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Abstract
3D modelling aims to solve geological problems, but these are always underdetermined and require 
prediction to produce geologically reasonable results. There are a series of related issues associated 
with 3D modelling techniques that require analysis, including geophysical ambiguity, sparse data 
and the subjective nature of geological interpretation. The combination of these modelling issues 
results in geological models being subject to uncertainty. In this thesis, we have developed ‘strati-
graphic variability’ to detect and quantify geological uncertainty within 3D models.
Stratigraphic variability determines the likelihood of finding different geological units at any given 
location within a model. A model suite is produced during uncertainty analysis, which contains 
a collection of models calculated from a single input data set. The effect of geological uncertainty 
on 3D model architecture is analysed with a set of ‘geodiversity’ metrics, a collection of analytical 
techniques that characterise each model within the model suite geometrically and geophysically. 
Geometrical metrics include: depth and volume of a geological unit; curvature and surface area 
of a contact; and geological complexity. Geophysical metrics analyse the observed geophysical re-
sponse (representing nature), the calculated geophysical response (representing the model) and the 
residual (the difference between the observed and calculated responses).
Geophysical metrics include: the root-mean-square misfit of the residual; standard deviation of 
the calculated response; information entropy of the residual; the 2D correlation coefficient of the 
calculated and observed response and; the Hausdorff distance between the calculated and observed 
response. Model space is mapped by identifying models that exhibit common and diverse charac-
teristics, with the most diverse models defining the boundaries of model space and most common 
models defining the centre. The combination of uncertainty detection and model space exploration 
reveals the range of geological possibility. This thesis demonstrates a set of techniques that better 
describe the geological problem and provide guidance to geophysical inversion procedures.
We demonstrate stratigraphic variability, geodiversity and inversion techniques on two case studies: 
the Gippsland Basin, a mature oil and gas prospective region off the coast of southeastern Austra-
lia; and the gold prospective Proterozoic Ashanti Greenstone Belt located in southwestern Ghana. 
Significant results are that: (1) model architecture can vary significantly due to uncertainty; (2) 
considered addition of data significantly reduces model uncertainty; (3) characterisation of mod-
els using geodiversity reveals geologically relevant characteristics of a model; (4) not constructing 
multiple 3D models from a dataset misrepresents the geological terrane; (5) model uncertainty is 
complex and affects the architecture of each model differently; (6) geophysical inversion can be as-
sisted using results from both stratigraphic variability and geodiversity and (7) all these techniques 
can be applied to 3D models that represent different geological terranes.
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Le raisonnement derrière ce projet était de développer des techniques qui pourraient characteriser 
le niveau de confiance que la communauté géoscientifique a dans les modèles géologiques en trois 
dimensions (3D). La confiance que l’on a en un modèle est directement liée à la précision du mo-
dèle dans la représentation du monde naturel. La précision d’un modèle géologique 3D est vitale 
pour une évaluation correcte de sites ayant une importance nationale et économique. Les efforts 
en vue d’obtenir des richesses économiques sous forme de gisements minéraux ou énergétiques 
(pétrole, gaz, charbon et énergie géothermale), d’atteindre les objectifs de réduction d’émissions de 
carbone (séquestration du carbone) ou concernant l’élimination des déchets nucléaires peuvent  être 
grandement améliorés par l’utilisation de modèles géologiques 3D précis. Le manque de confiance 
actuel dans les techniques de construction courantes des modèles géologiques 3D est dû à la nature 
hautement subjective et interprétative du processus de construction de modèle. Les prédictions 
basées sur des observations souvent limitées en raison d’un manque d’affleurements ou d’observa-
tions faites en trois dimensions des propriétés terrestres ont conduit à des modèles qui représentent 
le monde naturel de façon erronée. Une technique communément utilisée pour contrebalancer la 
subjectivité et la dépendance à l’interprétation est de tester les modèles en comparaison avec (et 
parfois en s’en servant pour les peaufiner) la modélisation gravimétrique et la géophysique magné-
tique.  Le but original de ce projet était d’améliorer les algorithmes courants de façon à (1) mieux 
combiner les données géologiques et géophysiques et (2) fournir une plateforme plus objective et 
reproductible sur laquelle construire des modèles géologiques 3D.
Les Directeurs de Thèse pour ce projet étaient Dr. Laurent Ailleres (School of Geosciences, Monash 
University), Prof. Mark Jessell (Géosciences Environnement Toulouse/ L’Institut de recherche pour 
le développement), Ass. Prof. Peter Betts (School of Geosciences, Monash University) et Eric De 
Kemp (Geological Survey Canada, superviseur externe). Des collaborations de recherche étroites 
ont été établies avec Stéphane Perrouty (GET/IRD), Dr. Des FitzGerald (Intrepid Geophysics) et 
Dr. Tim Rawling (alors à GeoScience Victoria, maintenant à AGOS, Melbourne University). Une 
assistance technique et scientifique importante a été procurée par Dr. Antonio Guillen (BRGM, 
Orléans), Ray Seikel (Intrepid Geophysics) et Dr. Stewart Hore (Intrepid Geophysics).
Deux sites d’études de cas ont été sélectionnés comme exemples de situation en monde réel pour 
être utilisés dans le cadre de ce projet de recherche. Le Bassin de Gippsland, dans le sud-est de l’état 
de Victoria, en Australie,  est un champ de pétrole et de gaz développé en haute mer. La Ceinture 
Ashanti Greenstone, dans le sud-ouest du Ghana est un terrane aurifère côtier Paléoprotérozoïque  
polydéformé situé en Afrique de l’Ouest. 
Un partenariat entre le Département des Industries Primaires du gouvernement de l’état de Victo-
ria et GeoScience Victoria (la commission géologique de l’état) a été établi, par lequel les données 
publiques seraient fournies pour construire un modèle du Bassin de Gippsland. Le Bassin de 
Gippsland a été choisi en raison de son importance en tant que champ de pétrole et de gaz exis-
tant et des plans en vue d’examiner les possibilités de séquestration de carbone dans cette région. 
L’architecture de bassin est un sujet typique de la plupart des recherches de modélisation géolo-
gique 3D et représenterait un exemple nécessaire sur lequel des expériences pourraient être faites.
La Ceinture Ashanti Greenstone a été choisie comme zone d’étude de cas en raison d’une collabo-
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ration de recherche existante entre School of Geosciences, Monash University et le LMTG/GET, 
Université Paul Sabatier (Toulouse III) et IRD. Stéphane Perrouty, doctorant au GET, faisait une 
étude géologique et géophysique intégrée du sud de la Ceinture Ashanti Greenstone et a produit 
beaucoup de données qui sont typiquement utilisées dans la construction de modèles 3D. Ce fut 
une bonne opportunité de produire un modèle 3D pour rehausser l’étude faite par Stéphane et 
pour fournir une étude de cas géologiquement différente du modèle du Bassin de Gippsland. La 
modélisation de terranes polydéformés complexes devenant plus importante dans l’exploration des 
minéraux et il a été jugé nécessaire que les techniques développées au cours de cette étude soient 
démontrées comme étant efficaces dans ces régions à potentiel minéral.
Les outils et les techniques ont été développés grâce à l’utilisation de logiciels variés sur des pla-
teformes d’ordinateur de bureau et de grille informatique. Geomodeller™ 3D a été utilisé pour 
construire des modèles 3D afin de faire une modélisation prédictive géophysique 3D. Geomo-
deller™ 3D est une application de modélisation géologique 3D développée conjointement par 
Intrepid Geophysics (Brighton, Victoria, Australia) et le BGRM (Orléans, France). La recherche 
en collaboration avec Intrepid Geophysics a donné accès au logiciel 3D Geomodeller Applica-
tion Program Interface (API), à partir duquel des techniques primordiales ont été développées. 
L’automatisation de nombreuses tâches a été facilitée grâce à l’accès à 3D Geomodeller API et a 
permis plus de développements pour Intrepid Geophysics. Mathworks Matlab® a été utilisé pour 
développer le code qui a réuni et analyse les résultats générés par 3D Geomodeller. Les processus à 
utilisation massive de mémoire ont été transférés sur la plateforme informatique Monash Sun Grid 
où ils demeurent disponibles à l’usage du public. 
Chapitre 1 Sommaire
Les modèles géologiques à trois dimensions (3D) sont construits pour représenter de manière 
fiable une cible géologique donnée. La fiabilité d’un modèle dépend largement des données entrées 
et est sensible à l’incertitude. Cette étude examine l’incertitude introduite par les données d’orien-
tation géologique en produisant une suite de modèles 3D implicites générés à partir des mesures 
d’orientation soumises à des simulations d’incertitude. La simulation d’incertitude est un procédé 
dans lequel les entrées de mesures d’orientation dans le processus de modélisation sont perturbées. 
La perturbation indépendantes des mesures est accomplie en faisant varier au hasard (simulation 
Monte-Carlo) les mesures originales de jusqu’à ± cinq degrés. Les mesures d’extension latérale et 
de pendage  pour chaque observation sont toutes deux variées dans les données entrées pendant la 
simulation d’incertitude.
Le résultat de la simulation d’incertitude est une nouvelle série de mesures à partir de laquelle de 
nouveaux modèles peuvent être calculés. 100 séries de mesures d’orientation différentes ont été 
produites dans ce chapitre, mais un nombre infini de mesures peut être produit de cette manière. 
Le nombre 100 a été choisi car celui-ci produit une quantité suffisamment élevée  de données pour 
produire un échantillonnage adéquat mais est suffisamment bas pour réduire le temps de modéli-
sation et d’analyse des données pour permettre à ce projet d’être accompli dans les délais impartis. 
De nouveaux modèles ont été calculés une fois que les nouvelles séries de données d’orientation ont 
été produites. La série de nouveaux modèles en conjonction avec le modèle calculé avec la série de 
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données originales (le ‘modèle initial’) a produit la ‘série de modèles’. Tous les modèles à l’intérieur 
de la série de modèles  ont été discrétisés en voxets lithologiques et comparés les uns aux autres 
pour produire une ‘grille d’incertitude’.
La méthode de modélisation implicite est présentée en détail dans le Chapitre 1. La méthode 
implicite est intégrale à cette recherche du fait qu’elle procure à la fois un moyen rapide de calculer 
les nouveaux modèles et une méthode répétable pour créer des éléments permettant de créer une 
modèle géologique en trois dimensions. D’autres méthodes de modélisation, telles que la méthode 
explicite, réclament que l’opérateur numérise manuellement les éléments géologiques et par consé-
quent implique une interprétation de la part de l’opérateur. La conséquence de l’interprétation est 
que la même série de données peut produire des solutions différentes selon les décisions prises par 
l’opérateur durant la modélisation et n’est pas répétable. Les méthodes de modélisation explicites 
peuvent prendre assez longtemps et la production de modèles multiples (tels que les 100 mo-
dèles perturbés produits dans ce chapitre) prendrait bien plus longtemps qu’il n’est possible avec 
la méthode implicite. Une série de modèles produits par les méthodes explicites contiendrait pro-
bablement une grande proportion de préjugés de l’opérateur qui serait difficile à retirer quand les 
modèles sont comparés l’un à l’autre. 3D Geomodeller utilise la méthode de modélisation implicite 
‘champ potentiel’ et a pu produire automatiquement la série de modèles avec moins de préjugé 
géologique soit introduit par l’opérateur. La méthode implicite nous a rendus confiants que les dif-
férences trouvées entre les modèles étaient celles dues à des mesures d’orientation perturbées et non 
aux interprétations particulières ou à une opinion personnelle concernant les éléments géologiques.
L’incertitude associée aux différentes régions d’un modèle géologique peut être localisée, quan-
tifiée et visualisée par l’analyse de la grille d’incertitude. Cette forme d’analyse de l’incertitude a 
donné une méthode utile pour évaluer la fiabilité du modèle. Dans le Chapitre 1, la méthode est 
testée sur un cadre géologique naturel dans le Bassin de Gippsland, dans le sud-est de l’Australie, 
où des surfaces géologiques modélisées ont été évaluées pour l’incertitude. Le modèle du Bassin 
de Gippsland a été construit en intégrant les mesures de géologie de champ et l’interprétation 
géophysique.  Les données sur site ont été relevées sous la forme d’observations d’orientation et de  
cartographie des affleurements à partir du littoral, alors que la plupart du modèle est situé au large, 
nécessitant une interprétation géophysique basée sur des données aéromagnétiques, gravimétriques 
et sismiques. Les données de forage n’ont pas été utilisées directement mais ont été intégrées dans 
l’étude en tant que cartes d’isopaques. Toutes les données utilisées dans cette étude ont été fournies 
par GeoScience Victoria, cependant une grande partie des données n’était pas en état pour les en-
trer. La préparation des données a formé un élément significatif de la construction du modèle et est 
décrite en détail dans le Chapitre 1.
Le concept de variabilité stratigraphique a été introduit et une analyse des données entrées a été 
faite visuellement. D’autres méthodes de visualisation de l’incertitude offertes par la littérature ont 
été discutées parallèlement à la méthode choisie dans ce chapitre. La visualisation d’incertitude par 
la variabilité stratigraphique a été conçue pour  communiquer le concept complexe de l’incertitude 
du modèle  3D aux géoscientifiques d’une manière effective. 
Un test a été conduit pour déterminer si l’incertitude du modèle était sensible à une information 
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additionnelle. Le raisonnement derrière l’accomplissement de ce test était que nous voulions dé-
terminer si de l’information supplémentaire (entrée de données) pouvait réduire l’incertitude, et si 
c’était le cas, si la grille d’incertitude pouvait être utilisée comme guide pour une future exploration. 
Le test a été fait en produisant deux séries de modèles, l’une utilisant deux sections sismiques per-
pendiculaires l’une à l’autre, l’autre utilisant seulement une des sections sismiques. La quantité d’in-
certitude associée à chaque série de modèles a été calculée comme un volume, similairement aux 
pratiques d’estimation de ressource. Des seuils d’incertitude haut, moyen et bas ont été établis et les 
volumes calculés pour la section sismique simple et la série de modèles à deux sections sismiques. 
L’incertitude globale a été réduite dans  la série de modèles à deux sections sismiques  à partir de 
la série de modèles à section simple. Les cartes d’incertitude ont révélé que la plupart de l’incerti-
tude était réduite vers l’emplacement de la section supplémentaire, soutenant ainsi l’efficacité de la 
détection d’incertitude pour guider la planification.
L’incertitude dans certains sites modèles spécifiques a été identifiée et attribuée aux désaccords pos-
sibles entre les données sismiques et isopaches. Des améliorations supplémentaires et des sources 
de données additionnelles ont été proposées sur la base de cette information. Finalement, une mé-
thode d’introduction de valeurs de variabilité stratigraphique comme contraintes géologiques pour 
une inversion géophysique a été présentée.
Sommaire du Chapitre 2 
Le chapitre 2 commence par examiner la nature interprétative de la compréhension géologique en 
utilisant le cercle herméneutique. Une compréhension complète de toutes les parties du problème 
géologique peut seulement être atteinte en comprenant comment elles sont liées au problème dans 
son ensemble, et la compréhension du problème dans son ensemble ne peut être atteinte que par 
la compréhension de ses parties. La compréhension qu’un géologue a de ces parties est guidée par 
son éducation, ses préconceptions et théories qui sont nécessaires pour comprendre les problèmes 
souvent complexes présentés par une image géophysique ou un affleurement rocheux. Très peu de 
compréhension géologique peut être obtenue sans interprétation. Toutes les disciplines géologiques 
demandent une interprétation puisqu’il est nécessaire de faire des reconstructions géodynamiques, 
construire des modèles de dépôt de minerai  ou recréer l’histoire d’une éruption volcanique. Arriver 
à une réponse interprétative réclame aussi une certaine ‘voyance’, ou une préconception de la ré-
ponse, autrement aucune réponse ne sera jamais obtenue, puisque plusieurs sont souvent possibles. 
L’équipement géoscientifique (boussole d’orientation, loupe de géologue, spectromètre de masse 
ICP-MS) a été conçu pour  mesurer les phénomènes géologiques considérés comme pertinents 
aux problèmes géologiques. Les techniques et pratiques d’utilisation de ces équipements ont  été 
formées au cours des années par des praticiens et réclament une interprétation individuelle. La 
nécessité d’avoir une interprétation veut dire que plus d’une réponse existe pour chaque problème 
géologique, bien qu’il soit commun de ne jamais en offrir qu’une seule. Notre argument est que 
les techniques analytiques développées dans cette recherche adressent le problème de la solution 
unique en offrant une évaluation des possibilités géologiques.
Le chapitre 2 discute des implications de l’incertitude concernant la géométrie des éléments 
géologiques au sein d’un modèle. Des pratiques de cet ordre vont probablement résulter en un mo-
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dèle qui ne représente pas de façon adéquate la géologie ciblée. L’incertitude due à l’intégration et 
l’interprétation des données a été réexaminée et étendue pour modéliser les explorations spatiales. 
L’espace modèle a été défini comme une région qui contient toutes les réalisations possibles des 
possibilités géologiques qui sont offertes par l’ensemble de données plus le modèle qui représente 
le mieux le monde naturel. Cette incertitude existe à l’intérieur de la série de modèles, la géométrie 
des éléments géologiques doit aussi être incertaine et varier entre les modèles. Le but du Chapitre 
2 était d’identifier quels modèles étaient les ‘membres extrêmes’ en termes  d’attributs géométriques 
de façon à définir les limites de possibilité géologique. 
L’exploration de l’espace modélisé requiert un moyen de comparer et contraster les modèles. Une 
série de paramètres géométriques ou de ‘géodiversité’ ont été développés pour mesurer les différents 
attributs des éléments géologiques dans le Bassin du Gippsland. Comme dans le Chapitre 1, les 
données entrées ont été soumises à une simulation d’incertitude et une série de modèles a été créée 
pour former la série de modèles. La série de modèles résultante présente toute une gamme d’ar-
chitecture géologique qui peut être mesurée en utilisant des paramètres de géodiversité. Diverses 
relations géométriques (profondeur, volume, surface de contact, courbure et complexité géologique) 
sont utilisées pour décrire la gamme de possibilités exhibées dans toute la série de modèles. Les 
modèles de membres extrêmes pour chaque paramètre de géodiversité sont classifiés d’une manière 
similaire aux descriptions taxonomiques. 
Les résultats pour chaque paramètre de géodiversité ont été obtenus en utilisant des scripts écrits 
en Matlab®. Chaque modèle a été converti en un voxet (une collection de voxels, ou pixels volumé-
triques) pour permettre le calcul des paramètres. Le paramètre de profondeur détermine l’étendue 
du moins profond au plus profond pour chaque unité stratigraphique au sein du modèle. Chaque 
modèle est comparé aux autres pour déterminer le membre extrême le plus profond et le moins 
profond qui sont représentatifs de chaque lithologie. Le volume est calculé en faisant un compte de 
voxels de chaque unité stratigraphique à l’intérieur de la série de modèles. Les modèles montrant les 
volumes les plus grands et les plus petits pour chaque unité stratigraphique sont identifiés comme 
membres extrêmes représentatifs. La courbure est calculée sur les contacts des unités stratigra-
phiques. La courbure moyenne détermine la géométrie synforme ou antiforme. La courbure Gaus-
sienne, combinée à la courbure moyenne, détermine si les contacts démontrent une géométrie de 
dôme/bassin ou de col. Les relations de voisinage à courte distance déterminent  combien d’unités 
stratigraphiques différentes entourent un point d’intérêt donné. Un nombre croissant d’unités stra-
tigraphiques différentes entourant un point donné reflète une plus grande complexité géologique. 
Finalement, un paramètre qui mesure les relations de contact et la surface associée a été développé. 
De plus, la gamme de relations de contact dans toute la série de modèles peut être déterminée.
L’analyse des membres extrêmes a fourni des informations utiles pour plus de modélisation d’in-
version géophysique. Les volumes peuvent être utilisés pour s’assurer que les unités géologiques 
n’excèdent pas une taille spécifique et les profondeurs peuvent être utilisées pour s’assurer que les  
unités géologiques sont limitées dans l’espace. Les mesures de courbure peuvent limiter la quan-
tité de déformation qu’une surface montre au sein du modèle. L’utilisation d’une combinaison 
de valeurs de voisinage à courte distance et de surfaces de contact peut apporter des contraintes 
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puissantes aux marges des unités géologiques, assurant ainsi que les relations géologiques et la 
connectivité sont gardées. 
L’analyse des membres extrêmes  classe chaque unité stratigraphique de chaque modèle pour chaque 
paramètre de géodiversité au sein de la série de modèles. Les résultats du Chapitre 2 ont montré 
qu’aucun modèle n’était présenté systématiquement en tant que membre extrême représentatif. De 
plus, l’analyse de ces données s’est révélée difficile et la découverte de toutes les tendances condui-
sant à une identification d’un paramètre influent a été impossible à réaliser avec certitude. Une 
technique statistique a donc été requise dans l’analyse simultanée de tous les paramètres de géodi-
versité pour identifier si aucun de ces membres extrêmes n’était différent de manière significative 
du modèle initial. L’Analyse en Composantes Principales (PCA) a été choisie pour réaliser cette 
tâche. La PCA est capable de déterminer quels paramètres ont une incidence sur la description 
de la variabilité entre modèles. Grâce à l’identification des paramètres qui sont les plus influents, 
les modèles peuvent être comparés quand les résultats de tous les paramètres de géodiversité sont 
pris en considération. Les modèles géométriquement similaires forment le barycentre du modèle 
spatial, et les modèles divers (les ‘cas isolés’) forment les limites.
Des résultats significatifs ont été obtenus. Le volume d’une unité stratigraphique formant le socle 
s’est révélé comme étant le plus influent dans la production de variabilité géométrique entre les 
modèles. Intuitivement, le résultat semble logique, puisque tout changement géométrique de cette 
unité profonde affecterait les unités qui la recouvrent. La définition des limites du modèle a trouvé 
que le modèle initial n’était pas l’un des modèles les plus courant géométriquement. Le modèle ini-
tial s’est trouvé être le onzième plus commun, ce qui veut dire que dix autres modèles contiennent 
une architecture géologique plus typique. L’implication est que la production d’un modèle unique, 
comme il serait fait normalement, ignore les dix autres modèles qui pourraient mieux représenter 
la géologie de la zone étudiée. Il est recommandé que les pratiques qui produisent des réalisations 
géologiques multiples, telles que celles présentées dans cette recherche, soient adoptées dans la 
communauté de la modélisation.
Sommaire du Chapitre 3 
Le Chapitre 3 étend le concept de géodiversité dans le domaine géophysique. La modélisation 
géophysique 3D est communément utilisée pour valider les modèles par rapport au monde naturel 
par l’utilisation de la modélisation prédictive. Il était donc important d’inclure les techniques de 
modélisation prédictive géophysique 3D dans le groupe de paramètres de géodiversité. La modé-
lisation prédictive 3D compare deux séries de données géophysiques, la réponse observée et la 
réponse calculée, produisant une valeur inadéquate qui représente le niveau d’accord entre les séries 
de données. La ‘réponse observée’ représente le monde naturel et était une série de données de 
gravité Air Libre obtenues du Bureau Gravimétrique International (BGI). La réponse calculée l’a 
été à partir du modèle 3D. La combinaison de forme, profondeur et dimension de toutes les unités 
stratigraphiques et les propriétés pétrophysiques assignées produisent la réponse calculée.
Le Chapitre 3 introduit de nouveau le concept d’incertitude dans la modélisation 3D, en se concen-
trant cette fois-ci sur la manière dont les décisions sont prises concernant le traitement et le filtrage 
des données entrées, ce qui peut affecter dramatiquement la réponse calculée d’un modèle 3D. 
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Malheureusement, ces décisions sont toujours prises sans une connaissance complète du système 
en cours d’étude. Cela résulte régulièrement, voire toujours, en une représentation déformée des 
phénomènes naturels par le modèle. Cette représentation déformée des phénomènes naturels peut 
être attribuée à l’incertitude inhérente au processus de modélisation. L’incertitude est inévitable en 
modélisation géologique du fait qu’une connaissance complète du système naturel est impossible, 
bien que nous utilisions de nombreuses techniques pour en réduire la quantité introduite par le 
traitement, la modélisation prédictive est l’une de ces techniques. Malheureusement, les données 
géophysiques sont ambiguës et fournissent une solution qui n’est pas unique. Théoriquement, dif-
férentes géométries de modèle peuvent produire la même réponse géophysique.
Ce chapitre propose et teste un procédé dans lequel la série de modèles entière à été soumise à 
une modélisation prédictive géophysique 3D, facilitant ainsi une exploration étendue de l’espace 
géologique modélisé. Comme dans le chapitre précédent, toutes les mesures de géodiversité ont 
été combinées dans une analyse multivariée qui a révélé les relations les entre paramètres et défini  
les limites de possibilité géologique. Le Chapitre 3 examine la Ceinture Ashanti Greenstone, au 
sud-ouest du Ghana en Afrique de l’Ouest en tant qu’étude de cas pour évaluer l’efficacité de la 
technique. Des propositions d’étude plus approfondie ont été faites et certains aspects de l’espace 
modélisé ont été identifiés  comme pouvant présenter un intérêt pour l’exploration aurifère.
La Ceinture  Ashanti Greenstone est une des ceintures orientées vers le nord-est de roches vertes-
granitoïdes à l’intérieur du craton Archéen/Paléoprotérozoïque Leo-Man. Les gisements aurifères 
allant de vaste à classe mondiale situés dans la Ceinture Ashanti Greenstone sont Obuasi, Tarkwa, 
Bogoso/Prestia et Damang. Le socle paléoprotérozoïque du sud-ouest du Ghana est formé du 
Supergroupe Birimien qui est recouvert par le Groupe  du Tarkwaien. Deux périodes distinctes 
d’activité orogénique ont produit les granitoïdes de l’âge éburnéen tonalite-trondhjémite-grano-
diorite (TTG) avec des granitoïdes granodioritiques, dioritiques et gabbroïques principalement au 
sud (2180-2150 Ma) et des granitoïdes de l’âge éburnéen (2130-2070 Ma). La minéralisation hy-
drothermale de l’or a été associée à la Faille d’Ashanti et à d’autres zones de cisaillement majeures. 
Les gisements d’or alluvial sont associés au contact entre les unités du Birimien et du Tarkwaien. 
Des observations sur le terrain préexistantes et des cartes d’affleurement ont été utilisées en com-
binaison avec les données collectées par Stéphane Perrouty (UPS/IRD) pour générer le modèle 
initial. Les données de terrain ont inclus des observations structuralles et pétrophysiques de me-
sures calculées à partir d’échantillons rocheux. L’interprétation géophysique faite par Perrouty était 
contrainte par l’utilisation de données pétrophysiques, et aidée par les observations sur le terrain. 
Une couche épaisse latéritique et/ou saprolitique couvre les parties les plus accessibles à l’intérieur 
de la région, ce qui restreint l’accès à l’affleurement protérozoïque. Par conséquent, une interpréta-
tion géophysique de la plupart de la région était nécessaire pour comprendre la  géologie entre les 
zones d’affleurement.
Chaque mesure de réponse géophysique incluse dans la collecte de paramètres de géodiversité a 
été décrite. Quelques paramètres géophysiques sont des techniques ‘couplées’, ainsi nommées parce 
que la comparaison a été faite en paires entre la réponse observée et celle calculée. Les techniques 
couplées incluent le coefficient de corrélation 2D, la valeur quadratique moyenne (RMS) et la 
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distance de Hausdorff. Les techniques d’‘écart-type’ et d’entropie sont typiques des techniques 
d’analyse d’images non-couplées. La technique d’écart type a été utilisée sur les grilles calculées, la 
technique de l’entropie a été utilisée sur les grilles résiduelles.
Les résultats obtenus à partir de cette étude montrent que globalement les valeurs déformées 
RMS sont raisonnablement élevées pour ce type d’étude. Évidemment, on espèrerait des valeurs 
légèrement plus basses, mais l’amplitude n’est pas assez élevée pour rejeter catégoriquement le 
modèle géologique. L’analyse des modèles de la valeur quadratique RMS minimum et maximum 
des membres extrêmes démontre que la plus grande variation d’amplitude déformée se trouve au 
centre et sur les bords du Bassin du Tarkwaien. Les anomalies de plus grande amplitude semblent 
concentrées au nord-ouest et au sud-est, mais paraissent élevées  dans toutes les grilles résiduelles 
du modèle. Une raison possible pour cela est que la gravité dans ces zones réponde à des structures 
plus profondes de l’âge Birimien qui ne sont pas inclues dans le modèle. Le manque de structures 
modélisées importantes s’est reflété par la suite dans les valeurs déformées relativement élevées. Le 
résidu observé dans le Tarkwaien n’était pas aussi sévère que ce qui était vu dans les régions nord-
ouest et sud-est de la carte, et la géologie modélisée semblait bien correspondre aux données de 
gravité.
Les paramètres géophysiques ont fourni des méthodes additionnelles de calcul de la déformation 
entre les grilles calculées et observées. La reconnaissance de tracés de la distance de Hausdorff a 
offert une technique d’accompagnement utile aux calculs de déformation RMS typiques. La dis-
tance  de Hausdorff pourrait être une inclusion pour des études futures en raison de sa capacité à 
détecter  les schémas dans les réponses observées qui peuvent exister dans les réponses calculées. 
L’entropie peut être une technique d’accompagnement utile à associer avec les valeurs RMS. Une 
RMS basse ne décrit pas toujours la variabilité des valeurs déformées à l’intérieur d’une grille, alors 
que l’entropie donne une image assez grossière. Une valeur RMS basse rapportée avec une valeur 
d’entropie élevée représente une image avec une déformation globalement basse mais criblée d’ano-
malies de grande amplitude. Le choix d’un modèle pour un traitement ultérieur simplement parce 
qu’il a une RMS basse sans considérer l’entropie correspondante, peut se révéler problématique si 
des anomalies de grande amplitude sont présentes.
L’Analyse de Composant Principal (PCA) a été faite sur la série de modèles de la ceinture Ashanti 
Greenstone en utilisant la collecte étendue de paramètres de géodiversité. Deux découvertes prin-
cipales ont été discutées. La première est que les paramètres de RMS, d’écart type, d’entropie 
(géophysique) et de complexité (géométrique) contribuent les plus hauts degrés de variabilité géo-
logique de la série de modèles. L’hypothèse originellement déclarée que le volume des formations 
du socle pourrait expliquer la plupart de la variabilité de la série de modèles s’est révélée fausse. La 
variabilité en complexité géologique du contact entre les formations du Tarkawaien et du Birimien 
semble expliquer le mieux la variabilité de la série de modèles, et est aussi étroitement liée à la 
déformation géophysique. La seconde découverte est que le modèle initial, encore une fois, n’est pas  
l’exemple le plus commun de possibilité géologique à l’intérieur de la série de modèles. 13 autres 
modèles sont considérés comme étant plus similaires que le modèle initial. Ceci corrobore des 
résultats similaires du chapitre précédent qui utilise  les paramètres PCA et de géodiversité dans la 
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série de modèles du Bassin de Gippsland. 
La PCA a révélé  que la réponse géophysique était associée à un phénomène géométrique. Une 
future investigation de l’espace modélisé au moyen de l’inversion géophysique peut être simplifiée 
par l’identification de modèles et d’éléments qui devraient être analysés. Un candidat à l’inver-
sion géométrique a été déterminé comme étant la surface de contact du Tarkwaien/Birimien. Des 
entrées de modélisation multiples sélectionnées avec la PCA devraient être faites sur le barycentre 
et les modèles de cas isolés. Le processus d’inversion peut se concentrer sur les éléments de modèle 
déterminés par la PCA et la géodiversité comme étant importants dans l’obtention d’un modèle qui 
respecte les données géologiques et géophysiques. Les résultats des Chapitres 2 et 3 soutiennent 
la conclusion que la production d’un simple résultat dans un exercice de modélisation ignore les 
autres modèles qui sont probablement plus à même de représenter le monde naturel.
Sommaire du Chapitre 4 
Le Chapitre 4 a combiné toutes les techniques décrites dans les Chapitres 1, 2 et 3 pour présenter  
un plan de travail de modélisation qui a culminé avec l’inversion géophysique. Le but du Chapitre 
4 est double : (1) exposer une méthode qui réduise le nombre de décisions subjectives prises lors de 
la conduite d’une inversion et (2) inclure plus d’informations géologiques dans les procédures d’in-
version. Le Chapitre 4 s’est concentré sur la nature subjective de l’inversion. La subjectivité a été 
identifiée comme existant dans trois domaines : restriction à un modèle d’entrée unique, sélection 
des paramètres d’inversion et sélection des entrées. Permettre seulement un modèle d’entrée unique  
restreint l’algorithme d’inversion à une représentation du monde naturel qui contient les connais-
sances fondamentales,  l’expertise et les préjugés inhérents de l’opérateur. De nombreux paramètres 
d’entrée offerts par les ensembles d’inversion servent à restreindre et enlever les solutions infai-
sables de la modélisation d’inversion. Les valeurs de paramètres sont conçues pour restreindre les 
modifications géologiques et géophysiques opérées pendant l’inversion. Les valeurs de paramètres 
sont souvent considérées comme des substituts pour la confiance que l’opérateur a dans le modèle 
et tendent à être choisies arbitrairement. Les éléments du modèle qui sont entrés dans l’inversion 
sont choisis selon leur importance perçue en rapport à l’architecture du monde naturel. Les choix 
tels que ceux-ci sont typiquement bien considérés, mais sont quand même  subjectifs et souvent 
faits sans effort de production de preuves quantitatives fiables.
Le développement de mesures d’incertitude quantitative et la capacité à catégoriser l’espace mo-
délisé en utilisant la géodiversité aborde la question de la subjectivité de l’inversion. Une étude 
détaillée de série de modèles de la ceinture Ashanti Greenstone qui a été faite  analyse le lien entre 
l’incertitude, la géodiversité et les résultats de la modélisation de l’inversion géophysique. De hauts 
niveaux d’incertitude étaient associés aux éléments de modélisation de la Série du Birimien précoce 
du contact avec la Série du Tarkwaien. Les paramètres de géodiversité soutiennent l’évaluation 
d’incertitude par la découverte que la signature gravimetrique de chaque modèle correspondait 
fortement à la variation entre les modèles. L’inversion a été subséquemment conduite sur le socle 
de la Série du Tarkwaien dans une inversion ‘style-socle’, où la géométrie et les propriétés rocheuses 
(par ex. la densité) ont été modifiées itérativement. L’analyse des membres extrêmes et la PCA des 
paramètres de géodiversité ont guidé le choix des valeurs de paramètre utilisées dans l’inversion, 
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tout en aidant aussi à l’évaluation des résultats de l’inversion pour une faisabilité géologique. La 
PCA a défini quels modèles étaient les plus divers et les plus communs. Les trois modèles divers et 
communs classés le plus haut (six en tout)  ont été attribués à la modélisation de l’inversion.
Une corrélation entre les résultats de l’inversion et l’incertitude a été découverte. Il semble que 
l’algorithme de l’inversion essaie naturellement de modifier les régions du modèle qui sont à la fois 
géologiquement et géophysiquement ambiguës. De plus, les différences entre les résultats obtenus 
de chacune des inversions semblent être liés à l’incertitude. Les résultats ont été évalués comme 
géologiquement faisables,  apportant de l’information nouvelle sur la Ceinture Ashanti Greenstone. 
La procédure décrite au Chapitre 4 a fourni un moyen de réduire certaines des décisions subjec-
tives, inclure plus de données géologiques dans la modélisation de l’inversion et produire des résul-
tats géologiques raisonnables.
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and issues commonly associated with 
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The use of computer-generated three-dimensional (3D) models of geology is an estab-

lished practice in geosciences, greatly improving our understanding of the geologic mechanisms 

leading to the formation of sub-surface architecture (Mallet, 1992; Mallet, 2002). There has been 

slow acceptance of the 3D models by the geoscientific community beyond the hydrocarbon in-

dustry (Xue et al., 2004; Kaufmann and Martin, 2008).

3D modelling techniques have been enhanced by improving computing technolo-

gies in personal computers, for example, multiple CPUs, large amounts of RAM and powerful 

3D graphic cards with multiple GPUs. This has allowed larger datasets to be used and speed of 

processing increased. A concurrent improvement and availability of specialised software has made 

3D modelling more accessible to a wider user base, where GUIs and data interoperability pres-

ent a user-friendly modelling environment in packages such as Gocad and Geomodeller ( Jes-

sell, 2001; Joly et al., 2008; Smirnoff et al., 2008). Complementing these advances are improved 

geophysical surveying technologies that have led to further enhancement of important informa-

tion employed in developing 3D geological models ( Jessell, 2001; Joly et al., 2008). Overall, it 

seems that the technologies supplying information to and facilitating the modelling process are 

continuously improving. Indeed, the information gained from studying these models could ben-

efit many facets of the geoscientific community, from minerals exploration (Fullagar et al., 2004; 

Strykowski et al., 2005; Murphy et al., 2006; Rawling et al., 2006; Feltrin et al., 2009) to envi-

ronmental applications (Marinoni, 2003; Wycisk, 2009). So why are there only a small number 

of practitioners outside of the hydrocarbon industry? Clearly, there must be outstanding concerns 

regarding the usability and usefulness of 3D models from the majority of geoscientists. 

In general, 3D models are built using a combination of traditional geological data, such 

as geological maps, drill-core logs, cross-section interpretations and geophysical information, 

such as gravity and magnetic data (Martelet et al., 2004). Geological maps provide information 

on how geological structures observed at the surface may extend to within the subsurface. Decid-

ing what geometry these structures exhibit is augmented and constrained by both drill-core logs 

1. Summary
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and cross-section interpretations. All mapping techniques that provide data to the modelling 

process are open to interpretation and often require it (Frodeman, 1995).  3D geological model 

building techniques rely on subjective interpretations and predictions based on limited obser-

vations of the Earth’s properties. All 3D models contain a degree of uncertainty. The source of 

uncertainty in geological modelling can be grouped into three categories (Cox Jr, 1982; Mann, 

1993; Davis, 2002; Bond et al., 2010; Wellmann et al., 2010).

Type 1 uncertainty relates to data imprecision, error and bias. Field measurements taken 

by different geologists can vary, not due to a lack of skill or training, but simply because some of 

these observations can be quite difficult to identify and measure (Thore et al., 2002; Jones et al., 

2004; Gallerini and De Donatis, 2009). Type 1 uncertainty also encompasses data sub-sampling. 

An abundance of data collected from a small area, such as a mine, is usually required to be sub-

sampled and reduced to representative points for input into a modelling package (Putz et al., 

2006). This is typical when regional scale model is being built from data collected at the local 

scale. Type 2 uncertainty relates to predictability and intrinsic randomness. A lack of outcrop, 

inconsistent or sparse measurement of rock properties and a lack of 3D information (such as how 

far particular rocks may extend at depth) require interpolation to represent an entire geological 

structure (Aitken and Betts, 2008; Maxelon et al., 2009; Zanchi et al., 2009). Type 3 uncertainty 

relates to a lack of knowledge. A model may not contain structures that do exist in the natural 

world, such as lithologies, folds, faults or shear zones that may significantly affect model topology.

The combination of these effects can create model uncertainty and possibly result in 

spurious model geometry and discrete regions where geological architecture is not well under-

stood. Removing uncertainty from 3D models would be the ultimate aim, but this could only 

be achieved by employing the unrealistic proposition of physically observing the entire target 

region. A more realistic option would be to mitigate the effects of uncertainty by developing a 

measure of influence. Uncertainty will always be present due to the nature of 3D modelling and 

the problem of sparse measurements, so quantitative determination of uncertainty can assist the 

generation and application of 3D models. The benefits of determining uncertainty in this man-

ner are twofold: (1) regions displaying high levels of uncertainty can be delineated and used to 

guide where further geological data collection and interpretive work should be conducted and (2) 

uncertainty values can be used as a gauge when assessing models to guide operator confidence. 
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The potential for 3D models to benefit geosciences is high, but the process of model-

building is complex. Therefore, a detailed examination of the critical aspects of the 3D model 

building process is provided. The various data types used to create and correct 3D models are ex-

amined, followed by a discussion of the software packages and styles of modelling that allow the 

operator to integrate and process input data, including the geophysical inversion process. Finally, 

characteristics of the modelling process are reviewed to describe methods that have been devel-

oped to determine, mitigate or exploit uncertainty.

