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Abstract

A typical machine learning algorithm takes advantage of training data to discover pat-
terns among observed variables. For example, a learning algorithm can predict the label
of a test data point by measuring its similarity with the training data points. Since the
data is constituted of features which are not necessarily related by any evident relation,
the notion of similarity is not trivially defined. When measuring similarity, one should
not necessarily treat all features as being equally important. The problem of learning in
high-dimensional machine learning data is actually the problem of estimating the relative
importance of the features. The relevance determination tunes a data-dependent similarity
measure. Most machine learning algorithms either implicitly or explicitly learn this simi-
larity measure on which their performance is critically dependent. In this thesis, various
metric learning techniques are analyzed and systematically studied under a unified frame-
work to highlight the criticality of data-dependent distance metric in machine learning.
The metric learning algorithms are categorized as naive, semi-naive, complete and high-
level metric learning, under a common distance measurement framework. The connection
of feature selection, feature weighting, feature partitioning, kernel tuning, etc. with metric
learning is discussed and it is shown that they are all in fact forms of metric learning.
Novel naive, semi-naive, complete and high-level metric learning algorithms are proposed
to improve classification performance. Also, it has been shown that the realm of metric
learning is not limited to k-nearest neighbor classification, and that a metric optimized in
the k-nearest neighbor setting is likely to be effective and applicable in other kernel-based
frameworks, for example Support Vector Machines (SVM) and Gaussian Processes (GP).
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Chapter 1

Introduction

Machine learning is the study of algorithms that allow machines to find meaningful pat-
terns in the data for inference, prediction or classification purposes. A learning algorithm
typically takes advantage of the example data to discover patterns among the observed
variables. A serious problem faced by machine learning methods is that the example data
(also known as the training data) given to the algorithm as an input is just one set of all the
possible inputs. The learning algorithm needs to generalize from the given example data,
so as to perform well on unknown data (Bishop, 2006). Various methods and techniques
used in machine learning have been studied by researchers in related fields, for example ap-
plied statistics, functional approximation, computational neuroscience, data mining, etc.
One of the closest fields to machine learning is that of Artificial Intelligence (AI). There
are subtle differences between the two fields. Unlike typical AI methods of specifying and
hard coding a pattern, machine learning methods learns a pattern from the data. That is,
rather than defining the rules and specifying the logic for solving the problem, machine
learning methodologies aim to learn the rule, logic or pattern from the training data. Ma-
chine learning techniques have turned out to be more fruitful than artificial intelligence
methods in many applications. Over the last two decades, machine learning algorithms
have been applied successfully to a huge range of applications in engineering, medicine and
sciences. From weather prediction to medical diagnosis, from human visual tracking to
malware detection in computer network security, from online gambling to stock prediction,
the list of applications of machine learning is exhausting.

Most machine learning algorithms deal with the learning of a pattern from examples
(training data) that are in high dimensions. The dimensions are typically known as features
in machine learning. Though it is difficult to visualize beyond two or three dimensions,
one can think intuitively of the training data as points in some high-dimensional space
(also referred as a feature space). The problem of learning in machine learning is in
fact the problem of estimating the right properties of the space in which the data lies.
Mathematicians have frequently generalized their theories to P dimensional spaces, so one
might assume that the mathematics of high dimensions can be easily applied to machine
learning data sets. This assumption is not true. Calculations in lower dimensional spaces
can only be generalized to higher dimensional spaces if we have a clear understanding of
the properties of space we are working in. For example Euclidean space, Hilbert space,

1
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etc. have well defined mathematical properties (Bachman et al., 2000; Bourbaki, 1986).
The trouble with machine learning data sets is that the data often lies in a space where
the dimensions are not related. That is, features are not equally important, often come
from different sources, and are of totally different natures. One of the consequence of
such a space is that the distances between the data points are arbitrary. For example,
if one of the features represents a temperature value, the distance between two points is
different depending on whether the temperature is measured in degrees Celsius or degrees
Fahrenheit. As a result the notion of similarity is not well defined. That is, we can
not take two vectors and determine their similarity simply by measuring the distance
between them, or by calculating the projection of one vector over the other as we do in
the Euclidean space. How to learn patterns in the data that lies in such a space is the
crux of machine learning, and finding this relationship (pattern) among different features
is the goal of much machine learning research.

1.1 Thesis Overview

As described, machine learning deals with data in a space where features may be unrelated,
there is a need to deal with these features in a systematic and principled manner so that
distances between the data points are not affected and a suitable measure of similarity
exists for learning patterns in the data. My main hypothesis is:

Due to the inherent nature of machine learning data sets, any learning algo-
rithm relying on similarity measurement to predict the class labels needs to
estimate or learn the similarity measure from the training data. In fact, most
learning algorithms either implicitly or explicitly estimate this similarity mea-
sure, and their performance depends critically on how well such a measure
of similarity is estimated. The estimation of a similarity measure can be re-
ferred to as ‘learning of a data-dependent distance metric’ or ‘metric learning’.
Several techniques such as feature selection, feature scaling, feature relevance,
feature partitioning, kernel tuning, kernel scaling, kernel fusion, distance fu-
sion, etc., that are used for making learning algorithms more efficient, are in
fact metric learning methods. That is, they are doing nothing but estimating
a measure of similarity that is suitable for the data.

The need to estimate a similarity metric arises because of the heterogeneous structure
of the input space in which the data lies. Therefore, the estimation of a data-dependent
similarity measure is in fact estimation of the properties of an input space. One can deduce
that the performance of learning algorithms will depend on how well these properties are
estimated. It is important to make a distinction between the properties of the learning
algorithm and the properties of the input space. The properties of an input space depends
on data distribution and are independent of any learning algorithm.

My secondary hypothesis is:

A similarity measure optimized in the framework of one learning algorithm is
likely to be applicable and effective in those of other learning algorithms.
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1.1.1 Contributions

The main contributions of the thesis are as follows.

A novel categorization scheme is introduced to categorize metric learning

methods. Such a categorization leads to the unification of different terms used for met-
ric learning. The methods are categorized as naive, semi-naive, complete, and high-level
metric learning categories under a common distance measurement framework. The cate-
gorization depends on the form of the distance matrix1. For example naive and semi-naive
metric learning is the case of learning a diagonal distance matrix, complete metric learning
is the case of learning a full distance matrix (i.e. diagonal and off-diagonal terms) whereas,
high-level metric learning is the case of learning a block partition distance matrix. As
mentioned above, several different terms are used for metric learning in the literature, for
example feature selection, feature weighting, feature partitioning, scale estimation, kernel
tuning, etc. By analyzing and categorizing these methods under a common framework, it
has been shown that all these methods are in fact special cases of metric learning. The
details of this categorization scheme are discussed in chapter 3.

A novel algorithm for semi-naive and complete metric learning has been

proposed. The Mean-Square-Error Gradient Minimization (MEGM) metric learning
algorithm is based on minimizing the gradient of the Mean-Square-Error (MSE) in a
nearest neighbor framework. The motivation behind the algorithm is to reduce the bias
in high dimensions that originates due to the curse of dimensionality. It has been shown
that the proposed algorithms perform better than most state of the art metric learning
algorithms in the k-nearest neighbor framework. The details of the algorithm are discussed
in chapter 4, and 5 (Zaidi et al., 2010a,c).

The connection between kernel learning in the SVM and GP classification

frameworks and metric learning in the k-nearest neighbor framework has been

studied. It has been shown that metric learning algorithms in the k-nearest neighbor
framework can be used to tune kernel parameters for SVM and GP classification. To
the best of our knowledge, this is the first work that deals with learning of a full data-
dependent distance metric (complete metric learning) for kernel tuning in the SVM and
GP classification frameworks. On a wide range of data sets, it has been shown that the
classification performance of both SVM and GP classifiers can be significantly improved
by using kernel parameters learned in a k-nearest neighbor framework, as compared to the
kernels obtained by other state of the art methods, such as cross-validation. The details
of the method are discussed in chapter 7 and 9 (Zaidi and Squire, 2010b).

An algorithm for local adaptive SVM (LASVM) classification has been

proposed. The motivation behind such a formulation is that, unlike k-nearest neighbor
classification, the SVM framework is based on binary classifiers and hence does not scale
well with the number of classes. Despite its classification efficiency, the SVM framework
is not always computationally efficient. To combine the computational efficiency of a k-
nearest neighbor classifier and the classification efficiency of an SVM classifier, one can use

1It should be noted that if distance matrix is the covariance matrix of the data, it will lead to ‘Maha-
lanobis’ distance. An identity matrix on the other hand, will lead to a simple Euclidean distance.
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an SVM locally, i.e. train an SVM classifier in the neighborhood of the query point. The
size of the neighborhood in which an SVM classifier is to be trained should be kept small for
computational efficiency, but the performance of the local SVM is degraded by decreasing
the neighborhood size. In this work, it has been shown that by training an SVM in an
adaptive neighborhood (altering the neighborhood by learning a data-dependent distance
metric), excellent classification performance can be achieved even in a small neighborhood.
The details of the algorithm are discussed in chapter 8 (Zaidi and Squire, 2010a).

A novel algorithm for local adaptive metric learning for k-nearest neighbor

classification has been proposed. The idea is that, rather than learning a global dis-
tance metric, one can learn a metric in the neighborhood of the query point. This will
result in an adaptive neighborhood for k-nearest neighbor classification. The feature rele-
vance index in the proposed algorithm is inspired by the Boosting classification algorithm.
It has been shown that the proposed algorithm performs better than the other competing
local adaptive metric learning algorithms. The details of the algorithm are discussed in
chapter 6 (Zaidi et al., 2010b).

The problem of combining different features for object recognition in a sys-

tematic way has been addressed under the proposed metric learning catego-

rization scheme. Two information fusion schemes, classifier fusion and distance fusion,
have been studied with object categorization and object detection tasks. A novel Boost-
ing learning algorithm, which is a modification of Adaboost algorithm, named Confidence-
Rated-Adaptive-Boosting (CRAB) for generic object classification has also been proposed.
CRAB is a domain partitioning adaptive Boosting algorithm in which each weak classifier
partitions the input space and predicts the label of each partition. The details of the pro-
posed information fusion schemes and CRAB algorithm are discussed in chapter 10 (Zaidi
and Suter, 2008a,b).

The algorithms listed in the ‘list of algorithms’ at the start of the thesis are novel.

1.2 Roadmap

The thesis is structured into nine chapters excluding the introduction and conclusion
chapters. The nine chapters can be divided into four parts. The chapters, algorithms and
the relevant appendices referred to from each part are listed in table 1.1. The parts are
introduced in this chapter only to give a broad overview of the thesis and to depict the
dependencies between the chapters (figure 1.1). Parts 2, 3 and 4 are dependent on part 1.
However, there are no dependencies between parts 2, 3 and 4.

Part Chapter Algorithm Appendix Reference
Part 1 2, 3 A, B, C
Part 2 4, 5, 6 1, 2, 3, 4, 5 F (Zaidi et al., 2010a,c,b)
Part 3 7, 8, 9 6, 7, 8, 9, 10 D, E, F (Zaidi and Squire, 2010b,a)
Part 4 10 11 A, C (Zaidi and Suter, 2008a,b)

Table 1.1: List of chapters, algorithms, relevant appendices, and relevant references for
each part.
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Figure 1.1: Figure depicting the roadmap of the thesis.

In the following, the details of each part are given.
Part 1 constitutes chapters 2 and 3 and builds the foundation for the research con-

ducted in the thesis. This part introduces the terminologies and sets the stage on which the
algorithms in the later parts are proposed. Chapter 2 formally introduces the background
and the related work and deals with the problems addressed in this dissertation, why they
are significant, how other researchers have handled them, what the issues are that needs
to be addressed, and how these issues will be addressed in this work. In chapter 3, a novel
categorization of metric learning methods is introduced, and naive, semi-naive, complete,
and high-level metric learning methods are illustrated with a simple classification example.

Part 2 constitutes chapter 4, 5 and 6 and deals with metric learning in the k-nearest
neighbor framework. Metric learning algorithms are proposed in both global and local
settings. The algorithms proposed in this part are: MEGM (algorithm 1), GML (algo-
rithm 2), MEGM-SNML (algorithm 3), BoostML1 (algorithm 4) and BoostML2 (algo-
rithm 5).

Part 3 constitutes chapters 7, 8 and 9 and deals with the application of metric learning
methods in the k-nearest neighbor framework to the SVM and GP classification frame-
works. The algorithms proposed in this part are: GASVM1 (algorithm 6), GASVM2
(algorithm 7), LASVM (algorithm 8), GPML1 (algorithm 9) and GPML2 (algorithm 10).

Part 4 constitutes chapter 10 only and illustrates high-level metric learning with scene
categorization and object detection scenarios.
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Chapter 2

Background and Related Work

In this chapter, the foundation for the research is laid and the related work is discussed.
A general overview of the basic strategies employed by most machine learning algorithms
is provided and the issues such as similarity measurement and distance calculation are
highlighted. The goal here is not to give a comprehensive summary of these learning
algorithms, but to introduce the building blocks that will be used in the later chapters.
After explaining typical learning strategies, metric learning will be introduced and its
impact on the performance of learning algorithms, for example k-nearest neighbor classi-
fication, SVM classification, etc., will be explained. In the light of the hypothesis given in
section 1.1, various known issues in the current formulations of learning algorithms and
metric learning algorithms will be discussed. Proposals to address these issues will be
provided in the conclusion of the chapter.

Let us make a distinction about how the word ‘feature’ will be used, as it can lead
to confusion. Throughout this thesis, a set of values concatenated together in a vector
is denoted as a ‘feature-vector’ (multi-variate case). Each element of the ‘feature-vector’
is denoted as a ‘feature’. If there is only one feature, it will be addressed as a ‘feature’
(univariate case). For example, let us suppose that we are given the task of classifying
two kinds of fish. For this classification task, we can use attributes such as the length,
weight and color of the fish. The ‘length’, ‘weight’ and ‘color’ of the fish are example
of features and constitute a 3-dimensional feature-vector representing each data object
i.e., each instance of fish. Based on these feature-vectors, we want to learn the kind of
fish. It should be noted that we have considered three features (attributes) only but there
can be countless different features for example smell, presence of fins, place trapped, etc.
Determining which features are more correlated with each other, and how much features
are correlated with the class labels, are questions that goes deep into the heart of machine
learning.

A collection of different types of ‘feature-vector’ is denoted as a ‘feature-set’. For
example shape, color, texture, etc. of an object represent possible types of feature-vector
for object recognition problems. The types of feature-vector means: that either feature-
vector represents different sort of information for example color, shape, etc. or it represents
a different measurement of the same sort of information for example a feature-vector based
on RGB (red, green, blue) and a feature-vector based on HSV (hue, saturation, value), etc.

7
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are two different feature-vectors representing the color information. As will be discussed
in section 2.4, a feature-vector can be pre-processed, for example it can be re-scaled to
compensate for the fact that the learning algorithm is assuming data to be isotropic, or
it can be projected on some lower dimensional subspace for efficiency purposes. Any pre-
processing function has some tunable parameters. Different values of these parameters can
result in generating different feature-vectors. In such cases, a feature-set is constituted of
feature-vectors which are in fact multiple measurements of the same information.

Based on the previous discussion of features, feature-vectors and feature-sets, one can
say that there are two types of problem in machine learning based on the nature of data.
The first kind of problem represents the case where there is a natural partitioning among
features and each data object is represented as a feature-set. For example, features can be
partitioned into multiple feature-vectors based on their units, source, etc. Let us consider
the object recognition problem (Varma and Ray, 2007; Leibe et al., 2007a; Opelt and
Pinz, 2006). As discussed before, many cues, for example shape, color, texture, context,
etc., can be used to discriminate objects from each other. Let us suppose that shape,
color, texture and context information is represented by scale-invariant-feature-transform
(SIFT), HSV, Textons and Gabor filters based feature-vectors respectively, as will be
discussed in section 3.4 (Lowe, 1999; Varma and Zisserman, 2005; Oliva and Torralba,
2001). Hence, each data object (or image of an object) is represented as a feature-set.
It may be natural to treat feature-vectors in the feature-sets separately. In such a kind
of problem, where data is represented as feature-sets, we can consider the training data
to exist in more than one input space. Since we do not know the relation between the
features in the feature-vectors and also between the input spaces, perhaps the best strategy
is to deal with them separately. That is, consider them as different learning problems.
A motivation behind such a strategy is that features in the same input space might be
more correlated with each other or with the class labels and, therefore, may exhibit similar
behavior.

The second kind of problem represents the case where no such partitioning among
features exist and each data object is represented as a feature-vector (Mangasarian et al.,
1995; Iba et al., 1988). In this case, the features can not be treated separately. For example
length, weight and color features might seem to be highly correlated for fish classification,
and should be treated together as a feature-vector (Duda et al., 2006). Although one could
always argue for treating these features separately, they may not be able to discriminate
between the two kinds of fish if that is done. Such is the delicacy and intricacy of machine
learning data. We do not know in advance the relevance of each feature or the relevance of
subsets of features. Trying to determine the relevance of each subset of features may lead
to combinatorial problems that are very difficult to solve due to computational issues. A
detailed analysis and examples of each of these two kinds of problem is given in appendix A.

2.1 Basic Machine Learning Strategies

No matter how the examples (data points) are represented, that is either in the form
of a feature-vector or feature-set, the goal of a learning algorithm is to learn a pattern
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(a) (b)

Figure 2.1: Examples demonstrating the fundamental problem in machine learning. Fig-
ure 2.1(a): a trivial example of classification in two dimensions. Figure 2.1(b): a compli-
cated face classification problem.

among variables from these examples. In this section, let us assume that each example
is represented as a feature-vector. In a typical machine learning scenario of supervised
learning, we are provided with a matrix X whose columns are the feature-vectors (~x)
representing each training example, and a column vector Y (consisting of either +1 or
−1) representing the class labels of each feature-vector in X. The fundamental problem in
machine learning is to infer the labels of feature-vectors in matrix X∗ containing testing
data, from X and Y . A distinction can be made between generative and discriminative
learning. In generative learning, a model representing the distribution of the data is
sought (Blei et al., 2003; Hoffmann, 2001). It is called generative as one can generate
the synthetic data points in the input space by sampling from the model. Discriminative
learning, on the other hand, models the posterior class distribution and uses decision
theory to assign a query point to one of the classes (Friedman et al., 2000).

To illustrate the basic strategies that most machine learning algorithms employ, two
simple problems representing the fundamental problem of classification in machine learning
are considered (see figure 2.1). Figure 2.1(a) represents a case of 2-dimensional training
data. Each training data point belongs to one of the two classes, either A or B. The goal is
to predict the label of a test data point based on this information. Figure 2.1(b) represents
the problem of classifying male and female faces. We are given sets of male and female
faces as the training data. The goal again is to predict the label of the testing image
(that is categorize it as male or female). Let us suppose that the faces are represented as
a 16 × 16 matrix of gray-scale intensity values. This means that each face is actually a
point in a 256-dimensional feature space. We can not visualize this space as we did for
the 2-dimensional problem in figure 2.1(a). However, for comparison, faces in figure 2.1(b)
are represented just like the 2-dimensional data in figure 2.1(a). The mean of each class is
also shown in both examples. The distance between the test point and the mean of each



10 CHAPTER 2. BACKGROUND AND RELATED WORK

class is shown as an arrow from the test point to the class mean. In summary, in both
examples, we are given some training data, and, based on this information, the goal is to
predict the label of a test data point. A basic strategy to assign a label to the test point
is:

• Calculate the mean of each class.

• Calculate the similarity of the test point to the mean of each class.

• Assign test point to the class to whose mean it is more similar.

This is a an extremely simple strategy but it forms the bedrock of many sophisticated
machine learning algorithms. The only problem with the above formulation is the concept
of similarity. The notion of similarity is a deep question that lies at the core of machine
learning (ten Brinke, 2010). What choices of similarity measure do we have? In the
following, some very general similarity measures are discussed:

• One can use the famous distance measurement class known as the ‘Minkowski metric’
shown below:

d(~x1, ~x2) =

 P∑
p=1

|x1p − x2p|q
1/q

(2.1)

Setting q = 2 gives the familiar Euclidean metric which is a very common measure of
similarity. A Minkowski metric is appropriate only if the feature space is isotropic.
This measure is invariant to translations and rotations of the feature space, but it
is not invariant to transformations that distort the feature space, such as sheer or
scaling. One way to achieve such invariance is to normalize the data. For example,
to obtain invariance to scale changes, one can scale the axes such that all the features
have unit variance. An alternative to scaling the axis is to change the metric. Both
processes are exactly equivalent. That is, the effects of metric modification are the
same as those of data transformation.

• Since each training data point is represented as a feature-vector, it is useful to look at
the similarity issue from a geometric point of view. Such a formulation is beneficial
as it allows one to analyze the problem of similarity from the perspective of linear
algebra and analytical geometry. For example, the dot-product is a simple form of
a similarity measure between the feature-vectors.

• Another alternative is to use a metric based on the data itself, for example, the
Mahalanobis distance (Mahalanobis, 1936). A metric can also be learned from the
data. This is typically known as metric learning. As will be discussed in section 2.4,
such a form of data-dependent distance metric can be extremely useful.

The abovementioned measurement methods constitute some of the important classes of
similarity measurement. There are numerous other measures that can be used. In the
following, three basic machine learning strategies that employ these similarity measures
to predict class labels are illustrated.
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2.1.1 Template Matching

To make a prediction about the label of the test point using the training data (X,Y ),
we have to make assumptions about the process that generated the training data. Let us
assume that the training data for the problems in figure 2.1 is generated from two Gaussian
distributions (one for each class). Since a Gaussian distribution is specified by the mean
and the covariance matrix, there are several possibilities when it comes to specifying the
distributions:

• We can assume that the features are statistically independent and each feature has
the same variance.

• We can assume that the features are not statistically independent but all classes
have the same covariance matrix.

• And third, we can assume that the features are not statistically independent and
each class has a separate covariance matrix.

Let us consider the implications for distance measurement of each of these choices. If
the features are assumed to be statistically independent and have the same variance σ2,
the covariance matrix is actually a diagonal matrix, merely being σ2 times the identity
matrix I. To classify a point ~x, we can measure its squared distance to the mean of each
class. The mean ~µc is simply the mean of data points in the class c. The distance between
~xi and ~µc:

1
σ2

(~xi − ~µc)T (~xi − ~µc) (2.2)

The testing point ~xi is assigned the label of the class whose mean is closest to it. This is
an extremely simple approach and with some modifications it can become very effective.

The problem with above formulation is the same that arises due to the use of Euclidean
distance. That is, the distance is not invariant to scale and assumes isotropy. In most
machine learning data sets, this is not the case. Features are not independent and variance
is different for each each dimension. Let us consider the case of a common covariance
matrix Σ for all classes. If c is the index running over the classes, we have Σc = Σ ∀c.
We can reiterate the solution to the problems in figure 2.1 as: to classify a test point ~xi,
measure the Mahalanobis distance from ~xi to the mean of each class, that is:

(~xi − ~µc)TΣ−1(~xi − ~µc) (2.3)

and assign ~xi to the class whose mean feature-vector is the closest. The distance formula-
tion (~xi−~µc)TΣ−1(~xi−~µc) between ~xi and ~µc is called the Mahalanobis distance1 between

1The Mahalanobis distance is needed because the features are incommensurate in most machine learning
data sets. For example consider salary and height of the person in dollars and meters respectively as
two features constituting the feature-vector. Clearly a unit change in the height (one meter) is greatly
significant as opposed to a unit change (one dollar) in the salary of a person. We need a metric that takes
into account the dispersion of the data. This is the motivation behind the Mahalanobis distance, where
Σ−1 is the inverse covariance matrix and actually determines the shape of the data cluster.
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~xi and ~µc. Such classification is typically called a ‘minimum distance classifier’ and if each
mean is an ideal prototype or a template pattern for its class, then this is essentially a
‘template matching’ procedure. It should be noted that we have not considered the effect
of the prior probabilities of each class, assuming that each class is equally probable. If we
consider the prior probabilities of each class in the above formulation of distance measure-
ment, the strategy is known as Linear Discriminant Analysis (LDA) (Fischer, 1936; Duda
et al., 2006). After some simplification, the confidence in the prediction of class c can be
written as:

δc(~x) = ~xTΣ−1~µc −
1
2
~µTc Σ−1~µc (2.4)

Similarly if we suppose that each class in the training data has a different covariance
matrix, the confidence in the prediction of class c can be written as:

δc(~x) = −1
2

log |Σc| −
1
2

(~x− ~µc)TΣ−1(~x− ~µc) (2.5)

The above formulation is known as ‘Quadratic Discriminant Analysis’ (QDA) (Duda et al.,
2006). Again, the effect of prior probabilities in equations 2.4 and 2.5 have been ignored
for simplification. A complete derivation and analysis of linear and quadratic discriminant
analysis in the light of distance measurement is provided in appendix B.

2.1.2 Kernel-based Strategies

The second strategy employs the use of the dot-product as a similarity measure (Shawe-
Taylor and Cristianini, 2004; Scholkopf and Smola, 2004). The template matching strategy
discussed in section 2.1.1 relies on either Euclidean or Mahalanobis distance to predict the
class labels. In this section, the template matching strategy is interpreted in terms of
a dot-product similarity measure. It should be noted that we have switched from the
distance measure, which is small for similar data points, to the similarity measure, which
is large for similar data points.

It is important to note that in order to consider the dot-product as a similarity measure,
we have to assume that the training data lies in a dot-product space. Such an assumption
is not always true. Therefore, it is imperative to transform data from input space to some
dot-product space, let us say H. If the input space is denoted as X , we are interested in
the following mapping:

Φ : X → H

~x → x ≡ Φ(~x) (2.6)

The transformed space H is a space where using the dot-product as a similarity measure
between the data points is permissible. It can be seen that the problem of learning has been
transformed into the problem of finding an appropriate transformation (Φ) of the input
space X to a space H where similarity is defined effectively. As a different transformation
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function will lead to a different dot-product space having a different similarity measure,
the transformation step is extremely important.

The use of the dot-product as a similarity measure has gained a lot of interest in
machine learning. A strong reason for using dot-products as similarity measures actually
stems from the ‘kernel trick’ (Scholkopf and Smola, 2004). The kernel trick suggests
that we do not have to actually transform the data into a dot-product space H and
then compute the dot-product to calculate similarity. By virtue of the kernel trick, we
can bypass the whole transformation (Φ) step by finding a suitable similarity function k

(known as the kernel) that when given two data points ~x1 and ~x2 returns a real number
characterizing their similarity. The kernel (k) is generally symmetric, that is k(~x1, ~x2) =
k(~x2, ~x1). It gives the ability to process the data in the input space X rather than finding
the transformation function Φ. Using a kernel function to measure similarity in X is
exactly equivalent to computing the similarity by the dot-product in the transformed
space H. The need to find a transformation function Φ has been transformed into finding
an appropriate kernel function k(., .).

Let us analyze the template matching strategy of section 2.1.1 in terms of dot-products
and kernels. It will be assumed in the following discussion that we have an appropriate
kernel function k(., .) and therefore, we have access to the desired transformation Φ. This
means that we can measure the similarity in the transformed space H using the dot-
product. We can use the template matching strategy in the transformed space H as we
did in the input space X in section 2.1.1. Let us represent the means of the two classes
as:

µc1 =
1
Nc1

∑
(i | yi=+1)

xi

µc2 =
1
Nc2

∑
(i | yi=−1)

xi (2.7)

where Nc1 and Nc2 are the number of data points in classes c1 and c2 respectively and x

denotes the feature-vector in the transformed space H. Following the template matching
strategy, we can assign a new data point x to the class whose mean is closest to x. Let
us analyze this nearest mean strategy (template matching) in terms of the dot-product
〈., .〉. In the transformed space H, we can predict the class label of the testing point x by
computing the difference between the dot-product of x with µc1 and the dot-product of x

with µc2. Therefore, we can write:

δ(~x) = sign(〈x− (µc1 + µc1)/2, (µc1 − µc2)〉)

= sign(〈x, µc1〉 − 〈x, µc2〉 + b) (2.8)

where b is the offset term and is equal to:

b =
1
2

(‖µc2‖2 − ‖µc1‖2) (2.9)
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If the class means have the same distance from the origin, then b will vanish. We can
write equation 2.8 in terms of the class means as:

δ(~x) = sign

 1
Nc1

∑
(i | yi=+1)

〈x,xi〉 −
1
Nc2

∑
(i | yi=−1)

〈x,xi〉 + b


= sign

 1
Nc1

∑
(i | yi=+1)

k(~x, ~xi)−
1
Nc2

∑
(i | yi=−1)

k(~x, ~xi) + b

 (2.10)

Equation 2.10 depicts a simple nearest mean (template matching) based strategy for pre-
dicting the labels of the testing data using kernels. The kernel k(~x, ~xi) plays a pivotal role
in a classification scheme employing such a strategy. There are different forms of kernels,
for example linear (〈~x, ~xi〉), polynomial (〈~x, ~xi〉d), Gaussian, etc., and kernel construction
is the point of much research in machine learning. A simple and a widely used Gaussian
kernel takes the form:

k(~x, ~xi) = exp
(
−(~x− ~xi)T (~x− ~xi)

2λ2

)
(2.11)

λ in equation 2.11 is a tunable scaling parameter. As λ influences the transformation of X
into H, it is an extremely important variable that controls the classification effectiveness.
Kernels are at the core of many state of the art machine learning algorithms, e.g., SVM,
GP classifiers, etc.

2.1.3 Nearest neighbor strategies

Nearest neighbor methods for pattern recognition have proven to be very useful in machine
learning (Cover and Hart, 1967). Despite the simplicity, their performance is comparable
to other sophisticated classification and regression techniques such as SVM and GP, and
they have been applied to a wide variety of problems (Shakhnarovich et al., 2006; Gold-
berger et al., 2005). Computer vision research has benefited greatly from advancements in
nearest neighbor methods, for example some state of the art techniques for object recog-
nition are based on nearest neighbor analysis (Frome et al., 2006; Nilsback and Zisserman,
2006). A simple demonstration of the k-nearest neighbor method on the male versus
female classification example from figure 2.1(b) is shown in figure 2.2.

For a given query point ~x0, a k-nearest neighbor classifier predicts the label of ~x0 by
finding an average of the class labels in the neighborhood of ~x0. The neighborhood is
represented as Nk(~x0) which denotes the k closest neighbors of ~x0. The term “closest” in
the specification of the neighborhood Nk(~x0) implies that we have access to a measure of
similarity, i.e. an appropriate distance metric. Let us suppose that the metric used is the
Euclidean distance. We can write k-nearest neighbor prediction ŷ as:

ŷ(~x0) =
1
k

∑
~xi∈Nk(~x0)

yi (2.12)
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Since the predicted function ŷ is discontinuous in ~x, the decision boundary obtained by
equation 2.12 changes abruptly. Due to this discontinuity, the above formulation of k-
nearest neighbors is rarely used in machine learning. A common strategy to overcome
such discontinuity is: rather than assigning each point in the neighborhood equal weight,
we can assign weights that die off smoothly with the distance from the query point. This
leads to a smooth predicted function:

ŷ(~x0) =
∑K

i=1 kλ(~x0, ~xi)yi∑K
i=1 kλ(~x0, ~xi)

(2.13)

where kλ(~x0, ~xi) is a kernel parameterized by λ that specifies the similarity between ~x0

and ~xi. A well known example of a kernel in the nearest neighbor framework is the
Epanechinikov quadratic kernel (Hastie et al., 2001). An Epanechinikov quadratic kernel
between ~x0 and ~xi is defined as:

kλ(~x0, ~xi) = D

(
|~x0 − ~xi|

λ

)
(2.14)

where

D(z) =

{
3/4(1− z2) if |z| ≤ 1
0 otherwise

Another example of a widely used kernel for nearest neighbor methods is the Gaussian
kernel in equation 2.11. As will be discussed in section 2.4, the λ parameter of the Gaus-
sian kernel plays an important role in the classification performance of nearest neighbor
methods.

One of the real advantages of the k-nearest neighbor classifier is its simplicity. A
k-nearest neighbor classifier deals with the multi-class classification scenario almost effort-
lessly. On the other hand, we must resort to one-versus-one and one-versus-all techniques
to deal with the multi-class scenario in the case of binary classifiers such as SVM and GP
classifiers, which makes them computationally expensive. In the one-versus-all scenario,
each classifier distinguishes between one of the classes and the rest. Classification of a
query point is done by a winner-takes-all strategy, in which the classifier with the high-
est output function assigns the class label. In the one-versus-one strategy, each classifier
distinguishes between every pair of classes. Classification of a query point is done by
a max-wins voting strategy, in which every classifier assigns the instance to one of the
two classes, then the vote for the assigned class is increased by one vote, and finally the
class with most votes assigns the class label. As k-nearest neighbor classification involves
no training, it is computationally efficient. The second advantage of k-nearest neighbor
methods stems from their asymptotic properties. The asymptotic analysis of k-nearest
neighbor methods suggests that k-nearest neighbor classification achieves the accuracy of
a Bayes optimal classifier provided the number of training data is not too small (Cover,
1968; Fix and Hodges, 1951; Snapp and Venkatesh, 1998). This suggests that if we have
a large number of training data, a k-nearest neighbor classifier can perform as well as any
other sophisticated alternative classifier, such as the SVM.
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Figure 2.2: A simple demonstration of the k-nearest neighbor strategy for predicting the
label of the test point. The problem depicted is of determining the label of a face image
(either male or female). Refer to figure 2.1(b) for details.

2.2 Scaling Parameters

All of the learning strategies discussed in section 2.1 rely on similarity measurement or
distance calculation. Scaling parameters appear in all of these learning strategies. For ex-
ample, the scaling parameter Σ in the template matching strategy (equation 2.4), scaling
parameter λ in the kernel-based strategy (equation 2.11), and nearest neighbor classifica-
tion (equation 2.13). It is clear that the goal of Σ in the case of template matching is to
compensate for different scales across the axes.

The λ parameter in equations 2.11 and 2.13 actually controls the size of the neighbor-
hood. It defines a metric window size. For example, λ = 1 or λ = 30 defines neighborhood
sizes of one or 30 units respectively for each query point. By specifying the neighborhood
size, λ actually controls the smoothness of the predicted function. Smoothness is highly
desirable for achieving generalization. We can always train a classifier that classifies the
training data perfectly. Such classification behavior is not sufficient because we want the
classifier to perform well on unseen data too. A classifier performing well on the training
data might be over-fitted. Intuitively, it can be seen that if the predicted function is over-
fitted, rather than deducing a pattern in the data it has learned that particular instance
of the data. Over-fitting leads to poor generalization and can be avoided if we adjust our
prediction to do some averaging around the neighborhood of each query point. This simple
procedure goes by the name of smoothing, and is one of the lynch-pins of the techniques
to make machine learning algorithms more effective. The idea is simple. We just assume
that the predicted function is smooth at least in the neighborhood of the query point,
i.e. the function does not change its value rapidly and exhibits a regular behavior in the
neighborhood.
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More formally, we can analyze λ from the bias and variance perspective. Since MSE:

MSE = bias2 + variance

E[(ŷ − y)2] = [E(ŷ − y)]2 + E[ŷ − E[ŷ]]

consists of bias and variance terms, any learning algorithm needs to reduce the bias as
well as the variance of its classification. The bias term of MSE measures the accuracy or
quality of the match, high bias implies poor match. The variance term of MSE measures
the precision of the match, again a high variance implies a poor match. Generally an
increase in the variance causes a decrease in the bias and vice-versa (Hastie et al., 2001).
The size of the neighborhood λ influences the bias and variance of classification. There is
a need to choose λ such that both the bias and the variance terms are minimized. A large
λ implies lower variance (average over more observations) but it implies higher bias (true
function is assumed to be constant within the window). In other words, if the window is
narrow, ŷ(~x0) is an average of a small number of yi close to ~x0, and its variance will be
relatively large, almost equal to the variance of the individual yi. The bias will tend to
be small because E(ŷi) = yi. If the window is wide, the variance of ŷ(~x0) will be small
relative to the variance of any yi, because of the effect of averaging. The bias will be
higher, because we are now using observations ~xi further from ~x0. As the width goes
to 0, the estimates approach a piece-wise linear function that interpolates the training
data (high variance), as the width gets infinitely large, the fit approaches the global linear
least-square fit to the data (high bias) (Duda et al., 2006).

2.3 Analysis of the Scaling Parameter (λ) in High Dimen-

sions

Until now we have been assuming a circular neighborhood and hence assuming that the
function varies equally in all directions. Such a case is called isotropic. This may not be the
case in typical machine learning scenarios. We can not assume that the function changes
its value uniformly across all directions. Catering for anisotropic cases involves adapting
the neighborhood by elongating in some directions and constricting across the others. As
will be discussed such an adaptive neighborhood, as a result of using an adaptive metric,
is extremely desirable for efficient implementation of most machine learning algorithms in
high dimensions.

