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Abstract

Sequence labeling is the task of assigning a class/state label to each instance in a sequence

of observations; it is generally grouped under structured output classification problems.

Typical sequence labeling algorithms learn probabilistic information about the neighbor-

ing states (along with the probabilistic information about the inputs1) from the training

data and find the globally best assignment for the entire query sequence at once. Hidden

Markov Models (HMM) (Rabiner 1990), Conditional Random Fields (CRF) (Lafferty,

McCallum & Pereira 2001) and Support Vector Machines on Structured Output Spaces

(StructSVM) (Tsochantaridis et al. 2004) are some of the most popular sequence label-

ing approaches. All these models learn parameters for the state-observation relationships

in a sequence and the transition relationships between states at successive steps. Infer-

ence is generally performed using a dynamic programming algorithm called the Viterbi

algorithm (Forney 1973).

One of the problems in sequence labeling by conventional approaches is the limi-

tation in discovering the interactions among inputs. Typical approaches tend to assume

conditional independence between individual inputs, given the class label (van Kasteren

et al. 2008). Although this enables a naive factorization of observation distribution, in

several cases, where there are non-linear relationships among input variables, it results in

loss of accuracy. Discovering the relational structure in input space could give a mean-

ingful representation of the model and thereby improve the quality of the model in terms

of labeling accuracy.

In this work, we propose to learn useful relational features that capture the relation-

ships in input space. The space of relational features in such settings is exponential in

the number of basic inputs. For instance, in the simple case of learning features that are

conjunctions of basic inputs at any single sequence position, the feature space is of size

1We use the terms inputs, emissions and observations interchangeably for input variables
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2N for N basic inputs. The size would be much larger if we consider complex relational

features built from inputs at different relative positions. Since an exhaustive search in

this exponentially large feature space is infeasible, most of the relational feature learning

systems for sequence labeling such as tildeCRF follow a greedy search strategy. In this

thesis, we study the possibility of efficiently learning and using discriminative relational

features for sequence labeling. We pose the problem as learning relational features/rules

in the form of definite clauses. For this, we identify classes of relational features based on

their complexities and develop efficient learning approaches for those feature classes that

we identify as relevant and useful.

We first investigate the problem of learning simple conjunctions of basic (propo-

sitional) input features for any given position in a sequence. This type of features is

referred to as Simple Conjuncts (SC). We start with developing a greedy feature induc-

tion approach for sequence labeling. Our greedy feature induction approach incrementally

discovers the best model by employing a greedy hill climbing search in the space of fea-

tures. In each iteration of the search, we derive a candidate model from the previous

model, combine it with transition rules, evaluate in a custom implementation of HMM,

prune low scoring candidate models (and their refinements) and select the best scoring

model. There have been a few other approaches similar to our approach, but in different

learning settings, that learn composite features for sequence labeling (McCallum 2003,

Gutmann & Kersting 2006, Stewart et al. 2008). Although these approaches give better

performance than conventional approaches, being greedy, they cannot guarantee optimal

solutions. We therefore propose and develop a Hierarchical Kernels based approach for

learning optimal SCs relevant for each output label.

The Hierarchical Kernels approach, referred to as Hierarchical Kernel Learning for

Structured Output Spaces (StructHKL), optimally and efficiently explores the hierarchi-

cal structure in the feature space for problems with structured output spaces such as

sequence labeling. Here we extend the Hierarchical Kernel Learning (HKL) approach,

originally introduced by Bach (2009) and Jawanpuria et al. (2011), to learn feature con-

junctions for multi-class structured output classification. We build on the Support Vector

Machines for Structured Output Spaces (StructSVM) model (Tsochantaridis et al. 2004,

Tsochantaridis 2006) for sequence prediction problems and employ a ρ-norm hierarchical

regularizer (Jawanpuria et al. 2011) for input/observation features and a conventional
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2-norm regularizer for the state transition features. The hierarchical regularizer penalizes

large features and thereby selects a small set of short features. StructHKL learns the

input features and their weights simultaneously in an efficient way. We now look into the

problem of learning complex relational features that are derived from inputs at multiple

sequence positions.

Although the StructHKL algorithm optimally solves the objective of learning the

most discriminative SCs for sequence labeling, due to some theoretical requirements of

the feature space, its applicability in learning complex relational features, that are derived

from inputs at different relative positions, is non-trivial and challenging. Therefore, we

determine feature classes that can be composed to yield complex ones, with the goal of

formulating efficient yet effective relational feature learning procedures. We identify a

self-contained class of features called Absolute Features (AF), whose (unary/multiple)

compositions yield complex relational features in another class called Composite Features

(CF). We seek to leverage optimal feature learning in all the steps of relational feature

induction, which can be addressed either by (i) enumerating AFs and discovering their

compositions (CF) using StructHKL or by (ii) developing methods to learn optimal AFs

(or CFs directly).

As for the first option, the space of AFs is prohibitively large, which makes enumer-

ation in that space impractical. We thus selectively filter AFs based on some relevance

criteria (minimum support) and then make use of the StructHKL algorithm to learn com-

positions of selected features. However, the partial ordering of AFs does not comply

with the requirement of StructHKL that the descendant kernels in the partial ordering of

features should be summable in polynomial time. Consequently, leveraging StructHKL

to optimally learn features in the space of AFs (and its super-space of CFs) is infeasible.

For the second option to learn optimal CFs directly, in the structured output clas-

sification model, we leverage a relational kernel that computes the similarity between

instances in an implicit feature space of CFs. To this end, we employ the relational sub-

sequence kernel (Bunescu & Mooney 2006) at each sequence position (over a time window

of inputs around the pivot position) for the classification model. While this way of model-

ing does not result in interpretability, relational subsequence kernels do efficiently capture

the relational sequential information on the inputs. Although the main contribution of

the thesis is feature learning for sequence labeling, we have also contributed in two related
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problem domains, which we briefly introduce in the following paragraphs.

In general classification settings (with or without structured outputs), where it is

not feasible to ground all variables, dynamic programming approaches have limitations

in performing inference. We now derive a Satisfiability approach for fast and memory

efficient inference in general horn clause settings, which prunes a major part of the possi-

ble groundings and performs inference in a small restricted space. Our approach finds a

model in polynomial time, if it exists; otherwise finds a most likely interpretation given

the evidence. We now briefly introduce our second related contribution, which is perform-

ing dimensionality reduction in classification settings by leveraging Hierarchical Kernel

Learning.

Many real world classification problems are characterized by a large set of features

that possibly contain a non-trivial amount of redundant and irrelevant information. Using

the entire feature space as it is often leads to over-fitting and therefore less effective models.

Dimensionality reduction techniques are typically used to reduce the dimension of the

data either by projecting the features onto a collapsed space or by selecting a subset

of features, both as preprocessing steps. These approaches suffer from the drawback

that the dimensionality reduction objective and the objective for classifier training are

decoupled (performed one after the other) and often, the approach for dimensionality

reduction is greedy. A few approaches have been recently proposed to address the two

tasks in a combined manner by attempting to solve an upper-bound to a single objective

function (Zhu et al. 2010, Xu 2010). However, the main drawback of these methods

is that the number of reduced dimensions is not learned, but taken as an input to the

system. In this work, we propose an integrated learning approach for non-parametric

dimension reduction by projecting the features from the original feature space to the space

of disjunctions and discovering a sparse set of important disjunctions out of them. Here, in

order to discover good disjunctive features, hierarchical kernels have been employed that

efficiently and optimally perform feature selection and classifier training simultaneously

in a maximum margin framework.

We demonstrate the efficiency of our feature induction approaches in improving

prediction accuracy in the domain of activity recognition. The proposed satisfiability

based inference approach and the dimensionality reduction approach are also evaluated

on standard datasets.
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Chapter 1

Introduction

Our research objective is to efficiently learn non trivial input features for sequence labeling

problems, and thereby improve the accuracy of labeling. We first give a brief overview of

sequence labeling.

1.1 Introduction to Sequence Labeling

Structured output classification has gained profound interest in the machine learning com-

munity during the last decade (Tsochantaridis et al. 2004, Blaschko & Lampert 2012, Liu

et al. 2012, Joachims et al. 2009, Taskar et al. 2006, Miao & Rao 2012, Zaki & Aggarwal

2006, Bo & Sminchisescu 2010). The goal of such work is to classify complex output

structures such as sequences, trees, lattices or graphs, wherein the class label at each

node/position of the structure has to be inferred based on observed evidence data. The

possible space of structured outputs tends to be exponential and thus structured out-

put classification is a challenging research task. We, in our research, focus on a specific

structured output classification problem called sequence labeling. As in any classification

setting, the sequence labeling domain also has complex relationships among entities, with

uncertainties in these relationships. Accurate models can be constructed by exploiting

these relationships. However, discovering relationships that enhance the discriminative

power of classifiers is a hard task, since the relationship space is often too large. Conven-

tional approaches restricts the space of relationships to transition relationships (between

labels at neighboring positions) and emission relationships (label to observations at sin-

gle time step) for computational simplicity. In domains that have multiple inputs with

non-linear relationships, typical approaches either ignore the complex relationships or

use heuristics to learn the relationships. In this work, we focus on exploiting complex
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relationships in both the input as well as the output space in an efficient way in order

to improve sequence labeling models. We begin with a brief introduction to the task of

sequence labeling.

Sequence labeling is the task of assigning a class/state label to each instance in a

sequence of observations. Typical applications of sequence labeling include activity recog-

nition, natural language processing, bio-informatics and others. Activity recognition is

the main motivating application domain considered for this research. In activity recogni-

tion systems for monitoring user activities (Wilson 2005), the activities being performed

by a subject tend to follow a sequence structure. For instance, the subject is likely to

have his lunch or dinner after cooking. A typical non-intrusive activity recognition setting

consists of sensing devices, a processing unit, and the algorithms for learning and infer-

ence (van Kasteren et al. 2008). The objective, in such a setting, is to assess the sequence

of activities performed by the subject based on the sensor observations. In the training

phase, activities performed are manually annotated and the sensor readings are recorded.

Probabilistic models are learned from the training data (van Kasteren et al. 2008). The

trained model is later employed to infer the sequence of (hidden) activities from new sensor

observations. Similarly, in the natural language processing task of part-of-speech tagging,

a natural language sentence is viewed as a sequence of words with features extracted for

each word/position (McCallum 2003). The objective is to assign a part-of-speech label

to each word in the sentence. The words in the sentence are related to their neighboring

words and thus the problem can be posed as a sequence labeling problem. For instance,

a word’s part-of-speech is likely to be a noun if the preceding word is an article. A prob-

abilistic model is trained from the labeled training data and later used for inferring the

part-of-speech of words in unseen sentences. Sequence inferring approaches are also used

in bio-informatics for discovering genetic sequences in genome analysis.

