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Abstract

Viscous liquid jets and filaments are important in a number of industrial and domestic ap-

plications as well as in several natural processes. Application of an electric field is found

to have a remarkable effect on the behavior of these jets, mainly in controlling the propa-

gation of instabilities and breakup dynamics. Such electrified jets have been exploited in a

number of industrial applications such as electrospraying, electrospinning, electrosepara-

tions, ink-jet printing, etc. This thesis presents five theoretical and computational studies

on different electrified viscous jet/filament systems.

The first study is on electrospinning, a simple technique to generate polymeric

nanofibers by taking advantage of distinctive flow instabilities in electrified jets of polymer

solutions. This process, though easy to perform is quite complex to model mainly due to

coupling of a number of physics together and the large number of dependent parameters.

Here it is attempted to derive a relation between the final fiber diameter and the various

process parameters. A scaling analysis of an approximate equation for the motion of a

bent jet is performed and two new dimensionless numbers describing viscous moment

and surface charge repulsion effects are identified. Experimental data for a wide range of

polymer solutions are all shown to have a common slope, when expressed in terms of these

new dimensionless ratios. Using this correlation between the dimensionless numbers, a

new scaling expression is obtained for the final fiber diameter as a function of various

process parameters.

In the next study, stability of immersed viscous liquid threads subjected to radial or

axial electric fields is investigated using linear stability analysis. Axisymmetric (m = 0)

and asymmetric (m = 1) modes of perturbation are studied for arbitrary viscosity ratios.

The viscosity ratio, in general, is shown to have a damping effect on the two modes of

perturbations, and the effect is more pronounced for the m = 1 as compared to m =

0 perturbation. Investigating the effect of both the electric field and the viscosity ratio
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simultaneously, an operating diagram is generated, showing the predominance of the two

modes at any given value of operating parameters.

The above analysis is extended to understand the occurrence of the unique “pearling”

stability on lipid bilayer cylindrical vesicles under electric field. It is shown that a cer-

tain critical axial electrical field needs to be applied to induce pearls on a bilayer vesicle.

The maximum growth rate and the wavenumber of the pearling instability were found to in-

crease with increasing electric field. While growth rate continues to increase, the maximum

wavenumber reaches a steady value at higher electric fields.

Like electric field, viscoelasticity induced by dissolved polymer molecules also plays

a significant role in controlling the dynamics of breakup of jets and filaments. In the fourth

study, capillary thinning of viscoelastic liquid bridges is investigated using an efficient

hybrid method that combines a 1-D slender-filament approximation for the full profile of

a liquid bridge with a 0-D stress balance to predict the temporal evolution of the filament

“neck”. In addition, an advanced constitutive model for polymeric stresses is used to study

the anomalous concentration dependence of break-up dynamics in polymer solutions that

are nominally regarded as being dilute. The microstructural constitutive model incorporates

changes in the friction coefficient of polymer molecules as they unravel, stretch and begin

to experience significant intermolecular interactions in strong extensional flows due to a

phenomenon known as “self-concentration”. The hybrid simulation technique is used with

this new constitutive model to predict dynamics of liquid-bridge necking that compares

well with experimental observations reported in the literature on dilute polymer solutions.

In the last study, the importance of relaxation time and self-concentration on electro-

spinning of dilute polymer solutions is investigated by considering the steady region of an

electrified jet of a polymer solution. It is shown that elastic stresses increase exponentially

with Deborah number (De). For each concentration there exists a critical De below which

the elastic stresses at the end of the steady jet region are insufficient to overcome capillary

stresses and lead to an unstable jet in the whipping region. However, above the critical De,

the elastic stresses may be sufficiently dominant to lead to more uniform fibers, thus point-

ing to the possibility of improved “electrospinnability” even with dilute polymer solutions.

Also, it is suggested that self-concentration may play an important role in electrospinning

of polymer solutions with higher relaxation time and high conductivity.
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Chapter 1

Introduction

Viscous liquid jets and filaments, both characterized by a cylindrical stream of fluid are

ubiquitous in nature and are encountered in a number of industrial applications such as

fiber spinning, mixing, irrigation, printing, etc. These applications depend on propagation

of various perturbations on jet/filament surface, which lead to, different instabilities. In-

dustrial applications such as ink-jet printing, either exploit or modify the instability while

others applications, for example, electrospinning, are based upon suppressing certain kinds

of instabilities while simultaneously inducing others. This has led to considerable activity

in developing strategies to control instabilities. Application of electric field has been one

of the most popular methods to not only regulate these instabilities, but to also induce new

electrohydrodynamic instabilities.

In recent times electrified jets and filaments have found immense scientific and tech-

nological importance (Eggers, 1997; Collins et al., 2007; Eggers and Villermaux, 2008)

as many important applications such as mass spectrophotometry (electrospray ionisation),

ink-jet printing, liquid metal ion sourcing, production of nanofibers (electrospinning), elec-

troseparations, etc., are based on the electric field induced instabilities. The main goal of

this thesis is to address certain unresolved issues of a few such systems.

The first system studied is electrospinning, which is a popular and versatile method

for producing polymeric nanofibers. In this process, a jet of polymer solution or melt is

stretched using an axial electric field. The charged jet undergoes a “bending” or “whip-

ping” instability that is characterized by rapid movement of the jet in concentric circles of

increasing diameter. The stretching action during whipping leads to a large decrease in jet

diameter and formation of nanofibers. Even though the process is simple to perform, it is

quite challenging to model. The difficulty is mainly due to the coupling of fluid dynamics,

1
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electrostatics and rheology together. Also the presence of the complex whipping instability

renders numerical modeling of the system difficult. Additionally the process depends on a

large number of physical properties, operating parameters and ambient conditions, which

further add to the complexity. For such a system, a correlation to calculate the final fiber

diameter using known process parameters can be of great help as it can reduce the cost of

experimental trial and error. Few correlations currently available in literature, are limited

to specific polymer-solvent systems. In the first study we address the question of deriving

a relation between final fiber diameter and the important process parameters.

Hohman et al. (2001a) derived the equation of motion of bent jet to describe the

electrospinning jet at the onset of whipping. This equation is complex and includes many

parameters that are difficult to measure. To get an insight of the electrospinning process we

non-dimensionalise this equation using a revised scaling obtained from asymptotic analy-

sis. Two new dimensionless numbers thus obtained are then used to derive an empirical

expression for the final fiber diameter. This study presents a good example of how a seem-

ingly simple electrified viscous jet/filament system can be challenging to model and thus

serves as a motivation for this thesis.

In the following chapters, four independent studies involving viscous liquid

jets/filaments are presented, which can be broadly divided into two parts. In the first

part, linear stability analysis is used to study axisymmetric and asymmetric instabilities

in Newtonian liquid-liquid jets and filaments under electric field. These studies are

presented in Chapter 3 and 4. In the second part of the thesis, numerical analysis is used to

investigate the role of viscoelasticity in electrified and un-electrified viscoelastic jets and

filaments. These studies are presented in Chapter 5 and 6.

Stability and breakup of liquid filaments or jets of a viscous or non-viscous fluid

in air is one of the most extensively studied subjects in fluid mechanics. However, the

same cannot be said about the study of liquid-liquid jets and filaments. A viscous or non-

viscous liquid jet /filament dispersed in another immiscible liquid of a different viscosity

is encountered in quite a few situations such as submerged liquid bridges, liquid-liquid

spray columns, liquid-liquid jet reactors, polymer phase separation, cylindrical vesicles and

other thread-like entities in biological systems, etc., (Khakhar and Ottino, 1987; Freeman

and Tavlarides, 1980; Kumar and Hartland, 1999; Moon et al., 2012). The dynamics and

breakup of the liquid-liquid jet/filament are very different from a jet/filament in air system.
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This is because the same mathematical theories developed for “jet in air”, are not applicable

to “jet in liquid” system, due to differences in density and viscosity of liquids and gases

and surface tensions in liquid-liquid and liquid-gas interfaces. The viscosity ratio of the

two liquids can significantly affect the growth rate of various perturbations.

Based on the initial work of Rayleigh (1878) on perturbation analysis of inviscid and

viscous jets in air, Tomotika (1935) proposed a general analysis and included the viscosity

for both the fluid jet and the surrounding fluid. Many authors followed on the work of

Tomotika (1935) and studied liquid-liquid jets under different limiting conditions (Meister

and Scheele, 1967; Lee and Flumerfelt, 1981; Stone and Brenner, 1996).

An interesting scenario, which is now attracting increasing attention, is the effect of

electric field on the instability of jets where the viscosity ratio of the jet/filament and the

medium fluid is important. An important occurrence is the electro-dispersion of a conduct-

ing liquid jet submerged in an immiscible dielectric liquid and subjected to an electric field

(Sato et al., 1997; Tsouris and Shin, 1998). Also electrified liquid-liquid setups are now

being used to realize steady cone-jets for a range of system parameters, which can undergo

axisymmetric or asymmetric instabilities (Barrero et al., 2004; Jayasinghe, 2007; Marin

et al., 2008; Riboux et al., 2011). These systems are also being used to characterize the

whipping instability in electrospinning which is usually quite difficult to study experimen-

tally due to fast dynamics in air. Growing interest in electrified liquid-liquid jet/filament

systems calls for a detailed stability analysis of the various instabilities that affect such

systems. This is broadly the goal of the first part of this thesis.

In electrified liquid-liquid systems, the viscosity ratio along with electric field plays

a major role in controlling the instabilities. Although quite a few studies have investigated

this problem, they have been limited to extreme viscosity ratios, representing either an in-

viscid jet or an inviscid outer fluid. In Chapter 3, the effect of arbitrary viscosity ratio on

the axisymmetric and asymmetric instability of a viscous thread (a perfect conductor) sub-

merged in another viscous fluid (a perfect dielectric) subjected to axial and radial electric

field, is presented. The complexity of the base state (unperturbed) in jets renders the sta-

bility analysis non-trivial. To simplify the analysis, it is assumed that there is no relative

flow between the jet fluid and the medium. The assumption, though not exactly valid for

most practical applications, provides insight into the interaction between the electric field

and the fluid.
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Incidentally, the assumptions are exactly satisfied for the destabilization of a bilayer

cylinder under electric field. The analysis was therefore extended to understand the novel

observation in the lab of Prof. Rochish Thaokar at the Department of Chemical Engi-

neering, IIT Bombay, India. They observed an instability with wavelength of the order of

the tube circumference, reminiscent of the Rayleigh-Plateau instability (Rayleigh, 1878)

appeared on the lipid bilayer bound cylindrical vesicles when subjected to axial electric

fields.

Interaction of planar lipid bilayers and spherical vesicles with electric field has at-

tracted much attention because of biological and biomedical relevance (Funk and Monsees,

2006; Voldman, 2006; Dimova et al., 2007), as well as to understand the complex physics

associated with electrohydrodynamics (Vlahovska et al., 2009) in these systems. Although

spherical vesicles are well investigated in the literature, the same cannot be said about cylin-

drical vesicles, especially when an electric field is applied. To the best of our knowledge,

there is no formal mathematical model suggested in the literature that examines the effect

of axial electric field on bilayer cylindrical vesicles. In Chapter 4, this unaddressed issue is

investigated using linear stability analysis.

The two studies presented in the first part of the thesis are only limited to Newtonian

jets/filaments. However it has been observed that both with and without the presence of

electric field, non-Newtonian jets and filaments, exhibit significantly different dynamics,

as compared to Newtonian jets/filaments. It is known that addition of even a small amount

of a polymer to a Newtonian solvent can bring about remarkable changes in the thinning

dynamics of fluid jets and filaments (Bird et al., 1987a). The rheology of polymeric fluids is

more complex than Newtonian fluids. The non-Newtonian behavior results from shear and

normal stresses induced by changes in average polymer conformation due to flow, which

in turn depends on the nature of the flow (Bird et al., 1987a).

Free surface flows of polymeric fluids such as those in roll-coating of adhesives,

paint applications, fiber-spinning operations, injection molding, etc., offer further chal-

lenges given the large number of phenomena that are involved, including viscosity, inertia,

gravity, capillarity, besides the stresses resulting from the polymer. Thus non-Newtonian

effects cannot be neglected while studying the dynamics of viscoelastic jets and filaments.

This forms the second part of this thesis where role of viscoelasticity has been investigated,

first in unelectrified liquid bridges and then in electrified viscoelastic jets, as observed in
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electrospinning.

Capillary thinning of dilute polymer solutions under the action of surface tension

exhibit a long elastic phase with an exponential decay of the filament radius. Entov and

Hinch (1997) in a seminal paper predicted that the filament radius decays such that the

elasto-capillary balance results in a natural stretching rate of ε̇ = 2/3 λ0 and therefore the

Weissenberg number Wi = ε̇ λ0 = 2/3, where λ0 is the characteristic relaxation time of poly-

mer solution. This analysis suggested that the relaxation time of any dilute polymer solu-

tion could be extracted directly from an observation of the capillary thinning profile of the

filament radius over time. A dilute polymer solution has solute molecules far from one an-

other such that properties characteristic of single polymers relaxation time, are only weakly

dependent on the concentration. However Clasen et al. (2006b) observed strong concen-

tration dependence of relaxation time extracted from capillary thinning experiments. This

unusual concentration dependence in capillary thinning experiments is studied in Chapter

5 using numerical analysis.

The concentration dependence in polymeric filaments in previous studies (Bazilevskii

et al., 1990; Stelter et al., 2002; Tirtaatmadja et al., 2006; Clasen et al., 2006b) was ana-

lyzed using simple stress balance at the mid-plane of the filament. However this approach

neglects the effect of the non-cylindrical profile that exists on either sides of a perfect slen-

der filament. Therefore a 1-D model representing the full-profile of liquid bridge (equiva-

lent to the 1-D model for jets, originally proposed by Eggers and Dupont (1994)) is used

in this analysis as an improvement over the simple stress balance approach. Moreover, it

is known that under strong extensional flows, the polymer drag coefficient is affected by

change in polymer conformations as well as due to the “self-concentration” of polymer

solutions. Thus a recently developed constitutive model by Prabhakar (2011, 2012) which

includes both these effects was used to calculate the polymer stresses. It was found that the

full-filament model can be replaced by the simple stress balance at the mid-filament after

a certain switchover time and thus a complete profile can be generated by “stitching” the

results from the two models. A suitable criterion to determine the switchover time is de-

scribed. This stitching method greatly helped in reducing the numerical time for prediction

of thinning profile, without any loss of information of the pre-thread formation zone, an

aspect neglected in the simple stress balance approach.

This analysis indicates that in strong extensional flow, viscoelastic effects such as
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conformation dependent drag and self-concentration are important in capillary thinning of

un-electrified viscoelastic filaments of dilute polymer solutions. It is therefore interesting

to see if these effects are also important in electrified viscoelastic filaments or jets. Thus

role of viscoelasticity in electrospinning of dilute polymer solutions is investigated and this

study is presented is Chapter 6.

Even though electrospinning is fairly straightforward to perform, not all polymer so-

lutions can be electrospun. “Electrospinnability” or the ease with which a solution can be

used to obtain bead-free uniform fibers, depends on a large number of parameters includ-

ing solution properties, process parameters and ambient conditions (Deitzel et al., 2001;

Thompson et al., 2007). Several studies indicate that the polymer concentration is directly

proportional to the final fiber diameter in electrospinning (Thompson et al., 2007; Wang

et al., 2006; Wongsasulak et al., 2007). A smaller diameter is favorable as it helps in re-

alizing the enhanced functionality of the fibers and is also useful in a number of specific

applications. However reducing the polymer concentration opens up new challenges as

the solution now is not viscoelastic enough to compete with capillary stresses. Electro-

spinning in such systems results in either beaded fibers or polymer droplets. It has been

shown that increasing the polymer concentration (and consequently viscoelasticity) favors

the formation of bead-free uniform fibers.

There are a large number of studies which suggest the significant influence of poly-

mer chain entanglements (resulting in large viscoelastic stresses) in electrospinning (Mc-

Kee et al., 2004; Gupta et al., 2005). However Yu et al. (2006) showed that a strong elastic

response (that can help in stabilizing the jet) can be achieved even for dilute polymer so-

lutions if the polymer relaxation time is comparable to the extensional deformation of the

jet. In the last study, we theoretically investigate the effect of relaxation time (Deborah

number) on electrospinning. Governing equations derived previously by Feng (2003) and

Carroll and Joo (2006) for the steady jet region of the electrospinning are used for the

analysis. A boundary-value problem is solved numerically for equations that account for

the influence of the electric field and surface charge density, besides viscoelastic effects

modeled through the constitutive model mentioned in the previous study.
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Chapter 2

Electrospinning: scaling analysis

2.1 Introduction

Fibers with diameter between 10 nm-500 nm are generally classified as nanofibers. These

fibers are produced from a wide variety of materials ranging from metals to ceramics to

polymers. The reduction of the size to the nanometer range brings an array of new possi-

bilities, in particular with respect to achievable surface to volume ratios, modifications of

the release rate or a strong decrease of the concentration of structural defects on the fiber

surface which will enhance the strength of the fibers. Increased awareness of the current

and the potential applications of nanofibers have in recent years accelerated the research

and development of these structures (Subbiah et al., 2005).

Electrospinning is a simple and versatile method of producing polymeric nanofibers.

It works with a large number of polymers and also produces much longer fibers compared

to other methods such as melt fibrillation (Perez et al., 2002), island-in-sea (Pike, 1999),

pulling of non-polymer molecules by an atomic force microscope (AFM) tip (Ondaruhu

and Joachim, 1998) or assembling of individual CNT molecules (Tseng and Ellenbogen,

2001).

Electrospinning process was first patented about 75 years ago by Formhals (1934).

However detailed research investigations on electrospinning only started in the last 15-20

years with growing interest in the field of nanotechnology. A typical electrospinning setup

only requires a spinneret (syringe pump, syringe and a flat tip needle), a high voltage power

supply and a collector plate which is usually a conductor (Ramakrishna et al., 2005). Figure

2.1, shows the basic schematic for the setup for electrospinning.

When a very high voltage, of the order of kilovolts, is applied between a capillary (or

a syringe needle tip) containing polymer solution and a grounded collector, the hemispheri-
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Figure 2.1: Typical experimental setup for electrospinning (not drawn to scale)

cal drop at the tip of the needle undergoes transformation into a conical shape, known as the

‘Taylor cone’. On increasing the voltage further, an electrified thin fluid jet is ejected from

the tip of the Taylor cone. The jet is initiated only after the electrical forces at the surface

overcome the surface tension and viscoelastic forces (Reneker et al., 2000). The jet follows

a straight path for a certain distance but soon succumbs to numerous electrohydrodynamic

instabilities. The most dominant among these is the whipping instability which results in

rapid chaotic movement of the jet in concentric circles of increasing diameter. This results

in extensive elongation and thus extreme thinning of the jet. As the jet moves down it dries

and solidifies and gets deposited on the collector (Hohman et al., 2001a).

Electrospinning appears to be straightforward, but is a rather intricate process that

depends on a multitude of molecular, process, and operational parameters. It involves a

complex interplay between fluid dynamics, electrodynamics and rheology. Given the com-

plexity of the process it is difficult to model. In fact most of the current models available

are either limited to the steady jet region or are too complex for numerical solution.

The knowledge of final fiber properties (such as, morphology and diameter) can be of

great help in studying existing and novel polymeric system (Greiner and Wendorff, 2008).

To achieve this, we need a systematic predictive tool that accounts for all the important

factors. Such a predictive tool will help to verify and understand many different polymer-

solvent systems faster without the cost and numerous hours of experimental trial-and-error.
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Currently there are few correlations reported in literature to foresee a priori the properties of

the final electrospun fibers, given the operating parameters and starting solution properties.

However each one of these correlations have their own limitations and are mostly limited

to selective polymer-solvent systems.

In this study, we attempt to find a meaningful relation between final fiber diameter

and the important process parameters by using a revised scaling to non-dimensionalize

the equation of motion of bent jet proposed by Hohman et al. (2001a). The chapter is

organized as follows, first a literature review on various correlations is presented, followed

by the asymptotic analysis and finally the correlation between the two new dimensionless

numbers is presented.

2.2 Literature

2.2.1 Experimental observations

Many researchers have performed detailed investigations to study the effect of the several

key parameters on the diameter of electrospun fibers (Deitzel et al., 2001; Cui et al., 2007;

Greiner and Wendorff, 2008; Beachley and Wen, 2009). From experimental investigations

reported in literature, polymer concentration (in effect solution viscosity), flow rate and

applied voltage can be considered as the three most important parameters affecting the

final fiber diameter and morphology. Some other parameters such as tip-to-collector dis-

tance, solution conductivity and surface tension, also influence the electrospinning process,

though not significantly (Ramakrishna et al., 2005).

There seems to be a general agreement in literature that the solution viscosity and

applied flow rate are directly proportional to the final fiber diameter df , i.e. df increases

with increase in zero shear rate viscosity η0 and applied flow rate Q. In some studies the

authors have also reported the scaling coefficient. For example, Table 2.1 gives the scal-

ing coefficients for viscosity reported by different researchers for various polymer-solvent

systems.

While there are many studies which reported that df increases with increasing flow

rate, only few of them have shown systematic data which gives scaling coefficient between

the two. We have used the experimental data provided by Liu et al. (2007), Wang et al.

(2008) and Mataram et al. (2011) to extract the scaling coefficient for Q as 0.3, 0.34 and
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Table 2.1: Scaling coefficient of viscosity for different polymer-solvent systems

Author/Year Polymer-solvent system Scaling coefficient (α)

Baumgarten (1971) acrylic-dimethylformamide 0.5

McKee et al. (2004) poly(ethylene terephthalate-co-ethylene 0.41

isophthalate)-chloroform-dimethylformamide

Gupta et al. (2005) poly(methyl methacrylate)-dimethylformamide 0.71

Wang et al. (2006) polystyrene-dimethylformamide, o-dichlorobeneze, 0.41

tetrahydrofuran, and chloroform

Wang et al. (2007) polyacrylonitrile-dimethylformamide 0.52

Wang et al. (2008) poly[(R)-3-hydroxy-butyrate]-chloroform- 0.52

dimethylformamide

He and Wan (2008) polyacrylonitrile-dimethylformamide 1

Wang et al. (2009a) poly(D, L -lactic acid)-dimethylformamide 0.45

0.35 respectively.

The relation between applied voltage 4V and fiber diameter is ambiguous. Even

though majority of the studies have found that the fiber diameter decreases with increasing

voltage (Zhang et al., 2005; Liu et al., 2007; Thompson et al., 2007; Sajeev et al., 2008;

Wang et al., 2009b; Homayoni et al., 2009; Mataram et al., 2011; Mazoochi and Jabbari,

2011; Yuan et al., 2004), there are some experimental studies which have observed an

inverse relation (Wutticharoenmongkol et al., 2005; Jeun et al., 2007; Rojas et al., 2009).

Then there are some other studies which have reported a dual effect of applied voltage,

in which either the fiber diameter first decreases with increasing voltage up to a threshold

value and then increases with further increase in voltage (Wannatong et al., 2004; Supaphol

and Chuangchote, 2008) or vice-versa (Singh et al., 2009).

This ambiguous relation between df and 4V is probably because 4V is intercon-

nected with tip-to-collector distance L, as their ratio (4V/L) determines the applied elec-

tric field on the jet. While keeping the distance between electrodes constant, if 4V is

increased, it leads to an increase in electric field and thus a stronger electrostatic repulsive

force on the fluid jet that causes the jet to stretch more and thus produces thinner fibers.

However increase in 4V also simultaneously causes an increase in charge density which

leads to a faster ejection of fluid from the Taylor cone. Thus after a certain threshold volt-

age, the tip-to-collector distance is not sufficient for the amount of solution coming out of

the Taylor cone and the solvent may not have enough time to evaporate fully before the
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fibers reach the collector plate. This may lead to thicker fibers.

Compared to applied voltage, tip-to-collector distance does not have a very strong

effect on the final fiber diameter and morphology (Son et al., 2004; Zhang et al., 2005;

Wang et al., 2009b; Sajeev et al., 2008). However increasing the tip-to-collector distance

has been generally found to lead to thinner fibers (Deitzel et al., 2001; Yuan et al., 2004;

Liu et al., 2007; Mataram et al., 2011), probably because it provides more time for the

solvent to evaporate completely.

There are very few studies where effect of conductivity and surface tension has

been investigated independently. Zhang et al. (2005) observed a decrease in fiber diam-

eter with increase in conductivity of the polymer solution whereasKim et al. (2005) and

Mit-uppatham et al. (2004) reported a reverse trend.

The experimental observations discussed above present the enormous complexity of

the electrospinning process. The final fiber properties not only depend on a large number of

parameters, the scaling with each parameter also depends on the type of polymer-solvent

system used. All these factors make it more difficult to derive one universal correlation

for the fiber diameter. Some of the correlations proposed so far, are discussed in the next

section.

2.2.2 Empirical and semi-empirical correlations

Fridrikh et al. (2003) presented a model of a charged Newtonian fluid jet in an electric

field under conditions applicable to whipping instability. The model predicts that the final

diameter of the jet arises from a balance between surface charge repulsion and surface

tension forces. Here they have used the equation of motion for normal displacements X

of the centerline of a bent jet, based on force and angular momentum balance, derived

previously by Hohman et al. (2001a).

The full equation for the force balance of a bent jet, considering both electric field

and surface charge, as derived by Hohman et al. (2001a) is given as,

ρπh2Ẍ =(A1 +B1)
1

Rc

+B2∂2
1

Rc

+B3∂ss
1

Rc

+ A2∂t
1

Rc

(2.1)

− (A3 +B4)∂ss∂t
1

Rc

+ 2πhσE · ξ
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where the coefficients are defined as,

A1 = πhγ +
h2E2(β + 2)

4
, A2 = −E

2ε(β + 1)

4π

ε

K
h2,

A3 =
3

4
πη0h

4 − ε

32π
h4E2 ε

K
,

B1 =
4π2h2σ2

ε
ln k−1, B2 = πh2(β + 1)Eσ h ln k−1,

B3 = −hσ
2π2h4

ε
ln k−1, B4 = −πh

4σ2

K
ln k−1

Here ρ is the density of the polymer solutions, h radius of the jet, Rc radius of cur-

vature of whipping, s arc length of the jet, σ surface charge density, E electric field, ξ

static charge density, γ surface tension, ε fluid dielectric constant, ε̄ air dielectric constant,

β = (ε/ε̄)− 1, K conductivity, k wavenumber of the instability. A complete list of all the

symbols used in this study is provided at the end of the chapter.

All the Ai terms are the electrical coefficients, and the Bi are the modifications due

to surface charge. The term A1 corresponds to surface tension and represents the increase

of the tension in the jet due to the applied electric field. The leading order effect of finite

conductivity is given by A2 and the second term in A3. The A2 term is destabilizing. Term

A3 consists of two parts which stabilize the instability, the viscous moment and (part of

the) the electrical moment. The term B1 represents the surface charge contribution to the

tension caused due to self-repulsion. Both the terms, B2 and the one proportional to E · ξ

represent the interaction between the static charge density and the static electric field. Both

of these forces are out of phase with the other terms. By themselves, these represent an

oscillatory instability. B2 stabilizes the instability. Term B4 competes with the viscous

stabilization provided by A3 (Hohman et al., 2001a,b).

Equation 2.1 is general and describes both early (linear) and late (nonlinear) stages

of whipping. Fridrikh et al. (2003) suggested that since h/Rc << 1 and h/L << 1, the

higher order terms in h/Rc and h/L can be neglected. With this assumption, Eq. 2.1 is

reduced to the following form:

ρπh2Ẍ =2πhσE · ξ +

(
πγ +

hε

2
β(E · t̂)2 +

2π2hσ2

ε
(3− 2 lnχ)

)
h

Rc

(2.2)

where χ = Rc/h

The term in brackets on the right hand side of Eq. 2.2 represents the normal stress

due to bending. Fridrikh et al. (2003) predicted that if this term is negative, the jet becomes
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unstable and the whipping instability becomes dominant. The second term in the bracket

contributes very less compared to surface tension in competing against the destabilizing

action of surface charges. Therefore they proposed that the whipping instability could be

viewed as a competition between the two forces, surface tension and surface charge repul-

sion and suggested that the following inequality governs the start of whipping instability,

πγ ≥ 2π2h(z)σ(z)2(2 lnχ− 3)/ε (2.3)

When surface tension term is greater than the surface charge repulsion term in the above

expression, the centerline of the jet is straight, however when charge repulsion overcomes

surface tension, the instability begins to grow and the jet is bent. Ultimately in the late

stages of whipping, right hand side of the inequality decreases with decreasing radius h(z),

until it balances the left hand side. This balance gives the following relation for the terminal

jet diameter, ht:

ht =

(
γε̄
Q2

I2

2

π(2 lnχ− 3)

)1/3

(2.4)

where, I is the total current.

Figure 2.2: Plot of experimental vs predicted fiber diameters for 12 % wt PCL (•), 10 % wt PAN

(�),8 % wt PAN (♦), and 2 % wt PEO (�) at various flow rates and electric currents [Plot

reproduced from Fridrikh et al. (2003)]

Assuming that solvent evaporation is insignificant prior to the attainment of the limit-

ing jet diameter, and that evaporation changes the diameter but not the length of the thread,

13



2.2. LITERATURE CHAPTER 2. ELECTROSPINNING: SCALING ANALYSIS

Fridrikh et al. (2003) estimated the fluid jet diameter that gives rise to a solid fiber diameter

df by correcting for the polymer concentration c: df = ht ∗ c0.5.

Using the above expression for terminal diameter, Fridrikh et al. (2003) compared ex-

perimental data for dry fiber diameters obtained using polycaprolactone (PCL), polyethy-

lene oxide (PEO) and polyacrylonitrile (PAN) polymer solutions with the theoretically pre-

dicted values (Figure 2.2). Quantitative agreement between observed and predicted fiber

diameters, however, was found in some, but not all cases. PAN and PEO data showed

good agreement, but the model over-predicted stretching for PCL. Fridrikh et al. (2003)

attributed the difference in charge carriers and solvent to explain the discrepancy in the

agreements.

It should be noted that Fridrikh et al. (2003) correlation does not account for solution

viscosity, polymer contribution and solvent evaporation. This leads to an inconsistently

large role being attributed to surface tension, which based on experimental observations is

one of the least important factor in determining fiber diameter.

Helgeson and Wagner (2007) derived an empirical correlation for fiber diameter using

two new dimensionless numbers obtained by combining existing non-dimensional numbers

that were previously defined by Feng (2002) in his analysis of steady state electrospinning

jet. The two new dimensionless numbers were, Π1 = 2ε2E2
0/Kη0, representing the strength

of electrostatic stress relative to electro-viscous stress and Π2 = (ργRjet)/η0 = Oh−2,

representing the ratio of inertial to viscous forces. Here, Rjet represents wet radius of the

electrospinning jet, and Rjet = ht/2. It should be noted that all the parameters used in

the two dimensionless numbers are either known properties or variables that are easy to

measure.

Helgeson and Wagner (2007) found that values of Π1 and Oh from several data sets

for different polymer-solvent systems when plotted on one plot reduced onto a single master

curve (Figure 2.3). Two empirical trends were observed in the master plot, first at large Oh

where an inverse relationship was observed, such that Oh ∝ Π−1
1 , and the other regime at

smaller values of Oh, where the scaling shifted to −3/4 slope from −1.

The scaling at large Oh resulted in the following expression,

Π1Oh =
2ε2E2

0

KL2(ργRjet)1/2
= 2.5± 0.2 × 10−8 (2.5)

Helgeson and Wagner (2007) proposed that by using Eq. 2.5, it is possible to get

an estimate of the final fiber diameter only based on surface tension, solution conductivity,
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Figure 2.3: Master plot of Oh vs Π1 for different data sets, reproduced from Helgeson and

Wagner (2007)

density and applied electric field values. As E0 was defined as, E0 = 4V/L, this model

predicts a increase in fiber radius with increasing applied voltage (4V ). While there are

some experimental studies which predict a increase in final fiber diameter with4V (Wut-

ticharoenmongkol et al., 2005; Jeun et al., 2007; Rojas et al., 2009), there are many more

studies which predict an inverse scaling between the two (Zhang et al., 2005; Liu et al.,

2007; Thompson et al., 2007; Sajeev et al., 2008; Wang et al., 2009b).

In a follow-up paper, Helgeson et al. (2008) identified a new dimensionless number,

Πf =
(ε− ε̄)E2

0 r
3
f

π η+
e,∞Q

, (2.6)

using asymptotic analysis in the jet stretching regime.

