64.42

net income to net worth 64.77  
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Appendix MM Validation Accuracy for Best-First Search Using 

Neural Networks on Aspect Dataset (Sequential Division) 

current plus long‐term liabilities to total assets 59.65

earnings before interest and taxes to total assets 62.81

total liabilities. 64.06

current liabilities to total assets 65.41

net income to net worth 65.47

current liabilities to equity 65.42

cash flow to current liabilities 65.35

income from operations to total assets 65.16

net operating profit to total assets 65.22

cash to current liabilities 65.86

retained earnings to total assets 65.42

net income to sales 65.50

earnings before taxes to equity 65.44

book value to total liabilities 65.25

cash to total assets 65.45

cash flow to total assets 65.06

sales to net worth 64.62

net operating profit to sales 65.33  
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Appendix NN Validation Accuracy for Best-First Search Using 

Genetic Programming on Cluster 1 & 2 on Compustat Dataset 

(Sequential Division) 

net income to sales 72.39

net income to net worth 75.85

net worth to sales 77.13

net income 76.54

current assets to current liabilities 76.80

cash to total assets 76.80

working capital to total assets 76.88

sales to net worth 77.01

sales to total assets 76.52

current liabilities to current assets 76.33

cash to current liabilities 76.70

net income to total assets 76.83

cash flow to total liabilities 75.75

cash to sales 75.45

book value to total liabilities 76.10

total assets to sales 75.83

current liabilities to total assets 76.08  

net income 88.02

current liabilities to current assets 89.09

sales to total assets. 88.50

cash to total assets 88.17

book value to total liabilities 88.25

cash to current liabilities 88.27

net worth to sales 88.14

sales to net worth 88.26

total assets to sales 88.05

net income to sales 88.02

current liabilities to total assets 88.02

cash flow to total liabilities 88.06

net income to total assets 87.97

net income to net worth 88.19

current assets to current liabilities 88.02

working capital to total assets 88.02

cash to sales 87.93  
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Appendix OO Validation Accuracy for Best-First Search Using 

Neural Networks on Cluster 1 on Compustat Dataset 

(Sequential Division) 

net income to total assets 70.34

cash to current liabilities 74.15

cash flow to total liabilities 74.62

net worth to sales 75.29

net income to sales 75.34

sales to net worth 75.31

Net income 74.80

net income to net worth 74.91

book value to total liabilities 75.52

cash to sales 74.57

cash to total assets 75.58

total assets to sales 76.15

current liabilities to total assets 74.83

sales to total assets. 75.57

current liabilities to current assets 75.64

working capital to total assets 75.48

current assets to current liabilities 74.48  
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Appendix PP Validation Accuracy for Best-First Search Using 

Genetic Programming on Cluster 1 & 2 on Aspect Dataset 

(Sequential Division) 

cash to current liabilities 67.52

cash flow to total assets 72.57

current plus long‐term liabilities to total assets 72.07

sales to net worth 72.45

net operating profit to sales 72.01

current liabilities to equity 72.07

net income to net worth 72.34

earnings before taxes to equity 71.69

cash to total assets 71.69

earnings before interest and taxes to total assets 71.74

total liabilities. 71.75

retained earnings to total assets 70.97

net operating profit to total assets 71.03

cash flow to current liabilities 71.43

income from operations to total assets 71.61

net income to sales 71.36

current liabilities to total assets 70.39

book value to total liabilities 69.45  

net operating profit to sales 74.25

current plus long‐term liabilities to total assets 75.16

net operating profit to total assets 75.70

book value to total liabilities 75.27

current liabilities to total assets 75.43

earnings before interest and taxes to total assets 75.22

retained earnings to total assets 75.33

cash flow to current liabilities 76.72

sales to net worth 75.22

current liabilities to equity 75.06

cash flow to total assets 75.97

net income to sales 75.00

total liabilities. 75.00

cash to current liabilities 75.27

cash to total assets 75.16

net income to net worth 75.00

earnings before taxes to equity 74.57

income from operations to total assets 73.45  
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Appendix QQ Validation Accuracy for Best-First Search Using 

Neural Networks on Cluster 1 & 2 on Aspect Dataset 

(Sequential Division) 

current liabilities to total assets 63.40

earnings before interest and taxes to total assets 65.24

net operating profit to total assets 67.05

total liabilities. 68.74

net income to sales 69.69

book value to total liabilities 69.63

income from operations to total assets 70.52

current plus long‐term liabilities to total assets 71.66

cash flow to current liabilities 71.13

cash to total assets 70.88

sales to net worth 71.86

cash flow to total assets 72.25

retained earnings to total assets 72.53

current liabilities to equity 72.25

net operating profit to sales 72.44

cash to current liabilities 73.28

net income to net worth 71.72

earnings before taxes to equity 70.72  

net operating profit to total assets 69.76

book value to total liabilities 72.44

total liabilities. 73.69

net income to net worth 75.08

net operating profit to sales 76.54

cash flow to current liabilities 76.64

cash to current liabilities 75.86

net income to sales 73.83

sales to net worth 75.22

income from operations to total assets 75.22

cash to total assets 76.31

cash flow to total assets 75.53

current plus long‐term liabilities to total assets 77.12

earnings before taxes to equity 74.78

retained earnings to total assets 75.59

current liabilities to equity 76.68

earnings before interest and taxes to total assets 75.73

current liabilities to total assets 74.98  
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Appendix RR Best Validation Accuracy Genetic Programming 

