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Abstract

The Support Vector Machine (SVM) is a supervised classification technique which has

been applied to a broad range of tasks. There has also been a significant amount of research

focused on making SVMs more accurate or efficient. Past work has been approached from

many different perspectives. For example, while some authors interpret an SVM as a

method for statistical regularization, others interpret it as a large margin classifier. Others

still simply consider it as a type of black box which results from a Quadratic Programming

(QP) task. More recently, SVMs have been interpreted as the result of a nearest point

algorithm operating over the Reduced Convex Hulls (RCHs) of two classes. This has come

to be known as the geometric interpretation of SVMs. Previous work has described the

relationship between SVMs and computational geometry. However, it has focused largely

on using this information in order to present novel SVM training algorithms.

We use the geometric interpretation of SVMs in order to unify a broad range of existing

research, and also to inform several new techniques. The main contributions of this work

can be divided into two parts. First, we examine existing work from a geometric perspec-

tive. This proves invaluable for understanding how and why SVMs work, the impact their

parameters have, their relationship to other classifiers, and the circumstances under which

they can exhibit poor performance. Second, we use the geometric framework to inform

new methods for solving SVM-related tasks such as training, point weighting, and param-

eter selection. One of the ways in which we achieve this is by generalizing some of the

geometric concepts underlying SVMs. For example, one of the concepts we introduce is

that of Weighted Reduced Convex Hulls (WRCHs), a generalized form of RCH. By closely

examining the properties of RCHs and WRCHs, we are able to propose several algorithms

for their construction. In turn, this allows us to incorporate new types of SVMs and their

training algorithms under the geometric framework.
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Chapter 1

Introduction

Support Vector Machines (SVMs) implement the machine learning task of supervised

classification. This means that they are capable of classifying abstract objects as belonging

to a particular class. The process of supervised classification is performed by using a

training set to build a model. The training set consists of a number of objects for which

the class is already known, making it analogous to a supervisor guiding the classifier on

its task, allowing it to learn by example.

There is a range of practical applications which can be framed as classification tasks,

and many of these application domains have been addressed using SVMs. For example,

SVMs have been applied to perform handwritten digit recognition [15], medical diagnosis

[93], spam classification [32], and face recognition [50], to name just a few. Guyon [51]

provides a more extensive list of the practical applications of SVMs. Burges [19] has noted

that, in many of these applications, SVMs tend to have an error rate which “either matches

or is significantly better than that of competing methods”.

One of the reasons SVMs are capable of performing so well over a range of applications

is that there are a number of ways in which they can be adapted to a particular domain.

A large amount of research has been focused on adapting or modifying SVMs to suit

particular problems, such as automatically selecting parameter values [63, 33], or making

the training process more efficient [91, 66].

Much of the research which is focused on SVMs differs greatly in terms of the framework

used to understand how an SVM works and how it should be adapted to a particular task.

For example, one of the most widespread interpretations of an SVM is that it is the result

of a Quadratic Programming (QP) task [27]:

min
w,b,ξ

1

2
||w||2 + C

n∑
i=1

ξi,

subject to

yi(w · xi − b) ≥ 1− ξi
ξi ≥ 0.

(1.1)

The intricacies of this QP task, including the terms that appear in it, are described later

in this thesis, but this framework has been used to generalize SVMs by, for example,

changing C, or by squaring or otherwise modifying the ξi terms.

1



2 CHAPTER 1. INTRODUCTION

SVMs also have an equivalent statistical interpretation as a regularization method [85]:

min
1

n

n∑
i=1

L(yi, f(xi)) + λ||f ||2H. (1.2)

This interpretation provides yet more ways to modify the SVM, for example by using a

kernel to alter the feature space H. The loss function L can also be modified, and this

has been used to introduce probabilistic variants of the SVM. We refer to the approach of

Equations (1.1) and (1.2) as algebraic approaches due to their algebraic representation.

Equations (1.1) (1.2) can be tweaked easily to adjust certain properties of SVMs.

However, it is difficult to use them to understand exactly how or why an SVM works, and

what impact, if any, modifications will have on the final machine. This has led to the more

recent introduction of a geometric interpretation of SVMs [28, 7]. The geometric interpre-

tation of an SVM is that it is equivalent to the perpendicular bisector of the shortest line

between the Reduced Convex Hulls (RCHs) of the two classes. This interpretation allows

an SVM to be clearly and intuitively understood in geometric terms. For example, Figure

1.1 shows an SVM separating the RCHs of the two classes.

Figure 1.1: An SVM separating the RCHs of the two classes. The dotted outlines are
convex hulls. The solid outlines are RCHs.

Our thesis is that the geometric interpretation of SVMs provides a means with which to

understand, improve on, and generalize almost all aspects of support vector classification.

In order to demonstrate this we first build on the geometric interpretation of SVMs by

examining RCHs as a concept in their own right. In doing so we are able to construct

several algorithms for computing RCHs independently and in their entirety. This allows

us to compute and visualize RCHs, and discover several of their properties.

A better understanding of the geometric concepts underlying SVMs enables us to unify

a broad range of existing research under the geometric framework. This in turn leads to

a better understanding of how and why SVMs work, the impact their parameters have,

their relationship to other classifiers, and the circumstances under which they can exhibit

pathological behavior, resulting in extremely poor performance. For example, we show

that there is a close relationship (or sometimes even equivalence) between SVMs and other
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classifiers such as the k-nearest neighbor and k-means classifiers. We also suggest that

geometric insights provide a useful means of illustrating the differences between similar

(but distinct) classifiers such as SVMs and perceptrons.

We assert that the main difference between perceptrons and SVMs is that, while an

SVM can be represented as a nearest point problem over two RCHs, a perceptron can not.

However, perceptrons do still have a geometric interpretation as a one-class minimal norm

task over a single RCH in a modified kernel feature space. These geometric interpretations

of SVMs and perceptrons encompass both L1 and L2-loss variants, allowing for the char-

acteristic differences between all types of SVMs and perceptrons to be understood in an

intuitive manner. We hope that this geometric comparison of SVMs and perceptrons will

lead to an improved understanding of the two machines, and prevent the terms perceptron

and SVM from being used interchangeably in the literature as they have sometimes been

in the past.

By generalizing the geometric concepts underlying SVMs we are able to introduce the

concept of Weighted Reduced Convex Hulls (WRCHs). We use WRCHs to explain how

and why Weighted SVMs (WSVMs) work. WSVMs, previously described in various forms

by several authors Veropoulos et al. [118], Zadrozny et al. [129], are important because

they allow SVMs to be trained on datasets where the cost of misclassification can vary from

point to point or from class to class. This situation arises in many real world applications.

For example, in spam classification, the cost of misclassifying spam as legitimate email is

much lower than the cost of classifying legitimate email as spam. It follows that being

able to understand how WSVMs work when they are applied to datasets such as these

is important in order to have faith in the predictions which are made by a WSVM. We

suggest that the concept of WRCHs allows for a much improved understanding of how a

WSVM makes predictions.

In addition to providing an improved understanding of WSVMs, we show that WRCHs

allow nearest point algorithms to be applied to solve the WSVM optimization task with-

out necessarily adding additional computational complexity (depending on the weighting

scheme that is applied). We demonstrate this by proposing a nearest point algorithm which

operates over WRCHs. The resulting algorithm is novel in that by exploiting the geomet-

ric framework it is able to train L1 and L2-loss SVMs with individual or class-specific

weights. Using previous insights into the differences between SVMs and perceptrons we

are also able to show that the algorithm can be adapted to train L1 and L2-loss weighted

perceptrons.

1.1 Thesis Overview and Contributions

This thesis contains a large amount of notation, including mathematical symbols and

acronyms, most of which is introduced in the Background chapter and then used through-

out the thesis. To aid in understanding this notation, a list of nomenclature is given on

Page xvi. Each entry includes a brief description of the notation, along with an associated

page number on which a more detailed explanation occurs (generally the first use of the
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notation in the thesis). Because of the relatively broad scope of the thesis, an index is

also provided on Page 221.

Background

Chapter 2 reviews the literature on SVMs and their geometric interpretation. In addition,

this chapter reviews perceptrons and Minimal Enclosing Balls (MEBs), and explains how

these concepts are closely related to SVMs. Information in this chapter provides a foun-

dation for subsequent chapters, and is required in order to understand much of the later

material in this thesis.

Reduced Convex Hulls

Chapter 3 examines reduced convex hulls independently of SVMs. By examining the

properties of reduced convex hulls, we are able to generalize several convex hull algorithms

so that they can be used to compute reduced convex hulls. We use these algorithms to

visualize RCHs and discover several new properties of RCHs.

This chapter introduces the concept of Weighted Reduced Convex Hulls (WRCHs), a

generalized RCH which allows for individual point weights to be specified. The weights

in a WRCH specify how important it is that a point lies inside or on the hull. We

describe several properties of WRCHs and examine how their vertices may be found.

Using these properties we are able to adapt RCH algorithms to handle weighted data, and

to compute WRCHs in their entirety. The definition of WRCHs is such that they have a

close relationship with Weighted SVMs (WSVMs). This relationship is further explored

in subsequent chapters, where WRCHs are applied in order to both understand and train

WSVMs.

Understanding SVMs from a Geometric Perspective

In Chapter 4 we incorporate existing research under the geometric framework. We exam-

ine the significance of using RCHs for classification and their relationship with existing

classifiers such as the k-nearest neighbor classifier, the k-means classifier, and the percep-

tron classifier. Additionally, we explain the differences between SVMs and perceptrons

from a geometric perspective.

In this chapter we closely examine the threshold of an SVM. The threshold is the offset

from the origin of the hyperplane which separates the RCHs of the two classes. It has

previously been noted that the threshold used by most software packages is not the most

geometrically intuitive threshold [28]. We build on this work to show that accuracy can

actually be increased by choosing a geometrically informed threshold as opposed to the

threshold suggested by the Karush-Kuhn-Tucker (KKT) conditions associated with the

SVM QP task. Further, we show that, in some cases, the KKT conditions lead to an

unsuitable choice of threshold.

Another contribution of this chapter is that we incorporate WSVMs under the geo-

metric framework. By employing the concept of WRCHs, we describe from a geometric
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perspective how and why WSVMs work. We use the geometric approach to WSVMs to

describe three possible strategies for optimizing WSVM behavior: minimizing the over-

all error, minimizing the average proportion of errors, and minimizing the total cost of

error. We examine the geometric implications of each strategy, and include an empirical

demonstration. This provides an understanding of the circumstances under which point

weighting can be beneficial (and when it can not).

Geometric Training Algorithms

Chapter 5 applies the theoretical results from the previous chapters to the practical task of

training SVMs and WSVMs. We achieve this by generalizing the Schlesinger-Kozinec near-

est point algorithm [100, 72] to operate over WRCHs, introducing a Weighted Schlesinger-

Kozinec (WSK) algorithm. Because of the relationship between WRCHs and WSVMs, we

are able to use this algorithm in order to train WSVMs. Training WSVMs using near-

est point algorithms over WRCHs yields the same results as duplicating highly weighted

points prior to training over standard RCHs. However, training using WRCHs is inher-

ently faster than point duplication. Additionally, WRCHs are more versatile in that they

allow non-integral weights to be specified.

We also investigate how the WSK algorithm can be optimized. Much of the previous

work on optimizing nearest point algorithms has been directed towards algorithms oper-

ating on convex hulls. We build on this work by optimizing nearest point algorithms for

WRCHs. We find that the WSK algorithm can be optimized in two ways. First, while

computing the update step we exploit the property that the support vectors are only a

subset of the training data. Second, we decrease the number of candidate support vectors

by pushing the approximate nearest points towards the facets of the WRCHs as quickly

as possible. As well as being an optimization in itself, this second step also boosts the

effectiveness of the first step. Because the WSK algorithm can train standard SVMs when

all weights are equal to one, we have been able to show that these optimizations also

improve on many recently proposed unweighted nearest point algorithms.

Although the WSK algorithm is more efficient than many previous nearest point algo-

rithms which operate over RCHs, and is competitive with SMO for some parameter values,

it is generally not as efficient as SMO when margins become small and training times in-

crease. However, these results are important because they qualify previous research which

suggested that nearest point algorithms were superior to SMO. We suggest that previous

results did not compare the two algorithms using equivalent parameter values and provide

extensive new results which yield a fairer comparison.

An important contribution of this chapter is that we note that many recent nearest

point algorithms which operate over RCHs [40, 109, 82] implement a stopping condition

which is not equivalent to the stopping condition used by SMO. Further, this stopping

condition is not ideal in that it does not take into account the distance between the nearest

points. Consequently, more iterations are performed than required when this distance

between the nearest points is large, and fewer iterations than required when the distance

is small. We instead recommend a relative nearest point stopping condition (as employed
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by Keerthi et al. [65] in a convex hull nearest point algorithm). We show using empirical

trials that this stopping condition, while being no more difficult to compute, results in a

much more consistent number of iterations being taken.

Finally, we describe how the WSK algorithm can be adapted to train hard or soft

margin perceptrons, optionally with weighted training data. Perceptrons are a family of

large margin classifiers similar to SVMs that can also be combined with kernels for non-

linear classification. This is achieved by formulating the problem as a one-class nearest

point (i.e. minimal norm) problem in conjunction with a modified kernel. Despite the

simplicity of the perceptron nearest point approach, because of the more complex feature

space required, the WSK algorithm can generally not compute perceptrons as efficiently

as it can compute SVMs.

Model Selection using Geometric Information

Chapter 6 uses the geometric insights from previous chapters in order to help select the

parameters for an SVM. There are several ways in which geometric information can aid

in parameter selection. For example, the radius-margin technique selects the parameters

which minimize the radius of the Minimal Enclosing Ball (MEB) of the training data

compared to the margin of the SVM. The radius-margin technique has been shown to

provide an upper bound on the leave-one-out error of an SVM [21].

By considering the geometric properties of the SVM and MEB optimization problems,

we show that upper and lower bounds on the radius-margin ratio of an SVM can be

efficiently computed at any stage during training. We use these bounds to accelerate

radius-margin parameter selection by terminating training routines as early as possible,

while still obtaining a guarantee that the parameters minimize the radius-margin ratio.

Once an SVM has been partially trained on any set of parameters, we also show that

these bounds can be used to evaluate and possibly reject neighboring parameter values

with little or no additional training required. Empirical results show that, when selecting

two parameter values, this process can reduce the number of training iterations required by

a factor of 10 or more, while suffering no loss of precision in minimizing the radius-margin

ratio.

We also address the task of performing parameter selection using µ-SVMs. We find

that, although parameter selection is most commonly performed in conjunction with C-

SVMs, there are several advantages to using the more geometrically intuitive µ-SVM

formulation. For example, when µ is searched, the geometric interpretation can be used

to set intuitive start points, end points and step sizes which have a clear impact on the

reduced convex hulls of the two classes. This provides a more restricted search space than

C-SVMs, for which C can take any value greater than zero.

Conclusions

We conclude that the geometric perspective provides an important means of understanding

SVMs and their behavior. The geometric framework leads to a clear and precise definition

of what an SVM is, and helps determine how SVMs differ from related large margin
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techniques such as perceptrons. It also clearly illustrates a relationship between SVMs

and other existing classifiers such as the k-means and k-nearest neighbor classifiers.

We feel that in some cases authors have drawn erroneous conclusions regarding SVMs

because they have not used a common basis for comparison between different types of

SVMs, or between SVMs and other classifiers. For example, the regularization parameter,

kernel and kernel parameters, loss function, threshold, and stopping conditions used during

training all have an impact on both the training efficiency and test accuracy of a machine.

A common basis for comparison of these factors is easier to achieve if SVMs are understood

from a geometric perspective.

In the final chapter we present several avenues for future work to focus on. One of these

areas is to research whether RCHs and WRCHs can be of any benefit in domains outside

of machine learning. For example, convex hulls have previously been used in statistics

to order multivariate data [5], detect outliers [99, 53], and estimate probability density

contours [36]. It would be interesting to discover whether substituting RCHs or WRCHs

for convex hulls could generalize or otherwise increase the effectiveness of any of these

techniques.

Another path for future research is to create new and unique geometric class repre-

sentations which can be used in place of RCHs and WRCHs. RCHs and WRCHs exist

in SVMs largely because computing the nearest points in two RCHs has a convenient QP

representation. However, this does not mean other geometric class representations could

not be used in their place. Indeed, alternative class representations could be used to con-

struct fundamentally new types of classifiers which still retain the theoretical justification

of large margins.

A final topic we recommend for future research is weighted SVM classification. In

this thesis we have focused on understanding how and why weighted SVMs work, but

there is still room for further research into specific applications where weighted SVMs can

be applied. Such research could also aim to discover new weighting schemes which can

increase the effectiveness of SVMs when applied in particular application domains.

1.2 Relationship with Existing Work

This thesis builds on previous work by several authors. The task of finding the nearest

points in two convex hulls has been used to perform classification since long prior to the

introduction of SVMs [100]. However, it was later pointed out that existing nearest point

algorithms could be combined with kernels in order to train SVMs. This idea was used by

Keerthi et al. [65] and Kowalczyk [71], who both proposed early nearest point algorithms

for training hard margin and L2-loss soft margin SVMs. Franc’s PhD dissertation [39]

is an extensive work studying the application of nearest point algorithms to L2-loss and

hard margin SVM optimization tasks.

Although there has been a geometric interpretation of hard margin and L2-loss SVMs

in terms of convex hulls for some time, the geometric interpretation of L1-loss soft margin

SVMs is more recent. The geometric interpretation of SVMs (in terms of RCHs) was
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originally given by Crisp and Burges [28] and Bennett and Campbell [8]. This interpre-

tation has been exploited by Tao et al. [108] and Mavroforakis and Theodoridis [82] in

order to train L1-loss SVMs by applying nearest point algorithms to reduced convex hulls.

Mavroforakis’s PhD dissertation [81] describes extensively the application of nearest point

algorithms to train L1-loss SVMs.

We distinguish our work from previous works by studying reduced convex hulls as a

concept in their own right, rather than as a means to train SVMs. We first examine the

theoretical properties of RCHs, and construct several algorithms capable of computing

them independently, and in their entirety. This allows us to make contributions towards

understanding how and why SVMs work. In addition, it enables us to describe circum-

stances under which SVMs are not likely to perform well, and to explain why this is the

case. We have published selected results on this topic in Goodrich et al. [47].

Despite the fact that we do not focus solely on training SVMs, Chapter 5 does address

the task of applying nearest point algorithms to training SVMs, and in doing so intersects

with work by Mavroforakis [81] and Franc [39]. We do this in order to address questions

which were left open in previous work, and also to revisit questions for which there is room

for further clarification. In doing so, we are able to make several contributions to this area

(as summarized in the previous section of this introduction). Some of these contributions

have been published in Goodrich et al. [49].

Parameter selection is a topic which has been addressed by several authors [59, 122,

33, 46]. We make our work distinct by exploiting the geometric interpretation of SVMs in

our approach to parameter selection. We have published selected results arising from this

approach in Goodrich et al. [48].



Chapter 2

Background

2.1 Introduction

This chapter provides an overview of the literature relating to SVM classification. There

are a number of different types of SVMs, but the unifying idea is that of large margin clas-

sification. When the decision surface of a classifier is linear, and training data is linearly

separable, a large margin can be created by maximizing the perpendicular distance from

the hyperplane to the closest points in each class. Linear classifiers employing large mar-

gins on separable training data are referred to as hard margin SVMs (Figure 2.1a). These

types of SVMs are introduced first in Section 2.2. Subsequently, Section 2.3 describes how

kernels can be used to create non-linear SVMs.

(a) A hard margin SVM (b) A soft margin SVM. Points which
have been circled are on the incorrect
side of the margin (note that some
may still be on the correct side of the
hyperplane).

Figure 2.1: SVMs are a linear classifier with maximal margin ∆

The main shortcoming of hard margin SVMs is that they are only defined when training

data is linearly separable. When training data is not linearly separable, another approach

must be taken, generally involving a trade-off between maximizing the margin and mini-

mizing the number of points which lie on the incorrect side of the margin (Figure 2.1b).

SVMs implementing this strategy are referred to as soft margin SVMs. The best way to

perform this trade-off is not clear, and it depends on the type of penalty applied to points

which lie in between the margin. In Section 2.4 we review a range of different penalties

9
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that have been previously applied to SVMs, and show how they each relate to various loss

functions.

Section 2.5 revisits hard and soft margin SVMs from a geometric perspective. By

considering the geometric properties of the SVM problem, we describe how SVMs can

be considered as the perpendicular bisector of the shortest line between two convex rep-

resentations of the classes [28, 7]. The geometric interpretation of SVMs has significant

implications both in terms of understanding and training SVMs. We address this in later

chapters.

The final sections of this chapter covers several concepts which are closely related to

SVMs. This includes Weighted SVMs (WSVMs), perceptrons and the Minimal Enclosing

Ball (MEB) problem. As well as reviewing each of these concepts, we also describe how

they relate to SVMs. This provides a foundation for subsequent chapters, where these

concepts arise frequently.

2.2 Hard Margin SVMs

The Support Vector Machine is a binary (two-class) method of supervised classification

which implements a maximum margin linear classifier [19, 85]. Although linearly sepa-

rable training data is not alway achievable, the goal of obtaining a maximum margin is

simplest to describe for linearly separable data. For this reason we first describe the case

of linearly separable data, as addressed by Boser et al. [13]. Training data x1,x2, . . . ,xn

and associated class labels y1, y2, . . . , yn are linearly separable if there exists a hyperplane

defined by normal w and offset b which satisfies:

yi(w · x− b) > 0, ∀i.

In this case of linearly separable data, a maximum margin hyperplane is found by

solving the quadratic optimization problem [117]:

min
w,b

1

2
||w||2

subject to yi(w · xi − b) ≥ 1.

(2.1)

The constraint of yi(w ·xi− b) = 1 for the closest points in each class is added to ensure a

unique solution. With this constraint in place, the margin is given by 2/||w|| and is hence

maximized by Equation (2.1). A visual depiction of these variables is given in Figure 2.2.

Once w, b satisfying Equation (2.1) have been found, the decision function of the SVM

is given by:

f(x) = sgn(w · x− b),

with the output corresponding to the predicted class of a new data point x.
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w

-b/||w||

Origin

2/||w||

Figure 2.2: Hyperplane, offset and margin of an SVM. Support vectors are shaded.

2.2.1 The Hard Margin Dual

As well as the original primal SVM formulation given in Equation (2.1), an equivalent

dual form can also be derived. The dual [38, 17] enables the use of a number of efficient

optimization methods [91, 58] which generally can not be applied directly to the primal.

It also reveals some additional geometric insights into the SVM optimization task. The

dual is derived by introducing Lagrange multipliers αi, . . . , αn ≥ 0 for each inequality

constraint in (2.1). The introduction of Lagrange multipliers creates a Lagrangian:

L =
1

2
||w||2 −

n∑
i=1

αi(yi(w · xi − b)− 1)

We want to minimize the Lagrangian with respect to the primal variables whilst maximiz-

ing with respect to the Lagrange multipliers. Setting partial derivatives with respect to

w, b to zero yields the equalities:

∂L
∂w

= wᵀ −
n∑
i=1

αiyix
ᵀ
i = 0 ⇒ w =

n∑
i=1

αiyixi, (2.2)

∂L
∂b

= −
n∑
i=1

αiyi = 0 ⇒
n∑
i=1

αiyi = 0. (2.3)

We also have the complementary slackness condition:

αi(yi(w · xi − b)− 1) = 0, (2.4)

which must be satisfied at optimality. Complementary slackness refers to the fact that if

αi is non-zero, w ·xi−b must equal zero. Conversely, if αi is zero, there is no constraint on

w · xi − b [17]. Together Equations (2.2)-(2.4), along with the constraint αi ≥ 0, and the

condition yi(w · xi − b) ≥ 1 from the primal, are referred to as the Karush-Kuhn-Tucker

(KKT) conditions.

Substituting Equations (2.2)-(2.3) into the Lagrangian yields the dual objective func-

tion, which we want to maximize with respect to α1, α2, . . . , αn. This maximization must

occur under the constraint in Equation (2.3). Together this yields the dual optimization
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task:

max
α1,...,αn

− 1

2

n∑
i,j=1

yiyjαiαjxi · xj +

n∑
i=1

αi,

subject to
n∑
i=1

αiyi = 0.

(2.5)

Primal variables may be recovered from the dual solution by exploiting the KKT conditions

from Equations (2.2) and (2.4).

The variable b is often referred to as the threshold [19] or offset [8] of the hyperplane

because it determines the offset of the hyperplane from the origin. If the threshold is zero,

the hyperplane will pass through the origin. Because the distance from the hyperplane to

the nearest points in both classes is equal, the threshold does not need to be optimized

directly, as can be seen in (2.5). Instead, it can be computed using the KKT conditions

once the optimal orientation has been found.

The dual and associated KKT conditions highlight several interesting properties of

SVMs. Once Equation (2.5) has been optimized, there are generally a large number of

αi’s which remain zero. Optimization problems with this property are referred to as

sparse [17]. The points with an associated non-zero αi are referred to as support vectors

and solely determine the position of the hyperplane. Any other training points may be

removed either before or after training to no effect [19].

Close examination of the KKT condition in Equation (2.4) reveals that support vectors

for the hard margin SVM lie on two hyperplanes which run parallel to the separating

hyperplane. These two hyperplanes, sometimes referred to as the supporting planes of the

two classes [7], satisfy the equality w · xi − b = ±1. All support vectors from the positive

class lie on one of the supporting planes, while all support vectors from the negative class

lie on the other supporting plane. The KKT conditions further imply that there may be

no points for which yi(w ·xi− b) < 1, i.e. points lying on the wrong side of the supporting

plane. Further, any point which does not lie on a supporting plane can not be a support

vector and can therefore be discarded without impacting the solution.

w

1/||w||

b/||w||
O

αi=0

αi=0 αi>0

αi>0

1/||w||

w·x-b=1

w·x-b=-1

Figure 2.3: Support vectors and supporting planes of a hard margin SVM. Supporting
planes are the dotted lines, with support vectors circled.
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2.2.2 The Importance of Large Margins

Vapnik [117] provides an expression (Equation 2.6) which gives an upper bound on the

leave-one-out error of an SVM. The leave-one-out error of a classifier is an approximation

of the test error which we will discuss in further detail in Chapter 6. In Equation (2.6),

the radius of the Minimal Enclosing Ball (MEB) of all training data is denoted R, the

margin of the SVM is ∆ and the total number of training samples is n.

ELOO < E

[
R2

∆2n

]
(2.6)

Notice in Equation (2.6) how, as the width of the margin increases, the upper bound on

the leave-one-out error must shrink (provided the radius of the MEB remains fixed). Ac-

cordingly, this bound can be used to argue that a larger margin means a greater likelihood

of making correct classifications.

The bound in Equation 2.6, often referred to as the radius-margin bound, is derived

from the Vapnik-Chervonenkis (VC) dimension of the classifier [117]. It can be most

intuitively understood using the ‘skinny’ (small margin) vs ‘fat’ (large margin) hyperplane

argument of Bennett and Campbell [8]. A ‘skinny’ hyperplane (Figure 2.4a) can take a

vast number of orientations while still separating a dataset, whereas a ‘fat’ hyperplane

(Figure 2.4b) has a greatly reduced number of orientations. If the ‘fat’ hyperplane has

a maximum margin, it can only take one possible orientation whilst still separating the

data. It is in this regard that a hyperplane with a small margin has a greater capacity to

fit the data, and is hence considered more complex [8].

(a) Small margin hyperplanes have
greater capacity to overfit the data

(b) Optimal margin hyperplanes have
less capacity to overfit the data

Figure 2.4: ‘Skinny’ and ‘fat’ hyperplanes (adapted from Bennett and Campbell [8])

One of the greatest benefits the radius-margin bound is that it applies regardless of

the dimensionality of the data. Dimensionality often poses a problem in classification

because, as the dimensionality increases, so too does the possible number of models which

can be formed. For a simple example of this, consider a set of data where each attribute

has two possible values. In a one-dimensional input space, there are two possible ways

to separate the data. However in a d dimensional space, this increases to 2d, i.e. each

additional feature squares the possible number of models. This effect is further magnified

if attributes are not simple binary values.
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A justification for large margins can also be understood within a compression frame-

work via the Minimum Message Length (MML) principle [125, 126, 124]. From an MML

perspective, when choosing between an infinite number of hyperplanes which describe a set

of data equally well, the best choice is the one which can be stated in the smallest number

of bits. Tan and Dowe [107] note that, of the infinite separating hyperplanes which could

be constructed, the maximum margin hyperplane can be stated with the least precision.

This means that the larger the margin of a hyperplane, the greater the compression that

can be applied while still having it correctly classify the training set.

2.3 Using Kernels for Non-Linear Classification

Although the hard margin SVMs described in the previous section work well when applied

to linearly separable datasets, there remains a problem of trying to learn more complex

surfaces such as clusters or curves in input space (Figure 2.5a). A linear discriminant is

incapable of learning such surfaces with a high degree of accuracy.

The problem of learning non-linear decision surfaces with SVMs may be addressed by

introducing a technique known as the ‘kernel trick’ [86, 19]. The kernel trick is equivalent

to mapping data from input space to a (generally higher or even infinite dimensional)

feature space (denoted H) using a function φ : Rd → H. A simple example of such a

mapping is the function [102, 117]:

φ(x) =
(
x2

1, x1x2

√
2, x2

2

)
, (2.7)

This mapping forms a feature space consisting of second degree monomials. The transfor-

mation from input to feature space is shown in Figure 2.5. Note that the data is mapped

to a manifold in the feature space. The result is that data becomes linearly separable

in feature space and may be more accurately learned by an SVM. The resulting decision

surface is non-linear with respect to input space.
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(b) The same data in a feature space of second
degree monomials

Figure 2.5: The effect of the mapping in Equation 2.7
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The beauty of the kernel trick is that dot products in feature space may be computed

without explicitly performing (or even knowing) the mapping itself. Consider the function:

K(x,y) = (x · y)2

= (x1y1 + x2y2)2

= x2
1y

2
1 + 2x1y1x2y2 + x2

2y
2
2

= (x2
1,
√

2x1x2, x
2
2) · (y2

1,
√

2y1y2, y
2
2).

This function implements the kernel product associated with the second degree monomial

mapping in Equation (2.7) [102, 117]. Since training data in the SVM optimization task

appears solely in terms of dot products, a kernel product may be substituted for a dot

product in order to train a non-linear classifier. Several kernels which can be used in this

manner are shown in Table 2.1.

Table 2.1: Some commonly used SVM kernels [86]. Parameters satisfy q ∈ N, γ ∈ R+

Linear K(x,y) = (x · y)
Polynomial K(x,y) = (x · y + 1)q

Monomial K(x,y) = (x · y)q

Gaussian RBF K(x,y) = exp(−γ||x− y||2)

Despite their elegance, there are also a number of issues which arise with the use of

a kernel. The introduction of a kernel means the introduction of associated parameters.

For example, polynomial and monomial kernels require a degree to be chosen, and a width

must be set for Gaussian radial basis function kernels. The introduction of a kernel also

means it becomes infeasible to directly compute the separating hyperplane:

w =
∑
i

αiφ(xi).

This means that the decision function must be stated in terms of the support vectors:

f(x) = sgn(

n∑
i=1

αiK(xi,x)− b). (2.8)

It follows that for non-linear SVMs, the number of support vectors has a direct impact on

the speed with which predictions can be made [18].

2.4 Soft Margin SVMs

The main problem with the hard margin SVM formulation is that it requires linearly

separable training data. This requirement is rarely met with real world datasets, where

noise and inherent overlap in the classes mean that a hard margin solution often can not

be found.

Cortes and Vapnik [27] first addressed the problem of computing large margin classifiers

for non-separable data by introducing a trade-off between the width of the margin and the
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number of errors in the training data. The result is a modified optimization task, referred

to as the soft margin SVM:

min
w,b,ξ

1

2
||w||2 + C

n∑
i=1

ξki ,

subject to

yi(w · xi − b) ≥ 1− ξi
ξi ≥ 0.

(2.9)

Here k is an integer greater than or equal to one. The variables ξi are ‘slack variables’,

equal to the error of a point, measured as the shortest distance to the correct side of

the margin (Figure 2.6). Note that a point does not necessarily have to be incorrectly

classified to have an associated non-zero slack variable. For example, point x2 in Figure

2.6 is correctly classified, but because it does not satisfy w · x2− b ≥ 1, it is considered to

lie on the incorrect side of the margin and must have an associated slack variable.

w

1/||w||1/||w||

w·x-b=-1
w·x-b=1

ξ1

ξ2 x2

x1

Figure 2.6: Slack variables

Equation (2.9) also has a statistical interpretation as a regularization method which

minimizes an empirical loss while penalizing functions with a larger norm [74, 85].

min
1

n

n∑
i=1

L(yi, f(xi)) + λ||h||2H. (2.10)

Here f(x) = h(x) − b is the classification function, L is a loss function and λ is a regu-

larization parameter which determines the penalty on solutions with a large norm. The

norm ||h||2H is computed in feature space H.

The optimization task (2.10) is known to have a solution of the form h(x) =
∑

i yiαiK(xi,x),

and therefore ||h||2H =
∑

i,j αiαjyiyjK(xi,xj) [69, 122]. This means that, using the change

of variables C = 1/(2λn), the optimization task in (2.10) can become equivalent to the

soft margin SVM in (2.9), depending on the choice of loss function L.

There are three loss functions commonly used in conjunction with Equation (2.10):

• L1-loss, or hinge loss: L (yi, f(xi)) = max(1− yif(xi), 0)

• L2-loss, or squared hinge loss: L(yi, f(xi)) = [max(1− yif(xi), 0)]2

• Logistic loss: L(yi, f(x)) = log(1 + e−yif(x))
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When an L1-loss or L2-loss function is used, Equation (2.10) becomes equivalent to the

soft margin SVM (Equation 2.9) using k = 1 or k = 2, respectively. When a logistic loss

function is used, the resulting machine is known as a Kernel Logistic Regression (KLR)

machine [67]. We do not elaborate on the KLR machine since it falls under the domain

of probabilistic methods. However, we describe the individual properties of the SVMs

resulting from the L1 and L2 hinge loss functions in the sections below.

Hinge loss is a desirable loss function to use because it ensures only points lying close

to the decision boundary have an impact on the solution. This preserves the sparsity of

the machine, meaning that only some of the input points will become support vectors.

Recall that sparsity is a desirable property for an SVM to have, since it means many

training points can be discarded either prior to, during, or after training while having no

impact on the final solution. Sparsity can be exploited to great effect in order to optimize

training algorithms for SVMs [91], as we will discuss in later chapters.

2.4.1 L1-loss SVMs

One of the first, and perhaps most widely, SVMs arising from the soft margin formulation

of Cortes and Vapnik [27] was the L1-loss C-SVM, given in primal form as:

min
w,b

1

2
||w||2 + C

n∑
i=1

ξi

subject to

yi(w · xi − b) ≥ 1− ξi.

ξi ≥ 0

(2.11)

In the L1-loss formulation, equivalent to Equation (2.10) in conjunction with the hinge

loss function, the sum of slack variables is used to penalize misclassified points.

Because of the widespread use of the L1-loss function in popular SVM software packages

such as SVMlight [58] and LIBSVM [20], L1-loss C-SVMs are often referred to simply as

C-SVMs. For this reason, when we refer to a C-SVM without qualifying the type of loss

function used, we are always referring to an L1-loss C-SVM.

The L1-loss SVM Dual

Similar to the hard margin case, the dual of a soft margin SVM is derived by introducing

Lagrange multipliers αi, . . . , αn, β1, . . . , βn ≥ 0 for each inequality constraint in (2.1).

Notice that we require the additional βi terms in the L1-loss soft margin case due to the

additional constraints forcing all ξi ≥ 0. This creates a Lagrangian:

L =
1

2
||w||2 + C

n∑
i=1

ξi −
n∑
i=1

αi(yi(w · xi − b)− 1 + ξi)−
n∑
i=1

βiξi

As before, we want to minimize the Lagrangian with respect to the primal variables whilst

maximizing with respect to the Lagrange multipliers. Setting partial derivatives with
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respect to w, b to zero yields:

∂L
∂w

= wᵀ −
n∑
i=1

αiyix
ᵀ
i = 0 ⇒ w =

n∑
i=1

αiyixi, (2.12)

∂L
∂b

= −
n∑
i=1

αiyi = 0 ⇒
n∑
i=1

αiyi = 0, (2.13)

∂L
∂ξi

= C − αi − βi = 0 ⇒ C − αi = βi (2.14)

We also have the conditions of complementary slackness:

αi(yi(w · xi − b)− 1 + ξi) = 0, βiξi = 0, (2.15)

which must be satisfied at optimality.

Substituting Equations (2.12)-(2.14) into the Lagrangian yields the dual objective func-

tion, which we want to maximize with respect to α1, α2, . . . , αn. Conveniently, βi terms

disappear, yielding the dual optimization task:

max
α1,...,αn

− 1

2

n∑
i,j=1

yiyjαiαjxi · xj +

n∑
i=1

αi,

subject to


∑n

i=1 αiyi = 0

0 ≤ αi ≤ C

(2.16)

Importantly, the L1-loss soft margin SVM is extremely similar to the hard margin dual

given previously in Equation 2.5. On comparison, the only difference is that the original

hard margin constraint of αi ≥ 0 has been modified to become 0 ≤ αi ≤ C.

Because of the change in KKT conditions between the hard and soft margin SVMs, the

significance of the support vectors and αi values also changes. Recall from Section 2.2.1

that the supporting planes of a C-SVM are the hyperplanes satisfying w · x − b = ±1.

We say that a point xi is on the correct side of the supporting hyperplane of its class

if it satisfies yi(w · xi − b) ≥ 1. Otherwise it is on the incorrect side of the supporting

plane. Note that if a point lies on the correct side of the supporting plane, it must be

correctly classified by the decision surface. However, if a point lies on the incorrect side

of its supporting plane, it may or may not be correctly classified by the decision surface.

Combining Equations (2.14) and (2.15) reveals three distinct cases regarding the αi

value associated with a training point:

• If αi = 0, the associated training point xi is correctly classified by the hyperplane,

and lies on the correct side of the supporting hyperplane of its class. Since it has

no impact on the decision surface it may be removed before or after training to no

effect [117].

• If 0 < αi < C, the associated training point xi is correctly classified by the decision

surface, and lies on the supporting plane of its class.
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• If αi = C, the associated training point xi lies on the incorrect side of the supporting

hyperplane of its class. Accordingly, it may or may not be correctly classified by the

decision surface.

The change in possible αi values means that there are now two distinct types of support

vectors. Support vectors for which 0 ≤ αi < C must satisfy w · xi − b = ±1 and hence

always lie on the supporting plane of a class. Other support vectors, which satisfy αi = C,

must satisfy w ·xi− b < 1 and therefore lie on the incorrect side of their supporting plane

(although they may or may not lie on the incorrect side of the hyperplane itself). We

refer to these support vectors as bounded since their corresponding α’s are capped at their

upper bound. Figure 2.7 depicts possible values for αi, with support vectors circled.

w

1/||w||

b/||w||

O

0<αi<C

0<αi<C

αi=C

αi=C

αi=0

αi=0

Figure 2.7: Support vectors and supporting planes of a C-SVM. Supporting planes
are the dotted lines, with support vectors circled. The top line shows the
possible values of Lagrange multipliers for the negative class. The bottom
line shows the possible values of Lagrange multipliers for the positive class.

2.4.2 L2-loss SVMs

An alternative to the L1-loss SVM described in the previous section is the L2-loss SVM.

L2-loss SVMs penalize the sum of squared slack variables in the objective function, as

opposed to the sum of errors [27]. This is stated as the QP task:

min
w,b

1

2
||w||2 + C

n∑
i=1

ξ2
i

subject to yi(w · xi − b) ≥ 1− ξi.

(2.17)

The parameter C is a regularization parameter that controls the trade-off between a large

margin and a small sum of squared margin errors.
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The L2-loss SVM Dual

The dual optimization task for the L2-loss SVM is given by:

min
α

− 1

2

n∑
i,j=1

yiyjαiαjxi · xj +
n∑
i=1

αi −
1

4C

n∑
i=1

α2
i

subject to αi ≥ 0.

(2.18)

This optimization task has associated KKT conditions:

w =
n∑
i=1

αiyixi, ξi =
αi
2C

αi(yi(w · xi − b)− 1 + ξi) = 0

(2.19)

Notice that there are some differences between the L2-loss and L1-loss SVM KKT

conditions which have some important implications. The L2-loss KKT conditions imply

that there are two distinct cases for an αi value associated with a training point:

• If αi = 0, the associated training point xi is correctly classified and lies on the correct

side of the supporting hyperplane, i.e. yi(w · xi − b) ≥ 1

• If αi > 0, the associated training point xi is a support vector and lies either on the

supporting hyperplane, or on the incorrect side of the supporting hyperplane.

Importantly, an L2-loss SVM no longer involves the concept of bounded or unbounded

support vectors. Instead, each support vector has an associated Lagrange multiplier which

is proportional to its associated slack variable so that αi = 2Cξi. This is consistent with

the sum of squares approach, where larger errors have a greater influence on the final

solution, and smaller errors have a lesser influence.

The L2-loss SVM dual also has a different objective function compared with the L1-loss

SVM. A common trick to use in conjunction with an L2-loss SVM is to write the objective

function:

−1

2

n∑
i,j=1

yiyjαiαj

(
xi · xj +

δij
2C

)
+

n∑
i=1

αi

Here δij is the Kronecker delta, defined as:

δij =

1 if i=j

0 otherwise

Once this transformation has been made, the L2-loss SVM becomes equivalent to a hard

margin SVM with the modified kernel K(xi,xj) = xi · xj + δij/2C. This means that

L2-loss SVMs may be solved using most hard margin techniques. We will further discuss

the use of the Kronecker delta and the connection between hard and soft margin SVMs

in the following sections.
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2.5 Geometric Interpretations of SVMs

SVMs are already in some respects a geometrically intuitive classifier due to the way in

which they incorporate large margins. However, the dual form of the various SVMs we

have explored are highly analytical problems which are difficult to understand in geometric

terms. In this section we describe changes that can be made to the L1 and L2-loss

SVM primals which result in more geometrically intuitive, but equivalent, dual tasks.

The geometric forms of these duals become nearest point problems, where each class is

represented by a convex set and the optimization task reduces to finding the nearest

points in the two sets [7, 28]. As well as allowing a much greater understanding of how

SVMs work, this also allows SVMs to be computed using relatively simple nearest point

algorithms.

2.5.1 µ-SVMs: Reparameterizing the L1-loss Primal

Some years after the introduction of the C-SVM it was discovered that SVMs have an

intuitive geometric interpretation [7, 28]. In the hard margin case (Figure 2.8a), it was

shown that the hyperplane is the perpendicular bisector of the shortest line between the

convex hulls of the two classes [7, 28]. In the soft margin case (Figure 2.8b), the convex

hulls are reduced to avoid overlap before the closest points are found [7]. The mechanism

behind the reduction of the hulls is understood by considering a reparameterization of the

C-SVM known as the µ-SVM.

(a) Hard margin SVM (b) Soft margin SVM

Figure 2.8: SVMs as a convex hull problem

The µ-SVM optimization task weighs the slack variables against the width of the

margin in a slightly different way, stated as [7, 28]:

min
w,b,ρ,ξ

||w||2 − 2ρ+ µ

n∑
i=1

ξi,

subject to


yi(w · xi − b) ≥ ρ− ξi
ξi ≥ 0

ρ > 0.

