

USIMSCAR: A Retrieval Strategy for Case-Based

Reasoning Using a Combination of Similarity and

Association Knowledge

by

Yong-Bin Kang

Thesis

Submitted by Yong-Bin Kang

for fulfillment of the Requirements for the Degree of

Doctor of Philosophy (0190)

Supervisor: Professor Arkady Zaslavsky

Associate Supervisor: Associate Professor Shonali Krishnaswamy

Caulfield School of Information Technology

Monash University

September, 2011

c© Copyright

by

Yong-Bin Kang

2011

Notice 1
Under the Copyright Act 1968, this thesis must be used only under the normal
conditions of scholarly fair dealing. In particular no results or conclusions should be
extracted from it, nor should it be copied or closely paraphrased in whole or in part
without the written consent of the author. Proper written acknowledgement should
be made for any assistance obtained from this thesis.

Notice 2
I certify that I have made all reasonable efforts to secure copyright permissions for
third-party content included in this thesis and have not knowingly added copyright
content to my work without the owner’s permission.

iii

USIMSCAR: A Retrieval Strategy for Case-Based

Reasoning Using a Combination of Similarity and

Association Knowledge

Declaration

I declare that this thesis is my own work and has not been submitted in any
form for another degree or diploma at any university or other institute of tertiary
education. Information derived from the published and unpublished work of others
has been acknowledged in the text and a list of references is given.

Yong-Bin Kang
September 25, 2011

iv

Acknowledgments

This thesis was developed during my PhD studies as a member of the Centre for Dis-

tributed Systems and Software Engineering (DSSE) at the Faculty of IT in Monash

University, Australia. The completion of this thesis has been one of the most diffi-

cult academic challenges that I have ever faced so far. Therefore, it is really a great

pleasure to humbly express my gratitude to all people who deserve special thanks

for their extremely unforgettable inspiration and contribution to this thesis.

First and foremost, I would very much like to express my sincerest appreciation

to my supervisor, Associate Professor Shonali Krishnaswamy, for her supervision,

encouragement and support from the preliminary to the completing level of my PhD

research. She has continually and convincingly assisted me in my research by putting

significant effort and concern into my research project. It most likely would not have

been possible to bring this thesis to completion without her invaluable enthusiastic

encouragement, guidance and persistent help.

I would like to deeply thank my supervisor, Professor Arkady Zaslavsky, for his

warm interest, contribution and responsibilities in connection with supervising me

during my PhD candidature. He showed a sincere personal concern with respect to

my research progress. He also provided valuable suggestions and directions regarding

my research and writing of this thesis through meaningful discussions.

Dr. Claudio Bartolini who has been working for HP Labs deserves a special thank

for his willingness in providing a valuable insight into an understanding of IT service

management as adviser during the earlier part of my candidature. In particular, he

provided a valuable IT incident management dataset for my evaluation work. The

associated experience with him broadened my perspective on the practical aspects

in the industry of IT service management.

My sincere thanks also goes to Monash University for providing financial support

via scholarships throughout all my PhD studies. I also express acknowledgement to

Dr. Chris Ling and Dr. Maria Indrawan for their assistance and friendships as the

coordinators of all PhD students in our School. Many thanks to Viranga Ratnaike

for helping to proofread this thesis. Thanks to all my research colleagues in DSSE

who have always been friendly and helpful, including Waskitho Wibisono, Kutilia

Gunasekera, Abdullah M. Almuhaideb, Mohammed Alhabeeb, Prem Jayaraman,

Sunam Pradhan and any other DSSE students who I have not named. I would also

like to thank the staff at the Caulfield School of IT for their friendly and helpful

support.

v

I wish to mention special thanks to my family for their invaluable loving, en-

couragement and support until the completion of this thesis. Thanks my mother

for her unforgettable genuine love and encouragement. Thanks my parents-in-law

for their continuous encouragement and support. Thanks my brother, sister and

brother-in-law for their lovely confidence, encouragement and support. Thanks my

sister-in-law and brother-in-law for their truly inspiring assistance and help. Many

thanks to my friends, the couple of Sung-Hyun Joung, the couple of Jung-Hoon

Ahn, Sung-Soo Kim and Dr. Wook-Ho Son, for their deep personal affection and

comfort during my studies. I would also like to offer my regards to all of those who

supported me in any respect during the completion of this thesis.

Lastly and most importantly, I wish to specially thank my wife Young-Hwa who

continually loves, encourages, cheers up and sustains me in the most pleasant ways.

In particular, it is truly unforgettable to open and have a sweet lunch box made by

her every day. Also, thanks to my cute daughter Sunny for everything she made for

Dad. To Young-Hwa and Sunny, I dedicate this thesis.

Yong-Bin Kang

Monash University

September 2011

vi

To My Loves Young-Hwa and Sunny

vii

Outcomes/Publications

The outcomes of this thesis work have been reported in the following publications:

1. Yong-Bin Kang, Shonali Krishnaswamy, and Arkady Zaslavsky, “USIMSCAR:

A Retrieval Strategy for Case-based Reasoning Using a Combination of Simi-

larity and Association Knowledge”, IEEE Transactions on Systems, Man, and

Cybernetics - Part B: Cybernetics (Under Review)

2. Yong-Bin Kang, Shonali Krishnaswamy, and Arkady Zaslavsky, “Retrieval in

CBR Using a Combination of Similarity and Association Knowledge”, 7th

International Conference on Advanced Data Mining and Applications (ADMA

2011) (To appear as a full paper in December 2011) (Acceptance Rate: 21%)

3. Yong-Bin Kang, Shonali Krishnaswamy, and Arkady Zaslavsky, “A Case Re-

trieval Approach Using Similarity and Association Knowledge”, 19th Inter-

national Conference on Cooperative Information Systems (CoopIS 2011) (To

appear as a full paper in October 2011) (Acceptance Rate: 21%)

4. Yong-Bin Kang, Shonali Krishnaswamy, and Arkady Zaslavsky, “A Retrieval

Strategy using the Integrated Knowledge of Similarity and Associations”, The

16th International Conference on Database Systems for Advanced Applications

(DASFAA), pp. 16-30, Aril 2011. (Acceptance Rate: 24%)

5. Yong-Bin Kang, Arkady Zaslavsky, Shonali Krishnaswamy, and Claudio Bar-

tolini, “A knowledge-rich similarity measure for improving IT incident resolu-

tion process”, Proceedings of the 2010 ACM Symposium on Applied Comput-

ing, pp. 1781-1788. (Acceptance Rate: 22%)

6. Yong-Bin Kang, Arkady Zaslavsky, Shonali Krishnaswamy, and Claudio Bar-

tolini, “A Computer-Facilitated Method for Matching Incident Cases Using

Semantic Similarity Measurement”, 4th IFIP/IEEE International Workshop

on Business-driven IT Management (BDIM 2009), 2009 (Selected for In-depth

discussion paper)

7. Yong-Bin Kang, Arkady Zaslavsky, Shonali Krishnaswamy, and Claudio Bar-

tolini, “A Personalization Approach for Problem Management”, 15th HP Soft-

ware University Association (HP-SUA) Workshop, 22-25 June, Marrakech,

Morocco, 2008.

viii

8. Yong-Bin Kang, Arkady Zaslavsky, and Shonali Krishnaswamy,“Help-desk

Agent Recommendation System Based on Three-layered User Profile”, Eu-

ropean Conference on Artificial Intelligence (ECAI) 2008 Workshop on Rec-

ommender Systems, 21-22 July, 2008.

ix

USIMSCAR: A Retrieval Strategy for Case-Based

Reasoning Using a Combination of Similarity and

Association Knowledge

Yong-Bin Kang

Monash University, 2011

Supervisor: Professor Arkady Zaslavsky

Associate Supervisor: Associate Professor Shonali Krishnaswamy

Abstract

Case-Based Reasoning (CBR) is a widely researched technology for develop-

ing knowledge-based systems in a range of real-world application domains such as

medical diagnosis, help-desk service, product recommendation, classification, and

configuration or planning. The fundamental premise of CBR is that experience

in the form of past cases can be leveraged to solve new problems. This paradigm

arises from the fact that in many application domains, similar problems usually have

similar solutions.

Retrieval is often considered an important phase in CBR, since it lays the foun-

dation for the overall effectiveness of CBR systems. The aim of retrieval in CBR

is to retrieve useful cases that can be successfully used to solve the target problem.

If the retrieved cases are not useful or relevant, CBR systems will not eventually

produce good solutions for the problem. Therefore, the success of any CBR systems

is strongly reliant on the performance of retrieval.

The retrieval strategy in CBR systems typically relies on exploiting similarity

knowledge and is referred to as similarity-based retrieval (SBR). Similarity measures

are used in SBR to approximate the usefulness of cases with respect to the target

problem. However, a limitation of SBR is that it tends to rely primarily on similarity

x

knowledge, ignoring other forms of knowledge that can be further leveraged for

improving retrieval performance.

While many kinds of learnt and induced knowledge have been used to enhance

traditional SBR, this thesis demonstrates that association analysis of stored cases

can enhance and improve traditional SBR. In this thesis, we propose and develop a

novel retrieval strategy USIMSCAR that combines association knowledge with sim-

ilarity knowledge. The aim of association knowledge is to represent a set of strongly

evident, interesting relationships between known problem features and known so-

lutions which are shared by a large number of cases. We formulate and represent

association knowledge for CBR systems using a special type of association rules that

we term soft-matching class association rules (scars).

Through extensive experiments, we experimentally demonstrate the improve-

ment of our proposed USIMSCAR over SBR using both benchmark and real datasets

in three CBR application domains: medical diagnosis, help-desk service support, and

product recommendation domains. Throughout our experimental evaluation, we val-

idate that USIMSCAR is an effective retrieval strategy for CBR that enhances and

improves SBR. We also evaluate the statistical significance of the accuracy and

effectiveness obtained by USIMSCAR when compared with traditional SBR.

The contributions of this thesis are as follows: (1) we propose and develop an

approach for formalizing association knowledge for CBR systems acquired from as-

sociation analysis of stored cases using association rule mining, (2) we propose and

develop innovative strategies for measuring the usefulness of cases as well as directly

leveraging interesting rules encoding association knowledge, with respect to the tar-

get problem, (3) we propose and develop a novel retrieval strategy that substantially

improves SBR by using both similarity and association knowledge.

In summary, in this thesis, we have addressed the problem of SBR, and proposed

and developed an effective retrieval strategy using association analysis techniques to

enhance traditional SBR. The research done over the course of this thesis has been

published in five conference papers with one journal paper submitted for review.

xi

Glossary

• AI: AI is an acronym for Artificial Intelligence.

• Association knowledge: Association knowledge is referred to as the knowl-

edge that encoded in soft-matching class association rules (scars). This knowl-

edge represents how the features of known problems are actually associated

with specific known solutions in a case base.

• Association rule mining: Association rule mining finds association rules

(interesting associations and/or correlation relationships) in a potentially large

database.

• Association rules: An association rule has two parts, an antecedent and a

consequent, and is an implication of the form X → Y . Here, X is an itemset

in the antecedent and Y is an itemset in the consequent, and X ∩ Y = ∅. A

rule X ∩ Y indicates that whenever a case in a given case base contains X,

the case probably contains Y as well.

• Case: A case represents a problem-solving experience consisting of two parts:

the first is the problem part containing the description of a past problem, and

the second is the solution part containing a corresponding solution.

• Case base: A case base is known as a database that stores cases.

• CBR: CBR is an acronym for Case-Based Reasoning. CBR is a problem-

solving methodology that new problems are solved based on similar experiences

in the past.

• Class association rule (car): A car stands for a class association rule that is

a special form of an association rule whose consequent is restricted to a single

target. In a CBR context, the target is restricted to hold attribute-value

pairs, where the attribute is only allowed to be a solution-attribute holding

the solutions of cases.

• Classifier: A classifier refers to an algorithm or technique that predicts the

correct class membership of given entities. From the standpoint of CBR, a

class corresponds to a solution, and entities are seen as cases.

xii

• Confidence of an association rule: The confidence of an association rule

X → Y in a case base D is defined as the conditional probability that when

an itemset X occurs in a case c ∈ D, an itemset Y also occurs in the same

case c.

• Feature selection: Feature selection refers to a technique that finds a subset

of relevant features among the original features of cases.

• Feature weighting: Feature weighting refers to a technique that estimates

the importance of the original features of cases.

• Frequent Itemset: A frequent itemset is an itemset, if its support is greater

than or equal to a user-specified minimum support.

• Interestingness measures: Interestingness measures refer to the measures

that evaluate the quality, and rank the association rules extracted.

• IR: IR is an acronym for Information Retrieval.

• Item: In a CBR context, assuming that a case is represented as a set of

attribute-value pairs, an item refers to an attribute-value pair.

• Itemset: An itemset is a set of items.

• Majority voting: Given a set of nearest neighbors, majority voting is con-

cerned about ranking the solutions of the neighbors. In this voting, the vote of

each neighbor receives equal weight, and the solution with the highest number

of votes is considered the highest ranked solution.

• k-NN: k-NN stands for k-nearest neighbor retrieval.

• Recommender systems: Recommender systems refer to the systems that

help users to find items (e.g. books, movies, restaurants) from the huge number

of available information resources.

• SBR: SBR is an acronym for Similarity-Based Retrieval. SBR is a retrieval

strategy, in which the most similar problems to a new problem is retrieved

using similarity knowledge.

• Soft-matching class association rule (scars): A scars stands for a soft-

matching class association rule that is a class association rule (car) generated

by using the soft-matching criterion.

• Similarity knowledge: Similarity knowledge is referred to as the knowledge,

usually encoded in a certain similarity measure that computes the similarity

between the new problem and the a case stored in a given case base.

• Soft-matching criterion: The soft-matching criterion refers to a criterion,

used to find frequent itemsets based on similarity assessment, not exact match-

ing, between itemsets.

xiii

• Support of an association rule: The support of an association rule X → Y

in a case base D is defined as the probability that both X and Y occur together

in a case c ∈ D.

• The Laplace measure: The Laplace measure refers to a measure for deter-

mining the interestingness of an association rule. It uses a combination of the

support and confidence criteria that are often used to measure the interesting-

ness of the rule.

• The local-global principle: This principle a formalism for representing a

similarity measure. Given two cases, it formulates their similarity by using

two parts: the first is the local part that computes local similarities for the

individual attributes of cases, and the second is the global part that computes

a global similarity by aggregating the local similarities.

• USIMSCAR: USIMSCAR is an acronym for retrieval based on Unified knowl-

edge of SIMilarity and Soft-matching Class Association Rules.

• Weighted voting: Similar to majority voting, given a set of nearest neigh-

bors, weighting voting is concerned about ranking the solutions of the neigh-

bors. In this voting, the vote of each neighbor is weighted by its significance

to a new problem. In SBR, the weight is determined on the basis of the sim-

ilarity knowledge, derived from the similarity between each neighbor and the

problem. In USIMSCAR, the weight is determined on the basis of a combina-

tion of the similarity knowledge and association knowledge, derived from the

similarity and relevant scars.

xiv

ERRATA/ADDENDUM

• Abstract and Introduction (page 3 line 9): Replace “USIMSCAR” with “USIMSCAR (Uni-
fied knowledge of SIMilarity and Soft-matching Class Association Rules)”.

• Page 9 line 18: Replace “more confident than” with “more reliable than”.

• Page 9 para 2: Replace every term “confidence” with the term “reliability”.

• Page 9: Add at the end of line 2: “We propose to encode this knowledge via a certain type of
association rules. The main advantage of this approach is that such rules could potentially
find and represent the key features of the target problem and the cases compared, ignoring
the irrelevant features. These features are found by identifying particular features that are
highly connected to the solutions existed in stored cases. Note that similarity measures are
concerned with computing similarity across all the features of the target problem and stored
cases. Regarding leveraging association rules encoding association knowledge, our intention
is to identify particular key features that are highly associated with particular solutions and
exploit them during the retrieval process to strengthen the retrieval performance of SBR.”

• Page 25 line 12: Replace “In this section” with “In summary”.

• Page 27 lines 10, 19, and 20: Replace “m” with “n”.

• Page 30 lines 8 and 13: Replace “N” with “n”.

• Page 32 line 2 from the end of line: Replace “.” with “i.e. the proportions of instances with
attribute value qi and ci, respectively, that are of class Y .

• Page 50 Section 3.3.1 line 12: Replace “The case C1 is α-similar to Q, and the case C2 is
β-similar to Q” with “The case C1 is α-similar to Q (i.e. SIM(C1, Q) = α), and the case
C2 is β-similar to Q (i.e. SIM(C2, Q) = β)”.

• Page 54: Replace Figure 3.2 with the following table:

case

query
laptop small-tower middle-tower big-tower

laptop 1.0 0.2 0.7 0.0

small-tower 0.2 1.0 0.9 0.5

middle-tower 0.7 0.9 1.0 0.6

big-tower 0.0 0.5 0.6 1.0

• Page 55 lines 10 and 11: Replace “qi = {a, b}” and “xi = {b, c}” with “qi = (a, b)” and
“xi = (c, d)”. Comment: for the similarity function sim(qi, xi), we use the cosine-similarity
measure presented in the following paper: “Prasanna Ganesan, Hector Garcia-Molina, and
Jennifer Widom. Exploiting hierarchical domain structure to compute similarity. ACM
Trans. Inf. Syst. 21, 1 (January 2003), 64-93”.

• Page 60 line 3: Add at the end of the sentence: Assume that minsupp is set as 0.2 and
minconf as 0.5.

xv

• Page 64 line 2 from the end of line: Add at the end of sentence: Assume that minsupp is
set as 0.2 and minconf as 0.5.

• Page 70 line 5 from the end of line: Add at the end of sentence: Assume that minsupp is
set as 0.2 and minconf as 0.5.

• Page 70 line 2: Replace “P (X ⊆ Y)” with “P (X ⊆ C)”.

• Sections 4.2.2, 4.2.3, and 4.3.1 are repeated with Section 4.2.1 in terms of the definitions of
case base D, problem space, solution space, attributes, etc: Comments: the main reason for
allowing the repetition is to help readers to more easily understand the meaning of all the
terms, at a glance, used for explaining class association rule, soft-matching criterion, and
scars, not referring to the term definition in Section 4.2.1.

• Page 74 lines 6 - 8: Replace the two sentences with the following two sentences: “Formally,
the soft-support of an itemset X in the case base D, denoted as softSupp(X), is defined as
the proportion of number of cases C such that X ⊆soft C over |D|. The soft-support of a
rule X → Y in the case base D, denoted as softSupp(X → Y), is the proportion of number
of cases C ∈ D such that X ∪ Y ⊆soft C over |D|”.

• Page 78 line 22: Replace “/2 = 0.467” with “/1 = 0.934”.

• Page 79 lines 3 and 8: Replace “softSuppSum(X1) = 2” with “softSuppSum(X1) =
1.934”.

• Page 79 line 9: Replace “softSupp(X1) = 2/3” with “softSupp(X1) = 0.644”

• Page 79 line 17: About the missing definition of minconf in the bullet: Comment: In our ap-
proach, minconf is replaced with min-interesting whose definition is presented in page 82 line
1. We use the term min-interesting rather than minconf, because we use the interestingness
measure that combines soft-support and soft-confidence such that they are monotonically
related, i.e. the Laplace measure. Thus, it is not necessary to present the definition of
minconf in the bullet.

• Page 83 Algorithm 1 genSCARS (D, SM): Replace “genSCARS (D, SM)” with “gen-
SCARS (D, SM , minsupp)”.

• Page 84 lines 20 - 21: Replace “softSuppR(X, P1)” with “softSuppR(X,Pi)”.

• Page 93 line 6 in Algorithm 2: Replace “Usefulness(Q, C)∗Laplace(rC);” with “SIM(Q,C)∗
Laplace(rC);”.

• Page 93 line 8 in Algorithm 2: Replace “Usefulness(Q, C)∗min-interesting;” with “SIM(Q,C)∗
min-interesting;”.

• Page 93 line 16 in Algorithm 2: Replace “Usefulness(Q, r)∗Laplace(r);” with “SIM(Q, r)∗
Laplace(r);”.

• Page 98 lines 2 - 4: In line 2, delete “(”. In line 3, replace “))” with “)”. In line 4, replace
“..” with “.”

• Page 98 Table 4.8: Replace it with the following table:

Rules Laplace Soft-subset of
r1: {(A1,right flank),(A2,vomit),(A3,38.6),(A4,yes),(A5,10)} → (A6,appendicitis) 0.922 P1, P2, P3

r2: {(A1,right flank),(A2,vomit),(A3,38.7),(A4,yes),(A5,11)} → (A6,appendicitis) 0.922 P1, P2, P3

r3: {(A1,right flank),(A2,vomit),(A3,38.8),(A4,yes),(A5,13)} → (A6,appendicitis) 0.922 P1, P2, P3

r4: {(A1,right flank),(A2,sickness),(A3,37.5),(A4,yes),(A5,35)} → (A6,gastritis) 0.775 P4

• Page 100 lines 2 - 4: Comment: As specified in STEP 3 in page 95, for each case, if there are
multiple rules whose interestingness scores are the highest, we use the average of them. In
the scenario, for all cases P1, P2, and P3, the same rules r1, r2, and r3 are selected. Then, we
used the average of the interestingness of these three rules. However, it is straightforward
to see that the average is equal to the individual interestingness of each of these rules.
Therefore, the expression of “r1, r2, and r3”, commonly seen in these three lines, can be
changed to “r1, r2, or r3”.

• Page 100 line 4 from the end of line: Replace “, where” with “.”. Then, the remaining of
the lines (lines 1 - 3) from the end of line must appear from the beginning of the next page.

• Page 101 lines 20 - 27: Replace the lines with the following lines to improve the readability:

O5.usf = 0.446 = 0.594 ∗ δ(Sappendicitis) = 0.594 ∗ 0.75
O1.usf = 0.436 = 0.581 ∗ δ(Sappendicitis) = 0.581 ∗ 0.75
O6.usf = 0.432 = 0.577 ∗ δ(Sappendicitis) = 0.577 ∗ 0.75
O2.usf = 0.431 = 0.574 ∗ δ(Sappendicitis) = 0.574 ∗ 0.75
O3.usf = 0.428 = 0.570 ∗ δ(Sappendicitis) = 0.570 ∗ 0.75
O7.usf = 0.425 = 0.567 ∗ δ(Sappendicitis) = 0.567 ∗ 0.75
O8.usf = 0.124 = 0.496 ∗ δ(Sgastritis) = 0.496 ∗ 0.25
O4.usf = 0.124 = 0.494 ∗ δ(Sgastritis) = 0.494 ∗ 0.25

• Page 105, similar to Page 101: Replace the middle with the following result to improve the
readability:

O5.usf = 0.446 = 0.594 ∗ δ(Sappendicitis) = 0.594 ∗ 0.75
O1.usf = 0.436 = 0.581 ∗ δ(Sappendicitis) = 0.581 ∗ 0.75
O6.usf = 0.432 = 0.577 ∗ δ(Sappendicitis) = 0.577 ∗ 0.75
O2.usf = 0.431 = 0.574 ∗ δ(Sappendicitis) = 0.574 ∗ 0.75
O3.usf = 0.428 = 0.570 ∗ δ(Sappendicitis) = 0.570 ∗ 0.75
O7.usf = 0.425 = 0.567 ∗ δ(Sappendicitis) = 0.567 ∗ 0.75
O8.usf = 0.124 = 0.496 ∗ δ(Sgastritis) = 0.496 ∗ 0.25
O4.usf = 0.124 = 0.494 ∗ δ(Sgastritis) = 0.494 ∗ 0.25

• Page 131 lines 12 - 14: Comment: The confusion matrix shown in Table 6.2 represents that
in the truth, there are a + d entities classified as X and b + d as Y . While the approach
“believes” that there are a + b entities classified as X and c + d as Y . Thus, there are a + d
correct, and b + c confused (erroneous) classifications.

• Page 139 para 2: Replace the first three sentences with the following sentences: “We per-
formed statistical tests using the Z-test at both 95% and 90% confidence. From Table 6.5,
we discovered the statistically significant improvement of USIMSCAR over the classifiers at
95% confidence for the NHSG dataset, as described as “sig at 95%”.

• Page 146 Section 6.3.4.4: In the first bullet, replace the first two sentences with the follow-
ing: “Using majority voting, USIMSCAR achieves better performance than the five k-NN
classifiers compared in 88.6% and 91.4% of the compared occasions in terms of classifica-
tion accuracy and F-measure respectively. Using weighted voting, it achieves completely
outperforms the classifiers in terms of both classification accuracy and F-measure.”

• P 152 lines 10 - 12 in the second bullet: Replace “Second, ... corresponding term in V ”
with the following sentence: “Second, we convert the set V into k binary attributes, where
k is the distinct number of terms that appear in V . Each of these attributes has a ‘1’ for
every occurrence of the corresponding kth value of the discrete attribute, and a ‘0’ for all
other values.”

• Page 171 line 9: Replace “2.45%” with “2.49%”.

• Page 178 lines 21 - 23: Remove the sentence starting with “Furthermore, ... by users u and
u′”, since it has just been discussed earlier.

• Page 188 last para: Comment: In order to apply USIMSCAR to textual problem descrip-
tions in case bases, we probably consider more factors and investigate more sophisticated
techniques for scars mining in comparison with the circumstance where each case is con-
nected with multiple solutions. As future work, we plan to focus on addressing the issue.
Thus, remove this paragraph in Section 7.2.2.

Contents

Acknowledgments . v

Outcomes/Publications . viii

Abstract . x

Glossary . xii

ERRATA/ADDENDUM . xv

List of Tables . xxiii

List of Figures . xxvii

1 Introduction . 1

1.1 Preamble . 1

1.2 Overview of Case-Based Reasoning 3

1.3 Research Motivation . 6

1.4 Research Objectives and Contributions 10

1.5 Thesis Outline . 12

2 A Review of Similarity-Based Retrieval in CBR Systems 14

2.1 Introduction . 14

2.2 CBR and Its Applications . 15

2.2.1 Research Paradigm of CBR 15

2.2.2 CBR Applications . 18

xviii

2.3 Similarity-Based Retrieval (SBR) . 26

2.3.1 k-NN Based SBR . 27

2.3.2 Extensions of k-NN . 29

2.4 SBR with Learning and Knowledge 34

2.4.1 Integrating SBR with Statistical Learning 35

2.4.2 Integrating SBR with Rule-Based Reasoning 37

2.4.3 Integrating SBR with Domain Knowledge 39

2.4.4 Integrating SBR with Adaptation Knowledge 40

2.5 Summary . 41

3 Overview of Similarity and Association Knowledge 46

3.1 Introduction . 46

3.2 Terms and Definitions . 47

3.3 Similarity Knowledge . 50

3.3.1 Similarity Knowledge in SBR 50

3.3.2 Overview of Similarity Measures 51

3.3.3 The Local-Global Principle . 52

3.4 Association Analysis Techniques . 57

3.4.1 Association Rule Mining . 58

3.4.2 Class Association Rule Mining 60

3.4.3 Soft-Matching Criterion . 62

3.5 Summary . 65

4 USIMSCAR: Unified knowledge of SIMilarity and Soft-matching

Class Association Rules . 67

4.1 Introduction . 67

4.2 Association Analysis in a CBR Context 68

4.2.1 Association Rule Mining in a CBR Context 69

4.2.2 Class Association Rule Mining in a CBR Context 71

4.2.3 Soft-Matching Criterion in a CBR Context 73

4.3 Association Knowledge Formalization 75

4.3.1 Definition of SCARS . 76

4.3.2 SCARS Mining . 81

4.4 USIMSCAR Design . 85

4.4.1 Rationale for using Association Knowledge 86

4.4.2 Functionality of USIMSCAR 88

4.4.3 Algorithm of USIMSCAR . 92

4.4.4 An Example Illustrating USIMSCAR 97

4.5 Voting Schemes . 102

4.6 Summary . 106

5 Implementation of USIMSCAR . 107

5.1 Introduction . 107

5.2 Implementation Overview . 107

5.3 Implementation for Association Knowledge Formalism 109

5.4 Implementation of the USIMSCAR Engine 117

5.5 Summary . 119

6 Evaluation of USIMSCAR . 120

6.1 Introduction . 120

6.2 Evaluation Objectives . 121

6.2.1 Target Approach . 121

6.2.2 Target Application Task . 121

6.2.3 SBR: k-NN Approaches . 123

6.2.4 Case-based Classification . 125

6.3 Evaluation for Medical Diagnosis . 127

6.3.1 Datasets . 127

6.3.2 Evaluation Metrics . 130

6.3.3 Experimental Setup . 132

6.3.4 Results and Analysis . 135

6.4 Evaluation for Help-desk Service . 147

6.4.1 IT Incident Management . 148

6.4.2 Dataset . 150

6.4.3 SBR: k-NN Approaches . 151

6.4.4 Evaluation Metrics . 153

6.4.5 Experimental Setup . 153

6.4.6 Results and Analysis . 155

6.5 Evaluation for Product Recommendation 163

6.5.1 Dataset . 163

6.5.2 SBR: k-NN Approaches . 166

6.5.3 Evaluation Metrics . 167

6.5.4 Experimental Setup . 167

6.5.5 Results and Analysis . 169

6.5.6 Comparison of USIMSCAR with Hybrid Recommenders for

Product Recommendation . 175

6.6 Summary . 180

7 Conclusion . 182

7.1 Research Summary and Contributions 182

7.2 Future Research Directions . 184

7.2.1 USIMSCAR and Complex Case Structure 185

7.2.2 USIMSCAR and Cases with Multiple Solutions 187

7.3 Concluding Remark . 189

References . 190

Appendix A Detailed Experimental Results 207

A.1 The Breast Cancer (BC) Dataset . 207

A.1.1 Using Majority Voting . 207

A.1.2 Using Weighted Voting . 208

A.2 The Breast Cancer Wisconsin (BCW) Dataset 209

A.2.1 Majority Voting . 209

A.2.2 Weighted Voting . 210

A.3 The Breast Tissue (BT) Dataset . 211

A.3.1 Majority Voting . 211

A.3.2 Weighted Voting . 212

A.4 The Pima Indian Diabetes (PID) Dataset 213

A.4.1 Majority Voting . 213

A.4.2 Weighted Voting . 214

A.5 The StatLog Heart Disease (SHD) Dataset 215

A.5.1 Majority Voting . 215

A.5.2 Weighted Voting . 216

A.6 The Thyroid (THY) Dataset . 217

A.6.1 Majority Voting . 217

A.6.2 Weighted Voting . 218

A.7 The NHSG Dataset . 219

A.7.1 Majority Voting . 219

A.7.2 Weighted Voting . 220

List of Tables

1.1 A patient case base. 7

2.1 The applications of similarity-based retrieval (SBR). 26

2.2 The related work of similarity-based retrieval (SBR). 42

3.1 An example case base. 49

3.2 An example transaction database. 60

3.3 An example transaction database. 62

3.4 Association rules vs. Class association rules 62

3.5 An example transaction database. 64

3.6 A similarity matrix. 64

4.1 A patient case base. 70

4.2 Association rules . 71

4.3 A patient case base. 77

4.4 The results of softSuppSA. 80

4.5 The results of softSupp. 81

4.6 A patient case base. 83

4.7 A patient case base. 97

4.8 The scars generated. 98

6.1 The medical datasets used in the experiments. 128

6.2 The standard 2× 2 confusion matrix with its marginal totals. 131

6.3 The scars generated and used in USIMSCAR. 137

xxiii

6.4 The results using majority voting in terms of classification accuracy

(%). 138

6.5 The results of statistical tests in terms of classification accuracy. . . 140

6.6 The best results using majority voting in terms of F-measure (%). . . 140

6.7 The results of statistical tests in terms of F-measure. 141

6.8 The mean scores of the results. 142

6.9 The results using weighted voting in terms of classification accuracy

(%). 143

6.10 The results of statistical tests in terms of classification accuracy. . . 144

6.11 The results using weighted voting in terms of F-measure (%). 144

6.12 The results of statistical tests in terms of F-measure. 145

6.13 The mean scores of the results. 146

6.14 The problem part of cases in IMData. 150

6.15 The detailed results using majority voting in terms of classification

accuracy (%). 157

6.16 The results using majority voting in terms of classification accuracy

(%). 157

6.17 The results of statistical tests in terms of classification accuracy. . . 157

6.18 The detailed results using majority voting in terms of F-measure (%). 158

6.19 The results using majority voting in terms of F-measure (%). 158

6.20 The results of statistical tests in terms of F-measure. 158

6.21 The detailed results using weighted voting in terms of classification

accuracy (%). 160

6.22 The results using weighted voting in terms of classification accuracy

(%). 160

6.23 The results of statistical tests in terms of classification accuracy. . . 160

6.24 The detailed results using weighted voting in terms of F-measure (%). 161

6.25 The results using weighted voting in terms of F-measure (%). 161

6.26 The results of statistical tests in terms of F-measure. 161

6.27 The movie descriptive content information 165

6.28 The used local similarity measures. 167

6.29 The detailed results using majority voting in term of classification

accuracy (%). 170

6.30 The results using majority voting in terms of classification accuracy

(%). 170

6.31 The results of statistical tests in terms of classification accuracy. . . 170

6.32 The detailed results using majority voting in terms of F-measure (%). 171

6.33 The results using majority voting in terms of F-measure (%). 171

6.34 The results of statistical tests in terms of F-measure. 171

6.35 The detailed results using weighted voting in terms of classification

accuracy (%). 173

6.36 The results using weighted voting in terms of classification accuracy

(%). 173

6.37 The results of statistical tests in terms of classification accuracy. . . 173

6.38 The detailed results using weighted voting in terms of F-measure (%). 174

6.39 The results using weighted voting in terms of F-measure (%). 174

6.40 The results of statistical tests in terms of F-measure. 174

6.41 USIMSCAR vs. three hybrid recommenders (%). 180

7.1 Case examples. 188

7.2 Cases split. 189

A.1 Results for the BC dataset in terms of classification accuracy (%). . . 207

A.2 Results for the BC dataset in terms of F-measure (%). 208

A.3 Results for the BC dataset in terms of classification accuracy(%). . . 208

A.4 Results for the BC dataset in terms of F-measure(%). 208

A.5 Results for the BCW dataset in terms of classification accuracy (%). . 209

A.6 Results for the BCW dataset in terms of F-measure (%). 209

A.7 Results for the BCW dataset in terms of classification accuracy (%). . 210

A.8 Results for the BCW dataset in terms of F-measure (%). 210

A.9 Results for the BT dataset in terms of classification accuracy (%). . . 211

A.10 Results for the BT dataset in terms of F-measure (%). 211

A.11 Results for the BT dataset in terms of classification accuracy (%). . . 212

A.12 Results for the BT dataset in terms of F-measure (%). 212

A.13 Results for the PID dataset in terms of classification accuracy (%). . 213

A.14 Results for the PID dataset in terms of F-measure accuracy (%). . . . 213

A.15 Results for the PID dataset in terms of classification accuracy (%). . 214

A.16 Results for the PID dataset in terms of F-measure (%). 214

A.17 Results for the SHD dataset in terms of classification accuracy (%). . 215

A.18 Results for the SHD dataset in terms of F-measure (%). 215

A.19 Results for the SHD dataset in terms of classification accuracy (%). . 216

A.20 Results for the SHD dataset in terms of F-measure (%). 216

A.21 Results for the THY dataset in terms of classification accuracy (%). . 217

A.22 Results for the THY dataset in terms of F-measure (%). 217

A.23 Results for the THY dataset in terms of classification accuracy (%). . 218

A.24 Results for the THY dataset in terms of F-measure (%). 218

A.25 Results for the NHSG dataset in terms of classification accuracy (%). 219

A.26 Results for the NHSG dataset in terms of F-measure (%). 219

A.27 Results for the NHSG dataset in terms of classification accuracy (%). 220

A.28 Results for the NHSG dataset in terms of F-measure (%). 220

List of Figures

1.1 The concept of problem-solving in CBR by Stahl (2003). 4

1.2 The classic CBR cycle proposed by Aamodt and Plaza (1994). 5

3.1 The use of similarity knowledge in SBR. 51

3.2 An example similarity table. 54

3.3 A simple taxonomy. 56

4.1 The usefulness quantification of a case C with respect to Q. 86

4.2 The usefulness quantification a scar with respect to Q. 87

4.3 The functionality of SBR. 89

4.4 The functionality of USIMSCAR. 90

5.1 An example case base formatted by the ARFF format. 108

5.2 The implementation architecture for formalizing association knowledge.109

5.3 An example case base formatted by a plain text. 110

5.4 The generated ARFF file for the attribute ‘d1’. 111

5.5 The generated ARFF file for the attribute ‘d2’. 111

5.6 The generate ARFF file for the case base in Figure 5.3. 112

5.7 A similarity matrix for the attribute ‘d1’. 113

5.8 A similarity matrix for the attribute ‘d2’. 113

5.9 A set of the generated scars. 114

5.10 Relation between case IDs and scar IDs. 116

5.11 The implementation architecture of USIMSCAR. 117

xxvii

6.1 The overall evaluation strategy. 136

Chapter 1

Introduction

1.1 Preamble

Case-Based Reasoning (CBR) (Schank, 1982; Aamodt and Plaza, 1994) has received

a considerable attention for several years due to its applicability for problem-solving

in a number of domains, which are outlined as follows:

• In medical diagnosis domains, CBR has been extensively used to predict the

correct diagnosis for a problem described in the form of symptoms (Park, Kim

and Chun, 2006; Tran and Schonwalder, 2008; Ahn and Kim, 2009).

• In help-desk service domains, CBR has been essentially used to provide a

correct identification of a user request and the corresponding resolution (Law,

Foong and Kwan, 1997; Yang, Kim and Racine, 1997; Göker and Roth-Berghofer,

1999; Kang, Zaslavsky, Krishnaswamy and Bartolini, 2010).

• In product recommendation domains, CBR has been successfully used to find a

product that fits the individual wishes and demands of a particular customer

(Smyth and Cotter, 1999; Burke, 2002; Bradley and Smyth, 2003; Lawrence,

Almasi, Kotlyar, Viveros and Duri, 2004).

• In classification, CBR has been successfully applied to predict the class mem-

bership of entities using information about entities for which the class mem-

bership is already known (Jurisica and Glasgow, 1996; Policastro, Delbem,

Mattoso, Minatti, Ferreira, Borato and Zanus, 2007).

1

CHAPTER 1. INTRODUCTION 2

• In configuration or planning, CBR has been used to support the generation

of complex entities (e.g. technical systems or building in architecture) that

must fulfill a given specification (Pearce, Goel, Kolodner, Zimring, Sentosa

and Billington, 1992; Yang, Lu and Lin, 1994; Stahl and Bergmann, 2000).

The premise underlying CBR is that new problems can be solved by recalling

and reusing similar experiences in the past (Aamodt and Plaza, 1994). Originally,

this was an attempt to simulate human cognitions since it is well-known that when

human beings attempt to deal with a certain problem, the optimal decision is mostly

derived from their similar experiences or remembrance of the past (Watson, 1999).

In CBR, experiences are stored in a database known as a case base. An individual

experience is called a case. Typically, each case is described by two main parts. The

first is the problem part containing the description of a past problem. The second is

the solution part containing the description of a suitable solution for the described

problem.

Typically, there are four well-organized steps necessary to achieve problem-

solving in CBR, namely, retrieve, reuse, revise, and retain (Aamodt and Plaza,

1994). Retrieval is an important phase in CBR, since it lays the foundation for the

overall performance of CBR systems in terms of usefulness and effectiveness (Lopez

De Mantaras, McSherry, Bridge, Leake, Smyth, Craw, Faltings, Maher, Cox, For-

bus, Keane, Aamodt and Watson, 2005). The primary goal of retrieval in CBR is

to retrieve useful cases from the case base that can be successfully used to solve a

new problem. If the retrieved cases are not relevant, CBR systems will not eventu-

ally produce effective solutions for the problem. Therefore, the success of any CBR

systems is heavily reliant on the results of the retrieval process.

To perform the retrieval process, CBR systems typically rely on a strategy that

exploits similarity knowledge (Stahl, 2003). This strategy is called similarity-based

retrieval (SBR) (Smyth and Keane, 1998). In SBR, similarity is used to approximate

the usefulness of stored cases with respect to a new problem (Stahl, 2003). The

notion of similarity is usually encoded in the form of similarity measures which are

CHAPTER 1. INTRODUCTION 3

used to compute the similarity between a new problem and existing cases in the case

base. By using similarity measures, SBR retrieves cases ranked by their similarities

to the new problem. Then, the solutions of a number of the top ranked cases are

leveraged to solve the new problem.

Thus, it is evident that SBR tends to rely strongly on similarity knowledge,

ignoring other forms of knowledge that can be additionally leveraged for improving

the retrieval performance. Therefore, in this thesis, our objective is to demonstrate

that association analysis of stored cases can be used to enhance the effectiveness of

SBR. We propose and develop a new retrieval strategy USIMSCAR that leverages

association knowledge in conjunction with similarity knowledge. In this context,

we propose and develop an approach for formalizing association knowledge. This

knowledge is formalized to represent a set of strongly evident correlations between

known problem features and known solutions shared by a significant portion of

relevant cases. Therefore, the key strength of USIMSCAR lies in its ability to

use association knowledge along with similarity knowledge to deliver an improved

retrieval strategy for CBR. USIMSCAR is an acronym for a retrieval strategy based

on the Unified knowledge of SIMilarity and Soft-matching Class Association Rules.

This chapter is organized as follows. We begin with a brief overview of CBR. We

then present our research motivations, research objectives, and the contributions of

this thesis. We finally outline the structure of this thesis.

1.2 Overview of Case-Based Reasoning

In order to reason from past cases to solve a new problem, CBR systems are usu-

ally reliant on encoded knowledge, which is required to retrieve useful cases with

respect to a new problem. In CBR, the retrieval of such useful cases is based on

a problem-solving assumption−similar problems have similar solutions. The basic

idea underlying this assumption is that new problems are solved by reusing solu-

tions that have been applied to similar problems in the past. Therefore, a new

problem has to be compared to the problems contained in the case base. Then,

CHAPTER 1. INTRODUCTION 4

solutions included in the cases that contain very similar problems are considered to

be candidates for solving the new problem.

Figure 1.1 shows the concept of problem-solving in CBR. To judge the similarity

between a new problem and the problem of each case, CBR systems employ various

similarity measures. A similarity measure represents a mathematical formalization

of the very general term “similarity”. This measure can be found in common math-

ematical principles, and are also used in other research fields such as Information

Retrieval (IR).

New Problem

Unknown

Solu!on

Old Problem

Known

Solu!on

Case Base
current situa�on

find similar

adapt

?

Figure 1.1: The concept of problem-solving in CBR by Stahl (2003).

The classic processes involved in CBR can be generally represented by a schematic

cycle (Aamodt and Plaza, 1994), which is shown in Figure 1.2. Integrated into this

CBR cycle, there are four well-organized steps necessary to achieve problem-solving

(Aamodt and Plaza, 1994): (1) Retrieve the most similar cases with respect to the

new problem, (2) Reuse the information and knowledge in the retrieved cases and

suggest a solution for solving the problem, (3) Revise the suggested solution, if nec-

essary, and (4) Retain the new solution as a part of a new case likely to be useful

for future problem-solving. In the following, we briefly provide the representative

tasks involved in each of these steps:

• Retrieve: The first step is the retrieval of one or several past cases considered

to be useful to solve a new problem. This step aims to retrieve one or several

previously stored cases that contain the solutions that can be successfully

reused to solve the new problem. In fact, it is very unlikely that the case base

CHAPTER 1. INTRODUCTION 5

New

Case

Learned

Case

Tested/

Repaired

Case

Solved

Case

New

Case
Retrieved

Case

General

Knowledge

Previous

Cases
Previous

Cases
Previous

Cases
Previous

Cases
Previous

Cases

Revise

Reuse

Retrieve

Retain

Problem

Suggested

Solu!on

Confirmed

Solu!on

Figure 1.2: The classic CBR cycle proposed by Aamodt and Plaza (1994).

contains a problem that matches the new problem exactly. Hence, a method

to estimate the usefulness of available cases is required. According to the CBR

premise, the usefulness is basically approximated by the concept of similarity.

This means that retrieval in CBR is usually achieved by selecting cases whose

problems are similar to the new problem. Therefore, to realize the retrieval

task, CBR systems usually employ various similarity measures that allow for

the computation of the similarity between two problems. The design of such

similarity measures is often regarded as the key task for the retrieval step.

• Reuse: Once similar cases are retrieved, the next step is to reuse their solu-

tion information to solve the new problem. There are two typical approaches

applied in the reuse step. The first approach is to reuse the common solution,

found in the retrieved solution information, by simply applying it without

change as a suggested solution for the new problem. This reuse approach may

be often appropriate for classification tasks whose goal is to predict the class

memberships of given entities (i.e. new problems) (Stahl, 2003). Class la-

bels are likely to be represented frequently in the case base. Hence, the most

CHAPTER 1. INTRODUCTION 6

similar case retrieved, if sufficiently similar, is likely to contain an adequate

solution. The second approach is to modify the retrieved solution information

to make it more become appropriate tailored to the new problem. This ap-

proach can be used, if a direct reuse of a retrieved solution is impossible, due

to differences between the new problem and the past problem descriptions.

This modification process is called adaptation and is performed depending on

the application domain. Once adaptation is accomplished, a solved case is

acquired and its solution is used as a suggested solution for the new problem.

• Revise: The revise step focuses on the automatic or manual detection of

errors or inconsistencies in the suggested solution. It also initiates further

problem-solving attempts. In other words, this step revises the suggested

solution, if there is some evidence of its inappropriateness with respect to

the new problem. If this step were to fail, the retrieved case that contains

the suggested solution has to be repaired. Otherwise, a new trial to generate

another solution needs to be taken into consideration. A possible choice is to

apply another adaptation alternative, if one exists. Other choices are to adapt

other retrieved cases, or perform a new retrieval to obtain the cases that are

expected to be potentially more useful or relevant.

• Retain: If a suggested case has successfully passed through the revise step, a

tested/repaired case will be available. This case represents a new experience

that will be used to solve similar problems in the future. As the final step in

the CBR cycle, the retain step focuses on recording this new case for future

usage by adding it into the case base.

1.3 Research Motivation

Retrieval is the first essential phase to be performed in CBR, and its efficiency is

a critical factor for the overall effectiveness of CBR systems (Lopez De Mantaras

et al., 2005). In principle, retrieval in CBR plays the key role in deciding which

CHAPTER 1. INTRODUCTION 7

cases to select, and therefore, in deciding which solution will be eventually applied

using the selected cases. Therefore, if the retrieved cases are not relevant to a

new problem, the rest of the reasoning processes in CBR would not produce useful

solutions. As a consequence, the success of any CBR system is heavily reliant on

the retrieving of cases that can be successfully reused to solve the new problem.

In this thesis, our research is motivated by the aim of designing and developing

a new retrieval strategy for CBR systems that enhances and improves similarity-

based retrieval (SBR). To motivate our research, we first discuss limitations of SBR

using a medical diagnosis scenario. We then discuss our proposed retrieval strategy

USIMSCAR that aims to address such limitations of the SBR strategy by leveraging

association analysis of stored cases to enhance and complement similarity knowledge.

Consider the following medical diagnosis scenario, presented in (Castro, Navarro,

Sánchez and Zurita, 2009), where a case base D consists of five patient cases P1, ...,

P5 as shown in Table 1.1.

Table 1.1: A patient case base.

Case ID
Local Pain Other Pain Fever Appetite Loss Age Diagnosis Similarity

(A1) (A2) (A3) (A4) (A5) (A6) to Q
P1 right flank vomit 38.6 yes 10 appendicitis 0.631
P2 right flank vomit 38.7 yes 11 appendicitis 0.623
P3 right flank vomit 38.8 yes 13 appendicitis 0.618
P4 right flank sickness 37.5 yes 35 gastritis 0.637
P5 epigastrium nausea 36.8 no 20 stitch 0.420
Q right flank nausea 37.8 yes 14 ?

Weight 0.91 0.78 0.60 0.40 0.20

As shown in this table, each case is represented as a pair of a problem and the

corresponding solution. Each problem consists of five attributes (i.e. symptoms)

A1, ..., A5, and each solution represents a corresponding diagnosed disease described

by the attribute A6. Our aim is to diagnose the correct disease for a new patient Q.

We note that the patient Q was suffering from ‘appendicitis’ as specified in (Castro

et al., 2009), and this therefore represents the correct diagnosis.

To predict a diagnosis for the patient Q, in principle, SBR aims to find the

most similar cases to Q. Typically, SBR finds the cases whose attributes are similar

CHAPTER 1. INTRODUCTION 8

to those of the patient Q by using a similarity metric. Assume that we use the

following metric, the same one used in (Castro et al., 2009), that measures the

similarity between the patient Q and each case P ∈ D:

SIM(Q,P) =

∑n
i=1 wi ∗ sim(qi, pi)∑n

i=1 wi

, (1.1)

where wi is a weight assigned to an attribute Ai, qi and pi are values of the attribute

Ai of the patient Q and the case P respectively, n is the number of attributes

describing the patient Q and the case P (i.e. n is 5). Furthermore, sim(qi, pi)

denotes a similarity measure between attribute values qi and pi such that:

sim(qi, pi) =





1− |qi−pi|
Amax

i −Amin
i

, if an attribute Ai is numeric,

1, if an attribute Ai is discrete & qi = pi,

0, otherwise,

(1.2)

where Amax
i and Amin

i denote the maximum and minimum values, respectively, that

an attribute Ai takes on in the case base D.

Once the most similar cases to the patient Q are selected, SBR determines a

diagnosis for the patient Q using these cases. We assume that SBR chooses the

single most similar case to the patient Q. As shown in Table 1.1, the case P4 is

thus chosen when applying the above metric, since it is the most similar case to the

patient Q. This implies that the diagnosis choice for the patient Q is ‘gastritis’.

However, this is incorrect since the patient Q was actually identified to suffer from

the disease ‘appendicitis’ as previously mentioned. This scenario shows that SBR

has certain limitations which are due to complete reliance on similarity measures.

As seen in this scenario, unfortunately, only using similarity knowledge is often

insufficient to retrieve useful cases for solving new problems.

To address the above issue, we propose to acquire and formalize special knowl-

edge from a given case base, and to exploit it during the retrieval process. This

CHAPTER 1. INTRODUCTION 9

knowledge is referred to as association knowledge that represents how known prob-

lem features are associated with known solutions shared by a large number of cases.

To illustrate, suppose that the following two rules encode association knowledge ac-

quired from the case base D shown in Table 1.1, using association analysis algorithms

(Liu, Hsu and Ma, 1998; Nahm and Mooney, 2002):

• R1: 60% of the patient cases, whose local pain is ‘right flank’ and age is

between 10 to 13, are associated with the disease ‘appendicitis’.

• R2: 20% of the patient cases, whose local pain is ‘right flank’ and age is 35,

are associated with the disease ‘gastritis’.

Referring to the above rules, we may say that the rule R1 is relevant to the cases

P1, P2, and P3, since R1 has been derived from these three cases in terms of the

values of two attributes ‘Local Pain’ (A1) and ‘Age’ (A5). We may also say that the

rule R2 is relevant to the case P4, since R2 has been derived from this case in terms

of the values of the same two attributes. Furthermore, we may say that the rule R1

is more confident than the rule R2, when considering that R1 is supported by three

relevant cases while R1 by only one relevant case. Based on these observations, we

propose two schemes that leverage these rules R1 and R2 for diagnosing the correct

disease for the new patient Q shown in Table 1.1.

The first scheme is to quantify the usefulness of each case with respect to the

patient Q by using its similarity to Q with the rules R1 and R2. Initially, as with

SBR, the usefulness of each case with respect to the patient Q can be quantified by

using its similarity to Q. Then, this usefulness may be enhanced by considering and

including the confidence of a specific rule which is relevant to the case considered.