Algorithm for Clusters 1 & 2 on Compustat Dataset (Sequential 

Division) 

  f[0]=f[1]=f[2]=f[3]=f[4]=f[5]=f[6]=f[7]=0; 
  L0: f[0]+=v[17]; 
  L1: f[0]=sin(f[0]); 
  L2: cflag=(f[0] < f[1]); 
  L3: f[0]-=f[0]; 
  L4: f[0]=cos(f[0]); 
  L5: if (!cflag) f[0] = f[1]; 
  L6: f[0]-=v[7]; 
  L7: f[0]=cos(f[0]); 
  L8: f[0]=cos(f[0]); 
  L9: f[0]-=v[23]; 
 
 
 
  f[0]=f[1]=f[2]=f[3]=f[4]=f[5]=f[6]=f[7]=0; 
  L0: f[0]+=1.248895406723023f; 
  L1: f[0]=-f[0]; 
  L2: f[0]*=0.2877938747406006f; 
  L3: f[0]+=v[6]; 
  L4: f[2]+=f[0]; 
  L5: f[0]-=f[0]; 
  L6: cflag=(f[0] < f[2]); 
  L7: f[0]+=v[38]; 
  L8: if (cflag) f[0] = f[3]; 
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Appendix SS Best Validation Accuracy Genetic Programming 

Algorithm for Clusters 1 & 2 on Aspect Dataset (Sequential 

Division) 

  f[0]=f[1]=f[2]=f[3]=f[4]=f[5]=f[6]=f[7]=0; 
  L0: f[0]-=v[2]; 
  L1: f[0]/=v[13]; 
  L2: f[1]+=f[0]; 
  L3: f[0]/=v[13]; 
  L4: cflag=(f[0] < f[1]); 
  L5: cflag=(f[0] < f[0]); 
  L6: f[0]=-f[0]; 
  L7: f[0]/=v[13]; 
  L8: f[0]+=f[0]; 
  L9: tmp=f[2]; f[2]=f[0]; f[0]=tmp; 
  L10: tmp=f[0]; f[0]=f[0]; f[0]=tmp; 
  L11: f[3]+=f[0]; 
  L12: tmp=f[3]; f[3]=f[0]; f[0]=tmp; 
  L13: f[0]+=f[2]; 
  L14: cflag=(f[0] < f[0]); 
  L15: tmp=f[0]; f[0]=f[0]; f[0]=tmp; 
  L16: f[0]-=0.002621650695800781f; 
  L17: if (!cflag) f[0] = f[0]; 
  L18: f[0]*=f[1]; 
  L19: f[0]=sqrt(f[0]); 
  L20: f[3]-=f[0]; 
  L21: f[0]+=f[2]; 
  L22: f[0]=-f[0]; 
  L23: if (!cflag) f[0] = f[1]; 
  L24: cflag=(f[0] < f[3]); 
  L25: if (cflag) f[0] = f[3]; 
  L26: f[0]-=f[3]; 
  L27: f[0]+=f[3]; 
  L28: f[0]=cos(f[0]); 
  L29: if (!cflag) f[0] = f[3]; 
  L30: if (cflag) f[0] = f[0]; 
  L31: f[0]/=f[3]; 
  L32: if (cflag) f[0] = f[1]; 
  L33: f[0]/=v[13]; 
  L34: if (!cflag) f[0] = f[0]; 
  L35: f[0]=fabs(f[0]); 
  L36: if (!cflag) f[0] = f[0]; 
  L37: f[0]+=f[0]; 
  L38: tmp=f[2]; f[2]=f[0]; f[0]=tmp; 
  L39: f[0]*=f[1]; 
  L40: cflag=(f[0] < f[0]); 
  L41: if (cflag) f[0] = f[3]; 
  L42: f[0]=-f[0]; 
  L43: f[0]=-f[0]; 
  L44: cflag=(f[0] < f[1]); 
  L45: f[0]-=v[2]; 
  L46: if (!cflag) f[0] = f[0]; 
  L47: f[0]=fabs(f[0]); 
  L48: f[0]=sqrt(f[0]); 
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  f[0]=f[1]=f[2]=f[3]=f[4]=f[5]=f[6]=f[7]=0; 
  L0: f[0]-=v[9]; 
  L1: f[0]=-f[0]; 
  L2: f[0]=sqrt(f[0]); 
  L3: f[3]-=f[0]; 
  L4: f[0]=sqrt(f[0]); 
  L5: f[0]*=f[3]; 
  L6: f[0]/=1.258495330810547f; 
  L7: f[0]+=0.002621650695800781f; 
  L8: f[0]=fabs(f[0]); 
  L9: f[0]-=v[22]; 
  L10: f[0]-=v[40]; 
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