Here, rf represents the radius of the final electrospun fiber. rf and Rjet are related

as, Rjet = rf ∗ (c)−0.5.

When Helgeson et al. (2008) plotted data for PEO-water and PEO-NaCL-Water sys-

tem from experiments forOhf (as defined previously by Helgeson and Wagner (2007)) and

Πf , they obtained the following scaling between the two, Ohf ∝ Π
−3/2
f (Figure 2.4). This

resulted in the following empirical relationship for the final fiber diameter:

rf ∝ c0.5

(
ργ

η2
0

)2/7( πη+
e,∞Q

(ε− ε)E2
0

)3/7

(2.7)

where, η+
e,∞ is the steady state extensional viscosity.
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Figure 2.4: Ohf vs Πf for PEO-water and PEO-NaCl-water systems [Plot reproduced from

Helgeson et al. (2008)]

While calculating the value of Πf , in place of η+
e,∞, Helgeson et al. (2008) have used

3η0. Thus substituting it back in Eq.(2.7), results in the following scaling for viscosity,

Rf ∝ η
−1/7
0 . This scaling does not agree with any of the given correlations in litera-

ture. Also, Eq.(2.7) has been shown to be valid only for PEO-water solution, and for no

other polymer-solvent system. For PEO-NaCl-water system, there exists a different scal-

ing, namely Ohf ∝ Π
−1/4
f , which was attributed to the influence of bending instability.

This suggests that scaling predicted by Helgeson et al. (2008) between fiber diameter and

process parameters is not universal and thus may not be very useful for different polymer-

solvent systems.

2.3 Scaling analysis

After reviewing all the above correlations in the previous section, it can be concluded that,

even though progress has been occasionally achieved in some specific cases, research is

still far from one universal correlation for predicting the final electrospun fiber diameter.

This is probably due to the poor understanding of the complex whipping instability region

and the number of inter-related variable interactions occurring during the electrospinning

process.
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Hohman et al. (2001a) proposed the equation of motion for the normal displacements

of the centerline of the bent jet (Eq. 2.1), which is observed at the onset of whipping. The

full equation is very complicated and involves many variables that are difficult to mea-

sure. Usually when flow problems are too complex for analytical or numerical solution, it

is a standard engineering practice to non-dimensionalize the governing equations and the

non-dimensional numbers thus obtained are then used to guide experimental data corre-

lations. In this study, we hypothesize that the dimensionless numbers obtained by non-

dimensionalizing the full force balance equation for a bent jet (Eq. 2.1) can lead us to more

insight in to the important parameters governing the electrospinning process.

Hohman et al. (2001a) did not attempt to non-dimensionalize Eq. (2.1), however

they did non-dimensionalize the electrohydrodynamic governing equations valid for the jet

region of electrospinning before whipping starts, using the following scaling, radius of the

capillary or the needle tip rc for both h and z, t0 =
√
ρr3

c/γ for time, E0 =
√
γ/[ε− ε̄]rc

for electric field and σ0 =
√
γε̄/rc for surface charge density.

The diameter of the jet at the onset of whipping or in the terminal steady jet regime

is about 2-3 orders of magnitude less than the nozzle radius, thus it is not appropriate to

continue using the same scaling for the jet radius. In this study we first propose a revised

scaling for the non-dimensionalization of the bent jet and then examine the new dimension-

less numbers.

2.3.1 Asymptotic analysis

Feng (2002) proposed the governing equations for the steady jet region of electrospinning

by considering the conservation of mass, conservation of charge, conservation of momen-

tum and the electric field variation along the jet. These governing equations, which were

only limited to Newtonian solutions are as follows,

Equation of continuity:

πh2v = Q (2.8)

Conservation of charge

πh2KE + 2πhvσ = I (2.9)
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Equation of motion

ρvv′ = ρg +
3

h2

(
ηh2v′

)′
+
γh′

h2
+
σσ′

ε0
+ (ε− ε0)EE ′ +

2σE

h
(2.10)

Equation for electric field

E = E∞ − lnχ

(
(σh)′ − β(E h2)′

2

)
(2.11)

where, v is the fluid velocity parallel to the jet and prime indicates derivatives with

respect to z.

Feng (2002) used the following scaling for non-dimensionalisation of the above gov-

erning equations: rc for both h and z, v0 = Q/π r2
c for velocity, E0 = I/(π r2

c K) for

electric field and σ0 = ε̄E0 for surface charge density.

In the terminal steady jet region, the tangential electrical forces 2σE/h, dominate the

acceleration of the jet and thus near the end of the steady jet region, the governing balance

in Eq. (2.10) is reduced to,

ρvv′ =
2σE

h
(2.12)

Also, the convective current dominates the major contribution to the total current in

the steady jet region, thus

σ =
I

2πhv
(2.13)

Using Equations (2.8), (2.12) and (2.13), we get,

1

h5

dh

dz
= −π

2IE∞
ρQ3

(2.14)

or

h =

(
π2IE∞z

ρQ3

)−1/4

(2.15)

The above expression correctly predicts the radius of the jet in the terminal region

of the steady jet. Similar scaling expression (h ∝ z−1/4) has been previously derived by

Kirichenko and Petryanov-Sokolov (1986) for an inviscid jet.

2.3.2 Revised scaling

As the radius derived from Eq. (2.15) is comparable to the jet radius in the terminal steady

jet region, this can be used as the new characteristic scale for radius further downstream in
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the whipping zone. z in Eq. (2.15) can be replaced by L. We call this new characteristics

scaling for radius of the jet (h) as Rom.

Rom =

(
π2IE∞L

ρQ3

)−1/4

(2.16)

However in the whipping region, scaling for h and z cannot be same anymore because

z is about 3-4 orders of magnitude more than Rom. We therefore use L, the total distance

between needle tip and collector as the new characteristic scale for z.

The corresponding new scale for velocity is,

vom =
Q

πR2
om

=

[
I(∆V )

π2 ρQ

]1/2

(2.17)

Also, because the previous scaling for electric field (E0 = I/(π r2
c K) is no longer

valid, we use the applied electric field, ∆V/L, as the new characteristic scaling for E.

As the surface charge convection is the main contributor to current in the slender jet,

we choose the new characteristic scale for σ as,

σom = I/(2πRomvom) = Rom I/2Q (2.18)

Current I is usually not measured in most of the experimental electrospinning studies.

In such situations many a time the non-measurable quantity is expressed in terms of other

measurable quantities. In this analysis, we use the recently proposed scaling for current in

electrospinning by Bhattacharjee et al. (2010):

I ∼ EK0.4Q0.5 (2.19)

After substituting for electric field and current, the revised scale for radius (Rom) is,

Rom '
[
π2(∆V )2K2/5

ρLQ5/2

]−1/4

(2.20)

For radius of curvature of whipping (Rc), we use L and for normal displacement of

the centerline (X) and arc length of the jet (s) are scaled using rc. For time t, the viscous

time scale τvis = 6η0L/γ, is used for non-dimensionalisation.

2.3.3 Non-dimensionalisation

After substituting the above scaling in the full force balance on a bent jet (Eq. 2.1), we ob-

tain the following non-dimensional form with 10 new dimensionless numbers represented
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by Πi with i = 1, 2..., 10.

h2 Ẍ = Π1

(
h

Rc

)
+ Π2

(
h2E2

∞
Rc

)
+ Π3

(
h2 σ2

0

Rc

ln k−1

)
+ Π4

(
h3E∞σ0 ln k−1

)
− Π5

(
h4 σ2

0 lnK−1∂ss
1

Rc

)
− Π6

(
h2E2

∞∂t
1

Rc

)
− h4

(
Π7 − Π8E

2
∞ − Π9 σ

2
0 ln−1

)
∂ss∂t

1

Rc

+ Π10 (hE∞ σ0 ξ) (2.21)

where,

Π1 =
γ τ 2

vis

ρL rcRom

, Π2 =
E2

0 (β + 2) τ 2
vis

4π Lρ rc
,

Π3 =
πτ 2

visR
2
om I

2

ε̄ L ρ rcQ2
Π4 = Rom(β + 1)

Eom I τ
2
vis

2Qρ rc
,

Π5 =
π R4

om I
2 τ 2

vis

4 ε̄ ρQ2 r3
c L

Π6 =
ε̄2E2

0 (β + 1) τvis
4 π2 ρ rcK L

,

Π7 =
3 η0 τvisR

2
om

4 ρL r3
c

, Π8 =
ε̄2R2

omE
2
0τvis

32π2K Lρ r3
c

Π9 =
R2
om τvis σ

2
om

K ρL r3
c

, Π10 =
I E0 τvis
rc ρQ

Π1 represents the ratio of surface tension to inertial forces and thus a higher value of

Π1 would increase the probability of the jet breaking into droplets. Π2 and Π3 represent the

electrostatic and surface charge contributions, thus both contribute towards destabilizing

the jet. Π4 and Π10 represent the interaction between static electric field and static charge

density. A higher value of these terms would lead to oscillatory instability of the jet. Π5 also

represents the interaction between charge density and electric field but given the negative

sign in front, it would help in stabilizing the jet. Π6 and Π8 represent the leading order

effect of fluid conductivity and thus lower the value of these constants, more unstable the jet

would become. Π7 represents the ratio of viscous to inertial forces and helps in stabilizing

the jet against the destabilizing effect caused by surface charge repulsion accounted in Π9.

2.3.4 Correlation between dimensionless numbers

Among the ten dimensionless numbers, the only term which directly involves viscosity is

Π7, that is obtained from the first term (viscous moment) in A3. Based on the experimental

observations available in literature, the final fiber diameter is a direct and strong function

of the viscosity of the pre-cursor polymer solution. The viscous moment in A3 helps to
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stabilize the jet against the destabilizing action of surface charge repulsion due to B4. The

dimensionless number corresponding to B4 is Π9.

Thus the magnitudes of Π7 and Π9 play an important role in the stability of jet in

the whipping region. To understand how these two dimensionless numbers affect the final

fiber diameter Π7 is plotted against Π9 using experimental data from literature for several

different polymer-solvent systems.

Experimental data collected from literature is compiled in Table 2.2. This data repre-

sents a wide range of solution properties and operating parameters. To include the effect of

fiber diameter, σom in Π9 was calculated using df instead ofRom such that, σom = df I/2Q.

We call this modified Π9 as Πf
9 .

It is found that all the data sets in the plot of Πf
9 vs Π7 have slope ∼ 1, as shown in

Figure 2.5, which leads to the following relation between the two:

Πf
9 ∝ Π7 (2.22)

Since the final fiber diameter was used in calculating Πf
9 , df can be extracted as a

function of the remaining parameters. Expanding Eq. (2.22) and after some re-arrangement

we get,

df ∝
[
η0QK

0.2L2

4V 2

]1/2

(2.23)

Equation (2.23) gives the scaling of various factors with df and predicts the follow-

ing:

• Viscosity, flow rate, conductivity and tip-to-collector distance are directly propor-

tional while applied voltage is inversely proportional to df . Qualitatively this scaling

matches with the general trend observed from experiments for the viscosity, flow

rate and applied voltage. However it does not match for tip-to-collector distance L,

as most of the experimental studies reported an inverse relation between df and L.

For conductivity K there are not enough experimental studies to compare.

• Eq. (2.23) predicts a scaling coefficient of 0.5 for both viscosity and flow rate. For

viscosity, the predicted scaling coefficient is close to the average scaling predicted

from the experimental studies as shown in Table 2.1. For flow rate however, the

average of the three scaling coefficients obtained from experimental studies is 0.325
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Figure 2.5: Πf
9 vs Π7, plotted using experimental data from several papers; the individual symbols

represent the following, / PA6/FA (Mit-uppatham et al., 2004), N PA-6/FA/DCM (Wei et al.,

2010), • PS/THF/LiCIO4 (Wang et al., 2006), ♦ PS-U2 (Wang et al., 2011), H PEO/DNA/Water

(Liu et al., 2007), � PAN/DMF (Wang et al., 2007), . PHB/CF/DMF (Wang et al., 2008), ◦

PAA-Water (Li and Hsiehg, 2005) and � PAA-DMF (Li and Hsiehg, 2005).
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(Liu et al., 2007; Wang et al., 2008; Mataram et al., 2011), which is much lower than

0.5.

• For applied voltage and tip-to-collector distance there was only one systematic data

set by Liu et al. (2007), which could be used to extract the scaling coefficients. This

gives -0.65 and -0.45 as the scaling coefficients for4V and L respectively. Equation

(2.23) predicts a scaling coefficient of -1 for4V and 1 for L. Scaling for4V though

not close to that observed by Liu et al. (2007), at least predicts the correct trend. For

L on the other hand, Eq. (2.23) predicts a completely inverse scaling. But because

we only have one data set to compare with, we cannot conclude that the coefficient

predicted by Eq. (2.23) for4V or even L is incorrect.

At this point, we can only say that the scaling coefficient predicted by Eq. (2.23) for

viscosity is fairly close to that observed from experiments. And for flow rate and applied

voltage it predicts the correct trend but we would need more experimental data sets to verify

if the predicted scaling coefficients are correct.

2.3.4.1 Shortcomings of the present analysis

One important assumption that we made in this analysis is the scaling of current, Eq. (2.19).

We have assumed that Eq. (2.19) is universally applicable. However this may not be

true and it would be better to identify the corresponding scaling for current for different

polymer-solvent systems or better to use the real value of current observed in all these

experiments and verify the scaling.

Also the force balance for bent jet proposed by Hohman et al. (2001a) is only valid

for Newtonian solutions. Thus polymer properties such as relaxation time and polymer

extensional viscosity are not included in this analysis. There are studies which suggest the

great importance of viscoelastic properties in electrospinning (Thompson et al., 2007; Yu

et al., 2006). Polymer molecules are known to undergo coil-stretch transition in extensional

flows such as in electrospinning. This leads to a tremendous rise in extensional viscosity

of the polymer solution. However it is believed that the polymer extensional viscosity

would reach its finite extensibility limit during whipping and thus the polymer solution

would behave as a high viscosity Newtonian solution. The ratio of steady state extensional

viscosity of the polymer solution to zero shear rate viscosity is termed as the steady state

24



CHAPTER 2. ELECTROSPINNING: SCALING ANALYSIS 2.4. CONCLUSIONS

Trouton ratio Tr+
∞. The value of Tr+

∞ for different polymer-solvent systems would be

different. We believe inclusion of the relaxation time and the correct Trouton ratio values of

the polymer solutions may help in deriving an universal correlation for final fiber diameter

in electrospinning.

It should be noted that even with all the shortcomings this crude analysis has the

virtue of utter simplicity and usefulness. Eq. (2.23) predicts the correct trend for the

three most important parameters that affect the electrospinning process, namely viscosity,

flow rate and applied voltage. Also the scaling coefficients predicted are fairly close to

experimental studies. As pointed out, more systematic studies need to be carried out to

verify the correctness of the scalings predicted and additional physics needs to be added

to arrive at a single universal correlation between df and the several process parameters of

electrospinning.

2.4 Conclusions

Dimensionless numbers obtained by non-dimensionalizing equation of motion of bent jet

using a revised scaling are used to obtain a new scaling expression between final fiber

diameter and various process parameters (Eq. 2.23).

Eq. (2.23) predicts the correct trend for viscosity and flow rate and even the scaling

coefficients are close to that obtained from experiments. For the applied voltage Eq. (2.23)

predicts the correct trend while for distance between tip and collector it predicts an inverse

relation to that which is generally observed from experiments. However there is not enough

systematic data to compare the coefficient values for4V , L and K.

This scaling analysis signifies the great complexity involved in viscous liquid jets

and filaments under electric fields and points out the large number of process parameters

that are involved in these systems. This analysis thus serves as a motivation to study such

systems in more detail, which is the main goal of the thesis.

In the remaining chapters, four technologically important liquid jet/filament systems

are studied. We first concentrated on the various instabilities/perturbations that are sub-

jected on jets/filaments under electric fields and studied them using stability analysis. This

forms the first part of the thesis and is covered in chapters 3 and 4. Next, we studied the

role of viscoelasticity, first in un-electrified liquid filaments and then in electrified liquid

jets. This forms the second part of the thesis and is covered in chapters 5 and 6.
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List of symbols used in chapter 2

c (wt%) Concentration of the polymer solution

h (m) Radius of the Jet

Q (m3/s) Applied flow rate

I (A) Current

rc (m) Radius of the capillary or the needle tip

Rc (m) Radius of curvature of whipping

v (m/s) Fluid velocity parallel to axis of jet

g (m2/s) Acceleration due to gravity

X (m) Displacement of centerline of the jet

s (m) Arc length of the jet

k Wavenumber of the perturbation

∆V (V ) Applied potential difference

L (m) Distance between capillary tip and collector plate

E (V/m) Electric field

E∞ (V/m) Applied Electric field =4V/L

Tr+ Trouton ratio

K (S/m) Solution conductivity

z (m) Vertical distance along the jet

df (m) Average fiber diameter deposited on the collector

rf (m) Average fiber radius deposited on the collector
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List of symbols used in chapter 2 cont.

ε Fluid dielectric constant

ε̄ Air dielectric constant

β ε/ε̄− 1

ρ (kg/m3) Solution density

γ (N/m) Surface tension

σ (Coulumb/m2) Surface charge density

ξ (Coulumb/m2) Static charge density

η0 (Pa.s) Zero shear rate viscosity

η+
e,∞ (Pa.s) Steady state extensional viscosity

χ Aspect ratio = Rc/h
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Part I

Stability Analysis
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Chapter 3

Linear stability analysis on liquid-liquid jets subjected to

radial/axial electric field

3.1 Introduction

Stability and breakup of liquid threads or jets of a viscous or non-viscous fluid in air is one

of the most extensively studied subjects in fluid mechanics. However, the same cannot be

said about the study of liquid-liquid jets. A viscous or non-viscous liquid jet dispersed in

another immiscible liquid of a different viscosity is encountered in quite a few situations.

For example, polymer phase separation which involves nucleation of one of the phases as

liquid droplets, and when carried out in the presence of flow, these grow and are stretched to

form threads which can undergo Rayleigh-Plateau instability (Khakhar and Ottino, 1987;

Gunawan and Molenaar, 2005). Cylindrical vesicles and other thread-like entities in bi-

ological systems, which are known to undergo Rayleigh-Plateau instability (Bar-Ziv and

Moses, 1994; Bukman et al., 1996) are very often embedded in fluids of varying viscosi-

ties. The Rayleigh-Plateau instability in such systems, critically depends upon the viscosity

ratio.

An interesting scenario, which is now attracting increasing attention, is the effect of

electric field on the instability of jets where the viscosity ratio of the jet and the medium

fluid is important. An important occurrence is the electrodispersion of a conducting liquid

jet submerged in an immiscible dielectric liquid and subjected to electric field (Stewart and

Thornton, 1967; Watanabe et al., 1978; Takamatsu et al., 1982; Sato et al., 1993; Tsouris

et al., 1994, 1997; Sato et al., 1997; Tsouris and Shin, 1998). A steady “cone-jet” can be

realized for a range of system parameters, which can undergo axisymmetric or asymmetric

instabilities (Barrero et al., 2004; Jayasinghe, 2007; Marin et al., 2008; Riboux et al., 2011).
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The technique is now used to generate emulsions with narrow distributions of droplet sizes

controllable in the range from micrometers to tens of nanometers (Barrero et al., 2004;

Alexander, 2009). Another instance is the recent study which indicates that the instability

of a charged jet might be important in the pearling instability of charged cylindrical vesicles

(Thaokar, 2010).

In the present work, we consider a charged liquid jet issuing into another immiscible

liquid and subjected to axial/radial electric field. Relative velocity between the two fluids

is considered zero. We specifically study the case of high Ohnesorge number Oh; a di-

mensionless parameter representing the ratio of viscous and interfacial tension forces, and

present the following hitherto unaddressed problem: what is the effect of viscosity ratio

on the axisymmetric and asymmetric instability of a viscous jet (a perfect conductor) sub-

merged in another viscous fluid (a perfect dielectric) subjected to axial/radial electric field.

Although quite a few studies have investigated this problem, they have either been limited

to viscosity ratio of∞ or 0, representing an inviscid jet or an inviscid outer fluid.

The high Oh limit is encountered in many biological systems, such as cylindrical

axons or neurons or tubular vesicles present in various extra-cellular fluids of different

viscosities that are subjected to trans-membrane potentials. It would thus be interesting

to understand the stability of these systems at different viscosity ratios. This theory can

also be used to study the stability of neutrally buoyant liquid bridges immersed in an outer

bath of another immiscible liquid in the presence of axial or radial electric field (González

and McCluskey, 1989; Slobozhanin, 1993; Sankaran and Saville, 1993; Resnick, 1997;

Marr-Lyon et al., 2000; Burcham and Saville, 2002). The high Oh limit is also realized in

polymer phase separation, where liquid droplets of one of the phases nucleate out and grow

and are stretched in extensional flows. Phase separation & morphology under electric field

would then depend upon the stability of such threads (Onuki, 2005).

The available literature on both experimental and theoretical investigation of liquid

jet breakup, with or without the presence of electric field is vast and is extensively reviewed

in several articles (Eggers, 1997; Lin, 1998; Eggers and Villermaux, 2008). The instabil-

ity was quantified for the first time by Rayleigh (1878) using an inviscid analysis which

accounted for systems like a jet of water issuing out in an inviscid fluid (air). Following

Rayleigh, further studies were carried out by Weber (1931) and Christiansen and Hixson

(1957) for a viscous liquid jet in a gas and for a non-viscous liquid jet in a non-viscous
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liquid respectively. This analysis was later generalized by Tomotika (1935) to include the

viscosity for both the fluid jet and the surrounding fluid. The breakup rate of a viscous

cylinder surrounded by another viscous fluid depends on the viscosities of the two fluids,

the initial distortions, radius of the cylinder and Ohnesorge number. Tomotika (1935) also

discussed the limiting cases of λ = 0 and ∞ (where λ is the ratio of viscosity of the jet

fluid and its surrounding) and showed that the fastest growing mode is indeed the k = 0

mode for these limits as predicted by Rayleigh (1882). Tomotika (1935)’s analysis was

further developed by many researchers (Meister and Scheele, 1967; Lee and Flumerfelt,

1981; Stone and Brenner, 1996). This clearly indicated that viscous effects can alter the

instability significantly.

The complications of describing the base state of a jet in another fluid has origins in

satisfying the shear stress boundary conditions. For this reason the analysis in inviscid jets

becomes relatively simpler and the jet and the surrounding fluid can be assumed to have the

same velocity. The problem is well discussed in (Richards et al., 1996; Cramer et al., 2002;

Bhadraiah et al., 2007). The classical work of Tomotika and several others is valid for no

relative motion between jet and surrounding fluid (Tomotika, 1935; Meister and Scheele,

1967). This has been experimentally verified by keeping zero relative velocity between

the fluid & the jet and excellent agreement with Tomotika’s analysis is observed (Kitamura

et al., 1982). We assume the same in the current work.

In the analysis of electrically charged jets, the applied electric field usually has both

radial and axial components. The exact strength of these individual components is dif-

ficult to perceive in any given system. Thus it is customary to study the effect of either

radial or axial field individually. Almost a century ago, immediately after the discovery of

Rayleigh-Plateau instability, Basset (1894) observed that the radial electric field stabilizes

lower wavenumbers, but destabilizes higher wavenumbers of the axisymmetric mode. A

little later, Zeleny (1917) observed that there is a change in the mode of breakup when

the jets were electrified by axial fields. It was thus realized that the effect of electric field

critically depends upon whether the field is axial or radial (Basset, 1894; Taylor, 1969; Sav-

ille, 1971b; Turnbull, 1992, 1996; Huebner and Chu, 1971; Schneider et al., 1967; Mestel,

1994, 1996; Nayyar and Murty, 1960). Under axial field, at low electric field, the jet would

break into droplets by the regular capillary instability although at lower growth rates but

will soon undergo asymmetric sinuous movement with increase in electric field indicat-
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ing an asymmetric instability (Taylor, 1964; Taylor and McEwan, 1965; Taylor, 1966a,b,

1969).

Although considerable work has been done on the effect of radial and axial field on

jet instabilities, the effect of viscosity ratio has not been adequately addressed. The studies

in the literature have either considered the inviscid jet limit (λ = 0) under radial (Huebner

and Chu, 1971; Artana et al., 1998; Elcoot, 2007) or axial fields (Nayyar and Murty, 1960;

Taylor, 1966a; Saville, 1970; Son and Ohba, 1998b,a) or looked at a viscous jet (λ = ∞)

in an inviscid medium under radial (Basset, 1894; Saville, 1971b; Turnbull, 1992; Hartman

et al., 2000; González et al., 2003; López-Herrera and Ganan-Calvo, 2004; López-Herrera

et al., 2005; Higuera, 2006; Collins et al., 2007; Wang et al., 2009c; Conroy et al., 2011)

or axial (Glonti, 1958; Schneider et al., 1967; Saville, 1970, 1971b; Mestel, 1994, 1996;

Garcia et al., 1997; Shkadov and Shutov, 1998, 2001; Shiryaeva et al., 2003; Shutov, 2006)

fields.

It should be mentioned as an aside that a number of studies on coaxial jets focusing on

inviscid jets in inviscid media under radial (Fang et al., 2005, 2006b,c) or axial (Fang et al.,

2006a) field were carried out. Few works in the literature which have explicitly considered

viscosity of both jet and surrounding, however, limit their discussion to specific values of

viscosity ratio ((Higuera, 2007, 2010; Fang et al., 2008a,b, 2009; Reddy and Esmaeeli,

2009) and do not discuss in detail the effect of ratio of the two viscosities on the stability

of the system.

Thus a systematic investigation of effects of arbitrary viscosity ratio on the axisym-

metric and asymmetric instabilities under radial and axial electric fields is clearly missing

in the literature and is the aim of the current study. An operating diagram of electric field vs

viscosity ratio, indicating whether axisymmetric or asymmetric instability would be domi-

nant, would be useful in applications involving electrified jets in liquid-liquid systems.

3.2 Formulation of the problem

We consider an infinitely long cylindrical jet of radius h of an incompressible liquid with

viscosity µi, suspended in an immiscible fluid of viscosity µe. We indicate here the inner

fluid jet (dispersed phase) by subscript i and the surrounding medium (continuous phase)

by subscript e.

The dispersed phase is a charged conductor with dielectric constant εi, characterized
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by zero field inside, surface potential ψ̃s and charge σ̃s whereas the continuous phase is

a perfect dielectric with dielectric constant εe. The cylinder is subjected to axial or radial

electric field of strengthE. A complete list of all the symbols used in this study is provided

at the end of the chapter.

3.2.1 Governing equations

The governing equations for the system are given by

∇̃ · ṽj = 0 (3.1)

ρj

(
∂ṽj

∂t̃
+ ṽj · ∇̃ṽj

)
= −∇̃p̃j + µj∇̃2ṽj + ρ̃cjẼj (3.2)

where subscript j is set as i for the inner fluid and e for the outside fluid. Ẽ is the

electric field, ṽ is the velocity field , p̃ the pressure, ρ̃c is the free charge density and ρ is

the fluid density in the bulk. The tilde represents dimensional quantities.

With the assumption of zero bulk charge i.e. ρ̃cj = 0, the potential (φ) is described

by

∇̃2φ̃j = 0 (3.3)

and Ẽ = −∇̃φ̃

The above equations are non-dimensionalized using the following scalings: the dis-

tance is scaled by h, the time by µi h γ, the velocities are scaled by γ/µi and the stresses

and the pressure by γ/h, where γ represents the interfacial surface tension between the jet

and the surrounding fluid. The scaling for potential and electric field are,
√
γh/(εe ε0) and√

γ/(h εe ε0), respectively, where ε0 is the permittivity of free space.

Using the above scaling, we get,

∇ · vj = 0 (3.4)

1

(Ohj)2

(
∂vj
∂t

+ vj · ∇vj

)
= −∇pj + cj∇2vj (3.5)

∇2φj = 0. (3.6)

where Ohnesorge number Ohj = µi/(ρjhγ)1/2 and cj= 1 or µe/µi for the inner jet or outer

medium respectively. The viscosity ratio µe/µi is represented by λ.
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In the present work, we specifically look at the case of very high Oh, Stokes flow

conditions, which as described in the introduction section 3.1 are common in many indus-

trial processes and biological systems. These conditions are satisfied for flow systems with

highly viscous fluid jet and/or for very small diameter cylindrical jets.

Equation (3.5) is thus reduced to,

0 = −∇pj + cj∇2vj (3.7)

3.2.2 Boundary conditions

The electrostatic boundary condition at the interface of the conductor jet and the dielectric

surrounding is given by constant potential φ̃ = ψ̃s, where the non-dimensional surface

potential is given by

φi = φe = ψs = ψ̃s/(
√
γh/ε0) (3.8)

The hydrodynamic boundary conditions are the continuity of velocity and the force

balance at the interface. We use the definitions of the unit normal and the unit tangents

to the interface and the velocity vector v = vrer + vθeθ + vzez to write the boundary

conditions as

n.(vi(r, θ, z, t)− ve(r, θ, z, t)) = 0 (3.9)

t1.(vi(r, θ, z, t)− ve(r, θ, z, t)) = 0 (3.10)

t2.(vi(r, θ, z, t)− ve(r, θ, z, t)) = 0 (3.11)

n.vi(r, θ, z, t)− ∂F (θ, t)

∂t
= 0 (3.12)

n.(τi(r, θ, z, t) + τEi (r, θ, z, t)− τe(r, θ, z, t)− τEe (r, θ, z, t)).n + 2H(θ, t) = 0 (3.13)

t1.(τi(r, θ, z, t) + τEi (r, θ, z, t)− τe(r, θ, z, t)− τEe (r, θ, z, t)).n = 0 (3.14)

t2.(τi(r, θ, z, t) + τEi (r, θ, z, t)− τe(r, θ, z, t)− τEe (r, θ, z, t)).n = 0 (3.15)

where n is the unit normal and t1 and t2 are the mutually orthogonal unit tangent vectors

respectively. The unit normal points into the outer fluid. F and H are the non-dimensional

shape and the mean curvature of the cylinder.

Equation 3.9 - Equation 3.11 represent continuity of normal and tangential velocities

at the interface between the jet and the medium fluid. Equation 3.12 is kinematic condition

which states that the velocity at the interface is the same as the time derivative of the
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displacement of the interfacial particles. Equations 3.13-3.16 represents hydrodynamic

and electric force balance at the interface between the jet and the medium fluid, in normal

and tangential directions.

The dimensional hydrodynamic stress tensor, Maxwell’s stress tensor and the dimen-

sional mean curvature are defined as,

τ̃ = µ(∇ṽ + (∇ṽ)T ) = [(τrr, τrθ, τrz), (τrθ, τθθ, τθz), (τrz, τθz, τzz)] (3.16)

τ̃E = εεe(ẼẼ− 1

2
Ẽ2I) = [(τErr, τ

E
rθ, τ

E
rz), (τ

E
rθ, τ

E
θθ, τ

E
θz), (τ

E
rz, τ

E
θz, τ

E
zz)] (3.17)

2H = ∇ · n (3.18)

The hydrodynamic part is given by

τrr = −p+ 2
∂vr
∂r

(3.19)

τrθ =
1

r

∂vr
∂θ

+ r
∂(vθ/r)

∂r
(3.20)

τθθ = −p+ 2

(
1

r

∂vθ
∂θ

+
vr
r

)
(3.21)

τθz =
1

r

∂vz
∂θ

+
∂vθ
∂z

(3.22)

τrz =
∂vz
∂r

+
∂vr
∂z

(3.23)

τzz = −p+ 2
∂vz
∂z

(3.24)

The normal and the tangential force components are calculated as n.τ .n, t1.τ .n and

t2.τ .n, respectively.

To calculate the Maxwell’s stress tensor (τE), we define Er = −∂φ/∂r, Ez =

−∂φ/∂z and Eθ = −(1/r)∂φ/∂θ so that the electric field vector is

E = Erer + Eθeθ + Ezez (3.25)

We define the normal and the tangential components of electric field as En = n.E, Et1 =

t1.E and Et2 = t2.E.

The contribution to the normal and the tangential force is then given by

fn = S E2
ni − E2

ne +
S E2

i

2
− E2

e

2
(3.26)

ft1 = S Et1iEni − Et1eEne (3.27)

ft2 = S Et2iEni − Et2eEne (3.28)
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where E2 = E.E and S = εi/εe.