Figure 2.1 depicts a trivial example of data in 2D and a complicated problem of face
category recognition. Let us analyze the two problems from the point of view of the scaling
parameter (λ). The relative importance of each feature in figure 2.1(a) is explicit. It is
easy to see that class labels are correlated to both the x and y axes. As the class labels
change equally in both directions, an isotropic neighborhood parameterized by λ can be
used. Such a luxury of eyeballing the correlation of labels with features is not common.
For example, consider the data in figure 2.1(b). Since each image is represented by a 256-
dimensional feature-vector, we can not easily find the extent of correlation of each feature
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with the output label. Similarly, we can not assume that the class labels varies equally
across all dimensions and, therefore, can not use an isotropic neighborhood. There is
thus a need to choose an adaptive neighborhood (tuning a metric with ‘metric learning’)
to scale different features in high dimensions in a systematic way. Incorporation of an
anisotropic case will result in the parameterization of λ as a vector or a diagonal matrix,
where each element of the diagonal is the scaling parameter for the relevant feature.

The effect of the neighborhood size (λ) on bias and variance of classification has been
indicated in section 2.2. In the following, it will be explained that, due to the curse of
dimensionality (COD), it is impossible to simultaneously maintain localness (low bias)
and a large number of training data in the neighborhood (low variance) in high dimen-
sions. To illustrate, let us consider a simple k-nearest neighbor classification example
from Hastie et al. (2001). We assume that all the training data is uniformly distributed
in a p-dimensional unit hypercube. Now, let us consider a hypercubical neighborhood of
a query point ~x0 and let us suppose it spans a fraction r of the training data. Since this
corresponds to a certain fraction r of the unit volume, the expected edge length can be
calculated as: r1/p. Let us suppose that p = 20 and the neighborhood of query point ~x0

spans only 4% of the training data. The edge length will be equal to (4/100)1/20 = 0.85.
The edge lengths if the neighborhood of ~x0 spans 5%, 10% and 20% of data are 0.86, 0.89
and 0.92 respectively. This implies that to capture only 4% of the data, we must cover
85% of the range of each dimension. The neighborhoods are no longer local and are in fact
global. This results in extremely high bias. Reducing the neighborhood size by spanning
a smaller fraction of the training data will not help, because we need sizable number of
training data in the neighborhood to keep the variance low. A second manifestation of the
curse of dimensionality is that any feasible number of training data only sparsely populate
the input space. Due to this, we will never have enough training data in high dimensions
to make nearest neighbor analysis robust.

Intuitively, one can see that to keep the variance low, we need an average over a sizable
number of training data. Let us assume that we have a large neighborhood size such that
variance is low. What can we do to reduce bias but still keeping the size of neighborhood
large? A natural thing to do is to modify the shape of the neighborhood. Rather than
specifying a neighborhood that is isotropic, one can elongate the neighborhood in some
dimensions and constrict across the others in the hope that the data points in the resulting
neighborhood will be close to the query point, hence ensuring localness (low bias) but still
maintaining a sizable number of data points in the neighborhood (low variance). We can
take advantage of the fact that, at least locally the class probability function does not
vary with equal strength or in the same manner in all directions in the measurement space
around the query point ~x0. We can choose a metric that gives more weight to important
features and less weight to others. The resulting neighborhood will be thereby elongated
along de-emphasized directions and constricted along the influential ones. This will result
in reduced bias without increasing the variance.
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2.4 Metric Learning

Metric learning is a method for learning a metric in a distance measurement framework
to improve the performance of a k-nearest neighbor classifier. An example of a distance
measurement framework is:

d2(~x1, ~x2) = (~x1 − ~x2)TA(~x1 − ~x2) (2.15)

The Mahalanobis distance between ~x1 and ~x2 is a special case of distance measurement
framework and can be written as:

d2(~x1, ~x2) = (~x1 − ~x2)TΣ−1(~x1 − ~x2) (2.16)

where the matrix Σ is the covariance matrix of the data (Mahalanobis, 1930, 1936). The
idea behind Mahalanobis distance formulation is to normalize the effect of different features
when measuring distance between the two points. The matrix A in equation 2.15 can take
any form and of course is not restricted to the inverse covariance matrix. We can modify
equation 2.15 as:

d2
A(~x1, ~x2) = ‖~x1 − ~x2‖2A

= (~x1 − ~x2)TA(~x1 − ~x2)

= (~x1 − ~x2)TLTL(~x1 − ~x2) where A = LTL

= (L~x1 − L~x2)T I(L~x1 − L~x2) where I = identity matrix

= d2(L~x1 − L~x2)

= ‖L~x1 − L~x2‖22 (2.17)

Note, the decomposition of matrix A into LTL imposes a constraint that matrix A is
symmetric positive semidefinite. It can be seen from equation 2.17 that the effect of
matrix A in distance measurement framework is nothing but a linear transformation of
the data by the matrix L. This is where metric learning algorithms come into play. Metric
learning algorithms aim to learn a data-dependent distance metric (matrix A) such that
in the transformed space induced by the matrix A, some desirable behavior is expected
from the data. Some examples of desirable behavior in the transformed space are: points
belonging to the same class tends to be close together, the predicted function changes
isotropically, the transformed data lie in the Euclidean space2, etc. Let us suppose that
the matrix A is the inverse covariance matrix. It is desirable in some scenarios to transform
the data such that the covariance matrix in the transformed space is the identity matrix.
If ϕ is a matrix whose columns are the eigenvectors of A, and Λ is a diagonal matrix of

2The Euclidean space is equipped with a norm (‖.‖) which can be used to define a metric (Euclidean
distance). The Euclidean distance between ~x1 and ~x2 is:

d(~x1, ~x2) = ‖~x1 − ~x2‖ =
p

(~x1 − ~x2)T (~x1 − ~x2).
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the corresponding eigenvalues, then we can write matrix L as:

L = ϕΛ−1/2

The resulting transformation of data induced by the matrix L is typically known as the
whitening transformation. The data in the transformed space is uncorrelated. Its covari-
ance matrix is the identity matrix. Another motivation for metric learning is to transform
data into a subspace such that the variance of the data is preserved in that subspace. This
is again motivated from the dimensionality reduction point of view.

Using equation 2.15 the kernel in equation 2.11 can be modified and the similarity
between the two feature-vectors ~x1 and ~x2 can be defined as:

k(~x1, ~x2) =
(

(~x1 − ~x2)TA(~x1 − ~x2)
λ2

)
(2.18)

Note the above kernel is similar to the one in equation 2.11 except for the exponential
function and the constant in the denominator. Let us suppose that the matrix A is the
inverse covariance matrix of the data and λ is the smoothing parameter. If the matrix A
take the form:

A =


σ−2

1 0 · · · 0
0 σ−2

2 · · · 0
...

...
. . .

...
0 0 · · · σ−2

P

 (2.19)

we can write equation 2.18 as:

k(~x1, ~x2) = (~x1 − ~x2)T


σ−2

1 λ−2 0 · · · 0
0 σ−2

2 λ−2 · · · 0
...

...
. . .

...
0 0 · · · σ−2

P λ−2

 (~x1 − ~x2) (2.20)

There are two issues that need to be discussed about equation 2.20. First, in equation 2.20,
we have assumed the kernel to be isotropic, that is λ = λ1 = λ2 = · · · = λP . This is not
necessarily the case and the neighborhood can be adapted in any directions by choosing
suitable λp. Multiple scaling parameters λp can be treated as a vector and equation 2.20
can be written as:

k(~x1, ~x2) = (~x1 − ~x2)T


σ−2

1 λ−2
1 0 · · · 0

0 σ−2
2 λ−2

2 · · · 0
...

...
. . .

...
0 0 · · · σ−2

P λ−2
P

 (~x1 − ~x2) (2.21)
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Secondly, the σp and λp can be merged into a single value resulting in:

k(~x1, ~x2) = (~x1 − ~x2)T


a1 0 · · · 0
0 a2 · · · 0
...

...
. . .

...
0 0 · · · aP

 (~x1 − ~x2)

= (~x1 − ~x2)TA(~x1 − ~x2) (2.22)

So far we have assumed that the matrix A is diagonal. This does not have to be the
case. We can learn diagonal and off-diagonal terms of the matrix. The metric learning
algorithms studied in nearest neighbor framework (Xing et al., 2002; Goldberger et al.,
2005; Weinberger et al., 2009; Bar-Hillel et al., 2003) learn both the diagonal and off-
diagonal terms of the matrix A. Therefore, we can rewrite equation 2.22 as:

k(~x1, ~x2) = (~x1 − ~x2)T


a11 a12 · · · a1P

a21 a22 · · · a2P

...
...

. . .
...

aP1 aP2 · · · aPP

 (~x1 − ~x2)

= (~x1 − ~x2)TA(~x1 − ~x2) (2.23)

The learning of matrix A in equations 2.22 and 2.23 is the goal of metric learning
algorithms. As discussed, the kernels are used to transform data to a dot-product space H
(using the kernel trick) where the similarity between the two points can be measured by
the dot-product. Just as λ in equation 2.11 controls the transformation of the input space
X into H, the matrix A in equation 2.22 controls a similar transformation. Therefore, the
performance of any classifier leveraging transformation of data by a kernel will depend
critically on the choice of the distance matrix A.

Hastie et al. (2001, section 6.4.1) also mentioned the use of metric learning for tuning
the kernel:

One line of approach is to modify the kernel. The default spherical kernel
gives equal weight to each coordinate, and so a natural default strategy is to
standardize each variable to unit standard deviation. A more general approach
is to use a positive semi-definite matrix A to weigh the different coordinates:

kλ,A(~x0, ~x) = D

(
(~x− ~x0)TA(~x− ~x0)

λ

)
Entire coordinates or directions can be downgraded or omitted by imposing
appropriate restrictions on A. For example, if A is diagonal, then we can
increase or decrease the influence of individual predictors Xj by increasing or
decreasing Ajj . Often the predictors are many and highly correlated, such as
those arising from digitized analog signals or images. The covariance function
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of the predictors can be used to tailor a metric A that focuses less, say, on
high-frequency contrasts.

2.4.1 Why Learn matrix A?

The motivations behind metric learning from the bias reduction point of view were dis-
cussed in section 2.3. In the following, some further motivations are discussed.

Features in most machine learning data sets are not commensurate, coming from dif-
ferent sources and having different scales. The influence of each feature on the distance
is proportional to the dispersion of its values over the training data. For example, if we
change the scale of a feature by measuring it in a different unit, the contribution of this
feature to distance measurement will change. This will in turn affect classification perfor-
mance. In the absence of any other information (for example class labels) the contribution
of each feature towards distance measurement can be normalized by dividing it by its vari-
ance. Therefore, if σ2

i is the variance of the i’th feature, matrix A in equation 2.15 will
take the form in equation 2.19 which is actually the covariance matrix of the data.

The relevance of each feature in predicting the class labels may differ. There is a
need to give more weight to those features that are more important and less weight to
unimportant features. It can be seen that the influence of an individual feature can
by controlled through matrix A. For example, if A is modeled as a diagonal matrix,
the influence of feature i can be increased or decreased by modifying ai (equation 2.22).
Having a zero on the diagonal results in that feature being completely ignored and hence
will result in feature selection. This will remove the feature from the problem and will
reduce the dimensionality. Reducing the dimensionality will also help to alleviate the curse
that comes with it.

As discussed in section 2.3, metric learning has the effect of neighborhood adaptation.
Such an adaptive neighborhood is absolutely essential for reducing bias in higher dimen-
sions and helps in alleviating the effects of the curse of dimensionality. A small value for
ai will result in a neighborhood that is elongated in the direction of the i’th feature. And
similarly, a large value of ai will result in neighborhood being constricted in the direction
of the i’th feature. Making the value of ai very small (note this will result in a−2

i to be
very large) will result in extending the neighborhood to the entire training data along the
i’th feature. As a result of this, all the training data along i’th feature will be assigned
equal weights in predicting the class label. This will result in removing the i’th feature
from consideration as the model has become global in i’th feature’s direction (Friedman,
1994).

2.4.2 k-Nearest Neighbor and Metric Learning

In the current research on metric learning for nearest neighbor classification, a dichotomy
exists in terms of the goals of metric learning algorithms. Most metric learning algo-
rithms are aimed at finding a metric that results in a transformation of data such that,
in the transformed space, the intra-class distances are small and inter-class distances are
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Figure 2.3: (Left) data in the original space, (Right) data in the transformed space. Con-
trived example demonstrating the impact of data-dependent distance metric on margin.

large (Goldberger et al., 2005; Davis and Dhillon, 2008; Weinberger et al., 2005; Sripe-
rumbudar et al., 2008; Globerson and Roweis, 2005; Xing et al., 2002). This results in
maximizing the margin. The margin of a point is defined as the distance between the
point and the closest point on the classification boundary. A classifier which results in
maximizing the collective margin, i.e. the margin of all the data points, is desirable for
generalization purposes. Alternatively, metric learning can also be aimed at minimizing
the MSE due to bias-related problems in high dimensions. Such a strategy was introduced
by Friedman (1994).

Figure 2.3 depicts a simple contrived example of data belonging to two classes repre-
sented by red and blue dots. The classes are linearly separable, and a separating hyper-
plane is represented by a black line. It should be noted that the margin of the training
data can be maximized in two ways. First, we can modify the hyperplane such that the
margin is maximized. For example, SVM classifiers maximize the margin by finding an
optimal hyperplane to separate the classes. They are designed to minimize empirical risk
with a bound on the generalization error. Secondly, we can transform the training data
such that the margin is maximized. Rather than showing the margin of each data point
in the right figure 2.3, the margin of the whole cluster is shown instead. As can be seen,
in the transformed space, the margin is maximized and classes are well separated. As
described, margin maximization is the goal of most metric learning algorithms, resulting
in a better k-nearest neighbor classification.

2.4.3 Support Vector Machines and Metric Learning

SVM classifiers have been shown to give state of the art performance on a wide range
of classification data sets. The SVM formulation finds an optimal hyperplane in high-
dimensional space to classify data into two classes. Given a training set {(~xi, yi)Ni=1},
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the decision function is found by solving the following convex optimization problem (La-
grangian Dual):

max
α

f(α) =
∑n

i=1 αi −
1
2

∑n
i,j=1 αiαjyiyjk(~xi, ~xj)

subject to 0 ≤ αi ≤ C and
∑n

i=1 αiyi = 0

where k(~xi, ~xj) = exp
(
−‖~xi−~xj‖2

2σ2

)
(2.24)

where α are the Lagrange coefficients, C controls the misclassification penalty and k(., .)
is the kernel function. A detailed analysis of the SVM classification framework is given
in appendix D. An SVM classifier is in fact an optimal hyperplane which is computed to
classify data in the space induced by the kernel. As discussed, different types of kernel
(also, the same kernel with different parameters) embed data in different high-dimensional
spaces. The linear decision boundary which the SVM formulation finds thus depends on
the choice of kernel and its parameters, in turn affecting the classification performance.
The performance of an SVM classifier is thus critically dependent on the choice of kernel
and its parameters (Scholkopf and Smola, 2004).

The choice of kernel in the SVM formulation is a regularization choice. The scaling
parameters of the kernel controls the bias and variance of the classifier. Scholkopf and
Smola (2004, section 7.8) have discussed this issue in detail. Having a large value of σ
results in a loosely fitted function, whereas a small value may result in over-fitting. The
impact of σ on synthetic data is shown in figure 2.4. It can be seen from the figure
that Feature 2 is redundant and that data can be well separated with Feature 1 only.
Figure 2.4(a) depicts the case of σ = 1. The classifier is over-fitted and has memorized
the training data. The predicted function is extremely non-smooth and there are a large
number of support vectors. Figure 2.4(b) depicts the case of σ = 50. The classifier
is loosely fitted to the training data. There are few support vectors and the classifier
is more likely to generalize better than the classifier in figure 2.4(a) where σ = 1. It
should be noted that in most cases, for sheer simplicity, the kernel is assumed to be
isotropic, that is σ1 = σ2 = ..... = σP and the σ parameter is tuned through some cross-
validation procedure3. Typically in computer vision research (Varma and Ray, 2007;
Zhang, Marszalek, Lazebnik and Schmid, 2006) to avoid expensive cross-validation, σ is
set to be the average value of the squared distance between all the data points as shown

3The cross-validation procedure in machine learning is a technique for measuring how well the results
of a statistical analysis generalize to unseen data set. Common types of cross-validation are N -fold cross-
validation, leave-one-out cross validation, etc. The N -fold cross-validation works by dividing input data
into N sub-samples. Of the N sub-samples, only one sample is used for testing, whereas, the other N − 1
sub-samples are used for training. The process is repeated N times with each of the sub-sample used
as testing data once. The N results from the rounds are averaged to produce a single estimate. The
2-fold cross-validation has been used in this thesis unless specified. It works by dividing the data into two
mutually exclusive sub-samples, usually known as the training and the validation sets. The performance
of the model (trained on the training set) is tested on the validation set. Leave-one-out cross-validation,
on the other hand, uses a single data point as the validation set and the remaining data as the training
set.
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(a) (b)

Figure 2.4: Demonstration of the impact of varying the σ parameter of a Gaussian kernel
in the SVM formulation using synthetic data (continued in figure 2.5). The support vectors
are shown in circles.

in the following equation:

σ2 =
1
N2

N∑
i=1

N∑
j=1

d2(~xi, ~xj) (2.25)

This strategy ensures that numeric range of the kernel is within a bounded interval and
results in achieving a trade-off between the bias and variance of a classifier. In figure
2.5(a), this average value of σ is used to find the classification boundaries. As can be seen,
it results in much better classification boundaries than those in figure 2.4. Setting σ to be
the average value of the distances between the training data seems like a sensible strategy
if no prior information is present about the features.

It has been shown that SVM classifiers are not immune to the curse of dimensionality.
Hastie et al. (2001, section 12.3.4) have stated this in the following manner:

In the early literature on support vectors, there were claims that the kernel
property of the SVM is unique to it and allows one to finesse the curse of
dimensionality. Neither of these claims are true, . . .

Assuming an isotropic kernel and tuning the value of σ through cross-validation may
not be computationally effective. Also using an averaged value of the distances between
the entire training data as σ may not be effective as it may not be optimal locally. An
alternative is to train an SVM classifier in the local neighborhood. Local metric learning
and local SVM classification will be discussed in section 2.4.5. It will be seen that choosing
the size of the neighborhood in which an SVM has to be trained is not trivial.

Consider the impact of an anisotropic kernel on the contrived data in figure 2.5(b)
where an anisotropic Gaussian kernel with σ = [0.25 10]′ is used. The classifier has
ignored Feature 2 from consideration and the resulting boundaries are a smooth fitting of
the training data.
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(a) (b)

Figure 2.5: Demonstration of the impact of varying the σ parameter of a Gaussian kernel
in the SVM formulation using synthetic data (continued from figure 2.4). The support
vectors are shown in circles.

The kernel in equation 2.24 can be written as:

kA(~xi, ~xj) = exp
(
(~xi − ~xj)TA(~xi − ~xj)

)
(2.26)

Again, we seek a matrix A that will embed the input data in a high-dimensional feature
space such that the linear decision boundary found by the SVM classifier separates data
well. In the SVM framework, the matrix A is usually assumed to be diagonal and cross-
validation is the most popular and effective method for tuning its elements. A few methods
have been proposed for learning the elements of matrix A for improving SVM classification
performance (Chapelle et al., 2002; Keerthi, 2001; Amari and Wu, July 1999). These
methods will be discussed in detail in section 7.1.

2.4.4 Gaussian Processes and Metric Learning

The Gaussian Processes (GP) is a non-linear nonparametric technique that has proven
to be very effective for a wide range of classification and regression tasks. We can define
GP as a collection of random variables, any finite number of which have a joint Gaussian
distribution (Rasmussen and Williams, 2006). The GP is completely specified by its mean
and covariance function. We can write GP as:

f(~x) ∼ GP(m(~x), k(~x, ~x′)) (2.27)

where m(~x) and k(~x, ~x′) are the mean and covariance functions respectively. Usually, for
simplicity, m(~x) is taken to be zero. The GP can thus be specified completely in terms of
its covariance function. The problem of learning with GP is exactly the problem of finding
a suitable covariance function (also known as the kernel). A detailed introduction to GP
is given in appendix E.
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One of the most widely applied covariance functions in GP setting is the isotropic
Squared Exponential (SE) covariance function:

k(~xi, ~xj) = σ2
f exp

(
−‖~xi − ~xj‖2

2λ2

)
+ σ2

n∆ij (2.28)

σ2
f and σ2

n denotes the signal and noise variance in the data and λ is a parameter specifying
the characteristic length scale4. Informally, the characteristic length scale is the distance
one can move in the input space before the function value changes significantly. Of the
three parameters {σ2

f , σ
2
n, λ}, λ is the most important, as the classification performance of

GP classifier depends a great deal on the characteristic length scale parameters. During
the course of this work, σ2

f and σ2
n will not be taken into account. Therefore, the kernel

we are interested in has the following form:

k(~xi, ~xj) = exp
(
−‖~xi − ~xj‖2

2λ2

)
(2.29)

The kernel in equation 2.29 can be generalized as in equation 2.26. This suggests that, as
for the SVM, the problem of learning with GP is actually finding the right specification of
matrix A in equation 2.26. The representation of length scale parameters as the elements
of a matrix has been mentioned by Rasmussen and Williams (2006, sec. 5.1) as:

Covariance functions such as the squared exponential can be parameterized in
terms of hyperparameters. For example

k(~xp, ~xq) = σ2
f exp(−1

2
(~xp − ~xq)TM(~xp − ~xq) + σ2

nδpq (2.30)

where θ = ({M}, σ2
f , σ

2
n)T is a vector containing all the hyperparameters, and

{M} denotes the parameters in the symmetric matrix M . Possible choices for
the matrix M include

M1 = l−2I, M2 = diag(l)−2, M3 = ΛΛT + diag(l)−2 (2.31)

where l is a vector of positive values, and Λ is a D × k matrix, k < D.
The properties of functions with these covariance functions depend on the
values of the hyperparameters. For many covariance functions it is easy to
interpret the meaning of the hyperparameters, which is of great importance
when trying to understand your data. For the squared exponential covariance
function eq. (2.30) with distance measure M2 from eq. (2.31), the l1, . . . , lD
hyperparameters play the role of characteristic length-scales; loosely speaking,
how far do you need to move (along a particular axis) in input space for the
function values to become uncorrelated. Such a covariance function implements
automatic relevance determination (ARD) [Neal, 1996], since the inverse of
the length-scale determines how relevant an input is: if the length-scale has a

4The λ in equation 2.28 is equivalent to σ in equation 2.24. It is typically denoted as λ in GP settings
to avoid confusion with symbols denoting the signal and noise variance.
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very large value, the covariance will become almost independent of that input,
effectively removing it from the inference.

Neal (1996), Zhou and Suter (2008), Snelson et al. (2003), Schmidt and O’Hagan (2003)
and others have also proposed methods for learning the elements of matrix A in GP setting.
These methods will be discussed in detail in section 9.1.

2.4.5 Local and Global Methods of Metric Learning

The metric learning methods discussed so far are global5. That is, a data-dependent
distance metric is optimized using all training data and the same distance metric is used
for all locations of the query point in the input space. There is an alternative to learning
a globally optimized distance metric. One can learn a data-dependent distance metric
that is optimized only in the (small) neighborhood of a query point. Such metric learning
approaches are called local adaptive metric learning. Both global and local methods of
metric learning share the same motivations. Intuitively, one can think of local methods of
metric learning in terms of the feature relevance at a particular point in the input space.
It may be the case that a feature is more relevant at one location but is less relevant at
another location in the input space. For example, consider a simple gender classification
example using features such as height, weight, complexion, etc. If height is measured in
feet, one can notice that the height feature is more important in predicting gender when
it is above six (a woman is less likely to have height above six feet). This suggests the
local relevance of the feature height in the input space.

Local adaptive metric learning methods have often been studied in the k-nearest neigh-
bor framework. A nearest neighbor classifier assumes that the predicted function exhibits
a regular behavior at least in the neighborhood of the query point and hence the func-
tion can be predicted by simply averaging the class labels in the neighborhood. In other
words, class conditional probabilities are assumed to be smooth in the neighborhood. This
assumption of locally smooth class conditional probabilities is invalid at least near class
boundaries, where the class conditional probabilities can vary differently across different
dimensions. Learning a metric in the neighborhood of a query point can not only result
in smoother class-conditional probabilities in the neighborhood, but also in reduction of
the bias introduced due to the curse of dimensionality. Consider the example in figure 2.6.
The class-conditional probabilities vary only in the horizontal direction. There is a need
to stretch local neighborhood near the class boundary in the vertical direction. This strat-
egy reduces the bias of our estimate and leaves the variance the same, as discussed in
section 2.3.

Any global metric learning algorithm can be made local by adjusting the size of the
neighborhood in which the metric is learned. Though local adaptive metric learning
methods are more computationally expensive, they are a natural approach to adapting
neighborhoods so that the class-conditional probabilities are smooth. As, unlike global

5Global methods in machine learning encompass the use of the entire range of training data. In terms of
neighborhood size, one can imagine the size of the neighborhood so large that it covers the entire training
data. On the other hand, local methods encompass the use of the training data in a small neighborhood.



2.4. METRIC LEARNING 29

Figure 2.6: Illustration of adaptive metric learning on 2-dimensional data. The data be-
longs to two classes which are well separated by a linear classifier (shown as bold red line).
Round circles (black) depicts the isotropic neighborhoods (calculated with a Euclidean
metric). As can be seen, this assumption of isotropy is not valid near class boundaries and
a modified neighborhood stretched in vertical direction is more effective. This adaptive
neighborhood is depicted as ellipses (red).

methods, local metric learning fits naturally in the lazy learning framework6 of nearest
neighbor classifiers, i.e. rather than learning a global distance metric beforehand, once a
query data point is encountered, its neighbors are determined and a local metric is learned.
The need to determine the size of the neighborhood in which the metric is to be learned
is one of the biggest disadvantage of local methods.

The scope of local metric learning is not limited to k-nearest neighbor classification.
As hinted in section 2.4.3, an SVM classifier can be trained in the local neighborhood of
the query point. Since the tuning of SVM kernel parameters is actually a form of metric
learning, learning a kernel in the neighborhood of a query point will have almost the same
effect as training an SVM classifier in the modified neighborhood of a query point. This
is the exact equivalent of the local adaptive metric learning discussed so far, except that
rather than training a nearest neighbor classifier in the neighborhood, an SVM classifier is
trained and used to predict the label of the query point. This equivalence can be extremely
useful. As learning the kernel parameters for a local SVM classifier actually results in a
local adaptive SVM classifier, it will be shown in chapter 8 that learning a data-dependent
distance metric and training a local SVM classifier without learning any kernel parameters
also results in a local adaptive SVM classifier and somewhat alleviates the need to tune
kernel through cross-validation procedures.

6Lazy learning denotes those techniques in which learning is delayed until a query data is encountered.
‘Eager learning’ on the other hand denotes techniques which learn from the training data and apply the
learned model to the query data.
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2.4.6 Metric Learning with Feature-sets

So far we have assumed that the data is represented as feature-vectors and hence requires
the tuning of the scaling parameters. It may be the case that the data is represented as
feature-sets (appendix A), that is each data point is represented as a set of feature-vectors.
In the case of learning a data-dependent distance metric where data is represented in the
form of feature-sets, not only will a metric learning algorithm have to learn a metric for
each feature-vector in the feature-sets, but also it will need to find the appropriate weights
to combine the different feature-vectors.

Processing feature-sets is actually an example of information fusion, as we need to
decide how different feature-vectors in the feature-sets should be combined. There are
several possibilities when it comes to learning from feature-sets. Either we can concatenate
all the feature-vectors in the feature-set and process them (learn a distance metric, train a
classifier, etc.) as a single feature-vector, or we can process them separately and combine
the output of the processing at a later stage. There are two further possibilities. We
can combine the different feature-vectors in the original input spaces. That is, after
a metric is learned for each feature-vector, we concatenate the different feature-vectors
with an appropriate weighting scheme (distance fusion). The second possibility is that,
after a metric has been learned for each feature-vector, a separate classifier is trained for
each feature-vector and the outputs of the classifiers are combined with an appropriate
weighting scheme (classifier fusion).

2.5 Discussion

There are at least two issues that have become evident from the previous discussion of
metric learning and machine learning algorithms. First, although conventionally metric
learning is usually applied in nearest neighbor settings only, the performance of any learn-
ing algorithm that depends on a kernel to measure the similarity between two data points
can be improved through metric learning. Therefore, the realm of metric learning ex-
tends beyond nearest neighbor classification to, for example SVM and GP, etc. Although
various techniques have been proposed that learn a data-dependent distance metric for
kernel-based methods, these techniques are generally restricted to learning the diagonal
terms of the distance matrix A only (Chapelle et al., 2002; Williams and Rasmussen,
1996).

Secondly, metric learning, by controlling the size of the neighborhood, actually imple-
ments feature relevance and scaling. Also, it can result in feature selection and control
the bias and variance of the classification. Similarly, various techniques such as feature
selection, feature relevance, feature scaling, and kernel tuning can be defined in terms
of metric learning and can be viewed as learning the elements of the matrix A in equa-
tion 2.22. Such a line of thinking has also been mentioned by Chapelle et al. (2002, page
133):

Indeed, when no a priori knowledge is available about the meaning of each of
the attributes, the only choice is to use spherical kernels (i.e. give the same
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weight to each attribute). But one may expect that there is a better choice
for the shape of the kernel since may real-world database contain attributes of
very different natures. There may thus exist more appropriate scaling factors
that give the right weight to the right feature. For example, we will see how to
use radial basis function kernels (RBF) with as many different scaling factors
as input dimensions:

k(~x, ~z) = exp

(
−
∑
i

(xi − zi)2

2σ2
i

)

The usual approach is to consider σ = σ1 = · · · = σn and to try to pick the best
value for σ. However, using the proposed method, we can choose automatically
good values for the scaling factors σi. Indeed, these factors are precisely the
parameters of the kernel.

Moreover, we will demonstrate that the problem of feature selection can be
addressed with the same framework since it corresponds to finding those at-
tributes which can be rescaled with a zero factor without harming the gener-
alization.

They go on to say:

We thus see that tuning kernel parameters is something extremely useful and
a procedure that allows to do this would be a versatile tool for various tasks
such as finding the right shape of the kernel, feature selection, finding the right
tradeoff between error and margin, etc. All this gives a rationale for developing
such techniques.

Therefore, in the light of the above discussion we propose the following:

1. There is a need to unify the different terms used for metric learning — for example
feature selection, feature weighting, feature scaling, and kernel tuning — under a
common framework for systematic study of these techniques.

2. There is a need to investigate and propose novel global and local metric learning
methods aimed at reducing bias in high dimensions for improving classification per-
formance.

3. There is a need to investigate metric learning in kernel-based frameworks. More
importantly, there is a need to investigate the utility of current metric learning
methods, proposed in the nearest neighbor framework, when applied in kernel-based
classification frameworks such as SVM and GP. Also, there is a need to study the
effects of tuning a kernel by learning a full distance matrix (diagonal and off-diagonal
terms of matrix A in equation 2.26) on such techniques.

4. There is a need to investigate local metric learning methods in kernel-based frame-
works. For example, a kernel is learned that is optimized in the neighborhood of the
query point and a local SVM classifier is then trained using the learned kernel.
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5. Learning with feature-sets actually deals with information fusion. Distance fusion
and classifier fusion methods represent a high-level form of metric learning and,
therefore, there is a need to investigate such methods in the context of metric learn-
ing.

Addressing the first proposal

The work in this thesis deals with the unification of the different terms used for various
forms of metric learning. Different metric learning methods are categorized under a com-
mon distance measurement framework into naive, semi-naive, complete, and high-level
metric learning. This novel categorization is introduced in chapter 3 and explained in
chapters 4, 5 and 10. This categorization is desirable for the following reasons:

• Categorizing these approaches as forms of metric learning demonstrates the preva-
lence of metric learning algorithms. For example, it is well known that most learning
algorithm rely on scale estimation, feature selection, feature scaling, etc. Studying
these approaches as metric learning algorithms reveals that most learning algorithms
rely on some sort of metric learning.

• Studying these approaches under the framework of metric learning can lead not only
to a better understanding of these approaches but also of the learning algorithms
that rely on metric learning.

• As metric learning methods are aimed at learning the properties of the input space,
an analysis of these methods in the light of a common framework encourages their
use across different learning algorithms, because every learning algorithm has to deal
with the inherent properties of the space in which the data lies.

Addressing the second proposal

To address the second proposal, novel metric learning algorithms in local and global set-
ting, have been proposed in chapters 4, 5 and 6. The performance of the proposed algo-
rithms is compared with state of the art methods. They are shown to perform well on a
variety of data sets.

Addressing the third proposal

The connection between kernel and metric learning was discussed in section 2.4. It was also
discussed that most common methods of metric learning have been studied in the k-nearest
neighbor framework only. Since, kernel and metric learning are very closely related, it is
natural to use existing methods of metric learning to tune the kernel parameters for SVM
and GP classifiers. There are at least two reasons why such a strategy should work:

• Even though the formulations of nearest neighbor methods and kernel-based learn-
ing methods are different, both frameworks share their dependence on a similarity
measure. For example both use the kernel in equation 2.22 and their performance
depends how well they can optimize matrix A in equation 2.22.
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• Feature scaling methods proposed in the SVM and GP framework have been success-
fully applied in k-nearest neighbor settings for feature selection and feature weight-
ing (Chapelle et al., 2002; Guyon et al., 2004, chapter 11). If a metric tuned in SVM
and GP formulation is effective in the nearest neighbor framework, one can argue
that a metric tuned in nearest neighbor formulation might also be effective in the
SVM and GP settings.

An analysis of kernel tuning for SVM and GP in terms of metric learning in section 2.4.3
and 2.4.4 has revealed that most methods only estimate a diagonal distance matrix (Chapelle
et al., 2002; Williams and Rasmussen, 1996). The effect of learning a full distance matrix
has not been investigated, perhaps for the following reasons:

• In the SVM and GP frameworks, the Gram matrix (produced from the kernel)
has to be positive semi-definite (PSD). It may be the case that a global linear
transformation learned via a metric learning approach could violate this condition.

• A metric optimized for nearest neighbor classification may not be optimized for
SVM and GP classification. Researchers are more likely to attempt to tune scaling
parameters along with non-diagonal terms of the matrix A directly in either SVM or
GP setting. Efforts have been made in this direction but are limited to the learning
of the diagonal terms of matrix A, for example automatic relevance determination
(ARD) (Williams and Rasmussen, 1996) in GP framework and Chapelle et al.’s
(2002) method of scale estimation in SVM framework.

The first issue can be alleviated by learning a metric that results in a positive semi-definite
Gram matrix. As to the second, there does not exist a proof that a metric optimized in
a nearest neighbor framework will be effective in SVM or GP settings. The application
of a learned metric can be considered as a pre-processing step7 which aims to improve
GP classification performance leading to a better classification performance. Several pre-
processing techniques for GP classifiers have been proposed and shown to improve GP
classification performance (Snelson et al., 2003; Zhou and Suter, 2008). Schmidt and
O’Hagan (2003) provided a proof that the off-diagonal terms of transformations to isotropic
spaces can not be learned in some GP formulations. If we can not learn a full metric
characterizing the linear transformation of data in GP settings, and following the insight
that pre-processing of data can improve GP performance, one can learn a distance metric
in nearest neighbor framework in hope that the transformed data will be better modeled
by GP.

In chapters 7 and 9, the effects of tuning a kernel by learning a full distance matrix on
SVM and GP classification performance are studied. Algorithms for learning the kernel

7The motivation behind pre-processing (transformation) is to rectify the effects of the often unreasonable
assumption of the GP that the raw data will have Gaussian noise and will be well modeled by GP.
Significant performance gains can be achieved by transforming data such that it is well modeled by GP.
One particular example of such a transformation is taking the log of the data (for example, when quantities
vary over many order of magnitude, it make little sense to model these quantities directly assuming isotropic
Gaussian noise. A log transformation is required). Many other transformations can be applied to the data
to bring it into a form well modeled by GP.
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parameters for improving SVM and GP classification performance using metric learning
methods are also proposed.

Addressing the fourth proposal

In chapter 8, building on the insights from local methods and motivated by Zhang, Berg,
Maire and Malik (2006), local metric learning is investigated in kernel-based settings and
a local SVM classification scheme is proposed. That is, rather than training a single global
SVM classifier, an SVM classifier is trained in the neighborhood of each query point. The
motivations behind such a formulation are discussed in detail. Also, a local adaptive SVM
is proposed for achieving the computational efficiency of a k-nearest neighbor classifier
and the classification efficiency of an SVM classifier.