Although it is possible to classify each member in the sequence separately, it has

been shown that incorporating the statistical influence of states in the neighborhood

improves the accuracy of labeling (Rabiner 1990, Lafferty, McCallum & Pereir 2001). For

instance, the activity at current time step can be better inferred if the activity at the

previous time step is known. Another instance is that the part-of-speech of a word can be

better inferred if the part-of-speech of neighboring words are known. Therefore, typical

sequence labeling algorithms learn probabilistic information about the neighboring states
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along with the probabilistic information about the input relationships from the training

data. For inference, the globally best assignment for the entire sequence is found at once,

which helps to resolve ambiguity in assigning labels. For example, assigning part-of-speech

labels for words that have the same spelling, but belong to a different part-of-speech. Since

sequence labeling approaches assign labels to an entire sequence at once, it is possible to

assign an optimal label to each position that does not conflict with the neighborhood.

For example, if a word can be either a noun or a verb, a preceding article will make the

noun to be a more probable assignment. Hidden Markov Models (HMM) (Rabiner 1990)

and Conditional Random Fields (CRF) (Lafferty, McCallum & Pereira 2001) are two

conventional approaches popularly used in sequence labeling tasks. These models capture

the state-input relationships (input/emission dependency) at each step and the transition

relationships between states in successive steps. Support Vector Machines on Structured

Output Spaces (StructSVM) (Tsochantaridis et al. 2004) is a large margin approach that

is used popularly for sequence classification. Inference is generally performed using a

dynamic programming algorithm called the Viterbi algorithm (Forney 1973).

In our research, we propose and develop approaches and algorithms to improve

the prediction accuracy in sequence labeling. We evaluate our approaches on publicly

available activity recognition datasets.

1.2 Motivation

In many domains of sequence labeling problems, there could be multiple inputs at each

sequence position, which are typically represented as a vector with each individual input

as an element. Therefore, at any particular sequence step, the current label should be

determined using the vector of all individual inputs (jointly). However, since it is im-

practical to assume this vector as a single variable, due to its exponential size (2N for N

binary individual inputs), conventional approaches tend to ignore the information in the

joint state of inputs. However, there may be vital non-linear interactions among inputs in

many real world problems and therefore ignoring the joint state information or the input

structure could lead to loss of accuracy. However, since the space of non-linear interac-

tions/input structure is typically exponential in the number of basic inputs, discovering

useful features from such a space is a challenging task. Conventional sequence labeling

approaches such as the Hidden Markov Models (HMMs), the Conditional Random Fields
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(CRFs), and the Support Vector Machines on Structured Output Spaces (StructSVM)

have limitations in discovering the input structure. Our work focuses on discovering the

input structure in sequence labeling settings. We also eliminate redundant or irrelevant

basic inputs, which is an overhead in large settings. In the paragraphs that follow, we

describe one of our motivating application domains, activity recognition, to exemplify

the motivation. Since activity recognition domains have sparse, skewed and noisy1 data,

learning in such a setting is challenging. Therefore we discuss our approaches on activity

recognition data.

Activity recognition systems help to monitor activities of users in domicile environ-

ments. An example area is monitoring the daily activities of elderly people living alone,

in order to estimate their health condition (Wilson 2005, van Kasteren et al. 2008, Gib-

son et al. 2008), since the patterns of daily activities are indicators of health conditions.

Such non-intrusive settings typically have on/off sensors installed at various locations in

a house. Binary sensor values are recorded at regular time intervals. The joint state of

these sensor values at each time step forms our observation/emission. The user activity

at each time step forms the hidden state/label. The history of sensor readings and the

corresponding activities (as manually identified) can be used to train prediction mod-

els such as the Hidden Markov Model (HMM) (Rabiner 1990), the Conditional Random

Field (CRF) (Lafferty, McCallum & Pereira 2001) or StructSVM (Tsochantaridis 2006,

Tsochantaridis et al. 2004), which could be later used to predict activities based on sen-

sor observations. These approaches typically assume that the output label at a particular

time is independent of all previous labels given the labels in the neighborhood and that

the observation at any particular time step is independent of all other variables given the

label at that time step. Figure 1.1 illustrates the independence assumption in an HMM

setting. Prediction involves determining the label (activity) sequence that best explains

the observation (joint state of sensors) sequence, for which dynamic programming (Forney

1973) is typically used.

Activity recognition datasets tend to be sparse; that is, one could expect very few

sensors to be on at any given time instance2. Moreover, in a setting such as activity recog-

1Noise due to faulty sensors, communication lines and non uniform patterns adopted by subjects to

perform tasks.
2Activity recognition domain, which has highly skewed, sparse and noisy data, is one of the challenging

areas for sequence labeling. Therefore, we consider activity recognition as our application domain. Our
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Figure 1.1: Graphical representation of an HMM. The rectangles (blue) represent hidden

states and the ellipses (orange) represent observable variables. yt and xt represent the

output label and the input feature, respectively, at time t.

nition, one can expect certain combinations of (sensor) readings to be directly indicative

of certain activities. For example, sensors at microwave and groceries cupboard relate

to the activity cooking. Another example is that firing of the microwave sensor followed

by firing of the plates cupboard sensor relate to the activity dining. HMMs, CRFs and

StructSVM attempt to capture these relations indirectly3. Our focus is to learn these re-

lationships automatically in the form of relational features, which alleviates the problems

of exponential input space and naive factorization, viz., determining a mapping between

each label and the relational features derived from individual inputs at the same sequence

position as well as relative sequence positions. There have been a few other approaches

that learn relationships among input features at a sequence position (McCallum 2003,

Gutmann & Kersting 2006, Stewart et al. 2008). However, these approaches are greedy,

whereas our focus is to learn optimal features.

1.3 Objective

Real world problems have to deal with complex relationships among entities and the

uncertainties in these relationships. Learning and prediction systems in such domains

should have adequate techniques to understand, represent and use the relationships as well

as deal with the uncertainties. These complex relationships are quite often represented in

approaches work on other domains such as Natural Language Processing, which has relatively less sparse,

skewed and noisy data.
3For example, the sequence relationships among inputs at different positions are indirectly captured

in HMMs through the label sequence.
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the form of relational clauses or features and the uncertainties are typically learned in the

form of probabilities or probabilistic weights. Sequence labeling is one of the classification

settings, where such relationships and uncertainties exist. In our research, we exploit

such complex relationships, in the form of relational features, to improve the efficiency of

sequence labeling models. We start with the objectives of conventional sequence labeling

models and then formally state our objective.

The objective in a sequence labeling task is to assign a class label to each instance

in a sequence of inputs/observations. Typical sequence labeling algorithms learn proba-

bilistic information (probabilities or probabilistic weights) about the neighboring states

along with the probabilistic information about the inputs/observations. HMM, CRF,

StructSVM and other sequence labeling models follow this, with different conventions for

representing parameters. In HMMs, the score is the joint probability distribution of input

and output sequences. From the independence assumptions as illustrated in Figure 1.1,

one can factorize the joint probability distribution of the sequence of inputs and labels

into three factors: the initial state distribution, the transition distribution, and the emis-

sion distribution (Rabiner 1990). These parameters are learned by maximizing the joint

probability of the paired input and label sequences in the training data.

In CRFs (Lafferty, McCallum & Pereira 2001), parameters that maximize the con-

ditional probability of a sequence of states given a sequence of inputs are learned. These

parameters are later used to identify the (hidden) label sequence that best explains a

given sequence of inputs/observations.

StructSVM (Tsochantaridis et al. 2004, Tsochantaridis 2006) is a maximum margin

framework for structured output spaces such as sequence labeling. It generalizes the

standard Support Vector Machines (SVM) with the margin defined as the difference in the

likelihood scores of the original output sequence with any other possible output sequence.

In general, the objective of learning sequence labeling models is to learn feature

weights that make the score of the true output sequence greater than any other possible

output sequence, given an input sequence (Tsochantaridis et al. 2004, Tsochantaridis

2006).

We now discuss the limitations of typical sequence labeling approaches and then

explain our objective of discovering the input structure in sequence labeling tasks. For

simplicity of exposition, we discuss the limitations in the simple setting of HMM.
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In an HMM set-up with multiple possible observations, the observation/input vari-

able is a vector of basic individual inputs. An example from the activity recognition

domain is shown in Figure 1.2. This results in an exponential input space which is

computationally feasible only in small settings. Providing tuples consisting of individual

inputs to the model is a solution to this. However, discovering such tuples is challenging

and popular approaches such as HMM, CRF and StructSVM have limitations in learning

such relations. Therefore, often independence is assumed among individual inputs, given

a label, to simplify the representation and computation. However, in complex problem

settings, where there are non-linear interactions among input variables, assuming condi-

tional independence would affect the performance in terms of accuracy of labeling. To

alleviate both the issues of exponential input space and independence assumption, we

identify the need to find a mapping between labels and their relevant compositions of

dependent inputs4. The objective is to automatically discover features that categorize

each label. These label specific features can be basic inputs or features derived from basic

inputs. For example, in activity recognition, a few dependent sensors in conjunction with

information regarding the previous activity may jointly decide whether an activity has

happened in the current time. That is, we avoid the non relevant inputs and use useful

relevant inputs or their compositions to improve the prediction accuracy. This also helps

to reduce the effect of noise while doing inference. Figure 1.3 illustrates an example of

the model desired in the domain of activity recognition, where features are constructed

from activity specific conjunctions of sensors and all the transition relations. Only three

labels are assumed for simplicity of exposition.

We propose learning the emission structure in the form of relational features that

maximize probabilistic coverage (probability by which examples are covered) of the train-

ing data. In our problem, since we assume that all the transitions are important, the

model learned should allow all inter state transitions. Moreover, since the support for

transition rules/features is much higher than that for emission rules/features, the set of

rules returned when emission and transition rules are learned together would be domi-

nated by the transition rules. Therefore, we learn the structure of emission distribution

while preserving all the n2 transition probabilities, where n is the number of labels.