For instance, considering the case P4, its usefulness can be initially quantified by

using its similarity to the patient Q. Then, the usefulness may be enhanced by the

confidence of the rule R2, since R2 is relevant to the case P4. By the same principle,

the usefulness of the case P1 may be initially quantified by using its similarity to

Q, and it may be enhanced by the confidence of the rule R1 which is relevant to

CHAPTER 1. INTRODUCTION 10

the case P1. Now, we can observe that the similarity between the case P4 and the

patient Q is higher than the similarity between the case P1 and the patient Q, as

shown in Table 1.1. We also note that the confidence of the rule R1 relevant to the

case P1 is higher than that of the rule R2 relevant to the case P4. Our hypothesis

is that if we leverage these two kinds of knowledge (i.e. knowledge acquired from

similarity and rules) together, we will be able to quantify the usefulness of stored

cases with respect to the target problems more accurately, thereby improving the

retrieval process for solving the problems.

The second scheme for leveraging the rules R1 and R2 is to directly use these

rules with respect to the patient Q. For example, if we compare the values with

respect to the ‘Age’ attribute (A5) between the patient Q and two rules R1 and R2,

we may observe that Q is more likely to be covered by R1 than R2. The reason is

that Q’s age (i.e. 14) is more similar to R1’s age (i.e. 10 - 13) than R2’s age (i.e. 35).

Therefore, we may conclude that the usefulness of the rule R1 is better than that of

the rule R2 with respect to the patient Q. Accordingly, we choose a diagnosis for Q

as ‘appendicitis’ derived from the rule R1. This meets our objective for the above

scenario, since the patient Q was really suffering from ‘appendicitis’. Therefore, in

this context, our hypothesis is that directly leveraging the rules obtained from the

case base can be also useful for solving new problems.

In this thesis, we propose that if we combine the above two different schemes,

we leverage their unique benefits, thereby developing a more accurate and effective

retrieval strategy for CBR systems. Therefore, in this thesis, our focus is to propose

and develop a novel retrieval strategy that enhances traditional SBR by acquiring,

formalizing, and exploiting association knowledge in conjunction with similarity

knowledge.

1.4 Research Objectives and Contributions

In this thesis, our primary objective is to establish a new foundation for retrieval in

CBR that integrates association knowledge with similarity-based retrieval (SBR).

CHAPTER 1. INTRODUCTION 11

We propose and develop a new retrieval strategy USIMSCAR, and evaluate it in

three CBR application domains: medical diagnosis, help-desk service and product

recommendation. Through an extensive empirical evaluation, we show that associ-

ation analysis of stored cases can be used to improve the effectiveness of SBR.

The uniqueness of USIMSCAR, compared to SBR, lies in its ability to use asso-

ciation knowledge in conjunction with similarity knowledge to deliver an improved

and holistic retrieval strategy for CBR. The purpose of association knowledge is

to represent strongly evident, interesting and meaningful relationships shared by a

large number of relevant cases using association rule mining well-known in the data

mining community. Specifically, this knowledge models a set of strongly evident

correlations between known problem features and known solutions shared by a sig-

nificant portion of relevant cases. This knowledge is formulated in a special form of

association rules.

In this thesis, we make the following significant contributions:

• We propose and develop an approach for formalizing association knowledge

by applying association analysis of stored cases using association rule mining

techniques.

• We propose and develop strategies for quantifying the usefulness of cases as

well as association rules with respect to the target problem by leveraging

association knowledge in conjunction with similarity knowledge.

• We propose and develop a novel retrieval strategy USIMSCAR for CBR that

enhances and improves SBR. USIMSCAR performs the retrieval process for

CBR by leveraging useful cases and rules, with respect to the target problem,

quantified by using both similarity and association knowledge. This strat-

egy clearly distinguishes USIMSCAR from SBR as well as existing retrieval

strategies developed in the research field of CBR.

• We validate the improvement of USIMSCAR over SBR through extensive ex-

periments using both benchmark and real datasets. For our experiments, we

CHAPTER 1. INTRODUCTION 12

take into account three CBR application domains: medical diagnosis, help-

desk service and product recommendation. In the medical diagnosis domain,

we use six medical datasets found in UCI ML Repository1 and a real medical

dataset2 obtained from the UK National Health Service (Grampian) Health

and Safety (NHSG). In the help-desk service domain, we use a real-life IT

Service Management (ITSM) dataset gathered from an installation of HP Ser-

vice Manager3. In the product recommendation domain, we use the Yahoo!

Webscope Movie dataset4. Using these datasets, we measure the retrieval per-

formance of USIMSCAR in comparison with SBR. Through our experimental

evaluation, we show that USIMSCAR is an effective retrieval strategy for CBR

that enhances traditional SBR.

1.5 Thesis Outline

The rest of this thesis is organized into six chapters.

A Review of Similarity-Based Retrieval in CBR Systems: In Chapter 2, we

review several key CBR applications that are based on the use of similarity-

based retrieval (SBR). We then review the fundamental approaches for imple-

menting SBR. We also focus our review on approaches for integrating SBR

with different types of learning and knowledge, which have been designed to

enhance SBR.

Overview of Similarity and Association Knowledge: To present the theo-

retical foundations and the contributions of our proposed model for retrieval

in CBR, it is essential to provide an overview of both similarity and associa-

tion knowledge. In Chapter 3, we present readers with this overview. We first

present the basic terms and definitions, which are fundamentals for formaliz-

ing similarity and association knowledge. We then present a background of

1http://www.ics.uci.edu/˜mlearn/MLRepository.html
2This dataset was provided by Robert Gordon University, Scotland, UK.
3http://www.hp.com/software.
4http://research.yahoo.com.

CHAPTER 1. INTRODUCTION 13

similarity knowledge, which has been mainly used in SBR. We also provide an

overview of fundamentals for formalizing association knowledge.

USIMSCAR (Unified knowledge of SIMilarity and Soft-matching Class

Association Rules): Chapter 4 presents our proposed strategy USIMSCAR

that combines association knowledge with similarity knowledge to improve

traditional SBR. We also discuss our algorithm for formalizing association

knowledge in detail. This chapter presents the core theoretical contributions

of this thesis.

Implementation of USIMSCAR: In Chapter 5, we present the implementation

of a prototype system for USIMSCAR. The key purpose of the implementation

is to provide a platform for evaluating USIMSCAR.

Evaluation of USIMSCAR: In Chapter 6, we present the experimental evalua-

tion of USIMSCAR and its comparison with SBR. This evaluation is based on

extensive experiments using various benchmark and real datasets in three CBR

application domains: medical diagnosis, help-desk service and product recom-

mendation. For each of the experimental domains, we provide descriptions

of the approaches compared, datasets, experimental configuration and evalu-

ation metrics, which are used in the evaluation. We then analyze whether the

improvements obtained through USIMSCAR are statistically significant.

Conclusion and Future Work: In Chapter 7, we conclude this thesis by sum-

marizing our contributions and discussing further research directions.

Chapter 2

A Review of Similarity-Based

Retrieval in CBR Systems

2.1 Introduction

As discussed, retrieval in Case-Based Reasoning (CBR) is a significant phase that

determines the overall performance of CBR systems by finding past cases that are

closest to the new problem. Typically, this phase is achieved on the basis of the

exploitation of similarity knowledge. This strategy is referred to as similarity-based

retrieval (SBR) (Smyth and Keane, 1998). However, as identified in the previous

chapter, this retrieval strategy tends to ignore other forms of knowledge that can

be additionally leveraged for improving its retrieval performance. Therefore, the

main focus of this thesis is to propose and develop a retrieval strategy for CBR by

using knowledge pertaining to associations between known problem features and

solutions shared by a significant proportion of relevant cases. We refer to this

knowledge as association knowledge. Rather than viewing association knowledge

as an alternative to similarity knowledge, we propose and develop a model for CBR

retrieval that effectively combines similarity knowledge with association knowledge

to achieve more relevant and effective retrieval. In this context, this chapter reviews

the current state-of-the-art approaches for implementing SBR.

14

CHAPTER 2. A REVIEW OF SBR IN CBR SYSTEMS 15

This chapter is organized as follows. In Section 2.2, we review several key CBR

applications that rely on the use of SBR. In Section 2.3, we review a representative

approach for implementing SBR and its general extensions. Since our focus is on

enhancing SBR with association knowledge, it is pertinent to examine retrieval ap-

proaches that extend SBR with other kinds of knowledge. In Section 2.4, we review

approaches for integrating SBR with statistical learning, rule-based reasoning, do-

main knowledge, and adaptation knowledge, which are designed to enhance SBR.

In Section 2.5, we finally summarize this chapter.

2.2 CBR and Its Applications

In this section, we review the applications of CBR technology in various domains.

Since this thesis focuses on improving traditional similarity-based retrieval (SBR),

this review is concentrated particularly on the usage of retrieval strategies in these

domains. First of all, we briefly present an overview of the underlying psychological

model of CBR, since CBR stems from the psychological theory of human cogni-

tion (Slade, 1991). This overview aims to help readers to understand the original

foundation of CBR, with respect to developing knowledge-based systems.

2.2.1 Research Paradigm of CBR

A comprehensive overview of the research paradigm of CBR can be found in Slade

(Slade, 1991). We present a brief summary based on and adopted from Slade

(Slade, 1991). The origin of the CBR paradigm is found in the psychological the-

ory of human cognition. The principal basis for CBR comes from the question of

what theory of memory explains observed cognitive behaviors. A leading theory is

the semantic network memory model, which typically represents static facts about

the world, such as Fido is a dog, a dog is a mammal, and mammals have hair

(Quillian, 1968). However, psychologists found that this type of knowledge gener-

ally does not change over time. Hence, they realized that semantic networks failed

CHAPTER 2. A REVIEW OF SBR IN CBR SYSTEMS 16

to explain all inherent nature of human memory, e.g. memories are variable in size.

To address it, the episodic memory theory was proposed by Tulving (Tulving, 1972)

as an adjunct to semantic memory. Tulving described that episodic memory stores

information about temporally dated episodes (or events) and temporal-spatial rela-

tions between these events. Tulving also described semantic and episodic memory

as two complementary information processing systems, both of which receive infor-

mation from cognitive systems and also process portions of the information.

AI researchers established a theory similar to the episode memory theory by

observing human language-understanding tasks. Schank (Schank, 1972) developed

natural language systems for representing concepts and understanding single sen-

tences. A sentence such as “John ate a hamburger” could be processed, paraphrased,

and translated to another language. The next step was to process connected text,

paragraphs and stories. For this task, Schank (Schank, 1972) proposed concep-

tual memory that combined semantic memory with Tulving’s episodic memory. A

key feature of Schank’s conceptual memory was the notion that information is de-

rived from experience. To represent knowledge in a conceptual memory, Schank and

Abelson (Schank and Abelson, 1972) proposed knowledge structures named scripts.

The acquisition of scripts is the result of repeated exposure to a given situation.

For example, children learn the restaurant script by going to restaurants over and

over again. However, an experiment conducted by Bower et al. (Bower, Black and

Turner, 1979) showed that subjects often confused events that had similar scripts.

For example, a subject might mix up waiting room scenes from a visit to a doctor’s

office with a visit to a dentist’s office.

This issue led to a revision in script theory. Schank (Schank, 1982) postulated

a more general knowledge structure to explain the diverse and heterogeneous na-

ture of episodic knowledge. This new structure was the memory organization packet

(MOP). MOPs can be viewed as meta-scripts. For example, instead of a dentist

script or a doctor script, there might be a professional-office-visit MOP that can be

instantiated and specified for both the doctor and the dentist. This MOP would

CHAPTER 2. A REVIEW OF SBR IN CBR SYSTEMS 17

contain a generic waiting room scene, thus providing the basis for solving the con-

fusion between doctor and dentist episodes. Schank (Schank, 1982) also proposed a

theory of learning based on reminding. This theory was based on the notion that if

situations or experiences remind us of previous cases and events, we can classify a

new episode by means of past cases. This theory established that the knowledge of

the past case, like a script, can guide our behavior. Finally, Schank (Schank, 1982)

derived a theory of memory to account for episodic information. That is, scripts

and MOPs were postulated as knowledge structures for representing experience.

Many principles of CBR for addressing the issue of memory organization for

episodic knowledge can be first found in CYRUS (Kolodner, 1984) and IPP (Lebowitz,

1980). CYRUS simulated an episodic memory of events relating to former Secretary

of State Cyrus Vance. The program answered questions about a range of autobio-

graphical episodes, such as meetings, diplomatic trips, and state dinners. CYRUS

was the first system to model episodic storage and retrieval strategies. IPP was a

prototype CBR system. First, this system read hundreds of news stories about ter-

rorist acts, such as bombings, kidnappings, and shootings to guess generic knowledge

about them. Then, it tried to develop its own set of generalizations about terrorism

that it could probably apply to understanding new stories. They addressed the basic

questions of case representation and indexing previously posed.

In the 1980s, researchers began explicitly to develop CBR systems. For example,

CHEF (Hammond, 1986) developed new plans based on its own experience in the

domain of cooking. When faced with the task of preparing a dish for which it has no

appropriate plan (recipe), CHEF modified an existing plan to fit the new situation.

CHEF demonstrated how episodic knowledge can be used to guide planning and

avoid past failures. When presented with a problem (i.e. how to prepare a certain

dish), the program is reminded of previous related recipes. It modified the most

similar previous recipe to fit the new requirements and then tried out the new

recipe. Another early CBR system was MEDIATOR (Simpson, 1985). The system

acted as an advisory system for dispute mediation. MEDIATOR was presented

CHAPTER 2. A REVIEW OF SBR IN CBR SYSTEMS 18

with a dispute situation between two parties, and suggested a resolution based

on its experiential knowledge base. The system addressed problems of similarity

measures, memory structures for representing and retrieving cases, adaptation, and

recovery from failure. JUDGE (Bain, 1986) applied the CBR approach to legal

reasoning in the context of sentencing convicted criminals. This system simulated

the process of a judge deciding the appropriate sentence to mete out based on the

judge’s experience.

In summary, CBR grew out of psychological models of episodic memory and the

technological impetus of AI. Over the last decades, interest in CBR has extensively

grown across many different application domains. In the following subsection, we

present several key application domains that have applied CBR systems.

2.2.2 CBR Applications

Due to the attractive CBR paradigm based on the cognitive models of human behav-

iors, CBR technology has been successfully applied in various application domains

(Slade, 1991; Bartsch-Spörl, Lenz and Hübner, 1999; Stahl, 2003). Recent work in

CBR has proceeded rapidly, reflecting a widespread and growing interest in the CBR

paradigm within many different application domains. In this section, we present an

overview of several key CBR application domains, which include classification, med-

ical diagnosis, product recommendation, help-desk service, configuration and design,

and planning. In particular, our focus in this thesis is directed to improving a tradi-

tional retrieval strategy, similarity-based retrieval (SBR). Therefore, this overview

is concentrated on the retrieval strategies used in CBR systems for each of those

domains.

2.2.2.1 Classification

CBR is one of the influential and powerful technologies for solving classification

problems. The most popular approach for classification using CBR is based on

k-nearest neighbor retrieval or simply k-NN (Lopez De Mantaras et al., 2005).

CHAPTER 2. A REVIEW OF SBR IN CBR SYSTEMS 19

The fundamental idea of k-NN is that retrieval in CBR is achieved through the

retrieval of the k most similar cases to a new problem. Alternatively, such cases are

referred to as the nearest neighbors of the new problem. To find such similar cases,

the key notion used in k-NN is similarity. Therefore, the quality of the employed

similarity measures for determining the similar cases to the new problem is a key

aspect in k-NN. As previously mentioned in Chapter 1, SBR is strongly reliant

on similarity knowledge encoded via similarity measures. The usage of similarity

measures in k-NN accounts for why k-NN is typically used for implementing SBR.

The goal of classification is to identify the class membership of given entities

(Jurisica and Glasgow, 1996). The fundamental idea of k-NN for classification is

that it uses the information of entities for which the class membership is already

known. To classify a new entity, its description is compared to the descriptions of the

known entities. To predict the unknown class of the new entity, its nearest neighbors

have to be determined by a similarity (or distance) metric. Finally, the information

of the class membership of these neighbors is used to predict an unknown class of

the new entity. Therefore, from the CBR point of view, k-NN is strongly based on

the retrieval phase that finds the neighbors of the new entity for classification. This

is the rationale for the suitability of CBR for classification. Another reason is the

easy ability to handle incomplete and imprecise data without a perfect match.

Given the advantage of k-NN, many commercial and research prototype case-

based classification systems have used k-NN. For example, Chiu (Chiu, 2002) applied

a k-NN retrieval strategy in an insurance direct marketing company, Taiwan branch.

This retrieval strategy combines k-NN with feature weighting that is a technique

for determining the importance of the attributes of cases. This strategy was used

to predict (classify) customer purchasing behaviors in Taiwan branch. Nilson et

al. (Nilsson, Funk and Sollenborn, 2003) propose a case-based approach for the

classification of medical measurements based on the data of patients with stress

symptoms. This approach combines k-NN with feature selection that is a technique

determining relevant features from the original features of cases. Vong et al. (Vong,

CHAPTER 2. A REVIEW OF SBR IN CBR SYSTEMS 20

Wong and Ip, 2010) have also applied an integration of k-NN with feature weighting

to classify an automotive engine spark ignition diagnosis.

2.2.2.2 Medical Diagnosis

CBR technology has also been widely used for diagnostic tasks in the medical do-

mains. Medical knowledge is usually incomplete, so medical applications put more

stress on real cases than applications in other domains (Castro et al., 2009). Also, the

explanation capability of CBR is significantly useful in medical diagnosis domains,

since it provides an important basis for decision makers (i.e. medical practitioners).

Often, a case consists of a problem description in the form of symptoms of a patient

and a solution in the form of the corresponding diagnoses or therapies. We now

provide a review of retrieval strategies that have been used in CBR systems that

provide support for medical diagnosis.

Althoff et al. (Althoff, Bergmann, Wess, Manago, Auriol, Larichev, Bolotov,

Zhuravlev and Gurov, 1998) developed a CBR system for diagnosing intoxications

by drugs. In this system, a new problem is represented as the intoxication symptoms

of a patient. Given a problem, its diagnosis is done by retrieving the most similar

cases to the problem from the case base using k-NN with feature weighting. Ahn and

Kim (Ahn and Kim, 2009) propose a CBR system for diagnosing breast cancer for

patients. In this system, a new problem is represented in the form of the symptoms of

the breast cancer patient. Given a problem, the diagnosis is performed by measuring

the similarity between the problem and its most similar cases. Then, a solution

(diagnosis) is predicted based on the similar cases. To retrieve these similar cases,

this system used an extension of k-NN by combining k-NN with feature selection

and feature weighting. The Medical Informatics Group (Salem, 2007) has developed

a case-based diagnosis system for cardiac patients. The purpose of this system is

to suggest the correct diagnosis for presented symptoms and signs for a cardiac

patient with the corresponding certainty factor. This system demonstrates that an

integration of k-NN with feature weighting results in a good performance for the

CHAPTER 2. A REVIEW OF SBR IN CBR SYSTEMS 21

diagnosis task. As observed through the above CBR systems, SBR implemented

via k-NN or its extensions has been widely used as a retrieval strategy for CBR in

medical diagnosis domains.

2.2.2.3 Help-Desk Service

In traditional help-desk systems, identifying machine faults relies generally on the

past knowledge of service operators. As an alternative, CBR technology has been

extensively used to facilitate this support (Bartsch-Spörl et al., 1999). In our re-

view, we are only interested in case-based systems that provide decision support for

diagnosing machine or computer problems in technical domains. In particular, our

attention is focused on how traditional SBR has been coupled with such systems.

Kriegsman and Barletta (Kriegsman and Barletta, 1993) propose a case-based

help desk system that provides decision support for diagnosing faults incurred while

using computers. The types of faults range from questions about how to send an

email to complex network problems. Each case consists of a problem in the form of a

problem identification number, an initial description of the problem and operator’s

analysis, and a solution in the form of a recommended solution. To find the closest

cases to a new problem, an integration of k-NN with feature weighting is employed.

After that the discovered cases are scored according to their similarities, and then

sorted from the best (highest) to worst (lowest) score. The solutions of the cases

with higher similarity scores are finally used to formulate a solution for the given

problem. CaseAdvisor (Yang et al., 1997) is a case-based help-desk system designed

to provide correct problem diagnosis and resolution in a cable-TV service center.

In the system, the diagnosis is achieved using the retrieved cases through k-NN

with respect to a given problem. Once a problem is received from a customer, the

system extracts its potential keywords, and retrieves the most similar cases to the

problem based on similarity computation using the extracted keywords. Then, the

service operator utilizes these retrieved cases to solve the problem. Intelligent Help

Desk Facilitator (IHDF) (Law et al., 1997) is a system developed for computer and

CHAPTER 2. A REVIEW OF SBR IN CBR SYSTEMS 22

network fault management. IHDF was deployed in a help desk environment of a local

bank. To diagnose a fault in the environment IHDF employs k-NN. Given a problem,

the system first extracts its important features, and then computes the similarities

between the problem and past cases. Thereafter, it subsequently extracts a subset

of closely related cases through k-NN. These retrieved cases are finally utilized to

solve the new problem. As understood throughout the above case-based help-desk

systems, we see that SBR implemented via k-NN or its extensions has also been

widely used as a retrieval strategy in help-desk service domains.

2.2.2.4 Product Recommendation

CBR technology has been used as an important mechanism for recommender sys-

tems. Its main role in recommender systems is to provide intelligent support to

customers for the task of selecting products matched with customer needs. Rec-

ommendation systems help users to find and select items (e.g. movies, restaurants)

from a large number typically available on the Web or in other electronic information

sources (Adomavicius and Tuzhilin, 2005). Recommendation methods are often clas-

sified into three categories based on how recommendations are made (Adomavicius

and Tuzhilin, 2005): (1) In content-based recommendation, the items (e.g. products)

will be recommended similar one to the user’s past preferences in terms of like or

dislike, (2) In collaborative recommendation, the items will be recommended items

based on the previous choices of similar users, and (3) In hybrid recommendation,

the items will be recommended by combining the above two methods.

We now review how recommender systems have been widely implemented by

CBR technology. In particular, we focus on what retrieval strategies have been

used in well-known case-based recommender systems. Analog Devices (Wilke, Lenz

and Wess, 1998) is an electronic component case-based recommender system that

provides customers with more flexible access to a catalog of electronic devices. A

customer first enters an explicit query consisting of the important features of a

device to be searched. The system then responds with a recommendation using a

CHAPTER 2. A REVIEW OF SBR IN CBR SYSTEMS 23

similarity measure between the query and a stored device case. After that the system

retrieves N nearest matches (neighbors) with respect to the query using k-NN.

Those retrieved results are finally recommended to the customer. The PTV system

(Smyth and Cotter, 1999) provides a user with a solution for the problem of locating

relevant programme information. Each user profile uses to encode TV preferences

such as channel information, preferred viewing time, and subject preferences. Each

case is described as a set of its relevant features (e.g. genre, director, language,

etc). To suggest a solution for the user, the system recommends programs that are

similar to a target user profile using k-NN. Entree (Burke, 2002) is a case-based

recommender system that recommends restaurants that a target user is likely to

prefer. A user interacts with the system by submitting an entry point (e.g. a

known restaurant) and is recommended similar restaurants using k-NN. CASPER

(Bradley and Smyth, 2003) is an online recruitment case-based recommender system

that provides users with personalized job information. Its main idea is to select job

cases not just by their similarity to the target query, but also by their relevance to

the specific user in question. The relevance is derived through the user’s interaction

history. First, job cases are ranked according to their similarity to the query by

using k-NN. The employed k-NN uses a similarity metric that calculates a similarity

score between query features and corresponding job case features. Then, CASPER

classifies search results as either relevant or irrelevant through the interaction history

of the user. As examined above, SBR implemented via k-NN or its extensions

has been widely used as a retrieval strategy for realizing case-based recommender

systems.

2.2.2.5 Configuration and Design

Up to this point, we have reviewed different kinds of analytic tasks in CBR appli-

cation domains. For all these analytic tasks, a solution is usually made through an

analysis of a given problem only. In contrast to the analytic tasks, the tasks of con-

figuration and design are classified into synthetic tasks. The term synthetic stands

CHAPTER 2. A REVIEW OF SBR IN CBR SYSTEMS 24

for need to build up a solution part, mostly governed by a set of domain specific

construction rules. The benefit of using CBR for configuration and design lies in

that CBR can quickly provide a former solution that contains a high percentage of

what is needed (Bartsch-Spörl et al., 1999). The remaining percentage has to be

achieved by the adaptation phase in CBR.

An example of case-based configuration systems, applied in a e-commerce sce-

nario, is described by Stahl and Bergmann (Stahl and Bergmann, 2000). This system

assumes that products (e.g. personal computers, insurances) in e-commerce applica-

tions are structured into sub-components (e.g. hard-disk, video-board). The knowl-

edge required is about pre-configured complete products as well as available sub-

components. The system first retrieves the best pre-configured product with respect

to the requirements of a customer through k-NN. The product is then customized by

incrementally replacing sub-components with more suitable sub-components. These

new sub-components are determined by recursively applying k-NN to the level of

sub-components. In general, the CBR approach for configuration and design is

highly reliant on adaptation in CBR. However, SBR still has a significant influence

on the tasks of configuration and design, since adaptation is generally applied to the

initially retrieved cases similar to the new problem discovered via SBR.

2.2.2.6 Planning

The last and most complex class of problems which CBR technology can be applied

to is planning. As configuration and design, planning is also viewed as one of the

synthetic tasks. In general, a planning problem is formulated as an initial state, a

goal state and a set of planning operators (Stahl, 2003). The aim of planning is to

achieve the goal state by recursively applying operators on the initial state. A series

of planning operators is called plan (Stahl, 2003). CBR has been widely used to

build efficient planning systems.

The basic idea is to reuse existing plans to improve the generation of new plans

in similar situations. Yang et al. (Yang et al., 1994) propose a case-based planning

CHAPTER 2. A REVIEW OF SBR IN CBR SYSTEMS 25

system PROCASE to explore applying CBR in generating process plans for the

operating of rotational parts. PROCASE first retrieves the most similar case from

the plan case base via k-NN based SBR, and uses it as the plan candidate. If the

retrieved plan cannot produce exactly the part required, the plan will be modified in

the adaptation phase in CBR. Similar to configuration and design, CBR technology

for planning is based on the cases, similar to the new problem, which are initially

retrieved through SBR. However, in general, in the planning tasks, the retrieved

cases are recursively modified based on the employed adaptation methods. Since

adaptation in CBR is out of scope of this thesis, we do not present the detailed

descriptions of adaptation. A very brief overview of adaptation has been presented

in Section 1.2.

In this section, we first presented an overview of the underlying research par-

adigm of CBR, and discussed a number of CBR systems. We then reviewed the

retrieval strategies that have been used in several key CBR application domains.

Table 2.1 shows a summary of the review that we have presented in this section,

where FW denotes feature weighting and FS denotes feature selection. As shown in

Table 2.1, for each application domain, we outline the CBR systems reviewed and

their retrieval strategies. As observed in this table, all the reviewed CBR systems

mainly rely on SBR implemented through k-NN or different forms of its extensions.

We also note that the extensions are generally formed by combining k-NN with fea-

ture selection and feature weighting. This fact provides strong evidence that many

CBR systems in different application domains are highly reliant on k-NN based SBR

to retrieve useful cases to solve a given problem. Our primary focus in this thesis

is to present a novel retrieval strategy that enhances SBR. In the next section, we

therefore analyze approaches for implementing SBR in detail.

CHAPTER 2. A REVIEW OF SBR IN CBR SYSTEMS 26

Table 2.1: The applications of similarity-based retrieval (SBR).

Domains CBR Systems Retrieval in CBR
Classification IBk (Instance-Based Learner): Aha et al., 1991 SBR (k-NN)

Customer classification for marketing: Chiu,
2002

SBR (k-NN + FW)

Medical measurement classification: Nilson et
al. 2003

SBR (k-NN + FS)

Automotive Engine Diagnosis Classification:
Vong et al. 2010

SBR (k-NN + FW)

Medical Diag-
nosis

Diagnosing intoxications by drugs: Althoff et
al., 1998

SBR (k-NN + FW)

Diagnosing breast cancer: Ahn and Kim, 2009 SBR (k-NN + FS + FW)
Diagnosing heart disease: Salem, 2008 SBR (k-NN + FW)

Help-Desk
Service

Diagnosing machine faults: Kriegsman and
Barletta, 1993

SBR (k-NN + FW)

Diagnosing Cable-TV problems: Yang et al.,
1997

SBR (k-NN + FW)

Diagnosing system and network faults: Law et
al., 1997

SBR (k-NN + FS + FW)

Product Analog Devices: Wilke et. al, 1998 SBR (k-NN + FW)
Recommend- The PTV system: Smyth and Cotter, 1999 SBR (k-NN + FS)
ation Entree: Burke, 2002 SBR (k-NN + FW)

CASPER: Bradly and Smyth, 2003 SBR (k-NN + FW)

Configuration
and Design

A case-based configuration system in e-
commerce: Stahl and Bergmann, 2000

k-NN based SBR

Planning PROCASE: Yang et al., 1994 k-NN based SBR

2.3 Similarity-Based Retrieval (SBR)

As examined in the previous section, the most prevalent approach for implement-

ing similarity-based retrieval (SBR) is based on a derivative of the nearest neigh-

bor algorithm (Dudani, 1976; Aha, Kibler and Albert, 1991; Lopez De Mantaras

et al., 2005). This approach is referred to as k-nearest neighbor retrieval (Lopez

De Mantaras et al., 2005) or simply k-NN. In this section, we therefore review k-

NN and its extensions in detail. As previously examined, extensions of k-NN are

generally formed by combining k-NN with feature selection and feature weighting.

Therefore, we review k-NN as well as these extensions in the following.

CHAPTER 2. A REVIEW OF SBR IN CBR SYSTEMS 27

2.3.1 k-NN Based SBR

The fundamental idea of SBR is that problem-solving is achieved through the re-

trieval of the k most similar cases to a new problem Q. As previously outlined, SBR

is typically implemented through k-NN. In a k-NN context, those retrieved cases are

referred to as the nearest neighbors of the problem Q. In the context, similarity is

the notion that represents a heuristic for estimating the most similar cases. There-

fore, the quality of the employed similarity measure for determining those similar

cases is a very important aspect in k-NN.

We now present a mathematical definition of k-NN. Let D be a set of cases. Let

P be the problem space that is a set of potential problems defined in the case base

D, where each problem X ∈ P is described by m attributes A1, ..., Am. Let S be the

solution space that is a set of potential solutions defined in the case base D. Suppose

that each case is labeled with a solution label Y ∈ S. Thus, each case C ∈ D can be

represented as a pair of the form C = (X, Y), where X ∈ P is a problem and Y ∈ S
is the corresponding solution. Let Q be any new problem (or query) described by

the same attributes used to represent the problems of cases stored in the case base

D. Based on this representation scheme, k-NN can be defined by using a distance

metric. For example, a distance metric DIST (Q,C) between the new problem Q

and each case C ∈ D is represented as:

DIST (Q, C) =

√√√√
m∑

i=1

dist(qi, ci)2, (2.1)

where qi and ci denote values of an attribute Ai∈[1,m] of the problem Q and the case

C respectively. The function dist(qi, ci) represents a distance between two attribute

values qi and ci. Depending on the types of attributes, different forms of knowledge

can be encoded when defining the function dist(qi, ci). A simple example of this

function for numeric and discrete attributes can be represented as follows:

CHAPTER 2. A REVIEW OF SBR IN CBR SYSTEMS 28

dist(qi, ci) =





|qi − ci|, if an attribute Ai is numeric,

0, if an attribute Ai is discrete and qi = ci,

1, otherwise.

(2.2)

Once the above distance metric DIST (Q,C) is defined, a solution to the problem

Q is determined by voting. The most straightforward method for voting is majority

voting (Mitchell, 1997). In this voting, the vote of each neighbor receives equal

weight, and a solution with the highest number of votes is chosen. Formally, a

solution of the problem Q, denoted by YQ, is determined as follows:

YQ = max
Y ∈S

{votemaj(Y)}, (2.3)

where the majority voting function votemaj(Y) for a solution Y ∈ S is defined as:

votemaj(Y) =
k∑

i=1

ϕ(Y, Yni
), (2.4)

where n1, ..., nk are the k nearest neighbors of the problem Q, and ϕ(Y, Yni
) returns

1, if the solution Y and the solution Yni
of a neighbor ni∈[1,k] match, and 0 otherwise.

The k-NN approach for implementing SBR has been well explored and popu-

larly used in a wide range of CBR applications, as given in the previous section.

The benefits of k-NN include its simplicity, flexibility, transparency and robustness

in the presence of noise that can be found in cases. However, k-NN has several

shortcomings, as discussed and addressed in Jiang et al. (Jiang, Cai, Wang and

Jiang, 2007) and Bhatia and Vandana (Bhatia and Vandana, 2010). For example, it

assigns equal weights to all the attributes of cases when computing a distance metric

between a new problem and each case. This bias handicaps k-NN, allowing irrele-

vant attributes to influence the computation. To address the issue, much research

has been widely conducted into extending k-NN. In the following, we review two

main approaches for extending k-NN using feature selection and feature weighting.

CHAPTER 2. A REVIEW OF SBR IN CBR SYSTEMS 29

2.3.2 Extensions of k-NN

Over the years, researchers have extensively studied k-NN to enhance its accuracy.

We review two well-known approaches that are mainly designed to enhance k-NN.

The first approach is to integrate k-NN with feature selection, a technique for de-

termining relevant features (or attributes) from the original features of cases. The

second approach is to integrate k-NN with feature weighting, a technique for esti-

mating optimal weights of the original features of cases. In the following, we provide

an overview of these approaches.

2.3.2.1 Feature Selection

Feature selection is a useful technique that has been widely used to enhance k-NN.

In a CBR context, feature selection is concerned with finding a subset of relevant

features (or attributes) among the original features of stored cases (Liu and Setiono,

1996). Its primary objective is to reduce the dimensionality of the cases by removing

irrelevant and redundant features. The k-NN approach can be easily extended to

include feature selection by only considering relevant features when computing a

distance metric between a new problem and each case.

In general, algorithms for feature selection are classified into two categories (Liu

and Setiono, 1996; Guyon and Elisseeff, 2003): wrapper and filter approaches. The

wrapper approach usually works in conjunction with a learning algorithm to im-

plement a feature selection method. It achieves feature selection by considering a

learning algorithm as a black box to evaluate feature sets, according to their predic-

tive power. On the other hand, the filter approach selects relevant features using a

preprocessing step that ignores a learning algorithm. In other words, this approach

is independent of learning algorithms, and serves as a filter to sieve irrelevant and

redundant features. Although the wrapper approach has certain advantages, it is

not as general as the filter approach (Liu and Setiono, 1996; Hall and Smith, 1999).

A main reason is that the wrapper approach is restricted by the time complexity of a

learning algorithm used. Further, it is biased to a learning algorithm so that it must

CHAPTER 2. A REVIEW OF SBR IN CBR SYSTEMS 30

be re-run when switching one learning algorithm to another. On the other hand,

the filter approach has been proven to be much faster than the wrapper approach.

Moreover, its general nature allows it to be used with any learner. In the following,

we provide two well-known methods realizing the filter approach.

Liu and Setiono (Liu and Setiono, 1996) propose a probabilistic filter approach

(LVF) using Las Vegas algorithms. LVF uses a probabilistic choice to help to guide

the search more quickly to find a correct set of relevant features. The approach

uses randomness to guide the search. It generates a random subset S from N

original features in every round of user-specified maximum rounds. If the number

of features (C) of the random subset S is less than the current best, i.e. C < Cbest,

the data (i.e. cases) with the features of the random subset S is checked against

the inconsistency criterion. Initially, the current best number of features Cbest is

set to the original number of features of the data, i.e. N . If the inconsistency rate

is below a pre-specified one, the best number of features Cbest and the best subset

Sbest are replaced by the current number of features C and the current subset S,

respectively. Then, the new current best subset Sbest is obtained. If C = Cbest and

the inconsistency criterion is satisfied, an equally good current best is obtained.

The inconsistency criterion is the key to the success of this approach. The criterion

specifies what extent the dimensionally reduced data can be accepted.

Hall (Hall, 1998) proposes the correlation-based feature selector (CFS) that is a

feature selector that uses a correlation-based heuristic to determine the goodness of

feature subsets in the data (e.g. cases). This heuristic is based on the assumption

that a good feature subset is estimated by the usefulness of individual features in

the subset in terms of predicting class labels1 (e.g. solutions). A good feature

subset is regarded as the set of features that are highly correlated with a class label,

yet uncorrelated with each other (Hall, 1998). A measure based on conditional

entropy (Vetterling, Teukolsky, Press and Flannery, 1998) is used to measure the

correlations between the individual features and each class label. To illustrate this

1Each tuple in the data is assumed to be assigned to a predefined a class label. In a CBR
context, a class label can be seen as a solution of cases stored in a case base.

CHAPTER 2. A REVIEW OF SBR IN CBR SYSTEMS 31

entropy measure, let X and Y be two discrete features. Suppose that Rx and Ry are

the respective value ranges of the features X and Y respectively. The probabilistic

model of the feature X is formed by estimating the individual probabilities of the

values belonging to the value range Rx from the data. Formally, the following

equation gives the entropy of the feature Y before and after observing the feature

X:

H(Y) = −
∑
y∈Ry

p(y) ∗ log(p(y)),

H(Y |X) = −
∑
x∈Rx

p(x) ∗
∑
y∈Ry

p(y|x) ∗ log(p(y|x)).

(2.5)

Finally, the following equation gives a measure of the correlation of the feature Y

on the feature X, denoted as C(Y |X):

C(Y |X) =
H(Y)−H(Y |X)

H(Y)
. (2.6)

The above correlation lies between 0 and 1. A value 0 indicates that the features

X and Y have no correlation. A value 1 means that knowledge of the feature X

completely predicts the feature Y .

The approach that integrates k-NN with feature selection is primarily designed

to extend k-NN by finding relevant features from the original features of cases. As

previously outlined, in a CBR context, feature selection generally focuses on finding

features that are highly correlated to specific solutions in a given case base. Typi-

cally, however, feature selection approaches assume that features are independent on

each other (Cover, 1974; Hall, 1998; Zhao and Liu, 2007; Xie, Wu and Qian, 2009).

In other words, dependence between features is often ignored. This may lead to

important information loss. For example, two individual features may be strongly

related to a particular solution but together may not be related at all.

CHAPTER 2. A REVIEW OF SBR IN CBR SYSTEMS 32

2.3.2.2 Feature Weighting

Feature weighting is a technique designed to extend k-NN, in which each feature (or

attribute) is multiplied by a weight value proportional to its ability to distinguish

class labels (i.e. solutions). Instead of selecting a subset of relevant features as

feature selection, feature weighting focuses on estimating the importance of all the

original features. Integrating k-NN with feature weighting can be easily formed

when computing a distance metric between a new problem and each case. That is,

features of a given problem and a case can be weighted by feature weighting before

computing the distance metric.

In the following, we review several well-known approaches to feature weighting.

Stanfill and Waltz (Stanfill and Waltz, 1986) propose a distance metric, called value

difference metric (VDM), that combines the stand Euclidean distance and feature

weighting. To illustrate, consider the following distance metric DIST (Q, C), already

presented in Equation 2.1 in Section 2.3.1, which is used as a standard distance

metric of k-NN:

DIST (Q, C) =

√√√√
m∑

i=1

dist(qi, ci)2.

Unlike to the metric DIST , VDM uses class conditional probabilities for discrete fea-

tures to refine their contribution to a distance metric. VDM is based on a weighted

sum across feature values, but with the weight dependent on the feature value in a

given problem (or query) Q. VDM between the problem Q and each case C can be

represented as:

V DM(Q,C) =
n∑

i=1

w(qi) ∗
∑
Y ∈S

(p(Y |qi)− p(Y |ci))
2, (2.7)

where n is the number of features of the problem Q and the case C, and p(Y |qi) and

p(Y |ci) are conditional probabilities of features qi and ci, respectively, with respect

to a class label Y ∈ S (S: the set of class labels). A weight w(qi) is calculated as

follows:

CHAPTER 2. A REVIEW OF SBR IN CBR SYSTEMS 33

w(qi) =

√∑
Y ∈S

p(Y |qi)2. (2.8)

The principle underlying VDM is that a difference between two features qi and ci is

computed on the basis of class conditional probabilities of values of the feature qi.

Gärtner and Flash (Gärtner and Flach, 2001) propose an algorithm that com-

bines the Naive Bayes classifier with feature weighting. This algorithm uses a sup-

port vector machine to perform feature weighting. It looks for an optimal hyperplane

that separates two classes (solutions) in a given feature space. Then, weights defin-

ing the separating hyperplane have a direct interpretation as feature weights using

the Naive Bayes classifier.

Other approaches to feature weighting include using genetic algorithms, linear

programming, and neural networks. For example, Oatley et al. (Oatley, Tait, and

MacIntyre, 1998), Ahn et al. (Ahn, Kim and Han, 2006), and Craw (Craw, 2003)

use genetic algorithms to learn feature weighting for CBR systems. Zhang et al.

(Zhang, Coenen and Leng, 2001) show that an optimal feature weight, setting in a

general form of CBR-based diagnosis, can be formalized as a linear programming

problem. Park et al. (Park, Im, Shin and Park, 2004) propose a learning algorithm

to train a neural network to learn case-specific feature weights for CBR.

Approaches for integrating k-NN and feature weighting aim to extend k-NN by

predicting the importance of the features of a given problem and cases. Feature

weighting can be viewed as a generalization of feature selection (Tahir, Bouridane

and Kurugollu, 2007). In other words, in feature selection, feature weights are

restricted to 0 or 1 (a feature is used or not). On the other hand, feature weighting

allows finer differentiation between features by assigning each a continuous valued

weight. Further, feature weighting algorithms do not reduce the dimensionality

of the data. However, considering that feature weighting is a generalization of

feature selection, feature weighting also usually assumes that individual features are

independent on each other as with feature selection (Cover, 1974; Hall, 1998; Zhao

CHAPTER 2. A REVIEW OF SBR IN CBR SYSTEMS 34

and Liu, 2007; Xie et al., 2009). Therefore, feature weighting leads to the same

information loss occurred in feature selection.

In this section, we reviewed the fundamental approach for implementing SBR,

i.e. k-NN. We also reviewed two forms of the general extensions of k-NN. The

first was integrating k-NN with feature selection, and the second was integrating

k-NN with feature weighting. Unfortunately, as previously outlined, both feature

selection and feature weighting usually focus on selecting and weighting relevant

features by identifying the limited scope of relationships, i.e. only relationships

between individual features independent on each other and each solution. Thus,

these techniques lead to lose important information about interesting relationships

between combinations of features dependent on each other and each solution.

As other well-known directions aiming to enhance SBR, much work has devel-

oped approaches for integrating SBR with statistical learning, rule-based reasoning,

domain knowledge, and adaptation knowledge. In the next section, we review re-

trieval mechanisms that focus on leveraging these approaches.

2.4 SBR with Learning and Knowledge

To enhance traditional similarity-based retrieval (SBR), researchers have investi-

gated empirical work for integrating SBR with statistical learning, in which statis-

tical methods are applied to stored cases and are combined with SBR (Daengdej,

Lukose, Tsui, Beinat and Prophet, 1997; Daengdej, Lukose and Murison, 1999; Park

et al., 2006; Castro et al., 2009). Machine learning has rapidly evolved over the past

several decades. The development of machine learning techniques have also re-

sulted in approaches that integrate SBR with rule-based reasoning to improve SBR

(Auriol, Wess, Manago, Althoff and Traphöner, 1995; Domingos, 1995; Cercone, An

and Chan, 1999). Another direction for improving SBR is based on the use of do-

main knowledge that is knowledge about the environment in which the target system

operates, e.g. facts, heuristics, casual relationships, cases (Stahl, 2003; Stahl and

Gabel, 2003; Gabel and Stahl, 2004; Aamodt, 2004; Shokouhi, Aamodt, Skalle and

CHAPTER 2. A REVIEW OF SBR IN CBR SYSTEMS 35

Sørmo, 2009). Furthermore, there has been research focused on integrating SBR

with adaptation knowledge, in which a direct link between SBR and adaptation

needs is considered together to enhance SBR (Smyth and Keane, 1995; Collins and

Cunningham, 1996; Smyth and Keane, 1998; Hanney and Keane, 1996; Hanney and

Keane, 1997; Hoffmann and Khan, 2006). As outlined above, well-known trends

to enhance SBR focus on approaches that integrate SBR with statistical learning,

rule-based reasoning, domain knowledge, and adaptation knowledge. In this section,

therefore, we review these approaches in detail.

2.4.1 Integrating SBR with Statistical Learning

Several CBR systems have investigated techniques that integrate SBR with statis-

tical learning in order to enhance SBR. The techniques used are generally applied

to capture interesting information through an analysis of stored cases.

For example, Daengdej et al. (Daengdej et al., 1997; Daengdej et al., 1999)

developed a CBR system called risk cost adviser (RICAD). The goal of RICAD

is to provide intelligent support for dealing with customers in a vehicle-insurance

domain. Specifically, RICAD focuses on predicting the value of claim and, if possible,

providing an explanation of why a certain amount of claim is presented from the

customers. Each case is made up of 30 attributes (e.g. car model, driver age) to

represent a customer, and each solution is viewed as a claim cost. The value of a

claim cost represents an amount of money claimed by a particular customer. Given

a customer, finding the most similar cases to the customer is often insufficient to

provide a solution, since it results in a challenging issue. For example, suppose

that 90% of the cases contain low claim costs. In this situation, if RICAD proposes

a solution based only on the most similar cases, the possibility that the proposed

answer will be low is very high. To address this issue, RICAD uses a number

of statistical methods to find additional cases which are similar in probability. In

the first stage, hypothesis testing is used to find cases with attributes similar to

the new problem through SBR. Thus, the cases found have similar claim amounts.

CHAPTER 2. A REVIEW OF SBR IN CBR SYSTEMS 36

In the second stage, if an adequate number of cases cannot be found in the first

stage, RICAD uses statistical models to predict the claim. The parameters of the

statistical models are predicted from regression analysis of claims against attributes

from the case base. Park et al. (Park et al., 2006) propose a retrieval technique that

focuses on estimating an optimal number of the nearest neighbors with respect to a

new problem using a combination of k-NN with a statistical learning technique. To

determine the optimal number, this technique takes into account the distribution of

distances between the potentially similar neighbors of the new problem. First, this

technique analyzes the distribution of distances between cases. Second, it estimates

an optimal distance threshold for the new problem. Finally, it chooses the neighbors

that meet the distance threshold. The calculated neighbors are used to predict a

solution of the new problem. Castro et al. (Castro et al., 2009) propose a retrieval

strategy that considers possible consequences of a given solution. The consequences

are represented as either loss or gain. These are defined as functions that measure

potential loss and gain when the solution of a case retrieved by SBR is applied.

To define these functions, they calculate the probability of each of the successfully

used solutions in the case base, according to its occurrence in the case base. The

calculated loss and gain functions are integrated with the similarity between the

new problem and each case. To achieve the integration, this retrieval strategy uses

fuzzy rules.

However, statistical methods used in approaches for integrating SBR with sta-

tistical learning are often too domain-specific, thereby not guaranteeing general ap-

plicability in other domains. For example, RICAD (Daengdej et al., 1997; Daengdej

et al., 1999) is the system only developed for a vehicle insurance domain. The statis-

tical methods used in RICAD are only applied on a numeric attribute representing

claim cost, and thus there is no guarantee as to whether these methods can be ap-

plied on other types of attributes (e.g., age, salary, and gender in life insurance)

used in many other application domains. In addition, the statistical methods of the

loss and gain functions proposed by Castro et al. (Castro et al., 2009) are strongly

CHAPTER 2. A REVIEW OF SBR IN CBR SYSTEMS 37

dependent on the selected medical domains. These methods are based on the de-

finition of fuzzy rules manually defined by domain experts, thereby these are also

domain-specific and time-consuming. The retrieval strategy, proposed by Park et al.

(Park et al., 2006), may be applied in general CBR application domains. However,

the statistical methods used in this strategy only focus on finding an optimal num-

ber of the nearest neighbors of a given problem. When considering it, the strategy

inherits the intrinsic limitation of k-NN so that it may perform poorly if a case base

contains noisy (unreliable) features.

2.4.2 Integrating SBR with Rule-Based Reasoning

The rapid evolution of machine learning has resulted in retrieval approaches that

combine SBR and rule-induction (RI) methods to engender improvements over SBR

(Cercone et al., 1999). RI systems often learn domain-specific knowledge from stored

cases, and represent the knowledge in a comprehensible form as IT-THEN rules. The

combination of integrating SBR and rule-based reasoning can be classified into the

following three strategies:

• The first strategy is that SBR can be augmented with rule-based reasoning

when domain knowledge is available. For example, Bareiss et al. (Bareiss,

Porter and Wier, 1990) showed that rule-based reasoning can aid SBR by jus-

tifying a candidate set of possible cases. The authors use rule-based matching

to confirm new case expectations, where rules are encoded by using concept

relationships between the terms describing cases.

• The second combination strategy is that rules can be used in similarity assess-

ment for SBR by determining weights for attributes. For example, INRECA

(Auriol et al., 1995) constructed a decision tree from a given case base and esti-

mated the weights of case features (attributes) with respect to the subclasses

positioned in the tree. Then, class specific similarity functions are defined

using these weights. ELEM2-CBR (Cercone et al., 1999) also performed RI

CHAPTER 2. A REVIEW OF SBR IN CBR SYSTEMS 38

using ELEM2 (An and Cercone, 1998) to generate rules. These rules are then

used to determine weight settings for features before SBR is applied. ELEM2

is a rule induction method for inducing rules from the cases.

• The third combination strategy is that RI systems can leverage SBR to achieve

their rule induction. For example, RISE (Domingos, 1995) induced rules in

a specific-to-general fashion, starting with a rule set that is the set of cases

stored in a given case base. RISE examined each rule in turn, used SBR in

order to find the nearest cases of the same solution that it does not already

cover, and tried to minimally generalize the rule to cover the solution. The

induced rules are then compared to a given problem to generate a solution,

rather than using cases stored in the case base.

A limitation of the first combination strategy is that domain knowledge is ac-

quired by manually or using RI methods before applying SBR. However, acquir-

ing domain knowledge using rule-based systems generally leads to the well-known

knowledge acquisition problem of AI, often called knowledge bottleneck phenomenon

(Lee, 2003). Further, domain knowledge acquired has to be formalized by using

complex mathematical representations. Thus, the acquisition and formalization of

domain knowledge is still a time-consuming process. The second combination strat-

egy generates rules through an analysis of cases, and applies the rules to assign

weights for case attributes. The weighted attributes are finally used in similarity

assessment for SBR. However, as with feature selection and feature weighting previ-

ously examined in Section 2.3.2, this strategy computes the weights of case features

(or attributes), assuming feature independence. Therefore, it may lead to loss of

important information pertaining to interesting, meaningful relationships between

combinations of features dependent on each other and the solution. The third com-

bination strategy uses SBR to generate rules, and then these rules are only used

for solving new problems without considering and including stored cases in the case

base.

CHAPTER 2. A REVIEW OF SBR IN CBR SYSTEMS 39

2.4.3 Integrating SBR with Domain Knowledge

Another important direction for enhancing SBR can be found in approaches that

combine SBR with domain knowledge. For example, Stahl (Stahl, 2003), Stahl

and Gabel (Stahl and Gabel, 2003), and Gabel and Stahl (Gabel and Stahl, 2004)

propose a retrieval approach based on knowledge-intensive similarity measures, in

which similarity assessment for SBR is integrated with domain knowledge. The

goal of this approach is to guide the retrieval of relevant cases based on the use

of domain knowledge. To acquire and formalize domain knowledge required for the

definition of knowledge-intensive similarity measures, this approach utilizes accurate

training cases using machine learning. The accurate training cases are selected from

the feedback about the usefulness of some arbitrary cases previously assessed by

domain experts. By exploiting domain knowledge, this approach focuses on guiding

the automatic refinement of similarity measures.

Aamodt (Aamodt, 2004) proposes a knowledge-intensive CBR approach that

assumes that cases are enriched with explicit general domain knowledge. Similar

to knowledge-intensive similarity measures, the knowledge-intensive CBR method

also calls for knowledge acquisition and formalization techniques. The author con-

siders general domain knowledge as the knowledge about the world defining the

computational space necessary for the target system to achieve given tasks. Exam-

ples are facts, heuristics, casual relationships, multi-relational models, and cases.