2. Data types

There are challenges inherent to any geological study. Collected data is multi-variate and 

is often under-sampled to adequately represent the possible variables (Davis, 2002). Developing 

an understanding of the possible complex geometrical structures that can be interpreted from ge-

ology can be difficult. This is compounded when geological observations leading to the develop-

ment of architectural interpretations are sparse. Interpolating what structures may exist between 

geological observation points is significantly assisted when used in conjunction with geophysical 

datasets, but major assumptions and considerations need to be made before this can be achieved. 

Studies by de Kemp (2000), Fullagar et al. (2004), Joly et al. (2007; 2008), Frank et al. (2007), 

Aitken et al. (2008), Calcagno et al. (2008), Guillen et al. (2008) and Maxelon et al. (2009) exem-

plify this by attempting to explain previously poorly-understood 3D geological problems using 

computational analytical techniques. The focus and scale of these studies varies considerably, from 

reconstructing a deformation history (Aitken and Betts, 2008; Maxelon et al., 2009) to develop-

ing an understanding of the relationship of a shear zone to magmatic events and intrusive geom-

etries ( Joly et al., 2007; Joly et al., 2008) or better defining the depth of an Pb/Zn ore-body at the 

mine scale (Fullagar et al., 2004). By no means do these studies define the extent geomodelling 

can be applied, but all display a common reliance on particular geological and geophysical data 

types from which models are generated. This section introduces the different types of data used 

in geomodelling, their strengths and weaknesses and how they are employed in constructing 3D 

models and interpretations. 
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2.1 Geological Data

Geological data provides the foundation for any study that aims to develop a 3D under-

standing of sub-surface architecture. Drill-core and field measurements are advantageous as the 

observations can directly augment the conceptual 3D model within the geologist’s mind and be 

added to a structural map without requiring computer processing, as is the case with geophysical 

measurements.

Geological data often provides the only basis from which a 3D geological model can 

be made, especially in cases where geophysical data lacks appropriate controls (for example, 

petrophysical constraints or high quality data collection and processing) (Maxelon et al., 2009). 

Some contributions geological data makes toward the 3D model entails identifying structural 

constraints (such as kinematic and geometric indicators), identifying stratigraphy and outcrop-

ping lithological boundaries, and the composition of different lithologies gathered from petrol-

ogy. 3D models can be constructed without the use of potential field geophysical data. Examples 

of these types of studies include de Kemp (2000), Dumont et al (2008) and Zanchi et al. (2009). 

These studies do not rely on geophysics to constrain or complement the geological data, either as 

the geophysical data may not be available or of sufficient quality (de Kemp, 2000) or the suite of 

available geophysical measurements are thought to be unreliable (Maxelon et al., 2009).

The French (Dumont et al., 2008) and Italian Alps (Zanchi et al., 2009) provide excel-

lent study areas to produce 3D models as relatively abundant outcrop allows a rare view to large 

areas of geological outcrop. The Dauphiné zone in the Western French Alps hosts spectacular 

poly-deformed outcrop in the hanging-wall of the La Garde thrust in addition to extensive his-

torical structural data supplied by many previous studies (Dumont et al., 2008). The same can be 

said for the Zanchi et al. (2009) study where outcrop allows the direct observation of the struc-

tures being modelled. The most pressing concern seems to be management of the abundant data 

available to the authors and integrating it into the model, a theme which is either discussed in 

or the focus of other recent papers (Putz et al., 2006; Joly et al., 2008; Gallerini and De Donatis, 

2009; Howard et al., 2009; Maxelon et al., 2009).

The perceived positive properties of geological data can lead to potential issues. Models 

that have been constructed using the benefit of geological data to constrain geophysical inter-
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pretation can be assumed to be more robust than those that have relied purely on information 

derived from potential field data (Schmidt and McDougall, 1977; Martelet et al., 2004; Aitken 

et al., 2008; Stewart and Betts, 2010). Geological measurements constrain geophysical interpre-

tation by reducing the number of possible solutions offered by the ambiguous geophysical data. 

Unfortunately, the 3D modeller often does not collect all the geological or geophysical data, nor 

is able to perform extensive quality assurance unless supplied with the data. Howard et al. (2009) 

suggests an organisational framework based on work done by the British Geological Survey to 

address these deficiencies. Historical data will often still lacks measures of confidence or quality 

even if these changes were adopted by multiple organisations, so the 3D modeller is left assuming 

(and hoping) that input data is high quality.

Another source of ambiguity contained within geological data is the geologist’s inter-

pretation of the terrane. The stratigraphic, fault-fault, faults-folds and faults-stratigraphy rela-

tionships determined by the geologist fundamentally control the resulting 3D model topology. 

Measurements taken from a particular stratigraphic unit are assigned to a conceptual container 

that has relationships (such as relative age and deformation history) with other geological units. 

Structures inferred or measured within this unit are also subjected to the relationships interpreted 

by the geologist. All efforts are made to ensure that interpretations are scientifically valid, but 

new information can come to hand that produces a different viewpoint. Tectonic evolutions of an 

area are constantly being revised or changed, and there are usually at least two different geologi-

cal interpretations for the area (for example, the differing evolutionary views of Broken Hill as 

a nappe fold sequence (Marjoribanks et al., 1980) or a fold and thrust belt (White et al., 1995). 

Geological data therefore relies heavily on the interpretive skills of the geologist and also subject 

to ambiguity (Frodeman, 1995).

It is clear that ambiguity inherent in geological data is difficult to account for, especially 

when only sparse data is available. For this reason, the assumption that geological data is a more 

reliable source of information than geophysical information is flawed. These aspects should be 

considered when assessing a 3D model for further use practical applications such as geophysical 

inversions, engineering surveys or exploration programs.
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2.2 Geophysical Data

Not all study areas are blessed with the same quality and quantity of outcrop as the 

French and Italian Alps. In covered terranes, such as those typical to Australia, outcrop is often 

very difficult to find or too weathered to take appropriate structural measurements. Many studies 

that attempt to resolve sub-surface architecture in covered terranes (Betts et al., 2003; McLean 

and Betts, 2003; Strykowski et al., 2005; Rawling et al., 2006; Aitken and Betts, 2008; Aitken 

et al., 2008; Edmiston et al., 2008; Williams et al., 2009) have required the use of geophysics to 

provide much of the data from which geological interpretations can be made. Scattered or sparse 

field observations can be incorporated into larger-scale interpretive exercises when correlated 

with geophysical data, providing a powerful platform from which regional geological studies can 

be conducted (Gunn et al., 1997; Betts et al., 2007).

There are several geophysical techniques that can be employed to develop 3D models. 

Seismic reflection datasets are used to provide cross-section views of the study area, developing a 

relationship between different structures and stratigraphic layers (Strykowski et al., 2005; Susini 

and De Donatis, 2009). Electrical methods, such as induced polarisation (IP) and DC resistiv-

ity are effective at detecting geological boundaries, such as faults and lithological contacts, and 

are used extensively in minerals exploration (Oldenburg et al., 1997; Meju, 2002; Wijns and 

Kowalczyk, 2007). A common practice is the use of gravity or magnetics in ‘basement’ terranes 

( Jessell, 2001), often in combination, to identify geological structures. An increase in the amount 

of high-resolution data from both gravity and magnetic surveys has promoted their use in many 

research studies in addition to powerful image processing techniques that can emphasise different 

petrophysical properties. By producing a variety of maps using these image processing techniques, 

diverse observations can be made to aid interpretation (Figure 1) (Morozov et al. (2009), Luyen-

dyk (1997); Milligan & Gunn (1997) and Aitken et al. (2008) and references therein). 

2.2.1 Gravity and magnetic surveys

Gravity datasets exploit the density contrast between different lithologies to aid geo-

physical interpretation. The gravity survey technique measures the spatial variation of gravita-

tional acceleration over a discrete point on the Earth’s surface, inferring density contrasts of the 
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lithologies under that point, which can then be used determine and constrain the spatial distri-

bution of petrophysical properties ( Jessell, 2001; Kearey et al., 2002). In comparison, magnetic 

surveys detect variation in the Earth’s magnetic field. Broadly speaking, rocks composed of a rela-

tively high amount of magnetic minerals (for example magnetite, maghaematite and pyrrhotite) 

(Clark, 1983; Telford et al., 1990; Airo, 2002) will produce a higher response than rock composed 

of low amounts of magnetic minerals. The spatial distribution of high and low magnetic response 

can reveal information about the composition of the rocks over which the survey was conducted. 

It is important to note that while magnetic surveys tend to be a higher resolution (i.e. the survey 

line spacing is smaller) than gravity, not all rocks contain magnetic minerals, while all rocks pos-

sess a density. Therefore, where a magnetic survey may not reveal a change in lithology if all rocks 
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Figure 1. A selection of image processing techniques using gravity and magnetic data collection from the Ashanti 
Greenstone Belt, southwestern Ghana, western Africa. (a) Reduced-to-the-Pole (RTP) aeromagnetic image showing 
a high frequency region through the centre of the image and high magnitude linear anomalies signifying dykes; 
(b) aeromagnetic image in the first vertical derivative (1VD) accentuating a high-frequency magnetic anomalies; 
(c) RTP image reduced to the pole and upward continued to four kilometres, highlighting magnetic anomalies in 
the east, north and northwest. Note the signature of the dykes has been subdued; (d) Pseudocolour regional gravity 
Bouguer colour image showing a large trough in the centre and southwest of the image; (e) combination image of 
1VD aeromagnetic (greyscale) sun-shaded from the southeast and pseudocolour Bouguer gravity image showing the 
correlation of a textured magnetic signature with a higher magnitude gravity response; (f ) aeromagnetic greyscale 
image with an auto gain control filter enhancing more subtle trends and continuity of the response. Note folds 
shown in the centre and to the north of the image.
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possess the same magnetic mineral content (possibly due to hydrothermal alternation or high-

grade metamorphic events) it is possible that a gravity survey may reveal them.

2.2.2 Geophysical ambiguity

Geophysical interpretation can be a beneficial tool for many geological studies. Some 

may not have been possible without the information geophysical surveys provide (see McLean & 

Betts (2003), Aitken & Betts (2008), Williams et al. (2009), Metelka et al. (2011) and Perrouty 

et al. (2012). It is therefore critical to acknowledge the inherent ambiguity when interpreting 

geophysical datasets. The number of possible outcomes that can fit the observed response may 

render interpretations meaningless unless certain petrophysical constraints are applied (Nettleton, 

1942; Fullagar et al., 2004). It stands to reason that geological constraints should be included in 

3D modelling exercises to mitigate the effects of geophysical ambiguity ( Jessell, 2001). Common 

practice is to take appropriate petrophysical samples relevant to the potential field under study; 

magnetic susceptibility for magnetic surveys and density measurements for gravity (see Talbot 

et al. (2000; 2004), Wu et al. (2005), Guillen et al. (2008), Williams et al. (2009), Metelka et al. 

(2011) and Perrouty et al. (2012) for examples). When applied appropriately, a particular geo-

physical response can often be correlated to different lithologies within a study area (Grant, 1985; 

Betts et al., 2007). Consequently, identification of geological structures such as folds and faults 

can be interpreted with more certainty, leading to more scientifically robust conclusions.

3. Geomodelling techniques

Maxelon et al. (2009) distinguish two geomodelling techniques used to model complex 

geological architecture: explicit and implicit. Both styles of geomodelling are performed using 

different methods of defining modelled objects that depends on the software package, but both 

utilise the kriging data interpolation technique (and its derivations) to ‘join-the-dots’ and add 

information where data points do not exist.
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3.1. Data interpolation and kriging

Much of the data used in geomodelling exhibits characteristics of regionalised variables; 

they are spatially correlated over short distances, but at larger distances may be statistically inde-

pendent. Semivariogram and covariogram functions can describe the degree of spatial continuity 

of this input data and, using kriging techniques, estimation of value at unsampled locations can 

be made (Chilès and Delfiner, 1999). While kriging is classified as a linear regression technique, 

it differs from traditional linear regression by not assuming that random sampling has taken 

place, nor that the variates are independent (Davis, 2002). Kriging accommodates the assump-

tion that measurements are dependent on geological processes that have operated within the area, 

and should be reflected in the spatial variation of measurement values. Semivariogram analysis 

of the data is performed prior to kriging to identify spatial trends within the data (Figure 2). The 

‘range’ of the semivariogram is the distance at which measurements become uncorrelated and the 

‘sill’ is the limit of correlation. Anisotropy within the data can be determined where the range of 

semivariograms is dependent on direction (Chiles and Delfiner, 1996). The ‘nugget’ determines 

Figure 2. Semivariograms displaying anisotropies in data variance. By using the same dataset and observing the 
change in semivariogram range with direction, a trend can observed along the 135° axis where the range is largest. 
Distance from the point under study is shown on the x-axis, variance of data is shown on the y-axis. Adapted from 
Marinoni (2000, 2003).
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the amount of error associated with the sampled data and the confidence with which it can be 

observed. The next step toward obtaining kriged data is to define a search ellipse that outlines 

an estimation grid over the region of interest (Chiles and Delfiner, 1996). While kriging is used 

extensively in geological studies, its basic form does not allow for modelling more than one vari-

able or if there is covariance observed between variables (Chilès and Delfiner, 1999; Davis, 2002). 

Geophysical data can provide an example.

Magnetic geophysical surveys record the spatial variation in magnetic susceptibility 

based on the content of magnetic minerals within the rock, such as magnetite, maghaematite and 

pyrrhotite (Clark, 1983; Telford et al., 1990; Airo, 2002). In a general sense, increasing abundance 

of these minerals would indicate an associated increase in magnetic signature, a relationship that 

could be effectively modelled using kriging with two variables with that exhibit a clearly defined 

covariance.

The reality is different however, as each of these minerals have different ranges of mag-

netic susceptibility and corresponding influence on the magnetic signature (Telford et al. (1990) 

provide a more detailed examination of this topic). Other geological factors can affect this rela-

tionship, such as fluid flow, metamorphic activity and weathering that make the relationship even 

less clear as each can increase or decrease magnetite content and subsequently affect the mea-

sured magnetic susceptibility (Betts et al., 2003). Another geostatisical method, cokriging, ad-

dresses this issue by accommodating the analysis of multiple regionalised variables that have been 

sampled at the same locations (Chilès and Delfiner, 1999; Davis 2002). The kriging covariance of 

multiple variables is complemented with spatial cross-covariances between each of the variables 

and can provide information on the importance of particular dataset relationships while identi-

fying further possible correlations between variables (Goovaerts, 1998). Cokriging facilitates a 

better understanding of data distribution and correlation and allows us to produce models that 

accommodate variable relationships between datasets and model elements.

3.2. Explicit modelling

Explicit modelling defines each object within the model as a mesh or data structure. 

A surface that defines the extent of the object, either as two-dimensional grids, parametric or 
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triangulated surfaces is created using points entered by the operator (Figure 3). A diverse range 

of methods are available to create these surfaces, including Bezier surface interpolation (de Kemp, 

1999), splines, geostatistical kriging variants (Chiles and Delfiner, 1999) and discrete smooth 

interpolation (DSI) (Mallet, 1992). 

It is important to note that DSI allows a variety of constraints to be incorporated into 

model calculations that involve single objects or a number of geometrically or topologically relat-

ed objects (Mallet, 1992; Mallet, 2002). The benefit of explicit modelling comes from the ability 

to manually manipulate these surfaces, though accommodating large amounts of orientation data 

can be restrictive, especially if not located on modelled surfaces. Unrelated orientation data may 

need to be filtered, pre-processed or manipulated manually which is a labour-intensive activity 

that can make any model updates (i.e. addition of drill-core logs or field measurements) time-

consuming ( Jessell, 2001). Various tools and methods have been proposed to mitigate the data 

management drawbacks and sometimes excessive data entry requirements of explicit modelling, 

(de Kemp, 1999; de Kemp, 2000; Kaufmann and Martin, 2009; Zanchi et al., 2009) including a 

‘support vector machine’ which attempts to automate the 3D model generation process (Smirnoff 

et al., 2008). Two examples of explicit modelling software packages are Gocad™ (http://www.

pdgm.com/gocad-base-module/) and SURPAC.

a) b)

Figure 3. Example of creating a geological surface in an explicit modelling environment. GoCAD is used for this 
example. a) Two pairs of curves have been digitised from a set of nodes (points) and linked with a polyline. b) 
Surfaces are created by linking each curve pair. Further operations, such discrete smooth interpolation (DSI) (Mallet, 
1992), can be used to smooth these objects.
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a)

b)

c)

Figure 4. Example of creating a geological surface in an implicit modelling environment. 3D Geomodeller is used in 
this example. a) Digitised geological map of three formations in blue, white and green. Outcrop points are depicted 
as circles, dip and strike are depicted by the standard convention. b) Interpolated geological map determined by the 
potential field method. The solid lines represent contacts between the three formations. Note how both contact and 
orientation (strike and dip) points are honoured to produce an antiform-synform pair. c) 3D representation of the 
input data looking down-dip. 

3.3. Implicit modelling

Maxelon et al. (2009) states that in contrast to explicit modelling, implicit modelling 

uses iso-surfaces of one or several scalar fields in 3D space to generate geological interfaces. 

Geological orientation data is represented by vectors (for example, dip angle, dip or younging 

direction) defining the gradients of the scalar field and geometry of the iso-surface. Stratigraphic 

contacts, and other geological features such as fault locations, are located via iso-values within the 

model. The scalar field is calculated by interpolation between data points generating iso-surfaces 

(Figure 4). Other geologically conformable surfaces can be modelled based on data associated 

with different interfaces (Lajaunie et al., 1997), a particularly useful capability if data is sparse or 

biased to one geological formation or structure. Implicit modelling allows updates to be easily 

integrated into existing models if new data becomes available.
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Implicit modelling does not always produce surfaces with desired geometries. If infor-

mation contained within the data points does not allow geological geometries that are known 

or suspected, the operator is required to adjust the point attributes to ‘force’ the surface into the 

desired shape. Adjusting the variogram to impose particular geometries on surfaces can also be 

employed, though this will affect all surfaces associated with the data. This is a major consider-

ation and source of subjectivity that should be acknowledged when constructing 3D models with 

the implicit technique. Examples of implicit modelling software are 3D GeoModeller™ (www.

geomodeller.com) (Figure 5), Gocad SKUA® (http://www.pdgm.com/products/skua.aspx), and 

the Gocad ‘Geochron’ technique, which uses the age of geological horizons to generate scalar 

field gradients (Caumon et al., 2012; Frank et al., 2007; Moyen, 2005; Royer et al., 2006).

4. Geophysical inversions
Geophysical inversions are powerful modelling techniques that exploit the spatial data 

coverage offered by geophysical surveys to generate an assessment of 3D geological models. In 

very broad terms, an inversion is a process where an algorithm determines the best fit between a 

measured geophysical dataset and the calculated model (Tarantola, 1984; Oldenburg et al. 1997; 

c)

a) b)

Section shown in c)

Figure 5. 3D geological model of the Gippsland Basin, southeastern Victoria, produced with an implicit modelling 
software package, 3D GeoModeller: (a) structural data colour-coded according to formation and fault; (b) 3D model 
view looking from the southeast; (c) E-W cross-section and interpolated geology.
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Sambridge, 1999; Boschetti and Moresi, 2001; Fullagar et al., 2008; Guillen et al., 2008; Aitken 

et al., 2012) and allow the 3D modeller to test model veracity with respect to the measured geo-

physical signature. The geometry or properties of surfaces in any particular model are modified 

by the inversion process to better match the geophysical signature. The results can show either 

geometric or petrophysical differences between the modelled surfaces and those represented by 

geophysical data (or the ‘residual’). The residual can be used as form of sensitivity analysis to find 

the measure of fit or correlative overlap between the geological and geophysical data. This pro-

cess does have bias toward geophysical integrity as it relies on geophysical data to correct model 

properties or geometry. This has implications for geological integrity (Fullagar et al., 2000) as to 

how inherent ambiguities in geophysical interpretations allow many inverse solutions result from 

one set of observations. 

4.1. Definitions and jargon-busting

It is necessary to describe and define the many technical terms that are used in much of 

the literature before going into detail about the inversion process. These definitions are provided 

by Tarantola (2005) unless cited otherwise.

A little background to inverse theory will assist understanding the geophysical inver-

sion process. If a theory describing aspects of a physical system is known, then predictions about 

measurements from that system can be made. Two types of problems are presented when making 

such predictions: the forward and inverse problem. The forward problem consists of predicting 

measurements given a set of parameters and involves a unique solution (assuming all parameters 

are known), whereas the inverse problem uses the results of observations to infer the param-

eters of the system presenting multiple solutions. A diversion from the forward problem defini-

tion can be seen regarding geophysical forward modelling. This process requires the operator to 

interactively construct a geological cross-section by assigning appropriate petrophysical values 

to lithologies and then tailoring their geometry to both represent feasible geology and an ob-

served potential field (Figure 6). In this situation a number of geological solutions may accurately 

represent the observed response, and can be compounded further when magnetics and gravity 

are combined in the one forward model. While the potential for multiple solutions contradicts 
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a)

b)

Figure 6. Example of a forward model showing geology resolved to (a) magnetic and gravity signatures. b) 
Corresponding lithologies are represented by different colours. The susceptility and density models are shown to 
display the relative contribution of each structure to the potential field. After Perrouty et al. (2012).
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the definition of a forward problem, the reason why more than one solution may be found is that 

not all parameters are known. We never know the exact geological architecture or spatial distri-

bution of petrophysical measurements. As exact geological architecture is never known, predic-

tions about the location of modelled geological features must be performed a priori to provide a 

starting point. The ‘known’ parameters, of which the a priori model is a member, are not so much 

known as predicted. A priori models, being predictions, can be changed to improve misfit when 

required. If this occurs, the challenge becomes an inverse problem, where multiple parameters are 

unknown.

When dealing with geological inverse problems, an initial model is used as a starting 

point to which the inversion process is applied. This geological model is usually constructed in an 

implicit or explicit geomodelling package. Geological attributes represented by the a priori model 

is then measured against a set of observable parameters and results are used to guide modification 

of the a priori model. More simply put, the a priori model represents what is currently under-

stood whereas the inverted model is created once new data has been integrated. The inversion 

process relies on three abstract concepts: (1) the physical system, (2) the model space, and (3) the 

model. The physical system describes (i) the physical parameters, (ii) physical laws that enable 

forward problems to be solved for the system under study and (iii) how results observed from ob-

servable parameters can be used to infer the values of model parameters (i.e. the inverse problem). 

Examples of physical systems are stars for an astrophysicist or a mineral system for an economic 

geologist. The model space is a representation of possible models with a given set of parameters. 

Any point within model space represents the entire range of models that can be calculated within 

the physical system using a particular set of defined parameters.The point may represent only 

one model for a completely physically constrained deterministic example, but multiple models 

for examples where the parameters are either incomplete or unknown, or for stochastic examples.

Parameters are the physical quantities that characterise the system and define the boundaries of 

the model space. Using the mineral system example, the defined parameters may be hydrothermal 

fluid flux, a set of fault structures and knowledge of the lithology. Therefore, potential models may 

only be those that can be formed within the predetermined fluid flux range, on fault surfaces and 

within the specified lithology. Other possible parameters could be the size of the mineral system, 

the commodity or commodities being targeted and their depth. While the consequences of not 
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defining the model space appropriately may result in the number of possible models to be quite 

large and possibly unmanageable, this may be desirable. By allowing as many models as possible 

the likelihood of producing the closest representation of real geology increases, though the likeli-

hood of finding said representation decreases.

‘Optimising’ or ‘optimisation of the data’ describes the process of producing an opti-

mal, or single ‘best’ model from a set of inversions based on minimising the misfit between the 

measured and modelled data ( Jessell, 2001; Fullagar et al., 2004; Tarantola, 2006; Guillen et al., 

2008). It is the responsibility of the geologist to assess then accept or reject the model based on 

geological accuracy or feasibility when adopting an optimising approach to inversions. Optimi-

sation is a more traditional approach to running and producing inversion models. In contrast is 

the falsification approach suggested by Mosegaard and Tarantola (1995) and Tarantola (2006), 

whereby observations enable the operator to reject possible or impossible solutions, rather than 

seeking the best available. The argument for this approach is based on the scientific principle that 

observations cannot be used to produce models, only to falsify them (Popper, 1983). According to 

Tarantola (2006), there is a natural human instinct to observe a result from the inversion process 

with less scepticism over time, so much so that uncertainty inherent in the model (either as a 

function of geophysical ambiguity or variation in geological measurements) is ignored or never 

considered. Models with a high level of uncertainty may be viewed with the same confidence as 

those with little, contributing to poor decision making.

Another key term that requires examination is ‘discretisation’; a process whereby a 

continous model is represented as a set of discontinuous, finite objects such as  3D volumet-

ric pixels, or ‘voxels’, collectively known as ‘voxets’. Discretisation is necessary as voxets provide 

better numerical resolution for partial differential equation calculations employed by modelling 

applications (Guillen et al., 2008; McLean et al., 2008; Williams et al., 2009). A voxel contains 

location information (x,y,z or u,v,w format) and the relevant physical attributes, such as magnetic 

susceptibility, density or lithology. While it is easier for the inversion process to use voxels rather 

than vectors and surfaces, detail can be lost in the process of discretisation. Geology is very rarely 

exhibited by a perfect cube (at least at the regional scale), therefore one must acknowledge that 

data fidelity has been compromised to enhance the modelling process.
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4.2. Geophysical inversion methods

The aim of geophysical inversion is to validate geological models from geophysical data 

by automatically solving the forward problem multiple times. The iterative approach adopted 

by the inversion process is necessary due to the many possible results that can be correctly rep-

resented by potential field observations. An objective function is chosen to assist in decreasing 

the number of possible outcomes that adequately fit the data. The type of objection function 

is decided prior to modelling and takes into consideration the geological complexity and na-

ture of geophysical information input into modelling (Oldenburg et al., 1997). Some inversion 

schemes use Monte Carlo sampling techniques to obtain an adequate and manageable sample of 

the millions of possible inversion results (Guillen et al., 2008). Inversion is then performed on a 

discretised version of the input geological model and then modified to reduce the misfit detected 

against the geophysical signature. Statistical techniques are used to decide which inverted model 

is selected as the most appropriate (Fullagar et al., 2008; Guillen et al., 2008; Fullagar, 2009).

4.3 Conducting an inversion

VPmg (Vertical Prism magnetics gravity) is an inversion package that can work along-

side Gocad. Fullagar et al. (2008) describes two general types of inversion method: property and 

geometry. The property inversion has two variants: homogenous and heterogenous. The homog-

enous property inversion assumes that each discrete geological body has the same geophysical 

properties value throughout. A homogenous property inversion allows the process to adjust rock 

properties (either susceptibility or density measurements) without changing the geometry of the 

input model, while allowing the operator to assess and adjust the contact locations in the result-

ing model to reduce the misfit. The heterogeneous property inversion allows discrete geological 

bodies to be divided into parts, enabling the petrophysical properties within the discrete body 

to vary (McLean et al., 2008; Aitken, 2010). Heterogeneity is introduced to simulate the high 

degree of petrophysical variation displayed within some (if not all) lithologies in order to obtain 

smaller misfit and residual values. The heterogeneous property inversion can be particularly help-

ful to reconcile magnetic remanence, an effect that can cause many issues in the inversion process 
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by introducing magnetic susceptibility values orders of magnitude higher than those commonly 

seen (Reid et al., 1990; Muxworthy and McClelland, 2000). Finally, the property inversion can be 

configured to change values in pre-determined geologic domains by removal of other rock types 

from the calculations. This allows further refined inversions to be conducted that either acceler-

ates the process, performs sensitivity analysis in ‘what-if ?’ scenarios or forces the process to ignore 

areas that are considered to be close to reality due to direct observation information(drill logs, 

field mapping).

A geometric inversion does not modify rock properties, but adjusts geological surfaces 

in the z-direction to achieve a better misfit. Subsequently, geometric inversion necessitates that 

petrophysical properties are extensively measured and integrated into the inversion process. Input 

of inadequately sampled or non-representative petrophysical values are likely to result in spuri-

ous and unfeasible geometries (Fullagar et al., 2008). Similar to fixing petrophysical properties in 

property-style inversion, surfaces can be fixed in a geometrical inversion. Geological surfaces can 

be ‘fixed’ by constraints dervied from data obtained from drill logs or field observations. Fixing 

surfaces can be achieved by adding ‘pierce points’ to surfaces that correspond to known geological 

contacts or structures. 

Guillen et al. (2008) describe a different process, dubbed a ‘total litho-inversion’, used 

in conjunction with 3D GeoModeller. This inversion utilises Bayesian probability functions to 

quantify the spatial distribution of rock properties and lithologies within a given model (Lane 

and Guillen, 2005). The flaws of optimisation stated by Tarantola (2006) are addressed by using 

varied geometries to test a range of possible models, though these are still highly dependent on 

the geometry of the a priori model. A probability distribution over model space is produced to 

guide deduction of the final model. The benefit of generating a probability distribution is that 

Monte Carlo sampling of solutions can be applied using the Metropolis algorithm (Mosegaard 

and Tarantola, 1995; Bosch et al., 2001). This method is broadly described as a process that allows 

the exploration and analysis of multiple model possibilities resulting from complex a priori infor-

mation and ambiguous geophysical input data (Mosegaard and Tarantola, 1995; Tarantola, 2005).

The inversion process for both 3D GeoModeller and VPmg share a somewhat similar workflow, 

but fundamental differences are seen. A comprehensive outline for 3D GeoModeller is described 

in Guillen et al. (2008) and workflows for VPmg are described in Fullagar et al. (2000; 2004; 
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2008), McLean et al. (2008) and Williams et al. (2009). 

Williams (2006) outlines the University of British Columbia – Geophysical Inver-

sion Facility (UBC-GIF) software which uses a model objective function to derive a geological 

model from the observed potential field response (Li and Oldenburg, 1996, 1998; Oldenburg et 

al., 1997). UBC-GIF inversion attempts to find a physical property model that (1) requires the 

smallest amount of modification as possible from the a priori model (‘smallness’) and (2) contains 

as few high magnitude residual effects as possible (‘smoothness’). A number of parameters and 

constraints are available to the operator to customise the inversion: including noise (a reflec-

tion of noise in the observed potential field data); weighting the solution toward smallness or 

smoothness; upper and lower property bounds for the observed field and; providing geological 

constraints in the form of inferred or known geological interfaces and/or volumes. The conse-

quence of this level of inversion customisation is that the operator can impart control over the 

solution and assign parameters appropriate to the types of input data and the problem. However, 

it may not be possible to accurately assign the correct parameters without making generalised 

assumptions about the data, which could be miscalculated and have negative effects on the qual-

ity of the result (Williams, 2006). Williams (2006) also suggests that unless there is a robust and 

detailed 3D model available as an input, a ‘zero reference model’ should be used , in other words, 

an a priori model that contains no geological constraints. Given that most geological models 

are underdetermined, a zero reference model would therefore have to used in most cases, aside 

from some rare mine-scale detailed models are available. This form of geologically unconstrained 

inversion greatly increases the number of possible solutions, and reduces the likelihood of finding 

a geologically feasible result.

A significant drawback for geophysical inversion concerns that a priori sampling and 

the inversion process may exclude models that better resemble reality. The methods described 

above only offer a provision for one input model. This issue stems from the problems of sparse 

data sampling that endemic to the geosciences (Frodeman, 1995; Groshong, 2006). The data 

input into the inversion process may be comprehensive, but due to the necessity of interpreta-

tion the geological system will never be entirely described. Therefore the processes of sampling 

undertaken in the generation of the a priori 3D model and subsequent inversion processes cannot 

optimise the data with complete certainty. It is possible the resulting model adequately represents 
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reality for the purposes of the study if the operator is prudent in the process of data collection, 

interpretation, modelling and inversion is conducted properly. This requires the operator to ex-

ercise prudent judgement on the data, method and results to ensure that the process is not com-

promised by overly relying on geomodelling and inversion algorithms to provide the answer. The 

inversion process can offer overconfidence by producing readouts like misfits and residuals that 

may reduce required scepticism when analysing the results. In other words, geophysical inversions 

should not be treated like a ‘black box’ , where data is collected, entered and presented without 

healthy scepticism and objectivity.

4.4 Assumptions and issues

The aim of solving the inverse problem is to determine the parameters that explain data 

distribution. It is also necessary to make assumptions so a workable method can be used to obtain 

a solution ( Jessell, 2001; Guillen et al., 2008). Certain assumptions made during inversion mod-

elling cannot be avoided. The quality of input may be unquantified and assuming data is adequate 

may produce results fundamentally removed from a useful outcome (Boschetti and Moresi, 2001; 

Jessell, 2001). While it seems clear that geoscientists should be aware of all assumptions inherent 

to the inversion process, especially those that cannot be removed from the method or software 

package, it is not always the case. This attitude is partially related to Tarantola’s (2006) assertion 

that human nature tends to lead people to ignore the possible uncertainty or error in a model 

resulting from a geophysical inversion (or any complex data modelling process). Consequently, 

there is potential for assumptions to be ignored, forgotten or simply not considered when observ-

ing a model, potentially resulting in flawed interpretations or accepting inversion results when 

they should be rejected. In order to aid the acknowledgment of these issues, common assump-

tions made during the inversion process are listed here to promote necessary caution during the 

pre- and post-processing stages.

4.4.1. A mean value is assumed for petrophysical properties outside the bounding box in 
3D space.

A discrete volume has to be defined by bounding coordinates when an inversion is 

performed to limit the volume of data being calculated. Inversions require the volume outside 
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the bounding box to be assigned a petrophysical value appropriate to the field being calculated 

to provide some continuity in geophysical response at the margins. These values are often given a 

mean value, such as 2.67 g/cm3 (the average density of the crust) for gravity inversions. The issue 

is that far-field geophysical anomalies outside the bounding box can affect the fields observed 

within, and will not be accounted for if a mean density value is assigned to the outside volume. 

For example, if a large gravity-high existed outside of the bounding box it would have an effect 

on the gravity field within. If the inversion was set to assume a mean density value outside the 

bounding box and the gravity anomaly was not acknowledged, inconsistent results would occur.

4.4.2. Homogenous petrophysical properties adequately represent discrete lithological 
units

Mean petrophysical values are assigned to lithological units when a homogenous prop-

erty inversion is employed, often determined from forward modelling (Williams et al., 2009). 

This is very unlikely in reality, as these measurements often vary significantly spatially, especially 

in deformed, metamorphosed or altered terranes. The heterogenous property inversion has been 

developed to accommodate this, but still requires each lithological unit to be discretised and all 

other lithologies removed from calculations. Therefore each lithological unit is considered inde-

pendently of each other, in contrast to various geological processes that may have affected one, 

some or all units concurrently.

Heterogenous properties inversions also rely on sampling to accurately represent petro-

physical heterogeneities throughout the rock unit. Sampling error can therefore affect the inver-

sion modelling process by not representing the actual petrophysical heterogeneity within the rock 

unit.

4.4.3. Discretised models accurately represent geology.

Discretisation requires the operator to determine a resolution based on voxel size for 

the volume to be inverted (Oldenburg et al., 1997; McLean et al., 2008; Prutkin and Casten, 

2009; Williams et al., 2009) (Figure 7). The choice of voxel size needs to balance a desire for high 

model detail with a corresponding increase in computational demand. The scale of project, size 

of target or speed at which the model is calculated often determines the resolution. Computation 

requires discretisation for the process to be completed, but the resulting cubes (voxels) may not 
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a) b)

Figure 7. A discretised 3D model of the Gippsland Basin, southeastern Australia (viewed from the southeast). (a) 
shows a discretised version of (b). Note how geological contact surfaces in (b) are converted to cubic voxels in (a). All 
faults and some surfaces in (b) have been removed to aid visualisation of the underlying surfaces. 

represent reality well. If the resolution is too low, small geological structures or lenses of lithol-

ogy that may important to understanding the geological problem (such as magnetically remanent 

dykes) may have not have been modelled or included in calculations, resulting in flawed interpre-

tation and results.

4.4.4. Single model input

In most studies there are often two or more versions of tectonic evolution. Take, for 

example, the two prevailing Broken Hill models of Marjoribanks et al. (1980) (nappe fold se-

quence) and White et al. (1995) (fold and thrust belt). Both offer a robust hypothesis describing 

the complex geological evolution of Broken Hill area. Currently there is no method by which 

these models can be quantitatively compared in terms of geological feasibility, even if an a priori 

model based on each was created. The problem is that current inversion processes do not allow 

topological changes to occur during modelling (Guillen et al., 2008), however solutions have 

been proposed (Cherpeau et al., 2012). This can be overcome by producing a priori models that 

represent the different, currently accepted topological models that describe the study area, but 

does not completely address the practicality of the issue. Different topological relationships are 

complex and are subsequently time-consuming to understand and integrate into an a priori 

model, forcing the operator to choose one topology over the others. Consequently inversion 

results are biased towards the chosen topology.

Multiple model versions are possible when different interpretations are taken into ac-
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5. Uncertainty

count. Geophysical and geological interpretations can differ, from deciding on the geometry of 

a fault or basin, to what lithology a particular stratigraphic unit should be. Differences such as 

these can produce varied models built using the same topology. 

Significant issues requiring detailed discussion are: (1) that VPmg and 3D Geomodeller 

geophysical inversions only utilise geophysical methods to calculate the likelihood of the model; 

(2) that model uncertainty is not quantified and (3) multiple models are not compared or as-

sessed during the inversion.

The everyday use of the word uncertainty relates to doubt regarding a particular observa-

tion or concept. Further, statisticians use uncertainty to describe how predicted or observed data 

may vary with respect to the ‘true’ value, a concept which strongly relates to the 3D modelling 

processes. Uncertainty is inherent in any modelling solution, as it is in all knowledge held regard-

ing the real world (Tarantola, 2005). In many cases uncertainty is negligible, but when assump-

tions, such as those listed in Section 4.4., are made when performing inversions, the number of 

sources and magnitude of uncertainty can be high. Quantifying the uncertainty associated with 

a 3D geological model prior to or after inversion would be a useful measure to assess the ef-

fectiveness the 3D modelling workflow. Understanding how uncertainty affects the model dur-

ing inversion can aid in understanding the study area. It has been suggested by Mosegaard & 

Tarantola (1995) that inversion could be iteratively performed until uncertainty approaches zero, 

though this approach toward optimisation is discouraged as presenting a single solution can re-

sult in a mistaken belief that the model is ‘truth’, rather than a representation of nature provided 

by the data (see Tarantola (2006) and Section 4.1). Quantifying uncertainty is also important 

when assessing ore resources, planning exploration programs, identifying permissive locations 

for geothermal energy or geosequestration reservoirs. It contributes to better decision making by 

supplying more useful information to the user and increases the confidence with which one can 

view and apply interpretations made from a model that is essentially an estimation (Chilès et al., 

2004).
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5.1. Sources of uncertainty

Aside from geophysical ambiguity (Section 2.2.2), many and varied sources of un-

certainty have been identified in oil and gas exploration (Thore et al., 2002; O’Dell and Lam-

ers, 2005), geotechnical surveys (Marinoni, 2003; Samadi et al., 2009) minerals exploration 

(Shcheglov, 1991; Chilès et al., 2004), geological mapping ( Jones et al., 2004) and geophysical 

surveys (Bowden, 2007). The breadth of interest alone suggests that quantifying this variable is 

considered an important exercise, but also infers that many sources can influence it. O’Dell & 

Lamers (2005) state that uncertainty involved in assessing oil reservoirs for resource extraction is 

linked with knowledge of reservoir architecture and compartmentalization, location of faults and 

fractures and other structural considerations. They also add that factors, such as compositional 

grading, may be more influential in resource-assessment decisions if associated uncertainty was 

calculated adequately. Thore et al. (2002) go further to discuss not only structural and mechani-

cal considerations, but the uncertainty involved in processing geophysical data and the inherently 

subjective practice of geophysical interpretation.