In the previous paragraphs, we identified the need for finding the relational structure

4This work has been presented at DaWaK, 2011
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Figure 1.2: Multiple inputs at each time step.

among input features and mapping them to corresponding labels. However, the space of

relational features is exponential in the number of basic inputs, making the discovery of

useful features a difficult task. For instance, in the simple case of learning features that

are conjunctions of basic inputs at any single sequence position, the feature space is of

size 2N for N basic inputs. The space of such features follows an ordering (lattice5). In

multi-label settings, the size of feature space gets multiplied by the number of labels.

A feature lattice for a single label in an activity recognition setting with four sensors is

illustrated in Figure 1.4. Figure 1.5 shows the feature lattice in a multi-label case with

three labels and four sensors. In complex relational settings that capture relationships

between input attributes in relative sequence positions, features can be constructed from

conjunctions and unifications of ground/first order predicates. Each first order predicate

is a place holder for a group of ground predicates. A detailed discussion on first order

predicates will ensue in another chapter. Therefore, the space of relational features is

much larger than the simpler propositional setting. Discovering useful emission features

for sequence labeling from this large space is a challenging problem. An exhaustive search

is infeasible in real world settings. In this thesis, we investigate the problem of efficiently

learning propositional and relational features for sequence labeling.

In the previous paragraphs, we identified the need to discover label specific relational

5A lattice is a partially ordered set which has a least upper bound and a greatest lower bound defined

on every pair of nodes/elements
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Figure 1.3: Conjunctive features for sequence labeling. The enclosing ellipses depict

conjunctions of the basic inputs represented by the enclosed ellipses. Only three activities

are shown for simplicity.

features for sequence labeling. Manual imposition of such a mapping is neither novel nor

feasible in large settings. An efficient feature induction approach that can automatically

capture this mapping has to be employed. We define features or rules to represent label

specific compositions of inputs. In relational sequence labeling problems, the rules are

first order logical statements and are constructed by conjoining and unifying predicates.

For example,

prepareDinner(t1) :- microwave(t1), prevRelPosWindowNear(t1,t2),

. platesCupboard(t2)

is a first order relation in the form of a definite clause6, where the variables t1 and

t2 are shared among predicates. The rule above states that the activity at time t1 is

prepareDinner if the sensor fired at t1 is the microwave sensor and there is a previous

time instance t2 near t1 such that a platesCupboard sensor is fired at t2. Therefore

the rules/features in first order are not only from conjunctions7. In this work, we restrict

our discussion to function-free definite features. Since a class specific feature can be

6A definite clause is a first order logical statement where all the atoms are negated except one (head).
7Although we can theoretically ground the predicates and write conjunctive rules for first order rela-

tions, it is not feasible in real world problems.
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Figure 1.4: Lattice of propositional conjunctive features related to a single label.

constructed by conjoining the body literals of a definite clause/rule whose head depicts

the class label, we use the terms definite clause and feature interchangeably. In this thesis,

we first propose and develop a heuristic based greedy search algorithm to discover useful

features for sequence labeling. We then investigate the possibility of learning optimal

relational features for sequence labeling. On this account, we first categorize relational

features based on their complexity and develop optimal learning approaches for those

categories we identify as useful and tractable. We present a solution to deal with the

problems of naive factorization and the exponential input space that we discussed in the

previous sections. We now move to the main contributions of this thesis.

1.4 Contribution

In the previous sections, we posed the problem of efficiently learning relational input

features for sequence labeling. Our objective is to improve prediction accuracy by learning

discriminative relational features. However, since the feature space is exponentially large,

discovering useful features is a challenging task. Here, we briefly introduce our solutions

to the problem. We also discuss here our contributions in two related areas viz. weighted
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Figure 1.5: Lattice of propositional features in a multi-label setting. Each sub-lattice is

the space of features belonging to a particular label.

satisfiability in first order horn clause settings and integrated supervised dimensionality

reduction using hierarchical kernel learning.

1.4.1 Learning Discriminative Relational Features for

Sequence Labeling

We intend to learn discriminative features that discern classes or labels, which can be

viewed as decision rules of the form if condition then decision (Rivest 1987). The condition

consists of the composition of a small number of simple boolean statements concerning the

values of the individual input variables. This can essentially represent relational features

derived from individual inputs at single or multiple sequence positions. The decision part

specifies the function/class to be learned. This type of rules with a single boolean predicate

as the decision variable generally is referred to as a definite clause/rule. A class/label

specific feature can be constructed from the condition part of the definite clause/rule

whose head depicts the class label. Therefore, we use the terms (definite) clause or feature

interchangeably. In this work, we restrict our discussion to function free definite clauses.

Based on the complexity (and utility), we categorize definite clauses/features into Simple
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Conjuncts (SC), Absolute Features (AF ), Primary Features (PF ), Composite Features

(CF ) and Definite Features (DF ). While simple conjuncts are features derived from

basic inputs at a single sequence position, other categories are capable of representing

features derived from basic features at different relative positions. A detailed description

of these categories and their relationships with each other is presented in section 3.2. We

now discuss our proposed feature learning approaches for categories of features that we

identify as relevant and useful.

To begin with, we learn features from the space of Simple Conjuncts, which is

the feature space explored by McCallum (2003). Before delving into our optimal learning

approach, we first briefly discuss a greedy feature induction approach for sequence labeling,

that we proposed and developed.

An efficient feature induction approach that can automatically capture the mapping

between labels and derived features (conjunctions) is desired. Inductive Logic Program-

ming (ILP), a branch of machine learning, is a learning paradigm capable of learning such

mappings or rules. Given some background knowledge and a set of facts as examples, ILP

systems derive a hypothesis (structure) that entails all the positive examples and none of

the negative examples. It starts with an initial hypothesis and refines the hypothesis by

searching in a lattice of clauses based on a heuristic scoring function. Since in real world

problems, the support for any input of a label and the support for inter state transitions

are much fewer than that for same state transitions, in learning both the emission and

transition dependencies using traditional systems, rules defining transitions within the

same state tend to dominate. Such a model tends to predict fewer inter state transitions

and thus affects the accuracy of inference, as observed in our experiments. Hence we focus

only on the induction of emission rules and combine them with the set of n2 interstate

transitions while learning the parameters of the model.

In order to learn emission rules/features (for each label), we first employ a Branch

and Bound (B&B) search on the lattice of emission features using an ILP system, Aleph.

We then combine the learned emission features with transition features in a custom imple-

mentation of HMM and learn the parameters. However, typical ILP systems for structure

learning do a Branch and Bound search in the lattice of clauses evaluating scores based

on positive and negative examples covered, and therefore suffer from accuracy loss when

used to construct features for HMM. We therefore propose and implement a greedy feature
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induction approach that adapts the structure of HMM using HMM evaluation on a held

out part of training data as scoring function8 to learn emission features for each label.

Our experimental results suggest a performance improvement over both the traditional

HMM and the B&B learning assisted HMM in terms of accuracy.

Although the greedy feature induction approach yields better prediction models

than traditional approaches, an optimal model is not guaranteed. An exhaustive search

for the optimal features is not feasible in real world problems, because the feature space

is exponential in the number of basic features. Our objective is to efficiently explore

the space of SCs to discover discriminative features for sequence labeling. We therefore

propose and develop a Hierarchical Kernels based approach for learning optimal SCs for

each label. Hierarchical Kernel Learning (HKL) was originally introduced by Bach (2009)

for high-dimensional non-linear variable selection, by exploiting the hierarchical structure

of the problem. Their approach extends the multiple kernel learning framework to the

space of kernels that has a directed acyclic graph structure and performs kernel selection

through a sparsity inducing norm. Jawanpuria et al. (2011) leveraged the HKL frame-

work to learn rule ensembles for binary classification tasks. Our approach, referred to

as Hierarchical Kernel Learning for Structured Output Spaces (StructHKL)9, optimally

and efficiently learns discriminative features for multi-class structured output classifica-

tion problems such as sequence labeling. We build on the Support Vector Machines for

Structured Output Spaces (StructSVM) model (Tsochantaridis et al. 2004, Tsochantaridis

2006) for sequence prediction problems, wherein, we consider all possible SCs to form the

input features while the transition features are constructed from all possible transitions

between the state labels. A ρ-norm hierarchical regularizer is employed to select a sparse

set of SCs. Since we need to preserve all possible transitions, a conventional 2-norm reg-

ularizer is employed for state transition features. The exponentially large input feature

space is searched using an active set algorithm and the exponentially large set of con-

straints is handled using a cutting plane algorithm. In general, StructHKL can be used in

structured output classification problems to learn from complex feature spaces that can

be ordered as directed acyclic graph and where the summation of descendant kernels can

be computed in polynomial time.

8This work has appeared in DaWaK, 2011 (Nair, Ramakrishnan & Krishnaswamy 2011).
9This work has appeared in AAAI, 2012 (Nair, Saha, Ramakrishnan & Krishnaswamy 2012).
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As stated before, in this work, we further study the possibility of efficiently learning

and using discriminative relational features (that capture sequential information among

input variables) for sequence labeling. The StructHKL algorithm optimally solves the

objective of learning the most discriminative SCs for sequence labeling. However,due to

the theoretical requirements for the feature space, as discussed briefly in the previous

paragraph, its applicability in learning complex relational features, that are derived from

inputs at different relative positions, is non-trivial and challenging. Therefore, from our

feature categories, we determine simple feature classes that can be composed to yield

complex ones, with the goal of formulating efficient yet effective relational feature learning

procedures. We identify a class of simple features called Absolute Features (AF). AFs are

self-contained, in the sense that an AF stands by itself to convey an information. In other

words, every variable used in an AF is tied to a property or is in a relationship with other

variables. Further, we identify a powerful class of features termed as Composite Features

(CF) that are constructed using conjunctions of AFs. Please read 3.2 for definitions of

CFs and AFs. Since CFs are conjunctions of AFs, it is trivial to observe that StructHKL

can be employed to efficiently construct CFs from AFs. Therefore, optimal relational

discriminative features can be learned either by (i) enumerating AFs and discovering

their useful compositions (CF) using StructHKL or by (ii) developing methods to learn

optimal AFs (or CFs directly).

The space of AFs is prohibitively large and therefore it is not feasible to enumerate

all AFs in a domain. We therefore, propose to selectively enumerate AFs based on

some relevance criteria such as the support of the AF in the training set. We define an

AF as strongly relevant if it helps the classification model to discern classes optimally.