To acquire general domain knowledge, the author assumes that knowledge acqui-

sition tools exist. To formalize the knowledge, semantic networks representing the

real work are used for reasoning. In this semantic network structure, concepts are

inter-related through multiple relation types, and each concept has many relations

to other concepts. A concept is used to describe knowledge of domain objects as

well as problem-solving methods and strategies. Semantic networks are described

by using ontological descriptions, and thus information (e.g. relation strength be-

tween concepts) inherent in the given semantic network is used to retrieve more

relevant cases for given problems. Shokouhi et al. (Shokouhi et al., 2009) apply the

CHAPTER 2. A REVIEW OF SBR IN CBR SYSTEMS 40

knowledge-intensive CBR approach (Aamodt, 2004) to problems in oil well drilling

domain.

Although the above two approaches focus on improving SBR with the use of

domain knowledge, the biggest challenge in the approaches lies in acquiring domain

knowledge. The former approach proposes to acquire domain knowledge from do-

main experts, and the latter approach relies on the use of tools to obtain domain

knowledge by domain experts. Therefore, these approaches tend to suffer from the

difficulty of acquiring domain knowledge so that these may be not applicable to use

in general CBR application domains.

2.4.4 Integrating SBR with Adaptation Knowledge

Another trend for enhancing SBR is to adapt cases as needed to suit the new sit-

uation during retrieval. Smyth and Keane (Smyth and Keane, 1995; Smyth and

Keane, 1998) propose the adaption-guided retrieval (AGR) approach, which pro-

vides a direct link between similarity and adaptation needs during retrieval in CBR.

This approach focuses on improving SBR by using similarity assessment and adap-

tation knowledge. Adaptation knowledge indicates whether a case can be easily

modified to fit the new problem, thereby influencing on similarity assessment during

retrieval. The idea of this approach is that, at retrieval time, matches between the

new problem and cases are done, only if there is enough evidence (in the form of

adaptation knowledge) that such matches can be catered for during retrieval. How-

ever, the AGR approach assumes that adaptation knowledge is already available to

be used during retrieval to predict the adaptability of cases. Further, adaptation

knowledge can be formed as declarative rules for complex domains. Hence, this

approach also has the intrinsic difficulty in acquiring and formalizing adaptation

knowledge.

Collins and Cunningham (Collins and Cunningham, 1996) apply the AGR ap-

proach in example-based machine translation (EBMT). EBMT is used to perform

English to German translation. In EBMT, a case base is derived from an existing

CHAPTER 2. A REVIEW OF SBR IN CBR SYSTEMS 41

translation corpus. A basic problem imposed on EBMT is a structural difference

between the current translation and a previous example that may lead to significant

adaptation problems after retrieval. A policy of the AGR approach is applied to

recognize significant adaptation problems early during retrieval so that only cases

which can be adapted safely are retrieved. In EBMT, adaptation information is

quantified using the co-dependency of elements of a translation example. Hanney

and Keane (Hanney and Keane, 1996; Hanney and Keane, 1997) propose a system

that uses the AGR approach for a property evaluation. A case base is composed of

residential property cases described by features such as reception rooms, location

and facilities. The goal of this system is to predict the value of a target property.

This prediction is achieved by retrieving a similar case and adapting its price. This

system makes use of inductive techniques that learn adaptation knowledge by case

comparison. The adaptation knowledge used is represented as a collection of rules

that relate feature differences to changes in price. During retrieval, candidate cases

are assessed by considering those adaptation rules with regards to the target prop-

erty. Hoffmann and Khan (Hoffmann and Khan, 2006) apply the AGR approach

for the purpose of a dietary consultation evaluation for patients. The researchers

represent adaptation knowledge as expert knowledge in the form of ripple-down

rules (RDF) (Compton and Jansen, 1990). To build RDF, the expert is required to

explain why a certain case should be retrieved for a new problem.

In this section, we reviewed approaches that integrate SBR with diverse factors

that are statistical learning, rule-based reasoning, adaptation knowledge, and do-

main knowledge, in order to enhance SBR. In the next section, we summarize this

chapter.

2.5 Summary

In this chapter, we first provided an insight into the applicability of SBR by reviewing

how many CBR systems in several key CBR application domains have widely used

SBR to retrieve useful cases for solving the target problem. We then reviewed the

CHAPTER 2. A REVIEW OF SBR IN CBR SYSTEMS 42

traditional k-NN approach for implementing SBR. We further reviewed two well-

known approaches that enhance k-NN using feature selection and feature weighting.

We also reviewed approaches that integrate SBR with statistical learning, rule-

based reasoning, domain knowledge, and adaptation knowledge. In Table 2.2, we

summarize all the approaches reviewed in this chapter.

Table 2.2: The related work of similarity-based retrieval (SBR).

Category Retrieval Characteristics Research Examples
k-NN k-NN Using Euclidian distance • k-NN classification: Cover and Hart,

1967
• Instance-based Learning: Aha et al.,
1991

Extended k-
NN

k-NN with Fea-
ture Selection

Finding relevant features
among the original features
of the case

• A Filtered version of Las Vegas Algo-
rithms (LVF): Liu and Setiono, 1996

• Correlation-based Feature Selector
(CFS): Hall, 1998

k-NN with Fea-
ture Weighting

Estimating the importance of
the features of the case

• Value Difference Metric (VDM):
Stanfill and Waltz, 1986
• Weighted Bayesian Classification
Based on Support Vector Machine:
Gärtner and Flach, 2001
• Genetic Algorithm: Oatlet et al.,
1998; Ahn et al., 2005; Craw, 2003
• Linear Programming: Zhang et al.,
2001
• Neural Networks: Park et al., 2004

Integrating
SBR with
Learning or
Knowledge

Integrating SBR
with Statistical
Learning

SBR is augmented with using
statistical learning applied on
domain knowledge or cases

• Risk and Cost Adviser (RICAD):
Daengdej et al., 1997; Daengdej et
al.1999

• Statistical CBR (SCBR): Yoon-Joo et
al., 2006
• Loss and Gain Functions: Castro et
al., 2009

Integrating SBR
with Rule-based
Reasoning

RI system generate
knowledge encoded via rules,
and these rules are used by
rule-based reasoner with SBR

• Bareiss, 1990
• INRECA: Auriol et al., 1995
• ELEM2-CBR: Cercone et al., 1999
• RISE: Domingos, 1995

Integrating SBR
with Domain
Knowledge

Exploiting domain knowl-
edge at retrieval time

• Knowledge-Intensive Similarity Mea-
sures: Stahl, 2003; Stahl and Gabel,
2003; Gabel and Stahl, 2004
• Knowledge-Intensive CBR: Aamodt,
2004; Shokouhi et al., 2009

Integrating SBR
and Adaptation
Knowledge

Adapting cases as needed to
suit the new situation at re-
trieval time

• Adaptation-Guided Retrieval: Smyth
and Keane, 1995; Smyth and Keane,
1998
• Example-Based Machine Translation:
Collins and Cunningham, 1996
• Property Evaluation: Hanney et al.,
1997
• Dietary Consultation Evaluation for
Patients: Hoffmann and Khan, 2006

CHAPTER 2. A REVIEW OF SBR IN CBR SYSTEMS 43

In this thesis, we propose and develop a new retrieval strategy for CBR that

enhances traditional SBR. The uniqueness feature of the strategy is to leverage a

specific form of knowledge and this knowledge is integrated with similarity knowl-

edge used in SBR, in order to strengthen SBR. This knowledge is acquired through

association analysis of cases stored in a case base, and is formalized using associa-

tion rule mining. As previously mentioned, we refer to this knowledge as association

knowledge. The basic idea of formalizing association knowledge is to observe strongly

evident associations between known problem features and known solutions shared

by a significant proportion of relevant cases using association rule mining. Based

on the notion of leveraging association knowledge, our proposed retrieval strategy

is significantly different from the related work examined in this chapter as follows:

• The use of association rule mining : While many kinds of learnt and induced

knowledge have been used, association knowledge obtained through association

rule mining has not been used for the retrieval process in CBR systems.

• Association knowledge acquisition: As previously mentioned, the acquisition

of both domain and adaptation knowledge is usually known as very difficult

tasks. In contrast, the acquisition of association knowledge is straightforward,

since it is acquired through an analysis of cases, a fundamental knowledge

source in CBR. Therefore, there is no knowledge bottleneck phenomenon, of-

ten occurred when acquiring domain and adaptation knowledge, for acquiring

association knowledge. Further, while domain and adaptation knowledge is

usually acquired with the support of domain experts, association knowledge

acquisition is automatically achieved using association rule mining.

• Association knowledge formalization: The formalization of association knowl-

edge is realized by capturing strongly evident associations between known

problem features and known solutions shared by a large number of relevant

cases. In this context, association knowledge formalization can be compared

to feature selection and feature weighting, since these techniques mainly focus

CHAPTER 2. A REVIEW OF SBR IN CBR SYSTEMS 44

on estimating the relevance of problem features that are highly correlated to

specific known solutions, from the CBR viewpoint. However, as previously

discussed, traditional feature selection and feature weighting as well as feature

weighting using rule-induction (RI) methods assume feature independence.

Therefore, in a CBR context, these may be limited. These techniques tend to

ignore identifying interesting, meaningful relationships between combinations

of problem features dependent on each other and specific solutions for select-

ing relevant features or weighting features. In contrast, association knowledge

can be formalized by considering both types of relationships. This benefit in-

herently comes from the use of association rule mining, which enables us to

extract all interesting correlations, frequent patterns, and association struc-

tures among the data in a transaction database or other data repositories such

as case bases.

• Association knowledge exploitation: Since association knowledge is formal-

ized using association rule mining, this knowledge is encoded via association

rules, which will be outlined in the next chapter. The uniqueness feature of

our proposed retrieval strategy lies in the use of a combination of association

knowledge and similarity knowledge. Our combined approach can be com-

pared to the use of rules generated by RI methods from an analysis of cases

with similarity knowledge. We note that the usage of the rules generated by RI

methods can be classified into two strategies. The first is that rules are used for

feature weighting, and the second is that rules are used to generate a solution

for a given problem without using knowledge derived from similarity measure-

ment between a given problem and cases (i.e. similarity knowledge). On the

contrary, we exploit association knowledge encoded via association rules in

conjunction with similarity knowledge. By combining both information inher-

ent in association rules and information derived from similarity measurement

between a given problem and cases, we quantify the usefulness of both cases

and rules with respect to the given problem.

CHAPTER 2. A REVIEW OF SBR IN CBR SYSTEMS 45

In order to understand association knowledge, which we leverage in our proposed

retrieval strategy, we must first provide an overview of the necessary background of

association knowledge. Further, it is necessary to review the widely used formalism

for representing similarity measures used in SBR. We will present this necessary

background in the next chapter.

Chapter 3

Overview of Similarity and

Association Knowledge

3.1 Introduction

As discussed in Chapters 1 and 2, retrieval is an important phase in Case-Based

Reasoning (CBR), since it lays the foundation for the overall effectiveness of CBR

systems. CBR systems typically rely on a retrieval strategy that exploits simi-

larity knowledge, and this is termed similarity-based retrieval (SBR) (Smyth and

Keane, 1998). In this thesis, our basic premise is that SBR can be enhanced by the

inclusion of association knowledge. The aim of association knowledge is to represent

potentially interesting, meaningful relationships shared by a large number of relevant

stored cases. This knowledge is acquired and formalized by performing association

analysis of stored cases in the case base using association rule mining techniques. In

this thesis, we propose and develop a novel retrieval strategy that leverages associ-

ation knowledge in conjunction with similarity knowledge to strengthen traditional

SBR. In order to present the theoretical underpinnings and the contributions of our

proposed model for retrieval in CBR, it is essential to provide an overview of both

association and similarity knowledge. Therefore, in this chapter, we present this

overview. This chapter is included as background for the purposes of improving

46

CHAPTER 3. SIMILARITY AND ASSOCIATION KNOWLEDGE 47

clarity and comprehensibility of the main contributions of this research which will

be presented in Chapter 4.

This chapter is organized as follows. In Section 3.2, we present basic terms and

definitions, which are fundamentals for formalizing both similarity and association

knowledge. In Section 3.3, we present the background of similarity knowledge, which

is essentially exploited in SBR. In Section 3.4, we present the basics of association

knowledge. Since we formalize association knowledge through association analysis,

we present an overview of association rule mining techniques in this section. In

Section 3.5, we summarize and conclude this chapter.

3.2 Terms and Definitions

In CBR, a case represents a problem-solving experience from the past. Typically, a

case is structured into two main parts. The first is the problem part that contains

a description characterizing a past problem. The second is the solution part that

contains a description of a suitable solution for the described problem. To represent

cases formally, many CBR systems generally adopt well-known knowledge repre-

sentation formalisms introduced from AI, such as attribute-value pairs, structural,

and free text representations (Cunningham, 2009). In the following, we present the

details of these representations.

The attribute-value pairs representation is a flexible and commonly used formal-

ism to represent cases in a structured way. Cases are characterized by a fixed number

of attribute-value pairs specific to the target application. Given an attribute-value

pair, the attribute represents one of the labels used to characterize cases, and the

value represents an actual value that the attribute can take on.

The structural representation for case bases is a more complex model in which

cases have internal structure driven by the requirements of target applications.

There are two well-known representation schemes under this formalism: object-

oriented and hierarchical representations. The object-oriented representation uti-

lizes the data modeling approach of the object-oriented paradigm, such as the “is-a”

CHAPTER 3. SIMILARITY AND ASSOCIATION KNOWLEDGE 48

relation as well as the inheritance principle. Each case is represented as collections

of objects, where each object is described by a set of attribute-value pairs. The

structure of an object is described by an object class. This approach is suitable

for complex domains, where cases with different structures occur. The hierarchical

representation represents each case at multiple levels of abstraction. In each case, at-

tribute values reference non-atomic objects, i.e. each attribute value could reference

a case structure. This simple extension of the attribute-value pairs representation

allows for the description of cases with a complex hierarchical structure.

The free text representation makes use of textual descriptions for cases. Cases

described in free-text are often converted to a more formal representation, and then

exploited. The most straightforward representation is the “bag-of-words” scheme,

where a case is treated as a bag of words extracted from the case description. This

conversion scheme is flexible and independent of applications, but usually requires

natural language processing.

In this thesis, we choose the “attribute-value pairs representation” to repre-

sent cases in a structured way, due to its simplicity, flexibility and widely-spread

use across many application domains (Stahl, 2003). This representation is often

sufficient in general CBR application domains, and is thus also employed in many

commercial CBR applications (Stahl, 2003). We now present definitions of the terms

involved in this representation formalism.

• Definition 3.1 (Attribute-Value Pair). Let A1, ..., Am be attributes defined

in a given domain. An attribute-value pair is a pair (Ai, ai), where Ai denotes

an attribute (or feature1) and ai is a value of Ai∈[1,m].

• Definition 3.2 (Problem Space, Solution Space, Solution-Attribute). Let

P be the problem space that is a set of potential problems defined in a given do-

main. Each problem X ∈ P is characterized by the attributes A1, A2, ..., Am−1.

Let S be the solution space that is a set of potential solutions defined in the

1In the rest of this thesis, to simplify the presentation, we do not distinguish between terms
“attributes” and “features”, and use these terms interchangeably.

CHAPTER 3. SIMILARITY AND ASSOCIATION KNOWLEDGE 49

domain. Each solution Y ∈ S is characterized by the attribute Am. We refer

to this attribute Am as a solution-attribute. For the sake of simplicity, we

assume that each problem is associated with a single solution. However, it is

possible to extend this notion to cases, where each problem is associated with

more than one solution.

• Definition 3.3 (Case, Case Base). A case C is a pair C = (X,Y), where X

is a problem, and Y is the unique solution of X. The problem X is represented

as X = {(A1, a1), ..., (Am−1, am−1)} ∈ P , where ai is a value of the attribute

Ai∈[1,m−1]. The solution Y is represented as Y = (Am, am), where am is a value

of the attribute Am. A case base D is a collection of n cases, D = {C1, ..., Cn},
where each case Ci∈[1,n] has the form (Xi, Yi) ∈ P × S, 1 ≤ i ≤ n. The case

base D is a summary of the problem-solving experiences that have gathered

so far.

A case base D represented by attribute-value pairs is shown in Table 3.1. As

observed, the case base D consists of five patient cases P1, ..., P5. Each case is

represented as a pair of a problem and the corresponding solution. Each problem

is characterized by five attributes (i.e. symptoms) A1, ..., A5, and each solution by

the solution-attribute A6. The attribute-value pairs representation is also called the

feature-vector representation, since it is easy to transform attribute-value pairs to a

feature vector. In the vector, a case is described by a vector in an m-dimensional

space, where m is the cardinality of the features (attributes) of the case.

Table 3.1: An example case base.

Case ID Local Pain(A1) Other Pain(A2) Fever(A3) Appetite Loss(A4) Age(A5) Diagnosis(A6)

P1 right flank vomit 38.6 yes 10 appendicitis

P2 right flank vomit 38.7 yes 11 appendicitis

P3 right flank vomit 38.8 yes 13 appendicitis

P4 right flank sickness 37.5 yes 35 gastritis

P5 epigastrium nausea 36.8 no 20 stitch

Up to this point, we have identified the basic terms and definitions, which are

fundamentals for formalizing both similarity and association knowledge. In this

CHAPTER 3. SIMILARITY AND ASSOCIATION KNOWLEDGE 50

thesis, we propose and develop a retrieval strategy for CBR that aims to enhance

SBR by leveraging both similarity and association knowledge. In the following two

sections, we present the necessary background for the formalism of these kinds of

knowledge.

3.3 Similarity Knowledge

In this section, we present an overview of similarity knowledge. We first present the

underlying idea in the use of similarity knowledge encoded via similarity measures in

traditional SBR. We then present a general overview of similarity measures before we

finally introduce a widely used principle that effectively formalizes these measures.

3.3.1 Similarity Knowledge in SBR

Similarity knowledge is encoded via similarity measures used to compute the simi-

larities between a new problem and stored cases. For retrieval in CBR, SBR mainly

exploits this knowledge. In SBR, the aim of similarity knowledge is to represent

a heuristic for estimating the usefulness of stored cases for solving a new problem.

The underlying intuition of using this knowledge is that the higher the similarity

between a new problem and a case is, the more useful the case is as a guide to

solving the new problem.

Figure 3.1 shows an example of estimating useful cases in SBR for solving a new

problem Q using similarity knowledge. Through this figure, it is straightforward to

understand the importance of similarity knowledge within SBR. Referring to this

figure, consider that SBR retrieves two cases C1 and C2, as the most useful cases

with respect to the new problem Q. The case C1 is α-similar to Q, and the case

C2 is β-similar to Q. The solutions of these cases are then used to generate a

solution for Q. Conceptually, this solution is determined by the intersection of the

solution Y1 of the case C1 and the solution Y2 of the case C2. As understood through

CHAPTER 3. SIMILARITY AND ASSOCIATION KNOWLEDGE 51

A Case Base Solution Space

C1

C2

Q

The highest similarity

boundary of Q

α

β

Y1

Y2

Yq

C3

δ

Figure 3.1: The use of similarity knowledge in SBR.

this example, a similarity measure in SBR represents a heuristic for estimating a-

priori the usefulness of a case, and this measure has a significant influence on the

effectiveness of SBR.

In the rest of this section, we present a general overview of similarity measures

in the context of SBR. We then present a widely used principle that formulates the

similarity measures suitable for the cases represented by attribute-value pairs.

3.3.2 Overview of Similarity Measures

In the context of SBR, the general notion of a similarity measure is represented as:

SIM : D ×D → [0, 1]. (3.1)

This equation indicates that a case base D is endowed with a similarity measure

SIM . For each pair of cases C1 ∈ D and C2 ∈ D (including a new problem Q), a

similarity measure SIM(C1, C2) is a quantification of the similarity between these

cases in terms of their problems. This similarity is usually normalized into real

numbers between 0 (completely dissimilar) and 1 (identical). Also, it will relatively

tend to become closer to 1, as two cases C1 and C2 are considered as more similar.

To estimate the similarities between a new problem Q and stored cases, SBR

typically uses a mathematical notion of similarity or distance. Distance and simi-

larity are dual notions explained as follows: if A and B are highly similar objects,

CHAPTER 3. SIMILARITY AND ASSOCIATION KNOWLEDGE 52

intuitively they have small distance (Stahl, 2003). Thus, any given distance measure

DIST can be transformed to a similarity measure SIM via an accurate function f :

SIM(x, y) = f(DIST (x, y)).

A popular candidate of f can be formed as f(DIST (x, y)) = 1−DIST (x, y)/max,

if DIST attains the greatest value “max”. Or it could be f(DIST (x, y)) = 1 −
DIST (x, y)/(max−min), if DIST attains the greatest value “max” and the small-

est value “min”. Due to this dualism, in the rest of the thesis, our focus is restricted

to the notion of similarity with respect to formulating similarity measures encoding

similarity knowledge.

3.3.3 The Local-Global Principle

The foundation of a similarity measure formulation, suitable for the cases rep-

resented by attribute-value pairs, can be obtained from the local-global principle

(Stahl, 2003). Given two cases (including a new problem Q), this principle formu-

lates their similarity into two parts. The first is the local part that computes local

similarities for individual attributes of the cases. The second is the global part that

computes a global similarity by aggregating the local similarities.

Let D be a set of cases, where each case (including Q) is characterized by m

attributes A1, ..., Am. In each case, the problem is characterized by the attributes

A1, ..., Am−1, and the solution by the attribute Am. Our aim is to measure the simi-

larity SIM(Q,C) between a new problem Q = ({(A1, q1), ..., (Am−1, qm−1)}, (Am, ?))

and a case C = ({(A1, x1), ..., (Am−1, xm−1)}, (Am, Y)). Here, ‘?’ denotes an un-

known solution of the problem Q, Y denotes the solution of the case C ∈ D, and

qi and xi are values of an attribute Ai∈[1,m−1] of Q and C respectively. Using the

local-global principle, the similarity SIM(Q, C) can be computed by considering lo-

cal similarities for all individual attributes of the problem Q and the case C. These

similarities are then aggregated using an aggregation function “aggr”. Formally, the

CHAPTER 3. SIMILARITY AND ASSOCIATION KNOWLEDGE 53

similarity SIM(Q,C) can be represented as:

SIM(Q, C) = aggr
qi∈Q, xi∈C

sim(qi, xi), (3.2)

where sim(qi, xi) represents the local similarity between values qi and xi of an at-

tribute Ai∈[1,m−1] of the problem Q and the case C respectively. The idea underlying

this principle is to simplify the formulation of a similarity measure. It also enables

to formulate a well-structured similarity measure even for complex case representa-

tions consisting of numerous attributes with different value types. In the following,

we provide various representations of local and global similarity measures.

Basically, a local similarity measure represents the influence of a single attribute

on the similarity computation between a new problem Q and a case C. An accurate

definition of this measure strongly depends on attribute types. We now introduce

some definitions commonly used for local similarity measures. To simplify our pre-

sentation, assume that our objective is to compute the local similarity sim(qi, xi)

shown in Equation 3.2, where qi and xi are values of an attribute Ai∈[1,m−1] of the

problem Q and the case C respectively.

• If the type of an attribute Ai is numeric, the local similarity sim(qi, xi) can

be defined by using a distance function dist(qi, xi) that computes the dis-

tance between attribute values qi and xi. For example, dist(qi, xi) can be

simply defined as dist(qi, xi) = |qi − xi|. Then, sim(qi, xi) can be defined

as sim(qi, xi) = 1 − dist(qi, xi)/max, if dist(qi, xi) attains the greatest value

“max” in the value range of an attribute Ai. Alternatively, it could be

sim(qi, xi) = 1 − dist(qi, xi)/(max−min), if dist(qi, xi) attains the greatest

value “max” and the smallest value “min” in the value range of an attribute

Ai.

• If the type of an attribute Ai is discrete (symbolic, nominal or boolean), the

local similarity sim(qi, xi) can be defined by using a simple surface matching

function, given as sim(qi, xi) = 1 if qi = xi, and 0 otherwise. Another form

CHAPTER 3. SIMILARITY AND ASSOCIATION KNOWLEDGE 54

can be defined using a similarity table (Wilke et al., 1998), if the value range

of the attribute Ai is defined by an explicit enumeration of a finite set of

values. Assume that the attribute Ai has the following value range: v1, ..., vn.

A similarity table for Ai is then an n× n matrix, with entries ek,l ∈ [0, 1] that

represents the similarity between vk and vl, for 1 ≤ k, l ≤ n. Figure 3.2 shows

an example similarity table for the attribute “tower” of a personal computer

case base. This table represents the similarities between different kinds of

computer towers that the attribute “tower” can take on.

1.00.60.40.1big-tower

0.71.00.70.2middle-tower

0.50.91.00.3small-case

0.00.10.21.0laptop

big-towermiddle-towersmall-towerlaptop
case

query

1.00.60.40.1big-tower

0.71.00.70.2middle-tower

0.50.91.00.3small-case

0.00.10.21.0laptop

big-towermiddle-towersmall-towerlaptop
case

query

Figure 3.2: An example similarity table.

• If the type of an attribute Ai is a set-based type (e.g. a customer is a bag of

purchases), the local similarity sim(qi, xi) is often determined by the intersec-

tion between attribute values qi and xi. Each of attribute values qi and xi is

treated as a bag of elements belonging to it. The intuition implied is that the

more elements two objects (i.e. values) have in common, the more similar they

are considered. Formally, the local similarity sim(qi, xi) can be often defined

using the Jaccard coefficient denoted as simjaccard(qi, xi) = |qi ∩ xi|/|qi ∪ xi|
or Dice coefficient denoted as simdice(qi, xi) = 2 ∗ |qi ∩ xi|/|qi ∪ xi|. For ex-

ample, if qi is represented as qi = {a, b} and xi is represented as xi = {b, c},
simjaccard(qi, xi) = 1/3 and simdice(qi, xi) = 2/3. An application of this sim-

ilarity measure can be found in our publications (Kang, Zaslavsky, Krish-

naswamy and Bartolini, 2009; Kang et al., 2010).

• If the type of an attribute Ai is free-text, a widely used definition for the

local similarity sim(qi, xi) can be defined using the bag-of-words scheme that

comes from the Information Retrieval community. With stopwords (e.g. ‘a’,

CHAPTER 3. SIMILARITY AND ASSOCIATION KNOWLEDGE 55

‘the’, and ‘is’) removed, two given texts can be represented as vectors in an

n-dimensional space, where n is the number of words extracted from the texts.

Then, the similarity between two given texts can be computed directly from

these vectors by using the cosine similarity. The cosine similarity is identical

to the normalized inner product of the two vectors. Formally, the cosine

similarity between two vectors qi and xi is given as:

sim(qi, xi) =
−→qi · −→xi

|−→qi ||−→xi | . (3.3)

For example, if qi is represented as qi = {a, b} and xi is represented as xi =

{b, c}, then their cosine similarity is computed as:

sim(qi, xi) =
−→qi · −→xi

|−→qi ||−→xi | =

−→a · −→b +−→a · −→c +
−→
b · −→b +

−→
b · −→c√

−→a · −→a +
−→
b · −→b

√−→
b · −→b +−→c · −→c

=

0 + 0 + 1 + 0√
1 + 1

√
1 + 1

=
1

2
.

• If the type of an attribute Ai is discrete, and all values of an attribute Ai

are semantically related to each other, the local similarity sim(qi, xi) can be

defined using a certain form of knowledge. This knowledge is often derived

from a representation structure of the values. Typically, taxonomies are used

to define the structure in a very clear and well-defined way (Bergmann, 1998;

Stahl, 2007). An important aspect of a taxonomy’s nature is that its structure

is hierarchical. Its transitivity is thus logically inferred by navigating hierar-

chial relationships between elements (i.e. values) in the taxonomy. Intuitively,

the higher the position of an element in a taxonomy, the more abstract the

element is. To compute the similarity between two elements described in a

taxonomy, we can use the distance between them. A representative proposal

of using this approach can be found in the work (Wu and Palmer, 1994):

CHAPTER 3. SIMILARITY AND ASSOCIATION KNOWLEDGE 56

sim(qi, xi) =
2 ∗Nlcs(qi,xi)

Nqi
+ Nxi

+ 2 ∗Nlcs(qi,xi)

, (3.4)

where Nqi
and Nxi

are path lengths from attribute values qi and xi, respec-

tively, to their least common subsumer lcs(qi, xi). Nlcs(qi,xi) denotes a path

length from lcs(qi, xi) to the root of the taxonomy. To illustrate, let us con-

sider a simple taxonomy T shown in Figure 3.3, where T consists of four

elements ‘a’, ‘b’, ‘c’, and ‘d’. In this figure, if qi is represented as qi = ‘c’ and

xi is represented as xi = ‘d’, then their similarity using the above Equation

3.4 is sim(qi, xi) = 2/(1 + 1 + 2) = 0.5.

Figure 3.3: A simple taxonomy.

There are many other distance and similarity measures, between values belong-

ing to a variety of attribute types, which have been defined in the Information

Retrieval community (Ganesan, Garcia-Molina and Widom, 2003).

Having identified different forms of local similarity measures depending on var-

ious attribute types of cases, we now focus on how to formulate a global similarity

measure. A global similarity is computed by an aggregation function that calculates

a final similarity using attribute weights and the computed local similarities. At-

tribute weights are used to express the varying importance of individual attributes

in order to determine the global similarity. The valuation of attribute weights is a

crucial part for defining a global similarity. It is often achieved by domain experts,

or determined by learning techniques (Lopez De Mantaras et al., 2005). In principle,

CHAPTER 3. SIMILARITY AND ASSOCIATION KNOWLEDGE 57

aggregation functions can be complex, but usually simple functions are used in SBR

(Stahl, 2003). Some popularly used examples:

(a)
n

min
i=1

(wi ∗ simi),

(b)
n

max
i=1

(wi ∗ simi),

(c)
n∑

i=1

wi ∗ simi,

(d)

∑n
i=1 wi ∗ simi∑n

i=1 wi

,

where wi is the weight of an attribute Ai, and simi represents the local similarity

for Ai. In particular, the function (d) is called the weighted average aggregation and

has been widely used in SBR (Stahl, 2003)

In this section, we presented an overview of similarity knowledge. We first dis-

cussed the use of similarity knowledge encoded via similarity measures in SBR, and

then presented a general overview of these measures. We finally introduced a for-

malism widely used for formulating similarity measures. As noted earlier, our main

focus in this thesis is to propose and develop a retrieval strategy that enhances SBR

by leveraging both similarity and association knowledge. Up to now, we have only

considered an overview of similarity knowledge. Therefore, it is also essential for

purposes of completeness to understand association knowledge. Association knowl-

edge is acquired using association analysis techniques. In the next section, we thus

present an overview of the association analysis techniques from which association

rules are learnt.

3.4 Association Analysis Techniques

In this section, we provide an overview of the fundamentals of association knowl-

edge. We present an overview of the association analysis techniques employed in

the formalization of association knowledge. These techniques are association rule

mining (Agrawal, Imieliński and Swami, 1993) and class association rule mining

CHAPTER 3. SIMILARITY AND ASSOCIATION KNOWLEDGE 58

(Liu et al., 1998). We also present the idea of the soft-matching criterion (Nahm

and Mooney, 2002) that enables us to model richer association relationships in a

given database. This provides the necessary background for the way that asso-

ciation knowledge is obtained and represented in our proposed retrieval strategy

USIMSCAR.

3.4.1 Association Rule Mining

Association rule mining is one of the most active research focuses in knowledge

discovery and data mining. It was first introduced in Agrawal et al. (Agrawal

et al., 1993). The task of association rule mining is to mine certain interesting rela-

tionships, called associations, in a potentially large database. Specifically, it focuses

on discovering a set of highly correlated features shared among a large number of

records in a given transaction database. The correlations are defined based on the

scheme of co-occurrence of features within these records.

The most well-known application is the analysis of market-baskets in which as-

sociation rules imply the associations among the items bought by the customers

(Agrawal et al., 1993). For example, consider the sales database of a supermarket,

where records represent customers and attributes represent the items bought. In

this scenario, the mined patterns can be the set of the items most frequently bought

together by the customer. An example could be that “80% of the customers who

buy milk and eggs also buy bread”. The supermarket can then use this knowledge

for promotions, self-placement, etc.

A formal definition of association rules is described as follows (Agrawal et al.,

1993): Let I = {i1, i2, ..., im} be a set of distinct literals, called items. A set X ⊆
I with k = |X| is called a k-itemset or simply an itemset. Let D be a set of

transactions, where each transaction T is a set of items such that T ⊆ I. We say

that a transaction T ∈ D contains an itemset X if X ⊆ T holds.

Every association rule has two parts, an antecedent and a consequent. An as-

sociation rule is an implication of the form X → Y , where X is an itemset and

CHAPTER 3. SIMILARITY AND ASSOCIATION KNOWLEDGE 59

is the antecedent, and Y is an itemset which is the consequent, and X ∩ Y = ∅.
The rule X → Y holds in the database D with support s, if s% of transactions

in D contain X ∪ Y . That is, the support of this rule is defined as the prob-

ability that both X and Y occur together in a transaction T ∈ D, denoted as

supp(X → Y) = supp(X ∪ Y) = P (X ∪ Y ⊆ T). This rule X → Y holds in

the database D with confidence c, if c% of transactions in D that contain X also

contain Y . That is, the confidence of this rule is the conditional probability that

when X occurs in a transaction T ∈ D, Y also occurs in the same transaction T ,

denoted as conf(X → Y) = P (Y ⊆ T |X ⊆ T). This conditional probability is

equal to P (X ∪ Y ⊆ T)/P (X ⊆ T). Therefore, conf(X → Y) is also calculated

as supp(X ∪ Y) / supp(X). In this thesis, we assume that the support and confi-

dence measures yield fractions from [0,1] rather than percentages. Apriori (Agrawal

et al., 1993) is one of the earliest algorithms for association rule mining, and has

become the standard approach in this area with many extensions and enhance-

ments proposed (Savasere, Omiecinski and Navathe, 1995; Liu et al., 1998; Han and

Pei, 2000; Agarwal, Aggarwal and Prasad, 2001; Li and Gopalan, 2005; Ashrafi,

Taniar and Smith, 2007).

The main challenge when mining association rules is the immense number of rules

that theoretically must be considered. The number of rules grows exponentially with

the number of items |I|. Since it is neither practical nor desirable to mine such a

huge set of rules, the rule sets are typically restricted by their interestingness.

Interestingness measures (Geng and Hamilton, 2006) are useful to evaluate the

quality, and rank an overwhelming number of association rules extracted. The

support and confidence criteria are often used for these measures (Geng and Hamil-

ton, 2006). A representative example can be seen in the Apriori algorithm (Agrawal

et al., 1993) and is explained as follows. For an association rule X → Y , its inter-

estingness is measured by using both supp(X → Y) and conf(X → Y). Given a

database D, the problem of mining association rules is to generate all association

rules that have support and confidence greater than or equal to a user-specified

CHAPTER 3. SIMILARITY AND ASSOCIATION KNOWLEDGE 60

minimum support (minsupp) and a user-specified minimum confidence (minconf) re-

spectively.

To illustrate, consider a transaction database D shown in Table 3.2. This data-

base D consists of four transactions (rows) involving three items: milk, eggs, and

bread. In the table, 1 signifies that an item occurs (i.e. purchased) in the transac-

tion and 0 means that it does not. An association rule Milk → Eggs can be mined

from the database D. The support of this rule supp(Milk → Eggs) is 0.50, since

the combination of milk and eggs occurs together in two out of four transactions in

the database D. The confidence of this rule conf(Milk → Eggs) is 0.67, since eggs

occurs in two out of three transactions that contain milk in the database D.

Table 3.2: An example transaction database.

Milk Eggs Bread

1 0 0

1 1 1

1 1 1

0 0 1

On some occasions, a combination of these measures is used. Often, a rationale

for doing so is to define a single optimal interestingness measure by leveraging the

correlations between them (Geng and Hamilton, 2006). One form of the combination

is the Laplace measure discussed in Bayardo and Agrawal (Bayardo and Agrawal,

1999).

3.4.2 Class Association Rule Mining

Class association rules (cars) (Liu et al., 1998) are a special subset of association

rules whose consequents are restricted to a single target variable. Cars were originally

designed to be used by a classifier which is able to classify new instances accurately

by finding association rules that accurately predict a class variable. In this context,

the target variable is seen as the class variable.

One of the first algorithms that use cars for classification was presented by Liu

et al. (Liu et al., 1998) and explained as follows: Let D be a set of transactions,

CHAPTER 3. SIMILARITY AND ASSOCIATION KNOWLEDGE 61

where each transaction is represented by (a1, a2, ..., am, c1), where a1, a2, ..., am are

non-class attributes and c1 is a class label. A car is then defined as x → c1, where

x is a set of non-class attributes and c1 is a class label. This rule can be used to

classify an instance if it contains all the attribute values in x and the class label c1.

Thus, the input to build a classifier is a pre-processed set of cars.

The definition of cars is described as follows (Liu et al., 1998). Let D be a

set of transactions described by l distinct attributes. These transactions have been

classified into known classes. A transaction is seen as a set of ‘(attribute, value)’

pairs and a class label. Each pair is called an item. Let I be a set of items in the

database D. A set X ⊆ I with k = |X| is called a k-itemset or simply an itemset.

Let Y be the set of class labels. We say that a transaction T ⊆ D contains an

itemset X ⊆ I, if X ⊆ T holds. A class association rule (car) is an implication of

the form X → y, where X ⊆ I an itemset and is the antecedent, and y ∈ Y is a class

label and formed as the consequent. The rule X → y holds in the database D with

confidence c if c% of transactions in D that contain an itemset X are labeled with a

class y. This rule has support s in D if s% of transactions in D contain X and are

labeled with y. A problem of cars mining is to generate all cars that have support

and confidence greater than or equal to minsupp (i.e. a user-specified minimum

support) and minconf (i.e. a user-specified minimum confidence) respectively.

To illustrate the form of cars, consider a database D shown in Table 3.3. In this

table, Milk and Eggs are non-class attributes, and the values (0 and 1) belonging to

the attribute Bread are class labels. There are four transactions (rows) involving two

items Milk and Eggs. In the table, 1 signifies that an item occurs in the transaction

and 0 means that it does not. From the database D, we can mine two association

rules shown in Table 3.4. In the table, only the rule r1 is regarded as a car, since

the rule r2 does not contain any class label in the consequent.

CHAPTER 3. SIMILARITY AND ASSOCIATION KNOWLEDGE 62

Table 3.3: An example transaction database.

Milk Eggs Bread (Class)

1 0 0

1 1 1

1 1 1

0 0 1

Table 3.4: Association rules vs. Class association rules

Rule ID Antecedent Consequent

r1 (Milk,1) → 0

r2 (Milk,1) → (Eggs,1)

3.4.3 Soft-Matching Criterion

Apriori (Agrawal et al., 1993) is one of the traditional algorithms for association rule

mining. This algorithm performs two major steps. It first finds all itemsets that are

frequent with respect to minsupp (i.e. a user-specified minimum support). We say

that an itemset X is frequent, if the support of X is not less than minsupp. Then,

this algorithm generates association rules directly from the frequent itemsets. From

the frequent itemsets, all association rules with confidence not less than minconf (i.e.

a user-specified minimum confidence) are discovered.

One limitation of traditional association rule mining algorithms, such as Apriori

(Agrawal et al., 1993), is that only itemsets which exactly match frequent item-

sets are considered when computing the support of the frequent itemsets (Nahm

and Mooney, 2002). This explains why these algorithms work well only for discrete

(nominal or boolean) attributes. Unfortunately, when dealing with attributes whose

values are similar to each other, these algorithms may perform poorly, since they ig-

nore the similarities between such values. For example, consider the sales database of

a supermarket. Traditional association rule mining algorithms are able to find rules

like “80% of the customers who buy milk and eggs also buy bread”. However, they

cannot find rules like “80% of the customers who buy products similar to milk (e.g.

cheese) and products similar to eggs (e.g, mayonnaise) also buy bread.” To address

CHAPTER 3. SIMILARITY AND ASSOCIATION KNOWLEDGE 63

this issue, the SoftApriori algorithm (Nahm and Mooney, 2002) was proposed. This

algorithm discovers rules whose antecedents and consequents are evaluated based

on their similarities to database entries. It uses the soft-matching criterion, where

frequent itemsets are found by not the equality relation but similarity assessment

between itemsets. The association rules, discovered using this criterion, are called

soft association rules (sars).

The definition of sars can be described as follows (Nahm and Mooney, 2002): Let

I = {i1, i2, ..., im} be a set of literals called items. Let D be a set of transactions,

where each transaction T is a set of items such that T ⊆ I. Suppose that a function

similarity(x, y) is given for measuring the similarity between two items x ∈ I and

y ∈ I. An item x ∈ I is similar to an item y ∈ I (x ∼ y), iff similarity(x, y) ≥
minsim, where minsim is a user-specified minimum similarity taking values [0,1].

Also, a binary function similar(x, y) is defined as 1, if x ∼ y, and 0 otherwise. An

item x ∈ I is soft element of an itemset X ⊆ I (x ∈soft X), iff there exists an

x′ ∈ X such that x′ ∼ x. An itemset X ⊆ I is a soft subset of an itemset Y ⊆ I

(X ⊆soft Y), iff for every item in X there is a distinct similar item in Y . Two

itemsets X ⊆ I and Y ⊆ I are similar (X ∼ Y), iff X ⊆soft Y and Y ⊆soft X. A

soft association rule (sar) is an implication of the form X → Y , where X ⊆ I and

Y ⊆ I, and no item in X is a soft element of Y .

The problem of sars mining is to find all sars that have soft-support and soft-

confidence greater than or equal to minsupp (i.e. a user-specified minimum support)

and minconf (i.e. a user-specified minimum confidence) respectively. The defini-

tions of soft-support and soft-confidence are drawn by generalizing the definitions

of support and confidence that are the widely used criteria for measuring the in-

terestingness of association rules. This generalization is done by allowing items to

match, as long as their similarity exceeds minsim (i.e. a user-specified minimum sim-

ilarity). Formally, the soft-support of an itemset X in the database D, denoted as

softSupp(X), is defined as the number of transactions T such that X ⊆soft T . The

soft-support of a rule X → Y in the database D, denoted as softSupp(X → Y), is

CHAPTER 3. SIMILARITY AND ASSOCIATION KNOWLEDGE 64

the number of transactions T ∈ D such that X ∪ Y ⊆soft T . The soft-confidence of

this rule in the database D is computed as softSupp(X ∪ Y)/softSupp(X).

To apply the soft-matching criterion for finding frequent itemsets, we have to

measure the similarity of each pair of items. To facilitate this measurement, we

can construct an m × m matrix, where m is the total number of items in a given

database. So, each entry of this matrix represents a similarity score between any

two items. By employing the concept of similarity, the soft-matching criterion can

be used to model richer relationships between itemsets than the equality relation

previously used in traditional association rule mining algorithms such as Apriori

(Agrawal et al., 1993).

To illustrate the form of sars, consider a database D, shown in Table 3.5, which

consists of three transactions (rows). Each transaction is seen as a set of ‘(attribute,

value)’ pairs. Each pair is called an item. As shown in the table, Milk and Bread are

attributes, and each value under the column of each attribute denotes that it was

purchased. Assume that the attribute Milk can take on three values ‘1% Low-fat

Milk’, ‘2% Low-fat Milk’, and ‘Chocolate Milk’, as shown in the table. A similarity

matrix for this attribute can be defined as the matrix shown in Table 3.6.

Table 3.5: An example transaction database.

TID Milk Bread

T1 1% Low-fat Milk Whole Bread

T2 2% Low-fat Milk Whole Bread

T3 Chocolate Milk White Bread

Table 3.6: A similarity matrix.

(Milk, 1% Low-fat Milk) (Milk, 2% Low-fat Milk) (Milk, Chocolate Milk)

(Milk, 1% Low-fat Milk) 1 0.9 0.2

(Milk, 2% Low-fat Milk) 0.9 1 0.3

(Milk, Chocolate Milk) 0.2 0.3 1

From the database D shown in Table 3.5, a sar r: (Milk, ‘1% Low-fat Milk’)

→ (Bread, ‘Whole Bread’) can be mined. Let X be an item (Milk, ‘1% Low-fat

Milk’). Let Y be an item (Bread, ‘Whole Bread’). The rule r is then represented as

CHAPTER 3. SIMILARITY AND ASSOCIATION KNOWLEDGE 65

X → Y . The support of r is 0.33, since X ∪ Y occurs together in one out of three

transactions in the database D. However, the soft-support of r is 0.67, since the

number of transactions T in the database D such that X ∪ Y ⊆soft T is two (i.e. T1

and T2) out of three transactions.

In our model for improving SBR, we leverage both class association rules (cars)

and the soft-matching criterion to model and represent association knowledge.

3.5 Summary

The premise of our research in this thesis is that similarity-based retrieval (SBR)

can be enhanced by the inclusion of association knowledge in conjunction with simi-

larity knowledge. The objective of association knowledge is to formalize potentially

interesting, meaningful relationships between stored cases. We show that this knowl-

edge is valuably combined with similarity knowledge in our novel retrieval strategy

to strengthen SBR. Before presenting the theoretical foundations and the contribu-

tions of our retrieval strategy USIMSCAR, it was essential to provide an overview of

both similarity and association knowledge. Therefore, in this chapter, we first pre-

sented basic terms and definitions, which are fundamentals for formalizing similarity

and association knowledge. We then presented an overview of similarity knowledge.

This overview included the basic notion of using similarity knowledge encoded via

similarity measures in SBR, a general overview of these measures, and the widely

used local-global principle for formulating similarity measures. We finally presented

an overview of the association analysis techniques that we leverage in our approach

for formalizing association knowledge. These techniques include association rule

mining of a particular form of association rules named class association rules (cars),

and the soft-matching criterion for obtaining richer representation of association

rules.

In the next chapter, we will present our approach for formalizing association

knowledge in detail. Further, we present USIMSCAR, our retrieval approach for

CHAPTER 3. SIMILARITY AND ASSOCIATION KNOWLEDGE 66

combining similarity and association knowledge for improving SBR. USIMSCAR is

the core theoretical contribution of this thesis.

Chapter 4

USIMSCAR: Unified knowledge of

SIMilarity and Soft-matching

Class Association Rules

4.1 Introduction

In Chapter 3, we presented an overview of similarity knowledge as well as the analysis

techniques that are typically used to extract and represent association knowledge

in the context of market-baskets applications. As previously discussed, traditional

similarity-based retrieval (SBR) tends to rely only on the use of similarity knowledge,

ignoring other forms of knowledge that can be further leveraged for enhancing its

retrieval performance. Furthermore, association knowledge has not been leveraged

to enhance SBR till date as discussed in Chapter 2.

In this chapter, we present our novel retrieval strategy USIMSCAR that lever-

ages association knowledge in conjunction with similarity knowledge to enhance and

improve traditional SBR. The main challenge is to combine similarity and associ-

ation knowledge appropriately and effectively, thereby strengthening the retrieval

performance of SBR. For this purpose, this chapter proposes strategies for quantify-

ing the usefulness of stored cases with respect to the target problem by integrating

67

CHAPTER 4. USIMSCAR 68

similarity and association knowledge. This chapter also proposes strategies for iden-

tifying useful association rules with respect to the target problem, and quantifying

their usefulness by exploiting both similarity and association knowledge. Further-

more, in order to perform USIMSCAR, it is prerequisite that association knowledge

is acquired and formalized from a given case base. In this context, we address the

question of how to extract and represent association knowledge using association

rule techniques in a CBR context. The research presented in this chapter has been

reported in our publication (Kang, Krishnaswamy and Zaslavsky, 2011).

This chapter is organized as follows. In Section 4.2, we outline the definition and

representation of the association analysis techniques used in formalizing association

knowledge in a CBR context. In Section 4.3, we present our approach for extracting

and representing association knowledge in a CBR context. In Section 4.4, we present

the theoretical algorithm for our novel retrieval strategy USIMSCAR that leverages

both similarity and association knowledge in order to perform the retrieval process.

In Section 4.5, we present an example showing how an appropriate solution for

a given problem can be induced from the retrieval results of USIMSCAR. This

chapter focuses the theoretical contributions of this thesis. Finally, we summarize

this chapter in Section 4.6.

4.2 Association Analysis in a CBR Context

In this section, we present the association analysis techniques used for formalizing

association knowledge in a CBR context. In the previous chapter, we presented

association rule mining, class association rule mining, and the soft-matching crite-

rion, which we leverage for our purposes. In this thesis, we propose that association

analysis techniques can be also effectively used for the analysis of relationships be-

tween cases stored in a given case base. In this section, our focus is directed to

highlight the definition and representation of these techniques in a CBR context. In

the following section, we will present our strategy for extracting and representing

association knowledge using these techniques.

CHAPTER 4. USIMSCAR 69

4.2.1 Association Rule Mining in a CBR Context

In a CBR context, association rule mining can be stated as the problem of find-

ing interesting relationships between problem features shared by a large number of

cases. As outlined in the previous chapter, in this thesis, we assume that cases

are represented by a set of attribute-value pairs defined in a given domain. There-

fore, from our viewpoint of CBR, association rule mining (Agrawal et al., 1993) is

concerned with mining the set of highly correlated problem features, described by

attribute-value pairs, shared by a large number of relevant cases in a case base. The

correlations are based on the co-occurrences of problem features of stored cases.

In a CBR context, a formal model of association rule mining can be described as

follows: Let D be a set of cases. Let each case C ∈ D be characterized by attributes

A1, ..., Am. Let P be the problem space that is a set of potential problems defined

in the case base D, where each problem is characterized by the attributes A1, ...,

Am−1. Let S be the solution space that is a set of potential solutions defined in the

case base D, where each solution is characterized by the attribute Am. As presented

in Section 3.2, the attribute Am is called the solution-attribute specified to hold

only solutions defined in the solution space S. We assume that each case C ∈ D
is formed as a set of pairs (Ai, ai)1≤i≤m, where ai is a value of an attribute Ai. We

call each of these pairs an item. Let I be a set of items. A set X ⊆ I with k = |X|
is called a k-itemset or simply an itemset. An association rule has two parts, an

antecedent and a consequent. This rule is an implication of the form X → Y , where

X is an itemset termed the antecedent, Y is an itemset termed the consequent, and

X ∩ Y = ∅ holds. We say that a case C ∈ D contains an itemset X ⊆ I, if X ⊆ C

holds. The fraction of cases in the case base D that contain an itemset X is called

the support of X, denoted as supp(X) = |{C ∈ D|X ⊆ C}|/|D|. The support of the

rule X → Y is defined as the probability that both itemsets X and Y occur together

in a case C ∈ D, denoted as supp(X → Y) = supp(X ∪ Y) = P (X ∪ Y ⊆ C). The

confidence of the rule X → Y is defined as the conditional probability that when

an itemset X occurs in a case C ∈ D, an itemset Y also occurs in the same case C,

CHAPTER 4. USIMSCAR 70

denoted as conf(X → Y) = P (Y ⊆ C|X ⊆ C). Since the conditional probability

P (Y ⊆ C|X ⊆ C) is equal to P (X ∪ Y ⊆ C)/P (X ⊆ Y), conf(X → Y) is thus

computed as supp(X ∪ Y)/supp(X).

In a CBR context, the problem of association rule mining can be seen as the gen-

eration of all association rules in the case base D that have support and confidence

greater than or equal to the a user-specified minimum support (minsupp) and a user-

specified minimum confidence (minconf) respectively. As mentioned in the previous

chapter, Apriori (Agrawal et al., 1993) is one of the earliest algorithms for associ-

ation rule mining, and has become the standard approach in this area with many

extensions and enhancements proposed (Savasere et al., 1995; Liu et al., 1998; Han

and Pei, 2000; Agarwal et al., 2001; Li and Gopalan, 2005; Ashrafi et al., 2007).

To illustrate the form of association rules, consider a patient case base D shown in

Table 4.1.

Table 4.1: A patient case base.