Marinoni (2003) discusses how sources of ‘algorithmic’ uncertainty associated with data 

interpolation can be linked with the ‘smoothing’ of interfaces observed in kriging. Smoothing de-

scribes how variability in a model is reduced below that which may be observed in reality. Reduc-

ing variability may seem to be a desirable outcome, but detail is lost when too much variability is 

removed. The Marinoni (2003) study found that a lack of detail can present problems for using 

the model for prediction.

Jones (2004) and Bowden (2007) discuss a particularly interesting notion that un-

certainty associated with the final product of a study, either a 2D geological map, 3D model 

( Jones et al., 2004) or geophysical survey (Bowden, 2007), can be attributed to human behav-

iour. Bowden (2007) cites a lack of specialised knowledge in field operatives as a chief source of 

error in the reporting of radiometric ground surveys and their lack of knowledge unnecessarily 

introduces uncertainty to the results. Jones et al. (2004) attributes much uncertainty from the 

interdependence of data, information and knowledge and the prevailing scientific paradigm of 

inductive reasoning. Central to these themes are three types of knowledge that can be associated 

with varying degrees of uncertainty (Table 1). ‘Explicit’ knowledge is that which can be easily 
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Knowledge Type Example Geological Example

Explicit

Journal articles

Lecture material

Textbook content

Detailed outcrop map

Geophysical line data

Implicit
Working hypotheses

Undocumented road 
directions

Field observations within a notebook

Unpublished observations leading to 
accepted geological theory

Tacit

Riding a bicycle

Walking

Speaking a language

Geophysical interpretation

Recognition of structures in heavily 
altered or deformed terranes

Transformation of structural data into 
3D interpretation

Table 1. Summary of knowledge accessibility. Adapted from Jones et al. (2004).

communicated, expressed and understood by others. ‘Implicit’ knowledge is that which is not yet 

in a format as easily expressed but can be when queried and discussed(Frodeman, 1995). ‘Tacit’ 

knowledge (Polanyi, 1962) is that which exists within ones intellect, but may not be easily acces-

sible by others as the owner may not be able to express it appropriately or they are not aware they 

possess it. Tacit knowledge can be equated to instinct, intuition and ‘gut-feeling’ and forms the 

basis for many cornerstone geological activities, including 3D modelling and both geological and 

geophysical interpretation .

5.2. Determining and utilising uncertainty

All sources of uncertainty can adversely affect the practical application of 3D models. 

Too much uncertainty within a model can result in model predictions being entirely random, 

rendering the model and predictions useless. It is therefore crucial that the level of uncertainty 

can be quantified, either to be used as a threshold further processing (such as inversions) can 

operate within, or as a value presented with a model informing the observer the magnitude of as-

sociated uncertainty. An example of quantifying uncertainty can be seen in the Marinoni (2003) 

study where the presence or absence of clays and silt exhibits a binary response. This was achieved 

by a process called ‘indicator kriging’ ( Journel, 1983) which allows the operator to assign a 
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probability of encountering the clay and silt layer at each data point (in this case, boreholes). 

The operator is then able to visualise the kriged results and assess which probability model best 

represents reality.

There are two issues with this method: (1) the use of probability thresholds between 

more than two variables (for example, if there were three different lithologies rather than two 

- which is often the case) has a significant computational cost; (2) the assessment of the kriged 

model outcome is an interpretive exercise and represents the use of tacit knowledge. While the 

uncertainty associated with data interpolation and kriging is mitigated using the indicator krig-

ing approach, uncertainty is re-introduced in a form much harder to quantify and account for as 

it is based on the geological expertise of the operator.

Uncertainty associated with human behaviour and interpretation is not easily measured 

as these activities tend to be qualitative assessments ( Jones et al., 2004). To account for this fuzzy 

logic has been proposed as a means to assign confidence values to observations made by a geolo-

gist and introduce a quantitative means to which overall uncertainty can be determined (Bon-

ham-Carter, 1994; Kasabov, 1996). Fuzzy logic requires tacit knowledge to be expressed as explic-

it knowledge (Brown et al., 2000) by requiring the geologist to first consider the observation or 

interpretation and then represent confidence by giving it a value between 0 and 1 . This practice 

is still subjective, not to mention time-consuming when using traditional mapping methods (map 

board and notebook) and rarely performed ( Jones et al., 2004).

Another form of uncertainty found in geomodelling is the algorithmic uncertainty as-

sociated with interpolation of geological interfaces (Lajaunie et al., 1997). This method (discussed 

in Section 3.3.) interpolates surfaces using a ‘dual’ form of cokriging, attempting to find the most 

likely location for a geological interface in model space between known data points. This suggests 

that information contained within the model space between known data points is not precisely 

defined and therefore contains a certain amount of uncertainty. The magnitude of uncertainty 

within model space increases correspondingly with the distance from observation points (Figure 

8).

Determining the magnitude of algorithmic uncertainty is unfortunately not straight-

forward. Chilès et al. (2004) suggest a geostatistical method to determine levels of uncertainty 

associated with data interpolation for potential field-style geomodelling in 3D GeoModeller. The 
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interpolated line:
95% confidence
boundary:
observations:

Figure 8. An interpolated surface (red) using 1D observations. The blue boundaries represent the area that the 
interpolated line could be placed within 95% certainty. Note how the distance from the interpolated line to the 95% 
certainty boundary increases with distance from each observation. Also note that the distance from the interpolated 
line to the 95% confidence boundary depends on the variogram model.

potential fields, or iso-surfaces, are determined by a dual form of cokriging, requiring the operator 

to input the covariance model and estimation variance (Section 3.1). The dual form of cokriging 

performed in 3D GeoModeller has two advantages: (1) that computing time is reduced as the 

cokriging system is solved and (2) visualisation is more easily achieved if executed with a march-

ing cube algorithm (where nodes of the grid are predicted and intermediate points between are 

estimated to complete the iso-surface). One of the limitations of this approach is that the covari-

ance model chosen by the operator may not be appropriate. The advantage of a numerical assign-

ment of these variables is that a quantitative assessment of their respective contribution to the 

interpolation process can be made and reproduced by others in conjunction with model appraisal 

(Tangestani and Moore, 2001, 2003). Unfortunately, the choice of each value is made using tacit 

knowledge and is subjective and can become an almost arbitrary process, adding further uncer-

tainty to the process.

A significant disadvantage using dual cokriging for interpolation is interpolation error 

and uncertainty cannot be determined, but a different approach can be taken to counteract this. 

Chilès et al. (2004) suggest that by using a standard cokriging system the covariance standard 

deviation can be calculated and algorithmic uncertainty can be inferred. This is performed by 
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using the covariance fitted from the data to ascertain a reasonable cokriging standard deviation. 

Subsequently, the likelihood that an interface passes through a particular point can be deter-

mined by combining the covariance of the potential field and the cokriging standard deviation. 

The cumulative likelihood of a set of interfaces passing through associated points then allows the 

probability of an area hosting an interface to be expressed in terms of standard deviations (S(x)). 

An example is shown in Chilès et al. (2004) that an area defined by a likelihood of S(x) <2 in-

cludes about 95% (i.e. two standard deviations from the mean) of the modelled interface (Figure 

9), or the modelled interface has an uncertainty value of about five percent.

A major assumption in this approach is that the covariance of the potential field exhibits 

a Gaussian probability curve. Chilès et al. (2004) find this a reasonable assumption when applied 
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Figure 9. Depiction of uncertainty of the top layer of a gneiss unit, Limousin (Massif Central, France). (a) Plan view 
of modelled geology within 65 kilometre x 65 kilometre zone and 500 metres of elevation. (b) East – west cross-
section located by the dashed line in (a) of 62 kilometre length and 34 kilometre depth. S(x) is represented by the 
colour scale at right of (a) and (b), the cokriged potential field interface is represented by the solid black line. Note 
that the ‘true’ interface is most likely to be found in the white and pale blue areas (between S(x) 0 and ± 0.5) which 
corresponds to about 95% of the modelled interface location. Adapted from Aug (2004) and Chilès et al. (2004).
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to less complex geological problems. Unfortunately, this assumption is not always safe to make, 

especially in older, non-basin terrains, where many geological processes have been active over a 

long period of time. These relatively complex geological terranes rarely exhibit geological attri-

butes (example, grain size, sorting, mineral composition) according to probabilities of a Gaussian 

curve, which are subsequently not adequately reflected in a computed potential field.

It is evident that while a quantitative measure of uncertainty is desirable, it is difficult to 

calculate accurately. It also appears that there is no single solution; different problems (geological, 

geotechnical or geophysical) require different approaches. Moreover the challenge of quantifying 

the human experience and understanding by assessing tacit knowledge first suggested by Polanyi 

(1962) is a task that still inspires intensive research in varied disciplines (see Cooley (2007), Rix 

& Liévre (2008), Braude (2009) and Ray (2009) for examples). Adequately accommodating po-

tential for variability and error in interpretive exercises is clearly an immense task.

3D modelling is an accepted and important discipline in the geosciences as an effective 

method to visualise, analyse and represent geology. The aim of most geoscientific disciplines is to 

develop a model that explains measurements or observations and facilitates predictions. 3D mod-

els themselves are an integrated representation of various geoscientific disciplines. The applica-

tions of 3D models have been discussed, such as applications to ore deposit targeting, large-scale 

plate reconstructions, resource evaluation and mine engineering. The combination of structural 

geology and geophysical interpretation improves the quality of information used to build 3D 

models.

The 3D modelling discipline is also dynamic. Explicit and implicit modelling packages 

and inversion procedures discussed in this review are constantly being updated and improved to 

aid and increase the operator’s geological understanding of the target area. Moreover, the digital 

nature of these modelling techniques allows cross-compatibility between applications, so that 

surfaces or volumes developed in one package can be exported for use in another. The develop-

ment of new interpretation techniques also provides impetus for improvement with many of 

the cited authors having successfully used 3D modelling techniques to solve complex geological 

problems by improving on existing methods. The result is that 3D modelling is now a require-

ment for many enterprises within research, government and organisations.

It is clear that much has been achieved in the field of 3D modelling, but issues still 
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6. Thesis aim and structure

remain that require consideration. Perhaps two of the most significant issues facing 3D modellers 

are the heavy reliance on geophysical data and determination of geological uncertainty. Under-

estimating or not acknowledging uncertainty contained within the a priori geological model can 

have compounding effects on the results of geophysical inversion. Further, different sources of 

uncertainty need to be determined whether they are from algorithms or measurement and obser-

vation.

The aims of this thesis are: (1) to locate, quantify and visualise model uncertainty; (2) 

determine the effect of model uncertainty on model elements; (3) perform an exploration of 

model space and; (4) demonstrate a modelling workflow incorporating existing techniques de-

veloped from this project. Three 3D models were created and used for testing and analysis during 

this research. The first is a synthetic model that was used for proof-of-concept and features in 

Chapter One. The second is a 3D model of the Gippland Basin, southeastern Australia (Lindsay 

et al. (2012) and features in Chapters One and Two. The Gippland Basin model was built using 

public data and with significant assistance from the Department of Primary Industries, Victorian 

State Government. The third model is of the Ashanti Greenstone Belt, southwestern Ghana, 

west Africa (Perrouty, 2012) and features in Chapters Three and Four. The Ashanti Greenstone 

Belt model was built in collaboration with Stéphane Perrouty of Géoscience Environnment Tou-

louse, Université Paul Sabatier (Toulouse III).

This thesis is separated into four chapters. Chapter One introduces the problem of un-

certainty in the geosciences. The geology of the Gippsland Basin, southeastern Victoria, Austra-

lia, is reviewed and the methods used to build an initial representative 3D model are described. 

Uncertainty simulation is described. The term ‘model suite’ is introduced and described as collec-

tion of models produced by subjecting the initial model to uncertainty simulation. The concept 

of stratigraphic variance is presented as means to measure, locate and visualise model uncertainty. 

Sensitivity analysis is performed and determines that model uncertainty can be reduced through 

judicious addition of data.

Chapter Two introduces the concept of ‘geodiversity’ and model space exploration. Geo-
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diversity describes a collection of methods that characterise differences in architecture between 

models. The concept was developed as the presence of uncertainty within a model suggests that 

model elements must display different geometries from one model realisation to another. Geodi-

versity metrics were developed to categorise the geometrical aspects of different model elements. 

Quantification of geometry allows comparison with other models to determine the location and 

magnitude of differences. Metrics include depth of unit, volume, contact surface area, curvature 

and geological complexity. End-member models are identified from each metric providing a 

limited view of which models exhibit diverse (or common) architecture. Principal component 

analysis (PCA) is employed to simultaneously analyse all metrics and models to determine the 

configuration of model space. PCA also identifies any metrics that are associated with uncer-

tainty. The Gippsland Basin model is used as a case study in Chapter 2. Most workflows produce 

a single geological realisation. PCA and geodiversity analysis produces evidence against model 

optimisation practices as the initial model is found to not be the most likely geological represen-

tation of the input data.

Chapter 3 expands on techniques described in Chapter 2 by including geophysical 

analysis into the geodiversity suite of metrics. Geophysical analysis is a key stage in regional-scale 

3D modelling and the inclusion of some form of geophysical categorisation was necessary. Geo-

physical metrics include residual RMS, Hausdorff distance (Huttenlocher et al., 1993), standard 

deviation, entropy and 2D correlation. All geometrical and geophysical geodiversity metrics are 

used to analyse the Ashanti Greenstone Belt, southwestern Ghana, west Africa. Results from this 

chapter demonstrate that there is covariance between the geological complexity of the base of the 

Tarkwaian and the geophysical response. Geophysical analysis shows that Birimian-age features 

need to be better modelled to better represent the geophysical response. Arguments against only 

producing a single model are reinforced by PCA as the initial model is again found to not be the 

most common.

Chapter 4 demonstrates all the techniques developed through this research in an inte-

grated study of the Ashanti Greenstone Belt. The aim was to conduct inversion with less subjec-

tive decisions while producing a geologically reasonable model. Birimian-age geological struc-

tures are included in the model according to recommendations made in Chapter 3. Uncertainty 

of the model suite is determined and analysed. Geodiversity techniques are employed and end-
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member and principal component analysis results presented. Inversion modelling is performed on 

diverse and common representatives of model space, identified using geodiversity PCA. Inversion 

parameters are chosen according to results from uncertainty, end-member and principal compo-

nent analysis. Inversion results are collated and found to display correlation to model uncertainty. 

Inversion modelling produces a realistic geological model that is validated by geophysical data. 

The workflow presented in Chapter 4 demostrates that inversion modelling can be conducted 

with less subjectivity and more geological input than current inversion workflows to produce a 

geologically reasonable model.
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Chapter 1 amendments

Amendments to Chapter 1 are listed here due to this chapter being previously published in 
Tectonophysics.

Page 40, paragraph 3: add “developing” and read “The difference between a single realisation, or 
‘best’ model approach and developing multiple realisations from input data…”

Page 41, paragraph 2: delete “assist or retard”, add “are pivotal” and read “Determining which data 
points are pivotal to the calculation…”

Page 44 paragraph 5: add “or geometry” and read “preconceived model topology or geometry…”

Page 52 paragraph 2: delete “an optimal” and replace with “the most likely”. 

Page 67 paragraph 1: add space between “depth” and “conversion”
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Geological three-dimensional (3D) models are constructed to reliably represent a given geological 
target. The reliability of a model is heavily dependent on the input data and is sensitive to uncer-
tainty. This study examines the uncertainty introduced by geological orientation data by producing 
a suite of implicit 3d models generated from orientation measurements subjected to uncertainty 
simulations. The resulting uncertainty associated with different regions of the geological model 
can be located, quantified and visualised, providing a useful method to assess model reliability. The 
method is tested on a natural geological setting in the Gippsland Basin, southeastern Australia, 
where modelled geological surfaces are assessed for uncertainty. The concept of stratigraphic vari-
ability is introduced and analysis of the  input data is performed using two uncertainty visualisa-
tion methods. Uncertainty visualisation through stratigraphic variability is designed to convey the 
complex concept of 3D model uncertainty to the geoscientist in an effective manner. Uncertainty 
analysis determined that additional seismic information provides an effective means of con- strain-
ing modelled geology and reducing uncertainty in regions proximal to the seismic sections. Im-
prove- ments to the reliability of high uncertainty regions achieved using information gathered 
from uncertainty visualisations are quantified in a comparative case study. Uncertainty in specific 
model locations is identified and attributed to possible disagreements between seismic and isopach 
data. Further improvements to and additional sources of data for the model are proposed based 
on this information. Finally, a method of introducing stratigraphic variability values as geological 
constraints for geophysical inversion is presented.

Abstract

Keywords: Stratigraphic variability, Gippsland Basin, Implicit 3D modelling, Uncertainty grids, 
Model suite exploration, Structural geology
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The quality of three-dimensional (3D) representations of geology is measured by their 

ability to reliably reproduce the geometry and distribution of essential elements of a geological 

target. To do this a reliable 3D model needs to reconcile all available geological and geophysical 

data from a study area (Guillen et al., 2008; Jessell, 2001). Further it is fundamental that the model 

is able to simultaneously represent geology at the surface (where structural field observations may 

be more abundant) and at depth (where observations are inevitably less abundant). The quality 

of input data used to construct geological models, such as bedding, structural fabric orientations 

or lithological contact information, is intrinsically linked to the quality of the final product. Un-

certainties contained within the input data for 3D model architecture can potentially reproduce 

unreliable geology. The aim of this is paper is to communicate a new method that as- sesses, locates 

and visualises the effects of data uncertainty.

Previous studies into  the  effects  of data  uncertainty involve methods that assess variabil-

ity introduced by human or machine during data collection, processing (including data reduction 

during pro- ject upscaling) and interpretation (Bond et al., 2010; Bowden, 2007; Jones et al., 2004; 

Thore et al., 2002). The solution is often an attempt to reduce the effects of data uncertainty before 

its integration into the model. In contrast, the method described here follows recent contributions 

by Caumon et al. (2007), Jessell et al. (2010), Viard et al. (2010) and Wellmann et al. (2010) that 

assess the final 3D model for geological uncertainty. It is assumed that the input data contains un-

certainty and this method does not attempt the difficult task of removing it prior to input. Instead 

the method provides an assessment of uncertainty after data input and includes a suite of possible 

3D models that can be evaluated simultaneously.

The difference between a single realisation, or ‘best’ model approach and multiple realisa-

tions from input data is highlighted by Bond et al. (2010) as the difference between inexperienced 

and experienced geoscientists. A group of geoscientists of varying experience was asked to interpret 

a synthetic seismic section. The results of their efforts were assessed, including success in picking 

seismic horizons correctly, the content and  quantity of discussion between candidates and the type 

1. Introduction
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and quality of annotations added to interpretations. While better results from the more ‘successful’ 

candidates could be attributed to their experience in the geoscience field, it was also their experi-

ence that led them to acknowledge that finding the ‘right answer’ with the available information 

was unlikely. In fact, the assumption amongst the more successful subjects was the interpretation 

was likely to be incorrect, but with the available data it was the best that could be obtained. The low 

likelihood of finding the correct answer, or model, from sparse datasets is therefore not a revolu-

tionary concept, rather is it a common assumption within the geosciences. Interestingly, and con-

trary to this understanding, input data is commonly used to create one optimised or ‘best’ model by 

modellers. This study argues that no ‘best’ model exists and that all members of the model suite are 

geologically possible. The key is to find the regions of difference between the models.

An interesting direction for this research is to measure data density effects on the model 

quality (e.g. Putz et al., 2006). Determining which data points assist or retard the calculation of 

reliable model structures can streamline data input. Further, this type of information can identify 

which points provide useful geometrical or geological constraints and can help delineate essential 

data input on this basis. While these effects could be studied using the technique present in this 

paper, downsampling data points would introduce additional experimental effects that are difficult 

to characterise within the scope of this introductory study. This research direction is a deserving 

subject for a separate paper, and is therefore not presented here.

The first section of this paper examines particular aspects of input data sensitivity, identified 

by Jessell et al. (2010), and uses techniques described in their contribution. It also examines the 

nature of geological input data and how it is used in 3D modelling applications by describing a 

method that visualises the location and magnitude of geological uncertainty through a ‘geological 

perturbation’ technique. Examples of this technique are provided with both simple and complex 

geological settings. Simple, synthetic models provide clear examples of how this technique can 

visualise geological uncertainty in 3D.

The second part of this paper examines a case study from the Gippsland Basin, south-

eastern Australia to display how this technique can be applied to a natural geological setting. The 

Gippsland Basin is an offshore geological environment displaying relatively complex geological 

fold and fault relationships within a mature oil and gas field environment. An assessment of un-
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2. Geological uncertainty

The process of creating a 3D model begins with the collection of relevant data that will 

support the creation of a digital representation of geology. The types of data required are varied 

and the relative importance of each depends on scale (from mine scales to crustal scales), applica-

tion and target. In practice, however, 3D model construction often suffers from a lack of geological 

information, independent of scale, due to sparse outcrop limiting field observations and inadequate 

borehole or geophysical data. This often means that all available data is utilised, regardless of origi-

nal purpose, application or collection scale (Kaufmann and Martin, 2008; Royse, 2010). Interpre-

tation of geology from geophysics may need to be performed prior to input into a 3D modelling 

package to better understand regions lacking geological observations, (e.g. Aitken and Betts, 2009). 

Determining whether the same lithological contact is continuous under cover or determining the 

morphology of a structure (Figure 1a) is a decision made using geological expertise and is often 

aided with the use of geophysical interpretation (Betts et al., 2003; Gunn et al.,1997; Joly et al., 

2007).

Forward modelling of geophysical data is often part of 3D model construction workflows, 

aiding the constraint of geological surfaces in cross-section ( Jessell, 2001). The price of using geo-

physical data to aid geological interpretation in the process of creating a 3D model is the introduc-

tion of a possible additional source of uncertainty. Geophysical data ambiguity is not a new issue 

and has been well covered since Nettleton (1942) began critically assessing the interpretations of 

his contemporaries. It was recognised in his and further studies that a number of possible outcomes 

could fit a particular geophysical data set and render any interpretation meaningless without the 

proper geological controls (Clark, 1983, 1997; Gunn, 1997). Endeavours to remove geophysical 

ambiguity from geophysical interpretation is a critical component of any related study and is usual-

certainty is conducted on the Gippsland Basin model, and suggestions are made and carried out to 

improve model reliability. Analysis into the effects of additional input data is provided, as well as an 

explanation of how the technique can provide important information to guide field studies and aid 

the discovery of key localities. Lastly, a use for the data generated by the technique in geophysical 

inversion is proposed.
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ly performed, often with much effort, by collecting petrophysical data appropriate to the geophysi-

cal potential field being utilised (e.g. Joly et al., 2008; Nabighian et al., 2005; Williams et al., 2009).

Inherent uncertainty is not only confined to geophysical data. Uncertainty also needs to 

be considered when using geological data. Measurements taken when field mapping and drill-core 

logging are typically 3D observations recorded in a 2D (bedding contacts, fault plane, fold hinge 

or foliations) or 1D context (lineation or fold plunge). The uncertainty of these measurements and 

their interpretation can generally be associated with any of the following considerations ( Jessell 

et al., 2010; Jones et al., 2004; Thore et al., 2002; Torvela and Bond, 2010; Wellmann et al., 2010):

• Does the observation represent the geological surface or vector at depth? It is possible 
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Figure 1. (a) Most geological mapping requires a degree of interpolation. In this example three possible options 
(though many more exist) are presented to the geologist, but only one will be recorded. This decision is made by 
the geologist, often with the benefit of prior knowledge and experience of the terrane. Unfortunately, the other 
possibilities are lost to others viewing the map, which may more accurately resemble the true geology.(b) Some 
geological measurements do not completely represent the observed surface. In this example of a recumbent fold 
limb, a dip measurement of 55° at the surface is reasonable, but fails to convey that the bedding dip angle changes to 
sub-vertical if taken at the first dashed line(fold axis) and eventually reverses with depth (second dashed line). This 
situation is also prevalent in poly-deformed terranes.(c) Weathered terranes often require an estimated measurement 
of a geological surface. When an estimated measurement is entered into a 3D model the resulting geometry can have 
compounding effects on the model, especially at depth. The location of a geological surface can vary considerably at 
depth even with a small measurement error at the surface.
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that the angle or strike/plunge of a structure varies from the surface measurement to that at depth 

(Figure 1b). Additionally, 3D models are often constructed at the regional scale using data col-

lected in detailed field mapping. This requires the downsampling of data to a few ‘representative’ 

points that may fail to adequately represent the geological element.

• What impact does scale have on the modelled structures? Downsampling of data also 

has implications related to model scale. Orientation measurements used in the calculation of the 

implicit potential field and subsequent modelled geology may have been obtained from local geo-

logical structures, such as parasitic folds or fault splays. Uncertainty can be introduced if the local 

structure cannot be adequately resolved in detail when the model is calculated with regional scale 

parameters. The inverse is also true, where regional scale data (such as seismic or gravity) is used to 

generate small-scale structures.

• Are bedding contacts easily discernible? Determining the orientation of bedding planes 

requires a degree of estimation for both strike and dip if bedding contacts are not clear. For ex-

ample some geological terranes are weathered to such a degree that confidence in the measurement 

is low. Any error in estimating the dip of these contacts can have problematic effects, as different 

orientations have increasing ranges of geometrical possibilities with increasing depth (Figure 1c).

• Do existing theoretical models affect input data? Current understanding and hypotheses 

concerning a particular geological terrane can oversimplify geological reality. Interpretations may 

underestimate the complexity of the geology. The resulting model may misrepresent the geology, 

resulting in an unreliable product. Again, the inverse is also true, where over-interpretation may 

result in a model that is too complex.

Field data may also be vulnerable to error if the modelling is not being performed by the 

field geologist. Critical knowledge of the terrane and knowledge of the reliability of measurements 

may be lost. Processes have been developed to reduce this effect by introducing workflows that 

encourage the field geologist to record levels of confidence in measurements ( Jones et al., 2004). 

Normally, implicit knowledge of the terrane remains difficult to transfer to others as it is tacit 

knowledge ( Jones et al., 2004; Polanyi, 1962). This includes knowledge of the interpretive and 

mapping skills of the geologist and a priori information that is taken into the field. Measurements 

may be taken with a particular preconceived model topology in mind resulting in biased observa-

tions being recorded.
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A requirement of the technique described here is to use an implicit 3D modelling ap-

plication. The advantage of implicit modelling over other techniques (such as explicit techniques) 

is the speed at which models can be re-calculated with additional data to produce repeatable and 

objective results. Explicit modelling techniques require the operator to manually add vertices to 

construct geological structures. Some automated processes, such as Discrete Smooth Interpola-

tion (DSI) (Mallet, 1992), are available to assist in creating geologically reasonable structures, but 

essentially the explicit methods require significant operator input to produce a feasible model. 

Consequently, a significant amount of time is required to produce each model and the results are 

not repeatable. Explicit techniques are not appropriate in terms of time and repeatability as many 

models are being produced from a single data set in this study. In contrast, implicit modelling 

features are beneficial to the method, allowing automated model calculation, rapid model realisa-

tion and repeatable results. An implicit geological modelling application, 3D Geomodeller (www.

geomodeller.com), was chosen as the modelling and simulation platform for this study.

3D Geomodeller utilises the ‘implicit potential field’ method to construct geological in-

terfaces as implicit surfaces (Lajaunie et al., 1997). In this context, ‘potential field’ describes a scalar 

function from which geology is generated. The objective is to model geological interfaces based 

on three principles: (i) geological interfaces define the contact between geological formations; (ii) 

structural field data orientations (i.e. strike and dip) sampled within geological formations are used 

to model the interfaces separating formations and (iii) all modelled interfaces are part of an infinite 

set of surfaces that are aligned with the orientation of the implicit potential field (Calcagno et al., 

2008) (Figure 2a–c).

Certain requirements are needed for this form of modelling to take place. A stratigraphic 

column must be specified and formations within the column must have at least one location data 

point and one orientation data point before they can be calculated. Geology is calculated from the 

implicit potential field that is a scalar function T(p) of any point p =(x, y, z) within 3D space where 

T can represent a relevant geological process that can be assigned a numerical value (i.e. time of 

3. Implicit 3D geological modelling
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Figure 2. Example of creating a geological surface in an implicit modelling environment. 3D Geomodeller is used 
in this example. (a) Digitised geological map of three formations in black, dark grey and light grey. Outcrop points 
are depicted as circles, dip and strike are depicted with the standard convention. (b) Interpolated geological map 
determined by the potential field method. The solid lines represent contacts between the three formations. Note 
how both contact and orientation (strike and dip) points are honoured to produce an antiform–synform pair. (c) 3D 
representation of the input data.

deposition or geological age). The implicit potential field is an isosurface of the scalar field, and a 

geological contact can be considered to be where reference isovalues change from one lithology to 

another. The implicit potential field is interpolated from cokriging of the geological contact (con-

tact location) and orientation (contact geometry) data and allows the determination of geological 

interfaces that honour the input data (Lajaunie et al., 1997).

The stratigraphic column defines the geological units being modelled, which can then be 

sorted into geological ‘series’ to represent a group of geological formations (Figure 3a). Each series 

has an implicit potential field calculated separately to the others. The interaction each series and 

implicit potential field has with other series and implicit potential fields is defined by its chrono-

logical position and behaviour exhibited with respect to older formations. Behaviour is set as either 

an ‘erode’ relationship, where older units are cross-cut or truncated, or ‘onlap’ where a series is al-

lowed to be present if space permits without modification of the underlying older series (Calcagno 

et al., 2008). Each geological unit has a numerical attribute, that allows identification of the strati-
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graphic unit (Figure 3a) at a given X, Y, Z co-ordinate. Faults are interpolated in a similar manner 

to lithologies. Fault-specific orientation data defines the fault dip and fault trace data points define 

fault location. The age of a fault is defined in two ways: (i) by interactions between faults and geo-

logical units (Figure 3b) and (ii) faults and other faults (Figure 3c). A fault may only affect some 

units in the stratigraphic column and can also terminate on another fault.

Model topology is defined by assigning both chronological and relationship parameters 

between geological units and faults in the model. The chosen topology is probably only one of mul-

tiple possible versions that exist for the terrane under study, so the choice of relationships becomes 

a subjective decision made by the geologist. Unfortunately, multiple topologies cannot be explored 

simultaneously at this stage, but by changing these relationships manually and re-calculating the 

model, different topologies can be realised to test various scientific hypotheses for geological fea-

sibility.
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Figure 3. Example of possible relationships between different geological elements. (a) Stratigraphy showing three 
conformable (‘onlap’) sedimentary units in one series that are cross-cut (‘erode’) by a younger granite unit. Note how 
the numerical attribute is assigned in ascending geochronological order. (b) Fault–stratigraphy relationship matrix 
defining which series are faulted by which fault. This matrix shows that Fault 2 must be a late fault as it affects all 
series defined in the pile (and therefore younger the Faults 1 and 3 which only affect the older ‘Sediments’ series). 
Faults 1 and 3 must be older than the granite, but younger than the sediments. (c) Fault–fault relationship matrix 
defining how faults ‘stop on’ or are cross-cut by other faults. This matrix only describes geometrical relationships 
between faults and not necessarily their relative ages.
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4. Method
Rather than attempt to remove uncertainty from the input data, this paper assumes that 

the input data contains uncertainty and attempts to simulate its effects through ‘geological pertur-

bation’. Perturbing a set of structural field measurements allows different model possibilities to be 

generated and assessed. This ‘geological perturbation’ method attempts to simulate uncertainty by 

randomly adjusting observed strike and dip measurements within a range of 10° to produce a suite 

of ‘what-if ?’ scenarios. This process is analogous to an ‘en-masse’ field mapping survey by a large 

number of geologists. The maps produced by the end of the survey all tend to look similar, but differ 

slightly in various ways due to geological uncertainty. In addition, the geologists may have focussed 

on some areas more than others or taken measurements from different fabrics at the same outcrop. 

The benefit is that collectively these maps may produce interpretations that change our geological 

understanding of the study area.

4.1. Calculating, quantifying and visualising model uncertainty

By adjusting strike and dip values of the input orientation data we can reveal the location 

and magnitude of uncertainty contained within the model. We define uncertain regions as those 

where the location, morphology or orientation of geological structures are different between mod-

els. Geological structures that can vary include fault surfaces, folds or lithological contacts in terms 

of their geometry, orientation, scale, shape and position. It is considered that an increase in uncer-

tainty is inversely proportional to the reliability of the model, so it is critical to understand where 

these regions are. Uncertainty information can be used to aid subsequent data collection activities 

to further constrain the model and increase reliability.

The visualisation and processing of uncertainty data is achieved by calculating a 3D un-

certainty grid: a record of stratigraphic units found at discrete locations within each model, calcu-

lated from perturbed measurements. Locations within each model are described within the grid by 

an X, Y and Z reference. Once processing has been performed, a function describing stratigraphic 

variability is used as a proxy for uncertainty during visualisation and is assigned to the appropriate 

location.
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4.2. Procedure

Four steps are required to produce, process and visualise an uncertainty grid.

A. Construction of 3D model

The process begins with the construction of a reference model, normally the final product 

in most workflows. All available and relevant data should be used to produce this model. Critical 

to this technique is that strike and dip orientation data is used as: (i) they are required by the im-

plicit potential field technique and (ii) they are the components that are perturbed to allow varied 

models to be calculated.

B. Variation of geological orientation data

The model is perturbed by varying the input orientation data strike and dip measurements 

(related to foliations and faults) by ± 5° from original reference model measurements. Five degrees 

was chosen as a reasonable amount of variation that may be observed between measurements 

taken by different geologists, especially in weathered, covered or highly-deformed terranes where 

the relationship between larger and smaller scale structures is not clear. A stereoplot comparison 

of synthetic and varied measurements is shown in Figure 4. Any number of perturbations can be 

calculated and is restricted only by the power and storage space of the computing platform. In this 

study, each model suite contains 100 perturbed models and the reference model (101 models in 

total).

C. Calculation of model suite and model interrogation

Each perturbed model is re-interpolated using the implicit potential field method to ac-

commodate the new, varied orientation input data (Figure 5). Next, each model is interrogated to 

collect stratigraphic data at specified X, Y and Z axis intervals. The interrogation process is per-

formed within a given set of parameters along each axis (in UTM projection metre units): an initial 

co-ordinate (X, Y, Z); a final co-ordinate (X’, Y’, Z’) and a sampling frequency (Xn, Yn and Zn). The 

sample interval along each axis can then be determined and the cell size of the uncertainty cube 

can be defined (Xs, Ys, Zs) (1). If required, volume and area of a particular formation or uncertainty 

region within the model can be determined, within the constraints of the cell size.

(1)
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- Original measurements 5° radius - varied measurements 
may fall within this area

Figure 4. Stereonet plot comparison of original, or initial, measurements and a five degree zone of possibility circling 
each original measurement. The zone indicates where varied measurements may be plotted after being subjected to 
uncertainty simulation.

Figure 5. Three synthetic models constructed from a perturbed data set. The ‘Reference model’ contains the 
original strike and dip observations. The top row of images shows a surface map view of the geology interpolated 
by a potential field method (Section 3 and Fig. 2a–c). The bottom row of images shows an oblique view of the 
corresponding 3D block models. The black circles show regions of noteworthy difference between each model on 
both map and block diagram views. The most important differences are associated with faulting structures.
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The process is able to determine a stratigraphic unit within the model at each sample 

location (Figure 6). The detected stratigraphic unit is returned as a simple integer, the value of 

which represents its relative location within the stratigraphic column (the ‘stratigraphic identifier’ 

or stratigraphic ID — see Figure 3a). A value of “1” represents the ‘basement’ or base formation, 

with values increasing with each successive overlying formation. The next model is interpolated 

and the interrogation process is repeated using the same sampling parameters with the results con-

catenated to the uncertainty grid. The process is repeated for the remaining model perturbations. 

The result is a grid of stratigraphic units describing a sample of each individual model (Table 1).

D. Quantification of uncertainty cube using stratigraphic variability. Visualisation of 

model uncertainty is now possible by importing the uncertainty grid into a 3D visualisation pack-

age. This technique uses Gocad® for this purpose. Locations that show different possible strati-

graphic units can be identified by making manual comparisons between each model perturbation, 

but doing so in this qualitative manner is time-consuming and difficult. A quantitative approach 

is more time effective, easier and offers more information about the magnitude and variability of 

uncertainty. The concept of stratigraphic variability has been developed to meet this requirement. 

Stratigraphic variability is intended to serve a dual purpose by describing model uncertainty spa-

tially and useful for further analysis by providing a value that is statistically valid.

In a simple sedimentary sequence the stratigraphic unit identifiers could be considered 

ordinal data, with each number representing the relative position of each stratigraphic unit. Ordi-
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Figure 6. Example of model uncertainty. Here a standard deviation is used as a relative measure of variability and 
stratigraphic range (L) refers to number of possible stratigraphic units detected by this technique at this location.
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Coordinates Model
X Y Z Ref 1 2 3 4 5 6 7 8 ... n

492630 5731250 -3000 8 8 8 7 8 8 8 8 8 ... 8
492630 5731250 -3500 7 7 7 7 7 7 7 7 7 ... 7
492630 5731250 -4000 7 7 7 7 7 7 3 7 7 ... 7
492630 5731250 -4500 3 3 3 3 3 3 3 3 3 ... 3
492630 5731250 -5000 3 3 3 3 3 3 3 3 3 ... 3
492630 5731250 -5500 6 3 3 6 3 3 6 3 3 ... 3
492630 5731250 -6000 5 5 5 5 3 5 5 5 3 ... 5
492630 5731250 -6500 5 5 5 5 3 5 5 5 3 ... 5
492630 5731250 -7000 4 4 4 4 4 4 4 4 3 ... 4

Table 1. Sample of the uncertainty grid. Coordinates of the sample location are given on the left-hand side, the 
results are given on the right-hand side of the table. In the model columns, ‘Ref ’ refers to the reference model and 
‘1,2,3,4…’ etc. refer to successive model perturbations.

nal data requires that the number set is ranked, or ordered, so that appropriate statistical treatment 

can be applied. The presence of igneous units, such as a granitoid, complicates this definition. The 

depth location of younger granitoids within an older sedimentary sequence can violate the defi-

nition of ordinal data where the granitoid cross-cuts or intrudes older units. In other words, the 

units are not ranked from oldest (basement) to youngest (cover) everywhere in the model if units 

are intruded or cross-cut by younger granitoids at depth, and therefore can no longer be treated as 

ordinal data. The number sequence is no longer ordered if based on stratigraphy and the assigned 

geological evolution of the model. The technique treats the sampled data in this technique as cat-

egorical to avoid using inappropriate statistical measures.

Each number represents a description of an individual stratigraphic unit, and not a rela-

tive position, so categorical values can only be treated in a limited number of ways as compared 

to continuous or ratio data types (Agresti, 2007; Davis, 2002). Data descriptors such as mean and 

standard deviation, while yielding results, are meaningless when generated from categorical data 

and are only useful when indicating relative magnitudes of uncertainty. However, the mode of the 

generated data does produce values that adequately describe both an optimal model and propor-

tions representing variation.
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Stratigraphic variability is composed of two separate values (2). The first represents the 

number of possible stratigraphic units (L) that exist at a given point. Only the stratigraphic units 

that exist at that point (i.e. the unique values) are counted. For example, if stratigraphic units ‘1’, ‘2’, 

‘4’ and ‘7’ were sampled from a location then L has a value of 4.

(3)

where I is a unique number within set S. S is a set of integers representing all possible 

stratigraphic units, at a given point, within the nth model of the model suite.