On the other hand, we consider a feature to be weakly relevant if it covers at-least a

threshold percentage of examples. Since discovering strongly relevant AFs is a hard task,

we discover weakly relevant AFs using Inductive Logic Programming tools. We employ

pattern mining approaches to discover a relevant set of AFs. Specifically, we use a

relational pattern miner called Warmr (Dehaspe & Toivonen 1999, Dehaspe & Toironen

2000). Warmr uses a modified version of Apriori algorithm (Agrawal & Srikant 1994)

to find frequent patterns (AFs) which have minimum support, as specified by the user.

Once a set of relevant AFs are enumerated, StructHKL can be employed to learn useful

compositions of AFs and their parameters to get the final model. This can be viewed as
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projecting the space of complex relational features such as CFs into the space of SCs and

leveraging StructHKL10. We now briefly discuss the second approach of learning optimal

AFs (or CFs directly).

An AF is formed by combining one or more predicates which share variables. Thus,

AFs are constructed from its primary clauses by unifying different variables present in

those clauses. Therefore, the partial ordering of AFs does not comply with the require-

ment of StructHKL that the descendant kernels should be summable in polynomial time.

This limits the possibility of leveraging StructHKL to optimally learn features in the

space of AFs (and its super-space of CFs). For this reason, in the structured output

classification model, we leverage a relational kernel that computes the similarity between

instances in an implicit feature space of CFs11. To this end, we employ the relational

subsequence kernel (Bunescu & Mooney 2006) at each sequence position/pivot (over a

time window of observations around it) for the classification model. Relational subse-

quence kernels have been used to extract relations between entities in natural language

texts (Bunescu & Mooney 2006). The features are (possibly non-contiguous) sequences of

words and word classes. In our problem, at each temporal step (pivot position), we would

like to learn composite features which capture relational information about basic inputs

at positions relative to the pivot position. This sequence information would provide a

rich feature space for the algorithm to learn a more expressive model. However, explicitly

enumerating such a feature space is not feasible due to the high dimensionality of the fea-

ture space. Relational subsequence kernels implicitly capture the effectiveness of this rich

feature space. We also show that the feature space of CFs are captured by our relational

subsequence kernels. While this way of modeling does not result in interpretability, rela-

tional subsequence kernels do efficiently capture the relational sequential information on

the inputs. In this thesis, we also discuss our contribution in two related problem domains

viz. inference in probabilistic first order logical systems and dimensionality reduction in

classification settings, which we briefly introduce in the following subsections.

10This work has appeared in ILP, 2012 (Nair, Nagesh & Ramakrishnan 2012).
11This work has appeared in ILP, 2013 (Nagesh et al. 2013).
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1.4.2 Pruning Search Space for Weighted First Order Horn

Clause Satisfiability

In first order settings, it is possible to have complex models that have complex first or-

der structure, huge set of groundings, and the like. In sequence labeling, if it is feasible

to ground all the variables, a dynamic programming algorithm called the Viterbi algo-

rithm (Forney 1973) is the best choice. In all other cases (sequence labeling or general),

we suggest using our contribution introduced in the following paragraph12.

Many Statistical Relational Learning models pose inference as weighted satisfiability

solving. Performing logical inference after completely grounding clauses with all possible

constants is computationally expensive. If a set of horn clauses are fully satisfiable,

then a minimal model can be found by selective grounding and using the TΣ operator

(referred to as the immediate consequence operator TP in (Hogger 1990)) in polynomial

time. However, weighted unsatisfiable problems need to find the most likely state based

on the weights. We propose and develop an extension to the minimal model approach

wherein we find (i) the relevant set of ground horn clauses which has a potential to

be part of a contradiction and (ii) an interpretation close to the result. The MaxSAT

algorithm (Selman et al. 1993) can be used on this subset of clauses, (optionally) starting

from the interpretation returned, to get the most likely state. We also prove that local

search for optimality in the pruned space cannot affect the satisfiability of the rest of the

clauses. We prove theoretically and empirically that the optimal solution is guaranteed

to exist in the pruned space. The approach finds a model, if it exists, in polynomial time;

otherwise it finds an interpretation that is most likely given the weights13. We now move

to the problem of dimensionality reduction.

1.4.3 Optimally Extracting Discriminative Disjunctive

Features for Dimensionality Reduction

Support Vector Machines (SVM) and its variants are amongst the current state-of-the-art

approaches to classification. These non-parametric maximum margin supervised learning

frameworks have provided algorithms that yield optimal solutions to classification prob-

12Since we do not have access to such a sequence labeling data to demonstrate the validity of our

approach, we present our work in a general setting
13This work has appeared in ILP, 2010 (Nair, Govindan, Jayaraman, TVS & Ramakrishnan 2011)
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lems with binary, multi-label and structured output spaces. However, since many real

world application domains are characterized by a large set of features that possibly con-

tain a non-trivial amount of redundant and irrelevant information, using the entire feature

space as it is often leads to over-fitting and therefore less effective classifier models. To

alleviate this problem, a significant amount of research (Blei, Ng & Jordan 2003, Teh

et al. 2004, Blei, Griffiths, Jordan & Tenenbaum 2003, Jolliffe 1986b, Ye & Ji n.d.) has

been invested to reduce the dimensionality of the data either by projecting the features

onto a collapsed space or selecting a subset of features, both as preprocessing steps. These

approaches suffer from the drawback that the dimensionality reduction objective and the

objective for classifier training are decoupled (the two tasks are performed one after the

other) and often, the approach for dimensionality reduction is greedy. Recently, there

have been some efforts to address the two tasks in a combined manner by attempting to

solve an upper-bound to a single objective function (Zhu et al. 2010, Xu 2010). However

the main drawback of these methods is that they are all parametric, in the sense that

the number of reduced dimensions is taken as an input to the system. In this work,

we propose an integrated learning approach for non-parametric dimension reduction by

projecting the features from the original feature space to the space of disjunctions and

discovering a sparse set of important disjunctions out of them. For datasets with nominal

features, it is quite natural to consider disjunctions (or sets of synonymous features) as

dimensions. Here, in order to discover good disjunctive features, hierarchical kernels, that

efficiently and optimally perform feature selection and classifier training simultaneously

in a maximum margin framework, have been employed14.

We evaluate the performance of our feature induction approaches on publicly avail-

able activity recognition datasets. Our experiments show improvements over other stan-

dard and state-of-the-art sequence labeling techniques. We also demonstrate the effec-

tiveness of our satisfiability approach and the dimensionality reduction approach. Our

experiments show that our satisfiability based inference approach reduces search space

substantially and helps maxSAT to converge in short time. We also present results of our

dimensionality reduction approach on standard datasets.

To summarize, we pose the problem of learning complex relational features in order

to improve the efficiency of sequence labeling systems. In order to get more insight into

14This work has been accepted for COMAD, 2013
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the feature space, we categorize features based on their complexity (and utility) and prove

that complex features can be constructed from simpler ones. Among those features, we

identify SCs and CFs as interesting for sequence labeling. While SCs are derived from

basic inputs at a single sequence position, CFs are derived from basic inputs at multiple

sequence positions. We first focus on learning SCs. To discover discriminative features

for sequence labeling, we first develop a greedy feature induction approach. Since greedy

approaches cannot guarantee optimal solutions, we propose a Hierarchical Kernel Learning

approach for structured output spaces (StructHKL), which efficiently learns optimal SCs

for sequence labeling. Since the construction of CFs does not comply with the requirement

of StructHKL that the descendant kernels of any node should be summable in polynomial

time, StructHKL cannot be trivially leveraged to learn CFs. We therefore propose and

develop two strategies: (i) to enumerate all AFs and learn CFs by combining AFs using

StructHKL. (ii) to incorporate relational subsequence kernels in the structured output

classification framework so that the relational sequential information on the inputs is

captured implicitly. We also present two related contributions, that is (i) an approach for

faster inference in relational settings and (ii) an integrated non-parametric dimensionality

reduction approach. The next section outlines the structure of the thesis.

1.5 Thesis structure

This thesis is organized thus:

Chapter 2 discusses some of the related works on sequence labeling, feature induction

and the application area, activity recognition.

Our main contributions are discussed in the chapter 3. Here we discuss our cat-

egorization of features and identify important categories suitable for sequence labeling

tasks. We identify SCs and CFs as two categories particularly interesting for us. We

start with our approaches for learning SCs, for which we first propose a greedy feature

induction approach. To learn optimal SCs, a Hierarchical Kernels based approach for

structured output classification (StructHKL) is proposed. We then present two strategies

to efficiently learn CFs for sequence labeling.

We present our two related contributions, the satisfiability approach and the dimen-

sionality reduction approach in chapters 4 and 5 respectively.

In Chapter 6, we discuss our experimental setup, datasets and results. We evalu-
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ate our proposed feature induction approaches in publicly available activity recognition

datasets. The results for satisfiability based inference and the dimensionality reduction

approach are also discussed.

We conclude this dissertation in Chapter 7 and discuss directions of future work.
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Chapter 2

Related Work

Here, we look into some of the related works in the area of sequence labeling and feature

induction. We also briefly talk about inference in sequence labeling. A brief account of

popular approaches in the domain of activity recognition (which is one of the motivating

problems for this research work) is also discussed. We start with a brief discussion on

popular sequence labeling approaches.

2.1 Models for Sequence Labeling

The objective in learning sequence labeling models is to learn functions of the form F :

X → Y from the training data, where X and Y are input and output sequence spaces,

respectively. Typically, a discriminant function F : X × Y → R is learned from training

data that consists of pairs of input and output sequences. The prediction is performed

using the decision function F(X; f):

F(X; f) = arg max
Y ∈Y

F (X, Y ; f), (2.1)

where F (X, Y ; f) = 〈f ,ψ(X, Y )〉 represents a score which is a scalar value based on the

features ψ involving input sequence X and output sequence Y values and parameterized

by a parameter vector f . In sequence prediction, features are constructed to represent

emission (observation) and transition distributions. Given this objective, we can classify

sequence labeling techniques into probability based and max-margin based, which we

discuss in the following sections.
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2.1.1 Probability Based Sequence Labeling techniques

In probability based sequence labeling methods, the parameters are characterized by

probabilities. Hidden Markov Models (HMM) (Rabiner 1990) and Conditional Random

Fields (CRF) (Lafferty, McCallum & Pereira 2001) are traditionally used in sequence

prediction problems and have a similar objective as discussed above, with probabilities

and probabilistic weights as parameters, respectively. Their ability to capture the state

transition dependencies along with the observation dependencies makes these approaches

robust in noisy and sparse data. In an HMM setup, probability parameters that maxi-

mize the joint probability of input and output training sequences are learned during the

training phase. In contrast, CRF learns parameters that maximize the conditional prob-

ability of the output sequence given the input sequence. The probability distributions

for HMM and CRF are shown in equations (3.1) and (3.2) respectively. Although HMM

and CRF are rich enough to represent complex relationships, they have limitations in

automatically learning these relationships. Since the concepts in HMM and CRF are

the basic building blocks of our research, we discuss them in greater detail in chapter 3.