Case ID Local Pain(A1) Other Pain(A2) Fever(A3) Appetite Loss(A4) Age(A5) Diagnosis(A6)

P1 right flank vomit 38.6 yes 10 appendicitis

P2 right flank vomit 38.7 yes 11 appendicitis

P3 right flank vomit 38.8 yes 13 appendicitis

P4 right flank sickness 37.5 yes 35 gastritis

P5 epigastrium nausea 36.8 no 20 stitch

The above case base D consists of five patient cases P1, ..., P5, where each case

is represented as a pair of a problem and the corresponding solution. Each problem

is characterized by five attributes (i.e. symptoms) A1, ..., A5, and each solution

is characterized by the solution-attribute A6 that is the attribute taking on only

solutions. From the case base D, we can generate two association rules r1 and

r2 shown in Table 4.2. Consider the rule r1. The support of r1 is 0.6, since the

combination of two items (A1, right flank) and (A2, vomit) occur together in three

out of five cases in the case base D. The confidence of r1 is 0.75, since an item (A2,

vomit) occurs in three out of four cases that contain an item (A1, right flank) in the

case base D. By the same principle, r2’s support is 0.6 and confidence is 1.0.

CHAPTER 4. USIMSCAR 71

Table 4.2: Association rules

Rule ID Expression Support Confidence

r1 (A1, right flank) → (A2, vomit) 0.6 0.75

r2 (A2, vomit) → (A6, appendicitis) 0.6 1.0

Association rules can typically have a large number of consequents. However, a

case in a case base using the attribute-value pairs representation typically has a single

solution-attribute specified to hold only solutions while having many antecedents

(i.e. attribute-value pairs describing the problems). Therefore, in order to integrate

association knowledge represented as association rules with a case base, we focus

on a specific form of association rules termed class association rules (cars) (Liu

et al., 1998). As discussed in Chapter 3, cars are of the form where the consequents

are restricted to a single variable. In the following, we discuss more about the

definition and representation of cars in a CBR context.

4.2.2 Class Association Rule Mining in a CBR Context

As outlined in the previous chapter, class association rules (cars) (Liu et al., 1998)

are a special subset of association rules whose consequents are restricted to a single

target variable. In a CBR context, as the target variable, we can use a special

attribute specified to hold only solutions defined in stored cases. As previously

defined in Section 3.2, this attribute is referred to as a solution-attribute.

In a CBR context, a definition of cars mining can be described as follows: Let

D be a set of cases. Let each case C ∈ D be characterized by attributes A1, ..., Am.

Let P be the problem space that is a set of potential problems defined in the case

base D, where each problem is characterized by the attributes A1, ..., Am−1. Let

S be the solution space that is a set of potential solutions defined in the case base

D, where each solution is characterized by the attribute Am. The attribute Am is

termed the solution-attribute. Each case C ∈ D is formed as a set of (Ai, ai)1≤i≤m

pairs, where ai is a value of an attribute Ai. Note that, in the casting of association

rule mining in a CBR context, we called a pair (Ai, ai)i∈[1,m] an item. However, in

CHAPTER 4. USIMSCAR 72

the casting of cars mining in a CBR context, we only call a pair (Ai, ai)i∈[1,m−1] an

item, whereas we will call the pair (Am, am) a solution-item indicating a pair of the

solution-attribute and its value. Let I be a set of items in the case base D. A set

X ⊆ I with k = |X| is called a k-itemset or simply an itemset. Let SI is a set of

solution-items. We say that a case C ⊆ D contains an itemset X ⊆ I, if X ⊆ C

holds. A car is an implication of the form X → y, where X ⊆ I is an itemset

termed the antecedent and y ∈ SI is a solution-item termed the consequent. The

rule X → y holds in the case base D with confidence c if c% of cases in D that

contain an itemset X also contain a solution-item y. This rule has support s in the

case base D if s% of cases in D contain X ∪ y.

In a CBR context, the problem of cars mining can be seen as the generation of all

cars that have support and confidence greater than or equal to minsupp (i.e. a user-

specified minimum support) and minconf (i.e. a user-specified minimum confidence)

respectively. To illustrate the form of cars, consider again the case base shown

in Table 4.1. Referring to this table, an item (A6, appendicitis), (A6, gastritis), or

(A6, stitch) is called a solution-item. Referring to Table 4.2, we see that only the rule

r2 is a car, since the rule r1 does not contain any solution-item in the consequent.

Our objective of building association knowledge is to formalize the knowledge

representing how certain known problem features described by attribute-value pairs

are associated with specific known solutions in a given case base. To represent this

knowledge, it needs to be noted that we use the form of cars, since this form is suited

well to meet this purpose. In other words, the car X → y indicates an association

between an itemset X holding certain known problem features and a solution-item y

holding the corresponding solution information. Therefore, the form of cars enables

us to formally and effectively represent interesting, meaningful associations between

known problem features and known solutions shared by a large number of relevant

cases.

CHAPTER 4. USIMSCAR 73

4.2.3 Soft-Matching Criterion in a CBR Context

As explained in Section 3.4.3, the soft-matching criterion (Nahm and Mooney, 2002)

was proposed to discover frequent itemsets not by the equality relation but by simi-

larity assessment between itemsets extracted from a given database. We say that an

itemset X is frequent, if the support of X is no less than minsupp (i.e. a user-specified

minimum support). We recall that the problem of association rule mining using this

criterion is to generate all soft association rules (sars) that have soft-support and

soft-confidence greater than or equal to minsupp (i.e. a user-specified minimum

support) and minconf (i.e. a user-specified minimum confidence) respectively.

In a CBR context, the definitions of sars, soft-support, and soft-confidence can be

described as follows: LetD be a set of cases. Let each case C ∈ D be characterized by

attributes A1, ..., Am. Let P be the problem space that is a set of potential problems

defined in the case base D, where each problem is characterized by the attributes

A1, ..., Am−1. Let S be the solution space that is a set of potential solutions defined

in the case base D, where each solution is characterized by the attribute Am. We

assume that each case C ∈ D is formed as a set (Ai, ai)1≤i≤m pairs, where ai is

a value of an attribute Ai. We call each pair an item. Let I be a set of items.

A set X ⊆ I with k = |X| is called a k-itemset or simply an itemset. Suppose

that a function similarity(x, y) is given for measuring the similarity between two

items x ∈ I and y ∈ I. An item x ∈ I is similar to an item y ∈ I (x ∼ y), iff

similarity(x, y) ≥ minsim, where minsim is a user-specified minimum similarity in

[0,1]. Also, a binary function similar(x, y) is defined as 1, if x ∼ y, and 0 otherwise.

An item x ∈ I is soft element of an itemset X ⊆ I (x ∈soft X), iff there exists an

x′ ∈ X such that x′ ∼ x. An itemset X ⊆ I is a soft subset of an itemset Y ⊆ I

(X ⊆soft Y), iff for every item in X there is a distinct similar item in Y . Two

itemsets X ⊆ I and Y ⊆ I are similar (X ∼ Y), iff X ⊆soft Y and Y ⊆soft X. A

soft association rule (sar) is an implication of the form X → Y , where X ⊆ I and

Y ⊆ I, and no item in X is a soft element of Y .

CHAPTER 4. USIMSCAR 74

The definitions of soft-support and soft-confidence are derived by generalizing

the definitions of support and confidence that are criteria for measuring the inter-

estingness of association rules. This generalization is done by allowing items to

match, as long as their similarity exceeds minsim (i.e. a user-specified minimum

similarity). Formally, the soft-support of an itemset X in the case base D, denoted

as softSupp(X), is defined as the number of cases C such that X ⊆soft C. The

soft-support of a rule X → Y in the case base D, denoted as softSupp(X → Y), is

the number of cases C ∈ D such that X ∪ Y ⊆soft C. The soft-confidence of this

rule in the case base D is computed as softSupp(X ∪ Y)/softSupp(X). In Section

3.4.3, we showed how the soft-support and soft-confidence of a sar are computed

using an example. To discover frequent itemsets from a given case base using the

soft-matching criterion, we have to measure the similarity of each pair of items. To

facilitate this measurement, we can construct an m×m similarity matrix, where m

is the total number of items in the case base. So, each entry of this matrix represents

a similarity score between any two items. Furthermore, to construct this matrix, we

need to define a dedicated similarity function for each attribute of stored cases. In

this thesis, we propose that the similarity measures outlined in Section 3.3.3 can be

leveraged for such similarity functions in a CBR context.

After discovering frequent itemsets from a given case base using the soft-matching

criterion, these itemsets are treated equivalently as used in Apriori (Agrawal et al.,

1993). As previously discussed, unlike traditional association rule mining algorithms

such as Apriori (Agrawal et al., 1993), the use of the similarity concept provides

more flexibility for modeling richer relationships between itemsets than the equality

relation considered in traditional association rule mining algorithms.

In this section, we focused on casting the association analysis techniques that are

based on association knowledge in a CBR context. In the next section, we present

our approach for formalizing association knowledge using these association analysis

techniques as a key contribution of this thesis.

CHAPTER 4. USIMSCAR 75

4.3 Association Knowledge Formalization

In this section, we present our approach for formalizing association knowledge. The

motivation for formalizing association knowledge is two-fold. The first is to formalize

strongly evident associations between known problem features and known solutions

shared by a significant number of relevant cases stored in a case base. The sec-

ond is to meaningfully incorporate the formalized associations in conjunction with

similarity knowledge during retrieval in our proposed retrieval strategy USIMSCAR.

In our approach, association knowledge is leveraged in the following two ways:

1. Quantifying the usefulness of cases with respect to the target problem through

association rules : Traditional SBR uses similarity measures to represent the

usefulness of a case C with respect to the target problem Q. In our approach,

we use a combination of the similarity measure of a case C with respect to

Q in conjunction with the interestingness measure of association rules (i.e.

association knowledge) which are identified as being related or relevant to C.

2. Identifying potentially useful association rules and quantifying their usefulness

with respect to the target problem: We also leverage association rules (i.e.

association knowledge) by identifying specific association rules similar to the

target problem Q and quantifying their usefulness with respect to Q using their

interestingness measures. This approach is based on our observation that there

are often specific association rules whose antecedents are highly similar to Q.

Since in our approach the representation of association rules is identical as that

of cases, it is straightforward to identify such association rules by comparing

their antecedents with Q. We propose that the usefulness of identified similar

association rules to Q is quantified using their interestingness measures.

In this thesis, we propose the formalization of association knowledge via a special

form of association rules. Specifically, this knowledge is encoded via class associ-

ation rules (cars) whose antecedents are determined by applying the soft-matching

criterion. We refer to these rules as soft-matching class association rules (scars).

CHAPTER 4. USIMSCAR 76

The aim of a scar is to represent a highly observed correlation between known prob-

lem features (i.e. a set of attribute-value pairs) and a known solution shared by a

significant number of relevant cases.

A scar has an implication of the form X → y, where X is a frequent itemset rep-

resenting problem features that occur often and are discovered by the soft-matching

criterion (i.e. similarity) from the case base. Since our case representation is assumed

as the attribute-value pairs representation in this thesis, an itemset (i.e. problem

features) is also represented as a set of relevant attribute-value pairs. Furthermore,

in the above form X → y, y denotes an item containing the corresponding solution

information of X.

Therefore, in principle, the scar X → y implies that given a new problem Q,

it is likely to be associated with the solution information contained in an item y,

if the problem features of Q are highly similar to an itemset X. The likelihood is

quantified by the interestingness of this rule. As outlined in the previous chapter,

interestingness measures are very useful to evaluate quality, and to rank association

rules extracted. The support and confidence criteria are often used for these pur-

poses. Furthermore, a combination of support and confidence is also occasionally

used. Often, a rationale for doing so is to define a single optimal interestingness

such as the Laplace measure (Bayardo and Agrawal, 1999). In the following, we

present the formal definition of scars.

4.3.1 Definition of SCARS

We now present the formal definition of scars:

• Let D be a set of cases. Let each case C ∈ D be characterized by attributes

A1, ..., Am. Let P be the problem space that is a set of potential problems

defined in the case base D, where each problem is characterized by the at-

tributes A1, ..., Am−1. Let S be the solution space that is a set of potential

solutions defined in the case base D, where each solution is characterized by

CHAPTER 4. USIMSCAR 77

the attribute Am. The attribute Am is termed a solution-attribute specified

to take on only solutions defined in the solution space S.

• Each case C ∈ D is formed as a set of (Ai, ai)1≤i≤m pairs, where ai is a value of

an attribute Ai. As outlined in Section 4.2.2, we call a pair (Ai, ai)i∈[1,m−1] an

item, and call a pair (Am, am) a solution-item indicating a pair of a solution-

attribute Am and its value (solution). Let I be a set of items existed in the

case base D. A set X ⊆ I with k = |X| is called a k-itemset or simply an

itemset. To illustrate, consider a case base D shown in Table 4.3. This case

base D consists of three cases P1, P2, and P3. Each case is characterized by

the three attributes A1, A2, and A3, where the problem is characterized by the

two attributes A1 and A2 and the solution is characterized by the attribute

A3. We call the attribute A3 a solution-attribute. We call a pair (A1, right

flank) an item. We call a set {(A1, right flank), (A2, 38.6)} an itemset. We

call a pair (A3, appendicitis) a solution-item.

Table 4.3: A patient case base.

Case ID Local Pain (A1) Fever (A2) Diagnosis (A3)

P1 right flank 38.6 appendicitis

P2 right flank 38.7 appendicitis

P3 epigastrium 36.8 gastritis

• Let SM be an m×m similarity matrix, where m is the total number of items

in the case base D. Let sim(x, y) be a function that computes the similarity,

between two items x, y ∈ I, derived from the matrix SM . We say that two

items x, y ∈ I are similar (x ∼ y), iff sim(x, y) ≥ minsim (i.e. a user-specified

minimum similarity). For example, referring to Table 4.3, let x be an item

(A2, 38.6). Let y be an item (A2, 38.7). Assume that a similarity function

for the numeric attribute A2 is defined as sim(x, y) = 1− |x− y|/ max, where

max is the maximum value that A2 can take on, i.e. 38.7. Then, sim(x, y) is

0.997. If minsim is set to 0.9, we say that x and y are similar, since sim(x, y) ≥
minsim (0.9).

CHAPTER 4. USIMSCAR 78

• Let softSuppR(X, Y) be a function used to determine a relation of whether

an itemset X ⊆ I is a soft-subset of an itemset Y ⊆ I, where |X| ≤ |Y |. We

say that X is a soft-subset of Y (X ⊆soft Y), iff softSuppR(X,Y) ≥ minsim.

Alternatively, we say that Y softly contains X. We say that Y contains X, if

X ⊆ Y holds. The function softSuppR(X, Y) is defined as:

softSuppR(X, Y) =
∑

sim(x, y)/|X|, (4.1)

where x ∈ X and y ∈ Y are two items characterized by the same attribute

label. For example, referring to Table 4.3, consider the following an 1-itemset

X1 and a 2-itemset Y1:

X1 = {(A2, 38.6)}.

Y1 = {(A1, right flank), (A2, 38.7)}.

Assume that a similarity function for the attribute A1 is defined as sim(x, y) =

1, if x is equal to y, and 0 otherwise, where two items x and y are characterized

by A1. Also, assume that a similarity function for the attribute A2 is defined as

sim(x, y) = 1−|x−y|/ max, where max is the maximum value that A2 can take

on (i.e. 38.7), where two items x and y are characterized by A2. Using these

similarity functions, softSuppR(X1, Y1) is then computed as {sim(∅, right

flank)+sim(38.6,38.7)}/2 = 0.467, where ∅ denotes an empty value. Since X1

has no item characterized by A1, the similarity sim(∅, right flank) is 0. The

problem description of each case C ∈ D, described by attributes A1, ..., Am−1,

is also seen as an itemset where its length is |m−1|. Thus, we also say that an

itemset X is a soft-subset of C (X ⊆soft C), iff softSuppR(X, C) ≥ minsim.

Alternatively, we say that C softly contains X.

• The soft-support-sum of an itemset X ⊆ I regarding the case base D is defined

as:

softSuppSum(X) =
∑
C∈D

softSuppR(X, C), (4.2)

CHAPTER 4. USIMSCAR 79

for each case C ∈ D satisfying X ⊆soft C. For example, consider the above

1-itemset X1={(A2, 38.6)} again. We observed that X1 is a soft-subset of the

cases P1 and P2, thus softSuppSum(X1) = 2. The soft-support of an itemset

X ⊆ I regarding the case base D is defined as:

softSupp(X) = softSuppSum(X)/|D|. (4.3)

For example, considering the above softSuppSum(X1) = 2 with respect to

the case base D shown in Table 4.3, softSupp(X1) = 2/3.

• The soft-support for a rule X → y is defined as the fraction of cases in the case

base D that softly contain an itemset X and contain a solution-item y. The

soft-confidence of a rule X → y is defined as the fraction of cases in the case

base D that softly contain X also contain y. A ruleitem is of the form 〈X, y〉
and basically represents a rule X → y. The key operation for scars mining is

to find all ruleitems that have soft-supports greater than or equal to minsupp

(i.e. a user-specified minimum support).

The definition of our soft-support of an itemset differs from the one used in

SoftApriori (Nahm and Mooney, 2002) that first proposed the notion of the soft-

support outlined in Section 3.4.3. In SoftApriori, the soft-support of an itemset X

is computed by summing the number of occurrences of all the itemsets similar to

X. In SoftApriori, we say that two itemsets X and Y are similar (X ∼ Y), iff for

every item in X there is a distinct similar item in Y , and also for every item in Y

there is a distinct similar item in X. For example, the soft-support of a 1-itemset

X ∈ I (I: a set of items), denoted as softSuppSA(X), is computed as:

softSuppSA(X) =
∑
Y ∈I

simB(X,Y) ∗ supp(Y), (4.4)

where simB denotes a binary similarity function computed as 1 if X ∼ Y , and

0 otherwise, and supp(Y) is the support of 1-itemset Y ∈ I that represents the

CHAPTER 4. USIMSCAR 80

fraction of cases stored in a given case base that contain Y . Unfortunately, the

above function cannot reflect the different degrees of similarities between X and all

Y ∈ I as remarked in Nahm and Mooney (Nahm and Mooney, 2002).

To illustrate, suppose that there are three 1-itemsets X, Y , and Z in a case base

D. Let I be a set of items extracted from D, thus I = {X,Y, Z}. These itemsets

are represented as X = (Age, 10), Y = (Age, 11), and Z = (Age, 15). Assume that

minsim (i.e. a user-specified minimum similarity) is set to 0.7. Also, the similarity

between any two itemsets X,Y ∈ I is defined by a function SIM(X, Y) = 1− |X−Y |
max

,

where max is 15, and |X − Y | is the absolute different between X and Y , in terms

of their attribute values. Recall that an item is a pair of an attribute and its value.

The softSuppSA of each itemset ∈ I is then computed as shown in Table 4.4.

Table 4.4: The results of softSuppSA.

softSuppSA

softSuppSA(X) = simB(X, X) + simB(X, Y) = 1.0 + 1.0 = 2.0
softSuppSA(Y) = simB(Y, X) + simB(Y, Y) + simB(Y, Z) = 1.0 + 1.0 + 1.0 = 3.0
softSuppSA(Z) = simB(Z, Y) + simB(Z, Z) = 1.0 + 1.0 = 2.0

As observed in Table 4.4, both softSuppSA(X) = 2.0 and softSuppSA(Z) = 2.0.

Note that for computing softSuppSA(X), simB(X,Z) is ignored, and for comput-

ing softSuppSA(Z), simB(Z,X) is ignored, since both simB(X, Z) = 0.67 and

simB(Z, X) = 0.67 are less than the minsim (0.7). However, we observe that

SIM(X,Y) = 0.93 that is higher than SIM(Z, Y) = 0.73. From this observation,

we may derive that X is possibly more frequent than Z due to the co-occurrence

of Y being more similar to X than Z. Therefore, we may conclude that the soft-

support of X has to be higher than that of Z. Our definition for soft-support can

meet this conclusion by reflecting different degrees of similarities between itemsets

when computing the soft-support of each itemset. Our soft-support computation for

itemset ∈ I is shown in Table 4.5. As observed in the table, softSupp(X) is higher

than softSupp(Z), and thus we can generate more finer-grained soft-support than

that used in SoftApriori when discovering frequent itemsets for generating scars.

CHAPTER 4. USIMSCAR 81

Table 4.5: The results of softSupp.

softSupp
softSupp(X) = softSuppR(X,X) + softSuppR(X,Y) = 1.0 + 0.93 = 1.93
softSupp(Y) = softSuppR(Y,X) + softSuppR(Y, Y) + softSuppR(Y, Z) = 0.93 + 1.0 + 0.73 = 2.66
softSupp(Z) = softSuppR(Z, Y) + softSuppR(Z, Z) = 0.73 + 1.0 = 1.73

Until now, we have presented the definition of scars that encode association

knowledge. In the following, we present our algorithm of scars mining.

4.3.2 SCARS Mining

Having identified the scars definition, we now propose our algorithm for scars mining.

The key operation for scars mining is to find all ruleitems that have soft-support

greater than or equal to minsupp (i.e. a user-specified minimum support). We

call such ruleitems frequent ruleitems. As previously mentioned in Section 4.3.1,

a ruleitem represents a rule which has the form X → y, where X is an itemset,

discovered using the soft-matching criterion, and y is a solution-item specified to

hold only solutions stored in a given case base.

For all the ruleitems that have the same itemset in the antecedent, one with the

highest interestingness is chosen as a possible rule. In our work, we use the Laplace

measure (Bayardo and Agrawal, 1999) of interestingness that combines soft-support

and soft-confidence such that they are monotonically related (i.e. positively corre-

lated). Given a ruleitem r : X → y, we denote its Laplace measure as Laplace(r).

Based on the representation of the Laplace measure presented in Geng and Hamilton

(Geng and Hamilton, 2006), the Laplace measure of r can be defined as follows:

Laplace(r) =
N ∗ softSupp(X → y) + 1

N ∗ softSupp(X → y)/softConf(X → y) + 2
, (4.5)

where N denotes the total number of cases. Since N is a constant, Laplace(r) can

be considered a function of softSupp(X → y) and softConf(X → y). It is easy to

see that this measure is monotone in both soft-support and soft-confidence. Given

a ruleitem r, if Laplace(r) is greater than or equal to a user-specified minimum level

CHAPTER 4. USIMSCAR 82

of interesting, called min-interesting, we say r is accurate. A candidate set of scars

consists of all the possible rules that are both frequent and accurate.

Let D be a set of cases. Let I be a set of items found in the case base D. Let

SM be an m ×m similarity matrix, where m is the number of items found in D.

This matrix is used to compute the soft-support of all ruleitems. Let k-ruleitem be

a ruleitem whose antecedent has k items. Let Fk be a set of frequent k-ruleitems.

In Fk, each ruleitem r : X → y has two fields:

1. The anteSoftSuppSum field of r, denoted as r.anteSoftSuppSum, stores the

soft-support-sum of ruleitems in D that softly contain X.

2. The softSuppSum field of r, denoted as r.softSuppSum, stores the soft-support-

sum of ruleitems in D that softly contain X and also contain y.

Thus, the soft-support and soft-confidence of the ruleitem r regarding D are

computed as:

softSupp(r) =
r.softSuppSum

|D| ,

softConf(r) =
r.softSuppSum

r.anteSoftSuppSum
.

(4.6)

Therefore, using these two fields, the Laplace measure of the ruleitem r is computed

as follows, according the Laplace definition presented in Equation 4.5:

Laplace(r) =
r.anteSoftSuppSum + 1

r.anteSoftSuppSum2/r.softSuppSum + 2
. (4.7)

Algorithm 1 presents the algorithm for scars mining. We also discuss the steps

taken in this algorithm in detail.

STEP 1: We find a set of frequent 1-ruleitems (F1), assuming that minsupp (i.e. a

user-specified minimum support) is given by the user (line 1). For 1-ruleitems

{X} (X ⊆ I), F1 is generated as F1 = {{X}|softSupp(X) ≥ minsupp}.
A set of scars (SCAR1) is then generated from F1 by only extracting pos-

sible rules from F1 (line 2). As previously explained, for all the ruleitems

CHAPTER 4. USIMSCAR 83

Algorithm 1 genSCARS (D, SM)

1: F1 = findFrequentRuleItems(D, SM);

2: SCAR1 = genRules(F1);

3: k = 2;

4: while Fk−1 6= ∅ do

5: CRk = generateCandidatesRuleItems(Fk−1)

6: for each case C ∈ D do

7: for each r : X → y ∈ CRk do

8: if r ⊆soft C then

9: r.anteSoftSuppSum += softSuppR(X, C);

10: if y = C.solution then

11: r.softSuppSum += softSuppR(X, C);

12: end if

13: end if

14: end for

15: end for

16: Fk = {r ∈ CRk |softSupp(r) ≥ minsupp};
17: SCARk = genRules(Fk);

18: k++;

19: end while

20: SCARS =
⋃

k≥minitemsize SCARk;

21: prSCARS = pruneRules(SCARS);

22: return prSCARS;

that have the same itemset in the antecedent, one with the highest interest-

ingness is chosen as a possible rule. To illustrate, consider a case base D
shown in Table 4.6. From the case base D, the following 1-ruleitem r1 can

Table 4.6: A patient case base.

Case ID Local Pain (A1) Fever (A2) Diagnosis (A3)
P1 right flank 38.6 appendicitis
P2 right flank 38.7 appendicitis
P3 epigastrium 36.8 gastritis

be generated: r1 : (A1, right flank) → (A3, appendicitis). Let X be an item-

set (A1, right flank). Let y be a solution-item (A3, appendicitis). Thus the

ruleitem r1 is represented as r1 : X → y. For r1, r1.anteSoftSuppSum is

computed as
∑3

i=1 softSuppR(X, Pi). On the other hand, r1.softSuppSum

CHAPTER 4. USIMSCAR 84

is computed as
∑2

i=1 softSuppR(X,Pi), in which softSuppR(X, P3) is disre-

garded, since the value of the solution-attribute A3 of the case P3 is different

from that of the cases P1 and P2. The soft-support of r1 (softSupp(r1)) is

thus computed as r1.softSuppSum/|D|. If softSupp(r1) ≥ minsim (i.e. a

user-specified minimum similarity), r1 is generated and stored in SCAR1.

STEP 2: For each subsequent pass, say pass k, we perform three main operations

(lines 4 − 19). First, we generate a set of new possibly frequent ruleitems

(CRk), called candidate ruleitems, using the set of frequent ruleitems (Fk−1)

found in the (k − 1)th pass (line 5). Second, we scan the case base D, and

updates the anteSoftSuppSum and softSuppSum values of the ruleitems in

CRk (lines 6 − 15). Third, we generate a new frequent ruleitem set (Fk) by

extracting ruleitems whose soft-support is greater than or equal to minsupp

(i.e. a user-specified minimum support) from CRk. A set of ruleitems is then

generated from Fk by only choosing possible rules from Fk that are accurate

(lines 16 - 17). For example, from the case base D shown in Table 4.6, the

following 2-ruleitem r2 can be generated: r2 : {(A1, right flank), (A2, 38.6)} →
(A3, appendicitis). For r2, let X be an itemset {(A1, right flank), (A2, 38.6)}.
Let y be a solution-item (A3, appendicitis). r2 is then represented as r2 : X →
y. For r2, r2.anteSoftSuppSum is computed as

∑3
i=1 softSuppR(X,P1). On

the other hand, r2.softSuppSum is computed as
∑2

i=1 softSuppR(X, P1),

since r2.solution is only equal to P1.solution and P2.solution. softSupp(r2)

is then computed as r2.softSuppSum/|D|. If softSupp(r2) ≥ minsim (i.e. a

user-specified minimum similarity), r2 is generated and stored in SCAR2.

STEP 3: We have produced the sets of ruleitems, SCAR1, ..., SCARk, where k is

the maximum length of ruleitems generated. The length of a ruleitem r : X →
y is computed as |X|, which denotes the number of items in the antecedent of

r. From these sets, we now choose only those sets whose k is greater than or

equal to minitemsize (i.e. a user-specified minimum itemset size). The chosen

sets are then stored in a set SCARS (line 20). The underlying intuition is to

CHAPTER 4. USIMSCAR 85

only choose a small representative subset of frequent ruleitems from the large

number of resulting frequent ruleitems. Our premise is that the longer the

frequent ruleitem, the more significant it is. This is based on the fact that very

often the significance of frequent itemsets correlates with the length of frequent

itemsets (Hu, Sung, Xiong and Fu, 2008). Apparently, any ruleitem is an

itemset, that is, a set of ruleitems is a subset of frequent itemsets. For example,

if we set minitemsize as 2, the set SCAR1 is not included in the set SCARS,

since the size of ruleitems in SCAR1 is 1 less than the minitemsize used. As

the final process of scars mining, we perform a rule pruning on ruleitems

stored in SCARS using the Laplace measure (line 22). A rule r is pruned,

if Laplace(r) is less than min-interesting (i.e. a user-specified minimum level

of interesting). As previously presented, using the fields anteSoftSuppSum

and softSuppSum attained in STEP 2, the Laplace measure of a ruleitem r

is computed as Equation 4.7. The set of ruleitems after the pruning is stored

in a set prSCARS. Finally, we call ruleitems in prSCARS scars.

In this section, we presented our approach for formalizing association knowledge,

which is encoded via soft-matching class association rules (scars). In this thesis, we

propose and develop a new retrieval strategy USIMSCAR that leverages similarity

and association knowledge to enhance SBR. In the next section, we present the

USIMSCAR strategy in detail.

4.4 USIMSCAR Design

In this section, we present our proposed retrieval strategy USIMSCAR as the core

contribution of this thesis. As presented in Section 1.1, USIMSCAR is an acronym

for a retrieval strategy based on the Unified knowledge of SIMilarity and Soft-

matching Class Association Rules. We first provide the underlying rationale for

exploiting association knowledge in USIMSCAR. We then discuss the overall func-

tionality of USIMSCAR. Thereafter, we formally present the USIMSCAR algorithm

CHAPTER 4. USIMSCAR 86

with its detailed explanation. We finally show an example that helps us to under-

stand how USIMSCAR performs.

4.4.1 Rationale for using Association Knowledge

In our proposed retrieval strategy USIMSCAR, the rationale for exploiting associa-

tion knowledge falls into two significant objectives.

The first objective is to quantify the usefulness of stored cases with respect

to a new problem Q by considering and including both similarity and association

knowledge, and to exploit it at retrieval time in USIMSCAR (see Figure 4.1). We

RET_CASES

prSCARS

C Q

Usefulness (C,Q):

SIM(C,Q)

r’

RET_CASES

C Q

(a)

(b)

(c)

Usefulness (C,Q):

SIM(C,Q) & Laplace(r’)

Laplace(r’)

Figure 4.1: The usefulness quantification of a case C with respect to Q.

recall that in SBR, the usefulness of stored cases in a given case base D is quantified

by using similarity knowledge only. In other words, in principle, SBR identifies a

number of most similar cases RET CASES from D as useful cases with respect to the

target problem Q. In our approach, for each case C ∈ RET CASES, its usefulness

with respect to Q is initially determined by its similarity to Q as with SBR (see also

Figure 4.1 (a)). We denote this usefulness as Usefulness(C, Q). We denote the

similarity between C and Q as SIM(C,Q). Initially, Usefulness(C,Q) is thus equal

to SIM(C, Q). It is then enhanced by considering and including the interestingness

(i.e. the Laplace measure) of the most relevant scar r′ ∈ prSCARS to the case C,

where prSCARS denotes the set of scars mined from the case base D (see also Figure

CHAPTER 4. USIMSCAR 87

4.1 (b)). We say that given a case C, a scar r ∈ prSCARS is relevant to C, if r’s

antecedent is a soft-subset of C and r’s consequent is equal to C’s solution. Among

the rules which are relevant to the case C, we say that a scar whose interestingness

is highest is the most relevant. As presented in the previous section, we say that

an itemset X is a soft-subset of a case C (X ⊆soft C), iff softSuppR(X, C) ≥
minsim (i.e. a user-specified minimum similarity). Alternatively, we say that C softly

contains X. The function softSuppR(X, C) was defined as softSuppR(X, C) =
∑

sim(x, y)/|X|, where x ∈ X and y ∈ C are two items characterized by the

same attribute, and sim(x, y) denotes the similarity between x and y. Finally, for

each case C ∈ RET CASES, Usefulness(C, Q) is quantified by using two factors

SIM(C, Q) and Laplace(r′) (see also Figure 4.1 (c)). We eventually utilize this

quantified usefulness of the cases in RET CASES in USIMSCAR. Our approach for

quantifying the usefulness of cases in RET CASES aims to enhance the usefulness,

which is measured by SBR using only similarity knowledge encoded as SIM(C, Q).

The second objective for using association knowledge in USIMSCAR is to quan-

tify the usefulness of scars in prSCARS with respect to the new problem Q, and ex-

ploit it in USIMSCAR (see also Figure 4.2). Initially, we find the set of most similar

prSCARS

prSCARS

r Q

Usefulness (r,Q):

SIM(r,C)

r

prSCARS

r Q

(a)

(b)

(c)

Usefulness (r,Q):

SIM(r,Q) & Laplace(r)

Laplace(r)

Figure 4.2: The usefulness quantification a scar with respect to Q.

scars in prSCARS to Q. We denote this set as RET SCARS⊆ prSCARS. Then, for

CHAPTER 4. USIMSCAR 88

each scar r ∈ RET SCARS, its usefulness with respect to Q is determined by its sim-

ilarity to Q (see also Figure 4.2 (a)). We denote this usefulness as Usefulness(r,Q)

and this similarity as SIM(r,Q). Usefulness(r,Q) is then quantified by addition-

ally considering and including its interestingness (i.e. Laplace(r)) (see also Figure

4.2 (b) and Figure 4.2 (c)). Our objective for discovering RET SCARS is to identify

specific scars that are highly similar to Q, and exploit it usefully in USIMSCAR. This

approach is based on our observation that there are often specific scars, mined from

the case base, whose antecedents are highly similar to Q. Therefore, the discovery of

such rules (i.e. scars) enables us to find useful rules with respect to Q. Consequently,

our approach for quantifying Usefulness(r,Q) aims to quantify the usefulness of

a scar r ∈ RET SCARS with respect to Q by combining SIM(r,Q) acquired from

similarity knowledge and Laplace(r) acquired from association knowledge.

Having identified the underlying rationale for using association knowledge in our

proposed retrieval strategy USIMSCAR, we now present the overall functionality of

USIMSCAR that leverages both similarity and association knowledge.

4.4.2 Functionality of USIMSCAR

We now present the overall functionality of our novel retrieval strategy USIMSCAR

designed to enhance SBR by leveraging a combination of similarity and association

knowledge. Figure 4.3 shows the functionality of traditional SBR. The typical steps

involved are as follows:

1. Given a new problem Q, SBR applies similarity knowledge to compare Q with

the problems of n cases stored in a case base D, where n is the total number of

cases in D. Each problem is denoted as Xi∈[1,n] and the corresponding solution

is denoted as Yi. In this scenario, assume that similarity knowledge is encoded

using a similarity measure SIM . By using SIM , the k most similar cases to

Q are retrieved, where k is given by the user. These cases are then ranked into

a retrieved case set RET CASES. Thus, RET CASES = {C1, ..., Ck}. Here,

SIM(Q,Ci) ≥ SIM(Q,Cj), for all i < j ≤ k. Therefore, in SBR, for each

CHAPTER 4. USIMSCAR 89

Similarity-Based Retrieval (SBR)
New

Problem (Q)

Similarity

Knowledge

input
report

Solu!on Set

Y1

Decreasing Rank

…
Y2 Ym

Vo!ng

output

Case Base

…

Cn

Xn Yn

C1

X1 Y1

C2

X2 Y2
Retrieved Cases (RET_CASES)

Decreasing Similarity

…
CkC1 C2

SIM(Q,C1) SIM(Q,C2) SIM(Q,Ck)

Retrieval

input

Figure 4.3: The functionality of SBR.

case C ∈ RET CASES, the similarity SIM(Q,C) quantifies the usefulness of

C with respect to Q.

2. The retrieved case set RET CASES is then used to generate a solution set

SS that consists of m different solutions Y1, ..., Ym: SS = {Y1, ..., Ym}, where

Rank(Yi) ≥ Rank(Yj), for all i < j ≤ m. Here, Rank(Yi) denotes the ranking

of the solution Yi in terms of solving the problem Q. The ranking of each so-

lution ∈ SS is often determined by voting schemes1. Different voting schemes

are commonly used in SBR, e.g. majority voting or distance weighted voting

(Dudani, 1976). We will provide a brief description of such voting schemes in

Section 4.5. The solution SS is finally returned to the user.

Having presented the functionality of SBR, we now discuss the functionality of

USIMSCAR. As can be seen in Figure 4.4, the uniqueness of USIMSCAR is to

exploit not only similarity knowledge but also association knowledge. The overall

functionality of USIMSCAR is as follows:

1. At the beginning, USIMSCAR operates like SBR. That is, USIMSCAR pro-

duces a retrieved case set RET CASES using similarity knowledge. As pre-

viously explained, RET CASES consists of the k most similar cases to a new

1In this thesis, our work is focused on retrieval in CBR not voting. Hence, we do not discuss
voting schemes in detail. However, voting strategies that are typically used are discussed in Section
4.5

CHAPTER 4. USIMSCAR 90

USIMSCAR

New

Problem (Q)

input

report

Solu on Set

Y1

Decreasing Rank

…
Y2

Ymoutput

Case Base

…

Cn

Xn Yn

C1

X1 Y1

C2

X2 Y2

Retrieved Cases (RET_CASES)

Decreasing Usefulness

…
CkC1 C2

Usefulness

(Q,C1)

Usefulness

(Q,C2)

Usefulness

(Q,Ck)

Vo!ng

Retrieved Scars (RET_SCARS)

Decreasing Usefulness

…
rkr1 r2

Usefulness

(Q,r1)

Usefulness

(Q,r2)

Usefulness

(Q,rk)

Similarity

Knowledge

Associa on

Knowledge

Integrated Knowledge

input

Retrieval Result (RET_RES)

Retrieval Retrieval

Integra onIntegra on

1 2

3

Figure 4.4: The functionality of USIMSCAR.

problem Q, where k is given by the user. For each case C ∈ RET CASES, the

similarity SIM(Q, C) quantifies the usefulness of C with respect to Q.

2. USIMSCAR then further enhances the usefulness by considering and includ-

ing association knowledge. Cases in RET CASES are eventually ranked as

RET CASES = {C1, ..., Ck}, where Usefulness(Q,Ci) ≥ Usefulness(Q,Cj),

for all i < j ≤ k (Step 1 of Figure 4.4). Usefulness(Q,Ci) is a function

that quantifies the usefulness of a case Ci with respect to Q by integrating

the similarity SIM(Q,Ci) and the interestingness (i.e. the Laplace measure)

of a special scar r′ ∈ prSCARS that is the most relevant scar to the case Ci.

Let prSCARS be a set of scars mined from the given case base D. We say

that given the case Ci, a scar r ∈ prSCARS is relevant, if r’s antecedent is a

soft-subset of Ci and r’s consequent is equal to Ci’s solution. Among the scars

in prSCARS relevant to the case Ci, we say that a scar whose interestingness

is highest is the most relevant.

3. USIMSCAR also directly leverages scars in prSCARS with respect to Q. This

aims to discover useful rules with respect to Q, and quantify their usefulness.

CHAPTER 4. USIMSCAR 91

More specifically, USIMSCAR finds particular scars in prSCARS whose an-

tecedents are highly similar to Q. The set of k most similar scars to Q is re-

trieved, and ranked into a retrieved rule set RET SCARS. Thus, RET SCARS

= {r1, ..., rk}, where Usefulness(Q, ri) ≥ Usefulness(Q, rj) for all i < j ≤ k

(Step 2 of Figure 4.4). Usefulness(Q, ri) denotes a function that quanti-

fies the usefulness of a rule ri with respect to Q by integrating the similarity

SIM(Q, ri) and the interestingness of ri.

4. USIMSCAR then leverages both the retrieved case set (RET CASES) and re-

trieved rule set (RET SCARS) integrating them into a retrieval result RET RES

(Step 3 of Figure 4.4). It further enhances the usefulness of each object in

RET RES with respect to Q using a statistical analysis of the solution occur-

rence frequency observed in RET RES. After that the solutions of objects in

RET RES are ranked using voting2, and these are stored in a solution set.

Finally, the solution set is returned to the user.

Up to now, we have presented the overall functionality of our proposed retrieval

strategy USIMSCAR in comparison with that of SBR. The key difference between

USIMSCAR and SBR has been identified as follows:

1. While SBR measures the usefulness of cases with respect to a new problem by

only using similarity knowledge, USIMSCAR further enhances that usefulness

by using association knowledge encoded via scars.

2. USIMSCAR additionally leverages the rules (i.e scars) mined from the case

base to discover useful rules with respect to the target problem Q and to

incorporate such rules together with the useful cases with respect to Q in

inducing an appropriate solution for Q.

In the following, we formally present our algorithm of USIMSCAR.

2Again note that, in this thesis, our work is focused on retrieval in CBR not voting. That is,
the task of USIMSCAR is to produce the retrieval result RET RES (see also Figure 4.4)

CHAPTER 4. USIMSCAR 92

4.4.3 Algorithm of USIMSCAR

We now present the algorithm of our proposed retrieval strategy USIMSCAR. Given

a new problem Q, the objective of USIMSCAR is to generate a retrieval result

RET RES, depicted as Step 3 of Figure 4.4. RET RES is composed of potentially

useful objects that can be used to solve the problem Q. These objects can be derived

from not only stored cases but also scars generated from a given case base.

Let D be a set of cases. Let prSCARS be the set of scars generated from the

case base D. Let SM be a similarity matrix, which is the same similarity matrix

used in scars mining, presented in Algorithm 1 in Section 4.3.2.

We propose that the USIMSCAR algorithm performs the following steps. First,

USIMSCAR identifies the set of most similar cases in D to a given new problem Q.

Second, USIMSCAR identifies the set of most similar rules (i.e. scars) in prSCARS

to Q. Third, USIMSCAR quantifies the usefulness of each case C, stored in the

similar cases to Q identified in the first step, with respect to Q. This quantification is

measured by integrating the similarity between C and Q as well as the interestingness

measures of scars in prSCARS which are identified as being related or relevant to

C. Fourth, USIMSCAR quantifies the usefulness of each scar r, stored in the similar

scars to Q identified in the second step, with respect to Q. This quantification is

measured by the similarity between r and Q as well as the interestingness measure of

r. Lastly, the cases identified in the first step along with their quantified usefulness

as well as the scars identified in the second step along with their quantified usefulness

with respect to Q are combined in a retrieval result. The usefulness of each object in

the retrieval result is further enhanced by considering the proportion of the frequency

of its solution over the total number of solutions among all objects in the retrieval

result. Eventually, those cases and scars stored in the retrieval result are ranked by

their usefulness with respect to Q, and are used to induce an appropriate solution

for Q.

In the following, we present the algorithm of USIMSCAR (specified in Algorithm

2) and also its detailed description in more detail.

CHAPTER 4. USIMSCAR 93

Algorithm 2 USIMSCAR (Q, D, prSCARS, SM)

1: RET CASES = retrieveSimilarCases(Q, D, SM);

2: RET SCARS = retrieveSimilarScars(Q, RET CASES, prSCARS, SM);

3: for each case C ∈ RET CASES do

4: rC = getBestSCAR(C, prSCARS);

5: if rC 6= ∅ then

6: Usefulness(Q,C) = Usefulness(Q,C) ∗ Laplace(rC);

7: else

8: Usefulness(Q,C) = Usefulness(Q,C) ∗ min-interesting;

9: end if

10: object = createObject();

11: object.instance = C;

12: object.usf = Usefulness(Q,C);

13: RET RES = RET RES
⋃

object;

14: end for

15: for each scar r ∈ RET SCARS do

16: Usefulness(Q, r) = Usefulness(Q, r) ∗ Laplace(r);

17: object = createObject();

18: object.instance = r;

19: object.usf = Usefulness(Q, r);

20: RET RES = RET RES
⋃

object;

21: end for

22: RET RES = enhanceObjects(RET RES);

23: return RET RES;

STEP 1: In the case base D, we retrieve the set of k most similar cases to the new

problem Q (line 1). We denote this set as RET CASES. We denote SIM(Q,C)

as the similarity between Q and a given case C ∈ D. This similarity can

be computed by using a similarity measure formulated by the global-local

principle. A set of local similarities for the individual attributes of the problem

Q and the case C can be drawn from the similarity matrix SM .

STEP 2: In the set prSCARS, we retrieve the set of k most similar scars to the new

problem Q (line 2). We denote this set as RET SCARS. A question raised here

is how to define a function SIM(Q, r) that computes the similarity between

Q and a given scar r ∈ prSCARS. Our approach to this lies in our choice of

CHAPTER 4. USIMSCAR 94

cars representation that we use. We note that scars have the same structure as

cases−the antecedent part of scars corresponds to the problem part of cases and

the consequent part of scars corresponds to the solution part of cases. This

in fact has been the rationale for the choice of cars rather than generalized

association rules in USIMSCAR. Therefore, the function SIM(Q, r) can be

defined in the same way as the similarity computation between Q and a case

C ∈ D, i.e. SIM(Q, C) used in STEP 1.

To illustrate, suppose that Q is represented as ({(A1, right flank), (A2, 39.0)}, ?),
where ‘?’ denotes the unknown solution of Q, and a scar r is given as r :

{(A1, right flank)} → (A3, appendicitis). Then, SIM(Q, r) can be computed

by aggregating local similarities for attributes A1 and A2. If there is no item

with specific local attributes, we set local similarities for these attributes as 0.

For example, we note that the scar r has no item with the attribute A2. So,

SIM(Q, r) is computed as the similarity for the attribute A1 only, divided by

2, if we use the equal-weighted average aggregation scheme. If a scar r is given

as r : {(A1, right flank), (A2, 38.0)} → (A3, appendicitis). Then, SIM(Q, r)

can be computed by aggregating both similarities for attributes A1 and A2,

divided by 2, if we use the equal-weighted average aggregation scheme.

To generate RET SCARS, we consider only scars in prSCARS such that their

antecedents are soft-subsets of cases in RET CASES, rather than scanning all

scars in prSCARS for efficiency. We denote a set of such considered scars

as RET SCARS CASES. As previously outlined, we say that an itemset X

is a soft-subset of a case C (X ⊆soft C), iff softSuppR(X, C) ≥ minsim

(i.e. a user-specified minimum similarity). We also say that C softly con-

tains X. The function softSuppR(X,C) was defined as softSuppR(X, C) =
∑

sim(x, y)/|X|, where x ∈ X and y ∈ C are two items characterized by the

same attribute, and sim(x, y) denotes the similarity between x and y. We

note that each case C ∈ RET CASES is chosen as one of the most similar

cases to Q (C ∼ Q). Assuming that each scar r ∈ RET SCARS CASES has

CHAPTER 4. USIMSCAR 95

the form r : X → y, the itemset X is a soft-subset of the case C (X ⊆ C).

Since C ∼ Q and X ⊆ C, the relation X ⊆ C ∼ Q can be derived. This

implies that RET SCARS CASES is the collection that is a particular subset

(i.e. soft-subset) of cases in RET CASES similar to Q.

STEP 3: For each case C ∈ RET CASES, we select the most relevant scar rC ∈
prSCARS (line 4). We say that for the case C, a scar r ∈ prSCARS is rel-

evant to C, if r’s antecedent is soft-subsets of C and r’s consequent is equal

to C’s solution. Among the scars in prSCARS relevant to the case C, we say

that a scar whose interestingness is highest is the most relevant scar to C. We

then quantify the usefulness of each case C ∈ RET CASES with respect to

Q by combining two factors SIM(Q,C) and Laplace(rC), where SIM(Q,C)

denotes the similarity between Q and C, and Laplace(rC) is the interesting-

ness (i.e. the Laplace measure) of rC (line 6). We denote this usefulness

as Usefulness(Q,C). The combination is achieved by multiplying these two

factors (i.e. SIM(Q,C) ∗ Laplace(rC)). If candidate(s) for a rule rC is deter-

mined to be more than one scars, let us say m scars rC1, ..., rCm, we use the

average of the Laplace measures of these scars to compute Laplace(rC). If

there is no candidate for rC , we use min-interesting (i.e. a user-specified min-

imum level of interesting) as Laplace(rC): Usefulness(Q,C) = SIM(Q,C)

∗ min-interesting (line 8). These combination schemes aim to quantify the

usefulness of the case C with respect to Q by considering both the similarity

SIM(Q,C) and the interestingness of rC (i.e. Laplace(rC)). We then cast the

case C into a generic object O that can encapsulate both cases and scars. The

object O has two fields: the instance field stores C (i.e. O.instance = C),

and the usf field stores Usefulness(Q,C) (i.e. O.usf = Usefulness(Q,C)).

This object O is added to a retrieval result RET RES (lines 10 - 13).

STEP 4: For each scar r ∈ RET SCARS, we quantify the usefulness of r with re-

spect to the new problem Q. This usefulness is denoted as Usefulness(Q, r)

computed by integrating two factors SIM(Q, r) and Laplace(r). Here, SIM(Q, r)

CHAPTER 4. USIMSCAR 96

denotes the similarity between Q and r, and Laplace(r) is the interestingness

(i.e. the Laplace measure) of r. We quantify Usefulness(Q, r) by multiplying

two factors (i.e. Usefulness(Q, r) = SIM(Q, r) ∗ Laplace(r)) (line 16). This

scheme aims to valuably utilize scars in RET SCARS acquired in STEP 2.

Recall that scars in RET SCARS are the scars whose interestingness is high,

irrespective of whether they are soft-subsets of cases in RET CASES. We then

cast the rule r into a generic object O that can encapsulate any cases and scars.

The object O has two fields: the instance field stores r (i.e. O.instance = r),

and the usf field stores Usefulness(Q, r) (i.e. O.usf = Usefulness(Q, r)).

This object O is added to a retrieval result RET RES (lines 17 - 20).

STEP 5: We further enhance the usefulness of each object in RET RES (line 22).

This enhancement is achieved using the frequency of the solution occurrence

among objects in RET RES. The intuition underlying this scheme is that if an

object’s solution is more frequent in RET RES, this object could potentially

be more useful in RET RES. The solution of each object O ∈ RET RES is dif-

ferently interpreted, according to whether O was cast from a case C or a scar r.

If created from C, its solution corresponds to the solution of C. If created from

r, its solution corresponds to the solution in the consequent of r. Let S be a set

of solutions of all objects in RET RES. Given an object in RET RES, let SO

be a set of objects in RET RES that have the solution equal to O’s solution.

We compute the proportion of the objects in SO over the total number of ob-

jects in RET RES, denoted as δ(SO) as δ(SO) = |SO|/|RET RES|. Finally, we

enhance O.usf by considering and including δ(SO) as follows: O.usf = O.usf

∗ δ(SO). Consequently, for each object O ∈ RET RES, O.usf represents the

usefulness of the object O with respect to Q.

We now summarize the USIMSCAR algorithm. In STEP 1, we retrieved a set

of the most similar cases (RET CASES) to the new problem Q. In STEP 2, we

retrieved a set of the most similar scars (RET SCARS) to Q. In STEP 3, we quan-

tified the usefulness of each case C ∈ RET CASES by integrating its similarity to

CHAPTER 4. USIMSCAR 97

Q and the interestingness of the most relevant scar with respect to C. In STEP

4, we quantified the usefulness of each scar in RET SCARS by integrating its sim-

ilarity to Q and its interestingness. In STEP 5, cases in RET CASES and scars

in RET SCARS were merged into a retrieval result RET RES. The usefulness of

each object in RET RES was further enhanced by considering the proportion of the

frequency of its solution over the total number of solutions among all objects in

RET RES. As discussed, our proposed usefulness quantification method aims to im-

prove and enhance SBR approaches based only on similarity measures. Eventually,

we use this method for retrieving useful cases and scars with respect to the target

problem Q.

4.4.4 An Example Illustrating USIMSCAR

We now illustrate the operation of the USIMSCAR algorithm using a case base D
shown in Table 4.7. This table is the same table already presented in Section 1.3

when we discussed our research motivation.

Table 4.7: A patient case base.

Case ID
Local Pain Other Pain Fever Appetite Loss Age Diagnosis Similarity

(A1) (A2) (A3) (A4) (A5) (A6) to Q
P1 right flank vomit 38.6 yes 10 appendicitis 0.631
P2 right flank vomit 38.7 yes 11 appendicitis 0.623
P3 right flank vomit 38.8 yes 13 appendicitis 0.618
P4 right flank sickness 37.5 yes 35 gastritis 0.637
P5 epigastrium nausea 36.8 no 20 stitch 0.420
Q right flank nausea 37.8 yes 14 ?