The number of stratigraphic possibilities by itself does not completely describe uncer-

tainty data as it does not accommodate the frequency of variation possible at each location. The 

second part of stratigraphic variability determines the degree of frequency, P. P is calculated by 

determining the proportion of models that do not equal the mode stratigraphic unit, at a particular 

location, across the model suite (3).

(2)

where X is a model location with an associated stratigraphic unit and M is the model 

suite. The ‘mode stratigraphic unit’ is the most common stratigraphic unit across the model suite 

for a particular X, Y, Z-defined location. For example, if at location X: 590,000, Y: 610,000 and Z: 

- 4500 the distribution of detected stratigraphic units across 100 models was Unit 1: 5, Unit 2: 55, 

Unit 3: 23 and Unit 4: 17, the stratigraphic mode unit would be ‘Unit 2’ (55 occurrences). The mode 

stratigraphic unit is not the stratigraphic unit that is detected from the initial model.

For example, suppose the mode stratigraphic unit for a given location in the model suite 

is ‘4’. A P value of 0.07 would indicate that 93% of the models in the model suite also exhibit the 

same stratigraphic unit (‘4’) and 7% differ from ‘4’ at that location. This method uses a percentage 

differing from the mode for two reasons: (i) this information describes the frequency of variability 

between models and (ii) it also provides a value that increases with variability, creating a differ-

ence between locations where L is equal, but the stratigraphic variability differs. Figure 7 shows a 

sample from an uncertainty cube generated from Gippsland Basin data demonstrating why both L 
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Figure 7. Plot of P versus L values, sampled from 15,890 Gippsland Basin data locations. A positive trend is 
observed, but no correlation (R2 = 0.082). It is clear that both stratigraphic possibility and mode proportion need to 
be included for the property to be useful as they represent different aspects of uncertainty. For example, an L value of 
‘4’ yields P values between 0.170 and 0.683. Both locations show 4 stratigraphic possibilities and but differ greatly in 
the amount of variability. Note that the point at (0,1) represents all locations displaying no uncertainty (no difference 
to the mode and only one stratigraphic possibility).

and P values are required. It shows that L and P values, for a given location, display a loose trend 

of increasing proportions different to the mode with increasing stratigraphic possibility. There is a 

degree of variability present, especially for lower magnitudes of stratigraphic possibility. Therefore 

the property needs to accommodate the amount of lithological variation observed across the model 

suite for a given location to adequately describe the associated uncertainty. As L represents the 

number of possible stratigraphic units detected at a given location across the model suite, the num-

ber of stratigraphic units defined in the stratigraphic pile should also be considered. For example, L 

= 4 indicates relatively less uncertainty in a stratigraphic pile of 20 units than a pile with five units. 

L can be normalised by the total number of stratigraphic units defined in the pile for the purposes 

of comparing model suites based on different stratigraphic piles. The pre-normalised value is kept 

intact for this study to retain the explicit description of stratigraphic possibilities.

Uncertainty can be described in better detail if both L and P values are used. For example, 

values L = 3 and P = 0.14 describe a location within the model suite where three different strati-

graphic units have been detected and 86% of the models displayed the same stratigraphic unit as 

model suite mode for that location. These values indicate a moderate level of uncertainty in this 
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5. Methods of visualisation

Visualisation of stratigraphic variability as a proxy for uncertainty reveals important as-

pects of the 3D model and input data. Uncertain regions can be easily located and identification 

of particular uncertain geological components of the model can be performed. A coincident repre-

sentation of uncertainty has been chosen, where both modelled geology and associated uncertainty 

are displayed simultaneously (MacEachren et al., 1998). Different aspects of uncertainty can be 

revealed using either point data or voxet volumes. Voxets are a set of regularly-spaced voxels (or 

volume elements) that present data as volumes, rather than as polygons. Wellmann and Regenau-

er-Lieb (2011) use a similar voxet-based method where information entropy values are assigned 

to individual voxels. The information entropy property displays the amount of information that is 

missing from each location, restricting the full prediction of the system.

Magnitude of uncertainty is useful to identify particular uncertain components of the 

model. In Figure 8a–c we have assigned a blue-white-green-yellow-red colour map to stratigraphic 

variability values. Low uncertainty is associated with the blue points and high uncertainty with 

the red points. The location and magnitude of model uncertainty quickly become evident. Points 

displaying no uncertainty have been made transparent to aid visualisation. High uncertainty is 

associated with the fault intersections of the northern east–west thrust fault and the north–south 

thrust fault. L values of five and six have been calculated in this region, particularly at depth. These 

regions represent the highest geological variability across this model suite. This can be explained by 

the combined effects of three attributes, fault displacement, fault orientation constraints and bed-

location as there are three stratigraphic possibilities, but most of the values represent the mode. In 

contrast, L = 6 and P = 0.37 indicate a relatively high level of uncertainty, as there are six possible 

stratigraphic units and only 63% of models display the model suite mode value for that location. 

The benefit of using both values allows us to delineate regions with a particular L value according 

to P, revealing more detail about the spatial characteristics of model uncertainty. Using L and P 

values separately or in combination aids visualisation and model queries. Thresholds can be using 

either L or P values assigned to colour maps or used in voxet generation to better describe model 

uncertainty to the operator.
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a) b)

c) d)

e)

 

Figure 8. Comparison of the different visualisation 
techniques used in the study (VE = × 4) showing the 
location and magnitude of uncertainty associated with 
a selection of major faults. Fault borders are shown 
with alternating border colours to aid differentiating 
surfaces. Magnitude of uncertainty is displayed using 
a blue (low values)-green (medium values)-red (high 
values) colour map. (a) Plan view of model uncertainty 
(using stratigraphic variability values) using point data. 
(b) Oblique view of model from above and the northeast 
using point data. (c) Oblique view of model from above 
and the southwest using point data. (d) Oblique view of 
model from above and the northeast using a voxet volume 
to show stratigraphic variability values, excluding the first 
25 percentiles. (e) Oblique view of model from above and 
the northeast all cells with an L value = 2.

ding orientation constraints. Variation in stratigraphic displacement across the fault plane allows 

more lithological variation as the fault plane orientation changes between models. Each modelled 

fault is described by one fault orientation measurement. No other measurements assist constraint 

of the fault surfaces, so when the fault orientation measurements are varied, the fault plane orienta-

tion varies freely. Bedding orientation measurements also affect the geometry of bedding surface 

intersection with the fault surface. Each lithology is defined by limited orientation measurements, 

therefore a high degree of orientation variation is allowed. The combined effects of sparse data, as-
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The Gippsland Basin in southeastern Australia has been used as a case study to demon-

strate the utility of determining, quantifying and assessing 3D model uncertainty. During construc-

tion of this model (Figure 9a–b) it was found that additional information was needed to reduce 

K

S

A
J

A
J

K

S

Figure 9. 3D block diagram of the Gippsland Basin, viewed 
from the southeast (a) and northwest (b). These images 
show surfaces rather than volumes so aspects of the model 
architecture can be more easily viewed. Locations of seismic 
sections A–J and K–S used in model construction are shown.

uncertainty located in certain regions. Two 

model suites are presented, Case Study A 

and Case Study B. Both model suites were 

constructed using information provided by 

Geoscience Victoria (Department of Pri-

mary Industries) and Geoscience Austra-

lia. Case Study A was constructed using 

all information and only the interpreted 

seismic sections K–S taken from the in-

terpretation of Moore and Wong (2002). 

Case Study B uses the same input data, but 

includes all available seismic section infor-

mation from the Moore and Wong (2002) 

study (seismic sections K–S and A–J). The 

results show how additional information 

can reduce uncertainty and serves to im-

prove model reliability.

a)

b)

6. Uncertainty in the Gippsland Basin

sociated with fault and bedding orientation parameters, have produced a region of high uncertainty.

Uncertainty volumes can be calculated to describe the model, a procedure similar to re-

source volume calculations (Figure 8d–e) (see Singer and Menzie, 2010). Volume calculations can 

help identify areas of high uncertainty similar to the point data technique described above, but are 

also useful to compare different sets of input data according to uncertainty volume. One applica-

tion of this technique is to measure how model uncertainty changes with additional orientation 

measurements.
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The models created in the A and B case studies are a simplification of what could be mod-

elled and only major stratigraphic units and faults have been included. We suggest that presenting 

low fidelity models provides a more effective method in which to display our technique. The geol-

ogy is therefore described in terms of what has been input into the model, and does not include 

every possible unit observed in the Gippsland Basin region. The input stratigraphic unit descrip-

tions, relationships and adaption for model input are shown in Figure 10. The fault networks have 

been defined according to fault relationships described in the following section.
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Figure 10. Gippsland Basin stratigraphic column (adapted from Moore and Wong (2002)) correlated to 3D 
Geomodeller stratigraphic input. Units with the suffix ‘A’ and ‘B’ have been added to increase stratigraphic resolution 
(Section 6.2.1).



59

6.1. Background geology

The Mesozoic to Cenozoic Gippsland Basin is a mature oil and gas field located in south-

eastern Australia that hosts brown coal deposits and is prospective for CO2 sequestration (Cook, 

2006; Rahmanian et al., 1990). The basin extends from an onshore setting around Western Port 

Bay offshore into Bass Strait and includes the Melbourne, Bass, Tabberabbera, Kuark and Mal-

lacoota Zones of the Palaeozoic Lachlan Fold Belt (LFB) (Willman et al., 2002). The 80 km by 

400 km depocentre trends asymmetrically east–southeast and is underlain by Palaeozoic basement 

(Moore and Wong, 2002; Rahmanian et al., 1990).

The basement unit for these models is labelled as Ordovician sediments, a collection of 

various units forming the same basement in the seismic interpretation of Moore and Wong (2002). 

Overlying the basement unit is the Permian sediments and igneous unit series, a representation 

of various Permian and Jurassic sedimentary and igneous units (Schmidt and McDougall, 1977).

Sedimentation during the Cretaceous resulted two in distinct units, the volcaniclastic 

Strzelecki Group, generally regarded as economic basement (Haq et al., 1987), and the lacustrine 

and marginalmarine quartose-derived Latrobe Group (Moore and Wong, 2002; Veevers, 1986; 

Veevers et al., 1991). The Latrobe Group is the primary target for oil and gas (Rahmanian et al., 

1990) and comprises the Em-peror, Golden Beach and Cobia Subgroups (Bernecker and Par-

tridge, 2001; Moore and Wong, 2002). The Emperor Subgroup lacustrine sediment deposition was 

primarily controlled by early rift-related north–east trending faults over the northern and central 

parts of the basin (Bernecker et al., 2001; Smith et al., 2000). The western edge of the Cobia Sub-

group is considered to be bounded by the Wron Wron Fault System (Moore and Wong, 2002). 

The Seaspray Group and the Angler Subgroup resulted from further thermal subsidence and ma-

rine transgression during the Oligocene (Holdgate et al., 2002; Mitchell et al., 2007). The Angler 

subgroup forms the base of the Seaspray Group and is characterised by calcareous mudstones and 

marls (Gallagher et al., 2001).

Moore and Wong (2002) describe the complex fault interactions in the Gippsland Basin 

as sets of older, straighter basement faults with similar orientations displaced by younger faults 

with varied orientations. The relationship between basement and younger faults is attributed to a 
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competency contrast between the more rigid basement and softer overlying basin sediments. Two 

regions of young faults can be observed. The north and west fault sets typically trend northeast–

southwest and exhibit steeper dip angles and may have been active as late as the Late Oligocene 

to Early Miocene. The western faults trend east to west and show possible Quaternary reactivation 

(Gray and Foster, 1998).

6.2. Input data

The input data used to construct the Gippsland Basin models were taken from the sources 

listed in Table 2 and shown in Figure 11. Seismic data was acquired through a combination of 

Geoscience Australia and company surveys, including those from Esso, Petrofina and Shell. The 

average internal velocities used to processing the data were: sea water (1480 ms-1); Seaspray Group 

(2800 ms-1), Latrobe Group (3400 ms-1), Golden Beach/Emperor/Cobia Subgroups (3900 ms-1) 

and Strzelecki Group (3900 ms-1). A combination of well ties (listed above each well location in 

Figure 12) and breaks in seismic property was used to identify seismic reflectors. The seismic in-

terpretations shown in Figure 12 were digitised from Moore and Wong (2002). Sections A–J were 

not included in Case Study A, but were included in Case Study B in the attempt to improve model 

reliability after uncertainty assessment was performed. Geophysical potential field interpretation 

was performed to identify faults. Both gravity and magnetic data sets were used in combination to 

identify steep gradients in the geophysical response (Figure 13). Steep geophysical gradients sug-

gest a rapid change in geophysical character perpendicular to the gradient direction and can infer 

the presence of a geological interface (Clark, 1997; Grant, 1985). Isopach and bathymetry data was 

used to create datasets of 3D interface points to aid the interpolation of the top of the Seaspray, 

Latrobe and Strzelecki groups and the Ordovician sedimentary successions (Figure 11). Isopach 

data was supplied by Geoscience Victoria. A large proportion of input geological orientation data 

was interpreted from both geophysical potential field interpretation and seismic section. Mapped 

onshore outcrop information was used in input data; offshore geology was more difficult to con-

strain and required the use of isopach and bathymetry data combined with seismic interpretation.

6.2.1. Improving the detection of model uncertainty

There are circumstances where uncertain fault surfaces (i.e. poorly constrained fault sur-
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Data Purpose Source
Geophysics – 
Aeromagnetics and 
gravity

Geological interpretation of 
faults

Geoscience Australia

Geophysics – 2D 
seismic

Geological interpretation of 
faults and stratigraphy

Geoscience Victoria – 
Department of Primary 
Industries

Isopach maps Constraints for stratigraphic 
horizons

Geoscience Victoria – 
Department of Primary 
Industries

Bathmetry observations Constraints for stratigraphic 
horizons

Geoscience Australia

Geological maps Constraints for onshore 
outcrop geology
Stratigraphic column

Geoscience Victoria – 
Department of Primary 
Industries

Stratigraphy Development of stratigraphic 
pile

Literature (see references listed 
in section 5.1

Table 2. Input data, purpose and sources.
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Figures 11. Location and distribution of input data. Fault and dips interpreted from potential field data (Figure 
13) are overlain on gridded bathymetry data. The extents of isopach information, depicting the tops of three major 
stratigraphic formations are outlined. Location of seismic sections A–J and K–S are shown blue and red respectively.
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Figure 12. Interpreted seism
ic sections A

-J (top) and K
-S (bottom

) used as input data for the G
ippsland Basin case study. Interpretation was perform

ed by the D
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ent of 
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atural R
esources and E

nvironm
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dapted from
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oore and W
ong (2002).
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face orientations that change due to input data perturbations) are not completely detected. Non-

detection occurs if the displacement of the fault is not greater than the thickness of the stratigraph-

ic unit due to the same stratigraphic unit being detected on both the hangingwall and footwall of 

the fault (Figure 14). In the example shown in Figure 14a, the blue unit was assigned a value of 

one and the white a value of two. The orientation of the fault surfaces does differ from model to 

model within the model suite, but only a portion of the surface is detected by the technique (Figure 

14b). Different fault locations will not be detected if the stratigraphic unit each side of the fault 
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Figure 13. Interpreted geophysical potential field datasets used as input for the Gippsland Basin case study. (a) 
Bouguer gravity anomaly shown with a southeast directed ‘hillshade’ effect for enhancement. (b) Total magnetic 
intensity anomaly shown with no ‘hillshade’ effect.
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are the same as only differences in the values assigned to stratigraphic units are detected with this 

technique. Additional virtual stratigraphic units were added to mitigate these effects (Figure 14c). 

Each of these additional virtual units was included in the appropriate ‘series’, so were included in 

the implicit potential field calculations of the originating formation. The 3D spatial properties of 

the virtual units were not treated any differently than the originating unit and were calculated from 

the same input data.

The practice of adding virtual units increases the ‘stratigraphic resolution’ of the model, 

enabling entire uncertain faulting surfaces to be detected when smaller displacements are observed 

(Figure 14d). Stratigraphic resolution has been increased in the Gippsland Basin model as some 

a b 

c d 

 

 

Fault surface

Sedimentary horizon

Figure 14. When fault displacement is less than stratigraphic thickness fault surfaces may not be completely 
detected. This example shows a modelled normal fault represented in section view (left) and in 3D on the right. Note 
that only where the blue and white units (circled — left) are adjacent is there the possibility of uncertainty (shown 
with point data) being detected (circled — right). With the addition of virtual formations (c) the uncertainty along 
the entire fault surface can be resolved (d).
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sedimentary layers are thick and fault displacements may not be large enough to avoid the situa-

tion described above. Each series has two additional layers added for this purpose, except the top 

series ‘Seaspray_Group’, as the thickness of this group is not large enough to warrant additional 

formations.

6.3. Uncertainty assessment in the Gippsland Basin

Poorly constrained regions and structures in the Gippsland Basin model can be located 

using methods of uncertainty visualisation. Particular areas of increased uncertainty identified in 

Figure 15, highlighted in red on the plan maps, are located in the north (1), northwest (2) and 

southern parts (3) of the model. Areas (1), (2) and (3) are all associated with faults and the effect 

of faulting on the cross-cut strata. These faults are not well constrained by orientation measure-

ments as they are based on (i) one orientation measurement, (ii) the relationship they have with 

other faults (i.e. whether they cross-cut or are cross-cut by other faults) and (iii) whether they are 

defined in the seismic cross-sections K–S. The elongate region of uncertainty running with an 

east–west axis, just south of the seismic section (region ‘3’) is not defined in the section itself, so 

does not benefit from any cross-section constraints. The result is that the geology is allowed to vary 

to a larger degree, displaying higher associated uncertainty values than geology that is represented 

in the cross-sections.

There are also lack of orientation measurements constraining stratal geometry and dis-

tribution in regions of high uncertainty. Onshore observations that we could confidently relate to 

offshore components are rare and generally relate to formations older than the model basement. 

In addition, the combined isopach and bathymetry data inputs are largely clustered in the centre 

and eastern areas of the model, leaving the west relatively unconstrained (Figure 11). Strata in the 

uncertain areas rely heavily on the seismic section K–S due to the absence of other data. The over-

reliance on section K–S to constrain geological surfaces due to sparse data can also been seen in 

the northern part of the map where high uncertainty values are observed. Region 2 displays levels 

of uncertainty due to both high degrees of faulting and the lack of seismic data that could add geo-

metrical constraints to these at depth.

An area of high uncertainty located on the 4000 m depth plan section view of Case Study 
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Using seismic sections K-S only (Model 1) Using all available seismic sections (A-S) (Model 2) 
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Figure 15. Comparison of stratigraphic variability observed at 2000 m and 4000 m depth. All maps are in plan 
view. Note areas of high stratigraphic variability (uncertainty) located to the north, northwest and southwest of 
Case Study A. Labelled regions are correspondingly labelled in the 3D view of uncertainty (voxet model, L = 2, 
grey surfaces are faults). Significant improvements to uncertainty values have been made in these areas with the 
addition seismic section information in Case Study B. Another interesting feature is the association of uncertainty 
with the faults and in some cases the dip of the fault can be determined by the uncertainty gradient. For example, 
the east–west fault in the south of the map shows a northerly dip, which is confirmed by associated strike and dip 
orientations.
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A (region ‘4’) is due to the intersection of a number of faults and structural complexity result-

ing from the interaction of strata and the Central Deep. Picking tops from the seismic data of 

the Strzelecki, Emperor and Golden Beach subgroups in this region was considered ‘arbitrary’ by 

Moore and Wong (2002). Estimates of the tops were made based on an interpretation that the 

Emperor Subgroup thickens to the north and the Strzelecki and Golden Beach Subgroups thicken 

to the south. It seems that the seismic horizon interpretations do not necessarily correlate to the 

isopach data. This has resulted in modelled surfaces that vary considerably across the model suite as 

the implicit potential field method attempts to reconcile the seismic and isopach data. Added com-

plications may have arisen from depth conversion of two-way-time (TWT) data. Errors in depth-

converting TWT data are likely to affect the entirety of this model as it is notoriously difficult 

to perform without incorporating some error (Cameron, 2007; Suzuki et al., 2008). Time–depth 

curves of wells were used by Moore and Wong (2002) to determine a seismic velocity model to 

calculate depth values. Five average internal velocities were used to represent entire density varia-

tion of the Gippsland Basin. Local rock density heterogeneity will not be accommodated if bulk 

density values are assumed. Subsequently some regions of the study area will be mis-represented 

where local density variations differ from the global averages determined in the velocity model. 

The result is that horizons interpreted in regions of anomalously high or low density values (with 

respect to the global average) will not be correctly located spatially. It is most likely that the source 

of disagreement between data types is caused by a combination of interpretive and data-conversion 

difficulties.

None of these issues were entirely unexpected in the construction of this model. It was 

expected that some disagreement between model realisations would be present, given the data 

types and relative geological complexity. What is important is that the degree and location of dis-

agreement can be shown by detecting the uncertainty in the model. It was subsequently decided 

that an additional seismic section should be added in an attempt to better constrain the regions of 

high uncertainty.

6.4. The benefit of additional information

Seismic sections A–J from the Moore and Wong (2002) study were added to the model, 
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Figure 16. Change in uncertainty due to additional data. Volumes of stratigraphic possibilities (L) have been 
separated into three thresholds representing low (L = 2), medium (L = 4) and high (L = 6) levels of uncertainty. 
Levels of uncertainty contained within model Case Study A to Case Study B are plotted against a logarithmic 
volume scale (km3). Reductions in uncertainty seen between Case Study A and Case Study B are due to the addition 
of seismic section information.

an incarnation named Case Study B. Sections A–J start in the southwestern quadrant of the model 

and extend northeast, intersecting sections K–S just west of the model centre, stopping in the 

northern centre (Figure 11). The results in removing uncertainty can be seen qualitatively in the 

Case Study B maps (Figure 15). Uncertainty in the northern region of interest (1) has been sig-

nificantly reduced in Case Study B and areas (2) and (4) have also been reduced, but to a lesser 

extent. Region (3) still displays a high degree of uncertainty, though it has been reduced below that 

displayed in Case Study A.

Change in uncertainty is quantified by calculating the difference in volume for different L 

values (L = 2, 4 and 6) (Figure 16). The differences between these values in Case Study A and Case 

Study B are also shown. The differences equate to a percentage decrease of 64.5 (L = 2), 53.7 (L = 

4) and 87.5 (L = 6), showing that adding seismic sections A–J to the model improved the potential 

for geology to be more reliably modelled.

 

6.5. Discrete regions of uncertainty

Overall improvements to model uncertainty were addressed by adding additional infor-

mation to the model. There remain regions of high uncertainty within the model (Figure 15, re-
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gion ‘5’) in the Central Deep. One explanation is that there is no isopach information to aid strata 

geometry. Most of the information in this region is defined by the seismic section R–S and fault 

interpretations made from geophysical potential field data or seismic interpretation. This is com-

pounded by difficulties in seismic interpretation of formation tops in the Gippsland Deep (Moore 

and Wong, 2002). It is clear that there are issues when attempting to correlate faults interpreted 

by geophysical potential fields to those interpreted from seismic data. Uncertain regions are gener-

ated by using ambiguous input data during model construction. This is true for geophysical data, 

in terms of non-unique solutions for geophysical potential field interpretation and the aforemen-

tioned issues relating to seismic data interpretation and integration into a 3D model. While it is 

tempting to avoid using geophysical data to prevent the possibility of making ambiguous obser-

vations, is it not feasible. Problems of sparse data require the use of geophysics in regional scales 

studies, such as that undertaken by Moore and Wong (2002). The key is locating, mitigating and 

understanding the nature of model uncertainty.

7. Discussion

The method presented here has shown it is possible to locate and calculate the magni-

tude of uncertainty within a 3D model of real geology. The method has allowed assessment of the 

Gippsland Basin model for inherent uncertainties and has aided the identification of data sources 

that may disagree. It appears that constraining the geology in central parts and an eastern region 

of the basin is particularly problematic due to heavy reliance on difficult to interpret seismic in-

formation. Additional information can provide geological constraints that reduce uncertainty, as 

has been shown. Consideration must be made that new information may also introduce additional 

uncertainty. The disagreement between the isopach-derived and interpreted seismic data, an oc-

currence not uncommon in basin studies (Suzuki et al., 2008), highlights how different data types 

do not necessarily reduce uncertainty by constraining each other, but create a situation where un-

certainty is increased. Therefore it is likely the degree of geological complexity in the northwestern, 

central and eastern regions of the model is higher than that which can be interpolated using the 

current data inputs.
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Stratigraphic variability values provide the operator with an intuitive method with which 

to understand two fundamental, but separate, components of model uncertainty: stratigraphic pos-

sibility (L) and stratigraphic variability frequency (P). These concepts are simple, easy to calculate 

and meaningful to the non-expert. Both the normalised stratigraphic possibility and variability val-

ues are model independent and do not require redefining for different geological settings. Both val-

ues are calculated from statistical methods, so are therefore repeatable and objective. This method 

also generates a variety of model perturbations in the process of determining uncertainty that can 

be assessed individually to provide an expanded view of what may be possible geologically.

It is important that the information generated by this technique is presented with an 

appropriate visualisation tool to adequately communicate the complexities of model uncertainty 

to the operator (Gershon, 1998; Thomson et al., 2005). Other effective methods of uncertainty 

visualisation exist (MacEachren et al., 1998; Viard et al., 2010; Wellmann and Regenauer-Lieb, 

2011; Zuk and Carpendale, 2006) and have been considered for the purposes of this technique. The 

‘heat-map’ colour scheme has been chosen because it is intuitive for most geoscientists and allows 

an appropriate amount of colour variation to effectively show the attributed quantities. The mag-

nitude of uncertainty is directly related to colour and variations in data are clear to the operator. 

Regions of uncertainty are then identified using a combination of point data and stratigraphic vari-

ability values assigned to a colour map. Thresholds can be applied to the colour map to delineate 

high or low ranges of uncertainty. The features of stratigraphic variability allow the spatial variation 

of uncertainty and associated geological elements to be easily identified.

Another means to visualise model uncertainty is provided by assigning stratigraphic vari-

ability values to voxets. The use of voxets also allows the calculation of uncertainty volumes, in 

contrast Wellmann et al. (2010) who focus on visualising uncertainty with surfaces. Knowledge of 

uncertainty volumes provides a particularly useful comparative measure for assessing uncertainty 

between different model versions or quantifying the effect of additional data sets on model itera-

tions. Importantly for this study, uncertainty volumes provide a descriptive quantity that can be 

used for reporting purposes when reviewing a model for reliably representing a geological target.

A different method to quantify uncertainty has been suggested by Jessell et al. (2010) that 

employs a distance penalty function applied to the model suite where stratigraphic observations 

are compared against predictions. The closest modelled location(s) sharing the same properties as 
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an observation point are determined and Euclidean distance is calculated. The results provide a 

distance misfit error that describes the geological variability of a model suite within a local area. 

The benefit to using this method is that stratigraphic units can be reclassified into ordinal data 

and subdomains of related geological units can be defined. The results can then be subjected to a 

wider range of statistical treatments. Additional measures derived from different statistics would 

be advantageous to detecting and quantifying uncertainty. A drawback to using distance misfit 

error is that only uncertainty contained within a local area is measured, whereas the stratigraphic 

variability describes uncertainty at a discrete location. In addition, adjusting the method for this 

technique to a local area distance calculation presents a challenge in how to define an ‘observed’ 

location or the reference model itself. This paper defines the ‘reference model’ as that which is pro-

duced using unperturbed orientation measurements. This definition of a reference model is not an 

unbiased estimate, as it depends on the internal parameterisation of the implicit scheme applied. 

Another definition for a reference model could be the ‘mode model’, as it represents the most com-

mon stratigraphic units for every given point across the model suite. The mode model incorporates 

all the perturbed orientation datasets, not just a single orientation dataset, and accommodates more 

geological possibility. The mode model is derived statistically from a voxet and does not necessarily 

retain any geological connectivity or feasibility. A solution to this problem is to find a model in the 

model suite that corresponds exactly to the mode model, which, if it exists, could be legitimately 

classified as the reference model.

Multiple realisations of a single geological concept are being analysed in this study. Mul-

tiple realisations of multiple geological concepts can be analysed if topological relationships are 

varied in combination with orientation observations. The implicit method requires topological in-

put in the form of a stratigraphic column (with appropriate ‘onlap’ or ‘erode’ relationships between 

units), a defined fault network and fault–stratigraphy relationships. If any topological relationships 

are perturbed, fundamental changes to the model will occur and produce far greater variability 

in the model suite than if, as in this study, only the input orientation observations are perturbed. 

There is good reason to perform topological perturbation. Most geological terranes have multiple 

tectonic evolution hypotheses and could be comparatively tested using topological perturbation. 

Appropriate analysis of these results would require the process to reject models on the basis of 

geological impossibility, a concept that is open to vigorous debate. The boundaries of model space 
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are greatly expanded by allowing topological perturbation and more degrees of freedom, requiring 

increased model suite members and subsequently requiring faster model calculation and sampling. 

These are minor challenges to resolve when considering the benefits. Geological possibility, and 

therefore uncertainty, is not being fully explored if different model topologies are not included in 

analysis.

The production of a model suite and uncertainty analysis has an additional educational 

application. Generating multiple models can aid management decisions and educate non-geosci-

entists. The degree of variation observed between models due to small perturbations of the input 

data highlight the problems of sparse data inherent in geosciences. These concepts are often not 

well acknowledged outside of scientific disciplines like geosciences and astronomy. One of the 

conclusions from the Bond et al. (2010) study was that to better prepare geoscience students for 

professional life, discouragement of striving to find the ‘best’ answer and accepting multiple an-

swers needs to be effectively communicated. This conclusion can also be applied to management 

personnel that have not been trained within the geosciences. Acknowledgement that a single ‘cor-

rect’ answer is not necessarily available can be aided by this technique by visualising the degree of 

uncertainty within a particular model.

7.1. Improving understanding of model uncertainty

Improvements can be made to better assess uncertainty contained within 3D models. 

There are possible augmentations to this technique that may offer more information to the opera-

tor.

a) Higher resolution sampling. Model sampling parameters used in this study can be im-

proved in two ways. A vertical bias exists as the sampling interval on the Z axis is 500 m, 

whereas on the X and Y axes it is 4140.625 m and 3200 m respectively. It would be prefer-

able to have all axes equal to ensure no directional bias exists and to have smaller intervals 

to ensure that the geometry of inherent uncertainty can be more accurately defined. The 

restriction in this case was due to hardware requirements. The assessment was conducted 

on a personal laptop (250GB HDD) and smaller sampling is restricted heavily by hard 

disk space. It would be preferable for future studies to be conducted on high-capacity 
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computing platforms to address this.

b) Use of continuous variables. The stratigraphic identifier used in this study to describe 

the stratigraphic unit at a given point returns a categorical variable. As such, there are lim-

ited statistical treatments that are available for analysis. One solution would be to identify 

both the type of stratigraphy (currently done) and the implicit potential field value the 

model is interpolated with. The implicit potential field value is a continuous variable and 

would give a value revealing where sample location is in the stratigraphic unit and prox-

imity to other geological interfaces (contacts, faults). This information would very useful 

in terms of developing better techniques to analyse, visualise and use uncertainty data to 

improve model reliability. It would also remove the need to add additional formations to 

increase stratigraphic resolution.

c) Calculation of stratigraphic distance. Accommodating uncertainty between both stra-

tigraphy and lithology can be achieved with the use of a weighting schema and additional 

information from the 3D Geomodeller implicit potential field. Currently no consider-

ation of geochronology and unconformable relationships is made when calculating un-

certainty. Locations which display lithological variability within the same stratigraphic 

group, such as variation between the Angler Subgroup and the Seaspray Group (both part 

of the Seaspray Series) (Figure 10) could have a lesser weighting than variability between 

the Angler Subgroup (Seaspray Group Series) and the Cobia Subgroup (Latrobe Group 

Series). This difference in weighting can be justified as an erosional unconformity that 

separates the Angler and Cobia units, whereas the Angler and Seaspray units are generally 

considered to be conformable. Knowledge of the implicit potential field value and gradi-

ent would be beneficial to accurately calculate stratigraphic distance. The implicit poten-

tial field value would allow calculation of Euclidian distance in three dimensions, as the 

position within stratigraphy would be known. The implicit potential field gradient value 

would assist in describing the direction of stratigraphic anisotropy within the geological 

layer and from this the orientation of the stratigraphic distance vector could be found.
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7.2. Geological constraints for geophysical inversion

Calculating stratigraphic variability produces information that could potentially provide 

geological constraints for geophysical inversion. Current inversion techniques provide geological 

constraints in the form of petrophysical rock property distributions (Guillen et al., 2008; Jessell 

et al., 2010; Li and Oldenburg, 1998), ‘pierce points’ assigned to stratigraphic horizons in drill-

holes (Fullagar et al., 2000) or weightings applied to entire surfaces (Fullagar et al., 2008) that 

restrict movement during geometrical inversion. However, existing techniques do not integrate all 

available geological data into the process, such as orientation measurements, and therefore cannot 

be expected to honour all data inputs. The information provided by this technique could offer a 

method to constrain the geophysical inversion process. Both L and P values, together representing 

stratigraphic variability, could provide an adjustment threshold for cells during inversion. If the 

possible cell solutions are limited to what is defined by their associated L and P values, then the 

final inverted model will more likely to represent a realistic geological situation as it honours all 

the data.

For example, if L = 3 and P = 0.23 for a cell at X, Y, Z, then the inversion process would be 

limited to varying the cell to the three possible stratigraphic units identified by this technique. The 

0.23 P value, indicating what frequency the stratigraphic unit differs from the mode, can be used 

as a weighting coefficient representing the likelihood of this cell being changed during inversion. 

A consideration in using stratigraphic variability as a constraint to geophysical inversion is that the 

process may fail and render no result, which is potentially more useful than if the process completes 

successfully. A failed inversion executed with these geological constraints as input would suggest 

that the geological reference model, input data and the geophysical data used in the inversion may 

differ to a degree beyond what geologically feasible.

Uncertainty in 3D geological models can be located, visualised and quantified in the 

pursuit of building a reliable 3D geological model. Uncertainty can be used to identify potentially 

unreliable regions in 3D models, requiring additional data constraints. Reduction of uncertainty 

8. Conclusion
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is also measurable, and can be used to explore whether adding more data is beneficial. A principal 

assumption in this study is that the input data, potentially of high quality, is not without error. At-

tempts to correct the data and remove error are not performed. Instead this study offers a process 

where a suite of geological possibilities can be generated from a single input data set through per-

turbations of the data. Significant reductions of model uncertainty can be achieved by using appro-

priate data in key locations within the 3D model. The location and magnitude of uncertainty also 

reveal regions that bear further geological or geophysical analysis. Uncertain regions can be treated 

by adding more data, or may guide future surveys and studies if data is unavailable. Producing an 

uncertainty grid and stratigraphic variability values is a step towards the goal of a geophysically 

and geologically constrained inversion process that produces models that honour both geophysical 

and geological data.
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Chapter 1 presents a method that locates and quantifies the magnitude of uncertainty 

with 3D geological models. The stratigraphic variability technique provides a step towards under-

standing how perturbations in orientation input data can produce substantially different model ar-

chitecture. Adding information to a model to regions of high uncertainty is demonstrated to have 

a measureable effect on reducing model uncertainty. However, stratigraphic variability does not 

provide an understanding of how geometries of geological bodies, faults and stratigraphic contacts 

are affected by model uncertainty. Chapter 2 demonstrates a series of measures that characterise 

model architecture geometrically in order to record differences between models. There are multiple 

ways model elements can vary from model to model, so a variety of techniques were developed to 

detect variability within a model suite resulting from uncertainty simulation. Each technique was 

developed to be geologically relevant, independent of other measures or sources of information. 

Conceptual development of geodiversity metrics was straightforward, whereas implemen-

tation of these methods required significant testing and quality assurance. Implementation proved 

challenging as automated processing was a key requirement. Matlab© was chosen as the platform 

to automate categorisation tasks as it allows a large variety operations to be ‘looped’, or repeated, 

using different inputs.

Looping allows multiple models and multiple model elements to be analysed without the 

need for manual analysis. Manual analysis always presents problems where human error (i.e. input 

error or unintended differences between input parameters) produces non-representative results. 

Manual analysis is also slow and labour-intensive, restricting the efficiency of the procedure and 

desirability to the wider scientific community. It is hard to promote a technique requiring opera-

tions to be manually executed on each model element in each model, potentially involving thou-

sands of user-initiated operations.

Another challenge to the success of the method was choosing an appropriate means to 

report results. The importance of being able to easily identify anomalous results was highlighted 

in Chapter 1, and will influence the uptake of these techniques by the geoscientific community. 

Although many of the issues faced in the transition from determining model uncertainty to un-

derstanding geodiversity were more technical then geological, they were nonetheless important 

as geological understanding would have suffered had they not been resolved. Chapter 2 has been 

submitted for review to the journal Tectonophysics.
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Abstract

Keywords: Uncertainty, 3D modelling, Model space, Principal component analysis, Gippsland 
Basin

The process of building a 3D model necessitates the geoscientist to reconcile field observations, 
geophysical interpretation, geological data uncertainty and the prevailing tectonic evolution hy-
potheses and interpretations. Uncertainty is compounded when clustered data points collected at 
local scales are statistically upscaled to one or two points for use in regional models. Interpretation 
is required to interpolate between sparse field data points using ambiguous geophysical data to 
support field data in covered terranes. It becomes clear that multiple interpretations are possible 
during model construction, but typically only a single interpretation is permitted. Uncertainties are 
introduced into the 3D model during construction from a variety of sources and through data set 
optimisation that only produce a single model. Practices such as these are likely to result in a model 
that does not adequately represent the target geology.
A set of geometrical or ‘geodiversity’ metrics are used to analyse the Gippsland Basin, southeastern 
Australia is analysed using by subjecting input data to uncertainty simulation prior to model input. 
The resulting sets of perturbed geological observations are used to calculate multiple geological 3D 
models that display a range of geological architecture. Biodiversity measures degrees of variation 
within different organisms, ecosystems or the entire Earth. This concept has been adapted for the 
geosciences to quantify geometric variability, or ‘geodiversity’, between models. Various geometri-
cal relationships (depth, volume, contact surface area, curvature and geological complexity) are used 
to describe the range of possibilities exhibited throughout the model suite. End-member models 
for each geodiversity metric are classified in a similar manner to taxonomic descriptions. Further 
analysis of the model suite is performed using principal component analysis (PCA) to determine 
important features and geometrical characteristics. The outliers of the model suite are identified 
and model space boundaries and composition determined that potentially identify undiscovered 
model ‘species’.
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1. Introduction

In much the same way the diversity of animal species at a particular location can be de-

scribed using biodiversity metrics (Simpson, 1949; Miller and Foote, 1996; Roy and Foote, 1997), 

multiple geological models within a model suite can be described using a set of geological diversity, 

or ‘geodiversity’, metrics. Many biodiversity metrics now exist to assess species diversity, provid-

ing insights into subtle relationships and interactions recorded in the data (Magurran, 2004). The 

translation of diversity metrics into the geosceiences is performed to address the repercussions of 

geology being a fundamentally interpretive science (Frodeman, 1995).

Frodeman (1995) applies the hermeneutic (interpretive) circle of Heidegger (Heidegger, 

1962, 1963) to the progress of geological understanding. The hermeneutic circle states that central 

to comprehending parts of a geological problem is understanding their relationship to the whole, 

and comprehension of the whole geological problem is only achieved from an understanding of 

its parts. The geologist’s interpretations of the whole and parts are guided by preconceptions and 

theories that are relied upon to make sense of a rock outcrop or geophysical image. These precon-

ceptions and theories are necessary when performing geological or geophysical interpretation and 

are assimilated into the geologist’s skillset through training and experience. Very little knowledge 

about any geological terrane can be obtained without interpretation. Geodynamic reconstructions, 

ore deposit models and volcanic eruption histories would not exist without the ability of the ge-

ologist to take geological evidence and forensically reconstruct processes that cannot be directly 

observed.