(2.20)

The value of ρ/||w|| is equal to the width of the margin, so the aim is still to maximize

the margin penalized by slack variables. The user-specified constant 0 < µ ≤ 1 (which
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replaces the constant C in the C-SVM) specifies whether more weight is given to a large

margin or a small number of slack variables.

The µ-SVM Dual

The Lagrangian dual [38, 17] of the µ-SVM optimization problem, as well as being easier to

solve, reveals additional geometric insights. The dual problem is an equivalent formulation

derived by introducing Lagrange multipliers αi, . . . , αn, βi, . . . , βn, γ ≥ 0 for each inequality

constraint in (2.20). This defines a Lagrangian:

L = ||w||2 − 2ρ+ µ

n∑
i=1

ξi −
n∑
i=1

αi(yi(w · xi − b)− ρ+ ξi)−
n∑
i=1

βiξi − γρ.

We want to minimize the Lagrangian with respect to the primal variables whilst maximiz-

ing with respect to the Lagrange multipliers. Setting partial derivatives with respect to

w, b, ρ, ξi to zero yields the equalities:

∂L
∂w

= 2wᵀ −
n∑
i=1

αiyix
ᵀ
i = 0 ⇒ w =

1

2

n∑
i=1

αiyixi, (2.21)

∂L
∂b

= −
n∑
i=1

αiyi = 0 ⇒
n∑
i=1

αiyi = 0, (2.22)

∂L
∂ρ

= −2 +

n∑
i=1

αi − γ = 0 ⇒
n∑
i=1

αi = 2 + γ, (2.23)

∂L
∂ξi

= µ− αi − βi = 0 ⇒ βi = µ− αi. (2.24)

We also have the complementary slackness conditions:

αi(yi(w · xi − b)− ρ+ ξi) = 0, βξi = 0, γρ = 0, (2.25)

which must be satisfied at optimality.

Using Equations (2.21)-(2.24) in conjunction with the Lagrangian yields the dual op-

timization task:

max
αi,...,αn

− 1

4

n∑
i,j=1

yiyjαiαjxi · xj ,

subject to


∑n

i=1 αiyi = 0∑n
i=1 αi = 2

0 ≤ αi ≤ µ

(2.26)

From Equations (2.24) and (2.25), we can see that there still exists both bounded

and unbounded support vectors in a µ-SVM. The only difference in the support vectors

between a µ-SVM and a C-SVM is that bounded support vectors are now fixed at αi = µ

as opposed to αi = C, and unbounded support vectors must now satisfy 0 < αi < µ

instead of 0 < αi < C.
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The µ-SVM is a reparameterization of the original C-SVM [7, 28] (described in Section

2.4.1), with

w = w′ρ b = b′ρ ξi = ξ′iρ µ = 2Cρ.

ρ =
1∑
i α
′
i

αi = 2α′iρ.

This can be verified by substituting these variables into the KKT conditions of the µ-

SVM KKT conditions, yielding the C-SVM KKT conditions (to within a constant factor).

Because the KKT conditions are both necessary and sufficient for optimality of this prob-

lem [17, 38], the two solutions must be equivalent (under scaling). This implies that a

µ-SVM trained with regularization parameter µ is equivalent to a C-SVM trained with

C = µ/(2ρ).

2.5.2 A Geometric Interpretation of µ-SVMs

The significance of the µ-SVM as compared to other parameterizations is that it has an

intuitive geometric interpretation which is more extensive than the parallel supporting

planes interpretation of C-SVMs. In order to understand this geometric interpretation let

us first review the formal definitions of convex hulls and reduced convex hulls.

The convex hull of a set of n d-dimensional points P = {x1,x2, . . . ,xn} ∈ Rd is defined

as the smallest convex set enclosing P , written [94]:

CH(P ) =

{
n∑
i

αixi

∣∣∣∣∣
n∑
i

αi = 1, 0 ≤ αi ≤ 1

}
.

The border of a convex hull is a convex polytope, as depicted previously in Figure 2.8a.

The reduced convex hull is a generalized form of convex hull which allows for a reduc-

tion parameter µ to specify the extent to which the convex hull should he shrunk. The

reduced convex hull of a set of points P = {x1, . . . ,xn} is given by [7, 28]:

RCH(P, µ) =

{∑
i

αixi

∣∣∣∣∣ ∑
i

αi = 1, 0 ≤ αi ≤ µ

}
.

This is the same as the definition of a convex hull, except a constant 0 < µ ≤ 1 has been

introduced, limiting the impact any one point can have on the hull. As µ decreases, the

reduced convex hull shrinks non-uniformly towards the centroid (Figure 2.9). At µ = 1/n,

the reduced convex hull is the centroid, and for further reductions the hull is empty.

The geometric interpretation of the µ-SVM is that the hyperplane formed is equivalent

to the perpendicular bisector of the shortest line between the reduced convex hulls of the

two classes. To show this, let us first define sets containing the indices of points in the

positive and negative classes:

Ipos = {i | yi = 1} Ineg = {i | yi = −1}
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0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

2.5

3

3.5

4

(b) µ = 1/3

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

2.5

3

3.5

4

(c) µ = 1/4

Figure 2.9: Reduced convex hulls in the plane with varying µ. Plus marks represent
points from P . Circles represent the vertices of the reduced convex hull
of P . The convex hull is shown as a dashed line.

Next, let us define the sets:

Ppos = {xi | i ∈ Ipos} , Pneg = {xi | i ∈ Ineg} ,

containing only points from the positive and negative classes, respectively. Assuming an

equal amount of reduction µ for both hulls, two points ppos and pneg from the reduced

convex hulls of the two classes can be represented as:

ppos =
∑
i∈Ipos

αixi, pneg =
∑
i∈Ineg

αixi, (2.27)

subject to 0 < αi ≤ µ,
∑
i∈Ipos

αi = 1,
∑
i∈Ineg

αi = 1. (2.28)

Finding the shortest line between the two convex hulls equates to finding the closest

two points in the hull [28]. This can be done by minimizing ||ppos − pneg||2 which, using
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(2.27) and (2.28) is the same as minimizing:

F = ||
∑
i∈Ipos

αixi −
∑
i∈Ineg

αixi||2

= ||
n∑
i=1

yiαixi||2

=

n∑
i,j=1

yiyjαiαjxi · xj .

Using (2.28) we also have the constraints:

0 ≤ αi ≤ µ,
∑
i

αi = 2,
∑
i

αiyi = 0.

Notice that this problem is equivalent to the dual µ-SVM optimization problem (Equation

2.26), where the objective function has been multiplied by a constant and the sign has

been inverted in order to change the problem to one of minimization [28].

2.5.3 Reparameterizing the L2-loss Primal

A ρ term can also be introduced to the L2-loss primal in order to provide a more geomet-

rically intuitive, but equivalent, dual problem. Consider the primal:

min
w,b

1

2
||w||2 − 2ρ+ C

n∑
i=1

ξ2
i

subject to yi(w · xi − b) ≥ ρ− ξi.

(2.29)

This primal produces the dual:

max
α

−
n∑

i,j=1

yiyjαiαjxi · xj −
1

2C

n∑
i=1

α2
i

subject to


∑n

i=1 αi = 2,

0 ≤ αi ≤ 1.

(2.30)

Additional KKT conditions are given by:

w =
n∑
i=1

αiyixi, ξi =
αi
2C

αi(yi(w · xi − b)− ρ+ ξi) = 0

(2.31)

This is a reparameterization of the L2-loss SVM from Section 2.4.2, where:

w = w′ρ b = b′ρ C = C ′

αi = 2α′iρ ρ =
1∑
i α
′
i
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This can be verified by substituting these equalities into the KKT conditions in (2.31)

to yield the KKT conditions from the original form of the L2-loss SVM. Notice that the

regularization parameter C has not been rescaled in this case, it has precisely the same

impact on both machines.

2.5.4 A Geometric Interpretation of L2-loss SVMs

The conceptual benefits of the L2-loss SVM become apparent when it is considered in

conjunction with a kernel. Recall that a kernel computes the dot product of two points

after mapping them to a higher (possibly infinite) dimensional feature space where the

classes are more likely to become separable. Conveniently, this mapping does not need

to be explicitly computed provided points are expressed solely in terms of dot products.

If we replace the dot products in the L2-loss SVM dual with kernel products K(x,y) we

obtain:

max
α

−
n∑

i,j=1

yiyjαiαj

[
K(xi,xj) + δij

1

2C

]

subject to


∑n

i=1 αi = 2,

0 ≤ αi ≤ 1.

(2.32)

Recall that the Kronecker delta, δij , is equal to one if i = j, and zero otherwise.

The implication of Equation (2.32) is that the L2-loss SVM problem is equivalent to

the standard hard margin SVM problem using the modified kernel [29]:

k(x,y) = K(x,y) +
δij
2C

. (2.33)

The ability to express an L2-loss SVM in terms of a hard margin SVM with a modified

kernel means that, unlike the L1-loss SVM, the L2-loss SVM can always be interpreted as

a hard margin problem.

The relationship between L2-loss SVMs and hard margin SVMs means that L2-loss

SVMs are often used in order to apply hard margin methods to inseparable datasets. For

example, Kowalczyk [71] and Keerthi et al. [65] exploit the conceptual simplicity of the

hard margin SVM task in order to propose intuitive geometric training algorithms. They

then take advantage of the kernel in Equation (2.33) in order to allow the same algorithms

to train L2-loss SVMs.

2.6 Weighted SVMs

In many classification tasks it is beneficial to be able to specify a trade-off between the ac-

curacy in the positive class (sensitivity) and the accuracy in the negative class (specificity).

Being able to tune this trade-off provides the ability to sacrifice accuracy in one class in

order to achieve a greater accuracy in another. For example, in spam classification, it is

much more important that legitimate email is correctly classified than it is that spam is
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correctly classified. In medical applications, a false positive result will undoubtedly have

a different outcome than a false negative, and the balance needs to be chosen carefully.

The issue of the sensitivity-specificity trade-off is compounded by the fact that many

of the applications which require this trade-off are also grossly imbalanced in terms of

the number of points that appear in each class. For example, some people may receive

significantly more spam than legitimate email. Similarly, a positive diagnosis with an

exotic disease will be rare compared to a negative diagnosis. These imbalances tend to

cause classifiers which aim to minimize overall classification error to favor the larger class.

The bias occurs because, provided one class is large enough, often the best overall accuracy

can be achieved by simply classifying everything as belonging to the larger class.

A case related the sensitivity-specificity trade-off occurs when misclassification costs

can differ not only between classes, but between points. Zadrozny et al. [129] uses the

example of donor solicitation, where the aim is for a charity to classify people as donors

or non-donors. If a person is incorrectly classified as a donor, a small loss is incurred, e.g.

the cost of a stamp. However, if a person is incorrectly classified as a non-donor, that

person’s donation will never be received. Donation sizes could range from several times

the cost of a stamp to several thousand times the cost of a stamp.

In the context of SVMs, all of these related cases – the sensitivity-specificity trade-off,

imbalanced class sizes and, and cost-proportionate tasks – have been addressed by via the

introduction of weighted training data [129, 118]. In this instance, a training set consists

not just of points x1,x2, . . . ,xn ∈ Rd and their associated labels y1, y2, . . . , yn ∈ {−1, 1},
but also a set of associated weights s1, s2, . . . , sn satisfying si ≥ 0 for all i. Each weight si

specifies the importance of a particular training point. Note that weighted classification is

not unique to SVMs, indeed many classifiers allow weighted training data to be adopted

in a natural manner [129].

Weighted SVMs are a generalized form of SVMs where additional parameters are

introduced. SVMs can be weighted either by class or by individual point. In a class-

weighted SVM, each class is given its own specific weight [118]. In a point-weighted SVM,

each individual point is given a separate weight [129]. We discuss the implications of these

weighting schemes in the following sections.

2.6.1 Class Weighting

One of the earliest introductions of a WSVM was by Veropoulos et al. [118], who introduced

weights in order to balance the trade-off between the sensitivity and specificity of an

SVM. Because Veropoulos et al. were mainly interested in compensating for imbalanced

classes, weights were assigned to each class, rather than to each individual point. This

was expressed in primal form as the modified optimization problem:

min
w,b,ξ

||w||2 + C+
∑
i∈Ipos

ξi + C−
∑
i∈Ineg

ξi,

subject to

yi(w · xi − b) ≥ 1− ξi
ξi ≥ 0.

(2.34)
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Recall that Ipos and Ineg are sets containing the indices of points belonging to the pos-

itive and negative classes, respectively. Notice that this primal uses two regularization

parameters (C+, C−), both of which must be set by the user prior to training. Providing

two regularization parameters allows the misclassification penalty of each class to be set

individually.

Veropoulos et al. [118] suggest that their method provides an effective means of bal-

ancing the sensitivity and specificity of an SVM. Importantly, it also results in a very

simple optimization problem, no more difficult to solve than that of the standard SVM.

This can be seen by deriving the dual form of Equation (2.34), written [118]:

max
α

− 1

2

n∑
i,j=1

yiyjαiαjxixj +
∑
i

αi.

subject to

0 ≤ αi ≤ Ci∑n
i=1 αiyi = 0

(2.35)

Here Ci is given by:

Ci =

C+ if i ∈ Ipos
C− if i ∈ Ineg

.

Notice that the only difference between Equation (2.35) and the standard SVM is the

change in upper bound on αi values.

2.6.2 Individual Point Weighting

The natural generalization of Veropoulos et al.’s [118] work is to weight every individual

point separately, yielding the primal:

min
w,b,ξ

||w||2 + C
∑
i∈Ipos

siξi,

subject to

yi(w · xi − b) ≥ 1− ξi
ξi ≥ 0.

(2.36)

Here each point has a unique weighting si which determines its importance. As was the

case for the class-weighted version of this optimization problem (Equation 2.34), the only

change in the dual is in the upper bounds on αi values [118]. Solving the weighted dual

generally requires such minimal changes to optimization routines that some popular SVM

solver packages such as LIBSVM [20] feature the ability to solve weighted problems such as

(Equations 2.34 and 2.36).

Zadrozny et al. [129] showed using empirical trials that individual point weighting pro-

vide an effective means of solving problems where misclassification costs can vary greatly.

The example used by Zadrozny et al. was charity collection, where the cost of soliciting

donations must be weighed against the return. In this case large donors were rare, but
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provided such a large return that it was beneficial to assign them a greater weighting com-

pared to other training points. The introduction of individual cost-proportionate weights

on this problem was beneficial, providing a significant monetary return. By contrast, stan-

dard SVMs failed to provide any monetary return at all, opting to classify everyone as

belonging to the significantly larger non-donor class.

2.6.3 Alternative Loss Functions

Although the methods we refer to for weighted SVM classification generally use the L1-loss

function, it is no more difficult to substitute the L2-loss function. For example, Veropoulos

et al. [118] has shown that adapting the L1-loss WSVM to penalize squared errors results

in the dual:

max
α

−
n∑

i,j=1

yiyjαiαj

[
K(xi,xj) + δij

1

si2C

]

subject to


∑n

i=1 αi = 2,

0 ≤ αi ≤ 1.

(2.37)

Conveniently, the interpretation of a convex hull problem in a kernel feature space remains

unchanged. The only modification from the unweighted L2-loss SVM is that, instead

of adding a constant 1/C to the diagonals of the kernel matrix, 1/(siC) is added. To

implement class-based penalties, 1/C+ would be added to the diagonal elements of the

kernel matrix associated with points from the positive class, while 1/C− would be added

to other diagonal elements [118].

2.7 Minimal Enclosing Balls (MEBs)

The Minimal Enclosing Ball (MEB) of n points x1,x2, . . . ,xn is the minimum volume

sphere enclosing all points [116]. Recall from Section 2.2.2 that MEBs can be used to

provide an upper bound on the leave-one-out error of an SVM [117, 103]. They have

also been used to perform clustering [6] as well as one-class domain description [110, 104].

Because the volume of a sphere depends solely on its radius, an MEB can be found by

representing the ball by its center c and radius R and then solving [116]:

min
R,c

R2

subject to ||xi − c||2 ≤ R2.
(2.38)

Equation (2.38) is a QP task, the aim of which is to minimize the radius of a ball while

constraining it to enclose all points.
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2.7.1 The MEB Dual

The MEB dual [17, 103, 116] is derived by introducing Lagrange multipliers αi, . . . , αn ≥ 0

for each inequality constraint in (2.38), defining a Lagrangian:

L = R2 −
n∑
i=1

αi(−x2
i + 2c · xi − c2 +R2).

The objective function in (2.38) can only be at a minimum when the partial derivatives

of the Lagrangian with respect to R and c are equal to zero, yielding the equalities:

∂L
∂R

= 2R− 2R
n∑
i=1

αi = 0 ⇒
n∑
i=1

αi = 1, (2.39)

∂L
∂c

=
n∑
i=1

αi(2x
ᵀ
i − 2cᵀ) = 0 ⇒ c =

n∑
i=1

αixi. (2.40)

Further conditions for complementary slackness are:

αi(||xi − c||2 −R2) = 0. (2.41)

Substituting the equalities in (2.39) and (2.40) into the Lagrangian results in the dual

optimization problem [116]:

max
α

n∑
i=1

αix
2
i −

n∑
i,j=1

αiαjxi · xj

subject to


∑n

i=1 αi = 1,

αi ≥ 0

(2.42)

The complementary slackness condition in (2.41) also reveals some interesting geomet-

ric significance in the values of the Lagrange multipliers. For any αi, either αi must equal

zero, or the corresponding xi must lie on the surface of the MEB. This means that only

points lying on the surface of the MEB will have a non-zero αi, indicating that the solution

to Equation (2.42) will in most cases be sparse [128].

2.7.2 Soft MEBs

When MEBs are used for domain description, it is beneficial to be able to reduce an MEB

in order to exclude noisy or outlying points. Tax and Duin [110] suggest the modified

primal:

min
R,c

R2 + C

n∑
i=1

ξi

subject to

||xi − c||2 ≤ R2 + ξi

ξi ≥ 0

(2.43)
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We refer to Equation (2.43) as the soft MEB primal. The move from standard to soft

MEB is very similar to the move from hard margin to soft margin SVM.

(a) KKT conditions associated with the
hard margin MEB

(b) KKT conditions associated with the
soft margin MEB

Figure 2.10: KKT conditions associated with the hard and soft MEB tasks

Although there may be many ways to reduce an MEB, one of the benefits of the soft

MEB is that it results in a convenient dual:

max
α

n∑
i=1

αix
2
i −

n∑
i,j=1

αiαjxi · xj

subject to


∑n

i=1 αi = 1,

0 ≤ αi ≤ C.

(2.44)

Notice that the only difference between the hard and soft MEB duals is the introduction

of the upper bound C on the αi’s in the soft margin dual. This change is analogous to the

introduction of same bound when moving from the hard margin to soft margin SVM.

The benefit of soft MEBs is that they allow the impact of outlying points to be reduced.

By contrast, hard MEBs are forced to enclose all points, even outlying points, so a single

outlying point can result in a very large MEB.

2.8 Perceptrons

Perceptron algorithms were first introduced by Rosenblatt [97] as a computational model

of a biological neural network. Several decades later, after the introduction of learning

theory and the idea of large margins, it was pointed out that perceptrons implement a type

of large margin classifier [43, 62]. Perceptron algorithms have also been implemented in

kernel feature spaces [43], with the resulting algorithms similar (although not equivalent)

to SVMs. In this section we review several perceptron algorithms. We also describe the

relationship between SVMs and perceptrons, and describe how we distinguish between the

two types of machines.
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2.8.1 Rosenblatt’s Perceptron

One of the first algorithms for training a large margin linear classifier is Rosenblatt’s

perceptron algorithm [97, 98]. This algorithm pre-dates learning theory and work on large

margins by several decades. The perceptron was proposed by Rosenblatt, a psychologist,

as a computational model of a biological neural network. The perceptron algorithm is

described in Algorithm 1.

Algorithm 1 Rosenblatt’s Perceptron [97]

function perceptron(P,y)
initialize αi ← 0 for all i = 1, . . . , n
let f(x) =

∑
i αixi · x

repeat
choose k such that yif(xk) <= 0
update αi ← αi + yi

until yif(xi) > 0 for all i = 1, 2, . . . , n
w←

∑
i αixi

return w . return the hyperplane normal
end function

The perceptron algorithm (Algorithm 1) does not include a bias term, meaning that

hyperplane found by the algorithm is constrained to pass through the origin. If this is

not desired, Rosenblatt’s perceptron can optionally be modified so that it contains a bias

term. This is done by mapping the training data prior to training so that [52]:

zi ← [1 xi].

This results in a decision function:

f(x) =
∑
i

αizix =
∑
i

αixi +
∑
i

αi.

Note that this is equivalent to the standard SVM decision function f(x) =
∑

i α
′
iyixi − b,

provided we use α′i = |αi| and b = −
∑

i yiα
′
i.

2.8.2 AdaTron Algorithm

Anlauf and Biehl [3] introduced the AdaTron algorithm as a means of finding perceptrons

of optimal stability. A perceptron of optimal stability ∆ satisfies yif(xi) ≥ ∆ [73]. This

means that the AdaTron algorithm does not simply terminate once all training points

are correctly classified (like Rosenblatt’s perceptron), but continues training to a much

higher degree of precision (Algorithm 2). The algorithm also has the beneficial property

of converging towards the maximum optimal stability, i.e. the largest possible ∆ [3]. An

alternative stopping condition to the one shown in Algorithm 2 is to run until changes to

mini{yif(xi)} become very small.

The parameter η > 0 is the learning rate and affects the rate of convergence. Points

can be updated either sequentially or in parallel [3]. In a parallel implementation, all δk’s
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Algorithm 2 The AdaTron Algorithm [3]

function adatron(P,y, η,∆)
initialize αi ← 1 for all i = 1, . . . , n
let f(x) =

∑
i αixi · x

repeat
choose point xk to update . can iterate through points
δk ← max(−αk, η(1− yif(xi))) . sequentially or in parallel (see below)
αk ← αk + δk

until yif(xi) ≥ ∆, ∀k . stop once stability ∆ is reached
w←

∑
i αixi

return w . return hyperplane normal
end function

are computed in parallel before αi’s are updated. In a sequential implementation, once a

single δk is computed, the corresponding αi is updated before any more steps are taken.

Anlauf and Biehl [3] suggest that the sequential algorithm is generally preferred since it

is guaranteed to converge for all 0 < η < 2, whereas the parallel algorithm sometimes

requires small values of η to ensure convergence.

In addition to increased precision and stability over Rosenblatt’s algorithm, the Ada-

Tron algorithm also provides a mechanism with which non-zero αi values can return to

zero if necessary [3]. This results in increased sparsity during training, as well as faster

convergence if a large optimal stability ∆ is required.

2.8.3 Perceptrons as a Quadratic Programming Task

It has been noted by several authors [3, 87] that finding a perceptron with maximum

optimal stability can be stated as a QP task:

min
1

2
||w||2

subject to yiw · xi ≥ 1 ∀i
(2.45)

Note that the optimal stability term ∆ from the AdaTron is also maximized and hence

no longer appears in the QP task. Although this QP task pre-dates SVMs, it resembles a

hard margin SVM with the bias term omitted. The omission of b results in the dual:

max
α1,...,αn

− 1

2

n∑
i,j=1

yiyjαiαjxi · xj +

n∑
i=1

αi,

subject to αi ≥ 0.

(2.46)

Notice that this dual can not be trained using standard hard margin optimization tech-

niques since the sum of αi’s is no longer constraint to unity. However, it can be trained

using modified SMO techniques [119]. Because the constraint on the sum of α′is has been

omitted from this task, SMO can operate on a single αi per update step. In fact, such
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update steps are equivalent to the AdaTron update step [62], meaning the AdaTron algo-

rithm can be improved by using a heuristic to choose the points to update at each step

[54].

2.8.4 Perceptrons with Soft Margins

Perceptrons can be trained with a soft margin by introducing slack variables ξi to the

primal. Let us first examine the use of an L1-loss penalty, which forms the soft margin

perceptron primal:

min
1

2
||w||2 + C

∑
i

ξi

subject to yiw · xi ≥ 1− ξi ∀i
(2.47)

The dual of Equation (2.47) is written:

max
α1,...,αn

− 1

2

n∑
i,j=1

yiyjαiαjxi · xj +
n∑
i=1

αi,

subject to 0 ≤ αi ≤ C.

(2.48)

It is informative to note that, like SVMs, the introduction of an L1-loss penalty term

simply changes the constraint on αi’s in the dual.

If instead of an L1-loss function we applied an L2-loss function to (2.47), the resulting

dual would be:

max
α1,...,αn

− 1

2

n∑
i,j=1

yiyjαiαjxi · xj −
1

2

n∑
i,j=1

α2
i

C
+

n∑
i=1

αi,

subject to 0 ≤ αi

(2.49)

Notice how, as in the case of SVMs, this dual is equivalent to a hard margin perceptron

with the modified kernel k(xi,xj) = δij/C, where δij is the Kronecker delta (refer to

Section 2.5.4).

2.8.5 Perceptrons with a Bias Term

One of the downsides to the hard margin perceptron above is that it omits a bias term.

This forces the hyperplane to pass through the origin, which may not be a desired property.

For this reason, distinct methods have been developed for providing perceptrons with a

bias term. Perceptrons with bias use the mapping:

xi ← [1 xi]. (2.50)
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Substituting this mapping into the L1-loss perceptron dual in Equation (2.48) results in

the optimization task:

max
α1,...,αn

− 1

2

n∑
i,j=1

yiyjαiαjxi · xj −
1

2

∑
i,j

yiyjαiαj +

n∑
i=1

αi,

subject to αi ≥ 0.

(2.51)

For a perceptron with bias, the classification function is given by:

f(x) =
∑
i

αiyixi · x− b (2.52)

where, by combining Equations (2.50) and (2.52), the bias can be given by:

b = −
∑
i

yiαi

The primal associated with (2.51) is given by:

min
1

2
||w||2 +

1

2
b2 + C

∑
i

ξi

subject to yi(w · xi − b) ≥ 1− ξi ∀i
(2.53)

The existence of the term b in the objective function is difficult to justify, since all it does is

favor a hyperplane closer to the origin. However, it is the addition of this term that results

in the perceptron having no constraint forcing the sum of Lagrange multipliers in each class

to be equal [65]. This suggests that the bias term may be added to the objective function

more for numerical convenience than for theoretical justification. However, Mangasarian

and Musicant [79] have suggested that the addition of this term does not significantly

degrade accuracy compared to an SVM, where the bias term does not appear in the

objective function.

2.8.6 Distinguishing Perceptrons from SVMs

It may seem difficult to identify differences between perceptrons and SVMs, particularly

when accounting for the various number of different loss functions and the impact they

have on the dual. It is tempting to compare the hard margin SVM and the hard margin

perceptron and say that a perceptron is an SVM without a bias term. However, this

distinction becomes muddled once perceptrons with bias are considered.

We assert that there is a more rigorous way to identify whether a machine is a percep-

tron. Notice that the hard margin perceptron in Equation (2.46), the perceptron with bias

in Equation (2.51), and the L1 and L2-loss soft margin perceptrons in Equations (2.48)
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and (2.49) all have the general dual form:

max
α1,...,αn

− 1

2

n∑
i,j=1

αiαjk(xi,xj) +

n∑
i=1

αi,

subject to 0 ≤ αi ≤ C

(2.54)

The type of perceptron trained by (2.54) depends on the choice of the modified kernel

k(xi,xj) and the upper bound C on the Lagrange multipliers. Possible values are shown

in Table 2.2. Notice from this table that a bias term can be combined with soft margins.

Table 2.2: Alternative Perceptron Loss Functions. Note that a ‘B’ under type refers
to bias-free (i.e. no bias term b is used)

Type Constraint Kernel k(xi,xj) Threshold

Hard Margin 0 ≤ αi yiyjK(xi,xj) + yiyj −
∑

i αiyi
Hard Margin B 0 ≤ αi yiyjK(xi,xj) 0
L1-loss 0 ≤ αi ≤ C yiyjK(xi,xj) + yiyj −

∑
i αiyi

L1-loss B 0 ≤ αi ≤ C yiyjK(xi,xj) 0
L2-loss 0 ≤ αi yiyjK(xi,xj) + yiyj + δij/D −

∑
i αiyi

L2-loss B 0 ≤ αi yiyjK(xi,xj) + δij/D 0

There is also a similar general case for SVMs, as has previously been described by Chu

et al. [23]. The hard margin SVM, and both L1 and L2-loss soft margin SVMs are able to

be trained from the dual [23]:

max
α1,...,αn

− 1

2

n∑
i,j=1

yiyjαiαjk(xi,xj) +
n∑
i=1

αi,

subject to


∑n

i=1 αiyi = 0

0 ≤ αi ≤ C

(2.55)

The kernels which can be used in conjunction with this optimization task are given in

Table 2.3.

Table 2.3: Alternative SVM Loss Functions. All machines have a bias term.

Type Constraint Kernel k(xi,xj)

Hard Margin 0 ≤ αi K(xi,xj)
L1-loss 0 ≤ αi ≤ C K(xi,xj)
L2-loss 0 ≤ αi K(xi,xj) + δij/D

A comparison of the general SVM and perceptron duals in Equations (2.54) and (2.55)

reveals that the main difference between the two machines is that an SVM constrains

the sum of Lagrange multipliers associated with the positive class to equal the sum of

Lagrange multipliers associated with the negative class. This constraint is enforced by the

equality: ∑
i

αiyi = 0. (2.56)
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This constraint does not exist in the perceptron dual, and so the sum of Lagrange multi-

pliers in each class may differ.

Recall from Section 2.5 that it is the constraint in (2.56) that allows SVMs to be

interpreted as a nearest point problem over two RCHs. The lack of this constraint in

the perceptron dual means that perceptrons can not be interpreted as the perpendicular

bisector of the shortest line between the RCHs of the two classes. However, perceptrons

do have an alternative geometric interpretation which we will discuss further in Chapter

4.

In this thesis we define perceptrons as a family of classifiers. Perceptrons include all

classifiers derived from the general perceptron QP task in Equation (2.54). This includes

hard and soft margin perceptrons both with and without bias. The distinguishing feature

of the perceptron family is that the sum of weights in each class is not constrained to be

equal. The lack of this constraint means that, unlike SVMs, they cannot be solved as a

nearest point problem over two RCHs.

We also define SVMs as a family of classifiers. SVMs include all classifiers defined from

the general SVM QP task in Equation (2.55). This includes hard and soft margin SVMs,

as well as their equivalent geometric reparameterizations. The distinguishing feature of

SVMs is that they may all be solved as a nearest point problem over the reduced convex

hulls of the two classes. Unlike perceptrons, the sum of Lagrange multipliers in each class

of an SVM is constrained to equality.

Although we assert that there is a clear way to distinguish between SVMs and per-

ceptrons, we should emphasize that our conventions are not necessarily adhered to in the

literature. Because of the similarity between SVMs and perceptrons, there has been some

overlap in the use of the terms ‘SVM’ and ‘perceptron’. For example, Mangasarian and

Musicant [79] call the L2-loss perceptron a Lagrangian Support Vector Machine (LSVM).

Tsang et al. [114] solves the same L2-loss perceptron task approximately, and calls the

resulting machine a Core Vector Machine (CVM). On the other hand, Kowalczyk [71]

describes an algorithm for solving the L2-loss SVM dual. However, due to the algorithm’s

similarity with classical perceptron algorithms, it is often referred to as a perceptron al-

gorithm [71, 68].
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Chapter 3

Reduced Convex Hulls

3.1 Introduction

In the previous chapter we reviewed the geometric interpretation of SVMs, as given by

Crisp and Burges [28] and Bennett and Bredensteiner [7]. The geometric interpretation

arises via the introduction of the reduced convex hull. A reduced convex hull is a type of

convex hull where the influence any single point can have on the hull is bounded from above

by a constant. Although reduced convex hulls are well defined as a stand-alone concept,

most research has focused on using them solely for the purpose of training [40, 109] or

understanding [28, 7] SVMs. By contrast, convex hulls and their applications have been

the study of a significant amount of research [94, 89, 5].

In this chapter we investigate further some of the theoretical properties of reduced

convex hulls, allowing us to construct several algorithms for computing reduced convex

hulls in their entirety. This allows us to visualize RCHs and explore several of their

properties in detail.

We also generalize the concept of RCHs to introduce the Weighted RCH (WRCH).

A WRCH allows the impact each point has on the hull to be specified individually. We

describe several properties of WRCHs, including how their vertices may be found. This

allows us to extend our RCH algorithms to compute WRCHs. The introduction of WRCHs

is important because they have a close relationship to weighted SVMs. In later chapters

we will elaborate on this relationship, and show how WRCHs can be used in conjunction

with nearest point algorithms in order to train weighted SVMs.

3.2 Background

This section describes background information on convex hulls, their properties, and how

they may be computed. Because convex hulls are so closely related to reduced convex

hulls, this information provides a useful foundation for later sections, in which we examine

some of the theoretical properties of reduced convex hulls.

39
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3.2.1 Convex Hulls

The convex hull of a set of n d-dimensional points P = {x1,x2, . . . ,xn} ∈ Rd is defined as

CH(P ) =

{
n∑
i

αixi

∣∣∣∣∣
n∑
i

αi = 1, 0 ≤ αi ≤ 1

}
.

The convex hull of P is the smallest convex set enclosing P or, equivalently, the set of all

convex combinations of points in P . CH(P ) forms a solid region, the border of which is a

convex polytope.

Convex hulls are simplest to describe and construct under the assumption that the

points in P are in general position. General position means that, for points in d-dimensional

space, there exists no d+ 1 points lying in a (d− 1)-dimensional plane. To simplify some

of the reasoning in this chapter, we will assume that the points we are dealing with are in

general position, unless stated otherwise.

When points are in general position, the border of CH(P ) is a simplicial polytope [94].

This means that for P ∈ Rd, all facets of the border are (d−1)-simplices and more complex

facets do not need to be considered. For example in two dimensions, facets are 1-simplices

(lines) (Figure 3.1a). In three dimensions, facets are 2-simplices (triangles) (Figure 3.1b).

For a simplicial polytope in Rd, each (d− 1)-simplicial facet is itself a simplicial poly-

tope with a number of (d− 2)-simplicial subfacets or ridges. Each ridge is shared by two

adjoining facets. This relationship continues down to 1-simplices and finally 0-simplices,

which are generally referred to as edges and vertices respectively, regardless of the dimen-

sionality of the polytope.
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(a) Convex hull in two dimensions
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(b) Convex hull in three dimensions

Figure 3.1: Convex hulls in two and three dimensions. Extreme points (vertices) are
circled

The vertices (or extreme points) of a convex hull (shown circled in Figure 3.1) are the

points from P which are on the outside of the hull. A point xk ∈ P forms a vertex of the

convex hull if there exists an n̂ such that:

xk · n̂ > xi · n̂, ∀i 6= k.
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This means that for a point to be a vertex it must have a scalar projection onto some

direction n̂ which is greater than that for any other point in P . Note that since CH(P )

is a convex polytope, all points from P which are inside the hull can be formed as convex

combinations of the vertices so they do not contribute to the hull.

We often refer to the normal of a facet. The normal of a facet is a vector which is

perpendicular to the facet. In a d-dimensional input space, facet normals will have d

components. Note that any facet has two possible normals, one pointing away from the

hull, and one pointing towards the center of the hull. For consistency, whenever we refer

to the normal of a facet, we are referring to the normal that points away from the center

of the hull.

We also rely on the notion of a point being above or below a facet. A point p is below

a facet if the facet is not ‘visible’ from p. More formally, the point p is below a facet f if:

n̂ · p < n̂ · v,

where n̂ is the normal of the facet, and v is any vertex of f . Because all vertices of a facet

must have an equal scalar projection onto the facet’s normal, it does not matter which

vertex of f is used for v. This concept is illustrated in Figure 3.2.

x1

x2

f

n̂

v1

v2

Figure 3.2: Here any point in the shaded region is below the facet f (with normal
n̂ and vertices v1,v2). For example, the point x2 is below the facet f ,
whereas x1 is above it

3.2.2 Algorithms for Computing Convex Hulls

The purpose of an algorithm which computes a convex hull is to calculate the facets

bordering the hull. For a set of points P ∈ Rd, each facet consists of d vertices from P .

This means the output of a program computing a convex hull is a list of d-vectors, each

defining a single facet. Each element of a d-vector specifies a vertex xi ∈ P in terms of its

index i.

An ideal representation for a list of fixed length vectors is a matrix. Accordingly, a

convex hull algorithm can output a hull as an nf × d matrix, where nf is the number of

facets. Each row of the matrix is a d-vector which defines a single facet in terms of its d

vertices. For example, for d = 3 (points in three dimensions) a convex hull representation
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might look like the following matrix:

F =


1 2 7

2 7 9
...

...
...

 (3.1)

This matrix indicates that the points x1,x2,x7 form a facet, as do the points x7,x5,x3.

There are additional rows for each of the facets in the convex hull.

Optionally, an algorithm may also compute an adjacency list specifying the facets in

a hull which are adjoining. In d dimensions, each facet will have d adjoining neighbors,

so an adjacency list can be represented using a matrix with the same dimensions as the

one defining the facets. For example, for the facets given in (3.1), an adjacency list might

look like:

A =


2 3 7

1 4 12
...

...
...


This matrix indicates that the first facet (i.e. the facet corresponding to the first row of

F ) adjoins the second, third and seventh facets (rows) of F .

Because the convex hull of a set of points in Rd consists of a number of (d−1)-simplicial

polytopes, each facet will adjoin d other facets along a ridge. It is not strictly necessary

for an algorithm to return an adjacency list since one may be calculated given a list of

facets. However, it is generally faster to calculate during the construction of a hull rather

than after. Some algorithms, such as the Beneath-Beyond algorithm which we describe

below, can also speed up the construction process itself by maintaining an adjacency list.

The Quickhull Algorithm

The Quickhull algorithm [35, 94] is a method of computing convex hulls in the plane. The

algorithm (Algorithm 3) takes a divide and conquer approach similar to that taken by

its namesake, the Quicksort algorithm. The algorithm takes advantage of the observation

that, given a facet of the hull, the point with the largest scalar projection onto the normal

of that facet must be a vertex in the convex hull. This allows the facets of a convex hull to

be recursively split until all the facets have been constructed. Furthermore, points which

fall below a facet can be discarded in recursive calls, meaning the algorithm can take a

divide and conquer approach to finding the convex hull [94].

Initially, the Quickhull algorithm takes as input the set of points P . It then constructs

two initial vertices from the hull, l and r. Any two unique initial vertices will work,

however convenient initial vertices are those which are most extreme along the x-axis, i.e.

the points satisfying:

l = arg max
l∈P

{−n̂ · l} r = arg max
r∈P

{n̂ · r}
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Algorithm 3 Quickhull algorithm [94, p114].

function qh(P )
n← (1, 0) . initial vertices must be extreme in any direction
l← arg max

x∈P
−n · x . first initial vertex

r← arg max
x∈P

n · x . second initial vertex

return qh helper(P, l, r) ∪ qh helper(P, r, l)
end function

function qh helper(P, l, r)
if P = {l, r} then

return {l, r} . this facet can not be split, return final vertices
else

n← normal(r− l) . normal of old facet
h← arg max

x∈P
n · x . a new vertex

nr ← normal(r− h) . normal of first new facet
nl ← normal(h− l) . normal of second new facet
L← the set of all points x ∈ P satisfying nl · x ≥ nl · h
R← the set of all points x ∈ P satisfying nr · x ≥ nr · h
return qh helper(L, l,h) ∪ qh helper(R,h, r)

end if
end function

where n̂ = (1, 0). These initial vertices can be used to form two facets (with opposing

normals), which are then passed to the recursive portion of the Quickhull algorithm.

Rather than returning a complete list of each facet and their vertices, the Quickhull

algorithm exploits the fact that, in two dimensions, each facet has only two adjoining

facets. Furthermore, adjoining facets share precisely one vertex. This means that a two-

dimensional convex hull has a concise representation as an ordered list of vertices which

is the same length as the number of facets. For example, if we were to use the matrix

representation described in the previous section, the simple two-dimensional hull in Figure

3.3 would be represented by the Quickhull algorithm as a the vector:

F =


1

5

2

4


Notice how the last vertex in F adjoins the first, so any vertex may come first in the

output, provided the neighboring vertices remain the same.

Unfortunately, the Quickhull approach is only possible in two dimensions where it is

guaranteed that only a single facet will be visible to successive extreme points which are

added to the hull. This property does not hold in higher dimensions where multiple facets

may be visible to a new extreme point.
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Figure 3.3: Convex hulls have a simplified representation in two dimensions

The Beneath-Beyond Algorithm

The Beneath-Beyond algorithm [61, 94] addresses the issue of convex hulls in higher di-

mensions. It works by iteratively applying Theorem 1 in order to build up a convex hull.

Theorem 1 states that, given an existing convex hull and a new point, the convex hull can

be updated to include the new point as follows. If the point is within the existing convex

hull, no changes are required. Otherwise, any existing facets which are visible from the

new point should be paved over with a ‘cone’ of new facets (Figure 3.4) [94].

A valid starting point for the Beneath-Beyond algorithm is to select any d points from

the set of points P and create two facets (with opposing normals) passing through these

points. Then, points can be iteratively added to the hull, one at a time, using Theorem 1,

until all points have been added. As the algorithm progresses the initial points will likely

be ‘paved over’ by new facets and vertices. The complete algorithm is described in detail

in Algorithm 4.

Theorem 1 (Barber et al. [4]). Let H be a convex hull in Rd, and let p be a point in

Rd −H. Then f is a facet of the convex hull of p ∪H if and only if

(a) f is a facet of H and p is below f ; or

(b) f is not a facet of H and its vertices are p and the vertices of a sub-facet of H with

one incident facet below p and the other incident facet above p.



3.3. REDUCED CONVEX HULLS 45

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

(a) Existing convex hull

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

(b) Once a new vertex is added, visible facets
are paved over

Figure 3.4: Updating a convex hull using the Beneath-Beyond Theorem

Algorithm 4 The Beneath-Beyond Algorithm

function beneath beyond(P )
F ← two facets with opposing normals passing through any d points in P
for all x ∈ P do

if x lies outside the hull then
find all facets X which are visible from x
for all boundary edges E in X do

add a facet to F which joins x with the vertices in E
end for

end if
end for
return F . return the facets of the hull

end function

3.3 Reduced Convex Hulls

Recall from the previous chapter that the reduced convex hull of a set of points P =

x1,x2, . . . ,xn ∈ Rd is defined as [28, 7]:

RCH(P, µ) =

{
n∑
i

αixi

∣∣∣∣∣
n∑
i

αi = 1, 0 ≤ αi ≤ µ

}
, (3.2)

where 0 ≤ µ ≤ 1. Notice that the difference between a reduced and a standard convex hull

is the introduction of the constant µ, which limits the maximum influence any individual

point can exert.

Theorem 2. The µ-reduced convex hull of P is a convex set.

Proof. A set is convex if a line joining any two points from the set is also enclosed in the

set. Take two points a,b ∈ RCH(P, µ) from the reduced convex hull of P . These points



46 CHAPTER 3. REDUCED CONVEX HULLS

can be expressed as

a =
∑
i

αixi 0 ≤ αi ≤ µ
∑
i

αi = 1

b =
∑
i

βixi 0 ≤ βi ≤ µ
∑
i

βi = 1.

The line segment joining a and b is given by

λa + (1− λ)b = λ
∑
i

αixi + (1− λ)
∑
i

βixi

=
∑
i

(λαi + (1− λ)βi)xi

where λ ∈ [0, 1]. Note that
∑

i(λαi + (1 − λ)βi) = 1, 0 ≤ λαi ≤ λµ and 0 ≤ (1 − λ)βi ≤
(1− λ)µ. Using this, and letting γi = (λαi + (1− λ)βi), we have

λa + (1− λ)b =
∑
i

γixi 0 ≤ γi ≤ µ
∑
i

γi = 1,

This is also a point in RCH(P, µ), hence the reduced convex hull is a convex set.