Prediction is usually performed by a dynamic programming algorithm called the Viterbi

Algorithm (Forney 1973). We now discuss the Support Vector Machines on Structured

Output Spaces (StructSVM) (Tsochantaridis et al. 2004), which is a max margin method

that can be used for sequence labeling.

2.1.2 Max-Margin Methods for Sequence Labeling

Tsochantaridis et al. (2004) generalize the SVM framework to perform classification on

structured outputs. This builds on the conventional SVM formulation that assumes out-

put as a single variable which can be a binary label or multi-class. The conventional

SVM does not consider the dependencies between output variables and is not suitable for

structured data such as sequential data, labeled trees, lattices, or graphs. StructSVM gen-

eralizes multi-class Support Vector Machine learning to incorporate features constructed

from input and output variables and solves classification problems with structured output

data. We now briefly explain the StructSVM approach in the specific case of sequence

prediction.

Loss functions in structured outputs have to measure the amount by which the

prediction deviates from the actual value and hence the zero-one classification loss is not
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sufficient. In sequence prediction, the predicted sequence of labels that are different from

the actual labels in a few time steps should be penalized less than those that differ from

the actual labels in majority of the time steps. While any decomposable loss-function that

holds the above property fits in this approach, the micro-average of wrong predictions is

used in our research work. A loss function is represented as ∆ : Y × Y → R. ∆(Y, Ŷ ) is

the loss value when the true output is Y and the prediction is Ŷ .

The SVM formulation for structured output spaces can thus be written as

min
f ,ξ

1

2
‖ f ‖2 +

C

m

m∑
i=1

ξi, s.t. ∀i : ξi ≥ 0

∀i, ∀ Y ∈ Y \ Yi : 〈f ,ψδ
i (Y )〉 ≥ 1− ξi

∆(Yi, Y )
. (2.2)

where m is the number of examples, C is the regularization parameter, ξ’s are the slack

variables introduced to allow errors in the training set in a soft margin SVM formulation,

and Xi ∈ X and Yi ∈ Y represent the ith input and output sequences respectively1.

〈f ,ψδ
i (Y )〉 represents the value 〈f ,ψ(Xi, Yi)〉−〈f ,ψ(Xi, Y )〉. Equation 2.2 represents the

slack scaling approach proposed by Tsochantaridis et al. (2004). We follow slack scaling

in our paper, as it is believed to be be more accurate and better behaved than margin

scaling (Sarawagi & Gupta 2008).

In cases where the sequence length is large, the number of constraints in (2.2) can be

extremely large. To solve this problem, an algorithm based on the cutting plane method

is proposed by Tsochantaridis et al. (2004) (c.f. algorithm 1 in (Tsochantaridis et al.

2004)) to find a polynomially sized subset of constraints that ensures a solution very close

to the optimum.

In a related work, Taskar, Guestrin & Koller (2004) combine the advantages of ker-

nel based methods (capable of handling high dimensional feature spaces and with strong

theoretical guarantees) and probabilistic graphical models (capable of explicitly repre-

senting correlations between labels in structured output spaces) in a Maximum Margin

framework for Markov Networks (M3N). For Markov Networks that can be triangulated,

the resultant quadratic objective is reduced to a polynomial size formulation, whereas, for

non triangulated Markov Networks, an approximate reformulation (based on a relaxation

technique used in belief propagation algorithms) is proposed. In another work, Taskar,

1Subscript i here is to denote ith example sequence and should not be confused with the ith element

of a vector

22



Chatalbashev & Koller (2004) focus on a subclass of Markov Networks called Associative

Markov Networks (AMN). AMNs have clique potentials that favor the same labels for all

variables in the clique. The paper proposes an approximation to the M3N objective to

solve a linear program relaxation of the AMN objective. All these works propose maxi-

mum margin methods for structured output classification. Whereas, our work focuses on

learning the relational structure in input space for improving structured output predic-

tion. The next section discusses some of the existing approaches that looked into learning

relationships to improve accuracy of prediction.

2.2 Learning Relationships as Features

In our research work, we focus on learning relationships in the form of features for se-

quence labeling models. We could categorize feature induction methods (generally) into

(i) Greedy and (ii) Optimal. We discuss the existing feature induction approaches in the

subsections that follow.

2.2.1 Greedy Feature Induction Approaches

McCallum (2003) proposes feature induction methods that iteratively construct feature

conjunctions that increase an objective. This approach starts with no features and at

each step, considers a set of candidate features (conjunctions or atomic). Features whose

inclusion will lead to a maximum increase in the objective are selected. Weights for

the new features are trained. The steps are iterated until convergence. The approach

learns conjunctive features from ground basic inputs2. McCallum (2003) trains a CRF

model and uses conditional log-likelihood as the objective for the greedy induction. This

effectively solves the problem of the incorrect assumption, that individual observations

are independent, while not dealing with exponential observation space.

2In Feature Induction for CRF, the approach starts with no feature, creates a list of candidate features

(singleton or conjunctions of existing features) with the highest gain, evaluates all candidate features,

adds those features with the highest gain, adjusts the parameters of the CRF model and repeats until

convergence criterion is met. If ground basic inputs at multiple sequence positions are provided, McCal-

lum’s as well as our greedy approach can learn their conjunctions. However, the approach does not learn

relational features (if ground basic inputs are not provided/feasible to provide) from multiple relative

sequence positions.
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Although greedy feature induction approaches have been shown to improve perfor-

mance, they cannot guarantee an optimal solution. An exhaustive search to find the

optimal solution is expensive due to the exponential size of the search space. A brief ac-

count of previous approaches that tried to improve sequence labeling by learning structure

in input/output (not necessarily at the same sequence step) is given below.

A Logical Hidden Markov Model is discussed in (Kersting et al. 2006), which deals

with sequences over logical atoms. A model selection approach for the Logical Hidden

Markov Model is proposed in (Kersting 2005), which is based on the Expectation Max-

imization algorithm and Inductive Logic Programming principles. Our approach differs

from their approach in the sense that our objective is to explore the relationships among

multiple inputs at relative sequence steps to improve the efficiency of sequence labeling.

Thon (2010) and Thon et al. (2011) elaborate on relational markov processes which are

concerned with efficient parameter learning and inference. They assume that a structure

has been provided upfront. Similarly, a relational Bayesian network learning is discussed

in (Schulte et al. 2012) with the goal of learning the parameters given the structure of the

bayes-net.

TildeCRF (Gutmann & Kersting 2006) has an objective similar to our approach,

where the relational structure and parameters of a CRF for sequence labeling are learned.

TildeCRF uses relational regression trees and gradient tree boosting to learn the structure

and parameters3. However, TildeCRF gives no guarantee that the learned structure is

optimal. To the best of our knowledge, there has not been any approach for learning

optimal input structure for sequence labeling. We, therefore, discuss an approach for

optimal induction of feature conjunctions in a binary classification setting.

2.2.2 Optimal Feature Induction for Binary Classification

Jawanpuria et al. (2011) propose Rule Ensemble Learning using Hierarchical Kernels

where they make use of the Hierarchical Kernel Learning (HKL) framework introduced

by Bach (2009) to learn, simultaneously, sparse rule ensembles and their optimal weights.

We will refer to their approach as RELHKL. The regularizer used in HKL discourages

3We propose two learning approaches for the feature space explored in TildeCRF. In one, we derive

convex formulations for a significant portion of the learning steps. Our other approach solves the problem

optimally but the learned feature space is not interpretable.
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selection of rules that involve a large number of basic features. Jawanpuria et al. (2011)

prove that although HKL discourages selection of large rules, it redundantly selects all

the rules that are subsets of the chosen rules. As a solution, they generalize HKL with

a convex formulation using a (1,2] norm (ρ-norm) regularizer that ensures a set of sparse

and non redundant rules. A mirror descent based active set algorithm is employed to

solve the convex formulation. We briefly discuss their approach in the paragraphs that

follow.

The prime objective of Rule Ensemble Learning (REL) is to learn a small set of

simple rules and their optimal weights. The set of rules that can be constructed from

basic features follow a partial order and can be visualized as a lattice (conjunction lattice

when the features are conjunctions of basic features). The set of indices of the nodes in

the lattice are represented by V . The model is additive in nature and the weighted sum

of the features decides the output. To learn a sparse sets of rules, the regularizer Ω(f) is

modified in the following way (Jawanpuria et al. 2011),

Ω(f) =
∑
v∈V

dv ‖ fD(v) ‖ρ (2.3)

where f is the feature weight vector corresponding to the feature nodes in the lattice,

dv ≥ 0 is a prior parameter showing the usefulness of the feature conjunctions, fD(v) is

the vector with elements as ‖ fw ‖2 ∀w ∈ D(v), D(v) the set of descendant nodes of v

and ‖ . ‖ρ represents the ρ-norm. In rule ensemble learning dv is defined as β|v|, where β

is a constant. The optimization problem, with hinge loss, can now be written as,

min
f ,b,ξ

1

2
Ω(f)2 + C

m∑
i=1

ξi,

s.t. yi

(∑
v∈V

〈fv, ψv(xi)〉 − b̂
)
≥ 1− ξi,

ξi ≥ 0 (2.4)

where yi and xi are the output label and input vector respectively for ith example. b̂ is

the bias. Other notations are as defined in previous subsections.

Since the 1-norm induces sparsity (Rakotomamonjy et al. 2008, Bach 2009), for most

of the v ∈ V , ‖ fD(v) ‖ρ= 0 and this implies fw = 0, ∀w ∈ D(v). Since norms between

(1, 2) promote sparsity (Szafranski & Rakotomamonjy 2008, Jawanpuria et al. 2011), even

if ‖ fD(v) ‖ρ is not forced to zero, many of the fw = 0 for w ∈ D(v).
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At optimality, only a few features are expected to be non-zero. The solution obtained

with these non zero features will be the same as the solution obtained with the original

set of features. Therefore for computational efficiency, an active set algorithm can be

employed (c.f. algorithm 1 of (Jawanpuria et al. 2011)) which starts with an initial set

of non zero features. At every step, it solves an optimization problem; a sufficiency

condition is checked and it terminates if satisfied. Otherwise the nodes violating the

sufficiency condition are added to the active set and the algorithm moves on to the next

iteration.