Addressing the fifth proposal

Chapter 10 deals with learning from feature-sets. Distance and classifier fusion approaches
are studied in the context of metric learning using scene categorization and object detection
examples.



Chapter 3

Novel Categorization of Metric

Learning Methods

In this chapter a novel categorization scheme for metric learning methods will be intro-
duced. The use of these categories will be demonstrated on a simple classification task.

There are different ways in which we can categorize metric learning algorithms. On a
broader level, metric learning can be categorized into supervised and unsupervised learn-
ing. In unsupervised metric learning, class labels are not used to learn the distance matrix
A (equation 2.15). This form of metric learning algorithm has been extensively studied
and is often motivated from a dimensionality reduction and scale normalization point of
view. For example, Principal Component Analysis (PCA) is a well known unsupervised
metric learning technique aimed at dimensionality reduction while preserving maximal
variance of the data (Pearson, 1901; Jolliffe, 2002). Other notable unsupervised metric
learning algorithms include Multidimensional Scaling (MDS) and Local Linear Embedding
(LLE) (Cox and Cox, 2001; Roweis and Saul, 2000; Saul and Roweis, 2000).

On the other hand, supervised metric learning tunes a metric using side information
such as the class labels. A motivation behind this form of metric learning is to increase the
classification performance (Xing et al., 2002; Goldberger et al., 2005; Weinberger et al.,
2009). The novel metric learning algorithms proposed in chapters 4 and 5 are supervised.

Since metric learning deals with the learning of matrix A in equation 2.15, we can
categorize metric learning methods based on the form of matrix A, for example diagonal
matrix, full matrix, block partition matrix, etc. Such a categorization is novel and is
explained in the following section.

3.1 Naive/Semi-naive Metric Learning

Feature selection and feature relevance are well studied and effective techniques for ignoring
or down-weighting irrelevant or redundant features and making relevant features more
explicit. Feature selection can be viewed as a form of metric learning. For example
learning a diagonal matrix in equation 2.15 with some diagonal elements as zero results in
those features being ignored, i.e. feature selection. The case of learning a diagonal matrix
in equation 2.15 is categorized as either naive metric learning or semi-naive metric learning.

35
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The naive metric learning case arises when we learn the diagonal terms of matrix A in
equation 2.15 and assume that features are independent from each other. The relevance
of each feature is estimated separately. The problem with naive metric learning is that
features that are irrelevant when analyzed separately may become relevant when analyzed
together with other features. Therefore, there is a need to estimate the relevance of a
feature in combination with the other features. This is the motivation behind semi-naive
metric learning. Semi-naive metric learning is a modification of naive metric learning where
a diagonal matrix is learned by learning the relevance of each feature in combination with
the other features.

Naive and semi-naive metric learning are actually forms of feature selection. Feature
selection and weighting has been extensively studied in machine learning (Guyon et al.,
2004), but usually it is not explicitly specified that feature selection is in fact learning
of a distance metric such that the measurement of distances across certain features is
ignored. It should be noted that any feature selection technique can be viewed as a naive
or semi-naive metric learning method and vice-versa. Though the two techniques (feature
selection and metric learning) have been studied separately, the motivations behind them
are exactly the same.

3.2 Complete Metric Learning

As discussed in section 2.4, the matrix A learned in equation 2.15 does not have to be
diagonal and a full distance matrix can be learned. Complete metric learning deals with
the learning of both the diagonal and the off-diagonal terms of the matrix A in the form
shown in equation 2.23. It should be noted that this form of matrix A is more reasonable, in
that we can not simply assume that the function changes only along the directions of axes
only. Typical metric learning algorithms studied in the k-nearest neighbor classification
framework generally estimate the full distance matrix A and are in fact complete metric
learning methods (Weinberger et al., 2009; Goldberger et al., 2005; Bar-Hillel et al., 2003).

3.3 High-level Metric Learning

High-level metric learning deals with learning a data-dependent distance metric in cases
where data is represented as feature-sets. As discussed in chapter 2 and appendix A,
data is represented in the form of feature-sets in those problems when there is a natural
partitioning among features, for example object recognition. High-level metric learning
is concerned with how to deal with feature-vectors in the feature-sets. Let us suppose
that m and n are two types of feature-vector used for object recognition problem (say m
representing the ‘shape’ information and n representing the ‘color’ information). Let ~xm
and ~xn be the feature-vectors representing the m and n types of information about the
data point ~x respectively. We can denote the feature-set representing the data point ~x as:

FS(~x) = {~xm, ~xn} (3.1)
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The two high-level metric learning schemes will be discussed in detail in chapter 10. In
the following, a brief introduction of the two schemes is given. In the first scheme, we can
concatenate the two feature-vectors into one, learn a naive/semi-naive/complete metric
with the resulting feature-vector, and train a single classifier.

In the second scheme, we can treat ~xm and ~xn separately. A separate naive/semi-
naive, complete distance metric is learned for each type of feature-vector. Using the
learned distance matrices we can train a separate classifier for each type of feature-vector
and combine the outputs of the classifiers using some weighting scheme to reach consensus
about the label of the object (classifier fusion). Alternatively, we can combine the distances
computed using the learned distance matrices for each type of feature-vector (distance
fusion) and learn a single classifier. Note that this will have the same effect as measuring
distances using a block-diagonal matrix A in equation 2.15 such that:

A =

(
Am 0
0 An

)
(3.2)

where Am and An are the distance matrices learned for feature-vector of type m and n.

3.4 Example Illustrating Forms of Metric Learning

The goal of this section is to demonstrate with a simple example how different forms of
metric learning can be used in a learning scenario. Let us consider the problem of object
recognition where the objects are different categories of flowers. The database considered
is the Oxford Flowers database which consists of 17 categories of flowers (Nilsback and
Zisserman, 2007b, 2006, 2007a). Some example images of flowers are shown in figure 3.1.
From the recognition point of view, it is a difficult database as different flowers have huge
pose, scale, and light variation. Color seems to be a discriminative feature, but many
flower categories share the same color. Not only are there huge inter-class differences, there
are huge intra-class variations among the flowers that make this categorization problem
extremely challenging. Note the background of each flower. Different flower categories
have very different but peculiar backgrounds. Therefore, background information can be
used for classification purposes.

Designing a classification algorithm for such a problem generally has two phases. The
first deals with the identification of feature-vectors (or feature-set). As can be seen from
figure 3.1, the learning algorithm can not rely on one type of cue. For example some
categories can be discriminated by their shape, some categories have a peculiar color,
others can effectively be categorized by their texture, etc. Therefore, each image should
be represented as a feature-set (each feature-set consists of different feature-vectors repre-
senting cues like shape, color, texture, etc.). The second phase deals with the learning of
a classifier from the feature-vectors (or feature-set). In the following, the different types
of feature-vectors used in this flower categorization example are explained.
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Figure 3.1: Example images (three images per category) from the Oxford Flowers database.

Features

Four different types of feature-vector based on shape, color, texture and context (gist) of
the flowers have been used. The feature-set representing image ~x can be written as:

FS(~x) = {~xshape, ~xcolor, ~xtexture, ~xgist} (3.3)

In the following, each feature-vector in FS is explained:

• Shape: As can be seen from figure 3.1, the shape of the flowers (shapes of petals
and their configurations) is a discriminatory trait. To capture the shape of a flower,
SIFT features extracted on a regular grid of size 20 × 20 with a spacing of ten
pixels were used (Lowe, 1999). The features extracted were vector quantized with
a code-book of size 200 obtained via k-means clustering The resulting histogram
was then normalized to give a 200-dimensional feature-vector to represent the shape
of the object. Note that this is an example of a dense feature. An alternative is
to calculate the SIFT features at some points of interest on the image. It has been
shown that dense features perform better than sparse features on most categorization
tasks (Dance et al., 2004; Willamowski et al., 2004). For a comparative analysis of
dense and sparse features for object categorization, refer to appendix C.

• Color: As can be seen from figure 3.1, color can be a powerful cue for flower
categorization. To represent color, the Hue, Saturation, and Value (HSV) value
of each pixel was used. Therefore, each pixel was represented as a 3-dimensional
vector. These 3-dimensional vectors representing pixels were vector quantized with
a code-book of size 200 obtained via k-means clustering. The resulting histogram
was normalized to represent the color of the object.

• Texture: Texture is represented by convolving images with an MR8 filter bank,
introduced by Varma and Zisserman (2005). The filter bank contains filters at
multiple orientations. Rotation invariance was obtained by choosing the maximum
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response over orientations. The texture of an image was represented by a normalized
histogram obtained by vector quantizing the response of filter bank using a code-book
size of 800. This gave an 800-dimensional feature-vector representing the texture of
an object.

• Context (gist): Since most flowers exists in their natural habitats, there seems to
be some correlation between flowers and their backgrounds. To exploit this informa-
tion, the gist features based on Gabor filters as introduced by Oliva and Torralba
(2001) were used. This gave a 512-dimensional feature-vector representing the gist
of an object.

For each category, 40 images per category were used for training and 20 images per category
were used for testing. The results shown in tables 3.1 and 3.2 are the means of ten runs
on different sets of training and testing data.

Experiment 1

In this experiment, the feature-vectors in the feature-set were processed separately. The
classification performance in terms of the correctness rate of each of the following metric
learning methods is shown in figure 3.2.

• Level 1 - Euclidean Distance: A 1-nearest neighbor classifier was trained for
each feature-vector in the feature-set.

• Level 2 - Unsupervised Metric Learning: As each feature in every feature-
vector is different, a natural preprocessing was to re-scale all features to have a zero
mean and unit variance so that they impact the distance measurement equally1.
Also, since all feature-vectors in FS are of high dimension, PCA was used to reduce
the dimensionality. It should be noted that the goal of this level of metric learning
is not to improve the classification efficiency but only to reduce dimensionality. The
original shape, color, texture and context feature-vectors were reduced to 20, 20, 160
and 100 dimensions respectively. A 1-nearest neighbor classifier was trained after
re-scaling and dimensionality reduction for each feature-vector.

• Level 3 - Complete metric learning: Feature-vectors were transformed by learn-
ing a data-dependent distance metric (the MEGM complete metric learning algo-
rithm that will be introduced in chapter 4 was used) and a 1-nearest neighbor clas-
sifier was applied in the transformed space.

Note that the Level 2 metric (PCA) did not result in any significant performance gain
whereas Level 3 metric (MEGM) lead to some improvement in the performance of Level 1
metric (Euclidean). Since the feature-vectors were not combined, high-level metric learning
was not applicable.
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Figure 3.2: Experiment 1 results (correctness rate) for training a separate 1-nearest neigh-
bor classifier for each feature-vector in FS. The means and standard deviations of the
results are shown. Bar group 1 = Shape feature-vector, group 2 = Color feature-vector,
group 3 = Texture feature-vector, group 4 = Gist feature-vector.

Experiment 2

It can be seen from figure 3.2, the color and the gist features performed best, with a
classification performance of around 48% but these feature-vectors alone do not have the
discriminative power to classify all the objects successfully. Therefore, there is a need to
combine different feature-vectors. For example, the feature-vectors can be combined by
concatenating them together. When the feature-vectors are concatenated, we can run the
metric learning methods from experiment 1 on the concatenated feature-vectors.

In the second experiment, the feature-vectors in FS were combined and processed
together. The classification performance in terms of the correctness rate of each of the
following metric learning methods is shown in table 3.1.

• Level 1 - Euclidean Distance: The feature-vectors were concatenated and a
1-nearest neighbor classifier was trained.

• Level 2 - Unsupervised Metric Learning: Same as in experiment 1 except the
feature-vectors were concatenated before the unsupervised metric learning algorithm
was applied.

• Level 3 - Complete metric learning: Same as in experiment 1 except the feature-
vectors were concatenated before the complete metric learning algorithm was applied.

• Level 4 - High-level Metric Learning: Feature-vectors which were already trans-
formed via unsupervised metric learning (Level 2) and complete metric learning
(Level 3) were combined with a high-level metric learning algorithm. That is, the

1This step is not very critical for histogram-based features as histograms are already normalized. But
non-histogram based feature-vectors must be normalized.



3.4. EXAMPLE ILLUSTRATING FORMS OF METRIC LEARNING 41

Level 1 Level 2 Level 3 Level 4
Shape + Color 47.89± 0.08 48.95± 0.50 54.11± 0.02 56.73± 0.21

Shape + Texture 39.85± 1.22 40.08± 0.20 44.82± 0.45 46.23± 0.19
Shape + Gist 45.02± 0.58 46.27± 0.11 54.94± 0.25 56.61± 0.39

Color + Texture 46.67± 0.11 47.79± 0.67 49.32± 0.65 52.23± 0.12
Color + Gist 51.58± 0.31 52.36± 0.05 60.35± 0.16 61.69± 0.20

Texture + Gist 45.48± 0.80 45.45± 0.25 47.47± 0.95 49.82± 0.79

Shape + Color + Texture 48.95± 0.50 54.51± 0.26 56.56± 0.19 58.69± 0.43
Shape + Color + Gist 53.61± 0.27 53.48± 0.45 62.33± 0.33 64.2± 0.10

Color + Texture + Gist 50.98± 0.24 52.73± 0.45 57.86± 0.15 60.11± 0.09
Shape + Texture + Gist 46.52± 0.59 47.86± 0.50 53.42± 0.28 56.23± 0.32

Shape + Color + Texture + Gist 54.22± 0.13 54.94± 0.10 61.01± 0.19 −

Table 3.1: Experiment 2 results (correctness rate) for a 1-nearest-neighbor classifier on
Oxford flower database obtained using high-level metric learning for FS. The results were
obtained with the combination of feature-vectors listed in the first column of the table.
The best result for each level of metric learning is highlighted.

distances measured across different feature-vectors were combined with distance fu-
sion version of high-level metric learning scheme 2 (HML2-DF) that will be discussed
in section 10.1.2.

The best result of 64.2% was obtained by combining the shape, color and the gist
feature-vectors. Also, noteworthy is the performance when only color and gist feature-
vectors were combined with a classification performance of 61.69% suggesting that the
color and the gist feature-vectors can be extremely effective when considered together.
There is not a huge difference in the classification performance of the 1-nearest-neighbor
classifier at Level 1 and Level 2. Since the goal of Level 2 is only to reduce dimensionality
for computational efficiency, the Level 2 results are encouraging as they are similar to Level
1 results but are obtained with data with vastly reduced dimensionality. The optimal
combination weights of each feature-vector for distance fusion version of high-level metric
learning scheme 2 (Level 4) are given in table 3.2. To obtain the optimal ω values, ten
images per category from the training images were used as a validation set. The weight
of each feature-vector was selected from the set {0.2, 0.4, 0.6, 0.8, 1}. The set of weights
giving the best results on the validation set was used to train a 1-nearest-neighbor classifier
to obtain the Level 4 results in table 3.1.

Comparison of Results with State of the Art

Nilsback and Zisserman (2006) have reported results on Oxford flowers databases with a
k-nearest neighbor formulation. That work is similar to this work, with some subtle differ-
ences. Their goal is to form an optimize code-book of visual words for flower categorization,
whereas the goal here is to demonstrate the working of different forms of metric learning.
Unlike Nilsback and Zisserman (2006), no variable affecting the classification performance
has been optimized (except for weights ω in high-level metric learning scenario). Nilsback
and Zisserman (2006) optimize various performance variables, for example the grid size,
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Feature Combination Weights
S + C ωs = 1, ωc = 0.6
S + T ωs = 1, ωt = 0.4
S + G ωs = 1, ωg = 0.4
C + T ωc = 1, ωt = 0.6
C + G ωc = 1, ωg = 0.8
T + G ωt = 0.8, ωg = 1

S + C + T ωs = 0.6, ωc = 0.6 , ωt = 1
S + C + G ωs = 0.3, ωc = 1 , ωg = 0.6
C + T + G ωc = 0.6, ωt = 1 , ωt = 1
S + T + G ωs = 0.6, ωt = 0.6, ωg = 1

Table 3.2: Optimal combination weights (ω) for each feature-vector in the FS for Level 4
(high-level metric learning) on the Oxford flower database.

code-book size, etc. using the validation set. They report a classification performance of
81.3% with 40 training images and 20 validation images. The best result in this work is
64.2% with 40 training images (note ten images from the 40 training images were used as a
validation set for determining weights for high-level metric learning). A second major dif-
ference is the distance measure used. Nilsback and Zisserman (2006) used the chi-squared
(χ2) distance. The chi-squared distance between point ~x1 and ~x2 is defined as:

dχ2(~x1, ~x2) =
∑
p

(x1p − x2p)2

(x1p + x2p)
(3.4)

Since we are using histogram-based features, the χ2 measure is a more natural distance
measure than the Euclidean measure. Even though the results reported in this section are
encouraging in highlighting the efficacy of metric learning methods, it should be note that
Euclidean distance may not be most suitable with histogram-based feature-vectors. This
is due to the nature of histogram-based features. For example we can see from figure 3.1
that most flowers have a yellow color. The largest value in the color histogram will
correspond to the yellow color. A small shift in the color (for example, due to some clutter
or occlusion) which does not affect the nature of the object to be recognized will result in
a large difference in Euclidean distance. Therefore, with histogram-based features, a more
general and simple chi-squared distance is an effective distance measure (Chapelle et al.,
1999).



Chapter 4

Complete Metric Learning

This chapter deals with complete metric learning. As discussed in chapter 3, complete
metric learning deals with the learning of both the diagonal and the off-diagonal terms
of the matrix A in equation 2.23. The conventional metric learning algorithms which are
proposed in nearest neighbor classification settings are in fact complete metric learning
algorithms. A novel complete metric learning algorithm (MEGM) is introduced in this
chapter which is based on the minimization of the gradient of the MSE in the nearest
neighbor framework (section 4.2). The performance of MEGM is compared with other
metric learning approaches, for example Neighborhood Component Analysis (NCA) which
aims to learn a metric to maximize the margin of a classifier. It is shown that the proposed
algorithm not only results in significant improvement in the performance of the k-nearest
neighbor classifier, but also outperforms other metric learning algorithm on most data
sets. It should be noted that the MEGM algorithm minimizes the empirical risk only. As
discussed, a generalization term can be included in the formulation. Current methods for
complete metric learning are presented in section 4.1. The comparison of the performance
of the proposed algorithm with other state of the art metric learning algorithms on major
UCIML data sets (Appendix F), face, digits and object databases is given in section 4.3.
The experimental results are discussed in section 4.3.

4.1 Related Work

The proposed MEGM metric learning algorithm in this chapter is similar to the method
proposed by Lowe (1995), where a gradient-based technique is used to estimate the rele-
vancy of each feature. That is, only the diagonal terms of the matrix A are estimated. In
other words, the method proposed by Lowe (1995) is a semi-naive metric learning algo-
rithm. MEGM, on the other hand, is a complete metric learning algorithm, as it learns a

Algorithms Description
MEGM A complete metric learning algorithm based on the mini-

mization of the gradient of mean-square-error’s.

Table 4.1: List of Algorithms proposed in chapter 4

43
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full distance matrix and hence is potentially superior to the technique proposed by Lowe
(1995). The semi-naive metric learning method by Lowe (1995) is one of the first metric
learning algorithms applied to k-nearest neighbor methods. To our knowledge, they for the
very first time actually viewed feature selection and feature weighting as a metric learning
problem. It is somewhat strange that the most later work in metric learning (especially
complete metric learning) did not acknowledge Lowe’s (1995) work. David Mackay, how-
ever, mentioned Lowe’s metric learning algorithm as a variant of GP modeling (MacKay,
2003, chapter 45).

The work of Xing et al. (2002) is considered to be one of the first proposed (com-
plete) metric learning methods. As mentioned in section 2.4.1, typical metric learning
algorithms aim to reduce intra-class and increase inter-class distances. The technique pro-
posed in Xing et al. (2002) has the same goal. It should be noted that the work of Xing
et al. (2002) turned out to be a trend setter. Subsequent methods proposed in metric
learning shared the same goal and the idea of metric learning which Lowe (1995) proposed
was somewhat sidelined. The method presented in Xing et al. (2002) used the class label
information in terms of pairwise constraints. For example, any two points having the same
label is an equivalence constraint and two points having a different label is an inequivalence
constraint. Let us say that we denote all equivalence constraints by S and in-equivalence
constraints by D. Xing et al. (2002) formulated the metric learning problem as:

minA
∑

(~xi,~xj)∈S

‖~xi − ~xj‖2A

such that A � 0,
∑

(~xi,~xj)∈D

‖~xi − ~xj‖2A ≤ 1 (4.1)

The positive-semi-definite constraint A � 0 is needed to ensure that the matrix A results in
a valid metric. The main disadvantage of the approach is the presence of the positive-semi-
definite constraint, which is difficult and expensive to maintain. Even though the problem
is posed as a convex optimization problem, it may not be solved efficiently as it does not
fall under any category of quadratic or semi-definite programming. Nevertheless, Xing
et al. (2002) presented their metric learning approach in a very clear and concise way: a
metric parameterized by the matrix A is to be learned such that the intra-class distances
are minimized and inter-class distances are maximized. The approach also inspired various
other metric learning algorithms (Goldberger et al., 2005; Weinberger et al., 2009; Nguyen
and Guo, 2008).

NCA, proposed by Goldberger et al. (2005), maximizes the margin by minimizing the
probability of error under stochastic neighborhood assignment. In particular, each point
i selects another point j as its neighbor with some probability pij . In other words, pij
denotes the probability that point ~xi has the same label as point ~xj . The pij is defined as
a softmax over Euclidean distances in the transformed space, parameterized by the matrix
L:

pij =
exp(−‖L~xi − L~xj‖2)∑
k 6=i exp(−‖L~xi − L~xk‖2)

(4.2)
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where A = LTT (section 2.4). If Ci denotes the set of all the data points that share the
same class label with ~xi, the objective function of NCA can be written as:

g(L) =
N∑
i

log

∑
j∈Ci

pij

 (4.3)

The maximization of the objective function in equation 4.3 actually maximizes the ex-
pected number of data points correctly classified. The NCA metric learning algorithm
was a motivation behind our proposed MEGM metric learning algorithm. Both algorithms
minimize/maximize an objective function using stochastic gradient (descent/ascent) meth-
ods. The two algorithms, however, represents two very different approaches. NCA is a
margin maximization metric learning algorithm whereas MEGM is a MSE minimization
metric learning algorithm. The empirical results in section 4.3 suggest that MEGM per-
forms better than NCA on most data sets. In section 4.4, an approach to combine both
MEGM and NCA to improve the generalization capacity of MEGM will be described.

Weinberger et al. (2009) proposed a classical margin maximization metric learning
algorithm. The proposed Large Margin Nearest Neighbor (LMNN) metric learning al-
gorithm is posed as a convex optimization problem, and thus convergence to the global
solution is guaranteed. The algorithm can be considered as a modification of Xing et al.’s
(2002) and Goldberger et al.’s (2005) metric learning algorithm. The algorithm aims to
learn a matrix parameterizing the linear transformation of the data. The cost function of
the LMNN algorithm can be defined as:

g(L) =
∑
ij

ηij‖L(~xi − ~xj)‖2 + c
∑
ijl

ηij(1− yil)[1 + ‖L(~xi)− ~xj‖2 − ‖L(~xi)− ~xl‖2]+ (4.4)

where [.]+ denotes the standard hinge loss. The c parameter in equation 4.4 is some
positive quantity and is set by cross-validation. The ηij ∈ {0, 1} indicates if data point
~xi is the neighbor of ~xj . The target neighbors are identified as the data points in the
neighborhood sharing the same class labels (Euclidean distance is used). The first term in
equation 4.4 penalizes large distances between each data point and its target neighbors,
whereas the second term penalizes small distances between each data point and all other
data points having a different label. It can be seen that LMNN builds on the idea of Xing
et al. (2002) and seeks a transformation such that in the transformed space data points
belonging to the same class are close together and vice-versa. Similarly, it also builds on
the idea of Goldberger et al. (2005) and seeks a transformation such that the margin is
maximized. The LMNN method shares the disadvantage of method proposed by Xing et al.
(2002). It optimizes for matrix A instead of matrix L and must maintain the constraint
A � 0. Therefore, a special optimization solver is needed for efficient implementation.

The Relevant Component Analysis (RCA) metric learning algorithm proposed by Bar-
Hillel et al. (2003) is designed on an information theoretic basis and uses only closed
form expressions of the data. The RCA algorithm is a simple and efficient algorithm for
learning a full rank distance metric. It constructs a distance metric from a weighted sum
of in-class covariance matrices. It is similar to PCA and LDA in its reliance on second
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order statistics. RCA applies a global linear transformation to assign large weights to
relevant dimensions and low weights to irrelevant dimensions. The relevant and irrelevant
dimensions are estimated using chunklets. A chunklet is defined as a subset of data points
that are known to belong to the same class. In the following, the steps taken by RCA
algorithm for each chunklet to learn a metric will be explained:

• Subtract the mean of chunklet from all the points in the given chunklet.

• Compute the covariance matrix of all the centered data points in the chunklets.
If there are q points in r chunklets, and each chunklet j contains the data points
{~xji}

Nj

i=1 with mean ~mj , the covariance matrix in RCA is computed as:

A =
1
q

r∑
j=1

Nj∑
i=1

(~xji − ~mj)(~xji − ~mj)T (4.5)

• The matrix Â such that Â = A−
1
2 is the resulting matrix parameterizing the trans-

formation (note that Â = L ).

Relief-based feature selection algorithms will be explained in chapter 5 (Kira and Ren-
dell, 1992; Yijun and Dapeng, 2008). Recently, the family of Relief-based feature selection
and weighting algorithms have been modified for metric learning (Chang, 2010; Yijun,
2007; Yijun and Jian, 2006). Relief is a simple but effective feature selection algorithm
and some good results have been reported regarding their metric learning capability.

Another notable metric learning algorithm is the information theoretic metric learning
algorithm ITML (Davis et al., 2007; Davis and Dhillon, 2008). The problem is formulated
as that of minimizing the differential relative entropy between two multivariate Gaussian
distributions under constraints of the distance function.

4.2 MEGM Metric Learning

In a typical regression setting, an unknown function f : RD → R is learned from the
training data {(~x1, y1), (~x2, y2), ...(~xN , yN )}, where ~xi is a data point and y is the corre-
sponding target value. The function f̂ is chosen to be the one that minimizes some loss
function such as MSE, etc. We can define the MSE of f̂ as:

MSE(f̂) =
1
2

N∑
i=1

(f(~xi)− f̂(~xi))2 (4.6)

For classification tasks having C classes, we can write the error function in equation 4.6
as:

MSE(ŷ) =
1
2

C∑
t=1

N∑
i=1

(yti − ŷti)2 (4.7)
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where ŷti denotes the predicted probability of point ~xi to be belonging to class t and yti

denotes the actual label (either zero or one) of point ~xti. For brevity, ŷ(~xti) has been
denoted with ŷti and y(~xti) with yti. In the following discussion, it will be assumed that
there are only two classes to make the derivations simple. As discussed in section 2.1.3,
for any query point ~xi, nearest neighbor methods predict the label ŷi of ~xi by considering
the labels of the k-nearest neighbors of ~xi. In order to have a smooth boundary, each of
the k neighbors vote for the label of ~xi based on its distance from ~xi. For simplicity, let
us replace the kernel k(., .) with Vj in equation 2.13 and rewrite it as:

ŷ(~xi) =

∑
j yjVj∑
j Vj

(4.8)

The vote Vj cast by each neighbor around the query point ~xi is usually chosen to be a
function that decays exponentially as the distance from the query point increases. For
example we can define Vj as:

Vj = exp
(
−d2(~xi, ~xj)

2σ2

)
(4.9)

d2(~xi, ~xj) in equation 4.9 is often the Euclidean metric, but it can be replaced by a more
general metric: that is d2

A(~xi, ~xj). Again as discussed in section 2.4, if A = LTL, then
d2
A(~xi, ~xj) = (L~xi − L~xj)T (L~xi − L~xj). Since MSE is a function of ŷ, and ŷ depends on
‖~xi − ~xj‖2A, the MSE can be minimized by selecting an optimal value of matrix A. In
other words, a change in A induces a change in the distances, which can alter the votes Vj .
As learning the matrix A requires the maintenance of the expensive constraint that A be
positive-semi-definite, a simple alternative is to learn L rather than A. Obviously trying
all possible values of L is not feasible. Some sort of search mechanism is required to find
an optimal value of L. The votes Vj in equation 4.9 can be replaced by Wj . Like Vj , Wj

is the vote of each neighbor and is based on its distance from the query point, but unlike
Vj , the metric used to measure distances is parameterized by the matrix A. Therefore,
Wj can be written as:

Wj = exp
(
−‖L~xi − L~xj‖22

2σ2

)
(4.10)

The proposed gradient-based technique (MEGM) is based on a gradient descent algorithm
to minimize the MSE in equation 4.7. Let us denote the MSE of the predicted function
as E . Since a gradient descent based method is used for optimization, convergence to the
global minimum is not guaranteed. The risk of local minima can be reduced by running
the algorithm several times and choosing the output with minimum E . We can write the
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gradient with respect to matrix matrix L as:

∂E
∂L

=
N∑
i=1

(yi − ŷi)
(
−∂ŷi
∂L

)

=
N∑
i=1

(yi − ŷi)

−∑
j

yjWj(−1)(
∑
j

Wj)−2∂Wj

∂L
+ (
∑
j

Wj)−1
∑
j

yj
∂Wj

∂L


=

N∑
i=1

(yi − ŷi)
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∂Wj

∂L∑
jWj

)
(4.11)

The size of the Gaussian kernel centered at the query point (σ in equation 4.10) is set
proportional to the distance of the k-nearest neighbors. Generally the average distance
of half of the nearest neighbors is used, as this measure is more stable under a varying
distance metric (Lowe, 1995). Another motivation behind using only k

2 neighbors for
calculating σ2 is to reduce the effect of outliers during the calculation of the gradient. We
can write σ2 as:

σ2 =
1
k/2

k/2∑
m=1

‖~xi − ~xm‖2 (4.12)

∂Wj

∂L in equation 4.11 can be derived as:

∂Wj

∂L
= −WjL

(
(~xi − ~xj)(~xi − ~xj)T

σ2

)
(4.13)

Combining equations 4.11 and 4.13 we can write the gradient of E with respect to matrix
L as:

∂E
∂L

= L
N∑
i=1

(yi − ŷi)
1∑
jWj

∑
j

(yj − ŷj)Wj

(
(~xi − ~xj)(~xi − ~xj)T

σ2

)
(4.14)

The Polack-Ribiere flavor of conjugate gradients is used to compute search directions, and
a line search using quadratic and cubic polynomial approximations and the Wolfe-Powell
stopping criteria is used together with the slope ratio method for guessing the initial step
sizes (Press et al., 1988). An outline of MEGM metric learning algorithm is given in
algorithm 1.
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Algorithm 1 MEGM: A complete metric learning algorithm based on the minimization
of the gradient of MSE.

Require:

- ~x0: Testing data.
- {~xn, yn}Nn=1: Training data.
- k: Number of nearest neighbors, k is set to be floor(log2(N))).
- L: P -dimensional unit matrix.

- Calculate matrix L by using conjugate gradient method as described in the text
(gradient of the objective function is given in equation 4.14).
- Use matrix L for 1-nearest neighbor classification.

4.2.1 Generalization Issues

Since MEGM minimizes an objective function which is actually a MSE function, one is
likely to question its generalization capacity. It should be noted that the MEGM algorithm
has at least two peculiar properties which may not lead to an over-fitted solution. First,
there is a tunable parameter k, i.e. the number of nearest neighbors used when calculating
the gradient of E with respect to L. As long as k is set reasonably (not too large, not
too small, e.g. k = floor(log2(N))), the solution matrix L will not lead to over-fitting.
Though the value of k is absolutely critical to k-nearest neighbor classification and should
be optimized, the neighborhood size k is fixed in the MEGM formulation.

Secondly, it can be seen that there is no need for a σ2 in equation 4.10, as when
calculating the weights Wj , σ2 can be incorporated in the matrix L. One can rewrite
equation 4.10 as:

Wj = exp
(
−‖L~xi − L~xj‖22

)
(4.15)

Though perfectly acceptable, such formulation is not used. Instead, σ2 in equation 4.10 is
set to the average distance of k/2 neighbors (equation 4.12). The experimental evaluation
of the MEGM metric learning algorithm is given in section 4.3, where it is shown that
MEGM performs extremely well on many data sets. However, the MEGM metric learning
algorithm has two issues that needs to be addressed.

• First, the algorithm may not scale well to large numbers of dimensions. For example,
consider data with 4000 dimensions. A gradient decent search in a space spanning
4000 dimensions may not be feasible. This issue can be resolved by reducing the
dimensionality of the data by projecting to a lower dimensional subspace, for exam-
ple, preprocessing data using the PCA technique. Of course, this strategy assumes
that features are highly correlated and there is a minimal loss of information when
dimensionality is reduced.
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• The second issue is that of local minima. Since MEGM is based on a simple gradient
descent on its objective function, some care has to be taken so that it does not suffer
from local minima.

4.3 Experimental Evaluation of MEGM metric learning

In this section, the classification results of various metric learning algorithms on different
UCIML, face, object and digit databases are presented (Frank and Asuncion, 2010). A
short description of the various UCIML databases used is given in appendix F. The
classification performance of MEGM is discussed and compared with other state of the art
metric learning algorithms for example NCA, RCA and LMNN as described in section 4.2.

In all the experiments, MEGM is used with its standard settings as shown in the
algorithm 1. That is, a 1-nearest neighbor classifier is used in the transformed space
induced by the learned matrix L and the size of the neighborhood is consistently set equal
to floor(log2(N)) for all databases, where N is the cardinality of the data.

4.3.1 UCIML Repository Databases

The number of data, features and classes for each UCIML database used is reported in
table F.1. The error rate of each method is obtained using 40 rounds of 2-fold cross-
validation. Prior to training, all features were normalized to have zero mean and unit
variance. The classification performance in terms of the error rates of each of the following
methods for different databases is shown in figures 4.1 and 4.2.

• KNN: A simple 1-nearest neighbor classifier using Euclidean distance.

• RCA: 1-nearest neighbor classification using the metric learned via the relevant
component analysis metric learning algorithm (Bar-Hillel et al., 2003).

• LMNN: 1-nearest neighbor classification using the metric learned via the large
margin nearest neighbor metric learning algorithm (Weinberger et al., 2009).

• MEGM: Algorithm 1.

• NCA: 1-nearest neighbor classification using the metric learned via the nearest
component analysis metric learning algorithm (Goldberger et al., 2005).

As can be seen from figures 4.1 and 4.2, MEGM performed better than the others on 13
of the 19 UCIML databases. NCA, on the other hand, performed best on four. No metric
learning algorithm improved k-nearest neighbor performance on one of the databases.
Though MEGM performed well on most of the UCIML databases used, the databases (in
terms of the number of data) are not particularly large (table F.1). The number of data
in most databases also varies, for example hayesroth has only 135 data points, whereas
tic-tac-toe has 958. This should be encouraging. Usually techniques relying on gradient
descent methods require more training data to converge (Duda et al., 2006). From the
results it seems that MEGM is capable of converging even with a small number of training
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data. In terms of the number of classes, there is not a huge variance. For example, most
databases have either two or three classes with the exception of dermatology and vowel
databases which have got six and ten classes respectively. On both of these databases, the
performance of MEGM is better than the other metric learning algorithms. This suggests
that MEGM is capable of handling a large number of classes better than the competing
algorithms.

Though MEGM performed better than other approaches on most databases as shown
in figure 4.1, NCA performance is also noteworthy especially on monks1 and statlog heart.
NCA performed marginally better than other techniques on ionosphere, house vote and
hepatitis database. On monks3 both MEGM and NCA performed best. Note, on parkin-
son, no metric learning algorithm resulted in any improvement on the k-nearest neighbor
classifier.

A few design issues in the MEGM formulation were discussed in section 4.2.1. One
of them was the operation of MEGM in very high dimensions. The biggest databases
in terms of the number of features are sonar, dermatology and ionosphere with 60, 34
and 34 features respectively. As can be seen, MEGM performed better on two (sonar,
dermatology) out of these three databases. This suggests that MEGM is capable of learning
a metric in high dimensions and is more efficient than other methods.

To compare the performance of various algorithms, a robustness measurement test
introduced by Friedman (1994) is used. The test basically compares the robustness of
one algorithm with others. It measures how well a particular method (say m) performs
on average in situations that are most favorable to other methods. The robustness of a
method is measured by computing the ratio bm of its error em and the smallest error of
all the other competing methods. That is:

bm =
em

mini ei
(4.16)

The best method m∗ will have b∗m = 1 and all other methods will have values larger than
one. The larger the value of bm, the worse the performance is of the mth method in relation
to the best one for that data set. In figure 4.3, the distribution of bm for each method over
all 19 databases is shown in the form of boxplots1. As can be seen, MEGM is the most
robust of all. LMNN and NCA are also very robust, except in the case of a few outliers.