3.4 Finding Vertices and Support Points

Because reduced convex hulls are convex sets (Theorem 2), their border forms a convex

polytope. However, unlike convex hulls, the vertices of RCH(P, µ) are no longer guaranteed

to be points from P but can instead be convex combinations of points from P . When

µ ≤ 1/k, vertices must be formed as a convex combination of at least k points, since any

fewer points would fail to satisfy the constraint that the sum of all αi values must equal

one.

Being able to compute reduced convex hulls depends critically on being able to find

their vertices. The task of finding vertices is achieved by noting that, owing to the fact

that reduced convex hulls are convex sets, their vertices must still be extreme points. This

means that, for some direction n̂, a vertex v ∈ RCH(P, µ) must satisfy:

v · n̂ > r · n̂ ∀r ∈ RCH(P, µ), r 6= v

At a glance finding vertices satisfying this equation seems difficult, given that there is

an infinite number of possible convex combinations for points in P . However, the process

is simplified by noting that any vertex can be written:

v =

n∑
i=1

αixi, 0 ≤ αi ≤ µ,
n∑
i=1

αi = 1.
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Since the scalar projection of v onto direction n̂ is given by:

v · n̂ =

n∑
i=1

αixi · n̂,

it follows that a vertex which is extreme in direction n̂ must be formed as a convex

combination of the points from P which have the largest possible scalar projection onto

n̂. The process of finding a vertex in a given direction is described in Theorem 3.

Theorem 3. (Bern and Eppstein [9], Mavroforakis and Theodoridis [82]). For direction

n̂, a vertex v ∈ RCH(P, µ) which maximizes v · n̂ satisfies

v =
m−1∑
i=1

µzi + (1− (m− 1)µ)zm, m = d1/µe, (3.3)

where P = {z1, z2, . . . , zn} and points are ordered in terms of scalar projection onto n̂

such that zi · n̂ > zj · n̂⇒ i < j.

We refer to the points which appear with a non-zero αi in Equation (3.3) as the support

points of a vertex.

The process of finding a vertex of a reduced convex hull can be visualized in terms of

a plane being ‘pushed’ into a set of points (Figure 3.5). If the plane can separate d1/µe
points from the rest of the set, there is a convex combination of these points (given by

Theorem 3) which forms a vertex of the µ-reduced convex hull. For the case of µ = 1/k

(where k is an integer), all k points will have αi = µ.

n̂

xa

xb

xcv

Figure 3.5: Finding support points by ‘pushing’ a plane into a set of points. For
RCH(P, 1/3), the plane with normal n̂ separates points xa,xb,xc ∈ P
from the rest of P . Accordingly, xa,xb,xc become the support points for
the vertex v ∈ RCH(P, 1/3).

Theorem 3 is simplest to apply when no two points have an equal scalar projection

onto n̂. However it is not always guaranteed that this will be the case. When points are in

general position, ties like this may be broken arbitrarily and a vertex will still be obtained.

Arbitrary tie breaking is possible because, for d-dimensional points in general position, at

most d points will lie on the separating hyperplane.
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Finding vertices becomes more complex when points are not in general position, since

there can exist cases where breaking a tie arbitrarily can result in a non-vertex being

found. For example, Figure 3.6 shows a set of points not in general position. For this case,

the three possible ways to break the tie can result in two valid vertices and one non-vertex.

Because all possible results maximize the scalar projection onto n̂, v will always lie on the

outside of the hull. However, one possible value for v (shown as v′ in Figure 3.6) is not

a vertex since it falls on a line joining the two vertices. If used in the construction of an

RCH, this non-vertex will not result in an incorrect RCH being formed, since it does lie

on the outside of the RCH. However, a larger number of facets than is strictly necessary

will be constructed.

n̂ v
v'

v''

Figure 3.6: The hyperplane can not clearly separate three points in this case. There
are three possible values for v ∈ RCH(P, 1/3) given by Theorem 3. One
of these (v′) is not a true vertex.

3.5 Algorithms for Computing RCHs

Given that reduced convex hulls are convex polytopes, they can be constructed in a similar

manner to convex hulls. In this section we generalize the Quickhull and Beneath-Beyond

algorithms to create two RCH algorithms: an algorithm for points in arbitrary dimensional

space, and a faster algorithm for the special case of points in the plane. The main feature

of our new algorithms is that they allow the computation of reduced convex hulls with

any value of µ, whereas the original algorithms were limited to convex hulls only.

3.5.1 Representing an RCH

In Section 3.2.2 we described a commonly used representation for convex hulls in Rd.
However, it is not feasible to use this representation when vertices are no longer individual

points, but convex combinations of points, as is the case in RCHs. This means that an

alternative representation is required. Although the algorithms we describe in this section

are general in that they can be used in conjunction with any RCH representation, we

suggest the following one because it is efficient to work with and stores the complete set

of information that defines an RCH. That is, it stores the facets, the vertices making up
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those facets, the support points making up those vertices and, optionally, an adjacency

matrix which specifies the facets which are adjacent.

The most basic component of an RCH is its vertices. Unlike a convex hull, these are

no longer points from the original set, but are convex combinations of points from that

set. We represent the vertices of an RCH using an nv ×m matrix, where m = d1/µe and

nv is the number of vertices in the RCH. For example, if µ = 1/2, the vertices of an RCH

can be represented as:

V =


1 2

5 6

2 3
...

...


This matrix implies that x1,x2 ∈ P are support points for one vertex, and x5,x6 are

support points for another. If 1/µ is not an integer, then the final column specifies the

support point which is given a lesser weighting than other points. This means that V is

capable of representing all of the vertices of an RCH.

The facets of an RCH can be represented as an nf ×d matrix, where nf is the number

of facets, and d is the dimensionality of the input space. This matrix references rows from

the vertex matrix V , described above. For example, if one facet is made up of the vertices

from the first three rows of V , the facet matrix would appear as:

F =

1 2 3
...

...
...


Although the dimensions of this matrix are identical to the one used to represent the facets

of a convex hull, the two matrices store different information. This is because the facets

of a convex hull are made up of vertices from the original input set P , whereas the facets

of an RCH are made up of vertices from V .

3.5.2 Hyperplanes Passing Through d Points in Rd

An operation which is required in both RCH algorithms is to find the normal of a plane

passing through d points in Rd. This operation is simplest in two dimensions, in which the

normal n̂ = (n1, n2) of the line passing through points x1 = (x11, x12) and x2 = (x21, x22)

can be given by:

n̂ · (x2 − x1) = 0,

n1(x21 − x11) + n2(x22 − x12) = 0.

A solution for this is:

n = (x12 − x22, x21 − x11) ,
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which can then be normalized if necessary.

In higher dimensions, this operation is less trivial. For the general case of d points in

Rd, we want to find the normal n̂ satisfying:

x1 · n̂ = x2 · n̂ = · · · = xd · n̂ = c,

where c is any positive constant. This problem can be solved as a system of linear equa-

tions: 
x11 x12 · · · x1d

x21 x22 · · · x2d

...
...

. . .
...

xd1 xd2 · · · xdd



n1

n2

...

nd

 =


c

c
...

c

 .

3.5.3 Points in the Plane

Reduced convex hulls are simplest to construct for two-dimensional point sets. For this

case our algorithm takes as input a set of points P and a reduction coefficient µ. The

output is an ordered list of vertices of the RCH, V , which serves as both a facet list and

an adjacency list. Any two consecutive vertices in V form a facet. This means that the

algorithm only needs to output V , and not the separate facet list F which we described

previously.

The first step taken by the algorithm is to find two initial vertices of the reduced

convex hull l and r. This is achieved by finding two vertices which are extreme along the

x-axis (one in the positive direction, one in the negative direction). More explicitly, we

let n̂ = (1, 0) and then compute:

l = arg max
l∈RCH(P,µ)

{−n̂ · l} r = arg max
r∈RCH(P,µ)

{n̂ · r}

Recall that solving for l and r, i.e. finding vertices which are extreme in a given direction,

is a straightforward process that we described in Theorem 3.

The two initial vertices form a line segment which is treated as two initial facets with

opposing normals. Facets are then recursively split into two by adding new vertices,

found using the normal vector of a facet in conjunction with Theorem 3. This process is

described in detail in Algorithm 5. Notice that the recursive update step taken by the

RCH algorithm is a generalization of the recursive step taken by the Quickhull algorithm

for standard convex hulls.

The subsets L and R are formed in order to facilitate the removal of points which can

no longer contribute to future iterations of the algorithm (since they are not ‘extreme’

enough with respect to the current facet being considered). Because the vertices of a

reduced convex hull can share multiple support points, L and R are generally not disjoint

partitions as they are in the original Quickhull algorithm.

When µ = 1, the algorithm becomes a standard convex hull algorithm. This means

that S (the set of support points for a new vertex h) will contain a single point only, which
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Algorithm 5 Quickhull algorithm for reduced convex hulls

function qrh(P, µ)
n← (1, 0)
l← arg max

x∈RCH(P,µ)
−n · x . these two steps find the initial vertices in the RCH,

r← arg max
x∈RCH(P,µ)

n · x . and should be performed using Theorem 3

return qrh helper(P, l, r) ∪ qrh helper(P, r, l)
end function

function qrh helper(P, l, r)
n← normal(r− l) . normal of old facet
h← arg max

x∈RCH(P,µ)
n · x . new vertex, use Theorem 3 to compute

if h = l or h = r then
return {l, r} . return final facet, since it can not be split

end if
nl ← normal(h− l) . normal of first new facet
nr ← normal(r− h) . normal of second new facet
S ← the support points of h
L← the set of all points x ∈ P satisfying nl · x ≥ nl · s, for any s ∈ S
R← the set of all points x ∈ P satisfying nr · x ≥ nr · s, for any s ∈ S
return qrh helper(L, l,h) ∪ qrh helper(R,h, r)

end function

must be a vertex of the convex hull. For this case, the splits performed by the algorithm

will be identical to those performed by the standard Quickhull algorithm. This means

that, for the special case of µ = 1, the two-dimensional RCH algorithm becomes identical

to the Quickhull algorithm.

3.5.4 Points in Arbitrary Dimensional Space

When working with input points in three or more dimensions, a more complex approach

(compared to that of the Quickhull algorithm) is required in order to deal with the property

that multiple facets may be visible to each successive vertex which is added to the hull. Our

approach is derived from the Beneath-Beyond algorithm [61, 94], and shares similarities

with Barber et al.’s algorithm [4] for the case of µ = 1.

We avoid the randomized incremental approach used in several Beneath-Beyond im-

plementations in order to avoid intermediate vertices in the reduced convex hull. We

define intermediate vertices as vertices which are replaced in successive iterations of the

algorithm. Although such operations do not pose a problem in the computation of convex

hulls, they become difficult in reduced convex hulls. This is because the introduction of a

new support point could require not only the addition of and removal of several facets, but

the recalculation of a large number of vertices as the new support point is added and any

old support points are removed. For this reason we want to ensure that any time a vertex

is introduced to the reduced convex hull it is guaranteed to be a final and permanent

vertex.
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Input to our reduced convex hull algorithm (Algorithm 6) is a set of points P and a

reduction coefficient µ. Output consists of:

• A list of vertices V . For d-dimensional input, each vertex is a d-dimensional point.

• A list of facets F . For d-dimensional input, each facet has d vertices. Each vertex is

represented as an index of a vertex in V .

• An adjacency list A. Each entry in F has a corresponding entry in A which specifies

the indices of neighboring facets.

These outputs could be represented in a number of ways, and the algorithm itself does not

specify explicitly which representation to use. However, we recommend matrix representa-

tions which we previously described in Section 3.5.1, for their simplicity and completeness.

The starting point for the algorithm (for a d-dimensional point set) is to find any d

unique vertices of the reduced convex hull (using Theorem 3 in conjunction with d arbitrary

directions). These vertices are used to form two initial facets with opposing normals. For

each facet, the algorithm finds a new vertex with the largest possible scalar projection

onto the facet’s normal. The new vertex is added to the hull by ‘paving over’ any visible

facets and removing them as described in the Beneath-Beyond theorem. This process is

repeated over all facets until no new vertices can be found.

Algorithm 6 General dimension reduced convex hull algorithm

function beneath rch(P, µ)
V ← any d unique vertices from RCH(P, µ)
F ← two facets with opposing normals passing through the points in V
while non-final facets exist in F do

choose a non-final facet f from F
n̂← normal vector of f
h← arg max

x∈RCH(P,µ)
n̂ · x . new RCH vertex, found using Theorem 3

if h is not in V then . if vertex is new, add it to the hull
find all facets X which are visible from h
for all boundary edges E in X do

add a (non-final) facet to F which joins h with the vertices in E.
end for
remove the facets in X from F

else . otherwise, facet is final
mark f as a final facet and do not revisit

end if
end while
return (V, F ) . return vertices and facets

end function

The connection to Barber et al.’s algorithm is further elucidated when the case of µ = 1

is considered. For this case the two algorithms become equivalent, with the exception of

the partitioned outside sets which are omitted in our algorithm. Such outside sets are not

possible to maintain in the same manner as Barber et al.’s implementation since distinct

vertices in a reduced convex hull can share support points.
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3.6 Related Geometric Concepts

There are several existing concepts in computational geometry which are closely related

to, and in some cases equivalent to, RCHs. For example, Bern and Eppstein [9] note that

RCHs are a subset of centroid polytopes [10]. There is also an existing geometric concept

of a k-set which is related to RCHs in a way that we believe has not yet been pointed

out. We review the definition of centroid polytopes and k-sets below, and explore their

relationship to RCHs.

3.6.1 k-sets

A k-set of P is a subset of k elements from P which can be separated from the remaining

points using a hyperplane [25, 121, 1]. An example of a 2-set is shown in Figure 3.7a.

Here a plane can clearly separate two points from the remaining points in P , creating a

2-set. Figure 3.7b shows that there are a total of five 2-sets which can be formed from

this particular set of points.

(a) A plane separates a 2-set of P (b) P has a total of five 2-sets
(shown circled)

Figure 3.7: 2-sets of a set of points in R2

Recall from Section 3.4 that the procedure for finding a vertex in an RCH can be

visualized as a plane being ‘pushed’ into a set of points until it separates d1/µe points.

This means that each vertex of an RCH is formed from a k-set of P , where k = d1/µe. It

follows that the number of k-sets in P is equal to the number of vertices in RCH(P, 1/k).

There are two common problems associated with k-sets: computing the number of

k-sets in a set of points, and bounding the maximum number of k-sets that can exist for

any set of size n. It is interesting to note that Algorithms 5 and 6 can be used to compute

the number of k-sets in a set of points by simply totalling the number of vertices in a RCH

with µ = 1/k.
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3.6.2 k-set Polytopes

There are two equivalent definitions of a k-set polytope. Andrzejak and Fukuda [2] define

the k-set polytope of P as the convex hull of the set:

X(P ; k) =

{∑
t∈T

t

∣∣∣∣∣ T ∈ P, |T | = k

}
.

Notice that X(P ; k) is the set of all points which are equal to the sum of any k points

from P . An equivalent (scaled) definition is provided by Oraiby and Schmitt [88], who

defines a k-set polytope as the convex hull of (1/k)X(P ; k).

The relationship between RCHs and k-set polytopes is best understood using the

definition given by Oraiby and Schmitt [88], in which case the k-set polytope of P is

the convex hull of all centroids of the k-sets of P , making it equivalent to an RCH with

µ = 1/k. The only difference between an RCH and a k-set polytope, is that the RCH

parameter µ can take any of a continuous range of values, whereas a k-set polytope is

limited to integer values of k.

3.6.3 Centroid Polytopes

Bern et al. [10] define a centroid polytope C(P ; l,h) as:

C(P ; l,h) =

{
n∑
i=1

αixi

∣∣∣∣∣
n∑
i=1

αi = 1, li ≤ αi ≤ hi,
n∑
i=1

li ≤ 1 ≤
n∑
i=1

hi

}
.

A centroid polytope is the set of all weighted centroids of P , where all points have a

unique upper and lower bound determining their minimum and maximum influence on

the polytope.

The centroid polytope is an even further generalized form of reduced convex hull. When

li = 0 and hi = µ for all i, the centroid polytope becomes equivalent to the µ-reduced

convex hull. Rather than having a shared upper bound on all αi values, each point in a

centroid polytope has its own unique upper bound. In addition, each point also has an

associated lower bound. This means that while it is possible to limit the influence certain

points can have on the polytope, other points can be forced to exert a greater influence.

3.7 Properties of RCHs

With the aid of the algorithms introduced in the previous section we are now able to

explore some of the more interesting properties of reduced convex hulls, such as how

many vertices and facets are present and how this number will change as the parameter µ

changes. There is also an isomorphism between an RCH with µ = 1/k and an RCH with

µ = 1/(n− k), which we will describe in more detail in this section.
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3.7.1 How the Reduction Works

Reduced convex hulls provide a desirable method of reducing a convex hull because they

take into account the density of points. In regions where there are a lot of points (high

density regions), the border of the RCH will contract more strongly towards the centroid

than in regions where there are relatively few points (low density regions). This means

that, in the context of SVMs, reduced convex hulls are used to lessen the impact of outlying

points and increase the margin between two classes. Figure 3.8 shows an RCH with varying

µ reducing over both low and high density regions.

Figure 3.8: Reduced convex hulls for µ = 1, 1
10 ,

1
25 ,

1
50 ,

1
100 .

3.7.2 Number of Vertices

The number of vertices in a reduced convex hull depends on the number of input points and

their dimensionality, as well as the parameter value µ. Letting m = d1/µe, the simplest

(and most trivial) bound on the number of vertices in an RCH of n points is given by:

nv(n, d,m) ≤


(
n
m

)
if 1/µ is an integer,(

n
m

)
m otherwise.

(3.4)

The additional vertices that can be present when 1/µ is not an integer occur because, in

addition to there being d1/µe support points per vertex, one of those support points must

be given a smaller αi than the others.

Although Equation (3.4) is a simple and valid bound, it tends to be insufficiently

loose, since the only time a hyperplane can separate all combinations of k points is when

n = d + 1. Tighter bounds on the number of vertices in an RCH can be achieved using

results from k-set theory. For example, Clarkson [24] notes that an upper bound on the

number of ≤ k-sets that can be formed from a set of n points in d dimensions can be

given by O(nbd/2ckdd/2e). Note that the number of ≤ k-sets is the sum of the number of

all i-sets, where i ≤ k.
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Clarkson’s bound can be turned into a bound on the number of vertices in an RCH:

nv(n, d,m) ≤

O(nbd/2cmdd/2e) if 1/µ is an integer,

O(nbd/2cmdd/2e+1) otherwise.
(3.5)

Here m = min(d1/µe, n − d1/µe), meaning similar to Equation (3.4), the bound only

increases until m = n/2. The bound is equal for the cases of µ = 1/k and µ = 1/(n− k).

This suggests an interesting isomorphism between RCHs with these values of µ, which we

will explore in the following sections.

Note that although Clarkson’s bound is for ≤ k-sets, it is currently also the tightest

known upper bound on the number of k-sets for points in an arbitrary dimensional space.

Tighter bounds apply only to specific cases of small d. For example Dey [31] provides an

upper bound of O(nk1/3) on the number of k-sets for points in the plane. This bound can

be used to construct a slightly tighter bound on the number of vertices of an RCH in the

plane:

nv(n,m) ≤

O(nm1/3) if 1/µ is an integer,

O(nm4/3) otherwise.
(3.6)

Here we again use m = min(d1/µe, n− d1/µe).

3.7.3 Number of Facets

The maximum number of facets in an RCH is closely related to the maximum number

of facets in a standard convex hull. Preparata and Shamos [94] provide an upper bound

(attributed to Klee [70]) on the number of facets in the convex hull of n points in d

dimensions as:

nf (n, d) ≤


2n
d

(n− d
2
−1

d
2
−1

)
, for d even

2
(n−b d

2
c−1

b d
2
c

)
, for d odd

This bound corresponds to the case where all of the n points form vertices in the convex

hull.

In the case of a reduced convex hull, the maximum number of facets is greater, and

depends on the value of µ. Combining Klee’s upper bound with either Equation (3.4)

or (3.5) provides an upper bound on the number of facets in the RCH of n points in d

dimensions with m = d1/µe:

nr(n, d,m) ≤ nf (nv(n, d,m), d) (3.7)

The upper bound on the number of vertices in an RCH in the plane (given in Equation

3.6) may also be used to provide a tighter facet bound specifically for the two-dimensional

case.
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3.7.4 Symmetry

In all bounds on both the number of vertices and facets in an RCH there is an interesting

symmetry which occurs between the cases of µ = 1/k and µ = 1/(n − k). These cases

have an identical upper bound on the number of vertices in the hull and, consequently, an

identical upper bound on the number of facets. Figure 3.9 shows how this symmetry is

also reflected in the actual number of vertices and facets in an RCH.
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Figure 3.9: Number of facets in the RCH of 25 uniformly distributed random points

The reason for the symmetry in the cases of µ = 1/k and µ = 1/(n− k) can be found

by considering some the vertices belonging to the RCHs for these µ values, as depicted in

Figure 3.10. Notice how any hyperplane that separates k points must also separates n−k
points on the opposing side of the plane. From Theorem 3, we know that if a hyperplane

can separate k points in a set P from the remaining points in P , these points must form

a vertex of RCH(P, 1
k ). It follows that RCH(P, 1

k ) must have the exact same number of

vertices as RCH(P, 1
n−k ).

Figure 3.10: A plane separating k points on one side and n − k points on the other
side
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The property depicted in Figure 3.10 means that any vertex va ∈ RCH(P, 1
k ) can be

transformed into a vertex wa ∈ RCH(P, 1
n−k ), which is extreme in the opposite direction

to va. If vertex va is given by:

va =
n∑
i=1

αixi,

then, using Theorem 3, the transformed vertex wa can be given by:

wa =
k

n− k

n∑
i=1

(
1

k
− αi)xi.

Letting c = 1
n

∑n
i=1 xi equal the centroid of P , wa can also be written:

wa =
k

n− k

n∑
i=1

1

k
xi −

n∑
i=1

αixi,

=
n

n− k
c− k

n− k
va.

(3.8)

Equation 3.8 implies that the entire RCH(P, 1
k ) is a reflected and scaled RCH(P, 1

n−k ).

Figure 3.11 shows an example of this transformation for six points in R2, with k = 2.

The larger hull corresponds to µ = 1/k = 1/2, while the smaller hull corresponds to

µ = 1/(n − k) = 1/4. Notice how the smaller hull is simply a reflected and scaled copy

of the larger hull. Just as vb connects to va and vc via an edge, so too does wb connect

to wa and wc via an edge. Each vertex and facet in the larger hull can be paired with its

transformed vertex or facet in the smaller hull, and vice versa.

Figure 3.11: Transforming an RCH with µ = 1/k into an RCH with µ = 1/(n − k).
Here k = 2 is used.

It is also informative to observe how the number of facets for an RCH with µ in the

range (b1/kc, d1/ke) remains constant (Figure 3.12). For RCHs with µ values falling in

this range, Theorem 3 suggests that there must be an identical number of vertices, each
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with identical support points. This is due to the fact that, for µ values in this range,

there must be one support point with a smaller αi than all other support points. This

means that, as µ is increased in this range, the weight assigned to the support point with a

smaller αi value will be decreased, while the αi’s of other support points will be increased.

The effect of this shift in αi’s is shown in Figure 3.12.
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Figure 3.12: RCHs with µ ∈ (b1/kc, d1/ke). Notice how the number of facets and
vertices is equal.

This relationship between RCHs with µ ∈ (b1/kc, d1/ke) means that an RCH can

have its µ value changed within this range without having to recompute the entire RCH.

Instead, vertices can simply be updated, with the connections between vertices (the facets)

remaining the same.

3.8 Computational Complexity of RCH Algorithms

Using the properties discussed in the previous section we can now describe the computa-

tional complexities of the algorithms introduced in Section 3.2.2.

3.8.1 Points in the Plane

The Quickhull-based algorithm for computing RCHs in the plane is much simpler and

more efficient than the algorithm for points in arbitrary dimensional space due to the

recursive approach, which is only possible in two-dimensional space.

Each recursive step of the algorithm computes one additional vertex in the RCH.

Let there be a maximum of nv(n,m) vertices in the RCH of n points with µ = 1/m.

The dominant cost of each step is to compute the scalar projections required to find the

support points for the next vertex. If the subsets formed by the algorithm at each step

were disjoint, we could assume the subsets approximately halved with each step to yield

a worst case complexity of O(nv(n,m)× log(n)). However, since the subsets may overlap

significantly, we use a worst case of n scalar projections per step, making the total worst
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case complexity of the algorithm nv(n,m)×n. Taking nv(n,m) as given by Equation (3.6)

results in a worst case complexity of O(n2m4/3).

3.8.2 Points in Arbitrary Dimensional Space

Constructing RCHs in higher dimensional spaces is difficult, both conceptually and com-

putationally, for a number of reasons. Not only is a recursive approach no longer viable,

but the number of vertices and facets increases rapidly with the dimensionality.

The main computational cost in computing RCHs in an arbitrary dimensional space

is that of finding the scalar projection of all points onto the normal vectors of all facets,

an O(nr(n, d,m)× nd) operation. There are additional costs such as: finding nv(n, d,m)

vertices, a cost of O(nv(n, d,m) × nd); calculating the normal vectors of new facets each

time a vertex is added; and iteratively adding nv(n, d,m) vertices to the hull. However,

all of these costs are eclipsed by the original cost of O(nr(nv(n, d,m), d,m)× nd).

Writing the complexity as O(nr(n, d,m) × nd) tends to understate the true difficulty

in computing RCHs in high dimensions, so it helps to expand this. Using the simplified

nf (n, d) = nbd/2c/bd/2c! (which Barber et al. [4] attribute to Klee [70]), in conjunction

with the relationship between nf and nr given in Equation (3.7), the worst case complexity

expands to:

O

(
nd
(
nbd/2cmdd/2e+1

)bd/2c
bd/2c!

)
. (3.9)

This scales very poorly with d, and can quickly make the algorithm infeasible as d grows.

Even if the cost of computing facets could be reduced to constant time (hence reducing

the complexity above by a factor of nd), the sheer number of facets as d grows would still

pose a problem.

3.9 Weighted Reduced Convex Hulls

In this section we introduce the concept of a Weighted Reduced Convex Hull (WRCH).

A WRCH is an RCH where each individual point is assigned a unique weight specifying

its influence on the hull. We define WRCHs such that, in later chapters, we are able

to exploit WRCHs in order to provide an intuitive geometric interpretation of Weighted

SVMs (WSVMs). As well as allowing us to better understand how and why WSVMs work,

this also allows us to construct intuitive geometric algorithms for training WSVMs.

3.9.1 Definition

The WRCH of a set of points is an RCH where, as well as having an overall reduction

coefficient µ, each point also has an individual weight si specifying its influence on the

hull. The WRCH of a set of points P is expressed formally as:

WRCH(P, µ, s) =

{
n∑
i

αixi

∣∣∣∣∣
n∑
i

αi = 1, 0 ≤ αi ≤ siµ

}
. (3.10)
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Here the upper bound on the αi value associated with a point is given by siµ, that is, the

point’s individual weight multiplied by the overall reduction coefficient µ.

3.9.2 Relationship with Point Duplication

Assigning a point a weight of si = k, where k ∈ Z, is equivalent to duplicating it so that it

exists k times, with each of the k instances given a weight of 1. To verify this equivalence,

note that: {
k∑
i=1

αiz

∣∣∣∣∣ 0 ≤ αi ≤ µ

}
≡

{
βz

∣∣∣∣∣ 0 ≤ β ≤ kµ

}
. (3.11)

The relationship described by Equation (3.11) means that there are also several other

equivalences in WRCHs. Namely, µ is no longer strictly necessary since changing µ by

a factor of k is identical to changing all si by a factor of k. However we retain µ as a

parameter because separating individual point weights and overall hull reduction makes

for a more intuitive parameterization. Generalizing the relationship between duplicate

points and weights, note also that a single point xi with associated weight si has the same

impact on the hull as multiple duplicates of xi with associated weights summing to si.

3.9.3 Finding Vertices and Support Points

The process of finding a vertex of a WRCH is not as straightforward as finding a vertex

of an RCH. In a WRCH there are no longer a fixed number of support points associated

with each vertex. Instead, the number of support points depends on the weight associated

with each support point.

Algorithm 7 describes the process for finding a WRCH vertex which is extreme in

direction n̂. Notice how this process is similar to the standard RCH vertex finding process,

except instead of capping the αi value of points at µ, they are now capped at siµ. Because

this means it is not possible to know in advance how many support points are required

to ensure
∑

i αi = 1, support points are iteratively added until this constraint is satisfied.

The final support point added is the only one which can have αi < siµ.

Algorithm 7 Finding a Weighted RCH vertex

Require: n̂ ∈ Rd, P = x1, . . . ,xn ∈ Rd, s ∈ Rn
function wrch vertex(P , s, µ, n̂)

α← 0
s← 0
repeat

select i such that αi = 0 and n̂ · xi ≥ n̂ · xj , ∀j 6= i
αi ← min (siµ, 1− s)
s← s+ αi

until s = 1
v←

∑
i αixi

return v
end function
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The point found by the algorithm must be extreme in direction n̂ because the scalar

projection n̂ · v is given by

n̂ · v =
∑
i

αin̂ · xi,

which is maximized by assigning the largest possible αi to the points with the largest

scalar projection onto n̂, and zero to all other αi’s, as done by Algorithm 7. As expected,

the algorithm becomes equivalent to the RCH vertex finding technique (Theorem 3) when

all weights are equal.

Notice in Algorithm 7 that vertices in a WRCH are still formed as a convex combination

of points from P . This means that a weight si does not in any way scale a point xi itself,

but rather modifies the maximum influence a point can have on the WRCH. If xi is not

a support point of the WRCH, changing its weight has no impact on the hull.

3.9.4 Adapting RCH Algorithms to Support Weights

The only change that is required in order to adapt RCH algorithms to find WRCHs is

to alter the way in which vertices are found. This means that, instead of finding vertices

using Theorem 3, which does not take into account individual point weights, they should

be found using Algorithm 7. A vector of individual training weights si can then be supplied

to the algorithm in order to train WRCHs.

Allowing input points to be assigned an individual weight changes the way the reduc-

tion in a WRCH works. An example of the impact of weights is shown in Figure 3.13. In

this example, there are four points, with weights given by s1 = 1, s2 = 2, s3 = 3, s4 = 4.

Notice how the hull will not recede from a point xi until the overall reduction coefficient

µ becomes smaller than 1/si. Notice also how, rather than reducing to the centroid, the

WRCH reduces to the weighted centroid:

cweighted =
1∑
i si

∑
i

sixi

This reduction to the weighted centroid occurs at µ = 1/
∑

i si, which may be greater or

less than 1/n, depending on the weighting scheme that is chosen.

The weighting scheme chosen in Figure 3.13 is equivalent to duplicating points x2,x3,x4

so that they exist 2, 3, and 4 times in the training set, respectively. Notice from this figure

how assigning a point a large weight will never result in a scaling of the point itself, nor

will it ever cause the RCH to grow past that point. Rather, the weight specifies a threshold

at which the hull should be allowed to recede over that point. The larger this threshold is

set for a particular point, the smaller the overall reduction parameter must be set in order

for the hull to recede over this point.
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Figure 3.13: The impact of the parameters on a WRCH

3.10 Conclusions

To summarize, in this chapter we have examined RCHs as a concept in their own right,

separate from their origins in SVMs. We have proposed two algorithms for computing

RCHs. The first algorithm, a generalization of the Quickhull algorithm, computes RCHs

in the plane. The second algorithm computes RCHs in an arbitrary dimensional space.

Using these algorithms, we have been able to explore some of the properties of RCHs.

For example, we have described how the number of vertices and facets changes as the

reduction parameter µ changes. Generally, the number of vertices and facets tends to

reach a maximum when µ ≈ 2/n, where n is the number of points.

We have also described an interesting relationship between RCHs with µ = 1/k and

µ = 1/(n−k), where k is any integer between 1 and n. For these two cases, the number of

facets and vertices is identical. Further, the RCH with µ = 1/(n−k) is a copy of the RCH

with µ = 1/k that has been scaled and rotated by 180 degrees about the centroid. The

value assigned to µ can alternate between these two values without having to recompute

the entire hull. Instead, the vertices of the original hull can simply be transformed to

produce the new hull. There is a similar relationship between RCHs with µ values in the

range (b1/kc, d1/ke), where RCHs can be transformed in this range without having to be

completely recomputed.
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The algorithm for computing RCHs in the plane has worst case time complexity

O(n2m4/3), where n is the number of points, and m = min(1/µ, n− 1/µ). This makes the

algorithm less efficient than some of the fastest convex hull algorithms, which have worst

case time complexity of O(n log(n)). This difference becomes particularly apparent as µ

approaches 2/n,

We have also proposed an algorithm for computing RCHs in an arbitrary dimensional

space. This algorithm has worst case time complexity O(nbd/2c+1mdd/2e+1/bd/2c!). This

means that the algorithm scales extremely poorly as d increases, quickly making the

algorithm infeasible. However, this is only slightly worse than most convex hull algorithms,

which generally share this property of becoming infeasible as d grows [4].

Another contribution of this chapter is the introduction of WRCHs. WRCHs are RCHs

where each individual input point is assigned a unique weight. Assigning a point a weight

of two is equivalent to duplicating it. We have described how the vertices of a WRCH may

be found, and used this information in order to adapt our RCH algorithms to be able to

compute WRCHs. WRCHs allow a greater level of control over the way in which a hull is

reduced. For example, certain input points can be assigned a greater or lesser importance,

so that the hull recedes from them either slower or faster as µ is decreased.

The concept of WRCHs is further explored in subsequent chapters. For example, in

Chapter 4 we describe the relationship between WRCHs and Weighted SVMs (WSVMs).

By examining this relationship we are able to better understand how WSVMs work and

why they are important. We further extend on this work in Chapter 5 by exploring how

WSVMs can be trained using geometrically intuitive algorithms which exploit the concept

of WRCHs.

In future work, we suggest that RCHs and WRCHs have the potential to provide

an alternative to convex hulls for applications in which convex hulls act poorly due to

noise or outlying points. For example, convex hulls have been used in statistics to order

multivariate data [5], detect outliers [99, 53], and estimate probability density contours

[36]. It would be interesting to explore whether the use of RCHs or WRCHs in these

applications could be of any benefit.

There are several ways in which RCHs could be extended in future work. One of the

most beneficial improvements that could be made to our RCH algorithms is in reducing

the computation complexity as d grows. We suggest that one way in which this might be

accomplished is in setting a tolerance parameter ε. Rather than computing every single

facet, an ε-optimal RCH algorithm could stop computing new facets once an update vertex

has distance ≤ ε to an existing facet.

Another way in which RCHs could be extended is to use alternative measures of cen-

trality in computing vertices. Recall that a vertex in a µ-RCH is formed as the centroid of

1/µ support points (in the simple case where 1/µ is an integer). This measure of centrality

is inherently non-robust, and the large number of support points which contribute to the

position of each vertex make an RCH inherently less concise to represent than a convex

hull. Instead, alternative measures of centrality could be proposed and used to reduce

convex hulls in new ways.



Chapter 4

Understanding SVMs from a

Geometric Perspective

4.1 Introduction

In this chapter we use the geometric interpretation of SVMs, in conjunction with the prop-

erties of Reduced Convex Hulls (RCHs) and Weighted Reduced Convex Hulls (WRCHs)

described in the previous chapter, in order to understand better how and why SVMs work.

The geometric interpretation makes such analysis possible because it aids in building in-

tuitive mental models of the task being performed by SVMs.

We begin by building a geometric framework which extends the original geometric

interpretation of SVMs introduced by Bennett and Bredensteiner [7] and Crisp and Burges

[28]. We discuss why convex hulls and RCHs have desirable properties for learning. We also

examine the significance of the centroids in SVM classification, and show how SVMs are

related to other types of classifiers such as the k-means and k-nearest neighbor classifiers.

Another way in which we build on the geometric framework is by extending it to

cover the case of weighted classification. We use the concept of WRCHs, which we intro-

duced in the previous chapter, in order to provide an intuitive geometric interpretation

of Weighted SVMs. In later chapters we will exploit this result in order to train WSVMs

using geometrically intuitive algorithms.

We build further on the geometric framework by incorporating a geometric interpre-

tation of perceptrons, both in weighted or unweighted forms, with varying loss functions.

This allows us to provide a simple geometric definition of a perceptron which encompasses

all variants. Comparing this geometric definition of perceptrons with that of SVMs pro-

vides a simple way to illustrate the differences between the two machines in geometric

terms.

In Section 4.3 we discuss how the threshold of an SVM is computed. The threshold

computed by the most commonly used SVM software packages is the one that is given by

the KKT conditions (which we described in Section 2.4). However, it has previously been

suggested that this is not necessarily the best threshold to use [92]. We show that under

certain conditions this threshold can clearly lead to an increase in error rate. We describe

some of the alternative thresholds that have been proposed, and provide theoretical and

65
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empirical comparisons of these thresholds. Our main finding from this section is that, in

general, there seems to be little reason to prefer the KKT threshold over a geometric or

probabilistic threshold.

4.2 The Geometric Framework

The geometric framework for SVMs centers on the concept of RCHs introduced by Bennett

and Bredensteiner [7] and Crisp and Burges [28], and elaborated on in Chapter 3. Recall

that an SVM is equivalent to the perpendicular bisector of the shortest line between the

RCHs of the two classes (Figure 4.1). In this section we build on the geometric framework

for SVMs by using the geometric concepts explored in Chapter 3 to understand better

how SVMs work, and their relationship to other types of classifiers.

Figure 4.1: The geometric interpretation of an SVM

The threshold is the offset of the decision surface of an SVM from the origin (Figure

4.2). In previous sections we have referred to the offset as b. Changes to b, although they

can have a significant impact on classification error, do not alter the orientation (i.e. the

normal vector) of the decision surface. It is important to note that there is a discrepancy

between the most geometrically intuitive threshold and the threshold given by the KKT

conditions of the SVM optimization task [28]. The most geometrically intuitive threshold

places the hyperplane half way between the nearest points in the two RCHs, whereas the

KKT conditions do not adhere to this placement. We explore this discrepancy in detail

in Section 4.3.

4.2.1 Why Use Reduced Convex Hulls for Learning?

For convex hull learning (i.e. RCHs with µ = 1), there is an implicit rule: if points

xa,xb ∈ P are in the same class, any point on the line segment joining those two points

should also be in that class. RCHs generalize this assumption by ensuring that if the

centroid of any k points from P and the centroid of any other k points from P are in the

same class, then any point on the line segment between the two centroids is also in that

class.
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Origin

b=βb=β/2b=0

Figure 4.2: The threshold of an SVM. Here b = β is the threshold placing the plane
halfway between the nearest points of the two classes. b = β/2 brings
the plane closer to the origin, while a hyperplane with b = 0 will always
intersect the origin.

4.2.2 Significance of the Centroids

The centroids of the classes play an important role in support vector classification. For

instance, assuming the hyperplane is placed halfway between the nearest points in the

RCH of the two classes (which will always be the case if the geometric threshold is chosen,

but may not be the case of other thresholds are chosen, as we will discuss in Section 4.3),

the hyperplane must always intersect the line between the centroids of the two classes

(Figure 4.3).

Figure 4.3: Here a solid line joins the centroids of the two classes (represented by
stars). Regardless of the way the RCHs of the two classes are reduced, a
hyperplane separating them must always intersect this line segment.

The centroids of the classes also play a role in determining whether a dataset can be

learned at all by an SVM. For example, suppose the centroid of one class (with k points)

lies inside the RCH of the other class, with µ = 1/k (Figure 4.4). In this case there is no

value of µ which can separate the two classes. The result is that, unless different kernel

parameters or a weighting scheme is applied, an SVM can not be trained on the data.
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Figure 4.4: When the centroid of one class (represented here by a star) lies inside the
RCH of the other class, an SVM can not be trained on the data unless
different kernel parameters or weighting schemes are applied

The way in which centroids arise in many aspects of support vector classification reveals

an important point regarding their robustness. For any training set, we could add a single

point to each class which moves the centroids of the classes to any desired position. Because

an SVM is constrained to intersect the line between the means of the two training classes,

moving the centroids in such a manner can place the separating hyperplane in almost any

desired position. Biggio et al. [11] refer to this as a ‘poisoning attack’, and describe in

more detail how this type of ‘malicious’ data can be introduced.

4.2.3 Impact of the Kernel

We previously introduced several of the most commonly used kernels and their parameters

in Chapter 2. The choice of kernel and kernel parameters has the ability to alter completely

the type of decision surface formed by an SVM. In this section we explore further the

impact of some of these parameters.

Gaussian Radial Basis Function (RBF) Kernels

The Gaussian RBF kernel with width γ is written:

K(xi,xj) = exp
(
−γ||xi − xj ||2

)
. (4.1)

Equation (4.1) results in an SVM decision surface of the form:

f(x) =
∑
i

αiyi exp
(
−γ||xi − x||2

)
− b.

This decision surface consists of a combination of basis functions formed around the sup-

port vectors of the machine. The width of these basis functions is specified by the param-

eter γ, so that smaller values of γ result in basis functions with a larger width. It may

seem counter-intuitive that larger values of γ correspond to smaller width basis functions,

however we use this convention in order to ensure consistency with common SVM software

such as SVMlight [58] and LIBSVM [20]. Other authors will occasionally use the parameter

σ2 = 1/2γ to be more consistent with the Gaussian probability density function [64].
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(a) γ = 0.5
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(b) γ = 50

Figure 4.5: Gaussian C-SVMs with C = 1 while γ is varied

For very large width basis functions, the decision surface of a Gaussian SVM will

appear almost linear in attribute space (Figure 4.5a). As the width of the basis functions

shrink, the capacity of the machine to fit the data will increase. Consequently, smaller

width basis functions are more likely to result in a decision surface which, due to its highly

nonlinear nature, is overfit to the data.

Polynomial Kernels

The polynomial kernel with degree q is written:

K(xi,xj) = (1 + xi · xj)q . (4.2)

A polynomial SVM has a decision surface given by:

f(x) =
∑
i

αiyi (1 + xi · x)q − b. (4.3)
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(b) q = 6

Figure 4.6: Polynomial C-SVMs with C = 1 while q is varied
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Equation (4.3) is a degree q multivariate polynomial, which is easiest to visualize in

lower dimensions. Figure (4.6a) shows a degree 2 polynomial SVM for two-dimensional

data. Notice how the change in degree q results in higher degree polynomials which have a

greater capacity to fit the data (Figure 4.6b). However, if the dimensionality of the input

points d and also the polynomial degree q are both large, the number of terms in Equation

(4.3) can become extremely large, making the decision surface complex enough that is has

a good chance of overfitting the data.

4.2.4 Relationship with k-Means Classifiers

A k-means classifier is a simple classifier which predicts the class of a point based on the

class mean it is closest to. For example, Figure 4.7 shows a k-means classifier making a

prediction. For the case of supervised classification, which we refer to here, the k-means

classifier is sometimes also referred to as an Euclidean distance classifier [111].

x

L1

L2

Figure 4.7: A k-means classifier predicts the class of the point marked X based on
the nearest class centroid. In this case, L1 < L2, so the point is classified
as belonging to the left-most class

The geometric interpretation makes it apparent that there is a relationship between

the k-means classifier and SVMs. To see this, consider the case of a µ-SVM trained on a

set of data of size n with an equal number of points in each class. In this case, choosing

µ = 2/n means that the two classes will be reduced to their centroids, and a corresponding

SVM can be given by setting all αi = µ.