The RELHKL approach is specific to the single variable binary classification prob-

lems and cannot be trivially applied to problems involving multi class structured output

data. We now briefly discuss inference in sequence labeling.

2.3 Inference

Inference in sequence labeling is to assign a label for each sequence step based on the

sequence of observations. This amounts to selecting the correct sequence from an expo-

nential number of candidate sequences. The Viterbi algorithm (Forney 1973), a dynamic

programming algorithm, is typically employed for efficiently solving the inference problem

in sequence labeling. We give a brief overview of the Viterbi algorithm below.

2.3.1 The Viterbi Algorithm

The Viterbi algorithm (Forney 1973) is a dynamic programming algorithm used exten-

sively in sequence labeling tasks to find the most probable sequence of hidden states. The

Viterbi algorithm works in two phases, the forward phase and the backward phase. In

each step of the forward phase, the algorithm determines the best path so far to reach

each of the states at that sequence step, based on the observations and parameters. In the

backward phase, the algorithm determines the best scoring label at the last sequence step

and traces back the best path to this label. The running time of the Viterbi algorithm is

in the order of O(T × n2), where T is the sequence length and n is the number of state

labels.

The Viterbi algorithm efficiently computes the label sequence for sequence labeling

tasks, in settings where all variables can be grounded. However, in cases where it is

not feasible to ground all the variables, we need to employ clever methods that avoid
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complete grounding (thus saves memory and time). Also in instances where additional

constraints exist in the output space, the Viterbi algorithm has limitations. There are

a few approaches that solve problem settings with additional constraints on the output

space. For example, Roth & tau Yih (2007, 2005) posed finding the sequence of output

labels as an Integer Linear Programming cation problem, wherein, additional constraints

on the output variables can be enforced. They evaluate their approach, which extends

Conditional Random Field or Markov Random Field models to support general output

constraint structures, on Natural Language Processing tasks such as semantic role labeling

and named entity recognition. However, these approaches are not developed to solve

inference problems in general first order settings. In chapter 4, we present an approach

that prunes the search space for first order inference using satisfiability. The next section

gives a brief account of some of the existing approaches in our motivating problem domain

of activity recognition.

2.4 Recent developments in Activity Recognition

Automatic activity recognition has been an active research area in the current era of perva-

sive systems. Various approaches have been proposed. Wilson (2005) experimented with

particle filter and context aware recognition for recognizing ADLs at the MIT Labora-

tory. Gibson et al. (2008) discussed the idea of clustering sensors for recognizing activities

and concluded that trivially imposing clusters differs from reality. A relational transfor-

mation based tagging system using ILP concepts is proposed by Landwehr et al. (2009).

The approach starts with an initial tag to all the sequences and then improves by learn-

ing a list of transformation rules which can re-tag based on context information. The

approach is purely logical and not probabilistic. Wang et al. (2007) identify the minimal

set of sensors that can jointly predict all activities in the domain. Binsztok et al. (2004)

discussed learning HMM structure (number of states and allowed transitions) from the

data for clustering sequences. Landwehr et al. (2006) construct kernel functions from fea-

tures induced by an ILP approach. The search for features is directed by a Support Vector

Machine performance using the current kernel. Mauro et al. (2010) aim to classifying re-

lational sequences using relevant patterns discovered from labelled training sequences.

Here, the whole sequence is labelled and not the individual components of the sequence.

Patterns in each dimension of multi dimensional sequences are discovered and a feature
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vector is constructed. Then an optimal subset of the features is selected using a stochastic

local search guided by a naive Bayes classifier.

Many of these learning approaches are for general classification. However, in the

case of sequential, skewed, and noisy4 activity recognition data where temporal depen-

dencies dominate over static dependencies, most of the learning approaches that globally

normalize5 the parameters do not fit well. We find a solution to this problem by identi-

fying relevant conjunctions of sensors for each activity as input features. We now discuss

our proposed approaches for feature induction in the following chapter.

4Noise due to faulty sensors, communication lines and non uniform patterns adopted by subjects to

perform tasks.
5In sparse sequence labeling domains, since the support for same state transitions are much higher than

emissions and inter state transitions, if we learn all the emission and transition features simultaneously,

where the parameters are compared relative to each other to select the best, the same state transition

features get more importance and hence dominate over other features.
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Chapter 3

Learning Discriminative Relational Features for

Sequence Labeling

3.1 Introduction

In our research work, we investigate the potential of learning input structure to improve

sequence labeling models. To this end, we identify the categories of features relevant for

discerning labels at each position in a sequence. Before going into the details of feature

categories, we restate our motivation for the need to learn higher order features and

objectives formally .

In a sequence labeling setting with multiple basic inputs at each sequence position,

the joint state of these basic inputs at time t forms our observation/emission and we repre-

sent it as xt. The label at time t is represented by yt. Prediction models such as the Hidden

Markov Model (HMM) (Rabiner 1990), the Conditional Random Field (CRF) (Lafferty,

McCallum & Pereira 2001) or StructSVM (Tsochantaridis 2006, Tsochantaridis et al.

2004) are trained from historical input/output data. These approaches typically assume

that yt is independent of all previous activities given yt−1 and xt is independent of all

other variables given yt. Figure 1.1 illustrates the independence assumption in an HMM

setting.

In HMMs, the score is the joint probability distribution, p(X, Y ), of the input se-

quence X and the output sequence Y . From the independence assumptions as illustrated

in Figure 1.1, one can factorize the joint probability distribution of the sequence of inputs

(X) and labels (Y ) into three factors: the initial state distribution p(y1), the transition

distribution p(yt|yt−1), and the emission distribution p(xt|yt) (Rabiner 1990). Here xt and
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yt represent the input variable and the class variable at time t respectively. Therefore,

p(X, Y ) =
T∏
t=1

p(yt|yt−1)p(xt|yt) (3.1)

where T is the length of the sequence and p(y1|y0) is used instead of p(y1) to simplify the

notation. Parameters for the distributions are learned by maximizing the joint probability,

p(X, Y ), of the paired input and label sequences in the training data.

In CRFs (Lafferty, McCallum & Pereira 2001), parameters that maximize the con-

ditional probability, p(Y |X), of a sequence of states Y given a sequence of inputs X are

learned. The conditional probability can be computed as,

p(Y |X) =
1

Z(X)
exp

T∑
t=1

φt(y
t, X) + φt−1(yt−1, yt, X). (3.2)

where φt(y
t, X) and φt−1(yt−1, yt, X) are potential functions and Z(X) is the partition

function.

These parameters are later used to identify the (hidden) label sequence that best

explains a given sequence of inputs/observations. StructSVM (Tsochantaridis et al. 2004,

Tsochantaridis 2006) is a maximum margin framework for structured output spaces such

as sequence labeling. It generalizes the standard Support Vector Machines (SVM) with

the margin defined as the difference in the scores of the original output sequence with any

other possible output sequence.

In general, the objective of learning sequence labeling models is to learn functions

of the form

F : X → Y (3.3)

from the training data, where X and Y are input and output sequence spaces, respectively.

Typically, a discriminant function

F : X × Y → R (3.4)

is learned from training data that consists of pairs of input and output sequences. Then

inference can be performed using the decision function,

F(X; f) = arg max
Y ∈Y

F (X, Y ; f), (3.5)
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where

F (X, Y ; f) = 〈f ,ψ(X, Y )〉 (3.6)

represents a score which is a scalar value based on the features ψ, involving input sequence

X and output sequence Y values, and parameterized by a parameter vector f . The

features for sequence labeling are constructed to represent emission (observation) and

transition distributions. That is, ψ consists of features describing emission relationships

and transition relationships. The training objective is to learn weights that make the

score F : X × Y → R of true output sequence Y greater than any other possible output

sequence, given an input sequence X (Tsochantaridis et al. 2004, Tsochantaridis 2006).

We now discuss the limitations of typical sequence labeling approaches and then

explain our objective of discovering the input structure in sequence labeling tasks. For

simplicity of exposition, we discuss the limitations in the simple setting of HMM.

In an HMM set-up, the probability distribution of the observation/input given label,

p(xt|yt), is represented as an emission matrix. In domains with multiple possible obser-

vations, the input variable is a vector xt = (x1t , x2t , ..., xN
t
)>, where xi

t
represents the

value of ith input at time t and N is the number of basic inputs. An example is shown in

Figure 1.2. This results in 2N values for input xt which is computationally feasible only in

small settings. Providing tuples consisting of individual inputs to the model is a solution

to this. However, these approaches (HMM, CRF, StructSVM) have limitations in learn-

ing such relations. Therefore, often independence is assumed among individual inputs,

given a label, to simplify the representation and computation of p(xt|yt). Conditional

probability, when independence is assumed among inputs, is

p(xt|yt) =
N∏
i=1

p(xi
t|yt) (3.7)

In complex problem settings, where there are non-linear interactions among input

variables, assuming conditional independence would affect the performance in terms of the

accuracy of labeling. To alleviate both the issues, we identify the need to find a mapping

between labels and the relevant compositions of inputs. The label specific compositions

of inputs are referred to as features. Features can be derived from inputs at a single

sequence position or across relative sequence positions. Our work underlines the notion

that if a few dependent inputs (at same position or relative positions) in conjunction with
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the information regarding the previous label in a sequence step can jointly decide the

label at the current step, then it is better to consider only those. For instance, in the

simple setting of features derived from inputs at single sequence position, we avoid the

non relevant xis and use compositions (or conjunctions) of relevant xjs to improve the

prediction accuracy. This also helps to reduce the effect of noise while doing inference.

We propose learning the emission structure that maximizes probabilistic coverage

(probability by which examples are covered) of the training data. In our problem, since we

assume that all transitions are important, the model learned should allow all inter state

transitions. Moreover, the transition feature space is not exponential. Therefore, we learn

the structure of emission distribution while preserving all the n2 transition probabilities.

In the next paragraph and the section to follow, we discuss features in detail.