Weight 0.91 0.78 0.60 0.40 0.20

As shown, the above case base D consists of five patient cases P1, ..., P5, where

each case is represented as a pair of a problem and the corresponding solution. Each

problem is characterized by the five attributes (i.e. symptoms) A1, ..., A5. Each

solution is characterized by the attribute A6 termed the solution-attribute specified

to hold only solutions. Recall that our objective here is to diagnose the correct

disease for a new patient Q. As previously shown in Section 1.3, SBR selected

the case P4 as the most useful case for Q, since its similarity to Q is the highest

CHAPTER 4. USIMSCAR 98

in D. Therefore, SBR determined a diagnosis for Q as ‘gastritis’, which is the

diagnosis of the case P4. However, this diagnosis was incorrect (according to expert

verification (Castro et al., 2009)) and that Q was actually identified as suffering

from ‘appendicitis’ not ‘gastritis’..

From the case base D, USIMSCAR can generate the following four scars using

Algorithm 1 previously presented in Section 4.3.2.

Table 4.8: The scars generated.

Rules Laplace Soft-subset of

r1: {(A1,right flank),(A2,vomit),(A3,38.6),(A4,yes),(A5,13)} → (A6,appendicitis) 0.922 P1, P2, P3

r2: {(A1,right flank),(A2,vomit),(A3,38.7),(A4,yes),(A5,10)} → (A6,appendicitis) 0.922 P1, P2, P3

r3: {(A1,right flank),(A2,vomit),(A3,38.8),(A4,yes),(A5,10)} → (A6,appendicitis) 0.922 P1, P2, P3

r4: {(A1,right flank),(A2,sickness),(A3,37.5),(A4,yes),(A5,35)} → (A6,gastritis) 0.775 P4

To generate the scars (prSCARS) from the case base D using Algorithm 1, we use

the similarity knowledge encoded via the following similarity measure SIM :

SIM(Q,C) =

∑n
i=1 wi ∗ sim(qi, pi)∑n

i=1 wi

, (4.8)

where Q is a new problem, C is a case, wi is a weight3 assigned to the attribute Ai, qi

and pi are values of the attribute Ai of the problem Q and the case C respectively,

n denotes the number of the attributes of the cases (i.e. n is 5), and sim(qi, pi)

denotes a local similarity measure between values qi and pi given as:

sim(qi, pi) =





1− |qi−pi|
Amax

i −Amin
i

, if an attribute Ai is numeric,

1, if an attribute Ai is discrete & qi = pi,

0, otherwise,

(4.9)

where Amax
i and Amin

i denote the maximum and minimum values, respectively, in

the value range that an attribute Ai can take on.

3As previously mentioned in Section 1.3, the weight is assigned by the domain expert (Castro
et al., 2009).

CHAPTER 4. USIMSCAR 99

We now present how USIMSCAR performs with the above example. Given the

new patient Q shown in Table 4.7, USIMSCAR performs the following steps (assume

k = 4, which is used in STEP 1 and STEP 2 in Algorithm 2).

STEP 1: USIMSCAR retrieves the set of four most similar cases to the patient Q

using the similarity function SIM presented above. The retrieved cases are

denoted as RET CASES. RET CASES is then represented as RET CASES

= {P4, P1, P2, P3}. The similarity of each case in RET CASES with respect to

Q is as follows:

SIM(Q, P4) = 0.637,
SIM(Q, P1) = 0.631,
SIM(Q, P2) = 0.623,
SIM(Q, P3) = 0.618.

STEP 2: USIMSCAR retrieves the set of four most similar scars to the patient

Q using the similarity function SIM . As mentioned earlier, we recall that

scars have the same structure as cases. Therefore, we use the same similarity

function SIM used in STEP 1 in order to find such similar scars to Q. The

retrieved scars are denoted as RET SCARS. RET SCARS is finally made of

the following four scars: RET SCARS = {r1, r4, r2, r3}. The similarity of each

scar in RET SCARS to Q is as follows:

SIM(Q, r1) = 0.644,
SIM(Q, r4) = 0.640,
SIM(Q, r2) = 0.626,
SIM(Q, r3) = 0.615.

STEP 3: For each case C ∈ RET CASES, USIMSCAR selects its most relevant

scar rC ∈ prSCARS, where prSCARS denotes the set of scars generated from

the case base D. As previously mentioned, a rule r ∈ prSCARS is chosen as

rC , if it has the highest interestingness (i.e. the Laplace measure) among those

scars in prSCARS such that their antecedents are soft-subsets of the case C

and their consequents are equal to the solution of C. The chosen scars for each

case in RET CASES are as follows:

CHAPTER 4. USIMSCAR 100

For P4, rP4 is selected as r4.
For P1, rP1 is selected as r1, r2, and r3.
For P2, rP2 is selected as r1, r2, and r3.
For P3, rP3 is selected as r1, r2, and r3.

We denote the usefulness of each case C in RET CASES with respect to Q as

Usefulness(Q, C). Then, Usefulness(Q,C) is computed by multiplying its

similarity to Q (SIM(Q,C)) and Laplace(rC):

Usefulness(Q,P1) = 0.581,
Usefulness(Q,P2) = 0.574,
Usefulness(Q,P3) = 0.570,
Usefulness(Q,P4) = 0.494.

Finally, each case C ∈ RET CASES is cast as a generic object O, where

O.instance = C and O.usf = Usefulness(Q,C). This object O is stored in

a retrieval result RET RES.

STEP 4: For each scar r ∈ RET SCARS, USIMSCAR computes the usefulness of r

with respect to the patient Q. This usefulness is denoted as Usefulness(Q, r)

computed by multiplying two factors SIM(Q, r) and Laplace(r). The following

is the computed usefulness of scars in RET SCARS with respect to Q:

Usefulness(Q, r1) = 0.594,
Usefulness(Q, r2) = 0.577,
Usefulness(Q, r3) = 0.567,
Usefulness(Q, r4) = 0.496.

After that, each scar in RET SCARS is cast as a generic object O, where

O.instance = r and O.usf = Usefulness(Q, r). This object O is stored in a

retrieval result RET RES.

STEP 5: Suppose that each object in RET RES has a field s holding its solution.

RET RES then consists of eight objects: RET RES = {O1, ..., O8}, where

As observed in RET RES, there are only two sets of solutions: ‘appendici-

tis’ and ‘gastritis’. Thus, there are two sets: Sappendicitis and Sgastritis, where

Sappendicitis consists of objects with the solution ‘appendicitis’ and Sgastritis is

CHAPTER 4. USIMSCAR 101

O1.instance = P1, O1.usf = 0.581, O1.s = appendicitis
O2.instance = P2, O2.usf = 0.574, O2.s = appendicitis
O3.instance = P3, O3.usf = 0.570, O3.s = appendicitis
O4.instance = P4, O4.usf = 0.494, O4.s = gastritis
O5.instance = r1, O5.usf = 0.594, O5.s = appendicitis
O6.instance = r2, O6.usf = 0.577, O6.s = appendicitis
O7.instance = r3, O7.usf = 0.567, O7.s = appendicitis
O8.instance = r4, O8.usf = 0.496, O8.s = gastritis.

made of objects with the solution ‘gastritis’. Recall also that δ(SO) is com-

puted as δ(SO) = |SO|/|RET RES|. Therefore:

δ(Sappendicitis) = 0.75(6/8),

δ(Sgastritis) = 0.25(2/8).

Finally, the usefulness of each object in RET RES with respect to Q is en-

hanced by including either δ(Sappendicitis) or δ(Sgastritis), according to whether

its solution is either ‘appendicitis’ or ‘gastritis’. The enhancement results are

presented in the following:

O5.usf = 0.446: O5.usf = 0.594 ∗ δ(Sappendicitis) = 0.75
O1.usf = 0.436: O1.usf = 0.581 ∗ δ(Sappendicitis) = 0.75
O6.usf = 0.432: O6.usf = 0.577 ∗ δ(Sappendicitis) = 0.75
O2.usf = 0.431: O2.usf = 0.574 ∗ δ(Sappendicitis) = 0.75
O3.usf = 0.428: O3.usf = 0.570 ∗ δ(Sappendicitis) = 0.75
O7.usf = 0.425: O7.usf = 0.567 ∗ δ(Sappendicitis) = 0.75
O8.usf = 0.124: O8.usf = 0.496 ∗ δ(Sgastritis) = 0.25
O4.usf = 0.124: O4.usf = 0.494 ∗ δ(Sgastritis) = 0.25

In this section, we presented our proposed retrieval strategy USIMSCAR as the

core contribution of this thesis. We first presented the underlying rationale for

exploiting association knowledge in USIMSCAR. We also provided the overall func-

tionality of USIMSCAR in comparison with that of SBR. After that we presented

the formal algorithm of USIMSCAR. Finally, we illustrated the operation of USIM-

SCAR with an example. In this thesis, our research is focused on the retrieval

process in CBR. The final output of USIMSCAR is a retrieval result RET RES.

Therefore, in order to generate a set of ranked solutions within RET RES, a vot-

ing scheme is required as previously mentioned. Thus, in the following section, we

CHAPTER 4. USIMSCAR 102

provide a brief description of voting. We also show how to induce an appropriate

solution from RET RES using voting.

4.5 Voting Schemes

In order to induce an optimal solution for a new problem Q, we need to rank the

solutions of the N top objects in the retrieval result RET RES. These objects mean

the objects that are best N objects in RET RES, in terms of their usefulness with

respect to Q. We denote a set of such objects as RET RESnew ⊆ RET RES. To

generate RET RESnew, we can select a value of N < |RET RES| or choose all

objects in RET RES, i.e. N = |RET RES|. The ranking of the solutions of objects

in RET RESnew can be determined by a voting scheme. In the following, we present

two well-known voting schemes used widely in the CBR community that we also use

in our experiments provided in Chapter 6. These schemes are majority voting and

distance weighting voting.

The most straightforward scheme for voting is majority voting, in which the vote

of each object in RET RESnew receives an equal weight. Using majority voting, the

vote of objects in RET RESnew toward a solution Y is represented as:

V otemv(Y) =
N∑

i=1

θ(Y, Yi), (4.10)

where θ(Y, Yi) returns 1 if the solution Y and the solution Yi of an object Oi ∈
RET RESnew match, and 0 otherwise, and N is |RET RESnew|. In SBR, majority

voting can also be applied to the set of N most similar cases to Q using the same

principle as above. To illustrate, assume that RET CASES is the set of N most

similar cases to Q. Using majority voting, the vote of objects in RET CASES

toward a solution Y is represented as V otemv(Y) =
∑N

i=1 θ(Y, Yi), where θ(Y, Yi)

returns 1 if the solution Y and the solution Yi of a case Ci ∈ RET CASES match,

and 0 otherwise, and N is |RET CASES|.

CHAPTER 4. USIMSCAR 103

A more general technique for voting is distance weighted voting (Dudani, 1976), in

which more competent objects are assigned more weights. Objects in RET RESnew

get to vote on the solution of Q, with votes weighted by their usefulness with respect

to Q. Note that the usefulness of each object O ∈ RET RESnew is represented in the

field O.usf determined by using both similarity and association knowledge. Using

weighted voting, the vote toward to a solution Y of objects in RET RESnew is given

as:

V otewv(Y) =
N∑

i=1

θ(Y, Yi) ∗Oi.usf, (4.11)

where θ(Y, Yi) returns 1 if the solution Y and the solution Yi of an object Oi ∈
RET RESnew match, and 0 otherwise, and N is |RET RESnew|. For each object Oi ∈
RET RESnew, the vote toward the solution Y is further multiplied by the usefulness

of Oi (i.e. Oi.usf). In SBR, weighted voting can also be applied using the same

principle as above. To illustrate, again assume that RET CASES is the set of N most

similar cases to Q. Using weighted voting, the vote of objects in RET CASES toward

a solution Y is represented as V otewv(Y) =
∑N

i=1 θ(Y, Yi) ∗ SIM(Ci, Q), where

θ(Y, Yi) returns 1 if the solution Y and the solution Yi of a case Ci ∈ RET CASES

match, and 0 otherwise, and N is |RET CASES|. For each case Ci ∈ RET CASES,

the vote toward the solution Y is further multiplied by the similarity to Q (i.e.

SIM(Ci, Q)).

The computed vote of each solution of objects in RET RESnew is then normalized

by using the information available in RET RESnew. In majority voting, a vote

toward the solution Y can be normalized by the number of objects in RET RESnew.

We compute this normalized vote toward the solution Y as:

V oteNL
mv (Y) =

V otemv(Y)

|RET RESnew| . (4.12)

In weighted voting, a vote toward the solution Y can be normalized by the

summation of the significance of all objects in RET RESnew. That is:

CHAPTER 4. USIMSCAR 104

V oteNL
wv (Y) =

V otewv(Y)∑
Oi∈RET RESnew Oi.usf

. (4.13)

Finally, after the normalization, the solution with the highest vote is chosen as

the best ranked solution for the new problem Q.

We now show how an appropriate solution for the new patient Q is induced using

the above two voting schemes with the example presented in 4.4.4. Suppose that we

rank the solutions of all objects in the retrieval result RET RES, thus RET RESnew

is set to RET RES. With the example, we produced RET RES with eight objects:

RET RES = {O1, ..., O8}. Thus, |RET RES| = 8 and also |RET RESnew| = 8.

Solution induction methods from RET RESnew are achieved using the majority and

weighting voting schemes as follows:

• If applying majority voting:

V otemv(appendicitis) = 6,

V otemv(gastritis) = 2.

After applying the normalization, we obtain:

V oteNL
mv (appendicitis) = 0.75(6/8),

V oteNL
mv (gastritis) = 0.25(2/8).

Finally, the highest ranked solution ‘appendicitis’ is chosen as a solution for

the new patient Q.

• If applying the above weighted voting:

V otewv(appendicitis) = 2.598,

V otewv(gastritis) = 0.248.

After applying the normalization, we obtain:

CHAPTER 4. USIMSCAR 105

V oteNL
wv (appendicitis) = 0.913(2.598/2.846),

V oteNL
wv (gastritis) = 0.087(0.248/2.846).

As a result, the highest ranked solution ‘appendicitis’ is also chosen as a solu-

tion for the new patient Q.

As shown, with RET RESnew using both voting schemes, we are able to deter-

mine a solution (i.e. diagnosis) for the new patient Q as a disease ‘appendicitis’.

This is correct, since Q was actually identified to suffer from a disease ‘appendicitis’

as previously mentioned.

Further, suppose that we choose the single most usefulness object in RET RESnew

with respect to Q. As previously explained, the usefulness is quantified by integrat-

ing similarity and association knowledge in USIMSCAR. Recall that in this scenario,

RET RESnew = RET RES, thus RET RESnew consists of the following objects as

presented in STEP 5 in Section 4.4.4.

O5.usf = 0.446: O5.usf = 0.594 ∗ δ(Sappendicitis) = 0.75

O1.usf = 0.436: O1.usf = 0.581 ∗ δ(Sappendicitis) = 0.75

O6.usf = 0.432: O6.usf = 0.577 ∗ δ(Sappendicitis) = 0.75

O2.usf = 0.431: O2.usf = 0.574 ∗ δ(Sappendicitis) = 0.75

O3.usf = 0.428: O3.usf = 0.570 ∗ δ(Sappendicitis) = 0.75

O7.usf = 0.425: O7.usf = 0.567 ∗ δ(Sappendicitis) = 0.75

O8.usf = 0.124: O8.usf = 0.496 ∗ δ(Sgastritis) = 0.25

O4.usf = 0.124: O4.usf = 0.494 ∗ δ(Sgastritis) = 0.25

Therefore, we can also choose a disease ‘appendicitis’ that is correct as a diagnosis

for Q, since the object O5 is selected as the most useful object with the usefulness

0.446 with respect to Q. However, recall that if we choose the most useful case to

Q from the retrieval result obtained from SBR, we had to choose the case P4 whose

diagnosis is a disease ‘gastritis’ as previously shown in Section 1.3. This is because

in SBR, the usefulness of cases is measured by using only similarity knowledge, i.e.

their similarity to Q.

CHAPTER 4. USIMSCAR 106

4.6 Summary

In this chapter, we presented our proposed retrieval strategy USIMSCAR that lever-

ages similarity and association knowledge. The objectives of USIMSCAR are to

enhance and improve the retrieval performance of traditional similarity-based re-

trieval (SBR) by combining similarity knowledge with a specific form of association

rules that encode association knowledge. We first discussed the rationale for using

association knowledge in USIMSCAR. We then discussed the overall functionality of

USIMSCAR in comparison with that of SBR. After that we presented the detailed

algorithm of USIMSCAR that leverages association knowledge in conjunction with

similarity knowledge. In the algorithm, we proposed strategies for quantifying the

usefulness of stored cases with respect to the target problem by integrating similar-

ity and association knowledge. We further proposed strategies for identifying useful

specific association rules with respect to the target problem, and quantifying their

usefulness by leveraging both similarity and association knowledge.

Since association knowledge is the core theoretical foundation for the operation of

USIMSCAR, we presented our approach for acquiring and representing association

knowledge from a given case base. We proposed that this knowledge is encoded via a

special form of association rules, called soft-matching class association rules (scars),

mined by combining a specific form of association analysis techniques that are class

association rule mining with the soft-matching criterion. This chapter presented the

key theoretical contributions of this thesis.

We have implemented and evaluated USIMSCAR in various CBR application

domains using both benchmark and real datasets. The next two chapters will present

the implementation and experimental evaluation of USIMSCAR respectively.

Chapter 5

Implementation of USIMSCAR

5.1 Introduction

In Chapter 4, we presented our approach for formalizing association knowledge as

well as our proposed retrieval strategy USIMSCAR designed to enhance similarity-

based retrieval (SBR) by leveraging a combination of similarity and association

knowledge. In this chapter, we present the implementation of USIMSCAR. The

primary purpose of the implementation is to provide a platform for experimental

evaluation and validation of USIMSCAR.

This chapter is organized as follows. In Section 5.2, we provide an overview of

our implementation. In Section 5.3, we present our implementation for formalizing

association knowledge and discuss its various modules. In Section 5.4, we present

the implementation of USIMSCAR and provide descriptions of its different modules.

In Section 5.5, we summarize this chapter.

5.2 Implementation Overview

We have implemented our proposed USIMSCAR as well as our association knowledge

formalization in the Eclipse Integrated Development Environment (IDE) Version

1.5.4. We also leverage the Weka toolkit1 (Witten and Frank, 2000).

1The Weka toolkit is available at http://www.cs.waikato.ac.nz/ml/weka

107

CHAPTER 5. IMPLEMENTATION OF USIMSCAR 108

We have used Weka, since it contains a framework in the form of source codes

that provide the implementation of the association analysis techniques required for

capturing and formalizing association knowledge. Weka provides a source code of

the Apriori algorithm (Agrawal et al., 1993), which is a key algorithm for associ-

ation rule mining as previously mentioned in Chapters 3 and 4. A comprehensive

introduction of Weka can be found in the book of Witten and Frank (Witten and

Frank, 2000). Based on the source code of the Apriori algorithm available in Weka,

we have implemented our approach for formalizing association knowledge encoded

via soft-matching class association rules (scars).

In our implementation of USIMSCAR, a case base is represented by using the

attribute-relation file format (ARFF). An ARFF file is an ASCII text file formatted

in a standard way of representing datasets that consist of independent, unordered

instances and do not involve relationships among instances (i.e. cases). ARFF files

were developed for use with Weka (Witten and Frank, 2000). Figure 5.1 shows an

example ARFF file.

Figure 5.1: An example case base formatted by the ARFF format.

Referring to the above figure, the beginning of the file is the name of the relation

(‘src/pcars/data2/SimpleTest.data.train’) and a block defining the attributes (‘d1’,

‘d2’, ‘solution’). Nominal attributes are followed by the set of values, which can have,

enclosed in curly braces. Numeric values are followed by the keyword ‘numeric’. The

above case base can be used to identify a value (i.e. solution) of the solution-attribute

whose name is ‘solution’ using the values of the other attributes. After defining the

attributes, the ‘@data’ line specifies the start of the instances (i.e. cases) in the

CHAPTER 5. IMPLEMENTATION OF USIMSCAR 109

dataset (i.e. case base). Instances are written one per line, with values for each

attribute in turn separated by commas.

In the next section, we present our implementation for formalization association

knowledge. We also discuss the modules included in it.

5.3 Implementation for Association Knowledge For-

malism

This section presents our implementation for formalizing association knowledge. As

previously discussed, association knowledge is encoded via soft-matching class as-

sociation rules (scars). The implementation architecture for formalizing association

knowledge is presented in Figure 5.2.

Soft-Matching Class Association Rules

(SCARS) Generation Process
Repository

Case base

Generate ARFF files

Generate similarity

matrix

Generate SCARS

Case base ARFF

files

Similarity matrix

SCARS

(Association

Knowledge)

Figure 5.2: The implementation architecture for formalizing association knowledge.

Since association knowledge is encoded via scars, we present the implementation

of the modules, which are necessarily used to generate scars from a given case base.

As observed in this figure, three modules are required to implement for generating

scars. These are (1) Generate ARFF files, (2) Generate similarity matrix, and

CHAPTER 5. IMPLEMENTATION OF USIMSCAR 110

(3) Generate SCARS. The results of performing these modules are three different

entities as shown in Figure 5.2. These are (1) Case base ARFF files, (2) Similarity

matrix, and (3) SCARS (Association Knowledge). In the following, we discuss the

implementation of these modules in detail.

(1) Generate ARFF files. Given a case base, we first convert it into a number

of ARFF files. Below, we present how to generate these ARFF files. Suppose that

we are given a simple case base, formatted by a plain text, shown in Figure 5.3.

Figure 5.3: An example case base formatted by a plain text.

Suppose that this case base consists of three cases, where each case is described

by three attributes: ‘d1’, ‘d2’, and ‘solution’. Cases are written one per line, with

values for each attribute in turn separated by commas. For each case, the first value

(e.g. 1, 2) of the attribute ‘d1’, and second value (e.g. 38.6, 38.7) of the attribute

‘d2’ are used to describe a problem. The last value (e.g. A, B) of the attribute

‘solution’ represents a corresponding solution. Given a case base, we generate a

number of ARFF files. The number of the files are proportional to the number of

the attributes, which are used to describe each problem. If N attributes are used to

describe each problem, we generate (N + 1) ARFF files. The generation procedure

of these files is divided into the following two steps:

1. In the first step, for each attribute Ai∈[1,N], we create an ARFF file in which

all values of the attribute Ai are represented. The corresponding indices of

these values are represented together with them. For example, given the case

base shown in Figure 5.3, we generate two ARFF files, since two attributes

CHAPTER 5. IMPLEMENTATION OF USIMSCAR 111

‘d1’ and ‘d2’ are used to describe each problem. The generated files are shown

in Figures 5.4 and 5.5.

Figure 5.4: The generated ARFF file for the attribute ‘d1’.

Figure 5.5: The generated ARFF file for the attribute ‘d2’.

In each ARFF file, its beginning is the name of the relation and a block

defining two attributes. In Figure 5.4, these attributes are ‘d1 index’ and

‘d1’. In Figure 5.5, these attributes are ‘d2 index’ and ‘d2’. In each file, after

defining the attributes used, the ‘@data’ line signals the beginning of the cases.

Cases are written one per line, with values for each attribute in turn separated

by commas. Each case is represented as an index-value pair separated by a

comma. This pair is a set of two linked data items: an index that is a unique

index, and the real value that is identified by the index. Initially, an index is

set to 1 and is increased by 1 as the number of values that the attribute can

take on is increased. For example, referring to the first line after the ‘@data’

line in Figure 5.4, ‘1,1’ is an index-value pair, where the index is a numeric

value 1 and the real value is a nominal value 1. Referring to the first line after

the ‘@data’ line in Figure 5.5, ‘1,38.6’ is an index-value pair, where the index

is a numeric value 1 and the real value is a numeric value 38.6.

CHAPTER 5. IMPLEMENTATION OF USIMSCAR 112

2. In addition to the N ARFF files generated in the above step, as the second

step, we create another ARFF file in which values of the attributes of cases

reference the indices defined in those N ARFF files. Given the case base

presented in Figure 5.3, we can create the ARFF file shown in Figure 5.6.

Figure 5.6: The generate ARFF file for the case base in Figure 5.3.

As shown in Figure 5.6, the nominal attribute ‘d1’ is followed by the set

of values, which it can take on, enclosed in curly braces. But these values

reference the indices defined in the ARFF file, for the attribute ‘d1’, shown

in Figure 5.4. Similarly, the nominal attribute ‘d2’ is followed by the indices

defined in the ARFF file, for the attribute ‘d2’, shown in Figure 5.5. However,

the solution-attribute ‘solution’ is followed by the set of real values, which it

can take on, enclosed in curly braces. As previously outlined in Section 4.2.1,

a solution-attribute is an attribute specified to hold only solutions of cases

stored in the case base.

The reason for splitting a given case base into a number of ARFF files is to

facilitate the construction of a similarity matrix that is essentially used to generate

scars. In the following, we provide a detailed description of constructing this matrix.

(2) Generate similarity matrix. In order to generate scars from a given case

base, it is essential to discover frequent ruleitems from the case base by using the

soft-matching criterion. As previously mentioned in Section 4.3.1, a ruleitem is of

the form 〈X, y〉 and basically represents a rule X → y, where X denotes an itemset

CHAPTER 5. IMPLEMENTATION OF USIMSCAR 113

(i.e. a certain set of problem features of stored cases) termed the antecedent and y

means a solution-item termed the consequent.

A frequent ruleitem is referred to as a ruleitem whose soft-support is greater

than or equal to minsupp (i.e. a user-specified minimum support). To discover

the frequent ruleitems, it is also essential to measure the similarity between two

items, since the soft-matching criterion focuses on finding interesting relationships

between items based on their similarities. To facilitate the similarity computation

between items, we construct an m × m matrix, where m is the total number of

items discovered from a given case base. More specifically, for each attribute Ai∈[i,N]

of cases stored in the case base, we construct an l × l matrix, where l is the total

number of values that the attribute Ai can take on, and N denotes the total number

of the attributes describing each problem. For example, Figure 5.7 shows a similarity

matrix for the attribute ‘d1’ defined in the file shown in Figure 5.4, and Figure 5.8

shows a similarity matrix for the attribute ‘d2’ defined in the file shown in Figure

5.5.

Figure 5.7: A similarity matrix for the attribute ‘d1’.

Figure 5.8: A similarity matrix for the attribute ‘d2’.

As shown in Figure 5.7, the size of l is 2, which corresponds to the maximum

index defined in the ARFF file, for the attribute ‘d1’, shown in Figure 5.4. As shown

in Figure 5.8, the size of l is 3, which corresponds to the maximum index defined in

CHAPTER 5. IMPLEMENTATION OF USIMSCAR 114

the ARFF file, for the attribute ‘d2’, shown in Figure 5.5. In the similarity matrix

for each attribute Ai∈[i,N], suppose that rows and columns are implicitly labeled with

the indices that the attribute Ai can take on. The entry, which lies in the ith row

and the jth column of the matrix, is defined by the similarity between the value of

the ith index and the value of the jth index, where these indices are defined in the

ARFF file for the attribute Ai. Eventually, these kinds of similarity matrices are

used to discover frequent ruleitems from the case base.

(3) Generate SCARS. Based on the source code ‘weka.associations.Apriori.java’

available in Weka (Witten and Frank, 2000), we have implemented the algorithm

for generating scars. This rule generation results in two files.

1. The first file contains the information of the generated scars from a given

case base (a ‘.SCARS’ file). The criteria for generating scars were previously

outlined in Section 4.3.2. From the ARFF files shown in Figures 5.4 - 5.6, we

can generate the following file shown in Figure 5.9.

Figure 5.9: A set of the generated scars.

As seen in the above figure, this file begins with the statement:

‘@ID:Antecedent:Consequent:Laplace:Cases Covered’.

This statement indicates that each scar is formatted using five different kinds of

information. For a scar r generated, its represented information is as follows:

(1) r’s ID, (2) r’s antecedent, (3) r’s consequent, (4) r’s Laplace measure,

and (5) the set of cases relevant to r. As previously mentioned in Section

4.4.3, we say that given a case C, a scar is relevant to C, if its antecedent

CHAPTER 5. IMPLEMENTATION OF USIMSCAR 115

is a soft-subset of C and its consequent is equal to C’s solution. We also

recall that we say that an itemset X is a soft-subset of a case C (X ⊆soft

C), iff softSuppR(X, C) ≥ minsim (i.e. a user-specified minimum similar-

ity). The function softSuppR(X,C) was defined as softSuppR(X, C) =
∑

sim(x, y)/|X|, where x ∈ X and y ∈ C are two items characterized by

the same attribute, and sim(x, y) denotes the similarity between x and y. To

illustrate, consider the uppermost expression below the beginning of the line

in Figure 5.9:

‘1:1,1(anteSoftSuppSum=1.998):A(softSuppSum=1.998):laplace=0.937:2,1’.

The represented information in this expression is as follows:

• ‘1’: The ID of a scar is 1. For the simplicity, we denote this scar as r.

• ‘1,1(anteSoftSuppSum=1.998)’: The antecedent size of r is 2. The expres-

sion ‘1,1’ is implicitly interpreted as an itemset ‘{(d1,1),(d2,1)}’. Consid-

ering ‘(d1,1)’, ‘d1’ denotes the attribute ‘d1’ and ‘1’ represents the index

of the value that the attribute ‘d1’ can take on. This index is defined

in the ARFF file, for the attribute, ‘d1’ shown in Figure 5.4. Consider-

ing ‘(d2,1)’, ‘d2’ specifies the attribute ‘d2’, and ‘1’ is the index of the

value that the attribute ‘d2’ can take on. This index is defined in the

ARFF file, for the attribute ‘d2’, shown in Figure 5.5. The expression

‘anteSoftSuppSum=1.998’ means that the anteSoftSuppSum of r is 1.998.

Recall that this anteSoftSuppSum is computed as the soft-support-sum

of ruleitems in the case base that softly contain the antecedent of r, as

previously presented in Section 4.3.2.

• ‘A(softSuppSum=1.998)’: The expression ‘A’ in the consequent of r is

implicitly interpreted as a solution-item ‘(solution, A)’, where ‘solution’

is the name of a solution-attribute and ‘A’ is a value of this attribute.

The expression ‘softSuppSum=1.998’ represents that the softSuppSum of

r is 1.998. Recall that this softSuppSum is computed as the soft-support-

sum of ruleitems in the case base that softly contain the antecedent of r

CHAPTER 5. IMPLEMENTATION OF USIMSCAR 116

and also contain the consequent of r as previously presented in Section

4.3.2.

• ‘laplace=0.937’: This expression denotes that the Laplace measure of r

is 0.937.

• ‘2,1’: This list separated by a comma represents two case IDs that are

relevant to r.

2. The second file, produced after performing the implemented algorithm for

generating scars, is created to represent the information connecting cases and

the particular scars that are soft-subsets of the cases. The filename extension

of this file ends with ‘.CASE SCARS IDX’. As seen in Figure 5.10, the data

below the beginning line ‘@ coverage info: case ID & scars IDs’ shows the

relationships between cases and the scars that are relevant to the cases.

Figure 5.10: Relation between case IDs and scar IDs.

The information contained in this file is used in our proposed retrieval strategy

USIMSCAR, particularly in STEP 3 in the USIMSCAR algorithm discussed

in Section 4.4.3.

In this section, we focused on presenting our implementation for capturing and

representing association knowledge. The implementation presented how the scars

are generated from the case base. Also, it established the modules that have been

implemented to facilitate the generation of scars. In the next section, we present

the implementation of our retrieval strategy USIMSCAR and discuss its different

modules.

CHAPTER 5. IMPLEMENTATION OF USIMSCAR 117

5.4 Implementation of the USIMSCAR Engine

In this section, we present the implementation of our proposed retrieval strategy

USIMSCAR and discuss the modules included in it. The implementation architec-

ture is presented in Figure 5.11. As can be seen in this figure, given a new problem,

USIMSCAR takes five main steps to retrieve potentially useful cases to solve a given

problem. This maps to the algorithm previously presented in Section 4.4.3. In the

following, we present the implementation of each step.

USIMSCAR Repository

Retrieve the k most

similar cases

Retrieve the k most

similar scars

Measure the usefulness

of the retrieved cases

End User

A problem

A solution

Measure the usefulness

of the retrieved scars

Voting

Enhance the usefulness

of objects in RET_RES

Case base ARFF files

Similarity Measures

(Similarity

Knowledge)

SCARS (Association

Knowledge)

Retrieval

Result

(RET_RES)

Figure 5.11: The implementation architecture of USIMSCAR.

(1) Retrieve the k most similar cases. Given a new problem, USIMSCAR

retrieves its k most similar cases. A value for k is assumed to be provided

by the user. To complete this task, USIMSCAR uses similarity knowledge

encoded via similarity measures. We have implemented a module for finding

the k most similarity cases by using ‘LinearNNSearch.java’ module available in

CHAPTER 5. IMPLEMENTATION OF USIMSCAR 118

Weka. This module implements a greedy search algorithm for nearest neighbor

search.

(2) Retrieve the k most similar scars. For the new problem, USIMSCAR

retrieves its k most similar scars. The generation of the scars from a given case

has been outlined in the previous section. These scars are stored in the file

‘case base name.SCARS’ created after generating scars from the case base.

(3) Measure the usefulness of the retrieved cases. For each case C in the

cases acquired from (1), we quantify its usefulness with respect to the new

problem by leveraging its similarity and the interestingness (i.e. the Laplace

measure) of a specific scar that is the most relevant to the case C. The infor-

mation about the relationships between the case C and the scars relevant to

C is stored in the file ‘case base name.CASE SCARS IDX’ created after gen-

erating scars from the case base. Among the scars relevant to the case C, we

say that a scar is called the most relevant scar to C, iff its interestingness is

the highest. The retrieved cases with their usefulness are stored in a retrieval

result (RET RES).

(4) Measure the usefulness of the retrieved scars. For each scar in the scars

acquired from (2), we quantify its usefulness with respect to the new problem

by leveraging its similarity and interestingness. The retrieved scars with their

usefulness are also stored in the retrieval result (RET RES).

(5) Enhance the significance of objects in RR. For each object in the re-

trieval result (RET RES), we further enhance its usefulness, according to the

frequency of the solution in RET RES.

USIMSCAR achieves its goal by resulting in the retrieval result (RET RES), in

which potentially useful objects (i.e. both cases and scars) are stored with their

quantified usefulness with respect to the new problem. RET RES is then utilized

to induce an appropriate solution for the new problem by voting whose description

CHAPTER 5. IMPLEMENTATION OF USIMSCAR 119

has been provided in Section 4.5. We have implemented both majority and distance

weighted voting schemes for comparative evaluation. In this section, we presented

our implementation of our retrieval strategy USIMSCAR and discussed its different

modules.

5.5 Summary

In this chapter, we presented the implementations of our strategy for capturing and

representing association knowledge in the form of soft-matching class association

rules (scars). We also presented our implementation of the USIMSCAR retrieval

strategy. Our implementation leverages the Weak toolkit and is implemented us-

ing the Eclipse IDE with JDK Version 1.6. In the next chapter, we will provide

our evaluation of USIMSCAR in comparison with similarity-based retrieval (SBR).

This evaluation will be based on our extensive experiments in three different CBR

application domains.

Chapter 6

Evaluation of USIMSCAR

6.1 Introduction

In Chapter 4, we proposed and developed our novel retrieval strategy USIMSCAR

that leverages both useful cases and association rules in the form of scars with re-

spect to the target problem. Thus, USIMSCAR leverages both similarity and associ-

ation knowledge in order to improve traditional similarity-based retrieval (SBR). In

Chapter 5, we presented a prototype implementation of the USIMSCAR engine. In

this chapter, we present our experimental evaluation of USIMSCAR, in comparison

with traditional SBR, to demonstrate its retrieval performance. For this evaluation,

we extensively measure the retrieval performance of USIMSCAR and SBR using

both benchmark and real datasets in three CBR application domains: medical di-

agnosis, help-desk service and product recommendation. Through the experimental

results, we demonstrate the significant improvement in retrieval accuracy achieved

by USIMSCAR.

This chapter is organized as follows. In Section 6.2, we present our evaluation

objectives. In Section 6.3, we present our evaluation of USIMSCAR in comparison

with SBR in a medical diagnosis domain. In Section 6.4, we present our evaluation of

USIMSCAR in comparison with SBR in a help-desk service domain. In Section 6.5,

we present our evaluation of USIMSCAR and SBR in a product recommendation

domain. In Section 6.6, we summarize this chapter.

120

CHAPTER 6. EVALUATION OF USIMSCAR 121

6.2 Evaluation Objectives

In this section, we present our evaluation objectives for USIMSCAR. The primary

goal is to validate that USIMSCAR is able to enhance traditional similarity-based

retrieval (SBR). To accomplish this goal, it is essential to determine two important

factors: the first is to determine the target SBR approach to be compared with

USIMSCAR, and the second is to determine the target application task in which

USIMSCAR and the target SBR approach can be sufficiently tested and compared.

We present a detailed description of these two factors in the following subsections.

6.2.1 Target Approach

In order to show that USIMSCAR can enhance traditional SBR, it is essential to

compare USIMSCAR and SBR. As previously outlined in Chapter 2, SBR is typi-

cally implemented using the k-nearest neighbor retrieval approach or simply k-NN

(Lopez De Mantaras et al., 2005). In Chapter 2, we also reviewed the two well-known

approaches that extend k-NN. The first approach was to integrate k-NN with fea-

ture selection, a technique for determining relevant features (or attributes) from the

original features of cases (Liu and Setiono, 1996; Hall, 1998; Nilsson et al., 2003; Ahn

and Kim, 2009). The second approach was to integrate k-NN with feature weighting,

a technique for predicting optimal weights of the original features of cases (Althoff

et al., 1998; Chiu, 2002; Salem, 2007; Ahn and Kim, 2009; Vong et al., 2010). There-

fore, as the target approaches to be compared with USIMSCAR, we choose k-NN

as well as the above two extensions. We describe the implementation of these ap-

proaches in detail in Section 6.2.3.

6.2.2 Target Application Task

As previously mentioned, our evaluation focuses on evaluating USIMSCAR and k-

NN approaches that implement SBR using both benchmark and real datasets in

CHAPTER 6. EVALUATION OF USIMSCAR 122

three application domains: medical diagnosis, help-desk service and product recom-

mendation. For the evaluation in the these domains, it is essential to determine a

target task in which both USIMSCAR and k-NN approaches have to be performed.

Our work in this thesis has been entirely focused on proposing and developing a

strategy aiming to enhance traditional SBR. Therefore, it is desirable to choose a

task that is highly dependent on the retrieval performance in a CBR context. One of

the most suitable tasks that meet this criterion is case-based classification (Jurisica

and Glasgow, 1996; Stahl, 2003).

As previously outlined in Section 2.2.2, CBR has been widely used for solving

classification problems. Various reasoning techniques have been proposed for clas-

sification tasks, including neural networks, genetic algorithms, inductive learning,

and case-based reasoning (Jurisica and Glasgow, 1996). Most of the systems extract

classification rules from training examples during a learning process, and then use

these rules for classification of unseen instances. Alternatively, case-based systems

store whole cases during a learning process and assess the similarity between a given

problem and a stored case to determine an appropriate class for the problem.

Case-based classification can be defined as follows (Jurisica and Glasgow, 1996):

given a new problem Q, the goal is to retrieve a set of similar cases to Q from a case

base, and then classify Q based on the retrieved cases. Thus, in principle, case-based

classification is strongly dependent on the result obtained through retrieval in CBR.

In other words, the retrieval performance of case-based classification relies heavily

on the retrieval process of identifying the most similar cases to a given problem.

Therefore, in our evaluation, we apply USIMSCAR and k-NN approaches in the

context of solving classification problems, i.e. predicting appropriate classes (so-

lutions) for given problems. In this evaluation context, for our evaluation in the

medical diagnosis domain, our goal is to apply USIMSCAR and k-NN approaches

for predicting an appropriate diagnosis for a new patient using information about

patients whose diagnosis is already known. For our evaluation in the help-desk ser-

vice domain, our goal is to apply USIMSCAR and k-NN approaches for predicting a

CHAPTER 6. EVALUATION OF USIMSCAR 123

proper workgroup that can successfully solve a given IT problem using information

about IT problems previously solved. For our evaluation in the product recommen-

dation domain, our goal is to apply USIMSCAR and k-NN approaches for predicting

a movie rating that the user will be likely to give for a given movie using the rating

information that users have previously given to movies.

In the following, we present the implementation of the k-NN approaches chosen

for comparative evaluation with USIMSCAR, and then discuss case-based classifi-

cation in detail.

6.2.3 SBR: k-NN Approaches

In our evaluation, we measure the performance of USIMSCAR and k-NN approaches

chosen for implementing SBR. We outlined that USIMSCAR and these approaches

will be evaluated for case-based classification in three application domains. We

choose and implement several k-NN approaches using the Weka toolkit (Witten and

Frank, 2000). These approaches are also termed classifiers, since these are seen

as the measures for implementing classification tasks. The following is a summary

of the k-NN approaches (or classifiers) that we compare with USIMSCAR in our

evaluation:

1. IBk: IBk (Aha et al., 1991) is the most well-known implementation of k-NN

available in Weka (Witten and Frank, 2000). IBk is simple, and relies on a

distance metric that finds the k nearest neighbors of a new problem Q. This

classifier stores a set of classified cases in memory. When Q is to be classified,

the top k nearest neighbors (cases) of Q are selected by using the standard

Euclidean distance. After that the solution (class) of Q is determined by a

voting scheme using these neighbors. If k = 1, Q is simply classified to the

class of its nearest neighbor.

CHAPTER 6. EVALUATION OF USIMSCAR 124

2. IBkCFS: We denote IBkCFS as an IBk extension that uses a feature selection

approach. IBkCFS is implemented by combining IBk with the correlation-

based feature selector (CFS1) (Hall, 1998) to determine the goodness of feature

(or attribute) subsets. The CFS is called CfsSubsetEval (with the BestFirst

search method) in Weka (Witten and Frank, 2000). CfsSubsetEval assesses the

predictive ability of each feature individually. It then chooses a set of features

that are highly correlated with the class, but have low intercorrelation. The

combination idea of IBk and CfsSubsetEval is very straightforward. Once

relevant features are selected by CfsSubsetEval, IBk uses such features to find

the nearest neighbors of a given problem Q, and then finally classifies Q.

3. IBkLVF: We denote IBkLVF as an IBk extension that uses a different fea-

ture selection approach. IBkLVF is implemented by combining IBk with the

consistency-based feature selector (LVF2) (Liu and Setiono, 1996) to find op-

timally relevant features (or attributes) from the original features of cases.

This feature selector is known as ConsistencySubsetEval (with the Random

search method) in Weka (Witten and Frank, 2000). ConsistencySubsetEval

evaluates feature sets by the degree of consistency in class values when the

training instances are projected onto the set. The combination scheme of IBk

with ConsistencySubsetEval is the same as that of IBkCFS.

4. IBkIG: We denote IBkIG as an IBk extension that uses a feature weighting

approach. This extension is formed by integrating IBk with a feature weighting

evaluator InfoGainAttributeEval available in Weka (Witten and Frank, 2000).

This evaluator measures weighting of features (or attributes) by measuring

their information gain with respect to the class. Integrating IBk with Info-

GainAttributeEval is straightforward. That is, features of cases (including a

new problem Q) can be weighted by InfoGainAttributeEval, and then these

1A description of the correlation-based feature selector (CFS) was provided in Section 2.3.2.
2A description of the consistency-based feature selector (LVF) was provided in Section 2.3.2

CHAPTER 6. EVALUATION OF USIMSCAR 125

weighted features are used to compute the distance (or similarity) between Q

and each case.

5. IBkCS: We denote IBkCS as an IBk extension that uses a different feature

weighting evaluator. This extension is done by integrating IBk with a feature

weighting evaluator ChiSquaredAttributeEval available in Weka (Witten and

Frank, 2000). ChiSquaredAttributeEval evaluates features (or attributes) by

computing the chi-square statistic with respect to the class. The chi-square

statistic is a nonparametric statistical technique used to determine if a distrib-

ution of observed frequencies differs from the theoretical expected frequencies.

The integration principle of IBk with ChiSquaredAttributeEval is the same as

that of IBkIG.

For the above five k-NN classifiers, we determined a suitable value for the top

k that indicates the number of most similar cases to a given problem Q. In all our

experiments in this chapter, we tested the classifiers using various values for this k,

ranging from 1 to 15. The value of 15 was chosen, since we observed that increasing

k beyond 15 hardly changed the experimental results.

6.2.4 Case-based Classification

The basic idea of case-based approach to classification is the use of information

about entities for which the class membership is already known. This approach is

often called case-based classification (Jurisica and Glasgow, 1996). To classify a new

entity, its description must be compared to the descriptions of the known entities.

From an abstract point of view, each entity can be characterized as a point in some

problem space defined by the properties used to describe the entity. To predict the

unknown class of the new entity, its nearest neighbors within the problem space have

to be determined by using some distance metric. Finally, the information about the

class membership of these neighbors is used to predict the unknown class of the

given entity.

CHAPTER 6. EVALUATION OF USIMSCAR 126

In a k-NN context, given a new problem Q, case-based classification can be

formalized by two stages. The first is to produce a retrieval result (RET RES) con-

sisting of a set of the k most similar cases to Q from a given case base using similarity

knowledge. The second is to classify Q by using the solutions (i.e. classes) of cases

in RET RES. Therefore, the key operation of k-NN for case-based classification is to

produce an appropriate RET RES, since it is the primary source that will be used

to classify Q. The premise is that the more similar retrieved cases are to Q, the

more accurate the classification of Q. On the other hand, in a USIMSCAR context,

the above two stages can be formalized as follows. The first is to produce a retrieval

result (RET RES) consisting of special objects that are the k most “useful cases and

rules”, with respect to Q, driven by using “similarity and association knowledge”.

The second is to classify Q by using the solutions (i.e. classes) of the objects in

RET RES.

In this thesis, USIMSCAR has been proposed and developed in order to achieve

the first stage. Therefore, to apply USIMSCAR in solving classification problems,

we choose an available method for implementing the second stage. One of the most

widely used methods is voting as previously outlined in Section 4.5. We choose

two well-known voting schemes, which are majority voting and distance weighted

voting (simply weighted voting in the rest of this thesis), to accomplish the second

stage. The description of these voting schemes have been presented in Section 4.5.

By applying USIMSCAR and k-NN approaches for case-based classification, our

objective is to perform a fair and appropriate retrieval performance comparison

between USIMSCAR and SBR.

In this section, we presented the objectives of our evaluation of USIMSCAR. We

discussed the target SBR approaches (i.e. k-NN approaches) that will be compared

with USIMSCAR. We also outlined the target task (i.e. case-based classification),

in which USIMSCAR and k-NN approaches will be tested and compared. Our

evaluation of USIMSCAR is based on the experiments of using both benchmark

and real datasets in three CBR application domains: medical diagnosis, help-desk

CHAPTER 6. EVALUATION OF USIMSCAR 127

service and product recommendation. In the following three sections, we present

our evaluation of USIMSCAR in these domains. We first begin with an evaluation

of USIMSCAR in the medical diagnosis domain.

6.3 Evaluation for Medical Diagnosis

In this section, we first evaluate our proposed retrieval strategy USIMSCAR in a

medical diagnosis domain. In general, CBR has been extensively used to predict

the correct diagnosis for problems represented as illness associated with symptoms

for medical diagnosis (Park et al., 2006; Salem, 2007; Tran and Schonwalder, 2008;

Ahn and Kim, 2009). Therefore, it has been shown that CBR systems can be

leveraged efficiently for providing intelligent medical diagnosis support on the basis

of the knowledge obtained from cases. In the following, we first present the datasets

and evaluation metrics, which are used in our experiments. We then provide the

experimental configuration applied for the evaluation of USIMSCAR. We finally

report experimental results of USIMSCAR in comparison with the k-NN approaches

compared, and analyze the results according to the evaluation metrics.

6.3.1 Datasets

For our evaluation in the medical diagnosis domain, we use a total of seven medical

datasets. Among them, six are found in the UCI Machine Learning (ML) Reposi-

tory3. The remaining one is a real medical dataset (NHSG4) obtained from the UK

National Health Service (Grampian) Health and Safety. In Table 6.1, we provide a

summary of the seven datasets used in our experiments. We also present detailed

descriptions of these datasets.

• Breast Cancer (BC): This dataset was obtained from the University Medical

Centre, Institute of Oncology, Ljubljana, Slovenia in 1988. The classification

3http://www.ics.uci.edu/˜mlearn/MLRepository.html
4This dataset was provided by Robert Gordon University, Scotland, UK.

CHAPTER 6. EVALUATION OF USIMSCAR 128

Table 6.1: The medical datasets used in the experiments.

Dataset No of Cases No of Attributes
Attr Type

No of Classes
Numeric Nominal

Breast Cancer (BC) 286 9 9 2
Breast Cancer Wins (BCW) 683 10 10 2
Breast Tissue (BT) 106 9 9 6
Pima Indian Diabetes (PID) 768 9 9 2
StatLog Heart Disease (SHD) 270 13 7 6 2
New Thyroid (THY) 215 5 5 3
NHSG 1,085 12 12 5

task concerns the prediction of “no-recurrence” or “recurrence” of breast can-

cer, based on the result of the breast cancer operation of a given patient.

For about 30% of patients that undergo a breast cancer operation, the illness

reappears after five years. Thus, prognosis of recurrence is important (Clark

and Niblett, 1987). This dataset consists of 286 patient cases (instances),

where 201 patients did not have recurrence after five years and 85 patients

did. Each case is described by nine nominal attributes and one of two classes

(“no-recurrence” and “recurrence”).

• Breast Cancer Wins (BCW): This dataset was obtained from the Univer-

sity of Wisconsin Hospitals by William H. Wolberg in 1995. The classification

task is to predict whether a tissue sample, obtained from the breast of a pa-

tient, is “malignant” or “benign”. This dataset is composed of 683 tissue cases,

where 458 cases are classified as “benign” and 241 cases as “malignant”. Each

case is described by ten numeric attributes and one of two classes (“benign”

and “malignant”).

• Breast Tissue (BT): This dataset was donated from INEB-Instituto de En-

genharia Biomédica, Portugal in 2010. The classification task is to predict the

classification of the original six classes of breast tissue samples, according to

electrical impedance measurements. This dataset consists of 106 breast tissue

cases being classified into one of six classes: “carcinoma”, “fibro-adenoma”,

“mastopathy”, “glandular”, “connective” and “adipose”. Each case is de-

scribed by nine numeric attributes and one of the above six classes.

CHAPTER 6. EVALUATION OF USIMSCAR 129

• Pima Indian Diabetes (PID): This dataset was contributed from Johns

Hopkins University by Vincent Sigillito in 1990. The classification task is

to predict whether a patient would be “positive” or “negative” for diabetes,

according to a number of physiological measurements and medical test results.

The dataset is composed of 768 patient cases. These patients are female at

least 21 years old of Pima Indian heritage living near Phoenix, Arizona, USA.

Among the 768 patient cases, 268 are classified as “positive” for diabetes and

500 as “negative”. Each case is described by nine numeric attributes and one

of two classes (“positive” and “negative”).

• StatLog Heart Disease (SHD): This dataset was from the Cleveland Clinic

Foundation by R. Detrano in 1994. The classification task is to predict the

“presence” or “absence” of a heart disease, based on various medical tests

carried out on a given patient. This dataset consists of 270 cases, where 150

are classified as “presence” and 120 as “absence”. Each case is described by

thirteen attributes (seven are numeric and six are nominal) and one of two

classes (“presence” and “absence”).

• New Thyroid (THY): This dataset was obtained from Stefan Aeberhard,

James Cook University, Australia in 1992. The classification task is to de-

termine whether a patient’s thyroid is “euthyroidism”, “hypothyroidism” or

“hyperthyroidism”. The diagnosis (determining the class label) was based on

a complete medical record of a patient, including anamnesis, scar, etc. This

dataset consists of 215 cases, where 150 are classified as “euthyroidism”, 30

as “hypothyroidism”, and 35 as “hyperthyroidism”. Each case is described by

five numeric attributes and one of the above three classes.