The decision surface associated with the SVM described above (combined with a ge-

ometric threshold) is shown in Figure 4.8. Notice how any point on this line must have

an equal distance to the centroids of each class, meaning it is equivalent to the k-means

decision boundary.

4.2.5 Relationship with k-Nearest Neighbor Classifiers

The k-nearest neighbor classifier is another simple type of supervised classifier which

predicts the class of a point based on the class of its nearest k neighboring points. For

example, in the case of k = 1, a point is always classified as belonging to the same class

as its closest neighboring point.

Compare the plot of the decision surface of a 1-nearest neighbor classifier in Figure

4.9a to that of a Gaussian SVM (Figure 4.9b), trained with width γ = 50, regularization
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Figure 4.8: An SVM is equivalent to a k-means classifier under certain conditions

parameter µ = 1, and with the threshold forced to b = 0. Notice how the decision surfaces

are almost identical, with the exception of regions where there are no training points,

where the SVM simply classifies everything as belonging to the positive class.
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(a) 1-nearest neighbor classifier
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Figure 4.9: A 1-nearest neighbor classifier compared to a Gaussian SVM with very
large γ

The similarity between the decision surfaces of the Gaussian SVM and the 1-nearest

neighbor classifier stems from a conceptual similarity, which can be examined by substi-

tuting the Gaussian kernel into the SVM decision function to form:

f(x) =
∑
i

αiyi exp
(
−γ||xi − x||2

)
− b. (4.4)

Notice how, when γ is large, the greatest influence on this decision function is likely to

come from the support vector which is closest to x.

Another reason why Gaussian SVMs with large γ share such a strong resemblance

to a nearest neighbor classifier is that, for these large values of γ, it is also likely that

every point will become a support vector. To understand why this is the case, recall that

the KKT conditions of the µ-SVM dual (described in Section 2.5.1), combined with the
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Gaussian decision function in (4.4) imply that we must have:

yi

[∑
k

αkyk exp
(
−γ||xk − xi||2

)
− b

]
= ρ if 0 < αi < µ (4.5)

yi

[∑
k

αkyk exp
(
−γ||xk − xi||2

)
− b

]
≥ ρ if αi = 0 (4.6)

yi

[∑
k

αkyk exp
(
−γ||xk − xi||2

)
− b

]
< ρ if αi = µ (4.7)

Considering the extreme case as γ →∞, we must have:

exp(−γ||xk − xi||2)→

0 if k 6= i

1 if k = i

Given this property, and assuming there are no duplicate points in the training set, con-

ditions (4.6) and (4.7) can not be satisfied and we must instead satisfy (4.5) for all points

using the solution:

αi =

 1
npos

if yi = 1

1
nneg

otherwise

b =
1

2
(

1

npos
− 1

nneg
)

ρ =
1

2
(

1

npos
+

1

nneg
)

For this case the nearest points are the centroids of the two classes (in feature space).

However, these centroids are not chosen because the hulls have been forced to reduce by

using a small reduction parameter µ (as they were in the previous section). Instead, these

centroids have arisen because the dimensionality of the feature space in this case is so high

that every point must be a vertex in the facets of the two hulls containing the nearest

points.

4.3 The Threshold

As described in previous sections, the threshold of an SVM, b, is the offset of the hyperplane

from the origin. One of the ways to compute the threshold associated with an SVM is

to derive it from the KKT conditions of the dual once αi values have been optimized.

Although this threshold, which we refer to as the KKT threshold, makes for a consistent

optimization task, it is sub-optimal in several circumstances, which we elaborate on in

this section. We also review an alternative geometric placement of the threshold [28], and

explore its effectiveness. By performing empirical trials, we compare the geometric and

KKT thresholds, and explore the strengths and weaknesses of both approaches.
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We then examine a particular case where using an L1-loss C-SVM in conjunction with

the KKT threshold can result in a clearly sub-optimal threshold. We describe the cir-

cumstances leading to this threshold placement and how these conditions can be avoided.

An example of this sub-optimal threshold placement is shown in Figure 4.10. Here the

threshold places the hyperplane completely outside the range of the data, so that ev-

erything is classified as belonging to the larger class. Despite incorrectly classifying an

entire class, this hyperplane and threshold satisfy all of the KKT conditions of the C-SVM

optimization task.
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Figure 4.10: A linear C-SVM trained with C = 1. The dark line shows the decision
surface of the SVM, while the thin lines show the supporting planes.
There are 500 points in the positive class and 50 points in the negative
class

4.3.1 The KKT Threshold

The KKT threshold is the ‘standard’ threshold of an SVM, as computed by most widely

used SVM packages such as SVMlight [58] and LIBSVM [20]. This threshold can be com-

puted for the L1-loss µ-SVM using the KKT condition:

αi(yi(w · xi − b)− ρ+ ξi) = 0.

Since αi is zero when ||w · x − b|| > ρ, and ξi is zero unless ||w · x − b|| < ρ, b can be

retrieved from this KKT condition by using two points xpos,xneg (one from each class) for

which αpos, αneg > 0 and ξpos, ξneg = 0 (i.e. a point from each class lying on a supporting

plane). Such points can be identified in a µ-SVM because they satisfy 0 < αi < µ. Points

xpos and xneg can be used to derive two equalities:

w · xpos − b = ρ w · xneg − b = −ρ,
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These equalities are enough to solve the two unknown quantities ρ and b using:

bkkt =
1

2
(w · xpos + w · xneg) ρ =

1

2
(w · xpos −w · xneg) (4.8)

A geometric representation of the margin and the terms ρ and b is shown in Figure 4.11.

w·x-bkkt=-ρ w·x-bkkt=ρ
w·x-bkkt=0

Figure 4.11: Choosing the threshold of an SVM using the KKT conditions

Under most circumstances, the threshold is simple to compute using Equation (4.8).

However, it is possible for no xpos and/or xneg to exist. One such example is shown in

Figure 4.12. This example shows a µ-SVM where all αi’s are capped at their maximum

value of µ = 1/2. For this case, b can take a range of possible values bmin < bkkt < bmax,

any of which satisfy the KKT conditions. When this occurs, bmin and bmax are given by:

bmin =
1

2

 b1︷ ︸︸ ︷
min

i∈Ineg ,αi>0
{w · xi}+

b3︷ ︸︸ ︷
min

i∈Ipos,αi=0
{w · xi}


bmax =

1

2

 b2︷ ︸︸ ︷
max

i∈Ineg ,αi=0
{w · xi}+

b4︷ ︸︸ ︷
max

i∈Ipos,αi>0
{w · xi}


The parts of these equations labeled b1, b2, b3, b4 are depicted in Figure 4.12 for a simple

toy dataset. In this figure any threshold placing the hyperplane in the range indicated by

the arrows will satisfy the KKT conditions. Notice that, although the threshold can take

a range of possible values, the normal of the hyperplane does not change.

All thresholds within the possible range of values for b shown in Figure 4.12 appear

reasonable at a glance. However, much worse cases can be encountered when there is

an imbalance in class sizes. For example, consider the case where one class is reduced

to its centroid but the other is not. When this occurs, ρ can grow arbitrarily large and

the threshold can be shifted to such an extent that everything lies on one side of the

hyperplane. An example of this is shown in Figure 4.13, where the only constraint on the
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w·x=bminw·x=b1

w·x=b2

w·x=b3

w·x=b4w·x=bmax

Figure 4.12: A range of thresholds satisfying the KKT conditions

threshold is given by b < b′max, where:

b′max =
1

2

 b′1︷ ︸︸ ︷
min

i∈Ineg ,αi>0
{w · xi}+

b′2︷ ︸︸ ︷
max

i∈Ipos,αi>0
{w · xi}


Although a bad threshold in this case can be avoided by choosing the b corresponding to

the smallest possible value of ρ, this is not always possible when the value of ρ is fixed, such

as in the C-SVM optimization problem. This implication is discussed when the C-SVM

threshold is addressed in Section 4.3.5.

w·x=b'
1

w·x=b'
2w·x=b'

max

Valid thresholds

Figure 4.13: The threshold can take any value such that b < b′max

4.3.2 The Geometric Threshold

When considering the geometric interpretation of SVMs in terms of RCHs, the most

intuitive choice of threshold places the hyperplane half way between the nearest points

in the RCHs of the two classes. However, this choice is rarely the same as the threshold

given by the KKT conditions [28].
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The threshold which places the hyperplane halfway between the nearest points in the

RCHs of the two classes is referred to as the geometric threshold. This threshold is given

by [28]:

bgeom =
1

2

∑
i

αiw · xi. (4.9)

One of the benefits of the geometric threshold is that it is less susceptible to being biased

towards a class with a larger deviation. An example of a situation where this occurs is

shown in Figure 4.14a. Although the KKT threshold is consistent with the SVM QP task,

it is not necessarily going to be optimal in this case. The second benefit of a geometric

threshold is that there is only one possible value for the threshold. In contrast to this,

there are sometimes a range of potential thresholds which satisfy the KKT conditions, as

we described in the previous section.

w·x=bgeom

w·x=bkkt

(a) Soft Margin µ-SVM with µ = 1/2

w·x=bgeom

w·x=bkkt

(b) Hard Margin SVM

Figure 4.14: The geometric threshold compared to the KKT threshold

When an SVM is trained with µ = 1, it becomes equivalent to a hard margin SVM.

The hard margin SVM threshold is an interesting case because it results in a geometric

and a KKT threshold that coincide (Figure 4.14b). The equivalence between the two

thresholds arises because, for the hard margin SVM, all support vectors must lie on the

supporting planes of the SVM. Because the nearest points in each class are formed from a

convex combination of support vectors, they must also lie on the supporting planes of the

SVM. It follows that placing the hyperplane half way between the nearest points in this

case is equivalent to placing it half way between the supporting planes.

4.3.3 The Probabilistic Threshold

Platt [91] has previously made the observation that the KKT threshold can sometimes be

less than optimal. Platt discovered this while proposing probabilistic outputs for SVMs,

which take the form:

p(x) =
1

1 + exp(Af(x) +B)
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Rather than simply outputting a positive or negative class prediction, p(x) estimates the

probability of x belonging to the positive class. A value of p(x) < 0.5 suggests x belongs

to the negative class, whereas a value of p(x) ≥ 0.5 suggests x belongs to the positive

class. A and B are computed using the training data in conjunction with a maximum

likelihood estimate. This method extends the standard functionality of an SVM, which

does not associate certainties with its predictions.

As well as allowing SVMs to make approximate probabilistic predictions, Platt noted

that the threshold trained using maximum likelihood was different to the threshold com-

puted by the SVM, and sometimes superior in terms of the resulting test error [91].

4.3.4 Empirical Trials

In this section we compare using empirical trials the three thresholds described previously:

the KKT threshold, the geometric threshold and the probabilistic threshold. Results are

shown in their entirety in Appendix B. Because of the large number of combinations of

kernels and parameters, there are a large number of tables in this appendix. A smaller

subset of these results are described in this section.

The tables in this section show the mean test error for each threshold, calculated over

20 runs, with standard errors also shown. SVMs are trained using SVMlight. Because

SVMlight uses the C-SVM parameterization, we use C = 0.1 to correspond to ‘small µ’,

and C = 100 to correspond to ‘large µ’. This variation is important because results could

theoretically change depending on the regularization parameter which is chosen.

The KKT threshold is used as a basis for comparison in empirical trials. If an alternate

threshold achieves an error which is significantly less (p < 0.05 using a paired differences t-

test) than the error achieved by the KKT threshold, that result is shown in bold. Similarly,

if a threshold results in a significantly higher error than the KKT threshold, that result is

underlined.

Table 4.1 shows the mean test error for Gaussian SVMs (γ = 0.01) trained on each

dataset using a particular threshold. Table 4.2 repeats these experiments for Gaussian

SVMs with γ = 0.1 (smaller basis functions). It is informative to note that, in these ta-

bles, both the geometric and probabilistic thresholds generally resulted in an error which

either equalled or bettered that of the KKT threshold. Platt [92] has previously sug-

gested that the probabilistic threshold can provide an improvement over the standard

KKT threshold, and our results are consistent with this observation. However, to the

best of our knowledge it has not previously been noted that the geometric threshold can

also provide an improvement over the KKT threshold. Interestingly, the KKT threshold,

despite being one of the most widely used thresholds, generally offers the highest error

rate compared with the other available thresholds.

For the Gaussian kernel, the geometric and probabilistic thresholds tended to provide

a more consistent decrease in test error over the KKT threshold when µ values were small.

This may be because the position of the KKT threshold is determined solely based on

the unbounded support vectors of the machine. Recall from Section 2.4.1 that these are

generally a small portion of the support vectors, and that they may all lie a long way from
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Table 4.1: Error for Gaussian SVMs (γ = 0.01) combined with three possible thresh-
olds

KKT Geometric Probabilistic

banana
small µ 0.419± 0.012 0.428± 0.011 0.425± 0.013
large µ 0.394± 0.012 0.394± 0.013 0.390± 0.014

b.cancer
small µ 0.274± 0.011 0.277± 0.008 0.271± 0.007
large µ 0.275± 0.011 0.295± 0.010 0.281± 0.010

diabetes
small µ 0.269± 0.004 0.241± 0.005 0.239± 0.005
large µ 0.260± 0.004 0.247± 0.004 0.244± 0.005

german
small µ 0.249± 0.005 0.235± 0.005 0.235± 0.005
large µ 0.252± 0.005 0.250± 0.006 0.248± 0.006

heart
small µ 0.182± 0.009 0.158± 0.008 0.158± 0.007
large µ 0.195± 0.008 0.187± 0.009 0.185± 0.009

image
small µ 0.265± 0.002 0.208± 0.004 0.198± 0.003
large µ 0.160± 0.024 0.131± 0.018 0.126± 0.016

splice
small µ 0.160± 0.002 0.158± 0.002 0.158± 0.002
large µ 0.136± 0.006 0.134± 0.006 0.135± 0.005

thyroid
small µ 0.223± 0.011 0.133± 0.009 0.101± 0.009
large µ 0.145± 0.020 0.095± 0.012 0.083± 0.009

titanic
small µ 0.238± 0.007 0.226± 0.001 0.226± 0.001
large µ 0.233± 0.005 0.227± 0.001 0.226± 0.001

the decision surface itself, particularly for small values of µ. By contrast, the geometric

and probabilistic thresholds take all of the support vectors into account when determining

the placement of the threshold.

Despite the decreaed error rate for the geometric threshold in conjunction with Gaus-

sian kernels, the geometric threshold showed little improvement over the KKT threshold

when applied to linear SVMs (Table 4.3). In this case the geometric threshold actually

resulted in a significantly increased error rate in several cases. However, it is important

to notice that in the cases where the geometric threshold increased the test error, this

increase in error was quite small (less than 0.01 in absolute terms). By contrast, when the

KKT threshold showed an increase in test error compared to the geometric threshold, the

increase tended to be much larger than 0.01.

These experiments suggest that the geometric threshold is likely to provide a small

decrease to test error when used in conjunction with Gaussian SVMs. Although results

suggest that the geometric threshold will only rarely decrease the test error of linear SVMs,

they also suggest that the geometric threshold tends to provide a safer threshold. By safe

we mean that even when it is not the best threshold, its use is unlikely to increase the

error rate by a large amount. By contrast, the KKT threshold was occasionally prone to

very large increases in test error compared to the geometric threshold. We support this

observation in the following section by examining some of the special cases in which the

KKT threshold can fail to provide a reasonable error rate.
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Table 4.2: Error for Gaussian SVMs (γ = 0.1) combined with three possible thresh-
olds

KKT Geometric Probabilistic

banana
small µ 0.372± 0.009 0.365± 0.014 0.363± 0.014
large µ 0.248± 0.029 0.246± 0.029 0.245± 0.028

b.cancer
small µ 0.265± 0.010 0.264± 0.006 0.260± 0.008
large µ 0.297± 0.012 0.304± 0.013 0.299± 0.012

diabetes
small µ 0.265± 0.006 0.246± 0.005 0.243± 0.004
large µ 0.280± 0.006 0.273± 0.007 0.271± 0.007

german
small µ 0.276± 0.005 0.238± 0.005 0.237± 0.004
large µ 0.271± 0.005 0.251± 0.006 0.249± 0.006

heart
small µ 0.215± 0.012 0.163± 0.008 0.166± 0.008
large µ 0.218± 0.010 0.192± 0.010 0.193± 0.010

image
small µ 0.119± 0.002 0.108± 0.002 0.106± 0.002
large µ 0.075± 0.010 0.069± 0.009 0.069± 0.009

splice
small µ 0.454± 0.006 0.387± 0.003 0.373± 0.005
large µ 0.418± 0.009 0.384± 0.003 0.378± 0.004

thyroid
small µ 0.101± 0.007 0.081± 0.006 0.057± 0.007
large µ 0.072± 0.009 0.061± 0.007 0.052± 0.006

titanic
small µ 0.229± 0.001 0.227± 0.001 0.229± 0.001
large µ 0.227± 0.002 0.225± 0.001 0.226± 0.002

4.3.5 Bad Thresholds

In the previous section we found evidence to suggest that choosing the KKT threshold

over other thresholds can result in a small increase in the error rate for some datasets

and kernels. In this section we look at a particular case of extremely high error that can

result from using the KKT threshold in conjunction with a C-SVM trained under certain

parameters. This result is important because C-SVMs are often used in conjunction with

the KKT threshold, including by some of the most frequently used SVM packages such as

LIBSVM [20] and SVMlight [58].

Because there is no ρ variable associated with the C-SVM optimization task1, the

margin is fixed to equal:

∆ =
1

||w||
.

Accordingly, the threshold can be computed given only one point for which 0 < αi < C.

Given such a point, the threshold is calculated as:

b = w · xi − yi.

The lack of a ρ parameter in the C-SVM formulation means that there is a greater

potential for rather unintuitive thresholds to be chosen when C becomes small, particu-

larly if class sizes and/or distributions are imbalanced. For example, Figure 4.15a shows

the threshold for a C-SVM with C = 2.5. Here one of the classes has been reduced to

1Refer to Section 2.5.1 for the definition of ρ, and Section 4.3.1 for an explanation of how ρ impacts
the margin
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Table 4.3: Error for linear SVMs combined with three possible thresholds

KKT Geometric Probabilistic

banana
small µ 0.485± 0.010 0.481± 0.011 0.484± 0.011
large µ 0.497± 0.012 0.485± 0.012 0.486± 0.011

b.cancer
small µ 0.292± 0.010 0.286± 0.007 0.290± 0.009
large µ 0.294± 0.009 0.294± 0.008 0.293± 0.009

diabetes
small µ 0.234± 0.004 0.238± 0.005 0.233± 0.004
large µ 0.234± 0.004 0.239± 0.005 0.233± 0.004

german
small µ 0.236± 0.005 0.243± 0.005 0.234± 0.005
large µ 0.241± 0.010 0.248± 0.009 0.236± 0.006

heart
small µ 0.162± 0.007 0.166± 0.007 0.164± 0.007
large µ 0.169± 0.006 0.173± 0.006 0.169± 0.006

image
small µ 0.161± 0.002 0.166± 0.003 0.161± 0.003
large µ 0.157± 0.002 0.162± 0.003 0.156± 0.003

splice
small µ 0.164± 0.001 0.164± 0.001 0.164± 0.001
large µ 0.164± 0.002 0.165± 0.002 0.164± 0.001

thyroid
small µ 0.154± 0.009 0.105± 0.009 0.115± 0.009
large µ 0.130± 0.010 0.110± 0.008 0.113± 0.008

titanic
small µ 0.225± 0.001 0.225± 0.001 0.225± 0.001
large µ 0.225± 0.001 0.225± 0.001 0.225± 0.001

its centroid, meaning this class contains no points satisfying 0 < αi < C. If C becomes

smaller, as in Figure 4.15b, the margin is forced to become larger, which forces the thresh-

old towards the class which has been reduced to its centroid. Eventually, the threshold

will be skewed to such an extent that all points will be classified as belonging to the same

class, as in Figure 4.15b.
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Figure 4.15: Threshold as C decreases

Although the threshold shown in Figure 4.15b is a valid KKT threshold for the µ-SVM,

it would generally not be chosen since it would require an arbitrarily large ρ to be chosen.

However, in a C-SVM, ρ does not exist and so small choices of C can force the KKT

threshold to be placed outside the range of both of the classes.

It is interesting to note that the KKT threshold, despite its shortcomings, is still widely

used in common software packages. One explanation for why this is the case may lie in the

fact that SVMs are often coupled with extensive parameter selection. Rather than simply



4.4. INCORPORATING WEIGHTS INTO THE GEOMETRIC FRAMEWORK 81

training a single SVM on a classification task, there are generally a large number of SVMs

trained with differing parameter values. The SVMs which are unlikely to perform well are

then filtered out using error estimation techniques. It may be that this process, as well

as having the ability to filter out parameter values which provide a poor error rate, also

inadvertently filters out poor thresholds. We will further explore the role of parameter

selection in SVM classification in Chapter 6.

4.4 Incorporating Weights into the Geometric Framework

Weighted SVMs allow the user to set the importance of each point in terms of the contri-

bution it should make to the final decision surface. We described the WSVM optimization

problem in Section 2.6, and reviewed how WSVMs have been applied to problems which

involve cost-proportionate weights or unequal misclassification costs. We then introduced

the related concept of Weighted RCHs in Section 3.9. In this section we use Weighted

RCHs in order to understand how WSVMs work and to describe several cases when the

introduction of weights can be beneficial.

In particular, we describe the geometric implications of three existing strategies for

applying Weighted SVMs to classification problems. These three strategies are: a) min-

imizing the overall error, b) minimizing the average proportion of errors [118], and c)

minimizing the total error cost [129]. When class sizes are exactly balanced (i.e. 50 per-

cent of training and testing data belongs to each class and the cost of misclassification for

each class is identical), these strategies are all equivalent. However, when the number of

points in each class, or the misclassification costs of each class become unbalanced, each

strategy results in a unique outcome, which we describe in more detail in the following

sections.

In order to demonstrate the strengths of each weighting strategy, we perform some

empirical demonstrations using as unbalanced toy dataset, which we refer to as unbal.

This dataset is generated from two overlapping Gaussian distributions (Figure 4.16), with

200 points in the positive class, and 1000 points in the negative class. The positive class

is assumed to have an error cost which is 10 times greater than that of the negative class.

4.4.1 A Geometric Interpretation of WSVMs

By exploiting the concept of WRCHs, which we introduced in Section 3.9, we can show

that there is also a geometric interpretation of WSVMs. This geometric interpretation of

WSVMs in terms of WRCHs follows intuitively from the relationship between RCHs and

SVMs. To see this, consider a geometric reparameterization of the WSVM from Section
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Figure 4.16: The unbal dataset

2.6:

min
w,b,ρ,ξ

||w||2 − 2ρ+ µ

n∑
i=1

siξi,

subject to


yi(w · xi − b) ≥ ρ− ξi
ξi ≥ 0

ρ > 0.

(4.10)

This is essentially an L1-loss µ-SVM from Section 2.5.1, where an additional weight si has

been introduced for each point. This optimization task has the dual form:

max
αi,...,αn

− 1

4

n∑
i,j=1

yiyjαiαjxi · xj ,

subject to


∑n

i=1 αiyi = 0∑n
i=1 αi = 2

0 ≤ αi ≤ siµ

(4.11)

Now compare this dual to the squared distance between the WRCHs of two classes.

From the definition of a WRCH in Section 3.9.1, this distance is written:

D2 = ||
∑
i∈Ipos

yiαixi +
∑
i∈Ineg

yiαixi||2

= ||
∑
i

yiαixi||2

=
∑
i,j

yiyjαiαjxi · xj ,
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under the constraints 0 ≤ αi ≤ µsi,
∑

i∈Ipos αi = 1,
∑

i∈Ineg
αi = 1. Notice that these

constraints are equivalent to those used in the weighted µ-SVM dual above, and minimizing

D2 is equivalent to optimizing the objective function.

This relationship provides an intuitive geometric interpretation of WSVMs. A WSVM

is equivalent to the perpendicular bisector of the shortest line between the WRCHs of the

two classes. The weights si applied to the WRCHs are the same as the weights si that are

applied to the WSVM.

The relationship between WSVMs and WRCHs enables us to reason about the behavior

of WSVMs using the properties of WRCHs. For example, Figure 4.17 demonstrates the

role of the overall reduction parameter combined with the individual point weights. Notice

how, as the reduction parameter shrinks, the point with the larger weight is enclosed by

the hull much longer than points with smaller weights. Even when a point with a larger

weight is not enclosed by the hull, it still exerts a much greater influence on the hull than

other points, making the hull reduce towards a weighted centroid as opposed to a standard

centroid.

Figure 4.17: Point xk is given a weight of sk = 10 while all other points are given a
weight of si = 1. Notice how xk remains enclosed by the hull until µ
becomes less than 1/10.

We will exploit the geometric interpretation of WSVMs in the following sections in or-

der to understand better some of the WSVM weighting schemes that have been previously

employed. We achieve this by examining the impact the various weighting schemes have

on the WRCHs of the two classes, as well as the resulting impact on the decision surface

itself.

4.4.2 Minimizing the Overall Error

Minimizing the overall error (using the sum of slack variables as a proxy) is the default

functionality of an SVM and so point weighting is not required. A classifier which mini-

mizes the overall error tends to correctly classify a greater proportion of points from the

larger class, while a greater proportion of points from the smaller class will be misclassified.

This is not necessarily incorrect behavior. In effect, it means that a greater proportion of
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the test data will be classified as belonging to the larger class, mimicking the imbalance in

the training data. This is likely the desired behavior if the test data is expected to contain

the same imbalance as the training data.

Figure 4.18 shows the manner in which the RCHs of two unbalanced classes are reduced

when an unweighted SVM is trained on the unbal dataset. Recall that, on this dataset,

the positive class contains 5 times as many points than the negative class. Because both

classes share the same reduction coefficient µ, the larger class ends up being reduced by

a much smaller proportion than the smaller class. This means that the final hyperplane

separating these two classes will favor the larger class in its predictions.
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Figure 4.18: Reduction in two RCHs when an unweighted µ-SVM with µ = 1/150 is
trained on the unbal dataset. Reduced convex hulls are outlined in red.

4.4.3 Minimizing the Average Proportion of Errors

It may occur that imbalances in the training data are not expected to reoccur in the

test data. Under these circumstances, a more sensible option is to minimize the average

proportion of errors across both classes, rather than simply the raw number of errors. This

means that if the proportion of errors is p+ for the positive class and p− for the negative

class, we would aim to minimize (p+ + p−)/2. Some authors refer to this as the ‘balanced

loss’ [112, 127]. When classes in the test data are expected to have an equal number of

points (whereas classes in the training data do not), this strategy minimizes the overall

expected error on test data.

This strategy is implemented in conjunction with SVMs by training a Weighted SVM

in which each class is given a weight proportional to its size. For example, if the positive

class is has k times as many training points as the negative class, weights should be set so

that:

si =

1 if i ∈ Ipos
k if i ∈ Ineg

(4.12)
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The weighting described by Equation (4.12) is equivalent to reducing each hull by an

amount proportional to its size. An example of an SVM trained using these weights is

shown in Figure 4.19. Notice in this figure how each hull is approximately the same size,

reflecting the similar variances of the Gaussian distributions representing the two classes.

It is important to note that this weighting scheme is not necessarily an improvement on

the unweighted method. Rather, the correct scheme to use should be dictated by the

characteristics of the data.
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Figure 4.19: The positive class is reduced using µ = 1/100, while the negative class is
reduced using µ = 1/500. This corresponds to a 50% reduction in both
classes.

4.4.4 Minimizing the Total Cost of Error

Understanding WSVM point weighting schemes from a geometric perspective is made

possible by exploiting the geometric interpretation of WSVMs in terms of WRCHs. When

a point in a WRCH is assigned a large weight, its influence persists longer than a point with

a lesser weighting. This means that highly weighted points will remain enclosed by the

hull until the reduction parameter becomes small. By contrast, points with a lesser weight

are much less likely to be enclosed by the hull, particularly as the reduction parameter

becomes smaller.

Within the context of cost-proportionate weights, points with large weights are those

which are costly to misclassify. Taking Zadrozny et al.’s [129] example of donor solicita-

tion, training points with large weights would be large donors, which result in significant

monetary losses if misclassified. In this case, training points associated with these large

donors are forced to fall within the WRCH of their class (Figure 4.20). In turn, the WSVM

hyperplane is forced to classify correctly training points with large weights. Unless a very

small overall reduction parameter µ is used, only small donors or non-donors are likely to

be allowed to fall outside the WRCH of their class.

4.4.5 An Empirical Demonstration

The strengths and weaknesses of each of the weighting schemes we have described can be

illustrated using an empirical comparison. Table 4.4 shows results on the unbal dataset
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Highly Weighted Point

Figure 4.20: Highly weighted points in a WSVM are forced to be correctly classified
by the hyperplane. The solid outlines border the WRCHs of the two
classes, with one point given a large weight. The dotted line borders an
RCH, where points can not be individually weighted.

for each of these weighting schemes. In this table, ‘Overall’ refers to the overall error

minimization method, which assigns each training point an equal weight. ‘Avg Prop’

refers to class proportionate weights which minimize the average proportion of errors.

‘Cost’ refers to cost proportionate weighting.

Error rates and costs in this table are computed as an average over 100 runs, with

standard errors also shown. Each run is performed using 1200 training points and a

separate test set of 1200 points. Both training and test sets contain 1000 points in the

positive class and 200 points in the negative class, all generated synthetically. Bolded error

rates are significantly lower than other error rates in that row (p < 0.05 using a paired

differences t-test across the 100 runs).

For the regularization parameter in these experiments we use µ = 1/(0.9κ), where κ

is the sum of weights in the smaller (by weight) class:

κ = min

 ∑
i∈Ipos

si,
∑
i∈Ineg

si


We define µ in terms of κ to allow a single regularization parameter to be applied to many

different weighting schemes. Without this use of κ, a change to the weighting scheme is

likely to cause a previously valid regularization parameter to become invalid due to either

overlapping hulls, or one of the WRCHs being reduced to such an extent that it becomes

empty.

Our definition of κ means that a reduction of µ = 1/(0.9κ) causes around 90% of

training points in each class (depending on weighting and class balance) to be used as

support points for each vertex. We use this value of µ largely for convenience, ensuring

the hulls are separable across all datasets and weighting schemes that we apply.

Notice how each strategy in Table 4.4 optimizes a different error measurement. For

example, using equal weights (the ‘Overall’ method) results in the best overall error rate

by a significant margin. This is achieved by favoring the negative class, since it has a larger
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Table 4.4: Error for Gaussian SVMs, with γ = 0.01 and µ = 1/(0.9κ), combined with
three different weighting strategies. The geometric threshold is used.

Overall Avg Prop Cost

Overall Err 0.090± 0.001 0.141± 0.001 0.213± 0.002
Err Cost 710.6± 8.0 454.6± 6.1 419.4± 4.4
Pos Class Err 0.335± 0.004 0.159± 0.003 0.091± 0.002
Neg Class Err 0.042± 0.001 0.137± 0.001 0.237± 0.002
Average Class Err 0.188± 0.002 0.148± 0.002 0.164± 0.001

number of points than the positive class. However, by doing so it achieves the highest

error rate of all methods on the positive class.

Using weights proportional to class sizes (the ‘Avg Prop’ method), the error in the

positive class is higher than that achieved by the cost-proportionate weighting method.

Similarly, the error rate in the negative class is higher than that achieved when using equal

weights. However, the average proportion of correctly classified points is maximized. This

is achieved by ensuring a comparable error rate in both the positive and negative classes,

rather than favoring a single class.

When cost-proportionate weights are used, the positive class (due to its large misclas-

sification cost) is assigned a much greater importance than the negative class. For this

reason, using cost-proportionate weights results in the lowest error rate for the positive

class, but the highest error rate for the negative class. Accordingly, the cost-proportionate

weighting method achieves a lower overall error cost than any other method.

4.4.6 Choosing the Threshold for WSVMs

For the results in Table 4.4 we used the geometric threshold. However, there is still a

choice of threshold available for use in conjunction with each of these weighting schemes.

Table 4.5 repeats the experiments from the previous section using the KKT threshold

in place of the geometric threshold. The three methods continue to optimize the intended

quantity when using the KKT threshold. However, notice how almost every method has

its error rate increased by using the KKT threshold. For example, the optimal error

cost using both thresholds occurs when cost-proportionate weights are used. However,

using the geometric threshold decreases the error cost by over 30 units. Similarly, the

average overall error using the geometric threshold was slightly lower than that using

KKT threshold. Not only was this an improvement in itself, but the geometric threshold

also provides a much more desirable class error rate in conjunction with this decreased

error.

We believe that the issue causing the KKT threshold to perform poorly in conjunction

with WSVMs is that it may ignore class boundaries given by the WRCHs of the two

classes. For example, Figure 4.21 compares the KKT and geometric thresholds when the

overall error is minimized (i.e. all weights are equal to one). Notice how, although the

orientation of the hyperplanes is the same, the geometric threshold places the hyperplane

directly between the two RCHs, whereas the KKT threshold cuts into one of the RCHs.

This demonstrates that the KKT threshold, unlike the geometric threshold, does not cut
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Table 4.5: Error for Gaussian SVMs, with γ = 0.01 and µ = 1/(0.9κ), combined with
three different weighting strategies. The KKT threshold is used.

Overall Avg Prop Cost

Overall Err 0.097± 0.001 0.129± 0.001 0.300± 0.002
Err Cost 1067.1± 8.6 473.8± 6.8 452.4± 3.4
Pos Class Err 0.528± 0.004 0.177± 0.004 0.051± 0.002
Neg Class Err 0.011± 0.000 0.120± 0.002 0.350± 0.003
Average Class Err 0.270± 0.002 0.148± 0.002 0.201± 0.001

the shortest line between the WRCHs into two equal parts. The result in this case is a

hyperplane which tends to favor the negative class, as consistent with the results in Table

4.5.
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(a) Geometric threshold
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(b) KKT threshold

Figure 4.21: The threshold for unbalanced classes with all weights set to equal one

4.5 Perceptrons under the Geometric Framework

In Section 2.8 we described the general form of the perceptron dual optimization task,

from which all hard and soft margin perceptrons can be derived:

max
α1,...,αn

− 1

2

n∑
i,j=1

αiαjk(xi,xj) +
n∑
i=1

αi,

subject to 0 ≤ αi ≤ C

(4.13)

We asserted that the characteristic trait possessed by all perceptrons is that their dual

does not constrain the sum of Lagrange multipliers in each class to be equal. This means

that the perceptron decision surface is not perpendicular to the shortest line between two

convex or reduced convex hulls.

Since perceptrons can not always be geometrically interpreted in the same manner as

SVMs, it raises the question of whether they have an alternate geometric interpretation.

It has previously been pointed out that hard margin and L2-loss perceptrons have a
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geometric interpretation in terms of a minimal norm problem over a single convex hull

[65, 39]. In this section we extend this interpretation to the case of general L1-loss and

weighted perceptrons.

4.5.1 A Geometric Interpretation of Perceptrons

Because perceptrons do not share the same geometric interpretation as SVMs, it is dif-

ficult to understand exactly how they work. However, perceptrons do have a geometric

interpretation of their own. To see this, introduce a ρ term to the perceptron primal to

yield a geometric reparameterization of the perceptron primal [113]:

min
w,b,ρ,ξ

1

2
||w||2 +

1

2
b2 − ρ+ µ

n∑
i=1

ξi,

subject to


yi(w · xi − b) ≥ ρ− ξi
ξi ≥ 0

ρ > 0.

This primal has dual form:

max
α

− 1

2

n∑
i,j=1

αiαjyiyjxi · xj −
1

2

∑
i,j

αiαjyiyj

subject to


∑n

i=1 αi = 1

0 ≤ αi ≤ µ, i = 1, . . . , n.

(4.14)

Notice how adding the ρ term to the primal forces the sum of αi’s to be constrained to

equal one, which makes it easier to form a geometric interpretation.

This reparameterized perceptron has a general form:

max
α

− 1

2

n∑
i,j=1

αiαjk(xi,xj)

subject to


∑n

i=1 αi = 1

0 ≤ αi ≤ µ, i = 1, . . . , n.

(4.15)

where k(xi,xj) = yiyjK(xi,xj) + yiyj makes the machine equivalent to (4.14). Because

this is simply a reparameterized version of the perceptron described in Section 2.8, the

additional kernels we described in Table 2.2 can also be applied to this machine in order

to make it an L2-loss or hard margin perceptron.

Tsang et al. [113] has noted that the optimization task in (4.15) is equivalent to the

MEB dual when K(xi,xj) = c is constant (i.e. the Gaussian kernel). However, in a more

general sense (for any kernel), this task is also equivalent to a minimal norm task over an
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RCH. To see this, consider a point a in the RCH of all training points:

a ∈ RCH({x1, . . . ,xn}, µ)

a =
∑
i

αixi,
∑
i

αi = 1, 0 ≤ αi ≤ µ. (4.16)

The squared norm of a can be written:

||a||2 =
∑
ij

αiαjxi · xj .

Notice that this is the same quantity that is minimized (in a kernel feature space) by the

perceptron dual, under the constraints from (4.16). This means that the perceptron dual

is equivalent to finding the point in an RCH closest to zero, i.e. the point in an RCH with

minimal norm (Figure 4.22).

Figure 4.22: The perceptron dual is equivalent to a minimal norm problem over an
RCH

We should emphasize that we are not claiming that it is impossible to represent an SVM

as a one-class nearest point task. Indeed, using a type of set known as a Minkowski set it

is possible to solve an SVM using a one-class approach [65]. We will further explore this

technique in Chapter 5. However, it is not possible to solve the perceptron optimization

task using the two-class nearest point approach taken in SVMs. This is due to the fact that

the sum of Lagrange multipliers in each class is not constrained to equality. This means

that the two-class nearest point approach is unique to SVMs. The one-class approach,

while it is naturally suited to the perceptron optimization task in (4.15), can be taken

when training either SVMs or perceptrons.
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4.5.2 Perceptrons with Weighted Training Data

Although it has not, to the best of our knowledge, been considered, perceptrons can also

handle individual training point weighting in much the same way that SVMs can. For

example, let us modify the L1-loss perceptron primal to form the optimization task to add

weight terms si:

min
w,b,ρ,ξ

1

2
||w||2 +

1

2
b2 − ρ+ µ

n∑
i=1

siξi,

subject to


yi(w · xi − b) ≥ ρ− ξi
ξi ≥ 0

ρ > 0.

This optimization task has the dual form:

max
α

− 1

2

n∑
i,j=1

αiαjyiyjxi · xj −
1

2

∑
i,j

αiαjyiyj

subject to


∑n

i=1 αi = 1

0 ≤ αi ≤ siµ, i = 1, . . . , n.

Conveniently, introducing weights to the L1-loss perceptron primal only changes the

upper bounds on the αi values in the dual. This means that a weighted perceptron

retains the geometric interpretation depicted in Figure 4.22, where WRCHs have been

substituted for RCHs. In other words, a perceptron may be trained by calculating the

point in a WRCH which is nearest to zero.

4.6 Conclusions

In this chapter we have used the geometric interpretation in order to build on the under-

standing of SVMs. For example, we have described how the choice of kernel and kernel

parameters impacts the final decision surface. We have also examined the relationships be-

tween SVMs and other classifiers, showing that SVMs are often similar, or even equivalent

to, other classifiers such as the k-nearest neighbor and k-means classifiers.

One of the most important issues we have uncovered in this chapter is that the most

widely used threshold, the KKT threshold, in many cases yields a higher error rate than

the geometric threshold. For example, in Section 4.3, we showed that when the KKT

threshold was combined with some parameters and kernels, it degraded the overall error

rate of the machine. Further, in Section 4.4.6, we showed that the KKT threshold can have

a similar negative impact on Weighted SVMs. Furthermore, the KKT threshold, when

used in conjunction with the C-SVM with certain (usually small) values of C, was capable

of complete failure, classifying everything as belonging to a single class. By contrast, the

geometric threshold did not suffer from this issue. Accordingly, we recommend that the

geometric threshold be used in most cases, since there are few drawbacks to its use.
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By exploiting the concept of WRCHs introduced in the previous chapter we have

provided an intuitive geometric interpretation of WSVM classifiers. The geometric inter-

pretation of a WSVM is that it is the perpendicular bisector of the shortest line between

the WRCHs of two classes. This means that a WSVM has the same nearest point in-

terpretation as an SVM, except that a WRCH is used to represent the classes instead

of a standard RCH. In the next chapter we will exploit this geometric interpretation of

WSVMs in order to apply nearest point algorithms to train WSVMs.

It has previously been shown that an L2-loss perceptron is equivalent to a minimal

norm problem over a convex hull [65, 39]. We have generalized this result to show that

any type of perceptron, either L1 or L2-loss, with optional weights, may be trained as a

minimal norm problem over a single WRCH. This result helps to clarify the relationship

between SVMs and perceptrons. We assert that the definition of an SVM is that it can

be computed as a nearest point problem over two WRCHs. This definition includes both

L1 and L2-loss SVMs, and also their weighted variants. By contrast, the definition of a

perceptron is a machine that can be computed as a minimal norm problem over a single

WRCH. This definition includes both L1 and L2-loss perceptrons with optional weights.



Chapter 5

Geometric Training Algorithms

5.1 Introduction

In this chapter we investigate SVM training algorithms which exploit the geometric inter-

pretation. SVM training algorithms which take this approach are referred to as nearest

point algorithms, since they compute the nearest points in two convex sets. There has

been a significant amount of previous study into using nearest point algorithms for train-

ing SVMs. Most of this work concentrates on training L2-loss and hard margin SVMs over

convex hulls [39, 80, 65], although some authors have also proposed L1-loss SVM training

algorithms which operate over Reduced Convex Hulls (RCHs) [81, 109].

We distinguish our research from previous work by studying the application of nearest

point algorithms mainly to Weighted Reduced Convex Hulls (WRCHs) in order to train

Weighted SVMs (WSVMs). The benefit of this approach is that the resulting algorithms,

as well as being able to train SVMs, can also be used to train either L1 or L2-loss WSVMs.

In studying the application of nearest point algorithms to WRCHs, we are also able to

obtain several general results regarding the efficiency of nearest point algorithms and how

they can be optimized.

We begin in Section 5.2 by reviewing several Nearest Point Algorithms (NPAs) which

have previously been applied to SVMs. We focus first on nearest point algorithms which

have been applied to convex hulls in order to compute hard margin SVMs. We then

describe how some of these algorithms have been adapted to operate over RCHs in order

to compute L1-loss soft margin SVMs. Subsequently, Section 5.3, reviews Sequential

Minimal Optimization (SMO), an SVM training algorithm which is used in many popular

software packages due to its efficiency. We compare SMO to the nearest point approach

and describe the similarities and differences of the two approaches.

In Section 5.4 we make some general observations on geometric training algorithms

and suggest ways in which the current state-of-the-art can be better understood and

improved. This leads to Section 5.5, in which we address the task of applying nearest point

algorithms to train WSVMs. To the best of our knowledge, nearest point algorithms have

not previously been used to train WSVMs. We combine the concept of WRCHs, a variant

of RCHs which we introduced in Section 3.9, with an existing nearest point algorithm.

The result is a Weighted Schlesinger-Kozinec (WSK) nearest point algorithm capable of

93
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operating over WRCHs. This algorithm can train WSVMs with either an L1 or L2 loss

function, with precise weights, without inflating the training set size.