Frodeman (1995) acknowledges that some sense of the answer, or ‘foresight’, is required 

to collate the abundance of data and interpretations into a feasible concept. Without foresight, 

the answer may not be recognised. The scope of what may be considered a possible answer is pre-

defined by the scientific principles and goals of the geologist than those acquired through the 

scientific activity itself.

The equipment employed by the geologist (field compass, hand lens, petrology micro-

scope, ICP-MS machine), their operation and associated data processing technique also prede-



85

termine the answer by shaping the types of information collected and subsequent interpretations. 

Geological interpretations are not static and continue to evolve over time as more knowledge is 

gained through the emergence of new techniques, equipment and natural and numerical analogues. 

The comparison of different editions of the same geological mapsheets provide an example of the 

evolution of geological understanding. Some deeper geological features in early editions may be 

subdivided in later editions as subsurface imaging techniques are used. Faults and folds may ap-

pear in later editions due to additional field work being undertaken. The stratigraphic column 

may change if the tectonic evolution of the region is revised. The desire to constantly seek more 

information to better understand the scientific problem is the fate of the interpretive science. Un-

fortunately only one answer is usually provided, where many others may exist. Geodiversity metrics 

offer an approach that allow the parts of a geological problem to be communicated relative to the 

whole of geological possibility.

The detection and visualisation of uncertainty within 3D geological models has been 

highlighted as an important issue ( Jones et al., 2004; Bond et al., 2007; Caumon et al., 2009; Bond 

et al., 2012) and is the focus of recent contributions (Cherpeau et al., 2010; Jessell et al., 2010; 

Wellmann et al., 2010; Wellmann and Regenauer-Lieb, 2011; Lindsay et al., 2012). 3D geological 

modelling relies on input data to determine the correct spatial relationships between various geo-

logical elements ( Jessell et al., 2010). The model relies completely on the capability of input data 

to provide sufficient information to locate and describe these geological elements. Unfortunately, 

input data is subjected to varying degrees of error and uncertainty in collection and processing, 

adversely affecting the accuracy of the model, predominantly due to sampling and upscaling proce-

dures involved in data collection through to model construction (Thore et al., 2002). Geophysical 

data supplies an infinite number of mathematically feasible solutions (Nettleton, 1942) without ap-

propriate use of petrophysical constraints or a priori geological knowledge (Gunn, 1997; Saltus and 

Blakely, 2011). Petrophysical constraints contain their own uncertainty, due to a few measurements 

being extrapolated using mathematical functions employed to simulate natural property heteroge-

neity throughout a rock body with varying, and potentially unknown, degrees of success ( Jessell, 

2001). This contribution follows advances made by Jessell et al. (2010), Lindsay et al. (2012), Well-

mann et al. (2010) and Wellmann and Regenauer-Lieb (2011) describing uncertainty detection 

techniques. These studies have shown that multiple models displaying overall similar, but possibly 
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significant differences in geological architecture can be created from the same data set. Model 

differences are now being detected and quantified as model uncertainty. Concepts facilitating un-

certainty detection are expanded here in a geometrical exploration of model space. The necessity 

for model space exploration is exemplified by variability in geological architecture between models. 

This contribution aims to describe geological variability and how geological elements may change 

between models using a selection of geometrical measures. A fundamental difference between this 

and previous studies is that global variations i.e. the geological unit/formation as a whole entity is 

analysed, rather than at discontinuous local (point) locations.

A key aspect of this and the Jessell et al. (2010), Wellman et al. (2010), Wellman and 

Regenauer-Lieb (2011) and Lindsay et al. (2012) studies is that removal of error or uncertainty 

from data prior to input is not performed. Instead, multiple models are calculated from perturbed 

input data in an attempt to understand the range of geological possibilities that exist when data 

uncertainty has been taken into consideration. A ‘model suite’ is generated, containing a cluster 

of models displaying similar geological geometries at the ‘barycentre’, or geometrically divergent 

models displaying extreme geometries that define a boundary of geological possibilities that can be 

generated from the input data set.

The use of the term geodiversity in the modelling context of this study should not be 

confused with its use in conservation that, while related, describes the diversity of processes, mor-

phology and mineralogy of the earth. Fundamental aspects that are addressed to describe model 

suite geodiversity are: (1) identifying if the models display differences; (2) how these models are 

different and (3) what modelling implications can be drawn from the information that geodiver-

sity metrics provide. A description of how a model suite is generated is provided, followed by the 

method by which geodiversity metrics are calculated. The geodiversity metrics are then applied to 

a case study located in the Gippsland Basin, southeastern Australia. Principal component analysis 

(PCA) of geodiversity metric results are presented and allow definition of model space composition 

boundaries, together with identification of metrics that contribute most to model space definitions.
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A model suite is created by calculating many models from a single input data set. Gener-

ating a model suite is a realistic admission that full knowledge of modelled system is unattainable, 

which is true for most, if not all, geological modelling scenarios. Creating multiple models from 

variations of the same input data allows different geological architecture to be generated, explored 

and compared. Uncertainty simulation is used to produce the model suite (Lindsay et al., 2012). 

A single model is first created from the input data, typically including field measurements, inter-

pretation of potential field geophysics (including seismic, gravity and magnetic datasets) and drill 

hole data using 3D Geomodeller, an implicit geological modelling application. 3D Geomodeller 

uses the scalar potential field method to rapidly calculate geological interfaces as implicit surfaces 

(Lajaunie et al., 1997). Geological interfaces represent surfaces where the potential for one unit 

exceeds that of another iso-potential, forming the contact between different geological units (see 

Calcagno et al. 2008 for additional information). The implicit modelling method requires that 

three different sources of geological information are specified before model calculation can take 

place:

a) A stratigraphic column. This describes the temporal relationships between the geologi-

cal units being modelled

b) The location of geological contacts for each stratigraphic group must be known at some 

locations.

c) Orientation data in the form of strike and dip measurements describing the orientation 

of geological interfaces.

The uncertainty simulation used in this contribution varies the orientation measurements 

from the data set ± five degrees. Five degrees has been chosen to represent the amount of varia-

tion observed when taking field measurements, interpreting interface orientations from geophysics 

or performing data upscaling. The principle behind ± five degrees of variation is that it can often 

be difficult to determine whether the measurement adequately represents the geological structure 

after upscaling (Figure 1a) or at the different scales (Figure 1b). Each data set perturbation is then 

2. Model suite generation
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3. Geodiversity metrics

Figure 1. a) Upscaling field data for input into a 3D geological model. 120 field measurements taken at the local 
scale (top) are reduced to a single ‘representative’ point (bottom – ‘mean principal orientation point’) using point 
density statistics. This is a valid statistical technique, but may not best represent the measured natural geology. b) 
Typical scale and issue encountered in a mapping exercise. The inset box shows a structural trend along a nor-
northwest – east-southeast axis, also consistent with the strike/dip measurements that have been recorded. At the 
regional scale, and with additional measurements, the trend is nor-northeast and west-southwest.

used to recalculate the model potential field to accommodate the new, varied input data. The results 

of uncertainty simulation can be seen in the synthetic model suite sample shown in Figure 2. There 

is potential to generate millions of models in this manner, but for the purposes of this study we 

have generated 100 new models, all based on perturbed input data, for a total of 101 (including the 

original model based on unpeturbed data). A sample of this size allows a reasonable comparison of 

the geometrical possibilities within the model suite.

Geodiversity metric calculation is performed using MATLAB® scripts. Calculation is 

performed by first converting each model into a ‘voxet’, a set of volumetric pixels (voxels) that 
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represent the model as a grid in 3D located space. The voxet parameters are stored in Universal 

Transverse Mercator (UTM) co-ordinates so that distances (including depth) and location, can be 

measured in metres and related back to the real-world area of interest. The property of each cell 

is the ‘stratigraphic ID’, an integer that represents the relative position of a geological formation 

within the stratigraphic column. A stratigraphic ID value of ‘1’ represents the basement unit of the 

model, whereas a stratigraphic ID value of ‘2’ represents the unit overlying the basement and so on 

(see example in Figure 8).

The geodiversity seen within the model suite is clear when comparing the models seen in 

Figure 2. The different degrees of displacement along faults in the 3D block models diagrams and 

the geometry of rock outcrop can easily be identified. The differences are often more subtle than 

can be seen when using purely visual comparative techniques in more complex natural models, 

such as when studying the difference in curvature of a geological contact or volume and depth for 

Initial 
      model

Model 1

Model 2

Fault
outline

Figure 2. A comparison of an initial synthetic model with perturbed models 1 and 2. The main regions of variability 
are highlighted with arrows. Fault surfaces are bordered in black and white.
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an entire formation. Some model properties, such as the volume or depth ranges of a particular 

geological unit of interest, require quantitative analytical methods to provide useful information to 

the operator.

Manually inspecting each model within a suite with many members for differences and 

variability is too time consuming to be practical in most cases. A set of analytical techniques have 

been developed to automatically assess model suite geodiversity, avoiding the need for manual 

model inspection. Geometrical characterization of model suite geology can be performed to allow 

relevant comparisons to be made and important information to be extracted.

3.1. Formation depth and volume

The shallowest and deepest extents of each stratigraphic unit can be determined from each 

model. This type of information can be of interest to both traditional geoscientific industries, such 

as oil, gas and minerals exploration (depth of reservoir or deposit) and groundwater and environ-

mental management (depth of aquifer), but also to emerging energy industries such as geothermal 

and coalbed methane exploration. Shallowest extent of a formation is calculated by determining 

the depth of the shallowest voxel in the formation under study and vice versa for the deepest extent 

(Figure 3). It is also possible to calculate the volume of each stratigraphic unit within each model of 

the suite. Particular units can be delineated and examined for economic or scientific research inter-

est to answer questions regarding geological possibilities. Volumes are determined by multiplying 

the count of formation voxels with the voxel volume (Figure 3).

3.2. Average mean curvature

Calculating the average mean curvature of a geological contact provides information de-

scribing geological interface deformation. Curvature is determined by rotating a section plane 

around the surface normal ( N


) at P, a point on a folded surface (Figure 4a). The section plane run-

ning through the folded surface that shows the maximum magnitude of curvature is principal cur-

vature k1. Principal curvature k2, is a plane perpendicular to k1 , so that k1 > k2  (Lisle and Robinson, 

1995; Lisle and Toimil, 2007). The sign of principal curvature values indicates sense of curvature: 
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positive indicates convex-upward and negative indicates concave-upward. Mean curvature (M) is 

the arithmetic average of k1 and k2,

and represents an antiformal (convex) surface when M > 0 or a synformal (concave) sur-

face when M < 0. If M = 0 it indicates the surface is a flat plane (neither concave or convex) or a 

surface where k1 = -k2, what Lisle and Toimil (2007) refer to as ‘perfect saddle’. Interference pat-

terns can be identified by calculating Gaussian curvature (G), which is  the product of k1 and k2

(1),

A positive G value indicates that both principal curvatures have the same sign (the surface 

resembles a dome, or if inverted, a basin) and a negative value indicates the principal curvatures 

have different signs (the surface resembles an antiformal or synformal saddle) (Mynatt et al., 2007). 

Curvature calculations can locate and determine the magnitude of curvature (or folding) observed 

within a contact. Figure 4b shows how further analysis of mean and Gaussian curvature in com-

bination can reveal folding directions along two perpendicular axes, allowing the identification of 

fold geometry (i.e. antiformal synforms or synformal antiforms) (Lisle and Toimil, 2007).

(2).
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The following describes the procedure used to calculate curvature for surfaces within a 

model. Locations are determined from the centroid of each voxel.

1.  Two geological units are chosen, designated U1 and U2 for the purposes of this de-

scription. The curvature of the contact between U1 and U2 is being calculated.

2.  Filter voxels where the lithology property does not equal U1 or U2.

3.  Find locations where U1 and U2 are adjacent and filter the remaining voxels.

4.  The contact between U1 and U2 may not be continuous throughout the model. The 

surface can be crosscut by unconformities, igneous intrusions or faulting structures. Mis-

leading results will be obtained when non-adjacent points are triangulated as this creates 

a surface where one does not exist. Points adjacent in 3D are labelled as a distinct region 

using a 26-connected neighbourhood test (Figure 5a).

5.  Delaunay triangulation is performed separately on each region to create the mesh 

from which curvature calculations are performed. Regions with four or less points are 
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filtered from the voxet to conform with concept known as the ‘Delaunay condition’ (Lee 

and Schachter, 1980; Sloan, 1993). The Delaunay condition ensures that no overlap occurs 

during triangulation.

6.  Curvature calculations are performed using the method of Ole Kaven (2009) which 

is based on the work of Chen and Schmitt (1992) and Dong and Wang (2005). The mea-

sures for k1, k2, M and G are recorded for each point in the region. 

 7.  The sum of curvature measures for each voxel within each region is determined 

for the surface under study. The arithmetic mean for each of the curvature measures are 

calculated for all voxels making the surface (including the distinct regions). The result is a 

value that represents overall curvature for the surface.

3.3. Neighbourhood relationships

Neighbour relationships can describe the manner in which different stratigraphic units 

1

1

1

2

2

3

3

Metric result
= 3

a) b)

Figure 5. a) 26-Connected neighbourhood used in the k-nearest neighbour algorithm for region connectivity. The 
sample location is highlighted in black, representing the centroid location of the sample voxel. Points in white 
represent the surrounding voxel centroid locations. If any of these white points are the same stratigraphic unit  as 
the sample they are considered to be connected, or adjacent, to the sample and will be included in the same region 
for curvature calculation. b) Short distance ‘6 neighbour calculation’ showing the sample location assigned with a 
stratigraphic ID of ‘1’. The metric result equals three because the sample location is surrounded by three stratigraphic 
units.
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are juxtaposed. We employ short-distance metrics, which are those that only examine voxels di-

rectly adjacent to the sample voxel. This contribution evaluates the union (or contact) between 

two units and the geological complexity of a location. Neighbourhood relationships are calculated 

with a k-nearest neighbour algorithm (k-NN). This method classifies objects based on training 

areas within the model and finds the closest points in terms of Euclidean distance (Friedman et 

al., 1977; Bremner et al., 2005). The distances determined by this technique are used to constrain 

which voxels are counted as neighbours. Only the shortest distances measured along eastings, 

northings and depth axes (a six neighbour relationship - Figure 5b) are included when determining 

short distance geological relationships.

The surface area of the contact between stratigraphic units is identified together with the 

proportion of overall contacts within the 3D volume. This information can be beneficial to mineral 

exploration studies, where the contact between particular units can lead to the identification of 

a potential mineral resource. For example, an explorer may be interested in what conditions and 

which model within the model suite displays the largest surface-area between modelled psammitic 

and psammopelitic units being used to target a Broken Hill-type deposit.

A measure representing geological complexity has also been developed using short-dis-

tance neighbour relationships. The number of different adjacent stratigraphic units directly adjacent 

to the sample voxel can be identified (Figure 5b). For example, if a sample voxel had one type of 

stratigraphic unit adjacent, then the voxel is surrounded by the same stratigraphic unit. This would 

indicate that the cell is located away from the extremities, in an area of low geological complexity. 

Complexity increases as the number of differing adjacent stratigraphic units increases. A value of 

‘two’ indicates that the cell is on a geological contact between two different units. A value of ‘three’ 

indicates that the cell on a triple-junction between units. Individual voxels can give information 

about the complexity of a given point, but a mean value for an entire formation can represent the 

geological complexity for the whole formation. Geological complexity information can be used to 

determine which stratigraphic units or structures within the model may be more difficult to target 

in drilling programs.
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Simultaneous analysis of variability within geodiversity metrics can describe the geo-

metrical variation between models within the model suite. The measured attributes of analysed 

metrics can be used to identify which models are ‘outliers’ and display a large difference from the 

more common and similar examples within a model suite. Model similarity defines a ‘barycentre’ 

of the model suite in geometrical terms depending on the metrics under examination. Further, and 

perhaps more interestingly, the models that display a large degree of difference from the barycentre 

can identify model suite ‘end-members’, either for individual or all metrics. Knowledge of end-

members helps to define the limits of geological possibility, given the input dataset, method of 

model calculation and geodiversity metrics employed.

This contribution employs multiple geodiversity metrics. While expert opinion may hy-

pothesise that co-variance exists between each geodiversity metric, it is required that rigorous 

analysis be performed to confirm this hypothesis. For example, the differences seen between mod-

els in terms of formation volume and formation depth, are likely to be unrelated. The problem has 

become multidimensional, and multivariate analysis must be used to adequately analyse the com-

plexities of the model suite. PCA has been chosen to perform this task. Jolliffe (2002) describes 

PCA as an exploratory data technique that allows complex data interactions to be displayed by 

orthogonal transformation of the data and re-organisation in terms of relevance to the attribute 

being analysed . The original, potentially correlated variables (in this case the geodiversity metrics) 

are converted into uncorrelated variables or principal components. The conversion of data is per-

formed so that the first principal component displays the greatest variance, with each component 

thereafter displaying progressively lower degrees of variance. This means that each component 

contains a combination of variability across all the metrics, rather than measuring the variability 

of just one. The combined effect on variability of all the metrics can be measured, and also allows 

metrics using different units of measurement to be included. Each further component contains the 

next highest degree of remaining variance, so long as it is uncorrelated to preceding components 

( Jolliffe, 2002). A common cause (or causes) behind the influence a metric has over model vari-

ability can be identified combining metric variability into principal components.

4. Principal component analysis (PCA)
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Principal components are calculated in the following manner: 

1. Statistics (mean, subtract deviations from mean, calculation of the covariance ma-

trix)

2. Sort eigenvectors and eigenvalues of the covariance matrix in descending order

3. Determine contributions of eigenvectors to eigenvalues

4. Determination of basis vectors

5. Projection of the z-score-converted original dataset onto basis vectors. 

PCA has been chosen instead of other multivariate techniques such as Factor Analysis 

and Nonnegative Matrix Factorization due the larger range of visualisation methods available. 

PCA was performed in MATLAB, primarily with the ‘princomp’ function (http://www.math-

works.com.au/help/toolbox/stats/princomp.html). The coefficients, or ‘loadings’, of the linear com-

binations of the metrics that were used to calculate the principal component data are obtained from 

this function ( Jolliffe, 2002). Plotting loadings as vectors can show the contribution in variability 

a particular metric has toward the principal components (see Figure 6). Hotelling’s T2 statistic is 

also calculated with the MATLAB ‘princomp’ function, allowing models to be ranked according to 

their multivariate distance from the centre of the dataset and aiding identification of model suite 

outliers and barycentre examples (Hotelling, 1931; Krzanowski, 1995).

A two-stage PCA method is employed. The first stage determines which individual strati-

graphic units best describe variability within each metric. Each stratigraphic unit is analysed using 

depth, volume and short-distance neighbourhood relationship metrics. The stratigraphic unit from 

each metric that best describes variability within the model suite is identified from loading vectors. 

The metrics contributing most variability to the first two principal components are retained and 

collated into a combined matrix with other geodiversity metrics representatives. The combined 

matrix is then assessed using PCA in stage two. Figure 6 shows a workflow for this process using 

four example stratigraphic units W, X, Y and Z. Units X and Y are seen to contribute most to the 

first principal component and second component variability respectively, for the volume metric. 

Units W and Z contribute most variability to the depth geodiversity metric. The volume measures 

for units X and Y and depths for W and Z are collated into a single matrix with the measures from 

other metric representatives. It is now possible to determine (1) which metric best describes model 

suite variability overall and (2) which models represent the outliers and barycentre of the model 
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suite. In the Figure 6 example, the depth of unit W has been determined to be the most influential 

in terms of geological variability between models.

5. Gippsland Basin, southeastern Australia
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Figure 6. Flowchart displaying the two-stage PCA method used in this contribution. A model suite containing 
20 models is used in this example. Above the solid black line are the first stage analyses of formation volume and 
formation depth geodiversity metrics. The combination analysis is shown below the black line. Loading vectors that 
plot close to the component axes represent the association of variability for that component and the length of the 
vector indicates the magnitude of variability represented. The model space boundaries are shown with a dashed line 
and shading indicates regions of barycentre or outlier model space.

A geological data set representing the Gippsland Basin, southeastern Australia (Figure 

7a) has been used to build a 3D model case study (Figure 7b) to discover what type of information 

can be obtained from geodiversity metrics and PCA in a natural setting. A variety of data types 
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Figure 7. a) Location and fault map of Gippsland Basin, southeastern Australia. Shaded background represents 
bathymetry. Modified after Lindsay et al. (2012). b) 3D model of the Gippsland Basin shown from the southeast 
(left) and northwest (right). Fault surfaces are highlighted with thicker borders.

have been used when building this model, including hard rock observations, geophysical interpre-

tation (2D seismic, aeromagnetic and gravity data), bathymetry information and well logs (Lindsay 

et al., 2012). Each geological formation within the model has been assigned a stratigraphic ID 

based on position within the stratigraphic column (Figure 8). Geological relationships shown in 

the stratigraphic column have been taken from the literature (Rahmanian et al., 1990; Willman 

et al., 2002). The Mesozoic to Cenozoic Gippsland Basin is a mature oil and gas field located in 
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southeastern Australia that also hosts brown coal deposits and is prospective for CO2 sequestra-

tion (Rahmanian et al., 1990; Cook, 2006). Ordovician formations comprise the basement of the 

model and the Oligocene to Pliocene Seaspray and Angler comprise the cover sequences. The 

Paleocene to Late Miocene Latrobe Group is primary target for oil and gas and includes the Co-

bia, Golden Beach and Emperor Subgroups (Bernecker et al., 2001). The basin is cross-cut by a 

number of transfer and normal faults, with the model fault-bounded to the west, north and south. 

The initial assumption was made that either the volume or depth of formation metrics would have 

the greatest influence on model suite variability as the model has layer-cake stratigraphy typical 

of a basin.
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6.1. Geodiversity end-members

Simple ranking of geodiversity metrics selected as the best representatives of model vari-

ability reveals the range of geological and geometrical possibilities available in the model suite (Ta-

ble 1). The selection process of representative stratigraphic units is explained more fully in Section 

6.2. The degree of variability that can be observed within a model suite for a given metric is shown 

by maximum, minimum and range values. These simple statistics quantify geometries that can be 

used in subsequent modelling or analysis. Viewing the spread of values in Table 1 and comparison 

with the initial model (i.e. the model generated from an unperturbed dataset) emphasises the high 

degree of uncertainty that can exist within a model suite. The last row in Table 1 shows the initial 

model distance from the studentized mean using standard deviation as measurement units. The 

results show that the initial model varies from the model suite mean, especially for km (1.43) and 

depth (1.11) metrics, highlighting that the initial model is unlikely to be the best, or at least most 

common, representative of the dataset. 

SDN – 
Strat ID 

14

Contact 
surface area 
3 & 4 (km2)

km kg Depth of 
Strat ID 
16 (m)

Volume of 
Strat ID 3 

(km3)
Max 4.14 (15) 1840 (97) 5.02x10-5 (38) ~ 0 (81) -5500 

(100)
3910 (30)

Min 3.56 (80) 1754 (56) -5.95x10-6 (65) -5.02x1019 (40) -3500 (2) 3681 (16)
Range 0.59 86 5.61x10-5 5.02x1019 2000 229
Initial 
model 3.89 1781 2.82E-05 -9.7E+18 -5500 38185
S away 
from the 
model 
suite 
mean 0.025 0.53 1.43 0.78 1.11 0.15

Table 1. PCA-selected geodiversity metrics and associated end-member model representatives. The model 
representing the model suite end-member for each metric is bracketed. A comparison with the initial model created 
from unperturbed data is shown on the last two rows. Distance the initial model is from the geodiversity metric 
model suite average is shown using the number of standard deviations away from the sample mean. The magnitude 
of some distance values (bold) emphasises how the initial model is not necessarily the best representative of model 
suite possibilities.

6. Modelling results and discussion
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units are both listed), Vol = volume; km = mean curvature, kg = Gaussian curvature. The location of Model 1, the 
initial model is indicated with an arrow. Note that Model 1 is not the closest model to the model space barycentre.

The data in Table 1 provides some useful constraints that define geometrical end-mem-

bers within a model suite. This information only describes part of problem, as all elements of the 

model are defined by a combination of these metrics. Comparing each metric with respect to its 

end-members or the entire ranked list of models will reveal little as no single model appears more 

than once as an end-member representative, nor does there appear to be any obvious relationships 

between the ranked lists. Finding a boundary for least likely models, nor which models are the 

most likely, cannot be found using direct comparative methods alone. A multivariate statistical 

technique, such as PCA, is therefore employed to combine these metrics to i) find the model suite 

barycentre and boundary and ii) find the geodiversity metric that best describes model variability.

 
6.2. Model suite analysis

Figure 9a shows loading and score plots for short-distance neighbourhood relationships 

taken from stage one PCA conducted on the Gippsland Basin model suite. Each vector represents 

a stratigraphic unit. The direction and length of the vector indicates how each stratigraphic unit 

contributes to the two principal components in the plot. Figure 9a shows that stratigraphic units 
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fourteen (bottom of the Golden Beach Subgroup – see Figure 8), ten (top the Strzelecki Group) 

and fifteen (middle of the Golden Beach Subgroup) contribute the most to the first principal 

component (x axis), whereas thirteen (top of the Emperor Subgroup) contributes the most toward 

the second principal component (y axis). Units fourteen and ten (top of the Strzelecki Group) are 

selected as representatives of short distance neighbour variability on the basis of loading vector 

plots. The same selection process is performed on the other geodiversity metrics described in Sec-

tion 3. A combined matrix of representative metrics is formed and subjected to PCA. From stage 

two PCA it can be determined which models represent the barycentre of the model suite and mod-

els that represent the outliers. Figure 9b shows the results from the combined geodiversity metric 

PCA from the Gippsland Basin. All geodiversity metrics defined in Section 3 have been input to 

determine which models are classed as outlier representations of the model suite, and those that 

represent the barycentre when all metrics are taken into consideration. Hotelling’s T2 scores for 

each model are sorted to identify the rank for each of the model suite members. Models 40, 30 

and 38 define the most diverse, or outlier model. The most common, or barycentre are found to be 

models 95, 61 and 20. A significant result is that initial model (Model ‘1’) does not appear in top-

three barycentre models. The initial model is ranked 11th, meaning that there are 10 other models 

considered more representative of the model suite. This finding has negative implications for mod-

elling workflows that consider only one realisation of input data necessary. One 3D realisation of a 

data set severely limits the study to a narrow view of geological possibility and likely misrepresents 

both the data set and the geological terrane under study.

Figure 9b shows the most influential metric of model suite variability for the Gippsland 

Basin is a member of the Ordovician basement (volume of stratigraphic unit three, see Figure 8). 

As this basement unit underlies most of the stratigraphy in a basin environment, any geometrical 

perturbations of this unit will have subsequent effect on the volume of the formation, which in 

turn affects the spatial location of all overlying units, including the oil and gas prospective Latrobe 

Group units. Further revisions of the model can be aided by these results. Measurements, observa-

tions and data types that are effective at constraining the volume of Gippsland Basin stratigraphic 

unit three can be pursued. If these aspects of the model can be better constrained, the possibility 

of high variability between models may decrease, which subsequently reduces overall model un-

certainty. The variety of geodiversity end-member models identified within the Gippsland Basin 



103

model suite also suggests that using a number of metrics is appropriate to encompass the variety of 

model geometries presented when a data set has been subjected to uncertainty simulation. 

End-member information shown in Table 1 also provides useful information. A range of 

feasible values describing 3D model geometries can be obtained through geodiversity metrics to 

provide constraints for inversion processes. Volumes can be used to ensure geological units do not 

exceed a specific size and depths can be useful to ensure that geological units are spatially con-

strained. Curvature measures can constrain the amount of deformation a surface exhibits within 

the model. Using a combination of short-distance neighbourhood values and contact surface areas 

can provide powerful constraints at the boundaries of geological units, ensuring geological rela-

tionships and connectivity are retained.

7. Conclusions

The geodiversity metrics used in this study can be useful to various geoscientific studies. 

The metrics describe the type and quantity of geometrical variability that may be encountered 

when generating a 3D model from a single geological input data. Difficult to obtain geometrical 

information can be obtained from the model suite and allow comparison with other model suites. 

The Gippsland Basin model suite has been analysed to determine end-member models for particu-

lar metrics, providing constraints for inversion processes. PCA has been used to define the model 

space boundaries and the outlier and barycentre models for both individual geodiversity metrics 

and combined metrics. The outlier models may become new ‘species’ of model that require further 

investigation. The presence of these new ‘species’ may drive additional research directions and aid 

selection of exploration techniques and targeting locations. The relative contribution of different 

stratigraphic units within individual metrics has been assessed to find their contribution to model 

suite variability, answering questions relating to the specific aims of a geoscientific study and im-

provements in the case study model. Areas of interest can be easily located using these metrics, as 

the data is georeferenced within the voxet. Different metrics can also be identified as contributing 

more or less to model suite variability. Additional metrics can be easily incorporated into future 

end-member and principal component analyses as they are developed, increasing the potential for 

extracting additional geometrical and model suite information. The geodiversity metrics shown 
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here are certainly not exhaustive, and more can be developed and incorporated into the process.

The information produced from end-member and PCA analysis of geodiversity metrics 

allows the geoscientists to identify which metrics more effectively inspect, quantify and represent 

the breadth of geological possibility. Some of the issues concerning the interpretive nature of geol-

ogy can be addressed by assuming that uncertainty is inherent within input data and producing 

a model suite. Biodiversity measures the diversity of species to explain complex relationships and 

function within an ecosystem. The parts of a 3D geological model are examined in relation to 

the whole of the model, and model ‘species’ are considered in relation to the entire model suite. 

Producing a single 3D geological model from a data set has been shown to misrepresent what is 

geologically possible. PCA of geodiversity metric results taken from the Gippsland Basin model 

suite reveals that the initial model produced using the input data is not the most representative, 

and there are 10 other models that are more representative of the data. With this knowledge one is 

lead to consider which diverse model geometries define boundaries of model space. The geological 

possibilities that may have been filtered by preconceptions, foresight and equipment biases can now 

be revealed by multivariate analysis of geological possibility.
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The combination of geodiversity and principal component analysis provide a powerful 

means by which to examine model suite uncertainty. The geodiversity concept also initiates a model 

space search for geological possibility. The discovery in Chapter 2 that the initial model did not 

display the most common model geometries has provided evidence in support of workflows that 

produce multiple models. The geodiversity metrics employed in Chapter 2 describe important geo-

metrical aspects of model elements in the Gippsland Basin model suite. What is missing is a set of 

metrics that describe geophysical aspects of a model.

Geophysical techniques are very common and useful in 3D geological modelling. Geo-

physical interpretation of potential field data is commonly used to aid geological interpolation be-

tween outcrops, especially in regions of sparse data. It was decided that some manner of geophysi-

cal measure was necessary to include into the stable of geodiversity metrics. A typical stage in any 

modelling workflow is to determine the 3D forward geophysical response of a model for compari-

son against the observed response obtained through geophysical surveying. The hypothesis is that 

as geophysical data usually provides the greatest coverage over a region of interest, the observed 

geophysical response will provide the most complete representation of the natural system. The 

root-mean-square (RMS) of the misfit between the calculated and the observed responses typically 

represents the overall distance between the 3D model and the natural world. Additional geophysi-

cal metrics that measure different aspects of the calculated and observed geophysical response were 

included into the geodiversity stable in an attempt to account for geophysical ambiguity.

The 3D Geomodeller™ modelling application is used to generate the forward response of 

each 3D model. An application program interface (API) is provided with the modelling applica-

tion that allowed access to a range of functions from within the software making task automation 

possible. In Chapter 3, forward modelling is automatically performed for the entire model suite 

and produced calculated response grids are model and corresponding RMS misfit values. The cal-

culated response grids are imported into Matlab©. A range of image processing functions and 

script looping allow all geophysical metrics to be tested and incorporated into the modelling work-

flow. The aim of geophysically characterising a model suite is to move the workflow closer to a geo-

physical inversion procedure that acknowledges multiple geological and geophysical possibilities.

A new model suite is analysed in Chapter 3. The Ashanti Greenstone Belt, southwestern 

Ghana, west Africa is modelled in collaboration between Monash University and Université Paul 
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Sabatier (Toulouse III) (Perrouty et al., 2012). The Ashanti Greenstone Belt is a palaeoproterozoic 

metamorphic terrane, geologically different to the Gippsland Basin model analysed in Chapters 

1 and 2. Analysis of the Ashanti Greenstone Belt model is performed to determine if the tech-

niques developed in Chapters 1 and 2 are transferrable to a model in a different geological terrane. 

Performing the techniques on the Ashanti Greenstone Belt model suite also reveals whether these 

techniques are just as effective in mineral prospective terranes as in oil and gas prospective terranes. 

Chapter 3 is currently in preparation for submission to the Geophysical Journal International.
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Abstract

Keywords: Geophysical forward modelling, 3D modelling,  Principal component analysis, Ashanti 
Greenstone Belt, Geodiversity

The process of three-dimensional (3D) modelling forces the operator to consider data collection 
and processing error while making assumptions about geology, requiring interpretation to arrive at 
the most likely or logical geological scenario. These kinds of ambiguities lead to a situations where 
multiple model realisations can be produced from a single input data set. Typically decisions are 
made during the modelling process with the aim of reducing the number of possible models, pref-
erably to produce a single geological realisation. These types of decisions involve how input data is 
processed and what data is included, and are always made without complete knowledge of the sys-
tem under study. This regularly, if not always, results in natural geometries being misrepresented by 
the model, which can be attributed to uncertainty inherent in the modelling process. Uncertainty 
is unavoidable in geological modelling as complete knowledge of the natural system is impossible, 
though we use many techniques to reduce the amount introduced through the process. A common 
technique used to reduce uncertainty is geophysical forward modelling, and the misfit between 
the calculated and observed response provides a means to gauge whether changes in model archi-
tecture improve or degrade the quality of the model. Unfortunately, geophysical data is in itself 
ambiguous and provides a non-unique solution, and different model geometries can produce the 
same geophysical response.
We propose a process whereby multiple models, collectively known as the ‘model suite’, are pro-
duced from a single data set that allows an exploration of geological model space. Various ‘geodi-
versity’ metrics have been developed to characterise geometrical and geophysical aspects of each 
model. Geodiversity measurements are combined into multivariate analysis that reveals relation-
ships between metrics and defines the boundaries of the possible geological models. A previous 
study using geodiversity metrics on the Gippsland Basin is extended here by including geophysical 
metrics. We use the Ashanti Greenstone Belt, southwestern Ghana in West Africa as a case study 
to assess the usefulness of the technique. A critical assessment of the 3D model is performed and 
aspects of the model space are identified that could be interest to gold explorers.
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1. Introduction

Two-dimensional (2D) and three-dimensional (3D) geophysical forward modelling is a 

useful tool commonly used in geoscientific studies to validate or falsify geological models against 

the observed geophysical data. Both variations compare an ‘observed’ geophysical response against 

a ‘calculated’ response. The calculated response signal is measured from a representation of geology 

contained within a 2 or 3D model. The shape, depth and size of a stratigraphic unit in combina-

tion with the contrast of assigned petrophysical properties produce a signal. Other elements in the 

model, such as faults or dykes, are also taken into consideration. The combinations of signals from 

the modelled geological units and structures are calculated and are convolved to produce the calcu-

lated field, for examples Betts et al. (2003), Joly et al. (2008), Williams et al. (2009) and Perrouty 

et al. (2012).

Together with petrophysical information, the geometry of the geological model plays 

a key role in the process of geophysical modelling. The aim of this study is to discover whether 

relationships exist between particular geometrical parameters exhibited in a 3D model and the 

geophysical response. For example, the geophysical response may be heavily influenced by the 

volume or geological complexity of a particular geological formation within a model. Discovering 

a relationship of this nature will enable model refinements to be guided toward finding a model 

that honours both geological and geophysical data. However, determining a relationship is difficult 

as the interaction between model geometries, petrophysical properties and geophysical response is 

complicated. A model space exploration is a useful means by which to achieve this goal.

We produce a number of 3D geological models based on the same input data set to pro-

duce a model suite, a collection of models that exhibit similar, but not identical, model architecture. 

Each one of these models is considered geologically feasible and may a priori provide the best re-

alisation of the natural world possible, given the input data. The model suite can be analysed in its 

entirety to determine uncertainty, the range of geometrical possibility and geophysical misfit. We 

perform an exploration of geological and geophysical model space using the Ashanti Greenstone 

Belt, southwestern Ghana as a case study. A set of ‘geodiversity metrics’, quantifying both geo-
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metrical and geophysical aspects of the 3D model ( Jessell et al., 2010; Lindsay et al., 2012b), are 

used to determine geological end-members existing within the model space. A geodiveristy metric 

is a measure, such as volume, surface area or geophysical misfit, that characterises an aspect of a 

model and allows comparison against other models within the model suite. A multi-variate statis-

tical technique is employed to simultaneously compare all the metrics and determine their effect on 

the model suite. Analysis of the results is performed using Principal Component Analysis (PCA) 

which allows: (1) determination of the model space boundaries, a theoretical limit to geological 

possibility defined by models exhibiting the most unusual architecture; (2) identification of un-

common and common models in terms of both geometry and geophysics and (3) an understanding 

of which metrics can contribute most to uncertainty in modelling.

1.1. Geodiversity principles and the link to model uncertainty

Uncertainty is inherent in any modelling process and is particularly evident in 3D geo-

logical modelling (Cherpeau et al., 2010; Chugunov et al., 2008; Gershon, 1998; Jessell et al., 

2010; Thore et al., 2002). 3D modelling suffers from a lack of geological information as there is 

never complete coverage of data that describes the entire system. Outcrop is usually limited, re-

stricting field observations, and can be under-sampled when available. Geophysical data may not 

supply complete coverage nor be available at the required resolution for detailed interpretation. 

Uncertainty caused by data sparseness is exacerbated by input data errors, caused during collec-

tion, processing or preparation for input to the geological model (Bond et al., 2010; Yeten et al., 

2004). Issues such as upscaling data (where clustered data points are subsampled to a representa-

tive point prior to input) are well-known but typically tolerated. The effects of upscaling, sampling 

and data error and resulting uncertainty have been examined by Putz et al. (2006). They found 

that their model remained reasonably robust until 50 percent of input data had been subsampled 

prior to model generation. After the 50 percent threshold, the model progressively degrades with 

increasing degrees of downsampling until observed geology is barely recognisable. 50 percent is 

not a threshold that applies to all models. The level at which models degrade beyond being rec-

ognisable  depends on the redundancy between data and the interpolation algorithm, which also 

relates to model complexity.



114

Recent studies have shown how uncertainty can be located, quantified and possibly re-

duced using different methods (Jessell et al., 2010; Lindsay et al., 2012a; Thomson et al., 2005; 

Viard et al., 2010; Wellmann and Regenauer-Lieb, 2011). Geodiversity metrics were developed 

as a means of measuring uncertainty, as the presence of uncertainty implies that model geometry 

must be variable (Figure 1). Varied geometry then suggests that the various elements of each 

model, be they the volume of a granitoid or surface area of a contact will vary as well. Geodiversity 

metrics are a method to analyse geometrical variations of model elements and determine the upper 

and lower bounds for each metric in order to establish model suite end-members. The volume of a 

modelled granitoid can serves as an example. The model with the smallest volume of granitoid can 

be identified, and the model with the largest volume of the same granitoid can also be identified. 

Therefore the model that contains the granitoid with the smallest volume becomes the minimum 

end-member representative for the volume of the granitoid, and the model exhibiting the largest 

volume for the granitoid becomes the corresponding maximum end-member representative.

Geometrical aspects of a 3D model are not the only metrics of interest to geoscientists. 

Geophysics is an integral component of many modern geological studies, and is used heavily in 

the 3D modelling process. Geophysical metrics can be included in the suite of geodiversity met-

rics in order to quantify the capacity of the model suite to match the observed geophysical field. 