1Boxplots have been used in statistics for depicting the group of data in terms of a five number summary.
That is, the minimum sample, the maximum sample, lower quartile, median and upper quartile of data is
displayed. A boxplot may also indicate which observations, if any, might be considered outliers.



52 CHAPTER 4. COMPLETE METRIC LEARNING

KNN RCA LMNN MEGM NCA
0

0.05

0.1

0.15

0.2

0.25

Techniques

E
rr

or
 R

at
e

balance−scale (625,4,3)

(a)

KNN RCA LMNN MEGM NCA
0

0.05

0.1

0.15

0.2

0.25

Techniques

E
rr

o
r 

R
at

e

credit screening (653,15,2)

(b)

KNN RCA LMNN MEGM NCA
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Techniques

E
rr

o
r 

R
at

e

dermatology (358,34,6)

(c)

KNN RCA LMNN MEGM NCA
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Techniques

E
rr

o
r 

R
at

e

hayesroth (135,5,3)

(d)

KNN RCA LMNN MEGM NCA
0

0.01

0.02

0.03

0.04

0.05

0.06

Techniques

E
rr

o
r 

R
at

e

iris (150,4,3)

(e)

KNN RCA LMNN MEGM NCA
0

0.02

0.04

0.06

0.08

0.1

0.12

Techniques

E
rr

or
 R

at
e

liver−disorder (345,6,2)

(f)

KNN RCA LMNN MEGM NCA
0

0.05

0.1

0.15

0.2

0.25

0.3

Techniques

E
rr

o
r 

R
at

e

monks1 (432,6,2)

(g)

KNN RCA LMNN MEGM NCA
0

0.05

0.1

0.15

0.2

0.25

0.3

Techniques

E
rr

o
r 

R
at

e

monks2 (432,6,2)

(h)

KNN RCA LMNN MEGM NCA
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Techniques

E
rr

o
r 

R
at

e

sonar (208,60,2)

(i)

KNN RCA LMNN MEGM NCA
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Techniques

E
rr

o
r 

R
at

e

statlog heart (270,13,2)

(j)

KNN RCA LMNN MEGM NCA
0

0.02

0.04

0.06

0.08

0.1

0.12

Techniques

E
rr

o
r 

R
at

e

vowel (528,2,10)

(k)

KNN RCA LMNN MEGM NCA
0

0.05

0.1

0.15

0.2

0.25

0.3

Techniques

E
rr

o
r 

R
at

e

tictactoe (958,9,2)

(l)

Figure 4.1: Error rate comparison of KNN, RCA, LMNN, MEGM and NCA on various
UCIML databases (continued in figure 4.2). MEGM not only improved on k-nearest
neighbor classification performance, but in all cases resulted in better performance than
other competing metric learning methods of NCA, RCA and LMNN.
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Figure 4.2: Error rate comparison of KNN, RCA, LMNN, MEGM and NCA on various
UCIML databases (continued from figure 4.1).
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Figure 4.3: Boxplots are computed for KNN, RCA, LMNN, MEGM and NCA on the
results of all UCIML databases which are reported in figure 4.1 and 4.2 using the method
of Friedman (1994).
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Figure 4.4: Example images (three images per category) from the yalefaces database.

4.3.2 Face Databases

In this section MEGM is tested in the setting of a simple retrieval task using face recog-
nition databases. For a given query image, the task is to retrieve the image from the
database that is the most similar. The details of various face recognition databases used
are given in table 4.2. The yalefaces (figure 4.4), AT&Tfaces (figure 4.5) and yalefacesB
(figure 4.4) databases are well known in face recognition research.

The yalefaces database constitutes images from The Yale Face Database (1997) which
contains 165 grayscale images of 15 individuals. There are 11 images per subject, one
per different facial expression or configuration: center-light, with glasses, happy, left-light,
with no glasses, normal, right-light, sad, sleepy, surprised, and wink. The yalefacesB
database constitutes images from The Yale Face B Database (2001) which is a much bigger
database than the yalefaces. It contains 5760 single light source images of ten subjects,
each seen under 576 different viewing conditions (9 poses × 64 illumination conditions).
For every subject in a particular pose, an image with ambient illumination is also captured.
The AT&Tfaces constitutes images from The AT&T Face Database (2002) which has ten
different images of each of 40 distinct subjects. For some subjects, the images were taken
at different times, varying the lighting, facial expressions (open, closed eyes, smiling, not
smiling) and facial details (glasses, no glasses). All the images were taken against a dark
homogeneous background with the subjects in an upright, frontal position (with tolerance
for some side movement). The caltechfaces and caltechfacesB constitutes images from the

Database #Data #Features #Classes #Eigen-vectors #Train/Class #Test/Class
yalefaces 165 77760 15 50 4 7

yalefacesB 5850 307200 10 20 10 20
caltechfaces 435 47500 29 30 5 10

caltechfacesB 435 47500 2 30 50 100
AT&Tfaces 400 10304 40 50 5 5

Coil100 7200 16384 100 50 10 10
USPS 9298 256 10 50 20 10
Isolet 6238 617 26 30 20 10

Table 4.2: Details of Face, Object and Digit Databases used for classification
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Figure 4.5: Example images (three images per category) from the AT&T face database.

Figure 4.6: Example images (three images per category) from the caltechfaces and cal-
techfacesB databases.

face category in the Caltech-101 Object Database (2006) . The face category in Caltech-101
Object Database (2006) has 435 images of around 20 people. The caltechfaces database is
based on splitting the face category of Caltech-101 Object Database (2006) in 19 distinct
categories, each belonging to a different person (refer to figure 4.7). On the other hand,
caltechfacesB is based on splitting the face category of Caltech-101 Object Database (2006)
in only two classes, male and female.

The feature-vectors representing an image constitutes the intensity value of the pixels.
As can be seen from table 4.2, due to the resolution of images, the number of features
is extremely large (around 30000 for yalefacesB). When discussing the known issues in
the MEGM formulation in section 4.2.1, it was mentioned that since MEGM algorithm
may not scale well to the number of features, a reasonable approach is to reduce the
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Figure 4.7: For illustration, names have been assigned to each category of caltechfaces. The
names of the categories are: (First row, left to right) David, Alan, Peter, Sarah, Matthew,
Alice, John, Michelle, Kevin, Tom, Ali. (Second row, left to right) Kate, Michael, Tim,
Meg, Denial, Fei, Reeta, Allison. Refer to figure 4.13.

dimensionality of the data before applying MEGM. Therefore, due to the high dimension-
ality of face databases, all images are pre-processed using PCA technique for efficiency2.
Pre-processing images using PCA is a common approach in object recognition research to
reduce dimensionality for computational efficiency (Grauman and Darrell, 2005). For illus-
tration, the first 16 Eigen-faces (or Eigen-vectors) of yalefaces are shown in figure 4.8 (Turk
and Pentland, 1991). Also the reconstruction of some of the sample images using the first
100 Eigen-faces is shown in figure 4.9. It can be seen that even the first 100 Eigen-vectors
contains very discriminative information and images can be well discriminated in the sub-
space. Rather than working in a space of 77760 features, due to a PCA transformation,
we are working in a space of only 100 or fewer features. This results in a huge gain in
computational efficiency. The number of Eigen-vectors is an important factor. Although,
this parameter should be optimized, the number of Eigen-vectors was set to be as small
as possible to make the learning problem more challenging. The number of Eigen-vectors
for each database is given in table 4.2. After the PCA transformation, the coefficients of
the Eigen-vectors constitutes the feature-vectors which are used for training the classifier.

The classification performance in terms of the correctness rate of each of the following
methods for different face databases is shown in figure 4.10.

• KNN: A simple 1-nearest neighbor classifier with the Euclidean distance.

• MEGM: Algorithm 1.

• NCA: 1-nearest neighbor classification using the metric learned via nearest compo-
nent analysis metric learning algorithm (Goldberger et al., 2005).

• SVM: SVM classifier (appendix D).

To obtain the SVM classification results, a multi-class SVM classifier with a Gaussian
kernel is used. Refer to appendix D for a detailed derivation of SVM classifiers. SVM
classifiers have two tunable parameters, C and σ. For the experiments in this section

2PCA introduced by Pearson (1901) is a widely used technique for exploratory data analysis. It involves
the Eigenvalue decomposition of the covariance matrix of the data, usually after normalizing the data,
such that mean of the data across each feature is zero. Since learning a metric actually results in linear
transformation of data (section 2.4), PCA can be viewed as an orthogonal linear transformation that
transforms the data to a space such that the greatest variance by any projection of the data in that space
lies on the first feature (called the first principal component), the second greatest variance on the second
feature (second principal component), and so on.
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Figure 4.8: The first 16 Eigen-vectors of yalefaces database. Note the discriminative
information that each Eigen-vector carries for example the face area, eyes, etc. The
background of each image seems to be ignored.

Figure 4.9: Reconstruction of some sample images from yalefaces database from first 100
Eigen-faces. Note the images are distinct from each other even though they are represented
with far less information.

only, the C parameter is tuned through cross-validation by selecting its value from the
following set: {1, 10, 100, 1000}. The σ parameter is not optimized. It is set equal to the
average of the distances between the training data. This approach to setting σ alleviates
the need to tune the σ parameter and has been shown to be effective for object related
databases (Zhang, Marszalek, Lazebnik and Schmid, 2006). Since the SVM is a binary
classifier, to obtain multi-class results a one-versus-all strategy is used.

The results of the various methods on the face databases are shown in figure 4.10.
The number of training images per category, number of testing images per category and
the number of Eigen-vectors used for each database is given in table 4.2. As for the
UCIML databases, MEGM resulted in significant improvement over the performance of k-
nearest neighbor classification, despite using a small number of Eigen-vectors. It performed
better than all other methods for all five databases. From figures 4.10(a) and 4.10(d), it
can be seen that NCA did not result in any performance improvement over 1-nearest
neighbor classifier on the yalefaces and caltechfaces databases. Though the performance
gain of MEGM algorithm over SVM is not significant, given that the training of an SVM
classifier is expensive, as it involves optimizing the C parameter through cross-validation,
the MEGM results are encouraging. Also, an SVM is a binary classifier, which means that
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Figure 4.10: Percentage performance (correctness rate) of KNN, MEGM, SVM and NCA
on various face databases. The mean and standard deviation of the correctness rate over
ten runs (each run with a different training data) is reported.

each query image is evaluated by all trained SVM classifiers (in a one-versus-all strategy).
The classifier with the highest confidence in its decision predicts the class label. On the
other hand, MEGM is based on a simple linear transformation of the data followed by
a simple 1-nearest neighbor classification. This renders MEGM favorable in those cases
where there are a large number of classes and a decision has to be made in real time3.

A demonstration of a simple nearest neighbor classification strategy (retrieval task) is
shown in figure 4.11. The first four nearest neighbors of example query images from the
caltechfaces database obtained via KNN and MEGM algorithms are compared. It can be
seen that the retrieval efficiency of a 1-nearest neighbor classifier appears much better in
the transformed space induced by MEGM than in the original space.

In the following, the procedure that was followed (and is followed in the later chapters)
to obtain the results shown in figure 4.10 is explained. The results for a particular method
in figure 4.10 are obtained by calculating the confusion matrix. The confusion matrix
M is a C × C dimensional matrix (C is the number of classes). The Mij element of
the confusion matrix denotes the number of testing images that have been classified as
belonging to category i but actually belong to category j. One hopes for a diagonal
confusion matrix, which indicates that all the testing images have been classified to the
categories to which they actually belong. The confusion matrix is evaluated using the

3This is a general argument and applies equally to the debate concerning the use of any binary classifier
(for example boosting (Schapire and Singer, 1998), SVM, etc.) versus nearest neighbor methods (for
example KNN, NCA or MEGM, etc.).
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following formula to obtain the results in figure 4.10:

perf(M) =
C∑
i=1

(
Mij

Nc

)
(4.17)

where Nc denotes the total number of testing data points belonging to category c. For
example, visualization of the confusion matrices obtained with KNN and MEGM for cal-
techfaces are shown in figure 4.13. An alternative is to calculate the average of the number
of all the testing images correctly classified. Since the number of testing points belonging
to each category may vary, it is more reasonable to use the formula given in equation 4.17.

It can be seen from figure 4.13(a) that the confusion matrix for KNN has many con-
fusions. For example, Michelle is confused with Sarah and Alice, David is confused with
Peter, Tim is confused with Matthew, etc. The source of some of these confusions can be
seen in figure 4.7. For example, it can be seen that that Michelle and Sarah shares may
facial features. In the confusion matrix of MEGM, there are fewer confusions. The notable
cases are: Tim is confused with Matthew; the resemblance can also be seen in figure 4.7,
Meg is confused with Alice. But overall, MEGM results in a classification efficiency of
around 98% compared with 94% for KNN.

Confusion matrices are a natural way to represent and evaluate the classification results
for databases consisting of more than two classes. For a database that consists of only two
classes, a natural way to plot the results is in the form of receiver operating characteristic
(ROC) curves, which are generally used in signal detection theory (Fawcett, 2006). In
machine learning, ROC curves plot the sensitivity (true positives) versus the false positives
(1 - specificity) for a binary classifier as the discrimination threshold is varied. For example
the ROC curves for KNN and MEGM for caltechfacesB are shown in figure 4.12.
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Figure 4.11: Example of retrieval results for the caltechfaces database. Each row represents
one example. Column 1 shows the query image. Columns 2-4: show the first 4 nearest
neighbors obtained with the Euclidean distance. Column 5-9 show the first 4 nearest
neighbors obtained with MEGM.
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Figure 4.12: ROC curves of KNN and MEGM methods for caltechfacesB database.
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Figure 4.13: Figure 4.13(a): Confusion matrices obtained with KNN (results labeled as
KNN in figure 4.10(d)), Figure 4.13(b): KNN followed by MEGM for caltechfaces (results
labeled as MEGM in figure 4.10(d)).
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Figure 4.14: Example images (three images per category) from the USPS digit database.

4.3.3 USPS Digit, Isolet and Coil100 databases

In this section, the classification performance in terms of the correctness rate of KNN,
MEGM, NCA and SVM methods (section 4.3.2) for USPS, Isolet and Coil100 databases
is discussed. Both the USPS digit database (figure 4.14) and the Coil100 (figure 4.15)
object database are well known in object recognition research.

The USPS digits data was gathered at the Center of Excellence in Document Analysis
and Recognition (CEDAR) at State University of Buffalo, as part of a project sponsored
by the US Postal Service (Hull, 1994). The human error rate on this database has been
estimated to be 2.5%. This shows that this is a hard recognition task. It contains normal-
ized grey scale images of size 16× 16. The database has traditionally been divided into a
training set of 7291 images and a test set of 2007 images. This setting has been used as
a benchmark for comparing the performance of various machine learning algorithms. It
should be noted that these two sets (training and testing images) were actually collected
in slightly different ways and the images in the test set are much harder to classify than
the images in the training set. This property of the database makes it a less desirable
choice for comparing learning algorithms. That is why, in this work, the training and
testing sets are merged and the data is randomly shuffled and divided into new training
and testing sets. The Coil100 object database consists of 100 object categories and is one
of the few extensive object databases existing in object recognition research (Nene et al.,
1996). Each object in the image is present uncluttered. Each category has 72 images,
where each image is taken at a different angle of the object. The Isolet (Isolated Letter
Speech Recognition) database consists of 26 categories. 120 subjects spoke the name of
each letter of the alphabet twice (Frank and Asuncion, 2010). Hence, we have 52 training
examples from each speaker. The goal is to classify letters into one of the 26 categories.
The database has been used as a benchmark for testing the scalability of various machine
learning algorithms. It has also been used to test the performance of learning algorithms
in the presence of noise (Frank and Asuncion, 2010).

The results on the USPS, Isolet and Coil100 databases are shown in figure 4.16. The
MEGM method performed well on all three databases, resulting in improvement in the
performance of k-nearest neighbor classifier. Also the results of MEGM are better than
NCA. SVM, however, performed best on the USPS and Isolet databases. A strange out-
come can be seen in figure 4.16(c). On the Coil100 database, a simple k-nearest neighbor
classifier has performed better than a standard SVM classifier. The comparative results
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Figure 4.15: Some example images (three images per category) from the Coil100 object
database.

on the Coil100 database suggest that the SVM policy of training a multitude of classi-
fiers in a one-versus-all strategy may not always be optimal. This will be discussed in
chapters 7 and 8. The neighborhood of any query point can contain valuable information
for predicting the label of that query point. This is evident from some good results with
nearest neighbor methods such as KNN, MEGM and NCA on the Coil100 database in
figure 4.16(c).

4.4 Summary

In this chapter, complete metric learning algorithms were discussed and a novel complete
metric learning algorithm (MEGM) was proposed. On various UCIML, face, digit and
object databases, it was shown that MEGM metric learning algorithm not only results in
classification improvement of the k-nearest neighbor classifier, but it also performed better
than other complete metric learning algorithms. The performance was also compared with
a standard SVM classifier.

The main advantage of the proposed MEGM algorithm is its simplicity. It deals with
multi-class problems effortlessly, as opposed to binary classifiers such as SVM, where
either a one-versus-one or a one-versus-all strategy is used. SVM training and testing
is computationally expensive. For example, as training involves training 100 classifiers,
and to classify an image all classifiers vote before reaching a consensus on the prediction,
it takes a very long time to train and test an SVM classifier on the Coil100 database.
On the other hand, once a metric is learned using MEGM, only a simple nearest neighbor
classification is required. In typical object recognition tasks, where the number of classes is
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Figure 4.16: Percentage performance (correctness rate) of KNN, MEGM, SVM and NCA
on USPS, Isolet and Coil100 object databases. The mean and standard deviation of the
correctness rate over ten runs (each run with different training data) is reported. The
number of training images per category, number of testing images per category and the
number of Eigen-vectors used for each of these databases is given in table 4.2.

very large, nearest neighbor methods should be preferred for their computational efficiency.
Therefore, k-nearest neighbor methods equipped with a proper distance metric can be
extremely useful.

A disadvantage of the proposed MEGM algorithm is the absence of a regularization
term in its objective function. One could investigate modifying the objective function of
MEGM algorithm to include an explicit regularization term. One could also investigate
combining the objective functions of MEGM and NCA to improve classification results.
Since MEGM is based on the minimization of MSE, and NCA is based on maximizing
the margin explicitly, combining the two approaches would be an interesting idea. That
is, one could investigate learning a metric by simultaneously maximizing the margin and
minimizing the MSE. There has been a lot of work in multi-objective optimization which
deals with simultaneously optimizing two or more (often conflicting) objective functions
subject to some constraints4 (Steuer, 1986; Deb, 2002). There are two possibilities when
combining the MEGM and NCA objective functions under a multi-objective function
framework. First, we can create a single aggregate function by combining all the objective
functions5. A simple combination strategy is a linearly weighted sum of the objective
functions. The weights of the combination will have to be specified. However, it should
be noted that the final solution obtained will be highly dependent on the weights. For
example, the objective functions of MEGM and NCA are combined as:

EL =
N∑
i=1

[
γ1

(
yi − exp

(
−‖L~xi − L~xj‖22

2σ2

))
− γ2

(
exp(−‖L~xi − L~xj‖2)∑
k 6=i exp(−‖L~xi − L~xk‖2)

)]
(4.18)

4It should be noted that in multi-objective optimization problems, there is not a single solution that
simultaneously minimizes each objective function. The solution to multi-objective function is generally a
set of Pareto points. Pareto solutions are those for which improvement in one objective function can only
be achieved with the worsening of at least one other objective function.

5This method goes by the name of AOF (Aggregate Objective Function).
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Note that we are minimizing E by finding an optimal matrix L, and γ1 and γ2 are the
weights assigned to the objective functions of MEGM and NCA respectively. Since the
NCA objective function is supposed to be maximized, we are minimizing the negative
of it in equation 4.18. Any method for solving a single objective function can be used.
Obviously, one could investigate gradient-based methods to optimize for L in equation 4.18,
that is, a simple gradient descent based optimization strategy as employed in MEGM could
be used.

The second possibility when combining the MEGM and NCA objective functions is to
use genetic algorithms6. For example, multi-objective optimization methods such as the
non-dominated sorting genetic algorithm (NSGA-II) (Deb et al., 2002) and the strength
Pareto evolutionary approach two (SPEA-2) (Coello et al., 2007) have been proven to be
very effective. This points to an interesting new direction for learning a data-dependent
distance metric.

6This strategy goes by the name of multi-objective optimization using evolutionary algorithms (MOEA).



Chapter 5

Naive/Semi-naive Metric Learning

This chapter deals with naive and semi-naive metric learning. As discussed in section 3.1,
naive and semi-naive metric learning actually result in feature selection and feature weight-
ing. This chapter provides an alternative perspective on the current methods of feature
selection and feature weighting by viewing them as metric learning algorithms. Two new
metric learning algorithms are proposed. The first proposed algorithm is a generic metric
learning algorithm (GML) that can incorporate any feature weighting criteria and can be
used for naive or semi-naive metric learning. The second proposed algorithm is a mod-
ification of the MEGM complete metric learning algorithm proposed in chapter 4. The
algorithm is modified for semi-naive metric learning. The list of algorithms proposed in
this chapter is given in table 5.1.

5.1 Related Work

As discussed in section 4.1, Lowe (1995) viewed feature selection as metric learning and
proposed an algorithm for semi-naive metric learning. The proposed semi-naive metric
learning algorithm in this chapter (algorithm MEGM-SNML) is similar to the one pro-
posed by Lowe, but with a few small differences. Lowe’s (1995) method seems to be
over-parameterized. Therefore, the algorithm proposed in this chapter is a simpler version
of Lowe’s method. Modifying complete metric learning algorithms for semi-naive metric
learning is common in metric learning research. For example, Xing et al. (2002) pro-
posed a semi-naive metric learning algorithm by modifying their complete metric learning
algorithm (section 4.1).

The feature selection techniques can be categorized into three forms: filter, wrapper
and embedded.

Algorithms Description
GML A general naive and semi-naive metric learning.

MEGM-SNML A modification of algorithm 1 in section 4.2 for semi-naive metric
learning.

Table 5.1: List of Algorithms proposed in chapter 5

67
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• The filter methods of feature selection are applied as a pre-processing step (Press
et al., 1988; Robnik-Sikonja and Kononenko, 2003; Kononenko, 1995). That is, the
relevance of each feature is determined before any classification algorithm is applied.

• The wrapper-based methods for feature selection score features based on the perfor-
mance of a classifier trained using the learning algorithm with those features (Kohavi
and John, 1997; Kohavi and Sommerfield, 1995). In other words, the actual output
of the classifier is used to tune an index that gauges the relevance of each feature.
Once the relevance of each feature is determined, any classification algorithm can
be used for prediction. Note that the algorithm used for prediction can be different
from the one used to measure the feature relevance.

• Like wrapper methods, embedded methods for feature selection rank features based
on the performance of a classifier trained using some learning algorithm with those
features (Guyon et al., 2002; LeCun et al., 1990; Chapelle et al., 2002; MacKay,
1994). Unlike wrapper methods, however, the learning algorithm used for measuring
the relevance of the feature is also used for classification.

As feature selection is actually naive or semi-naive metric learning, we can also categorize
naive/semi-naive metric learning methods as either filter, wrapper or embedded. Also,
complete metric learning algorithms (from chapter 4) can be viewed as either filter, wrap-
per or embedded. For example, the MEGM algorithm can be viewed as an embedded
method as the metric is tuned based on the score of a k-nearest neighbor classifier and
the actual classification is also carried out by k-nearest neighbor classifier.

5.2 Naive and Semi-naive Metric Learning

As discussed in section 3.1, both naive and semi-naive metric learning correspond to learn-
ing the diagonal elements of the distance matrix in a distance measurement framework.
But there is a difference between the two. Naive metric learning learns the diagonal terms
by measuring the relevance of each individual feature separately. The features are as-
sumed to be independent from each other. On the other hand, semi-naive metric learning
measures the relevance of an individual feature in combination with the other features.

Individual feature relevance analysis has been studied extensively in statistics and ma-
chine learning. Different techniques have been proposed that assign scores to features
based on their individual relevances (Rodgers and Nicewander, 1988; Peng et al., 2005;
Cover and Thomas, 2006). Such feature ranking techniques are relatively fast and efficient.
However, these techniques rely on the naive assumption of feature independence, which is
not always true (Guyon and Elisseeff, 2003; Guyon et al., 2004). Although these formula-
tions have been named ‘naive’ and ‘semi-naive’, it should be noted that such an optimistic
assumption of feature independence should not be considered a major drawback. There
exists classification techniques in machine learning which make such an assumption of
feature independence and perform well. For example, Naive-Bayes1 classifiers have been

1A two class posterior probability function in terms of the likelihood function and the prior probability
is given in equation B.2. The naive Bayes classifier assumes that the likelihood function in equation B.2
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shown to outperform other sophisticated alternatives in some cases (Huang et al., 2003).
In the following, some common individual feature relevance measures are discussed.

Correlation Coefficient: The Pearson correlation coefficient is a well known rele-
vance measuring index for individual features (Rodgers and Nicewander, 1988). It can be
used for regression problems and binary classification problems. For multi-class classifi-
cation problems one can use the closely related Fisher coefficient or normalize the class
labels to be used in regression settings. It is defined as the covariance of two variables
divided by the product of their standard deviation. For example, the Pearson coefficient
for feature p is defined as:

cp =
|
∑N

n=1(xnp − x̄p)(yn − ȳ)|√∑N
n=1(xnp − x̄p)2

∑N
n=1(yn − ȳ)2

(5.1)

where x̄p denotes the average value of the data points across the p’th feature and N is the
number of training data.

Mutual Information: In probability and information theory, mutual information
measures the mutual dependence of two random variables (Cover and Thomas, 2006;
Peng et al., 2005). We can define the mutual information between two discrete random
variables as:

I(X,Y ) =
∑
~y∈Y

∑
~x∈X

p(~x, ~y) log
(
p(~x, ~y)
p(~x)p(~y)

)
(5.2)

The relevance of a feature p can be measured by calculating the mutual information
between Xp (that is all data points across the p’th feature) and Y (class labels).

Both the Pearson correlation coefficient and mutual information are useful measures
of the relevance of an individual feature. There is also a need to determine the relevance
of an individual feature in combination with the others. This corresponds to the case
of semi-naive metric learning. One justification of such strategy is that features that are
individually irrelevant may become relevant when used in combination with other features.
In the following, a simple but extremely effective feature relevance index is discussed which
measures the relevance of an individual feature in combination with the other features.

Relief is an excellent technique for ranking individual features according to their
relevances in combination with the others (Kira and Rendell, 1992). The key idea behind
Relief is to iteratively estimate the relevance of a feature based on its ability to discriminate
between neighboring data points. In each iteration, a data point ~x is randomly selected

can be written as:

pj(X) =

PY
k=1

pjk(Xk)

where j is the class index, k is the index running over all features and P is the total number of features.
Though this assumption is not necessarily true, but it simplifies the estimation process manifold. For
example, the individual class probability densities can be estimated by separately using one-dimensional
kernel density estimates.
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along with its two nearest neighbors, one from the same class as ~x (referred to as nearest-
hit (NH)) and another from the opposite class (referred to as nearest-miss (NM)). In each
iteration, the relevance of the p-th feature is updated as:

cp = cp + |xp − [NM(~x)]p|+ |xp − [NH(~x)]p| (5.3)

Relief originally was designed for two class problems (Kira and Rendell, 1992). It is ex-
tended to deal with multi-class problems, noise and missing data in Kononenko (1994).
Numerous other modifications of the Relief algorithm have been proposed. For exam-
ple, Yijun and Jian (2006) proposed an iterative version of Relief. Also, the Simba algo-
rithm which is a modification of Relief where at each iteration the features score used in
the previous iterations is used to calculate the nearest-hit and nearest-miss, was proposed
in Bachrach et al. (2004).

An outline of a general metric learning algorithm that can be used for naive and semi-
naive metric learning is given in algorithm 2, where the learned metric is used in a k-nearest
neighbor framework. Algorithm 2 demonstrates that any feature relevance measure can be
used to train a distance metric. Depending on the relevance measure used, the algorithm
can be categorized as either a naive or a semi-naive metric learning method.

Algorithm 2 GML: Generic algorithm for naive/semi-naive metric learning.

Require:

- ~x0: Testing data.
- {xn, yn}Nn=1: Training data.
- L: P -dimensional unit matrix.

for each feature p do

- Calculate the relevance score cp (either from equation 5.1, 5.2 or 5.3).
- Set L(p, p) = cp.

end for

- Use matrix L for 1-nearest neighbor classification.

5.2.1 MEGM-based Semi-naive Metric Learning

The MEGM metric learning algorithm can be used for semi-naive metric learning. That
is, rather than learning the diagonal and off-diagonal terms of the matrix L in section 4.2,
the algorithm can be easily modified to learn only its diagonal terms. The MEGM based
semi-naive metric learning algorithm (MEGM-SNML) is proposed in this section. Since
we are interested in the diagonal form of the matrix L, we can replace it by the vector
~w which defines the weight associated with each feature or the diagonal element of the
matrix L. Therefore, we can replace equation 4.10 in section 4.2 with:

Wj = exp

(
−
∑P

p=1w
2
p(xip − xjp)2

2σ2

)
(5.4)
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where wp is the weight associated with the feature p and xip denotes the value of the p-th
feature of ~xi. As can be seen from equation 5.4, Wj is the vote cast by the neighbors based
on their distances from the query point. Based on equations 4.7, 4.8 and 5.4, we can write
the gradient of MSE (E) in equation 4.7 with respect to ~w as:

∂E
∂ ~w

=
N∑
i=1

(yi − ŷi)

(
−
∑

j(yj − ŷj)
∂Wj

∂ ~w∑
jWj

)
(5.5)

The discussion from section 4.2 related to the size of the Gaussian kernel (σ in equation 5.4)
centered at each query point is also relevant here. The partial derivative ∂Wj

∂ ~w can be
calculated the same way as in equation 4.13 and will take the form:

∂Wj

∂wp
= −Wj

(
wp(xip − xjp)2

σ2

)
(5.6)

Combining equations 5.5 and 5.6 we can write the gradient of E with respect to vector ~w
as:

∂E
∂ ~w

=
N∑
i=1

(yi − ŷi)
1∑
jWj

∑
j

(yj − ŷj)Wj

(∑P
p=1w

2
p(xp − xpj)2

σ2

)
(5.7)

The MEGM-SNML algorithms employs the same gradient-based optimization strategy of
MEGM algorithm as described in section 4.2. An outline of the MEGM-SNML algorithm
is given in algorithm 3.

Algorithm 3 MEGM-SNML: Modification of MEGM (algorithm 1) for semi-naive metric
learning.

Require:

- x0: Testing data.
- {xn, yn}Nn=1: Training data.
- k: Number of nearest neighbors, k is set to be floor(log2(N)))
- ~w: P -dimensional unit vector.
- L: P -dimensional unit matrix.

- Calculate ~w by using conjugate gradient method as described in the text (gradient of
the objective function is given in equation 5.7).
- Update matrix L such that L(p, p) = wp.
- Use matrix L for 1-nearest neighbor classification.

5.3 Experimental Results

In this section, the performance of naive and semi-naive metric learning on synthetic
data sets is compared. For naive metric learning, the generic metric learning algorithm
(algorithm 2) with the correlation coefficient as the feature relevance measure is used (the
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results are labeled as Corrcoef-NML in the performance graphs). For semi-naive metric
learning, the MEGM-SNML algorithm (algorithm 3) is used (the results are labeled as
MEGM-SNML in the performance graphs). The data is generated from the following
three functions:

• function 1: y = x2
1 + ε.

• function 2: y = sin(2πx1 + π/2) + ε.

• function 3: y = sin(2πx1)sin(2πx2) + ε.

where ε denotes Gaussian random noise with a mean of zero and variance of five. 1000
data points were generated from each function. The data was embedded in 49 dimensions
of uniform random noise for the first two functions and 48 dimensions of uniform random
noise for the third function. Hence each data point was represented as a 50-dimensional
feature-vector. It can be seen that that functions 1 and 2 depends on the first feature only
whereas function 3 depends on the first and second feature.

The performance of naive and semi-naive metric learning on these synthetic data sets is
shown in figure 5.1 and 5.2. Figure 5.1 shows the effect of learning a naive and semi-naive
metric on the MSE of a k-nearest neighbor classifier. The results are shown for varying
numbers of training data. It can be seen that both naive and semi-naive metric learning
result in significant reduction of MSE for function 1 as the number of training data is
increased. But for function 2 and function 3, naive metric learning algorithm did not
perform well (in fact it failed miserably) and MSE is quite high even for large numbers of
training data (figures 5.1(b) and 5.1(c)). Semi-naive metric learning, on the other hand,
resulted in a significant decrease of MSE for both functions 2 and 3 as the number of
training data was increased (figures 5.1(b) and 5.1(c)).

The feature selection performance of the naive and semi-naive metric learning algo-
rithms is shown in figure 5.2. The bar graphs denotes the average correctness rate over 100
experiments (an experiment is successful if the metric learning algorithm selects the most
relevant features). The result follows the trend from figure 5.1. Both the naive and semi-
naive metric learning algorithms performed well for function 1. The naive metric learning
algorithm again failed completely in selecting the relevant feature for the data generated
from functions 2 and 3 (figure 5.2(b) and 5.2(c)). The performance of semi-naive metric
learning (for feature selection) improved significantly as the number of training data was
increased (figures 5.2(b) and 5.2(c)).

5.3.1 UCIML Databases

In this section, the performance of various naive and semi-naive metric learning methods
on the UCIML databases from section 4.3.1 is compared. The details of these databases
are given in table F.1. The error rate of each method is obtained using 40 rounds of 2-fold
cross-validation. Prior to training, all features were normalized to have zero mean and
unit variance. The classification performance in terms of the error rates of each of the
following methods is shown in figures 5.3 and 5.4:



5.3. EXPERIMENTAL RESULTS 73

0 50 100 150 200 250 300 350 400
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Number of Training data

E
rr

o
r 

R
a

te

 

 

Corrcoef−NML
MEGM−SNML

(a)

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Training data

E
rr

o
r 

R
a

te

 

 

Corrcoef−NML
MEGM−SNML

(b)

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of Training data

E
rr

o
r 

R
a

te

 

 

Corrcoef−NML
MEGM−SNML

(c)

Figure 5.1: Comparison of the classification performance of naive and semi-naive metric
learning algorithm, in terms of the error rates, on the synthetic data, The change in
MSE of a k-nearest neighbor classifier trained for the data generated from function 1
(figure 5.1(a)), function 2 (figure 5.1(a)), and function 3 (figure 5.1(a)) by varying the
number of training data is shown.

• KNN: A simple 1-nearest neighbor classifier with the Euclidean distance.

• Corrcoef: A 1-nearest neighbor classifier based on a metric tuned through the
GML algorithm (algorithm 2) with the correlation coefficient (equation 5.1) as the
relevance index.

• Infogain: A 1-nearest neighbor classifier based on a metric tuned through the GML
algorithm (algorithm 2) with the mutual information measure (equation 5.2) as the
relevance index.

• Relief: A 1-nearest neighbor classifier based on a metric tuned through the GML
algorithm (algorithm 2) with relevance score based on the Relief algorithm for feature
selection (equation 5.3).

• MEGM-SNML: A 1-nearest neighbor classifier based on a metric tuned through
the MEGM-SNML algorithm (algorithm 3).

As can be seen from figures 5.3 and 5.4, the MEGM-SNML algorithm performed best on
ten out of 19 UCIML databases. Corrcoef (naive), Infogain (naive) and Relief (semi-naive)
performed best on two databases each. No method resulted in any performance gain of the
KNN classifier on three databases (hepatitis, monks2, liver-disorder). It should be noted
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Figure 5.2: Comparison of the feature selection capability of naive and semi-naive metric
learning algorithm on the synthetic data, Figure 5.2(a): function 1, Figure 5.2(b): function
2, Figure 5.2(b): function 3.

that both naive and semi-naive based metric learning methods resulted in performance
improvement of the k-nearest neighbor classification on 16 out of 19 databases, even though
both forms of metric learning assume feature independence. The results in figures 5.3
and 5.4 suggest that perhaps the features in most data sets are independent from each
other. This may be the likely reason why Naive Bayes classifiers have performed well
despite their assumption of feature independence.
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Figure 5.3: Error rate comparison of KNN, Corrcoef, Infogain, Relief and MEGM-SNML
on various UCIML databases (Continued in figure 5.4).
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Figure 5.4: Error rate comparison of KNN, Corrcoef, Infogain, Relief and MEGM-SNML
on various UCIML databases (Continued from figure 5.3).