We further refine WSK algorithm in Section 5.6, by describing how efficient caching

and updating steps can accelerate the algorithm. In particular, we improve convergence

rates by pushing the approximations of the positions of the two nearest points towards the

surface of the WRCHs. This step is informed by the geometric interpretation of WSVMs,

from which it is known that the nearest points must lie on the surfaces of the two WRCHs.

This acceleration is conceptually similar to the update step taken in Kowalczyk’s [71]

convex hull nearest point algorithm.

Section 5.5.2 explores the efficiency of the S-K algorithm in general and compares

it to our accelerated WSK implementation. We show that the steps taken in Section

5.6 are in most cases able to accelerate convergence of the algorithm by a significant

amount. In turn, these improvements make the algorithm more competitive with SMO.

In particular, the WSK algorithm tends to be competitive with SMO when margins are

large (and there are a large number of support vectors). When the parameter values cause

the margin to become small, SMO will generally complete faster than the WSK algorithm.

These results are interesting because other authors have suggested that S-K algorithms

operating over RCHs tend to train SVMs faster than SMO [81]. However, by careful

consideration of the impact the parameter values have on training time, we suggest that

previous differing results were caused by using different parameter values when comparing

the two algorithms.

An important feature of nearest point algorithms is that they generally employ different

stopping conditions to SMO. In Section 5.8 we perform empirical trials which compare

the various stopping conditions used in both nearest point algorithms and SMO. We find

that the stopping conditions favored by previous nearest point algorithms operating over

RCHs [40, 109, 82] are not ideal since they do not account for the width of the margin

when bounding the error in the estimated position of the nearest points. This means they

will perform more iterations than required when the margin is large, and fewer iterations

than required when the margin is small. We instead favor the relative stopping conditions

used previously in convex hull nearest point algorithms [65]. We adapt these stopping

conditions to be applicable to the WRCH case, and show that they provide a better

trade-off between training iterations performed and test accuracy achieved.

Finally, we describe how nearest point algorithms operating over a single WRCH can

also be used to train weighted perceptrons with either an L1 or an L2-loss function. This

generalizes work by Franc [39], who showed that L2-loss unweighted perceptrons could

be trained using nearest point algorithms operating on a single convex hull. Despite

the simplicity of the perceptron nearest point task, empirical trials suggest that training

perceptrons over WRCHs is less efficient than training SVMs over WRCHs because of the

more complex feature space required by perceptrons.
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5.2 Nearest Point Algorithms

Nearest point algorithms compute the nearest points in two disjoint convex hulls (Figure

5.1). As described in Section 2.5, a hard margin SVM is equivalent to the perpendicular

bisector of the line between the nearest points in the convex hulls of the two training

classes. Because of this relationship, nearest point algorithms can be used to train SVMs.

However, despite being capable of training SVMs, nearest point algorithms were not a

consequence of SVMs and learning theory. Rather, the first applications of nearest point

algorithms to learning appeared several decades before the introduction of SVMs [72, 100].

It is likely that the ability for nearest point algorithms to generalize well helped influence

the development of SVMs and statistical learning theory.

Figure 5.1: A nearest point algorithm minimizes the distance between two points in
the convex hulls of each classes (a and b). The perpendicular bisector of
the line joining a and b is the decision surface of an SVM.

In this section we describe several of the most commonly used nearest point algorithms.

We describe these algorithms in terms of an iterative update step. This update step is de-

signed to move two approximations of the nearest points closer together, and continues

until a set of stopping conditions is reached. Generally, the stopping conditions flag ter-

mination of the algorithm once the approximate nearest point in each class is within some

tolerance ε of the true nearest point in that class. Because all of the algorithms described

here can share common stopping conditions, we introduce the stopping conditions last, in

Section 5.2.4.

The algorithms we describe in this section were some of the first nearest point algo-

rithms to be introduced. Because of this, they share many similarities with later algorithms

that have been introduced. For example, Keerthi et al. [65] and Kowalczyk [71] have both

described accelerated variants and/or hybrids of the following algorithms. We will explore

these techniques for improving nearest point algorithms in more detail in Sections 5.4-

5.6, and in doing so apply similar improvements to the case of nearest point algorithms

operating over WRCHs.

5.2.1 The Schlesinger-Kozinec Algorithm

One of the simplest and most widely used nearest point algorithms is the Schlesinger-

Kozinec (S-K) Algorithm. The S-K algorithm consists of a rule by Kozinec [72] for up-

dating two approximate nearest points, combined with relaxed stopping conditions by
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Schlesinger et al. [100]. The S-K algorithm has been used to train hard margin and L2-

loss SVMs by Franc and Hlavàc̆ [40]. Subsequently, Tao et al. [109] showed that the S-K

algorithm could also be used to train L1-loss SVMs by iterating over RCHs instead of

convex hulls.

The rationale of the S-K algorithm is to take two approximate nearest points, one from

each of the two convex hulls, and update them iteratively, bringing them closer together

with each iteration (Figure 5.2). Two initial approximations of the nearest points ppos,pneg

can be chosen as arbitrary points in the convex hulls of the two classes. One of the easiest

ways to achieve this is to simply initialize ppos = xj , for any j such that yj = 1, and

initialize pneg = xk, for any k such that yk = −1.

w

pneg
ppos

Figure 5.2: Finding the nearest points using an iterative update step

The approximate nearest points, ppos and pneg provide a direction (Figure 5.2):

w = ppos − pneg

The vector w can be considered the normal of a hyperplane which approximately separates

the two convex hulls. As the two approximate nearest points become more and more

accurate, the hyperplane will eventually become perpendicular to the shortest line between

the two classes, and hence will define an SVM.

The vector w is used to update the estimated locations of the nearest points as follows.

In order to update the positive class, a vertex vpos from the positive class is found which

is extreme in the direction −w, i.e. for which:

vpos = max
i∈Ipos

{−w · xi}.

Given such a vertex, ppos can be updated to move it closer to pneg by setting [72]:

pnewpos = (1− λ)ppos + λvpos. (5.1)

Here λ is chosen to minimize the distance between the approximate nearest points. This

distance is at a minimum when the line segment joining pnewpos and pneg forms a right

angle with the line segment joining ppos and vpos (Figure 5.3). To ensure the updated

approximation of the nearest point does not fall outside of the hull, λ is clamped between
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[0, 1]. This means the optimal value of λ is given by:

0 = (pneg − (1− λ)ppos − λvpos) · (ppos − vpos)

= (pneg − ppos)(ppos − vpos) + λ(ppos − vpos)
2

⇒ λ = clamp

(
(pneg − ppos) · (ppos − vpos)

(ppos − vpos)2
, 0, 1

)
(5.2)

In Equation (5.2) we use the clamp function, defined as:

clamp(c, cmin, cmax) = min (max (c, cmin) , cmax) .

The clamp function forces a variable to fall within a particular range, returning:

clamp(c, cmin, cmax) =


cmin if c ≤ cmin
c if cmin < c < cmax

cmax if c ≥ cmax

This use of the clamp function ensures that the two approximations of the nearest points

can never be allowed to leave the convex hulls of the two classes.

Once the optimal λ has been found, the new value of ppos can be computed, and then

used to update w. This new value of w provides a new direction in which an update

vertex can be found, allowing the update step to be repeated.

w

pneg

ppos

vpos

ppos
new

wnew

Figure 5.3: Updating the approximate nearest points using the S-K algorithm

The negative class is updated in a similar way to the positive class, except vneg is

instead chosen such that vneg = arg maxi∈Ineg
{xi ·w}. The update rule then becomes:

pnewneg = (1− λ)pneg + λvneg. (5.3)

With λ now computed using:

λ = clamp

(
(ppos − pneg) · (pneg − vneg)

(pneg − vneg)2
, 0, 1

)
(5.4)



98 CHAPTER 5. GEOMETRIC TRAINING ALGORITHMS

Algorithm 8 The Schlesinger-Kozinec Algorithm

function sk(P,y)
initialize ppos to any point from the positive class
initialize pneg to any point from the negative class
loop

w← ppos − pneg
vpos ← arg max

i∈Ipos
−w · xi . find update vertices

vneg ← arg max
i∈Ineg

w · xi

if w(vpos − pneg) < w(ppos − vneg) then
if 1−w · (vpos − pneg)/||w||2 < ε then

break . stopping conditions reached
end if
λ← clamp

(
(pneg−ppos)(ppos−vpos)

(ppos−vpos)2
, 0, 1

)
. positive class update

pnewpos ← (1− λ)ppos + λvpos
else

if 1−w · (ppos − vneg)/||w||2 < ε then
break . stopping conditions reached

end if
λ← clamp

(
(ppos−pneg)(pneg−vneg)

(pneg−vneg)2
, 0, 1

)
. negative class update

pnewneg ← (1− λ)pneg + λvneg
end if

end loop
b← 1

2 (w · ppos + w · pneg)
return (w, b) . return hyperplane normal and offset

end function
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Using Kernels

The S-K algorithm can be adapted to operate in a kernel feature space by representing

the nearest point estimates ppos and pneg, as well as the update point vpos, as convex

combinations of points from P . This yields:

ppos =
∑
i∈Ipos

αixi pneg =
∑
i∈Ineg

αixi vpos =
∑
i∈Ipos

βixi (5.5)

In order to preclude the need for explicit feature maps, we can use Equations (5.2) and

(5.5) to calculate λ (for the positive class) as:

λ = clamp


n∑
i=1

∑
j∈Ipos

yiαi(αj − βj)K(xi,xj)∑
i∈Ipos

∑
j∈Ipos

(αi − βi)(αj − βj)K(xi,xj)
, 0, 1

 . (5.6)

A similar equation can be derived using Equation (5.4) for the negative class. Although

Equation (5.6) appears quite computationally expensive to compute, Franc and Hlavàc̆

[40] describe how to use caching to accelerate the computation of λ. We further elaborate

on the efficient implementation of kernel S-K algorithms in Section 5.6.

Computing the Nearest Points in two RCHs

The S-K algorithm was originally applied to the convex hull nearest point task, meaning

it could originally train only hard margin SVMs (or soft margin L2-loss SVMs, which have

a hard margin formulation in a kernel feature space, as we discussed in Section 2.5.4).

However, the standard S-K algorithm operating over convex hulls may not be used in

order to train L1-loss SVMs. If the L1-loss function is desired, the S-K algorithm must be

modified to operate over reduced convex hulls instead of convex hulls.

The Schlesinger-Kozinec algorithm has been adapted to train L1-loss SVMs by oper-

ating over RCHs [82, 109]. This is possible because the update step depends only on the

current approximations of the nearest points and a single update vertex. It follows that

the update step from Equation (5.1) can be rewritten:

pnewpos = (1− λ)ppos + λvpos, (5.7)

where vpos is a vertex in the RCH of the positive class which is extreme in the direction

−w. This vertex can be given by:

vpos = arg max
v∈RCH(P,µ)

−v ·w.

Recall that Theorem 3 (in Section 3.4) provides a simple means for computing such a

vertex, making it possible to apply the S-K algorithm to RCHs.
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Drawbacks of the S-K Algorithm

The main drawback of the S-K algorithm is best illustrated by considering the kernel S-K

implementation. In this implementation, the update step in Equation (5.1) is very unlikely

to return an αi to zero once it has been given a positive value. This means that, although

convergence can be fast at first, it is likely to become slow in later iterations [65, 83]. An

excess of non-zero αi values has the effect of getting the approximate nearest points ‘stuck’

inside the hulls, rather than allowing them to quickly reach the border, where the solution

will always lie.

5.2.2 Gilbert’s Algorithm

Gilbert’s algorithm [44], developed prior to the S-K algorithm, is analogous to a one-

set version of the S-K algorithm. Instead of operating on two convex hulls like the S-K

algorithm, Gilbert’s algorithm finds the point in a single convex hull which is closest to

zero (i.e. which has minimal norm) (Figure 5.4). Both Gilbert’s algorithm and the S-K

algorithm use the same nearest point update procedure. However, in the S-K algorithm

the current nearest point in the class being updated is brought closer to the nearest point

in the other class, whereas in Gilbert’s algorithm it is brought closer to zero.

Figure 5.4: The point in a convex hull with minimal norm

Gilbert’s algorithm begins by initializing an approximate nearest point p ∈ P . Any

point from P may be used as an initial nearest point. An update point v ∈ P is chosen

by finding:

v =
n

min
i=1
{p · xi} .

The update point is used to drag p closer to the origin using the same update step used

by the S-K algorithm. Namely, by letting:

pnew = (1− λ)p + λv. (5.8)
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λ is chosen to minimize ||p||, which occurs when the vector pnew forms a right angle with

the vector (p− v). This occurs when [44, 65]:

0 = ((1− λ)p + λv) · (p− v)

= p(p− v)− λ(p− v)2

⇒ λ = clamp

(
p · (p− v)

(p− v)2
, 0, 1

)

Algorithm 9 Gilbert’s Algorithm

function gilbert(P )
Initialize p to equal any point from P
loop

find point v ∈ P which minimizes p · v
if 1− p · v/||p||2 < ε then

break . stopping conditions reached
else

λ← clamp
(
p·(p−v)
(p−v)2

, 0, 1
)

p← (1− λ)p + λv
end if

end loop
end function
return p

Using Kernels

Kernels are introduced to Gilbert’s algorithm by representing the current nearest point p

and update vertex v as convex combinations of other points:

p =

n∑
i=1

αixi v =

n∑
i=1

βixi.

Using this representation, the coefficient λ to use in the update step (Equation 5.8) be-

comes:

λ = clamp


n∑

i,j=1

αi(αj − βj)K(xi,xj)

n∑
i,j=1

(αi − βi)(αj − βi)K(xj ,xj)

, 0, 1

 .

For Two Classes

Although both Gilbert’s algorithm and the S-K algorithm may appear to solve separate

problems, Gilbert’s algorithm can be extended to compute the nearest points in two classes

if it is applied to a set which combines the two classes using the Minkowski set difference

operator [101, 65]. This has led several authors [65, 83, 80] to apply Gilbert’s algorithm

to the training of SVMs. However, as Keerthi et al. [65] point out, applying Gilbert’s
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algorithm to the Minkowski difference of two sets is not necessarily simpler (in terms of

computational effort) than operating directly over the original two sets.

Gilbert’s one-class nearest point algorithm can be used to solve the two-class nearest

point problem by combining the two classes using their Minkowski set difference. The

Minkowski set difference M of sets Ppos and Pneg is defined as [101, 65]:

M = Ppos 	 Pneg = {ppos − pneg | ppos ∈ Ppos, pneg ∈ Pneg} .

Let m ∈ CH(Ppos 	 Pneg) be a point in the convex hull of the Minkowski set difference

Ppos 	 Pneg. Notice that the point in this set with minimal norm is given by solving:

min ||m|| = min ||
∑
i∈Ipos

αixi −
∑
i∈Ineg

αixi||.

It follows that finding the point in the convex hull of Ppos 	 Pneg with minimal norm is

equivalent to finding the nearest points in CH(Ppos) and CH(Pneg).

The additional difficulty with solving the Minkowski form of the nearest point problem

is finding the update vertex v ∈ CH(Ppos	Pneg), which no longer exists in the convex hull

of a simple set of points. This means the update step must be adapted to find a vertex

of CH(Ppos 	 Pneg). This may seem difficult given the size of the Minkowski set, however

finding an update vertex v amounts to finding:

v = arg min
m∈CH(Ppos	Pneg)

p ·m

= arg min
ppos∈Ppos

{p · ppos}+ arg min
pneg∈Pneg

{−p · pneg}

Recall that p is the current approximation of the point in CH(Ppos 	 Pneg) with minimal

norm.

Notice how v combines one vertex from each class. This makes the Minkowski update

similar to the S-K update step, except with both classes updated simultaneously rather

than sequentially. This is why Keerthi et al. [65] suggest that Gilbert’s algorithm applied

to a Minkowski set is only superficially simpler than the S-K algorithm. The similarities

between the two algorithms also mean that Gilbert’s algorithm suffers from the same main

drawback as the S-K algorithm: slow convergence in later iterations [65, 83]. We further

examine the difference in the performance of the one and two-class approaches in later

sections.

Computing the Nearest Points in two RCHs

Like the S-K algorithm, Gilbert’s algorithm was originally applied to convex hulls, meaning

it can only train hard margin or L2-loss SVMs. However, it can be modified to compute

the nearest points in two RCHs in the same way that the S-K algorithm can. Namely, by

rewriting the update step as:

pnew = (1− λ)p + λv.
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Here v is a vertex of the RCH which is extreme in direction −p. Recall that this vertex

is simple to find using Theorem 3.

5.2.3 The Mitchell-Dem’yanov-Malozemov Algorithm

The Mitchell-Dem’yanov-Malozemov (MDM) algorithm [84, 65, 77] is another nearest

point algorithm which uses an iterative update step to move two approximate nearest

points gradually as close together as possible. The two approximate nearest points must

be represented as a convex combination of input points:

ppos =
∑
i∈Ipos

αixi pneg =
∑
i∈Ineg

αixi

Although the MDM algorithm can also be applied to the one-class nearest point problem

[84] (in the same manner as Gilbert’s algorithm), we describe the two-class variant here.

The defining feature of the MDM algorithm is that it updates an approximate nearest

point (in the positive class) by setting:

pnewpos = ppos + λz.

In order to keep the convex hull constraints of the optimization task intact, this update

step requires that z be given by:

z = xdst − xsrc.

Letting w = ppos − pneg, indices src and dst satisfy:

src = arg min
i∈Ipos,αi>0

{w · xi} dst = arg max
i∈Ipos,αi<1

{w · xi}.

The size of the update step, λ, for the MDM algorithm is computed by minimizing:

||pnewpos − pneg||2 = ||ppos + λz− pneg||2

= ||w + λz||2

= ||w||2 + 2λw · z + λ2||z||2

This quantity is at a minimum when 2w · z + 2λ||z||2 = 0, implying that:

λ = clamp

(
−w · z
||z||2

, 0, λmax

)
where λmax = min (αsrc, 1− αdst) .

(5.9)

Here we clamp the value of λ between [0, λmax]. This forces 0 ≤ αi ≤ 1 to be satisfied,

meaning an update step can not move an approximation of a nearest point outside of the

hull.
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Figure 5.5 depicts the MDM update step. Note that line segment from xsrc to xdst runs

parallel to the line segment from ppos to pnewpos . The planes P1 and P2 are also parallel,

and are perpendicular to the line ppos−pneg between the two approximate nearest points

xsrc

xdst

z

ppos

pneg

ppos
new

P1
P2

w

Figure 5.5: The MDM update step

Keerthi et al. [65] describe the MDM update step as not only moving the estimated

nearest points closer together, but simultaneously moving the ‘slab’ formed by planes P1

and P2 (depicted in Figure 5.5) closer together. By contrast, the S-K algorithm focuses

solely on moving the estimated nearest points closer together. Because of this difference,

the MDM algorithm generally converges much faster than Gilbert’s algorithm in later

iterations because it provides a mechanism by which non-zero αi values can be reduced to

zero. By contrast, αi values in the S-K algorithm are very unlikely to be quickly reduced

to zero once they are given a positive weight.

Computing the Nearest Points in two RCHs

The MDM algorithm, unlike the S-K and Gilbert’s algorithm, does not depend solely on

the vertices of the convex hull in order to decide how to make progress towards the nearest

points. Because of this, applying it to RCHs requires more than simply substituting a new

vertex finding rule into the algorithm.

There have been two recent approaches to applying MDM to RCHs. One of these

approaches, taken by López et al. [78], is to make two modifications to the algorithm.

First, the way in which update points xsrc and xdst are modified to take into account the

RCH parameter µ. This results in update indices (for the positive class) of:

src = arg min
i∈Ipos,αi>0

{w · xi} dst = arg max
i∈Ipos,αi<µ

{w · xi}.

This means that the algorithm will only attempt to shift weight to a point if its Lagrange

multiplier is not at its upper bound. The second modification to the algorithm is to cap

all αi’s at the maximum value of µ in order to satisfy the RCH constraints.

The second approach to applying MDM to RCHs, taken by Tao et al. [109], is to

modify the MDM update step so that it becomes:

pnewpos = (1− λ)ppos + λzpos, (5.10)
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Rather than zpos being a vertex of the RCH, it is instead given by:

zpos = vpos + γ(xdst − xsrc),

where vpos is the standard S-K update vertex described in Section 5.2.1, γ = min(αdst, αsrc),

and:

src = arg max
i∈Ipos,αi>0

w · xi

dst = arg min
i∈Ipos,αi<µ

w · xi

Notice that Equation (5.10) bears more resemblance to the S-K algorithm than MDM, so

Tao et al.’s algorithm could also be described as an S-K/MDM hybrid or a modified S-K

algorithm.

5.2.4 Terminating the Algorithm

Many nearest point algorithms can not simply be repeated until an exact solution is

reached, since this is not guaranteed to occur in a finite number of iterations [100, 40, 65].

Instead updates are stopped stopped once the solution becomes correct to within some

tolerance parameter ε. We suggest terminating once each approximate nearest point lies

with a relative factor of ε of the true nearest points. This occurs when the current solution

satisfies:

1− w · (vpos − pneg)

||w||2
< ε,

and 1− w · (ppos − vneg)

||w||2
< ε

This can also be written as:

min

(
w(vpos − pneg)

||w||2
,
w(ppos − vneg)

||w||2

)
≥ 1− ε (5.11)

Recall that ppos and pneg are the approximate nearest points in the positive and

negative classes, respectively. The hyperplane normal is given by w = ppos − pneg, and

vpos and vneg satisfy:

vpos = arg max
xi,i∈Ipos

−w · xi vneg = arg max
xi,i∈Ineg

w · xi

Notice that these values of vpos and vneg are specific to the convex hull case, where vertices

are guaranteed to be points from P . If the nearest point algorithm is instead being applied

to an RCH, these vertices must become:

vpos = arg max
v∈RCH(Ppos,µ)

−w · v vneg = arg max
v∈RCH(Pneg ,µ)

w · v
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These maximization tasks find vertices in the RCH which are extreme in directions w,−w,

so they can be easily solved using Theorem 3.

A relative nearest point stopping condition similar to this one is used by Keerthi

et al. [65]. However, other authors have also used an absolute stopping condition where

the algorithm terminates once the absolute distance between the approximate nearest

point and the true nearest point falls below a tolerance [40, 81, 109]. We will more

closely examine the impacts of varying the stopping conditions in Section 5.8. However,

for consistency in this section, all algorithm listings will refer to the relative stopping

conditions in (5.11).

5.2.5 Choosing the Threshold

Once these stopping conditions are met, the threshold of the hyperplane, b, is set so that

it places the hyperplane half way between the two nearest points:

b =
1

2
(w · ppos + w · pneg) .

This is the geometric threshold, which we previously described in detail in Chapter 4. Re-

call that this threshold is not identical to the one given by the KKT conditions. However,

it is common to use it in conjunction with nearest point algorithms [40, 109].

The benefit of using the geometric threshold in conjunction with the S-K algorithm is

that this threshold is not susceptible to change significantly due to extremely small (but

non-zero) αi’s. Recall that these are quite likely to occur, particularly in conjunction with

the S-K algorithm, since it is difficult for this algorithm to return an αi value to zero once

it has been given a non-zero value. Using a geometric threshold prevents these αi’s from

having an undue influence on the placement of the hyperplane by skewing the threshold.

5.3 Sequential Minimal Optimization

Sequential Minimal Optimization (SMO) is an SVM training algorithm introduced by

Platt [91], who noted that SVMs can be efficiently trained by solving a sequence of small

analytical update steps involving just two Lagrange multipliers at a time. The update step

is a two-part process; first a heuristic is used to select the Lagrange multipliers to update,

then the dual objective function is optimized with respect to those two multipliers, while

keeping the dual constraints intact.

SMO has been applied to many different types of SVMs. Refer, for example, to Platt

[91] for the original C-SVM formulation, to Vogt [119] for a perceptron variant, and to

Keerthi et al. [67] for a Kernel Logistic Regression (KLR) variant. In this section we

focus specifically on SMO for the L1-loss µ-SVM for its consistency with the geometric

framework, and hence with the other algorithms we discuss in this chapter.
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5.3.1 Updating a Pair of Lagrange Multipliers

The SMO update step consists of updating two Lagrange multipliers αdst, αsrc such that:

αdst ← αdst + δ αsrc ← αsrc − δ. (5.12)

In order to keep the constraints on the dual satisfied, we must ensure that both update

points are from the same class, i.e. ydst = ysrc. The value of δ to use is derived by con-

sidering the L1-loss µ-SVM dual objective function with respect to the updated Lagrange

multipliers. Recall that the µ-SVM objective function is given by:

F = −1

4

n∑
i,j=1

yiyjαiαjxi · xj

Updating αdst and αsrc using (5.12), we have:

F = −1

4
||
∑
i

αiyixi + δydstxdst − δysrcxsrc||2 (5.13)

Using ydst = ysrc and expanding this yields:

F = −1

4

∑
i,j

αiαjyiyjxi · xj −
1

2

∑
i

αiyiydstδxi · xdst +
1

2

∑
i

αiyiydstδxi · xsrc

− 1

4
δ2xdst · xdst +

1

2
δ2xdst · xsrc −

1

4
δ2xsrc · xsrc

(5.14)

Equation 5.14 is optimized with respect to δ when:

∂F

∂δ
=
ydst
2

(∑
i

αiyixi · xsrc −
∑
i

αiyixi · xdst

)

− δ

2
(xdst · xdst − 2xdst · xsrc + xsrc · xsrc)

= 0

This results in δ given by:

δ = clamp

(
ydst (fsrc − fdst)

xdst · xdst − 2xdst · xsrc + xsrc · xsrc
, 0, δmax

)
where δmax = min (αsrc, 1− αdst)

(5.15)

Notice that δ has been clamped between [0, δmax] to avoid any individual αi becoming

negative or greater than one.

Values in (5.15) are used in conjunction with Equation (5.12) in order to complete

the SMO update step. In this equation we have used fk =
∑

i yiαixi · xk to refer to the

dot product of the decision function normal with the training vector xk, with threshold

omitted. We will continue to use this shortened notation in subsequent sections.
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5.3.2 Choosing the Lagrange Multipliers to Update

The Lagrange multipliers to update in each iteration of SMO are chosen using a heuristic.

Platt’s original heuristic for choosing the points to update was to take the maximal violat-

ing pair, that is the pair of points in the same class which maximize ||fsrc−fdst||. Because

this expression appears in Equation 5.15, maximizing it generally results in a large step

size δ being taken. Since finding the maximal violating pair requires computing fi’s for all

training points, some authors combine SMO with smaller working sets where points are

incrementally added to and discarded from the working set as training progresses [91, 66].

The heuristic used by Platt is rather simple. This is intentional since the SMO update

step is very fast to compute. It therefore does not make sense to spend an excessive amount

of time searching for the best Lagrange multipliers to optimize when several approximate

guesses could be made and optimized in the same amount of time. However, there have

been more recent contributions which suggest that the heuristic for choosing the points to

optimize (and by extension, the points to include/exclude from the working set) can be

further improved using second order information [37, 22, 45, 14].

5.3.3 Relationship with Nearest Point Algorithms

López et al. [77] point out that the update step performed by SMO on the µ-SVM problem

is identical to that performed by the MDM algorithm. This can be seen by expanding the

MDM update coefficient in Equation (5.9):

λ = clamp

(
−w · z
||z||2

, 0, λmax

)
= clamp

(
− fsrc − fdst
x2
src − 2xsrc · xdst + x2

dst

, 0, λmax

)
where λmax = min(αsrc, 1− αdst)

This is equivalent to the SMO update step in Equation (5.15).

In fact, MDM can be thought of as an SMO implementation with a maximal violating

pair heuristic over the entire training set (i.e. with no working set selection). This means

that the only difference between MDM and most SMO implementations for the µ-SVM

is in the way in which the points to optimize are chosen. Once these points have been

chosen, the update step itself is identical across the two approaches.

5.4 Improving Nearest Point Algorithms

We suggest that nearest point algorithms can be generalized by applying them to operate

over WRCHs instead of convex or reduced convex hulls. This is the most general type of

nearest point implementation, since it can be used to train both L1-loss (RCH) SVMs and

L2-loss (convex hull) SVMs, with optional point weights. This can be seen in the WRCH

SVM dual in Equation (5.16). Notice how this optimization task can be combined with
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the various configurations in Table 5.1 in order to train each different type of SVM.

max
αi,...,αn

− 1

4

n∑
i,j=1

yiyjαiαjk(xi,xj)

subject to


∑n

i=1 αiyi = 0∑n
i=1 αi = 2

0 ≤ αi ≤ siµ

(5.16)

Table 5.1: Various configurations of the general WRCH SVM

SVM Type Parameters Kernel k(xi,xj)

Hard Margin µ′ = 1, si = 1 k(xi,xj) = K(xi,xj)
L1-loss (unweighted) si = 1, 0 ≤ µ ≤ 1 k(xi,xj) = K(xi,xj)
L1-loss (weighted) 0 ≤ µ ≤ 1 k(xi,xj) = K(xi,xj)
L2-loss (unweighted) µ = 1 k(xi,xj) = K(xi,xj) + δij/(2C)
L2-loss (weighted) µ = 1 k(xi,xj) = K(xi,xj) + δij/(2siC)

There is also a question of how nearest point algorithms operating over WRCHs can

best be optimized. Previously, highly optimized nearest point implementations were gen-

erally specific to the L2-loss SVM formulation [71, 65]. In Section 5.6 we look at how

nearest point implementations can be optimized specifically for the general WRCH form

of the problem.

There is further room for improvement of nearest point algorithms in terms of under-

standing the stopping conditions and their impact on the final SVM. We mentioned when

introducing nearest point algorithms in previous sections how there are several different

types of stopping conditions which have been applied in the past. However, to the best of

our knowledge there has been limited comparison of these stopping conditions. In Section

5.8 we go into further detail on these stopping conditions and investigate the impact they

have on the final solution.

It is important to carefully consider the impact of the stopping conditions in any SVM

training algorithm. Because the stopping conditions decide when an algorithm should

terminate, they can provide an illusion that one particular training algorithm is faster

than another, when the reality is that the algorithm is simply stopping with a more

approximate solution.

5.5 A Weighted Schlesinger-Kozinec (WSK) Algorithm

Although the effect of point weighting for SVMs can be simulated by duplicating training

data (refer to Section 3.9.2), such an approach introduces problems because it limits the

precision with which weights can be specified, as well as increasing the size of the training

set. Increasing training set sizes for SVMs is particularly undesirable because training

algorithms tend to scale worse than linearly as the amount of data increases [19].

In this section we approach the problem of applying nearest point algorithms to train

weighted SVMs by using the concept of Weighted Reduced Convex Hulls (WRCHs).
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Weighted reduced convex hulls were generalized from reduced convex hulls and their the-

oretical properties were described in Section 3.9. In Section 4.4.1, we further described

how weighted SVMs can be interpreted as the perpendicular bisector of the shortest line

between the WRCHs of the two classes. Using this information, we can now construct a

geometric algorithm for training weighted SVMs. The algorithm is a generalization of the

Schlesinger-Kozinec algorithm, which has previously been applied to both standard and

reduced convex hulls [65, 40, 108]. We refer to the new algorithm as the Weighted S-K

(WSK) algorithm. The WSK algorithm is capable of naturally handling weighted training

data without the need for inflating the training set size.

5.5.1 The WSK Algorithm

The WSK algorithm is a variant of the S-K algorithm which has been modified to operate

over WRCHs. This means it begins by taking two approximate nearest points from the

WRCHs of each class, and iteratively updates them, bringing them closer together. Initial

points ppos and pneg can be chosen as arbitrary points in the WRCHs of the two classes.

Such points can be found using Algorithm 7 (introduced in Section 3.4) in conjunction

with any direction.

The normal of a hyperplane separating two approximate nearest points, ppos and pneg,

can be given by:

w = ppos − pneg

Because ppos and pneg exist in two WRCHs, this hyperplane approximately separates the

WRCHs of the two classes, rather than the convex or reduced convex hulls.

In order to update the approximation of the nearest point in the positive class, the

vector w is used to find a vertex, vpos of the WRCH of the positive class. This is achieved

by solving:

vpos = arg max
v∈WRCH(Ppos,s,µ)

−w · v

Recall that Ppos denotes the set of all points in P which belong to the positive class, and

Pneg denotes the set of all points from P which belong to the negative class. We described

previously in Section 3.4 how this optimization task can be solved using Algorithm 7.

Once the vertex, vpos, has been found, the approximate nearest points can be moved

closer together. This is done by setting:

pnewpos = (1− λ)ppos + λvpos. (5.17)

Here λ is chosen to minimize the distance between the two approximations of the nearest

points. The calculation of λ does not need to change from the original λ calculation in
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the S-K algorithm applied to standard convex hulls, given by [72, 40]:

0 = (pneg − (1− λ)ppos − λvpos) · (ppos − vpos)

⇒ λ = clamp

(
(pneg − ppos) · (ppos − vpos)

(ppos − vpos)2
, 0, 1

)
(5.18)

The vector w is then updated using the new value of ppos before the nearest points are

updated again.

In order to update the negative class using a vertex vneg from the WRCH of the

negative class, the update step becomes [72, 40]:

pnewneg = (1− λ)pneg + λvneg. (5.19)

With λ now computed as [72, 40]:

λ = clamp

(
(ppos − pneg) · (pneg − vneg)

(pneg − vneg)2
, 0, 1

)
(5.20)

This equation itself has not changed from the original S-K algorithm, however the update

vertex vneg and the way in which it is computed has been changed so that it is now a

vertex from a WRCH.

The WSK algorithm can retain the relative ε-optimal nearest point stopping conditions

described previously in Section 5.2.4. These are written as:

1− w · (vpos − pneg)

||w||2
< ε, and 1− w · (ppos − vneg)

||w||2
< ε

The complete WSK algorithm is described in Algorithm 10. This algorithm uses the

vertex finding algorithm which we previously described in Algorithm 7 in order to find

vertices of the WRCHs of the two classes. The fundamental difference between the WSK

algorithm and the original S-K algorithm is that the WSK algorithm takes advantage of

the properties of WRCHs we described in previous sections. This allows it to operate over

WRCHs in order to train WSVMs, rather than operating over convex hulls and training

standard SVMs like the original S-K algorithm.

5.5.2 Comparing WSK to Point Duplication

To test the effectiveness of our algorithm we use two datasets from the UCI machine

learning repository which have associated misclassification costs, the german and heart

datasets. We adopt the recommended misclassification costs of 1 for the negative class,

and 5 for the positive class. This means that it is 5 times as costly to misclassify points

from the positive class than it is to misclassify points from the negative class.

Initial empirical trials use a Gaussian kernel with γ = 0.01, i.e. basis functions with

a very large width which result in an almost-linear decision surface. This ensures that

overfitting is unlikely to occur during initial trials. We explore alternative kernels in

subsequent trials.
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Algorithm 10 The Weighted Schlesinger-Kozinec Algorithm

function WSK(P, s,y)
initialize Ipos = {i | yi = 1}, Ineg = {i | yi = −1}.
initialize Ppos = {xi ∈ P | i ∈ Ppos}, Pneg = {xi ∈ P | i ∈ Pneg}
initialize ppos to any point from WRCH(Ppos, s, µ)
initialize pneg to any point from WRCH(Pneg, s, µ)
loop

w← ppos − pneg
vpos ← arg max

v∈WRCH(Ppos,s,µ)
−w · v . use Algorithm 7 to solve this

vneg ← arg max
v∈WRCH(Pneg ,s,µ)

w · v

if w · (vpos − pneg) < w · (ppos − vneg) then
if 1−w · (vpos − pneg)/||w||2 < ε then

break . stopping conditions reached
end if
λ← clamp

(
(pneg−ppos)·(ppos−vpos)

(ppos−vpos)2
, 0, 1

)
pnewpos ← (1− λ)ppos + λvpos

else
if 1−w · (ppos − vneg)/||w||2 < ε then

break . stopping conditions reached
end if
λ← clamp

(
(ppos−pneg)·(pneg−vneg)

(pneg−vneg)2
, 0, 1

)
pnewneg ← (1− λ)pneg + λvneg

end if
end loop
b← 1

2 (w · ppos + w · pneg)
return (w, b) . return hyperplane normal and offset

end function
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For the regularization parameter, we use µ = 1/(0.9κ). Recall from Section 4.4.5 that

κ is the sum of weights in the smaller (by weight) class. Defining µ in terms of κ like

this ensures that the WRCHs remain separable regardless of the weighting scheme that is

applied. Mean error rates (and associated standard errors) are calculated over 100 runs,

with 90% of data used for training and 10% used for testing. The error cost is the sum of

weights for misclassified points.

Table 5.2: Results of the three algorithms on the heart dataset

Time (ms) Total Err Cost Pos Class Err Neg Class Err

WSK 33.7± 1.0 11.2± 0.5 0.112± 0.009 0.309± 0.013
S-KDUP 124.3± 3.8 11.2± 0.5 0.112± 0.009 0.309± 0.013
S-K 6.4± 0.1 14.8± 0.7 0.223± 0.011 0.118± 0.008

Table 5.3: Results of the three algorithms on the german dataset

Time (ms) Total Err Cost Pos Class Err Neg Class Err

WSK 150.7± 3.0 57.7± 1.2 0.202± 0.008 0.390± 0.006
S-KDUP 1286.3± 32.1 57.7± 1.2 0.202± 0.008 0.390± 0.006
S-K 528.4± 12.6 73.1± 1.5 0.420± 0.009 0.148± 0.0004

Tables 5.2 and 5.3 show the results of the WSK algorithm. We compare the algorithm

to two alternatives: the standard (unweighted) S-K algorithm where points have been

duplicated to simulate weights (denoted S-KDUP), and the standard S-K algorithm with

no weighting and no point duplication (denoted S-K). The comparison to point duplication

shows that the WSK algorithm provides the same solution as given by point duplication,

whereas it does so much faster due to the smaller training set size. The comparison to a

standard S-K algorithm with no point duplication shows that the weighted variant allows

a trade-off where the accuracy in one class is sacrificed in order to increase the accuracy

in the other class.

An interesting observation is that the time required to perform the WSK and S-K

algorithms is not the same. This means that training times can be altered significantly

by introducing different weighting schemes. This difference in training time arises from

changes in the shape of the hulls that are being optimized, rather than any inherent

inefficiency in the WSK or S-K approach. This is supported by the fact that the WSK

algorithm, although relatively slower than the S-K algorithm on the heart dataset, was

relatively faster on the german dataset. We will further explore the relationship between

weighting schemes and training time in the following section.

Because the german and heart datasets have simple misclassification costs which de-

pend solely on the class, they do not exercise the true capability of the WSK algorithm.

For this reason we also ran empirical trials which imposed a more complex cost struc-

ture on a synthetic dataset. Figure 5.6 shows the result of a polynomial SVM (q = 4,

µ = 1/(0.25κ) trained on a synthetic dataset. Each class has points generated from

two Gaussian distributions, so there are in effect two subsets in each class. One of these

subsets is given the weight of si = 6, with the other subset given the weight of si = 1.
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In this figure, highly weighted subsets are emphasized using shaded ellipses. If weights

were ignored, an optimal decision surface would be a vertical line alone x = 0. Notice,

however, that the SVM forces the decision surface to classify correctly the highly weighted

subsets, despite the fact that the two classes have identical variance and an equal number

of points.
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Figure 5.6: A polynomial weighted SVM trained on a synthetic dataset with q = 4,
µ = 1/(0.25κ). The shaded ellipses emphasize the highly weighted subsets
of points.

Empirical results on the synthetic dataset are shown in Table 5.4. These results

are important because they highlight the fact that weights are not only useful for trading

accuracy in one class for another, but also for implementing more complex cost structures.

For the synthetic dataset, the error in both classes is worsened by using a weighted

classifier. However the total error cost is greatly improved. This means that the points

misclassified by the weighted SVM are on average less costly errors than points misclassified

by the standard SVM.

Table 5.4: Results of the three algorithms on the synthetic dataset

Time (ms) Total Err Cost Pos Class Err Neg Class Err

WSK 38.8± 0.7 9.44± 0.37 0.171± 0.007 0.137± 0.007
S-KDUP 394.4± 5.1 9.44± 0.37 0.171± 0.007 0.137± 0.007
S-K 166.2± 11.1 16.1± 0.84 0.095± 0.006 0.098± 0.006

5.5.3 How Weighting Affects Training Time

Results from the previous section indicated that the weighting of training data could

significantly impact training times. However, changing the weights of the points did not

necessarily increase training times. Rather, training times could be either increased or

decreased depending on the weighting scheme applied and the characteristics of the data.

In this section we further investigate how weighting schemes impact training times.

Figure 5.7 shows the time required to train a WSVM using the WSK algorithm, again

using µ = 1/(0.9κ), where κ is the sum of weights in the smaller (by weight) class. The

x-axis represents the value of spos/sneg. There are many different sets of weights that
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can satisfy this condition. However, because µ is set relative to the total weight, they

all have the equivalent effect in this case (provided neither class weight is zero). These

results suggest that assigning extreme weights to a class can possibly increase training

time. However, this is not always the case, as shown in Figure 5.7b where training time

is very low when the negative class is given a large weight.
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Figure 5.7: The relationship between weighting and training time. The Gaussian
kernel is used with γ = 0.01

The results in Figure 5.7 are best explained by considering the training times in con-

junction with their associated margin, rather than their weights. Figure 5.8 shows the

results of training WSVMs with the same weights used in the previous figure, however

the x-axis now shows the width of the margin instead of relative class weights. Notice

that smaller margins are generally associated with increased training times. This suggests

that changing the weighting scheme is only likely to increase training time if the weighting

scheme results in a decrease in the width of the margin.
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Figure 5.8: The relationship between margin and training time. The Gaussian kernel
is used with γ = 0.01
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5.6 An Efficient WSK Implementation

In Section 5.2.1 we reviewed the existing Schlesinger-Kozinec nearest point algorithm for

training SVMs, and in Section 5.5 we introduced the WSK algorithm, an S-K variant

which operates over WRCHs in order to train WSVMs. In this section we discuss how

the WSK algorithm can be implemented most efficiently. We find that the fastest way to

perform the update step depends on the parameters used. We suggest several alternate

ways of computing the update step and describe the parameters under which each is likely

to be fastest.

Because the WSK algorithm can be used to train unweighted SVMs over RCHs by

setting all weights to equal one, the implementation details in this section also improve

on some existing RCH nearest point algorithms. Further optimization specifically for

RCH nearest point algorithms is a worthy goal, since many existing highly optimized

nearest point algorithms take advantage of properties which are unique to convex hulls.

In particular, they tend to rely on the property that all vertices in a convex hull are points

from the input set [65, 71]. Since vertices in an RCH are convex combinations of points

from the input set, some of these algorithms can be difficult to apply directly to RCHs.

5.6.1 One-class vs Two-class

It was mentioned in Section 5.2 that there are two ways of implementing nearest point

algorithms which train SVMs. They can operate over two classes, or they can operate

over a single class (where that class is the Minkowski set difference of the two classes).

At a glance, it may appear preferable to choose the single class option because of the

increased simplicity in implementing the algorithm. Although they employ the one-class

approach, Keerthi et al. [65] note that its increased simplicity does not necessarily translate

into increased efficiency. We elaborate on this and suggest that, in the case of the WSK

algorithm, the two-class approach can actually be implemented more efficiently than the

one-class approach.

The reason we prefer the two-class approach is that the update step can be made more

efficient. This increased efficiency stems from the fact that each update step in the two-

class approach depends on only a portion of the kernel matrix. For example, the update

step for the one-class S-K algorithm is given by:

λ′ =

n∑
i,j=1

αi(αj − βj)yiyjxi · xj

n∑
i,j=1

(αi − βi)(αj − βj)yiyjxi · xj
. (5.21)

For a simplified analysis, we refer to the unclamped λ′ in this section, which is related to

λ by λ = clamp (λ′, 0, 1).