End-members for different geophysical metrics can be identified just like their geometrical coun-

terparts, and used to aid further modelling efforts. Finding whether any geometrical metrics can be 

a) b)

Figure 1. Visualisation of uncertainty in the Ashanti Greenstone Belt model. Note that grid lines have 10km 
spacing. Geological contacts (colours correspond to the stratigraphic column in Figure 2) and faults (thick black 
borders) from the initial model are shown in a). Uncertainty within the model is shown in b), with the degree of 
uncertainty (stratigraphic possibility) shown using a colour code (blue is lowest uncertainty, red is highest). The 
stratigraphic possibility (L) is the number of possible stratigraphic units that can be found at a given point for all the 
models in the model suite (Lindsay et al. 2012).
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linked with geophysical metrics is of particular interest, providing a guide to which geometrical 

aspect of the model should be examined to most efficiently decrease geophysical misfit and lead to 

a model that honours both geophysical and geological data.

2. Method

, (1)

2.1. Geophysical forward modelling

The geophysical forward modelling method used in this contribution discretises the 3D 

geological model into a 3D grid, or ‘voxet’. Each cell, or ‘voxel’, is assigned a stratigraphic unit iden-

tifier based on the geological model. Next, each voxel is assigned a petrophysical value representa-

tive of the assigned stratigraphic identifier and appropriate to the geophysical response required. 

In this paper, the gravitational response is being modelled, so density is the assigned petrophysical 

property. The sum of the contribution of each voxel to the field is calculated using an analytical 

expression (Holstein, 2003; Holstein et al., 1999; Okabe, 1979; Plouff, 1976). The heterogeneity 

of petrophysical properties predicted to occur within a stratigraphic unit can be simulated by the 

definition of probability distribution functions (Figure 2). A 3D model of the southern Ashanti 

Greenstone Belt and corresponding calculated gravitational response is shown in Figure 3.

2.2. Comparison of geophysical images.

A residual grid is created by subtracting the calculated response grid from the observed 

response grid. The measure of geophysical misfit is often expressed as a root-mean-squared value, 

or ‘RMS’, 

calculated from the residual grid that is the difference between the observed and calcu-

lated signals. Figure 4 shows the observed, calculated and residual grids for the initial model, i.e. 

the model that was calculated using an unperturbed data set.
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Figure 2. Input parameters used in construction and geophysical modelling of the Ashanti Greenstone Belt 
model. a) Stratigraphic column based on recently revised tectonic evolution (Perrouty et al. 2012). b) Petrophysical 
properties and distribution statistics assigned to each formation (Metelka et al. 2011; Perrouty et al. 2012).

a) b)

Figure 3. Calculating the geophysical response from a 3D model. a) shows a view of the Ashanti Greenstone Belt 
3D model from above. Faults have been shown with blue border and stratigraphy is shown with opaque surfaces. 
b) shows the calculated geophysical gravity response of a). Note the ‘white spaces’ in b) indicating no interpolated 
gravity response. This ‘white space’ is particular to the 3D geophysical forward modelling procedure and associated 
parameters.
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2.3. Statistical analysis – global

The following techniques have been included in this study to obtain a scalar value for 

each calculated geophysical response. Some of these values are obtained by calculating the residual 

between the observed and calculated response. and include the 2D correlation coefficient, root-

mean-squared (RMS) and the Hausdorff distance. The standard deviation and entropy techniques 

are typical image analysis techniques. The standard deviation technique was performed on the cal-

culated grids, the entropy technique was performed on the residual grids. The scalar value obtained 

through these techniques is global, in other words, a value that represents the entire grid, not local 

regions within the grid. The global approach was implemented to adhere to the requirements of 

PCA. A requirement for performing PCA is that a single value represents each geodiversity metric 

(geometrical and geophysical) for each model in the model suite. While useful, non-global, or local 

image analysis of each of the geophysical grids would produce multiple values for each metric. All 

values obtained for one model would need to be reduced to single value for use in PCA, making a 

local analysis averaged.

N NN

a) b) c)

Figure 4. Example of 3D geophysical forward modelling from the initial Ashanti Greenstone Belt model. a) shows 
the observed gravity grid, which is based on survey data, b) is the calculated response of the initial model and c) is 
the residual, calculated from the difference between a) and b). 20 kilometre grid line spacing for a) and b).
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2.3.1. Standard deviation

The standard deviation of an image is a common technique in image analysis as it rep-

resents the underlying intensity probability distribution, and it can be used to measure the degree 

to which potential field grid values vary across the entire image. Using standard deviation of the 

calculated response as a geodiversity metric allows the variability of each grid to be compared. 

. (2)

, (3)

where E is the sum of all products of p (probability), of each possible outcome (i) out of 

N total possible outcomes. Where E = 0 it indicated that the image is dominated by large regions 

of the same value (Figure 5a). In a system of two integer values 0 and 1 (1-bit system) the Emax =1 

(Figure 5b). The image is made of equal proportions of possible values in this case, therefore E = 1 

reflects that at any point it is equally likely to find a ‘0’ or a ‘1’. Figure 5c is still a 1-bit system (val-

ues 0 or 1), but two out of three lines along the Y-axis are ‘1’. The proportions are no longer equal 

as it is 66.66% likely to find ‘1’ and 33.33% likely to detect ‘0’ at any given point and E = 0.9135. 

Emax will increase with the range of values within the data set under study. This is shown in Figure 

5d where a range of five integers (one through five) are found in the randomly generated image.

Information entropy is a useful tool in exploring model space uncertainties. Wellmann 

et al. (2010) have used Information Entropy as a visualisation technique to communicate where 

We can ask ourselves why would one model have a higher standard deviation than another? Can 

this be resolved due to a particular geometrical feature of the model? For example a granitoid with 

a high petrophysical contrast to the country rock that is larger in a model than others, may result 

in a relatively high standard deviation for the calculated response and assist examination of input 

petrophysical constraints.

2.3.2. Entropy

Entropy (E) is used to measure the average bits per pixel over an entire image, represent-

ing its global information content (O’Gorman et al., 2008). The type of entropy used here is ‘In-

formation Entropy’ which is derived from the Shannon Entropy model (Shannon, 1948; Wellmann 

and Regenauer-Lieb, 2011):
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uncertainties within 3D  models exist. We use the concept to analyse the residual grids produced 

by the automatic forward modelling technique to find grids that are smoother and contain less vari-

ability in values.

2.3.3. 2D correlation co-efficient

2D correlation co-efficients are typically calculated in geophysical and engineering appli-

cations to track changes in 2 and 3D objects. The subject of 2D correlations are often images as the 

algorithm is able to measure how closely an image of an object subjected to deformation resembles 

Entropy = 0

 

 
Entropy = 1

 

 

Entropy = 0.9135

 

 
Entropy = 2.3215
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a) b)

c) d)

Figure 5. A set of four images showing how information entropy (E) can identify information content in an image. 
a) shows E = 0, meaning that entire image contains the same value and all pixels in the images can be predicted to 
100% accuracy based on the value of one pixel. b) an image with two integer possibilities (0 or 1), alternating bands 
across the image will result in the highest amount of E for a binary system. While instinctively one would assume 
that the regular bands are easy to predict, in fact as there are equal proportions of 0’s and 1’s throughout the image, 
the possibility of picking a 0 or 1 at any given point is equally likely (50% for each value). There is no single value 
that is more likely to be found, so E =1, the highest value for a binary image. c) a binary image with a 66% chance 
to find ‘1’ and 33% chance for ‘0’, E is slightly lower, reflecting less randomness in the image. d) shows an image 
generated using a random function of integers 1 through 5. E is relatively high as the number of possibilities has 
increased, and the relative proportions of each integer are similar.
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the original state over a time period. The correlation is ‘2D’ as it is performed between matrices, 

rather than between two vectors (Figure 6). The 2D correlation r is calculated using

, (4)

where Ā is the global mean of image one (observed geophysical response) and B̅ is the 

global mean of image two (the calculated geophysical response). The correlation between the im-

ages is not a subtractive comparison, such as performed in the RMS method, rather it measures 

whether patterns in the image resemble each other. The purpose of using this technique to compare 

observed and calculated responses is that if the correlation coefficient is high, the spatial variation 

of values in both the calculated and observed responses is similar. 

2.3.4. Hausdorff distance

The Hausdorff distance measures how far points in two different subsets are from each 
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Figure 6. Features of 1 and 2D correlation functions. a) Correlation between two sets of vector data showing little to 
no linear dependence. b) 2D correlation between two matrices showing little linear dependence. c) The correlation 
function recognises that the second matrix has been created simply by multiplying the first matrix by two, returning a 
score indicating complete linear dependence.
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other. The distance can then be used to understand the level of resemblance two superimposed ob-

jects have to each other. The Hausdorff distance has been typically used in machine vision (Ruck-

lidge, 1997; Wang and Suter, 2007) and pattern recognition applications (Gao and Leung, 2002; 

Olson and Huttenlocher, 1997; Sim et al., 1999) to compare and find patterns in one image that 

may be present in another (Huttenlocher et al., 1993). Geophysical grids can be compared using 

the Hausdorff distance. If we assume that the geophysical forward response of a given 3D model 

is a subset of the model space, then the observed response of the potential field is also a subset of 

the same model space, but represents an as yet undiscovered 3D model (Foudil-Bey, 2012).

The Hausdorff distance (dH)can account for dilation and limited degrees of rotation and 

translation of one image with respect to the other (Figure 7). Geometrical differences between 

model suite members will be reflected in their respective calculated geophysical responses. The 

recognition of similar patterns is not performed via standard geophysical misfit algorithms, so it is 

interesting to determine whether using the Hausdorff distance as a metric for model comparison 

can be more effective.

The Hausdorff distance is calculated using the following equation. X and Y are two non-

empty subsets of a metric space (M, d). The Hausdorff distance between these two sets dH (X,Y) is

, (5)

where sup is the supremum, inf is the infimum and x and y are points within sets X and 

Y respectively. In the application of the Hausdorff distance used here, X is a grid of the observed 

response, Y is a calculated forward response grid of some model and x and y are values of a given 

cell within the grid. The supremum is defined as the least element of subset Y of set X that is greater 

than or equal to all elements of Y. The infimum is defined as the greatest element of subset Y of set 

X that is less than or equal to all elements of Y (Figure 8). In other words, the infimum defines the 

lower bounds of subset Y within set X, whereas the supremum defines the upper bounds of subset 

Y within set X. Therefore the Hausdorff distance finds point x from set X that is farthest from any 

point in Y and measures the distance from x to the nearest neighbour in Y.

2.4. Geometrical geodiversity metrics

Seven geodiversity metrics have been employed to categorise the Ashanti Greenstone 
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Belt model (Table 1). A short review of the geometrical metric method (volume, depth, surface 

area, curvature and complexity) is provided in this section, though additional details can be found 

in Lindsay et al (2012b). Being able to quantify a particular aspect of a model allows comparison 

with other models in the model suite. Comparison then allows identification of end-member rep-

resentatives for each metric. Quantification also allows each metric to be compared against one 

another to determine whether there are metrics that can best explain uncertainty contained within 

the model suite. All the geophysical metrics are used to provide a global measure of the calculated 

geophysical response or misfit with an objective representation of nature in the observed response. 

The geophysical metrics have been included in the geodiversity collection to discover if the geo-

physical response can be associated with any of the geometric geodiversity metrics according to the 

stated hypothesis. 

Original image dH=243.3721

Rotation anti−clockwise 90 degrees

dH=0

Vertical stretch ten pixels

dH=249.3752

Expansion of original image, lower left corner

dH=255.7362

Rotation 180 degrees

dH=330.1106

Field of view translation rightwards

Figure 7. Hausdorff distances (dH) calculated between an original image (top-left) and images subjected to different 
morphological operations. Note that the stretch example produces zero Hausdorff distance.

Figure 8. A number line shows a set of numbers 
(white and black balls) and a subset (white balls). 
The infimum and supremum of the subset are 
indicated.
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The following geometrical geodiversity metrics were developed to analyse the geometry of 

3D geological model elements. Note that this list of metrics is not exhaustive. Many other metrics 

may exist that are also effective at measuring the effects of uncertainty on model geometry.

2.4.1. Formation depth and volume

The deepest and shallowest extents of each stratigraphic unit are determined using this 

metric. Each model in the suite can be analysed to find if any model shows that a stratigraphic unit 

is significantly deeper or shallower than it is in others. Information like this can be useful to assist 

Table 1. Summary of geodiversity metrics and their function. Detailed descriptions of the geometrical metrics and 
their function can be found in Lindsay et al (2012b).

Name Subject Measurement Output
Geometrical geodiversity metrics
Volume Voxet Metres3 Volume for each 

formation
Depth Voxet Metres Shallowest and 

deepest occurrence of 
each formation

Curvature Surface km: Mean curvature

kg: Gaussian curvature

Average km and 
kg values for each 
formation

Contact relationships Surface Area (metres2) Contact surface 
area and contact 
relationships

Geological complexity Voxet Number of different 
lithologies around 
point-of-interest

Scalar value 
representing 
geological complexity

Geophysical geodiversity metrics
Root mean square 
(RMS)

Residual grid Global measure of 
geophysical misfit

Scalar value 

Standard deviation Calculated grid Global measure of 
geophysical variability

Scalar value 

Entropy Residual grid Global measure of 
geophysical variability

Scalar value 

2D correlation 
coefficient

Comparison 
between observed 
and calculated grids

Global measure 
of geophysical 
covariance – 
recognises similar 
patterns

Scalar value 

Hausdorff distance Distance between 
observed and 
calculated grids

Global measure of 
geophysical misfit – 
accounts for pattern 
translation, rotation 
and dilation

Scalar value 
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in identifying under what conditions a stratigraphic unit may be shallower. Most units in a model 

that displays either flat-lying geology, low uncertainty or both will share the same deepest and 

shallowest extents with other models within the model suite which makes identification of end-

members difficult. Therefore, the unit that has the most volume at the depth extent under study is 

considered the end-member. For example, the deepest extent of ‘Unit A’ is found to be 8500 metres 

and was found in models 3, 6 and 70. In Model 3, Unit A has 3000 m3 at 8500 m depth, Model 6 

has 4000 m3 and Model 70 has 3500m3 at 8500 m depth. Model 6 is determined to be the end-

member for the deepest extent of Unit A, as it has the most volume at 8500 m depth. Volume of 

each unit is calculated by counting the voxels assigned to that unit and multiplying by the voxel 

volume.

2.4.2. Average mean curvature

Most surfaces within a 3D geological model are curved as they attempt to represent the 

natural world. Defining the curvature of a surface can be useful, especially if curvature is conducive 

to producing an economically viable target. Antiformal traps are highly sought after in oil, gas and 

minerals exploration and determining where they exist can aid exploration activities. Curvature 

may also influence the geophysical response of a model. Potential links between a particular style 

or degree of curvature and high or low geophysical misfit can aid model refinement and improve 

the modelling workflows.

We use a technique described by Lisle and Robinson (1995) and Lisle and Toimil (2007) 

that rotates a surface around its normal until the maximum curvature (‘k1’) is found. The surface 

that is perpendicular to k1, ‘k2’ is also recorded. k1 and k2 are known as the principal curvatures. The 

sign of principal curvatures indicates their polarity, negative indicates concave-upward, positive 

indicates convex-upward. Mean curvature (M) is calculated from the arithmetic mean of k1 and k2:

. (6)

, (7)

M < 0 represents a concave (synformal) surface, M > 0 represents a convex (antiformal) 

surface and M = 0 either represents a flat plane or a ‘perfect saddle’ (Lisle and Toimil, 2007). The 

product of k1 and k2 is the Gaussian curvature:

which can be used to identify specific folding interference patterns. Positive G values 

show that both principal curvatures k1 and k2 have the same sign, and represent a dome or basin. 
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Negative G values indicate that principal curvatures have different signs, and represent antiformal 

or synformal saddles (Gray et al., 2006; Mallet, 2002; Mynatt et al., 2007). Use of curvature calcu-

lations as a geodiversity metric allows comparison of specific geological interfaces with a model 

and model suite using quantitative methods.

2.4.3. Contact relationships

A contact relationship metric has been developed to quantify the surface area of modelled 

stratigraphic units, and to identify which units are in contact with other units within the model. 

Contact relationships are recorded by determining which stratigraphic units are adjacent to each 

other and surface area is calculated from a voxel count of the regions where that adjacency exists. 

Table 2 shows an example of the relationships between stratigraphic units found in the initial 

model of the Ashanti model suite. This matrix provides a useful guide to geological relationships 

that exist in the model that may not be immediately evident without thorough visual investigation. 

Information of this kind can provide a useful means to cross-validate the resulting model with the 

contact relationships that are described by the input geological data.

2.5. Using 3D geophysical forward modelling in combination with 
geodiversity

The geophysical response of a model will always rely on the 3D geological architecture 

it represents. Integration of geophysical misfit and geodiversity metrics allows data exploration 

to identify which, if any, geodiversity metrics may influence geophysical misfit. Finding a single 

‘Bs’ ‘bs8’ ‘tkc’ ‘tks’ ‘tbc’ ‘ttp’ ‘ts1b’ ‘ts1’ ‘gf ’
‘Bs’ 0
‘bs8’ 23885 0
‘tkc’ 1708 5910 0
‘tks’ 123 2127 2418 0
‘tbc’ 11 880 2220 2083 0
‘ttp’ 1 99 2194 1249 1667 0
‘ts1b’ 1 59 870 1289 1922 1095 0
‘ts1’ 0 12 27 19 32 32 668 0
‘gf ’ 1025 134 0 0 0 0 0 0 0

Table 2. Voxel count and contact relationships between stratigraphic units generated in the initial model of the 
Ashanti model suite. Stratigraphic units are labelled in the column and row headings. A voxel count of ‘0’ indicates 
these units are not in contact within this model volume. 
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metric, or combination of metrics, that influence geophysical misfit can help modellers refine their 

models to reduce geophysical misfit between the observed response and the calculated response.

Caution must be taken with this research direction. It is not intended that any relation-

ship discovered between a geodiversity metric and geophysical response be exploited to manipulate 

the misfit into a more ‘agreeable’ result. We emphasise the importance of geological feasibility with 

respect to the geophysical misfit. For example, if a covariant relationship between the volume of 

a particular unit and geophysical misfit is found, the volume should not be adjusted in isolation 

simply to decrease the misfit. Changes to the volume of that unit should be considered with respect 

to geology, so that unrealistic realisations of the geology are avoided. The intent is to guide the 

modeller toward finding alternative data sources that better resolve the geometry of the geological 

formation through additional data (Lindsay et al., 2012). Adding data is not necessarily going to 

improve the geophysical misfit, especially if the data is inappropriate to improve the realisation of 

the anomalous modelled geology. For example, if volume was found to be linked to geophysical 

misfit of the model suite, adding 3D seismic interpretation to the input data set may improve the 

misfit of the model suite and provide a more accurate and reasonable geological realisation.

2.6. Data Analysis using Principal Component Analysis (PCA)

Each model can be analysed and then ranked using geodiversity metric results. The mod-

els exhibiting the greatest and smallest (i.e. the end-member representatives) volume of a particular 

geological unit are easily identified, as are the volume ranks of all other models. This information 

can be very useful, especially for further processing and modelling such as geophysical inversion. 

But potentially more interesting is discovering where a particular model sits in an overall rank-

ing scheme that incorporates all geodiversity metrics. This type of analysis defines where a model 

resides in relation to other models within model space. For example, finding whether the initial 

model (the model calculated from non-perturbed data) exhibits typical characteristics is important. 

The initial model is normally the only model considered in current modelling workflows. If this 

model does not exhibit typical characteristics, the practice of producing one single model should 

be seriously questioned.

Simultaneous analysis of results from techniques that measure both geometrical and geo-
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physical phenomena require a specialised set of tools. Typical methods measuring correlation, such 

as Spearman’s Rank or Pearson’s r, operate pairwise and only two variables are measured simul-

taneously. To adequately understand the relationship between different geodiversity metrics, we 

require a method that can compare different observations, sometimes with different scales of mea-

surement. Further, we want to be able to reduce the number of geodiversity metrics to a select few 

that best represent the degree of variability observed through the model suite. PCA falls within the 

‘feature transformation’ group of methods that fit these requirements, while also providing visu-

alisation techniques that assist in understanding the interaction between variables and model space 

definition. Formally, PCA is an exploratory data technique that analyses the interaction between 

geodiversity metrics through orthogonal data transformation, where data is then re-organised in 

terms of relevance to model suite variability (Jolliffe, 2002). PCA identifies which geodiversity 

metric contributes the most toward model suite variability and defines the model space. ‘Outlier’ 

models form the boundary of model space. Outlier models are those models that exhibit geometri-

cal and geophysical characteristics that show the biggest combined difference when compared to 

other models. ‘Barycentre’ models form the centre of model space and display characteristics that 

are similar when considered in combination. Defining the model space is an important exercise 

as it characterises what is possible geologically given the modelling method, geodiversity metrics 

and input data set. Knowledge of the model space parameters assists definition of geological pos-

sibility, given the input dataset, method of model calculation and geodiversity metrics employed. 

We performed the PCA in Matlab with the ‘princomp’ function (http://www.mathworks.com.au/

help/toolbox/stats/princomp.html). The multivariate distance of the model from the centre of the 

dataset (i.e. the model’s rank within model space) is determined using Hotelling’s T2 statistic, also 

obtained from the ‘princomp’ function (Hotelling, 1931; Krzanowski, 1995). 

A detailed account of the PCA procedure is described in Lindsay et al (2012b). The PCA 

is carried out in two stages. The first stage involves analysing the contact relationship, volume, 

depth and complexity metrics individually. Each metric measures the corresponding observations 

for each stratigraphic unit within the model suite. PCA is performed on the stratigraphic units to 

find which units contribute the most to model variability for that metric. For example, if the hypo-

thetical units XYX and ABA were found to contribute the most to model suite variability, XYX and 

ABA are then representatives of the volume metric. They would then be used with other representa-
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tive units in the second stage ‘combined’ PCA.

The remaining metrics, including all the geophysical varieties, do not require filtering 

in a first-stage PCA procedure as a single value representing the entire model (e.g. the RMS or 

Hausdorff distance) is produced. The curvature metric was not subjected to PCA as curvature was 

not calculated for every stratigraphic unit through the model suite. The computation time required 

for the curvature procedure is high, so target geological contacts were chosen manually. The deci-

sion for which contact should be analysed for curvature was based on which exhibited the highest 

surface area, and therefore was most likely to vary and have a resulting effect on model geometry. 

This decision was made possible due to information provided by the contact relationship metric 

(e.g. Table 2).

3. Geological review – Ashanti Greenstone Belt, 
southwestern Ghana

The Leo-Man craton forms the southern Archaean / Palaeoproterozoic section of the 

West African Craton. In the south of the craton in southwestern Ghana, four Palaeoproterozoic 

greenstone-granitoid belts can be found (from east to west); the Kibi-Winneba, the Ashanti, the 

Sefwi and the Bui. Each belt is separated by a sedimentary basin (from east to west); the Akyem 

(or Cape Coast Basin), Kumasi and Sunyani Basins. The Ashanti Greenstone Belt has economic 

significance as it hosts a number of large and world-class gold deposits, including Obuasi, Tarkwa, 

Bogoso/Prestia and Damang (Allibone et al., 2002; Feybesse et al., 2006; Pigios et al., 2003; 

Tunks et al., 2004).

3.1. Mineralisation and gold prospectivity

Gold mineralisation can be identified in two ways (Perrouty et al., 2012): spatially asso-

ciated with the Ashanti Fault and other major shear zones or along the contact between the Tark-

waian and Birimian units. Tarkwaian-hosted deposits display two styles of mineralisation. The first 

is observed only in quartz lithic conglomerates within the Banket Formation (eg. Tarkwa Mine). 

Economically viable deposits are constrained to a few horizons locally named ‘Banket Reefs’ 
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(Blenkinsop et al., 1994) and is thought to be of palaeoplacer origin (Hirdes and Nunoo, 1994; 

Sestini, 1973). A second mineralisation style, observed within Tarkwaian units, are the hydrother-

mal deposits that occur along the Birimian / Tarkwaian contact (eg. Damang Mine). A contrasting 

mesothermal mineralisation style is associated with the Birimian Supergroup and is associated 

within quartz ± carbonate veins within graphitic-mylonitic shear zones. World-class gold mines 

such as the Ashanti deposit are hosted within the Obuasi/Main Reef fissure (Allibone et al., 2002; 

Tunks et al., 2004). 

3.2. Modelling the Ashanti Greenstone Belt

The purpose of building the Ashanti Greenstone Belt model was to determine the geom-

etry of the Tarkwaian Basin (Figure 9). The depth and morphology of the basin base is of particular 

economic interest as it plays host to existing and potential placer gold deposits. Existing under-

standing of Tarkwaian Basin depth is controversial. Hastings (1982) and Barritt and Kuma (1998) 

predict the basin is between 1500 and 2500 metres, but these estimates assume an older version 

of stratigraphy that has low density Birimian metasediments underlying the higher density Birm-

ian metavolcanics. Depth estimates based on gravity inversion and interpretation may therefore 

underestimate basin depth and granitoid geometry (Perrouty, S. – unpublished thesis chapter). Cur-

rent stratigraphic relationships developed through updated information (Adadey et al., 2009) has 

encouraged construction of this model. The new map proposed by Perrouty et al (2012), structural 

measurements, stratigraphy (Figure 2a) and geophysical interpretation have been input to create 

the 3D model of the Ashanti Greenstone Belt, southwestern Ghana.

3.3. Datasets obtained from fieldwork

Pre-existing field observations and outcrop maps from Loh et al. (1999), BHP Billiton and 

Golden Star are used in combination with data collected by Perrouty et al (2012). This field data 

includes structural observations and petrophysical measurements calculated from rock samples. 

Geophysical interpretation was constrained using petrophysical data, and field observations aided 

geophysical interpretation. A thick lateritic and/or saprolitic layer covers most accessible areas 
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within the region that restricts the occurrence of Proterozoic outcrop. Geophysical interpretation 

was therefore necessary to gain geological understanding between outcrop areas, resulting in much 

of the region requiring interpretation. 

3.4.1. Gravity data

Gravity data has been used to provide a potential field data set to cross-validate magnetic 

interpretation and better image deeper structures in the region. A number of datasets have been 

compiled to create the gravity data used in the validation of this model. A pre-processed Free Air 

anomaly grid dataset was obtained through the International Gravimetric Bureau (BGI, http://

bgi.omp.obs-mip.fr/) and contains a combination of BGI on- and off-shore data, satellite data and 
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Figure 9. Geological map of Ashanti Greenstone Belt, southwestern Ghana. Note the location of the modelled 
region over the Ashanti Greenstone Belt and the Tarkwaian Basin.
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Getech ground data (African Gravity Project 1986-1988, http://www.getech.com/history.htm). 

Spatial resolution is 2.5 arc-minutes, or close to 4.6 kilometres per pixel.

Figure 10 shows a steep gravity gradient to the west of the Tarkwaian Basin that marks 

the location of the Ashanti Fault. Other less dramatic anomalies represent Eburnean granites and 

Eoburnean granitoids.

3.4. 3D modelling and model suite creation

3D Geomodeller (http://www.geomodeller.com/geo/index.php) is used to integrate field, 

geophysical and satellite data into a coherent and geologically feasible model. 3D Geomodeller 

uses an implicit method to integrate all input data to create scalar potential field of conformable 

lithological formations (Lajaunie et al., 1997). Note that the ‘scalar potential field’ is different to 

the geophysical potential field that is used to generate some of the input for the model. Geological 
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Figure 10. Gravity response of the Ashtanti Greenstone Belt with an overlay showing the location of modelled 
faults.



132

interfaces are identified from the scalar field through a process of cokriging all scalar fields and a 

3D model is constructed. Three types of input data are required for the 3D Geomodeller implic-

it method to function: (1) geological contact locations; (2) geological orientation measurements 

and (3) a stratigraphic column with defined geological relationships. The contact locations define 

where interfaces exist within the model, the orientation measurements give the interfaces their ge-

ometry and the stratigraphic column defines adjacent geological relationships. Fault relationships 

can also be defined allowing complex fault networks and timing relationships between fault and 

geological units to be defined. A complete description of the 3D Geomodeller method and associ-

ated techniques is described by Calcagno et al. (2008).

We consider the first model that was created to be the ‘initial model’. The initial model 

is the model that is created in a normal 3D geological modelling workflow. It represents the best-

efforts of the modelling team to produce a consistent model that attempts to honour all the input 

data. Lindsay et al. (2012a) describes how the initial model is subjected to uncertainty simulation 

to create the model suite and is then included in the model suite as a member that is no more or less 

likely to exist in nature than the other perturbed models. Uncertainty simulation consists of taking 

the orientation measurements (including those assigned to faults) from the input dataset and reas-

signing their values to within ±5 degrees (both strike and dip) of the original measurement. The 

reassignment is performed as a Monte Carlo simulation to avoid bias. For example, a measurement 

of 325/40E could be perturbed so that measurement within model ‘1’ of the model suite would 

be reassigned 323/35E, model ‘2’ reassigned 320/42E and so on. Each model is then recalculated 

using the new measurements and with other perturbed models create the model suite: a set of 

geometrically similar, but diverse examples of geological possibility. Voxets are generated from 

each of the members of the model suite and are used for geodiversity analysis. 

3.5. Predicting the resulting geophysical response from varied 
geometries

It was initially thought that the volume of a unit would be closely related to the overall 

geophysical misfit calculated during forward modelling. Given that one particular unit may take 

up a high proportion of the model volume, it would be reasonable to expect that the unit would 
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correspondingly have influence over the overall geophysical response. This relationship is not with-

out some considerations. The petrophysical properties assigned to the high-volume unit must have 

some contrast to the surrounding unit otherwise it would be geophysically indistinguishable from 

other geological units. Further, if the high-volume unit is flat-lying, especially if it exists only at 

depth, then it will also be difficult to distinguish from other units. The flat-lying unit will simply 

add its response to the units that overly it, so it needs to outcrop, or at least have experienced some 

deformational process to fold or tilt beds so that the top surface is irregular in some manner.

4. Results and discussion

The results are presented in two parts: (1) as a pure end-member analysis, where end-

members for each representative metric (determined in the first-stage PCA where necessary) are 

presented with the corresponding measurement and (2) the results of the combined PCA, where 

the combined analysis of geodiversity metrics is presented with a depiction of model space.

4.1. End-member analysis

Results from geodiversity analysis are shown in Table 3. It becomes evident that knowl-

edge of these end-members and their corresponding measurement reveals several interesting as-

pects of the model suite. Firstly, the geometrical metrics display considerable variation in the 

range between end-member values. The range of possible volumes for the Late Birimian formation 

(‘Bs8’) is 1553.1 km3, whereas the depth metrics only show a range of 200 metres between end-

member representatives. Considering that the smallest interval between the measured depth of a 

given formation is 200 metres (voxel size is 200 metres on the Z axis), the results are essentially 

binary in that the stratigraphic unit is either one of two depths (1400 or 1200 metres for Bs8 and 

400 or 200 metres for the base of the Tarkwaian Series ‘tks’). The depth for the shallowest extent 

for Bs8 does allow for three possibilities (1000, 1200 and 1400 metres), but none of these results 

allow for much fidelity in terms of detecting different depths. In contrast, the volume is calculated 

by counting the voxels within a formation, and the range between the smallest and largest volume 

allows a far greater spectrum of results (between 321915 to 352977 voxels, a range of 31062 vox-
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Metric Measures Minimum End-
member

Maximum End-
member

Geometric geodiversity end-members
Volume Volume of Bs8 Model 37: 16095.75 

km3
Model 21: 
17648.85 km3

Volume Volume of tks Model 78: 197.95 km3 Model 21: 229.7 
km3

Complexity Complexity of tkc Model 70: 3.1141 Model 26: 
3.3186

Complexity Complexity of Bs Model 61: 1.3825 Model 1: 1.9825
Depth - 
deepest

Deepest occurrence of Bs8 Model 11: 1400 m Model 100: 1200 
m

Depth - 
deepest

Deepest occurrence of tks Model 31:  400 m Model 12: 200 m

Depth - 
shallowest

Shallowest occurrence of Bs Model 101: 1400 m Model 32: 1200 
m

Depth - 
shallowest

Shallowest occurrence of Bs8 Model 92: 1400 m Model 61: 1000 
m

Contact 
relationship

Contact between Bs and Bs8 Model 32: 21348 
voxels

Model 72: 26464 
voxels

Contact 
relationship

Contact between Bs and tkc Model 90: 1106 voxels Model 32: 2975 
voxels

Curvature km of contact between Bs8 and tks Model 57: 2.9995e-05 Model 28: 
1.8792e-05

Curvature km of contact between Bs and Bs8 Model 54: -4.6455e-
05

Model 84: 
7.4882e-04

Curvature kg of contact between Bs and Bs8 Model 89: 
-1.0559e+21

Model 31: 
-1.4424e-08

Curvature kg of contact between Bs8 and tks Model 8: -4.1816e+14 Model 12: 
-6.5508e-08

Geophysical geodiversity end-members
RMS RMS misfit between observed and 

calculated response
Model 37 - 8.2963 Model 26 - 

8.4930
Standard 
deviation

Global measure of geophysical 
variability within the calculated 
response grid

Model 70 - 17.4038 Model 39 - 
17.5306

Entropy Global measure of geophysical 
randomness within the residual 
grid

Model 70 - 4.9151 Model 39 - 
4.9509

2D correlation 
coef.

Comparison between observed 
and calculated grids – accounts for 
similar patterns

Model 32 - 0.9465 Model 37 - 
0.9503

Hausdorff 
distance

Global measure of geophysical 
misfit – accounts for pattern 
translation, rotation and dilation

Model 26 - 482.8557 Model 76 - 
487.8138

Table 3. End-member representatives for each geodiversity metric and the corresponding observation. Note how 
each end-member is represented by a single scalar value. This is a requirement for input into PCA, but also allows 
commonality constraint values to be determined.
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els) than the depth metric. Much smaller variation in geometry can be detected in the volume of a 

formation throughout the model suite, suggesting that the volume metric will be more useful as a 

variable in PCA. Decreasing the voxel Z-axis interval may improve the effectiveness of the depth 

metric, but the impact on computing requirements (both storage and computation) would need to 

be considered. Decreasing the Z-axis interval will dramatically increase the number of voxels in 

the voxet and the trade-off between improvements in variability detection for the depth and other 

metrics would have to be assessed. Despite depth metrics being less useful for detecting model 

suite variability, they would nonetheless provide useful information to explorers using the model 

for prospectivity analysis. Access to the possible depths of a prospective geological unit can make 

decisions about targeting easier. The economic viability of a prospect can hinge on predicted ore 

depth, so depth end-member knowledge allows a quick assessment of this variable.

The complexity metric shows that the tkc stratigraphic unit has an average of between 

3.1141 and 3.3186 different lithologies at any given point. This result is high in comparison to the 

1.3825 to 1.9825 calculated for the Early Birimian (‘Bs’). A relatively high degree of complexity 

that also describes model suite geometrical variability (determined during first stage of PCA) sug-

gests that tkc is an important unit within the model suite. The location of tkc in the stratigraphy 

makes the complexity result even more interesting as tkc forms the base to the Tarkwaian basin 

and is gold prospective. Intuitively, the average of over three different units at any given point 

seems high and indicates that this unit may define the geometry of units overlying it. It may also 

be that the geological complexity of tkc is associated with gold prospectivity.

The relatively large range of values seen within the contact relationship metrics Bs and 

Bs8 (5116 voxels) and between Bs and tkc (1869 voxels) reveal how geometrically variable the 

model suite is. The large range indicates that the surface area between these contacts can be easily 

influenced by model uncertainty. The Bs/Bs8 contact variability shows that the contact between 

the Early and Late Birimian units is inadequately constrained. This is confirmed as only a single 

orientation point defines the orientation of this contact. The Bs8/tkc contact is gold prospective, 

so a large range of values may suggest that this model suite may not offer enough certainty for use 

with further prospectivity modelling. These results do not necessarily mean that the model suite 

cannot be used, but that the variability of this geometrical aspect of the model suite should be kept 

in mind in future applications.
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The curvature results reveal some aspects of the Bs/Bs8 and Bs8/tkc contacts that are 

difficult (if not impossible) to determine from visual analysis of the surfaces. The average mean 

curvature (km) of the gold prospective Bs8/tks contact shows that all the surfaces throughout the 

model suite display an overall antiformal curvature. This result seems to be counter-intuitive to 

geological reason. The Bs8/tkc contact forms the basement to the Tarkwaian Basin which one 

would expect to be synformal, even with the four deformation events that have shaped it to the 

present day geometry. Visual inspection also suggests the same conclusion (Figure 11). The reason 

for this seemingly anomalous result is the fact the curvature is calculated between adjacent voxels. 

Overall curvature appears to be synformal, influenced heavily by curvature at the edges of the ba-

sin. However, throughout the centre of the basin the curvature exhibits more antiformal geometry, 

more than the synformal, resulting in the average mean curvature detected by the geodiversity 

metrics.

An interesting result from the Gaussian curvature (kg) metric is that all the results return 

a negative number. This results from both principal curvatures (k1 and k2) having opposite signs, 

meaning that the surfaces all exhibit a saddle or inverted saddle geometry (Lisle and Toimil, 2007). 

The magnitude of kg values range from close to zero (model 31, Bs/Bs8 - model 12, Bs8/tks) to 

extreme (model 89, Bs/Bs8 and model 8, Bs8/tks), meaning that models 31 and 12 exhibit almost 

cylindrical fold geometry, whereas models 89 and 8 would exhibit distinctive saddle geometries. 

The saddle geometries are intuitively expected given the polyphase deformation history of the 

Figure 11. View of the tkc surface from the Ashanti Greenstone Belt model (from the south), showing an overall 
synformal curvature (vertical exaggeration x4).
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Tarkwaian and differing axes of shortening (Perrouty et al., 2012). The cylindrical fold geometries 

are not expected for the same reasons. Therefore any use of models 31 and 12 (or others showing 

near-cylindricity) in further analysis should be performed with caution.

4.2. Gravity misfit comparison

Sensitivity analysis of all the gravity geodiversity metrics was performed to confirm that 

each metric has a similar variation to range ratio and that no correction was required to normalise 

any extremely high or low measurements. This was initially difficult to determine as each geophysi-

cal geodiversity measure has different units of measurement. Table 4 shows the comparison of met-

rics. The value to note is the range-standard deviation ratio, which is similar for all metrics (high-

lighted in grey within Table 4). This means that the degree of variability within each measure is 

proportional to its range and that comparison can be made between these metrics as end-members 

and no data levelling is required for PCA.

Geophysical response modelling is by no means the only method by which a model can 

be verified. For example, drill logs and/or field mapping can be integrated with geophysical obser-

vations to provide a less ambiguous solution. In practice though, geophysical data is often the only 

data set that has full coverage over the study area and subsequently suffices for first-pass model 

validation. 

4.2.1. RMS misfit

Overall, the RMS misfit values are reasonably high for this kind of study. Obviously, one 

Hausdorff 
distance

RMS 2D correlation 
coefficient

Entropy Standard devia-
tion

Range 4.9580 0.1967 0.0039 0.0358 0.1268
Standard deviation 1.1325 0.0424 0.00085 0.0081 0.0283
Range/standard 
deviation

4.3779 4.6392 4.5240 4.4164 4.4814

Mean 485.4841 8.4034 0.9482 1.8077 17.4716
Max 482.8557 8.4930 0.9503 1.8729 17.5306
Min 487.8138 8.2963 0.9465 1.7290 17.4038

Table 4. Statistical analysis of geophysical geodiversity metrics. A ratio of range to standard deviation has been 
calculated to evaluate whether the proportion of variation to range in the results across the model suite was the same, 
which appears to be the case with all metrics giving similar ratio values. This confirms that there is no metric that 
determines outliers (extremely high or low values) the presence of which may distort further analysis in PCA.
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would hope for slightly lower values, but the magnitude is also not high enough to reject the geol-

ogy model outright. Figure 12 shows the difference between the end-member residual grids is not 

immediately obvious, though regions (indicated on the figure) through the centre and the edges of 

the Tarkwaian Basin appear to show the greatest variation. The highest magnitude anomalies ap-

pear to be concentrated in the northwest and southeast. The reason for this is that gravity in these 

areas respond to deeper Birimian-age structures (Perrouty et al., 2012) that were not included in 

the model, and this is subsequently reflected in the relatively high misfit values. The residual ob-

served over the Tarkwaian is not as severe as in the northwestern and southeastern regions of the 

map, and the modelled geology appears to match the gravity data relatively well.