Chapter 6

Local Adaptive Metric Learning

This chapter introduces a local adaptive metric learning method and analyzes naive, semi-
naive and complete metric learning methods in the local setting. In this chapter, two new
algorithms for local adaptive metric learning will be proposed which are based on the
application of naive metric learning in the neighborhood of a query point. The proposed
algorithms will be explained in section 6.2 and the experimental evaluation of the proposed
algorithms will be provided in section 6.3. Current work in local adaptive metric learning
determines the relevance of each feature at a query point using some numerical index.
This index gauges the relevancy of the feature and controls the form of neighborhood
around the query point. The proposed index in this work is inspired by work in the area
of boosting (section 10.3), where at each iteration the data is partitioned across the most
discriminative dimension (Schapire and Singer, 1998). The index is based on the logit-
transform of the class probability estimate. Using this index the dimension is selected that
is the most discriminative. This is similar to ‘boosting classifiers’ where at each iteration
a feature is selected with which the data can be classified best (Friedman et al., 2000).
The list of algorithms proposed in this chapter is given in table 6.1.

In the following discussion, the query point will be denoted by ~x0 and training points
by ~xn, where n = [1, . . . , N ], N is the number of training data, P denotes the number of
features and ~x0p and ~xnp denote the value at the p-th feature of ~x0 and ~xn data points
respectively.

6.1 Related Work

An early inspirational work in the area of local adaptive metric learning is by Friedman
(1994) in which he discussed in detail various issues that need to be addressed for nearest

Algorithms Description
BoostML1 An iterative adaptive metric learning algorithm which divides an

input space at each step based on the most relevant feature.
BoostML2 Modification of BoostML1, divides an input space at each step

based on the learned metric.

Table 6.1: List of Algorithms proposed in chapter 6
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neighbor classification in high dimensions. Local metric learning algorithms are proposed
for reducing bias in high dimensions. The two proposed algorithms in Friedman (1994),
Machete and Scythe, were the major inspiration for the algorithms proposed in this chap-
ter. Both Machete and Scythe are based on the learning of a local metric around the query
point by recursively splitting the neighborhood across the feature which is most relevant.
The relevance of feature p at query point ~x0 is calculated as:

I2
p (~x0) =

C∑
j=1

(E[yj ]− E[yj |~x0p = ~xnp])2

=
C∑
j=1

(
1
C
− E[yj |~x0p = ~xnp]

)2

(6.1)

Equation 6.1 represents a measure of the impurity of the class labels conditioned on the
term ~x0p = ~xnp. It is also related to the well known ‘Gini’ (entropy-based) index. The
main difference of the proposed algorithms in this chapter from Friedman (1994) is the
feature relevance determination. In the proposed methods a feature is considered more
relevant if it is more discriminatory, whereas in Friedman (1994) a feature is considered
relevant if the class label varies the most.

Hastie and Tibshirani (1996) have proposed an adaptive metric learning algorithm
based on linear discriminant analysis (LDA). A distance metric is computed as a product of
properly weighted within (W ) and between sum-of-square (B) P×P dimensional matrices.
The proposed algorithm ‘Discriminative Adaptive Nearest Neighbor’ (DANN) estimates
the W and B matrices locally and uses them to form a local distance metric in an iterative
fashion. The matrix A takes the following form:

A = W−1/2(W−1/2BW−1/2 + εI)W−1/2 (6.2)

where I is the identity matrix and ε is a tuning parameter. Though sound in theory, the
method has limitations. The major limitation is that in high dimensions we may not have
sufficient data to fill in the P × P within class sum-of-square matrix (due to sparsity).
Hastie and Tibshirani (1996) also found it more effective to estimate only the diagonal
terms of within class sum-of-square matrix and assume that the off-diagonal terms are zero.
This is especially true if the dimensionality of the input space is large, as there will be
insufficient data locally to estimate the Θ(P 2) elements of the within class sum-of-square
matrix.

Domeniconi et al. (2000) proposed an adaptive metric learning method based on Chi-
squared distance analysis. A weighted Chi-squared distance between two points ~x0 and
~x1 in terms of their class posterior probabilities is defined as:

d(~x0, ~x1) =
C∑
j=1

(
[P (j|~x1)− P (j|~x0)]2

P (j|~x0)

)
(6.3)
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Note, P (j|~x) = P (j|~x0) suggests that P (j|~x) can be approximated at ~x0. Their pro-
posed algorithm ADAMENN measures the relevance of the feature by replacing P (j|~x0)
in equation 6.3 in the following way:

Ip(~x0) =
C∑
j=1

(
[P (j|~x)− P (j|~x0p = ~xnp)]2

P (j|P (j|~x0p = ~xnp)

)
(6.4)

where Ip represents the relevance of feature p at query point ~x0.
Some other notable techniques for local adaptive metric learning are Peng et al. (2001);

Janusz (2005); Domenciconi et al. (2005). The algorithm proposed in Domenciconi et al.
(2005) used an SVM classifier for determining feature relevance. The decision function
of an SVM is used to determine the most discriminant direction in the neighborhood of
a query point. Such a direction provides a local feature weighting scheme. For example,
if the decision boundary traced by the SVM is f(~x) = 0 in the input space, the gradient
vector ~gi = ∇if computed at any point i on the decision boundary f points to the
direction perpendicular to the decision boundary in the input space at point i. The vector
~gi identifies the orientation in the input space along which the projected training data are
all well separated in the neighborhood around i. Therefore, the orientation given by ~gi,
and any orientation close to it, carries highly discriminant information for classification.
This information can be used to define a local measure of feature relevance. A similar but
slightly modified method for metric learning based on an SVM is proposed in Peng et al.
(2001).

Local adaptive metric learning methods are very close in nature to query-sensitive
metric learning (Zhan et al., 2009; Zhou and Dai, 2006). Zhou and Dai (2006) have
investigated a query-sensitive metric for content-based image retrieval.

6.2 Local Adaptive Metric Learning

In this section, two proposed algorithms, BoostML1 and BoostML2, for local adaptive
metric learning are described. Measuring feature relevance is actually the key to designing
efficient local, as well as global, metric learning algorithms. Before describing the details
of the proposed algorithms, the relevance measure used by the proposed algorithms is
described.

6.2.1 Feature Relevance

For any query point ~x0, the relevance (c) of the feature p is estimated as:

cp(~x0) =
Ip(x0p)∑P
p=1 Ip(x0p)

(6.5)

where Ip(~x0) is defined as:

Ip(~x0) =
C∑
c=1

abs
(

1
2

ln
(
P (c|xnp = x0p) + κ

P (c|xnp 6= x0p) + κ

))
(6.6)
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The κ in equation 6.6 is a small quantity introduced for numerical tractability. A small
Ip (close to zero) implies that there is an equal split of positive and negative training data
points in the neighborhood of ~x0 across the feature p. A large value of Ip implies that one
class dominates the other class across feature p, therefore, feature p is more relevant and
should be given more weight.

The computation of probabilities P (c|xnp = x0p) and P (c|xnp 6= x0p) in equation 6.6
is not trivial, as we may not have sufficient data in the neighborhood of the query point
to accurately define them. The probability P (c|xnp = x0p) is computed as:

P (c|xnp = x0p) =

∑
~xn∈N(~x0) 1(|xnp − x0p| ≤ δp)1(yn = c)∑

~xn∈N(~x0) 1(|xnp − x0p| ≤ δp)
(6.7)

A small neighborhood around query point ~x0 denoted by N(~x0) is defined and a value of
δp is chosen to make sure that the neighborhood contains L points, such that:

N∑
n=1

1(|xnp − x0p| ≤ δp) = L (6.8)

In other words we look for at least L points that are close to the query point on feature
p and compute the probabilities in equation 6.6 using these points. The output of feature
relevance analysis is a P × P diagonal matrix whose terms are the estimated relevances
of the features. Based on equation 6.6, we can specify a local distance metric at point ~x0

using matrix A(~x0), where:

A(~x0) =


c1 0 · · · 0
0 c2 · · · 0
...

...
. . .

...
0 0 · · · cp

 (6.9)

6.2.2 Details of the Algorithm

Given the training data {(~xn, yn)}Nn=1, the goal is to estimate the label of the query point
~x0. The proposed BoostML1 algorithm starts by initializing the neighborhood of the
query point to be the entire measurement space (R0). The relevance of each feature is
determined in this neighborhood of K points (initially K = N) using equation 6.5. The
feature having the highest relevance score is selected, that is:

p∗(~x0) = argmax1≤p≤P cp(~x0) (6.10)

The neighborhood is divided into two based on the feature p∗. The extent of division is
controlled by the parameter ζ (algorithm 4). It should be noted that different features
can be selected for splitting the neighborhood for different query points ~x0 based on the
relevance of the features at that location in the input measurement space. The split divides
the input measurement space into two regions: R1(~x0), that contains the query point and
the H training points that are closest to the query point ~x0 on the chosen feature p∗,
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and the other (complement) region R2(~x0) that contains K −H points that are farthest
from ~x0 across feature p∗. R2(~x0) is removed from further consideration. Thus the result
of the split is just one region, R1(~x0). The above procedure is then applied recursively
on region R1(~x0) until some k number of data points are left in R1. The neighborhood
represented by these k points is used to determine the label of the query point ~x0. The
method is named BoostML1 and its outline is given in algorithm 4. Refer to figure 6.1 for
an illustration of BoostML1 algorithm.

Algorithm 4 BoostML1: Local adaptive metric learning algorithm.

Require:

- ~x0: Testing data.
- {~xn, yn}Nn=1: Training data.
- k : Number of elements in the final neighborhood.
- ζ: Stepping size.
- Initialize K = N and A as a p dimensional unit matrix.
- NK(~x0) denotes neighborhood of ~x0 consisting of K points.

while flag do

- Get Feature Relevance index cp(~x0) at ~x0 (equation 6.5), update A (equation 6.9).
- Choose feature r = argmaxp c(~x0).
- Modify neighborhood size parameter K, that is, K = ζK.
- Update NK(~x0) by finding K data points in the neighborhood of ~x0 (NK(~x0)) across
the feature r only.
if NK(~x0) < k then

flag = false.
end if

end while

- Perform k-nearest neighbor classification in the final neighborhood of ~x0.
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Algorithm 5 BoostML2: Local adaptive metric learning algorithm, variant of BoostML1

Require:

- ~x0: Testing data.
- {~xn, yn}Nn=1: Training data.
- k : Number of elements in the final neighborhood.
- ζ: Stepping size.
- Initialize K = N and A as a p dimensional unit matrix.
- NK(~x0) denotes neighborhood of ~x0 consisting of K points.

while flag do

- Get Feature Relevance index cp(~x0) at ~x0 (equation 6.5), update A (equation 6.9).
- Modify neighborhood size parameter K, that is, K = ζK.
- Update NK(~x0) by finding all K data points in the neighborhood of ~x0 (NK(~x0))
using the matrix A.
if NK(~x0) < k then

flag = false.
end if

end while

- Perform k-nearest neighbor classification in the final neighborhood of ~x0.

As can be seen in algorithm 4, the splitting procedure in BoostML1 is recursively
applied until there are only k training observations left in the final neighborhood. At
each step a region is split based on the feature (p∗) that is estimated to be the most
relevant in terms of capturing the variation of the target functions within that region
(equation 6.10). All diagonal terms of the matrix A (equation 6.9) are ignored except the
one with the maximum value, which is retained to split the region at each step. This is a
greedy approach which is not necessarily effective all the time. BoostML2 is a similar to
BoostML1 but has a different splitting procedure, i.e. updating procedure for NK(~x0). At
every iteration it splits the region based on all the terms in the matrix A (equation 6.9)
as computed in the current iteration. It will be shown in section 6.3 that BoostML2 is an
improvement over BoostML1 (algorithm 4). An outline of BoostML2 algorithm is given
in algorithm 5.

6.3 Experimental Results

In this section, the results of the proposed adaptive metric learning algorithms on UCIML
databases are shown (Frank and Asuncion, 2010). The details of these databases are
given in table F.1 and appendix F. Databases were selected such that the competing
techniques perform best on at least one of the databases. To obtain the error rates, leave-
one-out cross-validation was used for the Iris, Ionoshphere, Dermatology, Echocardiogram
and Heart data sets, whereas ten rounds of 2-fold cross-validation were used for the Credit
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Figure 6.1: Demonstration of BoostML1 on synthetic 2-dimensional data. The classes are
represented as red and blue crosses. Green ellipses show the learned distance metric at
different points in the input measurement space.

and Diabetes databases1. Prior to training, all features were normalized to have zero mean
and unit variance. The classification performance in terms of the error rates of each of
the following methods is shown in figure 6.3.

• KNN: A simple k-nearest neighbor classifier with the Euclidean distance.

• DANN: Discriminative Adaptive Nearest Neighbor classifier as described in sec-
tion 6.1 (Hastie and Tibshirani, 1996).

• ADAMENN: Adaptive metric nearest neighbor classification technique based on
chi-squared analysis (Domeniconi et al., 2000).

• Machete: Recursive partitioning algorithm (Friedman, 1994).

• Scythe This is a generalization of the Machete algorithm in which features influence
each split in proportion to their estimated local relevance, in contrast to the ‘winner-
takes-all’ strategy of Machete (Friedman, 1994).

• BoostML1: Algorithm 4. The implementation details are described in the following
discussion. The results are denoted as ‘BML1’ in the performance graphs.

1These experimental settings were inspired by Domeniconi et al. (2000); Friedman (1994) as the compar-
ison with ADAMENN, Machete and Scythe metric learning algorithms was one of the motivation behind
the proposed algorithms.
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Figure 6.2: Boxplots depicting the robustness of KNN, DANN, ADAMENN, Machete,
Scythe, BoostML1 and BoostML2 adaptive metric learning algorithms tested on eight
UCIML databases.

• BoostML2: Algorithm 5. Variant of BoostML1 as described in section 6.2. The
results are denoted as ‘BML2’ in the performance graphs.

As can be seen from figure 6.3, both the BoostML1 and BoostML2 metric learning algo-
rithms resulted in the improvement of k-nearest neighbor classification. This improvement
comes at an extra cost. BoostML1 and BoostML2 have introduced two new tuning pa-
rameters, L and ζ. The value of L in equation 6.8 must be specified to compute the
probabilities in equation 6.7. It can be seen that L controls the size of the neighborhood
and, therefore, determines the bias-variance trade-off. In the experiments, it was found
that L does not affect the classification performance provided it is neither too small nor
too large. L = 20 was used for BoostML1 and BoostML2 in all experiments. There
was not any significant improvement in the results for setting the value of L less than
or greater than 20. The ζ parameter, which controls the splitting of the region at each
step, is critical to the classification performance. A large value of ζ will result in a better
performance, but at an increased computational cost. On the other hand, a small value
of ζ will result in poorer performance but it will be faster. A tradeoff has to be achieved
between computational cost and performance. ζ = 0.8 was used in all the experiments.

To compare the robustness of BoostML1 and BoostML2 with other local adaptive
metric learning algorithms, the same procedure introduced in section 4.3.1 was used. The
distribution bm for each method over all eight databases is shown in terms of the boxplots
in figure 6.2. As can be seen, BoostML2 turned out to be the most robust of all the
methods, with DANN coming second. Machete and BoostML1 also performed well, with
the exception of an outlier in both cases.
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Figure 6.3: Error rate comparison of KNN, DANN, ADAMENN, Machete, Scythe,
BoostML1 and BoostML2 on various UCIML databases. Figure 6.3(a): credit screen-
ing, Figure 6.3(b): dermatology, Figure 6.3(c): diabetes, Figure 6.3(d): echocardiogram,
Figure 6.3(e): statlog heart, Figure 6.3(f): ionosphere, Figure 6.3(g): Iris, Figure 6.3(h):
sonar.
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Chapter 7

Global Adaptive SVM

As discussed in section 2.4.3, learning kernel parameters is actually the learning of a data-
dependent distance metric. This chapter deals with the learning of kernel parameters
in an SVM formulation by learning a data-dependent distance metric using the MEGM
algorithm that was discussed in chapter 4. The related work on metric learning and kernel
tuning in the context of SVM classifiers will be discussed in section 7.1. Two algorithms
that aim to improve SVM classification performance by learning a data-dependent distance
metric will be presented in section 7.2. The experimental evaluation of the proposed
algorithms will be given in section 7.3, where the algorithms will be tested on various
UCIML, digit and face databases. The list of algorithms proposed in this chapter is given
in table 7.1.

7.1 Related Work

Metric learning (or kernel tuning) algorithms proposed in the SVM framework can be
categorized as either naive or semi-naive metric learning methods. To the best of our
knowledge, complete metric learning methods have not been investigated in the SVM
framework. In the following some well known techniques for tuning SVM kernel parameters
are explained.

From equation D.16 we can write the decision function of an SVM classifier as:

y(~x) = sign

(
N∑
i

α∗i yikA(~xi, ~x) + β∗0

)
(7.1)

Algorithms Description
GASVM1 Train a support vector machine classifier using a data-dependent

distance metric (a metric is learned for all C classes).
GASVM2 Train a support vector machine classifier using a data-dependent

distance metric (a separate metric is learned for each class).

Table 7.1: List of Algorithms proposed in chapter 7
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Chapelle et al. (2002) proposed an algorithm for estimating SVM hyper-parameters, that
is α and kA in equation 7.1. The matrix A is assumed to be a diagonal matrix. The values
of A and α are chosen such that the f in equation 2.24 is maximized by minimizing some
model selection criterion, for example radius-margin bound, etc. The algorithm proposed
by Chapelle et al. (2002) is:

1. Initialize A to some random value.

2. Find the α in equation 2.24 using the standard SVM algorithm, that is:

α∗ = arg max
α

f(α,A) (7.2)

3. Using the gradient-based model selection criterion of Bengio (2000) for optimizing
the model parameters, the matrix A is updated such that the radius-margin bound
(T ) is minimized.

A∗ = arg min
A

T (α∗, A) (7.3)

4. Go to step 2 until convergence.

Chapelle et al.’s (2002) algorithm for tuning the parameters of an anisotropic kernel is ap-
plied to the classification of high resolution computed tomography images in Shamsheyeva
and Sowmya (2004). Inspired by Chapelle et al. (2002), Keerthi (2001) proposed some
techniques for efficient tuning of SVM hyper-parameters using iterative algorithms. The
radius/margin bound is taken as an index to be minimized and gradient-based methods
from Chapelle et al. (2002) are used. The algorithm proposed in Keerthi (2001) is also
modified for feature selection by Chapelle and Keerthi (2008).

Amari and Wu (July 1999) proposed the idea of learning a data-dependent kernel
based on the Riemannian geometrical structure induced in the input space. The idea is
to enlarge the spatial resolution around the separating hyperplane (decision boundary)
by modifying the kernel such that the separability between the two classes is increased.
Since, the decision boundary is unknown, their algorithm works by computing an SVM
decision boundary first by using an initial kernel k(., .). The kernel is then modified as:

k̃(~x, ~xi) = c(~x)c(~xi)k(~x, ~xi) (7.4)

where c(~x) is a positive scalar function and represents the conformal transformation of the
kernel k(~x, ~xi) by factor c(~x). It is defined as:

c(~x) =
∑
i∈SV

αiexp
(
−‖~x− ~xi‖2

2τ2

)
(7.5)

where τ is a tunable parameter and SV represents all support vectors. A second SVM
classifier is trained with the modified kernel k̃(~x, ~xi). This algorithm inspired the local
adaptive metric learning algorithm by Domenciconi et al. (2005) discussed in chapter 6.
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An approach based on learning the parameters of the Gaussian kernel by maximizing
the kernel polarization using a gradient-based method is proposed in Xu and Liu (2009).
The kernel polarization is defined as the Frobenius inner product between the kernel and
the ideal kernel matrix (yyT ) which compares the similarity of the kernel with the ideal
kernel. Parameters of the Gaussian kernel are sought that result in the maximization of
the kernel polarization.

Even though a lot of methods have been proposed to tune kernel parameters for SVM,
cross-validation is still the most popular approach. It may not be computationally efficient,
but it is effective in terms of the classification performance. For example the proposed
method of kernel tuning by Chapelle et al. (2002) was tested on five UCIML databases
and compared with the cross-validation approach. There was not a great gain in the
classification performance reported on the UCIML databases and the performance was
quite similar to cross-validation. The proposed method, however, has advantage of being
computationally efficient. Similarly the method in Amari and Wu (July 1999) was tested
on only two UCIML databases and again the results were comparable to cross-validation.
One can say that the cross-validation method is state of the art when it comes to learning
the kernel parameters in the SVM framework.

7.2 Global Adaptive SVM

In this section, algorithms for training an SVM classifier with a data-dependent distance
metric are proposed. A complete metric learning algorithm in the k-nearest neighbor
framework (algorithm 1) is used for learning the parameters of the Gaussian kernel. The
outline of the proposed algorithms ‘globally adaptive SVM’ (GASVM1 and GASVM2) is
given in algorithms 6 and 7. Although the algorithms rely on MEGM to learn the kernel
parameters, any naive, semi-naive or complete metric learning algorithm that gives a linear
transformation of the data by learning a transformation matrix A can be used.

The proposed GASVM1 algorithm tunes the kernel by learning a data-dependent dis-
tance metric using MEGM before training an SVM classifier. Since an SVM is a binary
classifier, C SVM classifiers need to be trained for C classes (with the one-versus-all strat-
egy). Once the matrix A is learned, the kernel kA is used by all C SVM classifiers when
classifying a test point (~x0). GASVM2 is a slight variant of GASVM1. Rather than learn-
ing one kernel for all the categories, GASVM2 learns a different kernel using MEGM for
each category. The learned kernel kAc is saved with the classifier for category c. Whenever
the classifier c is used to classify the test point (~x0), it uses the learned kernel (metric) kAc
to measure the similarity. As will be shown in section 7.3, in terms of the classification
performance, both GASVM1 and GASVM2 perform equally well on different data sets.
Since GASVM1 uses only one kernel for all classifiers, it is more computational efficient
than GASVM2. It should be noted that, though other kernels can be incorporated in
global adaptive SVM formulation, the scope of the work is limited to Gaussian kernels.
Since Gaussian kernels have been shown to perform extremely well on a huge variety of
data sets and are widely used, this should not be considered as a drawback (Cover and
Thomas, 2006; Chapelle et al., 2002). However, in those cases where similarity is more



90 CHAPTER 7. GLOBAL ADAPTIVE SVM

efficiently measured by some other kernel, for example linear or polynomial, the use of
global adaptive SVM algorithms may not be beneficial.

Algorithm 6 GASVM1: Train an SVM classifier using a data-dependent distance metric.

Require:

- ~x0: Testing data.
- {~xn, yn}Nn=1: Training data.

- Get a data-dependent distance metric (matrix A) using MEGM such that A = LTL.
for c = 1, 2, . . . C do

- Train an SVM classifier for category c using kernel:

kA(~xi, ~xj) = exp
(
−‖L~xi − L~xj‖22

)
end for

- Use C SVM classifiers in one-versus-all way to classify ~x0 using the kernel kA.

Algorithm 7 GASVM2: Train an SVM classifier using a data-dependent distance metric.

Require:

- Testing data: ~x0.
- Training data: {~xn, yn}Nn=1.

for c = 1, 2, . . . C do

- Get a data-dependent distance metric (matrix A) using MEGM for category c such
that A = LTL.
- Train an SVM classifier for category c using kernel:

kAc(~xi, ~xj) = exp
(
−‖L~xi − L~xj‖22

)
end for

- Use C SVM classifiers in one-versus-all way to classify ~x0 using the pool of kernels
{kAc}Cc=1.

7.3 Experimental Results

In this section, the performance of the proposed globally adaptive SVM algorithms is
compared with other standard SVM and nearest neighbor formulations on various UCIML,
face and digit databases. The details of UCIML databases is given in appendix F.
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7.3.1 UCIML Databases

The number of data, features and classes for each UCIML database used is reported in
table F.1. The error rate of each method is obtained using 40 rounds of 2-fold cross-
validation. Prior to training, features in all the databases were normalized to have zero
mean and unit variance. The classification performance in terms of the error rate of each
of the following methods for different databases is shown in figures 7.1, 7.2, 7.3 and 7.4.

• KNN: Simple 1-nearest neighbor classification with the Euclidean distance.

• SVM: Standard SVM formulation that is, a multi-class SVM with a Gaussian ker-
nel is used. The C parameter for the SVM is tuned through cross-validation (that is
chosen from the set: {1, 10, 100, 1000}). The value of σ is set to be the average dis-
tance of k-nearest neighbors following the insight from Zhang, Marszalek, Lazebnik
and Schmid (2006); Varma and Ray (2007). A one-versus-all strategy is employed
for multi-class classification.

• OSVM: Similar to standard SVM, but both the C and σ parameters are opti-
mized using cross-validation. This formulation is called optimized SVM (OSVM).
The C and σ parameters are chosen from the sets: C = {1, 10, 100, 1000} and
σ = {0.1, 0.5, 1, 2, 3, 5} respectively.

• GASVM1: Global adaptive SVM algorithm (algorithm 6).

• GASVM2: Global adaptive SVM algorithm (algorithm 7).

The value of C for both GASVM1 and GASVM2 is not optimized and was set equal
to ten in all experiments.

It can be seen from figures 7.1, 7.2, 7.3 and 7.4, that out of 21 UCIML databases,
GASVM1 performed best on 11. On the other hand, GASVM2 performed best on four
databases. OSVM and KNN performed best on three databases each. GASVM1 perfor-
mance is very close to the standard and optimized SVM in most cases. These results are
encouraging because, as mentioned before, SVM and OSVM requires the tuning of kernel
parameters through an expensive cross-validation procedure, whereas the global adaptive
SVM algorithms have no such tuning involved. It should be noted that the results obtained
with GASVM2 have particularly high variance on most databases, for example balance and
hayesroth (figures 7.1(a) and 7.1(c)). One likely reason for such high variance may have to
do with its reliance on MEGM for learning the kernel parameters. Since GASVM2 learns
a different kernel for each category, there are more chances that local minima will affect
its performance. Although the global adaptive SVM methods performed well on a variety
of databases, it can be seen from figure 7.3 that on the ionosphere, monks2 and satimage
databases, the optimized SVM (OSVM) outperformed global adaptive SVM methods.

Surprisingly, the KNN method performed better than standard SVM, OSVM and
global adaptive SVM methods on the pageblock, parkinson and vowel databases. As dis-
cussed in section 7.2, the formulation of global adaptive SVM methods assumes a Gaussian
kernel. The success of global adaptive SVM methods on 15 out of 21 UCIML databases,
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suggests that the assumption of Gaussian kernel is safe and reasonable on most data sets.
However, there are some exceptions, as depicted in the results in figure 7.4. The likely
reason for the poor performance of SVM methods on these databases might be the form
of the kernel. An SVM trained with a linear or polynomial kernel may perform better on
these databases.

7.3.2 Faces, USPS and Isolet databases

This section deals with the performance evaluation of the global adaptive SVM algorithms
on the face, digit and Isolet databases from section 4.3. The detail of databases used in this
section is given in table 4.2. The images in all databases are pre-processed for efficiency
as described in section 4.3. That is, the dimensionality of the feature-vector representing
each image is reduced by using PCA.

The classification performance in terms of the correctness rate of each of the following
methods is shown in figure 7.5 and 7.6:

• KNN: Simple 1-nearest neighbor classification with the Euclidean distance.

• SVM: Same as in section 7.3.1.

• MEGM-KNN: MEGM (algorithm 1) as described in chapter 4.

• GASVM1: Same as in section 7.3.1.

• GASVM2: Same as in section 7.3.1.

It can be seen from figures 7.5 and 7.6 that the global adaptive SVM methods perform
better than the other competing methods on all except caltechfacesB where MEGM-KNN
performed best. The results reveal that learning the kernel parameters by employing
metric learning algorithms from the k-nearest neighbor framework, for example MEGM,
can result in significant improvement in standard SVM performance. Also the results are
better than the standard MEGM-KNN formulation, where a 1-nearest neighbor classifier
is trained using the metric learned using MEGM.
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Figure 7.1: Comparison of the error rates of global adaptive SVM methods with KNN,
SVM, OSVM on various UCIML databases. GASVM1 performed better than the other
methods.



94 CHAPTER 7. GLOBAL ADAPTIVE SVM

KNN SVM OSVM GSVM1 GSVM2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Techniques

E
rr

o
r 

R
at

e

sement (2310,19,7)

(a)

KNN SVM OSVM GSVM1 GSVM2
0

0.05

0.1

0.15

0.2

0.25

0.3

Techniques

E
rr

o
r 

R
at

e

tictactoe (958,9,2)

(b)

KNN SVM OSVM GSVM1 GSVM2
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Techniques

E
rr

o
r 

R
at

e

dermatology (358,34,6)

(c)

KNN SVM OSVM GSVM1 GSVM2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Techniques

E
rr

o
r 

R
at

e

diabetes (768,8,2)

(d)

Figure 7.2: Comparison of the error rates of global adaptive SVM methods with KNN,
SVM, OSVM on various UCIML databases. GASVM2 performed better than the other
methods.
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Figure 7.3: Comparison of the error rates of global adaptive SVM methods with KNN,
SVM, OSVM on various UCIML databases. OASVM performed better than the other
methods.
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Figure 7.4: Comparison of the error rates of global adaptive SVM methods with KNN,
SVM, OSVM on various UCIML databases. KNN performed better than the other meth-
ods.
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Figure 7.5: Comparison of the correctness rate of global adaptive SVM methods with
KNN, MEGM-KNN and standard SVM on various face databases. The mean and standard
deviation of the correctness rate over ten runs (each run with different training data) is
reported. The number of training images per category, number of testing images per
category and the number of Eigen-vectors used for each database is given in table 4.2.
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Figure 7.6: Comparison of the correctness rate of global adaptive SVM methods with
KNN, MEGM-KNN and standard SVM on various USPS and digit database. The mean
and standard deviation of the correctness rate over ten runs (each run with different
training data) is reported. The number of training images per category, number of testing
images per category and the number of Eigen-vectors used for each database is given in
table 4.2.
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Chapter 8

Local Adaptive SVM

Recently, local SVM (LSVM) classifiers have been proposed that aim to combine the
computational efficiency of a k-nearest neighbor classifier and the classification efficiency
of an SVM classifier (Zhang, Berg, Maire and Malik, 2006). The idea is that, rather
than training a single global SVM classifier for the entire training data, a separate SVM
classifier can be trained in the neighborhood of each query point. One can extend the
idea of the global adaptive SVM classification from chapter 7 to LSVM classification. In
this chapter local adaptive SVM (LASVM) classifiers will be introduced which are based
on learning a global data-dependent distance metric using a complete metric learning
algorithm and training a LSVM classifier in the modified neighborhood. As discussed in
section 2.4.5, the motivations behind LASVM classification are the same as those behind
local adaptive k-nearest neighbor classification. The goal of this chapter is to put local
SVM classifiers in the context of kernel parameter tuning. The related work in the area
of LSVM classification will be discussed in section 8.1. In section 8.2, a novel LASVM
classification algorithm, which is aimed at improving LSVM performance, will be proposed.
The experimental results comparing the performance of the proposed algorithm will be
provided in section 8.3. The computational efficiency of LSVM classifiers will be discussed
in section 8.4.

Though extremely popular and efficient, there are at least two issues that need to
be addressed when training SVM classifiers. First, the SVM is designed for binary clas-
sification problems. For multi-class classification, one has to resort to one-versus-all or
one-versus-one classification strategies. This means that the model becomes more and
more complicated as the number of classes increases. Also, any time a new category is
added, all classifiers have to be retrained. This results in very long training and testing
times, rendering them computationally inefficient. The second issue is related to the tun-
ing of SVM hyper-parameters for example C and kernel parameter σ in equation 2.24. As
discussed in section 2.4.3, these parameters are typically tuned through cross-validation
schemes that are computationally expensive.

Local methods, such as local logistic regression and k-nearest neighbor methods, pro-
vide an alternative strategy to training a complex global model. As discussed in chapter 2,
k-nearest neighbor methods in particular have been shown to be very effective for classifi-
cation and, with the right distance measure, they can out-perform far more sophisticated

97
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alternatives (Berg et al., 2005; Belongie et al., 2005; Hastie and Tibshirani, 1996; Sripe-
rumbudar et al., 2008). Still, the fundamental strength of the k-nearest neighbor classifier
stems from its simplicity. Unlike SVM, the k-nearest neighbor classifier deals with multi-
class problems effortlessly. The success of k-nearest neighbor methods, however, has taught
two valuable lessons: first, good recognition performance is achieved by defining the right
similarity measure for the prototypes, which corroborates early human perception stud-
ies (Rosch, 1973); second, most of the information required to make a decision about the
label of a query is present in its local neighborhood.

Building on these insights from local methods and motivated by Zhang, Berg, Maire
and Malik (2006), we propose to use SVM classifiers locally in this chapter. That is,
rather than training a single global SVM classifier, an SVM classifier is trained in the
local neighborhood of each query point. LSVM classification in some ways alleviates the
problems (described above) associated with SVM classifiers. Some motivations behind
LSVM formulations are described below.

A major motivation for using LSVM classification is to improve the classification per-
formance (Zhang, Berg, Maire and Malik, 2006). As will be shown in section 8.3, an LSVM
classifier results in performance gain in some databases, but performance deteriorates on
most databases. The LSVM classifier, however, has an advantage over standard SVM as
it involves no training1, and extension to greater numbers of classes is more feasible. As
an SVM classifier has to be trained for every query point, the testing time is likely to
increase. Despite this, in most databases having C classes, a query point is surrounded by
instances of only c classes, and usually c � C. This can expedite the recognition phase
rather than slowing it down.

Another motivation (which is not reported by Zhang, Berg, Maire and Malik (2006))
for training SVM locally has to do with the multiple kernel scaling parameters. It is hoped
that, at least locally, class conditional probabilities vary similarly across all features and
using an isotropic kernel may not hurt much. This avoids the need to tune multiple kernel
parameters in the SVM. The only parameter that needs to be tuned for LSVM formulation
is the size of the neighborhood in which the SVM classifier is to be trained. In section 2.4.3,
it was discussed that in much computer vision research, to avoid expensive cross-validation,
the scaling parameter σ of the kernel is set to be the average value of the squared distance
between entire training data, that is: σ2 = 1

N2

∑N
i=1

∑N
j=1 d

2(~xi, ~xj) (Varma and Ray,
2007; Zhang, Marszalek, Lazebnik and Schmid, 2006). Using σ as an averaged value
of distances between the entire training data set might not be effective. Since in LSVM
settings SVM classifiers are trained locally, using σ as the average distance of local training
data might be locally optimal and might improve classification performance.

Local SVM classifiers provide a mechanism for incorporating non-stationary kernels in
the SVM framework.

1As LSVM falls under lazy learning paradigm, like k-nearest neighbor it postpones all training till
testing. When a query point is encountered, it trains C classifiers based on the number of classes present
in the neighborhood. As a result, testing time of LSVM is likely to be more as compared to standard
SVM. This will be discussed in section 8.4.
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One drawback of the LSVM formulation is its reliance on the parameter characterizing
the size of the neighborhood. As will be shown in section 8.3, there is a trend that the
classification performance of LSVM improves as the neighborhood size increases. As the
neighborhood size increases, however, LSVM classification becomes less computationally
efficient. There is a trade-off necessary between computational and classification efficiency.
In this chapter, LASVM classification is proposed. That is, rather than simply training an
SVM classifier in the local neighborhood, one can first adapt the neighborhood and train
an SVM classifier in the adapted neighborhood. As will be shown in section 8.3, such local
adaptation of the neighborhood will render SVM less sensitive to the neighborhood size.

Various local adaptive metric learning techniques were discussed in chapter 6, for
example BoostML1 (algorithm 4), DANN (Hastie and Tibshirani, 1996), Machete (Fried-
man, 1994), etc. Any of these local metric learning techniques can be used to adapt the
local neighborhood in which an SVM classifier is trained. As mentioned in chapter 6,
as we may not have enough training data in the local neighborhood of a query point,
adapting a neighborhood using a complete metric learning algorithm, for example MEGM
(algorithm 1), may not be efficient. Therefore, the LASVM formulation proposed in this
chapter learns a global distance metric using a complete metric learning algorithm. This
results in adapting the local neighborhoods as well. The list of algorithms proposed in
this chapter is given in table 8.1.

Algorithms Description
LSVM Train an SVM classifier in the local neighborhood of a query point.

LASVM Train an SVM classifier in the local adapted neighborhood of a
query point.