Note that the stresses are zero for the jet, which is a perfect conductor.

3.3 Linear Stability Analysis (LSA)

In LSA a typical variable f is expressed as,

f = fm + δf
′

(3.29)

where fm is the base state (steady state value) and f ′ is the perturbation variable, δ being a

small parameter. The analysis is conducted to O(δ).

The perturbed quantity f ′ is,

f
′
= f(r)

∫
ds

∫
dk

∫
dm ei(kz+mθ)+st,

k and m are the non-dimensional axial and azimuthal wavenumbers and s is the dimen-

sionless growth rate.

3.3.1 Base states

In this study, we assume a stationary liquid jet in a stationary fluid or a system where the

jet and the surrounding fluid are in uniform rectilinear motion. The relative velocity is zero

between the two fluids in either case. In the latter system, the analysis is carried out in the

reference frame of the moving jet.

The non-dimensional base state velocities are therefore

um,i = 0 (3.30)

um,e = 0 (3.31)

Base state potential

The base state potentials for inside and outside fluid depend on the type of electric

field applied.

For the radial field, we have

φm,i = ψs (3.32)

φm,e = ψs − EoR ln r (3.33)
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where, EoR is the dimensionless applied radial electric field.

And for the axial field case,

φm,i = −EoA z (3.34)

φm,e = −EoA z (3.35)

where, EoA is the dimensionless applied axial electric field.

The base potentials satisfy the boundary condition (Eq. (3.8)).

3.3.2 Perturbed variables

The eigen functions for the perturbed variables of velocities and the pressure are indepen-

dent of the type of field applied, whereas that for the potential depends on the orientation

of the electric field.

The eigen functions for the pressure and velocities for the jet and the medium are,

p
′

i =δAi Im(kr)χ (3.36)

p
′

e =δAoKm(kr)χ (3.37)

v
′

ir =δ(BiIm−1(kr) + CiIm+1(kr) +
Air

4k
[I ′m+1(kr) + I ′m−1(kr)])χ (3.38)

v
′

iθ =δ(iBiIm−1(kr)− iCiIm+1(kr)− iAir
4k

[I ′m+1(kr)− I ′m−1(kr)])χ (3.39)

v
′

iz =δ(iBiIm(kr) + iCiIm(kr) + i
Air

2k
I ′m(kr) + i

Ai
2k
Im(kr))χ (3.40)

v
′

er =δ(BoKm−1(kr) + CoKm+1(kr)− Aor

4k
[K ′m+1(kr) +K ′m−1(kr)])χ (3.41)

v
′

eθ =δ(iBoKm−1(kr)− iCoKm+1(kr) + i
Aor

4k
[K ′m+1(kr)−K ′m−1(kr)])χ (3.42)

v
′

ez =δ(iBoKm(kr) + iCoKm(kr) + i
Aor

2k
K ′m(kr) + i

(Ao − 4(Bo + Co))

2k
Km(kr))χ

(3.43)

where

χ = ei(kz+mθ)+st

and vr, vθ and vz are the corresponding velocities in r, θ and z directions. Ai, Ao, Bi, Bo,

Ci, Co are constants.

The potential eigen functions when radial field is applied, are

φ
′

i = δ PiIm(kr)χ (3.44)

φ
′

e = δ PoKm(kr)χ (3.45)
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and that when axial field is applied are,

φ
′

i = δ QiIm(kr)χ (3.46)

φ
′

e = δ QoKm(kr)χ (3.47)

where Pi, Po, Qi and Qo are constants to be derived later.

The normal and the tangential vectors are given by

n =er + imδDei(kz+mθ)+st eθ + ikδDei(kz+mθ)+st ez (3.48)

t1 =imδDei(kz+mθ)+st er + eθ (3.49)

t2 =ikδDei(kz+mθ)+st er + ez. (3.50)

where D is a constant.

The boundary conditions are applied at the unknown interface F(θ,t) and the value of

a typical variable f is obtained from the unperturbed interface as

f(r=1+D) = f(r=1) +

(
∂ft
∂r

)
r=1

δDei(kz+mθ)+st

. The eigen functions for the axial and radial applied fields both satisfy the boundary

conditions,

φ
′

i +

(
∂φmi
∂r

)
r=1

δDei(kz+mθ)+st = φ
′

e +

(
∂φme
∂r

)
r=1

δDei(kz+mθ)+st (3.51)

The electrostatic BC’s yield,

Pi = 0 (3.52)

Po =
DEoR
Km(k)

(3.53)

Qi = −ik EoA
I ′m(k)

(3.54)

Qo = −ikDEoA Im(k)

I ′m(k)Km(k)
(3.55)

The perturbed shape of the interface is given by

F (θ, t) = 1 + δDei(kz+mθ)+st (3.56)

where the non-dimensional cylinder radius is 1.

The curvature at the perturbed interface is given by

2H = 1− δD(1−m2 − k2)ei(kz+mθ)+st (3.57)
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where the mean curvature of the cylinder is given by 1/2.

Substituting the eigen functions in the boundary conditions, one can assemble all the

equations in a matrix form as MX = 0 where matrix M would be a function of s,k,m, Eo

and λ, and X would be a column matrix made up of all the constants, namely Ai, Ao, Bi,

Bo, Ci, Co, D.

The matrix equation MX = 0 has a non-trivial solution only when the Det[M] =

0. Solving the determinant of M and equating it to zero gives the dispersion relation, an

expression with growth rate as a function of axial and azimuthal wavenumbers along with

other operating parameters. The dispersion relation is fairly long and complicated and

hence is not shown here. The different elements of the matrix ‘M’ for both axial and radial

field are provided in the Appendix A.

3.4 Results & discussion

3.4.1 No electric field

We first describe the results at zero electric field. Liquid-liquid systems without electric

field are described extensively in literature (Tomotika, 1935; Rumscheidt and Mason, 1962;

Meister and Scheele, 1967; Kinoshita et al., 1994; Pozrikidis, 1999) and serve as valida-

tion of our problem formulation and solution procedure. The complete expression of the

growth rate for arbitrary viscosity ratio is very lengthy. Therefore provided below are the

expressions only for the special case of viscosity ratio λ = 0, 1 and ∞. These three vis-

cosity ratios corresponds to a non-viscous vacuum surrounding, similar viscosity fluids and

a non-viscous jet respectively. Comparison is made with relevant expressions previously

reported in the literature.

λ = 0,

s =
[k2 − 1] /2(

1 + k2 − k2K0(k)2

K1(k)2

) (3.58)

λ =∞,

s =
[1− k2] /2(

1 + k2 − k2K0(k)2

K1(k)2

) (3.59)

λ = 1

s =
k [1− k2]

2
(I1(k)K2(k)− I0(k)K1(k)) (3.60)
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Equations (3.58),(3.59) and (3.60) agree with that derived previously under same con-

ditions by Rayleigh (1892); Tomotika (1935) and Stone and Brenner (1996) respectively.

The instability persists at low-wavenumber (k) and a low k analysis is often carried

out. The advantage of the long-wavelength description is that it is simple and transparent

and the expressions are easier. However, the complete analysis provided here in the non-

slender limit are more accurate and can be easily subjected to non-axisymmetric analysis.

Figure 3.1 shows the effect of viscosity ratio (λ) on m = 0 mode at E=0. The

maximum growth rate (sm) decreases with increasing viscosity ratio, while km → 0 as

λ→ 0 or∞. This agrees well with the previously reported results of Tomotika (1935) and

Rumscheidt and Mason (1962).

Similar to m = 0 mode, the growth rate expression for the asymmetric m = 1 mode

is also derived. As previously observed (Saville, 1971a; Mestel, 1996; Son and Ohba,

1998b), the asymmetric mode is found to be stable (-ve growth rate) for all values of k, at

zero electric field. For m = 1 mode, the growth rate expression for a jet in a non-viscous

medium (λ→ 0) is,

s =
(kγ(−2k2 + k(5 + k2) c− 2(1 + k2) c2 + 2kc3)

2(−2k3 + k2(9 + k2) c− 12kc2 − (−4 + k4 + 4k2)c3)
(3.61)

where c = I1(k)/I0(k).

Equation (3.61) agrees with the equation derived by Mestel (1996) for the m = 1

mode.
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Figure 3.1: Variation of sm and km with viscosity ratio λ for axisymmetric perturbation
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3.4.2 Effect of electric field

In this study the effect of both axial and radial fields is investigated independently.

3.4.2.1 Radial field
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Figure 3.2: Effect of radial electric field on m = 0 and m = 1 mode at λ=1

The expressions of growth rate for axisymmetric and asymmetric perturbations on a

viscous conducting jet, in an immiscible viscous dielectric surrounding, subjected to radial

electric fields are derived. For the limiting case of λ→ 0, a low k analysis is performed for

both m = 0 and m = 1 mode. The expressions obtained are,

s ∼ 1

6

[
γ − εeE2

oR

]
, m = 0 (3.62)

s ∼ − 4

3 k2

[
1 + εeE

2
oR ln(k)

]
, m = 1 (3.63)

Equations (3.62) and (3.63) agree with the expressions derived by Saville (1971b)

under similar conditions. Radial electric field is known to have a dual effect on axisymmet-

ric perturbations, stabilizing the long waves while destabilizing the short ones (Fang et al.,

2008b). On the other hand, asymmetric perturbations have been shown to become more

unstable with increasing radial field for all wavelengths. The results obtained in the present

work are identical to previous investigations (Saville, 1971b; Fang et al., 2008b). Figure
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3.2 shows the dimensionless growth rate vs wavenumber plot for m = 0 and m = 1 modes

at λ = 1, for different values of non-dimensional radial electric field EoR.

With the scalings used in the present work, for the radial electric field orientation the

normal and tangential electric stresses do not depend upon the ratio of dielectric constant,

β = εe/εi.

3.4.2.2 Axial field

Figure 3.3: Effect of axial electric field on m = 0 and m = 1 mode

Expression for liquid-liquid jets subjected to axial electric fields are presented next.

As earlier, the expression for growth rate being very long it is not reported here. However,

the asymptotic limits yield fairly simple dispersion relations. For example, in the long

wavelength limit for non-viscous surroundings ( λ → 0), gives the following expression

for asymmetric m = 1 mode,

s = − 4

3 k2

[
γ + E2

oA(β − 3)
]

(3.64)

which is equivalent to Eq. (5.6) in Mestel (1996) derived for zero free charge and a per-

fectly conducting jet.

Figure 3.3 shows the effect of axial field on m = 0 and m = 1 modes. The m = 0

mode is stabilized with increasing axial field whereas m = 1 mode is destabilized. These
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results are consistent with previously reported studies (Saville, 1970, 1971b; Mestel, 1994,

1996) on jets subjected to axial fields.
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Figure 3.4: Effect of dielectric constant ratio, β, on m = 0 and m = 1 mode under axial electric

field

When the electric field orientation is axial, the normal and tangential electric stresses

depend on the dielectric constant of both the jet and the surrounding medium on account of

finite electric field in the jet medium, unlike the radial field case. The stability of jets under

axial electric fields is therefore non-trivially affected by the dielectric constant ratio, β.

In this chapter, we restrict our discussion to values of β between 20-80. This is

motivated by conducting jet media like water & glycerol (dielectric constant around 40-

80) & typical dielectric surrounding medium like air, Castor oil and Silicone oil (dielectric

constant around 1-3).

Figure 3.4 shows the variation of sm with E0A for three different values of β. With

increasing β, the stabilizing effect of axial field on m = 0 mode is accelerated whereas the

destabilizing action on the m = 1 mode is damped. To understand the effect in more detail,

growth rate w.r.t. axial wave number plots for m = 0 and m = 1 modes are presented in

the same plot and studied for three different values of β in Figure 3.5.

It shows the s vs k profiles near the crossover EoA values where the m = 1 mode

becomes predominant over m = 0 mode. As seen, the crossover electric field required to

realize the m = 1 mode, goes on decreasing as we increase the dielectric constant ratio.
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Figure 3.5: Growth rate vs wavenumber profiles near crossover EoA for three different dielectric

constant ratios
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Thus for two jets with different values of β, a lower electric potential would be required to

realize the m = 1 mode, for the jet with higher dielectric constant.

3.4.3 Effect of viscosity ratio

The hitherto unaddressed effect of viscosity ratio λ on liquid-liquid jets when subjected

individually to radial and axial electric fields, is now discussed.

3.4.3.1 In the presence of radial field

Figure 3.6 shows the growth rate vs wavenumber plots at different λ for fixed value of

EoR = 2 whereas Figure 3.7 shows the variation of sm and km with λ at the same EoR.
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Figure 3.6: Effect of λ on m = 0 and m = 1 mode at radial electric field EoR = 2

Figures 3.6 and 3.7 suggest stabilization of both axisymmetric and asymmetric insta-

bility with increase in λ. The maximum growth rate, sm with both m = 0 and m = 1 mode

decreases with λ. This suggests “late appearance” of these instabilities on the jet surface

as λ goes up. m = 1 mode is dominant at lower λ, however with increasing λ, the asym-

metric mode catches up and at a certain critical value of λ, the m = 0 mode becomes the

predominant mode. Interestingly the critical λ is dependent on the applied radial electric

field. Figure 3.7 also shows the variation of the wavenumber at maximum growth rate (km)

with λ. It is seen that km decreases for m = 0 mode while it increases for m = 1 mode,

with increase in λ.
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Figure 3.7: Effect of λ on sm and km for m = 0 and m = 1 modes at EoR = 2
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To understand the effect of λ on the transition between m = 0 and m = 1 mode,

the growth rate vs wavenumber profiles for the axisymmetric and asymmetric modes are

plotted on the same plot for six different values of λ (Figure 3.8).

Even though both the modes are damped with increasing λ, the damping is much

stronger for m = 1 mode than with m = 0 mode. Saville (1971b) predicted similar

damping bias while studying axisymmetric and asymmetric modes of a charged viscous

cylinder under radial electric field.

As seen earlier the growth rate of both the modes were shown to increase with in-

creasing electric field, it is very important to study the effect of both parameters, electric

field and viscosity ratio, simultaneously. To this end, an operating diagram showing do-

mains of predominance of the two modes for a given value of EoR and λ is presented in

Figure 3.9. A similar plot is shown in the next section for axial fields.
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Figure 3.9: Operating diagram showing domains of pre-dominance of m = 0 and m = 1 modes

for radial electric field

Figure 3.9 shows that the m = 1 mode can only be realized in the lower λ limit.

Also, at λ values where m = 1 mode dominates, a minimum threshold electric potential

is needed to overcome the axisymmetric m = 0 mode. With increasing λ this threshold

electric field also increases, however, this trend is only valid up to a certain critical λ above

which the m = 0 mode is always dominant.
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Figure 3.10: Effect of λ on m = 0 and m = 1 mode under axial electric field

3.4.3.2 In the presence of axial field

Figures 3.10 and 3.11 show the effect of λ on the stability of m = 0 and m = 1 modes

of perturbation at EoA = 0.08 and β = 40. Similar to the case of radial fields, λ in the

presence of axial field also has a stabilizing effect on the m = 0 mode. However the

m = 1 mode is first destabilized with increasing λ up to a certain critical value and then is

stabilized with further increase in λ.
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Figure 3.11: Effect of λ on sm and km for m = 0 and m = 1 mode subjected to axial electric field
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These two distinct effects of viscosity ratio on the two modes can be clearly seen in

the sm vs λ sub plot of Figure 3.11. sm form = 0 modes decreases, whereas that form = 1

first increases and then decreases with increasing λ. km for m = 0 shows a similar effect

as what is observed without electric field (Figure 3.1). However km for m = 1 mode first

increases with increase in λ and then reaches a plateau.

The effect of both the axial electric field and λ simultaneously, is presented as another

operating diagram, (EoA vs λ), in Figure 3.12.
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Figure 3.12: Operating diagram showing domains of pre-dominance of m = 0 and m = 1 modes

for axial electric field

In this plot, the three dotted lines represent the boundaries for separating the region

of predominance of m = 0 and m = 1 mode for three dielectric constant ratios, β =

20, 40, 80. The region below the dotted lines is where the m = 0 mode is dominant and the

remaining section represents the predominance of m = 1 mode. The operating diagram

with axial electric field looks fairly simple as there is no overlap between the two modes

with increasing electric field, unlike with radial electric field. At any given λ there is a

critical electric potential that must be applied to realize the m = 1 mode. This critical

value as we saw before (Figure 3.5) decreases with increasing dielectric constant ratio,

β. Thus with increasing value of β, the separation line shift down. Also, as observed in

the presence of radial fields the damping of m = 1 mode is stronger than m = 0 with

increasing λ. Thus a higher electric field is required at higher λ.

Figures 3.9 and 3.12 clearly show that it is much easier to realize asymmetric (m =

1) mode with axial electric field as compared to radial field. In fact the radial field is
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characterized by disappearance of m = 1 mode at higher viscosity ratios.

A single operating diagram can portend which mode of perturbation will prevail at

any given value of radial/axial electric field and λ. Such a diagram can help in predicting the

correct operating conditions required to generate any particular mode based on the desired

application. Moreover, this can be used as a check whether a particular mode is even

possible to realize, given the limitations with applied potential or viscosities of a particular

system.

3.5 Conclusions

The linear stability analysis of a charged conducting fluid jet inside another immiscible

dielectric fluid, subjected to radial/axial electric field is presented in the limit of high Oh.

The analysis reduces to the previously reported results for axisymmetric and asymmetric

perturbations on fluid jets subjected to radial/axial fields and extends to include the effect

of viscosity ratio in these systems by considering the viscosity of the outside surrounding

medium.

Viscosity ratio, along with electric field is found to be critically important in deciding

the dominant mode of instability. Studying the effect of these two parameters together, an

operating diagram showing clearly the regimes of dominance of m = 0 and m = 1 mode

is generated.

It is found that the asymmetric instability (m = 1 mode) could be more easily realized

with axial electric field than with radial field, for the same viscosity ratio and electrical

properties of the jet and the surrounding medium.

Increasing λ has been shown to have a tendency to damp both modes of instabilities,

however the effect is more pronounced form = 1 mode as compared tom = 0 mode. Thus

as λ goes up, the threshold electric field required to express m = 1 mode also rises.

A single operating diagram for radial or axial electric field can help the experimen-

talists in correctly predicting the operating conditions required to express any desired in-

stability for specific applications.
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List of symbols used in chapter 3

h (m) radius of the jet

v (m/s) velocity field

p (N/m2) pressure field

ε fluid dielectric constant

µ (Pa.s) viscosity

ε0 air dielectric constant

ρ (kg/m3) fluid density

γ (N/m) Surface tension

ρc (Coulumb/m3) bulk charge density

φ (V ) electric potential

E (V/m) applied electric field

EoA non-dimensional axial electric field

EoR non-dimensional radial electric field

F non-dimensional shape

H non-dimensional curvature

Oh Ohnesorge number

β εe/εi = dielectric constant ratio

λ µe/µi = viscosity ratio

k (m−1) axial wavenumber

m (Radian−1) azimuthal wavenumber
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List of symbols used in chapter 3 cont.

s (sec−1) growth rate of the instability

sm maximum growth rate

km wavenumber correspoding to maximum growth rate

n unit normal

t1, t2 unit tangents (mutually orthogonal)

τ (N/m2) hydrodynamic stress tensor

τE (N/m2) Maxwell stress tensor

• subscript i represents quanities of jet fluid

• subscript e represents quanities of outside fluid bath
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Chapter 4

Stability analysis of bilayer cylindrical vesicles in axial electric

fields

4.1 Introduction

The work described in this chapter is an extension of electrified liquid-liquid jets study pre-

sented in chapter 3. Here linear stability analysis is used to study the effect of axial electric

field on lipid bilayer cylindrical vesicles. Additional governing equations are included for

the bilayer membrane along with the regular equations for the inside and the outside fluid.

Cylindrical vesicles, made up of lipid bilayers, are characterized by dominant bend-

ing rigidity which inhibits the Rayleigh-Plateau instability (Schneder et al., 1984). There-

fore an external intervention is required to induce tension in the membrane that can over-

come the restoring bending forces. In a seminal work, Bar-Ziv and Moses (1994), dis-

covered that the stability of a straight cylindrical vesicle is lost if subjected to an optical

tweezer. An instability appears, with wavelength of the order of the tube circumference,

reminiscent of the Rayleigh-Plateau instability (Rayleigh, 1878) and characterized by the

tautness and suppression of surface fluctuations of the membrane. This resulting instability

is commonly described as “pearling” in the soft matter literature.

In the system studied by Bar-Ziv and Moses (1994, 1997), the tension that led to

the pearling instability was ascribed to the “tweezing” property of the laser, wherein lipid

is sucked into the laser trap. Several theoretical studies were subsequently undertaken

to explain different aspects of the instability such as requirement of critical laser power

for onset of instability (Bar-Ziv and Moses, 1994; Nelson and Powers, 1995), wavelength

selection (Nelson and Powers, 1995) and pearls at late stage (Goveas et al., 1997; Olmsted

and Macintosh, 1997).
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The work of Bar-Ziv and Moses (1994) sparked off several successful investigations

attempting to induce tension and thereby pearling in cylindrical membranes using variety

of external agencies. These included tension generated by van-der-waal’s attraction (Bru-

insma, 1991), mechanical forces (Bukman et al., 1996), osmotic shock (Yanagisawa et al.,

2008, 2012; Oglecka et al., 2012), magnetic field (Mnager et al., 2002) or by stretching

the vesicles in elongational flow beyond a critical strain rate (Kantsler and Segre, 2008).

Surface charge on the membrane can either induce pearling (Nguyen et al., 2005) or mod-

ify pearling (Thaokar, 2010) in cylindrical vesicles. In a significant theoretical analysis,

Deuling and Helfrich (1976) predicted that cylindrical vesicles with bilayers that have non-

zero spontaneous curvature, can exhibit pearling. Subsequently a series of experimental

findings were reported on pearling caused by spontaneous curvature that was induced by

incorporation of another molecule, like an alkane (Chaieb and Rica, 1998) or by hydrophilic

polymers with hydrophobic side groups along the backbone (Tsafrir et al., 2001; Campelo

and Hernandez-Machado, 2007).

Pearling was also reported in several non-surfactant cylindrical tubular systems such

as “sausage-string” pattern of alternating constrictions and dilatations formed in blood ves-

sels under influence of a vaso-constricting agent (Alstrom et al., 1999; Beierholm et al.,

2007), gradual disruption of the actin cytoskeleton (Bar-Ziv et al., 1999) and pearling due

to osmotic shocks in axons (Pullarkat et al., 2006).

The study of interaction of planar lipid bilayers and spherical vesicles with electric

field has attracted great attention for its biological and biomedical relevance (Funk and

Monsees, 2006; Voldman, 2006; Dimova et al., 2007). It has also led to a better under-

standing of the complex physics associated with electrohydrodynamics in these systems

(Vlahovska et al., 2009). Although spherical vesicles are well investigated in the literature

(Winterhalter and Helfrich, 1988; Vlahovska et al., 2009; Dimova et al., 2009; Yamamoto

et al., 2010; Sadik et al., 2011) the same cannot be said about cylindrical vesicles, espe-

cially when an electric field is applied.

In the present work, the hitherto un-addressed issue of effect of electric field on cylin-

drical vesicles, is presented using linear stability analysis. Inspired by the variety of effects

an axial electric field has on liquid jets (Nayyar and Murty, 1960; Taylor, 1969; Saville,

1970), one can therefore expect novel observations with cylindrical vesicles under electric

field. The results of the stability analysis are also compared with experiments performed
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by another graduate student.

4.2 Experimental observations

All the experiments were performed by Ms. Priti Sinha, PhD research scholar, working

with Prof. Rochish Thaokar at Department of Chemical Engineering, IIT Bombay, India.

Pearling instability is observed on bilayer vesicles on application of a certain thresh-

old axial electric potential. The vesicle regains its original shape once the field is switched

off. The details of the full experimental setup are provided in Sinha et al. (2013). Figure

4.1 shows pearling instability observed in cylindrical bilayer vesicles.

Figure 4.1: Cylindrical lipid bilayer vesicles showing pearling instability on application of 7 Vpp

between the two plates separated by distance 0.3 mm for 10 milli-seconds. Time (a) t=0s,

(b)3s,(c)5s,(d)15s,(e)20s,(f)30s. Scale bar=20 m

4.3 Approach and methodology

4.3.1 Approach

In the literature on jet instability, m = 0 mode refers to the breakup of jet into droplets via

Rayleigh-Plateau instability. However in cylindrical vesicles, the dominant bending rigidity

at small radii of the interconnecting tubes leads to the manifestation of the instability as a

series of pearls, which is known as the pearling instability.

In this study we investigate the development of pearling instability in cylindrical

vesicles on application of axial electric fields. First the system is modeled by defining

the governing equations and the corresponding boundary conditions. Following which

linear stability analysis is performed to study the growth rate of the pearling instability
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(m = 0 mode of perturbation) as a function of axial electric field, E. The growth rate and

wavenumber predictions are then compared with those extracted from the experimental

data.

4.3.2 Governing equations

Consider a cylindrical vesicle that is described by bending modulus κB, surface tension γ,

and the free energy F given by (Helfrich, 1973)

F =
1

2

∫
dS
(
κB(C1 + C2 − C0)2 + γ

)
(4.1)

where C1 and C2 are the principal radii of curvature and C0 is the spontaneous curvature,

such that the mean curvature H = (C1 + C2)/2 and the Gaussian curvature K = C1C2.

The surface tension γ here, is the sum of entropic tension and tension due to external

agencies, such as the laser in pearling instabilities described by Bar-Ziv and Moses (1994)

and electric field in the present study. The symmetric lipid bilayer is characterized by the

Figure 4.2: Schematic of a cylindrical vesicle under electric field

absence of an intrinsic curvature (C0 = 0). The case with asymmetric bilayers is more

involved, since they admit spontaneous curvature, and is not considered here. The fluid

inside the cylindrical vesicle is indicated by ‘i’ and is embedded in a fluid indicated by

‘e’. Both inside and the outside fluid are incompressible. The dielectric constants and

conductivities are εi,e and σi,e respectively, for the fluid inside and outside the cylindrical
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vesicle. The membrane quantities are represented by subscriptm. The conductivity and the

dielectric constant of the membrane are σm and εm respectively. In the present work, we

assume the membrane conductivity to be zero. The inner radius of the bilayer cylinder is h

and the thickness of the bilayer is d̃ = 5 nm. The tilde on variables represents dimensional

quantities.

The bilayer cylinder envelopes inner fluid of viscosity µi and is suspended in a fluid

of viscosity µe. In this work we assume, µi = µe and that both the fluids are incompressible.

The governing equations of motion for the fluid inside and outside the bilayer cylinder

are given by

∇̃ · ṽk = 0 (4.2)

ρk

(
∂ṽk

∂t̃
+ ṽk · ∇̃ṽk

)
= −∇̃p̃k + µk∇̃2ṽk + ρ̃ckẼk (4.3)

where Ẽk is the electric field, Ẽk = −∇̃φ̃k and φ̃k is the electric potential, where k = i, e

for the fluid inside and outside the vesicle respectively. p and v are the pressure and the

velocity fields respectively. ρ and ρc represent the fluid density and the bulk charge density

respectively.

The membrane and the fluid inside and outside the vesicle are assumed as leaky

dielectric fluids. And the net charge in bulk is zero, therefore the equation for the potential

is described by (Saville, 1997)

∇̃2φ̃k = 0. (4.4)

where k = i, e and m.

The electric body term in the Navier Stokes equation is therefore identically zero.

The equations are non-dimensionalized using the following scalings:

distance→ h

time→ µih/γ̃

velocities→ γ̃/µi

stress and pressure→ γ̃/h

potential→
√
γ̃h /ε0
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electric field→
√
γ̃/(h ε0)

An alternate non-dimensionalization using the bending modulus κB leads to the fol-

lowing scaling:

distance→ h

time→ µih
3/κB

velocities→ κB/h
2µi

stress and pressure κB/h3

potential
√
κB/(h ε0)

electric field→
√
κB/(h3 ε0)

Substituting the above scaling, the following non-dimensional governing equations

are obtained:

∇ · vk = 0 (4.5)

1

Oh2

(
∂vk
∂t

+ vk · ∇vk

)
= −∇pk + ck∇2vk (4.6)

∇2φk = 0 (4.7)

where the Ohnesorge number Oh =
√
µ2
i /(ρhγ̃) or alternatively Oh =

√
µ2
ih/(ρκ̃B).

ck = 1 or µe/µi for the inner and the outer fluid respectively. However because we have

assumed, µi = µe, therefore ck = 1 for both the fluids.

In the present work, the analysis is restricted to the case of Oh → ∞, which is

valid for cylindrical vesicles with very small diameters and negligible interfacial tension.

Therefore Eq. (4.6) is reduced to

0 = −∇pk + ck∇2vk (4.8)

Note that the Navier-Stokes Eqs. (4.5) and (4.8) are written for k = i and e, and the

potential Eq. (4.7) for k = i, e and m. The applied electric field Ẽ0 is represented by the

non-dimensional field E0.
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4.3.2.1 Boundary conditions

Using the definitions of the unit normal and the unit tangent to the interface, and defining

the electric field vector E = Erer + Eθeθ + Ezez, where E = −∇φ, the electrostatics

boundary conditions at r = 1 + d (where d = d̃/h is the non-dimensional membrane

thickness) are written, specifically for a non-conducting membrane as,

φe = φm (4.9)

σen.Ee = 0 (4.10)

and on the inner surface of the cylinder at r = 1 are,

φi = φm (4.11)

σin.Ei = 0 (4.12)

Similarly, defining the velocity vector v = vrer + vθeθ + vzez, the hydrodynamic

boundary conditions can be written as

n.(vi − ve) = 0 (4.13)

t1.(vi − ve) = 0 (4.14)

t2.(vi − ve) = 0 (4.15)

n.vi −
∂F

∂t
= 0 (4.16)

which represent the normal and tangential velocity continuity conditions and the kinematic

condition. The non-dimensional shape function F = 1− r, where r is the deformed radius

of the cylinder. F = 0 is the undeformed cylinder.

The normal and tangential stress balance conditions,

n· (τe − τi)·n + n· (τEm − τEi )·ncr=1 + n· (τEe − τEm)·ncr=1+d

− γC + 2κB(C)((C/2)2 −K) + κB∇2C = 0
(4.17)

t1· (τe − τi)·n + t1· (τEm − τEi )·ncr=1 + t1· (τEe − τEm)·ncr=1+d (4.18)

+ t1∇sγ = 0

t2· (τe − τi)·n + t2· (τEm − τEi )·ncr=1 + t2· (τEe − τEm)·ncr=1+d (4.19)

+ t2∇sγ = 0
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In the unperturbed case, n = er, t2 = ez and t1 = eθ where κB = κ̃B/(γ̃h
2) is

the non-dimensional bending modulus of the membrane and γ̄ = γ̃/(κ̃B/h
2) is the non-

dimensional tension in the membrane due to applied electric field when appropriate scaling

is used. For a vesicle of diameter of the order of around 5-10 microns and bending modulus

κB = 10kBT , and water as the solvent, Oh = 22, which justifies low Reynolds number (or

high Ohnesorge number) approximation (Re ∼ O(0.001)).

The tension γ̄ = γ̄e + γ̄in is the sum of intrinsic tension ( γ̄e) in the membrane (on

account of electric field in the present case) and the undetermined tension due to membrane

incompressibility, γ̄in. The non-dimensional membrane incompressibility condition can be

determined by writing the lipid conservation equation (Powers and Goldstein, 1997),

dρl
dt

+ ρl∇αvα + ρlCVn = 0 (4.20)

where ρl is the lipid density per unit area (no. of molecules/area) and α represents the

tangential directions on the membrane surface t1, t2 . For an incompressible membrane,

the density of the lipids does not change. Therefore, the equation for incompressibility

reduces to,

ρl∇αvα + ρlCVn = 0 (4.21)

The hydrodynamic stress tensor τ̃=µ(∇ũ + (∇ũ)T ) and the Maxwell stress tensor

τ̃ e=ε0(ẼẼ − 1
2
Ẽ2I) and C̃ = ∇.n is the dimensional curvature which is twice the mean

curvature. K is the Gaussian curvature. The unit normal n points into the medium phase.