Low entropy (‘E’) reflects less randomness in the residual image. If the entire image has 

predictably (i.e. less random) high misfit values, then the misfit is predictably high. Therefore, low 

E values need to be considered in combination with the mean misfit value for the residual. A low 

RMS value reported with a high entropy value will represent an image with an overall low misfit 

but riddled with high magnitude anomalies. Choosing a model for further processing simply be-

cause it has a low RMS, without considering the corresponding entropy may prove problematic if 

high magnitude anomalies are present.

a) b)Model 37 - RMS: 8.2963 Model 26 - RMS: 8.4930

Figure 12. Residual grids from RMS misfit end-member models 37 (RMS: 8.2963) and 26 (RMS: 8.4930).
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The remaining geophysical metrics produce a single scalar value that describes the phe-

nomenon measured by each particular technique. The degree to which scores vary from the mean 

for each metric is relatively similar. Therefore we can expect that both techniques may be measur-

ing relatively similar degrees of misfit for each calculated model response against the observed 

response. However, identical results have not been produced for a given model, meaning that each 

technique may be measuring different phenomena, as was hoped. The PCA should reveal what 

phenomena each geophysical metric is measuring, with the proviso that a companion geodiversity 

metric exists that also quantifies the same phenomena.

4.3. Combined Principal Component Analysis (PCA) and 
geodiversity metric relationships

PCA results are best analysed using a bi-plot diagram shown in Figure 13a. A short ex-

planation is required to explain how to read a PCA bi-plot. The first two principal components are 

plotted along the X and Y axes respectively. The first two principal components together explain 

just under 50 percent of model suite variability (Figure 13b). The PCA plot shows each metrics 

contribution to model suite variability and how each model is represented in terms of model suite 

variability. The points represent models within the model suite and the distance of the point from 

the 0,0 intersection represents the distance of the model from the ‘barycentre’ of the model suite. 

The barycentre is a region containing models that share common characteristics, therefore the fur-

ther away from the barycentre, the more diverse the models become. The models that plot around 

the edges of the diagram, the ‘outliers’, define the boundaries of model space. These outlier points 

represent the models that are dissimilar in terms of the geodiversity metrics that we have used to 

define the models within model space. The length and direction of the vectors extending from the 

0,0 intersection represent how much they contribute to the principal components in the plot. Vec-

tor direction represents association with the component (or axis) the vector plots closest to. A long 

vector that plots close to the x-axis would shows a close association to the first principal compo-

nent, representing a variable that contains a high proportion of model suite variability.
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4.4. Ashanti Greenstone Belt PCA

The most distinctive feature of this PCA diagram is the clustering of the RMS, standard 

deviation, entropy and complexity (tkc) vectors around the x-axis. The clustering shows that this 

group of metrics more effectively measure intrinsic model suite variability than the others in the 

diagram. Perhaps more interesting is that the geophysical gravity response of the model suite is 

linked with the complexity of tkc (Figure 14). Our original hypothesis that the volume of the base-
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Figure 13. PCA for the Ashanti Greenstone Belt model suite and geodiversity metrics. a) Bi-plot diagram of the 
combined PCA showing that RMS, standard deviation, entropy geophysical metrics all measure similar variations 
between models as does the complexity metric of tkc. Note the location of the initial model. b) Pareto diagram of 
principal components and the variance explained. Almost half the variance observed by the geodiversity metrics 
within the model suite is explained by the first two components, negating the need to examine components three 
onwards. 
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ment formations (Bs or Bs8) would be most influential over the geophysical response of the model 

has been proven false. The volume of Bs8 is still influential in terms of model suite variability as it 

plots close to the y-axis (along with the complexity of the Bs / Bs8 contact), but is not associated 

with the geophysical metrics. The remaining 2D correlation and Hausdorff distance geophysical 

metrics show no close association with other geometrical metrics, though they are almost covari-

ant. The association the two metrics have with each other is due to their ability to recognise pat-

terns within the data. 

a)

b)

Figure 14. Complexity maps of tkc formation from models 70 (a) and 26 (b). Modelled fault surfaces (grey) and 
borders (blue) are shown.
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The opposing direction of the vectors for 2D correlation and the Hausdorff distance to the 

other geophysical metrics is due the inverse relationship between these measures. For example, 

the Spearman’s Rank between the RMS and Hausdorff distance is -0.81, showing a medium to 

high correlation (Figure 15). Table 3 shows that the RMS end-member representing the highest 

geophysical misfit is model 26, whereas the Hausdorff distance end-member representing the least 

distance from the observed grid is model 26. We suspect that this reversal of end-members is due 

to the Hausdorff distance metric recognising a pattern in the model 26 calculated grid that has a 

close resemblance to the pattern in the observed grid. This pattern may have been dilated or trans-

lated, as the RMS misfit is low, but may exhibit the same geometrical features. Identification of the 

exact transformation the Hausdorff distance has identified was not performed within this study, but 

would obviously be a useful outcome for future work.

The reason to construct this model was to better understand the geometrical nature of the 

Tarkwaian Basin, therefore little attention was paid to the underlying Birimian structures to ac-

commodate petrophysical property heterogeneities in the Birimian basement. The complication is 

that if this model was subjected to geophysical inversion, Tarkwaian geometries may be adjusted 

beyond the boundaries of geological feasibility. As the Birimian geophysical response has not 

been adequately represented geometrically, the inversion process would likely adjust Tarkwaian 

structures or petrophysical properties. Tarkwaian structures are the only features that will likely 

Figure 15. Comparison of RMS misfit scores and Hausdorff distances (y-axis) between calculated and observed 
geophysical grids for each model (x-axis). A reasonably strong negative correlation between both datasets (r = -0.81).
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produce an improvement in misfit when adjusted in the model, and these changes may produce 

geologically unreasonable results. The obvious course of action is to better represent Birimian age 

structures in future model versions to avoid unnecessary adjustment of model attributes during 

inversion.

Hotelling’s T2 scores have been calculated to rank each model according to distance from 

the barycentre (Table 5). All outlier models (8, 84, 32, 61 and 37) feature in the end-member analy-

sis (Table 3), though determining their influence on overall model suite variability is difficult to 

determine by simple ranking procedure. Model rank needs to be weighted according to the influ-

ence of the metric to overall model suite variability. A combined approach is needed to completely 

acknowledge all geodiversity within the model suite. Similar to results obtained in Lindsay et al. 

2012b, the initial model does not feature in the bottom five ranked models. The initial model is 

reasonably close to the barycentre, being ranked in 88th position, but there are 13 other models that 

are considered more similar according to the geodiversity metrics used in this study. The necessity 

of employing modelling techniques producing multiple realisations of geological scenarios are 

supported by the results presented here. Modelling procedures may therefore benefit from proba-

bilistic models, rather than models that have been produced from processes that optimise data.

5. Conclusion

Adding geophysical geodiversity metrics adds further information to model space ex-

ploration. The process of comparing different geophysical techniques has revealed that some are 

associated with the geological complexity of a gold prospective layer, tkc, which forms the base of 

the Tarkwaian Basin. Complexity maps of the two end-member models (Figure 14) could provide 

useful input into prospectivity modelling, but also guide further modifications and changes to the 

initial model in combination with uncertainty analysis by identifying regions requiring specific 

focus.

The geophysical metrics included in this study have provided additional methods to cal-

culate the misfit between calculated and observed grids. The pattern recognition feature of the 

Hausdorff distance provides a useful companion technique to typical RMS misfit calculations. 

The Hausdorff distance could be an inclusion for further studies due to its ability to detect patterns 
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in the observed response that may exist, translated, rotated or dilated, in the calculated response.

PCA has also revealed that the geophysical response is associated with a geometrical phe-

nomenon. Further investigation of the model space through geophysical inversion can be stream-

lined by identifying models and elements that should be analysed. Based on the results obtained in 

the PCA, we suggest that geophysical inversion on tks/tkc or the Bs8/tkc contact may aid in pro-

ducing a model honouring both geological and geophysical data. We can be more confident with 

the final result if models exhibiting both common (barycentre) and unusual (outlier) geometries 

are included in analysis. The inversion process can also be guided to focus on elements that have 

been determined to be important to reconcile when trying to obtain a model honouring both geo-

logical and geophysical data. This will be achieved by (1) eliminating model realisations that do 

not represent either the barycentre or outlier regions of model space and (2) identifying geometri-

cal elements, while potentially important in other non-geophysical contexts, that do not contribute 

significantly to model suite variability. The production of models that best represent all input data 

and geological possibility will be aided by following the procedure outlined here.

Geodiversity PCA has implications for the future of 3D geological modelling. The initial 

model was found not to be the most representative model in the model suite. This finding exposes 

flaws in workflows that consider a single model to adequately represent geological possibility. We 

propose two processes that address these flaws: (1) Multiple models, identified through PCA and 

geodiversity analysis, to be produced as the product of simulation workflows and (2) a combina-

To
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1 8
2 84
3 32
4 61
5 37
88 Initial model

Bo
tto

m
 5

97 50
98 9
99 67
100 34
101 11

Table 5. Hotelling’s T2 score rankings for the model suite. The top five models are those that exhibit the greatest 
distance from the model space barycentre. The bottom five models represent are closest to the barycentre. The 
ranking of the initial model is also shown.
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tion of all models in the model suite are combined to produce a probabilistic model, where surfaces 

and structures are represented by probability measures, rather than as discrete surfaces. The result 

from both proposals is that uncertainty inherent in geological studies is acknowledged and is com-

municated effectively.
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The geodiversity metrics demonstrated in Chapter 3 successfully identified important re-

lationships within the Ashanti Greenstone Belt model suite. Firstly, large misfit anomalies resulted 

due to the model inadequately representing the Early Birimian Series. Secondly, the association of 

geometrical and geophysical covariance between models is difficult to predict. Differences in mod-

el element volumes were not found as influential in reflecting geophysical differences, as initially 

thought. Instead, geological complexity was identified as the most influential factor in variations 

between the gravity response, but also in overall model suite variability. Finally, principal compo-

nent analysis again found that the initial model did not exhibit the most common geodiversity 

characteristics in the mode suite. These findings provide more supporting evidence for the produc-

tion of multiple models in modelling workflows. The evidence is stronger as (1) it is corroborated 

by what was discovered in Chapter 2 and (2) the result was acquired using a different model suite 

with an expanded range of geodiversity metrics.

Producing multiple models from a modelling workflow advocates subjecting multiple a 

priori models to geophysical inversion. Chapter 4 demonstrates how this is achieved. Chapter 

4 also provides how guidance for selection of inversion input data and parameter assignment is 

based on the techniques featured in Chapters 1, 2 and 3. Chapter 4 outlines a modelling workflow 

displaying how each technique developed in this research is complimentary. The aim is to produce 

a set of models that acknowledge model uncertainty and geological possibility. Chapter 4 shows 

that a geologically reasonable model can be generated while including appropriate geological con-

straints to an inverse problem. Chapter 4 is currently in preparation for submission to the Journal 

of Geophysical Research, Solid Earth.
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Abstract

Keywords: Uncertainty, 3D modelling, Geological constraints, Inversion, Ashanti Greenstone Belt

Geophysical inversion employs numerical methods to minimise the misfit between three-dimen-
sional petrophysical distributions and geophysical datasets. Inversion techniques rely on many sub-
jective inputs to provide a solution to a non-unique problem, including use of an a priori input 
model or model elements (a contiguous volume of the same litho-stratigraphic package) and inver-
sion constraints. Inversions may produce a result that perfectly matches the observed geophysical 
data but still misrepresents the geological system. A workflow is presented that offers objective 
methods to provide inputs to inversion. First, simulations are performed to create a model suite 
that contains a range of geologically possible models. Next, uncertainty analysis is performed using 
stratigraphic variability to identify low certainty model regions and elements. ‘Geodiversity’ analysis 
is then conducted to determine the geometrical and geophysical extremes within the model space. 
Next, geodiversity metrics are then simultaneously analysed using principal component analysis to 
identify the geometrical and geophysical aspects that contribute most toward model suite variabil-
ity. Principal component analysis determines which models exhibit common or diverse geological 
and geophysical characteristics, facilitating selection of models subjected to geophysical inversion.
We apply this workflow to the Ashanti Greenstone Belt, southwestern Ghana in west Africa. The 
workflow described in this manuscript reduces the subjectivity during decision making, explores 
the range of geologically possible models and provides geological constraints to the inversion pro-
cess with the aim of producing geologically and geophysically robust suites of models associated 
with an uncertainty grid.
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1. Introduction

Predicting the outcome of a set of measurements given a known set of parameters is called 

the forward problem, and results in a unique solution. Inverse problems can result in solutions that 

infer parameter values describing the system where parameters are not known, however inverse 

problems do not offer unique solutions (Tarantola and Valette, 1982a, b). Inverse problems are 

common in geoscience as knowledge of all parameters is rarely known. One such inverse problem is 

attempting to resolve the 3D geological architecture from a geophysical dataset. Knowledge of the 

parameters essential to formulating a forward problem (complete descriptions of shape, location 

and physical nature of all geological structures) are not explicitly known in geology (Frodeman, 

1995). An inverse solution is required to determine the unknown parameters defining petrophysi-

cal distributions observed in the geophysical response.

Different schemes are available to solve geophysical inverse problems. Rock properties 

can be determined by minimising a model objective function dependent on finding a fit with the 

observed data (Li and Oldenburg, 1996, 1998). Monte Carlo methods, such as simulated annealing 

and genetic algorithms, employ an ‘importance sampling’ approach, where specially selected distri-

bution properties are used to optimise simulations ( Ji et al., 2002; Sambridge and Drijkoningen, 

1992; Sambridge and Mosegaard, 2002). The least-squares method uses an iterative algorithm in 

which, at each iteration, the unknown problem parameters are estimated and evaluated to provide 

a solution (Tarantola, 1984; Tarantola and Valette, 1982a). 

The least-squares method is used in this study to determine an appropriate solution to an 

under-defined geoscientific problem. Least-squares inversion is a process that conducts iterative 

forward modelling to resolve petrophysical distributions from a measured geophysical field (Full-

agar et al., 2000; Jessell, 2001; Oldenburg, 1974). The a priori input for inversion is a starting model 

consisting of a selection of petrophysical properties and/or geological surfaces (Boschetti and Mo-

resi, 2001; Fullagar et al., 2000; Gallardo and Meju, 2011; Guillen et al., 2008; Oldenburg et al., 

1997). Estimation of rock property distributions produces a calculated response that is measured 

against the natural, or observed, geophysical response. Mathematical methods, such as residual 
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misfit and fit to data metrics, are used to assess whether the estimated rock property distribution 

adequately reflects the observed geophysical response. Estimation of rock properties distributions 

is performed using an objective function, however constraints (that are prone to error) such as 

petrophysical rock properties, are used to reduce the number of possible solutions (Boschetti and 

Moresi, 2001; Zelt, 1999). 

Inversion parameters, such as fit to data thresholds; the structure of the starting model; the 

inversion scheme itself and what results constitute an adequate ‘answer’ are all chosen by the op-

erator. Finding the optimal set of inversion parameters either requires sensitivity analysis through 

multiple inversion runs, or simultaneous examination of the input data and the required solution 

(Boschetti and Moresi, 2001; Gallardo and Meju, 2011; Zelt, 1999). Petrophysical constraints 

provide a sample of the natural world to guide the inversion process to provide geophysical con-

trast between different rock units (Fullagar et al., 2000; Fullagar et al., 2008; Guillen et al., 2008; 

Lane and Guillen, 2005; Lelièvre et al., 2009; McLean et al., 2008; Williams et al., 2009), but also 

contain error associated with specimen sampling (Worthington, 2002). The standard deviation of 

the sample is normally used to describe the petrophysical heterogeneity of the rock type, but can 

also infer the confidence one has with the sampling process. Petrophysical constraints also restrict 

geological elements from being attributed unrealistic values. Minimum and maximum petrophysi-

cal values can be assigned to model elements as lower and upper bounds that the inversion process 

cannot transgress in order to improve misfit (Fullagar et al., 2008). Some inversion schemes offer 

the opportunity to assign a probability density function to simulate property heterogeneities within 

model elements (Guillen et al., 2008).

Geometrical constraints are designed to stop large changes at shallow depths (Fullagar 

et al., 2008). Commonality constraints can be used where the geometrical modifications are kept 

within an assigned initial-model / final-model ratio (Geomodeller User Manual, 2012). Volume 

and shape ratios assigned by the operator ensure that model elements do not become unrealistically 

enlarged or distributed around the model in an attempt to lower misfit. A ratio can also be assigned 

to ensure that a unit cannot transgress set upper and lower depth bounds when modified by inver-

sion (Fullagar et al., 2008). Davis et al. (2012) describe a technique that incorporates geological 

structural information as a constraint for inversion. Smoothness in the direction of the geological 

trend is imposed by an objective function that attributes structural information to the prisms sub-
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jected to inversion. Geological constraints such as those offered by Fullagar et al. (2008) and Davis 

et al. (2012) do reduce the number of potential inverse solutions, but rely on geological information 

that contains its own uncertainty and error. Attempts to reduce the number of possible solutions 

through imposing geological constraints are achieved at the expense of adding further subjectivity. 

Typical inversion procedures operate with a single a priori model, precluding other pos-

sible geological scenarios from being tested against the observed geophysical field (Boschetti and 

Moresi, 2001). Offering multiple starting points for a process intending to arrive at a single solu-

tion appears to overcomplicate an already complex process. A single a priori model also gives the 

perception that the final model will somehow resemble the pre-inversion model, giving confidence 

to the operator that the extensive geological knowledge that was used to build the model will be 

retained in the process. Ultimately, the inversion scheme assumes that the model input is the best 

geological solution. This assumption is flawed, as geological and geophysical problems are often 

as poorly parameterised as each other ( Jessell et al., 2010; Mann, 1993; Thore et al., 2002). The 

operator is usually aware of the capability of the model to honour both geophysical and geological 

data as they have integrated all data into the model (Royse, 2010). The operator’s opinion on model 

quality is important, but nonetheless subjective, biased and typically not based on any direct quan-

titative techniques, rendering the communication model quality to qualitative measures. Model 

quality is therefore a difficult property to transfer into inversion input parameters.

Qualitative assessment of inversion results is typically performed once the mathematically 

defined indicators of inversion success have been achieved. Completion of inversion requires re-

view because results can bear little resemblance to what is considered a reasonable representation of 

geological reality. Situations such as this should not be unexpected. The solution has been produced 

automatically accommodating the defined input parameters and a-priori model. The algorithm has 

performed according to requirements, but as the solution is non-unique, the decision as to whether 

results are accepted rests with the operator (Polanyi, 1962; Torvela and Bond, 2010). Therefore, the 

role geological intuition plays is critical to the process, as geological idiosyncrasies that have not 

been retained during inversion may not be acknowledged as missing from the final result (Cooley, 

2007). Intuition is based upon the education, experiences and background of the operator and is 

fundamentally a biased quality (Frodeman, 1995).

This manuscript presents a process that produces multiple geological realisations from the 
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same input dataset and subjects them to inversion. The process is tested for the Ashanti Greenstone 

Belt, southwestern Ghana in west Africa. Model uncertainty is calculated using techniques from 

Lindsay et al. (2012a) and described by stratigraphic variability. Geodiversity metrics are used to 

characterise the geophysical and geometrical aspects of each model. Metrics describe the volume, 

depth, curvature, contact relationships, complexity and geophysical responses of a model (Lindsay 

et al., 2012b; Lindsay et al., 2012c). Results are ranked to determine metric end-members and to 

identify inversion constraints. Principal component analysis (PCA) is used to analyse all metric 

results simultaneously in order to identify the configuration of model space and which geodiversity 

metric (or metrics) contribute most to model space variability. Models are selected from the PCA 

and selected geological elements are subjected to gravity inversion. Inversion parameters are ob-

tained through analysis of petrophysical data and geodiversity. Inversion results are analysed indi-

vidually and comparatively to access the viability of the presented technique. The primary aim is to 

produce model elements that honour both geological and geophysical data while removing some of 

the subjectivity from the inversion process. This can be achieved by: (1) providing multiple a priori 

models as inputs to inversion; (2) supplying relevant geological information as inversion param-

eters and (3) assessing the success of the inverse run through correlation with model uncertainty.

The Ashanti Greenstone Belt is a gold prospective Palaeoproterozoic granitoid-green-

stone belt located in the south of the Leo-Man craton, West Africa (Figure 1). Figure 2a displays 

the stratigraphic column used in model construction. The Ashanti Greenstone Belt comprises a 

Palaeoproterozoic basement of Birimian Series metavolcanics overlain by metasediments (Adadey 

et al., 2009; Loh et al., 1999; Perrouty et al., 2012) in turn overlain by the Palaeoproterozoic Tark-

waian Series sediments ( Junner, 1940; Kitson, 1928; Perrouty et al., 2012; Pigios et al., 2003). A 

steep regional gradient seen in the Bouguer gravity anomaly (Figure 3a) striking north-northeast 

south-southwest represents a faulted contact betwwen the Kumasi Group to the west and the Tark-

waian Series to the west, indicating the location of the Akropong and Ashanti faults. The Tarkwaian 

Series comprises a complex polydeformed sequence of dolerite sills, phyllites, conglomerates and 

sandstones (Eisenlohr and Hirdes, 1992; Feybesse et al., 2006). The Tarkwaian Series is represent-

2. The Ashanti Greenstone Belt, southwestern 
Ghana
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Figure 1. Location of the Ashanti Greenstone Belt, southwestern Ghana, West Africa. The extents of the geology 
in the top figure section correspond to the model extents. Note the inversion extents are defined by the dashed line. 
Modified after Perrouty et al. (2012)..

ed in the model by the conglomerates and dolerite sills. Dolerite dykes are common throughout 

the region and are noticeably represented in the aeromagnetic datasets (Figure 3b), though have 

not been included in the model. Granitoids have intruded the Birimian and Tarkwaian series dur-

ing the Eoeburnean and Eburnean orogenic events. Eoeburnean grantoids (2180-2150 Ma), then 

Eburnean grantoids (2130-2070 Ma) were emplaced throughout the region (Perrouty et al., 2012). 

The Eoeburnean and Eburnean granitoids both display typical tonalite-trondhjemite-granodiorite 

(TTG) compostions. The south of the region also contains a suite of granitoids of more intermedi-

ate composition. For the purposes of the modelling exercise, granitoids have been separated into 

TTG-type Eoeburnean granitoids and Late Eburnean grantitoids rich in K-feldspar (Perrouty et 

al., 2012). The youngest modelled geological unit is a layer of Phanerozoic shales and sandstones, 

which predominantly crop out along coastal regions.
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Figure 2. Model parameters and determination of model uncertainty. a) Stratigraphic column and stratigraphic 
identifier values (bold numbers). Assigned petrophysical values are listed to the right of each stratigraphic unit. 
Modified after Perrouty (2012). Note the base of tkc is used for inversion. b) Simplified synthetic example of how 
stratigraphic variability is determined to represent model uncertainty (after Lindsay et al., 2012a).
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Figure 4 describes an eight step workflow used to obtain the results discussed in this man-

uscript. Brief descriptions of steps one to six are performed here, though are provided in greater 

detail in Lindsay et al. (2012a), Lindsay et al. (2012b) and Lindsay et al. (2012c). Steps seven and 

eight, describing the inversion procedure and results analysis, are described in detail within this 

manuscript.

3.1. Model construction

The 3D geological model of the Ashanti Greenstone Belt was constructed using a com-

bination of field, geophysical and remotely sensed data. Field data consisted of measurements 

obtained through the outcrop maps of Loh et al. (1999), BHP Billiton and Golden Star and data 

collected by Perrouty et al. (2012). Field data includes petrophysical measurements, structural ob-

servations, lithological descriptions and a revised stratigraphic column produced by Perrouty et al. 
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Figure 3. Geophysical grids used to construct the Ashanti Greenstone Belt model. a) Bouguer gravity anomaly 
image and b) reduced to the pole image of the total magnetic intensity. Modified after Perrouty et al. (2012).

3. 3D modelling workflow
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(2012). Geophysical interpretation of potential field datasets was extensively employed to provide 

greater geological understanding over the study area. Geophysical datasets include gravity (Fig-

ure 3a) and aeromagnetic data (Figure 3b). Gravity data was obtained through the Internation-

al Gravimetric Bureau (BGI, http://bgi.omp.obs-mip.fr/) and has a resolution of approximately 

4.6 kilometres per pixel (2.5 arc-minutes). The gravity dataset contains a combination of Getech 

ground data (African Gravity Project 1986-1988, http://www.getech.com/history.htm), BGI off- 

and on-shore data and satellite gravity data. Aeromagnetic data was acquired from the Geological 

Survey of Ghana and was flown at a height of 80 metres, with line spacing at 200 metres, striking 

135 degrees. The reduced-to-pole (RTP) grid was generated using International Geomagnetic 

Reference Field (IGRF) parameters at the time of the survey (1994 to 1996): magnitude – 31699 
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Figure 4. Workflow diagram depicting the steps taken during the procedure. The subjective decisions made in and 
results of each step of the workflow are shown. 
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nT; inclination of -14.5 degrees and a declination of -6.5 degrees.

Input datasets were integrated into 3D Geomodeller™ (http://www.geomodeller.com/), 

a 3D geological modelling system. The modelling system is considered ‘implicit’ modeller as model 

elements are calculated using the potential field method (Lajaunie et al., 1997). The location of geo-

logical contacts, associated orientation measurements and the stratigraphic column are cokriged in 

combination to produce a scalar ‘potential field’ (not to be confused with a geophysical potential 

field) representing an interpolation of geology between data points. The 3D position of interpo-

lated surfaces can be determined from the scalar potential field. The boundaries of the geological 

body are defined by ‘iso-potential’ surfaces and orientation is defined by gradients determined by 

the orientation measurements. The relationship of each geological body to the other is defined by 

the stratigraphic column. More complex relationships between model elements can be defined 

using ‘onlap’ (where a younger unit will onlap an older unit) and ‘erode’ (where a unit will erode 

an older unit) relationship options in the stratigraphic column. Fault networks can be defined to 

determine which faults to stop or cross-cut others, and which geological formations are affected by 

which fault. The combination of these options allows the definition of a particular model topology 

that can be configured to represent the tectonic evolution of the study area (refer to Calcagno et al. 

(2008), Lindsay et al. (2012a), Martelet et al. (2004), Maxelon et al. (2009), Schreiber et al. (2010) 

and Vouillamoz et al. (2012) for extensive examples and case studies).

3.2. Uncertainty simulation

3D geological models are built using sparse data sets that do not fully describe the entire 

geological system under study; in particular, there is almost no subsurface geological information. 

A number of assumptions and interpolations are therefore required to predict geology in regions 

not described by input data. Knowledge-driven and non-unique interpolation is typically employed 

to generate geological relationships between sparse data points. The modelling system assists in re-

moving some subjectivity associated with knowledge-driven processes through interpolation of a 

repeatable objective function with the implicit method. However, what decisions regarding what 

data is included are made by the operator and thus subjective. These subjective decisions can signifi-

cantly affect the resulting 3D architecture produced by the modelling application. Inherent error in 
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input data also produces model uncertainty ( Jessell et al., 2010; Lindsay et al., 2012a; Wellmann et 

al., 2010). Finally, there is a question of whether the data collected adequately represents the actual 

architecture of the geological terrane. There are customisations that can be made to interpolation 

algorithms by the operator, such as variogram parameters, that influence the architecture of the 

resulting model. In general, however, the resulting model is a repeatable and objective representa-

tion of input data. Whether this data-driven model is an accurate representation of the geology is 

decided upon with knowledge-driven assessment by the operator. If the initial interpolation seems 

incorrect, subsequent addition or removal of data may be performed that fundamentally changes 

the geological representation of an area until the resulting model is acceptable. It is difficult to cap-

ture the reasoning behind an opinion of whether a model seems incorrect or correct, but producing 

a suite of models that may contain the ‘correct’ model is possible (Lindsay et al., 2012a).

Uncertainty simulation is employed in order to understand the role of the different data-

sets that are inputs into the modelling process. The orientation measurements that help the shape 

of model elements (i.e. the strike and dip of geological surfaces) are varied through Monte Carlo 

simulation. Each measurement, either defining geological contacts or fault orientation, are varied 

to within five degrees of the original value using psuedo-random equiprobable perturbation. For 

example, a measurement of 084/62E can be changed to 081/58E or 089/64E and so on, as long as 

the new measurement is within ± five degrees of the original.

3.3. Uncertainty detection

The original model, hereafter referred to as the ‘initial model’, has been calculated with 

the implicit method using datasets comprising unperturbed orientation measurements i.e. the best 

model according to the operator. The perturbed sets of orientation measurements are re-calculated 

to construct ‘perturbed models’, which, together with the initial model, collectively form a ‘model 

suite’ (Lindsay et al., 2012a). The next step is to characterise uncertainty within the model suite. 

Uncertainty exists in locations showing difference between models, for example, when a particular 

geological formation displays different geometries across the model suite.

Characterising the model uncertainty is performed by first discretising each model into 

a ‘voxet’, a collection of volumetric pixels (or ‘voxels’) that are attributed with a stratigraphic iden-
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tifier. The stratigraphic identifier is an integer that represents the location of the unit within the 

stratigraphic column (Figure 2a) allowing easy calculation of the stratigraphic range (‘L’) between 

voxels (Figure 2b). Lindsay et al. (2012a) describe uncertainty using two different measures col-

lectively called ‘stratigraphic variability’. The number of stratigraphic units, ‘L’ at the same X,Y,Z 

location in each model throughout the model suite comprises the first component of ‘stratigraphic 

variability’. The second part of stratigraphic variability, ‘P’ describes the deviation away from the 

most common stratigraphic unit at that X,Y,Z point throughout the model suite. The most com-

mon stratigraphic unit is determined from the ‘modal model’, a conceptual model that is calculated 

by determining the modal stratigraphic unit at each point within the voxet. Stratigraphic variability 

can be used to visualise the location and magnitude of uncertainty within a model.

3.3.1 Uncertainty in the Ashanti Greenstone Belt model

The location and magnitude of model uncertainty was determined using stratigraphic 

variability (Lindsay et al., 2012a). Figure 5 shows that levels of uncertainty > 4 tend to be associ-

ated with the Early Birimian surfaces and their contact with tkc. A somewhat surprising result is 

only a small amount of uncertainty is associated with the many modelled faults. The only faults as-

sociated with uncertainty dip shallowly, while those with little uncertainty display high dip angles. 

A shallowly dipping fault is potentially longer and cross-cuts more volume of a model that is tile-

shaped (i.e. wide and long but shallow - such as the Ashanti Greenstone Belt model), than a model 

volume that is prism-shaped (small on the x and y axes, but deep). In addition, high-angle fault 

will be shorter and subsequently cross-cut less of a tile-shaped model volume. Obviously, for the 

Ashanti Greenstone Belt model, any perturbation of a fault that cross-cuts more of the model will 

be associated with more uncertainty.

3.4. Geodiversity analysis

Uncertainty is detected in a model suite when differences have been detected between 

voxels in the model suite. Logically, these differences must be due to model elements changing 

shape or location. Unfortunately, stratigraphic variance does not describe how uncertainty changes 

the model geometrically. Quantitative analysis of the varied geometries exhibited by the model 

suite allows models to be compared and then ranked against each other. Geometrical analyses are 
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performed under a collection of geometrical analyses called ‘geodiversity metrics’ (Lindsay et al., 

2012b) (Table 1). Included in the geodiversity metrics are methods to calculate the curvature of 

a model surface, finding the deepest and shallowest extent of a model element, the volume of a 

model element, the surface area of a geological contact and the complexity of a model element. The 

complexity of a model element is calculated by a nearest-neighbour calculation (six closest neigh-

bours) that determines the number of different stratigraphic units that surround a given point. For 

example, if the complexity of a point is determined to equal three, then three different stratigraphic 

units surround that point, which would represent a relatively complex location within the model. 
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For more detailed explanations of geometrical geodiversity metrics see Lindsay et al. (2012b).

Average values of each metric from every stratigraphic unit are calculated to provide a rep-

resentative value for the entire unit, not just individual points. A similar method is also employed 

by Lindsay et al. (2012c) when including geophysical metrics in geodiversity analysis. Geophysi-

cal metrics analyse the observed and calculated geophysical responses, and the difference between 

the observed and calculated response (the ‘residual’). Image analysis and statistical techniques are 

used to measure different aspects of model geophysical representation, including root mean square 

(RMS), standard deviation (O’Gorman et al., 2008), entropy (Gonzalez et al., 2003; Wellmann 

Table 1. Summary of geodiversity metrics and their function. Detailed descriptions of the geometrical metrics and 
their function can be found in Lindsay et al. (2012b). After Lindsay et al. (2012c).

Name Subject Measurement Output
Geometrical geodiversity metrics
Volume Voxet Metres3 Volume for each 

formation
Depth Voxet Metres Shallowest and 

deepest occurrence of 
each formation

Curvature Surface km: Mean curvature

kg: Gaussian curvature

Average km and 
kg values for each 
formation

Contact relationships Surface Area (metres2) Contact surface 
area and contact 
relationships

Geological complexity Voxet Number of different 
lithologies around 
point-of-interest

Scalar value 
representing 
geological complexity

Geophysical geodiversity metrics
Root mean square 
(RMS)

Residual grid Global measure of 
geophysical misfit

Scalar value 

Standard deviation Calculated grid Global measure of 
geophysical variability

Scalar value 

Entropy Residual grid Global measure of 
geophysical variability

Scalar value 

2D correlation 
coefficient

Comparison 
between observed 
and calculated grids

Global measure 
of geophysical 
covariance – 
recognises similar 
patterns

Scalar value 

Hausdorff distance Observed and 
calculated grids

Global measure of 
geophysical misfit – 
accounts for pattern 
translation, rotation 
and dilation

Scalar value 
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and Regenauer-Lieb, 2011), 2D correlation co-efficient and the Hausdorff distance (dH) (Hut-

tenlocher et al., 1993). Each of these geophysical metrics is described with greater detail in Lindsay 

et al. (2012c). The aim of using geodiversity metrics is to provide a comprehensive description of 

geological and geophysical variation within the model suite.

3.4.1. End-member analysis

End-member analysis is conducted by ranking each model according to each geodiversity 

metric. For example, models with the smallest and largest volume of a particular model element, 

or the highest and lowest forward modelled gravity misfit within the model suite can be obtained.  

The end-member representatives for the Ashanti Greenstone Belt model suite are shown in Table 

2. The selection of stratigraphic units shown was based which stratigraphic unit was the best rep-

resentative of model suite variability. The end-member values for the depth of tkc show the range 

of possible depths of contact with the Early Birimian is 1,400 m (between 6650 and 8050 m). The 

inverted tkc models did not exceed the depth outlined in the end-member results, providing ad-

ditional confidence that the result is geologically feasible. 

The contact surface area (CSA) metric measures the surface area of a contact between two 

stratigraphic units. The most variable units were found within the Early Birimian series. There is 

a high range of CSA within the respective end-member representatives, which is reflected in the 

high degree of uncertainty associated with the Early Birimian surfaces.

The complexity metrics show similar ranges between each unit. The complexity of the 

Eoeburnean-age granites (granite_ttg) show similar ranges of complexity to the uncertain Early 

Birimian units bv4 and bvc4. The higher complexity of the Early Birimian can be attributed to 

the relatively high number of units (11) with which this series has been modelled. The result is 

that the units are thin and the potential for complexity increases in locations where the potential 

for surrounding units being adjacent increases, such as where these units are folded. In contrast, 

the complexity of the granite_ttg is due the unit being modelled as an intrusion and subsequently 

cross-cuts much of the modelled geology. In addition, some of the granite_ttg bodies outcrop at the 

surface and extend to the bottom of the model, so the likelihood of complexity is increased with 

the corresponding likelihood of cross-cutting other model elements.

The range of possible volumes for the Late Eburnean granites (granite_k) is 4677 km3. 

Model 86 displays the highest granite_k volume (15178 km3) for the entire model suite, with the 
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range of being 31% of that value. This high variability (and therefore uncertainty) is not immedi-

ately obvious when visually assessing the modelled granite_k bodies’ uncertainty (Figure 6). The 

granite_k bodies in the eastern section of the model do not appear to be uncertain, aside from 

where the Cape Coast Fault intersects a body in the southeastern quadrant. The majority of un-

certainty is associated with the granite_k bodies located in the south and southwestern quadrants 

of the map, where they cross-cut the Early Birimian series units and are cross-cut by the Akro-

pong Fault. Model uncertainty therefore cannot be estimated purely on the measurements from 

one stratigraphic unit. The interaction with other model elements also needs to be considered to 

develop a better understanding of the complex nature of model uncertainty. A topological measure 

of uncertainty (unfortunately beyond the scope of this study) would be desirable to aid this type 

of analysis.

The model uses a single stratigraphic unit to model the granite_k bodies, where each these 

bodies would be more topologically accurate if represented individually. The modelling package 

and geodiversity assumes that a single stratigraphic unit is temporally contiguous, whereas in real-

Figure 6. View from the west showing the lack of high uncertainty with the Late Eburnean granites (‘granite_k’). 
The surface expression of the granites is shown with black borders. Faults are shown with grey borders. Stratigraphic 
variability shows low magnitudes (blue) through to extreme (red).
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ity the Late Eburnean granitoid bodies display different ages (Loh et al., 1999; Oberthür et al., 

1998; Perrouty et al., 2012). Modelling the Late Eburnean granites individually would reduce the 

high volume range shown in Table 2, avoid the suite of granites being mislabelled as highly uncer-

tain, and rather than assuming the entire set is uncertain, would facilitate finding specific bodies 

displaying high uncertainty.

The RMS misfit values calculated by forward modelling are large; between 8.86 and 9.46 

mGal for gravity (at most 15 percent of the 63.66 mGal dynamic range) and between 55.94 and 

58.05 nT for magnetics (at most 12 percent of the 479.23 nT dynamic range). This large misfit is 

likely due to the lack of geological detail in the Tarkwaian Series units. By better modelling dense 

(2.87 – 2.90) and magnetically susceptible (15 – 78.8 x 10-3 SI) (Metelka et al., 2011; Perrouty et 

al., 2012) doleritic units in the Tarkwaian, large misfits could be avoided. 

Variation between RMS misfit values obtained through aeromagnetic and gravity forward 

modelling show that the geophysical signature responds to uncertainty simulation. If there was no 

difference in RMS between models, it would suggest that differences between model architectures 

Table 2. End-member representatives for the Ashanti Greenstone Belt model suite. Abbreviations are as follows: 
CSA = Contact surface area – voxels; Deep. = deepest part of unit – metres; km = mean curvature; kg = Gaussian 
curvature; Comp. = complexity; Vol. = Volume (km3); RMS = root-mean-square – mGals (gravity), nT (magnetic); 
dH = Hausdorff distance; Std. = standard deviation; 2D corr. = 2D correlation. The CSA metric measurement unit 
is in ‘voxels’ as an accurate estimate of surface area was not able to be obtained because the voxels have an irregular 
shape.