Table 8.1: List of Algorithms proposed in chapter 8

8.1 Related Work

LSVM classification methods have been explored in some detail in Cheng et al. (2010);
Zhang, Berg, Maire and Malik (2006). Cheng et al. (2010) proposed a local SVM classifi-
cation technique called ‘Profile SVM’ (PSVM). The data is first clustered and a separate
SVM classifier is trained for every cluster. A query point is first assigned to its near-
est cluster and the corresponding SVM is used to predict its label. A modified form of
k-means clustering algorithm ‘MagKmeans’ is proposed which modifies the k-means clus-
tering criterion to control the class distribution of the training data within each cluster.
Given the training data X and the corresponding class labels Y , the objective function of
MagKmeans can be written as:

min
Z,C

C∑
j

N∑
i

Zi,j‖Xi − µj‖22 +O

C∑
j

|
N∑
i

Zi,jYi| (8.1)

where µj denotes the mean of cluster j, Z is the cluster membership matrix, whose (i, j)-th
element is one if the i-th training data point is assigned to j-th cluster and zero otherwise
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and O is the scaling parameter. As can be seen, the first term in the objective function is
similar to objective function of k-means. Its minimization will lead to compact clusters.
The second term measures the class imbalance within clusters. This term is minimized
when every cluster contains equal numbers of positive and negative training examples.
Though interesting, a major drawback of the approach is its reliance on MagKmeans.
Similarly, its is not trivial to determine the number of clusters before training. The results
may vary depending on the clustering scheme. Though results are reported on UCIML
databases where PSVM is shown to outperform standard SVM, the performance of PSVM
on larger databases (in terms of the number of data, number of features and number of
classes) is not reported.

Similarly Zhang, Berg, Maire and Malik (2006) proposed a method to train an SVM
classifier in the local neighborhood of a query point. The size of the neighborhood in which
the SVM is trained is tuned through cross-validation. They used custom-designed similar-
ity measures for efficient classification, for example chi-squared, shape context, geometric
blur, tangent distance measures, etc. with different databases. Though promising results
have been achieved for a variety of object recognition databases, for example USPS, Cal-
tech101, etc., LSVM classification is not discussed in the context of tuning kernel parame-
ters. Also, the effect of the local neighborhood size on LSVM classification performance is
not described. In this work, gaps existing in Zhang, Berg, Maire and Malik’s (2006) work
are filled, and the effects of variation of the neighborhood size on LSVM performance are
studied.

8.2 Local Adaptive SVM

In this section, the proposed LASVM algorithm is described. For any query point ~x0,
LSVM classification works in the following way:

• Find the K nearest neighbors of ~x0. If N is the cardinality of training data set then
K = k × log2(N), typically k ∈ [1, 2, 3, 5, 10]2.

• If the labels of all K points are the same, ~x0 belongs to the corresponding class and
the procedure exits.

• If the labels are different, a one-versus-all SVM is trained for each class present and
~x0 is labeled accordingly.

The LASVM formulation extends LSVM by training LSVM in a transformed space, where
the transformation is specified by the matrix L learned using the MEGM complete metric
learning algorithm. An outline of the LASVM algorithm is given in algorithm 8. Though
this formulation of LASVM incorporates MEGM, it should be noted that other complete
metric learning algorithms from chapter 4, for example NCA (Goldberger et al., 2005),
LMNN (Weinberger et al., 2009), etc. or naive/semi-naive metric learning algorithms from
chapter 5, can be used.

2Any function altering the neighborhood size can be used.
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Algorithm 8 LASVM: Train an SVM classifier in the adapted neighborhood of a query
point.

Require:

- ~x0: Testing data.
- {~xn, yn}Nn=1: Training data.
- K = k × log2(N), typically k ∈ [1, 2, 3, 5, 10].

- Learn a data-dependent distance matrix A such that A = LTL using the MEGM
complete metric learning algorithm (algorithm 1).
- Transform both training and testing data using the matrix L.

- Apply the LSVM procedure as described in section 8.2 on the transformed training
and testing data.

8.3 Experimental Results

In this section, the performance of the proposed LSVM and LASVM algorithms is com-
pared with the standard SVM formulation and k-nearest neighbor methods on various
UCIML, faces, USPS digits, Isolet and Coil100 object databases.

8.3.1 UCIML Databases

The number of data, features and classes for each UCIML database used in this section
is reported in table F.1. The correctness rate of each method is obtained using 40 rounds
of 2-fold cross-validation. Prior to training, features in all the databases were normal-
ized to have zero mean and unit variance. The classification performance in terms of
the correctness rate of each of the following methods for different databases is shown in
figure 8.1:

• KNN: Simple 1-nearest neighbor classification with the Euclidean distance.

• SVM: Standard SVM formulation that is, a multi-class SVM with a Gaussian kernel
is used. The C parameter for the SVM is tuned through cross-validation (that is
selected from the set: {1, 10, 100, 1000}). The value of σ is set to be the average
distance of the k-nearest neighbors. A one-versus-all strategy is employed for multi-
class classification.

• MEGM: MEGM complete metric learning algorithm (algorithm 1, chapter 4).

• OSVM: Similar to standard SVM, but both the C and σ parameters are optimized
using cross-validation. This formulation is called ‘optimized SVM’ (OSVM). The
C and σ parameters are selected from the sets: C = {1, 10, 100, 1000} and σ =
{0.1, 0.5, 1, 2, 3, 5} respectively.

• LSVM: LSVM classification as described in section 8.2.
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Figure 8.1: Comparison of the correctness rate of LSVM and LASVM with KNN, SVM
and MEGM methods on UCIML databases. The LSVM and LASVM results with the best
neighborhood size (k) from figure 8.2 are reported for comparison.
.

• LASVM: LASVM classification (algorithm 8).

The value of C for both LSVM and LASVM is not optimized and is set equal to ten in all
experiments.

As can be seen from figure 8.1, both LASVM and MEGM performed equally well on
most of the databases. It should be noted that LASVM performed better than LSVM on
all databases. The comparison of LSVM and LASVM performance when the neighborhood
size is varied is shown in figure 8.2. It can be seen from figure 8.2 that LASVM performance
is not affected by the neighborhood size (k). The robustness of LASVM with respect to the
neighborhood size (k), as compared to LSVM, emphasizes the importance of using the right
neighbors for prediction. Since in the original space the neighborhood of the query point
does not hold enough discriminatory information for prediction, a larger neighborhood is
required. It appears that as LASVM finds a local boundary in the transformed space,
its performance is as good in the bigger neighborhood as it is in the smaller one. This
highlights the efficacy of the LASVM formulation.
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Figure 8.2: Comparison of the correctness rate of LSVM and LASVM on UCIML databases
as the neighborhood size (k) is varied.

8.3.2 Faces, USPS, Isolet and Coil Databases

To compare the performance of LSVM and LASVM on large databases, five face databases
(yalefaces, AT&T, yalefacesB, caltechfaces and caltechfacesB), USPS digit database, Iso-
let database and Coil100 object database from section 4.3 are used. The details of the
databases used in this section are given in table 4.2. The images in all databases are
pre-processed for efficiency as described in section 4.3. That is, the dimensionality of the
feature-vector representing each image is reduced by using PCA. The classification per-
formance in terms of the correctness rate of each of the following methods for different
databases is shown in figure 8.3.

• KNN: Simple 1-nearest neighbor classification with Euclidean distance.

• SVM: Same as in section 8.3.1.

• MEGM: MEGM complete metric learning algorithm (algorithm 1, chapter 4).

• LSVM: Same as in section 8.3.1.

• LASVM: Same as in section 8.3.1.
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Figure 8.3: Comparison of the correctness rates of LSVM and LASVM method with KNN,
SVM and MEGM methods on faces, USPS, Isolet and Coil100 database. The mean and
standard deviation of the correctness rate over ten runs (each run with different training
data) is reported. The number of training images per category, number of testing images
per category and the number of Eigen-vectors used for each database is given in table 4.2.
LSVM and LASVM results with the best neighborhood size (k) from figure 8.4 are reported
for comparison.

The value of C for both LSVM and LASVM is not optimized and is set equal to ten in all
experiments.

As can be seen from figure 8.3, the LASVM results followed the trend from figure 8.1.
That is, LASVM results not only in improving standard SVM performance, but also
performed better than the competing MEGM method. LASVM performed best on six
out of eight databases, MEGM and standard SVM performed best on one database each
(figures 8.4(e), 8.4(g)). LSVM, on the hand, resulted in performance deterioration of
standard SVM except on the USPS (figure 8.4(f)) and Coil100 (figure 8.4(h)) databases.
This suggests that LSVM, though computationally efficient, may not be the best choice
when classification efficiency is of utmost importance. Figure 8.4 compares LSVM and
LASVM performance with varying neighborhood size (k). An interesting pattern can
be seen. The performance of LSVM increases with the neighborhood size (k), whereas
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Figure 8.4: Comparison of the correctness rate of LSVM and LASVM on faces, USPS,
Isolet and Coil100 databases as the neighborhood size (k) is varied.

LASVM performance in most cases is not affected by (k). The dependence of LSVM
on the neighborhood size may have motivated Zhang, Berg, Maire and Malik (2006) to
optimize the neighborhood size through cross-validation.

There are three things that needs to be mentioned. First, as stated, no SVM parame-
ters are optimized in the cases of LSVM and LASVM. Therefore, the results in figures 8.1
and 8.3 are encouraging not only for LASVM but also for LSVM, as LSVM performance
is comparable in some cases to standard SVM and OSVM. For example, in the case of the
Coil100 database (figure 8.4(h)), LSVM results in huge performance gain over standard
SVM. Secondly, it was found that training LSVM and LASVM is far more computa-
tionally efficient than standard SVM, provided we keep the neighborhood size reasonably
small. Therefore, training LSVM and LASVM can be attractive from a computational
efficiency point of view. Third, as depicted in the results, LSVM though improving SVM
performance in some cases, can worsen SVM performance in others. This suggests that
the LSVM should not be used with Euclidean distance. Indeed Zhang, Berg, Maire and
Malik (2006) proposed to use LSVM with a specifically designed distance measure. The
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proposed local adaptive formulation (LASVM) resulted in far superior performance as
compared with LSVM.

8.4 Analysis of Computational Efficiency

The results on UCIML, faces, USPS, Isolet, and Coil databases in figures 8.1 and 8.3
reveal that LASVM results in significant performance gain over standard SVM, LSVM
and also KNN methods. On the other hand, the performance gain of LSVM is marginal.
On most databases, in fact, it resulted in deterioration of standard SVM performance.
Even though LSVM results in performance degradation, it should be noted that it is more
computationally efficient than standard SVM. As mentioned before, when training LSVM,
there is a trade-off involved between the computational efficiency and the classification
efficiency. This trade-off involved in the training of LSVM is demonstrated in figures 8.5
for yalefaces (figure 8.5(a) and 8.5(b)), AT&faces (figure 8.5(c) and 8.5(d)) yalefacesB
(figure 8.5(e) and 8.5(f)).

It can be seen from figure 8.5, that though the classification performance of LSVM
improves as the neighborhood size (k) increases, the computational time also increases
manyfold. There is a need to keep the neighborhood size small without compromising
the classification efficiency of LSVM. The LASVM classification framework proposed in
this chapter is a remedy for such a problem. It can be seen from figures 8.2 and 8.4 that
LASVM results in significant performance improvement of LSVM, and the encouraging
aspect of LASVM formulation is that the performance is as good for large neighborhoods
as it is for the smaller one. Therefore, rather than aiming to achieve an optimal trade-off
between classification and computational efficiency by adjusting neighborhood size (k),
LASVM provides a sophisticated and efficient alternative.

8.5 Summary

In this chapter, the LSVM and LASVM classification frameworks were introduced. The
motivations behind LSVM classification were presented and it was discussed that, apart
from classification and computational efficiency, the LSVM should be studied and analyzed
from the perspective of kernel tuning. Perhaps when an SVM classifier is trained locally,
tuning of the kernel parameters is not as critical as it is when training a global SVM
classifier. This is the likely reason for good performance of LSVM on some databases.
The classification performance of LSVM was evaluated on a large set of databases. It was
found that LSVM can improve standard SVM classification performance when the number
of classes is very large. For example, on the Coil100 database LSVM performed better than
standard SVM. The size of the neighborhood (k) in which LSVM is to be trained is a critical
parameter. It was discussed that k actually controls the trade-off between classification
and computational efficiency. A large k results in better classification performance, but
it becomes extremely computational inefficient. The LASVM classification algorithm,
which is based on LSVM formulation, was proposed. The idea is to train an LSVM
classifier in the adapted neighborhood of the query point. On various UCIML, faces, digit
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and object databases, it was shown that LASVM results in significant improvement over
LSVM, standard SVM, and other k-nearest neighbor methods. Also, LASVM classification
performance is not strongly dependent on the neighborhood size k. As a result, LASVM
can perform extremely well in a small neighborhood. Hence it can gain the computational
efficiency of a k-nearest neighbor classifier and the classification efficiency of an SVM
classifier.
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Figure 8.5: Demonstration of trade-off when training LSVM between computational and
classification efficiency on yalefaces (figures 8.5(a) and 8.5(b)), AT&Tfaces (figures 8.5(c)
and 8.5(d)) and yalefacesB (figures 8.5(e) and 8.5(f)) databases. The classification effi-
ciency (correctness rate) with varying neighborhood size of LSVM (local SVM), NN (near-
est neighbor classifier) and SVM (standard SVM classifier) is shown in the first column.
The computational efficiency (time in seconds) with varying neighborhood size of LSVM,
NN and SVM classifiers is shown in the second column for yalefaces, AT&Tfaces and yale-
facesB respectively. Standard SVM formulation is not dependent on the neighborhood
size but is included in the graphs for comparison purpose.



Chapter 9

Global Adaptive Gaussian

Processes

Chapters 7 and 8 dealt with the learning of kernel parameters for SVM classification by
learning a data-dependent distance metric. This chapter extends the idea of kernel learning
by learning a distance metric for GP classification. It will be shown in this chapter that,
just like SVM, the kernel parameters of a GP classifier can be optimized by learning a
data-dependent distance matrix. The work related to GP classification in the context of
metric learning will be discussed in section 9.1. In section 9.2, two algorithms that aim
to improve GP classification performance by learning a data-dependent distance matrix
will be proposed. The experimental evaluation of the proposed algorithms will be given
in section 9.3. A list of the algorithms proposed in this chapter is given in table 9.1.

9.1 Related Work

The problem of optimizing the length scale parameters of an anisotropic Gaussian kernel
in the GP framework (learning of a naive/semi-naive metric) was investigated by Neal
(1996). The log-likelihood function of a GP model can be written as:

log p(~y|~θ) = −1
2
~yTK−1~y − 1

2
log |K| − n

2
log 2π (9.1)

where ~θ = (A, σ2
f , σ

2
n), ~y is the prediction of the GP, and K is the Gram matrix of the input

data1. We can optimize for the matrix A (also σ2
f , σ2

n) by taking the partial derivative of

1Refer to appendix E for more details on Gram matrix and its connection with matrix A.

Algorithms Description
GPML1 GP classification using data-dependent distance metric (a metric

is learned for all C categories).
GPML2 GP classification using data-dependent distance metric (a separate

metric is learned for each category).

Table 9.1: List of Algorithms proposed in chapter 9

109
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the log likelihood function in equation 9.1 with respect to the matrix A and maximizing
it using gradient-based methods. Note that the matrix A is a diagonal matrix. It is also
straightforward to introduce priors over ~θ and maximize the log posterior. Maximizing the
log posterior to determine the diagonal elements of the matrix A (length-scale parameters)
allows the relative importance of different dimensions to be inferred from the data. This
represents an example of ARD in GP classification as discussed in section 2.4.4 (Williams
and Rasmussen, 1996).

Zhou and Suter (2008) used spectral techniques to determine the relevance of each fea-
ture (hence trained a naive metric). They proposed a measure called ‘Major Bandwidth’
to measure the spectral properties of each feature and tuned a metric based on this. By
learning such a metric they claim that the data is transformed into a space where isotropic
behavior is expected. The authors have reported good results for human action recogni-
tion (Zhou and Suter, 2008). A major drawback of their method is the assumption that
features are independent. Similarly, Snelson et al. (2003); Schmidt and O’Hagan (2003)
proposed a transformation of data so that it is well modeled as a GP. The technique pro-
posed by Snelson et al. (2003) learns a transformation as a part of probabilistic modeling
rather than as a pre-processing stage.

The methods proposed by Zhou and Suter (2008); Neal (1996); Schmidt and O’Hagan
(2003) have been the major motivations for the work in this chapter. The methods pro-
posed in this chapter differ from those described above as the data is pre-processed by
learning a full data-dependent distance metric (complete metric learning) whereas pre-
vious works in the GP framework have only considered optimizing the diagonal terms
(naive/semi-naive metric learning).

9.2 Global Adaptive Gaussian Process

In this section, two algorithms to train a GP classifier with a data-dependent distance met-
ric are proposed. The algorithms are similar to algorithms 6 and 7 from chapter 7 in their
reliance on the MEGM complete metric learning algorithm for learning the parameters of
a Gaussian kernel.

The outline of the proposed algorithms ‘Gaussian process metric learning’ (GPML)
is given in algorithms 9 and 10. For multi-class GP classification a one-versus-all strat-
egy is used. GPML1 algorithm learns a different kernel using MEGM for each category.
Whenever the classifier for category c is used to classify a test point ~x0, the kernel kAc is
used to measure the similarity. GPML2 is a slight variant of GPML1. Instead of learning
a separate kernel for each category, GPML2 learns only one kernel kA for all categories.
The learned kernel kA is used by all c GP classifiers. The two algorithms will be denoted
as GPML in the subsequent discussion.
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Algorithm 9 GPML1: GP classification using a data-dependent distance metric.

Require:

- ~x0: Testing data.
- {~xn, yn}Nn=1: Training data.

for c = 1, 2, . . . , C do

- Get a data-dependent distance metric (matrix A) using MEGM for category c such
that A = LTL. The kernel learned for category c is:

kAc(~xi, ~xj) = exp
(
−‖L~xi − L~xj‖2

)
end for

- Predict the label of the query point ~x0 using the pool of learned kernels {kAc}Cc=1 in
the GP formulation.

Algorithm 10 GPML2: GP classification using a data-dependent distance metric.

Require:

- Testing data: ~x0.
- Training data: {~xn, yn}Nn=1.

- Get a data-dependent distance metric (matrix A) for all C categories using MEGM
such that A = LTL. The kernel learned is:

kA(~xi, ~xj) = exp
(
−‖L~xi − L~xj‖2

)
- Predict the label of the query point ~x0 using the learned kernel kA in the GP formu-
lation.

9.3 Experimental Results

In this section, the performance of the proposed GPML algorithms is compared with other
standard GP methods, the standard SVM classifier, and the k-nearest neighbor classifier
on various UCIML, faces and digit databases. The following methods are compared:

• KNN: Simple 1-nearest neighbor classification with the Euclidean distance..

• SVM: Standard SVM formulation that is, a multi-class SVM with a Gaussian
kernel is used. The C and σ parameters for the SVM are tuned through cross-
validation, that is they are selected from the sets: C = {1, 10, 100, 1000} and σ =
{0.1, 0.5, 1, 2, 3, 5} respectively. A one-versus-all strategy is employed for multi-class
classification.

• GP: Standard GP classifier with an isotropic Gaussian kernel. The value of σ is opti-
mized through cross-validation. σ is selected from the following values: {0.1, 0.5, 1.3, 2.0, 2.0}.
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• ISO: Standard GP classifier with an isotropic Gaussian kernel whose length scale
value is optimized through the automatic relevance determination procedure as de-
scribed in section 9.1.

• ARD: Standard GP classifier with an anisotropic Gaussian kernel. The values of
the length scale parameters are tuned through automatic relevance determination
procedure.

• GPML1: GP with metric learning (algorithm 9). Apart from the distance matrix,
no other parameter is learned.

• GPML2: GP with metric learning (algorithm 10). Apart from the distance matrix,
no other parameter is learned.

9.3.1 UCIML Repository Databases

The number of data, features and classes for each UCIML database used is reported in
table F.1. The correctness rate of each method is obtained using 40 rounds of 2-fold cross-
validation. Prior to training, features in all the databases were normalized to have zero
mean and unit variance.

The comparative performance (correctness rate) of the different methods for various
UCIML databases is shown in figure 9.1. As can be seen from figure 9.1, GPML2 performed
better than GPML1. It appears that training one metric for all classes is more effective
than training a separate metric for each class. Out of the 12 databases, GPML2 performed
best on nine whereas GPML1 performed best on only three (figures 9.1(i), 9.1(j), 9.1(k)).
There are two possible reasons: first, due to MEGM, since the MEGM algorithm suffers
from local minima problems. There are more chances that local minima will affect the
results in the case of GPML1, as the algorithm has to be run C times. Secondly, possibly
training a separate metric for each class leads to over-fitting and hence affects GPML1
performance.

9.3.2 Face Databases

This section deals with GPML performance evaluation on large databases. Five face (yale-
faces, AT&T, yalefacesB, caltechfaces and caltechfacesB) and one (USPS) digit database
from section 4.3 are used. The details of databases used in this section are given in
table 4.2. The images in all databases are pre-processed for efficiency as described in
section 4.3. That is, the dimensionality of the feature-vector representing each image is
reduced by using eigen-faces.

The comparative results (correctness rate) are shown in the figure 9.2. GPML2 per-
formed best on yalefaces, yalefacesB, caltechfaces and caltechfacesB, whereas GPML1
performed best on AT&Tfaces and USPS digit database. On all six databases, the GP
classifier trained with metric learning algorithm performed not only better than the stan-
dard GP, but also better than ISO and ARD formulations of GP, where parameters are
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tuned through the computationally expensive automatic relevance determination proce-
dure (section 9.1). As mentioned, there is no tuning of parameters in the GPML algo-
rithms. It only requires a data-dependent distance metric. This highlights the efficacy
of the proposed approach, as the results are comparable with, and in most cases better
than, the ISO and ARD formulations. GPML performance is also comparable with SVM
performance. It should be noted, however, that SVM is optimized by grid searching over
C and σ values.

9.3.3 Comparison with MEGM

In this section, GPML results are compared with the following two metric learning methods
in k-nearest neighbor settings:

• MEGM-KNN: MEGM complete metric learning (algorithm 1) proposed in chap-
ter 4.

• NCA: NCA algorithm discussed in chapter 4 (Goldberger et al., 2005).

The comparison of the results of GPML algorithms with MEGM and NCA on the face
and digit databases is given in figure 9.3. The GPML and MEGM-KNN methods each
performed best on three databases. The results on the UCIML databases are given in
figure 9.4. GPML methods results in significant improvement over the classification accu-
racy of both MEGM-KNN and NCA. It performed better than all other methods on all
but the tictactoe data set.
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Figure 9.1: Comparison of the correctness rate of GPML1 and GPML2 with the standard
GP, the ISO and ARD formulation of GP, KNN and standard SVM on various UCIML
databases. The mean and standard deviation of the correctness rate over ten runs (each
run with different training data) is reported.
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Figure 9.2: Comparison of the correctness rate of GPML1 and GPML2 with the standard
GP, the ISO and ARD formulation of GP, KNN, and standard SVM on various faces and
USPS databases. The mean and standard deviation of the correctness rate over ten runs
(each run with different training data) is reported. The number of training images per
category, number of testing images per category and the number of Eigen-vectors used for
each database are given in table 4.2.
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Figure 9.3: Comparison of the correctness rate of MEGM-KNN, NCA, GPML1 and
GPML2 on faces and USPS databases. The mean and standard deviation of the correct-
ness rate over ten runs (each run with different training data) is reported. The number
of training images per category, number of testing images per category and the number of
Eigen-vectors used for each database are given in table 4.2.
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Figure 9.4: Comparison of the correctness rate of MEGM-KNN, NCA, GPML1 and
GPML2 on UCIML databases. The mean and standard deviation of the correctness rate
over ten runs (each run with different training data) is reported.



118 CHAPTER 9. GLOBAL ADAPTIVE GAUSSIAN PROCESSES



Chapter 10

High-level Metric Learning

This chapter deals with high-level metric learning, which was introduced in section 3.3. In
the following various high-level metric learning schemes will be discussed in detail. Related
work will be discussed in section 10.2 and a detailed experimental analysis of various forms
of high-level metric learning will be given in section 10.4.

10.1 Introduction

Let us consider the two High-level Metric Learning (HML) schemes in the same settings as
in section 3.3. We can process the feature-set FS(~x) in equation 3.1 in the ways described
in the following sections.

10.1.1 HML Scheme 1 (HML1)

The two feature-vectors ~xm and ~xn can be concatenated into a single feature-vector ~x:

~x =

(
~xm

~xn

)
(10.1)

If ~xm and ~xn have lengths of s and c respectively, any metric learning algorithm (naive,
semi-naive, complete) can be used to learn the (s + c)× (s + c)-dimensional matrix A in
equation 2.15.

10.1.2 HML Scheme 2 (HML2)

An alternative to concatenating feature-vectors ~xm and ~xn into a single feature-vector (~x) is
to process these feature-vectors separately. That is, we can learn a separate distance metric
for each feature-vector. Once a distance metric is learned for each feature-vector, there
are two alternatives. We can either combine the distances measured across each feature-
vector and train a single classifier (distance fusion), or we can train a separate classifier
for each feature-vector and combine the outputs of the classifiers (classifier fusion). In the
following these two formulations of distance and classifier fusion are discussed.

119
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Distance Fusion (HML2-DF)

Distance fusion deals with combining the distances measured across different feature-
vectors in an optimized way. Once the distances are fused together, any learning algorithm
can be used. This strategy also goes by the name of kernel fusion or kernel combination.
The idea is simple. Let us suppose that Am and An are the two distance matrices learned
for feature-vectors of type m and n respectively. The distance between the two data points
~x1 and ~x2 can be defined in the following way:

d2
Amn

( ~x1, ~x2) = ‖~x1m − ~x2m‖2Am
+ ‖~x1n − ~x2n‖2An

(10.2)

It can be seen that matrices Am and An induce a linear transformation of data in the
subspaces spanned by feature-vectors of type m and n respectively. Combining the dis-
tances as shown in equation 10.2 will have the same effect as transforming the data by
matrix Amn in the combined space (feature-vectors concatenated together) and measuring
distances in that space. The matrix Amn takes the form of a block diagonal matrix and
can be written as:

Amn = Am ⊕An (10.3)

Equation 10.2 can be modified to incorporate a weighting scheme by introducing the
parameter ~ω as:

d2
Amn

(~x1, ~x2) = ωm‖~x1m − ~x2m‖2Am
+ ωn‖~x1n − ~x2n‖2An

(10.4)

where the parameter ~ω controls the relative weighting of each feature type. In summary,
HML2 with distance fusion (HML2-DF) involves the following steps:

1. (Optional) Find the distance matrices for each type of feature-vector in the feature-
set, for example learn Am and An in equation 10.4.

2. Define the weighting scheme (~ω).

3. By measuring the similarity between data points using equation 10.4, train a classifier
(for example k-nearest neighbor, SVM, GP classifiers).

Note that HML2-DF is exactly equivalent to HML1 when working in the original space
(i.e. use of Euclidean distance for all feature-vectors) and the weights specified by ~ω are
equal to one in equation 10.2.

Classifier Fusion (HML2-CF)

Classifier fusion deals with combining the outputs of classifiers trained for each feature-
vector in the feature-set. Let us suppose that Am and An are the distance matrices
learned for feature-vectors of type m and n respectively. Rather than combining the
distances using equation 10.4 and training a single classifier, a separate classifier for each
type of feature-vector is trained. The outputs of these classifiers are combined to predict
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the class label. If fm and fn denotes classifiers trained for feature-vectors of type m and
n respectively, we can combine these two classifiers as:

f(~x) = ωmfm(~xm) + ωnfn(~xn) (10.5)

where fm(~xm) denotes the output of the classifier fm for feature-vector of type m and ~ω

controls the relative weighting of each feature type. In summary, HML2 with classifier
fusion (HML2-CF) involves the following steps:

1. (Optional) Find the distance matrices for each type of feature-vector in the feature-
set, for example Am and An in equation 10.4.

2. Define the weighting scheme (~ω).

3. Train a different classifier (for example SVM, GP classifiers) for each type of feature-
vector using the corresponding distance matrix.

4. Combine the outputs of each classifier by using equation 10.5.

Estimating the distance matrix for each type of feature-vector in the cases of distance
and classifier fusion is optional. One can choose to combine distances or classifiers either
in the original space (using Euclidean distance) or in the transformed space induced by
the distance matrices. In summary, a typical HML2 has to deal with the following issues:

• For each feature-vector, deciding whether to work in the original space or in the
transformed space. This step basically determines the distance measure used for
each type of feature-vector. If using the transformed space, learn the distance matrix
for each feature-vector in the feature-set using a naive, semi-naive or complete metric
learning algorithm, otherwise use the Euclidean distance for each feature-vector.

• Deciding whether to use distance fusion or classifier fusion.

• Defining (or learning) the weighting scheme to optimize the distance or classifier
combination.

This chapter deals with the abovementioned aspects of high-level metric learning. For
illustration and comparison, two very different type of classifiers have been considered
in this chapter: SVM (Friedman et al., 2000) and Boosting (Schapire and Singer, 1998)
classifiers. The kernel in SVM provides a general framework for distance (kernel) fusion.
For example, different types of kernels can be combined to improve SVM classification
efficiency. Boosting, on the other hand, does not have an inherent kernel or explicit
similarity measure and does not provide a natural framework for fusing distances. Boosting
is discussed in section 10.3, where a novel Boosting algorithm is proposed. In short, SVM
classification can incorporate HML1, HML2-DF and HML2-CF. Boosting classification on
the other hand can only incorporate HML1 and HML2-CF.
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10.2 Related Work

The two versions of high-level metric learning (distance fusion and classifier fusion) have
been investigated in some detail in machine learning. For example, Boosting classification
is an example of classifier fusion (Friedman et al., 2000). Boosting algorithms aim to
produce a single strong classifier based on a set of weak classifiers which are combined
together with appropriate weights. HML2-CF has been investigated under different names
for example mixture of experts, multi-modal data fusion, etc. (Jordan and Jacobs, 1994;
Kittler, 1998). The hierarchical mixture of experts architecture was first described by
Jordan and Jacobs (1992, 1994). The mixture of experts architecture is actually HML2-CF.
It consists of t component classifiers or experts. For any query point ~x0, each component
classifier or expert gives an estimate of its category. The outputs are weighted by the
‘gating sub-system’ governed by the parameter ~ω (equation 10.5) and are pooled for the
final estimation.

With the success of kernel-based methods such as SVM and GP classification, there has
been a growing trend in combining distances measured across different types of feature-
vectors for optimal classification. This case corresponds to HML2-DF (section 10.1.2).
For example Nilsback and Zisserman (2006); Lin et al. (2007); Varma and Ray (2007);
Kumar and Sminchisescu (2007); Lazebnik et al. (2006); Bosch et al. (2007) have dealt
with learning an optimal combination of distance measurements for object recognition
problems. Flower categorization was discussed in section 3.4 and the results were compared
with Nilsback and Zisserman (2006). Nilsback and Zisserman (2006) have proposed a
method for flower categorization that employs HML2-DF. Three type of feature are used
(shape, color and texture) and a brute force search is performed over the combination
weights to optimize the distance fusion. As an alternative strategy to distance fusion, the
authors have also alluded to classifier fusion in their paper.

Another way of doing distance fusion is by kernel alignment. The idea of kernel align-
ment was first proposed by Cristianini and Shawe-Taylor (2002) and Pekalskai et al. (2002).
It aims at modifying the Gram kernel matrix (K) such that its similarity to the target
Gram kernel matrix (G) is maximized. The target Gram kernel can take any form, for
example:

G(i, j) =

{
+1 if yi = yj

−1 otherwise

Either the parameters used for generating the Gram kernel matrix (K) are modified to
maximize some alignment score or the Gram kernel matrix (K) is obtained from a pool of
Gram matrices. Weights are sought to combine matrices such that some alignment score
is maximized. Therefore, HML2-DF can be written as the following optimization problem:

max~ωA(K,G) (10.6)

subject to K =
∑T

t=1 ωtKt

trace(K) = 1
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where A is some function calculating the alignment score (Lanckriet et al., 2002). The
kernel alignment strategy has been used for object recognition by Lin et al. (2007), for
general optimodal multimedia data fusion by Wu et al. (2004), and for gene prioritiza-
tion by Bie et al. (2007). Inspired by Lin et al. (2007), Varma and Ray (2007) proposed
a method for domain-specific kernel learning based on the combination of the base ker-
nels corresponding to different features. The problem is posed as a convex optimization
problem and some state of the art results are shown on various object databases.

An alternative strategy to learning the combination weights ~ω (for both HML2-DF,
HML2-CF) is to hardcode the weights. There exist many problem domains where the rela-
tive importance of each type of feature is known and one can specify the weights associated
with each type of feature-vector, e.g. spatial pyramid matching algorithms (Lazebnik et al.,
2006). Spatial pyramid matching is a simple and computationally efficient extension of
orderless bag of features image representation and has been proven to be very effective for
object recognition. The technique works by partitioning the image into increasingly fine
sub-regions and computing the histograms of local features found inside each sub-region.
The resulting histograms at different levels of partitioning (pyramid) are used as feature-
vectors. It can be seen that, in this formulation, the histogram matches at the finer levels
should be given more weight, or in other words the histogram matches at each region
should be weighted inversely proportional to the width of region. The idea of the pyramid
matching kernel was first introduced by Grauman and Darrell (2005). Bosch et al. (2007)
have also explored the idea of combining kernels computed at different spatial pyramid
level for object classification.

10.3 Confidence-Rated Adaptive Boosting

Recently Boosting-based learning algorithms have been shown to be very effective dis-
criminative classification techniques. Torralba et al. (2007); Opelt et al. (2006); Viola and
Jones (2001) have used them for object recognition tasks. Boosting is a general learning
framework. The idea is to combine a number of weak classifiers to produce a mono-
lithic strong classifier, whose performance is better than all the combined weak classifiers.
Boosting initializes every training data point with a weight d. Initially all data points are
given the same weight, i.e. for n = 1, . . . , N

dt(n) =
1
N

(10.7)

where dt(n) denotes the weight associated with data point n at iteration t. During training
iterations, the samples are re-weighted according to the training error of the individual
weak classifiers. The weight associated with the misclassified samples is increased, and
decreased for the samples which are correctly classified. The weak classifiers trained
at later iterations, therefore, concentrate on the harder training samples (having higher
weights). A number of variants of Boosting exist in the literature for example AdaBoost,
GentleBoost, etc. (Schapire, 2003; Friedman et al., 2000). It is better to view Boosting as
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a framework of learning from weak classifiers. Any weak classifier can be used and any
weight alteration strategy can be employed.

The discrete version of Boosting, AdaBoost, defines a strong binary classifier F as:

F (~x) = sign(
T∑
t=1

ft(~x)) (10.8)

where T is the number of Boosting rounds and ft(~x) is the weak learner trained at iter-
ation t. The weak learner in each round identifies the most discriminative feature along
which to classify the training data. The sign of ft(~x) indicates the class label, and its
value gives the confidence of the prediction. In this work, a variant of such a Boosting
strategy is proposed. A domain partitioning confidence-rated Boosting algorithm (CRAB)
is introduced. In CRAB, each weak classifier partitions the input space into finite bins
and gives the prediction related to each partition along with the confidence values of each
prediction. That is, rather than proposing a single threshold and giving prediction signs,
domain partitioning confidence-rated prediction gives predictions for the full range of the
input space.

Algorithm 11 CRAB: Confidence-Rated Adaptive Boosting Algorithm

Require:

- ~x0: Testing data.
- {~xn, yn}Nn=1: Training data.
- Initialize the distribution using equation 10.7.

for t = 1, 2, . . . , T do

- Normalize the weights dt(n).
for p = 1, 2, . . . , P do

- Train a weak classifier fp(~x|dt) on feature p using equation 10.11.
- Evaluate the cost of weak classifier fp(~x|dt) using equation 10.15.
- Find the best feature p using equation 10.16.

end for

- Update weights as: dt+1 = dt exp[−yift(~x|dt)]
end for

- Output: Final strong classifier

F (~x0) = sign

(
T∑
t=1

ft(~x0|d)

)

An outline of the proposed algorithm is given in algorithm 11. The CRAB algorithm at
each iteration identifies the most discriminative feature p. This feature is used to classify
the training data such that it results in the lowest training error (based on the weights
associated with each data point at the current iteration). For each feature p the weighted
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distribution of the positive and negative samples is defined as

h+
p (~x|d) = (p(~xp|y = +1)× d(~x|y = +1)) /D+ (10.9)

h−p (~x|d) = (p(~xp|y = −1)× d(~x|y = −1)) /D− (10.10)

Here D+ and D− are the normalization factors to make h+
p (~x|d) and h+

p (~x|d) probability
distributions. Based on equations 10.9 and 10.10, we can define a weak classifier based on
feature p as:

fp(~x|d) =
1
2

log

(
h+
p (~x|d) + ε

h−p (~x|d) + ε

)
(10.11)

where ε is a small constant added for numerical tractability. In the following, the compu-
tation of the probabilities in equation 10.11 will be explained. The probabilities h±p (~x|d)
in equation 10.11 are computed by partitioning the input domain. That is, across each
feature p, we partition the input space [min(~xj), . . . ,max(~xj)] into K disjoint bins de-
noted as X̃1

p , X̃
2
p , . . . , X̃

K
p . The probability of a category being present or not present in

the partition k is computed as:

h+
p (k) =

∑
~xip∈Xk

p∧yi=+1

(
di
D+

)
(10.12)

h−p (k) =
∑

~xip∈Xk
p∧yi=−1

(
di
D−

)
(10.13)

Based on equations 10.12 and 10.13, we can modify the probabilities h±p (~x|d) in equa-
tion 10.11 for each partition k as:

fp(k) =
1
2

log

(
h+
p (k) + ε

h−p (k) + ε

)
(10.14)

The cost of each feature p, motived from Schapire and Singer (1998), is calculated as:

C̃p = 2
∑
k

√
h+
p (k)h−p (k) (10.15)

The best feature is selected as

argmin
p

C̃p (10.16)

A simple demonstration of algorithm 11 is shown in figure 10.1 on a 2-dimensional synthetic
data.