4.3.3 Minimum electric field for onset of pearling

The tension in the lipid bilayer in the absence of electric field is identically zero, and hence

pearling is not observed in an undisturbed cylindrical vesicle. When the electric field is

switched on, an axial electric force is felt at the ends of the bilayer cylinder. A tension is

generated in the bilayer to resist the unfurling of membrane undulations . The minimum

tension required for pearling is γc = 3κB/(2h
2) (Powers and Goldstein, 1997).

The free energy for a cylindrical vesicle under tension is given by Leduc et al. (2004)

F =
1

2

∫
dS
(
κBC

2 + γ
)
−
∫
pdV − FtL (4.22)

where Ft is the tensile force acting on the cylinder of length L. Minimizing the free energy

with respect to L leads to,

Ft = 2πh(
γ

2
+

3κB
4h2

) (4.23)
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The generation of tension in the bilayer cylinder due to tensile electric force is discussed

next.

Modeling the tensile electric force: The modeling of tensile electric force is rendered

difficult by the finite bilayer cylinders used in the study of these systems. The bilayer

cylinders on application of field tend to align in the direction of the applied field. The

electric field in the base state can therefore be assumed to be axial. In this study, on DC

electric field is considered and for this case the dimensional electric field in the outer fluid

can be described by Ẽe = Ẽo. It is thus assumed that the field bypasses the low dielectric

constant membrane, such that the electric field in the membrane and the inner fluid Ẽm =

Ẽi = 0. This can be attributed to the low penetration of DC fields in poor dielectrics

(εm = 2).

The field is always parallel to the surface of the cylinder. This creates bound-charge-

dependent normal compressive Maxwell’s stresses on the membrane (note that the free

charge on the surface of the cylinder is zero since n.E = 0). The origin of tension in the

cylinder is attributed to the tensile electric force acting at the end caps of the cylinder. The

treatment of end-caps is complicated by the non-trivial geometry, and it is assumed that

the net axial force is approximately the same as a spherical vesicle would experience in

a DC field. Note that each of the half caps of the spherical vesicle experience an equal

and opposite force, such that the net force is zero. The derivation for force exerted on a

spherical vesicle is presented in Appendix B.
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Figure 4.3: (a)Orientation of a cylindrical vesicle under electric field (b)Force on end caps in a

cylindrical vesicle
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4.3.4 Stability analysis of a lipid bilayer cylinder under electric field

The outward unit normal n and the orthogonal unit tangent vectors, t1 and t2 are described

as,

n = er − imδDei(kz+mθ)+st eθ − ikδDei(kz+mθ)+st ez (4.24)

t1 = imδDei(kz+mθ)+st er + eθ (4.25)

t2 = ikδDei(kz+mθ)+st er + ez. (4.26)

The eigen functions for the pressure in the two fluids are,

pi = P1 + δA1 Im(kr) ei(kz+mθ)+st (4.27)

pe = P2 + δA2Km(kr) ei(kz+mθ)+st (4.28)

where Im and Km are the modified Bessel functions of the first and second kind.

The potential eigen functions for the inside fluid, the bilayer membrane and the out-

side fluid are,

φi = −E0 z + δQ1 Im(kr) ei(kz+mθ)+st (4.29)

φm = −E0 z + δQ2 Im(kr) ei(kz+mθ)+st + +δQ3Km(kr) ei(kz+mθ)+st (4.30)

φe = −E0 z + δQ4Km(kr) ei(kz+mθ)+st (4.31)

where Q1,Q2,Q3 and Q4 are constants which will be determined later using potential

boundary conditions at the two interfaces.

The fluid eigen functions for the inner fluid and the outer fluid are given by,

vir = δ(B1Im−1(kr) + C1Im+1(kr) +
A1r

4k
[I ′m+1(kr) + I ′m−1(kr)])χ (4.32)

viθ = δi(B1Im−1(kr)− C1Im+1(kr)− A1r

4k
[I ′m+1(kr)− I ′m−1(kr)])χ (4.33)

viz = δi(B1Im(kr) + C1Im(kr) +
A1r

2k
I ′m(kr) + i

A1

2k
Im(kr))χ (4.34)

ver = δ(B2Km−1(kr) + C2Km+1(kr)− A2r

4k
[K ′m+1(kr) +K ′m−1(kr)])χ (4.35)

veθ = δi(B2Km−1(kr)− C2Km+1(kr) +
A2r

4k
[K ′m+1(kr)−K ′m−1(kr)])χ (4.36)

vez = δi(B2Km(kr) + C2Km(kr) +
A2r

2k
K ′m(kr)

+ i
(A2 − 4(B2 + C2))

2k
Km(kr))χ

(4.37)
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where χ = ei(kz+mθ)+st. The above expressions for perturbed variables reduce to

those for the axisymmetric case (m = 0) as provided in Tomotika (1935).

The perturbed shape of a cylinder with unit unperturbed radius is

F = 1 + δDei(kz+mθ)+st (4.38)

where the non-dimensional cylinder radius is unity.

The curvature (which is twice the mean curvature) and the Gaussian curvature at the

perturbed interface are given by

C = 1− δD(1−m2 − k2)ei(kz+mθ)+st (4.39)

K = δDk2ei(kz+mθ)+st

The other curvature related terms, used in the normal force boundary condition, are given

by

∇2C = −δD(m4 + k4)ei(kz+mθ)+st (4.40)

2C((C/2)2 −K) =
1

2
− δ

2
(3 + k2 − 3m2)ei(kz+mθ)+st

The tangential stress balance is written by assuming that the tension γ̄ = γ̄e + γ̄in =

γ̄e + δγ̄pe
ikx+mθ+st. The normal mode equation for conservation of lipids is given by,

i(kv1z +mv1θ)− Cv1r = 0 (4.41)

where C is the curvature. The undetermined tension is then obtained by satisfying equation

4.41. The tension term in the tangential stress balance ∇sγ̄ is written as δγ̄pimei(mθ+kz)

and δγ̄pikei(mθ+kz)), respectively in the two tangential directions.

In the normal stress balance equation the terms due to surface tension and bending

modulus appear as γ̃C − 2κB(C)((C/2)2 −K)− κB∇2C (refer Eqs.(4.39) and (4.40)). It

should be noted that in the base state (δ → 0), the curvature term associated with surface

tension,γ (which is 1 as in Eq. (4.39) ) and the nonlinear term associated with bending (1/2

as in Eq. (4.40)) are of opposite signs, indicating that the surface tension term increases

the pressure inside while the bending term decreases it. For the perturbed cylinder though,

in the long wavelength limit, the surface tension term is destabilizing (1 in Eq. (4.39))

while the bending term is stabilizing (−3/2 in Eq. (4.40)), which actually results in the

requirement that γ > 3/2 or γ > 3κB/(2h
2) for Rayleigh-Plateau instability in a bilayer

cylinder.
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The constants, Q1,Q2,Q3 and Q4 are obtained by appropriate use of 4 boundary con-

ditions (Eqs. 4.9-4.12) for DC fields.

Substituting the eigen functions in the boundary conditions, one can assemble the

matrix equations as M X = 0 where matrix M [k, s, E, d, κB] and X=[A1, A2, B1, B2,

C1, C2, D, γp] using Eqs. (4.13)-(4.19) and (4.21). The elements of the matrix M are given

in Appendix C . The matrix equation has non-trivial solution when the Det[M]=0. This

gives the characteristic equation which is equated to zero to get the dispersion relation for

the growth rate of pearling instability.

4.4 Results & discussion

4.4.1 Effect of electric field on pearling instability

It is known that γ̃ must be greater than 3 κ̃b/(2h
2) before pearling can be observed in

cylindrical vesicles (Nelson and Powers, 1995). This condition was tested as validation of

the code.

In non-dimensional quantities, the condition is γ > 1.5 to obtain pearling instabil-

ity. The test was performed by switching off electric field and generating growth rate vs

wavenumber plots for m = 0 mode at different values of surface tension. As seen in Figure

4.4, the pearling (m = 0) mode is stable for all γ ≤ 1.5, but becomes unstable as soon as γ

> 1.5.

For the case of a bilayer cylinder in a DC electric field, the applied field probably by-

passes the low dielectric constant bilayer membrane (εm = 2) such that the mean electric

field in the bilayer and the inner fluid is zero. The total electric potential in the inner fluid,

membrane and the outer fluid can then be written as,

φi = δ Q1 Im(kr) ei(kz+mθ)+st (4.42)

φm = δ Q2 Im(kr) ei(kz+mθ)+st + +δ Q3Km(kr) ei(kz+mθ)+st (4.43)

φe = −E0 z + δ Q4Km(kr) ei(kz+mθ)+st (4.44)

The effect of electric field on pearling instability is expected to be complicated for the

following reason: as seen earlier, the tension required to induce pearling in cylindrical

vesicles can be attributed to the electric field. However, as observed for the case of fluid

cylinders (figure 3.3), the electric field has a stabilizing effect on the instability. The low
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Figure 4.4: Growth rate s vs wavenumber k curves for different γ values, for the pearling mode

(m = 0) at zero electric field (E=0)
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Figure 4.5: Non dimensional growth rate (s) vs wavenumber (k) curves with increasing

non-dimensional DC electric field for the m = 0 mode.
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Figure 4.6: Wavenumber at maximum growth rate (km) as a function of the non-dimensional DC

electric field (E) for the m = 0 mode.

wavenumber instability (Figure 4.5) exhibits an increase in the growthrate with increase in

the electric field, unlike that for a fluid cylinder. A critical electric field is required for the

growth rate to be positive. Figure 4.6 shows this dual effect of electric field on the fastest

growing wavenumber. A critical electric field is required to pearl the cylindrical vesicles,

that slightly increases as the diameter of the vesicle decreases. Beyond the critical field

though, km is seen to increase with increase in the electric field. At large values of E, km

plateaus and is independent of E. This is contrary to a fluid cylinder where km continues

to decrease with E. The reason for this could be the following: the destabilizing tension

in the bilayer cylinder is proportional to E2
0 and so is the stabilizing term due to electric

Maxwell’s stresses. At large E, the stabilizing action of the bending term can be ignored

and the instability is really a balance of the tension and the Maxwell’s stresses, both the

terms being proportional to E2
0 . This results in a growth rate which increases with E2

0 , but

renders the fastest growing wavenumber independent of the applied field.
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4.4.2 Comparison with experimental data

Before we proceed with comparison, it is important to mention the number of experimental

and theoretical limitations in this work, which possibly would not lead to an exact quanti-

tative agreement between the theory and the experiments.

The field assumed in theory is axial. In experiments though, the alignment of the

cylindrical vesicles may not be exactly normal to the electrodes. This can lead to a small

radial field, which however can lead to a significant deposition of free charges on the cylin-

der wall. Moreover, the vesicles observed in experiments were not perfectly cylindrical in

shape unlike as assumed in the theory.

Analytical linear stability analysis could be best conducted on infinitely long cylin-

ders with axial electric field. The experimental analysis was performed on vesicles that

were attached to an irregular lipid mass on the electrodes. The choice was aided by two

reasons: these vesicles were long enough to remove finite size effects, and did not move

(migrate) under electrohydrodynamic flows, thereby allowing a systematic analysis. The

electric field distribution around the end of the cylinder embedded in the lipid mass though

could be complicated. This renders the electric field distribution in the base state quite

difficult and is reflected in the mismatch between the experimental critical field and as pre-

dicted by the theory. Moreover, the tensile force was calculated assuming hemi-spherical

caps.

Thinning of cylindrical vesicles due to simultaneous stretching of tubes connected at

the other end to a lipid mass was also observed. Thus the diameter of the vesicle changed as

the instability developed, a fact ignored in the theory. The typical time-scale of instability

was obtained by plotting an average of the logarithm of the difference between the instan-

taneous (h) and initial radius of the cylinder (h0), ln |h(t)− h0| with time. We believe, the

time scales obtained by this technique are at best pseudo growth rates.

Moreover, the diameter of the vesicles too, had a distribution. The wavelength of

the instability was averaged over an undulated cylinder, as well as over several cylindrical

vesicles of approximately the same diameter. The results obtained from the linear stability

analysis, the maximum growth rate (sm) and the corresponding fastest growing wavenum-

ber (km) are compared with and the typical time-scale of instability seen in experiments

and the wavelength of instability respectively.

The critical electric field obtained in experiments in axial fields is around 0.025
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kV/cm. The theory predicts this value to be around 0.01kV/cm. Due to the limitations

of the theory and the non-ideal conditions in the experiments, the comparison with exper-

imental wavenumbers is made with the plateau km obtained from the theory. The growth

rate is compared only qualitatively.
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Figure 4.7: Comparison of the observed wavenumber in DC axial electric field (7Vpp) with km

from theory for different size of vesicle h. Filled squares represent experiments and open squares

connected by line represent theory.

As shown in Figure 4.7 the dimensional wavelength of the instability increases with

increasing radius h for vesicles with different radius ranging from 0.5-6 µm at a given value

of electric field. Experiments show that the non-dimensional wavenumber of the instability,

km = 2πh/λ̃ weakly increases with the radius of the vesicles.

Figure 4.8 shows the experimentally obtained growth rates for two different vesicles

size, represented by unique symbols. These observed growth rate values are compared

against theoretical values which have been shifted from their original values by multiplying

with a certain shift factor. The theoretical values are represented using lines. As can be

seen, the growth rate increases with the strength of electric field, and is of the order of the

viscous time scale, Ts. The theory correctly predict increase in growth rates with electric

fields as also observed in experiments, and scale as s ∝ E2, although exact comparison

of the growth rates is difficult as discussed earlier. Interestingly the viscous time scale

Ts = µh3/κB is of the order of 1s, similar to the time scales of instability.
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Figure 4.8: Comparison of the observed dimensional growth rate with increasing electric field of

for (2 µm) (©) and (3 µm) (�) with shifted theoretical curves. Dotted line represents the

corresponding shifted curve for 2 µm vesicles and continuous line represents shifted curves for 3

µm vesicles.

4.5 Conclusions

Using linear stability analysis, the growth of pearling instability in cylindrical bilayer vesi-

cles on application of axial electric field above a critical value is qualitatively predicted. It

is shown that the tension induced by the electric field leads to a Rayleigh-Plateau instability

and is manifested as pearling of the cylindrical vesicles.

The maximum wavenumber km for the pearls is shown to increase with E above the

critical field, but reached a steady value at higher electric fields. Also the steady values

of km increases as a function of vesicle radii. km values extracted from experimental data

follow a similar trend and were found to be close to the theoretical predictions.

The maximum growth rate sm of the pearling instability increases with increasing

electric field. A similar trend is observed for growth rates extracted from experimental

data.

The differences between experimental values and theoretical predictions can be at-

tributed to the number of simplifying assumptions made in the model formulation. The

predictions can be improved possibly by carrying out a marginal stability analysis (Powers

and Goldstein, 1997) or by conducting full numerical simulations.
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Chapter 5

Capillary thinning of polymeric liquid bridges

5.1 Introduction

Even in the absence of an electric field, recent studies have shown that dynamics of slender

filaments of dilute polymer solutions can be quite complex. For example, Clasen et al.

(2006b) who used capillary breakup extensional rheometer (CaBER) to extract charac-

teristic relaxation time, observed a strong concentration dependence even for ultra-dilute

solutions. Prabhakar et al. (2006) predicted that the concentration dependence of the relax-

ation time could be related to the changing friction coefficient with change in conformation

of polymer molecules. They developed a constitutive model for polymer stresses, that al-

lowed for inclusion of changing frictional drag, however their simulation results did not

match with experiments for high molecular weight polymer solutions. In this study we

build up on the work of Prabhakar et al. (2006) and include additional physics in the con-

stitutive model to explain the discrepancy observed by Clasen et al. (2006b).

The chapter is organized as follows; first a detailed literature survey is presented on

various elastic dumbbell models, coil-stretch hysteresis, and the observed discrepancy in

CaBER results. This is followed by a section on approach and methodology where the

governing equations for the different models used, are formulated. Numerical method and

code validation studies are also described. Finally the simulation results are presented in

the last section.
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5.2 Literature

5.2.1 Rheology of dilute polymer solutions in elongational flows

The rheology of polymeric fluids is more complex than that of Newtonian fluids. It is well

known that the presence of small amounts of polymer can lead to a number of flow insta-

bilities and non-linear dynamics in a solution (Bird et al., 1987a). This non-Newtonian

behavior results from shear and normal stresses induced by changes in average polymer

conformation due to flow, which in turn depends on the nature of the flow (Bird et al.,

1987a). Free surface flows of polymeric fluids such as those in roll-coating of adhesives,

paint applications, fiber-spinning operations, injection molding, etc. offer further chal-

lenges given the large number of phenomena that are involved including viscosity, inertia,

gravity, capillarity, besides the stresses resulting from the polymer.

The dilution of polymer solutions is usually characterized in terms of the critical

overlap concentration of polymer coils, denoted as c∗. Considering c as the concentration

of the polymer solution, when c/c∗ << 1, the volume occupied by an isotropic polymer

coil does not overlap the space of another molecule. Such a solution is generally referred

to as a dilute polymer solution (DPS). Addition of more polymer molecules results in in-

creased interactions between neighboring molecules and the solution becomes semi-dilute

and eventually entangled with further increase in polymer concentration.

5.2.2 Coil-stretch transition and coil-stretch hysteresis

The behavior of dilute polymer solutions in elongational flows has been a topic of great

interest among rheologists. In complex flows, microscopic quantities such as the stretch

and orientation of polymer molecules are intimately connected to the macroscopic variables

such as velocity and stress fields. Therefore, individual polymer molecules are deformed

when dilute polymer solutions are subjected to flow. Such deformation is more severe in

extensional flows, which can lead to stretching of individual polymer coils with the increase

in elongational rate ε̇.

Near a certain critical value, ε̇c, hydrodynamic force exerted across the polymer ex-

ceeds the linear portion of the polymers entropic elasticity and the polymer properties expe-

rience a very sharp dramatic increase. At this point, the coiled polymer molecule stretches

until its nonlinear elasticity limits the further extension. De Gennes (1974) predicted this
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‘coil-stretch transition’ (CST) theoretically in a seminal paper and further showed that this

unique behavior of dilute polymer solutions leads to an interesting phenomenon known as

the ‘Coil-Stretch Hysteresis’ (CSH). His argument was that the hydrodynamic frictional

drag exerted by the fluid on a highly flexible polymer molecule would increase as it is

stretched by the flow from its predominantly coiled state since the fluid could interact with

more monomer units which were previously shielded in the coiled state.

Based on kinetic theory, De Gennes (1974) predicted that in a window of extensional

flow strengths near the coil-stretch transition, three molecular conformations were possible,

the stretched state, the coiled state and a third state with simultaneous existence of coiled

and stretched regions. He showed that any molecule going from a coiled to stretch transition

must pass through the intermediate state. The mean time that a molecule takes to diffuse out

of one of the potential wells and undergo a transition to the thermodynamically preferred

state, will determine the lifetime of the intermediate state or the hysteresis loop. These

predictions have been verified in both experimental (Schroeder et al., 2003, 2004) and

simulation studies (Darinskii and Saphiannikova, 1994; Hsieh et al., 2005; Sridhar et al.,

2007). The time scale is also estimated to be very large and hence the hysteresis is long-

lived.

De Gennes (1974) suggested that a dual condition must be satisfied in order to stretch

the polymer molecules. First, the strain rate must be large enough to stretch the molecule

and second, the strain rate must be applied for sufficient time for the molecule to accumu-

late strain. Thus for an an already stretched molecule, it can remain in the stretched state

even if the strain rate is decreased below ε̇max from above and will undergo a transition to

a coiled state only after the strain rate falls below ε̇min. And similarly an initially coiled

molecule will remain in a coiled state even as the strain rate is increased above ε̇min from

below and will only stretch when ε̇ > ε̇max. Thus we see that the behavior of polymer

molecules is strongly dependent on the history of stretching and the existence of polymer

conformation hysteresis in the coil-stretch transition has important implications in the tran-

sient dynamics of polymer unraveling in extensional flows.

Polymer constitutive models such the Oldroyd-B and FENE-P models have been ex-

tensively used to predict the non-Newtonian stresses in polymeric fluids in general. These

models are generally preferred in complex flow simulations of DPS for their simplicity.

Researchers have tended to use these simple models that are able to reproduce the mini-
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mal features of DPS viscoelasticity. The reason for this is that numerical techniques for

complex flow simulations of viscoelastic liquids are still under vigorous development, with

much of the research focusing on overcoming serious limitations such as the High Weis-

senberg Number problem (Keunings, 2000). These models include the elastic resistance

of polymer molecules to stretching, and incorporate memory effects through a single time

constant related to the polymer frictional drag at or near its equilibrium state. It is felt that

this should provide a good qualitative description of polymer dynamics of even in complex

flows far from equilibrium. Since these models ignore the conformation dependence of the

drag coefficient, but treat it as constant, they cannot predict CSH.

Figure 5.1: Sketch of de Gennes’ classic steady state extension curve for polymers in extensional

flow, demonstrating the existence of hysteretic behavior. Plot reproduced from Schroeder et al.

(2003)

However, recent studies have raised the intriguing possibility that CSH could be im-

portant in extension dominated complex flows (Amarouchene et al., 2001). In particular,

Prabhakar et al. (2006) demonstrated that CSH may significantly effect the dynamics of

capillary thinning of liquid bridges of DPS. This has important implications for the inter-

pretation of experimental data obtained from the CaBER.
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5.2.3 Extensional rheology

Non-Newtonian effects can be significant even in a highly dilute polymer solution. This

property makes dilute polymer solutions unique and useful in many applications such as

ink-jet printing,turbulent drag reduction, etc. Dilute polymer solutions are also important in

the characterization of average macromolecular properties such as molecular weight, relax-

ation time, stiffness, and interaction with solvent. To study the elongational flow behavior

of dilute polymer solutions, one specific type of flow involving thinning and breakup of

viscoelastic liquid filaments/bridges has been studied extensively. There are two types of

devices which use the above mechanism.

The first device, known as the filament stretching rheometer was introduced by Matta

and Tytus (1990) and Sridhar et al. (1991). In this device, first a liquid bridge is formed

between two end plates. Following this, the end plates are continuously stretched apart

with an exponentially increasing separation profile. Based on the initial design by Sridhar

et al. (1991) many different designs were proposed for the filament stretching rheometer,

which are extensively reviewed in McKinley and Sridhar (2002).

The second device, called the capillary breakup rheometer (CaBER) was introduced

around the same time by Bazilevskii et al. (1990). In this device a drop of the test fluid is

placed between two end plates, which are rapidly separated and then held at a fixed axial

separation. Once the motion of the plates stops, a liquid-bridge is formed connecting the

two end plates. If the end plates separation is large enough, Rayleigh-Plateau instability

causes the bridge to thin at its center due to capillary action. The fluid begins to flow

axially away from the center towards the end plates, resulting in a uniaxial extensional

flow in the mid-filament region. The subsequent evolution of the mid-filament diameter is

monitored during the process of necking and breakup. The thinning of the liquid bridge

in these systems is governed by a balance between surface tension and the viscous and

elastic stresses. For viscous bridges, where Onserorge number Oh >> 1, the contribution

of inertial terms is almost negligible for most of the necking process.

In the filament stretching rheometer a constant extensional rate ε̇ can be imposed

at the mid-filament plane and stress can be measured. Hence it achieves key rheometer

objectives of being able to measure stress under controlled flow situations. However in

capillary breakup devices a controlled strain rate cannot be achieved, and inference of the

stress requires an additional level of approximation, since no force measurements are made
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at end-plates. Thus, compared to a filament stretching rheometer capillary breakup devices

are much simpler to work with, but interpreting the experimental data from these devices

has proved to be a challenge.

Entov and Hinch (1997) analyzed the elasto-capillary thinning of liquid bridge based

on the following local stress balance at the mid-filament,

γ

h
− 3 ηsε̇+ ∆τp = 0 (5.1)

where, τp is the polymer stress tensor and ∆τp is the normal polymer stress difference

(τp,zz − τp,rr), h is the radius of the liquid bridge, γ is the surface tension and ηs is solvent

viscosity. The analysis was motivated by the results of capillary thinning experiments per-

formed by Liang and Mackley (1994). The well-known FENE-P constitutive model was

used to calculate τp components. They suggested that the thinning of the mid-filament

radius can be categorized in three stages. At the beginning of the process, viscous stresses

from solvent are dominant since the polymer molecules are not stretched yet. A linear de-

cay of radius is observed in this stage. The second elastic phase corresponds to exponential

thinning of mid-filament when the polymer coils are significantly stretched and the poly-

meric stresses dominate over viscous stress. The Entov-Hinch analysis showed that the

elasto-capillary balance results in a natural stretching rate of ε̇ = 2/(3λ0). λ0 is the poly-

mer relaxation time. In the third stage the finite extensibility limit of polymer molecules is

reached, and the filament now behaves as suspension of slender rods with high but constant

viscosity. Thus a radius of the mid-filament again decays in a linear fashion in this stage.

Since, ε̇ = -2 d(lnh)/d t, it can be extracted from measurements of the instanta-

neous mid-filament radius. Also γ and ηs are fluid properties which can be measured

independently. Therefore the capillary thinning experiment offered a convenient way to

measure the polymer stress contribution to the normal stress difference, ∆τp. Further,

Entov-Hinch’s analysis suggested that Wi = ε̇λ0 = 2/3 in the middle elastic region. There-

fore if the instantaneous mid-filament radius is measured using optical techniques, it is

possible to extract the longest relaxation time using the capillary thinning experiments.

5.2.3.1 Anomalous concentration dependence in capillary breakup

Using CaBER and similar designs a number of investigations were carried out to study the

elongational behavior of solutions, for a wide array of polymers and molecular weights.
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Studies by Bazilevskii et al. (1990); Stelter et al. (2002); Tirtaatmadja et al. (2006) and

Clasen et al. (2006b) using dilute solutions of flexible polymers, reveal that the character-

istic relaxation time extracted from capillary-thinning or jet-thinning experiments depends

strongly on concentration even below the critical overlap concentration c∗, in contrast to

expectations of the Rouse/Zimm theory. Generally it is believed that for polymer solutions

with concentration below c∗, the individual polymer molecules are so far from each other

that there are no intermolecular interactions. Thus λ0 calculated for concentration c/c∗ < 1

is not expected to depend on polymer concentration.

Bazilevskii et al. (1990) and Tirtaatmadja et al. (2006) observed a power-law depen-

dency of the relaxation time on the concentration even for c/c∗ < 1. Clasen et al. (2006b)

conducted a thorough investigation of the concentration dependence of the characteristic

relaxation time of dilute polymer solutions in capillary thinning experiments. They used

mono-disperse polystyrene solutions of five different molecular weights in two solvents

of different solvent quality (diethylphthalate and oligomeric styrene) for concentrations

covering five orders of magnitude. They showed that λe, the longest relaxation time ex-

tracted from measurements in the middle-elastic regime with CaBER differ significantly

from λ0 measured from small-amplitude oscillatory shear experiments. Also, the mea-

sured λe showed a power law dependence on concentration, even for solutions considered

to be highly dilute. The magnitude of the exponent in power law scaling changed with

the thermodynamic quality of the solvent. A scaling argument was used to suggest that

such strong concentration effects are due to intermolecular hydrodynamic interactions that

become considerable as molecules stretch out in extensional flows.

Prabhakar et al. (2006) argued instead that this apparent concentration dependence

is an artifact due to the neglect of intramolecular hydrodynamic interactions in the

Entov-Hinch approach, based as it is on the use of Oldroyd-B or FENE-P models, and

the consequent lack of conformation-dependence of polymeric drag, and inability to

predict CSH. Prabhakar et al. (2006) instead used a multi-mode constitutive model for

polymeric stresses taking into account intramolecular HI, and its variation with polymer

conformational changes. It was firstly shown that with a model capable of predicting CSH,

there is no longer the lower limit of 2/3 to the Weissenberg number in a liquid bridge of

DPS. Additionally, they showed that this more sophisticated constitutive model could

describe experimental observations better, without resorting to concentration-dependent
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polymer relaxation times. But this agreement was only obtained for solutions of

moderately high MW polymers and not for very large MW polymer solutions. Moreover,

in both the Entov and Hinch (1997) approach, and the study by Prabhakar et al. (2006),

the model of fluid flow within the liquid bridge itself is highly simplified, and is focused

entirely on the dynamics at the mid-filament plane of the liquid-bridge. Inertial effects are

neglected, and more importantly, so is the influence of the shape of the rest of the liquid

filament itself.

5.2.4 Dumbbell models

Disagreement with Entov and Hinch (1997) suggests problems with the polymer constitu-

tion equation used to calculate the polymer stress terms. Before investigating this further,

we present a review of the various constitutive models used for dilute polymer solutions.

Polymer molecules typically consist of long chains of about 103 to 106 repeated sim-

ple structural units or monomers. These long chain molecules when dissolved in fluid can

significantly change the fluid’s macroscopic properties. Addition of the polymer molecules

gives the regular viscous solution, elastic properties, and thus makes it viscoelastic. Vis-

coelasticity is then responsible for all the unique phenomena attributed to polymer solu-

tions, namely rod-climbing, the “tubeless siphon”, shear thinning, etc (Bird et al., 1987a).

Thus the usual linear relationship between stress components and velocity gradients or bet-

ter known as Newton’s law of viscosity, is not adequate for describing the flow behavior of

polymer solutions or polymer melts.

Therefore in order to solve fluid dynamics problems for polymer solutions, the eval-

uation of the stress tensor is of fundamental importance. The equation relating the stress

tensor to various kinematic tensors is called the “constitutive equation” or the “rheological

equation of state”. Use of kinetic theory is one of the most common approach to derive

constitutive equations for polymeric fluids. This consist of two parts: (i) formulation of an

expression for stress tensor which is a function of configuration distribution function, (ii)

deriving the configuration distribution function from the “diffusion equation” for the flow

field under consideration.

The starting point in deriving stress tensor and the configuration distribution func-

tion is to idealize the polymer molecules by a simple mechanical model that exemplifies a

polymer molecule. Though such models are too crude it is necessary to include such sim-

82



CHAPTER 5. LIQUID BRIDGES 5.2. LITERATURE

plifications, because a true mechanical model that would faithfully capture the microscopic

properties of an actual polymer would be extremely complicated and would be prohibitively

difficult to deal with owing to the high number of degrees of freedom.

Dumbbell models, characterized by two beads of identical mass joined by a connec-

tor, are the crudest representation of polymer molecules. These models in no way account

for the details of the molecular architecture and do not have enough internal modes of

motion to enable one to describe linear viscoelastic phenomena. However if the connec-

tor is represented by a spring, the so formed “elastic dumbbell model”, is orientable and

stretchable. These two properties are essential for the qualitative description of steady-state

rheological properties and those involving slow changes with time.

The position and orientation of the dumbbell are specified by the position vectors of

the centers of the two beads with respect to a laboratory-fixed coordinate system; these are

designated R1 and R2, respectively. Then the “configuration vector” or the “end-to-end

vector”Q, between the two beads is given by

Q = R2 −R1 (5.2)

The total flow induced stress tensor τ of the solution is made up of two parts, the solvent

contribution (τs) and the polymer contribution (τp).

τ = τs + τp = ηs(κ+ κT ) + τp (5.3)

The tensor κ is the transpose of the velocity gradient tensor, i.e. κ = (OOOv)T . The to-

tal contribution from polymer molecules (represented here by the dumbbells) comes in

two parts, the “connector” contribution which originates from the tension in the connector

springs and the “bead” contribution, which originates from the momentum transported by

the bead. Adding the two contributions, we get the Kramers’ general equation for polymer

stress (Bird et al., 1987a),

τp = nkBT δ︸ ︷︷ ︸
bead contribution

− n〈F cQ〉︸ ︷︷ ︸
connector contribution

(5.4)

where n is the number of molecules per unit volume, kB is Boltzmann constant, T is

the temperature, F c is the entropic force and δ is the unit vector.

The entropic force is given by,

F c = HQ f(Q) (5.5)
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where H is the spring constant.

The function f will depend on the type of spring used in the dumbbell to connect the

two beads.

A quantity which characterizes the structure of the molecule is the second order ten-

sor 〈QQ〉, which is known as the conformation tensorM .

M = 〈QQ〉 (5.6)

Here the angular brackets represent an ensemble average.