Because fk =
∑

i αiyixi · xk values are generally kept cached during training (as we

will discuss in the following section), the main cost involved in computing the update step

in (5.21) is the denominator. This operation requires at most n2 kernel products, where
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n is the total number of training points. Compare this to the two-class S-K update step

for the positive class:

λ′ =

n∑
i=1

∑
j∈Ipos

αi(αj − βj)yixi · xj∑
i∈Ipos

∑
j∈Ipos

(αi − βi)(αj − βj)xi · xj
.

The denominator of this fraction requires a maximum of only n2
pos kernel products, where

npos is the number of points in the positive class. If there are an approximately equal

number of points in each class, this means the two-class update step requires only around

a quarter the number of kernel products as the one-class update step.

Of course, the increased efficiency of the update step in the two-class algorithm must

be measured against any decreased efficacy (i.e. the total improvement made in the course

of the update step). There can sometimes be a decrease in the efficacy of the two-class

update step resulting from the fact that only a single class is involved in each update step,

requiring more iterations in total.

Figure 5.9 compares both the number of iterations and overall training time for the

one and two-class approaches. The datasets used to generate Figure 5.9 were chosen to

give a relatively broad coverage in terms of number of features and number of training

samples. These graphs show the number of iterations and the running time of the two-class

approach, relative to the number of iterations and running time of the one-class approach.

A value of y = 0.5 for time indicates that the two-class approach completed twice as fast

as the one-class approach. Similarly, a value of y = 2 for iterations indicates that the

two-class approach required twice as many iterations as the one-class approach in order to

train an SVM to the same precision. We use this format because running times increased

drastically as µ increased, so details in the graph were obscured when not using relative

comparisons. Identical stopping conditions were applied to both algorithms.

Figure 5.9 shows that the two-class approach tends to require more iterations than

the one-class approach when applied to the same datasets. However, it also shows that

this increase in the number of iterations does not outweigh the increased efficiency of the

two-class update step. This effect was more pronounced when µ values were large. For

example, on the splice and image datasets, the two-class approach was around twice

as fast for large values of µ (depicted in the Figure as a small value of 1/µ). Even

for other parameters on these datasets, the two-class approach still tended to be faster.

By comparison, on the banana dataset, which was smaller and of lower dimensionality,

and trained extremely quickly, there was little difference in the running times of the two

algorithms. Overall, we found that the two-class approach tended to be the more efficient

approach under most circumstances. For this reason, we focus mainly on the two-class

nearest point approach in this chapter.
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(a) splice dataset, γ = 0.01
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(b) image dataset, γ = 0.01
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(c) german dataset, γ = 0.1
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(d) banana dataset, γ = 1

Figure 5.9: Comparing the one and two-class nearest point approaches. Points on
these graphs show how the two-class algorithm performed relative to the
one-class algorithm. For example, a value of (x, y) = (200, 1.2) indicates
that, for µ = 1/200, the two-class approach took 20% longer, or required
20% more iterations, than the one-class approach. The dark line along
y = 1 provides a basis for comparison since a ratio of 1 indicates equality
between the two approaches for that µ value.

5.6.2 Maintaining a Cache

Caching frequently used values is an effective way of accelerating an SVM solver [91, 58, 66].

Some of the most useful values to cache in this context are the f -values:

fi =
∑
k

αkykxk · xi

A cache of f -values is desirable for two reasons. First, notice that fi = w · xi, so f -values

can be used to find the d1/µe points which have the largest scalar projection onto w,

and hence can be used to find the vertices of the RCH needed to update the approximate

nearest points. Second, f -values can be used to accelerate computation of the update step

itself (i.e. calculating λ), as we will discuss in the next section.

In our implementation all f -values are cached, and updated after each iteration. This

is a larger cache than most SMO implementations, which, depending on the heuristic they

use, often only cache fi values associated with a non-zero αi, or even a subset of these



5.6. AN EFFICIENT WSK IMPLEMENTATION 119

[91, 65]. However, we use a larger cache in our WSK implementation since it provides

access to all f -values which are needed in order to find the update vertex with each

iteration.

The cache is updated after each iteration by considering the WSK update step (for

the positive class):

pnewpos = (1− λ)ppos + λvpos (5.22)

= (1− λ)
∑
i∈Ipos

αixi + λ
∑
i∈Ipos

βixi (5.23)

During the process of this update step (after λ has been computed, but before αi’s have

been updated), the cache can be updated in either of two ways (Equations 5.24 and 5.25).

fi = foldi + λ
∑
k

yi(βk − αk)xk · xi (5.24)

= (1− λ)foldi + λ
∑
k

yiβixk · xi (5.25)

The best way to update the cache depends on the properties of the nearest point problem

as well as the parameters. Although it may seem unlikely that a βk should be exactly

equal to an αk, this is actually a common occurrence, particularly in later iterations.

These matches occur because the current nearest point in the class is generally close to

the outside of the hull, creating many α values which are capped at αk = skµ. Similarly,

the update point must also be on the outside of the class (and probably in a similar region

of the hull, particularly as the algorithm progresses).

In general, once Condition (5.26) is satisfied, Equation (5.24) will provide the faster

cache update. Otherwise, Equation (5.25) will be faster.

card ({i | βi = αi}) < card ({i | βi 6= 0}) (5.26)

The LHS of this inequality is equal to the number of points for which the equality βi = αi

holds. The RHS is equal to the number of points for which the condition βi 6= 0 holds.

Notice that the RHS is equal to the number of support points in the current update vertex.

It follows that if weights are all equal to one, the RHS will be equal to d1/µe.

Another choice depending on Condition (5.26) occurs when computing the update step,

so we will analyze further the circumstances under which (5.26) is likely to be satisfied in

the next section.
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5.6.3 Computing the Update Step

Recall that the S-K algorithm update step for the positive class is performed by computing:

λ′ =
λ′top
λ′bot

=

n∑
i=1

∑
j∈Ipos

yiαi(αj − βj)xi · xj∑
i∈Ipos

∑
j∈Ipos

(αi − βi)(αj − βj)xi · xj
. (5.27)

Using cached f -values, the numerator of the fraction on the right hand side of Equation

(5.27) can be expressed as:

λ′top =
∑
i∈Ipos

(αi − βi)fi.

This is generally the most efficient way of computing λ′top. However more options are

available for computing λ′bot, which can be expressed as either of:

λ′bot =
∑
i∈Ipos

∑
j∈Ipos

(αi − βi)(αj − βj)xi · xj (5.28)

=
∑
i∈Ipos

∑
j∈Ipos

(βiβjxi · xj) +
∑
i∈Ipos

(αi − 2βi)fi (5.29)

Equation (5.29) is the calculation used by Franc and Hlavàc̆ [40], whereas Equation (5.28)

is another option that is preferable if most points satisfy αi = βi.

Figure 5.10 depicts the number of training points for which αi 6= βi after each iteration

of the WSK algorithm. This is the number of points that would need to be included in

the calculation of Equation (5.28). A smaller number of points makes the calculation

more efficient. All weights have been made equal to one, meaning the number of support

points in each update vertex is given by d1/µe (shown as a dark horizontal line in the

figure). When the number of training points for which αi 6= βi dips under the horizontal

line, update steps in Equations (5.24) and (5.28) become more efficient than those in

Equations (5.25) and (5.29).

Notice how, for an L1-loss SVM with µ < 1, the number of points for which αi 6= βi

is likely to decrease as the algorithm progresses. The main exception to this trend is in

Figure 5.10e, where the number of points satisfying this condition tends to stay consistent

throughout training. The reason we suggest for this is that this machine uses a Gaussian

kernel with very narrow width (i.e. large γ). Recall from Section 4.2.5 that, with this

type of kernel, all points are likely to become support vectors, resulting in an overfitted

decision surface that resembles a k-nearest neighbor classifier. Under such circumstances

almost all points will satisfy 0 < αi < µ, in which case they can not satisfy αi = βi.

Figure 5.10 demonstrates that an appropriate choice of how to update the cache and

the nearest points can reduce the number of kernel products which must be computed.

The number of kernel products computed is sometimes used as a measure of efficiency for

SVM training algorithms [109, 40]. However, our implementations use an extensive kernel
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(a) image dataset, linear kernel with µ =
1/350

0 2000 4000 6000 8000 10000 12000
0

50

100

150

200

250

300

350

400

450

Iteration

U
p
d
a
te

 P
o
in

ts

 

 

Pos Class

Neg Class

(b) image dataset, Gaussian kernel with µ =
1/100,γ = 0.01
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(c) splice dataset, linear kernel with µ =
1/300
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(d) splice dataset, Gaussian kernel with µ =
1/300,γ = 0.01
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(e) banana dataset, Gaussian kernel with µ =
1/10,γ = 10
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(f) banana dataset, polynomial kernel with
µ = 1/50,d = 4

Figure 5.10: Choosing the most efficient update step. Here the number of points
satisfying αi 6= βi is shown for each iteration of the WSK algorithm.
When this number drops below the dark horizontal line, the update
step in (5.24) becomes more efficient than (5.25).

matrix cache combined with fast vector and matrix routines implemented in MATLAB.

Due to this, we found that the impact of the reduced number of kernel products was

negligible in terms of training times.
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5.6.4 Reaching the Outside of the Hull

The S-K algorithm (and by extension the WSK algorithm) has a tendency to become

‘stuck’ inside the hull and suffer from slow convergence (refer to Section 5.2.1). For the

(hard margin) convex hull task, Kowalczyk [71] addresses this problem by combining the

S-K update step which moves the current nearest point towards an update vertex (an

increaseStep) with an update step which moves the nearest point away from one of its

support points (a decreaseStep). The decreaseStep is an important addition because it

helps the αi of unwanted support points reach zero, something the S-K algorithm can

not quickly do. Similarly, Keerthi et al. [65] uses an S-K/MDM hybrid which has the

capability to reduce points to zero.

Most of the previous methods of helping the S-K algorithm reach the outside of the

hulls have been for the convex hull case. For the RCH nearest point problem, Tao et al.

[109] has attempted to improve the rate with which the S-K algorithm pushes points to

the outside of the RCHs. Recall from Section 5.2.3 that Tao et al. uses the S-K update

step:

pnewpos = (1− λ)ppos + λwpos,

However, rather than wpos being a vertex of the RCH, it is instead given by:

w =
∑
i

αixi + γ(xdst − xsrc),

where γ = min(αdst, αsrc), and:

src = arg max
i:αi>0

w · xi

dst = arg min
i:αi<µ

w · xi
(5.30)

This step ensures that the constraints of the nearest point problem retains intact, while

attempting to reduce αi values more quickly to zero when appropriate. We tried this

approach, but it did not seem to increase significantly either the speed of convergence or

the number of Lagrange multipliers which were set to zero. This observation is supported

by the empirical trials in the following section. The limited improvement is most likely

due to the fact that points are only zeroed if λ = 1 is computed for the update step, which

is an extremely infrequent occurrence.

Because of the limited ability for existing approaches to quickly reach the outside of

the hull, we use an intermediate step between iterations which aims to move directly

towards the outside of the hull. This is achieved by, for the positive class, shifting weight

from a Lagrange multiplier αsrc to another Lagrange multiplier αdst. This transfer of

weight should bring αdst as close to its upper bound as possible, and αsrc as close to its

lower bound as possible. However, this needs to be achieved without moving the current

approximations for the two nearest points any farther apart in the process.
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Ideal values of src and dst satisfying the objectives stated above are those used by

the MDM algorithm. However, we can not shift enough weight to cap either the source

or destination αi value because this may not decrease the distance between the nearest

points. We could evaluate the objective function and only shift the weight if it improved

the value of the objective function. However, it is no more difficult to compute the optimal

amount of weight to shift by minimizing ||w − δxsrc + δxdst||2.

Recall from Section 5.3 that this process of shifting weight between two Lagrange

multipliers describes a standard SMO iteration on these indices. Furthermore, the indices

src and dst correspond to an SMO heuristic using maximal violating pairs over the entire

training set[22]. This means that if this shift alone was repeated it would in fact eventually

converge on the solution. However, rather than repeating this step until convergence, we

use it as an intermediate step in order to help the approximate nearest points reach the

outside of the hull. This means that the algorithm we describe can be considered an

MDM-SK or SMO-SK hybrid.

The main benefits of this intermediate SMO step is that it helps push αi values towards

their bounds of [0, siµ]. This is beneficial when the KKT conditions associated with the

nearest point problem are considered (Figure 5.11). These KKT conditions indicate that

points from the positive class with large w · xi are most likely be able to be set to αi = 0.

Similarly, points from the positive class with small w · xi are most likely to be able to be

set to αi = siµ.

w

ρ/||w||

b/||w||
O

αi=00<αi<μ

αi=μ

0<αi<μαi=0

αi=μ

Figure 5.11: The KKT conditions associated with the RCH nearest point problem.
Position class represented by filled circles. Negative class represented by
diamonds. Support vectors are circled.

Helping to push αi values towards a bound accelerates the WSK algorithm in several

ways. First, it helps prevent the approximate nearest points from becoming ‘stuck’ inside

the hulls, therefore decreasing the total number of iterations required. Second, it increases

the number of points for which αi = 0 or αi = siµ, which has the potential to accelerate

each iteration of the algorithm which is taken. The acceleration occurs when Equations

(5.24) and (5.28) are used to perform the update, which become increasingly fast as more

αi values reach their bound.

Figure 5.12 shows the number of unbounded support vectors at each iteration of the

algorithm. Recall from Section 2.4.1 that we define an unbounded support vector as a
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training point which satisfies 0 < αi < siµ. Notice how the use of the accelerated algorithm

leads to a significant decrease in the number of unbounded support vectors.

The time required to execute the accelerated WSK method compared to the standard

S-K method is shown in Figure 5.12a. This time was calculated on the image dataset using

a Gaussian kernel with γ = 0.01. Notice how the accelerated algorithm tends to become

relatively much faster than the standard algorithm as µ becomes larger. More exhaustive

empirical comparisons in the following section will confirm with greater certainty the

effectiveness of the accelerated method.
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Figure 5.12: Comparing the standard S-K algorithm to accelerated WSK on the
image dataset. The Gaussian kernel with γ = 0.01 is used.

5.7 Comparing Nearest Point Implementations

Several authors have drawn different conclusions regarding the efficiency of S-K algorithms

in general. For example, Keerthi [63] suggests that the S-K algorithm is rather slow to

converge due to the approximate nearest points often becoming ‘stuck’ inside the hull.

However, Mavroforakis [81] suggests that S-K algorithms are generally equivalent to or

better than SMO in terms of training time for SVMs. In this section we compare our

WSK implementation to the previous RCH nearest point implementations. We compare

the algorithms based on training time.

Although it is common practice to also compare SVM training algorithms based on the

number of kernel evaluations [83, 109, 40], such comparisons can produce biased results.

This is due to the fact that most modern SVM implementations use at least some level of

caching in order to accelerate the training process [91, 20, 58]. It follows that the number

of kernel evaluations does not necessarily relate directly to training time.

5.7.1 Comparison as Parameters Change

Figure 5.13 shows a comparison of the four algorithms on a limited selection of datasets.

For more extensive results refer to Appendix C. In these figures, S-K denotes the standard

S-K algorithm, and WSK denotes the Weighted Schlesinger-Kozinec algorithm, which

contains additional acceleration steps described in Section 5.5. TAO denotes the algorithm
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described by Tao et al. [109], which is best described as a hybrid between the MDM and S-

K algorithms. SMO is the SMO algorithm using the maximal violating pair heuristic over

the entire training set (equivalent to the MDM algorithm). For consistency, all algorithms

use kernel and f -value caching and are implemented in the same MATLAB framework.

The S-K, WSK and TAO algorithms use identical relative nearest point stopping con-

ditions (described in Section 5.2.4) with ε = 10−3. However, it was not feasible to use this

same stopping condition with the SMO algorithm since it does not operate on vertices of

the WRCHs of the classes like the other algorithms do. Computing these vertices with

each iteration solely for the purpose of checking the stopping conditions was slower than

simply using an alternate stopping condition. For this reason we instead used KKT stop-

ping conditions with ε = 10−3. We will describe this stopping in more detail in Section

5.8. We will also examine the impact differing stopping condition have on training time

and accuracy.

The results on the four datasets shown in Figure 5.13 are characteristic of most datasets

in that SMO tended to perform better than the nearest point algorithms as µ became

large (forcing the margin to become small). The nearest point algorithms showed greatest

efficiency when µ was small (forcing the margin to become large). This is reasonable

behavior since these SVMs have a large number of support vectors which can all be updated

simultaneously by the nearest point update step, whereas SMO is forced to update support

vectors only two at a time.

The nearest point algorithms could also perform well for larger values of µ, provided

the kernel parameters were set so that a large number of support vectors were found (i.e.

Gaussian RBF kernels with a large width). For an example of this, refer to the results for

the splice dataset with γ = 1 (Figure C.7 in Appendix C). However, it is important to

note that kernel parameters which force this number of support vectors generally results

in a decision surface which has been overfitted to the data (as evidenced by the test error

for the splice dataset in Figure C.16), so these parameters are rarely used in practice.

5.7.2 Comparison as Training Set Sizes Change

To test whether any of the algorithms become more or less efficient as the training set

size changes we also performed a large scale test using the forest dataset. The forest

dataset was originally gathered by Blackard [12] with the aim of classifying the type of

forest cover in an area. We use only the ‘Spruce/Fir’ and ‘Lodgepole pine’ classes (the

two larger classes) and discard the smaller ones in order to create a binary classification

task, as is sometimes done for benchmarking binary classifiers [113, 26].

We use a random subset of 30, 000 points from the two classes of the forest dataset,

create a subset of the required size for training and use the remaining data for testing.

The Gaussian kernel is used with γ = 1/10000, as suggested by Tsang et al. [113]. The

reduction in the hulls is specified as a multiple of the sum of weight in the smaller class,

κ (refer to Section 4.4.5). The results of these trials are shown in Figure 5.14, with the

number of training points on the x-axis. The y-axis shows the training time for figures on

the left, and test error for figures on the right.
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(a) Training time for splice dataset, γ = 0.01
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(b) Error on the splice dataset, γ = 0.01
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(c) Training time for banana dataset, γ = 1
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(d) Error on the banana dataset, γ = 1

Figure 5.13: Selected results for the four algorithms

The results on the larger forest dataset are consistent with those of other datasets

in that the SMO algorithm tended to perform much better than other algorithms when

µ was large, whereas the nearest point algorithms became faster for smaller µ. Increas-

ing or decreasing the amount of training data that was used did not have a significant

impact on this relationship for the forest dataset. Interestingly, the value of µ chosen

on this dataset did not have a great impact on the final test accuracy, whereas test error

decreased dramatically as the amount of training data increased. However, as observed

in the extensive results (Appendix C), it is not common for the value of µ to have such

a minimal impact on test error, so µ should not be defaulted to a small value simply to

decrease training times.

5.7.3 Discussion

Our results qualify previous results reported by Mavroforakis [81]. Mavroforakis suggested

that the S-K algorithm operating over RCHs (in standard form, not our accelerated ver-

sion) “exhibits equivalent or better speed results” compared to SMO. However, our results

suggest that, when the margin of the SVM being trained is small, the S-K algorithm is

generally not as fast as SMO, although this gap could be bridged to some extent using
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(a) Training time (seconds) for µ = 1/(0.2κ)
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(b) Error for µ = 1/(0.2κ)
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(c) Training time (seconds) for µ = 1/(0.8κ)
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(d) Error for µ = (1/0.8κ)

Figure 5.14: The results of the four algorithms on the forest dataset

optimizations described in previous sections. Results also suggested that SMO tended to

perform better on ‘harder’ tasks where there is a small margin and long training times.

The results obtained do not precisely match those reported by Mavroforakis [81]. The

explanation for our differing results is that we applied the algorithms using a wide range

of parameter values. The parameters had an enormous influence on the training time

for both algorithms. However, Mavroforakis used only a single value per parameter for

each algorithm in their comparisons. Furthermore, the parameter values they used when

comparing different algorithms were not equivalent, with large C values for SMO (which

are slow to train) compared against small µ values for the nearest point approach (which

are fast to train).

The near-identical test accuracies of the SVMs produced by each of the four algorithms

is evidence that each algorithm has trained an SVM to the same level of precision. In

any case where different SVM training algorithms are compared, test accuracies should

generally be the same or it indicates that either the comparison is biased or the stopping

conditions are extremely loose.

Something we do not address in this section is the fact that the nearest point and

SMO algorithms have differing stopping conditions. Although both stopping conditions

used were comparable (as evidenced by the near identical test accuracies shown by the

four algorithms), it is not clear what kind of impact these stopping conditions have on the
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final SVM. In the following section we analyze these stopping conditions to discover how

they impact on the training time and accuracy of an SVM.

It is informative to note the impact the choice of parameters (particularly µ) has on

training times. Often training times could increase up to 100-fold simply by increasing µ.

However, these large µ values are by no means ‘bad’ parameters, since they can sometimes

achieve the lowest test error (refer to, for example, results on the banana and image

datasets in Appendix C). Faster training times for smaller µ values are due to the way

that an SVM approaches a k-means classifier as µ shrinks, which is a rather simple classifier

which can be easily computed.

A good understanding of the relationship between µ and training times helps to un-

derstand how alternative training algorithms such as Joachims’s [60] SVMperf can claim

to scale linearly as the training set size increases (for linear SVMs). This can be achieved

because the parameter used by SVMperf is given by:

C =
µ

2ρ
=

100× Cperf
n

.

Note that, as n grows, the equivalent C or µ values used by SVMperf shrinks. This enables

the algorithm to compensate for the increase in training time that would have been caused

by the increased training set sizes by further reducing the hulls, which decreases training

time.

5.8 Impact of the Stopping Conditions

There are many approaches to training SVMs, and often these approaches entail differing

stopping conditions. However, when the stopping conditions differ it is not always clear

whether differences in training times are due to a genuinely more efficient approach, or

simply stopping conditions which allow for a greater level of approximation. In this section

we compare several of the most commonly used stopping conditions for SMO and nearest

point algorithms in order to determine how significantly the stopping conditions contribute

to both training time and test error.

5.8.1 Types of Stopping Conditions

Many stopping conditions are possible. We experiment with what we consider to be the

four most viable stopping conditions. We explain the viability of these stopping conditions

below.

Absolute KKT The absolute KKT stopping conditions terminate once the KKT con-

ditions are satisfied to within a tolerance ε:

yi(w · xi − b) < ρ± ε for αi = C

yi(w · xi − b) = ρ± ε for 0 < αi < C

yi(w · xi − b) > ρ± ε for αi = 0
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These stopping conditions are most commonly used in conjunction with SMO methods

designed for C-SVMs [91, 66]. Within this context, these stopping conditions are rea-

sonable since ρ is essentially fixed to equal one regardless of the width of the margin.

However, in a µ-SVM, using this stopping condition poses a potential issue since ρ will

change depending on the width of the margin. If ρ is large, it could potentially take a very

large amount of computational effort to satisfy these stopping conditions. Conversely, if ρ

is small (particularly if ρ ≈ ε), these stopping conditions may terminate before iterations

have converged.

Relative KKT An alternative to the absolute KKT stopping conditions are the relative

KKT stopping conditions:

yi(w · xi − b) < ρ(1± ε) for αi = µ

yi(w · xi − b) = ρ(1± ε) for 0 < αi < µ

yi(w · xi − b) > ρ(1± ε) for αi = 0

These stopping conditions ensure that the tolerance parameter ε retains the same meaning

regardless of whether ρ is large is small. This is achieved by specifying the stopping

tolerance relative to ρ. Notice that, for a C-SVM, the absolute and relative KKT stopping

conditions are interchangeable since ρ is essentially fixed to equal one. However, for a µ-

SVM to be trained to an equivalent precision to a C-SVM, it must use the relative stopping

conditions.

Absolute Nearest Point Recent nearest point algorithms [40] have favored using the

absolute difference between ||w|| and w · (vpos − pneg). This is an upper bound on the

distance between the current nearest point and the true nearest point.

||w|| − w · (vpos − pneg)

||w||
< ε,

and ||w|| − w · (ppos − vneg)

||w||
< ε

Relative Nearest Point We note that the absolute nearest point stopping condition

used above suffers from similar drawbacks as the absolute KKT stopping conditions. That

is, it becomes tighter for large ||w|| and looser for small ||w||. We suggest instead using:

1− w · (vpos − pneg)

||w||2
< ε,

and 1− w · (ppos − vneg)

||w||2
< ε

This stopping condition computes an upper bound on the distance between the current

approximate nearest point and the actual nearest point, relative to the distance between

the two approximate nearest points. This stopping condition was used by Keerthi et al. [65]

in a convex hull nearest point algorithm. However, more recent nearest point algorithms
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operating over RCHs seem to have instead adopted the absolute nearest point stopping

conditions [40, 82, 109].

Some other stopping conditions, although rarely used in practice, are also possible.

For example, López et al. [77] note that it is possible to stop when changes to ||w|| with

each iteration become very small. However, we avoid this stopping condition since the size

of changes to ||w|| are not strictly decreasing as the number of iterations increases.

5.8.2 Comparing Stopping Conditions

In this section we perform empirical trials which record the average number of iterations

taken to satisfy each of the stopping conditions. We also record the test accuracy which

is associated with each stopping condition. By keeping the training algorithm consistent

while varying the stopping conditions, we are able to determine the impact each of the

stopping conditions has on the final solution. Results are calculated as an average over 10

runs, with different train/test splits used on each run. We reuse the datasets previously

introduced in this chapter, and described in more detail in Appendix A.

Table 5.5 shows the test error associated with each of the stopping conditions. Ma-

chines were trained using a Gaussian kernel with γ = 0.1. Large µ values were chosen,

which were set to be equivalent to C = 100. The associated Table 5.6 shows the number of

training iterations which were required before each stopping condition was reached. This

experiment is repeated in Tables 5.7 and 5.8, using a polynomial kernal with degree 4, and

using smaller µ values (set to be equivalent to C = 1). This broad mixture of parameter

values ensure that results are obtained from SVMs with both small and large margins.

We use the SMO training algorithm in this section, since we found that many of the

other nearest point algorithms took a too long to satisfy the KKT conditions. This is

due to the way in which nearest point algorithms often leave αi values which are very

close to zero. While these values, if they are small enough, do not prevent the nearest

point stopping conditions from being satisfied, they do cause the KKT conditions to be

violated. By contrast, SMO is much better at precisely satisfying the KKT conditions and

can therefore be used in conjunction with any of the stopping conditions.
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We measure how effective a stopping condition is by comparing its accuracy to that

of the tightest stopping condition. For example, on the banana dataset for the Gaussian

kernel (Table 5.5), a stopping condition is sufficient if the accuracy of the resulting SVM

is comparable to that of the relative KKT stopping condition with ε = 10−3, which is the

tightest stopping condition on that particular dataset (because it results in the greatest

number of iterations being performed). We can not simply say that the stopping condition

which results in the lowest overall accuracy is the best, because loose stopping conditions

could potentially increase accuracy, particularly if the parameters overfit the dataset.

For an example of how looser stopping conditions can improve test error, refer to Figure

5.15a. This figure shows a plot of the test error for the splice dataset as the number

of training iterations increases. Notice how a stopping condition could luckily choose the

portion of the graph where the training accuracy is low. However, rather than trying to

minimize the test error via the stopping conditions, we instead want a stopping condition

which best approximates the exact solution, i.e. a solution on the more stable portion

to the right of the graph. If test accuracy is insufficient with these stopping conditions,

it indicates that the kernel parameters, rather than the stopping conditions, should be

adjusted to increase the accuracy (Figure 5.15b).
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(b) γ = 0.01. The larger kernel width provides
a much lower test error.

Figure 5.15: The test error (shown as grey dots) as the number of iterations increases.
The splice dataset is used in conjunction with the Gaussian kernel. The
reduction parameter has the value of µ = 1/30

The results in Tables 5.5-5.8 indicate that the absolute stopping conditions are looser

than the relative ones when ||w|| is small, and tighter when ||w|| is large. This means that

they are less consistent that the relative stopping conditions. For example, absolute KKT

or absolute nearest point stopping conditions with ε = 10−2 are loose enough to degrade

accuracy on most datasets where ||w|| is small (Table 5.5), whereas on the splice dataset

in Table 5.7 where ||w|| is largest, even the loosest absolute stopping condition of ε = 10−1

results in more iterations than any of the relative stopping conditions, and achieves no

gain in test accuracy for this additional computational effort.

The inconsistency in the results of the absolute nearest point stopping conditions used

in most previous RCH nearest point implementations [81, 109] lead us to recommend
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the use of relative nearest point stopping conditions instead. The relative nearest point

stopping conditions have been shown to be more consistent across differing datasets and

parameter values.

Results also indicate that the ‘standard’ value of ε = 10−3 used with the relative KKT

stopping conditions almost always results in more training iterations being taken than

is necessary, for the datasets used. However, there is no guarantee that loosening the

stopping conditions would not degrade accuracy on some other datasets. The relatively

tight value of ε = 10−3 may simply be commonly used in practice because it is a ‘safe’

value. It is difficult to suggest further improvements on the relative KKT and nearest

point stopping conditions without a) having prior knowledge of the data being used, or b)

risking a lower test accuracy.

5.8.3 Discussion

Empirical trials run on the stopping conditions suggested that the relative KKT and rela-

tive nearest point stopping conditions were both adequate stopping conditions. However,

there is the potential to decrease training times greatly if loose stopping conditions are

used. Indeed, there were many circumstances were very few training iterations were re-

quired in order to achieve an adequate accuracy. Some algorithms, such as Tsang et al.’s

Core Vector Machine (CVM) [114], exploit this observation by employing a looser stopping

condition. By choosing such stopping conditions however, there is generally a risk that

test accuracy can be impacted [76].

We suggest that there are two distinct components to an SVM training algorithm.

The first component makes progress towards finding the maximum margin hyperplane,

generally by tuning the Lagrange multipliers of the dual. The second component decides

when to terminate. In order to make a fair comparison of two algorithms, both of these

components must be taken into account. For example, if SMO with an extremely loose

stopping condition is compared to a nearest point algorithm with a tight stopping con-

dition, it is not clear whether changes to training time are due to the algorithm making

more efficient progress towards finding a maximum margin hyperplane, or simply due to

the algorithm terminating earlier.

5.9 Training Weighted Perceptrons using the WSK Algo-

rithm

The algorithms we have previously described in this chapter address the task of finding the

nearest points in the RCHs of two classes. By solving the nearest point task it is possible

to train both hard margin SVMs, and L1-loss SVMs. Because L2-loss SVMs are simply

hard margin SVMs in a modified kernel space, L2-loss SVMs can also easily be trained

with these algorithms.

Despite the fact that most nearest point algorithms have previously been applied to

these specific types of SVMs, they may be adapted to train perceptrons. Recall that

perceptrons are a kernel machine similar to SVMs where the sum of Lagrange multipliers in
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each class is not constraint to be equal (refer to Section 2.8). In this section we describe how

nearest point algorithms may be used to train hard margin and soft margin perceptrons

(with both L1 and L2 loss functions, and optional point weights).

5.9.1 The Perceptron Dual Optimization Task

The main soft margin L1-loss perceptron dual optimization task is given in (5.31). We

address this optimization task since, given the appropriate parameter and kernel choices,

it may also be used to compute L2-loss and hard margin perceptrons. This is achieved

by varying k(·, ·) and µ, as we described in Section 5.4. Refer back to Table 5.1 to see

potential values for k(·, ·).

max
α

− 1

2

n∑
i,j=1

αiαjk(xi,xj)

subject to


∑n

i=1 αi = 1,

0 ≤ αi ≤ siµ.

(5.31)

5.9.2 The One-Class WSK Algorithm

Recall from Section 2.8 that the perceptron dual in (5.31) is equivalent to finding the point

in a WRCH with minimal norm. This means that the WSK algorithm operating over a

single class can be used to solve this optimization task. A one-class variant of the WSK

algorithm is shown in Algorithm 11.

Algorithm 11 The One-Class WSK Algorithm

function WSK perceptron(P, s,y)
initialize p to any point from WRCH(P, s, µ)
loop

v← arg max
v∈WRCH(Ppos)

−p · v . use Algorithm 7 to solve this

if 1− p · (p− v)/||p||2 < ε then
break . stopping conditions reached

end if

λ← clamp

(
(p) · (p− v)

(p− v)2
, 0, 1

)
pnew ← (1− λ)p + λv

end loop

b← −
∑
i

αiyi

return (p, b) . return hyperplane normal and offset
end function

5.9.3 The Threshold

Similar to SVMs, there are multiple ways to compute the threshold of a perceptron. Each

of these thresholds is likely to yield a difference in accuracy, so in order to compare the

performance of SVMs and perceptrons it is important to consider carefully the impact of
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the thresholds of the two machines. For perceptrons, the threshold may be derived from

the KKT conditions as:

b =
∑
i

−αiyi

There is also a geometric threshold, which can be given by:

b =
∑
i

αiK(xi,xj).

Note the use of the kernel K(xi,xj) here, not the modified kernel k(xi,xj) which is used

in the objective function of the dual. Alternatively, the perceptron threshold can also be

computed in the same way as the threshold given by the KKT conditions of the SVM

optimization task:

b =
1

2

(
max

i∈Ipos,αi>0

{
n∑
k=1

αkK(xk,xi)

}
+ min
i∈Ineg ,αi>0

{
n∑
k=1

αkK(xk,xi)

})
.

Before comparing SVMs and perceptrons, it is important to gauge the impact the

different thresholds have on the accuracy of a perceptron. We determine the impact of

the perceptron threshold by repeating the threshold experiments form Section 4.3, using

perceptrons instead of SVMs. For consistency with previous experiments, ‘large’ µ values

are equivalent to C = 1, while ‘small’ µ values are equivalent to C = 0.1. In these

experiments we compare perceptrons with the KKT threshold, the geometric threshold, no

threshold (the bias-free perceptron), and perceptrons using the SVM-style KKT threshold.

Results are shown in Tables 5.9 and 5.10, with error rates shown as a mean± stderr
over 20 runs. In these tables, error rates for the various thresholds are compared against

the KKT threshold. An error rate is bolded if it is significantly lower (better) than that

achieved by the KKT threshold. An error rate is underlined if it is significantly higher

(worse) than that achieved by the KKT threshold. A paired differences t-test over the 20

runs is used for significance testing.

Notice how the differences in test error across the thresholds shown in Tables 5.9 and

5.10 are quite large in many cases. These differences are large enough that it would be

easy to draw erroneous conclusions by comparing perceptrons and SVMs with different

thresholds. For this reason our comparisons of SVMs and perceptrons in the next sections

use the geometric threshold for both machines. This threshold tended to provide the best

test accuracy when used in conjunction with perceptrons. This is consistent with SVM

results from previous sections, in which the geometric threshold also tended to provide

the greatest test accuracy.

5.9.4 Accuracy and Efficiency

We conducted some preliminary experiments using nearest point algorithms for percep-

trons, and our results were consistent with Mangasarian and Musicant [79], who suggest

that the perceptron and SVM optimization tasks both result in a similar test accuracy.
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Table 5.9: Test error for Gaussian perceptrons (γ = 0.01) combined with four possible
thresholds

KKT Geometric Bias-Free SVM-KKT

banana
small µ 0.448± 0.011 0.436± 0.010 0.448± 0.011 0.417± 0.010
large µ 0.445± 0.010 0.436± 0.010 0.445± 0.010 0.417± 0.010

b.cancer
small µ 0.275± 0.011 0.277± 0.007 0.275± 0.011 0.271± 0.010
large µ 0.277± 0.010 0.278± 0.007 0.277± 0.010 0.273± 0.010

diabetes
small µ 0.281± 0.005 0.241± 0.005 0.281± 0.005 0.266± 0.004
large µ 0.256± 0.007 0.239± 0.005 0.256± 0.007 0.252± 0.006

german
small µ 0.248± 0.005 0.235± 0.005 0.245± 0.005 0.243± 0.008
large µ 0.243± 0.005 0.234± 0.005 0.241± 0.005 0.240± 0.006

heart
small µ 0.184± 0.010 0.159± 0.008 0.182± 0.009 0.174± 0.009
large µ 0.170± 0.009 0.159± 0.007 0.168± 0.008 0.169± 0.008

image
small µ 0.264± 0.002 0.207± 0.004 0.264± 0.002 0.265± 0.002
large µ 0.194± 0.016 0.162± 0.010 0.194± 0.016 0.198± 0.016

splice
small µ 0.158± 0.002 0.156± 0.002 0.165± 0.002 0.164± 0.003
large µ 0.139± 0.005 0.138± 0.004 0.143± 0.005 0.151± 0.005

thyroid
small µ 0.273± 0.011 0.133± 0.009 0.273± 0.011 0.223± 0.011
large µ 0.222± 0.015 0.119± 0.009 0.222± 0.015 0.197± 0.011

titanic
small µ 0.255± 0.010 0.226± 0.001 0.255± 0.010 0.239± 0.007
large µ 0.243± 0.008 0.226± 0.000 0.243± 0.008 0.232± 0.005

Results are shown in Table 5.11. The leftmost two columns of this table compare SVMs

and perceptrons using Gaussian kernels, whereas the rightmost two columns compare

SVMs and perceptrons using polynomial kernels. A perceptron error rate is bolded if it is

significantly lower than the SVM error rate using the same kernel, and underlined if it is

significantly higher.

Notice in these tables that the differences in test accuracy between the two machines are

extremely small. In fact, the differences between SVMs and perceptrons when both using

the geometric threshold tended to be less than the difference between two perceptrons

using different thresholds, or two SVMs using different thresholds.

Despite the ability for perceptrons to achieve accuracy which is on par with SVMs, we

focused in this chapter mainly on SVMs. This is because we found that the perceptron

minimal norm task, despite its conceptual simplicity, could not be solved as efficiently

as the SVM nearest point task. This is demonstrated in Figure 5.16, where we trained

both perceptrons and SVMs using the accelerated WSK algorithm described in Section

5.6. The algorithms had a near identical implementation, with the only difference being

that the perceptron algorithm was a one-class variant of the SVM algorithm. Despite the

conceptual simplicity of the perceptron algorithm, it was slower across every dataset we

tested on.

The slower progress of the WSK algorithm when applied to perceptrons can be more

clearly examined by tracking the test error achieved by the machine after each individual

iteration. This is the same method we used to analyze the stopping conditions in previous

sections. Figure 5.17 shows the test error of the WSK algorithm applied to both percep-

trons (left) and SVMs (right). Notice how the algorithm tends to converge more quickly
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Table 5.10: Test error for polynomial perceptrons (q = 3) combined with four possible
thresholds

KKT Geometric Bias-Free SVM-KKT

banana
small µ 0.235± 0.006 0.229± 0.006 0.238± 0.005 0.336± 0.022
large µ 0.232± 0.006 0.227± 0.006 0.233± 0.005 0.319± 0.022

b.cancer
small µ 0.319± 0.008 0.351± 0.008 0.319± 0.008 0.314± 0.008
large µ 0.332± 0.010 0.356± 0.010 0.332± 0.010 0.329± 0.010

diabetes
small µ 0.301± 0.006 0.304± 0.006 0.299± 0.006 0.308± 0.010
large µ 0.312± 0.006 0.314± 0.006 0.312± 0.006 0.316± 0.008

german
small µ 0.303± 0.006 0.306± 0.007 0.303± 0.006 0.303± 0.006
large µ 0.303± 0.006 0.306± 0.007 0.303± 0.006 0.303± 0.006

heart
small µ 0.224± 0.008 0.225± 0.008 0.224± 0.008 0.224± 0.008
large µ 0.224± 0.008 0.224± 0.008 0.224± 0.008 0.224± 0.008

image
small µ 0.039± 0.002 0.040± 0.002 0.039± 0.002 0.080± 0.013
large µ 0.041± 0.002 0.047± 0.005 0.041± 0.002 0.099± 0.015

splice
small µ 0.129± 0.001 0.136± 0.003 0.129± 0.001 0.130± 0.002
large µ 0.129± 0.001 0.136± 0.003 0.129± 0.001 0.130± 0.002

thyroid
small µ 0.074± 0.008 0.068± 0.007 0.074± 0.008 0.074± 0.008
large µ 0.076± 0.007 0.076± 0.007 0.079± 0.008 0.076± 0.007

titanic
small µ 0.224± 0.002 0.223± 0.002 0.225± 0.002 0.226± 0.003
large µ 0.224± 0.002 0.223± 0.002 0.225± 0.002 0.225± 0.003

for SVMs than for perceptrons. In addition, each iteration is also faster for SVMs than

for perceptrons, since the two-class update step involves fewer computations (as discussed

in Section 5.6).
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Table 5.11: Test error for SVMs compared to perceptrons using the geometric thresh-
old

Gaussian kernel (γ = 0.01) Polynomial kernel (q = 3)

SVM Perceptron SVM Perceptron

banana
small µ 0.435± 0.010 0.436± 0.010 0.228± 0.006 0.229± 0.006
large µ 0.436± 0.010 0.436± 0.010 0.226± 0.006 0.227± 0.006

b.cancer
small µ 0.277± 0.007 0.277± 0.007 0.351± 0.007 0.351± 0.008
large µ 0.277± 0.007 0.278± 0.007 0.356± 0.009 0.356± 0.010

diabetes
small µ 0.241± 0.005 0.241± 0.005 0.304± 0.005 0.304± 0.006
large µ 0.240± 0.005 0.239± 0.005 0.315± 0.006 0.314± 0.006

german
small µ 0.236± 0.005 0.235± 0.005 0.300± 0.007 0.306± 0.007
large µ 0.234± 0.005 0.234± 0.005 0.300± 0.007 0.306± 0.007

heart
small µ 0.157± 0.008 0.159± 0.008 0.229± 0.009 0.225± 0.008
large µ 0.159± 0.008 0.159± 0.007 0.229± 0.009 0.224± 0.008

image
small µ 0.207± 0.004 0.207± 0.004 0.037± 0.001 0.040± 0.002
large µ 0.162± 0.011 0.162± 0.010 0.039± 0.001 0.047± 0.005

splice
small µ 0.158± 0.002 0.156± 0.002 0.131± 0.003 0.136± 0.003
large µ 0.139± 0.005 0.138± 0.004 0.131± 0.003 0.136± 0.003

thyroid
small µ 0.133± 0.009 0.133± 0.009 0.066± 0.007 0.068± 0.007
large µ 0.117± 0.009 0.119± 0.009 0.071± 0.006 0.076± 0.007

titanic
small µ 0.226± 0.001 0.226± 0.001 0.224± 0.002 0.223± 0.002
large µ 0.226± 0.000 0.226± 0.000 0.224± 0.002 0.223± 0.002
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(a) banana dataset, Gaussian kernel, γ = 0.1
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(b) splice dataset, Gaussian kernel, γ = 0.01
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(c) german dataset Gaussian kernel, γ = 0.1
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(d) b.cancer dataset, Gaussian kernel, γ =
0.01
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(e) image dataset, linear kernel
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(f) diabetes dataset, polynomial kernel, q = 2

Figure 5.16: Training times for L1-loss perceptrons compared to L1-loss SVMs
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(a) Perceptron on banana dataset. γ =
0.1, µ = 1/200
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(b) SVM on banana dataset. γ = 0.1, µ =
1/100
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(c) Perceptron on splice dataset. γ =
0.01, µ = 1/60
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(d) SVM on splice dataset. γ = 0.01, µ =
1/30
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(e) Perceptron on diabetes dataset. q =
2, µ = 1/300
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(f) SVM on diabetes dataset. q = 2, µ =
1/150

Figure 5.17: Test error as number of training iterations increases. The Gaussian
kernel is used. Notice that the αi values in the perceptron sum to one,
whereas in an SVM they sum to two. This means that the perceptron
µ parameter must be given half the value of the SVM µ value in order
to have a comparable effect.
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5.10 Discussion

For Gaussian and polynomial kernels, the bias-free perceptron was generally an acceptable

choice. This can be seen in the accuracies achieved by the bias-free perceptron in Tables

5.9 and 5.10. However, for linear kernels, the bias-free perceptron is not always a viable

choice. This is because, for these kernels, a hyperplane forced to pass through the origin

simply can not achieve a high classification accuracy. For example, Figure 5.18 depicts a

simple dataset where a bias-free perceptron simply can not achieve a high accuracy. For

this reason we did not reproduce many of the tables in this section using linear kernels.