• NHSG: This dataset was obtained from the UK National Health Service

(Grampian) Health and Safety (NHSG) in 2009. The classification task is

to classify the “care stage” of a patient, according to the description of the

situation or incident of the patient. This dataset consists of 1,085 cases, where

CHAPTER 6. EVALUATION OF USIMSCAR 130

all cases are classified as one of five care stages. Each case is described by 12

nominal attributes.

6.3.2 Evaluation Metrics

In order to evaluate the results of the case-based classification tasks, we use two

well-known metrics classification accuracy and F-measure:

• Classification accuracy. This metric is often assumed to be the best perfor-

mance indicator for evaluating classifiers (Lim, Loh and Shih, 2000). It mea-

sures the proportion of correctly classified instances out of all the classified

(tested) instances. However, this accuracy does not take into account the cost

of making wrong decisions. In order to address this limitation, we also use

F-measure.

• F-measure. This metric provides an evaluation that classification accuracy

cannot measure. F-measure is defined as the harmonic mean between precision

(P) and recall (R):

F-measure =
2PR

P + R
. (6.1)

Referring to Equation 6.1, precision (P) represents the proportion of the in-

stances, which truly have a class X, among all those classified as a class X.

Whereas, recall (R) indicates the proportion of the instances, which were clas-

sified as a class X, among all those instance having a class X. Hence, precision

(P) measures if the classifier classifies an instance as a class X, how likely is

it to be a class X. While recall (R) is the estimator measuring if a class of an

instance is a class X, how likely is the classifier to classify it as a class X. The

harmonic mean of precision (P) and recall (R) tends to be closer to the smaller

of the two. Therefore, a high F-measure value indicates that both precision

(P) and recall (R) are reasonably high.

The above two metrics, classification accuracy and F-measure, can be computed

from the confusion matrix (Forbes, 1995). The basic confusion matrix is a k × k

CHAPTER 6. EVALUATION OF USIMSCAR 131

matrix of counts, where k is the number of classes involved in the classification

problem. The columns correspond to the true classificatory state, while the rows

correspond to the results of the approach tested. Thus, the column sums give the

true incidences of the classes, while the row sums give the incidences of the classes

classified by the approach. If an object is truly of class j and the approach classifies it

as class i, the count in cell (i, j)−the cell at the intersection of row i and column j−of

the matrix is incremented by one. A perfect approach yields a diagonal confusion

matrix. Typically, the basic confusion matrix is augmented by affixing both row

and column totals. To illustrate, consider a standard two-class problem. Suppose

the approach tested is supplied with N entities, each to be classified as either X or

Y . Table 6.2 discloses the performance of the model using 2 × 2 confusion matrix

augmented by its row and column totals. In truth, there are (a+c) entities classified

as X and (b + d) entities are classified as Y . There are (a + d) correct and (b + c)

incorrect classifications made by the approach.

Table 6.2: The standard 2× 2 confusion matrix with its marginal totals.

actual class

X Y Total

predicted X a b a + b

class Y c d c + d

Total a + c b + d N

Referring to the above confusion matrix, classification accuracy and F-measure are

computed as follows:

Classification Accuracy =
(a + d)

N
,

F-measure =
2PR

P + R
, where

P = AV G

(
P(X) =

a

(a + b)
, P(Y) =

d

(c + d)

)
and

R = AV G

(
R(X) =

a

(a + c)
, R(Y) =

d

(b + d)

)
.

CHAPTER 6. EVALUATION OF USIMSCAR 132

6.3.3 Experimental Setup

Our proposed retrieval strategy USIMSCAR and the chosen k-NN classifiers are

tested with the seven medical datasets using 10-fold cross-validation. Each dataset

is partitioned into ten subsets. Of the ten subsets, a single subset is retained as

testing data (i.e. a collection of new problems), and the remaining nine subsets are

used as training data (i.e. a case base). The cross-validation process is then repeated

ten times (the folds) with each of the ten subsets used exactly once as the testing

data. The ten results from the folds can then be used to constitute the confusion

matrix. Using this matrix, we compute the classification accuracy and F-measure

results of USIMSCAR and the classifiers. The advantage of this validation practice

over repeated random sub-sampling is that all observations are used as both the

training and testing data, and each observation is used for validation exactly once.

6.3.3.1 Similarity Knowledge

The similarity knowledge is encoded as a similarity measure using the global-local

principle explained in Section 3.3.3. Given a new problem Q and a case C, their

(global) similarity SIM(Q,C) is computed, considering local similarities for all in-

dividual attributes of Q and C. These similarities are then aggregated using the

equal-weighted average of them. Formally, the similarity SIM(Q,C) is defined as:

SIM(Q,C) =

∑
qi∈Q,xi∈C sim(qi, xi)

N
,

where sim(qi, xi) represents a local similarity between qi and xi, N is the total

number of attributes of the problem Q and the case C, and qi is the ith attribute

value of Q and xi is the ith attribute value of C.

Let Ai be the ith attribute of the problem Q and the case C. With respect to

our testing datasets, we define local similarities for two attribute types: numeric

and nominal (see also Table 6.1). For the numeric attribute Ai, we use the following

CHAPTER 6. EVALUATION OF USIMSCAR 133

local similarity:

sim(qi, xi) = 1− |qi − xi|
max−min

,

where “max” is the highest value and “min” is the lowest value in the value range

that the attribute Ai can take on. For the nominal attribute Ai, the local similarity

sim(qi, xi) is defined as:

sim(qi, xi) =





1, if qi = xi,

0, otherwise.

We implemented the above similarity SIM(Q,C) to be used in the five k-NN

classifiers compared to determine the k most similar cases to the new problem Q.

We also implemented the similarity SIM(Q,C) to be used in USIMSCAR for the

same purpose, as mentioned in STEP 1 of Algorithm 1 presented in Section 4.4.3.

This similarity SIM(Q,C) is also used to compute the similarity between Q and a

scar for USIMSCAR to find the k most similar scars to Q, as previously outlined in

STEP 2 of Algorithm 1 presented in Section 4.4.3.

6.3.3.2 Association Knowledge

To perform Algorithm 1 (i.e. the algorithm for scars mining) presented in Section

4.3, we have to set values for the following parameters:

• minsupp: This parameter indicates a user-specified minimum support. As

previously mentioned in Section 4.3.2, the key operation for scars mining is

to find all ruleitems that have soft-support values greater than or equal to

minsupp. Recall that we call such ruleitems are frequent. A ruleitem represents

a rule which has the form X → y, where X is an itemset discovered using the

soft-matching criterion, and y is a solution-item specified to hold only solutions

defined in a given case base. We set minsupp to 0.1 (10%).

• minsim: This parameter denotes a user-specified similarity threshold. As pre-

viously outlined in Section 4.3.1, minsim is used for determining whether two

CHAPTER 6. EVALUATION OF USIMSCAR 134

items are similar or not. Recall that we say that two items x, y ∈ I (I: a set

of items) are similar, iff their similarity is greater than or equal to minsim. We

set minsim to 0.95 (95%).

• min-interesting: This parameter denotes a user-specified minimum level of in-

teresting. As previously explained in Section 4.3.2, this parameter is used to

determine whether a ruleitem is accurate or not. Recall that we say that given

a ruleitem r, if Laplace(r) is greater than or equal to min-interesting, we say

this ruleitem r is accurate. Given a case base, a set of scars consists of all

ruleitems that are both frequent and accurate. This parameter is set to 0.7

(70%).

• minitemsize: This parameter specifies a user-specified minimum itemset size.

As previously outlined in Section 4.3.2, from all ruleitems that are both fre-

quent and accurate, we finally ignore the ruleitems less than minitemsize. Re-

call that our intension was to only choose a small representative subset of the

ruleitems from the large number of resulting frequent and accurate ruleitems.

We set this parameter to 0.5∗N , where N is the total number of the attributes

of cases stored in a given case base. For example, if cases are described by

ten attributes, only itemsets with five or more antecedents are considered as

candidates of scars to be generated.

In order to set the above values, we first fixed the values of the parameters,

minsim, min-interesting and minitemsize, to arbitrary values, 0.95, 0.7 and 0.5, re-

spectively. Setting a value for minsupp is more complex, since it has a stronger

effect on the quality of our proposed retrieval strategy USIMSCAR. If a value for

minsupp is set too high, those possible scars, that cannot satisfy minsupp but with

high interestingness (Laplace measure) values, will not be included. This may lead

to a reduction in the performance of USIMSCAR. On the other hand, if a value

for minsupp is set too low, it is possible to generate too many scars including trivial

rules. This may also have a negative influence on the performance of USIMSCAR.

CHAPTER 6. EVALUATION OF USIMSCAR 135

From our experiments using the medical datasets, we observe that once a value for

minsupp is set to 0.1, the performance of USIMSCAR is best. Thus, we set a value

for minsupp to 0.1.

To test the five k-NN classifiers compared, we needed to determine an optimal

value for the top k that indicates the number of most similar cases to a given problem

Q. In our experiments, we tested the classifiers using various values for k, ranging

from 1 to 155. To run Algorithm 2 (i.e. the USIMSCAR algorithm) presented in

Section 4.4.3, we also needed to set a value for the top k that indicates the number of

most similar scars to Q. We tested USIMSCAR using the same value range, ranging

from 1 to 15, for the k, as with the k-NN classifiers.

In Algorithm 1 (i.e. the algorithm for scars mining) presented in Section 4.3,

to determine whether two items (an item is an attribute-value pair) or itemsets

(an itemset is a set of items) are similar, we need to compute the similarity between

them. This similarity computation is achieved using the global-local principle. Local

similarities for individual items are determined using a similarity matrix SM , a z×z

similarity matrix where z is the total number of items in the training data (a given

case base). As a global similarity, we use the equal-weighted average of the computed

local similarities. For the sake of convenience, we split the matrix SM into m number

of matrices SMA1 , ..., SMAm . Here, SMAi∈[1,m]
represents a zi×zi similarity matrix,

where zi is the total number of items that are characterized by the attribute Ai

of the instances (cases) in the training data. Also, m denotes the total number of

attributes used to describe instances in the training data. zi corresponds to the

number of values that the attribute Ai can take on. Consequently, constructing a

similarity matrix SM requires the computation of
∑m

i=1 z2
i .

6.3.4 Results and Analysis

We now present the results of our experimental evaluation using two voting schemes

(i.e. majority voting and weighted voting) in terms of classification accuracy and

5We observed that increasing k beyond 15 hardly changed the results.

CHAPTER 6. EVALUATION OF USIMSCAR 136

F-measure. Therefore, using each voting scheme, we measure the classification ac-

curacy and F-measure of USIMSCAR and the k-NN classifiers for these datasets.

Figure 6.1 shows the overall strategy of our all experimental evaluation applied in

this chapter.

USIMSCAR and k-NN

Approaches

Majority

Voting

Weighted

Voting

Classification

Accuracy
F-Measure

Classification

Accuracy
F-Measure

Figure 6.1: The overall evaluation strategy.

In the following, for each dataset, we first report the mean number of the scars

used by USIMSCAR. This number is obtained by performing our proposed algorithm

for scars mining from each dataset using 10-fold cross-validation. We then show the

experimental results of the measured approaches−USIMSCAR and the five k-NN

classifiers compared. For the experiments, we tested these approaches using odd

values for k (the number of nearest neighbors) between 1 to 15 to avoid tied votes

(i.e. 1, 3, ..., 15). The maximum value 15 for the k is chosen, since we observed

that increasing k beyond 15 hardly changed the results. In our evaluation, we use

the best result obtained from the use of the choice of k in terms of classification

accuracy and F-measure to compare the approaches. In order to discover whether

USIMSCAR can attain statistically significant improvements over the classifiers, we

report the outcome of statistical tests carried out from the experimental results. We

finally provide a summary of the evaluation of USIMSCAR in the medical diagnosis

domain.

CHAPTER 6. EVALUATION OF USIMSCAR 137

6.3.4.1 SCARS Used by USIMSCAR

From each of the seven datasets used, we generated the following mean number of

the scars by averaging the total number of the scars obtained from 10-fold cross-

validation (see Table 6.3). These scars were used in our novel retrieval strategy

USIMSCAR.

Table 6.3: The scars generated and used in USIMSCAR.

Dataset The mean number of the scars generated
BC 228

BCW 153
BT 6,010
PID 524
SHD 676
THY 1,073
NHSG 673

We observer that the number of candidates for scars grows exponentially with

the increase in the number of attributes of the instances (cases) of each dataset (case

base). For n binary attributes, there can be theoretically n2n−1 candidates for scars.

If n attributes are assumed to take m values, there can be mn possible candidates

for scars. However, the set of scars are restricted by using such threshold parameters

as minsupp, minitemsize, and min-interesting shown in Section 6.3.3. Referring to

Table 6.3, interestingly, the number of scars generated from the BT dataset is the

highest as 6,010, although the number of instances (i.e. cases) in the training data

(i.e. case base) is the lowest as 96 (106 * 0.9) (see Table 6.1). We find that this

occurs, since some items in the BT dataset appear relatively very frequently when

compared to the other six datasets.

6.3.4.2 Results using Majority Voting

We now present the experimental results of the measured approaches (USIMSCAR

and the five k-NN classifiers compared) using majority voting in terms of classifica-

tion accuracy and F-measure.

CHAPTER 6. EVALUATION OF USIMSCAR 138

Table 6.4 shows the experimental results of the measured approaches using ma-

jority voting in terms of classification accuracy. As previously mentioned, these re-

sults represent the best results obtained from the use of the best choice of k among

a range of 1 to 15, in terms of classification accuracy. The detailed and complete

evaluation results are included in Appendix A for each dataset. In this context, k

denotes the number of most similar cases to the target problem. As shown in Table

6.4, for each dataset, the approach achieved best is denoted in boldface with red

color, and approach achieved second best is marked in boldface with blue color.

Table 6.4: The results using majority voting in terms of classification accuracy (%).

Dataset USIMSCAR IBk IBkCFS IBkLVF IBkIG IBkCS

BC 75.874 74.126 76.224 73.776 73.427 73.427

BCW 97.657 97.218 97.218 97.218 96.925 97.218

BT 71.698 71.698 65.094 67.925 69.811 70.755

PID 75.781 74.349 77.214 75.000 74.870 75.391

SHD 83.333 82.593 81.852 82.222 85.185 81.852

THY 97.674 96.279 96.279 96.279 96.279 96.279

NHSG 77.972 72.074 71.336 72.074 72.442 72.074

As shown in Table 6.4, USIMSCAR achieves the best classification accuracy for four

out of the seven datasets. The four datasets are BCW, BT, THY, and NHSG. For

the BCW dataset, its improvement over the five k-NN classifiers ranges from 0.44%

to 0.73%. For the BT dataset, the improvement is up to 6.60%. For the THY

dataset, the improvement is consistently equal to 1.4% over the classifiers. Finally,

for the NHSG dataset, the improvement ranges from 5.5% to 6.6%. Furthermore,

USIMSCAR occupies 2nd place for three datasets (BC, PID, and SHD). Thus, it

outperforms four classifiers for these datasets. For the datasets BC, PID, and SHD,

it performs better than the four classifiers with a range of 1.75%− 2.45%, 0.39%−
1.43%, and 0.74%− 1.48%, respectively.

In order to establish whether the performance improvements of USIMSCAR are

statistically significant, we carried out statistical tests. For such tests, we used the

following preliminary assumption (or null hypothesis) and significance level:

CHAPTER 6. EVALUATION OF USIMSCAR 139

• The null hypothesis : Our null hypothesis was that USIMSCAR and each of

the compared classifiers are equivalent with respect to classification accuracy

and F-measure. The significance test attempts to disprove this hypothesis by

determining a p-value. This value represents a measurement of the probability

that the observed difference could have occurred by chance (Hull, 1993).

• The significance level (α: the criterion used for rejecting the null hypothesis):

We set α as both 0.05 (confidence = 95%) and 0.1 (confidence = 90%), since

these are often used for α. The α is used in the hypothesis testing in a way that

if the p-value is less than α, one can conclude that USIMSCAR is significantly

different with a compared classifier.

A common approach for measuring a statistical significant test for a difference be-

tween two proportions is the Z-test (Richard C, 2003). The Z score is a test of

statistical significance that helps us decide the rejection of the null hypothesis. The

p-value is the probability of rejecting the null hypothesis. Z scores are measures

of standard deviation. For example, if a Z score is +2.5, it is interpreted as “+2.5

standard deviations away from the mean”. Both statistics are associated with the

standard normal distribution. To illustrate the relationship between these two val-

ues, consider the following example: the Z score values at 95% confidence are −1.96

and +1.96 standard deviation. The p-value associated with 95% confidence is 0.05.

If a Z score is between −1.96 and +1.96, the p-value will be larger than 0.05. We

thus cannot reject the null hypothesis. If a Z score falls outside that range, the

p-value will be too small to reflect this. In this case, it is possible to reject the null

hypothesis.

We performed statistical tests using the Z-test at both 95% and 90% confidence.

Table 6.5 shows the statistically significant improvement of USIMSCAR over the

classifiers, determined by applying such statistical tests. For example, for the NHSG

dataset, USIMSCAR attains a significant improvement over IBk at 95% confidence,

as described as “sig at 95%”. As observed in this table, we discover that USIMSCAR

is deemed to be statistically significant at 95% confidence over all the classifiers

CHAPTER 6. EVALUATION OF USIMSCAR 140

for the NHSG dataset. However, we note that the lack of statistically significant

improvements of USIMSCAR over the classifiers do not necessarily mean that there

is no difference between them. As Keen (Keen, 1992) indicated, such improvements

still can be important if these occurs repeatedly in many contexts. In statistics, the

field of meta-analysis is devoted to proving statistical significance over a number of

tests where no individual test is powerful enough to detect an importance difference.

Thus, the improvements may be still valuable, since these do provide evidence of

the better performance of USIMSCAR over SBR using a number of datasets.

Table 6.5: The results of statistical tests in terms of classification accuracy.

Comparison BC BCW BT PID SHD THY NHSG

USIMSCAR-IBk - - - - - - sig at 95%

USIMSCAR-IBkCFS - - - - - - sig at 95%

USIMSCAR-IBkLVF - - - - - - sig at 95%

USIMSCAR-IBkIG - - - - - - sig at 95%

USIMSCAR-IBkCS - - - - - - sig at 95%

Up to this point, we have shown the experimental results of USIMSCAR using

majority voting in comparison with the five k-NN classifiers in terms of classification

accuracy. We now present the experimental results of USIMSCAR and the classifiers

using majority voting in terms of F-measure. Table 6.6 shows a summary of the

results. For each dataset, the best one is denoted in boldface with red color, and

the second best in boldface with blue color.

Table 6.6: The best results using majority voting in terms of F-measure (%).

Dataset USIMSCAR IBk IBkCFS IBkLVF IBkIG IBkCS

BC 68.744 65.147 68.653 64.896 63.840 65.147

BCW 97.419 96.946 96.946 96.946 96.643 96.946

BT 71.178 71.465 63.249 65.127 67.689 68.435

PID 72.212 70.751 74.137 71.923 71.463 71.923

SHD 83.078 82.339 81.561 82.000 84.966 82.725

THY 96.883 95.084 95.084 95.084 95.084 95.084

NHSG 72.398 59.319 56.453 59.319 56.850 59.319

As can be seen in Table 6.6, USIMSCAR outperforms the classifiers for four out

of the seven datasets in terms of F-measure. These datasets are BC, BCW, THY,

CHAPTER 6. EVALUATION OF USIMSCAR 141

and NHSG. For the BC dataset, its improvement ranges from 0.09% to 4.9%. For

the BCW dataset, its improvement ranges from 0.47% to 0.78%. For the THY

dataset, its improvement consistently attains 1.80%. For the NHSG dataset, its

improvement is substantial, ranging from 12.08% to 15.95%, when compared to the

other classifiers. USIMSCAR occupies 2nd place for the remaining three datasets

(BT, PID, and SHD). Therefore, we find that it performs better than four classifiers

for these datasets. For the datasets BT, PID, and SHD, USIMSCAR outperforms

the four classifiers with a range of 2.74%−7.93%, 0.29%−1.46%, and 0.35%−1.52%,

respectively. Using the Z-test at 95% confidence, the improvements of USIMSCAR

over the classifiers for the NHSG dataset are deemed to be statistically significant

as shown in Table 6.7.

Table 6.7: The results of statistical tests in terms of F-measure.

Comparison BC BCW BT PID SHD THY NHSG

USIMSCAR-IBk - - - - - - sig at 95%

USIMSCAR-IBkCFS - - - - - - sig at 95%

USIMSCAR-IBkLVF - - - - - - sig at 95%

USIMSCAR-IBkIG - - - - - - sig at 95%

USIMSCAR-IBkCS - - - - - - sig at 95%

Up to now, we have shown the experimental results of USIMSCAR using ma-

jority voting in comparison with the five k-NN classifiers, in terms of classification

accuracy and F-measure. We now compare USIMSCAR and the classifiers in terms

of the mean scores of the classification accuracy and F-measure results that we have

obtained so far (i.e. Tables 6.4 and 6.6). These scores are obtained from those results

by averaging them by the number of datasets tested. The utilization of the mean

data in the context of statistical analysis is also often a desirable scheme, since it

provides an insight into the overall performance estimation of measured approaches

(Lim et al., 2000; Nunez, Sanchez-Marre, Cortes, Comas, Martinez, Rodriguez-Roda

and Poch, 2004). The results are presented in Table 6.8. As shown, for each metric,

the best approach is denoted in boldface with red color, and the second best in

CHAPTER 6. EVALUATION OF USIMSCAR 142

boldface with blue color. As can be observed from the results, USIMSCAR out-

performs all the five k-NN classifiers in terms of both classification accuracy and

F-measure. For example, USIMSCAR performs better than the classifiers with a

range 1.58% − 2.21% in terms of classification accuracy on average. Also, it per-

forms better than the classifiers with a range 2.98%− 3.80% in terms of F-measure

on average.

Table 6.8: The mean scores of the results.

Mean USIMSCAR IBk IBkCFS IBkLVF IBkIG IBkCS

Classification Accuracy 82.856 81.191 80.745 80.642 81.277 80.999

F-measure 80.273 77.293 76.583 76.471 76.648 77.083

From Table 6.8, in order to detect if there are statistically significant differences

between USIMSCAR and the five k-NN classifiers, we performed statistical tests.

For the tests, we selected the paired t-test (Richard C, 2003) at both 95% and

90% confidence. The paired t-test is suitable for evaluating the significance of a

difference between means of two populations. Through these statistical tests, we

discover that USIMSCAR shows significant improvements over IBkLVF and IBkCS

in terms of classification accuracy at 95% confidence. Also, USIMSCAR attains

a significant improvement over IBk in terms of this accuracy at 90% confidence.

Further, we discover that USIMSCAR shows a statistically significant improvement

over IBkLVF in terms of F-measure at 90% confidence.

In this subsection, we have focused on presenting the experimental results of

USIMSCAR with the use of majority voting, in terms of classification accuracy and

F-measure. In the following, we present the experimental results of USIMSCAR

with the use of weighted voting in terms of classification accuracy and F-measure.

6.3.4.3 Results using Weighted Voting

We now analyze the experimental results of the measured approaches (USIMSCAR

and the five k-NN classifiers compared) using weighted voting in terms of classifica-

tion accuracy and F-measure.

CHAPTER 6. EVALUATION OF USIMSCAR 143

Table 6.9 shows a summary of the results of the measured approaches in terms of

classification accuracy. As previously mentioned, these results show the best results

obtained from the use of the best choice of k among a range of 1 to 15, in terms of

classification accuracy. In this context, k denotes the number of most similar cases

to the target problem. For each dataset, the best approach is denoted in boldface

with red color, and the second best in boldface with blue color.

Table 6.9: The results using weighted voting in terms of classification accuracy (%).

Dataset USIMSCAR IBk IBkCFS IBkLVF IBkIG IBkCS

BC 79.021 73.427 73.776 72.727 72.378 74.126

BCW 97.657 97.218 97.218 97.365 97.072 97.218

BT 78.302 71.698 65.094 67.925 69.811 71.698

PID 87.500 74.479 77.083 75.391 74.479 74.349

SHD 89.630 82.222 82.222 81.852 83.704 82.593

THY 97.674 96.279 96.279 96.279 96.279 96.279

NHSG 78.065 72.074 71.336 72.074 72.442 72.074

As observed in Table 6.9, USIMSCAR outperforms the classifiers for all the seven

datasets. The improvement of USIMSCAR for each dataset is as follows: (1) for

BC: 4.90%− 6.64%, (2) for BCT: 0.29%− 0.58%, (3) for BT: 6.64%− 13.20%, (4)

for PID: 10.42% − 13.15%, (5) for SHD: 5.93% − 7.78%, (6) for THY: 1.40%, and

(7) for NHSG: 5.78% − 6.41%. Table 6.10 shows the results of statistical tests of

USIMSCAR over the classifiers. As previously specified, we performed statistical

tests using the Z-test at both 95% and 90% confidence. As shown Table 6.10, we

discover that USIMSCAR significantly improves all the classifiers for the BC dataset

at 90% confidence. We also find that for the BT dataset, its improvement over

IBkCFS is statistically significant at 95% confidence as well as its improvements

over the remaining four classifiers are statistically significant at 90% confidence.

We further find that USIMSCAR attains statistically significant improvements over

all the classifiers for three datasets PID, SHD, and NHSG at 95% confidence. As

previously outlined, we note that the lack of statistically significant improvements

of USIMSCAR over the classifiers do not necessarily mean that there is no difference

CHAPTER 6. EVALUATION OF USIMSCAR 144

between them. The improvements are still valuable, since these do provide evidence

of the better performance of USIMSCAR over SBR using a number of datasets.

Table 6.10: The results of statistical tests in terms of classification accuracy.

Comparison BC BCW BT PID SHD THY NHSG

USIMSCAR-IBk sig at 90% - sig at 90% sig at 95% sig at 95% - sig at 95%

USIMSCAR-IBkCFS sig at 90% - sig at 95% sig at 95% sig at 95% - sig at 95%

USIMSCAR-IBkLVF sig at 90% - sig at 90% sig at 95% sig at 95% - sig at 95%

USIMSCAR-IBkIG sig at 90% - sig at 90% sig at 95% sig at 95% - sig at 95%

USIMSCAR-IBkCS sig at 90% - sig at 90% sig at 95% sig at 95% - sig at 95%

Having presented the experimental results of USIMSCAR and the five k-NN

classifiers using weighted voting in terms of classification accuracy, we now provide

these results in terms of F-measure. Table 6.11 shows a summary of the results. For

each dataset, the best one is also denoted in boldface with red color, and the second

best in boldface with blue color.

Table 6.11: The results using weighted voting in terms of F-measure (%).

Dataset USIMSCAR IBk IBkCFS IBkLVF IBkIG IBkCS

BC 74.251 64.053 65.245 62.517 62.127 64.053

BCW 97.421 96.946 96.946 97.104 96.798 96.946

BT 77.626 71.465 63.466 65.127 67.689 68.435

PID 86.140 71.177 74.055 72.307 70.995 72.307

SHD 89.553 82.034 81.942 81.723 83.451 81.723

THY 96.883 95.084 95.084 95.084 95.084 95.084

NHSG 72.720 59.319 56.453 59.319 56.850 59.319

As observed in Table 6.11, USIMSCAR outperforms all the classifiers for all the seven

datasets in terms of F-measure. The improvement of USIMSCAR for each dataset

is as follows: (1) for BC: 10.19%− 12.12%, (2) for BCT: 0.32%− 0.62%, (3) for BT:

6.16%− 14.16%, (4) for PID: 13.83%− 15.15%, (5) for SHD: 6.10%− 7.83%, (6) for

THY: 1.80%, and (7) for NHSG: 13.401%− 16.27%. Table 6.12 shows the results of

statistical tests of USIMSCAR over the classifiers. Using the Z-test, as shown Table

6.12, we discover that USIMSCAR significantly improves all the classifiers for the BC

dataset at 95% confidence. We also find that for the BT dataset, its improvements

over IBkCFS and IBkLVF are statistically significant at 95% confidence as well as

CHAPTER 6. EVALUATION OF USIMSCAR 145

its improvements over the remaining three classifiers are statistically significant at

90% confidence. We further find that USIMSCAR attains statistically significant

improvements over all the classifiers for three datasets PID, SHD, and NHSG at

95% confidence.

Table 6.12: The results of statistical tests in terms of F-measure.

Comparison BC BCW BT PID SHD THY NHSG

USIMSCAR-IBk sig at 95% - sig at 90% sig at 95% sig at 95% - sig at 95%

USIMSCAR-IBkCFS sig at 95% - sig at 95% sig at 95% sig at 95% - sig at 95%

USIMSCAR-IBkLVF sig at 95% - sig at 95% sig at 95% sig at 95% - sig at 95%

USIMSCAR-IBkIG sig at 95% - sig at 90% sig at 95% sig at 95% - sig at 95%

USIMSCAR-IBkCS sig at 95% - sig at 90% sig at 95% sig at 95% - sig at 95%

Until now, we have shown the experimental results of USIMSCAR using weighted

voting, in comparison with the five k-NN classifiers, in terms of classification accu-

racy and F-measure. These results were reported for the seven medical datasets

tested. We now provide the comparison results between USIMSCAR and the classi-

fiers in terms of the mean scores of the classification accuracy and F-measure results

that we have acquired so far (i.e. Tables 6.9 and 6.11). These scores are obtained

from those results by averaging them by the number of datasets tested. The results

are presented in Table 6.13. For each of classification accuracy and F-measure, the

best one is denoted in boldface with red color, the second best in boldface with blue

color. As observed, USIMSCAR outperforms all the classifiers in terms of classi-

fication accuracy as well as F-measure. On average, USIMSCAR performs better

than all the classifiers with a range of 5.65% − 6.41% in terms of classification ac-

curacy. USIMSCAR also achieves better than all the classifiers with a range of

7.79% − 8.73% in terms of F-measure. From Table 6.13, in order to determine if

there are statistically significant differences between USIMSCAR and the classifiers,

we also performed statistical tests. Using the paired t-test at 95% confidence, we

discovered that USIMSCAR shows statistically significant improvements over all the

classifiers in terms of both mean classification accuracy and mean F-measure.

Up to this point, we have presented the experimental results of USIMSCAR in

comparison with the five k-NN classifiers in terms of classification accuracy as well

CHAPTER 6. EVALUATION OF USIMSCAR 146

Table 6.13: The mean scores of the results.

Mean USIMSCAR IBk IBkCFS IBkLVF IBkIG IBkCS

Classification Accuracy 86.836 81.057 80.430 80.516 80.881 81.191

F-measure 84.942 77.154 76.170 78.444 76.142 76.838

as F-measure. Our experiments have been conducted by performing USIMSCAR

and the classifiers using the seven medical datasets with the use of both majority

voting and weighted voting. Before concluding the evaluation of USIMSCAR in the

medical diagnosis domain, we present the following summary.

6.3.4.4 Summary

The following is a summary of our experimental evaluation of USIMSCAR in the

medical diagnosis domain:

• Using majority voting, USIMSCAR achieves 88.6% and 91.4% better perfor-

mance than the five k-NN classifiers compared in terms of classification accu-

racy and F-measure respectively. Using weighted voting, USIMSCAR achieves

100.0% better performance than the classifiers in terms of both classification

accuracy and F-measure. Through these results, we establish that USIMSCAR

has the ability to retrieve more useful objects (i.e. cases and scars) with respect

to the target problems than similarity-based retrieval (SBR). As outlined in

Chapter 4, these objects are identified and quantified by using a combination

of similarity and association knowledge.

• USIMSCAR using weighting voting (USIMSCARWV) outperforms USIMSCAR

using majority voting (USIMSCARMV) in terms of both classification accu-

racy and F-measure. These findings provide an important indication that it is

more significant to utilize the “usefulness” of objects in the retrieval result of

USIMSCAR, rather than merely distribution information about the solutions

(classes) associated with these objects. We note that USIMSCARWV is con-

figured to perform on the basis of the exploitation of the usefulness of objects

in the retrieval result. Meanwhile, USIMSCARMV is configured to carry out

CHAPTER 6. EVALUATION OF USIMSCAR 147

based on the exploitation of distribution information about solutions associ-

ated with the objects in the retrieval result. As previously outlined in the

USIMSCAR algorithm in Section 4.4.3, we note that the usefulness of the

objects is quantified by leveraging both similarity and association knowledge.

Therefore, the improvement of USIMSCARWV over USIMSCARMV implies

that leveraging cases and rules (i.e scars) quantified using a combination of

similarity and association knowledge has a stronger influence on the enhance-

ment of the retrieval performance when compared to leveraging merely the

distribution information of these cases and rules.

In this section, we presented an evaluation of our proposed retrieval strategy

USIMSCAR using both benchmark and real datasets in the medical diagnosis do-

main. In the next section, we present an evaluation of USIMSCAR in the help-desk

service domain.

6.4 Evaluation for Help-desk Service

In this section, we present our evaluation of USIMSCAR in the context of supporting

a help-desk service in IT Service Management (ITSM). Traditionally, CBR technol-

ogy has been widely applied in developing help-desk systems used in ITSM support.

The help desk, sometimes called service desk, provides the interface for assisting

customers who report IT incidents (Kang et al., 2010). Typical objectives of help-

desk systems are to provide decision support for predicting the correct diagnosis for

a given incident and providing its appropriate solution.

In recent years, however, it has become increasingly difficult to achieve the above

task satisfactorily. This is because many incidents have become more and more so-

phisticated, as innovative and high technology products have increasingly appeared

in the market. In addition, such incidents are often described in free-text. However,

natural language processing required to handle textual data is still a long way from

being able to process arbitrary text in a reliable way. Therefore, it is also difficult

CHAPTER 6. EVALUATION OF USIMSCAR 148

to appropriately use information in incident reports described in free-text. Further,

depending on the product line, the incident volume can reach hundreds of thousands

of incidents per month in large IT support departments/organizations.

To address the above issues, in recent years, one key issue in ITSM has been

centered on how to correctly assign a given incident to an appropriate IT support

group (or workgroup) (Giland, Bartolini and Liya, 2007; Bartolini, Stefanelli and

Tortonesi, 2008). Traditionally, the responsibility for addressing this issue is assigned

to the help-desk. Once an incident is reported, the help-desk attempts to forward the

incident to a workgroup based on his/her experience and knowledge. However, such

manual work has been known as time-consuming and error-prone (Kang et al., 2010).

In our evaluation for supporting the help-desk service, our goal is to measure

the retrieval performance of USIMSCAR and k-NN approaches in the context of

predicting the correct assignment of an appropriate workgroup for a given incident.

To help better understand our focus in this regard, in the following, we first briefly

present an overview of incident management in ITSM. We then describe the dataset,

the k-NN approaches (or classifiers) and the evaluation metrics, which are used in

this evaluation. We thereafter describe our experimental setup. We finally discuss

the experimental results that we have attained.

6.4.1 IT Incident Management

The objective of IT Service Management (ITSM) is to advance IT best practices

in service delivery and service support (Kang et al., 2009). The IT Infrastructure

Library (ITIL) (Schaaf, 2007) has been recognized as the de facto standard, which

provides a comprehensive set of principles advising on best ITSM practice. In gen-

eral, incident management is the most important element of the ITIL process model

for delivering IT services (Gliedman, 2006). ITIL defines an incident as any event

which is not part of the standard operation of a service, and which causes an inter-

ruption to the quality of that service. The goal of incident management is to restore

CHAPTER 6. EVALUATION OF USIMSCAR 149

normal service operation as quickly as possible, and minimize the adverse impact

on business operations.

A typical IT support organization is structured as a complex network of work-

groups, each comprising of a set of skilled technicians (Bartolini et al., 2008). Com-

monly, workgroups are divided into a few levels (usually 3 - 5), where workgroups

at lower levels mainly treat generic issues such as “user forgot password”, while

workgroups at higher levels are more specialized and can deal with harder tasks. A

typical incident management is processed as follows (Bartolini et al., 2008):

1. Incident detection: Given an incident reported by a customer, the help-desk

creates a new incident by entering its description into the system.

2. Incident classification: The help-desk estimates the classification of the inci-

dent, which will be used to support initial incident resolution. Based the clas-

sification, the help-desk attempts to resolve the incident using their knowledge

and experience. If not resolved, the incident is escalated to a higher level of

workgroup.

3. Incident escalation and resolution: Once a workgroup receives the incident,

the workgroup tries to resolve it. If resolved, the incident is closed. Otherwise,

the incident needs to be repeatedly escalated to higher levels of workgroups

until it is resolved.

However, as discussed, traditional incident management has a problem that as-

signing a given incident to an appropriate workgroup is largely manual. Therefore,

it is time-consuming and error-prone. This limitation also subsequently leads to

multiple bouncing of incidents within workgroups. Thus, it causes more downtime

and decreases service quality of IT support teams/organizations responsible for re-

solving the incident. This problem today would be more serious, since the positions

of workgroups are frequently changed in the organizations. Therefore, in this eval-

uation, we apply USIMSCAR and k-NN approaches for automatically assigning a

new incident to an appropriate workgroup.

CHAPTER 6. EVALUATION OF USIMSCAR 150

6.4.2 Dataset

The objective of our evaluation of USIMSCAR in the help-desk service domain is

to determine whether USIMSCAR outperforms the k-NN approaches (or classifiers)

previously outlined in Section 6.2.3. We recall that these k-NN approaches are

chosen as the representative approaches of SBR for our evaluation of USIMSCAR.

More specifically, we measure USIMSCAR and these approaches in the context of

predicting the correct workgroups that can successfully solve given incidents.

For the evaluation, we use a real-life incident management dataset obtained

from an installation of Hewlett Packard (HP) Service Manager6. For the sake of

convenience, we refer to this dataset as IMData. IMData is composed of 6,514 incident

cases that have been resolved by six workgroups in 2007. Among these cases, we

randomly select 5,211 cases (80%) as training data, and the remaining 1,303 cases

(20%) as testing data. Each incident case consists of two parts: the problem part

represents an incident characterized by three attributes, and the solution part is

labeled as one of the six workgroups WG1, ..., WG6. In the testing data, 27.68% of

the incidents are resolved by WG1; 27.90% by WG2; 25.79% by WG3; 13.36% by

WG4; 4.51% by WG5; and 0.75% by WG6. Table 6.14 shows a summary of three

attributes characterizing the problem part.

Table 6.14: The problem part of cases in IMData.

Attribute Type Description Examples

Incident Category Nominal This attribute is used to classify in-
cidents for the appropriate routing to
workgroups, based on the required sup-
port for them. Overall, 9 incident cat-
egories are used in the dataset.

“Request”, “How to”, “Ac-
count”, “Production Sup-
port”.

Incident Sub-Category Nominal This attribute is used to specify en-
tries that are quite specific to given
incidents, and less generic than the
incident category. All together, 39
incident-subcategories are used in the
dataset.

“Passwd Reset”, “Print Job
Issue”, “Network Issue”,
“DBMS Issue”.

Incident Description String This attribute is used to describe symp-
toms or a customer’s perception about
the IT disruption occurred. It is de-
scribed in free-text.

“network cable unplugged”,
“printer tray cannot print
from Bizflow”, “Bizflow
running slow again”.

6HP Service Manager is a software that enables a lifecycle approach to IT service management
(http://www.hp.com/software).

CHAPTER 6. EVALUATION OF USIMSCAR 151

As previously mentioned, our evaluation goal in this section is to predict ap-

propriate workgroups that can successfully resolve incidents in the testing data.

Formally, given an instance I, the task is represented as a classification function

f that takes three values of I’s three attributes (incident category (IC), incident

sub-category (IS) and incident description (ID)), and then predicts an appropriate

workgroup, among WG1, ..., WG6, for I. Formally, this function f is represented

as f(〈IC, IS, ID〉) → {WG1, ... ,WG6}.

6.4.3 SBR: k-NN Approaches

In Section 6.2.3, we already presented the five k-NN approaches (or classifiers) chosen

to be compared with USIMSCAR. These classifiers were selected as the representa-

tive approaches that implement SBR. However, in the experiments using IMData,

we only chose three out of the five classifiers. The chosen classifiers are IBk, IBkIG,

and IBkCS. Meanwhile, two classifiers IBkCFS and IBkLVF are excluded. The rea-

son for excluding them is that the feature selection evaluators CFS (available in

the name of CfsSubsetEval in Weka) (Hall, 1998) integrated into IBkCFS and LVF

(available in the name of ConsistencySubsetEval in Weka) (Liu and Setiono, 1996)

integrated into IBkLVF cannot treat the string attribute “incident description” (see

also Table 6.14) used to characterize cases in IMData. On the other hand, it is pos-

sible for the other three classifiers (i.e. IBk, IBkIG, and IBkCS) to treat this string

attribute by performing the following procedures:

• In order to enable the three classifiers (i.e. IBk, IBkIG, and IBkCS) to treat

string attributes, the fundamental issue to be addressed is how to use the val-

ues of these attributes for finding similar cases to a given incident. Originally,

the classifiers are configured to handle only numeric and nominal attributes in

Weka (Witten and Frank, 2000). Therefore, we extended the modules of the

classifiers in order to handle string attributes. For a string attribute to be used

in similarity measurement to find similar cases to a given incident, it is essen-

tial to apply at least basic text processing methods. Given a value of the string

CHAPTER 6. EVALUATION OF USIMSCAR 152

attribute, we first extract its terms by removing stopwords. We then stem the

extracted terms to reduce inflected (or sometimes derived) terms to their stem

or root form. The string attribute is then seen as a set-valued attribute whose

value is a set of the stemmed terms. For this set-valued attribute, we use

a well-known set-based similarity measure, the Jaccard coefficient (Ganesan

et al., 2003). We do acknowledge that this is a rather simple approach. How-

ever, sophisticated text similarity measurement is outside the scope of this

dissertation. The inclusion of IR techniques for USIMSCAR is an area of

future research.

• The feature weighting evaluators InfoGainAttributeEval and ChiSquaredAt-

tributeEval, integrated into two classifiers IBkIG and IBkCS respectively, are

also originally configured not to work with string attributes. Therefore, to

enable these classifiers to work with string attributes for feature weighting,

we add the following implementation into these classifiers available in Weka.

First, given each value v of a string attribute of incident cases in the training

data, we extract terms by removing stopwords (e.g. ‘a’, ‘is’, ‘the’). Then, we

stemmed these extracted terms. The string attribute is then seen as a set-

valued attribute whose value is a set of stemmed terms. Let V be the set of

stemmed terms. Second, we convert the set V into k binary attributes, where

k is the distinct number of terms that appear in V such that each of the binary

attributes has the frequency of the corresponding term in V . This conversion

can be realized by the StringToWordVector filter available in Weka. Once we

convert a set of the terms into the term-frequency attribute representation,

we can train both feature weighting evaluators, InfoGainAttributeEval and

ChiSquaredAttributeEval, on incident cases in the training data. These new

synthesized binary attributes can be treated as numeric attributes. Third,

after training those evaluators on the training data, we obtain individual fea-

ture weights for the individual binary attributes. Recall that these attributes

correspond to the values of the given string attribute of incident cases in the

CHAPTER 6. EVALUATION OF USIMSCAR 153

training data. Finally, as a weight of the string attribute, we compute the

average of the weights of all the binary attributes.

6.4.4 Evaluation Metrics

As previously used in the evaluation of USIMSCAR for medical diagnosis, we use two

evaluation metrics, classification accuracy and F-measure, to evaluate USIMSCAR

and the three k-NN classifiers (i.e. IBk, IBkIG, and IBkCS) using IMData.

6.4.5 Experimental Setup

We randomly partitioned the dataset IMData into the training and testing data,

where the 80% (5,211 cases) are selected as the training data and the remaining

20% (1,303 cases) as the testing data. From the training data, we determine

the performance of the measured approaches−USIMSCAR and the three k-NN

classifiers−using the testing data. That is, the training data is used as a case

base, and incidents in the testing data are used to measure the performance of the

approaches in terms of classification accuracy and F-measure.

6.4.5.1 Similarity Knowledge

The similarity knowledge used in the experiments in the help-desk service domain is

encoded as a similarity measure using the global-local principle, as previously done in

our experimental evaluation in the medical diagnosis domain. Given a new problem

Q in the testing data and a case C in the training data, their similarity SIM(Q,C)

is determined by considering local similarities for all individual attributes of Q and

C. The local similarities are aggregated using the equal-weighted average of them

to produce the final similarity. Formally, the similarity SIM(Q,C) is defined as:

SIM(Q,C) =

∑
qi∈Q,xi∈C sim(qi, xi)

N
,

CHAPTER 6. EVALUATION OF USIMSCAR 154

where sim(qi, xi) represents a local similarity between qi and xi, N is the total

number of attributes of the problem Q and the case C, and qi is the ith attribute

value of Q and xi is the ith attribute value of C.

Let Ai be the ith attribute of the problem Q and the case C. With respect to the

dataset IMData, we define local similarities for only two attribute types: nominal

and string (see also Table 6.14). For the nominal attribute Ai, we use the following

local similarity:

sim(qi, xi) =





1, if qi = xi,

0, otherwise.

As discussed, the similarity for string attributes is performed by conversion to

set-valued attributes and by using the Jaccard coefficient as the similarity measure.

We implemented the three k-NN classifiers to work with the similarity SIM(Q,C)

to find the k most similar cases for the new problem Q. We also implemented the

similarity SIM(Q,C) for use in USIMSCAR for the same purpose. This similar-

ity SIM(Q,C) is also used to compute the similarity between Q and a scar for

USIMSCAR to find the k most similar scars to Q.

6.4.5.2 Association Knowledge

To perform Algorithm 1 (i.e. the algorithm for scars mining) presented in Section

4.3, we used the following parameters:

• minsupp: 0.02 (2%). From our experiments, we observe that once a value

for minsupp (i.e. a user-specified minimum support) is set to be higher than

0.02, we generate less than 100 scars. Whereas if a value for minsupp is set

to be lower than 0.02, we generate more than 5,000 scars. We choose to use

a moderate number of scars in the range between 30% (≈ 1,560) and 50%

(≈ 2,600) of incident cases in the training data. Hence, we set the value for

minsupp as 0.02, and were able to generate 1,568 scars.

CHAPTER 6. EVALUATION OF USIMSCAR 155

• minsim: 0.55 (55%). The value for minsim (i.e. a user-specified minimum

similarity) is set to 0.55 chosen as the top-quartile of all the similarities between

incidents in the testing data and incident cases in the training data.

• min-interesting: 0.55 (55%). The value for min-interesting (i.e. a user-specified

minimum level of interesting) is set to 0.55. To find this value for min-

interesting, we tested various values, ranging from 0.5 to 1.0, by incrementing

in steps 0.05. From this procedure, we found that 0.55 is ideal.

• minitemsize: 1.0 ∗N (100%). As the value for minitemsize (i.e. a user-specified

minimum frequent itemset size), we use a value of 1.0 ∗ N (100%), where N

is the total number of the attributes of instances in both training and testing

data. This value means that the minimum frequent itemset size of scars to

be generated is equal to the total number of the attributes of the cases (e.g.

referring to Table 6.14, N = 3). This choice was motivated by the small

number of problem description attributes in the dataset.

To test the three k-NN classifiers compared with USIMSCAR, we also needed

to determine the best value for the top k that indicates the number of the most

similar cases to a new problem Q. As previously done in our experiments in the

medical diagnosis domain, we also tested these classifiers using various values for k,

ranging from 1 to 157. To perform Algorithm 2 (i.e. the USIMSCAR algorithm)

presented in Section 4.4.3, we also needed to set a value for the top k that indicates

the number of the most similar scars to Q. We tested USIMSCAR using the same

value range, ranging from 1 to 15, for the k, as with the classifiers.

6.4.6 Results and Analysis

We now present the results of our experimental evaluation using the two voting

schemes (i.e. majority voting and weighted voting) in terms of classification accuracy

and F-measure. In the following, we first report the number of the scars used by

7We also observed that increasing k beyond 15 hardly changed the results.

CHAPTER 6. EVALUATION OF USIMSCAR 156

USIMSCAR. This number is acquired by applying our proposed algorithm for scars

mining from the dataset. We then show the experimental results of the measured

approaches. For the experiments, we tested these approaches using odd values for

k (the number of the nearest neighbors) between 1 to 15 to avoid tied votes (i.e.

1, 3, ..., 15). The maximum value 15 for the k was chosen, since we observed

that increasing k beyond 15 hardly changed the results. In order to compare the

approaches, we use the best result obtained from the use of the choice of k in

terms of classification accuracy and F-measure. Thereafter, we present the results of

statistical tests to discover whether USIMSCAR can attain statistically significantly

improvements over the classifiers.

6.4.6.1 SCARS Used by USIMSCAR

From the training data of the dataset IMData, we generated 1,568 scars by applying

the algorithm for scars mining (i.e. Algorithm 1) presented in Section 4.3. This

number corresponds to the number of the proportion that is approximately 30% of

the total number of incident cases in the training data (5,211).

6.4.6.2 Results using Majority Voting

We now present the experimental results of the measured approaches (USIMSCAR

and the three k-NN classifiers compared) using majority voting in terms of classifi-

cation accuracy and F-measure.

We first present the experimental results of the approaches, with the use of

majority voting, in terms of classification. Table 6.15 shows full details of the results

using the tested values for k ranging from 1 to 15. For each compared approach

(i.e. USIMSCAR, IBk, IBkIG, and IBkCS) the best result is denoted in boldface.

As shown, the best result for each approach is obtained for a different value of

k. In Table 6.16, we compare the best outcomes from each of the k-NN classifiers

with respect to classification accuracy with the best accuracy presented in boldface.

As observed, USIMSCAR substantially outperforms all the three classifiers. Its

CHAPTER 6. EVALUATION OF USIMSCAR 157

improvements over these classifiers range from 7.96% to 8.14%. According to the Z-

test at 95% confidence, USIMSCAR is determined to attain statistically significant

improvements over all these classifiers in terms of classification accuracy as shown

in Table 6.17.

Table 6.15: The detailed results using majority voting in terms of classification
accuracy (%).

k USIMSCAR IBk IBkIG IBkCS
1 84.692 73.021 72.781 72.781
3 82.776 74.576 74.456 74.456
5 82.418 76.072 75.893 75.893
7 81.280 75.893 75.714 75.714
9 80.501 75.834 75.654 75.654
11 80.741 76.133 75.954 75.954
13 80.741 76.731 76.552 76.552
15 80.562 76.493 76.373 76.373

Table 6.16: The results using majority voting in terms of classification accuracy
(%).

Metric USIMSCAR IBk IBkIG IBkCS

Classification Accuracy 84.692 76.731 76.552 76.552

Table 6.17: The results of statistical tests in terms of classification accuracy.

Comparison IMData

USIMSCAR-IBk sig at 95%

USIMSCAR-IBkIG sig at 95%

USIMSCAR-IBkCS sig at 95%

We now present the experimental results of USIMSCAR and the classifiers using

majority voting in terms of F-measure. Table 6.18 shows full details of the results

using the tested values for k ranging from 1 to 15. For each compared approach

(i.e. USIMSCAR, IBk, IBkIG, and IBkCS) the best result is denoted in boldface.

As shown, the best result for each approach is obtained for a different value of

k. In Table 6.19, we compare the best outcomes from each of the k-NN classifiers

with respect to F-measure with the best F-measure result presented in boldface. As

CHAPTER 6. EVALUATION OF USIMSCAR 158

Table 6.18: The detailed results using majority voting in terms of F-measure (%).

k USIMSCAR IBk IBkIG IBkCS
1 63.427 53.008 52.860 52.860
3 62.142 54.676 54.608 54.608
5 61.129 55.475 55.369 55.369
7 60.047 56.600 56.494 56.494
9 56.828 56.209 56.103 56.103
11 57.686 56.702 56.596 56.596
13 56.439 56.843 56.736 56.736
15 56.022 55.057 54.984 54.984

observed, USIMSCAR significantly outperforms all the three classifiers. Its improve-

ments over these classifiers range from 6.58% to 6.69%. According to the Z-test at

95% confidence, we find that USIMSCAR statistically significantly outperforms all

the classifiers in terms of F-measure as shown in Table 6.20.