An equation for M can be obtained from the general diffusion equation (Bird et al.,

1987b):
dM

dt
− {κ ·M} − {M · κT} = M(1) =

4kBT

ζ
δ − 4

ζ
〈QF c〉 (5.7)

where, d/dt represents the material derivative operator,

d

dt
=

∂

∂t
+ v·∇ (5.8)

Dumbbell models can be broadly classified as constant friction and variable friction

models. In constant friction models, the frictional drag coefficient ζ is assumed to be

constant throughout the flow, whereas that in variable friction models is assumed to be a

function of polymer conformation (Bird et al., 1987b). The constant friction models can

include either a linear spring connector (Hookean) or a non-linear spring connector (non-

Hookean). All variable friction models have non-Hookean connectors. Also, the variable

friction models can be further classified into two types. The classical version where self-

concentration effects are not included (De Gennes, 1974) and a new model which has been

proposed recently in which ζ is a function of both conformation of polymer molecules and

instantaneous pervaded volume fraction of the solution (Prabhakar, 2011, 2012).

5.2.4.1 Constant friction, Hookean dumbbells: Oldroyd-B model

Dumbbells can have two kinds of elastic connectors, linear or nonlinear. For the linear

Hookean spring connector the function f(Q) = 1.

Thus the entropic force for Hookean springs is,

F c = HQ (5.9)
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The corresponding equation for polymer stress for Hookean dumbbells,

τp = nkBT δ − n〈HQQ〉 (5.10)

= nkBT

(
δ − HM

kB T

)
(5.11)

Similarly, the corresponding equation for polymer conformation tensorM ,

M(1) =
4kBT

ζ
δ − 4

ζ
〈HQQ〉 (5.12)

=
4kBT

ζ

(
δ − HM

kB T

)
(5.13)

The equation above for the equivalent to that in Hookean dumbbell model is the

Oldroyd-B model.

5.2.4.2 Constant friction, non-Hookean dumbbells: FENE-P model

The Hookean dumbbell permits infinite extension, however it is known that real molecules

cannot be extended infinitely. Thus a non-linear spring with the following force law was

presented,

F c =
HQ

1−Q2/L2
(5.14)

where L is th total contour length of the polymer molecule.

The above force law permits linear (Hookean) behavior for small extensions but gets

stiffer as the spring is extended. Also, it restricts the spring extension to a maximumL. This

finitely extensible nonlinear elastic (FENE) spring was first presented by Warner (1972).

The dumbbell model with the Warner force law is said to be the FENE model.

The corresponding equation for polymer stress for non-Hookean FENE dumbbells,

τp = nkBT δ − n
〈

HQQ

1− (Q/L)2

〉
(5.15)

The added non-linearity in the spring force makes it difficult to obtain a closed-form

constitutive equation for the polymer stress without making an approximation. A well

known approximation is where the denominator in the FENE expression for the connector

force is replaced by its ensemble averaged value, i.e.

F c =
HQ

1− 〈Q〉2/L2
=

HQ

1− trM/L2
(5.16)
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This pre-averaging is known as the Peterlin approximation and the resulting model

as the FENE-P model (Peterlin, 1961). The connector force F c as defined previously can

also be written as,

F c = HQf(Q) and for FENE-P model f(Q) =
1

1− 〈Q2〉/L2
(5.17)

After substituting the approximate F c from Eq. (5.17) into the expression for polymer

stress, Eq. (5.15),

τp = nkBT δ − nHfM (5.18)

The corresponding expression for conformation tensorM with the Peterlin approximation,

M(1) =
4H

ζ

[
kBT

H
δ − fM

]
(5.19)

At equilibrium polymer stress τp is equal to zero. Therefore

0 = nkBT δ − nHf0M0 (5.20)

or

f0M0 =
kBT

H
δ (5.21)

whereM0 is the equilibrium conformation tensor.

Substituting for kBT/H in Eq. (5.19) above

M(1) =
4H

ζ

[
kBT

H
δ − fM

]
= −4H

ζ
[fM − f0M0] (5.22)

At equilibrium the conformation tensor is isotropic and,

M0 =
〈Q2〉0

3
δ (5.23)

where, 〈Q2〉0 is the mean squared end-to-end distance at equilibrium.

Therefore we get,

M(1) = −4H

ζ

[
fM − f0

〈Q2〉0
3

δ

]
(5.24)

Also,

4H

ζ
=

4kBT

ζ
· H

kBT
=

12kBT

ζ 〈Q2〉0
· 1

f0

=
1

λ0

1

f0

(5.25)
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Here,

λ0 = ζ 〈Q2〉0/12kBT represents the polymer relaxation time.

Substituting result from Eq. (5.25) into Eq. (5.24),

M(1) = − 1

λ0

[
f̄M − 〈Q

2〉0
3

δ

]
(5.26)

where, f̄ = f/f0 = (1− 〈Q2〉0/L2) / (1− 〈Q2〉/L2)

Now coming to the polymer stress expression, substituting Eq. (5.21) into Eq. (5.18),

we obtain

τp =
3nkBT

〈Q2〉0

[
〈Q2〉0

3
δ − f̄M

]
(5.27)

5.2.4.3 Excluded volume interaction

Excluded volume interactions are always present in a polymer molecule, but their effect

is controlled by disaffinity to the solvent, which is temperature dependent. At a critical

temperature known as the theta temperature (Tθ), excluded volume interactions are exactly

balanced by the solvent disaffinity, and the equilibrium size of the molecule is the same

as that of an ideal phantom chain 〈Q2〉θ0 (Doi and Edwards, 1986). At temperatures higher

than Tθ, 〈Q2〉0 > 〈Q2〉θ0 and their ratio is defined as the swelling ratio,

α =

[
〈Q2〉0
〈Q2〉θ0

]1/2

(5.28)

Here we note that 〈Q2〉θ0 = bk L, where bk is the length of a single Kuhn segment in a

polymer chain. The total number of Kuhn segments in any chain is

Nk =
L2

〈Q2〉θ0
(5.29)

Thus 〈Q2〉θ0 = b2
kNk, and L = bkNk. The Kuhn length bk depends on the monomer

chemistry, while L and thus Nk are proportional to the molecular weight of the polymer

(Doi and Edwards, 1986).

The temperature and molecular weight dependence of α is expressed in terms of the

solvent quality parameter z (Rubinstein and Colby, 2003; Kumar and Prakash, 2003).

z =
v0

b3
k

(
1− Tθ

T

)√
Nk (5.30)
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which v0 is the excluded-volume of a single Kuhn segment and is determined by

the chemistry of the monomer and solvent. Since, v0, bk and Tθ are independent of the

molecular weight, the equation above implies that at the same temperature and polymer-

solvent chemistry, the solvent quantities of two different molecular weight samples are

related as

z1

z2

=

√
Nk,1√
Nk,2

(5.31)

Hence if the solvent quality zref is known for a reference molecular weight corresponding

to Nk,ref , then the solvent quality for any other molecular weight sample is calculated as,

z = zref

√
Nk

Nk,ref

(5.32)

Given z, the swelling ratio is given by an empirical fit through experimental and

molecular simulation results (Kumar and Prakash, 2003):

α2(z) = [1 + 9.8z + 14z2 + 32z3]0.13 (5.33)

For later use, we note here that the discussion above implies that the swelling of a

chain is non-uniform; if z is the solvent quality corresponding to a chain of Nk segments,

then the solvent quality corresponding to a sub-chain consisting of N ′k < Nk segments is

z′ = z
√
N ′k/Nk, and the mean squared equilibrium size of the sub-chain is

ξ2 = b2
kN
′
kα

2(z′) (5.34)

5.2.4.4 Variable friction dumbbell models

The polymer relaxation time (λ0 = ζ0 〈Q2〉0/12kBT ) that has been used in the FENE-P

model assumes a constant friction coefficient ζ0. λ0 is measured typically by using small-

amplitude oscillatory shear (SAOS) rheometry for a given solution at a given concentration.

If 〈Q2〉0 is also known at that same concentration then the above equation can be used to

estimate ζ0. This theory is valid under quiescent conditions. However in extensional flows,

when the polymer coils unravel and stretch, the friction coefficient also changes along with

this change in conformation of the polymer. We assume, ζ is the new friction coefficient

for partially stretched molecules. The corresponding polymer relaxation time is,

λ = ζ 〈Q2〉0/12kBT (5.35)
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and hence,

λ(M , c) = λ0

[
ζ(M , c)

ζ0

]
(5.36)

Thus equation (5.26) for the FENE-P model is modified as,

M(1) = −1

λ

[
f̄M − 〈Q

2〉0
3

δ

]
= − 1

λ0

1

ζ/ζ0

[
f̄M − 〈Q

2〉0
3

δ

]
(5.37)

Variable friction coefficient In an extensional flow, as the molecules stretch, the polymer

conformation changes. Thus the drag coefficient ζ of the molecules is no longer equal to

the mean friction coefficient of isotropic coiled polymer molecules, ζ0.

However because a general molecular theory is still not available, ζ is expected to

lie somewhere between ζ0 and an estimated friction coefficient ζr, that is derived assuming

that partially stretched chains are slender rod-like objects of length l = M
1/2
zz and diameter

d = M
1/2
rr , all aligned in the principal stretching direction.

Hence ζ is approximated by a simple “mixing rule” between ζ0 and ζr,

ζ = ζ0(1− χ) + ζr(l, d)χ (5.38)

where,

χ =
l − l0
L− l0

=
M

1/2
zz − l0
L− l0

(5.39)

where, l0 = M
1/2
zz,0 = M1/2

rr,0 = 〈Q2〉1/20 /
√

3

Hence,

ζ

ζ0

= (1− χ) +
ζr(l, d)

ζ0

χ (5.40)

Note that ζ0 6= ζZ , the equilibrium friction coefficient of isolated polymers (the

“Zimm” drag coefficient) and only approaches ζZ as c/c∗ = φ0 → 0. However, ζ0/ζZ =

λ0/λz and the ratio ζ0/ζZ can be obtained from SAOS measurements.

Typical estimates of ζr are derived in terms of the ratio ζr/ζZ . Hence, Eq. (5.40) is

better written as,

ζ

ζ0

= (1− χ) +

(
ζr(l, d)/ζZ
ζ0/ζZ

)
χ (5.41)

Thus the modeling task is to get the values of ζr(l, d)/ζZ to calculate ζ/ζ0, which can

then be used in governing equation, Eq. (5.37).
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5.2.4.5 Conformation Dependent Drag at infinite dilution: CDD-id

In this model, Batchelor (1971)’s results for isolated rods in suspension are used to get an

estimate for ζ . The expression for ζr/ζZ is given as,

ζr
ζZ

=

[
K/
√

3

K/
√

3 + ln(l/d)

]
l

l0
(5.42)

K is an empirical constant determined to be 0.4 by comparison of the steady state

extensional viscosity predictions in the infinite dilution limit with single molecule BD sim-

ulations (Prabhakar, 2011).

When the polymer conformation tensor use the above value of ζ , the model is termed

as Conformation Dependent Drag - infinite dilution model or the CDD-id model.

5.2.4.6 Conformation Dependent Drag with self concentration: CDD-sc

Polymer concentration typically understood in terms of c/c∗ in literature is actually a vol-

ume fraction, since

c ∼ n (5.43)

c∗ ∼ 1/V0 (5.44)

where, V0 is the average equilibrium volume of a molecule.

Hence,

c

c∗
= nV0 (5.45)

We use a notation that is standard in suspension literature for the volume fraction and

denote the equilibrium volume fraction as φ0 = c/c∗.

For molecules that stretch and deform, an estimate of the volume pervaded by the molecular

coils comes from M . Average coil volume = V =
√
M1M2M3, where Mi’s are the eigen

values of M . For uniaxial extensional flows, the average coil volume = V =
√
MzzM2

rr. In

other words, the average coil shape is pictured as a cylinder, Therefore the instantaneous

volume fraction of a solution is, φ = n l d2

Since for a given solution, n remains unchanged, we get,

n =
φ

l d2
=

φ0

l0 d2
0

(5.46)
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Figure 5.2: Average coil shape is pictured as a cylinder

Therefore using Eq. (5.46) it is possible to calculate φ at any given time provided the

initial φ0 and the instantaneous l and d fromM are known.

φ = φ0
l d2

l0 d2
0

(5.47)

Since polymers can inter-penetrate, φ can be greater than 1. Further even if φ0 << 1,

φ could exceed 1 if instantaneous volume l d2 exceeds l0 d2
0 significantly. Evidence for such

“self-concentration” comes from Brownian Dynamics simulations of polymer solutions

(Prabhakar, 2005; Stoltz et al., 2006).

Intermolecular separation in extensional flows: Consider a solution with all molecules

aligned in the stretching direction. The average separation in the transverse direction be-

tween center lines h, is such that

n l h2 = 1 (5.48)

or

h

d
=

1√
n l d2

=
1√
φ

(5.49)

Figure 5.3: Individual polymer molecules are aligned in the direction of flow

Hence as φ → 0, h/d → ∞ and molecules are far apart. But as φ → 1, h → d and

when φ > 1, h < d and molecules overlap transversely.

For the purpose of rescaling variables, it is useful to see that,

h

d0

=
1√

n l0 d2
0(l/l0)

=
1√

φ0(l/l0)
(5.50)
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As the polymer molecules start stretching, the value of instantaneous pervaded vol-

ume fraction is calculated using Eq. (5.47). Based on φ and h, we can identify three main

dilution regimes. The expression for ζr/ζZ in each of these regimes is discussed below:

Dilute regime, φ 6 0.01

For this regime, (Batchelor, 1971)’s interpolation formula for non-dilute rod suspen-

sions is used to derive an expression for ζ , suggestive of a solution with partially stretched

but non-overlapping chains.

ζr
ζZ

=

[
K/
√

3

K/
√

3 + ln(F )

]
l

l0
(5.51)

where,

F =
l/d

1 + l/h
, when l/d > 1 + l/h (5.52)

= 1 otherwise (5.53)

This method is used to ensure that ζ always increases for l/d > 1. Although Eq.

(5.52) is asymptotically valid for large aspect ratios, at small aspect ratios just above 1,

ζr/ζZ first decreases with Eq. (5.52) with increasing l/d, before becoming an increasing

function of l/d. To avoid this unphysical behavior, Eq. (5.53) is used. Effectively the log

term is in use for all aspect ratios above 1.11, so the adjustment by Eq. (5.53) occurs only

near a very small domain of aspect ratios.

Figure 5.4: Graph showing two distinct regions of the dilute regime

Intermediate regime, 0.01 < φ < 1

No simple expressions are available for the drag coefficient in this regime as the

inter-molecular HI become increasingly important as molecules approach overlap. But it is
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Figure 5.5: Dynamic critical overlap, φ = 1

expected that screening of hydrodynamic interactions sets in at incipient overlap at φ = 1

when partially stretched coils just begin to overlap. At this condition the partially stretched

coil is modeled as a string of Nb = l/d “beads” of diameter d. Intramolecular hydro-

dynamic interactions (HI) persist within each bead, but the presence of the neighboring

molecules dampens velocity perturbations at length scales larger than d, that is there are

no HI across segments contained in different beads. Hence the friction coefficient of the

whole chain is the Rouse-like friction of Nb beads, i.e.

ζr = Nbζd, (ζd is the friction of each bead) (5.54)

but Zimm-like HI within each bead gives,

ζd =
d

d0

ζZ (5.55)

Hence when φ = 1,

ζr
ζZ

=
l

d

d

d0

=
l

d0

=
l

l0
(5.56)

When 0.01 < φ < 1, for any l/d, we interpolate linearly w.r.t. φ the value predicted

at φ = 0.01 and the value predicted at the same l/d at φ = 1. The final expression for

ζr/ζZ is given as,

ζr
ζZ

=

[
K/
√

3

K/
√

3 + ln(Fc)

](
l

l0

)(
1− φ

1− 0.01

)
+

(
l

l0

) (
φ− 0.01

1− 0.01

)
(5.57)

where,

Fc =
l/d

1 + 0.1 l/d
, for

l

d
>

1

0.9
(5.58)

= 1 for
l

d
<

1

0.9
(5.59)

Semi dilute overlapping regime: φ > 1
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Figure 5.6: Semi-dilute regime with overlapping polymer molecules

In this regime the solution is no longer dilute and the adjacent polymer molecules

begin overlapping each other. To calculate the friction coefficient in this case, the concept

of “blobs” is used (Doi and Edwards, 1986; Rubinstein and Colby, 2003). A blob represents

the length scale at which segments of any molecule encounter segments from other chains.

Again each molecule can be considered to consist ofNb = l/d “beads”. As shown in Figure

5.6, each bead (blue circles) contains blobs and each blob contains polymer segments. The

red circles indicate blobs of a particular chain whose mean drag needs to be calculated. The

pink circles are blobs belonging to other chains. Intramolecular HI i.e. Zimm behavior is

only restricted to within a blob and no HI takes place (i.e. Rouse-like behavior) between

blobs of a particular chain. The blobs exactly fill the full space i.e. total volume of all blobs

from all chains is equal to the solution volume. This means that if ξ is the size of a single

blob, and each chain has Nξ blobs, then

nNξ ξ
3 = 1

or

φNξ ξ
3 = ld2 (5.60)

The size of each blob is determined by the fact that within each blob, an equilibrium

like structure persists and

ξ2 = b′k Lξ α
2(zξ) = b′k bk

(
Nk

Nξ

)
α2(zξ) (5.61)

where b′k is a modified Kuhn-segment length, due to local stretching by the flow and

zξ is the solvent quality of the sub-chain of contour length Lξ contained within the blob

such that,

zξ =
z√
Nk

√
Nk/Nξ =

z√
Nξ

,because each blob has Nk/Nξ kuhn segments (5.62)
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b′k is eliminated from the above equations by assuming that d is similarly related,

d2 = b′kbk

(
Nk

Nb

)
α2(zb) (5.63)

where

zb = z

√
Nk/Nb

Nk

=
z√
Nb

,because each bead has Nk/Nb kuhn segments (5.64)

From Eqs. (5.60-5.64) above, z and φ0 are specified as input parameters and at any

instant we have l and d from the ODE solutions. φ is also known from φ0, l and d according

to Eq. (5.46). So the unknown quantities are ξ, Nξ and b′k. Out of these ξ and Nξ are

important. So we divide Eq. (5.61) by (5.63), to eliminate b′k and get

ξ2

d2
=
Nb

Nξ

α2(zξ)

α2(zb)
(5.65)

Then Eqs. (5.60) and (5.65) are combined to eliminate ξ by first taking Eq. (5.65) to

the power of 3/2,

ξ3

d3
=

(
Nb

Nξ

)3/2
α3(zξ)

α3(zb)

and divide by Eq. (5.60) to get rid of ξ3 and get:

Nb

Nξ

1

φ
=

(
Nb

Nξ

)3/2
α3(zξ)

α3(zb)

1

φ
=

(
Nb

Nξ

)1/2
α3(zξ)

α3(zb)

1

φ2
=

(
Nb

Nξ

)
α6(zξ)

α6(zb)

This can be re-arranged as,

Nξ

Nb

= φ2α
6(zξ)

α6(zb)
(5.66)

But Nξ = (z/zξ)
2 and Nb = (z/zb)

2 from Eqs. (5.62) and (5.64); hence we get,

Nξ

Nb

=

(
zb
zξ

)2
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Substituting above relation in Eq. (5.66) we get,

(
zb
zξ

)2

= φ2α
6(zξ)

α6(zb)

Re-arranging the above Eq. we obtain,

z2
ξ α

6(zξ) =
z2
b α

6(zb)

φ2

But φ is defined as,

φ = φ0
l d2

l0 d2
0

Thus we get,

z2
ξ α

6(zξ) =
z2
b α

6(zb) l
2
0d

4
0

φ2
0 l

2 d4
(5.67)

All quantities on the R.H.S. are known, and we must solve the function for Eq. (5.66)

after using the function in Eq. (5.33) with zξ as the variable. From zξ, Nξ can be calculated

using Eq. (5.62).

Then the drag coefficient is calculated as the Rouse drag of Nξ blobs

ζr = Nξ ζξ (5.68)

and ζξ is the Zimm-drag of a single blob

ζξ =

(
ξ

d0

)
ζZ (5.69)

or

ζr
ζZ

=
Nξ ξ

d0

=
l d2

φ ξ2 d0

from Eq. 5.60

=
1

φ

d2

ξ2

l

d0

=
1

φ

l

d0

Nξ

Nb

α2(zξ)

α2(zb)

=
1

φ

l

d0

φ2 α
2(zξ

α2(zb)

α2(zξ)

α2(zb)

ζr
ζZ

= φ
α4(zξ)

α4(zb)

l

d0

= φ
α4(zξ)

α4(zb)

l2 d2

d4
0

(5.70)
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Thus given φ0 at any instant, if l and d are known, zξ can be calculated by solving

Eq. (5.67) and subsequently, ζr/ζZ can be calculated.

This model is referred to as the “Conformation-Dependent Drag with self concentra-

tion model” or CDD-sc model.

Standard FENE-P model can be obtained by ignoring the concentration and con-

formation dependence of the frictional drag in the CDD-sc model. By ignoring just the

concentration dependence, a variant of the conformation-dependent drag (CDD-id) model

that is valid in the limit of infinite dilution is derived.

To summarize the discussion on dumbbell models, we present ζr/ζZ expressions for

the various dumbbell models discussed above,

Oldroyd-B and FENE-P models

ζr
ζZ

= 1 (5.71)

CDD-id model

ζr
ζZ

=

[
K/
√

3

K/
√

3 + ln(l/d)

]
l

l0
(5.72)

CDD-sc model Based on the value of φ,

φ = φ0
l d2

l0 d2
0

(5.73)

different regimes are identified as

For φ 6 0.01

ζr
ζZ

=

[
K/
√

3

K/
√

3 + ln(F )

]
l

l0
(5.74)

where,

F =
l/d

1 + l/h
, when l/d > 1 + l/h

= 1 otherwise

For 0.01 < φ < 1

ζr
ζZ

=

[
K/
√

3

K/
√

3 + ln(Fc)

](
l

l0

)(
1− φ

1− 0.01

)
+

(
l

l0

) (
φ− 0.01

1− 0.01

)
(5.75)
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where,

Fc =
l/d

1 + 0.1 l/d
, for

l

d
>

1

0.9

= 1 for
l

d
<

1

0.9

For φ > 1

ζr
ζZ

= φ
α4(zξ)

α4(zb)

l2 d2

d4
0

(5.76)

5.2.5 Multi-mode models

So far we have discussed single mode dumbbell models, where the entire polymer

molecule is described as two beads connected by a spring and is characterized by

just one relaxation time. However any real polymer molecule is composed of several

segments and each sub-chain of the molecule will have its own relaxation time. These

different modes can be considered similar to the different vibrational modes of piano

wire. The fundamental mode is for the whole length of wire vibrating with two ends

as nodes, and the second harmonic being the additional node added in the center so

the frequency of vibration is doubled and the third, the fourth and so on. Because

the segments are smaller in size as compared to the full chain they will respond

faster to any kind of flow and thus will have a smaller relaxation time. In dumbbell

models, only the dominant fundamental mode with the longest relaxation time is

considered. In such single mode models, the chain dynamics on length scales shorter

than the whole chain cannot be captured, and thus they cannot reproduce the linear

viscoelastic spectrum of relaxation times of real polymer molecules.

To overcome these shortcomings of the dumbbell models , multiple mode alterna-

tives have been developed such as the freely jointed bead-rod Kramers chain or a

freely jointed bead-spring chain. In these multi-mode models the polymer molecule

is modeled as a series of beads connected by either rigid rods or springs. Detailed

description of the multi-mode models is beyond the scope of this chapter but can be

read in detail in Bird et al. (1987b).

Entov and Hinch (1997) and Clasen et al. (2006b) have used different variants of

multi-mode FENE models in their analysis of capillary thinning. Prabhakar et al.
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(2006) on the other hand used a conformation dependent drag (CDD) multi-mode

model. No multi-mode model which includes both CDD and self-concentration ef-

fects has been developed yet.

Prabhakar (2011) recently developed the single mode dumbbell model described

earlier, accounting for strengthening of inter-molecular hydrodynamic interactions

when chains unravel, stretch and begin to overlap. The model further incorporates

the swelling in size caused by excluded volume interactions within polymeric coils

at equilibrium, thus incorporating both CDD and self-concentration effects. We pro-

pose to use this single mode model in our analysis for two reasons. First a multi-mode

model with self-concentration and CDD effects is not available presently. Even if we

develop such a multi-mode model it will be computationally intensive. Second, since

all the salient rheological properties such as relaxation time are usually associated

with changes in polymer conformation of the complete polymer chain, therefore the

extra complexity brought in by multi-mode models can be ignored as a first approxi-

mation.

5.3 Numerical predictions for capillary thinning and breakup

Two different approaches for the modeling of capillary thinning in liquid bridges are

presented in this work. Below is a brief description on their formulation.

5.3.1 Mid-Filament Analysis (MFA)

Entov and Hinch (1997) proposed a simple stress balance at the mid-point of the

liquid bridge in order to study the evolution of filament radius as a function of time.

They assumed that the thinning dynamics of the filament is controlled predominantly

by a balance between surface tension, gravity, viscous and elastic stresses, and that

the inertia is negligible. The governing stress balance is thus given by

3ηsε̇ =
4Fz(t)

πD(t)2
− (τ zzp − τ rrp )− 2 γ

D(t)
+
ρgD2

0h0

D(t)2
(5.77)

where Fz is the tensile force, D is the diameter of the liquid bridge at the mid plane,

ρ is density of polymer solution.
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The extension rate ε̇ is given by,

ε̇ = −2

h

dh

dt
(5.78)

It was shown that below a certain critical diameter (D . 1), the capillary stresses

developed in the necked region can easily overcome the gravitational forces (Rodd

et al., 2005; Kolte and Szabo, 1999). Thus the last term in the above stress balance

was neglected.

The development of the tensile force Fz(t) is related to the rate of change of diameter

D(t). Papageorgiou (1995) proposed a self-similar solution for the capillary pinch

off of a viscous fluid and determined that the coefficient of proportionality

X =
Fz(t)

πγD(t)
= 0.7127 (5.79)

Considering the above simplifications, the governing stress balance is reduced to

3ηsε̇ = (2X − 1)
2 γ

D
− (τ zzp − τ rrp ) (5.80)

Numerical analysis of the transient evolution of the mid-filament diameter using this

reduced stress balance is termed as the mid-filament analysis (MFA) in this work.

Entov and Hinch (1997); Clasen et al. (2006b) and Prabhakar et al. (2006), all have

used the MFA to study the dynamics of capillary thinning. We have identified limita-

tions in this analysis, and suggest an alternative, that is discussed in the next section.

5.3.2 Full-Filament Analysis (FFA)

MFA is based on a simple stress balance at the mid-plane of the liquid bridge. How-

ever such a stress balance is valid only if the full filament is perfectly cylindrical.

At time t = 0 when the capillary thinning starts, the shape of the liquid bridge

is not cylindrical. A cylindrical filament starts to form at the center of the bridge

as the thinning proceeds and the solution from the center is pushed to the two end

reservoirs. The MFA thus loses some critical information during the initial thinning

profile, which may be important in deciding the thinning dynamics thereafter. Thus

use of unsuitable governing equation may be one of the reasons why numerical anal-

ysis by all previous researchers fails to predict the concentration dependence of the

characteristic relaxation time.
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As an alternative to MFA, one can study the thinning dynamics of the liquid bridge

using a simplified one dimensional (1D) slender-jet analysis. The slender-body ap-

proximation is widely used in jets, filaments and drop pinch-off literature (Eggers

and Dupont, 1994; Eggers, 1997; Eggers and Villermaux, 2008).

Eggers and Dupont (1994) first presented a one dimensional model for studying drop

formation from a capillary. This 1D model assumes that the radius of the filament

varies very slowly compared to its variation in the axial direction. With this assump-

tion, the change of hydrodynamic variables in the radial direction can be neglected.

The one dimensional equations for the radius and the velocity are obtained from

the transient Navier-Stokes equation by expanding the radial variable in a Taylor se-

ries and retaining only the leading-order terms. The governing equations of the 1-D

model proposed by Eggers and Dupont (1994) for the radial profile h(z, t) and the

axial velocity v(z, t) are:

∂h

∂t
= −v∂h

∂z
− 1

2
h
∂v

∂z
(5.81)

∂v

∂t
= −v∂v

∂z
− 1

ρ

∂p

∂z
+

3ν

h2

∂

∂z

(
h2∂v

∂z

)
− g (5.82)

where p =γ

[
1

h(1 + h2
z)

1/2
− hzz

(1 + h2
z)

3/2

]
,

hz =
∂h

∂z
and hzz =

∂2h

∂z2

Here v is the axial velocity of the fluid, z axial distance along the slender filament, t

time, p pressure, ν kinematic viscosity of the polymer solution.

One difficulty in using this approximation is that the liquid bridge near the end caps

(or near the nozzle for jets) may not be cylindrical. However using the same approx-

imation many previous studies have shown that the 1-D models give fairly accurate

predictions even beyond their expected range of applicability and agree well with

more sophisticated 2-D models (Yildirim and Basaran, 2001).

Also using the full expression for the mean curvature in the Laplace pressure helps

in predicting the exact equilibrium shapes of static bridges and this at least partially

helps in dealing with the above problem. It has been further shown that using the full
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curvature results in better agreement between experimental and theoretical predic-

tions (Eggers and Dupont, 1994; Zhang et al., 1996; Ambravaneswaran and Basaran,

1999).

Based on the original analysis of Eggers and Dupont (1994), Zhang et al. (1996)

presented a 1-D model for Newtonian viscous liquid bridges. Clasen et al. (2006a)

extended this model to viscoelastic liquid bridges. To account for polymer contri-

bution they used the Oldroyd-B model and solved the governing equations using a

numerical code similar to that of Eggers and Dupont (1994). They compared their

simulation predictions of the bridge profile and evolution of minimum filament di-

ameter with experiments and obtained a fairly good agreement between the two.

The basic surface condition and the momentum balance equation in the 1-D model

proposed by Clasen et al. (2006a) are,

∂h

∂t
= −v∂h

∂z
− 1

2
h
∂v

∂z
(5.83)

∂v

∂t
= −v∂v

∂z
+

1

ρ

∂p

∂z
+

3ν

h2

∂

∂z

(
h2∂v

∂z

)
− g − 1

h2

∂

∂z

(
h2(τ zzp − τ rrp )

)
(5.84)

where p = γ

[
1

h(1 + h2
z)

1/2
− hzz

(1 + h2
z)

3/2

]
(5.85)

The normal polymer stress contributions (τ zzp and τ rrp ) can be calculated by using any

of the available polymers constitutive models such as Oldroyd-B, FENE-P, etc.

Similar 1-D models were subsequently been used by many researchers (Bhat et al.,

2010; Ardekani et al., 2010; Tembely et al., 2012) to study the dynamics of capillary

thinning. However to the best of our knowledge, no one has so far applied the one-

dimensional model to specifically study the anomalous concentration dependence

observed by Clasen et al. (2006b).

5.4 Open questions

Based on the literature review, we propose to answer the following hitherto unad-

dressed questions:

a). Before the formation of a cylindrical thread, what is the effect of filament shape

on the thinning dynamics of the liquid bridge. The motivation for this work comes
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from a previous study by McKinley and Tripathi (2000) on Newtonian liquid bridges.

McKinley and Tripathi (2000) used a full filament model derived from a Lagrangian

approach and showed that the thinning profile obtained from MFA does not agree

with the full filament model for a large section of thinning. They also showed that the

two models agree in the last stages of thinning after including Papageorgiou (1995)’s

correction in MFA. In this study we ask the following question, will the difference

between FFA and MFA be significant even in the case of viscoelastic liquid bridges

?

b). By using FFA along with a modified polymer model that accounts for both con-

formation dependent drag and self-concentration effects, can we numerically predict

the experimental observations of Clasen et al. (2006b), without having to use any

fitting parameters ?

5.5 Approach and Methodology

5.5.1 Approach

We first used FFA and MFA with FENE-P model and compared the time evolution

rate of the filament radius to study the effect of the initial non-cylindrical profile on

the thinning dynamics of the liquid bridge.

We then implemented FFA with the modified dumbbell model (CDD-sc) for dimen-

sionless parameters corresponding to experimental data provided by Clasen et al.

(2006b). After obtaining the filament radius evolution over time, we extracted the

values of characteristic relaxation time from the slopes of the middle elastic region

of the thinning profile. The extracted values of λe are then compared to extracted by

Clasen et al. (2006b) for experimental thinning profiles.

5.5.2 Dimensionless equations for FFA

Equations (5.83 - 5.85) are the equations describing the evolution of the full filament.