Four categories from the Caltech-101 Object Database (2006) are used for the perfor-
mance evaluation of the proposed CRAB algorithm. This subset is typically denoted as
Caltech4. The results for CRAB are labeled as ‘cAda’ in the ROC curves. The per-
formance is compared with the the GentleBoost version of Boosting. The results for
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Figure 10.1: Result of applying CRAB classifier (algorithm 11) on the synthetic data after
first, third and fifth iteration. The red (class A) and green (class A) blocks are randomly
generated 2-dimensional data. White areas are classified as belonging to class A and black
as belonging to class B (green blocks). It can be seen that the first few weak classifiers
can classify the data quite efficiently.

GentleBoost are labeled as ‘Gentle’ in the ROC curves. Example images from Caltech4
are given in figure 10.2. In this experiment sparse features are used. SIFT features are
extracted around some interest points (Lowe, 1999). The interest points are detected us-
ing the Harris-Affine interest point detector (Mikolajczyk et al., 2005). Around 200, 000
patches (feature-vectors) are extracted from the training images of four categories and
clustered into codebooks of size 250, 500 and 1000. The features are vector-quantized us-
ing the codebooks. Each image is represented as a histogram of features contained within
the image (the bag of words model) thus representing each image as 250, 500 and 1000
dimensional feature-vector. The classification results in the form of ROC curves are given
in figure 10.3. As can be seen from figure 10.3, for the airplanes and cars categories, both
CRAB and GentleBoost algorithms have the same performance with codebook sizes 250,
500 and 1000. For faces and motorbikes categories, both GentleBoost and CRAB have
very similar performance in the case of a codebook of size 250, but CRAB outperformed
GentleBoost when the size of the codebook is increased to 500 or 1000. This suggests that
CRAB can handle high dimensional feature-vectors better than GentleBoost.

Figure 10.2: Example images (3 images per category) from Caltech4 database.
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Figure 10.3: Comparison of the classification performance of the CRAB algorithm and
GentleBoost on four categories of Caltech4 database. First row: ROC curves for airplanes,
second row: ROC curves for cars, third row ROC curves for faces and fourth row: ROC
curves for motorbikes. First column: codebook of size 250, second column: codebook of
size 500, third column: codebook of size 1000. True Positive on Y-axis and False Positive
on X-axis
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Figure 10.4: Example images (2 images per category) from the Stanford scene database.
Fei-Fei and Perona (2005) provided 13 categories from the Stanford scene database, eight
of these were originally collected by Oliva and Torralba (2001). Each category has 200 to
400 images. The major sources of the pictures in the database include COREL collection,
personal photographs and Google image search. This is one of the most complete scene
category database used in computer vision research.

10.4 Experimental Results

In this section, scene classification and object detection are considered to illustrate high-
level metric learning.

10.4.1 Scene Categorization

For scene classification problem, the Stanford scene recognition database is used (fig-
ure 10.4). Each image is represented by using dense features. SIFT features are extracted
from an intensity image (Lowe, 1999). The features are extracted at points on a regular
grid of size 20× 20. At each grid point, the features are extracted at scales of 4, 8, 16, 24
and 32 pixels. The motivations behind using dense features comes from the comparative
study of dense versus sparse features which is provided in appendix C. Once the features
are extracted, they are clustered into a codebook of size 200 using the k-means clustering
algorithm. The reason for using codebook of size 200 is that it has been used widely in
previous work on object recognition (Bosch et al., 2007; Lazebnik et al., 2006) and has
been shown to give excellent results. Also no improvement was noticed in the results
when using a codebook of a different size. Once the codebook is computed, the features
are vector-quantized. A pyramid-based approach is used to compute the feature-vector
representing the image1. An image at a pyramid level i has 4i cells. An histogram is

1Bag of features methods, while represent an image as an order less collection of local features, have
been shown to give excellent performance for object categorization tasks (Dance et al., 2004; Willamowski
et al., 2004; Grauman and Darrell, 2005). Though effective, they have some short-comings. Apart from
their inability to capture the shape of an object or segment an object from its background, they are
disadvantaged because of their disregard for the spatial layout of the features inside the image. These
issues with the bag of features model are addressed by Lazebnik et al. (2006), where a pyramid-based
approach to compute the histogram has been proposed. Pyramid-based histogram methods use global
non-invariant representations based on aggregating statistics of local features over fixed sub-regions.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10.5: Figure showing the first four pyramid levels and resulting feature-vectors.
Figure 10.5(a): Pyramid Level 0 (1 cell), Figure 10.5(b): Pyramid Level 1 (4 cells),
Figure 10.5(c): Pyramid Level 2 (8 cells), Figure 10.5(d): Pyramid Level 3 (64 cells).
Normalized histograms of an image at pyramid level 0,1,2 and 3, having length of 200
(figure 10.5(e)), 800 (figure 10.5(f)), 3200 (figure 10.5(g)) and 12800 (figure 10.5(h)) re-
spectively.

computed for each cell for all pyramid levels. The histograms across each pyramid reso-
lution are concatenated and normalized to form a single feature-vector representing the
image for that pyramid level. This is demonstrated in figure 10.5. In this experiment, a
maximum pyramid level of 2 is used, therefore, the following resulting features are used
for high-level metric learning:

• f200: A feature-vector obtained at pyramid level 0 as shown in figure 10.5(a)
and 10.5(e).

• f800: A feature-vector obtained at pyramid level 1 as shown in figure 10.5(b)
and 10.5(f).

• f3200: A feature-vector obtained at pyramid level 2 as shown in figure 10.5(c)
and 10.5(g).

The classification performance of the following HML schemes on Stanford scene recog-
nition database is given in table 10.1:

• HML1: As discussed in section 10.1.1, the feature-vectors f200, f800 and f3200 are
concatenated. SVM and Boosting classifiers are trained on the resulting feature-
vectors to get the results. [f200 f800]′ denotes concatenation of feature-vectors f200
and f800 whereas [f200 f800 f3200]′ denotes the concatenation of feature-vectors f200,
f800 and f3200. The classification results obtained by training a classifier separately
with each feature-vector, that is f200, f800 and f3200, are also shown.
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• HML2-DF: This scheme only incorporates SVM classification. The results are ob-
tained by adding the distances for the three feature-vectors f200, f800 and f3200 and a
resulting SVM classifier is trained as discussed in section 10.1.2. The weights ω asso-
ciated with each feature-vector are set by using the scheme motivated from Lazebnik
et al. (2006). Equation 10.4 can be written as:

d2(~x1, ~x2) =
Q∑
i=0

1
2Q−i+1

‖~x1i − ~x2i‖22 (10.17)

where Q is the number of pyramid levels and is set equal to two. A multi-class SVM
is trained in a one-versus-all fashion with a Gaussian kernel whose scaling parameter
is set to the average value of the distances between the training points.

• HML2-CF: This scheme incorporates both SVM and Boosting classifiers. The
results are obtained by training a separate classifier for the three feature-vectors
and combining the outputs of each individual classifier. The weights ω associated
with each feature-vector are set by using the scheme motivated from Lazebnik et al.
(2006). Equation 10.5 can be written as:

f(~x) =
Q∑
i=0

1
2Q−i+1

fi(~xi) (10.18)

where Q is the number of pyramid levels and is set equal to two. A multi-class
SVM is trained in a one-versus-all fashion with a Gaussian kernel whose length scale
parameter is set to the average value of the distances between the training points.
CRAB algorithm, as described in section 10.3 is used to obtain the Boosting results.

Let us concentrate on the SVM results first. It can be seen that HML2 (both with
classifier and distance fusion) is more effective than HML1. HML2 achieved performances
of 84.90% and 85.50% with distance and classifier fusion respectively, as compared to a
best of 83.16% in case of HML1. Surprisingly, feature-vector f3200 alone resulted in a per-
formance of 83.82% which is better than the performance we obtained when concatenating
the three feature-vectors i.e. with HML1. Though the difference is not substantial, the re-
sults indicate that SVM results are not immune to the curse-of-dimensionality as discussed
in chapter 2 and the addition of extra features may lead to performance deterioration un-
less they are properly weighted. It should be noted that the only difference between the
SVM results of HML1 when trained with feature-vector [f200 f800 f3200]′ and HML2-DF
is the presence of an appropriate weight (~ω) associated with each feature-vector. Such a
simple weighting formulation actually resulted in increasing the performance to 84.90%.
Another significant result is that HML2-CF gave better results than HML2-DF.

The results obtained with Boosting followed a different trend from those for SVM.
Like SVM, HML2-CF resulted in significant performance improvement over HML1 and a
classification performance of 83.14% is achieved. Unlike SVM, with HML1, significant per-
formance gain is achieved when features are concatenated together, that is a performance
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f200 f800 f3200 [f200 f800]′ [f200 f800 f3200]′

HML1
SVM 79.09± 0.70 82.62± 0.72 83.82± 0.79 83.44± 0.16 83.16± 1.04

Boosting 74.80± 0.91 76.62± 0.74 73.93± 0.77 77.63± 0.90 78.18± 1.38
HML2-DF

SVM - - - 84.02± 0.20 84.90± 0.51
HML2-CF

SVM - - - 84.10± 0.41 85.50± 0.79
Boosting - - - 81.75± 1.33 83.14± 0.71

Table 10.1: Results of high-level metric learning on Stanford scene database. Results for
HML scheme 1 and HML scheme 2 (distance and classifier fusion) obtained with SVM
and Boosting classification is shown. Mean correctness rate and standard deviation are
reported over ten experiments with different training and testing data. 100 images per
category were used for testing and training.

of 78.18% is achieved with feature-vector [f200 f800 f3200]′ as compared to the perfor-
mance of 76.62% achieved with feature-vector f800 only. Like SVM, HML2-CF resulted
in significant performance improvement over HML1 and a classification performance of
83.14% is achieved.

In summary, it can be seen from table 10.1 that HML2-CF performed best with an
average performance of 85.50%. HML2 for both classifiers resulted in a much better
classification performance as compared to HML1. For SVM, the classifier fusion version
of HML2 turned out to be more effective as compared to distance fusion version HML2.

10.4.2 Object Detection

For the object detection problem, three categories from the TUDarmstadt database (The
PASCAL Object Recognition Database Collection, 2005), and one category from the Cal-
tech101 database (Caltech-101 Object Database, 2006) are used. The details of these
categories are given in figure 10.6. The TUDarmstat database consist of approximately
100 images of three categories: cows, bikes and cars. The bikes and cars categories are
quite challenging, as there are significant scale and viewpoint changes. The cows category
is easy compared to other two, as there is not much scale and rotation variation. The faces
category in the Caltech101 database is excellent for testing detection tasks, as each image
is rich in background detail. In the bikes category there were some images containing more
than one bike. Since multi-object detection is not incorporated, these images are not used
as part of testing or training set. All categories are fully annotated (bounding box present
around the object).

Dense SIFT features are used, as in section 10.4.1. The features are extracted at
points on a regular grid of size 20× 20. At each grid point, the features are extracted at
scales of 4, 8, 16, 24 and 32 pixels. Typical object and a non-object grid points, along
with the demonstration of scales at which features are computed, are given in figure 10.7.
Features extracted at all scales are clustered into a codebook of size 200 using the k-means
clustering algorithm and are vector-quantized. Once the features are vector-quantized, a
sliding window-based approach is used, where each window is represented by the histogram
of features contained within that window (bag of words model). The size of the sliding
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Figure 10.6: Examples images from the TUDarmstadt and Caltech101 database along
with their annotations.

window is not fixed (since images vary in sizes). The histograms are computed over the
window equal to the size of the region at pyramid level 3 with a spacing of 50 pixels. Each
window is represented as the following 200-dimensional feature-vectors.

• f4: Feature-vector extracted at scale 4.

• f8: Feature-vector extracted at scale 8.

• f16: Feature-vector extracted at scale 16.

• f24: Feature-vector extracted at scale 24.

• f32: Feature-vector extracted at scale 32.

Typical object detection approaches requires background images to train the classifier for
any certain object. The idea is to extract features from the object image and from the
background images and to train a classifier using object and non-object features. No
background images were used in this work. All the categories used are annotated with
a bounding box and hence each window of the image can be distinguished as either an
object or a non-object window. Hence the feature-vectors extracted for each window are
known to belong either to an object or a non-object which are used to train classifiers
using one-versus-all scheme. 30, 30, 30 and 100 images are used for training the bikes,
cars, cows and faces category respectively. Similarly, 67, 70, 81 and 350 images are used
for testing the bikes, cars, cows and faces category respectively.

In order to detect an instance of an object, each window in the testing image is classified
as object or non-object with a certain confidence. The output of the classifier for each
window acts as a vote in a Hough voting space. Votes are accumulated in a circular search
window with a radius of three windows around the center of the window (Comaniciu and
Meer, 2002). Accumulated votes above a certain threshold tdet are taken as detections of
an object instance. An object is deemed correctly detected if the overlap of the bounding
boxes (detection vs ground truth) is greater than 70%.
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(a) (b) (c)

Figure 10.7: Figure 10.7(a): grid points across the image at which features are extracted,
Figure 10.7(b): demonstration of typical scales at which features are extracted (scales
depicted in green belong to object whereas scales depicted in red belongs to non-object),
Figure 10.7(c): An object point in figure 10.7(b) is magnified.

f4 f8 f16 f24 f32 [f4 f8 f16 f24 f32]′

HML1
SVM 50.23 69.19 75 78.43 79.43 84.11

Boosting 47.75 72.75 74.25 78.25 73.50 84.25
HML2-DF

SVM - - - - - 84.71
HML2-CF

SVM - - - - - 85.20
Boosting - - - - - 84.95

Table 10.2: Results of high-level metric learning on the cows, bikes and cars category from
the TUDarmstadt database and the faces category from the Caltech101 database. Results
for HML1 and HML2 (distance and classifier fusion) obtained with SVM and Boosting
classification are shown. Mean correctness rates are reported over ten experiments with
different training and testing data.

The classification performance of the following HML schemes on object detection
database is given in table 10.2.

• HML1: Same as in section 10.4.1.

• HML2-DF: Same as in section 10.4.1.

• HML2-CF: Same as in section 10.4.1.

The object detection results in table 10.2 follow a somewhat similar pattern as the scene
classification results in table 10.1. Let us analyze the Boosting results. As for scene
classification, HML2 achieved a performance of 84.95% which is better than 84.25% ob-
tained with HML1. Also, within HML1, significant performance gain is achieved when all
feature-vectors are concatenated together.

Similarly, with SVM, HML2-CF performed better than HML1 and HML2-DF. Unlike
the scene classification results, within HML1, significant performance gain is achieved
when all feature-vectors are concatenated together.

In summary, as for scene classification, HML2 SVM classifier fusion performed best.
HML2 for both classifiers resulted in much better classification performance than HML1.
Similarly, for SVM, HML2-CF turned out to be more effective than HML2-DF.
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Figure 10.8: Examples of the detection results obtained with Boosting using HML2-CF
scheme on the cows, bikes and cars category from the TUDarmstadt database and the
faces category from the Caltech101 database. Blue box: correct detection, red box: false
detection.



Chapter 11

Further Work and Conclusion

11.1 Further Work

In this thesis, the scope of the work has been limited to k-nearest neighbor, SVM and GP
classification frameworks. We acknowledge the fact that fully supporting broader claims
such as

“The performance of most machine learning algorithms depends on their im-
plicit or explicit metric learning approach.”

and

“A distance metric optimized in one learning framework can be applicable
across others.”

requires an extensive survey, literature review and a deep analysis of machine learning
algorithms beyond the k-nearest neighbor, SVM and GP frameworks. We are currently
investigating other machine learning techniques. Though our empirical results in this thesis
suggest that a metric effective in the framework of one learning algorithm is effective across
other frameworks, one needs to work on a mathematical proof for such effectiveness. There
is also a need to investigate the comparative performance of different learning algorithms
in the presence of an appropriate distance metric.

The proposed categorization scheme for metric learning techniques was based on the
form of the distance matrix in distance measurement framework, for example diagonal,
block-partition, etc. There is need to further investigate feature selection and feature
weighting from the metric learning perspective. This will provide an alternative analysis
of feature selection problems.

There is a need to further investigate metric learning methods for kernel tuning. For
example, we were limited to the MEGM metric learning algorithm for kernel tuning, but
a comparative study of the performance of metric learning algorithms for example NCA,
LMNN, RCA, ITML, etc. for tuning SVM kernel parameters is required.

Several research directions can be pursued for local SVM and local adaptive SVM.
First, they need to be further examined from the perspective of kernel tuning. Secondly,

135
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local SVM scales extremely well with the number of classes and, therefore, is worth in-
vestigating for real-time object recognition tasks. Finally, one can investigate combining
local and global SVM classifiers for improving classification performance.

A comprehensive analysis of distance and classifier fusion schemes of high-level metric
learning is required with classification frameworks such as SVM and GP. Also, there is a
need to investigate why classifier fusion results in better performance than distance fusion
in the case of SVM.

11.2 Conclusion

In this dissertation, we articulated the importance of an appropriate distance metric for
machine learning algorithms and discussed the fact that most learning algorithms rely
on tuning a suitable measure of similarity for effective classification. The concept of
similarity has deep philosophical meaning and, in a nut shell, we conjectured that the
learning capacity of an algorithm is dependent on how well the similarity between data
points is measured. We claimed that a data-dependent and a problem-specific measure
of similarity is required because the features in most machine learning data sets are in-
commensurate. Hence all features can not be treated as equally important. We noted
that several techniques exist for taking into account the different nature of features, for
example feature selection, feature weighting, kernel tuning, etc. We build an argument
that these techniques have the same goal as that of learning a distance metric and, there-
fore, can be viewed as forms of metric learning. To formalize this idea, we introduced a
novel categorization of metric learning methods. The existing metric learning methods
were categorized into naive, semi-naive, complete and high-level metric learning methods.
The scheme provided a powerful way of comparing and improving existing metric learning
methods.

We discussed the prevalence of metric learning by showing that most learning algo-
rithms either implicitly or explicitly tune a data-dependent distance metric on which their
performance is critically dependent. However, we noted that metric learning in its conven-
tional form is usually restricted to k-nearest neighbor methods and this should not have
to be the case. Metric learning is general and actually learns the properties of the input
space. In most cases it is independent of the learning algorithm. Therefore, we conjectured
that a metric effective in the framework of one learning algorithm can be effective and
applicable in the other frameworks. We supported our hypothesis by proposing a novel
metric learning algorithm in k-nearest neighbor settings (MEGM) and using it to learn the
kernel in SVM and GP frameworks. Encouraging results were reported on a wide range of
machine learning data sets, not only highlighting the importance of the metric in various
learning algorithms but also showing that a metric trained in k-nearest neighbor settings
can be applicable and effective in SVM and GP settings. We provided a unified view of
kernel and metric learning, as both are very much related and extended the idea of local
metric learning to SVM for computational and classification efficiency.

The work in this thesis is an attempt to view machine learning algorithms from a dis-
tance measurement and metric learning perspective. Our encouraging results on most data
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sets, achieved by tuning a distance metric with the proposed metric learning algorithms,
suggest that the performance of learning algorithms can be increased greatly by using a
suitable distance metric. Also, various methods such as feature selection, feature weight-
ing, scale estimation, distance fusion, etc. are in fact different forms of metric learning.
Similarly, since estimating a data-dependent distance metric is estimation of the proper-
ties of the data, it is very likely that a metric optimized in the framework of one learning
algorithm is applicable and effective in those of others. In a nutshell, metric learning is
an important and interesting direction and one of the many promising emerging areas of
machine learning.
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Appendix A

Typical Problems in Machine

Learning

In this appendix, two kinds of problem prevalent in machine learning are explained. The
first kind of problem represents the case when there is a natural partitioning among fea-
tures, for example object recognition, object detection, etc. A brief history of the object
recognition problem is also provided, as well as an explanation of how machine learn-
ing helps in solving such a complicated problem. The second kind of problem represents
the case where there is no natural partitioning among features. Cancer and mushroom
classification are considered for illustration.

Object Recognition

One of the long-awaited goals of computer vision has been to create programs that can
recognize objects just as we humans do. Though significant success has been achieved in
low-level computer vision, typically known as ‘Machine Vision’ which generally requires
efficient image processing algorithms (as most of the images are taken in controlled and
calibrated environments), much ground is yet to be broken for computer vision. Ob-
ject recognition encompasses much more than mere image processing. Incorporating the
fundamental property of learning a new category of an object has to do with cognitive
sciences, psychology and animal behavioral studies. Object recognition for computer vi-
sion dates back to the mid twentieth century. The research was primarily motivated by
advancements in robotics and related areas.

A true object recognition system should be able to recognize thousand of objects from
many different categories. Recent efforts to incorporate the ease and comfort with which
we humans and some animals recognize objects into machines have not been fruitful. One
of the problem hampering these efforts has to do with view-point variance (figure A.1(e)).
An object viewed from one angle may look completely different if viewed from another.
Also there are huge intra-class variations, for example, different types of chairs such as
stool, bean bag, bench, couch, etc., have a different appearance and structure. Taking
all intra-class and view-point variations into consideration, training and learning across
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(a) (b) (c)

(d) (e)

Figure A.1: Example images depicting problems like scale (A.1(a)), deformation (A.1(b)),
clutter and occlusion (A.1(c)), brightness variance (A.1(d)) and view-point variance
(A.1(e)) for object recognition system. Images courtesy of Fei-Fei et al. (2007).

all poses is a task that is not computationally feasible. Apart from view-point and intra-
class variation problems, there can be issues due to inherent properties of an image, for
example brightness or color variations (figure A.1(d)). Serious problems arise when there
is more than one object in an image. For example, consider the extent of information
in figures A.2(a) and A.2(b). The two figures represent an outdoor and an indoor scene.
Some possible objects of interests are sky, grass, trees, humans, bench, laptop, computer,
chair, bottle, lamp, etc. The two images represents an extremely challenging recognition
problem. Note the different postures of people in figure A.2(a), that is sitting, walking,
running, lying, etc. Similarly note how the books are organized in figure A.2(b) that
is vertically, horizontally, stacked together, etc. Also, issues such as scale, deformation,
clutter and occlusion make the recognition problem very difficult (figure A.1).

Any viable object recognition system has to deal with all the problems as shown in
figure A.1. As a consequence, the recognition process is extremely difficult. Note the
deformation of the horses in figure A.1(b). Using a 2-D (2-dimensional) model or a 3-D
(3-dimensional) model to recognize objects will not be effective under such deformations.
The fundamental problem when it comes to recognizing an object in an image is that of
segmentation. Segmentation deals with dividing an image into its constituent regions or
objects. The fact that we do not know objects in advance, means that we do not know
the extent to which segmentation should be applied. Perhaps, the recognition process is
not difficult. But, to recognize an object, we need to segment it first. And similarly we
can segment an object only if it can be recognized in the image. Maybe segmentation
and recognition should be treated as a same task. Recent object recognition methods are
shown to be more effective if recognition and segmentation are considered simultaneously
or two stages of a single process (Leibe et al., 2007a; Leibe and Schiele, 2003).
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Since images are 2-D projections of real world objects, early research in object recogni-
tion focussed on estimating 3-D models of objects and fitting these models to the objects
in images (Lowe, 1987). The research in this area of object recognition spans more than
three decades (Marr, 1982, chapter 5). Similarly a lot of work was done to define a struc-
tural grammar for each object (Leyton, 1988; Evans et al., 1993). Due to view-point
variations and huge intra-class variations, fitting a 2-D or a 3-D model of an object to
the image or defining the structural grammar for each object turned out to be very com-
putationally expensive. Though much was learned in the development of early computer
vision systems, none of them were particularly successful, mainly because of heavy use
of hand-tuned heuristics which did not generalize well to unseen data. Early computer
vision researchers were very ambitious and it seems that the early pioneers were simply
ahead of their time (Yakimovsky and Feldman, 1974; Yakimovsky, 1975, 1964; Feldman
and Yakimovsky, 1974; Shafer et al., 1993). They had no choice but to rely on heuristics
because they lacked the large amount of data and the computational resources to learn
the relationships governing the structure of the objects.

The failure of early researchers to provide robust solutions for object recognition and
the related tasks led to a new paradigm in computer vision. Since machine learning deals
with the problem of learning from examples, the application of machine learning methods
was a natural step forward for creating viable object recognition systems. Rather than
specifying a structural model or grammar for each object, machine learning encouraged
computer vision researchers to analyze images as data patterns. In the last 15 years, there
has been a huge trend towards applying machine learning techniques to object recognition
problems. This has turned out to be extremely useful. For example, real-time robust
object detection by Viola and Jones (2001), object recognition from local scale-invariant
features by Lowe (1999), etc. have been shown to be very robust and effective and are
widely used.

Machine learning deals with problems in object recognition tasks in at least three ways.
First, machine learning encourages the development of novel features to represent images
in such a way that they are not affected by the abovementioned problems (figure A.1). As a
learning algorithm relies on features to classify objects, researchers are likely to concentrate
on computing effective features. Recently a number of such features have been introduced,
for example, scale-invariant-feature-transform (SIFT) features (Lowe, 1999), shape con-
texts (Belongie et al., 2005), geometric blur (Berg and Malik, 2001), textons (Varma and
Zisserman, 2005), etc. It should be noted that the problem of specifying a model for each
object has actually been transformed into specifying the appropriate features for objects.
Secondly, it leads to the development of novel learning algorithms to recognize objects
from their features (Torralba et al., 2007; Xiao et al., 2006). And third, machine learning
leads to the division of the difficult problem of generic object recognition into smaller more
manageable subsets of problems such as object categorization, scene recognition, object
detection, multi-object detection, face recognition, digit recognition, visual tracking, etc.
In the following, some of these research directions are briefly explained.
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(a) (b)

Figure A.2: Figure A.2(a): A beautiful day at Apollo Bay, VIC, Australia. Figure A.2(b)
A cluttered desk in Digital Perception Lab, Monash University, Clayton VIC, Australia.

Object categorization, which also goes by the name of ‘object instance recognition’,
deals with categorizing images (Fei-Fei and Perona, 2007; Dance et al., 2004; Zhang, Berg,
Maire and Malik, 2006). The goal here is to categorize an image based on its contents.
It is a simple task and easy to solve as the whole image represents only one class, for
example, classifying an image of a car versus an image of a toy, etc. Face recognition
also falls in the category of object categorization. Of course, the face of each person
represents one class. ‘Scene understanding’ is also a form of object categorization (Oliva
and Torralba, 2001; Lazebnik et al., 2006). For example categorizing figure A.2(a) as an
outdoor scene and figure A.2(b) as an office instance, etc. Object detection, on the other
hand, deals with detecting a certain object in the image (Leibe et al., 2007b; Opelt et al.,
2006; Shotton et al., 2005), for example finding the location of the laptop in figure A.2(b),
determining if figure A.2(b) contains a car, determining the number and location of the
cars in figure A.2(b), etc. Two notable applications of object detection are face (Turk
and Pentland, 1991; Viola and Jones, 2001) and pedestrian detection (Leibe and Schiele,
2003).

As described, with the emergence of machine learning techniques, a great deal of success
has been achieved in computer vision, but the dream of a major breakthrough in object
recognition research is still to be seen. Machine learning research has also benefited from
computer vision, as much research in machine learning has been motivated by problems in
computer vision. A typical object recognition process using machine learning approaches
consists of two main steps. The first step is the representation of an image in a form so that
the learning algorithm can be applied. This step is generally known as feature computation
or feature extraction, and results in a feature-vector or feature-set representing the image.
This results in the transformation of an input image into a P -dimensional feature-vector.
A simple example of a feature-vector is the vectorial form of the gray-scale values of
each pixel in the image. The second phase of the recognition process deals with choosing
and customizing machine learning algorithms to better suit object recognition problems.
Though both phases are equally important in creating a robust recognition system, it
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should be noted that the ability of learning algorithm to perform effectively is dependent
on the way images are represented in feature-vectors or feature-sets. It is often desirable to
modify the learning algorithm to better fit the feature-vectors or feature-sets and modify
the feature-vectors or feature-sets (for example re-scaling, partitioning, etc.) to better
fit the learning algorithms. In short, the problem of learning new objects is actually the
problem of learning appropriate discriminative features describing the object.

Cancer and Mushroom Classification

Let us consider an example of a medical diagnosis where physicians have to determine if a
certain type of cancer (breast-cancer) exists or not (Mangasarian et al., 1995). Physicians
have access to previous examples, where each example represents certain symptoms and
the outcome the symptoms represent, i.e. a benign or malign case. Let us suppose that
each example represents the following symptoms: clump thickness, uniformity of cell size,
uniformity of cell shape, marginal adhesion, single epithelial cell size, bare nuclei, bland
chromatin, normal nucleoli, mitoses, and the outcome if the symptoms represent a cancer
or not. In this case, the training data constitutes a 9-dimensional feature-vector. Based
on the examples, the problem is to determine if a new case, that is, some set of symptoms,
represents a case of cancer or not. As can be seen, in this case there is no natural
partitioning among features. We can not treat two or more features together as one
feature-vector and the remaining features as another feature-vector. The relationship
among features has to be inferred by the learning algorithm.

Similarly, let us consider another example that of mushroom classification into edi-
ble and non-edible categories (Iba et al., 1988). To classify mushrooms, let us suppose
that we have the following information about mushrooms: cap-shape, cap-surface, cap-
color, bruises, odor, gill-attachment, gill-spacing, gill-size, gill-color, stalk-shape, stalk-
root, stalk-surface-above-ring, stalk-surface-below-ring, stalk-color-above-ring, stalk-color-
below-ring, veil-type, veil-color, ring-number, ring-type, spore-print-color, population,
habitat. Like the breast cancer example, we do not have any information regarding feature
partitioning. Perhaps we can treat features related to gill (gill-attachment, gill-spacing,
gill-size, gill-color) as a separate feature-vector and features related to stalk (stalk-shape,
stalk-root, stalk-surface-above-ring, stalk-surface-below-ring, stalk-color-above-ring, stalk-
color-below-ring) as a separate feature-vector, in the hope that together the features are
more correlated with the class label or with each other (since they represent the informa-
tion about the same source).
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Appendix B

Discriminant Analysis

In this appendix, linear and quadratic discriminant analysis are briefly explained. Let
us consider a simple binary classification problem (classes are c1 and c2). From decision
theory for classification (Berger, 1985; Bather, 2000), we know that we have to estimate
the class posterior probabilities, that is P (c = c1|X) and P (c = c2|X). According to
Bayes’ theorem, posterior probability can be defined in terms of the likelihood function
(pc(~x)) and the prior probability (πc). Let us assume that the prior probabilities of each
class are the same, that is:

πc =
1
C
, ∀ c (B.1)

It will be useful to write the class posterior probabilities in terms of the likelihood function
and prior probability. For example, we can write the posterior probability of class c1 as:

P (c = c1|X) =
pc1(~x) πc1∑C
c=1 pc1(~x)πc

(B.2)

Following Bayes’ theorem, we have written the posterior probability of class c1 in equa-
tion B.2 in terms of the likelihood function and the prior probability. The term in the
denominator is the normalization factor.

Let us model the likelihood function of each class as a multi-variate Gaussian distri-
bution. Therefore, we can write:

pc1(~x) =
1

(2π)P/2|Σ|1/2
e−( 1

2
(~x−µc1)T Σ−1

c1 (~x−µc1)) (B.3)

In Linear Discriminant Analysis (LDA), we assume that all classes have the same covari-
ance matrix, therefore, Σc = Σ ∀c. For our binary classification problem, we can write:
Σc1 = Σc2 = Σ. For comparing the two classes, we can look at the log ratio of the posterior
probabilities of the two classes. Based on equation B.2 we can write the log ratio as:

log
(
P (c = c1|~x)
P (c = c2|~x)

)
= log

(
pc1(~x)
pc2(~x)

)
+ log

(
πc1
πc2

)
(B.4)
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Let us compute the log ratio of the likelihood functions in equation B.4. Based on equa-
tion B.3 we can write:

log
(
pc1(~x)
pc2(~x)

)
= log

(
(2π)P/2|Σc2|1/2

(2π)P/2|Σc1|1/2
e−

1
2

(~x−µc1)T Σ−1
c1 (~x−µc1)

e−
1
2

(~x−µc2)T Σ−1
c2 (~x−µc2)

)
(B.5)

= −1
2

Σ−1
(
(~x− µc1)T (~x− µc1)− (~x− µc2)T (~x− µc2)

)
(as Σc1 = Σc2 = Σ)

= −1
2

Σ−1
(
−2~xTµc1 + 2~xTµc2 + µTc1µc1 − µTc2µc2

)
= −1

2
Σ−1

(
2~xT (µc1 − µc2) + µTc1µc1 − µTc1µc2 + µTc2µc1 − µTc2µc2

)
= −1

2
Σ−1

(
2~xT (µc1 − µc2) + (µTc1 + µTc2)(µc1 + µc2)

)
= Σ−1~xT (µc1 − µc2)− 1

2
Σ−1(µTc1 + µTc2)(µc1 + µc2)

It can be seen that the assumption of an equal covariance matrix for each class has caused
the normalization factors and quadratic part in the exponent to cancel. Based on above
derivations, we can write equation B.4 as:

log
(
P (c = c1|~x)
P (c = c2|~x)

)
= Σ−1~xT (µc1 − µc2)− 1

2
Σ−1(µTc1 + µTc2)(µc1 + µc2) + log

(
πc1
πc2

)
(B.6)

Equation B.6 implies that all the points in the input space satisfying the condition P (c =
c1|~x) = P (c = c2|~x) represent the decision boundary. The linear discriminant function for
class c1 can be written as:

δc1(~x) = Σ−1~xTµc1 −
1
2
µTc1Σ−1µc1 + log πc1 (B.7)

and the equivalent decision rule G(~x) is:

argmax
c

δc(~x) (B.8)

For quadratic discriminant analysis (QDA), we cannot assume the same covariance
matrix for all classes. Hence, we cannot simplify the log ratio of the likelihood term in
equation B.4 as we did in equation B.5. That is, we can not cancel out the quadratic part
in the exponent. Therefore, when assuming that Σc1 6= Σc2, we can write equation B.5 as:

log
(
pc1(~x)
pc2(~x)

)
= log

(
(2π)P/2|Σc2|1/2

(2π)P/2|Σc1|1/2
e−

1
2

(~x−µc1)T Σ−1
c1 (~x−µc1)

e−
1
2

(~x−µc2)T Σ−1
c2 (~x−µc2)

)

= log

(
|Σc2|1/2

|Σc1|1/2
e−

1
2

(~x−µc1)T Σ−1
c1 (~x−µc1)

e−
1
2

(~x−µc2)T Σ−1
c2 (~x−µc2)

)

= −1
2

log
(

Σc1

Σc2

)
− 1

2
(~x− µc1)TΣ−1

c1 (~x− µc1)− 1
2

(~x− µc2)TΣ−1
c2 (~x− µc2)
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Equation B.4 will become:

log
(
P (c = c1|~x)
P (c = c2|~x)

)
= −1

2
log
(

Σc1

Σc2

)
− 1

2
(~x− µc1)TΣ−1

c1 (~x− µc1)−

1
2

(~x− µc2)TΣ−1
c2 (~x− µc2) + log

(
πc1
πc2

)
(B.9)

The quadratic discriminant function based on equation B.9 can be written as:

δc1(~x) = −1
2

log |Σc1| −
1
2

(~x− µc1)TΣ−1(~x− µc1) + log πc1 (B.10)

The decision boundary between classes c1 and c2 is described as a quadratic function
such that: δc1(~x) = δc2(~x). Like LDA, an equivalent decision rule for QDA is given in
equation B.8.
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Appendix C

Comparative Study of Dense

versus Sparse Features

There has been a significant debate over the use of features extracted at some small set of
interest points (sparse features) compared with features extracted at points on a regular
grid (dense features). The first approach is to identify some interest points on the object
and compute scale and rotation invariant features at these points to represent the object.
These are typically known as ‘sparse features’ in contrast to ‘dense features’, which are
computed at grid points (figure C.1). The use of interest points has the advantage that
features computed are scale or rotation invariant, but of course a disadvantage because of
the sparsity and the consequent inability to capture all the information in the image. In
this work, a comparative analysis of dense and sparse features for object categorization
problem is presented.