Figure 5.18: The hyperplane found by a bias-free perceptron is constrained to pass
through the origin.

It may seem counter-intuitive that the increased simplicity of the one-class minimal

norm task should result in a less efficient algorithm than the two-class nearest point task.

However, the decrease in efficiency likely arises due to the modified kernel that must

be used in conjunction with the minimal norm task. This follows from the enormous

influence that the kernel parameters had on training time in Section 5.5.2. It is also

supported by Figure 5.17, which shows that the WSK algorithm makes slower progress

training perceptrons than it does training SVMs.

Our results on perceptrons are consistent with those of Keerthi et al. [65], who have

performed similar comparisons between the SVM and perceptron optimization tasks using

the L2-loss function (as opposed to the L1-loss function that we use here). Keerthi et al.

suggest that it is more efficient to solve the two-class nearest point problem associated with

the SVM optimization task that it is to solve the one-class nearest point task associated

with perceptrons.
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5.11 Conclusions

There are several important conclusions which can be drawn from the work in this chapter.

First, we have described how the concept of WRCHs (introduced in Chapter 3) can be

used in order to understand how WSVMs work. This has led to the introduction of a

weighted variant of the Schlesinger-Kozinec algorithm, which can operate over WRCHs in

order to train WSVMs. Empirical trials have demonstrated that the WSK algorithm is

equivalent to, but much faster than, point duplication. The WSK algorithm is also more

versatile in that it can handle non-integral point weights.

We have also described two improvements to the WSK algorithm which maximize

its efficiency. The first improvement was to compute the update step in a way which

best exploits the sparsity of the Lagrange multipliers. The second improvement was in

ensuring that the nearest points points were pushed towards the facets of the WRCHs as

quickly as possible. Beneficially, pushing the points towards the outside of the hull also

increased the sparsity of the Lagrange multipliers, increasing the effectiveness of the first

improvement. Because the WSK algorithm can train standard SVMs when all weights are

equal to one, we have been able to show that these optimizations also improve on current

state-of-the-art unweighted nearest point algorithms.

In Section 5.8 we demonstrated that the absolute stopping condition commonly applied

to many nearest point algorithms can be inconsistent across differing parameter values

and datasets. We have instead recommended a relative stopping condition which we have

shown to be more consistent across multiple parameter values and datasets. In this section

we also noted that most of the stopping conditions perform more training iterations than

are strictly necessary. However, it is difficult to propose more efficient stopping conditions

without having prior information on the datasets being trained on or risking a decrease in

testing accuracy.

The results in Section 5.8 regarding SVM stopping conditions are interesting in that

they suggest an area of further research. Although it is difficult to propose better stopping

conditions for the purposes of training an SVM which maximizes test accuracy, there are

other circumstances where the aim of the stopping conditions differ. For example, when

automatically choosing the parameters of an SVM, the goal is to compare two SVMs rather

than to simply minimize test error. We explore the possibility of very early termination

in model selection in the next chapter.
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Chapter 6

Parameter Selection using

Geometric Information

6.1 Introduction

This chapter addresses the task of parameter selection for SVMs. In previous chapters we

have described several parameters inherent in SVMs. The existence of these parameters

makes SVMs customizable enough to achieve a state-of-the-art accuracy across a range of

application domains [19]. However, it also introduces the task of ensuring the parameters

are properly ‘tuned’ to a particular problem. It is difficult to know in advance which

parameters will best suit a particular problem, and an incorrect choice of parameters can

have a detrimental effect on the accuracy of the final classifier [33].

The process of choosing the various parameters associated with an SVM automatically

is most commonly addressed as a two-part process. First, a method for estimating the

generalization accuracy of an SVM must be devised. The generalization accuracy is the

expected accuracy of an SVM when classifying data which does not necessarily exist in

its training set. Computing such an estimate is more difficult than simply computing the

accuracy of an SVM on its training data. The second part of the process is to find the

combination of parameters which minimizes the estimate of the generalization accuracy,

which in most cases involves the repeated training of SVMs across a range of parameter

values.

There are two main contributions in this chapter. First, we use the geometric under-

standing of SVMs to accelerate the existing method of radius-margin parameter selection.

We achieve this by showing that a geometric approach to SVM training allows upper and

lower bounds on the radius and margin of an SVM to be computed at any stage dur-

ing training. This allows for parameter values to be compared quickly without necessarily

training SVMs to completion. The result is a reduction in the number of training iterations

required by a factor of 10 or more.

Our second contribution is to describe how parameter selection can be performed using

µ-SVMs. Although parameter selection is most commonly performed using C-SVMs, we

suggest that the C-SVM formulation is not necessarily advantageous. We show that

existing estimates of the test error designed for C-SVMs may be applied to µ-SVMs. We
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also describe how a search for optimal parameters can be performed using µ-SVMs. The

advantage of using µ-SVMs is that any regions of parameter space where hulls intersect or

are reduced to their centroids may be excluded. This allows for a smooth search over class

reduction, from the centroids to the point where the hulls intersect, with clearly defined

start and end points. By contrast, searching for the optimal value of C for a C-SVM often

requires searching over large ranges such as log2(C) ∈ {10,−9, . . . , 9, 10}, to account for

the fact that C can take any positive value. For some datasets these values can produce

large variations, whereas for others they yield nearly identical SVMs.

6.2 Existing Error Estimates

Estimating the test error (also sometimes referred to as the generalization error [33]) of an

SVM is a difficult problem. Test error differs greatly from the error an SVM achieves on the

training set, since the training error is extremely vulnerable to overfitting. For example,

a Gaussian kernel with a narrow width can often achieve a perfect training error, while

test errors will be much greater. In this section we describe several estimates of the test

error of an SVM.

In this section we reuse some notation from previous chapters. Namely, we refer to the

SVM decision function:

f(x) =

n∑
i=1

yiαixi · x− b,

Refer back to Chapter 2 for a more detailed explanation of all of the terms involved in the

SVM decision function.

6.2.1 Hold-out Sets

One of the simplest ways to estimate the error of an SVM is to withhold training data

for use as a validation set [34]. This means that an SVM is trained on only a subset of

its training data. The SVM is then used to classify the remaining points (referred to as

the hold-out set). The error of the SVM on the hold-out set provides an estimate of the

generalization error of the SVM.

The main issue associated with the use of a hold-out set is that it takes training

data away from the classifier. Because training set size is generally correlated with test

accuracy [106], reducing the training set size may cause an overestimate of the test error.

Furthermore, if there is only a small amount of training data available, estimates of the

test error can become unreliable due to the small number of samples present in the training

and validation sets.

6.2.2 Cross-Validation and Leave-One-Out

Cross-validation addresses some of the deficiencies of the hold-out method by performing

repeated trials. In k-fold cross-validation, training data is first separated into k disjoint

subsets or folds. The hold-out procedure is then repeated for each fold. For example, for
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k = 10, the training data is separated into 10 folds. Initially the first fold is withheld and

a classifier is trained on the remaining 9 folds. The accuracy of the classifier on the first

fold is then recorded. The second fold is then withheld and the process is repeated. The

average error across all of the folds provides an estimate of the generalization error of the

classification technique [34].

When k-fold cross-validation is performed with k equal to the number of points, the

result is the leave-one-out estimate of the test error. The leave-one-out error is the most

unbiased (but also the most computationally expensive) form of cross-validation [95]. The

process of computing the leave-one-out error of an SVM may be accelerated by exploiting

the fact that non-support vectors in the training data are guaranteed to be correctly

classified by the leave-one-out procedure and therefore do not require the training of a

new machine [117].

The cross-validation and leave-one-out procedures tend to be some of the more accurate

estimates of the test error of a classifier [33, 16]. However, they are also some of the more

computationally expensive estimates of the test error. Because a large number of SVMs

must be trained in order to give a single estimate of the test error, these procedures may

become computationally infeasible on larger datasets.

6.2.3 Support Vector Bound

The support vector bound is one of the simplest upper bounds on the leave-one-out error.

For an SVM trained on n training points, the support vector bound states that the leave-

one-out error is bounded by [117]:

ELOO ≤
ns
n
, (6.1)

where ns is the number of support vectors.

The number of support vectors must form an upper bound on the leave-one-out error

of an SVM because of the sparseness property, which we described in Section 2.2.1. Recall

that if a non-support vector is removed from a training set, either before or after training

an SVM, it has no impact on the decision surface. Non-support vectors also must always

lie on the correct side of the supporting planes of an SVM. It follows that any non-support

vector would be correctly classified using the leave-one-out procedure, providing the upper

bound in Equation (6.1).

The main disadvantage of the support vector bound is that it counts all support vectors

as being incorrectly classified by the leave-one-out procedure, even though this may not

be the case. This means the bound becomes larger as the number of support vectors

increases. However, it is important to note that as the regularization parameter (C or

µ) increases, the number of support vectors will generally decrease. This means that the

support vector bound will generally choose the largest possible value of C or µ (Figure

6.1). Because of this trivial outcome, ELOO is, to the best of our knowledge, not widely

used in parameter selection.
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Figure 6.1: The support vector bound on the banana dataset. The Gaussian kernel
is used.

6.2.4 Generalized Approximate Cross-Validation

Generalized Approximate Cross-Validation (GACV) is given for the C-SVM by [122, 123,

75, 46, 33]:

EGACV =
1

n

 n∑
i=1

ξi +
∑

yif(xi)<−1

2αixi · xi +
∑

yif(xi)∈[−1,1]

αixi · xi

 . (6.2)

Here ξi’s are slack variables, computed by solving the C-SVM optimization task from

Section 2.4.1. GACV was proposed by Wahba [122] as a computable proxy for the Gen-

eralized Comparative Kullback-Leibler distance, which is itself an upper bound on the

generalization error of an SVM.

Equation (6.2) uses the C-SVM parameterization of GACV given by Duan et al. [33].

We use this parameterization since Wahba originally proposed GACV for an SVM with an

alternative parameterization. This raises an important point regarding error estimates:

if the parameterization of an SVM is changed (e.g. from a C-SVM to a µ-SVM), this

parameterization also needs to be reflected in the error estimate.
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Figure 6.2: The GACV error estimate compared to the support vector bound on the
banana dataset. The Gaussian kernel is used.
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Figure 6.2 compares GACV to the support vector bound. Notice how, unlike the

support vector bound, GACV does not always prefer larger C values. This is because

increases to C increase the upper bound on αi values, which can in turn increase (6.2).

Notice also how GACV applies an additional penalty to points for which yif(xi) < −1,

and sometimes reaches 1 (i.e. estimates a 100% error rate). Because of this, GACV is

considered only an approximate upper bound. Rather than tightly bounding the leave-

one-out error, it instead aims to best reflect the optimal parameters at its minimum [74].

6.2.5 Xi-Alpha Error Estimate

Joachims [59] defines the ξα-estimator of the generalization error of an L1-loss C-SVM as

Eξα =
m

n
with m = card

({
i |
(
2αiR

2
∆ + ξi

)
≥ 1
})
.

Here R2
∆ is an upper bound on xi ·xi−xi ·xj , ξi and αi values are the solutions to the SVM

optimization task, meaning an SVM must be trained for each set of parameters which is

to be compared using the ξα-estimator.

The ξα-estimator is closely related to the support vector leave-one-out bound, de-

scribed in Section 6.2.3. For hard margin SVMs (or C-SVMs with large C), the two

bounds are likely to provide quite similar estimates, since almost all support vectors are

likely to satisfy 2αiR
2
∆ ≥ 1 when αi values are large (Figure 6.3). However, the advan-

tage of the ξα-estimator is that it provides a tighter bound for smaller values of C. The

increased tightness arises from taking into account the fact that, in a soft margin SVM,

points can be support vectors while lying quite far from the decision surface. These points

will not necessarily be incorrectly classified if left out from training.
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Figure 6.3: The Xi-Alpha bound compared to the support vector bound on the
banana dataset. The Gaussian kernel is used. Both figures share the
same legend.

6.2.6 Radius-Margin Ratio

Radius-margin parameter selection [117, 63, 33] is performed by searching across potential

parameter values in order to find a set that minimizes the radius-margin ratio R2/∆2. Here
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R is the radius of the MEB enclosing the training data (discussed previously in Section

2.7), and ∆ is the margin of the SVM. Computing these values generally requires solving

two QP problems: the SVM QP task and the MEB QP task. One justification for this

approach is given by the radius-margin bound, an upper bound on the leave-one-out error

of an SVM, written [21]:

ELOO ≤
R2

∆2n
. (6.3)

This means minimizing the radius-margin ratio minimizes an upper bound on the leave-

one-out error of an SVM.

Δ

R

Δ

Figure 6.4: The radius R of the MEB enclosing the training data and the margin ∆
of an SVM

The radius-margin technique tends to provide reasonable parameter values, provided it

is applied to an SVM with a hard margin interpretation [33]. For an example of why the

radius-margin technique is inappropriate in conjunction with an L1-loss SVM, consider

the toy dataset depicted in Figure 6.5. In this case the parameter µ is varied, with each

reduction in µ resulting in an increase in the margin. However, this increase in margin

width is not offset by any change to the MEB of the data. This means the radius-margin

technique will always choose the smallest possible µ value, resulting in at least one of the

classes being reduced to its mean. Reducing all of the class information down to a single

point is clearly an oversimplification which will underfit most problems.

Although a hard margin SVM is required in order to use the radius-margin technique,

recall that the L2-loss SVM has a hard margin interpretation in feature space (refer to

Section 2.4.2). This means the radius-margin technique can be used in conjunction with

an L2-loss SVM in order to choose both the regularization parameter and any kernel

parameters. The key is that the regularization parameter needs to be applied to the

kernel, and that same kernel should be applied in order to compute the radius of the MEB

of the training data. This ensures that changes to the regularization parameter impact

both the margin of the SVM and the radius of the MEB.
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(a) Linear L1-loss µ-SVM with µ = 1/50
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(b) Linear L1-loss µ-SVM with µ = 1/150

Figure 6.5: The L1-loss SVM can arbitrarily increase the margin by varying µ. Here
support vectors are circled.

6.3 Accelerating Radius-Margin Parameter Selection

A previously used method of parameter selection for SVMs which we described in Sec-

tion 6.2 is the radius-margin technique [117, 33, 63]. Using the radius-margin technique,

parameter values are chosen so that they minimize the ratio of the radius of the Min-

imal Enclosing Ball (MEB) of the training data compared to the margin of the SVM

(Figure 6.4). Computing the radius-margin ratio of an SVM requires the solution of two

Quadratic Programming (QP) problems, and this is generally repeated across a range of

parameter values. The radius-margin approach is justified by the observation that the

squared radius-margin ratio forms an upper bound on the leave-one-out error of an SVM

[21].

By performing parameter selection in conjunction with the geometric formulation of

the L2-loss SVM optimization problem (which we reviewed in detail in Section 2.5.4), we

show in this section that upper and lower bounds on both the margin of an SVM and the

radius of an MEB can be calculated at any stage during training. These bounds converge

on the exact radius and margin as the number of training iterations increases. When

used in conjunction with existing training methods, bounds are available at almost no

additional computational cost by taking advantage of values that are already computed

during training. We focus specifically on the L2-loss SVM because it can be formulated

as a hard margin SVM in a modified kernel feature space. Recall from Section 6.2.6 that

a hard margin interpretation is a requirement of the radius-margin bound.

The ability to compute upper and lower bounds on the margin of an SVM and the

radius of an MEB allows us to compute upper and lower bounds on the radius-margin

ratio of an SVM during training. This allows two SVMs to be compared very efficiently

by training them only until the upper and lower bounds of the two SVMs no longer

overlap. This allows extremely early termination of SVM training, while still obtaining a

guarantee that a particular set of parameters minimize the radius-margin ratio. We are

further able to reduce the number of training iterations required by using previous and
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partial solutions in order to evaluate and possibly reject neighboring parameter values

with little or no additional training.

Empirical trials demonstrate that, when used in conjunction with a simple grid search,

our technique can reduce the number of training iterations required by a factor of 10 or

more compared to similar methods.

6.3.1 The Geometric L2-loss SVM

Recall from Section 2.5.4 that the geometric parameterization of the L2-loss SVM is given

by:

min
α

n∑
i,j=1

yiyjαiαjk(xi,xj)

subject to


∑n

i=1 αi = 2,

0 ≤ αi ≤ 1,

i = 1, . . . , n.

Here k(xi,xj) = K(xi,xj) + δij/(2C). Conveniently, this means that the regularization

parameter C, along with any kernel parameters, are encapsulated within the kernel k. It

is this property that makes the the L2-loss SVM equivalent to finding the nearest points

in two convex hulls (i.e. a hard margin SVM). This in turn enables the application of the

radius-margin bound.

6.3.2 Bounding the Margin During Training

Both an upper and a lower bound on the margin of an SVM can be calculated at any

stage during training, provided the constraints on the dual are met. These bounds become

increasingly tight as training continues, and will eventually coincide with the margin if an

exact solution is reached. The upper bound on the margin can be computed based on the

distance between the two current nearest points,

(∆up)2 =
1

4

n∑
i,j=1

αiαjyiyjk(xi,xj). (6.4)

When the constraints of the dual optimization problem are met, the two current nearest

points will always belong to the two convex hulls, meaning this quantity must bound the

margin from above.

The lower bound is given by the vector joining the two inner-most points in the two

classes, projected onto the current hyperplane normal

∆low =
1

4∆up

(
min
k∈Ipos

{
n∑
i=1

αiyik(xi,xk)

}
− max
k∈Ineg

{
n∑
i=1

αiyik(xi,xk)

})
.

This quantity must bound the margin from below since it is at a maximum when it is equal

to the true margin, which can only occur when the KKT conditions are satisfied precisely.
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Notice that it may be possible for ∆low to become less than zero, so it is preferable to use

max(0,∆low) in practice. A graphical representation of ∆up and ∆low is given in Figure

6.6.

2Δup

2Δlow

w

Figure 6.6: Lower and upper bounds on the margin of a partially trained SVM. The
vector w connects the two current nearest points.

6.3.3 Bounding the Radius of the MEB During Training

Upper and lower bounds can also be computed for the radius of an MEB. Provided the

dual constraints are met, at any stage during training, the MEB dual objective function

must provide a lower bound on the radius of the MEB:

(Rlow)2 =

n∑
i=1

βik(xi,xi)−
n∑

i,j=1

βiβjk(xi,xj).

Here βi’s are the Lagrange multipliers associated with the MEB dual optimization task.

We denote these as βi to avoid confusion with the Lagrange multipliers associated with

the SVM dual, which remain αi.

An upper bound on the radius of the MEB may be given by computing the smallest

radius enclosing all training data based on the current (non-optimal) center c of the MEB,

(Rup)2 = max
k

{
||xk − c||2

}
= max

k

k(xk,xk)− 2
n∑
i=1

βik(xi,xk) +
n∑

i,j=1

βiβjk(xi,xj)


This bound can only equal the true radius if the KKT conditions of the MEB dual are

satisfied (i.e. if c is the true MEB center). Otherwise, it will bound the radius from above,

with the tightness depending on how much progress has been achieved towards computing

c.
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Rlow

R
up

c

Figure 6.7: Lower and upper bounds on the MEB of the training data

6.3.4 Bounding the Radius-Margin Ratio During Training

Using the previously stated bounds on the radius and margin, upper and lower bounds on

the radius-margin ratio can be written

T up =
Rup

∆low
T low =

Rlow

∆up
(6.5)

These bounds can be computed at any stage during training for a given MEB and SVM.

6.3.5 Efficient Computation of Bounds During Training

In order to solve the L2-loss SVM problem we apply Platt’s Sequential Minimal Opti-

mization (SMO) [91] using the maximal violating pairs heuristic over the entire training

set. This variant of SMO has previously been used by López et al. [77], who note that it

is equivalent to the MDM algorithm. The algorithm begins by initializing one (arbitrar-

ily chosen) Lagrange multiplier in each class to equal one. This ensures the constraints∑
i αi = 2 and

∑
i αiyi = 0 are satisfied. In order to make progress, two points are chosen

from which to transfer weight between. The source and destination indices are given by:

src = arg max
k∈Ipos,αk>0

{w · xk}

dst = arg max
k∈Ipos,αk<1

{−w · xk}

}
positive class

src = arg max
k∈Ineg ,αk>0

{−w · xk}

dst = arg max
k∈Ineg ,αk<1

{w · xk}

}
negative class

The way in which the dst indices are calculated is very convenient for our purposes,

since these are the same indices required to compute the lower bound on the margin of

an SVM during training. This means that the bound is available at any stage during

training at barely any extra computational cost. Also convenient is the fact that the

sum of Lagrange multipliers in each class is always equal to one, meaning bounds are
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computable after any iteration. Although this may not be the fastest possible approach

to training [77], it allows for such simple calculation of margin bounds that we use it in

preference to alternate approaches. We discuss the possibility of using alternative training

algorithms in Section 6.3.9.

Since ∆up is so closely related to the dual objective function, and because only two

Lagrange multipliers are modified per iteration, it is also quite easy to cache and update

∆up after each training iteration. This means that it is not necessary to compute the

entire sum in Equation (6.4) at each iteration. Rather, the bound may be computed

incrementally with a small update each iteration. This means that both upper and lower

bounds are available with a minimal amount of computational effort.

SMO with a maximal violating pairs heuristic can also be adapted in order to solve the

MEB QP problem. We begin by initializing one arbitrarily chosen Lagrange multiplier to

equal one in order to satisfy the constraint
∑

i βi = 1. Weight is then shifted in order to

optimize the dual objective function with respect to two Lagrange multipliers at a time,

while ensuring that at no stage the dual constraints are violated.

The source and destination indices used in the weight transfer are given by:

src = arg min
k,βk>0

{||xk − c||}

dst = arg max
k,βk<1

{||xk − c||}

Notice that, as in the case of the SVM dual, this is a convenient way to solve the MEB

dual since the index dst is the same index used to compute the upper bound on the radius

of the MEB.

6.3.6 Efficiently Comparing SVMs in Terms of Radius-Margin Ratio

The bounds on the radius-margin ratio presented in Section 6.3.4 enable a simple and

fast way of comparing two SVMs. Given two SVMs and two corresponding MEBs after

any number of training iterations, we can construct the bounds T up
1 , T low

1 , T up
2 , T low

2 using

Equation (6.5). Bounds T up
1 and T low

1 refer to the first SVM, whereas T up
2 and T low

2 refer

to the second SVM. If at any stage during training:

T up
1 < T low

2 ,

it is guaranteed that the first SVM has a smaller radius-margin ratio and there is no need

to continue training the SVMs or MEBs any further. Similarly, the condition:

T up
2 < T low

1

indicates that the second SVM has a smaller radius-margin ratio and training can be

stopped.
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During training, the bounds we have described can also provide a heuristic for where

to focus most of the training effort. Given two SVMs and two MEBs, the inequality:

T up
1

T low
1

>
T up

2

T low
2

(6.6)

suggests that the first SVM and/or MEB is in a more ‘untrained’ state than the second and

that focusing training effort on them is likely to provide the greatest overall improvement

in the tightness of all of the bounds.

If Equation (6.6) indicates that the first SVM/MEB should be the focus of training,

we can then decide whether to focus on the SVM or the MEB by checking the inequality:

Rup
1

Rlow
1

>
∆up

1

∆low
1

. (6.7)

If this inequality is met, then training effort should be focused on the MEB. Otherwise,

effort should be focused on the SVM. The complete comparison process is described in

Algorithm 12

Algorithm 12 Comparing two SVMs (and two associated MEBs) and choosing the one
which minimizes the radius-margin ratio

function compare(svm1, meb1, svm2, meb2)
while true do

get T low
1 , T up

1 , Rlow
1 , Rup

1 ,∆low
1 ,∆up

1 from svm1 and meb1

get T low
2 , T up

2 , Rlow
2 , Rup

2 ,∆low
2 ,∆up

2 from svm2 and meb2

if T up
1 < T low

2 then
return (svm1, meb1) . svm1 must have lower radius/margin ratio

else if T up
2 < T low

1 then
return (svm2, meb2) . svm2 must have lower radius/margin ratio

end if
if T up

1 /T low
1 ≥ T up

2 /T low
2 then . check where most progress can be made

if ∆up
1 /∆low

1 ≥ Rup
1 /Rlow

1 then
svm1 = iterate svm(svm1)

else
meb1 = iterate meb(meb1)

end if
else

if ∆up
2 /∆low

2 ≥ Rup
2 /Rlow

2 then
svm2 = iterate svm(svm2)

else
meb2 = iterate meb(meb2)

end if
end if

end while
end function

Figure 6.8 shows Algorithm 12 operating on two SVMs and two MEBs. The two filled

regions show the possible range of values for the radius-margin ratio for two SVMs as

the algorithm progresses. The solid vertical line marks the number of iterations after
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Figure 6.8: Progress of Algorithm 12 for two SVMs and two MEBs on the german

dataset

which one of the SVMs is guaranteed to have a lower radius-margin ratio. This line is the

threshold value at which the algorithm would terminate, however we show future progress

in order to demonstrate that it is a waste of iterations. Notice that the most training effort

is applied to the SVM with the greatest difference between the upper and lower bounds.

6.3.7 Efficiently Minimizing the Radius-Margin Ratio

Once two SVMs can be compared quickly, the technique can be expanded in order to search

across a range of parameter values in order to find those that are optimal. In order to find

parameters minimizing the radius-margin ratio, we perform a grid search. This process

is described in Algorithm 13. This algorithm exploits the fast comparison algorithm we

described in the previous section (Algorithm 12) in order to perform an accelerated grid

search. We also ensure we adapt previous solutions when parameters change rather than

computing a new machine from scratch. This technique for adapting previous solutions

was originally employed by Cristianini et al. [30], who note that using SVMs with nearby

parameters to seed new SVM solutions can save significant computational effort.

For an initial guess to supply to Algorithm 13, we use C = 1, and the grid point

closest to γ = 1/nd, where nd is the dimensionality of the training data. These are

commonly used parameter values when a crude estimate of the optimal parameters is

desired without performing extensive parameter selection [120, 90]. The algorithm loops

over γ in the outside loop and C in the inside loop because we found that this was the

more efficient ordering. This likely indicates that adapting a solution after C has been

changed requires fewer iterations than adapting a solution after γ has been changed.

6.3.8 Empirical Trials

This section describes empirical trials demonstrating the effectiveness of the accelerated

radius-margin parameter selection described in previous sections. In our experiments we



158CHAPTER 6. PARAMETER SELECTION USING GEOMETRIC INFORMATION

Algorithm 13 Searching across a grid of SVM parameters for those which minimize the
radius-margin ratio

function modelsel grid(guesssvm, guessmeb)
bestsvm = guesssvm;
bestmeb = guessmeb;
for γ = 2−10, 2−9, . . . , 210 do

for C = 2−10, 2−9, . . . , 210 do
if parameters match initial guess then

continue
else

adapt svm and meb to new parameters γ and C
[bestsvm bestmeb] = compare(bestsvm, bestmeb, svm, meb)

end if
end for

end for
end function

use two kernels; the Gaussian kernel, given by

K(x,y) = exp
(
−γ||x− y||2

)
,

and the polynomial kernel, written

K(x,y) =
(x · y

τ
+ 1
)q
.

In order to avoid having extremely large values across the diagonals of the kernel matrix

(which would reduce the impact of the regularization parameter C), we use τ = maxi
{
x2
i

}
By measuring efficiency in terms of the number of SMO training iterations, we compare

the efficiency of our method to that of two other methods which use radius margin bounds

in parameter selection. The first method we compare with is standard radius-margin

parameter selection, where an SVM and MEB is trained from scratch for each set of

parameters. The second method we compare to is Cristianini’s method [30] of using

previous nearby SVM and MEB solutions as seeds for new solutions.

Until later sections we use relative KKT stopping conditions (which we described in

detail in Section 5.8) with ε = 10−3 for all methods unless specified otherwise. To ensure

a fair comparison, we also use these stopping conditions in conjunction with our method,

rather than potentially allowing Algorithm 12 to continue to an arbitrary precision. In

empirical trials we refer to our method as adaptive since it adapts stopping conditions

based on the bounds it computes during training. Searches are performed over the range

C ∈ [2−10, 2−9, . . . , 210], with width γ ∈ [2−10, 2−9, . . . , 210] for the Gaussian kernel or

degree q = 2, 3, . . . , 8 for the polynomial kernel.

The datasets we use for empirical trials were originally collected from the UCI, DELVE

and STATLOG repositories by Rätsch et al. [96]. Trials consist of repeated test runs, with

around 60% of data used for training and 40% for testing. Attribute values have been

scaled to have zero mean and unit standard deviation. These train-test splits and scalings

were originally performed by Rätsch et al., and are now used in other studies, so we use
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the same datasets for consistency. Refer to Appendix A for a more extensive overview of

these datasets.

Search

Algorithm 13 is basically a grid search, but because it is paired with efficient methods of

comparison and adaptation, it performs very well. Figure 6.9 demonstrates the application

of the algorithm in order to choose the parameter C and the parameter γ for the Gaussian

kernel on several datasets. This figure also shows the number of iterations required for

standard radius-margin parameter selection and Cristianini’s method.

Notice that, for our adaptive method, iterations tend to be concentrated around the

optimal parameter. Most other parameters can be rejected almost immediately. Such fast

rejection occurs because previous solutions provide good enough bounds on the radius and

margin in order for nearby solutions to be rejected without further training. This avoids

the large computational effort required to train Gaussian SVMs with large C values and

small γ values. On the datasets tested our method is the only one that does not focus

a disproportionate number of training iterations on the section of the search space which

combine these extreme values of γ and C.

Gaussian Kernel

For the following empirical trials we compare our method to Cristianini’s method. We do

not compare to standard radius-margin parameter selection since standard radius-margin

parameter selection is outperformed so significantly by Cristianini’s method. Comparing

our technique to Cristianini’s is also a much fairer comparison since both methods use

previous solutions to seed new solutions. We perform comparisons using both tight (ε =

10−3) and loose (ε = 10−1) stopping conditions for Cristianini’s method in order to verify

that our improvements can not be replicated by simply having looser, fixed, stopping

conditions.

Table 6.1: Average number of SMO iterations required for each parameter selection
technique. The Gaussian kernel is used.

ε = 10−3 ε = 10−1 ε =adaptive

banana 3735.4± 116.0 704.3± 18.3 13.7± 0.5
b.cancer 1200.6± 40.4 276.7± 5.1 13.3± 0.1
diabetes 2024.0± 22.1 415.6± 4.1 28.6± 0.4
german 1616.7± 15.4 334.8± 4.0 42.3± 0.7
heart 226.0± 7.5 46.8± 1.6 7.8± 0.2
image 3172.0± 30.0 675.9± 6.9 47.3± 0.8
splice 941.1± 111.5 176.6± 39.2 12.0± 0.2
thyroid 155.1± 3.1 33.0± 0.7 3.2± 0.1
titanic 935.8± 63.5 68.4± 6.0 17.0± 0.6

Results for Gaussian kernels are shown in Tables 6.1 and 6.2, where the number of

iterations given is the average per grid point over the 21 × 21 grid of parameter values.

The total number of iterations (combined SVM+MEB) for our adaptive method was
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(a) Standard method on german dataset. Total
1.0e+ 6 iterations.
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(b) Standard method on image dataset. Total
1.7e+ 6 iterations.
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(c) Cristianini’s method on german dataset.
Total 3.3e+ 5 iterations.
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(d) Cristianini’s method on image dataset. To-
tal 7.8e+ 5 iterations.
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(e) Adaptive method on german dataset. Total
1.7e+ 4 iterations.
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(f) Adaptive method on image dataset. Total
1.7e+ 4 iterations.

Figure 6.9: Adaptive method compared to standard radius-margin parameter selec-
tion and Cristianini’s method. Note that we have clamped the number
of iterations per grid point to a maximum of 5000 in order to avoid ob-
scuring details in other regions of the plot. Final parameters, which differ
across datasets but not across methods in these instances, are marked
with arrows.

significantly lower across all datasets, by around a factor of 10 compared with stopping

conditions of ε = 10−1, and by a factor of 100 or more compared with stopping conditions
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Table 6.2: Average number of MEB iterations required for each parameter selection
technique. The Gaussian kernel is used.

ε = 10−3 ε = 10−1 ε =adaptive

banana 56.5± 0.5 1.5± 0.0 3.0± 0.1
b.cancer 27.5± 0.1 1.2± 0.0 4.6± 0.1
diabetes 41.0± 0.1 1.2± 0.0 7.4± 0.1
german 40.4± 0.1 1.1± 0.0 10.6± 0.2
heart 19.2± 0.1 1.2± 0.0 2.5± 0.1
image 78.7± 0.2 1.1± 0.0 5.2± 0.3
splice 38.0± 0.0 1.0± 0.0 1.8± 0.1
thyroid 28.5± 0.2 1.4± 0.0 1.3± 0.0
titanic 38.0± 0.4 1.1± 0.0 5.1± 0.1

of ε = 10−3. The number of MEB iterations was generally lowest when a fixed tolerance

parameter of ε = 10−1 was used, however the dominant cost in all cases was the number

of SVM iterations taken.

Table 6.3: Average test errors for each parameter selection technique. The Gaussian
kernel is used.

ε = 10−3 ε = 10−1 ε =adaptive

banana 0.106± 0.002 0.106± 0.002 0.106± 0.002
b.cancer 0.291± 0.016 0.291± 0.016 0.291± 0.016
diabetes 0.231± 0.006 0.232± 0.006 0.231± 0.006
german 0.252± 0.008 0.261± 0.009 0.252± 0.008
heart 0.174± 0.010 0.169± 0.010 0.174± 0.010
image 0.038± 0.002 0.038± 0.002 0.038± 0.002
splice 0.110± 0.003 0.113± 0.002 0.110± 0.003
thyroid 0.045± 0.008 0.045± 0.008 0.044± 0.008
titanic 0.228± 0.001 0.239± 0.009 0.228± 0.001

Average test errors associated with the parameters chosen by each method are shown

in Table 6.3. In order to calculate test error, parameter selection was performed on the

training set only, with the error measured on the test set only. This was repeated 10

times with random train-test splits used each time. The error shown in Table 6.3 is the

mean± stderr proportion of test errors over the 10 runs.

These results highlight the benefits of using adaptive stopping conditions. Not only

does our method require fewer training iterations than Cristianini’s method in conjunction

with even the loosest of stopping conditions, but it also provides the same test error as

relative KKT stopping conditions with ε = 10−3. Note that, on the titanic and german

datasets, the slight increase in overall error for ε = 10−1 was caused by poor parameters

being chosen for 1 of the 10 runs. However, since the remaining 9 runs were successful,

the overall differences did not end up being statistically significant.

Polynomial Kernels

Results for polynomial kernels are given in Tables 6.4 and 6.5. Enormous reductions in the

number of iterations taken are shown. In many cases these reductions were even greater
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than for the Gaussian kernel. Notice, however, that test errors (Table 6.6) are much higher

than those for the Gaussian kernel in many cases, particularly the banana, thyroid and

image datasets. This appears to be a limitation of radius-margin parameter selection,

rather than the polynomial kernel itself. On these datasets the radius-margin method

tends to select very low degrees and very small values of C, much lower in both cases than

the values which provide the optimal test accuracy.

Table 6.4: Average number of SMO iterations required for each parameter selection
technique. The polynomial kernel is used.

ε = 10−3 ε = 10−1 ε =adaptive

banana 30370.2± 1712.8 4053.8± 197.4 72.3± 2.6
b.cancer 6491.2± 275.5 1586.2± 71.1 20.8± 1.2
diabetes 29841.1± 1772.2 5831.7± 332.6 37.2± 1.3
german 13480.8± 308.4 2844.3± 64.2 55.5± 1.5
heart 707.5± 44.6 140.3± 10.2 11.6± 0.4
image 9972.2± 605.8 2060.5± 102.2 124.7± 2.1
splice 3919.0± 217.4 755.1± 77.1 46.1± 2.6
thyroid 544.1± 23.1 115.3± 4.0 13.7± 0.6
titanic 4736.8± 500.4 383.8± 62.3 16.8± 0.6

Table 6.5: Average number of MEB iterations required for each parameter selection
technique. The polynomial kernel is used.

ε = 10−3 ε = 10−1 ε =adaptive

banana 63.1± 0.8 2.2± 0.0 35.3± 1.9
b.cancer 44.4± 0.3 1.8± 0.0 8.4± 0.5
diabetes 70.9± 0.6 1.9± 0.0 12.0± 0.2
german 88.4± 0.2 1.7± 0.0 18.5± 0.3
heart 35.9± 0.4 1.9± 0.0 4.7± 0.4
image 128.9± 2.9 1.7± 0.1 20.8± 2.7
splice 102.1± 0.4 1.6± 0.1 3.6± 0.2
thyroid 38.4± 0.3 2.4± 0.0 7.4± 0.4
titanic 37.5± 0.9 1.5± 0.1 5.4± 0.2

One way to improve results for polynomial kernels is to incorporate alternate bounds

on the leave-one-out error. Recall from Section 6.2.3 that the support vector bound on

the leave-one-out error is given by [117]:

ELOO ≤
ns
n
,

where ns is the number of support vectors in an SVM and n is the number of training

points. It may be possible to compute upper and lower bounds on the number of support

vectors during training, so the support vector bound is a candidate for improving the

radius-margin method.

Table 6.7 compares test errors obtained by selecting parameters using the radius-

margin bound to those obtained using the support vector bound. These results suggest

that, for polynomial kernels, the support vector bound often characterizes the test error
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Table 6.6: Average test errors for each parameter selection technique. The polynomial
kernel is used.

ε = 10−3 ε = 10−1 ε =adaptive

banana 0.404± 0.009 0.437± 0.013 0.409± 0.009
b.cancer 0.282± 0.015 0.297± 0.017 0.283± 0.015
diabetes 0.243± 0.007 0.242± 0.006 0.244± 0.007
german 0.280± 0.008 0.288± 0.010 0.280± 0.008
heart 0.167± 0.011 0.166± 0.012 0.167± 0.011
image 0.271± 0.007 0.274± 0.005 0.271± 0.007
splice 0.158± 0.002 0.158± 0.002 0.158± 0.002
thyroid 0.212± 0.014 0.211± 0.013 0.212± 0.014
titanic 0.236± 0.004 0.256± 0.013 0.236± 0.004

better than the radius-margin bound. However, it also suggests that the support vector

bound is much more likely to reach a lower minimum than the radius-margin bound, even

in cases where the radius-margin bound better characterizes the test error. This issue

is demonstrated in Figure 6.10, where even though minimizing the radius-margin bound

results in the lowest test error, the support vector bound has the lowest overall minimum

of the two bounds. Because of this, it is not possible to choose the better bound by simply

taking the minimum of the two bounds.

Table 6.7: Test error achieved by combining two different error bounds. The polyno-
mial kernel is used. The near-perfect match of the first and second columns
shows that the SV bound usually reaches the lowest minimum when the
polynomial kernel is used.

SV Bound min(SV,RM) RM Bound

banana 0.110± 0.003 0.110± 0.003 0.404± 0.009
b.cancer 0.353± 0.023 0.353± 0.023 0.282± 0.015
diabetes 0.305± 0.005 0.305± 0.005 0.243± 0.007
german 0.298± 0.007 0.298± 0.007 0.280± 0.008
heart 0.251± 0.012 0.251± 0.012 0.167± 0.011
image 0.049± 0.002 0.049± 0.002 0.271± 0.007
splice 0.120± 0.002 0.120± 0.002 0.158± 0.002
thyroid 0.044± 0.005 0.044± 0.005 0.212± 0.014
titanic 0.235± 0.010 0.236± 0.004 0.236± 0.004

There were also cases where the radius-margin bound combined with the polynomial

kernel simply was not characteristic of the test error. For example, Figure 6.11 shows

the radius-margin bound on the banana dataset for q = 4. Here choosing the value of C

using the radius-margin bound results in almost the worst possible test error. Even when

both parameters are chosen simultaneously (as in Table 6.6), the final accuracy was still

extremely poor.

Although the test errors for the polynomial kernel are poor on some datasets, they

are important because they illustrate the risks of performing radius-margin parameter

selection in conjunction with polynomial kernels. For example, the test error achieved on

the banana dataset is greater than 40%, whereas Table 6.7 shows that errors of around 11%
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Figure 6.10: Several estimates of the leave one out error compared to the test error
for the heart dataset in conjunction with the polynomial kernel. The
degree is fixed at q = 2 while the regularization parameter is changed

are possible. Despite this, the radius-margin ratio has previously been used for successful

polynomial kernel parameter selection on a limited number of datasets [117, 116], and

indeed it was able to provide an accuracy comparable to the Gaussian kernel in some of

our test cases. This suggests that the success of the radius-margin technique is likely to

depend on the characteristics of the individual dataset being classified, and that care must

be taken.
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Figure 6.11: Several estimates of the leave one out error compared to the test error
for the banana dataset in conjunction with the polynomial kernel. The
degree is fixed at q = 4 while the regularization parameter is changed



6.4. PARAMETER SELECTION USING µ-SVMS 165

6.3.9 Discussion

Despite the significant reductions in training iterations we have shown, we should empha-

size that training iterations alone are not the sole cost in performing parameter selection.

This means that a factor of 10 reduction in training iterations will not necessarily translate

into a factor of 10 reduction in the time required to perform parameter selection. Even

if no training iterations are performed for a particular combination of parameters, w · xi
values for each training point must be computed in order to check the KKT conditions for

optimality and initialize the bounds. However, this process can be sped up via caching of

dot products, and even if training iterations are not the sole cost of parameter selection,

they are still one of the most significant costs.

The savings that can be achieved also clearly depend on the size of the grid over which

parameter selection is performed. Results in Section 6.3.8 suggest that most of the training

iterations tend to be concentrated around the optimal parameters. This means if a small

grid enclosing the optimal parameters is chosen, savings obtained using our method will

be reduced. However, it is difficult and risky to choose the limits for a small grid correctly.

If a small grid is chosen which does not enclose the optimal parameters, the result will be

a very poor set of parameters.

It is important to note that the method of comparison described in Algorithm 12 does

not necessarily have to be used in conjunction with a grid search. A natural direction for

future research is to improve the search routine. However, one of the benefits of a grid

search is that it is can not be drawn away from the optimum and terminate with poor

parameters, which Keerthi [63] notes is a possibility using gradient descent search on some

datasets. This means a grid search provides confidence that a reasonable set of parameters

will be found. A grid search is also made feasible given the fact that bad choices for the

parameter values can be so quickly rejected using Algorithm 12.

Another factor impacting the overall time required to perform parameter selection is

the training algorithm chosen. Although we use the SMO variant described by López et al.

[77] due to it enabling simple calculation of our bounds, it is possible to apply alternative

methods. The downside to using other methods is that the bounds are no longer ‘free’ to

calculate, requiring a pass through all training data to find the points which define Rup

and ∆low. Although this may be too costly to perform every iteration, bounds could still

be computed every k iterations. Bounds would also still be useful in rejecting neighboring

parameter values where no further training is required. According to Figure 6.9, such

parameter values tend to form a large portion of the search space.