The equations can be recast into dimensionless forms using R0, the radius at z = 0

as the characteristic length scale, viscous time λv=6ηsR0/γ as the characteristic time
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Figure 5.7: Schematic of a typical liquid bridge

scale, 〈Q2〉0 as the characteristic scale for conformation M and nkBT as the scale

for polymer stress.

nkBT =
ηp,0
λ0

(5.86)

In a dilute solution, it is expected that ηp,0 varies with concentration as:

ηp,0
ηs

=
(η0 − ηs)

ηs
= c [η0] (1 + kH c+ ....) (5.87)

where [η0] is the intrinsic viscosity and kH is known as the Huggins’ coefficient.

The relaxation time also varies with concentration as:

λ0 = λZ (1 + kλ c+ ....) (5.88)

where kλ is a coefficient similar to kH . Since there is no information available for kλ,

we assume that kλ ≈ kH .

In other words,

ηp,0
ηs c [η0]

= (1 + kH c+ ....) ≈ (1 + kλ c+ ....) =
λ0

λZ
(5.89)

Therefore,

nkBT =
ηp,0
λ0

≈ ηs c [η0]

λZ
(5.90)
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Further, an experimental estimate of c∗ is

c∗ = 0.77/ [η0] (Clasen et al., 2006b).

Substituting above,

nkBT ≈
0.77 ηs (c/c∗)

λZ
=

0.77 ηs φeq
λZ

(5.91)

The final non-dimensional equation of continuity,

∂th = −vhz −
1

2
hvz (5.92)

and equation of motion,

∂tv = −vvz +Oh2

[
−36Bo+ 36Pz +

18

h2
(h2vz)z +

4.62φ0

Dez

1

h2

[
h2(τ zzp − τ rrp )

]
z

]
(5.93)

and

P =

[
1

h(1 + h2
z)

1/2
− hzz

(1 + h2
z)

3/2

]
The dimensionless numbers are given as,

Oh =
ηs√
ργRo

Ohnesorge Number (5.94)

Bo =
ρgR2

o

γ
Bond Number, (5.95)

DeZ =
λZ
λv

Zimm Deborah Number , (5.96)

φ0 =
c

c∗
Initial polymer concentration (5.97)

5.5.3 Dimensionless equations for MFA

As noted earlier MFA refers to the simple stress balance (Eq. 5.80) at the mid-

plane of the liquid bridge. This equation can be non-dimensionalised using the same

characteristic scales as that used for the FFA. The final dimensionless governing

equation for MFA is

dh

dt
= −(2X − 1) +

0.128 ∗ φ0

DeZ

(
τ zzp − τ rrp

)
h (5.98)
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5.5.4 Dimensionless equations for polymer constitutive model

The general expression for polymer stress (Eq. 5.27), can be used to obtain the

polymer stress difference as,

τ zzp − τ rrp =
3nkBT

〈Q2〉0
f̄ [Mzz −Mrr] (5.99)

The above expression is substituted in the governing equations for both MFA and

FFA.

Eq. (5.37) represents a general equation forM , and can be expanded as follows,

∂t

∂z
M + v

∂M

∂z
= 2M

∂v

∂z
− 1

λ0

1

ζ/ζ0

[
f̄M − 〈Q

2〉0
3

δ

]
(5.100)

The above equation can be non-dimensionalized using the same characteristic scales,

∂t

∂z
M + v

∂M

∂z
= 2M

∂v

∂z
− 1

De0

1

ζ̄

[
ΓM − 1

3

]
(5.101)

where

De0 =
λZ
λ0

SAOS Deborah Number (5.102)

and

Γ = 1 for Oldroyd-B model (5.103)

=
Nk/α

2 − 1

Nk/α2 − trM/3
for FENE-P and CDD-id and CDD-sc models

(5.104)

λ0 for a particular concentration is extracted from the plot of λ0/λz vs c/c∗ provided

in Clasen et al. (2006b) from SAOS experiments. ζ̄ = ζ/ζ0 is 1 for Oldroyd-B and

FENE-P models, however changes with changing concentration and conformation in

CDD-sc model.

Expressions for Mzz and Mrr can be obtained by expanding Eq. (5.101) as,

For FFA

∂Mzz

∂t
+ v

∂Mzz

∂z
= 2 ε̇Mzz −

1

De0

1

ζ̄

[
f̄Mzz −

1

3

]
(5.105)

∂Mrr

∂t
+ v

∂Mzz

∂z
= −ε̇Mrr −

1

De0

1

ζ̄

[
f̄Mrr −

1

3

]
(5.106)
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and for MFA,

dMzz

dt
= 2 ε̇Mzz −

1

De0

1

ζ̄

[
f̄Mzz −

1

3

]
(5.107)

dMrr

dt
= −ε̇Mrr −

1

De0

1

ζ̄

[
f̄Mrr −

1

3

]
(5.108)

5.5.4.1 Numerical method

For the full filament analysis, the governing equations are solved using the code

DLSODE (Double precision Livermore Solver for Ordinary Differential Equations).

A detailed description of the DLSODE along with usage instructions are provided

in Hindmarsh (1983) and Hindmarsh and Radhakrishnan (1993). It is based on the

method of lines approach and includes an adaptive implicit time discretization. The

relative and absolute tolerance levels for adaptive time stepping were set to 10−5.

Discretization is based on the backward difference formulas (BDF’s) and the im-

plicit equations are solved by a chord iteration with an internally generated diagonal

Jacobian approximation.

For the spatial discretization, a fixed central finite difference scheme was used. Up-

wind approximation was also tried, however the solution in this case did not conserve

volume. Forward and backward difference schemes were used at the bottom and top

boundaries.

For the mid filament analysis, the governing equations are solved in MATLAB using

the initial value ODE solver, ODE45. The radius at the midpoint of the initial profile

used in the full filament analysis was used as the initial condition for h in mid filament

analysis.

5.5.4.2 Initial conditions

For FFA, we need to supply the initial shape of the full liquid bridge as the initial con-

dition for DLSODE. To get the initial condition, we have used two different methods.

In one, where the initial condition was not previously known, we used the equation

derived by Spiegelberg et al. (1996) for the initial condition and supplied it into the

code via a subroutine. Spiegelberg et al. (1996) has derived a general expression
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which only needs the initial radius at the mid-filament and diameter of the end-plates

as inputs, which then gives a full liquid bridge shape. In other cases where we had

the initial profile, like in experimental data (during validation studies), we collected

the data from the available experimental profile and supplied it to the code directly.

In all cases we have assumed v(z, 0) = 0 andM (z, 0) = δ (equilibrium state).

The ODE45 code for MFA requires the value of filament radius at the mid-filament

(hmin(t)) and polymer conformation (Mzz and Mrr) at time, t = 0. Once again, the

equilibrium conformation value is used as initial condition forM .

Clasen et al. (2006b) do not provide the initial diameter at the mid-filament of the

liquid bridge. Thus using different initial diameters with the equation derived by

Spiegelberg et al. (1996), we compared the profiles to that obtained by Clasen et al.

(2006b) for the minimum concentration for each sample. The initial diameter which

showed a good match was selected and used FFA and MFA for comparison with

Clasen et al. (2006b)’s data.

5.5.4.3 Validation of the FFA scheme

We have performed some standard validation tests (Yildirim and Basaran, 2001) and

also compared our simulation results with similar examples from literature (McKin-

ley and Tripathi, 2000; Ramos et al., 1999), to ensure the accuracy of the simulations.

1. We made sure volume conservation during the computations. To ensure this,

the volume of the bridge(V ) was continuously monitored and we made sure

that the error in volume change is not more than 0.1 %.

V = π

∫ L

0

h2dz (5.109)

2. Liquid bridge of length smaller than its circumference is stable and any per-

turbation to the shape of such a bridge will die out, and the bridge evolves to

the stable cylindrical shape (Rayleigh, 1882). We introduced a small-amplitude

sinusoidal perturbation and let it evolve in time. Our code was shown to satisfy

the Rayleigh stability test and gave a stable cylindrical bridge with evolution in

time.
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3. Convergence studies ensure that computed solutions are insensitive to further

mesh refinement.
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Our FFA simulation

Mckinley and Tripathi (2000)’s simulation 

Figure 5.8: Comparison of thinning profiles obtained by McKinley and Tripathi (2000) and this

study for the same set of parameters that are used to generate Plot 2 (b), Bo = 0, in McKinley and

Tripathi (2000).

4. After the code satisfied the above three conditions, we compared it with cal-

culations in literature reported for Newtonian fluids (McKinley and Tripathi,

2000; Ramos et al., 1999).

McKinley and Tripathi (2000) studied capillary thinning of Newtonian liquid

bridges using equations based on an integral formulation of mass and momen-

tum balances, with radial averaging, while ignoring the inertial effects. They

discretized the equations using a Lagrangian approach based on the so-called

“slice” model. We on the other hand have used differential equations from

Navier-Stokes & lubrication approximation for slender filaments. We further

fully include the inertial effects and discretize the equations using an Eulerian

approach. Figure 5.8 shows comparison between our model and that of McKin-

ley and Tripathi (2000) for the same set of parameters.

As can be seen from Figure 5.8 we get qualitative agreement with McKinley and

Tripathi (2000)’s results. However there is no exact overlap between the two. It
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should be noted that McKinley and Tripathi (2000)’s model is inertia less and is

thus applicable only for the case of Oh =∞, whereas our model does consider

inertia. To show the results at Oh → ∞ we performed simulations at different

values of Oh, and observed that with increasing Oh our predictions appear to

approach an asymptotic curve different from the prediction of McKinley and

Tripathi (2000) (Figure 5.9). The reason for this disagreement is perhaps due to

the different approaches used in the two models.
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Figure 5.9: Comparison of thinning profiles for a range of Ohnesorge numbers

We assume that the results shown by McKinley and Tripathi (2000) is obtained

from a fully converged numerical simulation. Our simulation results have also

been checked for convergence. Thus theoretically, if both the solutions are

converged, one would expect the final result should be the same and must be

independent of the numerical technique used to derive it. Thus it is not clear

to us, as to why there is difference between our numerical results and that of

McKinley and Tripathi (2000). However even though there is no exact overlap

we do get qualitative agreement with McKinley and Tripathi (2000)’s results.

5. Ramos et al. (1999) studied the evolution of slender liquid bridges both numer-

ically and experimentally for Newtonian fluids. They used a one-dimensional

model similar to us, however they use the finite element method for the dis-
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Figure 5.10: Comparison of numerical simulations of bridge evolution with time between this

study and Ramos et al. (1999) for the same set of parameters that are used to generate Plot 4 (a), in

Ramos et al. (1999) i.e.Oh = 6.33 and Bo = 0.08.

cretization in z-coordinate and an adaptive implicit finite difference scheme of

second order for discretization in time. Figure 5.10 shows a comparison be-

tween our results and those obtained by Ramos et al. (1999). Our data agrees

well with Ramos et al. (1999) , and the slight disagreement can be attributed to

the different methods used in the simulations.

For the mid filament analysis, the governing equations are solved in MATLAB using

the initial value ODE solver, ODE45. The radius at the midpoint of the initial profile

used in the full filament analysis was used as the initial condition for h in mid filament

analysis.

5.5.5 Hybrid scheme

5.5.5.1 Problems associated with running FFA

Running the simulation for the full profile is computationally demanding at high

values of Ohnesorge number (Oh) and Bond number (Bo). The high Oh number
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slows down the thinning considerably whereas high Bo makes the profile asymmet-

ric, which requires finer meshes to avoid numerical errors. Also with time as the

polymer molecules begin to stretch from their coiled state, it is accompanied by sharp

increase in polymer stress. Thus with time the sharp gradients in radius, velocity and

polymer stresses lead to numerical artifices. Since our algorithm does not feature

adaptive grid refinement, we need to monitor the bridge profile and manually refine

the mesh to continue simulations.

With the given shortcomings it is possible to obtain the complete thinning profile

only for low Ohnesorge numbers (Oh = 10). However the polymer solutions used by

Clasen et al. (2006b) have high values of Oh and Bo and running the code at these

high values it was possible to obtain thinning of radius by one order of magnitude

(e.g. from 1 to 0.1) in approximately 20 days of simulations.

5.5.5.2 “Stitching” of FFA with MFA

From Figure 5.11 it is apparent that if the thinning profile of MFA is shifted horizon-

tally on the time axis it would roughly overlap the FFA profile in the elastic-stress

dominated regime. This similarity between the two profiles occurs as the liquid

bridge becomes increasingly slender, suggesting that the FFA is only necessary to

capture the initial thinning of the filament. Once a slender thin cylindrical filament

is formed, the result from FFA is as good as that from MFA and it can be replaced

with MFA from that point onwards without losing much of the information at the

mid-filament.

The time at which this switchover between FFA to MFA is feasible will be referred to

as the switchover time. Thus if a reliable method is developed to find the switchover

time, it would be possible to stop the FFA from that point and start the MFA with

initial conditions obtained from the last point of FFA. This could potentially solve

the problem of running the complete FFA at higher Oh and Bo.

A criterion is required to determine the switchover point; here we take motivation

from a previous paper by McKinley and Tripathi (2000) on capillary thinning of

Newtonian solutions. McKinley and Tripathi (2000) showed that during the last

stages of capillary necking of a viscous Newtonian fluid, the evolution of the liq-
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Figure 5.11: Comaprison of thinning profiles obtained using FFA (red) and MFA (blue) for the

following set of parameter values, Oh = 10, φ0 = 0.1, Bo = 0, Nk = 2500 and De = 50. In both

cases, the polymer model is FENE-P. The number in the profiles represents the time at which they

were obtained.

uid bridge can be described by the simple linear similarity solution of Papageorgiou

(1995) [X = 0.7127]. In the final stages the Papageorgiou (1995) solution overlaps

the thinning profile predicted by the one-dimensional Lagrangian simulation used by

McKinley and Tripathi (2000). Papageorgiou’s solution is based on the zero dimen-

sional local force balance at the mid-point of the liquid bridge. It assumes a smooth,

perfectly slender profile. However the filament profile is not slender at the start of

thinning and thus the local balance is not valid in the initial stretching phase.

The one-dimensional Eggers and Dupont (1994) model that we have used in our

analysis is quite similar to the Lagrangian model used by McKinley and Tripathi

(2000), as both consider the full-profile. We find similar agreement with Papageor-

giou (1995) solution in the last stages of capillary thinning. This suggests that in

principle the 1 D solution can be replaced by the zero dimensional solution in the last

stages without losing any information. The exact time when this transition is possi-
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ble can be termed as the switchover time. Qualitatively we know that the filament

shape will approach the self-similar solution as the liquid bridge becomes increas-

ingly slender. The switchover time will be the point from where the slope of the

profile obtained from linear balance matches to that obtained from the 1-D model.

As observed in Clasen et al. (2006b), different concentration but same molecular

weight polymer solutions follow a common thinning profile in the initial stages of

capillary thinning. This occurs because the polymer molecules take some time to

unravel and stretch from their coiled state. Thus in the initial stages of filament

thinning the polymer solutions behave as Newtonian solutions of common constant

viscosity and thereby follow a common profile. This scenario changes when the

polymer molecules have stretched enough to start contributing to the viscosity and

showcase the effect of the different polymer concentrations.

Therefore it is reasonable to use a common Newtonian thinning profile in the ini-

tial stages while comparing our simulation results with experiments. Thus the pure

solvent FFA for any given viscosity can be used to generate the thinning profile up

to switchover time. After this point, MFA can be run (with corresponding values of

Nk, De and φ) and the result obtained can be “stitched” to the pure solvent FFA. To

perform the MFA, we would need the initial conditions for h andM . From the pure

solvent FFA, the smallest radius of the liquid bridge profile at switchover time can

be used as the initial condition for h in MFA.

However getting the initial condition for M is not so direct, as we are using the

pure solvent FFA. Also, the switchover time and the time when polymer stresses

become significant may or may not be the same as the two are governed by differ-

ent mechanisms. The polymer stresses may have already become significant before

the switchover time. To determine the value of polymer conformation (M ) at the

switchover point we tested three different approaches. We compared the output from

three approaches with complete FFA runs and then selected the best approach.

First Approach

In the first approach we consider the simplest case by assuming that the polymer

molecules have not stretched enough and that the polymer stresses are not sig-

nificant before the switchover point. Thus in this case, we use the equilibrium
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polymer conformation,M = 1 as the initial condition forM in MFA.

Second Approach

As the polymer conformation and fluid equations are coupled, M continues to

evolve while running FFA, even at zero polymer concentration. Thus even for

φ = 0, if the Nk and De values corresponding to any polymer solution are used

in FFA, it would giveM at the mid-filament at switchover. This estimate is only

dependent on fluid flow, Nk and De values, and not on the polymer concentra-

tion (φ). However since De number is dependent on φ even this estimated M

value in principle has some representation of polymer concentration. In our sec-

ond approach we use this approximate value ofM from FFA at switchover time

as an initial condition for MFA. Using this approach necessitates substituting

the corresponding Nk and De number values for different polymer concentra-

tions before running the FFA. This again involves large amount of numerical

time for each set of parameters.

We would like to point out that a similar approach as this has been used by

Campo-Deano and Clasen (2010).

Third Approach

If macroscopic equations are decoupled from constitutive equations by setting

φ = 0 in these equations, the local strain rate in constitutive equations can still

be determined from FFA. In the third approach, the time dependent strain rate

that is obtained from FFA (pure solvent) is used in the polymer conformation

equation to calculate the M value at the switchover time. Here we have par-

tially decoupled the governing equations. By running pure solvent FFA up to

the switchover time, the effect of changingM on thinning profile is neglected,

but by including strain rate from FFA in the equation forM , the effect of thin-

ning profile is included in M . This partially decoupling is performed on the

assumption that the polymer contribution on capillary thinning is negligible up

to the switchover time.

The MFA calculation is split into two stages. For t < tswitchover; the stress

balance is not solved but the time dependent strain rate is fed into Eq. (5.107)

and (5.108). For t > tswitchover Eq. (5.107) and (5.108) are coupled with (5.98).
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5.5.5.3 Test of the three approaches

We used the pure solvent FFA to predict the evolution of filament radius for the

initial thinning up to switchover time. Thereafter, the MFA is performed by using

the initial conditions at the switchover time (initial value of M is obtained from one

of the above three approaches). The FENE-P dumbbell model is used for running

MFA. The MFA results are then stitched to the pure solvent FFA result to obtain the

complete profile. This profile is then compared to that obtained using the regular

FFA for different polymer solutions with varying Oh and φ. The above three ideas

were tested for their suitability in stitching MFA to pure solvent FFA and how close

is the stitched result to the full Non-Newtonian FFA.

The tests were performed for three Ohnesorge numbers (Oh) with three different

concentrations (φ) for each Oh. The values of other dimensionless numbers were

fixed at De = 50, Nk = 2000 and Bo = 0. The corresponding values of M using

the three approaches at different Oh are given in Table 5.1.

Table 5.1: M values at different Oh for the three approaches

M

1st Approach 2nd Approach 3rd Approach

Oh = 5 1 126 111

Oh = 10 1 65 61

Oh = 20 1 14 19
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Figure 5.12: Thinning profiles for polymer solutions with (a) Oh = 5 and φ0 = 0.001 , (b) Oh = 5

and φ0 = 0.01 and (c) Oh = 5 and φ0 = 0.1.
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Figure 5.13: Thinning profiles for polymer solutions with (a) Oh = 10 and φ0 = 0.001 , (b)

Oh = 10 and φ0 = 0.01 and (c) Oh = 10 and φ0 = 0.1.
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Figure 5.14: Thinning profiles for polymer solutions with (a) Oh = 20 and φ0 = 0.001 , (b)

Oh = 20 and φ0 = 0.01 and (c) Oh = 20 and φ0 = 0.1
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Based on the above plots, the following conclusions can be drawn,

• The pure solvent-FFA shows good agreement with Non-Newtonian FFA up to

the switchover time. It is seen that the agreement depends weakly on the Oh

number and much strongly on the polymer concentration. The two profiles

begin to deviate with increasing polymer concentration. However even at high

concentrations the difference is not large and therefore we can conclude that

pure solvent FFA can be used to represent the initial thinning profile for any

polymer solution until the switchover.

• The stitched profiles obtained using the 1st approach are very far off from that

obtained using Non-Newtonian FFA, in almost all the plots. Also the slopes of

middle elastic region are not quite in agreement with that of FFA. This suggests

that the polymer molecules start contributing to the total stress right from the

start of thinning and therefore the assumption of equilibrium polymer confor-

mation at switchover time, fails.

• Stitched profile obtained by using the 2nd and 3rd approach show much bet-

ter agreement with Non-Newtonian FFA than that obtained using the 1st ap-

proach. The agreement improves with increasing polymer concentration for all

Oh numbers. Also the slope of the middle elastic region agrees quite well with

the slope of the FFA. This suggests that the even though this simple stitching

mechanism may not give a perfect agreement with experimental profiles, it is

still much better than the pure MFA predictions.

• As seen from Table 5.1, the M values obtained from the 2nd and 3rd approach

are very close to each other. This is directly reflected in the very similar (almost

overlapping in most cases) stitched profiles obtained for the two approaches.

However the computational time required to solve the two approaches is signif-

icantly different. Depending on the Oh number, approach 2 takes almost 2-10

times more time than approach 3. Thus even though there is no pronounced

difference between the stitched profiles for the two procedures, use of the 3rd

approach can be favored over 2nd approach as it takes much less time to execute.
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5.5.5.4 Economy achieved using the ‘Hybrid’ analysis

Based on the conclusions of the previous section, approach 3 was our final choice to

determine the value of M at the switchover time. We now have a simple stitching

technique, the ‘hybrid’ analysis that can be used to generate thinning profiles for any

polymer solution.

Among others factors, we found that the Ohnesorge number of the solution was the

most important factor influencing the computational time to run the FFA simulation.

For Oh=10 (which is far less compared to Oh>100, the Oh numbers of the solutions

used by Clasen et al. (2006b)), it took us about 5 days to run the simulation. This

result is shown in Figure 5.11 (Page no. 134 of the thesis). And as it can be seen

even after 5 days or 120 hours, we could only reach a fraction of the elastic regime.

Further to this the simulation stops due to numerical limitations.

Another important factor which slows down the simulations considerably is the de-

velopment of polymer stresses in viscoelastic solutions. FFA simulations of polymer

solutions lead to high polymer stresses when the FENE parameter is large (∼ 5000

in our case). Large elastic stresses are also associated with sharp spatial stress in-

homogeneities as the local Weissenberg number falls below the critical value for the

coil-stretch transition. To resolve such gradients and their time evolution we needed

very fine meshes and small time steps with explicit algorithms which used uniform,

non-adaptive grids.

In the hybrid approach, we only need to run the pure solvent FFA (without polymer)

once for each Oh number. This single run for Oh=150 took about 24 hours. Here

the computational time is reduced mostly because no polymer stresses are generated

which most of the times undergo sharp changes and demand a much finer time step.

Then once we get the pure solvent FFA results, we do not need to repeat it for dif-

ferent concentrations for this Oh. We only need to find the corresponding initial

values for the MFA simulations depending on the polymer concentration and the cor-

responding De number. Running MFA simulations for each concentration only take

about 5-10 minutes. So taking an example of say 3 concentrations for one polymer

solution (say fixed Oh=100), it would take minimum 15-20 days to run the FFA, and

to run these same three simulations it would take less than 30 hours using the hybrid
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analysis.

5.5.6 Extraction of relaxation time

Our main goal in this chapter is to compare the values of relaxation times with that

obtained by Clasen et al. (2006b).

Clasen et al. (2006b) extracted the characteristic relaxation time (λe) from experi-

mental thinning profiles (h vs t data), and presented the results as λe/λz vs c/c∗ plot.

Similarly we will extract λe/λz from h vs t data predicted from simulations runs for

the experimental parameter values.

As predicted by Entov and Hinch (1997), h ∝ e−t/(3λe) in the middle elastic region of

the thinning profile. Thus it is possible to extract relaxation time (λe) from the slope

of lnh vs t plot. This method works fine for higher concentration solutions where a

distinct middle elastic region is obtained. However for low concentration solutions,

it is very difficult to distinguish the elastic region. Thus extraction of λe from the

slope of middle elastic region may return erroneous values in many cases.

However, we know that in the elastic regime,

Wi+ = ε̇λz = −2
d lnh

dt
λz =

2

3

λZ
λe

(5.110)

Therefore,

λe
λZ

=
2

3

1

Wi+
(5.111)

In Figure 5.15, we show the evolution of filament radius and instantaneous Weis-

senberg number as a function of time. The local Wi+ vs t curves distinctly shows

the three phases similar to hmin vs t plots in the evolution of the filament, for all the

concentrations.

In the early viscous phase, the solvent-dominated thinning of the filament drives the

Weissenberg number well beyond the critical Weissenberg number (Wic) required

for coil-stretch transition. This induces the coiled polymer molecules to stretch and

thereby leads to an accelerated growth in the polymer stresses. The high polymer

stresses slow down the thinning or the extensional strain rate, thus causing the Wi+

to drop significantly. Then once finite-extensibility limit of the polymer molecules
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Figure 5.15: Predictions of capillary breakup dynamics with the FENE-P model: time-evolution

of (a) mid-filament radius hmin and (b) instantaneous Weissenberg number, Wi+. Predictions

obtained for parameters correspoding to Sample C (7.9 ppm) as specified in Clasen et al. (2006b).

Sample C refers to polystyrene solution of Mw = 5.67× 106(g/mol) in the near-theta solvent

styrene oligomer.

is reached the polymer stresses cease to increase and the Wi+ numbers begins to

increase again in the last stage.

The middle elastic region is of particular interest to us. In this region, Wi+ after

dropping should ideally be constant and a flat line should be obtained until the finite

extensible limit is reached. Then the constant value of the elastic region can be di-

rectly used to calculate the relaxation time. However as can be seen from the Figure

5.15, Wi+ does not remain constant even for high values of φ0. We conservatively

decided to use the minimum Wi+ of the middle elastic region as the value that will

be used to calculate λe/λz. For example, in Figure 5.15 the small red circles in-

dicate locations of minima in Wi+ which can be used to extract capillary-breakup

relaxation times, λe.

5.5.7 Choice of parameters

Clasen et al. (2006b) performed capillary thinning experiments using (i) a CaBER

version 1 Thermo Electron, Karlsruhe, Germany with circular end-plates with a di-
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ameter Dp = 6 mm and (ii) a self-built apparatus with end-plates of diameter Dp =

3 mm. The details of the two setups are provided in Clasen et al. (2006b). How-

ever the experimental data obtained from the self-built apparatus is very irregular

possibly because of the method used to detect and extract the mid-filament diame-

ter. Therefore in this study we have only compared our simulation results for the

experiments that were performed on CaBER. Table 5.2 shows the values of various

physical parameters for samples named ‘B’, ‘C’ and ‘E’, by Clasen et al. (2006b).

Table 5.2: Physical parameters and Oh for experimental polymer solution samples

Sample Mw (g/mol) ηs/(Pa.s) γ/(N/m) r0/(m) ρ/(kg/m3) λz/(s) Oh Bo

B 2.84 x 106 51 0.0378 0.003 1026 2.01 150 2.4

C 5.67 x 106 40 0.0378 0.003 1026 4.64 117 2.4

E 8.27 x 106 40 0.0378 0.003 1026 8.35 117 2.4

5.5.7.1 Determination of switchover time

First the pure solvent full filament code is run in FORTRAN for all the three samples

using the respective value of Oh. As an initial condition to this code, the initial

profile needs to be provided. Clasen et al. (2006b) have given the aspect ratio of the

liquid bridge at the start of the capillary thinning, however they have not given the

initial mid-point radius or any other information related to initial profile. It is known

that the thinning profile of pure-solvent would be very close to that obtained using a

very low concentration polymer solution.

Table 5.3: Switchover time

Sample Oh Switchover time

B 150 400

C 117 200

E 117 200

Using this information, pure solvent full profiles were run for different starting mid-

point radius values and compared with lowest concentration thinning profile available
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for the three samples and the one which showed best agreement was selected. These

pure solvent curves are then plotted along with Papageorgiou (1995) solution at the

same Oh values. By comparing the two curves, switchover time (the point when the

slopes of the two curves match) is determined. Figure 5.16 shows how switchover

time was determined for sample B. Switchover time determined for the samples are

given in Table 5.3.
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Figure 5.16: Demonstration of procedure to calculate switchover time, using Oh = 150 (sample

B). The dark filled circles represent the experimental thinning profile for Sample B (2.5 ppm)

extracted from Clasen et al. (2006b)

5.5.7.2 Simulations runs for experimental values

After determining the switchover time, the strain rate data from pure solvent FFA

is used in the polymer conformation ODEs to determine the value of Mzz and Mrr

at the switchover time. These values are used as the initial condition to run the

MFA from the switchover time. Table 5.4 shows the different concentrations and the

corresponding dimensionless numbers for each sample, used in the simulation.

Once the initial conditions for h, Mzz andMrr are known, the MFA is run for various

concentrations of each sample. The profile obtained using MFA is then stitched to

the pure solvent full filament profile and a complete thinning curve is generated.

Using the complete thinning profile for λe/λz is extracted as described in the previous
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section and is then compared with λe/λz extracted by Clasen et al. (2006b) from

experimental profiles.

Table 5.4: Non-dimensional parameters characterizing experimental systems

Sample Mw Nk Oh Switchover time Dez c (ppm) c/c∗ De0

B 2.84 x 106 3773 150 400 0.0649

2.5 0.00027 0.0645

4.4 0.00048 0.06508

7.5 0.00078 0.06519

14 0.0015 0.06545

25 0.00272 0.0659

44 0.00444 0.06652

79 0.00805 0.06783

144 0.0146 0.07022

C 5.67 x 106 7640 117 200 0.0238

7.9 0.00115 0.24

10 0.00158 0.24059

31.6 0.00494 0.24507

100 0.01719 0.26143

316 0.04812 0.30274

E 8.27 x 106 11145 117 200 0.42

7.9 0.0015 0.42360

10 0.00186 0.42446

31.6 0.00614 0.43451

100 0.02023 0.46765

316 0.05977 0.56067

1000 0.18646 0.85869

5.6 Results & discussion

5.6.1 Effect of initial profile

We first examine the hypothesis that one reason why none of the previous studies

could reproduce the anomalous concentration dependence of relaxation time ex-

tracted from capillary thinning experiments, is the use of the simple MFA, which
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completely neglects the effects of initial profile. We tried to include these effects to a

certain extent by considering a 1-D model for the full liquid bridge based on slender

body approximation. However given the numerical limitations it was difficult to run

the full-filament 1-D analysis at higher values of Ohnesorge numbers. As an alter-

native, we developed a stitching method, where we would run the pure solvent FFA

up to a certain switchover time and then run MFA to get the remaining profile. This

“hybrid analysis” (HA), even though a simplification of the FFA is still sufficient to

capture the initial non-cylindrical profile.

In this section we compare MFA and HA for different values of dimensionless pa-

rameters and study the effect of initial profile on the evolution of filament diameter

with time. Figures 5.17 - 5.20 show comparison of thinning profiles obtained from

MFA and HA at φ0 = 0.005, 0.01, 0.05 and 0.5 and fixed values of Oh = 10, De =

50, Bo = 0 and Nk = 2000.

As can be clearly seen, the main difference between the two models, is the overall

breakup time. The profiles look similar, however the breakup times are different. One

interesting observation is that the difference in breakup time is large for low concen-

tration solutions and reduces as the concentration of polymer solution increases.

In MFA, we observe a faster initial thinning and thus the Wi in the viscous regime is

higher. This leads to the polymer being stretched more rapidly and it goes into the

elastic regime at an earlier strain. In the HA, because the overall rate is slower, the

polymer stresses develop more slowly and thus we have to wait for longer time and

up to a much smaller radius before polymer stresses become significant. The elastic

regime behavior for both MFA and HA are more or less parallel to each other.

At higher concentrations, as we can see in figure 5.20, the transition to elastic phase

occurs at a much higher value of radius, since the polymer stresses become sig-

nificant quickly, given the high concentration. Also, with increasing concentration

the relaxation times become larger and larger and the slopes becomes smaller. This

causes the elastic regime curves to become flatter. The combination of the above two

effects lead to the MFA and HA curves in the elastic regime coming closer for higher

concentrations.