As stated above, we are interested in label specific features derived from multiple

inputs/observations at any single sequence position or at different relative positions. Def-

inite clauses/rules (clauses having all negated atoms except one (head)) can be used to

represent such feature mappings. Since a class specific feature can be constructed from the

body literals of a definite clause whose head depicts the class label, we use the terms defi-

nite clause and (label specific) feature interchangeably. While a label specific input feature

can be visualized as a definite clause, the transition relationships can also be visualized

as definite clauses. For example, the clause 0.5: activity(t, eatBreakFast) ← activity(t-1,

prepareBreakFast) represents a simple transition relationship, which says that the activ-

ity at time t is eatBreakFast if the previous activity was prepareBreakFast and 0.5 is the

degree of belief attributed to the rule. We now focus on input features, which are more

complex than transition features. For simplicity, we drop the probabilistic weights while

defining our feature categories. In this chapter, we first categorize definite features based

on their complexity and identify the categories relevant for improving sequence labeling

models. We then investigate leveraging Inductive Logic Programming (ILP) approaches

to supplement or complement sequence labeling models. We then identify the limitations

of traditional ILP systems to learn features for sequence labeling and propose a greedy

feature induction approach that alleviates the limitations of traditional systems. Since the

greedy approach cannot guarantee an optimum model, we propose to leverage optimum

feature learning methods in feature learning steps for sequence labeling. To this end,

we propose and develop a Hierarchical Kernels based approach to learn optimal features
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derived from basic inputs at a single sequence position, which is referred to as StructHKL.

We then develop strategies to leverage StructHKL to learn complex relational features

derived from inputs at multiple relative sequence positions. We also propose and develop

approaches to learn complex relational features efficiently by leveraging relational sub-

sequence kernels. The categorization of first order definite features is discussed in the

following section.

3.2 First Order Definite Features

Most of the Inductive Logic Programming (ILP) systems and the Statistical Relational

Learning systems (SRL) learn clauses by searching in a space (often a lattice) of clauses

in the domain. The search space, due to computational reasons, is typically controlled

by language restrictions, which define the type of clauses to be learned. One common

way to model a classification problem is to learn definite clauses (clauses having one

head predicate conditioned on the values of zero or more body predicates). Since we are

interested in such a setup, we confine our discussion to the space of definite clauses. We

use the terms first order definite clause and first order feature interchangeably, as one can

be derived from the other. We start by defining categories of predicates and then discuss

the complexity based classification of features.

Similar to the structural and property predicates in 1BC clauses (Flach & Lachiche

1999), we define two types of predicates, viz. (inter) relational and evidence predicates.

A relational predicate is a binary predicate that represents the relationship between

types or between a type and its parts, where a type is an entity or object that has a

meaning and described by itself or its attributes1. For example, the relational predicate

prevRelPosWindowNear(t1,t2) states the relationship between two sequence positions

t1 and t2 that t2 is in a previous position window of t1 and both are near to each other.

An evidence predicate is an assertion of a situation or a property of a type or part of it2.

For example, microwave(t) states that the microwave was on at time t3. We use the

1Example of a type is a sequence position, which has a meaning by itself. Another example is an

object such as cookware, where it has component parts or properties (such as “can contain“)
2Evidence predicate here is a predicate that states something about an entity and should not be

confused with that used in Markov Logic Networks. A property is some conclusive information about a

type.
3Typically, evidence predicates are unary and relational predicates are n-ary, n>1
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following set of definite clause examples for illustration of the concepts we discuss in the

the rest of this chapter.

1. prepareDinner(t) :- microwave(t)

2. prepareDinner(t) :- microwave(t), platesCupboard(t)

3. prepareDinner(t1) :- prevRelPosWindowNear(t1,t2), platesCupboard(t2)

4. prepareDinner(t1) :- prevRelPosWindowNear(t1,t2)

5. prepareLunch(t1) :- prevRelPosWindowNear(t1,t2), platesCupboard(t2),

. microwave(t2)

6. prepareLunch(t1) :- prevRelPosWindowNear(t1,t2), platesCupboard(t2),

. prevRelPosWindowNear(t1,t3), microwave(t3),

. greater(t2,t3)

7. prepareDinner(t1) :- microwave(t1), prevRelPosWindowNear(t1,t2),

. platesCupboard(t2)

We now categorize definite features based on complexity into Simple Conjuncts

(SC), Absolute Features (AF), Primary Features (PF), Composite Features (CF) and

Definite Features (DF). The definitions of SC, AF and CF are used in this thesis, while

the other categories are presented for supporting these definitions. The reader may skip

the definitions for PFs and DFs.

Simple Conjuncts (SC):

SCs are simple conjunctions of basic features (including unary conjunctions)

observed at a single sequence position. In other words, SCs are conjunctions of evidence

predicates (without any relational predicate). Clauses 1 and 2 above are Simple

Conjuncts. None of the other clauses are SCs.

Absolute Features (AF):

In absolute features (clauses), new local variables can only be introduced in a

relational predicate, where a local variable is a variable not present in the head predicate.
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Unlike in 1BC clauses, any number of new local variables can be introduced in a relational

predicate. Any number of relational and evidence predicates can be conjoined to form an

AF such that the resultant AF is minimal and the local variables introduced in relational

predicates are consumed4 by some other relational or evidence predicates. Here a minimal

clause is one which cannot be constructed from smaller clauses that share no common

variables other than that in the head. So clauses 1, 3, 5 and 6 above are AFs whereas

clauses 2 (not minimal), 7 (not minimal) and 4 (since variable t2 is not consumed) are not.

Primary Features (PF):

Primary features (clauses) are absolute features (clauses) that have at-most one

evidence predicate for every new local variable introduced. This is similar to elementary

features in (Flach & Lachiche 1999) except that elementary features allow only one

new local variable in a structural predicate. Clause 1 and 3 are PFs whereas the other

clauses do not conform to the restrictions imposed.

Composite Features (CF):

Composite Features (clauses) are definite clauses that are formed by the

conjunction of one or more AFs without unification of body literals. Only the head

predicates are unified. As in AFs, every local variable introduced in a relational

predicate should be consumed by other relational or evidence predicates. Clauses 1 (also

qualifies for SC, PF and AF), 2 (also qualifies for SC), 3 (also qualifies for PF and

AF), 5 (also a AF), 6 (also a AF) and 7 are CFs where as 4 is not.

First Order Definite Features (DF):

First order definite features (clauses) are features with none of the above

restrictions. Therefore, all the given examples are DFs.

In all the feature categories discussed above, the body of a rule can contain query

predicates (labels/response variables). However, in our problem, we consider the cases

where the body contains only evidence predicates. We now state some of the relationships

between these categories of features. Some of the proofs come directly from the definitions;

4Consumption of a variable means that it is used by another predicate.
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Figure 3.1: Subset relationships among various categories of features.

but are included for completion. The subset relationships among these categories of

features are also illustrated in Figure 3.1

Claim 1. The set of primary features is a proper subset of the set of Absolute Features.

That is, PF ⊂ AF .

Proof. From definition, PF s are AF with the restriction that a new local variable intro-

duced should be transitively consumed by a single evidence predicate. Hence PF ⊆ AF .

Now, consider the clause A(a) :- B(a,b), C(b), D(b). Since it follows all the requirements

of an AF , it is an absolute feature. However, since there are two evidence predicates for

the local variable b, it does not qualify to be a PF . Hence, PF 6= AF .

Claim 2. The set of absolute features is a proper subset of the set of composite features.

That is, AF ⊂ CF .

Proof. From definition, CF s are conjunctions of one or more AF s. Therefore, all AF s

are CF s (unary conjunctions). Now, consider the CF clause A(a) :- B(a,b), C(b), B(a,c),

D(c). Since this is a conjunction of two AF s
(
A(a) :- B(a,b), C(b) and A(a) :- B(a,c),

D(c)
)
, this is not minimal, hence, not an AF . Hence, AF 6= CF .
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Claim 3. The set of simple conjuncts is a proper subset of the set of composite features.

That is, SC ⊂ CF .

Proof. From definition, CF s are conjunctions of one or more AF s. Also SCs are con-

junctions of evidence predicates at a single sequence position. Since an SC with a single

evidence predicate is also an AF , conjunctions of such single predicate SCs are the same

as conjunctions of single predicate AF s; thus all SCs are CF s. Now, consider the clauses

3, 5 and 7 which are CF s, but not SCs. Therefore, SC 6= CF .

Claim 4. The set of composite features is a proper subset of the set of full first order

definite features. CF ⊂ DF .

Proof. From definition, DF s are first order definite clauses without any restrictions im-

posed for CF s; therefore, CF ⊆ DF . Now consider the clause A(a) :- B(a,b), which is

a first order relation that does not qualify as a CF , as the variable b introduced is not

consumed. Therefore, CF 6= DF .

Claim 5. Every AF can be constructed from PF s using unifications.

Proof. The difference a AF has with PF is that it can have more than one evidence

predicate for each local variable introduced. Let lp be a relational literal in the body of

an AF clause which introduces only one local variable. Let l1, l2, . . . , lp−1 be the set of

relational literals in the body, which lp depends on. Let there be P ≥ 0 number of depen-

dency chains starting from lp to some evidence predicates, each of which is represented as

lip+1, . . . , l
i
k. We define lp as a pivot literal if P > 1. For simplicity, we assume there is only

one pivot in a clause. Now, we can construct P PF clauses from this with the body of

the ith clause as l1, l2, . . . , lp−1, lp, l
i
p+1, . . . , l

i
k, where lik is a evidence predicate. It is trivial

to see that these P clauses can be unified to construct the original AF . For multiple

pivot literal clauses, the above method can be applied recursively until PF clauses are

generated. The proof can be extended to pivot literals with multiple new local variables

by using a dependency tree structure in place of chain.

Claim 6. Every CF can be constructed from AF s by conjunctions.

Proof. By definition, a clause qualifies as a CF only if it is constructed from the conjunc-

tion of one or more AF s.
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Claim 7. CF s are first order DF s with local variable reuse restriction.

Proof. AF s include maximal5 clauses generated only with unification (without conjunc-

tions) of PF s. These clauses have the restriction that all local variables introduced should

be consumed transitively. CF s capture all possible conjunctions of AF s and therefore can

generate any definite clause that is consistent with the local variable consumption restric-

tion.

We briefly discuss below some of the existing complexity based categorization of

first order definite features in the following paragraph.