6.4 Parameter Selection using µ-SVMs

In the previous section we focused specifically on parameter selection for L1-loss SVMs.

For L1-loss SVMs the radius-margin technique is inappropriate because it will always

choose the greatest possible amount of reduction in the hulls (as we described in Section

6.2.6). Accordingly, alternative methods such as XiAlpha [59] and GACV [74, 122] have
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been proposed. However, in previous studies [33, 46], these estimates of the test error have

generally been applied to C-SVMs.

We begin this section by reviewing some of the issues that arise when performing

parameter selection using C-SVMs. Although the C-SVM formulation is the most common

type of SVM with which to perform parameter selection, this may simply be because C-

SVMs are so widely used, rather than because they provide any practical benefits compared

to other formulations.

The subsequent parts of this section describe how parameter selection can be performed

by combining L1-loss µ-SVMs with several estimates of the test error. Despite the fact

that parameter selection is rarely performed using this type of SVM, we suggest that there

are many benefits to their use.

6.4.1 C-SVM Parameter Search

Because C can take any positive value, it is most convenient to search through log2(C),

meaning a search is performed over a range such as log2(C) ∈ {−10,−9, . . . , 9, 10}. The

search through log-space allows a large range of C-values to be searched in a reasonable

amount of time. However, it is not necessarily an ideal way to select a regularization

parameter.

One of the issues that arises in C-SVM parameter search is that many smaller values

of C reduce one or both classes to their centroid. Once this occurs, the threshold given

by the KKT conditions tends to exhibit unintuitive behavior by classifying all points as

belonging to whichever class has the greater number of points (refer to Section 4.3). Not

only are such SVMs extremely unlikely to yield a high classification accuracy, but some

estimates of the test error may not provide sensible results for these special cases. For

example, Joachims [59]’s estimate of the test error requires that an SVM have at least one

support vector from each class for which 0 < αi < C. This can not be the case when one

of the classes is reduced to its centroid, since in such a case all support vectors in that

class will reach their upper bound (refer to Section 4.2.4).

This issue is illustrated in Figure 6.12. The left side of this figure shows contour plots

of test accuracy for two datasets. A matching pair of figures on the right side of the figure

shows the region of parameter space for which neither class is reduced to its centroid.

Notice how this region varies based on the dataset and kernel parameters, so it is not

possible to know in advance whether a particular combination of parameters will reduce

one of the classes to its centroid. Notice also that the SVMs which fall outside of this

region generally classify everything as belonging to one class.

Another potential issue with C-SVM parameter selection is that, on some datasets,

changing C may result in either a very large or very small change to the reduction in the

hulls of the two classes. This is shown in Figure 6.13, where log2(C) values are iterated

through on the splice dataset and plotted against their corresponding 1/µ value. The

polynomial kernel with q = 2 is used. On this dataset there are then several rapid decreases

in 1/µ until µ = 1 is reached, at which point subsequently larger C values all result in a
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Figure 6.12: Test error and valid parameters for the Gaussian kernel. Regions where
parameter values are invalid are shaded.

value of µ = 1. A smooth transition in the reduction of the hulls is not achieved in this

case.

6.4.2 µ-SVM Parameter Search

Using a µ-SVM for parameter search appears difficult due to the fact that there are only a

small range of valid µ values. Unlike a C-SVM, where C can be set to any positive value,

there are many values of µ which result in either intersecting hulls, or empty hulls, both

of which make the µ-SVM optimization task yield no solution. It is also not immediately

apparent what sort of step size should be taken when searching µ values, since a reasonable

step size for one dataset may be much too large or small for another dataset.

Despite these apparent difficulties, there are reasonable start points, end points and

step sizes which can be chosen for any dataset, provided the class sizes are used to guide

this choice. We set the starting point of the search to µ = 1/(m− 2), where:

m = min (card (Ipos) , card (Ineg)) .

This starting point is small enough to ensure the hulls are separable for our datasets, while

still ensuring neither class is reduced to its centroid.
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Figure 6.13: Values of log2(C) and their equivalent values of µ on the splice dataset.
The polynomial kernel with q = 2 is used

The step size we use is given by:

δ =
−m
nsteps

.

However, this step is not simply added to µ. Instead, the new value of µ after each step

is given by:

µ← 1

max (1/µ+ δ, 1)
.

This means that if there are, say, 200 points in the smallest class, µ will step through the

values: {
1

198
,

1

188
,

1

178
, . . . ,

1

8
, 1

}
We use the value of nsteps = 20 throughout most experiments because it means there are

at most 20 SVMs trained in order to choose µ, similar to the amount of steps taken when

choosing log2(C) over −10,−9, . . . , 9, 10. The constant nsteps can be adapted in order to

adjust the coarseness of the search.

Searching through 1/µ values is deliberate, and not equivalent to stepping linearly

through µ values in the range [1/m, 1]. For an example of why this is the case, consider

Figure 6.14. Figure 6.14a shows a search through 1/µ values on a set of uniform random

points. Notice the smooth transition in the reduction of the hulls. By contrast, Figure

6.14b shows a search directly through µ values. As seen in this figure, such a search skips

over many important values of µ.

The search is stopped once µ reaches one. However, it is likely that, before this occurs,

a value of µ will be chosen which is sufficiently large that the RCHs of the two classes

intersect. We detect this by checking whether ||w|| has grown small (less than 10−5). If

||w|| reaches this point, training is terminated and smaller values of µ are not searched.

Although such small values of ||w|| do not guarantee intersecting hulls, we found that this

was a reasonable indicator, as supported by the empirical trials in the following section.
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Figure 6.14: Searching through 1/µ provides a much smoother transition in the hulls
that searching through µ.

Figure 6.15 shows a contour plot of test accuracies for a range of values of µ and γ for

the Gaussian kernel. Notice that these plots look similar to a scaled and reflected version

of the plots for C-SVMs in Figure 6.12. However, unlike the C-SVM plots, there are no

large regions of ‘wasted’ search space where parameters which reduce the classes past their

centroids are searched.

Figure 6.15 also illustrates a further benefit of searching through µ. For the banana

dataset, the two hulls overlap for most values of µ when γ is small. Searching through µ

values, we are able to detect this and omit a large portion of the search space. By contrast,

if we were searching through C values, we would train an equal number of SVMs for each

kernel parameter. This means potentially training 20 SVMs on a relatively small interval

of µ = 1/170 to µ = 1/180.
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Figure 6.15: Test error for the Gaussian kernel. Shaded regions not searched.

6.4.3 Error Estimates for µ-SVMs

Existing estimates of the test error designed for C-SVMs can be converted to estimate

the test error for µ-SVMs by taking advantage of the fact that the µ-SVM is a reparam-

eterized C-SVM. Using the relationship between the dual variables of the µ and C-SVM
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optimization tasks which we described in Section 6.2, we obtained both GACV and Xi-

Alpha estimates of the test error for µ-SVMs. The GACV estimate of the test error is

shown in Equation (6.8), while the XiAlpha estimate is given in Equation (6.9). In these

equations R2
∆ is an upper bound on xi · xi − xi · xj .

EµGACV =
1

2ρn

 n∑
i=1

2ξi +
∑

yif(xi)<−ρ

2αixi · xi +
∑

yif(xi)∈[−ρ,ρ]

αixi · xi

 (6.8)

Eµξα =
1

n
card

({
i

 (αiR
2
∆ + ξi) ≥ ρ

})
(6.9)

6.4.4 Empirical Trials

In order to test whether performing parameter selection with µ-SVMs is viable, we com-

bined a µ-SVM search with two existing estimates of test error: GACV and XiAlpha. The

results are shown in Table 6.8 (for GACV) and Table 6.9 (for XiAlpha). Error rates are

calculated as a mean over 10 runs, with standard errors also shown. Because differences in

accuracy were not statistically significant using a paired differences t-test, we have simply

bolded the method which achieved the lowest mean test error on each dataset. These

results indicate that estimates of the test error such as XiAlpha and GACV can be vi-

ably combined with µ-SVMs in order to perform parameter selection without degrading

accuracy.

Table 6.8: GACV parameter selection with µ and C-SVMs

dataset C-SVM µ-SVM

banana 0.109± 0.002 0.109± 0.002
b.cancer 0.299± 0.013 0.297± 0.014
diabetes 0.249± 0.007 0.244± 0.007
german 0.266± 0.007 0.270± 0.008
heart 0.176± 0.009 0.177± 0.010
image 0.051± 0.003 0.057± 0.003
splice 0.123± 0.002 0.124± 0.002
thyroid 0.055± 0.011 0.049± 0.010
titanic 0.230± 0.005 0.230± 0.005

Although these results are positive, they are not conclusive since it has not been

established that XiAlpha and GACV are unbiased. For example, Duan et al. [33] show that

GACV and XiAlpha can sometimes fail to identify the optimal parameters. This means

that a µ-SVM search could actually search through better or worse regions of parameter

space, but this could be obscured because estimates of the test error may not correctly

evaluate for these solutions. In order to check whether this is the case, we repeated the

previous tests without using an estimate of the test error to gauge the performance of the

search. Instead, we simply recorded the minimum test error across the parameter search.

The results of this test are shown in Table 6.10. There were no statistically significant

differences in the minimum test error found using the two search methods, so we have
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Table 6.9: XiAlpha parameter selection with µ and C-SVMs

dataset C-SVM µ-SVM

banana 0.119± 0.005 0.117± 0.004
b.cancer 0.308± 0.014 0.304± 0.014
diabetes 0.248± 0.008 0.249± 0.008
german 0.283± 0.010 0.274± 0.009
heart 0.195± 0.015 0.191± 0.015
image 0.030± 0.002 0.029± 0.001
splice 0.162± 0.005 0.161± 0.004
thyroid 0.051± 0.009 0.055± 0.008
titanic 0.227± 0.002 0.227± 0.001

simply bolded the method with the lower error rate in this table. Results suggest that a

µ-SVM search is likely to include the same important areas of the search space which are

included in a C-SVM parameter search.

Table 6.10: Minimum test error across entire search

dataset C-SVM µ-SVM

banana 0.103± 0.001 0.104± 0.002
b.cancer 0.240± 0.013 0.236± 0.012
diabetes 0.217± 0.006 0.216± 0.005
german 0.212± 0.006 0.211± 0.005
heart 0.144± 0.010 0.144± 0.011
image 0.023± 0.001 0.024± 0.001
splice 0.105± 0.002 0.105± 0.002
thyroid 0.020± 0.005 0.020± 0.005
titanic 0.216± 0.001 0.216± 0.001

There was also a further benefit associated with µ-SVM parameter search. Because

some portions of the search space could be identified as non-viable, a reduced number of

parameter combinations could be searched. Portions of the search space become inviable

when the classes are reduced to their centroids, or not reduced enough causing their hulls

to intersect. The number of valid parameter combinations for each search method is shown

in Table 6.11.

Table 6.11: Number of SVMs trained

dataset C-SVM µ-SVM

banana 441 293.8± 2.1
b.cancer 441 330.5± 3.2
diabetes 441 348.7± 1.0
german 441 369.2± 0.8
heart 441 404.3± 0.8
image 441 400.4± 0.4
splice 441 420.0± 0.0
thyroid 441 381.0± 1.2
titanic 441 162.2± 9.5
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6.4.5 Discussion

In this section we have examined the viability of searching for the optimal SVM parameters

using the µ-SVM formulation, as opposed to the more popular C-SVM. Our results suggest

that this is a viable approach, and that searching through µ values provides two main

benefits. First, combinations of parameter values which cause the classes to be reduced

to their centroids can be avoided. This is beneficial since it prevents searching through

SVMs which predict everything as belonging to a single class. Second, it allows the search

to make a smooth transition in the reduction of the hulls, regardless of the scaling of the

data. By this we mean that the value of µ = 1/k has the same meaning even if all training

points are multiplied by a constant. By contrast, the value of C = 1 for a C-SVM has a

different impact if training points are multiplied by a constant (Figure 6.16).
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−1.5

−1

−0.5

0

0.5

1

1.5

(a) Original dataset

−0.2 −0.1 0 0.1 0.2 0.3

−0.3

−0.2

−0.1

0

0.1

0.2

(b) The same dataset with points scaled so
that x′i = xi/5

Figure 6.16: Here the parameter of C = 1 is used to train SVMs on two toy datasets
which are identical under scaling. Notice the large difference in hyper-
plane placement and number of support vectors.

6.5 Conclusions

Our results from this chapter have focused primarily on improving existing methods of

parameter selection by exploiting the geometric approach. For example, in Section 6.3

we described how radius-margin parameter selection could be accelerated using geometric

information. We found that geometric information could be used to provide upper and

lower bounds on both the margin of an SVM and the radius of an MEB enclosing the

training data. This allowed for SVM training to be terminated extremely early while still

selecting parameters which minimized the radius-margin ratio of the SVM.

In Section 6.4, we described how geometric information can guide the parameter search

process. We adapted several error estimates, and a simple search method, to apply to the

µ-SVM formulation. We found that there was some small advantage to taking such a

geometric approach to parameter selection. For example, it provided a clearly defined and

geometrically intuitive search space. Accordingly, several parameter values were able to

be safely excluded from the search, reducing the number of SVMs which had to be trained.
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Something we did not discuss in detail in this chapter is the accuracy of the various

test error estimates themselves. This topic has been covered by several other authors [33,

46, 16]. Generally, although estimates of the test error can reduce computational time and

provide a reasonable estimate [33], there are as yet no estimates of the test error which are

as accurate as the cross-validation or leave-one-out error [16]. This means that, although

we would expect techniques such as accelerated radius-margin parameter selection to have

immense computational advantages over cross-validation, these computational advantages

are likely to come at the cost of some accuracy.
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Chapter 7

Conclusions

The geometric framework for SVMs provides a conceptual tool for understanding, gener-

alizing, and improving SVMs. By focusing on the geometric concepts underlying SVMs,

we have developed a better understanding of how and why SVMs and WSVMs work. We

have applied this knowledge in order to generalize and improve on important SVM-related

tasks such as training and parameter selection. In the following sections we summarize in

more detail some of the main findings and original contributions from each chapter.

7.1 Reduced Convex Hulls

In Chapter 3 we proposed two algorithms for computing RCHs in their entirety, inde-

pendently of SVMs. One algorithm is a generalization of the Quickhull algorithm, and

operates over points in the plane. The other algorithm operates over points in an arbitrary

dimensional space. These algorithms have allowed us to study RCHs in their own right,

as a separate concept from SVMs. RCH algorithms provide an alternative to convex hull

algorithms where there may be noise or outlying points. The cost of this ability to com-

pensate for noise or outlying points is that an RCH often has more facets than a convex

hull due to the smoothing effect that the reduction parameter, µ, has. This increased

number of facets can, in turn, make RCHs more costly to compute.

In this chapter we also introduced the concept of Weighted RCHs (WRCHs). WRCHs

are a generalized form of RCH where each individual input point can be assigned a unique

weight. Allowing individual point weighting provides greater control over the way in which

the hull is reduced. For example, the hull can be forced to recede either more slowly or

more quickly from certain localized areas. By exploring some of the properties of WRCHs,

such as how their vertices may be computed, we have also been able to adapt the previously

mentioned RCH algorithms so that they may also compute WRCHs.

7.2 Understanding SVMs from a Geometric Perspective

In Chapter 4 we exploited the geometric interpretation of SVMs in order to understand

better how SVMs work. We described the impact of the kernel, the kernel parameters,

and the regularization parameter, and showed how changing these parameters can often

175
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make an SVM similar or equivalent to other classifiers such as the k-means and nearest

neighbor classifiers.

In this chapter we described the geometric significance of the threshold for the near-

est point problem, and explored the difference between the geometric threshold and the

threshold suggested by the KKT conditions of the SVM QP optimization task. Empir-

ical results suggested that the KKT threshold often resulted in decreased test accuracy

compared to the geometric threshold.

The geometric interpretation also provided a means by which to identify and under-

stand pathological behavior in SVMs. For example, we described how the KKT threshold

could result in extremely unintuitive hyperplane placement when it was combined with

certain parameter values. In particular, parameters that cause a large amount of reduction

in the hulls could result in the hyperplane being placed so that it classified all points as

simply belonging to the larger class. This leads us to suggest that, in general, there are

few reasons not to prefer a geometric or probabilistic threshold over the KKT threshold.

7.3 Geometric Training Algorithms

Using the concept of WRCHs and the geometric interpretation of WSVMs, we were able

to generalize the Schlesinger-Kozinec nearest point algorithm. The resulting algorithm

computes the nearest points in two WRCHs, and in doing so is able to train WSVMs.

This is, to the best of our knowledge, the first nearest point algorithm which has been

proposed for training WSVMs. The algorithm can handle precise (non-integral) weights,

without the need for duplicating training points. It can also be used in conjunction with

either L1 or L2-loss functions. Empirical trials demonstrated that the algorithm is faster

than using simple point duplication for weighting.

There are two ways to implement nearest point algorithms which train WSVMs: over

two classes, or over a single class consisting of a Minkowski set difference. We suggest

that, for the WSK algorithm, the two-class approach often requires more iterations than

the one-class approach to train a WSVM to the same precision. However, due to a more

efficient update step which involves a smaller number of points, each iteration of the two-

class approach is quicker to complete. This means that, overall, we were able to train

WSVMs faster using the two-class approach.

We also showed using empirical trials that the stopping conditions commonly used

in conjunction with nearest point algorithms tended to stop earlier than necessary when

margins were small, and later than necessary when margins were large. We addressed this

by recommending an alternative stopping condition which checks the distance from the

estimated positions of the nearest points to the true nearest points relative to the width

of the margin. Empirical trials demonstrated that these stopping conditions led to more

consistent behavior across a range of parameter and kernel values.

By using the geometric framework, and by closely examining the differences between

perceptrons and SVMs, we were able to adapt the WSK algorithm to train perceptrons,

with either L1 or L2-loss function and optional weighted training points. Although it

is interesting that the geometric similarities between SVMs and perceptrons allow for
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very similar training algorithms to be applied to each, we suggest that the perceptron

optimization task is generally not as efficient as the SVM optimization tasks when solved

using geometric algorithms. The source of this inefficiency is likely to be the feature space

induced by the modified kernel which must be used to train perceptrons using a nearest

point algorithm.

7.4 Parameter Selection using Geometric Information

In Chapter 6 we studied how the geometric interpretation of SVMs could be used to guide

the parameter selection process. We achieved this by performing parameter selection in

conjunction with the nearest point optimization task. By contrast, previous methods of

parameter selection have most commonly been applied to C-SVMs without considering

the geometric interpretation.

One of the main contributions we were able to make in this chapter is to show that

the existing method of radius-margin parameter selection could be accelerated to a great

extent by applying insights from the geometric framework. This was accomplished by

noting that, when the nearest point approach to training was taken, upper and lower

bounds on both the margin of an SVM and the Minimal Enclosing Ball (MEB) of the

training data could be computed after any number of iterations. Using this observation,

we were able to compare upper and lower bounds on the radius-margin ratio across a

range of parameter values, without training multiple SVMs to completion. This resulted

in a reduction in the number of training iterations required in order to perform parameter

selection by a factor of ten or more compared to previous approaches.

We also addressed the task of parameter selection for µ-SVMs. We proposed a basic

grid search for µ-SVMs, and showed that using µ-SVMs for parameter selection had several

advantages over the more commonly used C-SVM. For example, there were clearly defined

start and end points for the search, which were informed by the geometric interpretation

of SVMs. By contrast, C-SVMs have no such end points, often requiring an extensive

search over log2(C), i.e. ranging from small fractional values to extremely large values.

We further showed that existing error estimates which have been applied to C-SVMs could

easily be adapted to estimate the error of a µ-SVM. Empirical trials suggest that, although

C-SVMs are by far the most common SVM to be used for parameter selection, they are

not necessarily the best.

7.5 Discussion

The many different types of SVMs and perceptrons and the multitude of ways they can

be adapted has led to some confusion in the literature regarding what is and is not an

SVM. We hope that our work can aid in clearly identifying how other classifiers relate to

SVMs, particularly some of the recently proposed SVM-like classifiers.
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One such classifier is the Extreme Learning Machine (ELM) [55, 56, 57]. The ELM

uses the decision function:

f(x) = w · h

It trains this machine using the optimization task:

min
w

1

2
||w||2 +

C

2

∑
i

ξ2
i

subject to w · h(x) = yi − ξi

This optimization task is equivalent to the L2-loss perceptron optimization task which we

described in Section 2.8.4, and can be solved using one-class nearest point algorithms as

described in Section 5.9. However, the ELM optimization task uses an explicit mapping

h(x) on all training data prior to training.

Although several mappings for h(x) are possible, Huang et al. [55] generally use the

sigmoidal mapping:

hi(x) =
1

1 + exp(−(ai · x + bi))

Here h(x) has L components (chosen as a parameter), with ai and bi values chosen ran-

domly from any continuous distribution [55].

Something not noted by Huang et al. [55], is that using this mapping does not allow the

ELM to reach a solution that the L2-loss perceptron can not. Indeed, the solution to the

ELM optimization task is the same as the solution to the L2-loss perceptron optimization

task, provided the following kernel is used:

K(x,y) =
L∑
i=1

1

1 + exp(−(ai · x + bi))
× 1

1 + exp(−(ai · y + bi))

This means that, rather than being a distinct type of classifier, an ELM could also be

described as an L2-loss perceptron combined with a novel type of kernel. Because this

was not considered, it led to ELMs being proposed as a completely new type of classifier,

rather than a new type of kernel. In turn, ELMs were compared to Gaussian SVMs and

claimed to be superior in many ways [57]. However, due to the drastically different feature

spaces induced by the kernels used by ELMs, this is an inherently unfair comparison.

Another SVM-like classifier is the Core Vector Machine (CVM) [114]. The CVM solves

the optimization task:

min
1

2
||w||2 + b2 − 2ρ+ C

∑
i

ξ2
i

subject to yi(w · xi − b) ≥ ρ− ξi ∀i
(7.1)

This optimization task is a geometric reparameterization of the L2-loss perceptron opti-

mization task described in Sections 2.8.4 and 2.8.5, so it is not a new type of classifier in
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itself. However, Tsang et al. [115] solve this problem by noting that, when the kernel being

used satisfies K(x,x) = constant (e.g. the Gaussian kernel satisfies this property), this

optimization task becomes equivalent to the Minimal Enclosing Ball (MEB) optimization

task and can hence be solved using MEB solvers.

Because Tsang et al. [115] use an SMO variant to solve the MEB optimization task, this

formulation itself is not necessarily an optimization. However, they make large reductions

in training time by using vastly different (and often much looser [76]) stopping conditions

which relate to the number of points contained within the MEB.

When new SVM-like classifies such as CVMs or ELMs are introduced, several different

issues often become conflated. This results in simultaneous changes being made to the

training routines, the stopping conditions, the kernel being used, and even the threshold.

Each of these aspects individually have a large impact on the training efficiency and test

accuracy of a machine (as we showed in Chapter 5). However, when a new machine is

proposed which modifies several of these factors as once, it is easy to achieve illusory

benefits.

In order to determine whether a new SVM-like machine provides real benefits over

existing techniques, it is important to keep constant as many components as possible

during comparison. For example, to determine whether a new training method provides

benefits, it should be compared against existing training methods using an equivalent

stopping condition and kernel (including kernel parameters and any regularization param-

eter). Similarly, in order to determine the benefits of a new type of kernel, the training

method and stopping conditions should remain constant. Following this approach aids in

determining whether a new method provides substantial benefits over existing techniques

and, if so, exactly how these benefits are achieved.

7.6 Future Work

One of the most natural areas for future work is in geometric classifiers which do not

use RCHs for class representations. Recall that the use of RCHs arose from the way

in which the SVM optimization task penalizes the sum of slack variables. This choice

of penalty term was originally made largely for numerical convenience, since trying to

minimize the number of errors would have resulted in an NP-complete optimization task

[27]. It follows that maximizing the margin between two RCHs is not necessarily more

theoretically justified than maximizing the margin between other types of geometric class

representations. Changing the underlying geometric representation of the classes would

almost certainly have an impact on the resulting classifier (Figure 7.1). It would be

interesting to investigate whether alternative geometric representations could provide any

benefits over RCHs.

An area which we did not cover in detail is that of probabilities in support vector

classification. In Chapter 2 we mentioned how it has been shown that replacing the hinge

loss function associated with SVMs with the logistic loss function results in the Kernel

Logistic Regression (KLR) machine. This is a kernel machine which favors large margins

and provides a probabilistic output. Future work may be able to reconcile the geometric
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Δ
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Figure 7.1: Maximizing the margin between two classes with alternative geometric
representations

and probabilistic approaches by providing a classifier with both an intuitive geometric

interpretation and probabilistic outputs.

In Chapter 4 we provided a geometric interpretation of WSVMs and described sev-

eral weighting schemes from a geometric perspective. A promising direction for future

research is to discover alternative weighting schemes for particular application domains.

For example, recent research by Sheng et al. [105] has investigated the use of weighted

classifiers in applications where multiple training labels are available, yet labels are uncer-

tain and costly to acquire. It would be interesting to investigate uncertain class labels in

conjunction with SVMs and, in turn, gain geometric insight into such classification tasks.

There is still room for further developments in the field of parameter selection for

SVMs. In general, none of the error estimates which exist for SVMs can provide an

estimate of the error which is as reliable as the estimate given by cross-validation. Fur-

thermore, cross-validation requires such a large amount of computational effort that it

can sometimes become infeasible. Bousquet and Schölkopf [16] also hold this view, stating

in 2006 that “... there is no satisfactory method for choosing the parameters other than

using cross-validation, which can be an obstacle in applications.”

It may be that a greater understanding of the geometric framework could aid in the

discovery of methods of parameter selection which are as accurate as cross-validation,

while not requiring the same amount of computational effort. Franc et al. [41] have taken

steps in this direction by describing how the stopping conditions used in computing the

leave-one-out error can be relaxed in such a way that there is still a guarantee that the

error estimate will be unchanged. This is a result similar to the one we obtained using

the radius-margin bound in Chapter 6.

7.7 Closing Remarks

The contributions we have summarized in the previous sections support our claim that the

geometric interpretation of SVMs provides invaluable information which can be used to

understand, improve on, and generalize several aspects support vector classification. We
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hope that this thesis will lead to closer attention being given to the geometric interpretation

when research on SVMs is undertaken. Ideally, this thesis will also serve as a foundation

for the future work laid out in this chapter.
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Appendix A

Datasets used in Empirical Tests

For our empirical trials, we use a selection of datasets from the UCI [42], STATLOG,

and Delve machine learning repositories. The datasets we use were originally gathered by

Rätsch et al. [96], and have been scaled to unit mean and standard deviation. Table A.1

summarizes the properties of each of the datasets. These datasets were chosen because

they provide a large variation in each of the attributes shown in the table, and also

because they provide a common benchmark for SVM research [33, 39]. Note that balance

is the proportion of points belonging to the smaller class. This is the error rate that can

be achieved on the dataset by a ‘dumb’ classifier which simply classifies everything as

belonging to the larger class.

Table A.1: Summary of datasets used in empirical trials

Features Train Samples Test Samples Balance

banana 2 400 4900 0.448
b.cancer 9 200 77 0.292
diabetes 8 468 300 0.349
german 20 700 300 0.300
heart 13 170 100 0.444
image 18 1300 1010 0.429
splice 60 1000 2175 0.481
thyroid 5 140 75 0.302
titanic 3 150 2051 0.323

183



184 APPENDIX A. DATASETS USED IN EMPIRICAL TESTS



Appendix B

Extensive Results for Thresholds

Table B.1: Error rate for Gaussian SVMs (γ = 0.01) combined with three possible
thresholds

KKT Geometric Probabilistic

banana
small µ 0.419± 0.012 0.428± 0.011 0.425± 0.013
large µ 0.418± 0.011 0.429± 0.012 0.427± 0.013

b.cancer
small µ 0.274± 0.011 0.277± 0.008 0.271± 0.007
large µ 0.276± 0.010 0.277± 0.007 0.272± 0.007

diabetis
small µ 0.269± 0.004 0.241± 0.005 0.239± 0.005
large µ 0.251± 0.006 0.239± 0.005 0.236± 0.005

german
small µ 0.249± 0.005 0.235± 0.005 0.235± 0.005
large µ 0.244± 0.005 0.234± 0.005 0.233± 0.005

heart
small µ 0.182± 0.009 0.158± 0.008 0.158± 0.007
large µ 0.168± 0.008 0.159± 0.007 0.159± 0.007

image
small µ 0.265± 0.002 0.208± 0.004 0.198± 0.003
large µ 0.195± 0.016 0.163± 0.011 0.158± 0.009

splice
small µ 0.160± 0.002 0.158± 0.002 0.158± 0.002
large µ 0.140± 0.005 0.139± 0.005 0.139± 0.005

thyroid
small µ 0.223± 0.011 0.133± 0.009 0.101± 0.009
large µ 0.196± 0.011 0.117± 0.009 0.092± 0.008

titanic
small µ 0.238± 0.007 0.226± 0.001 0.226± 0.001
large µ 0.232± 0.005 0.226± 0.000 0.226± 0.001
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Table B.2: Error rate for Gaussian SVMs (γ = 0.1) combined with three possible
thresholds

KKT Geometric Probabilistic

banana
small µ 0.372± 0.009 0.365± 0.014 0.363± 0.014
large µ 0.349± 0.010 0.336± 0.013 0.334± 0.013

b.cancer
small µ 0.265± 0.010 0.264± 0.006 0.260± 0.008
large µ 0.264± 0.010 0.271± 0.008 0.269± 0.009

diabetis
small µ 0.265± 0.006 0.246± 0.005 0.243± 0.004
large µ 0.255± 0.006 0.246± 0.005 0.244± 0.004

german
small µ 0.276± 0.005 0.238± 0.005 0.237± 0.004
large µ 0.256± 0.007 0.238± 0.005 0.238± 0.004

heart
small µ 0.215± 0.012 0.163± 0.008 0.166± 0.008
large µ 0.198± 0.010 0.171± 0.008 0.174± 0.008

image
small µ 0.119± 0.002 0.108± 0.002 0.106± 0.002
large µ 0.092± 0.006 0.084± 0.006 0.084± 0.005

splice
small µ 0.454± 0.006 0.387± 0.003 0.373± 0.005
large µ 0.421± 0.009 0.384± 0.003 0.378± 0.004

thyroid
small µ 0.101± 0.007 0.081± 0.006 0.057± 0.007
large µ 0.087± 0.008 0.065± 0.007 0.055± 0.006

titanic
small µ 0.229± 0.001 0.227± 0.001 0.229± 0.001
large µ 0.229± 0.001 0.228± 0.001 0.229± 0.001

Table B.3: Error rate for linear SVMs combined with three possible thresholds

KKT Geometric Probabilistic

banana
small µ 0.485± 0.010 0.481± 0.011 0.484± 0.011
large µ 0.489± 0.011 0.480± 0.011 0.486± 0.011

b.cancer
small µ 0.292± 0.010 0.286± 0.007 0.290± 0.009
large µ 0.294± 0.009 0.293± 0.007 0.293± 0.009

diabetis
small µ 0.234± 0.004 0.238± 0.005 0.233± 0.004
large µ 0.234± 0.004 0.239± 0.005 0.233± 0.004

german
small µ 0.236± 0.005 0.243± 0.005 0.234± 0.005
large µ 0.236± 0.005 0.242± 0.005 0.235± 0.005

heart
small µ 0.162± 0.007 0.166± 0.007 0.164± 0.007
large µ 0.169± 0.006 0.171± 0.006 0.169± 0.007

image
small µ 0.161± 0.002 0.166± 0.003 0.161± 0.003
large µ 0.158± 0.002 0.164± 0.003 0.158± 0.003

splice
small µ 0.164± 0.001 0.164± 0.001 0.164± 0.001
large µ 0.164± 0.001 0.165± 0.001 0.164± 0.002

thyroid
small µ 0.154± 0.009 0.105± 0.009 0.115± 0.009
large µ 0.134± 0.010 0.098± 0.008 0.111± 0.009

titanic
small µ 0.225± 0.001 0.225± 0.001 0.225± 0.001
large µ 0.225± 0.001 0.225± 0.001 0.225± 0.001
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Table B.4: Error rate for polynomial SVMs (q = 3) combined with three possible
thresholds

KKT Geometric Probabilistic

banana
small µ 0.233± 0.006 0.228± 0.006 0.229± 0.006
large µ 0.231± 0.006 0.226± 0.006 0.227± 0.006

b.cancer
small µ 0.320± 0.007 0.351± 0.007 0.323± 0.007
large µ 0.332± 0.009 0.356± 0.009 0.334± 0.009

diabetis
small µ 0.301± 0.005 0.304± 0.006 0.302± 0.006
large µ 0.312± 0.006 0.314± 0.006 0.313± 0.006

german
small µ 0.300± 0.007 0.300± 0.007 0.298± 0.006
large µ 0.300± 0.007 0.300± 0.007 0.298± 0.006

heart
small µ 0.229± 0.009 0.229± 0.009 0.230± 0.010
large µ 0.229± 0.009 0.229± 0.009 0.230± 0.010

image
small µ 0.037± 0.001 0.037± 0.001 0.037± 0.001
large µ 0.041± 0.001 0.041± 0.001 0.040± 0.001

splice
small µ 0.127± 0.002 0.130± 0.003 0.126± 0.002
large µ 0.127± 0.002 0.130± 0.003 0.126± 0.002

thyroid
small µ 0.067± 0.008 0.066± 0.007 0.079± 0.009
large µ 0.070± 0.007 0.071± 0.006 0.083± 0.008

titanic
small µ 0.225± 0.002 0.224± 0.002 0.223± 0.002
large µ 0.225± 0.002 0.224± 0.002 0.223± 0.002

Table B.5: Error rate for polynomial SVMs (q = 5) combined with three possible
thresholds

KKT Geometric Probabilistic

banana
small µ 0.108± 0.001 0.111± 0.001 0.110± 0.001
large µ 0.110± 0.003 0.111± 0.002 0.109± 0.001

b.cancer
small µ 0.359± 0.012 0.394± 0.013 0.360± 0.012
large µ 0.359± 0.012 0.398± 0.013 0.360± 0.012

diabetis
small µ 0.333± 0.004 0.334± 0.004 0.333± 0.004
large µ 0.333± 0.004 0.334± 0.004 0.332± 0.004

german
small µ 0.280± 0.008 0.278± 0.007 0.275± 0.007
large µ 0.280± 0.008 0.278± 0.007 0.275± 0.007

heart
small µ 0.220± 0.010 0.220± 0.010 0.222± 0.011
large µ 0.220± 0.010 0.220± 0.010 0.222± 0.011

image
small µ 0.050± 0.013 0.038± 0.001 0.038± 0.001
large µ 0.050± 0.012 0.038± 0.001 0.038± 0.001

splice
small µ 0.162± 0.011 0.132± 0.002 0.129± 0.002
large µ 0.164± 0.011 0.132± 0.002 0.129± 0.002

thyroid
small µ 0.077± 0.009 0.076± 0.009 0.167± 0.012
large µ 0.078± 0.009 0.077± 0.009 0.166± 0.012

titanic
small µ 0.288± 0.035 0.294± 0.033 0.246± 0.023
large µ 0.309± 0.034 0.308± 0.031 0.254± 0.023
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Appendix C

Extensive Results for Nearest

Point Algorithms

C.1 Training Times
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(a) Gaussian kernel with γ = 0.01
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(b) linear kernel
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(c) Gaussian kernel with γ = 0.1
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(d) polynomial kernel with q = 2
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(e) Gaussian kernel with γ = 1
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(f) polynomial kernel with q = 4

Figure C.1: Training times for the banana dataset
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(a) Gaussian kernel with γ = 0.01
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(b) linear kernel
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(c) Gaussian kernel with γ = 0.1
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(d) polynomial kernel with q = 2
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(e) Gaussian kernel with γ = 1
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(f) polynomial kernel with q = 4

Figure C.2: Training times for the b.cancer dataset



192 APPENDIX C. EXTENSIVE RESULTS FOR NEAREST POINT ALGORITHMS

100 110 120 130 140 150 160 170
10

0

10
1

10
2

10
3

10
4

1/µ

T
ra

in
in

g
 T

im
e
 (

m
s
)

 

 

S−K

WSK

TAO

SMO

(a) Gaussian kernel with γ = 0.01
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(b) linear kernel
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(c) Gaussian kernel with γ = 0.1
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(d) polynomial kernel with q = 2
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(e) Gaussian kernel with γ = 1
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(f) polynomial kernel with q = 4

Figure C.3: Training times for the diabetes dataset
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(a) Gaussian kernel with γ = 0.01
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(b) linear kernel
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(c) Gaussian kernel with γ = 0.1
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(d) polynomial kernel with q = 2
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(e) Gaussian kernel with γ = 1
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(f) polynomial kernel with q = 4

Figure C.4: Training times for the german dataset
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(a) Gaussian kernel with γ = 0.01
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(b) linear kernel
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(c) Gaussian kernel with γ = 0.1
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(d) polynomial kernel with q = 2
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(e) Gaussian kernel with γ = 1

0 10 20 30 40 50 60 70
10

0

10
1

10
2

10
3

1/µ

T
ra

in
in

g
 T

im
e
 (

m
s
)

 

 

S−K

WSK

TAO

SMO

(f) polynomial kernel with q = 4

Figure C.5: Training times for the heart dataset
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(a) Gaussian kernel with γ = 0.01
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(b) linear kernel
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(c) Gaussian kernel with γ = 0.1
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(d) polynomial kernel with q = 2
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(e) Gaussian kernel with γ = 1
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(f) polynomial kernel with q = 4

Figure C.6: Training times for the image dataset
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(a) Gaussian kernel with γ = 0.01
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(b) linear kernel
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(c) Gaussian kernel with γ = 0.1
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(d) polynomial kernel with q = 2
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(e) Gaussian kernel with γ = 1
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(f) polynomial kernel with q = 4

Figure C.7: Training times for the splice dataset
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(a) Gaussian kernel with γ = 0.01
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(b) linear kernel
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(c) Gaussian kernel with γ = 0.1
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(d) polynomial kernel with q = 2
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(e) Gaussian kernel with γ = 1
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(f) polynomial kernel with q = 4

Figure C.8: Training times for the thyroid dataset
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(a) Gaussian kernel with γ = 0.01
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(b) linear kernel
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(c) Gaussian kernel with γ = 0.1

32 33 34 35 36 37 38 39 40 41 42
10

0

10
1

10
2

10
3

1/µ

T
ra

in
in

g
 T

im
e
 (

m
s
)

 

 

S−K

WSK

TAO

SMO

(d) polynomial kernel with q = 2
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(e) Gaussian kernel with γ = 1
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(f) polynomial kernel with q = 4

Figure C.9: Training times for the titanic dataset
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C.2 Error Rates
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(a) Gaussian kernel with γ = 0.01
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(b) linear kernel
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(c) Gaussian kernel with γ = 0.1
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(d) polynomial kernel with q = 2
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(e) Gaussian kernel with γ = 1
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(f) polynomial kernel with q = 4

Figure C.10: Error rates for the banana dataset
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(a) Gaussian kernel with γ = 0.01
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(b) linear kernel
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(c) Gaussian kernel with γ = 0.1
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(d) polynomial kernel with q = 2
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(e) Gaussian kernel with γ = 1

5 10 15 20 25 30 35 40 45 50 55
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1/µ

T
e

s
t 

E
rr

o
r

 

 

S−K

WSK

TAO

SMO

(f) polynomial kernel with q = 4

Figure C.11: Error rates for the b.cancer dataset
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(a) Gaussian kernel with γ = 0.01
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(b) linear kernel
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(c) Gaussian kernel with γ = 0.1
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(d) polynomial kernel with q = 2
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(e) Gaussian kernel with γ = 1
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(f) polynomial kernel with q = 4

Figure C.12: Error rates for the diabetes dataset
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(a) Gaussian kernel with γ = 0.01
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(b) linear kernel
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(c) Gaussian kernel with γ = 0.1
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(d) polynomial kernel with q = 2
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(e) Gaussian kernel with γ = 1
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(f) polynomial kernel with q = 4

Figure C.13: Error rates for the german dataset
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(a) Gaussian kernel with γ = 0.01
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(b) linear kernel
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(c) Gaussian kernel with γ = 0.1
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(d) polynomial kernel with q = 2
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(e) Gaussian kernel with γ = 1
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(f) polynomial kernel with q = 4

Figure C.14: Error rates for the heart dataset
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(a) Gaussian kernel with γ = 0.01
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(b) linear kernel
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(c) Gaussian kernel with γ = 0.1
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(d) polynomial kernel with q = 2
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(e) Gaussian kernel with γ = 1
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(f) polynomial kernel with q = 4

Figure C.15: Error rates for the image dataset
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(a) Gaussian kernel with γ = 0.01
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(b) linear kernel
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(c) Gaussian kernel with γ = 0.1
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(d) polynomial kernel with q = 2
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(e) Gaussian kernel with γ = 1
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(f) polynomial kernel with q = 4

Figure C.16: Error rates for the splice dataset
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(a) Gaussian kernel with γ = 0.01
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(b) linear kernel
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(c) Gaussian kernel with γ = 0.1
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(d) polynomial kernel with q = 2
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(e) Gaussian kernel with γ = 1
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(f) polynomial kernel with q = 4

Figure C.17: Error rates for the thyroid dataset
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(a) Gaussian kernel with γ = 0.01
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(b) linear kernel
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(c) Gaussian kernel with γ = 0.1
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(d) polynomial kernel with q = 2
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(e) Gaussian kernel with γ = 1
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(f) polynomial kernel with q = 4

Figure C.18: Error rates for the titanic dataset
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[86] K.-R. Müller, S. Mika, G. Rätsch, K. Tsunda, and B. Schölkopf. An introduction

to kernel-based learning algorithms. IEEE Transactions on Neural Networks, 12(2):

181–201, March 2001.

[87] M. Opper. Learning times of neural networks: Exact solution for a perceptron

algorithm. Physical Review A, 38(7):3824–3826, Oct 1988.

[88] W. Oraiby and D. Schmitt. Divide and conquer method for k-set polygons. In

H. Ito, M. Kano, N. Katoh, and Y. Uno, editors, Computational Geometry and

Graph Theory, pages 166–177. Springer-Verlag, Berlin, Heidelberg, 2008.

[89] J. O’Rourke. Computation Geometry in C. Cambridge University Press, 2nd edition,

1998.

[90] R. L. Ortman, K. Venayagamoorthy, and S. M. Potter. Input separability in Living

Liquid State Machines. In ICANNGA ’11: Proceedings of the 10th International

Conference on Adaptive and Natural Computing Algorithms - Part I, pages 220–

229, Berlin, Heidelberg, 2011. Springer-Verlag.

[91] J. C. Platt. Fast training of Support Vector Machines using Sequential Minimal

Optimization. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances

in Kernel Methods: Support Vector Learning, pages 185–208. MIT Press, 1998.



218 REFERENCES

[92] J. C. Platt. Probabilities for SV Machines. In A. J. Smola, P. L. Bartlett,

B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers,

pages 61–71. MIT Press, 2000.
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ridge, see subfacet

Schlesinger-Kozinec algorithm, 95

efficient implementation, 116

weighted, 109

Sequential Minimal Optimization, 106

heuristic, 107

update step, 106

stopping condition, 105, 128

subfacet, 40

support point, 47

support vector, 12, 18

bounded, 19

support vector error bound, 147
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C-SVM, 17

L1-loss, 17

L2-loss, 19

µ-SVM, 21

general form, 36

hard margin, 10

soft margin, 16

weighted, 27, 28

threshold, 12, 72

vertex, 40, 47

Xi-Alpha bound, 149