Thus including the initial non-cylindrical profile matters most at very low (ultra-
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dilute) concentrations and is not so important at higher concentrations.
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Figure 5.17: Thinning profiles predicted by MFA and HA for φ0=0.005

This would matter most in direct comparison of experimental and simulation thin-

ning profiles. However, we are mainly interested in extracting the relaxation time

and not really in comparison of the thinning profiles. Therefore we extracted λe/λz

for thinning profiles shown in the above figures and compared the difference between

MFA and Hybrid model. Figure 5.21 shows the % difference between the values of

λe/λz extracted from MFA and hybrid model as a function of φ0. From Figure 5.21 it

can be seen that λe/λz shows the same trend as the breakup time, such that the differ-

ence is significant at low concentrations but reduces with increasing concentration.

Therefore we can conclude that for direct comparison of thinning profiles as well as

extraction of λe/λz, the initial non-cylindrical profile is much more important at low

concentrations of polymer solution and becomes successively less important as the

concentration increases.
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Figure 5.18: Thinning profiles predicted by MFA and HA for φ0=0.01
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Figure 5.19: Thinning profiles predicted by MFA and HA for φ0=0.05
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Figure 5.20: Thinning profiles predicted by MFA and HA for φ0=0.5
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Figure 5.21: ∆ (% difference between the values of λe/λz extracted from MFA and hybrid model)

as a function of φ0
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5.6.2 Effect of the Papageorgiou correction factor ‘X’

The value of X=0.7127 is valid only for Newtonian fluids and progressively shifts

towards unity as the elasto-capillary balance is reached (Campo-Deano and Clasen,

2010). However this gradual shift is difficult to incorporate in the numerical model.

Thus we first decided to check the effect of the value of X on the thinning profiles

and the final extracted relaxation time. We ran simulations for five different concen-

trations of Sample B for both X = 1 & X = 0.7127 and also compared these with the

experimental thinning curves obtained by Clasen et al. (2006b). Figure 5.22 below

shows this comparison.
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(a) Sample B − 14 ppm
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(c) Sample B − 44 ppm
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(d) Sample B − 79 ppm
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Figure 5.22: Comparison of experimental thinning profiles and those obtained from our

simulations using hybrid analysis with CDD-sc model and X=1 & X=0.7127 for various

concentrations of Sample B
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As can be seen from Figure 5.22 (a-e), even though the thinning profile predictions

obtained using X=1 are slightly different from those obtained using X=0.7127, the

slope of elastic region, which is used to extract the relaxation time appears to be

almost same for both X=1 and X=0.7127, except for Figure 5.22 (a) with 14 ppm

concentration.

Also, at lower concentrations (14 ppm and 25 ppm), predictions obtained from X=1

are farther away from experiential results and slightly closer at higher concentrations

when compared to those obtained from X = 0.7127

However more than a full comparison of the thinning profile we are mainly interested

in determining the slope of the elastic region, we thus extracted the relaxation times

from the slopes from both the predictions and compared it with experimental values

for all five concentrations of sample B. This comparison is shown in Figure 5.23.
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Figure 5.23: Comparison of the ratio λe/λz extracted from experimental data of Clasen et al.

(2006b) and those extracted from numerical predictions obtained from HA using CDD-sc model

for solutions with five different concentrations of Sample B

Figure 5.23 shows that λe/λz predictions from X=1 are far away from experimen-

tal values for concentrations < 25 ppm) and is almost similar to predictions from

X=0.7127 for concentrations > 25 ppm. At the highest concentration of 144 ppm,

the predictions from X=1 are slightly closer to the experimental result that compared

to X=0.7127 predictions.
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This comparison does show that the value of the proportionality constant X should

be systematically increased to 1 from 0.7127 as the concentration of the polymer

solution increases. However in this chapter, we are mainly interested in qualitative

comparison of the trend of λe/λz and thus such a systematic study is out of the scope

of this current study.

5.6.3 Comparison with experiments
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Figure 5.24: Comparison of experimental thinning profile for Sample B with HA using FENE-P,

CDD-id and CDD-sc models

Simulation profiles were obtained using dimensionless parameters corresponding to

experimental values used by Clasen et al. (2006b). In Figure 5.24 the thinning profile

obtained by Clasen et al. (2006b) for sample B is compared with thinning profile

predictions obtained by using FENE-P, CDD-id and CDD-sc constitutive equations

in the hybrid analysis.

The following observations can be gathered from Figure 5.24.

• The simulation profiles agree with the experimental profile only in the initial

thinning region, after which the simulation profiles show faster thinning. This

may be because we are only considering a single mode dumbbell model that is

characterized by just the slowest relaxation. In reality, sub-chains of polymer
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Figure 5.25: Comparison of experimental thinning profile for Sample B with HA using CDD-sc

model for zref = 0, 1 and 10

molecules each have their independent relaxation time and respond to stress in-

dividually. These sub-chains lead to responses in polymer stresses faster than

the single mode dumbbell model can predict (Entov and Hinch, 1997). There-

fore while the polymer stresses have already developed in the experiment caus-

ing the slow thinning in the experimental profile, the simple dumbbell model

fails to capture these faster modes. Since the polymer stress develops slowly,

the initial viscous phase lasts longer and the model predicts a thinner filament

before the onset of elastic phase.

• There is significant difference in thinning profiles obtained using FENE-P,

CDD-id and CDD-sc models. For this particular case, Sample B the slope

of the middle elastic region of CDD-sc model appears close to that of

experimental profile.

Along with the choice of the constitutive modes, another factor that was shown to

have a significant affect of thinning dynamics was the solvent quality parameter, z.

This feature is specifically shown in Figure 5.25 using CDD-sc model by changing

zref values while keeping all the other parameters constant.

It can be inferred from Figures 5.24 and 5.25, that both the constitutive model used

as well as the solvent quality parameter are important in studying the dynamics of
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capillary thinning. Having said that, the main goal of this study is not to compare

the thinning profiles but to compare the relaxation time values extracted from ex-

perimental and simulation profiles. Also as seen in Figure 5.24, even though the

thinning profiles did not completely match with the experiments, slopes of the elastic

region are close. Therefore we generated thinning profiles for all the concentrations

of the three samples using the values provided in Table 5.4 and extracted λe/λz for

comparison with experimental values of relaxation times extracted by Clasen et al.

(2006b).
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Figure 5.26: Comparison of experimental data of Clasen et al. (2006b) (filled symbols) with

predictions (open symbols) of the ratio λe/λz from HA using FENE-P with (a) zref = 0, (b)

zref = 1 and (c) zref = 10 for samples B (H, O), C (N, M) and E (•, ◦), dashed curve in (a) is the

empirical fit to SAOS data of Clasen et al. (2006b) for the ratio λ0/λz .Nk,ref = 5000 for all the

cases.
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Figure 5.27: Comparison of experimental data of Clasen et al. (2006b) (filled symbols) with

predictions (open symbols) of the ratio λe/λz from HA using CDD-id with (a) zref = 0, (b)

zref = 1 and (c) zref = 10 for samples B (H, O), C (N, M) and E (•, ◦). Nk,ref was fixed at 5000

for all the cases.
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Figure 5.28: Comparison of experimental data of Clasen et al. (2006b) (filled symbols) with

predictions (open symbols) of the ratio λe/λz from HA using CDD-sc with (a) zref = 0, (b)

zref = 1 and (c) zref = 10 for samples B (H, O), C (N, M) and E (•, ◦) . Nk,ref was fixed at 5000

for all the cases.
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The Figures 5.26, 5.27 and 5.28 compare λe/λz values extracted by Clasen et al.

(2006b) from experimental profiles with those obtained from simulation profiles us-

ing FENE-P, CDD-id and CDD-sc models for zref = 0,1 and 10. The Figures show

that the best overall match between experimental and simulation predictions for all

the three samples is obtained for the case of the CDD-sc model with zref = 10. The

predictions obtained from FENE-P model tend to follow the trend observed for SAOS

data showing slight increase in λe/λz as φ becomes greater than 0.01. CDD-id model

on the other hand predicts the correct increasing trend of λe/λz at very low values of

φ, however plateaus for all φ > 0.01. However the predictions depend significantly

on the value of zref . From figure 5.28 it is observed that zref = 0 shows better agree-

ment for sample B while zref = 10 shows better agreement for sample E. Thus the

solvent quality parameter z, is important to extract the correct relaxation time from

capillary thinning data. However it should be noted that at φ0 it is difficult to extract

λe from noisy experimental data. From this analysis we can at best say that zref

somewhere between 0 and 10 can describe the overall experimental trend data trend

well.

Also Prabhakar (2012) has shown that self-concentration enhanced CSH is important,

but a detailed discussion of that phenomenon is beyond the scope of the present work.

5.7 Conclusions

We have developed a new hybrid technique to stitch MFA to pure solvent FFA from

a certain switchover time, as running the FFA was computationally challenging. We

observed that inclusion of initial non-cylindrical profile is important for polymer

solutions with φ < 0.01. It affects both the total breakup time as well the values of

characteristic relaxation time extracted from elastic region.

Using the hybrid analysis and a new dumbbell model which allows for changes in

drag coefficient with polymer conformation and self-concentration, we have been

able to successfully reproduce the anomalous concentration dependence of the char-

acteristic relaxation time observed by Clasen et al. (2006b).

We find that the solvent quality is an important parameter in this analysis. Future

experiments should characterize the solvent quality of polymer solutions.
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In the next chapter, this knowledge is used to study the effect of viscoelasticity on the

electrospinning process, where we need to consider an additional electric Maxwell

stress along with the viscous and polymer stresses.
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List of symbols used in Chapter 5

n Number of polymer molecules per unit volume

c (wt% or ppm) Concentration of the polymer solution

c∗ (wt% or ppm) Critical overlap concentration

kB Boltzmann’s constant

T (K) Absolute temperature

h (m) Radius of the liquid bridge

hmin (m) Radius at the mid-plane of the liquid bridge

R0 (m) Radius of the end-plates

t (sec) Time

z (m) Axial distance along the slender filament

z Solvent quality parameter

ε̇ (m/s) Extension rate

p (N/m2) Pressure

ρ (kg/m3) Density of the polymer solution

γ (N/m) Surface tension coefficient

λ0 (sec) Relaxation time of the polymer solution

λZ (sec) Zimm relaxation time

v (m/s) Axial velocity of the fluid

η0 (Pa.s) Zero shear rate viscosity of the polymer solution

ηs (Pa.s) Solvent viscosity
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List of symbols continued...

ηp,0 (Pa.s) Polymer contribution to zero shear rate viscosity

[η0] (Pa.s) Intrinsic viscosity of the polymer solution

ν (Pa.s) Kinematic viscosity of the polymer solution

ζ Mean drag coefficient of polymer molecule

ζ0 Equilibrium drag coefficient of polymer molecule

L (m) Total contour length of the polymer molecule

Nk Number of Kuhn steps

bk Kuhn length

Q Configuration vector

F c Entropic force, restoring force in a polymer molecule

M Conformation tensor

〈 〉 Angular brackets denote average values
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Abbreviations used in Chapter 5

DPS Dilute polymer solutions

MFA Mid-filament analysis

FFA Full-filament analysis

FENE-P Finitely extensible nonlinear elastic - with Peterlin closure approximation

CDD Conformation dependent drag

CDD-id Conformation dependent drag - infinite dilution

CDD-sc Conformation dependent drag - self concentration

CST Coil-stretch transition

CSH Coil-stretch hysteresis

SAOS Small angle oscillatory shear

BD Brownian Dynamics
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Chapter 6

Importance of polymer relaxation time in electrospinning

process

6.1 Introduction

Electrospinning is a simple and versatile method to produce polymeric nanofibers.

These fibers with their small diameter possess properties such as high surface to

volume ratio, better surface functionality, high degree of porosity, etc. These char-

acteristics make them useful in a number of applications such as wound dressings

and drug delivery, filtration devices, protective clothing, fibers with specific surface

chemistry and scaffolds useful in tissue engineering.

The electrospinning process, as already described in chapter 2, is fairly straightfor-

ward to perform. However not all polymer solutions can be electrospun. In-fact the

“electrospinnability” or the ease with which a solution can be electrospun to obtain

bead-free uniform fibers, depends on a large number of parameters. Among others,

these parameters include solution properties such as polymer concentration, viscos-

ity, conductivity and surface tension as well as process parameters such as applied

voltage, solution flow rate, tip-to-collector distance, etc. It has been observed that

final fiber diameter is related strongly to the polymer concentration in the pre-cursor

solution and thinner fibers are obtained typically at lower polymer concentration.

Smaller diameter are desirable as it helps in realizing the enhanced functionality of

the fibers. However decreasing polymer concentration also drastically affects the

electrospinnability of the polymer solutions. It has been observed that electropsin-

ning using dilute polymer solutions can result in beaded fibers or polymer droplets

(Gupta et al., 2005).
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(a) (b) 

(c) 

Figure 6.1: SEM micrographs of PMMA electrospun fibers obtained from solutions of different

concentrations and representing (a) polymer droplets, (b) beaded fibers and (c) uniform bead-free

fibers, obtained from electrospinning (Figures reproduced from Gupta et al. (2005))

This is probably because the total elastic stresses generated in a dilute polymer so-

lution are not high enough to compete with the capillary stresses. High capillary

stresses tend to break the jet into droplets. To produce bead-free uniform fibers, the

ejecting jet has to be stable throughout the jet trajectory until it reaches the collec-

tor plate. High viscous or elastic stresses (shear and extensional) have been shown

to overcome the Rayleigh-Plateau instability (that leads to breakup of jets) induced

by capillary stresses and impede the formation of beaded fibers or polymer droplets.

However the source of such high stresses can be different along the jet path from

capillary tip to the collector plate (Yu et al., 2006) .

It has been shown that increasing the concentration (and consequently viscosity)

while lowering the surface tension favors the formation of bead-free and uniform

fibers. There are a large number of studies which suggest a significant role of poly-

mer chain entanglements (resulting in large viscoelastic stresses) in the formation of

uniform fibers (McKee et al., 2004; Gupta et al., 2005; Shenoy et al., 2005). The

boundary between the semi-dilute un-entangled and semi-dilute entangled regimes

is defined by the concentration ce at which significant overlap of the polymer chains

topologically constrains the chain motion, causing entanglement couplings. McKee
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et al. (2004) and Gupta et al. (2005) showed that it is possible to obtain uniform bead-

free fibers only in semi-dilute entangled solution (i.e. for concentrations > ce); at

lower concentrations, polymer droplets (dilute regime) or beaded fibers (semi-dilute

un-entangled regime) are formed.

Shenoy et al. (2005) further emphasized on the role of chain entanglements in poly-

mer/good solvent systems and proposed that a minimum of at-least one entanglement

per polymer chain is required to achieve sufficiently high enough elastic stresses to

damp the capillary instability and obtain fibrous structures. They also showed that

stable uniform fibers are obtained above 2.5 entanglements per chain.

On the other hand, there are studies which do not consider entanglements as a

necessary condition for the stabilization of jet and thus in production of uniform

fibers. These studies have proposed several different strategies to improve the

electrospinnability of dilute polymer solutions that have no entanglements (Yu et al.,

2006; Talwar et al., 2008; Wang et al., 2010; Hunley et al., 2008; Regev et al.,

2010). In particular, Yu et al. (2006) showed that a strong elastic response that can

help in stabilizing the jet, can be achieved even for dilute polymer solutions if the

polymer relaxation time is comparable to the extensional deformation of the jet.

They showed that by increasing the relaxation time of polymer solution, keeping

the concentration constant, it is possible to improve the morphology of fibers from

initial beads-on-string structure at lower relaxation time to uniform fibers at higher

relaxation time. The concentrations they used were well below Ce. They observed

that the larger relaxation time imparts high degree of elasticity that prevents the

breakup of jet into droplets.

This stabilization mechanism can be understood by the growth of elastic stresses in

the jet. Electrospun jets are subjected to tensile pulling force due to the action of

external electric field and repulsion between like charges on the jet surface. If the

time scale of the extensional deformation due to either of these electrostatic stresses

is fast compared to the inverse of solution relaxation time, it will lead to a build-

up of elastic stresses in the fluid jet. If the elastic stresses are above a certain critical

value they can retard the capillary instability and thus delay the formation of polymer

droplets or beads on string structures until solvent evaporation causes solidification
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of polymer in a fiber.

In this work, we aim to understand the role of relaxation time in the development of

elastic stresses in electrospinning of dilute polymer solutions. Using electrohydrody-

namic equations valid for the steady jet region of electrospinning, we study the effect

of Deborah number (ratio of polymer relaxation time to time scale of the process)

on the development of elastic stresses along the jet path, to qualitatively explain the

results observed by Yu et al. (2006) suggesting it is possible to obtain uniform fibers

by increasing relaxation time even for polymer concentrations much below Ce.

As the jet undergoes strong extensional flow in electrospinning, the polymer

molecules will undergo coil-stretch transition. As shown in chapter 5, this along

with causing a large jump in elastic stresses can also lead to enhanced intermolecular

hydrodynamic interactions (HI) which leads to self-concentration of dilute polymer

solution thus making the average frictional drag coefficient concentration dependent.

The simple FENE-P model assumes a constant drag coefficient and cannot predict

self-concentration. We have shown in chapter 5 that a new constitutive model is

necessary to describe the thinning of unelectrified liquid bridges of dilute polymer

solutions. Here we examine if self-concentration can play a significant role in

thinning of electrified viscoelastic jets of dilute polymer solutions in electrospinning.

6.2 Approach and methodology

There are two main goals pertinent to this study. First, we want to investigate through

modeling and simulations the effect of relaxation time of polymer solution on the

development of elastic stresses during the electrospinning process. Second using

we want to study how greatly self-concentration effects can influence these elastic

stresses.

Ideally we should follow the development of individual stresses in the electrospin-

ning jet over the entire length till it reaches the collector plate. However there are no

simple electrohydrodynamic models for the complete thinning process comprising of

both steady jet and instability region.

Thus far, continuum simulations have examined only the steady jet region of the
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electrospinning jet (Feng, 2002, 2003; Carroll and Joo, 2006). In this work too, we

only consider the steady jet region and solve the governing equations pertinent to

this regime. Using typical values of dimensionless numbers we simulate the thinning

of electrospinning jet as it moves axially in the z direction towards the collector

plate. At zmax, the position at which the steady jet region ends and the instability

region (whipping) starts, we calculate the elastic and capillary stress contributions

and compare them to see the conditions under which the former are dominant.

6.2.1 Model formulation

Utilizing the concept of “leaky dielectric” model Hohman et al. (2001a) proposed a

Newtonian model for the electrospinning process based on the slender body approxi-

mation. The model is based on conservation laws for the mass and charge, differential

momentum balance and the electric forces arising from the coupling of the charged

fluid elements to the electric field. Hohman et al. (2001a) also performed linear sta-

bility analysis on the governing equations, which suggested the possibility of three

different types of instabilities: the classical (axisymmetric) Rayleigh instability and

electric field induced axisymmetric and whipping instabilities.

This model, encounters difficulties with the boundary condition at the nozzle (Feng,

2002). Steady solutions may be obtained only if the surface charge density at the

nozzle is set to zero or a very low value, in particular, when the electric field normal

to the jet is negligible compared to the tangential field. The model predicts that the

jet would bulge out at the nozzle unless the initial surface charge density is zero or

very small. This ballooning effect is observed due to co-ion repulsion, leading to jet

destabilization.

It occurs mainly due to a conflict with the assumptions made during the derivation

of the governing equations, in particular the slender body assumption which breaks

down close to the nozzle. In this region, the axial charge relaxation time scale is

comparable to that for radial charge relaxation and thus the slender body assumption

fails. Even after this drastic assumption, no steady solution is possible for fluids

with higher conductivities and long wave instabilities still occur even in the limit

q(z = 0) = 0, which is contradictory to experimental observations.
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Feng (2002) described a slightly different Newtonian model that resolved the bal-

looning instability. He showed that all the electrical prehistory effects are important

only in a very thin boundary layer, adjacent to the cross-section where the initial con-

ditions are imposed (in his case at the nozzle exit). He proposed a modified version

of the electric field equation that introduced a new parameter (electrical current), but

resolved the issue with the uncertain boundary condition on surface charge density at

the inlet. The basic equations for Feng (2002)’s model mirror those by Hohman et al.

(2001a) in that conservation of charge and mass is held, along with the momentum

and electric field balances.

Feng (2002, 2003) also extended the Newtonian fluid model of Hohman et al. (2001a)

by including the effects of non-Newtonian viscoelastic properties of fluids (namely

shear thinning, shear thickening and strain hardening) using empirical expressions as

well as a constitutive equation using the Giesekus model to account for the polymer

contribution. He compared the results obtained using the empirical expression and

constitutive equation and found them to agree well with each other and with the

experimental data for glycerol jet.

Carroll and Joo (2006) revisited Feng (2002)’s model and verified its predictions by

an in-depth comparison to a variety of experimental results from electrospinning of

viscoelastic Boger fluids. Keeping the remaining governing equations same as Feng

(2002)’s model, Carroll and Joo (2006) used the Oldroyd-B and FENE-P constitu-

tive models to account for non-Newtonian behavior. They compared their model

predictions with the experimental jet profiles from electrospinning experiments and

observed an overall good agreement. The exception to this was the sample with PIB

Boger fluid made using longer chain PIB, where predictions differed considerably

from the experimental profile in the Taylor cone region of the jet.

6.2.1.1 Governing equations

In this study, we use the four governing equations proposed by Feng (2003) and

Carroll and Joo (2006), namely the conservation of mass, conservation of charge,

equation of motion and the electric field balance. To account for the polymer contri-

bution, along with the FENE-P model we have used the CDD-sc model. This model
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has been described in detail in Chapter 5. The constitutive models are expressed

in the polymer conformation formalism instead of polymer stress, that was used by

Carroll and Joo (2006).

The governing equations for the steady jet region describe the steady-state variation

of the jet radius R, the axial jet velocity v, the axial component of the electric field

E and the surface charge density σ with axial variable z.

Conservation of mass:

πR2v = Qf (6.1)

Conservation of Charge:

πR2KE + 2πRvσ = I (6.2)

Momentum balance:

ρv
dv

dz
= ρg +

3 ηs
R2

d

dz
(R2dv

dz
) +

1

R2

d

dz
[R2 (τpzz − τprr)] +

γ

R

dR

dz
(6.3)

+
σ

ε̄

dσ

dz
+ (ε− ε̄)EdE

dz
+

2σE

R

Electric field balance:

E(z) = E∞ − lnχ

(
1

ε̄

d

dz
(σR)− β

2

d2

dz2 (ER2)

)
(6.4)

A general expression for polymer stress tensor is given by the Kramers’ expression:

τp = −3nkBT

〈Q2〉0

[
f̄M − 〈Q

2〉0
3

δ

]
(6.5)

where,

f̄ =
L2 − 〈Q2〉0
L2 − 〈Q2〉

for both FENE-P and CDD-sc models

The normal polymer stress difference can be obtained by expanding Eq. 6.5,

τpzz − τprr = −3nkBT

〈Q2〉0
f̄ (Mzz −Mrr) (6.6)

The Eulerian steady equations for the polymer conformation tensor components are:

v
dMzz

dz
= 2

dv

dz
Mzz −

1

λ0

1

ζ/ζ0

[
f̄ Mzz −

〈Q2〉0
3

]
(6.7)

v
dMrr

dz
= − dv

dz
Mrr −

1

λ0

1

ζ/ζ0

[
f̄ Mrr −

〈Q2〉0
3

]
(6.8)
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6.2.1.2 Non-dimensionlisation of governing equations

The governing equations are non-dimensionlised by selecting the following charac-

teristic scales,

rc for R and z,

v0 = Qf/(πR
2
0) for velocity v,

E0 = I/(πR2
0K) for electric field intensity E,

σ0 = ε̄E0 for surface charge density σ and

M0 = 〈Q2〉0 for polymer conformation tensor components Mzz and Mrr.

Using the above scaling the following non-dimensional governing equations are ob-

tained,

R2 v = 1 (6.9)

E R2 + PeR v σ = 1 (6.10)

v v′ =
1

Fr
+

3B

Re

1

R2
(R2 v′)′ − 3 (1−B)

DeRe

1

R2
[R2 Γ (Mzz −Mrr)]

′

+
R′

WeR2
+ εE

(
σ σ′ + β E E ′ +

2σ E

R

) (6.11)

E = Ω− ln(χ)

[
(σ R)′ − β (ER2)′′

2

]
(6.12)

v
dMzz

dz
= 2 v′Mzz −

1

De

1

ζ/ζ0

[
ΓMzz −

1

3

]
(6.13)

v
dMrr

dz
= − v′Mrr −

1

De

1

ζ/ζ0

[
ΓMrr −

1

3

]
(6.14)

The prime indicates derivative with respect to z.
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The dimensionless groups obtained are:

Froude Number, Fr =
v2

0

gR0

Reynolds Number, Re =
ρv0R0

η0

Weber Number, We =
ρ v2

0 R0

γ

Electric Peclet Number, Pe =
2ε̄v0

KR0

Deborah Number, De =
λ0v0

R0

Electrostatic force parameter, εE =
ε̄E2

0

ρv2
0

Viscosity ratio, B =
ηs
η0

Dielectric constant ratio, β =
ε

ε̄
− 1

Electric field strength, Ω =
E∞
E0

B can also be expressed as B = 1/(1 + φ0) where φ0 = ηp,0/ηs refers to the initial

concentration of the polymer solution and

Γ =
Nk/α

2 − 1

Nk/α2 − (Mzz + 2Mrr)/3
for FENE-P and CDD-sc models

The respective values of ζ/ζ0 for different models are the same as that mentioned in

chapter 5.

Electric Peclet number suggests the relative importance of charge convection com-

pared to conduction. The electrostatic force parameter indicates the importance of

the electrostatic forces compared to inertia forces and the dielectric constant ratio

indicates the importance of induced charges in the fluid jet.

Froude number, Reynolds number and Weber number indicate the importance of

inertial forces relative to gravity, viscous forces and surface tension respectively.

Deborah number is the ratio of fluid’s relaxation time and the characteristic time scale

of the experiment and indicates the fluidity of the solution. Increasing value of De

number is accompanied by increasingly non-Newtonian behavior.
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6.2.2 Boundary conditions

From the above non-dimensional governing equations, v and σ can be eliminated by

using Eqs. 6.9 and 6.10. This way we are left with two second order ODEs for R and

E and two first order ODEs for Mzz and Mrr each. The two second order ODEs are

converted to four first order ODEs. Thus we will now have six first order ODEs. To

solve these system of ODEs, the following six boundary conditions were proposed

by Feng (2003),

First Boundary Condition:

At the nozzle entrance i.e. at z = 0 the jet radius is equal to the radius of the

capillary R0, which has also been used as scaling for R. Thus

R(z = 0) = 1 (6.15)

Second Boundary Condition:

As shown in chapter 2 asymptotic analysis suggests that, at z = χ the accel-

eration of the jet is mainly governed by the tangential traction of the electric

field,

vv′ = εE
2σ E

R
(6.16)

which leads to the following scaling for radius, R(z) ∝ z−1/4 near the collector

plate. This scaling is used to obtain the boundary condition for R at z = χ as,

R(z = χ) + 4χR′(z = χ) = 0 (6.17)

However the asymptotic balance assumed is only feasible for Newtonian so-

lutions. For polymeric solutions the asymptotic balance at χ may differ as the

polymer stresses may be very high compared to the inertial and electric stresses.

One possibility to solve this issue, is to define a condition for R′ at z = 0. In

this case, solving the ODEs is an initial-value problem and the solution evolves

to the value at z = χ on its own. However there is not enough insight currently

to define an additional initial condition at z = 0 and hence we cannot run the

problem using an initial value solver. But, given the fact that we only need
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to calculate the stresses at the end of steady jet region, which appears much

before z = χ, we assume that the properties at z = zmax (end of steady jet

region) are not significantly affected by the boundary condition in Eq. (6.17) at

z = χ >> zmax.

Third Boundary Condition:

Assuming that the charge takes some time to migrate to the surface of the jet, it

has been argued that the surface charge density at the origin of the jet (z = 0)

is negligible or zero. Thus,

σ(z = 0) = 0 (6.18)

Fourth Boundary Condition:

By the time the jet reaches the collector plate, the electric field variations in

electric field due to surface charge density become negligible and electric field

becomes equal to the applied electric field (Ω). Thus,

E(z = χ) = Ω (6.19)

Fifth and Sixth Boundary Conditions:

It is assumed that there has been no significant stretching of polymer molecules

before they come out of the jet. Thus the polymer coils are at equilibrium at the

origin of the jet and therefore the normal polymer conformation terms are equal

to their equilibrium value of 1/3. Thus we get,

Mzz(z = 0) = 1/3 (6.20)

and

Mrr(z = 0) = 1/3 (6.21)

6.2.3 Numerical method

The governing equations including six first order nonlinear coupled ODEs are solved

numerically using the boundary value solver in MATLAB, ‘bvp4c’ (Shampine et al.,

2000). By default bvp4c forms Jacobians using finite differences. However we have

used an additional tool with the traditional bvp4c known as TOMLAB. This makes
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the bvp4c program more robust and efficient by supplying analytical derivatives using

automatic (algorithmic) differentiation (AD) in MATLAB (Shampine et al., 2005).

Along with the governing equations and the boundary conditions the solver also

needs good initial guesses at each solver step for all the variables in the governing

equations. The initial guesses must also satisfy the boundary conditions. To obtain

better solutions, the dimensionless numbers were entered in a continuation scheme

so as to start with simpler problems and use them as initial guesses for the next set

of parameters. To provide the first initial guess we follow Carroll and Joo (2006)’s

approach and use the analytical results from a gravity thinning jet while making sure

the contribution of electric field is small.

Equations were solved for different sets of dimensionless parameters to obtain simu-

lated profiles for radius and electric field under different operating conditions.

6.2.4 Validation

In order to confirm that the model and the numerical method were implemented

correctly we validated our simulation results against previously reported results in

literature.

For the Newtonian case (B = 1 or φ0 = 0) we obtained excellent agreement with the

results of Feng (2002) and Carroll and Joo (2006) (Figures. 6.2 and 6.3).

Similarly, we compared our results using Giesekus and Oldroyd-B polymer models

with those reported by Feng (2003) and Carroll and Joo (2006) respectively. Even

for the non-Newtonian case we found excellent agreement as shown in Figures 6.4

and 6.5, which thus validated the correctness of our model implementation.

6.2.5 Typical values of dimensionless numbers and zmax

To study the effect of relaxation time for different polymer concentrations, we ac-

cordingly changed the values of φ0 and De while keeping the values of all the other

dimensionless numbers constant as:

Re = 0.001, We = 0.001, Fr = 0.001, Pe = 0.004, χ = 300, β = 2, εE = 10, E∞ = 1,

Nk = 5000, Nkref = 5000, zref = 1.
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Figure 6.2: Comparison between thinning profile predictions of our simulation for Newtonian jets

to that obtained by Feng (2002) using the following parameter values: Re = 4.451× 10−3, Fr =

8.755× 10−3 , We = 1.099× 10−3, Pe = 1.835× 10−4, εE = 0.7311, β = 45.5, χ = 75, Ω = 5.914.
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Figure 6.3: Comparison between thinning profile predictions of our simulation for Newtonian jets

to that obtained by Carroll and Joo (2006) using the following parameter values: Re = 9.00× 10−4,

Fr = 9.18× 10−4 , We = 4.43× 10−3, Pe = 6.53× 10−5, εE = 1.469, β = 41.5, χ = 327, Ω = 2.29.
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Figure 6.4: Comparison between thinning profile predictions of our simulation using Giesekus

model to that obtained by Feng (2003) using the following parameter values: Re = 2.5× 10−3, Fr

= 0.1 , We = 0.1, Pe = 0.1, εE = 1, β = 40, χ = 600, Ω = 0.1, De = 10, α = 0.01.
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Figure 6.5: Comparison between thinning profile predictions of our simulation using Oldroyd-B

model to that obtained by Carroll and Joo (2006) using the following parameter values: Re =

5.15× 10−3, Fr = 9.18× 10−4 , We = 1.31× 10−4, Pe = 2.5× 10−3, εE = 10.6, β = 2, χ = 270, Ω

= 1.42, De = 2.65× 10−2
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These values are roughly close to that used by Carroll and Joo (2006) in their study on

electrospinning of PIB Boger fluids. One thing that is to be noted, as was also pointed

out by Carroll and Joo (2006), due to limitations of the model and the numerical

method used, it is very difficult to run the simulations for high conductivity solutions

(or low Pe)such as PEO-water system. Therefore we limited our analysis to Pe =

0.004 for low conductivity solutions.