Table 6.19: The results using majority voting in terms of F-measure (%).

Metric USIMSCAR IBk IBkIG IBkCS

F-measure 63.427 56.843 56.736 56.736

Table 6.20: The results of statistical tests in terms of F-measure.

Comparison IMData

USIMSCAR-IBk sig at 95%

USIMSCAR-IBkIG sig at 95%

USIMSCAR-IBkCS sig at 95%

We observe that the classification accuracy results of all the approaches are higher

than the F-measure results of those approaches. The mean difference is found ap-

proximately 20%. The reason comes from that the F-measure results for workgroups

WG4, WG5 and WG6 are much lower than those for the other three workgroups

WG1, WG2 and WG3. In fact, we found that the former workgroups were rela-

tively lowly associated with incidents in the testing data: 13.36% of the incidents

are resolved by WG4; 4.51% by WG5; and 0.75% by WG6. Whereas the latter

workgroups were highly associated with the incidents in the testing data: 27.90%

by WG1; 25.79% by WG2; 13.36% by WG3. We discover that such low associations

CHAPTER 6. EVALUATION OF USIMSCAR 159

between workgroups (WG4, WG5 and WG6) and the incidents result in that the ma-

jority of classification tended to predict workgroups (WG1, WG2 and WG3). This

tendency leads to lower F-measure results for workgroups (WG4, WG5 and WG6).

As previously outlined in Section 6.3.2, F-measure is computed by the mean of all

the F-measure results for all workgroups. Therefore, the lower F-measure results for

workgroups (WG4, WG5 and WG6) influenced the low mean F-measure results for

all the workgroups (WG1, ..., WG6) thereby resulting in relatively lower F-measure

results than the classification accuracy results of all the approaches tested. On the

other hand, classification accuracy is calculated by the proportion of correctly clas-

sified instances out of all the classified (tested) instances, not by using the average

of the classification accuracies for individual workgroups.

Having presented the experimental results of USIMSCAR in comparison with

the three k-NN classifiers using majority voting in terms of classification accuracy

and F-measure, we now present the experimental results of the approaches using

weighted voting in terms of classification accuracy and F-measure.

6.4.6.3 Results using Weighted Voting

We now consider the experimental results of the measured approaches (USIMSCAR

and the three k-NN classifiers) using weighting voting in terms of classification

accuracy and F-measure.

We first present the results using weighted voting in terms of classification ac-

curacy. Table 6.21 shows full details of the results using all the odd values tested,

ranging from 1 to 15, for k, where k is the number of the nearest neighbors of a

given incident Q. For each compared approach (i.e. USIMSCAR, IBk, IBkIG, and

IBkCS), the best result is denoted in boldface. As shown, the best result for each

approach is obtained for a different value of k. In Table 6.22, we compare the best

outcomes from each of the k-NN classifiers with respect to classification accuracy

with the best accuracy presented in boldface. As observed, USIMSCAR signifi-

cantly outperforms all the three classifiers. Its improvements over these classifiers

CHAPTER 6. EVALUATION OF USIMSCAR 160

range from 9.52% to 10.18%. According to the Z-test at 95% confidence, we find

that USIMSCAR statistically significantly outperforms all the classifiers in terms of

classification accuracy as shown in Table 6.23.

Table 6.21: The detailed results using weighted voting in terms of classification
accuracy (%).

k USIMSCAR IBk IBkIG IBkCS
1 85.829 73.021 72.781 72.781
3 86.906 74.936 74.877 74.877
5 87.325 76.192 75.954 75.954
7 86.247 76.192 75.773 75.834
9 85.650 76.611 76.072 76.192
11 83.615 76.552 75.773 75.893
13 81.400 77.509 76.971 77.091
15 80.741 77.808 77.150 77.269

Table 6.22: The results using weighted voting in terms of classification accuracy
(%).

Metric USIMSCAR IBk IBkIG IBkCS

Classification Accuracy 87.325 77.808 77.150 77.269

Table 6.23: The results of statistical tests in terms of classification accuracy.

Comparison IMData

USIMSCAR-IBk sig at 95%

USIMSCAR-IBkIG sig at 95%

USIMSCAR-IBkCS sig at 95%

We now present the experimental results of USIMSCAR and the classifiers using

weighted voting in terms of F-measure. Table 6.24 shows full details of the results

using the tested values for k ranging from 1 to 15. For each compared approach

(i.e. USIMSCAR, IBk, IBkIG, and IBkCS), the best result is denoted in boldface.

As shown, the best result for each approach is obtained for a different value of

k. In Table 6.25, we compare the best outcomes from each of the k-NN classifiers

with respect to F-measure with the best F-measure result presented in boldface.

As observed, USIMSCAR significantly outperforms all the three classifiers. Its im-

provements over these classifiers range from 8.44% to 8.80%. Using the Z-test at

CHAPTER 6. EVALUATION OF USIMSCAR 161

95% confidence, we find that USIMSCAR statistically significantly outperforms all

the classifiers in terms of F-measure as shown in Table 6.26.

Table 6.24: The detailed results using weighted voting in terms of F-measure (%).

k USIMSCAR IBk IBkIG IBkCS
1 64.437 53.008 52.860 52.860
3 63.755 53.006 52.997 52.997
5 64.595 54.332 54.185 54.184
7 65.156 55.394 55.112 55.144
9 65.771 57.332 56.971 57.038
11 64.455 56.117 56.035 56.101
13 62.772 56.238 56.329 56.395
15 62.447 55.522 55.553 55.617

Table 6.25: The results using weighted voting in terms of F-measure (%).

Metric USIMSCAR IBk IBkIG IBkCS

F-measure 65.771 57.332 56.971 57.038

Table 6.26: The results of statistical tests in terms of F-measure.

Comparison IMData

USIMSCAR-IBk sig at 95%

USIMSCAR-IBkIG sig at 95%

USIMSCAR-IBkCS sig at 95%

Up to this point, we have presented the experimental results of USIMSCAR in

comparison with the three chosen k-NN classifiers in terms of classification accuracy

as well as F-measure for the IMData dataset. Our experiments have been conducted

by performing USIMSCAR and the classifiers using the IMData dataset with the use

of both majority voting and weighted voting. Before concluding the evaluation of

USIMSCAR in the help-desk service domain, we present the following summary.

6.4.6.4 Summary

The following is a summary of our experimental evaluation of USIMSCAR in the

help-desk service domain:

CHAPTER 6. EVALUATION OF USIMSCAR 162

• Using both majority voting and weighted voting, USIMSCAR statistically

significantly outperforms all the three k-NN classifiers compared in terms of

classification accuracy as well as F-measure. Through these results, we demon-

strate that USIMSCAR has the ability to retrieve more useful objects (i.e.

cases and scars) with respect to the target problems than similarity-based

retrieval (SBR). As outlined in Chapter 4, these objects are identified and

quantified by using a combination of similarity and association knowledge.

• USIMSCAR using weighted voting (USIMSCARWV) leads to better perfor-

mance over USIMSCAR using majority voting (USIMSCARMV) in terms of

both classification accuracy and F-measure. As previously discovered in our

experimental evaluation in the medical diagnosis domain, these findings indi-

cate an important conclusion that it is more significant to utilize the “use-

fulness” of objects in the retrieval result of USIMSCAR, rather than merely

distribution information about the solutions (classes) associated with these

objects. We note that the usefulness of the objects is quantified by leverag-

ing both similarity and association knowledge. Therefore, the improvement of

USIMSCARWV over USIMSCARMV implies that leveraging cases and rules (i.e

scars) quantified using a combination of similarity and association knowledge

has a stronger influence on the enhancement of the retrieval performance when

compared to leveraging merely the distribution information of these cases and

rules.

This further establishes the validity of the primary motivation of this research

that a combination of association and similarity knowledge will lead to im-

proving traditional SBR. It also reinforces the effectiveness of our proposed

USIMSCAR approach across multiple datasets and multiple application do-

mains. It is also noteworthy that this has been shown to hold strongly for

real-world datasets (e.g IMData, NHSG) as well as benchmark datasets (e.g.

Breast Cancer, New Thyroid) evaluated thus far.

CHAPTER 6. EVALUATION OF USIMSCAR 163

In the next section, we report our evaluation of USIMSCAR in the product

recommendation domain.

6.5 Evaluation for Product Recommendation

We finally evaluate our proposed retrieval strategy USIMSCAR in a product rec-

ommendation domain. It has been shown that CBR technology provides a powerful

foundation to implement recommender systems, as reviewed in Chapter 2. The main

role of CBR in the context of performing recommendations is to provide intelligent

support for customers to select products that are most appropriate for their demands

(Bergmann, Schmitt and Stahl, 2002; Bridge, Gker, Mcginty and Smyth, 2006). In

the following, we first present the used dataset, and the k-NN classifiers compared

with USIMSCAR, and the evaluation metrics, which are used for this evaluation.

We thereafter describe the experimental configuration that is applied to the mea-

sured approaches. We finally present the experimental results of the approaches and

important observations drawn from the results.

6.5.1 Dataset

Our evaluation of USIMSCAR in the product recommendation domain aims to

determine whether USIMSCAR outperforms k-NN approaches by quantifying the

retrieval performance using a dataset generally used for recommendation purposes.

As our exploratory domain, we selected a movie recommendation domain, since it

provides a domain with a relatively large amount of data publicly available. We used

the movie dataset, referred to as “Yahoo! Webscope R4 Movie dataset”8, which was

generated by “Yahoo! Movies”9 around 2003. We simply denote this dataset as

R4. In R4, the training data contains 211,231 ratings for 11,915 movies (i.e. items)

given by 7,642 users. The testing data is made of 10,136 ratings of 2,309 users for

2,380 movies, gathered chronologically after the training data. Each instance in R4

8http://research.yahoo.com.
9http://movies.yahoo.com.

CHAPTER 6. EVALUATION OF USIMSCAR 164

is structured as a pair of the form (x, sx), where x is the combined information of

a user u and a movie m, and sx is the rating assigned to the movie m by the user

u. We refer to the user information as user-info. We refer to the movie information

as movie-info. The user-info is characterized by two attributes (i.e. birthyear and

gender), and the movie-info is characterized by 32 attributes (e.g. title, synopsis,

director). In a CBR context, the x and sx of the form (x, sx) correspond to a

problem and the corresponding solution respectively.

We selected the dataset R4 with the following intentions. The first is to achieve

an extensive evaluation of USIMSCAR in the product recommendation domain.

The movie-info is relatively richly described, when compared to typical datasets

such as MovieLens10 for evaluating movie recommenders. The information about

movies in MovieLens is composed of a relatively smaller number of attributes such

as title, release date, IMDB URL, and genres. On the contrary, the movie-info in

R4 consists of more descriptive information about movies using the 32 attributes

such as title, actors, genres, directors, mpaa ratings, ratings from diverse sources

(e.g. Mom: http://www.moviemom.com). The second reason for choosing R4 is

that this dataset is partitioned into training and testing data, thereby providing a

good controlled basis for experimental evaluation. Using the training data, we can

easily determine the performance of the measured approaches from the testing data.

Our fundamental aim of the experimental evaluation of USIMSCAR using the

dataset R4 is to use both the user-info and movie-info in predicting user ratings for

given movies. For this purpose, we performed two preprocessing steps on R4. We

first removed the instances that contain any missing values for any attributes in

the movie-info. We also eliminated redundant/repeating attributes. For example,

actors are represented using both ‘actor id’ and ‘name’. We chose to include only

the name. Let us denote the preprocessed dataset as R4’. The dataset R4’ is finally

composed of the following:

10http://www.movielens.org.

CHAPTER 6. EVALUATION OF USIMSCAR 165

• The training data: it contains 2,229 rating instances (cases) rated by 697 users

for 233 movies. Each rating is scaled from 1 to 5, where a value 1 represents

the lowest rating, and a value 5 indicates the highest rating.

• The testing data: it contains 1,754 rating instances (i.e. new problems) rated

by 620 users for 246 movies. The rating scale in the testing data is the same

as that in the training data.

• The user-info: all the users, participated in rating given movies, are described

by two attributes: birthyear (e.g. 1981) and gender (e.g. m or f).

• The movie-info: all the movies in the training and testing data are described

by nine attributes. Table 6.27 shows a summary of these attributes:

Table 6.27: The movie descriptive content information

Attributes Description Type

title movie title String
mpaa rating MPAA rating of movie Nominal
genres list of the genres of movie Set-valued
directors list of the directors of movie Set-valued
actors list of the actors of movie Set-valued
avg-critic-rating average of the critic reviews of movie Numeric
rating-from-Mom rating to movies obtained from the Movie

Mom
Numeric

gnpp Global Non-Personalized Popularity
(GNPP), of movie, computed by Yahoo!
Research

Numeric

avg-rating average movie rating by users in the training
data

Numeric

Using the dataset R4’, we formalize a recommendation problem as a case-based

classification task as follows: For each instance in the testing data, the task is to

predict (or classify) a rating that the user will be likely to rate as liked (high-ranked)

or disliked (low-ranked), using instances in the training data. Formally, the task is

a function that takes a user and a movie as input, and produces a label indicating

whether the movie would be liked (and recommended) or disliked by the user as

output:

f(〈user,movie〉) → {liked, disliked},

CHAPTER 6. EVALUATION OF USIMSCAR 166

where ratings greater than and equal to 4 (i.e. 4 and 5) are treated as liked, and

ratings less than 4 (i.e. 1, 2 and 3) as disliked. Therefore, we are interested in

predicting whether a movie is liked or disliked rather than an exact rating in our

evaluation using R4’.

6.5.2 SBR: k-NN Approaches

For the dataset R4’, we only use three out of the five classifiers outlined in Section

6.2.3. The chosen classifiers are IBk, IBkIG, and IBkCS. The reason for excluding

IBkCFS and IBkLVF is that the feature selection evaluators CFS (i.e. CfsSubsetE-

val) and LVF (i.e. ConsistencySubsetEval) available in Weka cannot incorporate

string attributes and set-valued attributes used in R4’ (see Table 6.27). The strategy

for treating string attributes was the same as the approach we used for the previous

IMData dataset. Therefore, we only present how to treat set-valued attributes for

feature weighting.

For a given set-valued attribute, we extract all its nominal values appearing in

the training data. We denote the set of these values as V . We then convert the set

V into k binary attributes, where k is the distinct number of nominal values that

appear in the set V , such that each binary attribute has the frequency of the corre-

sponding nominal value. Once we convert a set of the values in the set V into the

term-frequency attribute representation, we can train both feature weighting eval-

uators InfoGainAttributeEval integrated with IBkIG and ChiSquaredAttributeEval

integrated with IBkCS on instances in the training data. These new synthesized

binary attributes can be treated as number attributes. After training those evalua-

tors on the training data, we can obtain individual feature weights for the respective

binary attributes. Finally, as the weight of the set-valued attribute, we compute the

average of the weights of all the binary attributes.

CHAPTER 6. EVALUATION OF USIMSCAR 167

6.5.3 Evaluation Metrics

As before, we use two evaluation metrics, classification accuracy and F-measure, to

evaluate USIMSCAR and the three k-NN classifiers (i.e. IBk, IBkIG, and IBkCS)

using the R4’ dataset.

6.5.4 Experimental Setup

The dataset R4’ is partitioned into the training and testing data, where the training

data consists of 2,229 rating instances and the testing data is made of 1,754 rating

instances. From the training data, we assess the performance of the measured

approaches (USIMSCAR and the three k-NN classifiers) using the testing data.

That is, the training data is used as a case base, and all instances in the testing

data are used to measure the performance of the approaches in terms of classification

accuracy and F-measure.

6.5.4.1 Similarity Knowledge

The similarity knowledge used in our experiments in the product recommendation

domain is encoded as before as a similarity measure using the global-local principle.

For the dataset R4’, we define local similarities for four attribute types: numeric,

nominal, set-valued and string in Table 6.27.

Table 6.28: The used local similarity measures.

Attribute Type Local Similarity Measures

Numeric A local similarity for the numeric attribute Ai is defined as
sim(qi, xi) = 1− |qi−xi|

max−min
, where “max” is the highest value and “min”

is the lowest value in the value range that Ai can take on.

Nominal A local similarity for the nominal attribute Ai is defined as
sim(qi, xi) = 1, if qi = xi, and 0, otherwise.

Set-valued For the set-valued attributes, we use a well-known set-based similarity
measure, the Jaccard coefficient.

String Given each value of the string attribute Ai, we first extract its possible
terms by removing stopwords. We then stem the extracted terms to re-
duce inflected (or sometimes derived) terms to their stem or root form.
The attribute Ai is then seen as set-valued attribute whose value is a
set comprising of the stemmed terms. For this set-valued attribute, we
use a well-known set-based similarity measure, the Jaccard coefficient.

CHAPTER 6. EVALUATION OF USIMSCAR 168

6.5.4.2 Association Knowledge

To perform scars mining, we used the following parameters:

• minsupp: 0.1 (10%). We choose to use a moderate number of scars in the range

between 30% (≈ 670) and 50% (≈ 1,110) of instances in the training data in

USIMSCAR. Based on this scheme, we chose a value of 0.1 for minsupp (i.e.

a user-specified minimum support) from this range and were able to generate

749 (33.60%) scars.

• minsim: 0.66 (66%). The value for minsim (i.e. a user-specified minimum sim-

ilarity threshold) is set to 0.66 chosen as the top-quartile of all the similarities

between all instances in the testing data and all cases in the training data, as

previously done in our experiments in the help-desk service domain.

• min-interesting: 0.65 (65%). The value for min-interesting (i.e. a user-specified

minimum level of interesting) is set to 0.65. To find this value, we tested

various values, ranging from 0.5 to 1.0 with step increments of 0.05. Based on

this procedure, we found that 0.65 is optimal.

• minitemsize: 0.5 ∗N (50%). As the value for minitemsize (i.e. a user-specified

minimum frequent itemset size), we set 0.5 ∗ N (50%), where N is the total

number of the attributes of cases (i.e. instances). This value indicates that

the minimum frequent itemset size of scars to be generated is equal to half the

total number of the attributes of the cases. Thus, a value for minitemsize is

set to 6, since all instances in the dataset R4’ consist of 12 attributes.

To test the three k-NN classifiers to be compared with USIMSCAR, we needed to

determine the best value for the top k that indicates the number of the most similar

cases to the new problem Q. As previously done in our experiments in the help-desk

service domain, we tested these classifiers using various values for k ranging from

1 to 1511. To perform Algorithm 2 (i.e. the USIMSCAR algorithm) presented in

11We also observed that increasing k beyond 15 hardly changed the results.

CHAPTER 6. EVALUATION OF USIMSCAR 169

Section 4.4.3, we also needed to set a value for the top k that indicates the number

of the most similar scars to Q. We tested USIMSCAR using the same value range,

ranging from 1 to 15, for the k, as done for the classifiers.

6.5.5 Results and Analysis

We now present the results of our experimental evaluation using majority voting

and weighted voting for both classification accuracy and F-measure. In the follow-

ing, we first report the number of the scars used by USIMSCAR. This number is

acquired by applying our proposed algorithm for scars mining from the dataset. We

then show the experimental results of the measured approaches−USIMSCAR and

the three k-NN classifiers compared. For the experiments, we tested the approaches

using odd values for k (the number of the nearest neighbors) between 1 to 15 to

avoid tied votes (i.e. 1, 3, ..., 15). In our experimental evaluation, we use the best

result obtained from the use of the choice of k in terms of classification accuracy

and F-measure to compare the approaches. We then show the results of statistical

tests to determine whether USIMSCAR can achieve statistically significant improve-

ments over the classifiers. We finally conclude this chapter with a summary of our

experimental evaluations.

6.5.5.1 SCARS Used by USIMSCAR

From the training data of the dataset R4’, we generated 749 scars by applying the

algorithm for scars mining (i.e. Algorithm 1) presented in Section 4.3. This number

corresponds to the number of the proportion that is approximately 33% of the total

number of instance cases in the training data (2,229) of the dataset.

6.5.5.2 Results using Majority Voting

We now present the experimental results of the measured approaches (USIMSCAR

and the three k-NN classifiers compared) using majority voting in terms of classifi-

cation accuracy and F-measure.

CHAPTER 6. EVALUATION OF USIMSCAR 170

We first present the experimental results of the approaches using majority vot-

ing in terms of classification. Table 6.29 shows full details of the results using the

tested values for k ranging from 1 to 15. For each compared approach (i.e. USIM-

SCAR, IBk, IBkIG, and IBkCS) the best result is denoted in boldface. As shown,

the best result for each approach is obtained for a different value of k. In Table

6.30, we compare the best outcomes from each of the k-NN classifiers with respect

to classification accuracy with the best accuracy presented in boldface. As observed,

USIMSCAR significantly outperforms all the three classifiers. Its improvements over

these classifiers range from 3.89% to 4.54%. According to the Z-test at 95% con-

fidence, USIMSCAR is determined to attain statistically significant improvements

over all these classifiers in terms of classification accuracy as shown in Table 6.31.

Table 6.29: The detailed results using majority voting in term of classification ac-
curacy (%).

k USIMSCAR IBk IBkIG IBkCS
1 71.042 66.310 66.569 65.791
3 76.551 71.884 72.532 71.042
5 77.653 72.921 75.579 72.662
7 79.532 73.893 75.709 73.310
9 79.078 74.217 75.773 75.903
11 79.986 75.773 75.773 76.486
13 83.033 78.236 77.782 78.301
15 82.709 78.819 78.495 79.143

Table 6.30: The results using majority voting in terms of classification accuracy
(%).

Metric USIMSCAR IBk IBkIG IBkCS

Classification Accuracy 83.033 78.819 78.495 79.143

Table 6.31: The results of statistical tests in terms of classification accuracy.

Comparison R4’

USIMSCAR-IBk sig at 95%

USIMSCAR-IBkIG sig at 95%

USIMSCAR-IBkCS sig at 95%

CHAPTER 6. EVALUATION OF USIMSCAR 171

We now present the experimental results of USIMSCAR and the classifiers using

majority voting in terms of F-measure. Table 6.32 shows full details of the results

using the tested values for k ranging from 1 to 15. For each compared approach

(i.e. USIMSCAR, IBk, IBkIG, and IBkCS) the best result is denoted in boldface.

As shown, the best result for each approach is obtained for a different value of

k. In Table 6.33, we compare the best outcomes from each of the k-NN classifiers

with respect to F-measure with the best F-measure result presented in boldface. As

observed, USIMSCAR significantly outperforms all the three classifiers. Its improve-

ments over these classifiers range from 0.77% to 2.45%. According to the Z-test at

90% confidence, we find that USIMSCAR statistically significantly outperforms all

the classifiers in terms of F-measure as shown in Table 6.34.

Table 6.32: The detailed results using majority voting in terms of F-measure (%).

k USIMSCAR IBk IBkIG IBkCS
1 62.778 61.980 61.433 61.277
3 65.388 64.001 64.338 63.454
5 66.793 65.433 65.856 66.073
7 68.439 66.168 65.592 66.191
9 68.390 65.897 66.074 67.471
11 68.819 66.629 65.068 68.447
13 70.720 68.230 69.061 69.789
15 70.293 66.801 68.270 69.949

Table 6.33: The results using majority voting in terms of F-measure (%).

Metric USIMSCAR IBk IBkIG IBkCS

F-measure 70.720 68.230 69.061 69.949

Table 6.34: The results of statistical tests in terms of F-measure.

Comparison R4’

USIMSCAR-IBk sig at 90%

USIMSCAR-IBkIG sig at 90%

USIMSCAR-IBkCS sig at 90%

We can also observe that the classification accuracy results of all the measured

approaches are higher than the F-measure results of those approaches. The mean

CHAPTER 6. EVALUATION OF USIMSCAR 172

difference is approximately 20%. We find that such differences occur due to the same

reason that we discussed with respect to ITSM dataset. It primarily causes from

the smaller number of instances belonging to some classes. The F-measure results

for a class disliked (ratings 1, 2, and 3) are much lower than those for a class liked

(ratings 4 and 5). We found that the class disliked is relatively lowly associated

with instances in the testing data with the number of those instances being 310

(17.7%) out of 1,754. On the other hand, the class liked has a stronger occurrence

for the instances in the testing data (i.e. 1,444 (82.3%) out of 1,754). We discover

that such lower associations between the class disliked and the instances entail that

the majority of classification that has to be predicted tend to be highly to the class

liked. This tendency results in the lower F-measure results for the class disliked. The

F-measure is computed by the mean of all the F-measure results for both classes.

Therefore, the lower F-measure results for the class disliked results in the low mean

F-measure results for both classes.

Having presented the experimental results of USIMSCAR in comparison with

the three k-NN classifiers using majority voting in terms of classification accuracy

and F-measure, we now present the experimental results of the approaches using

weighted voting.

6.5.5.3 Results using Weighted Voting

We now consider the experimental results of the measured approaches (USIMSCAR

and the three k-NN classifiers compared) using weighting voting in terms of classi-

fication accuracy and F-measure.

Table 6.35 shows full details of the results using all the odd values tested, ranging

from 1 to 15, for k, where k is the number of the nearest neighbors of a given instance

Q. For each compared approach (i.e. USIMSCAR, IBk, IBkIG, and IBkCS), the best

result is denoted in boldface. As shown, the best result for each approach is obtained

for a different value of k. In Table 6.36, we compare the best outcomes from each of

the k-NN classifiers with respect to classification accuracy with the best accuracy

CHAPTER 6. EVALUATION OF USIMSCAR 173

presented in boldface. As observed, USIMSCAR significantly outperforms all the

three classifiers. Its improvements over these classifiers range from 3.57% to 4.08%.

According to the Z-test at 95% confidence, we find that USIMSCAR statistically

significantly outperforms all the classifiers in terms of classification accuracy as

shown in Table 6.37.

Table 6.35: The detailed results using weighted voting in terms of classification
accuracy (%).

k USIMSCAR IBk IBkIG IBkCS
1 70.977 66.310 66.569 65.791
3 76.357 73.245 73.763 72.078
5 77.523 74.023 76.357 74.023
7 79.532 76.162 76.681 75.255
9 79.208 76.746 77.458 77.134
11 80.570 77.782 77.394 76.486
13 83.357 79.791 78.495 79.338
15 83.227 79.791 79.273 79.727

Table 6.36: The results using weighted voting in terms of classification accuracy
(%).

Metric USIMSCAR IBk IBkIG IBkCS

Classification Accuracy 83.357 79.791 79.273 79.727

Table 6.37: The results of statistical tests in terms of classification accuracy.

Comparison R4’

USIMSCAR-IBk sig at 95%

USIMSCAR-IBkIG sig at 95%

USIMSCAR-IBkCS sig at 95%

We now present the experimental results of USIMSCAR and the classifiers using

weighted voting in terms of F-measure. Table 6.38 shows full details of the results

using the tested values for k ranging from 1 to 15. For each compared approach

(i.e. USIMSCAR, IBk, IBkIG, and IBkCS), the best result is denoted in boldface.

As shown, the best result for each approach is obtained for a different value of

k. In Table 6.39, we compare the best outcomes from each of the k-NN classifiers

with respect to F-measure with the best F-measure result presented in boldface. As

CHAPTER 6. EVALUATION OF USIMSCAR 174

observed, USIMSCAR significantly outperforms all the three classifiers. Its improve-

ments over these classifiers range from 1.20% to 2.45%. According to the Z-test at

90% confidence, we find that USIMSCAR statistically significantly outperforms the

IBkIG classifier in terms of F-measure as shown in Table 6.40.

Table 6.38: The detailed results using weighted voting in terms of F-measure (%).

k USIMSCAR IBk IBkIG IBkCS
1 62.519 61.980 61.433 61.277
3 64.941 63.137 64.428 63.090
5 66.274 64.791 65.280 64.903
7 67.999 65.508 64.670 66.124
9 68.028 65.385 64.999 67.274
11 69.279 66.198 64.162 67.573
13 70.824 68.812 67.941 69.523
15 70.846 66.821 68.395 69.643

Table 6.39: The results using weighted voting in terms of F-measure (%).

Metric USIMSCAR IBk IBkIG IBkCS

F-measure 70.846 68.812 68.395 69.643

Table 6.40: The results of statistical tests in terms of F-measure.

Comparison R4’

USIMSCAR-IBk -

USIMSCAR-IBkIG sig at 90%

USIMSCAR-IBkCS -

We have presented the experimental results of USIMSCAR in comparison with

the three k-NN classifiers in terms of classification accuracy as well as F-measure.

Our experiments have been conducted by performing USIMSCAR and the classifiers

using the dataset R4’ with the use of both majority voting and weighted voting.

Before concluding the evaluation of USIMSCAR in the product recommendation

domain, we present the following summary:

• The outcomes of the experimental evaluation in the product recommendation

domain are consistent with and similar to the results in the medical diagnosis

and ITSM application domains.

CHAPTER 6. EVALUATION OF USIMSCAR 175

• This result of USIMSCAR’s performance is particularly evident with respect

to classification.

• In general, USIMSCAR outperforms the other SBR approaches for both ma-

jority voting and weighted voting.

• The real strength of our evaluation lies in the fact that USIMSCAR improves

traditional similarity-based retrieval for CBR classification in multiple domains

(i.e. medical diagnosis, help-desk service, and product recommendation) us-

ing both real-world and benchmark data. Furthermore, in a majority of the

evaluations, USIMSCAR’s superior performance is statistically significant as

well. Thus, we have demonstrated the effectiveness of combining association

knowledge and similarity knowledge for CBR retrieval.

In this section, we have formalized the recommendation problem as a case-based

classification problem and shown the improvement of USIMSCAR over k-NN clas-

sifiers in terms of classification accuracy and F-measure. However, in the specific

context of recommender systems, it is important to also perform a comparison be-

tween USIMSCAR and existing recommender systems/recommenders.

6.5.6 Comparison of USIMSCAR with Hybrid Recommenders

for Product Recommendation

Recommenders are designed to suggest more suitable items (or products) to users

in e-commerce. As previously outlined in Section 2.2.2, these systems are generally

classified into three categories (Adomavicius and Tuzhilin, 2005). First, content-

based recommenders recommend the items similar to the ones that the user has

liked in the past. Second, collaborative filtering recommenders recommend the items

that other users with similar preferences have liked in the past. Finally, hybrid

recommenders recommend the items by combining the above two approaches.

For our comparison purpose, we choose hybrid recommenders, since USIMSCAR

is also seen as a unifying model realizing a hybrid recommendation. USIMSCAR

CHAPTER 6. EVALUATION OF USIMSCAR 176

differs from collaborative filtering recommenders in that it exploits content infor-

mation of items (movies) with rating information. It also differs from content-based

recommenders by using other users’ ratings and exploiting it for rating classification

as we showed in the preceding subsections.

We compare USIMSCAR with the following three well-known hybrid recom-

menders: CLAYPOOL (Claypool, Gokhale and Miranda, 1999), MELVILLE (Melville,

Mooney and Nagarajan, 2002) and BASU (Basu, Hirsh and Cohen, 1998), which

are outlined as follows:

CLAYPOOL (Claypool et al., 1999): As the first step, CLAYPOOL computes

the similarities between users using the Pearson correlation coefficient12. Let U be

the set of all users. Let I be the set of all movies to be recommended. Then, a rating

ru,i for a user u and an item i is defined using the following collaborative filtering

method:

ru,i = ru +

∑
u′∈Û sim(u, u′)× (ru′,i − ru′)∑

u′∈Û

, where

sim(u, u′) =

∑
i∈Iuu′

(ru,i − ru)(ru′,i − ru′)√∑
i∈Iuu′

(ru,i − ru)2
∑

i∈Iuu′
(ru′,i − ru′)2

,
(6.2)

where ru is the mean rating for a user u, sim(u, u′) is the Pearson correlation

coefficient of a user u with a user u′, Iuu′ represents the set of all items co-rated

by both users u and u′, and Û denotes the set of n users who have some correlation

with a user u and have rated an item i.

To compute the above rating method ru,i for a user u and an item i, we must

determine a neighborhood size that defines the similar users to a user u. For this,

we limit memberships in a neighborhood by only selecting those neighbors whose

correlation was greater than an absolute correlation threshold 0.513.

As the second step, CLAYPOOL performs a content-based method. As this

method, we choose to use IBk with a best value for k (i.e. the number of the most

12Pearson correlation coefficient is a method of measuring the correlation (linear dependence)
between two variables, giving a value between +1 and -1 inclusive. It is widely used in the science
as a measure of the strength of linear dependence between two variables.

13We observed that increasing this value beyond 0.5 hardly changed the results.

CHAPTER 6. EVALUATION OF USIMSCAR 177

similar cases to a new problem Q), which is determined by cross-validation. Finally,

we combine the scores returned by the two different recommendation methods by

using the equal-weighted average of the scores.

MELVILLE (Melville et al., 2002): MELVILLE uses a content-based predictor

to convert a sparse user-ratings matrix (UM) into a full user-ratings matrix (FUM).

Then, it uses a collaborative filtering method to provide recommendations. A user-

ratings matrix UM is a matrix of users versus items, where each cell is the rating

given by a user to an item, and each row is called a user-ratings vector (UV). A

content-based predictor is trained on each user-ratings vector UV, and then a pseudo

user-ratings vector (PUV) is created. A pseudo user-ratings vector PUV contains the

actual ratings of a user and content-based predictions for unrated items. Eventually,

given a user, a prediction is made for a new item using a collaborative filtering

method on the full user-ratings matrix FUM.

As the content-based predictor, we use IBk with a best value for k (i.e. the

number of the most similar cases to a new problem Q), which is determined by

cross-validation, as used in CLAYPOOL, to make a fair comparison. The role of

this classifier is to predict ratings of unrated movies for a given user using a set of

movies that appear in the UV of this user.

A collaborative filtering method for MELVILLE is implemented by extending the

Pearson correlation coefficient that is the same function sim(u, u′) used in CLAY-

POOL. We also limit the number of users in a neighborhood by only selecting those

neighbors whose correlation was greater than 0.5. The value 0.5 is equal to the one

used in CLAYPOOL and chosen to make a fair comparison with CLAYPOOL.

With sim(u, u′), MELVILLE further devalues the correlation between two users

u and u′ based on their co-rated items. The applied assumption is that their cor-

relation, indicating their similarity determined by using a small number of co-rated

items, tends to make bad recommendations. Therefore, MELVILLE multiplies the

correlation by a significant weight factor to devalue it. If two users u and u′ have

less than N co-rated items, their correlation is multiplied by a factor sga,u = n/N ,

CHAPTER 6. EVALUATION OF USIMSCAR 178

where n is the number of their co-rated items. If the number of their co-rated items

is greater than N , the correlation is unchanged (i.e sga,u = 1). We used N = 13,

which is the smallest integral value greater than the average of co-rated items per

user in the training data. Finally, the pseudo user-ratings vector PUV for a user u

consists of the ratings provided by u to the available items and those ratings pre-

dicted by the content-based predictor otherwise. Formally, for a user u and an item

i, MELVILLE performs as follows:

ru,i = ru +
swu(cu,i − ru) +

∑
u′∈Û(hwu,u′ × simu,u′(ru′,i − ru′))

swu +
∑

u′∈Û(hwu,u′ × sim(u, u′))
, (6.3)

where ru is the mean of all pseudo user-ratings given by a user u to all the available

items, cu,i corresponds to the content-based prediction for a user u and an item i,

swu is called a self weighting factor. It gives more confidence to pure content-based

predictions for a user u. Formally, swu is defined as swu = nu/N , if nu < N , and swu

= N otherwise, where nu is the number of items rated by a user u. Again, the choice

of a threshold for N is set to 13, and hwu,u′ is named as the hybrid correlation weight

that is used to give a certain confidence to the correlation between two the pseudo

user-ratings u and u′. Formally, hwu,u′ is defined as hwu,u′ = hmu,u′ + sgu,u′ . Here,

hmu,u′ is defined as 2mimj/(mi+mj), where mi = ni/N , if ni < N , and 1 otherwise,

where ni refers to the number of items that a user u has rated. Furthermore, sgu,u′ is

defined as n/N , if n > N , and 1, otherwise, where n is the number of items co-rated

by users u and u′.

BASU (Basu et al., 1998): BASU uses both ratings and the content information

of items to predict user ratings for items (movies). It formalizes a movie recommen-

dation problem as a classification problem equivalent to our formalization for the

recommendation problem. That is, BASU focuses on the prediction of whether a

movie is liked or disliked by a given user, not an exact rating.

To determine whether a predicted movie will be liked or disliked, BASU computes

a threshold for each user, such that 1/4 of all the user’s ratings exceed it and

CHAPTER 6. EVALUATION OF USIMSCAR 179

the remaining 3/4 do not. Based on this threshold, it recommends movies whose

predicted ratings are above the threshold computed using the training data.

To implement BASU, we represent an instance for both the training and test-

ing data as the following combination of set-valued attributes: 〈gender, birthyear,

genre, usersWhoLikedGenre, genreLikedByUser〉. In this representation, the gender

and birthyear are attributes describing the user information (i.e. user-info). Also,

the genres is an attribute belonging to the movie information (i.e. movie-info). This

attribute is used as one representative attribute that characterizes the movies, since

it is very often assumed as one of the most important factors in choosing a movie

(Basu et al., 1998). The last two attributes usersWhoLikedGenre and genreLiked-

ByUser are called hybrid attributes, where the usersWhoLikedGenre represents “users

who liked the genre”, and the genreLikedByUser represents “genres liked by the user”.

The attribute usersWhoLikedGenre is used to isolate the groups of users who liked the

movies of the same genre. We say a user likes a genre g, if a movie whose genre is g is

rated in his/her top-quartile. The attribute genresLikedByUser is used to encode the

user’s favorite genres, namely those belonging to movies that appeared in his/her

top-quartile. Finally, to learn how instances in the training data are predicted as

liked or disliked, we use IBk with a best value for k (i.e. the number of the most

similar cases to a new problem Q), which is determined by cross-validation.

6.5.6.1 Results and Analysis

We now present the experimental results of the three hybrid recommenders, and

compare them with the results of USIMSCAR in terms of classification accuracy

and F-measure. For comparison, we choose the best results of USIMSCAR previ-

ously presented in this section in terms of these two evaluation metrics. Table 6.41

shows a summary of the comparison results between USIMSCAR and the hybrid

recommenders. For each metric, the best one is denoted in boldface with red color,

and the second best in boldface with blue color

CHAPTER 6. EVALUATION OF USIMSCAR 180

Table 6.41: USIMSCAR vs. three hybrid recommenders (%).

Metric USIMSCARMV USIMSCARWV CLAYPOOL MELVILLE BASU
Classification Accuracy 83.033 83.357 79.532 80.635 78.080

F-measure 70.720 70.846 68.131 59.016 59.793

As observed in Table 6.41, USIMSCAR using weighted voting (USIMSCARWV)

substantially outperforms the recommenders. Its improvements over the recom-

menders range from 2.72% to 5.28% in terms of classification accuracy. Also, its

improvements range from 2.72% to 11.83% in terms of F-measure. According to

the Z-test at 95% confidence, USIMSCARWV attains significant improvements over

the recommenders in terms of both classification accuracy and F-measure. We also

observe that USIMSCAR using majority voting (USIMSCARMV) outperforms the

recommenders substantially. Using the Z-test at 95% confidence, USIMSCARMV

also statistically significantly improve the three recommenders in terms of both clas-

sification accuracy and F-measure. Throughout these results, the performance of

USIMSCAR is fairly promising, since it substantially outperforms the performance

of the recommenders.

In this section, we provided our evaluation of USIMSCAR in comparison with the

three k-NN classifiers using the movie dataset R4’. We also presented the extension

of this evaluation by comparing USIMSCAR with three hybrid recommenders to

determine whether USIMSCAR is suitable to be used in product recommendation

applications.

6.6 Summary

Our evaluation goal in this thesis was to validate that our proposed retrieval strat-

egy USIMSCAR is able to enhance traditional similarity-based retrieval (SBR). To

achieve this goal, we selected a task that is highly dependent on the retrieval per-

formance in CBR. Therefore, we have chosen classification using the case-based

approach. In this task, we have measured the performance of USIMSCAR and

CHAPTER 6. EVALUATION OF USIMSCAR 181

k-NN approaches in three application domains: medical diagnosis, help-desk ser-

vice, and product recommendation domains. To evaluate the experimental results

of the approaches, we have used two metrics, which are classification accuracy and

F-measure.

In terms of these two metrics, we first evaluated USIMSCAR in comparison with

five k-NN approaches using benchmark and real datasets in the medical diagnosis

domain. We then evaluated USIMSCAR in comparison with three k-NN approaches

using a real IT incident management dataset in the help-desk service domain. We

finally presented the evaluation of USIMSCAR in comparison with these k-NN ap-

proaches using a real movie dataset in the product recommendation domain. We

also evaluated USIMSCAR against hybrid recommender systems with the movie

dataset. The experimental results showed that USIMSCAR mostly leads to signifi-

cant improvements over the compared approaches in terms of classification accuracy

as well as F-measure in all our experimental domains. Furthermore, in all our ex-

perimental evaluation of USIMSCAR, we commonly discovered that USIMSCAR

using weighted voting leads to better performance over USIMSCAR using majority

voting in terms of both classification accuracy and F-measure. As previously men-

tioned, these findings indicate an important evidence that it is more significant to

utilize the “usefulness” of objects in the retrieval result of USIMSCAR, rather than

merely distribution information about the solutions associated with these objects.

Thus, we have conclusively demonstrated through our experiments the validity and

soundness of our proposed USIMSCAR approach.

In Chapter 4, we presented our theoretical contributions, which included our

approach for formalizing association knowledge, and our approach for realizing a

retrieval strategy that leverages both similarity and association knowledge. We have

now completed the discussion of the contributions of this dissertation along with the

evaluation in this chapter. In the following chapter, we conclude this thesis.

Chapter 7

Conclusion

Given the importance of retrieval in Case-Based Reasoning (CBR), this thesis has

proposed, developed and evaluated extensively an innovative strategy USIMSCAR

for CBR that enhances traditional similarity-based retrieval (SBR). The key feature

of SBR is the heavy reliance on similarity knowledge encoded via similarity mea-

sures. In this thesis, we proposed USIMSCAR as an approach that leverages both

similarity and association knowledge. In this last chapter, we conclude this thesis by

summarizing the contributions of this research and outlining the future directions

for this research.

7.1 Research Summary and Contributions

In this thesis, we presented a novel retrieval strategy USIMSCAR for CBR systems.

In contrast to traditional similarity-based retrieval (SBR), which is based on similar-

ity knowledge, the novelty of USIMSCAR is in its ability to exploit both similarity

and association knowledge in order to enhance SBR. In this context, this thesis

makes the following contributions:

• Proposal and development of a strategy for formalizing association knowledge

using association analysis techniques : As discussed in this thesis, typically,

SBR heavily relies on the use of similarity knowledge, ignoring other forms

182

CHAPTER 7. CONCLUSION 183

of knowledge that can be further leveraged for enhancing its retrieval per-

formance. A key contribution of our work is that in contrast to SBR, we

proposed and developed a strategy for formalizing a specific form of knowl-

edge, namely association knowledge, that can be leveraged for enhancing

SBR. Through our evaluation, we have shown that association knowledge

can have a significant influence on improving SBR. We presented that as-

sociation knowledge can be formalized by discovering interesting, meaningful

relationships between known problem features and known solutions shared by

a large number of relevant cases. We proposed the representation of asso-

ciation knowledge for CBR systems via a special form of association rules,

called soft-matching class association rules (scars). The aim of formalizing

association knowledge is to strengthen the usefulness estimation of the cases,

retrieved by only similarity knowledge, with respect to the target problem.

Further, the scars generated from the given case base are directly utilized to

find useful rules with respect to the target problem and are exploited mean-

ingfully during retrieval. We note that while there have been previous efforts

to incorporate knowledge into CBR systems (Smyth and Keane, 1998; Cer-

cone et al., 1999; Stahl, 2003; Aamodt, 2004; Park et al., 2006; Hoffmann

and Khan, 2006), our contribution lies in focusing on association analysis and

association knowledge.

• Proposal and development of strategies for quantifying the usefulness of cases

and rules (scars) with respect to the target problem by leveraging both similarity

and association knowledge: A key contribution of our work is that we proposed

and developed strategies for quantifying the usefulness of cases and association

rules (i.e. the scars mined from the given case base) with respect to the target

problem by leveraging both similarity and association knowledge. We showed

that our proposed retrieval strategy USIMSCAR can retrieve useful cases and

rules with respect to the target problem, leading to improvements over SBR.

Through our evaluation work, we showed that these retrieved cases and rules

CHAPTER 7. CONCLUSION 184

resulted in more effective identification of a new CBR problem query. This

idea to leveraging the combined knowledge during CBR retrieval clearly distin-

guishes USIMSCAR from SBR as well as existing retrieval strategies developed

in the research field of CBR.

• Validating USIMSCAR through extensive experimental evaluation: Finally, we

validated the improvement of our proposed retrieval strategy USIMSCAR over

well-known k-NN approaches that are used to implement SBR through exper-

imental evaluation. Our evaluation was performed using both benchmark and

real datasets in three different CBR application domains, namely, medical di-

agnosis, help-desk service, and product recommendation. Our experimental

results consistently demonstrated that USIMSCAR significantly improves the

effectiveness of the retrieval process when compared with traditional k-NN

based SBR retrieval approaches. For the product recommendation domain,

we also compared USIMSCAR with three hybrid recommenders and demon-

strated the improvements obtained through our approach.

The above discussion has highlighted the principal contributions of this thesis.

In the next section, we discuss future directions of this work.

7.2 Future Research Directions

The main contributions of this research lie in proposing and developing an innova-

tive retrieval strategy USIMSCAR, which leverages both similarity and association

knowledge to enhance similarity-based retrieval (SBR). There are several possible

future research directions which could extend USIMSCAR. In the following, we

present brief descriptions of extension of USIMSCAR focusing on the following is-

sues: (1) extending USIMSCAR to operate with cases represented by more complex

structures, (2) extending USIMSCAR to operate with cases whose problems are

associated with more than one solution.

CHAPTER 7. CONCLUSION 185

7.2.1 USIMSCAR and Complex Case Structure

In this thesis, we focused on USIMSCAR that performs with cases, where each

case is described by a collection of attribute-value pairs. This case representation

formalism is often sufficient in most CBR domains (Stahl, 2003). However, there is a

variety in the types of case representations that have been covered in the literature.

In the following, we present possible extension schemes of USIMSCAR with cases

represented using two well-known representations: object-oriented and hierarchical

representations.

7.2.1.1 USIMSCAR with Object-Oriented Cases

The object-oriented case representation utilizes the data modeling approach of the

object-oriented paradigm, such as “is-a” and “part-of” relations as well as the in-

heritance principle (Bergmann, Kolodner and Plaza, 2005). Object-oriented cases

are represented as collections of objects, each of which is described by a set of

attribute-value pairs. The structure of an object is described by an object class. An

object class defines the set of attributes together with a type for each attribute.

Object classes are arranged in a class hierarchy, often called an m-ary tree, in

which sub-classes inherit attributes as well as their definition from the parent class

(Bergmann and Stahl, 1998). This representation is especially suitable for complex

domains, where cases with different structures occur. An example was presented in

the work of Göker and Roth-Berghofer (Göker and Roth-Berghofer, 1999). To facil-

itate the use of this representation, XML compatible languages have been recently

used (Bergmann et al., 2005).

In order for USIMSCAR to realize the retrieval process with object-oriented

cases, it is essential to address the following two issues: the first is how to formalize

similarity measures encoding similarity knowledge, and the second is how to generate

scars encoding association knowledge. Once we obtain these two forms of knowledge,

we can apply the USIMSCAR algorithm with possible variations to complete the

retrieval process.

CHAPTER 7. CONCLUSION 186

The definition of similarity measures for object-oriented cases has to allow com-

parison of structured objects from a class hierarchy. Bergmann and Stahl (Bergmann

and Stahl, 1998) propose a systematic way of specifying similarity measures for com-

paring arbitrary objects of object-oriented cases from the hierarchy. Therefore, one

possible choice is to use the formalism of similarity measures proposed by Bergmann

and Stahl (Bergmann and Stahl, 1998).

To generate scars from object-oriented cases, it is necessary to employ a more

sophisticated method than the one proposed in this thesis. The reason is that it

is obvious that object-oriented cases contain more complex structure (e.g. class

hierarchy and inheritance) than the attribute-value pairs representation. One pos-

sible scheme for generating scars is to integrate the OR-FP algorithm (Kuba and

Popelinsky, 2005) and the soft-matching criterion to discover frequent patterns from

given object-oriented cases. The OR-FP algorithm extends Apriori for the purpose

of handling object-oriented cases.

7.2.1.2 USIMSCAR with Hierarchical Cases

In recent CBR publications, the use of multiple representations at different levels

of abstraction has been investigated to represent cases (Bergmann et al., 2005).

This representation is called hierarchical case representation. In this represen-

tation, attribute values of each case reference nonatomic objects (Cunningham,

2009). The fundamental idea underlying this representation is to represent each

case through multiple levels of abstraction. For instance, a case xi is represented

as xi = (ai1, ..., aif , ..., ai|F |), where ai1, ..., aif , ..., ai|F | are the attributes (features)

belonging to the case xi. An attribute aif could reference a case structure. This

simple extension of the attribute-value pairs representation allows for the description

of cases with a complex hierarchical structure (Bergmann and Stahl, 1998; Smyth,

Keane and Cunningham, 2001; Cunningham, 2009).

For USIMSCAR to enable the retrieval process with hierarchical cases, we also

need to address the following two issues: the first is how to formalize similarity

CHAPTER 7. CONCLUSION 187

measures encoding similarity knowledge, and the second is how to generate scars

encoding association knowledge.

A similarity measure for hierarchical cases has to be able to adequately compute

the similarity between the same-level cases or different-level cases. This kind of

measure can be often found in similarity formalization for the objects described

using ontological description. Ontologies are a suitable basis for conceptualizeing

a complex set of domain objects in a well-defined way (Staab and Studer, 2009).

Often, the hierarchical representation is thought as a simple form of ontological

description. Based on this description, semantic knowledge inherent in a given

hierarchy can be used to define appropriate similarity measures for hierarchical cases.

The formalization methods of similarity measures for objects described in ontologies

have been extensively studied in the Information Retrieval community (Jiang and

Conrath, 1997; Lin, 1998; Resnik, 1999; Rodriguez and Egenhofer, 2003; Pedersen,

Pakhomov, Patwardhan and Chute, 2007).

The generation of scars from hierarchical cases basically requires a mechanism

that discovers frequent itemsets from cases at different-levels. This issue may be

addressed by using an algorithm that extends Apriori allowing for mining multi-level

association rules. Two recent algorithms are DFMLA (Pater and Popescu, 2009) and

SC-BF Multilevel (Gautam and Pardasani, 2010). These algorithms are proposed

with the aim of finding frequent itemsets at the top most level and then progressively

deepening the mining process into their frequent descendants at lower concept levels.

Therefore, by integrating such an algorithm and the soft-matching criterion, we

could potentially generate scars from hierarchical cases.

7.2.2 USIMSCAR and Cases with Multiple Solutions

In this thesis, we assumed that each problem was associated with one unique so-

lution. However, USIMSCAR can be extended to cases, where each problem is

associated with more than one solution. Depending on the underlying application

scenario, a case solution can be described using various representation schemes. In

CHAPTER 7. CONCLUSION 188

many CBR application domains, it can be often described in structured or unstruc-

tured formats (i.e. free-text). Table 7.1 shows some examples of case solutions

that are described using these two formats. Referring to this table, an example

case, which falls under the assumption used in this thesis, is the case C1. However,

two cases C2 and C3 show the examples, which are not governed by that assump-

tion. Their representations are used in CBR applications including (Fesenmaier,

Ricci, Schaumlechner, Wöber and Zanella, 2003; Kang et al., 2010; Huang, Hong

and Horng, 2007; Juarez, Salort, Palma and Marin, 2007). The case C2 represents

a circumstance, where each problem is associated with more than one solution (e.g.

a set of possible medical treatments against the diagnosed symptoms of a patient).

The case C3 shows an occasion, where a solution is described in free-text.

Table 7.1: Case examples.