CSA bv1 and 
bg

CSA bvc1-
bv2

CSA bg-bv3 Deep. tkc Deep. st km bv5-lbvs kg bv5-lbvs

165 (1) 51 (1) 4586 (89) -6650 (17) -9450 (25) -7.06x10-4 

(53)
-8.34x1020

(63)
4892 (72) 3847 (54) 7792 (1) -8050 (91) -11900 (61) 0.0013 (101) -4.07x10-7 

(97)

Comp. 
granite_ttg

Comp. bv4 Comp. bvc4 Vol. base Vol. 
granite_k

1.46 (79) 1.55 (29) 1.62 (51) 145828 (1) 10501 (44)
2.21 (24) 2.30 (1) 2.50 (1) 174685 (50) 15178 (86)

RMS 
gravity 

RMS 
magnetic

dH grav. dH mag. Std. grav Std. mag Entropy 
grav.

Entropy

mag.

2D corr. 
grav

2D corr. 
mag

8.86 (78) 55.94 
(75)

911.34 
(99)

1501.30 
(51)

20.13 
(75)

29.83 
(75)

0.35 (42) 1.05 (40) -0.16 (1) -0.19 
(87)

9.46 (85) 58.05 (1) 934.03 
(32)

1581.46 
(36)

21.12 (1) 33.22 (1) 0.37 (6) 1.12 (62) -0.17 
(46)

-0.16 (1)
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and petrophysical distributions had little influence over the geophysical response, and selection of 

model for input to inversion would have been arbitrary. As this is not the case, model selection 

is important. In addition, the petrophysical contrast for both density and magnetic suspectibility 

values are likely adequate for inversion.

Information entropy is a useful technique that reflects the roughness within an image and 

its overall information content (Gonzalez et al., 2003; O’Gorman et al., 2008; Shannon, 1948). An 

entropy metric is applied to the residual grid to discover whether it is ‘rough’, and contains high 

variability in values, or ‘smooth’ and contains little variability in values (Lindsay et al., 2012c). The 

entropy values of the aeromagnetic residual reveal a variety of results from relatively low entropy 

values (1.05 –model 40) indicating smooth residual images (i.e. displaying less large or frequent 

anomalies) to higher entropy values (1.12 – model 62), which indicate rougher or ‘spikier’ residual 

images. The gravity residual images show low entropy values for the residual grids (between 0.35 

and 0.37) indicating the residual response fluctuates less than the aeromagnetic residual response. 

Less fluctuation in the gravity residual is likely due to the gravity signal being longer wavelength 

than the magnetic. Longer wavelengths of the gravity signature can be attributed to the grav-

ity data being collected with larger station spacing (average of 10 km) than aeromagnetic flight 

lines (200 m) (Perrouty et al., 2012). In addition, magnetic petrophysics typically display a larger 

range of variation, especially in the presence of magnetically remanent geology (Muxworthy and 

McClelland, 2000). The higher entropy values do not mean a large misfit between observed and 

calculated response, rather sections of the model frequently differ in terms of misfit from each 

other. Figure 7 shows that several high-magnitude residual anomalies fall within the regions of the 

model that contain Tarkwaian series model elements, especially in the aeromagnetic case. In ad-

dition, the rougher parts of these images (i.e. where the entropy is higher) are associated with the 

same regions, indicating that the model is not representing the geology reflected by the geophysical 

dataset. There is a possibility that the model exhibits more model elements than are necessary to 

produce a geologically feasible response, resulting in the rough texture in the residual image. This 

is highly unlikely as there are just two stratigraphic units, td and tkc that represent the Tarkwaian 

series, so additional units would likely be required to match the higher frequency response shown 

in the observed aeromagnetic grid (Figure 3b). The additional units could be used to provide a 

more detailed realisation of the polydeformed sequence of dolerite sills, phyllites, conglomerates 
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and sandstones of the Tarkwaian Series (Perrouty et al., 2012).

The 2D correlation metric results support the Hausdorff distance (dH) metric results 

by showing that the observed and calculated responses for all models do not match very success-

fully. The dH results shown in Table 2 are high for both the aeromagnetic and gravity calculated 

responses, supporting the low correlation shown by the 2D correlation metric. Overall, the geo-

physical metric results suggest that it is very likely the Ashanti Greenstone is not representative of 

reality, and subsequently could be improved through geophysical inversion.

3.5. Principal component analysis

Ranking each model according to a geodiversity metric allows easy comparison of models, 

but only communicates which models are end-member representatives for that particular metric. 

To determine the ranking of models across the entire set of geodiversity metric requires a more 

sophisticated means of comparison than ordered lists. Simulatenous comparison of geodiversity 

Figure 7. Analysis of residual image anomalies and regions that show the highest degree of misfit been the observed 
and calculated images. The main residual anomalies appear to be associated with the Early Birimian and Tarkwaian 
Series units.
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metrics is successfully achieved via Principal Component Analysis (PCA), a multivariate statisti-

cal technique ( Jolliffe, 2002; Krzanowski, 1996). There are several reasons PCA was chosen to 

perform geodiversity metric analysis. Firstly, measurements with different units can be compared, 

for example volume (m3), surface area (m2), RMS misfit (mGals or nT) or depth (m). In addition, 

other metrics not included in this study can be easily included in future studies, regardless of the 

measurement type. Secondly, models can be ranked according to Hotelling’s T2 statistic (Hotelling, 

1931; Krzanowski, 1995) to determine whether they exhibit typical or diverse characteristics and 

the configuration of model space can be determined, with diverse models defining the boundaries 

and models exhibiting typical characteristics populating the centre. Finally, the variance contained 

within each metric can be used by the PCA to identify which metric contributes most to model 

suite variability.

3.5.1. Geodiversity principal component analysis

PCA revealed two important aspects of the models within the Ashanti Greenstone Belt 

model suite. The first aspect was identifying the models with the most diverse and a common 

characteristic, the second aspect was identifying which geodiversity metrics most influence geo-

diversity. Hotelling’s T2 statistic was used, which identified models 3, 38 and 101 as the most di-

verse, in descending order of diversity. Models 92, 33 and 59 were identified as those sharing the 

most common characteristics, in descending order of commonality. Inverting similar models may 

seem unnecessary, as inversion would likely produce a similar result. The T2 statistic for the similar 

models is not exactly the same, therefore these models do show differences. Subsequently, we were 

conservative by deciding to invert the similar models in case results did differ.

Identifying the most influential geodiversity metric was aided by 3D PCA visualisation. It 

was found that just under 50 percent of variance could be explained by the first three components, 

with the following 19 components explaining the remainder (Figure 8). Figure 9a shows a bi-plot, 

where points and vectors are plotted, each representing different aspects of PCA. This particular 

bi-plot is in 3D, as three principal components - one, two and three - are plotted on the x, y and 

z axes respectively. The distribution of points represents the relative distance each model has from 

the centre of the dataset. The coordinates for each point are scaled with respect to the influence of 

each metric, the axis that they are plotted along and the score obtained from PCA. The locations of 

these points in the bi-plot are therefore only representative, making Hotelling’s T2 statistic a more 
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useful means of identifying common and diverse models.

Figure 9b-d shows 2D sections through the 3D plot to assist in visualising the somewhat 

complex arrangement of coefficient vectors. Note that each vector has been labelled according 

to the geodiversity metric it represents. The long vectors represent metrics that contain relatively 

higher model suite variability. Labels belonging to the shorter vectors have been removed to sim-

plify the diagrams. 

The distance a vector plots from the component axis represents the level of variance ex-

plained by that vector in that component. The closer a vector plots to a component axis, the closer 

the association. Vectors that plot on the right or upper side of the diagram have a positive associa-

tion, those that plot to the left or lower side have a negative association. As shown in Figure 9, the 

largest amount of model suite variance is contained within Component 1 (~20 percent), therefore 

any vector with a close association with Component 1 (x-axis, Figure 12a and c) is of interest to 

explain model suite variability. Close associations to Component 1 are split between standard 

deviation of gravity; the contact surface area of bvc1-bv2 and bv1-bg; the aeromagnetic forward 

model RMS misfit and the aeromagnetic standard deviation.

Figure 8. Cumulative distribution diagram showing that just under 50 percent of model suite variability is contained 
within the first three components. This requires the 3D visualisation of the first three components shown in Figure 
12.
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Further insight into finding influential metrics is achieved by considering both Compo-

nent 2 and Component 3. Figure 9b highlights the association of geophysical metrics (dH gravity, 

2D correlation gravity) and the volume and complexity of the Late Eburnean granites with Com-

ponent 2 model suite variability. Figure 9c and d support the association geophysical metrics have 

with model suite variability, along with the CSA within the Early Birimian Series.

Similarly oriented vector coefficients can be interpreted to be covariant, and usually this 

interpretation is used to identify redundant metrics that measure the same phenomena. Redundant 

metrics can then be removed from PCA to simplify the process. This analysis identifies vectors 

that plot in the same direction to guide understanding of the interaction between geometrical and 

geophysical metrics within the model suite. There appears to be some covariance between CSA 

(Con bg-bv3, Con bvc1-bv2) and gravity geophysical metrics (standard deviation and dH - Figure 

Figure 9. Results of combined principal component analysis on the Ashanti Greenstone Belt model suite. a) 3D bi-
plot of the first three principal components. Component 1 is plotted on the x-axis, Component 2 on the y-axis and 
Component 3 on the z-axis. To aid visualisation each coloured section in a) represents the corresponding border of 
each 2D plot in b), c) and d).
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9b). There also is covariance between the gravity geophysical metrics (2D correlation and dH), the 

volume and complexity of the Late Eburnean granites, and the CSA within the Early Birimian 

(Figure 9c). The covariance observed in the PCA bi-plot between these specific metrics confirms 

that the calculated gravitational response of the model suite is sensitive to geometrical variation 

within the models suite. It stands to reason that the gravity dataset will be useful as an input to the 

inversion process.

Gravity inversion of the tkc surface was performed to determine the depth and shape of 

the base of the Tarkwaian Series. The observations made during end-member analysis and PCA 

suggest that basement inversion on the tkc surfaces calculated from models 92, 33, 59 (typical 

model representatives) and models 3, 38 and 101 (diverse model representatives) may be successful. 

(1) tkc forms the basement of the Tarkwaian series and the interface between the Tarkwaian and 

the Early Birimian units. (2) tkc is associated with uncertainty. (3) End-member analysis identified 

that the depth of tkc is highly variable. (4) The depth of tkc affects the underlying Early Birimian 

units. The CSA of the Early Birimian units was identified by the PCA as influential in terms of 

overall model suite variability, therefore the depth of tkc is likely to be a primary cause of this vari-

ability. (5) Geophysical forward modelling of both aeromagnetics and gravity has shown that the 

largest variation in residual is associated with a region defined by the boundaries of tkc. Inversion 

can be used with increased confidence to resolve some of the uncertainties in the model suite as the 

input has been chosen using an integrated analysis of geological factors.

3.6. Basement inversion

Commercial inversion packages now offer methods that jointly change both geometry 

and distribution of petrophysical properties (Fullagar et al., 2008; Guillen et al., 2008). VPmg ™ 

software (Fullagar et al., 2008) provides a means of defining the contribution of geometrical and 

property changes for each iteration of the inversion. This approach is useful as it does not assume 

the geometry of the model element is correct, nor the assigned petrophysical properties homog-

enous. The inversion procedure iteratively optimises the geometry, then property of the basement 

unit, independent of each other. Petrophysical properties cannot be changed during the geometry 

optimisation phase of the iteration and vice versa.
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The inversion algorithm is performed on a discretised version of the 3D model. Discre-

tisation is performed by subdividing the model into 1 km by 1 km prisms that extend from the 

Earth’s surface to the base of the model. Each prism is further subdivided into two layers, one 

representing basement and the other representing cover. The observed Bouguer gravity response 

was assigned to each basement prism as a property. The Bouguer anomaly was chosen as the to-

pography for the model is essentially flat (Figure 10). The contact location of a prism is changed 

during geometry optimisation to achieve a lower misfit between the forward modelled calculated 

response and the observed response. Geometrical perturbation is achieved by moving the subdivi-

sion boundary between cover and basement representatives along the z-axis in each prism. Density 

property perturbation is achieved by changing the assigned property value for each prism within 

the basement only. The solution of each phase of the iteration was selected according to the reduc-

tion of the forward response misfit and by the degree of fit to the data (the chi-squared data norm 

‘L2’) (Fullagar, 2009). The objective of the inversion iteration is to halve the chi-squared data misfit 

using the smallest modification. The inversion will terminate if successive iterations do not result 

in reduced misfit, if a predetermined misfit threshold is obtained or if the maximum number of 

iterations is completed.
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Figure 10. Digital Elevation Model (DEM) of southwestern Ghana displaying mostly flat topography over the 
region of interest. Data shown was obtained from the Shuttle Radar Topography Mission (SRTM) through CGIAR 
(http://srtm.csi.cgiar.org/).
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Upper and lower density bounds were provided so that the inversion algorithm was re-

stricted from using values outside of this range to achieve the necessary misfit reduction and data 

fit. The values used for density constraints were guided by data collected from rock samples (Figure 

2a).

3.6.1. Inversion attempts using magnetic data

We investigated using magnetic data as a constraint for inversion, as in principal the finer 

resolution available should provide important local information (Aitken and Betts, 2009; Caratori 

Tontini et al., 2009; Williams et al., 2009). Using two independent potential field datasets should 

also reduce the ambiguity associated with using a geophysical dataset to constrain geology (Full-

agar et al., 2004; Saltus and Blakely, 2011). The aeromagnetic data available was of sufficient quality 

and resolution, however was finally ill-suited for inversion purposes due to the pervasive presence 

of dolerite dykes (Figure 11a).

The magnetic susceptibility of the dolerite dykes is around two orders of magnitude high-

er than that of the surrounding sediments (~20x10-3 SI versus 0.1x10-3 to 0.5x10-3 SI) (Perrouty 

et al., 2012). An attempt was made to remove the influence of these dykes from the data. First, the 

dyke response was ‘masked’ using by selecting a ROI around each dyke and removing that region 

from the data set. These regions were then ‘filled’ using square roll-off interpolation to repopulate 

the masked regions. Figure 11b shows that the results were satisfactory and that the dolerite dykes 

Figure 11. Aeromagnetic data and the influence of dolerite dykes. a) Pre-masked TMI aeromagnetic grid showing 
the presence of NNE and WSW-trending dolerite dykes b) TMI aeromagnetic grid after masking and filling c) 
residual grid of the magnetic basement inversion.
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no longer dominated the grid, suggesting that the aeromagnetic dataset could be used for inversion. 

A trial inversion run was setup to test whether the aeromagnetic grid was appropriate to include 

in the models being analysed, and whether the inversion models providing reasonable insight into 

the geological architecture of the Ashanti Greenstone Belt.

The basement-style inversion was performed on the tkc surface rendered from the calcula-

tion of model 92. Inversion was attempted and results show that dyke removal was unsuccessful, 

so further inversion was stopped. Assessment of the inversion model residual grid shows that the 

influence of the dykes remains (Figure 11c).

3.6.2. Gravity inversion

The tkc surfaces from models 92, 33, 59, 3, 38 and 101 were subjected to inversion sepa-

rately. Figure 12 shows the differences in geometry between the selected model tkc surfaces prior 

to inversion. Constraints were placed upon the edges of the tkc surfaces to prevent geometrical 

modification during inversion as the basal contact of the Tarkwaian is relatively well-defined from 

surface mapping, an assumption confirmed by field mapping and the relatively low uncertainty 

associated with the zero elevation part of tkc (Figure 5 – highlighted in grey). Density constraints 

are applied to both the cover layer (2.55 gm/cm3) – taken from the Phanerozoic cover unit ‘st’ and 

kept static through inversion) and tkc (2.7 gm/cm3,  Perrouty, 2012; Perrouty et al., 2012) to pro-

vide a starting property the inversion algorithm was allowed to modify. Each inversion run was set 

to execute 100 iterations, with each iteration first executing geometrical inversion, then property 

inversion, totalling 200 inversion operations. Each inversion run was executed in the VPmg™ in-

version scheme.

The inversions were deemed successful as (1) both or one of the data norms L1 and L2 ≤ 

1; (2) each modification saw a reduction in RMS misfit and chi-squared data misfit and (3) inver-

sion convergence resulted in an RMS misfit that approximately equalled the standard deviation of 

the residual between the calculated and observed responses. All final produced final RMS errors 

of 0.20 mGal, except for model 101 where the final RMS error was 0.19 mGal. Inversion results 

are analysed in three ways: (1) the differences between inverted models; (2) what the inversion has 

modified (petrophysical property and geometry) to achieve a successful inversion and (3) what can 

be learned about the geology of the region from the modelling workflow presented in this manu-

script.  
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Figure 12. Comparison of tkc surfaces prior to inversion modelling. a) Each surface mesh has been colour-coded 
to assist comparison. The surface closest to the observer will show colour more dominantly. A selection of view 
directions have been provided to emphasise the geometrical variability between these surfaces. b) Map view showing 
colour coded depths. Red depth contours (500m interval) are shown to assist identification of differences.
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3.6.3. Inversion differences

Variability maps were generated by calculating standard deviation maps from the six 

models generated after inversion (Figure 13) (Aitken et al., 2012). Values outside of the boundar-

ies of tkc were masked to remove values outside the tkc region of interest. Figure 14 shows that the 

largest density differences between inversion results are located in the central west area and around 

Damang. Intermediate levels of difference are located in (1) the far northeastern corner, (2) five 

km of Bogosa and (3) south-southwest of Damang. The geometrical differences are less widespread 

than density differences, though a very high, localised anomaly is located near (1) Bogosa (the same 

region as a density difference anomaly), (2) south-southwest of Bogosa and (3) a lesser anomaly 

is located east of Damang. The results suggest that the inversion algorithm found it difficult to 

resolve regions where density and geometry modifications differ between models, and/or that the 

initial selected models played a significant role in the final result. It is possible that after five to ten 

iterations the input model still retained its original properties and influenced the inversion result. 

However, it is highly unlikely that after 100 iterations the initial model was still influential. A rea-

son as to why the inversion algorithm has difficultly resolving the anomalous areas needed to be 

uncovered.

Correlation with uncertainty can assist in resolving this impasse. The 3D uncertainty grid 

(Section 3.3) was converted into a 2D representation by projecting the 3D grid onto a plane lo-

cated at the topographic surface. The mean value of stratigraphic variability is used to incorporate 

the values in each column. The 2D stratigraphic variability grid shown in Figure 15 has been 

masked to remove values outside the region of interest defined by the borders of tkc. The correlation 

Figure 13. Comparison technique employed to detect variation between different inverted models. The example 
shown here uses density values (g/cm3). Models A, B and C are fictitious inverted models and the cells shown are a 
sample of a larger grid. The ‘σ’ grid at right displays the standard deviation from the corresponding cell in each model 
i.e. the top-left cell (0.02) is the standard deviation of the top-left cell value from Model A (2.75), Model B (2.76) 
and Model C (2.72). 
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coefficient for the differences in density between the inverted models and stratigraphic variability 

is 0.77 (Table 3). The correlation coefficient for the differences in geometry between the inverted 

models and stratigraphic variability is 0.67. These high coefficient values indicate that there is a 

link between locations identified as geologically uncertain, and locations geophysical inversion 

finds difficult to reconcile against the observed geophysical response. Thus the inversion algorithm 

could be guided by stratigraphic variability to focus on areas of high uncertainty to achieve higher 

confidence in inversion results (discussed further discussed in Section 5).

3.7.4. Geometrical and property modifications

Figure 16 shows variability maps for each input model displaying the modifications made 

to both density and geometry values during inversion. These maps display where modifications 

were made and the degree to which they were modified by comparing the input and inverted 

models. Visually there appears to be little difference between both the density and geometry map 

sets. The conclusion reached through visual inspection is confirmed by the correlation coefficient 
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Figure 14. Variability map showing the differences between inversion results for (a) density and (b) geometry across 
inversion model results. Property values are used to calculate the density variability in (a) and depth values are 
calculate the geometrical differences in (b). The variability maps are generated using standard deviation value for 
each x,y point (see Figure 6).
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matrices shown in Table 4a and 4b. These display coefficients indicating the variability maps are al-

most identical. The inversion algorithm appears to address almost the exact same regions with very 

similar degrees of modification to achieve the respective inversion results. Table 3 shows that while 

there is some correlation between the respective inversion modification schemes and uncertainty, 

Variability between inverted models
Density correlation coefficient 
with stratigraphic variability

Geometrical correlation coefficient with 
stratigraphic variability

0.77 0.67
Variability between input model and inverted model
Model Density correlation coefficient 

with stratigraphic variability
Geometry correlation coefficient with 
stratigraphic variability

3 0.62 0.50
33 0.61 0.49
38 0.61 0.50
59 0.61 0.50
92 0.60 0.49
101 0.64 0.52

Table 3. Correlation coefficients between inversion behaviour with model suite uncertainty (stratigraphic variability). 

Figure 15. Image showing the projection of uncertainty (stratigraphic variability) onto a horizontal 2D surface. This 
image was used to correlate model uncertainty with various aspects of inversion modelling. 
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Figure 16. Variability maps showing the location and magnitude of modifications the inversion algorithm has 
performed to basement (density) and tkc surface (geometry). Each map is a comparison between the first iteration 
and the last iteration for both density and geometry. a) Models 3, 33 and 38. b) (next page) Models 59, 92 and 101. 
See Figure 6 for pre-inversion tkc surface geometry.

Model 3, density Model 33, density Model 38, density

Model 3, geometry Model 33, geometry Model 38, geometry

Density difference

Geometry difference

a)

a) 3 33 38 59 92 101
3 1.0000
33 0.9980 1.0000
38 0.9992 0.9979 1.0000
59 0.9982 0.9992 0.9974 1.0000
92 0.9981 0.9992 0.9986 0.9982 1.0000
101 0.9989 0.9960 0.9976 0.9962 0.9959 1.0000

b) 3 33 38 59 92 101
3 1.0000
33 0.9965 1.0000
38 0.9980 0.9965 1.0000
59 0.9971 0.9990 0.9964 1.0000
92 0.9972 0.9983 0.9981 0.9973 1.0000
101 0.9982 0.9938 0.9955 0.9943 0.9941 1.0000

Table 4. Correlation coefficient matrices for (a) density and (b) geometry modification variability maps.
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Model 59, density Model 92, density Model 101, density

Model 59, geometry Model 92, geometry Model 101, geometry

b)

Density difference

Geometry difference

the coefficients are not high enough to suggest that modification schemes can confidently predict 

of regions of geological uncertainty.

4. Geological significance

Given the differences between inverted models have been determined to be low, we are 

confident that the inversion algorithm responded to geological structures existing in both the 

geological model and geophysical datasets. Cross-validation with the depth bounds discovered 

through end-member analysis (Table 2 – maximum depth of tkc = 8050 m) was performed and 

no part of the tkc surface exceeded this depth, removing the need to geologically justify the pres-

ence of anomalously deep sections of the Tarkwaian Series. The geometry of the tkc surface overall 

has been modified to be shallower. The greatest geometrical change, as identified in the variability 

maps, is located in the central western area close to the Ashanti Fault. A region of thick Tarkwaian 

Series sediments was not retained (Figure 17 - feature ‘1’), though a region of thicker sediments 

23 km northeast along the strike of the Ashanti Fault near Bogoso has been thickened (Figure 
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17 – feature ‘2’). At this location three faults interact with the base of the Tarkwaian: the Ashanti 

Fault, striking northeast – southwest; an unnamed fault interpreted by Perrouty et al. (2012), strik-

ing west-southwest – east-northeast; and the fault-defined Tarkwaian/Early Birimian contact. The 

protrusion of the tkc surface through the fault-defined contact of the Tarkwaian/Early Birmian is 

not a reasonable geological proposition. The result was likely produced as the inversion algorithm 

is unaware of these faults and their topology,. Another possible solution can be offered geophysi-

cally. The inversion has modified the tkc surface to account for a low magntitude gravity anomaly in 

this location. A number of geological reasons can be made to account for this anomaly, including a 

thick layer of relatively unconsolidated basin infill (unlikely, given the age and metamorphic history 

of the region) or, (more likely) the presence of Late Eburnean granitoid near the unnamed fault 

which facilitated magma transport and emplacement. 

The density distribution displayed in the tkc surface does not present too many obvious 

geological dilemmas. Possible Early Birimian structures beneath the tkc surface are reflected in the 

Figure 17. Inversion results showing geometrical changes near the Ashanti Fault (labelled). The input model and 
inversion surfaces have been painted according to their depth in metres (scale at right). Note feature 1 from the input 
model has not been retained during inversion modelling, while feature 2 has been thickened. The overall depth of the 
tkc surface has been shallowed during inversion.

0

1000

2000

3000

4000

5000

6000

7000

M
et

re
s

Ashanti Fault

Ashanti Fault

Inverted tkc

Input model tkc

1

2

2



186

density distribution and also correlate to the Early Birimian model elements (Figure 18). Folded 

surfaces can be interpreted in the density response. The large high-magnitude density anomaly 

between Wassa and Damang is spatially linked to a large-scale isoclinal fold in the model. The 

density anomaly may be due to either: higher volume of higher density stratigraphic units due to 

the presence of the fold; isoclinal folding may have produced an accumulation of higher density 

rocks, such as amphibolites, in the hinge zone and resulted in hinge thickening.

In this section we assess the potential of 3D uncertainty grids to be used as guides for 

geophysical inversion. Geologically uncertain regions are correlated to regions that require heavy 

modification via geophysical inversion in order to achieve lower misfits between calculated and 

observed responses. The significance of this correlation is that a 3D uncertainty grid attributed 

with stratigraphic variability values is a novel approach that can assist inversion in two ways: (1) by 

focussing inversion on regions that are uncertain and (2) provide additional geological constraints 

to solve the inverse problem. Focussing inversion on uncertain areas will optimise the algorithm by 

supplying the locations that require modification, rather than relying on least-squares or stochastic 

methods to search for where and how modifications should be applied.

Additional inversion constraints are supplied by a 3D uncertainty grid via two sets of 

information that can be useful to inversion algorithms. The first set of information is the possible 

stratigraphic units at any given point, and the second is the proportion of each unit. Together 

this set of information defines a frequency histogram that describes geological probability at any 

given point. The inversion could perform modifications according to the frequency histogram, 

rather than relying on global constraints such as perturbation per iteration or petrophysical ranges 

(Figure 19). An uncertainty grid is a geological constraint that also acknowledges that there are 

multiple geological solutions as there are multiple geophysical solutions. The integration of an un-

certainty grid into inversion would increase the likelihood of finding a solution that honours both 

geological and geophysical data.

5. The future of geophysical inversion
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Figure 18. Model 92 inverted model density distribution. A large density anomaly is circled in white in all views. b) 
The model surfaces have been ‘sliced’ from the east to expose the centre east of the model. The location of the slice is 
shown in (a) with a red line.
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Figure 19. Example of how a 3D stratigraphic grid guides inversion. a) View from the west of a surface representing 
the base of the Tarkwaian Basin (tkc) overlain by the points representing stratigraphic variability. Note the depth 
and stratigraphic variability scales at the top-right. The red box indicates the location of b). Two locations shown in 
b) are highly uncertain (1) and less uncertain (2). The histograms display the stratigraphic identifier value of each 
different unit detected at these locations on the x-axis) (the corresponding unit name is labelled) and the probability 
of their occurrence on the y-axis. The combination of knowing which units are possible and their likelihood provides 
a powerful geological constraint for geophysical inversion.
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The workflow described in this manuscript reduces subjectivity in the geophysical inver-

sion process by (1) producing multiple geological realisations from input data and (2) guiding the 

choice of geophysical input data through geodiversity analysis. A model now has more use than 

just a reference point for the distribution of petrophysical properties. The operator is now informed 

of the geological and geophysical possibilities contained within the model, and geodiversity end-

member analysis and PCA help to guide inversion and assist in results assessment. Complex inter-

actions within the Ashanti Greenstone Belt model suite that were determined with the aid geodi-

versity analysis and PCA are the relationship between the gravitational response and the CSA of 

Early Biriman Series. This relationship supported the choice of gravity data for inversion. PCA of 

geodiversity metrics also provided the identification of models 92, 33, 59, 3, 38 and 101 that were 

input to inversion.

Visualisation of stratigraphic variability highlighted sources of uncertainty, such as our 

modelling whole collection of granite bodies as one geological unit, rather than as individual bod-

ies. Perhaps most importantly, the 3D stratigraphic variability grid has been recognised as a new 

inversion constraint that can insert more geological information into a dominantly geophysical 

process. Although subjective decisions are still required by the operator, the objective techniques 

used in this workflow remove some subjectivity while simultaneously increasing the role of geo-

logical input. The results provided a geologically reasonable model of the Ashanti Greenstone Belt, 

southwestern Ghana.

6. Conclusions
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The exponential increase in computing power has encouraged development of 3D mod-

elling technologies and provided many applications that analyse a diverse range of geoscientific 

interests. Minerals exploration companies are now looking deeper into the Earth to find new pros-

pects and resources, requiring 3D geological models for resource estimation and planning explora-

tion activities (Dill, 2010; Malehmir et al., 2012). Large-scale 4D tectonic models can be tested 

within geodynamic simulation platforms such as ‘Underworld’ (Moresi et al., 2007) and ‘4DPlates’ 

(Clark et al., 2012). The requirement for analysis of geological ambiguity and subsequent uncer-

tainty increases correspondingly with increasing reliance on 3D modelling. Uncertainty has been 

found to have a wide range of effects, not just in local variations regarding the location of a fault 

or stratigraphic contact, but also in widespread geometrical variability throughout a model suite.

Stratigraphic variability and geodiversity have shown that the effect of orientation mea-

surement uncertainty has a profound and complex effect on every model element. Lindsay et al. 

(2012) show that while uncertainty can be decreased with the inclusion of additional data, ad-

ditional data is not a panacea for model uncertainty. Uncertainty will always exist in some form, 

therefore it is crucial to understanding the subsequent effects on the model. Geology is necessarily 

an interpretive science (Frodeman, 1995; Bárdossy and Fodor, 2001) where there is no right answer 

(Bond et al., 2010) and therefore uncertainty will always exist. One could argue that with complete 

knowledge of a geological system, where 100 percent data saturation is achieved, uncertainty would 

disappear. This argument is flawed however, as data are nonetheless uncertain due to measurement 

and sampling error. The most efficient way forward is to acknowledge that uncertainty exists and 

redirect efforts away from uncertainty removal towards understanding the implications of its sub-

sidiary effects. Lindsay et al. (2012a), Lindsay et al. (2012c) and Lindsay et al. (2012d) reveal that 

the effects of uncertainty can be identified using geodiversity analysis, but differ between model 

suites. There is no single metric that will always be the most influential in terms of uncertainty and 

therefore no subsequent formula that applies to any given model. Geodiversity analysis is required 

for each model suite to appreciate the extents of geological possibility.

1. Uncertainty in three-dimensional geological 
modelling
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The current state of research shows increasing importance is being placed on the identi-

fication and quantification of uncertainty (Cherpeau et al., 2010; Jessell et al., 2010; Viard et al., 

2010; Wellmann et al., 2010; Wellmann and Regenauer-Lieb, 2011; Goodfellow et al., 2012; Joly 

et al., 2012; Lallier et al., 2012; Lindsay et al., 2012a; MacCormack and Eyles, 2012; Woodward, 

2012). Uncertainty results from many decisions made during modelling workflows, including the 

selection of modelling application and parameters (MacCormack and Eyles, 2012), sedimentary 

correlations (Lallier et al., 2012), input data (Putz et al., 2006; Jessell et al., 2010; Lindsay et al., 

2012a) and tectonic evolution model (Cherpeau et al., 2010). History matching processes con-

ducted after construction of the 3D model are also subject to uncertainties (Seiler et al., 2010; 

Cherpeau et al., 2012; Tavakoli et al. 2013). Quantification of uncertainty provides data that re-

flects the degree of confidence one can have when predictions from a particular dataset. Further, 

as uncertainty is unavoidable and pervasive in 3D models, the current form of 3D models can be 

viewed as redundant.

Current models display each element as a solid object, a necessary practice that ensures ap-

propriate visualisation. Unfortunately, this practice can lead the observer to believe that the model 

element is truth (Tarantola, 2006). It is also possible that the observer will see the element as a pre-

diction, as it should be observed, however as MacEachren et al. (1998), Thomson et al. (2005) and 

Viard et al. (2010) show, visualisation techniques are required to guarantee that model elements 

are viewed by everyone with the appropriate amount of scepticism. The techniques presented by 

these authors all suggest that either input data or the modelled results should be displayed on an 

uncertainty spectrum. Visually, the spectrum may be linked to transparency of the object, where 

less certainty is reflected in more transparency, or masking uncertain regions with an increasingly 

opaque pattern. Lindsay et al. (2012a) shows that stratigraphic variability reflects different levels of 

uncertainty in model elements with a probability measure.

The use of probabilistic elements is an effective means to store, visualise and represent 

geological models. In an ideal world, each element, be they volume, surface or point should be at-

tributed with a probability value. The probability would then describe not just the probability of 

the most likely lithology, but all possible lithologies. Probability data exists in the uncertainty grid 

that is created from determination of stratigraphic variability, but could be integrated into model 

elements as a property, rather than existing as separate dataset. The geological study area would be 
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The techniques presented in this thesis support Boschetti and Moresi (2001) and Taran-

tola (2006) by employing a falsification approach to geological and geophysical modelling. Rather 

than producing a single ‘best’ model, a selection of models that can be falsified is produced. The 

presentation of multiple realisations of the same input data set allows each model to be ranked 

and evaluated with the support of data obtained through stratigraphic variability and geodiversity 

metric analysis. Many solutions to the geological problem are therefore presented, and geodiversity 

can describe many of the geometrical and geophysical possibilities that are difficult to efficiently 

determine visually.The process of falsifying these models naturally requires the expertise of the 

operator, which introduces subjectivity to the decision. However, this subjectivity is mitigated by 

the presence of other models and geodiversity analysis with which the operator can use quantita-

tive means to compare and contrast to make informed selections of models that reliably represent 

geology (Boschetti and Moresi, 2001).

A large component of this thesis has been dedicated to critiquing current approaches to 

3D geological modelling. One of the arguments presented against the optimisation of input data 

by producing a single ‘best’ model is that the observer may place too much faith in the model ar-

chitecture (Tarantola, 2006). Subsequently others within the geoscientific community observe 3D 

models as untrustworthy. Distrust of 3D models can be due to an inherent empirical bias and a 

belief that models can never represent all natural phenomena and are therefore inadequate. Un-

fortunately this somewhat fundamentalist attitude is difficult to combat as the argument is sound, 

but misplaced. Models are an abstraction and not a simulation. A select group of geological phe-

nomena, appropriate to answer the prescribed question should be modelled. Attempts to model all 

geological phenomena (i.e. a simulation) will always end in failure as one component or another 

will appear to be false, and subsequent mistrust of everything else within the model will follow. 

Simulations of geology are a practical impossibility as the entire system will never be completely 

determined as they are in engineering or some physical applications (Caumon, 2010). Modelling 

2. Falsification approach to modelling

better represented by probabilistic models that describe what is known, rather than represented by 

a single version of what is thought to be known.
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geology is the only practical method to make predictions about the earth and is enhanced through 

appropriate selection of boundary conditions, input and offering realistic solutions.

3. 3D geological modelling: workflows and 
accessibility to the scientific community

Producing a 3D model is a time consuming and sometimes frustrating task. Much time 

is spent in the data preparation stage, finding and filtering data appropriate for the study. There are 

time constraints that must be adhered to, and budgets and data propriety issues to accommodate. 

A broad knowledge base is required to be able to select geological data, process it in the appro-

priate software, produce a model and then perform assessment to ensure its geological feasibility. 

It is understandable that the successful construction of a model is received with excitement (and 

the thought of producing further versions is untenable). The automation of techniques presented 

in this thesis allows the production of an entire model suite with a disproportionately small in-

crease in time than required by producing a single model. Perhaps the approaches described in 

this thesis can also reach a middle-ground on the ‘scepticism spectrum’ between those that trust 

models too much and those that do not trust at all. By producing multiple realisations of the same 

data set, those that trust too much can be presented with other possible models for examination 

before making further decisions. The model sceptics are also accommodated with the production 

of multiple models, an implicit acknowledgment that some models contain large error. However, 

this approach allows us to examine the possibilities using measures of geological uncertainty and 

geodiversity to guide us toward finding models with less error.

4. Model space

The techniques presented in this thesis provide insight into the nature and effects of 

uncertainty, however only a small (though important) section of model space has been examined. 

Varying orientation measurements by ± five degrees during uncertainty simulation was kept con-

stant through all experiments, as was the size of the model suite (101), to avoid adding a confound-
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ing variable when developing stratigraphic variability and geodiversity techniques. Increasing the 

perturbation value from ± five degrees, in combination with an increase in the number of model 

suite members from 101, would provide a more thorough examination of model space. Other 

methods of uncertainty simulation also need to be examined. Model topology can be changed, 

affecting fault-fault, stratigraphy-fault and stratigraphic relationships to allow the examination 

of alternate tectonic evolution models. The resulting collection of tectonic models and associated 

model suites can be compared using the workflow described in Lindsay et al. (2012d) to reveal a 

vast number of geological possibilities within multidimensional model space.
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Uncertainty in 3D geological models has been characterised to gain better understand-

ing of geological possibility. There are many sources of 3D model uncertainty, including sparse 

and under-sampled data, data sampling and processing techniques, interpolation algorithms and 

differing geological interpretations. Stratigraphic variability has allowed the detection and quan-

tification of uncertainty within the Gippsland Basin and Ashanti Greenstone Belt models. Strati-

graphic variability determines which geological units exist at any given location within a model 

and the probability of finding those units. Stratigraphic variability guided the addition of data 

in key locations to increase model reliability in the Gippsland Basin model. Geodiversity analy-

sis provided geometrical and geophysical characterisation of 3D models to explore the effects of 

modelling uncertainty and the range of geological possibility. End-member analysis identified the 

extremes of geometrical and geophysical possibility, while principal component analysis (PCA) 

determined model space boundaries and which metrics contribute most to model uncertainty. 

Covariance between geometrical and geophysical metrics was identified although the relationships 

differed between model suites. In the case of the Chapter 3 version of the Ashanti Greenstone belt 

model, geological complexity was covariant with the gravitational response, while in Chapter 4 the 

gravity was covariant with the contact surface area. Significantly, geodiversity analysis also found 

that producing a single model from an input data set very likely misrepresents nature and supports 

the practice of constructing multiple geological models.

Geophysical inversion was performed on the Ashanti Greenstone Belt model to deter-

mine the geometry and location of the base of the Tarkwaian Basin. Inversion was prepared and 

executed using a workflow that integrated stratigraphic variability and geodiversity. Multiple start-

ing points were provided with a set of models that were selected for inversion through PCA to 

more thoroughly explore model space. Model selection was based on which models exhibited the 

most common or diverse model characteristics. Inversion of gravity data produced a geologically 

reasonable model from a process that introduced additional geological constraints while reducing 

some subjectivity. Further, it was demonstrated that the stratigraphic variability grid could be used 

as a powerful geological constraint for inversion.

Different geological terranes can be examined, as shown in the analyses of the Gippsland 

Basin, southeastern Victoria and Ashanti Greenstone Belt, southwestern Ghana. The broad range 

of geodiversity metrics allows applied studies to reveal relevant characteristics of the model suite. 
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These aspects include, but are not restricted to, volume and depth calculations for an oil and gas 

prospective terrane (Gippsland Basin), or contact surface area and geological complexity for struc-

turally-controlled gold deposits (Ashanti Greenstone Belt). The current stable of geodiversity met-

rics is not exhaustive, and new geodiversity metrics can be added to analyse model characteristics 

that were not addressed in this thesis. Nonetheless, while improvements can always be made, the 

techniques described in this thesis demonstrate that uncertainty and geodiversity analyses can be 

performed and used to guide geophysical inversion. These techniques uncover and highlight inter-

esting and problematic features of a model suite, and should be employed when providing detailed 

assessment of 3D geological model space.
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