Regarding zmax, there is currently no fixed criterion available for z value at which

the instability will set in. Yu et al. (2006) reported that jets start whipping when the

fiber radii reached about 10-20 µm. However this may be only valid for the specific

process parameters used by Yu et al. (2006). Carroll and Joo (2006) observed that the

steady jet region lasts to about 2.5 - 5 mm from the nozzle tip for both Newtonian and

polymer solutions when the total distance between tip to collector plate varied from

13-17 cm. Experimental results of Helgeson et al. (2008) also show that the whipping

region starts at 2-2.5 mm from the nozzle tip. Here the total distance between nozzle

tip and collector tip is maintained at 10 cm.

In the present analysis we want to compare the values of stresses near the onset of

whipping. Based on the observations of Carroll and Joo (2006), the value of zmax

is fixed as 10 for χ = 300. This value may not be true for solutions with different

parameters values and the exact value may be ± 5. However in this analysis we only

need a fixed value close to the onset of whipping at which we can compare the stress

contributions and thus zmax = 10 is reasonable.

6.2.6 Individual stress contributions

In this study we are particularly interested in calculating capillary, viscous and elastic

stresses. These stresses are defined as,

Capillary Stress:
1

We

1

R
(6.22)

Viscous Stress:
3B

Re
v′ (6.23)

Elastic Stress:
(1−B)

DeRe
(Γ(Mzz −Mrr)) (6.24)

These individual stresses can be directly calculated from the thinning profile data

obtained from the simulations.
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Another quantity that will be calculated is the local Weissenberg number, defined as

Wi+ = De· dv
dz

(6.25)

6.3 Results & discussion

6.3.1 Effect of relaxation time

The simulation results provide R, E, Mzz and Mrr profiles as a function of distance

z. A typical thinning profile is shown in Figure 6.6 for φ0 = 0.02 and De = 0.1. The

jet first undergoes rapid thinning starting from the nozzle up to the Taylor cone re-

gion. The local strain rate or Wi+ increases rapidly in this region and grows beyond

the critical value of 0.5 for coil-stretch transition of polymer molecules. At the end

of the Taylor cone Wi+ reaches a maximum. The dotted line in Figure 6.6 repre-

sents the end of the Taylor cone. Beyond this, the viscous and elastic stresses (ES)

have become significant enough to compete with the tensile pulling force exerted by

electrical stresses. This slows down the thinning considerably in the steady jet region

which causes the Wi+ to decrease but it stays above 0.5 (in some cases Wi+ can

fall below 0.5). Hence elastic stresses continue to increase. For models with no CSH

such as FENE-P model, if Wi+ < 0.5, ES would begin to decrease. However for

models that can predict CSH, such as CDD-sc model, whether ES will decrease if

Wi+ < 0.5 depends on the extent stretching initially. But even in these models, if

Wi+ decreases below the critical Wi for stretch-to-coil transition, ES will relax.

With increase in thinning rate in the Taylor cone region, there is huge increase in vis-

cous stresses (VS), but thereafter they continue to decrease as the thinning rate slows

down. In the steady jet region, viscous stresses begin to fall and the capillary stresses

(CS) grow. Whether ES will grow or fall directly depends on the correspondingWi+.

If ES >> CS at the onset of whipping it is possible that the ES would continue to

dominate and the jet would remain stable in the whipping instability region. On the

other hand if the CS >> ES it could trigger the Rayleigh-Plateau instability leading

to the formation of beaded fibers or polymer droplets.

Elastic stresses have been found to be a strong function of the relaxation time (or De)

of the polymer solution. This is demonstrated in Figure 6.7 where we compare three
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Figure 6.6: Typical profile of (a) jet radius R (blue curve) and local Weissenberg number Wi+

(pink curve)and (b) elastic (green curve), viscous (yellow curve) and capillary stresses (red curve)

as function of z starting from nozzle tip to the end of steady jet region
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Figure 6.7: Growth of elastic stress and capillary stress, as the jet begins to thin from the nozzle

tip (z=0) till the onset of whipping (z=10) for three polymer solution with constant φ0 = 0.02 but

different De values, (a) De = 0.03, (b) De = 0.04 and (c) De = 0.05.

electrospinning solutions for the same set of parameters but different De numbers. In

Figure 6.7 for De = 0.03, the ES stresses are smaller than CS at z = zmax. However

on increasing the De to 0.04 keeping all the other parameters constant, ES equals CS

at z = zmax. With further increase in De number, ES become much larger than CS.
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Figure 6.8: Elastic and capillary stresses at z = zmax as a function of De for polymer solutions

with different initial concentrations

At a fixed z = zmax with increase in De number, ES increase while CS remain almost

162



CHAPTER 6. ELECTROSPINNING 6.3. RESULTS & DISCUSSION

constant. This is shown in Figure 6.8 which also shows the exponential increase in

ES with increase in De for polymer solutions with different initial concentrations φ0

= 0.02, 0.05 & 0.1. We may therefore identify a minimum De (Demin) when the ES

just equals CS. This Demin can serve as an indicator whether the polymer solution

will continue as a stable jet as it enters whipping region.

In Figure 6.8,Demin is the intersection point of the elastic and capillary stress curves.

A polymer solution with De << Demin may undergo electrospraying in the insta-

bility region and the jet may breakup into small polymer droplets. The jet may still

undergo whipping if the viscous stresses are high enough but even such a jet would

breakup into droplets as the viscous stresses continue to fall and capillary stresses

continue to grow along the length. If De >> Demin elastic stresses may be large

enough to suppress the Rayleigh-Plateau instability and uniform fibers may be ex-

pected to form. Demin as expected is found to decrease with increasing polymer

concentration as shown in Figures 6.8 and 6.9.
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Figure 6.9: Demin as a function of polymer concentration φ0

Also as can be seen from Figure 6.8, elastic stresses grow exponentially with increase

in De. This analysis shows that by increasing De of polymer solutions it is possible

to increase the ES and thus improve its ‘electrospinnability’.
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6.3.2 Effect of conformation dependent drag and
self-concentration

We examine next whether changes in drag coefficient with conformation change and

self-concentration can strongly influence elastic stresses developed during electro-

spinning. We use the CDD-sc polymer model which includes these effects and com-

pare its predictions against those of the FENE-P model which assumes a constant

drag coefficient. The results are shown in Figure 6.10, which show the variation
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Figure 6.10: Variation of ES and Wi+ predictions for FENE-P and CDD-sc models, as the jet

thins from nozzle tip up to zmax, for φ0 = 0.1 at two different De numbers

in elastic stress with Wi+ for z = 0 to z = zmax using CDD-sc and FENE-P mod-

els for two polymer solutions with different relaxation time (De). As can be seen

from Figure 6.10, there is almost no difference in ES obtained using CDD-sc and

FENE-P model for the polymer solution with lower De number (De = 0.05). As De

is increased to 0.1, we observe that the ES at zmax obtained using CDD-sc model are

slightly higher than that obtained using FENE-P model. This suggests that changes

in drag coefficient with conformation change and self-concentration become increas-

ingly important with increase in De number.

This is directly related to change in conformation of the polymer molecules which

can be measured using the ratio 〈Q2〉/L2, whose maximum value is 1, representing
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Figure 6.11: Variation of 〈Q2〉/L2 as a function of z for FENE-P and CDD-sc models, as the jet

thins from nozzle tip up to zmax, for φ0=0.1 at two different De numbers

a completely stretched polymer molecule. Changes in drag coefficient become sig-

nificant only when the polymer molecules are sufficiently stretched. To explain the

relation between the two, in Figure 6.11 we have plotted 〈Q2〉/L2 as a function of z

for the same parameters used in Figure 6.10. As can be seen, the polymer solutions

with De = 0.1 are stretched more compared to the ones with De = 0.05. Also, the

difference between FENE-P and CDD-sc models increases with De number.

Other than De, another major factor which governs the growth of ES is Wi+, which

in turn depends on the rate of thinning. It has been observed that the highly conduc-

tive polymer solutions (such as PEO) thin at a much faster rate than low conductivity

polymer solutions (such as Boger fluids). Conductivity is reflected in the dimension-

less electric Peclet number (Pe). A higher conductivity will result in low value of Pe

and vice versa. In Figure 6.12 we show the effect of Pe number on thinning profile,

〈Q2〉/L2 and elastic stress.

As can be seen from 6.12, solutions with higher Pe thin at a much faster rate in

the Taylor cone which leads to more stretching of the polymer molecules in these

solutions. The faster thinning rate induces a higher Wi+ number, which in turn leads

to growth in elastic stresses. Therefore for highly conductive polymer solutions,
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Figure 6.12: Variation of (a) R (b) 〈Q2〉/L2, (c) Wi+ and (d) elastic stress as a function of z, for

three polymer solutions with different Pe numbers
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where the Pe number is 3-4 orders of magnitude less than what we are using, it is

expected that the stretching would be much more. This would lead to a significant

difference between ES calculated using CDD-sc and FENE-P models.

However in this particular study with the current model and numerical method used,

we are unable to run simulations at such low Pe numbers. Thus in this study we

cannot conclusively show the significance of changes in drag coefficient with con-

formation and change and self concentration.

6.4 Conclusions

It is shown that for each polymer concentration, there exists a critical Deborah num-

ber below which the elastic stresses are not sufficient enough to overcome the capil-

lary stresses at the onset of whipping and thus it may lead to beaded fibers or polymer

droplets. However above the critical Deborah number, the elastic stresses are dom-

inant enough to maintain the stability of jet as it enters the whipping region. If the

elastic stresses are marginally higher than capillary stresses at the onset of whipping,

the jet would be stable throughout the jet and lead to uniform bead-free fibers.

It is also shown that elastic stresses increase exponentially with increase in De num-

ber and thus increasing De number can help improve the electrospinnability of a

polymer solution as shown Yu et al. (2006) in his experimental study.

Also for the parameter values we studied it is found that there is no significant effect

of self-concentration and coil-stretch hysteresis. However we do show that these

effects may become significant for polymer solutions with higher De numbers and

high conductivity.

167



6.4. CONCLUSIONS CHAPTER 6. ELECTROSPINNING

List of symbols used in this Chapter 6

R (m) Radius of the Jet

Qf (m3/s) Applied flow rate

I (A) Total current

R0 (m) Radius of the capillary or the needle tip

v (m/s) Fluid velocity parallel to axis of jet

g (m2/s) Acceleration due to gravity

B Viscosity ratio

E (V/m) Electric field

E∞ (V/m) Applied Electric field

K (S/m) Solution conductivity

z (m) Vertical distance along the jet

L (m) Total contour length of the polymer molecule

ε Fluid dielectric constant

ε̄ Air dielectric constant

β ε/ε̄− 1

ρ (kg/m3) Solution density

γ (N/m) Surface tension

σ (Coulumb/m2) Surface charge density
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List of symbols used in this Chapter 6

η0 (Pa.s) Zero shear rate viscosity

ηs (Pa.s) Solvent viscosity

ηp (Pa.s) Polymer contribution to viscosity

χ Aspect ratio

M Conformation tensor

Q End-to-end vector between the two beads

τp (N/m2) Polymer stress
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Chapter 7

Conclusion and recommendations

The goal of this thesis is to investigate certain unresolved issues in a few electrified

viscous liquid jet/filament systems. A very relevant and known example of such sys-

tems is electrospinning, a process that is used to produce nanofibers. This method has

gained popularity due to its simplicity to conduct experiments. However the simulta-

neous multiple-physics phenomena involved make it challenging to understand and

model. In the first study of this thesis, we address the question of finding a universal

correlation for the final fiber diameter in electrospinning.

Our hypothesis was that the equation of motion for bent jet proposed by Hohman

et al. (2001a) could lead us to a better insight of the process. However, this being

too complex for numerical analysis, we non-dimensionalised it and and analyzed the

dimensionless numbers. For non-dimensionalisation we used a revised scaling for

radius based on asymptotic analysis at the terminal steady jet region. Out of the ten

new dimensionless numbers, two showed excellent correlation, one corresponding to

destabilization of jet due to surface charge repulsion and the other for stabilization of

jet by viscous moment.

When these two dimensionless numbers are plotted against each other using exper-

imental data from literature for several polymer solvent systems, all the data sets

showed a common slope of about 1. This unique correlation, leads to a scaling ex-

pression for final fiber diameter df as a function of important process parameters

including viscosity, flow rate, applied voltage, tip to collector distance and conduc-

tivity. The scaling expression predicts the correct trend for df with increasing vis-

cosity, flow rate and applied voltage. It also predicts a fairly close scaling coefficient
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for viscosity and flow rate, to that observed in experimental studies. However it pre-

dicts an increase in fiber diameter with increasing tip-to-collector distance, which is

reverse of what has been reported in several experimental studies. We believe this

disagreement is due to the use of an approximate expression for calculating current,

which is usually not measured in experiments. Also, the governing equation used in

this analysis is only applicable for Newtonian solutions.

This scaling analysis can be improved by incorporating polymer contribution in the

original equation of motion, which can then allow inclusion of relaxation time and

polymer extensional viscosity which are known to be important parameters affecting

the electrospinning process. Also the use of real value of current from experiments

or revised expressions for current for different polymer solvent systems can help to

improve the scaling further. This study helps in showcasing the complexity involved

even in simple viscous jet/filament systems in electric fields.

The remaining four studies are divided into two broad parts. In the first part, two

Newtonian electrified viscous liquid-liquid systems are studied using linear stability

analysis. The first system consists of a simple viscous jet immersed in another im-

miscible viscous liquid bath, and subjected to radial/axial electric field. The second

system involves a lipid bilayer cylindrical vesicle with viscous fluid present both in-

side and outside the vesicle and subjected to an axial electric field. The governing

equations for both these systems are common except in the second system the po-

tential Laplacian for the membrane is also solved. Linear stability analysis in both

of these systems is conducted in the following limits, Oh → ∞ and zero relative

velocity between the inside and outside fluid.

In the first system, we investigated the importance of viscosity ratio in liquid-liquid

jets subjected to radial/axial electric fields. It is found that, similar to electric field,

viscosity ratio could also significantly influence the various perturbations on the jet

surface and plays an important role in determining the dominant mode of instabil-

ity. Viscosity ratio is shown to have a damping effect on both the axisymmetric and

asymmetric modes of perturbations, however the damping effect is stronger for the

asymmetric mode. Studying the effect of both electric field and viscosity ratio si-

multaneously an operating diagram is obtained that can be used to easily identify
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the dominant mode of perturbation for given operating conditions. This work is an

important contribution to research in electrified liquid-liquid jet systems, as this is

the only study which specifically investigates the effect of arbitrary viscosity ratio on

axisymmetric and asymmetric perturbations on such systems. However the condition

of high Ohnesorge number and zero relative velocity between the jets and medium,

limits the use of this theory to only few selective systems. This theory can be im-

proved further by considering arbitrary Oh values and admitting the velocities of both

the jet and the outside medium in the model. To achieve this a complete numerical

analysis would need to be carried out.

In the second system of the first part, we investigated the effect of axial electric field

on lipid bilayer cylindrical vesicles submerged in a fluid bath using linear stability

analysis. The motivation behind this study was to understand and explain the unique

pearling instability observed on such cylindrical vesicles when subjected to axial

electric fields. The governing equations for the system included the Navier-Stokes

equations for the fluid inside and outside the cylindrical vesicles, and potential Lapla-

cian for the inside fluid, outside fluid as well as the bilayer membrane. The stability

analysis predicts the growth of axisymmetric mode of perturbation (manifested as

pearls on the bilayer vesicles) with increasing electric field strength. However a min-

imum electric field is required to induce pearling, the value of which depends on the

diameter of the vesicles. Growth rate and wavenumber predictions from the theory

are compared to that extracted from experimental study by another graduate student

in the laboratory. Even though we did not obtain quantitative agreement with the ex-

perimental results, the trend of increasing growth rate and wavenumber was common

in both theory and experiments.

The system studied here satisfies the assumptions of Oh→ ∞ and zero relative ve-

locity between the two fluids. However there are other simplifications which are

questionable, such as, the assumption that all the vesicles are aligned perfectly paral-

lel to the applied electric field. Even a slight deflection can introduce radial electric

field components. Also, because no simple expressions are available for calculating

electric stress exerted on cylindrical surfaces, we have used an expression applicable

for spherical vesicles and assumed it to be equivalent to that exerted on the hemi-

spherical head of the cylindrical vesicles. The present theory can be improved by
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including the correct expression for electric stress exerted on the cylindrical vesicles.

The second part of the thesis mainly concentrates on investigating the role of vis-

coelasticity in both un-electrified and electrified polymeric jet/filament systems. In

the first problem of this part, capillary thinning observed in polymeric liquid bridges

is studied using numerical analysis. Here the liquid filament thins purely by capillary

action and there is no applied electric field. In this study we attempted to explain the

anomalous concentration dependence of the relaxation time extracted from capillary

thinning experiments by Clasen et al. (2006b). Instead of using the conventional

force balance at the mid-plane that is generally used to model capillary thinning, we

have used a one dimensional model describing the full-profile of the liquid. Also, to

account for the polymer stress contribution, we used a recently derived new dumb-

bell model which allows for changes in drag coefficient with change in conforma-

tion of the polymer molecules, and can thus predict the coil-stretch hysteresis ob-

served in dilute polymer solutions (Prabhakar, 2011, 2012). It also accounts for the

self-concentration of dilute polymer solutions when subjected to strong elongational

flows. Both these effects are not included in the conventional polymer constitutive

equations such as FENE-P/Oldroyd-B that have been used so far to study capillary

thinning.

As the capillary thinning proceeds, from the time when the liquid bridge becomes

perfectly cylindrical, the thinning profile obtained by using FFA is similar to that

obtained from the MFA. Using this information we devised a new hybrid analysis,

where the FFA is used to generate the thinning profile up to a certain switchover

time and then using the information at the switchover time, the remaining profile is

obtained by using the MFA. A detailed description to determine the switchover time

and the initial conditions for MFA is presented. It is found that the relaxation times

extracted from the thinning profiles obtained by running the simulations using the

new hybrid analysis and the advanced polymer model, does predict the concentration

dependence of the relaxation time similar to that obtained from experiments. It is

also found that the solvent quality parameter plays an important role in this analysis.

Even though we did manage to predict the concentration dependence of relaxation

time, the thinning profile predictions from the simulations did not completely match
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the experimental profiles, except during the initial pre-thread formation zone. We

believe the main reason for this disagreement is the use of the single mode dumbbell

model, which only accounts for the slowest relaxation time. This analysis can be

improved by using multiple mode dumbbell models. However this will be useful

only for those researchers who want to get a better match between simulation and

experimental thinning profiles to compare the break up time required for different

polymer-solvent systems at various concentrations.

The simple force balance can be improved by including inertia. Inertial effects are

significant during the initial thinning before viscous and elastic stresses become dom-

inant. With inclusion of inertia, MFA by itself may be sufficient to predict the correct

slope of middle elastic region of the thinning profile.

Another improvement can be brought by using a full 3-D model instead of the simple

1-D model. This can help overcome the limitations which come with the lubrication

approximation used in deriving the 1-D model. The liquid bridge filament is not

exactly slender near the two end-plates and this is where the 1-D model is not exactly

valid. However we believe that this would not alter the slope of the middle elastic

region. Thus even the full 3-D model will only help to get an exact match between

simulation and experimental thinning profiles, and should be used only in situations

where such exact match is required.

The success of the CDD-sc model in capillary thinning of polymeric liquid bridges

motivated us to test this model in electrified viscoelastic liquid jet/filament systems

where strong extensional flow is observed such as electrospinning.

It has been generally observed that the concentration of the polymer solution is di-

rectly proportional to the diameter of final electrospun nanofiber. It is therefore de-

sirable to use lower concentration polymer solutions in electrospinning as it results in

thinner fibers. However it is difficult to obtain uniform nanofibers from electrospin-

ning of dilute polymer solutions, as the elastic stresses are not sufficient to keep the

jet stable and ultimately leads to beaded fibers or polymer droplets. Yu et al. (2006)

showed that it is possible to improve the electrospinnability of dilute polymer solu-

tions by increasing their relaxation times. Here we studied the effect of relaxation

time on solution electrospinnability using numerical analysis. Our hypothesis was
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that the strong extensional flow during electrospinning would lead to changes in drag

coefficient due to change in polymer conformation and also induce self-concentration

in dilute polymer solutions, and this may be partly responsible in generating the ad-

ditional elastic stresses required to improve the electrospinnability. This hypothesis

is tested by comparing the elastic stresses obtained using the conventional FENE-P

model with that obtained using the CDD-sc model.

To test the effect of relaxation time, we used the steady state governing equations

that are applicable for the steady jet region of the electrospinning jet. It is found that

for any given polymer solution, there is a minimum Deborah number Demin for each

concentration, that is required to have a stable jet at the onset of whipping region.

Below Demin, the capillary stresses overcome the elastic stresses and the jet is no

longer stable at the onset of whipping region. When such an unstable jet undergoes

the chaotic whipping instability, it leads to the formation of either beaded fibers or

polymer droplets. However above Demin, the jet is stable and may lead to the forma-

tion of uniform fibers. We have also shown that the elastic stresses increase exponen-

tially with increase in De number, and thus by successively increasing De of dilute

polymer solutions it may be possible to obtain uniform fibers. Another parameter

that may be important is the poly-dispersity of a polymer solution and thus testing

its effect on the Demin calculation could provide more insight into electrospinning

using low concentration solutions.

Lastly we found that, for the parameter values used in this study, no significant differ-

ence between FENE-P and CDD-sc models is observed. However we do show that

self-concentration and coil-stretch hysteresis observed in extensional flow of dilute

polymer solutions may be significant even for electrospinning , but only for solutions

with higher relaxation times and high conductivities. However with the current elec-

trohydrodynamic model we cannot verify this, as it is only valid for low conductivity

solutions such as Boger fluids.

Carroll and Joo (2011) recently proposed a new modified model based on a com-

parison between the continuum model they had proposed earlier (Carroll and Joo,

2006) and the bead-spring model originally proposed by Reneker et al. (2000). They

found that the predictions from the modified model were in much better agreement
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with experimental results for electrospinning of low conductivity Boger fluids as

well as for higher conductivity PEO/water solutions. This modified model by Car-

roll and Joo (2011) can possibly be used along with CDD-sc model for polymer

stress calculations, to investigate in detail the effects of coil-stretch hysteresis and

self-concentration in electrospinning of dilute polymer solutions.
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Appendix A

Elements of the matrix M: Liquid-liquid jets under

radial/axial electric fields

The elements of the matrix M when the radial field is on are

M11 =
1

8
(I−2+m(k) + 2Im(k) + I2+m(k)),

M12 =I−1+m(k),

M13 =I1+m(k),

M14 =
1

8
(−K−2+m(k)− 2Km(k)−K2+m(k)),

M15 =−K−1+m(k),

M16 =−K1+m(k),

M17 =0,

M21 =
1

8
i(I−2+m(k)− I2+m(k)),

M22 =iI−1+m(k),

M23 =− iI1+m(k),

M24 =
1

8
i(−K−2+m(k) +K2+m(k)),

M25 =− iK−1+m(k),

M26 =iK1+m(k),

M27 =0,
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M31 =
1

8
(I−2+m(k) + 2Im(k)) + I2+m(k)),

M32 =I−1+m(k),

M33 =I1+m(k)

M34 =0,

M35 =0,

M36 =0,

M37 =− s,

M41 =
1

8
(kI−3+m(k) + 2I−2+m(k) + 3kI−1+m(k)− 4Im(k) + 3kI1+m(k)

+ 2I2+m(k) + kI3+m(k)),

M42 =k(I−2+m(k) + Im(k)),

M43 =k(Im(k) + I2+m(k)),

M44 =
1

8
λ(kK−3+m(k)− 2K−2+m(k) + 3kK−1+m(k) + 4Km(k) + 3kK1+m(k)

− 2K2+m(k) + kK3+m(k),

M45 =kλ(K−2+m(k) +Km(k)),

M46 =kλ(K−2+m(k) +Km(k)),

M47 =− Eo2 kK−1+m(k)− 2(E2
0 + (−1 + k2 +m2) γ)Km(k)

+ E2
0 kK1+m(k) 2Km(k),

M51 =
1

16
i(kI−3+m(k) + 2mI−2+m(k) + kI−1+m(k) + 4mIm(k)− kI1+m(k)

+ 2mI2+m(k)− kI3+m(k)),

M52 =
1

2
i(kI−2+m(k) + 2(−1 +m)I−1+m(k) + kIm(k)),

M53 =− 1

2
i(kIm(k)− 2(1 +m)I1+m(k) + kI2+m(k),
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M54 =
1

16
iλ(kK−3+m(k)− 2mK−2+m(k) + kK−1+m(k) + 4mKm(k)

− kK1+m(k)− 2mK2+m(k)− kK3+m(k)),

M55 =
1

2
iλ(kK−2+m(k)− 2(−1 +m)K−1+m(k) + kKm(k)),

M56 =− 1

2
iλ(kKm(k) + 2(1 +m)K1+m(k) + kK2+m(k)),

M57 =0,

M61 =
i

4k
(kI−1+m(k) + 2Im(k)) + kI1+m(k),

M62 =iIm(k),

M63 =iIm(k),

M64 =
1

4k
(i(kK−1+m(k)− 2Km(k) + kK1+m(k)),

M65 =iKm(k),

M66 =iKm(k),

M67 =0,

M71 =− 1

8
i(k(−2 + λ)I−2+m(k)− 4I−1+m(k)− 4kIm(k) + 2kλIm(k)

− 4I1+m(k)− 2kI2+m(k) + kλI2+m(k)),

M72 =− 1

2
ik((−3 + 2λ)I−1+m(k)− I1+m(k)),

M73 =
1

2
i k (I−1+m(k) + (3− 2λ)I1+m(k)),

M74 =− 1

8
iλ(kK−2+m(k)− 4K−1+m(k) + 2kKm(k)− 4K1+m(k) + kK2+m(k),

M75 =− 1

2
ikλ(K−1+m(k) +K1+m(k)),

M76 =− 1

2
ikλ(K−1+m(k) +K1+m(k)),

M77 =0

181



APPENDIX A. ELEMENTS OF THE MATRIX M: LIQUID-LIQUID JETS UNDER
RADIAL/AXIAL ELECTRIC FIELDS

The elements of the matrix M for the axial field case are all same as

that when radial field is on, except for the following two,

M47 =(−1 + k2 +m2)γ I−1+m(k) + 2E2
0 k(−1 + S)Im(k)

+ (−1 + k2 +m2)γ I1+m(k) I−1+m(k) + I1+m(k)

M77 =i k E2
0((I−1+m(k) + I1+m(k))Km(k) + Im(k) (K−1+m(k)

+K1+m(k)))(I−1+m(k) + I1+m(k))Km(k)
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Force on spherical vesicles under electric field

The net tensile force acting on a spherical cap of a vesicle under DC axial electric

field is given by

2πh(γ̃ +
κ̃B
2h2

) =
9h3Ẽ2

oπεmε0
8d

(B.1)

which gives the expression for dimensional and non-dimensional tension in the mem-

brane as,

γ̃ =
9h2Ẽ2

oεmε0
16d

− κB
2h2

and γ =
9εmE

2
o

16d
− 1

2
(B.2)

The critical dimensional and non-dimensional electric field is then given by,

Ẽc =

(
32

9

κ̃Bd̃

h4 εm ε0

)1/2

and Ec =

(
32

9

d

εm

)1/2

(B.3)

Which for a membrane with dielectric constant εm = 2, size h=3 µm and d̃=5 nm

that is d = 5/3000, gives Ec = 0.054 ( Ẽc = 0.01 kV/cm )
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Appendix C

Elements of the matrix M : Bilayer cylindrical vesicles in

axial electric field

M11 =
1

8
(I−2+m(k) + 2Im(k) + I2+m(k))

M12 =I−1+m(k)

M13 =I1+m(k)

M14 =
1

8
(−K−2+m(k)− 2Km(k)−K2+m(k))

M15 =−K−1+m(k)

M16 =−K1+m(k)

M17 =0

M18 =0

M21 =
1

8
i (I−2+m(k)− I2+m(k)),

M22 =i I−1+m(k)

M22 =− i I1+m(k)

M24 =− 1

8
i (−K−2+m(k) +K2+m(k))

M25 =− iK−1+m(k)

M26 =iK1+m(k)

M27 =0

M28 =0
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M31 =
1

8
(I−2+m(k) + 2Im(k)) + I2+m(k))

M32 =I−1+m(k)

M33 =I1+m(k)

M34 =0

M35 =0

M36 =0

M37 =− s

M38 =0

M41 =− 1

8
(kI−3+m(k) + 2I−2+m(k) + 3 k I−1+m(k)− 4Im(k) + 3 k I1+m(k)

+ 2I2+m(k) + k I3+m(k))

M42 =− k(I−2+m(k) + Im(k))

M43 =− k(Im(k) + I2+m(k))

M44 =
1

2
(−2(−1 + k2 +m2)γ − (3 + k2 + 2 k4 − 3m2 + 2m4)κB

− (4E2
0kεeKm(1 + dm)k)/(I−1+m(1 + dm)k +K1+m((1 + dm)k))

M45 =− k(K−2+m(k) +Km(k))

M46 =− k(K2+m(k) +Km(k))

M47 =− Eo2 kK−1+m(k)− 2(E2
0 + (−1 + k2 +m2) γ)Km(k)

+ E2
0 kK1+m(k) 2Km(k)

M48 =− 1

M51 =
1

16
i(kI−3+m(k) + 2mI−2+m(k) + kI−1+m(k) + 4mIm(k)− kI1+m(k)

+ 2mI2+m(k)− kI3+m(k))

M52 =
1

2
i(kI−2+m(k) + 2(−1 +m)I−1+m(k) + kIm(k))

M53 =− 1

2
i(kIm(k)− 2(1 +m)I1+m(k) + kI2+m(k)
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M54 =
1

16
i(kK−3+m(k)− 2mK−2+m(k) + kK−1+m(k) + 4mKm(k)− kK1+m(k)

− 2mK2+m(k)− kK3+m(k))

M55 =
1

2
i(kK−2+m(k)− 2(−1 +m)K−1+m(k) + kKm(k))

M56 =− 1

2
i(kKm(k) + 2(1 +m)K1+m(k) + kK2+m(k))

M57 =0,

M58 =im

M61 =
i

4k
(kI−1+m(k) + 2Im(k)) + kI1+m(k)

M62 =iIm(k)

M63 =iIm(k)

M64 =
1

4k
(i(kK−1+m(k)− 2Km(k) + kK1+m(k))

M65 =iKm(k)

M66 =iKm(k)

M67 =0

M68 =0

M71 =− 1

4
i(k I−2+m(k) + 2I−1+m(k) + 2 k Im(k)

+ 2 I1+m(k) + kI2+m(k))

M72 =− 1

2
i k (−3 I−1+m(k) + I1+m(k))

M73 =− 1

2
i k ( I−1+m(k) + 3 I1+m(k))

M74 =− 1

4
i(kK−2+m(k)− 2K−1+m(k) + 2kKm(k)− 4K1+m(k) + kK2+m(k)

M75 =− 1

2
ik(3K−1+m(k) +K1+m(k))

M76 =− 1

2
ik(K−1+m(k) + 3K1+m(k))

M77 =
1

2
E0 k εe(−2iE0 +

(2iE0K−1+m((1 + d)k))

(K−1+m((1 + d)k) +K1+m((1 + d)k))

+
(2iE0K1+m((1 + d)k))

(K−1+m((1 + d)k) +K1+m((1 + d)k))
)

M78 =i eim k
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APPENDIX C. ELEMENTS OF THE MATRIX M : BILAYER CYLINDRICAL
VESICLES IN AXIAL ELECTRIC FIELD

M81 =− 1

8
(−(1 +m) I−2+m(k)− 2 k I−1+m(k)− 6 k Im(k)

− 2 k I1+m(k) +−I2+m(k) +mI2+m(k))

M82 =(1 +m)I−1+m(k)− k Im(k)

M83 =− kIm(k) + (−1 +m)I1+m(k)

M84 =0

M85 =0

M86 =0

M87 =0

M88 =0
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Garcia, F., González, H., Ramos, A., and Castellanos, A. (1997). Stability of insulating viscous jets

192



BIBLIOGRAPHY BIBLIOGRAPHY

under axial electric fields. J. Electrostat, 40, 161–166.

Glonti, G. (1958). On the theory of the stability of liquid jets in an electric field. Sov. Phys. JETP, 7,

917–918.
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