Case ID Case Problem Case Solution Format Applications

C1
Symptoms = Fever;

2-tylenol Structured
Medical
TreatmentAge Group = adult

C2
Symptoms = Fever, Headache;

2-tylenol; 2-aspirin Structured
Medical
TreatmentAge Group = adult

C3
Unable to print from Restart print spooler

Unstructured Help-desk
Bizflow on the server 1

The case C2 can be simply generalized into the circumstance, where a problem

is associated with a single solution. This generalization is possibly done by simply

splitting the case C2 into k subcases, according to the k solutions of the case C2 (i.e.

k=2). Then, we enforce all these subcases to have the same case identification with

the case C2. By doing so, we can obtain two subcases for the case C2, as seen in

Table 7.2. USIMSCAR may then be applied without modification in the retrieving

process for this form of the case representation.

Consider the cases where a problem is associated with the solution described in

free-text. An example is the case C3 shown in Table 7.1. For a textual description

to be effectively used, it is generally agreed that it has to be organized into mean-

ingful groups (Kao and Poteet, 2007). This process is usually done, according to

their content using information retrieval techniques (Kao and Poteet, 2007). The

CHAPTER 7. CONCLUSION 189

Table 7.2: Cases split.

ID Case Problem Case Solution Format Applications

C2
Symptoms = Fever, Headache;

2-tylenol Structured
Medical
TreatmentAge Group = adult

C2
Symptoms = Fever, Headache;

2-aspirin Structured
Medical
TreatmentAge Group = adult

simplest approach is based on the “bag-of-words” representation. A textual descrip-

tion is treated as a bag of important keywords extracted from it. Hence, our focus

was restricted to the solution description described by using this representation.

However, there are sophisticated techniques for text similarity matching. As future

work, we plan to investigate and integrate these techniques into USIMSCAR so that

it is effective for textual descriptions in case base.

7.3 Concluding Remark

In conclusion, this thesis takes a significant step forward in realizing the potential

of enhancing similarity-based retrieval (SBR), typically used in the retrieval phase

in CBR. The contributions of this research and the possibilities created for future

development have demonstrated the usefulness and applicability of our proposed

retrieval strategy USIMSCAR.

References

Aamodt, A. (2004). Knowledge-intensive case-based reasoning in creek, in P. Funk

and P. A. Gonzalez Calero (eds), Advances in Case-Based Reasoning, Vol. 3155

of Lecture Notes in Computer Science, Springer Berlin / Heidelberg, pp. 793–

850.

Aamodt, A. and Plaza, E. (1994). Case-based reasoning: foundational issues,

methodological variations, and system approaches, AI Commun. 7: 39–59.

http://portal.acm.org/citation.cfm?id=196108.196115

Adomavicius, G. and Tuzhilin, A. (2005). Toward the Next Generation of Recom-

mender Systems: A Survey of the State-of-the-Art and Possible Extensions,

IEEE Trans. on Knowl. and Data Eng. 17: 734–749.

http://dx.doi.org/10.1109/TKDE.2005.99

Agarwal, R. C., Aggarwal, C. C. and Prasad, V. V. V. (2001). A tree projection

algorithm for generation of frequent item sets, J. Parallel Distrib. Comput.

61: 350–371.

http://dx.doi.org/10.1006/jpdc.2000.1693

Agrawal, R., Imieliński, T. and Swami, A. (1993). Mining association rules between

sets of items in large databases, SIGMOD Rec. 22: 207–216.

http://doi.acm.org/10.1145/170036.170072

Aha, D. W., Kibler, D. and Albert, M. K. (1991). Instance-based learning algo-

rithms, Mach. Learn. 6: 37–66.

http://dx.doi.org/10.1023/A:1022689900470

190

REFERENCES 191

Ahn, H. and Kim, K.-j. (2009). Global optimization of case-based reasoning for

breast cytology diagnosis, Expert Syst. Appl. 36: 724–734.

http://portal.acm.org/citation.cfm?id=1453254.1453336

Ahn, H., Kim, K.-j. and Han, I. (2006). Hybrid genetic algorithms and case-based

reasoning systems for customer classification, Expert Systems 23(3): 127–144.

http://dx.doi.org/10.1111/j.1468-0394.2006.00329.x

Althoff, K.-D., Bergmann, R., Wess, S., Manago, M., Auriol, E., Larichev, O. I.,

Bolotov, A., Zhuravlev, Y. I. and Gurov, S. I. (1998). Case-based reasoning for

medical decision support tasks: The inreca approach, Artificial Intelligence in

Medicine 12(1): 25–41.

An, A. and Cercone, N. (1998). Elem2: A learning system for more accurate classi-

fications, Proceedings of the 12th Biennial Conference of the Canadian Society

for Computational Studies of Intelligence on Advances in Artificial Intelligence,

AI ’98, Springer-Verlag, London, UK, pp. 426–441.

http://portal.acm.org/citation.cfm?id=647460.725961

Ashrafi, M. Z., Taniar, D. and Smith, K. (2007). Redundant association rules

reduction techniques, Int. J. Bus. Intell. Data Min. 2: 29–63.

http://portal.acm.org/citation.cfm?id=1356338.1356340

Auriol, E., Wess, S., Manago, M., Althoff, K.-D. and Traphöner, R. (1995). Inreca:

A seamlessly integrated system based on inductive inference and case-based

reasoning, Proceedings of the First International Conference on Case-Based

Reasoning Research and Development, ICCBR ’95, Springer-Verlag, London,

UK, pp. 371–380.

http://portal.acm.org/citation.cfm?id=646264.685915

Bain, W. M. (1986). Case-based reasoning: a computer model of subjective assess-

ment, PhD thesis, New Haven, CT, USA. UMI Order No. GAX86-27257.

REFERENCES 192

Bareiss, E. R., Porter, B. E. and Wier, C. C. (1990). PROTOS: an exemplar-based

learning apprentice, Academic Press Ltd., London, UK, UK, pp. 1–13.

http://portal.acm.org/citation.cfm?id=92900.92906

Bartolini, C., Stefanelli, C. and Tortonesi, M. (2008). Symian: A simulation tool

for the optimization of the it incident management process, 19th IEEE/IFIP

International Workshop on Distributed Systems: Operation and Management

(DSOM 2008), pp. 83–94.

Bartsch-Spörl, B., Lenz, M. and Hübner, A. (1999). Case-based reasoning: Survey

and future directions, Proceedings of the 5th Biannual German Conference on

Knowledge-Based Systems: Knowledge-Based Systems - Survey and Future Di-

rections, Springer-Verlag, London, UK, pp. 67–89.

http://portal.acm.org/citation.cfm?id=647275.722302

Basu, C., Hirsh, H. and Cohen, W. (1998). Recommendation as classification: using

social and content-based information in recommendation, Proceedings of the

fifteenth national/tenth conference on Artificial intelligence/Innovative appli-

cations of artificial intelligence, AAAI ’98/IAAI ’98, American Association for

Artificial Intelligence, Menlo Park, CA, USA, pp. 714–720.

http://portal.acm.org/citation.cfm?id=295240.295795

Bayardo, Jr., R. J. and Agrawal, R. (1999). Mining the most interesting rules,

Proceedings of the fifth ACM SIGKDD international conference on Knowledge

discovery and data mining, KDD ’99, ACM, New York, NY, USA, pp. 145–154.

http://doi.acm.org/10.1145/312129.312219

Bergmann, R. (1998). On the use of taxonomies for representing case features and

local similarity measures, Proceedings of the 6th German Workshop on CBR

(GWCBR’98), pp. 23–32.

Bergmann, R., Kolodner, J. and Plaza, E. (2005). Representation in case-based

reasoning, Knowl. Eng. Rev. 20(3): 209–213.

REFERENCES 193

Bergmann, R., Schmitt, S. and Stahl, A. (2002). Intelligent customer support for

product selection with case-based reasoning, E-commerce and Intelligent Meth-

ods, Physica-Verlag, pp. 322–341.

Bergmann, R. and Stahl, A. (1998). Similarity measures for object-oriented case

representations, EWCBR ’98: Proceedings of the 4th European Workshop on

Advances in Case-Based Reasoning, Springer-Verlag, London, UK, pp. 25–36.

Bhatia, N. and Vandana (2010). Survey of nearest neighbor techniques, International

Journal of Computer Science and Information Security 8(2).

Bower, G., Black, J. and Turner, T. (1979). Scripts in memory for text, Cognitive

Psychology 11(2): 177–220.

Bradley, K. and Smyth, B. (2003). Personalized information ordering: a case study

in online recruitment, Knowledge-Based Systems 16: 269–275.

Bridge, D., Gker, M. H., Mcginty, L. and Smyth, B. (2006). Case-based recommender

systems, The Knowledge Engineering Review 20(3): 315–320.

Burke, R. (2002). Hybrid Recommender Systems: Survey and Experiments, User

Modeling and User-Adapted Interaction 12(4): 331–370.

Castro, J. L., Navarro, M., Sánchez, J. M. and Zurita, J. M. (2009). Loss and gain

functions for CBR retrieval, Inf. Sci. 179(11): 1738–1750.

Cercone, N., An, A. and Chan, C. (1999). Rule-induction and case-based reasoning:

hybrid architectures appear advantageous, IEEE Transactions on Knowledge

and Data Engineering 11(1): 166 –174.

Chiu, C. (2002). A case-based customer classification approach for direct marketing,

Expert Systems with Applications 22(2): 163 – 168.

Clark, P. and Niblett, T. (1987). Induction in noisy domains, Proceedings of 2nd

European Machine Learning Conference (EWSL 87), Sigma Press, pp. 11–30.

REFERENCES 194

Claypool, M., Gokhale, A. and Miranda, T. (1999). Combining content-based and

collaborative filters in an online newspaper, In Proceedings of the ACM SIGIR

’99 Workshop on Recommender Systems: Algorithms and Evaluation .

http://web.cs.wpi.edu/ claypool/papers/content-collab/content-collab.pdf

(20 May 2011)

Collins, B. and Cunningham, P. (1996). Adaptation guided retrieval in ebmt: A

case-based approach to machine translation, Proceedings of the Third Euro-

pean Workshop on Advances in Case-Based Reasoning, EWCBR ’96, Springer-

Verlag, London, UK, pp. 91–104.

http://portal.acm.org/citation.cfm?id=646177.758706

Compton, P. and Jansen, R. (1990). A philosophical basis for knowledge acquisition,

Knowl. Acquis. 2(3): 241–257.

Cover, T. M. (1974). The best two independent measurements are not the two best,

Systems, Man and Cybernetics, IEEE Transactions on SMC-4(1): 116 –117.

Craw, S. (2003). Introspective learning to build case-based reasoning (cbr) knowl-

edge containers, Proceedings of the 3rd international conference on Machine

learning and data mining in pattern recognition, MLDM’03, Springer-Verlag,

Berlin, Heidelberg, pp. 1–6.

http://portal.acm.org/citation.cfm?id=1759548.1759550

Cunningham, P. (2009). A Taxonomy of Similarity Mechanisms for Case-Based

Reasoning, IEEE Trans. on Knowl. and Data Eng. 21(11): 1532–1543.

Daengdej, J., Lukose, D. and Murison, R. (1999). Using statistical models and case-

based reasoning in claims prediction: experience from a real-world problem,

Knowledge-Based Systems 12(5-6): 239 – 245.

Daengdej, J., Lukose, D., Tsui, E., Beinat, P. and Prophet, L. (1997). Combining

case-based reasoning and statistical method for proposing solution in RICAD,

Knowledge-Based Systems 10(3): 153–159.

REFERENCES 195

Domingos, P. (1995). Rule induction and instance-based learning a unified ap-

proach, Proceedings of the 14th international joint conference on Artificial in-

telligence - Volume 2, Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, pp. 1226–1232.

Dudani, S. A. (1976). The Distance-Weighted k-Nearest-Neighbor Rule, IEEE

Transactions on Systems, Man and Cybernetics SMC-6(4): 325–327.

Fesenmaier, D. R., Ricci, F., Schaumlechner, E., Wöber, K. and Zanella, C. (2003).

DieToRecs: Travel advisory for multiple decision styles, Information and Com-

munication Technologies in Tourism, pp. 232–241.

Forbes, A. (1995). Classification-algorithm evaluation: Five performance measures

based onconfusion matrices, Journal of Clinical Monitoring and Computing

11: 189–206.

http://dx.doi.org/10.1007/BF01617722

Gabel, T. and Stahl, A. (2004). Exploiting background knowledge when learning

similarity measures, In Proceedings of the Seventh European Conference on

Case-Based Reasoning, Springer, pp. 169 – 183.

Ganesan, P., Garcia-Molina, H. and Widom, J. (2003). Exploiting hierarchical

domain structure to compute similarity, ACM Transactions on Information

Systems 21(1): 64–93.

Gärtner, T. and Flach, P. A. (2001). WBCsvm: Weighted Bayesian Classification

based on Support Vector Machines, ICML ’01: Proceedings of the Eighteenth

International Conference on Machine Learning, Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, pp. 154–161.

Gautam, P. and Pardasani, K. R. (2010). Algorithm for Efficient Multilevel Associa-

tion Rule Mining, International Journal on Computer Science and Engineering

2(5): 1700–1704.

REFERENCES 196

Geng, L. and Hamilton, H. J. (2006). Interestingness measures for data mining: A

survey, ACM Comput. Surv. 38.

http://doi.acm.org/10.1145/1132960.1132963

Giland, B., Bartolini, C. and Liya, W. (2007). Measuring and improving the

performance of an it support organization in managing service incidents,

2nd IEEE/IFIP International Workshop on Business-Driven IT Management

(BDIM ’07), Munich, pp. 11 – 18.

Gliedman, C. (2006). Transitioning From Incident To Problem Management: Key

Issues And Challenges, Forrester.

Göker, M. H. and Roth-Berghofer, T. (1999). The development and utilization of

the case-based help-desk support system HOMER, Engineering Applications of

Artificial Intelligence 12(6): 665–680.

Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selection,

J. Mach. Learn. Res. 3: 1157–1182.

Hall, M. A. (1998). Correlation-based Feature Subset Selection for Machine Learning,

PhD thesis, University of Waikato, Hamilton, New Zealand.

Hall, M. A. and Smith, L. A. (1999). Feature selection for machine learning: Com-

paring a correlation-based filter approach to the wrapper, Proceedings of the

Twelfth International Florida Artificial Intelligence Research Society Confer-

ence, AAAI Press, pp. 235–239.

Hammond, K. J. (1986). CHEF: A model of case-based planning, Proceedings of the

American Association for Artificial Intelligence (AAAI-86), Press/MIT Press.

Han, J. and Pei, J. (2000). Mining frequent patterns by pattern-growth: methodol-

ogy and implications, SIGKDD Explor. Newsl. 2(2): 14–20.

Hanney, K. and Keane, M. (1997). The adaptation knowledge bottleneck: How to

ease it by learning from cases, in D. Leake and E. Plaza (eds), Case-Based

REFERENCES 197

Reasoning Research and Development, Vol. 1266 of Lecture Notes in Computer

Science, Springer Berlin / Heidelberg, pp. 359–370.

http://dx.doi.org/10.1007/3-540-63233-6 506

Hanney, K. and Keane, M. T. (1996). Learning Adaptation Rules from a Case-

Base, EWCBR ’96: Proceedings of the Third European Workshop on Advances

in Case-Based Reasoning, Springer-Verlag, London, UK, pp. 179–192.

Hoffmann, A. and Khan, A. S. (2006). A new approach for the incremental develop-

ment of retrieval functions for CBR, Applied Artificial Intelligence 20(6): 507–

542.

Hu, T., Sung, S. Y., Xiong, H. and Fu, Q. (2008). Discovery of maximum length

frequent itemsets, Inf. Sci. 178: 69–87.

Huang, C.-M., Hong, T.-P. and Horng, S.-J. (2007). Mining knowledge from object-

oriented instances, Expert Systems with Applications 33(2): 441 – 450.

Hull, D. (1993). Using statistical testing in the evaluation of retrieval experiments,

Proceedings of the 16th annual international ACM SIGIR conference on Re-

search and development in information retrieval, SIGIR ’93, ACM, New York,

NY, USA, pp. 329–338.

http://doi.acm.org/10.1145/160688.160758

Jiang, J. J. and Conrath, D. W. (1997). Semantic similarity based on corpus sta-

tistics and lexical taxonomy, Proceedings of International Conference Research

on Computational Linguistics pp. 19 – 33.

Jiang, L., Cai, Z., Wang, D. and Jiang, S. (2007). Survey of Improving K-Nearest-

Neighbor for Classification, FSKD ’07: Proceedings of the Fourth International

Conference on Fuzzy Systems and Knowledge Discovery, IEEE Computer So-

ciety, Washington, DC, USA, pp. 679–683.

REFERENCES 198

Juarez, J. M., Salort, J., Palma, J. and Marin, R. (2007). Case representation ontol-

ogy for case retrieval systems in medical domains, Proceedings of the 25th con-

ference on Proceedings of the 25th IASTED International Multi-Conference: ar-

tificial intelligence and applications, ACTA Press, Anaheim, CA, USA, pp. 168–

173.

http://portal.acm.org/citation.cfm?id=1295303.1295332

Jurisica, I. and Glasgow, J. (1996). Case-based classification using similarity-based

retrieval, Proceedings of the 8th International Conference on Tools with Artifi-

cial Intelligence, ICTAI ’96, IEEE Computer Society, Washington, DC, USA,

pp. 410–.

http://portal.acm.org/citation.cfm?id=850949.853554

Kang, Y.-B., Krishnaswamy, S. and Zaslavsky, A. (2011). A retrieval strategy using

the integrated knowledge of similarity and associations, in J. Yu, M. Kim and

R. Unland (eds), Database Systems for Advanced Applications, Vol. 6588 of

Lecture Notes in Computer Science, Springer Berlin / Heidelberg, pp. 16–30.

10.1007/978-3-642-20152-3 2.

http://dx.doi.org/10.1007/978-3-642-20152-3 2

Kang, Y.-B., Zaslavsky, A., Krishnaswamy, S. and Bartolini, C. (2009). A computer-

facilitated method for matching incident cases using semantic similarity mea-

surement, IFIP/IEEE International Symposium on Integrated Network Man-

agement, pp. 10 –19.

Kang, Y.-B., Zaslavsky, A., Krishnaswamy, S. and Bartolini, C. (2010). A

knowledge-rich similarity measure for improving it incident resolution process,

Proceedings of the 2010 ACM Symposium on Applied Computing (SAC), ACM,

New York, NY, USA, pp. 1781–1788.

Kao, A. and Poteet, S. R. (2007). Natural Language Processing and Text Mining,

Springer.

REFERENCES 199

Keen, E. M. (1992). Presenting results of experimental retrieval comparisons, Inf.

Process. Manage. 28(4): 491–502.

Kolodner, J. L. (1984). Retrieval and organizational strategies in conceptual memory,

Lawrence Erlbaum, Hillsdale, New Jersey.

Kriegsman, M. and Barletta, R. (1993). Building a case-based help desk application,

IEEE Expert: Intelligent Systems and Their Applications 8(6): 18–26.

Kuba, P. and Popelinsky, L. (2005). Mining frequent patterns in object-oriented

data, Technical Report: Masaryk University Brno, Czech Republic.

http://hms.liacs.nl/mgts2004/papers/kuba.pdf (20 May 2011)

Law, Y. F. D., Foong, S. B. and Kwan, S. E. J. (1997). An integrated case-based

reasoning approach for intelligent help desk fault management, Expert Systems

with Applications 13(4): 265–274.

Lawrence, R. D., Almasi, G. S., Kotlyar, V., Viveros, M. S. and Duri, S. S. (2004).

Personalization of supermarket product recommendations, Data Min. Knowl.

Discov. 5(1-2): 11–32.

Lebowitz, M. (1980). Generalization and memory in an integrated understanding

system, PhD thesis, New Haven, CT, USA.

Lee, M. (2003). A study of an automatic learning model of adaptation knowledge

for case base reasoning, Inf. Sci. 155(1-2): 61–78.

Li, Y. and Gopalan, R. (2005). Effective sampling for mining association rules,

in G. Webb and X. Yu (eds), AI 2004: Advances in Artificial Intelligence,

Vol. 3339 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg,

pp. 73–75.

Lim, T.-S., Loh, W.-Y. and Shih, Y.-S. (2000). A comparison of prediction accu-

racy, complexity, and training time of thirty-three old and new classification

REFERENCES 200

algorithms, Mach. Learn. 40: 203–228.

http://portal.acm.org/citation.cfm?id=352644.352648

Lin, D. (1998). An information-theoretic definition of similarity, Proceedings of the

Fifteenth International Conference on Machine Learning, ICML ’98, Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, pp. 296–304.

http://portal.acm.org/citation.cfm?id=645527.657297

Liu, B., Hsu, W. and Ma, Y. (1998). Integrating Classification and Association Rule

Mining, Knowledge Discovery and Data Mining, pp. 80–86.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.8380

Liu, H. and Setiono, R. (1996). A probabilistic approach to feature selection - a

filter solution, Proceedings of International Conference on Machine Learning,

Morgan Kaufmann, pp. 319–327.

Lopez De Mantaras, R., McSherry, D., Bridge, D., Leake, D., Smyth, B., Craw, S.,

Faltings, B., Maher, M. L., Cox, M. T., Forbus, K., Keane, M., Aamodt, A.

and Watson, I. (2005). Retrieval, reuse, revision and retention in case-based

reasoning, Knowl. Eng. Rev. 20(3): 215–240.

Melville, P., Mooney, R. J. and Nagarajan, R. (2002). Content-boosted collabora-

tive filtering for improved recommendations, Eighteenth national conference on

Artificial intelligence, American Association for Artificial Intelligence, Menlo

Park, CA, USA, pp. 187–192.

http://portal.acm.org/citation.cfm?id=777092.777124

Mitchell, T. (1997). Machine Learning, Mcgraw-Hill International.

Nahm, U. Y. and Mooney, R. J. (2002). Mining soft-matching association rules, Pro-

ceedings of the eleventh international conference on Information and knowledge

management, CIKM ’02, ACM, New York, NY, USA, pp. 681–683.

http://doi.acm.org/10.1145/584792.584918

REFERENCES 201

Nilsson, M., Funk, P. and Sollenborn, M. (2003). Complex measurement classifi-

cation in medical applications using a case-based approach, ICCBR’03 - The

Fifth International Conference on Case-Based Reasoning - Workshop proceed-

ings, Springer, pp. 63–73.

Nunez, H., Sanchez-Marre, M., Cortes, U., Comas, J., Martinez, M., Rodriguez-

Roda, I. and Poch, M. (2004). A comparative study on the use of similarity

measures in case-based reasoning to improve the classification of environmen-

tal system situations, Environmental Modelling & Software In Environmental

Sciences and Artificial Intelligence 19(9): 809–819.

Oatley, G., Tait, J., and MacIntyre, J. (1998). A case-based reasoning tool for

vibration analysis, Proceedings of the 18th SGES International Conference on

KBS and Applied AI, pp. 132–146.

Park, J. H., Im, K. H., Shin, C.-K. and Park, S. C. (2004). MBNR: Case-Based

Reasoning with Local Feature Weighting by Neural Network: Special Issue:

Soft Computing in Case Based Reasoning, Applied Intelligence 21(3): 265–276.

Park, Y.-J., Kim, B.-C. and Chun, S.-H. (2006). New knowledge extraction tech-

nique using probability for case-based reasoning: application to medical diag-

nosis, Expert Systems 23(1): 2–20.

Pater, S. M. and Popescu, D. E. (2009). Market-Basket Problem Solved With

Depth First Multi-Level Apriori Mining Algorithm, SOFA ’09. 3rd Interna-

tional Workshop on Soft Computing Applications, pp. 133– 138.

Pearce, M., Goel, A. K., Kolodner, J. L., Zimring, C., Sentosa, L. and Billington, R.

(1992). Case-based design support: A case study in architectural design, IEEE

Intelligent Systems 7: 14–20.

Pedersen, T., Pakhomov, S. V. S., Patwardhan, S. and Chute, C. G. (2007). Mea-

sures of semantic similarity and relatedness in the biomedical domain, J. of

Biomedical Informatics 40(3): 288–299.

REFERENCES 202

Policastro, C. A., Delbem, A. C. B., Mattoso, L. H. C., Minatti, E., Ferreira, E. J.,

Borato, C. E. and Zanus, M. C. (2007). A hybrid case-based reasoning approach

for wine classification, ISDA ’07: Proceedings of the Seventh International Con-

ference on Intelligent Systems Design and Applications, IEEE Computer Soci-

ety, Washington, DC, USA, pp. 395–400.

Quillian, M. (1968). Semantic Memory, Semantic Information Processing, Cam-

bridge, Mass.: MIT Press., pp. 227–353.

Resnik, P. (1999). Semantic similarity in a taxonomy: An information-based mea-

sure and its application to problems of ambiguity in natural language, Journal

of Artificial Intelligence Research 11: 95–130.

Richard C, S. (2003). Basic Statistical Analysis, Allyn & Bacon.

Rodriguez, M. and Egenhofer, M. (2003). Determining semantic similarity among

entity classes from different ontologies, Knowledge and Data Engineering, IEEE

Transactions on 15(2): 442–456.

Salem, A.-B. M. (2007). Case-based reasoning technology for medical diagnosis,

World Academy of Science, Engineering and Technology .

http://www.waset.org/journals/waset/v31/v31-2.pdf (20 May 2011)

Savasere, A., Omiecinski, E. and Navathe, S. B. (1995). An efficient algorithm for

mining association rules in large databases, Proceedings of the 21th Interna-

tional Conference on Very Large Data Bases, VLDB ’95, Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, pp. 432–444.

Schaaf, T. (2007). The IT Infrastructure Library (ITIL) — an introduction for

practitioners and researchers, Proceedings of the 1st international conference

on Autonomous Infrastructure, Management and Security: Inter-Domain Man-

agement, AIMS ’07, Springer-Verlag, Berlin, Heidelberg, pp. 235–235.

http://dx.doi.org/10.1007/978-3-540-72986-0 38

REFERENCES 203

Schank, R. C. (1972). The structure of episodes in memory, Representation and

understanding: Studies in cognitive science pp. 237–272.

Schank, R. C. (1982). Dynamic Memory: A Theory of Learning in Computers and

People, Cambridge University Press, New York, NY, USA.

Schank, R. C. and Abelson, R. P. (1972). Scripts, Plans, Goals, and Understanding,

Hillsdale, NJ: Lawrence Erlbaum.

Shokouhi, S. V., Aamodt, A., Skalle, P. and Sørmo, F. (2009). Comparing two types

of knowledge-intensive cbr for optimized oil well drilling, 4th Indian Interna-

tional Conference on Artificial Intelligence (IICAI 09), pp. 722–737.

Simpson, Jr., R. L. (1985). A computer model of case-based reasoning in problem

solving: an investigation in the domain of dispute mediation (analogy, machine

learning, conceptual memory), PhD thesis, Atlanta, GA, USA.

Slade, S. (1991). Case-based reasoning: a research paradigm, AI Mag. 12(1): 42–55.

Smyth, B. and Cotter, P. (1999). Surfing the digital wave: generating personalized

TV listing using collaborative, case-based recommendation, Proceedings of the

3rd International Conference on Case-based Reasoning pp. 561–574.

Smyth, B. and Keane, M. T. (1995). Experiments On Adaptation-Guided Retrieval

In Case-Based Design, ICCBR ’95: Proceedings of the First International Con-

ference on Case-Based Reasoning Research and Development, Springer-Verlag,

London, UK, pp. 313–324.

Smyth, B. and Keane, M. T. (1998). Adaptation-guided retrieval: questioning the

similarity assumption in reasoning, Artif. Intell. 102(2): 249–293.

Smyth, B., Keane, M. T. and Cunningham, P. (2001). Hierarchical case-based

reasoning integrating case-based and decompositional problem-solving tech-

niques for plant-control software design, IEEE Trans. on Knowl. and Data

Eng. 13(5): 793–812.

REFERENCES 204

Staab, S. and Studer, R. (2009). Handbook on Ontologies, 2nd edn, Springer Pub-

lishing Company, Incorporated.

Stahl, A. (2003). Learning of knowledge-intensive similarity measures in case-based

reasoning, PhD thesis, Technical University of Kaiserslautern .

Stahl, A. (2007). Retrieving Relevant Experiences, KI Zeitschrift (4): 30–33.

Stahl, A. and Bergmann, R. (2000). Applying recursive cbr for the customization of

structured products in an electronic shop, in E. Blanzieri and L. Portinale (eds),

Advances in Case-Based Reasoning, Vol. 1898 of Lecture Notes in Computer

Science, Springer Berlin / Heidelberg, pp. 281–322.

Stahl, A. and Gabel, T. (2003). Using evolution programs to learn local similarity

measures, Proceedings of the 5th international conference on Case-based rea-

soning: Research and Development, ICCBR’03, Springer-Verlag, Berlin, Hei-

delberg, pp. 537–551.

http://portal.acm.org/citation.cfm?id=1760422.1760465

Stanfill, C. and Waltz, D. (1986). Toward memory-based reasoning, Commun. ACM

29(12): 1213–1228.

Tahir, M. A., Bouridane, A. and Kurugollu, F. (2007). Simultaneous feature selec-

tion and feature weighting using hybrid tabu search/k-nearest neighbor classi-

fier, Pattern Recogn. Lett. 28(4): 438–446.

Tran, H. and Schonwalder, J. (2008). Fault resolution in case-based reasoning,

PRICAI 2008: Trends in Artificial Intelligence, Vol. 5351 of Lecture Notes in

Computer Science, pp. 417–429.

Tulving, E. (1972). Episodic and semantic memory, Organization of Memory, New

York: Academic, pp. 381–403.

Vetterling, W. T., Teukolsky, S. A., Press, W. H. and Flannery, B. P. (1998). Nu-

merical recipes in C, Cambridge University Press.

REFERENCES 205

Vong, C. M., Wong, P. K. and Ip, W. F. (2010). Case-based classification system with

clustering for automotive engine spark ignition diagnosis, Proceedings of the

2010 IEEE/ACIS 9th International Conference on Computer and Information

Science, ICIS ’10, IEEE Computer Society, Washington, DC, USA, pp. 17–22.

Watson, I. (1999). Case-based reasoning is a methodology not a technology,

Knowledge-Based Systems 12(5-6): 303–308.

Wilke, W., Lenz, M. and Wess, S. (1998). Intelligent Sales Support with CBR, Case-

Based Reasoning Technology, From Foundations to Applications, Springer-

Verlag, London, UK, pp. 91–114.

Witten, I. H. and Frank, E. (2000). Data mining: Practical machine learning tools

and techniques with Java implementations, Morgan Kaufmann, San Francisco.

Wu, Z. and Palmer, M. (1994). Verbs semantics and lexical selection, Proceed-

ings of the 32nd annual meeting on Association for Computational Linguistics,

ACL ’94, Association for Computational Linguistics, Stroudsburg, PA, USA,

pp. 133–138.

http://dx.doi.org/10.3115/981732.981751

Xie, J., Wu, J. and Qian, Q. (2009). Feature selection algorithm based on as-

sociation rules mining method, Eighth IEEE/ACIS International Conference

on Computer and Information Science (ICIS 2009), Shanghai, China, pp. 357

–362.

Yang, H., Lu, W. F. and Lin, A. C. (1994). PROCASE: a case-based process planning

system for machining of rotational parts, Journal of Intelligent Manufacturing

5: 411–430.

Yang, Q., Kim, E. and Racine, K. (1997). Caseadvisor: Supporting interactive prob-

lem solving and case base maintenance for help desk applications, Proceedings

of the IJCAI 97 Workshop on Practical Applications of CBR .

REFERENCES 206

Zhang, L., Coenen, F. and Leng, P. (2001). Formalizing optimal feature weight

setting in case based diagnosis as linear programming problem, Knowledge-

Based Systems 15: 391–398.

Zhao, Z. and Liu, H. (2007). Searching for interacting features, Proceedings of the

20th international joint conference on Artifical intelligence, Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, pp. 1156–1161.

Appendix A

Detailed Experimental Results

In the following, we show the detailed and complete evaluation results obtained from

the experiments of USIMSCAR and k-NN approaches for the medical datasets we

have used in our evaluation. For each of the approaches, the best one obtained from

the use of an optimal value for k is denoted in boldface. In this context, k denotes

the number of nearest neighbors with respect to the target problems.

A.1 The Breast Cancer (BC) Dataset

A.1.1 Using Majority Voting

Table A.1: Results for the BC dataset in terms of classification accuracy (%).

k USIMSCAR IBk IBkCFS IBkLVF IBkIG IBkCS

1 75.874 72.378 72.378 70.280 69.930 72.378

3 74.825 74.126 70.979 72.028 71.678 73.077

5 75.175 73.776 71.678 72.378 73.427 73.077

7 73.427 74.126 72.727 73.427 73.427 73.427

9 73.077 73.427 75.175 73.776 72.727 72.727

11 72.727 73.427 76.224 73.077 72.028 73.077

13 73.427 72.028 76.224 72.727 70.979 72.727

15 73.427 72.378 76.224 72.727 71.329 73.077

207

APPENDIX A. DETAILED EXPERIMENTAL RESULTS 208

Table A.2: Results for the BC dataset in terms of F-measure (%).

k USIMSCAR IBk IBkCFS IBkLVF IBkIG IBkCS

1 68.744 63.189 63.189 60.098 59.224 63.189

3 66.325 65.147 61.341 61.329 60.922 65.147

5 67.213 64.461 62.353 61.718 63.810 64.461

7 64.219 65.104 63.787 64.032 63.840 65.104

9 63.788 63.810 67.042 64.896 62.451 63.810

11 63.453 63.911 68.653 63.788 60.980 63.911

13 65.438 60.970 68.653 63.048 58.423 60.970

15 66.232 62.002 68.644 63.048 59.270 62.002

A.1.2 Using Weighted Voting

Table A.3: Results for the BC dataset in terms of classification accuracy(%).

k USIMSCAR IBk IBkCFS IBkLVF IBkIG IBkCS

1 71.329 72.378 72.378 70.280 69.930 72.378

3 73.427 73.077 71.678 69.930 70.629 74.126

5 75.524 73.077 72.028 71.329 72.378 73.776

7 78.322 73.427 73.077 72.378 72.378 74.126

9 79.021 72.727 73.077 72.727 71.678 73.427

11 78.671 73.077 73.776 72.028 71.329 73.427

13 78.322 72.727 73.776 72.028 71.678 72.028

15 77.972 73.077 73.776 72.028 72.028 72.378

Table A.4: Results for the BC dataset in terms of F-measure(%).

k USIMSCAR IBk IBkCFS IBkLVF IBkIG IBkCS

1 65.451 63.189 63.189 60.098 59.224 63.189

3 69.078 63.919 62.353 58.502 59.852 63.919

5 71.110 63.532 62.767 60.064 62.127 63.532

7 73.879 64.053 64.376 61.910 62.012 64.053

9 74.251 62.782 64.376 62.517 60.627 62.782

11 73.597 63.249 65.245 61.035 60.064 63.249

13 73.088 62.588 65.245 61.035 60.627 62.588

15 72.724 63.149 64.986 61.035 61.214 63.149

APPENDIX A. DETAILED EXPERIMENTAL RESULTS 209

A.2 The Breast Cancer Wisconsin (BCW) Dataset

A.2.1 Majority Voting

Table A.5: Results for the BCW dataset in terms of classification accuracy (%).

k USIMSCAR IBk IBkCFS IBkLVF IBkIG IBkCS

1 97.511 96.047 96.047 95.900 96.340 96.193

3 97.657 96.779 96.779 97.072 96.925 96.779

5 96.925 97.218 97.218 96.925 96.925 97.218

7 96.925 96.925 96.925 97.218 96.925 97.072

9 96.779 96.486 96.486 97.072 96.925 96.779

11 96.633 96.486 96.486 96.779 96.779 96.486

13 96.340 96.340 96.340 96.193 96.340 96.340

15 96.486 96.047 96.047 96.340 96.486 96.486

Table A.6: Results for the BCW dataset in terms of F-measure (%).

k USIMSCAR IBk IBkCFS IBkLVF IBkIG IBkCS

1 97.258 95.640 95.640 95.495 95.968 95.804

3 97.419 96.460 96.460 96.798 96.643 96.460

5 96.611 96.946 96.946 96.624 96.633 96.946

7 96.611 96.624 96.624 96.946 96.624 96.624

9 96.448 96.127 96.127 96.777 96.618 95.964

11 96.286 96.127 96.127 96.454 96.454 96.127

13 95.964 95.968 95.968 95.804 95.968 95.968

15 96.125 95.640 95.640 95.968 96.132 95.801

APPENDIX A. DETAILED EXPERIMENTAL RESULTS 210

A.2.2 Weighted Voting

Table A.7: Results for the BCW dataset in terms of classification accuracy (%).

k USIMSCAR IBk IBkCFS IBkLVF IBkIG IBkCS

1 97.657 96.047 96.047 95.900 96.340 96.047

3 97.511 96.779 96.779 97.072 96.925 96.779

5 97.218 97.218 97.218 96.925 96.925 97.218

7 97.072 97.072 97.072 97.218 97.072 96.925

9 97.218 96.779 96.779 97.365 96.925 96.486

11 97.072 96.486 96.486 97.218 97.072 96.486

13 96.925 96.340 96.340 96.633 96.779 96.340

15 97.072 96.193 96.193 96.633 96.486 96.047

Table A.8: Results for the BCW dataset in terms of F-measure (%).

k USIMSCAR IBk IBkCFS IBkLVF IBkIG IBkCS

1 97.421 95.640 95.640 95.495 95.968 95.804

3 97.261 96.460 96.460 96.798 96.643 96.460

5 96.946 96.946 96.946 96.624 96.633 96.946

7 96.787 96.789 96.789 96.946 96.798 96.789

9 96.954 96.454 96.454 97.104 96.624 96.454

11 96.796 96.127 96.127 96.946 96.782 96.127

13 96.637 95.968 95.968 96.291 96.460 95.968

15 96.796 95.804 95.804 96.296 96.132 96.127

APPENDIX A. DETAILED EXPERIMENTAL RESULTS 211

A.3 The Breast Tissue (BT) Dataset

A.3.1 Majority Voting

Table A.9: Results for the BT dataset in terms of classification accuracy (%).

k USIMSCAR IBk IBkCFS IBkLVF IBkIG IBkCS

1 71.698 71.698 64.151 67.925 69.811 70.755

3 66.981 65.094 61.321 58.491 60.377 62.264

5 65.094 63.208 59.434 56.604 56.604 58.491

7 64.151 64.151 61.321 62.264 62.264 63.208

9 62.264 60.377 59.434 61.321 61.321 63.208

11 59.434 60.377 65.094 63.208 63.208 63.208

13 58.491 58.491 63.208 62.264 63.208 63.208

15 60.377 57.547 63.208 61.321 62.264 64.151

Table A.10: Results for the BT dataset in terms of F-measure (%).

k USIMSCAR IBk IBkCFS IBkLVF IBkIG IBkCS

1 71.178 71.465 62.711 65.127 67.689 68.435

3 65.632 63.424 59.325 56.229 58.105 57.532

5 64.105 61.913 57.331 54.593 54.593 54.475

7 62.397 62.641 59.348 60.020 60.354 58.325

9 59.234 58.666 56.905 58.675 58.675 57.712

11 57.332 58.631 63.249 60.548 60.524 59.045

13 56.028 56.414 61.797 60.322 61.272 57.366

15 58.159 55.062 61.220 58.881 59.928 54.652

APPENDIX A. DETAILED EXPERIMENTAL RESULTS 212

A.3.2 Weighted Voting

Table A.11: Results for the BT dataset in terms of classification accuracy (%).

k USIMSCAR IBk IBkCFS IBkLVF IBkIG IBkCS

1 71.698 71.698 64.151 67.925 69.811 71.698

3 76.415 67.925 62.264 61.321 62.264 65.094

5 76.415 66.038 60.377 58.491 60.377 63.208

7 78.302 65.094 63.208 64.151 66.981 64.151

9 77.358 64.151 61.321 64.151 66.038 60.377

11 74.528 64.151 62.264 66.038 66.981 60.377

13 76.415 59.434 63.208 66.038 66.981 58.491

15 75.472 62.264 65.094 66.981 67.925 57.547

Table A.12: Results for the BT dataset in terms of F-measure (%).

k USIMSCAR IBk IBkCFS IBkLVF IBkIG IBkCS

1 71.178 71.465 62.711 65.127 67.689 68.435

3 75.495 67.037 60.366 59.113 59.715 59.401

5 75.747 64.942 59.082 56.586 58.564 56.167

7 77.626 64.140 61.323 62.016 64.715 61.436

9 76.099 63.218 59.436 62.243 63.940 61.388

11 73.618 63.119 60.103 63.748 64.872 61.353

13 75.397 58.485 61.263 63.637 64.626 61.010

15 74.527 61.039 63.466 64.575 66.103 61.552

APPENDIX A. DETAILED EXPERIMENTAL RESULTS 213

A.4 The Pima Indian Diabetes (PID) Dataset

A.4.1 Majority Voting

Table A.13: Results for the PID dataset in terms of classification accuracy (%).

k USIMSCAR IBk IBkCFS IBkLVF IBkIG IBkCS

1 69.271 69.922 69.010 68.620 66.406 68.620

3 73.698 73.828 72.917 73.698 72.135 73.698

5 75.000 74.089 74.479 75.000 73.698 75.391

7 74.870 74.089 74.609 74.089 73.568 73.958

9 74.479 73.698 76.432 74.219 73.828 74.089

11 75.781 72.396 76.823 74.219 74.870 74.349

13 75.130 74.349 77.214 74.479 73.828 75.130

15 75.651 73.958 76.432 74.479 73.698 75.000

Table A.14: Results for the PID dataset in terms of F-measure accuracy (%).

k USIMSCAR IBk IBkCFS IBkLVF IBkIG IBkCS

1 65.673 66.374 65.899 65.203 63.097 65.203

3 69.951 70.455 69.848 70.327 68.688 70.327

5 71.532 70.751 71.417 71.923 70.410 71.923

7 71.190 70.423 71.344 70.457 70.000 70.457

9 70.687 69.917 73.386 70.625 70.262 70.625

11 72.212 68.432 73.848 70.527 71.463 70.527

13 71.448 70.633 74.137 70.771 70.086 70.771

15 72.026 70.041 73.263 70.687 69.884 70.687

APPENDIX A. DETAILED EXPERIMENTAL RESULTS 214

A.4.2 Weighted Voting

Table A.15: Results for the PID dataset in terms of classification accuracy (%).

k USIMSCAR IBk IBkCFS IBkLVF IBkIG IBkCS

1 69.271 69.922 69.010 68.620 66.406 69.922

3 79.818 73.828 73.307 73.698 72.135 73.828

5 83.333 74.479 74.479 75.391 73.828 74.089

7 85.417 74.089 74.740 73.958 73.568 74.089

9 85.677 73.828 76.302 74.089 73.438 73.698

11 86.719 72.917 76.172 74.349 74.479 72.396

13 86.068 74.219 77.083 75.130 74.349 74.349

15 87.500 74.349 76.562 75.000 74.349 73.958

Table A.16: Results for the PID dataset in terms of F-measure (%).

k USIMSCAR IBk IBkCFS IBkLVF IBkIG IBkCS

1 65.673 66.374 65.899 65.203 63.097 65.203

3 77.272 70.455 70.308 70.327 68.783 70.327

5 81.331 71.177 71.335 72.307 70.496 72.307

7 83.670 70.423 71.511 70.358 70.039 70.358

9 84.005 70.086 73.254 70.562 69.870 70.562

11 85.253 69.153 73.089 70.695 70.995 70.695

13 84.560 70.495 74.055 71.551 70.760 71.551

15 86.140 70.519 73.318 71.357 70.664 71.357

APPENDIX A. DETAILED EXPERIMENTAL RESULTS 215

A.5 The StatLog Heart Disease (SHD) Dataset

A.5.1 Majority Voting

Table A.17: Results for the SHD dataset in terms of classification accuracy (%).

k USIMSCAR IBk IBkCFS IBkLVF IBkIG IBkCS

1 78.519 77.407 78.519 78.519 78.148 77.407

3 80.741 80.370 78.519 80.370 81.111 81.852

5 80.741 80.741 80.000 81.111 83.333 81.111

7 81.852 81.481 80.370 81.111 84.815 81.111

9 82.593 82.593 81.481 81.852 85.185 81.852

11 82.593 81.111 81.111 80.370 83.704 81.481

13 82.963 81.111 81.852 81.111 84.074 81.481

15 83.333 81.852 81.852 82.222 83.704 81.852

Table A.18: Results for the SHD dataset in terms of F-measure (%).

k USIMSCAR IBk IBkCFS IBkLVF IBkIG IBkCS

1 78.217 77.107 78.156 78.250 77.772 77.145

3 80.500 80.109 78.170 80.182 80.860 80.892

5 80.500 80.684 79.720 80.892 83.072 80.892

7 81.611 81.285 80.063 80.892 84.583 80.471

9 82.361 82.339 81.201 81.611 84.966 81.974

11 82.324 80.892 80.817 80.182 83.451 80.500

13 82.707 80.835 81.561 80.860 83.828 81.954

15 83.078 81.641 81.560 82.000 83.451 82.725

APPENDIX A. DETAILED EXPERIMENTAL RESULTS 216

A.5.2 Weighted Voting

Table A.19: Results for the SHD dataset in terms of classification accuracy (%).

k USIMSCAR IBk IBkCFS IBkLVF IBkIG IBkCS

1 78.519 77.407 78.519 78.519 78.148 77.407

3 81.852 79.630 78.889 81.852 80.370 80.370

5 83.333 80.741 81.111 80.741 81.111 80.741

7 82.963 81.852 80.000 80.741 81.852 81.481

9 87.407 82.222 82.222 81.852 83.704 82.593

11 87.778 81.852 81.852 81.111 83.704 81.111

13 88.889 81.111 81.481 81.852 82.222 81.111

15 89.630 81.111 80.741 81.852 81.852 81.852

Table A.20: Results for the SHD dataset in terms of F-measure (%).

k USIMSCAR IBk IBkCFS IBkLVF IBkIG IBkCS

1 78.217 77.107 78.156 78.250 77.772 77.145

3 81.561 79.393 78.556 81.723 80.063 81.723

5 83.078 80.684 80.817 80.578 80.802 80.892

7 82.782 81.679 79.696 80.578 81.560 80.892

9 87.401 82.034 81.942 81.679 83.451 81.641

11 87.703 81.679 81.561 81.028 83.451 81.285

13 88.773 80.860 81.188 81.679 81.942 81.250

15 89.553 80.931 80.433 81.641 81.560 81.641

APPENDIX A. DETAILED EXPERIMENTAL RESULTS 217

A.6 The Thyroid (THY) Dataset

A.6.1 Majority Voting

Table A.21: Results for the THY dataset in terms of classification accuracy (%).

k USIMSCAR IBk IBkCFS IBkLVF IBkIG IBkCS

1 97.674 96.279 96.279 96.279 96.279 96.279

3 94.884 93.953 93.953 93.953 93.953 95.349

5 94.419 93.953 93.953 93.488 93.953 94.884

7 94.884 93.023 93.023 93.023 93.023 93.953

9 93.488 92.093 92.093 92.093 92.093 94.884

11 92.558 92.093 92.093 92.093 92.093 93.488

13 92.558 91.163 91.163 91.628 91.163 92.093

15 92.558 91.163 91.163 91.628 91.163 91.628

Table A.22: Results for the THY dataset in terms of F-measure (%).

k USIMSCAR IBk IBkCFS IBkLVF IBkIG IBkCS

1 96.883 95.084 95.084 95.084 95.084 95.084

3 92.980 91.603 91.603 91.603 91.603 91.603

5 92.292 91.659 91.659 91.023 91.659 91.659

7 92.835 90.347 90.347 90.347 90.347 90.347

9 90.987 89.113 89.113 89.113 89.113 89.113

11 89.741 89.113 89.113 89.113 89.113 89.113

13 89.741 87.754 87.754 88.482 87.754 87.754

15 89.741 87.754 87.754 88.482 87.754 87.754

APPENDIX A. DETAILED EXPERIMENTAL RESULTS 218

A.6.2 Weighted Voting

Table A.23: Results for the THY dataset in terms of classification accuracy (%).

k USIMSCAR IBk IBkCFS IBkLVF IBkIG IBkCS

1 97.674 96.279 96.279 96.279 96.279 96.279

3 95.349 95.349 95.349 95.814 95.349 93.953

5 94.884 94.884 94.884 94.884 94.884 93.953

7 93.953 93.953 93.953 93.953 93.953 93.023

9 92.558 94.884 94.884 94.884 94.884 92.093

11 92.558 93.488 93.488 93.488 93.488 92.093

13 92.558 92.093 92.093 92.093 92.093 91.163

15 92.558 91.628 91.628 92.093 91.628 91.163

Table A.24: Results for the THY dataset in terms of F-measure (%).

k USIMSCAR IBk IBkCFS IBkLVF IBkIG IBkCS

1 96.883 95.084 95.084 95.084 95.084 95.084

3 93.548 93.554 93.554 94.251 93.554 93.554

5 92.857 92.922 92.922 92.922 92.922 92.922

7 91.609 91.659 91.659 91.659 91.659 91.659

9 89.711 92.835 92.835 92.835 92.835 92.835

11 89.741 90.987 90.987 90.987 90.987 90.987

13 89.741 89.113 89.113 89.113 89.113 89.113

15 89.741 88.389 88.389 89.113 88.389 88.389

APPENDIX A. DETAILED EXPERIMENTAL RESULTS 219

A.7 The NHSG Dataset

A.7.1 Majority Voting

Table A.25: Results for the NHSG dataset in terms of classification accuracy (%).

k USIMSCAR IBk IBkCFS IBkLVF IBkIG IBkCS

1 77.972 72.074 71.336 72.074 72.442 72.074

3 77.235 71.705 71.152 71.705 71.705 72.074

5 76.682 71.152 70.783 71.152 71.152 72.074

7 76.406 71.060 70.599 71.060 70.783 72.074

9 76.221 70.876 70.230 70.876 70.599 72.074

11 76.129 70.691 70.138 70.691 70.138 72.074

13 75.300 69.862 69.862 69.862 69.585 72.074

15 75.207 69.770 69.124 69.770 68.940 71.982

Table A.26: Results for the NHSG dataset in terms of F-measure (%).

k USIMSCAR IBk IBkCFS IBkLVF IBkIG IBkCS

1 72.398 59.319 56.453 59.319 56.850 59.319

3 71.376 57.745 56.396 57.745 56.756 57.745

5 70.152 55.379 55.621 55.379 55.761 55.379

7 69.706 55.174 55.371 55.174 55.073 55.174

9 69.330 55.056 54.734 55.056 55.148 55.056

11 69.101 54.761 54.528 54.761 54.547 54.761

13 66.974 52.917 54.159 52.917 53.057 52.917

15 66.787 52.907 52.916 52.907 51.555 52.907

APPENDIX A. DETAILED EXPERIMENTAL RESULTS 220

A.7.2 Weighted Voting

Table A.27: Results for the NHSG dataset in terms of classification accuracy (%).

k USIMSCAR IBk IBkCFS IBkLVF IBkIG IBkCS

1 78.065 72.074 71.336 72.074 72.442 72.074

3 77.512 72.074 71.152 72.074 72.074 71.705

5 76.313 72.074 71.152 72.074 72.074 71.152

7 75.760 72.074 71.152 72.074 72.074 71.060

9 75.668 72.074 71.152 72.074 72.074 70.876

11 75.392 72.074 71.152 72.074 72.074 70.691

13 74.931 72.074 71.152 72.074 72.074 69.862

15 74.931 71.982 71.060 71.982 71.982 69.770

Table A.28: Results for the NHSG dataset in terms of F-measure (%).

k USIMSCAR IBk IBkCFS IBkLVF IBkIG IBkCS

1 72.720 59.319 56.453 59.319 56.850 59.319

3 72.155 57.745 56.396 57.745 56.756 57.745

5 70.088 55.379 55.621 55.379 55.761 55.379

7 69.364 55.174 55.371 55.174 55.073 55.174

9 69.176 55.056 54.734 55.056 55.148 55.056

11 68.668 54.761 54.528 54.761 54.547 54.761

13 67.491 52.917 54.528 52.917 53.416 52.917

15 67.075 52.907 53.416 52.907 52.037 52.907