To compare the performance of dense and sparse features, the Caltech-101 Object
Database (2006) is used. Multi-class classification is done by training binary classifiers
using the one-versus-all rule. 15 training images per category were used for training. The
rest of the images were used for testing. For efficiency, the number of testing images was
limited to 50. It is noteworthy that some categories were quite small and we ended up
with a single test image per category. The performance results are given as the average of
per-class recognition performance. An alternate performance measure could be to record

(a) (b) (c)

Figure C.1: Images showing the interest points and the grid points over which the features
are to be calculated. Figure C.1(a): original image, Figure C.1(b): shows the interest
points along with area at which the features are to be computed, Figure C.1(c): shows
the grid points at which features are to be computed.
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Figure C.2: Some example images from Caltech101 object database (3 images per cate-
gory). Caltech101 database consists of 101 object categories. Each category contains 31
to 800 images. The database is ideal for testing categorization tasks as the objects are not
cluttered and mostly present at the center of the image.

the percentage of all correctly classified test images. Since, the size of each category varies
a lot, such a measure may have been biased and, therefore, is not used.

The pyramid-based histogram computation approach described in section 10.4.1 was
used to compute the dense features. SIFT features (Lowe, 1999) were extracted at points
on a regular grid of size 20× 20. At each grid point, the features were extracted at scales
of 4, 8, 16, 24 and 32 pixels. Once the features were extracted, they were clustered into
a codebook of size 200 using the k-means clustering algorithm. Once the codebook was
computed, the features were vector-quantized. A pyramid-based approach was used to
compute the feature-vector representing the image. Sparse features were calculated using
the same approach as for dense features, except the SIFT features were extracted on some
interest points detected using Harris-Affine interest point detector. For both dense and
sparse features, a maximum pyramid level of three was used. Hence both dense and sparse
feature-sets were constituted of four feature-vectors of length 200, 800, 3200 and 12800
each.

The resulting dense and sparse feature-sets are classified using HML2-CF scheme as
described in chapter 10 using the CRAB version of Boosting classifier (section 10.1.2).
The following variants of HML2-CF scheme are compared:

• HML2-CF, equal weighting: The classifiers trained for each feature-vector are
combined to predict the class label. All classifiers are given equal weight. The
classification results are given in table C.1.

• HML2-CF, priority weighting: The classifiers trained for each feature-vector
are combined to predict the class label. A priority weighting scheme is used. The
classifiers trained at higher pyramid levels are given less weights as compared to
classifiers trained at lower pyramid levels (equation 10.18). The classification results
are given in table C.1.
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Pyramid Level 0 1 2 3
HML2-CF (equal weighting)

Dense Features 33.19± 0.25 46.25± 0.15 53.42± 0.10 53.13± 0.10
Sparse Features 15.28± 1.37 20.89± 0.39 24.19± 0.20 24.41± 0.34

HML2-CF (priority weighting)
Dense Features 33.19± 0.25 46.30± 0.19 53.99± 0.15 54.20± 0.25
Sparse Features 15.28± 1.37 20.30± 0.50 24.40± 0.08 24.50± 0.17

Table C.1: Mean correctness rate of dense and sparse features with HML2-CF (equal and
priority weighting) on Caltech101 object database. Mean correctness rate and standard
deviation of the results are reported over ten experiments with random training and testing
data.

It can be seen from table C.1 that the dense features resulted in much better perfor-
mance as compared to the sparse features. With both dense and sparse features, the best
performance resulted at pyramid level 3 with HML2-CF scheme and priority weighting.
But the performance is 54.20% in the case of dense feature as compared to meager 24.50%
with sparse features. This suggest that even though dense features are computationally
expensive, they can result in a huge performance gain.
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Appendix D

Support Vector Machines

An SVM is a classifier that computes an optimal hyper-plane that separates the data into
two classes such that the distance between the hyper-plane and the training data (also
known as the margin) is maximized. SVM are based on Support Vector Classifier (SVC),
which are actually optimized linear classifiers obtained in a way such that their margin are
maximized. Therefore, before delving into the details of SVM and the optimization strat-
egy behind them, simple linear classifiers will be briefly discussed and we will describe how
the SVC formulation originates when an optimal linear classifier is desired. In figure D.1,
a simple classification problem with two linearly separable classes is shown. The decision
boundaries of some of the classifiers (linear) that can classify the data correctly are shown
as blue lines. It can be seen from the figure that there are many linear classifiers possible as
solutions to this classification problem. Which classification solution is the best? Clearly
there is a need to determine the best classifier for this problem. In machine learning, a
classifier that has the capability of generalizing well to unseen data is more desirable. The
SVC formulation seeks such a solution. The discussion in the remainder of this appendix
(closely) follows the development in Hastie et al. (2001).

A linear classifier can be parameterized by two variables: β0 and ~β. For example, in
figure D.1 each classifier is written as β0+β1x1+β2x2, and the sign is used to determine the
class of the query point. The classifier will return zero for any data point on the decision
surface. Such linear combinations of input features (x1, . . . , xn) were called perceptrons in
the early 70’s and were the basis of every neural network techniques (Minsky and Papert,
1969). Given a training data set {(~x1, y1), . . . , (~xn, yn)}, a point with label yi = +1 will
be misclassified if the perceptron outputs is < 0, that is β0 + ~βT~x < 0 and similarly for
point with label yi = −1, it is deemed misclassified if β0 + ~βT~x > 0. Rosenblatt (1958)
addressed the problem of finding an optimal hyper-plane by minimizing the following
objective function using stochastic gradient descent:

−
N1∑
i=1

yi(β0 + ~βT~x) (D.1)

where N1 is the number of misclassified points. There are at least three problems with
Rosenblatt’s (1958) formulation of optimal linear classifiers. First, when the data is linearly
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Figure D.1: A toy classification problem representing the case where data can be well
separated by many linear classifiers. The class A is shown in red and class B is shown in
green. The blue lines represents the decision boundaries of some of the classifiers that can
separate the data well.

separable, there may be many solutions. As each solution will depend on the initialization
of the algorithm parameters, a unique solution can not be guaranteed. Secondly, if the
problem is not linearly separable, the algorithm will not converge. Finally, the number of
steps required to achieve convergence can be so large that we may not be able to determine
if the problem is non-separable or the algorithm is simply too slow to converge.

In figure D.2, some linear algebra that serves as the basis for linear classification is
reviewed. The red line represents a linear classifier specified by y = β0 + ~βT~x. For any
two data points ~xa and ~xb on the decision surface, the equation of the decision surface
is y = 0, therefore, ~βT (~xa − ~xb) = 0. This suggests that the vector ~β is orthogonal to
the decision boundary y. Similarly for any data point ~xa on the decision surface, we can
write ~βT (~xa) = −β0. Using the distance formula, the distance C of any point ~x from the
decision surface can be calculated as:

C =
1

‖~β‖
(~βT~x+ β0) =

y(~x)

‖~β‖
(D.2)

The margin of a classifier is defined as double the perpendicular distance of any closest
data point to the boundary surface. Since, C in equation D.2 is the perpendicular distance
of ~x to the decision surface, the margin of the classifier is actually 2C. Intuitively it can
be seen that maximizing this margin may result in better classification.

To develop a classifier that results in maximizing the margin, we need to rephrase
equation D.1 in the form of the following optimization problem:

max
β0,~β

C

subject to 1

‖~β‖
yi(~βT~xi + β0) ≥ C, i = 1, 2, . . . , N (D.3)
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Figure D.2: Review of some basic linear algebra concepts required for deriving maximal
margin classifier.

The conditions in equation D.3 ensure that each point is at least distance C from the
hyperplane that is defined by β0 and ~β. Instead of maximizing C we can also minimize 1/C.
Equation D.3 also has another important interpretation. It suggests that even if we re-scale
β0 and ~β, the distance of the hyperplane to each data point is going to remain same. Hence,
we can set 1/C = ‖~β‖ and reformulate constraints as 1

‖~β‖
yi(~βT~xi+β0) ≥ 1, i = 1, 2, . . . , N

in equation D.3. Therefore, equation D.3 can be written as:

min
β,~β

1
2
‖~β‖2

subject to 1

‖~β‖
yi(~βT~xi + β0) ≥ 1, i = 1, 2, . . . , N (D.4)

This results in a quadratic programming problem, since the objective function is quadratic
with linear inequalities constraints and can be solved efficiently.

So far we have assumed that the classes are linearly separable. For those cases where
the two classes overlap, we can still maximize C in equation D.3, but we need to build a
mechanism to allow some data points to be on the wrong side of margin. This can be done
by introducing slack variables ξ1, ξ2, ....ξn (one slack variable for each point in the data
set), each of which is actually a penalty applied to those data points that are present on
the wrong side of the margin. That is, ξi = 0 for those data points that are on the right
side of the margin (correctly classified). Whereas, ξi = |yi − f(~xi)| for the data points
on the wrong side of the margin (misclassified points). Figure D.3 illustrates a simple
margin-based classification scenario with slack variables constrained to satisfy ξi ≥ 0. The
data points correctly classified in figure D.3 have ξ = 0. Those data points that are on the
decision surface; ξi = 1 as f(~xi) = 0. Points lying inside the margin but on the correct
side of decision boundary satisfy the constraint 0 < ξi ≤ 1, whereas misclassified points
satisfy constraint ξi > 1.
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Figure D.3: Illustration of slack variables in margin-based classification. The decision
boundary is shown in red, while the green lines bound the maximal margin of width
2C = 2/‖~β‖.

It can be seen that
∑

i ξi is an upper bound on the number of misclassified training
points. Hence by bounding

∑
i ξi we bound the total number of training points that

can be on the wrong side of decision boundary. This introduction of slack variables is
known as ‘soft margin’, as it allows some data points to be on the wrong side of the
decision boundary, in contrast to the hard margin where no data points are allowed to be
misclassified. With the incorporation of slack variables, the constraints in equation D.4
can be modified as:

min
β,~β

1
2
‖~β‖2

subject to yi(~βT~xi + β0) ≥ (1− ξi), ∀i, ξi ≥ 0,
∑

i ξi ≤ C (D.5)

The objective function and constraints in equation D.5 is the standard SVC formulation
for non-separable data. For computational efficiency we can write equation D.5 as:

min
β0,~β

1
2
‖~β‖2 + C

N∑
i

ξi

subject to yi(~βT~xi + β0) ≥ (1− ξi), ∀i, ξi ≥ 0, (D.6)

The Lagrange (primal) of equation D.6 is:

Lp(β0, ~β, α) =
1
2
‖~β‖2 + C

N∑
i

ξi −
N∑
i

αi[yi(~xTi ~β + β0)]−
N∑
i

aiξi (D.7)
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Taking partial derivative of Lp in equation D.7 with respect to β0, ~β and ξi and setting
the respective derivatives equal to zero, we get the following results:

β =
N∑
i

αiyi~xi, 0 =
N∑
i

αiyi, and αi = C − ai ∀i (D.8)

By substituting equation D.8 in equation D.7, we get the following Lagrangian (Wolfe)
dual objective function:

Lp(β0, ~β, α) =
N∑
i

αi −
1
2

N∑
i

N∑
j

αiαjyiyj~x
T
i ~xj (D.9)

This again represents a quadratic programming problem. An optimal value of α can be
found from equation D.9 in the lights of Karush-Kuhn-Tucker (KKT) constraints which
are:

αi ≥ 0, ai ≥ 0, ξi ≥ 0 (D.10)

aiξi = 0 (D.11)

αi[yi(~β~xi + β0)− (1− ξi)] = 0 (D.12)

yi(~β + β0)− (1− ξi) ≥ 0 (D.13)

for i = 1, 2, . . . , N . From equation D.9, we can find the solution, that is the parameters
~β∗ of an optimal hyperplane. We can write ~β∗ as:

~β∗ =
N∑
i

α∗i yi~xi (D.14)

It should be noted that α will be non-zero for those data points (~xi) which meet the
constraints in equation D.12. These data points (~xi) are known as the support vectors
as ~β∗ is only represented in terms of these data points. As can be seen that obtaining
the optimal decision boundary by maximizing the dual in equation D.9 is a much simpler
optimization problem (convex programming) than maximizing the primal in equation D.7.
Therefore, solving for ~β∗ and β∗0 in equation D.9 gives the following decision function:

y(~x) =
N∑
i

~β∗T~x+ β∗0 (D.15)

The classifier in equation D.15 (depicting both the separable and non-separable sce-
narios) is a linear classifier in the input space. Such a formulation is known as SVC. It
is common to project the input data to a high dimensional space and find linear bound-
aries (SVC for example) in that space. This results in a non-linear decision surface in the
input space. Non-linear decision boundaries in the input space often lead to better class
separation. Expanding feature space using basis functions such as splines and polynomi-
als is common in machine learning. SVM is the incorporation of this idea in SVC. An
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input space is embedded into an expanded feature space and SVC is used to find linear
boundaries in that space. It should be noted that with sufficient basis functions data can
be completely separated, which will often induce over-fitting. Therefore, SVM has to deal
with the issue of over-fitting. We can modify the Lagrangian dual form in equation D.9
as:

Lp(β0, ~β, α) =
N∑
i

αi −
1
2

N∑
i

N∑
j

αiαjyiyj〈Φ(~xi),Φ(~xj)〉 (D.16)

where Φ(~x) is the transformation of data. As can be seen, equation D.16 calculates the
dot product in the transformed space. The beauty of the SVM formulation is that we do
not need to take care of actual transformation and calculation of the dot product. All
we require is the knowledge of the kernel function (k(., .)) which implicitly computes the
inner product in the transformed space, for example:

k(~xi, ~xj) = 〈Φ(~xi),Φ(~xj)〉 (D.17)

It should be noted that k has to be a positive-semi-definite function. Following are typical
kernels used with SVM:

d-degree Polynomial : k(~xi, ~xj) = (1 + 〈~xi, ~xj〉)d

Radial Basis Function (RBF) : k(~xi, ~xj) = exp(−‖~xi − ~xj‖2)/σ2) (D.18)

In the light of the above discussions on kernels, we can write equation D.15 as:

y(~x) =
N∑
i

α∗i yik(~xi, ~x) + β∗0 (D.19)

In summary, it can be seen that an SVM classifier has two tuning parameters: the
misclassification penalty C and the kernel function k(., .). A large value of C will discourage
positive ξi and will lead to a ‘wiggly’ decision surface in the original space. On the other
hand, a smaller value of C will encourage a small value of ‖~β‖; this will make y(~x) more
smooth.



Appendix E

Gaussian Processes

The GP is a regression/classification technique that has been very popular in machine
learning. Though interest in its use was revived by the work of Rasmussen and Williams
(2006), it should be noted that GP estimation under the name of the ‘kriging’ estimate has
been used in spatial statistics for a long time (Cressie, 1993). A general broad overview of
GP framework is provided in this appendix. Maximum likelihood estimation, linear models
of regression, and Bayesian methods will also be explained to build a foundation for GP
estimation. The discussion in the remainder of this appendix follows the development
in Bishop (2006).

In a typical machine learning scenario, we are given some training data X =
{~x1, ~x2, . . . , ~xN} and we are interested in predicting the underlying process (or estimat-
ing the function) that generated these observations. For convenience, we assume that
the observations are drawn independently from some probability distribution. Since a
probability distribution can be specified completely by some parameters, the problem of
estimating an unknown function transforms into the problem of estimating the parameters
for that probability distribution.

Let us assume that the observations are drawn independently from a Gaussian dis-
tribution. The univariate Gaussian distribution with mean µ and variance σ2 and the
multivariate (P -dimensional) Gaussian distribution with mean ~µ and covariance Σ can be
written as:

N (x|µ, σ2) =
1

(2π)1/2(σ2)1/2
exp

(
−(x− µ)2

2σ2

)
(E.1)

N (~x|~µ,Σ) =
1

(2π)P/2|Σ|1/2
exp

(
−1

2
(~x− ~µ)TΣ−1(~x− ~µ)

)
(E.2)

respectively. Since the data is independent and is identically drawn from the distribution
N (~x|~µ,Σ), we can write the likelihood function as:

p(X|~µ,Σ) =
N∏
n=1

N (~xn|~µ,Σ) (E.3)
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We can estimate the parameters for the Gaussian distribution by maximizing the likelihood
function in equation E.3. Such an approach is known as the maximum likelihood method.
Maximum likelihood views the parameters as quantities whose value is fixed but unknown.
The best estimate of their values is the one that maximizes the probability of obtaining
samples that are actually observed. Taking the log of equation E.3, we have:

ln p(X|~µ,Σ) = −N
2

ln(2π)− N

2
ln|Σ| − 1

2

N∑
n=1

(~xn − ~µ)TΣ−1(~xn − ~µ) (E.4)

Let us denote ln p(X|~µ,Σ) with J which is actually an objective function that needs to be
maximized to obtain the parameters of the distribution. It can be seen that maximizing
J in equation E.4 with respect to ~µ leads to:

~µ∗ =
1
N

N∑
n=1

~xn (E.5)

which is actually the sample mean. Similarly maximizing J with respect to Σ, we can get
the maximum likelihood solution for the covariance, that is:

Σ∗ =
1
N

N∑
n=1

(~xn − ~µ∗)T (~xn − ~µ∗) (E.6)

Let us denote the probability distribution parameters as θ. So far, we have assumed a
Gaussian distribution, hence θ = {~µ,Σ}. But, in general, the sample data can assumed to
be generated by any underlying probability distribution. Therefore, the objective function
J can be written as p(X|θ). In short, the maximum likelihood estimate of θ is the value θ∗

that maximizes the objective function p(X|θ). Sometimes, we have information about the
distribution parameters (θ). An alternative is the maximum posterior estimation (MAP),
which corresponds to finding the value of θ that maximizes p(X|θ)p(θ). Of course, this
technique has its roots in Bayesian estimation

Before introducing Bayesian methods, we should consider a simple linear model for
regression:

y(~x,w) = w0 + w1x1 + w2x2 + · · ·+ wPxP (E.7)

= w0 +
M−1∑
j=1

wjφj(~x) (E.8)

= wTφ(~x) (E.9)

where w = (w0, w1, .....wM−1)T and φ = (1, φ1, .....φM−1)T . Note M represents the total
number of parameters in the model and is equal to P+1 where P is the number of features.
In general the samples or observations are noisy, therefore, we need to cater for this noise
in the regression model in equation E.7. We can modify y(~x,w) in equation E.7 as:

t = y(~x,w) + ε (E.10)
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where ε is small Gaussian noise around ~x and t represent the actual value of the function
at point ~x. Therefore, to make predictions about the value of t, we are interested in
predicting the values of the Gaussian distribution with a mean of y(~x,w) and the variance
of ν, we can write:

p(t|~x,w, ν) = N (t|y(~x,w), ν) (E.11)

Again, as the observations are independent and identically drawn, if t = {t1, . . . , tn}, we
can write:

p(t|X,w, ν) =
N∏
n=1

N (tn|y(~xn,w), ν) (E.12)

Let us take the log of both sides of equation E.12. Using equation E.7, we can write

ln p(t|X,w, ν) =
N∑
n=1

N (tn|wTφ(xn), ν) (E.13)

=
N

2
ln(ν)− N

2
ln(2π)− ν

2

N∑
n=1

(tn −wTφ(~xn))
2

(E.14)

Now, maximizing the objective function (ln p(t|X,w, ν)) in equation E.14 with respect to
w and ν, we can write:

w∗ = (ΦTΦ)
T

ΦT t (E.15)

ν∗ =
1
N

N∑
n=1

(tn −w∗φ(~xn))2 (E.16)

where

Φ =


φ0(x1) φ1(x1) · · · φM−1(x1)
φ0(x2) φ1(x2) · · · φM−1(x2)

...
...

. . .
...

φ0(xN ) φ1(xN ) · · · φM−1(xN )

 (E.17)

is a M × N dimensional matrix, also known as the design matrix. Now, we can write
equation E.11 in terms of w∗ and ν∗ from equation E.15 and E.16 as:

p(t|~x,w∗, ν∗) = N (t|y(~x,w∗), ν∗) (E.18)

The quantity w∗ = (ΦTΦ)TΦT t is also known as the ‘Moore-Penrose pseudo-inverse’ of
the matrix Φ.

Bayesian techniques view the parameter w as a random variable having some known
prior distribution. Let us suppose that the prior distribution over parameter w is Gaussian,
with mean 0 and covariance of Σp, so we can write:

p(w) = N (w|0,Σp) =
1

(2π)P/2|Σp|1/2
exp

(
1
2
wΣpwT

)
(E.19)
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If we take the log on both sides of equation E.19, we can write:

ln p(w) = ln

(
1

(2π)P/2|Σp|1/2

)
+

1
2
wΣpwT (E.20)

We are interested in following equations:

p(w|t) = p(t|w)p(w) (E.21)

ln p(w|t) = ln p(t|w)+ln p(w) (E.22)

Plugging ln p(t|w) from equation E.14 and ln p(w) from equation E.20 (by using only
terms that involve w), we can write ln p(w|t) as:

ln p(w|t) = −ν
2

N∑
n=1

(tn −wTφ(xn))
2 − 1

2
wΣpwT (E.23)

= −ν
2

(t− Φw)T (t− Φw)− 1
2
wΣpwT (E.24)

Now maximizing the objective function ln p(w|t) in equation E.23 with respect to w, we
can write:

w∗ =
νΦT t

Σ−1
p + νΦTΦ

(E.25)

= νSNΦT t,where SN = (Σ−1
p + νΦTΦ)−1 (E.26)

Plugging the value of w∗ from equation E.25 in equation E.9 reveals some interesting
results.

y(x,w∗) = w∗Tφ(x) (E.27)

= νφ(x)TSNΦt (E.28)

=
N∑
n=1

νφ(x)TSNφ(xn)tn (E.29)

=
N∑
n=1

k(x, xn)tn where k(x, x
′
) = νφ(x)TSNφ(x

′
) (E.30)

The kernel k(., .) in equation E.30 is known as the ‘smoother matrix’ or the ‘equivalent
kernel’. The regression functions which make predictions by taking the linear combinations
of the data target values are known as the linear smoothers. This formulation of linear
regression in terms of a kernel function suggests an alternative strategy. Instead of defining
a set of basis functions, which implicitly determines an equivalent kernel, we can instead
directly define a kernel density function and use this to make predictions for a new input
data point ~x, given the training data. This leads us to a practical framework for regression
and classification called GP.

Let us consider the linear model of regression in equation E.9. It can be seen that
the probability distribution over w as defined in equation E.19 induces a probability
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distribution over functions y(x). Let us simplify equation E.9 and write it as:

y = wTΦ (E.31)

where y = y(~x1), . . . , y(~xN ) and Φ is the design matrix. Since y is a linear combination
of Gaussian distributed variables given by the elements of w, it itself is Gaussian. We can
find its mean and covariance as:

E[y] = ΦE[w] = 0 (E.32)

cov[y] = E[yyT ]

= ΦE[wΣpwT ]ΦT (E.33)

= K (E.34)

where K is the Gram matrix with elements:

Knm = k(~xn, ~xm) (E.35)

where k(., .) is the kernel function. This is a particular example of GP. A GP is defined
as a probability distribution over functions y(.) such that the set of values y(~x) evaluated
at some points jointly have a Gaussian distribution.

Let us consider how we can make prediction using the GP formulation. In summary,
from the definition of GP, we can consider the distribution p(y) as having zero mean and
covariance defined by the Gram matrix K such as:

p(y) = N (y|0,K) (E.36)

Let us suppose that we are to predict the target label yN+1 for testing data ~xN+1. If we
denote (y1, . . . , yN , yN+1) as yN+1, we can write:

p(yN+1) = N (yN+1|0,KN+1) (E.37)

where KN+1 is an (N + 1)× (N + 1) covariance matrix calculated using equation E.35. It
should be noted that matrix KN+1 can be partitioned as:

KN+1 =

(
KN k

kT c

)
(E.38)

where KN is an N × N covariance matrix, the vector k has elements k(~xn, ~xN+1) for
n = 1, . . . , N and the scalar c is k(~xN+1, ~xN+1). We can write the mean and the covariance
of the predictive distribution in equation E.37 as:

m(~xN+1) = kTK−1
N y

cov(~xN+1) = c− kTK−1
N k (E.39)
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The results in equation E.39 defines the predictive distribution for GP regression with
an arbitrary kernel function k(~xn, ~xm). Since k is a function of ~xN+1, the predictive
distribution is a Gaussian whose mean and variance both depend on ~xN+1.



Appendix F

UCIML Database details

The University of California, Irvine’s (UCI) repository of machine learning databases
(often known as UCIML) consists of over 180 databases (Frank and Asuncion, 2010). The
databases in the repository have been used as a benchmark for performance evaluation of
various machine learning methods. In this appendix, the details of the UCIML databases
that are used in this dissertation are given. A brief summary of these databases is also
given in table F.1.

Database Data Features Classes Database Data Features Classes
ionosphere 352 34 2 monks2 432 6 2

sonar 208 60 2 monks3 432 6 2
statlog numeric 1000 24 2 monks1 432 6 2

statlog heart 270 13 2 tictactoe 958 9 2
hepatitis 80 19 2 vowel 528 10 11

balance-scale 625 4 3 credit screening 653 15 2
dermatology 358 34 6 Iris 150 4 3
liver-disorder 345 6 2 hayesroth 132 5 3

house vote 232 16 2 parkinson 197 23 2
diabetes 768 8 2 echocardiogram 61 12 2
satimage 6435 36 6 pageblock 5473 10 5
spambase 4601 57 2 segment 2310 19 7

Table F.1: Details (number of data, features and classes) of the UCIML databases used
for the comparison of different algorithms during the course of this dissertation.

The following description of the UCIML databases comes from Frank and Asuncion
(2010).

ionosphere:

The ionosphere database consists of radar data collected by a system installed in Goose
Bay, Canada. Received signals were processed using an autocorrelation function whose
arguments are the time of a pulse and the pulse number. There were 17 pulse numbers for
the installed system. Instances in this database are described by two attributes per pulse
number, corresponding to the complex values returned by the function resulting from the
complex electromagnetic signal. ‘Good’ radar returns are those showing evidence of some
type of structure in the ionosphere (free electrons in the ionosphere of the Earth). ‘Bad’
returns are those that do not; their signals pass through the ionosphere. The classification
task is to classify good and bad radar returns.
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sonar:

The sonar database (also known as ‘Connectionist Bench’) consists patterns obtained by
bouncing sonar signals off rocks and a metal cylinder at various angles and under various
conditions. The label associated with each pattern is ‘R’ if the object is a rock and ‘M’
for mine (metal cylinder). The goal is to classify rock and mine patterns.

statlog numeric:

The statlog numeric database, known as Statlog (German credit data) consists of informa-
tion about customers of a bank. Different attributes are given along with their target labels
characterizing customer as either suitable for the issuing of a credit card or otherwise.

statlog heart:

The statlog heart database consists of attributes for predicting the heart diseases. Based
on attributes such as chest pain type, blood pressure, blood sugar, induced angina, etc.
the goal is to classify conditions representing a potential heart disease with those that do
not.

hepatitis:

Like statlog heart, hepatitis database consists of attributes representing some medical con-
ditions. The goal is to classify these attributes representing potential Hepatitis with those
that do not.

balance-scale:

The balance-scale database was generated to model psychological experimental results.
Each example is classified as having the balance scale tip to the right, tip to the left,
or be balanced (three classes). The attributes are the left weight, the left distance, the
right weight, and the right distance. The correct way to find the class is the greater
of left-distance × left-weight and right-distance × right-weight. If they are equal, it is
balanced.

dermatology:

The dermatology database consists of clinical and histopathological attributes to predict
erythemato-squamous diseases in dermatology.

liver-disorder:

The liver-disorder database consists of attributes related to the blood tests which are
thought to be sensitive to liver disorders that may arise from excessive alcohol consump-
tion.
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house vote:

The house vote database also known as ‘Congressional Voting Records’ database includes
votes for each of the U.S. house of representatives congressmen on the 16 key votes identi-
fied by the Congressional Quarterly Almanac (CQA). The CQA lists nine different types
of votes: voted for, paired for, announced for, voted against, paired against, announced
against, voted present, voted present to avoid conflict of interest, and did not vote or
otherwise make a position known. Based on the voting pattern, the goal is to classify
congressman as either republican or democrat.

diabetes:

The diabetes database consists of attributes representing diabetes related conditions. The
goal is to determine if a certain pattern of conditions results in diabetes or not.

satimage:

The satimage database (also known as ‘Statlog’) consists of the multi-spectral values of
pixels in 3 × 3 neighborhoods in a satellite image, and the classification associated with
the central pixel in each neighborhood. The aim is to predict this classification, given the
multi-spectral values. In the sample database, the class of a pixel is coded as a number.

spambase:

The spambase consists of various attributes representing an email. The goal here is to
classify such email as either spam or not-spam.

monks1, monks2, monks3:

The three MONK problems were the basis of the first comparison of learning algorithms.
The problems have the same domain, that is they have the same attribute. The database
monks1, monks2 and monks3 are obtained by altering the class labels (target).

tictactoe:

The tictactoe database (known as ‘Tic-Tac-Toe End game’) encodes the complete set of
possible board configurations at the end of tic-tac-toe games, where ‘x’ is assumed to have
played first. The target concept is ‘win for x’.

vowel:

The vowel database also known as Connectionist Bench (Vowel Recognition), consists of
data related to vowels spoken by different speakers (each utterance of a speech charac-
terized by ten floating point values). The problem is to classify vowels based on the
information.
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credit screening:

The credit screening database (Credit Approval database) is concerned with credit card
applications. All attribute names and values have been changed to meaningless symbols
to protect confidentiality of the data.

Iris:

The Iris database is one of the best known database found in pattern recognition research.
The features include the sepal and petal length of the iris plants. The database contains
three classes where each class refers to a type of the iris plant.

hayesroth:

The hayesroth database (also known as Hayes-Roth database) consists of features related
to the study of human subjects. For example, age, hobby, educational level, etc. The
subjects are categorized into three classes based on these attributes.

parkinson:

The parkinson database is composed of a range of biomedical voice measurements with
Parkinson’s disease (PD). Each column in the table is a particular voice measure, and
each row corresponds one of 195 voice recording from these individuals. The goal is to
discriminate healthy people from those with PD.

echocardiogram:

The echocardiogram database consists of data about patients who have suffered heart
attacks at some point in the past. Some are still alive and some are not. The survival
and still-alive variables, when taken together, indicate whether a patient survived for at
least one year following the heart attack. The goal is to predict from the other variables
whether or not the patient will survive at least one year.

pageblock:

The pageblock database consists of attributes like height, length, eccentricity about the
blocks of the page layout of a document that has been detected by a segmentation process.
The goal is to classify these blocks into five categories.

segment:

The segment database (also known as Image Segmentation) consists of outdoor images data
described with high level numeric attributes. The instances from the images are extracted
which are 3×3 region and represented in terms of features like intensity, mean, hue, mean
hedge, region centroid, etc. The goal is to classify instances into seven categories.
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k-nearest neighbor methods work by predicting the label of a query point by taking
into consideration the labels of the training points in its neighborhood. Typically
each training point cast a weight for the prediction proportional to its distance from
the query point. xi, 3–5, 7, 14, 15, 18, 19, 23, 28, 29, 32–34, 36, 41, 43, 44, 47–50,
58, 63–65, 68, 70, 72, 74, 83, 84, 89, 92, 97, 98, 101, 107, 111, 113, 120, 135, 136,
170, 171

ARD is a well-known technique for scale estimation (or the relative importance of each
feature) in the GP framework. 33, 110

BoostML1 is the proposed local adaptive metric learning algorithm. At each iteration
of the algorithm, the best feature is selected and neighborhood is adapted based on
the selected feature. 5, 79–82, 84, 169

BoostML2 is the proposed variant of BoostML1. At each iteration of the algorithm, all
features are used to adapt neighborhood based on their individual relevances. 5, 79,
82, 84

Complete metric learning is the case of learning a full distance matrix A (diagonal
and off-diagonal terms) in the distance measurement framework. xi, 3, 5, 32, 36, 37,
39, 40, 43, 44, 64, 67, 68, 77, 87, 89, 97, 99–101, 103, 110, 113, 119, 121, 136, 170

CRAB is a modification of AdaBoost algorithm such that the weak classifier gives the
prediction for the entire range of the input space. xxvi, 4, 124–126, 130, 150

Distance measurement framework provides a mechanism to measure distance and
learn a data-dependent distance metric. 3, 19, 32

Feature-set is a collection of different feature-vectors, denoted as FS. 7, 8, 30, 32, 34,
36–39, 119–121, 142, 143, 150, 170

Feature-vector is a set of values concatenated together in a vector, denoted as ~x. Each
element of the feature-vector is denoted as a ‘feature’. 7–11, 13, 17, 20, 30, 36–42,
56, 57, 72, 92, 103, 112, 119–123, 126, 128–133, 142, 143, 150, 170

GASVM1 is the proposed algorithm that trains an SVM classifier by learning a kernel
using the MEGM algorithm. A metric is learned for all classes. 5, 89, 91, 170

169
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GASVM2 is a variant of GASVM1 such that a separate metric is learned for each cate-
gory. 5, 89, 91

GML is the proposed generic metric learning algorithm for naive and semi-naive metric
learning. Any feature relevance measure can be used. 5, 67, 73

GP Gaussian Processes. xi, 3, 5, 14, 15, 26–28, 30–34, 44, 109–112, 120–122, 135, 136,
159, 162–164, 169, 170

GPML1 is the proposed algorithm that train a GP classifier by learning the kernel pa-
rameters using the MEGM algorithm. A separate metric (kernel) is learned for all
categories. 5, 110, 112, 170

GPML2 is a variant of GPML1 such that a single metric (kernel) is learned for each
category. 5, 110, 112

High-level metric learning deals with learning a data-dependent distance metric when
data is represented as feature-set. It is concerned with handling feature-vectors in
the feature-set effectively for increasing classification performance. xi, 3, 5, 32, 36,
40–42, 119, 121, 122, 128, 129, 136, 170

HML High-level Metric Learning. 119, 129

HML1 is a high-level metric learning scheme that works by concatenating different feature-
vectors in the feature-set into a single feature-vector. 120, 121, 130, 131, 133

HML2-CF is a high-level metric learning scheme that treats different feature-vectors in
the feature-set separately by training a different classifier for each individual feature-
vector. 121–123, 130, 131, 133

HML2-DF is a high-level metric learning scheme that treats different feature-vectors in
the feature-set separately by learning a distance metric for each individual feature-
vector. 41, 120–123, 130, 133

LASVM is the proposed locally adaptive SVM algorithm which is a modification of
LSVM. A LSVM classifier is trained in adapted neighborhoods. 3, 5, 97, 99–107

LDA Linear Discriminant Analysis. 12, 45, 145, 147

LSVM is a technique for training an SVM classifier in the neighborhood of a query point.
A separate SVM classifier is trained for each query point. 97–107, 170

MEGM is the proposed global metric learning algorithm based on the minimization of
the gradient of MSE in k-nearest neighbor settings. 3, 5, 39, 43, 45, 47–51, 55–60,
64–68, 70, 71, 87, 89–92, 99–104, 110–113, 135, 136, 169, 170

MEGM-SNML is a variant of MEGM complete metric learning for semi-naive metric
learning. 5, 67, 70–73
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MSE Mean-Square-Error. 3, 17, 23, 43, 45–47, 49, 65, 71, 72, 170

Naive metric learning is the case of learning the diagonal elements of the distance
matrix A in the distance measurement framework while assuming that the features
are independent from each other. xi, 3, 5, 32, 35–37, 67, 68, 70–74, 77, 87, 89, 100,
109, 110, 119, 121, 136, 170, 171

NCA is an effective global metric learning algorithm based on the maximization of the
margin of a classifier in k-nearest neighbor settings. 43–45, 50, 51, 58, 59, 63–66,
100, 113, 135

PCA Principal Component Analysis. 35, 39, 45, 49, 57, 92, 103

Semi-naive metric learning is the same as naive metric learning but it does not assume
that features are independent from each other. xi, 3, 5, 32, 35–37, 43, 44, 67–74, 77,
87, 89, 100, 109, 110, 119, 121, 136, 170

SVC Support Vector Classifier. 153, 156–158

SVM Support Vector Machines. xi, 3–5, 7, 14, 15, 23–27, 29–34, 57–59, 63, 64, 79, 87–92,
97–101, 104–107, 109, 111, 113, 120–122, 129–131, 133, 135, 136, 153, 157, 158, 169,
170
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