1BC clauses and elementary clauses introduced by Flach & Lachiche (1999) are

similar to AF s and PF s respectively, with the restriction that a structural (relational)

predicate can have only one new local variable. Simple clauses are defined by McCreath

& Sharma (1998) as the clause with at-most one sink literal, where a sink literal is one

which has no other literal dependent on it. Simple clauses need not have a sink for a

local variable and thus differs from PF s. From the feature categories discussed above,

we identify SCs and CFs as two categories particularly interesting for us. While SCs are

simple conjunctive features derived from inputs at a single sequence position, CFs can be

constructed from inputs at multiple sequence positions relative to the current position. We

first present our contributions that learn SCs and then discuss our learning approaches for

CFs. In the following paragraph, we present an analysis of traditional feature induction

approaches in either complementing or supplementing the sequence labeling model, the

HMM. We also present a greedy feature induction approach, that differs from traditional

Inductive Logic Programming approaches in the scoring function and learning setting.

3.3 Greedy Feature Induction for Sequence Labeling

As motivated in the introduction, our objective is to learn higher order features efficiently

from spaces exponential in the number of basic features. To this end, we start with a brief

discussion on employing Inductive Logic Programming systems (either complementing

or supplementing conventional Hidden Markov Model (HMM)) to learn the models for

sequence labeling. We then identify the limitations of such systems on sparse, skewed and

noisy data (such as activity recognition) and propose our feature induction assisted HMM.

5Maximal with respect to unifications and minimal with respect to conjunctions.
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We use a greedy search strategy to learn emission features in the form of simple conjuncts

(SC). SCs discovered by a greedy search in the lattice of clauses/features are combined

with transition relationships in a custom implementation of HMM and parameters are

learned. In this thesis, we use the terms features and rules interchangeably, because

a label specific feature can be constructed from the body part of a definite clause rule

whose head depicts the label. In sequence labeling, we therefore have emission rules and

transition rules. Emission rules are those whose head is the label and the body comprises

inputs. Transition rules are those whose head and body are label/output predicates. In

the HMM setting, we learn parameters for each emission feature (defined as above) and

the transition features. The joint probability of input and output sequences can still be

factorized into emission and transition parts.

As discussed above, we are interested in finding a mapping between labels and

relevant conjunctions of individual inputs. The mapping can be expressed as relationships

in the form of definite clause rules (“Label if a particular set of inputs are on”), which

are traditionally represented in the form A ← B,C, . . . where A,B,C, . . . are binary

predicates. Traditional structure learning systems are capable of discovering rules of the

above form.

Our objective is to learn an emission structure that maximizes probabilistic coverage

(probability by which examples are covered) of the training data. Our experiments with

Inductive Logic Programming (ILP) systems alone failed to learn useful rules and resulted

in a bad classifier model. The reason for this is that since, in real world problems such

as activity recognition, the support for any emission of an activity and the support for

inter state transitions are much fewer than that for the same state transitions, in learning

both the emission and transition dependencies using traditional systems, rules defining

transitions within the same state tend to dominate. Such a model tends to predict fewer

inter state transitions, and thus affects the accuracy of prediction/labeling. Hence we focus

only on the induction of emission rules and combine them with the set of n2 interstate

transitions while learning the parameters of the model. We first study the applicability of

ILP systems that use a Branch & Bound search for discovering emission rules. We identify

the limitations of this approach and then propose our greedy feature learning approach.
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3.3.1 Logical Coverage Based Feature Induction for HMM

Since the real world settings such as activity recognition have sparse, skewed and noisy

data, learning the complete model using standard structure learning systems often does

not yield efficient models in terms of accuracy of labeling6. We therefore, learn emission

features using standard Branch & Bound structure learning systems, combine them with

the transition relationships, and learn parameters for the final model. ILP is one of the

traditional structure learning paradigms that learn first order relations among entities.

For example, Aleph (Srinivasan 2007) is a popular ILP system that in each iteration,

selects a positive example, builds the most specific clause based on the example, searches

for a more general clause that has the best score, and removes examples made redundant

by the current clause. We use Aleph as a benchmark system for our experiments.

B&B systems, when used for learning emission rules, evaluate each refinement of

clauses using scoring functions based on positive and negative examples. Since real world

data is vulnerable to noisy information, an exact model is hard to get. Since the examples

covered by a refinement are removed in each step, rules that are learned in subsequent

iterations have less confidence than those learned initially, which leads to a less efficient

model. Since the objective of traditional systems is to logically cover all the positive

examples with clauses which is different from the actual objective of building a proba-

bilistic model (HMM), the approach suffers from accuracy loss. We have experimented

with this approach using Aleph combined with a customized implementation of HMM.

Each rule returned by aleph is a definite rule, which associates a subset of inputs to a

label. A new attribute (feature) is constructed with each such subset. Therefore, the

number of attributes equals the number of rules learned. The learned logical model and

the training data are passed to a customized implementation of HMM for constructing

the probabilistic model. Later, the probabilistic model is used for inference.

Our experiments reveal that, HMM with B&B structure learning for feature con-

struction yields better results than HMM without structure learning only in a small scale.

This is because, in traditional systems, the objective is to logically cover all the positive

examples. We identify the limitations of this approach as (i) The scores used by tradi-

tional systems such as Aleph are largely based on the number of positive and negative

6As stated earlier, in learning complete model using standard structure learning systems, the same

state transitions tend to dominate.
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examples covered by the current model7. (ii) Discovery of each of the clauses leads to

the removal of positive examples covered. (iii) Logical coverage in place of probabilistic

coverage. We now discuss our proposed greedy feature induction assisted HMM model

construction that addresses these limitations.

3.3.2 Probabilistic Feature Induction for HMM

After analyzing the limitations of off-the-shelf branch & bound structure learning to assist

HMM model construction, we propose a greedy hill climbing feature induction approach

wherein we evaluate, in each refinement step, the current model in an HMM setting, which

is based on a probabilistic score8. That is, the score which has to be maximized is an

HMM evaluation on part of the training data. We call this approach the Probabilistic

Feature Induction assisted HMM model construction (FIHMM). The score can be either

micro-average accuracy9 or macro-average accuracy (referred to as time slice accuracy and

average class accuracy, respectively, by van Kasteren et al. (2008)) of the current model.

Micro-average accuracy is the fraction of sequence steps whose class labels are predicted

correctly and macro-average accuracy is the average percentage of time a class is classified

7One example of scoring function is pos − neg, where pos and neg are the number of positive and

negative examples covered by the clause, respectively
8With respect to the search for each feature, the search strategy and scoring procedure of B&B are

optimal for the objective. However, with respect to the overall search for the best set of features, the B&B

strategy will generally be sub-optimal. Nevertheless, we chose greedy hill climbing (which is sub-optimal

with respect to the search for each feature and overall set of features) for two reasons viz., 1. While

B&B adopts different scoring functions for individual feature search and overall feature set search, our

approach uses the same scoring function for both of these. 2. The scoring function in the greedy hill

climbing strategy is the accuracy obtained using a probabilistic model (HMM) for which no reasonable

bounds are known.
9Here we consider the problem of improving the overall accuracy of labeling. The score is a heuristic

score and therefore we chose the one that is similar to our objective. Nevertheless, any other scoring

function such as that used in cost sensitive learning can be used here.
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correctly as given in the expressions adapted from (van Kasteren et al. 2008).

Micro average accuracy :

T∑
t=1

[inferred(t) = true(t)]

T
. (3.8)

Macro average accuracy :
1

n

n∑
c=1


Tc∑
t=1

[inferredc(t) = truec(t)]

Tc

 . (3.9)

where [a = b] is an indicator giving 1 when true and 0 otherwise, T is the total number of

time steps, n is the number of classes and Tc is the number of time steps for the class c.

In data that are skewed towards some labels, predicting a frequent label for all

the time slices gives better micro-average accuracy but a bad macro-average accuracy.

Therefore, if the data set is skewed and some critical classes have less support, we suggest

maximizing the macro-average accuracy. In all other cases, we suggest maximizing micro-

average accuracy. This is because the macro-average accuracy computation does not

consider the size of a particular class and its maximization leads to a situation where

unimportant classes that occur seldom have more impact on the overall efficiency of

the model. The most typically used performance evaluation measure among the two is

micro-averaged accuracy. However macro-average accuracy being too low is considered

to be a poor performance. We have performed separate experiments with micro-average

accuracy and macro-average accuracy as the scoring function. Trying a combination of

both is a future work direction. We now discuss the overall learning algorithm for model

construction.

During the training phase, we pursue a greedy hill climbing search in the lattice

to find a model. The pseudo code for our approach is given in Figure 3.2. Initially, the

features for each label are constructed with each of the individual inputs and an initial

model is trained. In every iteration, candidate models are constructed by removing the

features of each label one at a time as shown in step 8 of the pseudo code. Step 10

constructs new features by combining the features removed in step 8 with other features

of the label and a new candidate model is trained. The best scoring model among all

the candidate models, if better than the previous model, is saved. To evaluate a model,

an HMM is constructed from the current emission model and the transition distribution.

Each of the conjunctions discovered forms a column in the emission probability matrix

and the conditional probabilities are learned for these conjunctions given label. Further,
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1. procedure FIHMM MODEL CONSTRUCTION

2. featureSet← features representing each individual input

3. currentModel← model trained with featureSet

4. repeat

5. previousModel← currentModel

6. for each label i do

7. for each feature j of label i do

8. modelDel(i, j)← model trained with jth feature of ith label dropped

9. for each feature k of label i do

10. modelAdd(i, j, k)← model trained with features j and k combined

. to form new feature of label i

11. end for

12. end for

13. end for

14. currentModel← arg max {arg max
i,j

modelDel(i, j).accuracy,

. arg max
i,j,k

modelAdd(i, j, k).accuracy}

15. until currentModel.accuracy ≤ previousModel.accuracy

16. return previousModel

17. end procedure

Figure 3.2: Feature induction assisted HMM model training

only those features that are mapped to a label have to be considered during inference.

Each iteration either deletes or adds a feature to the final model based on the HMM

evaluation on part of the training data. Unlike traditional approaches, no examples are

removed during the iterations. In each iteration, the existing logical model is refined,

probabilistic parameters are learned and the model is evaluated on part of the training

data. The process is repeated until convergence.

Greedy feature induction approaches, though better than conventional approaches,

do not give any guarantee on optimality of the model learned. In the next section, we

introduce our hierarchical kernel based optimal feature learning approach for structured

output spaces (StructHKL). We then investigate the possibility of efficiently learning

complex features for sequence labeling by leveraging the StructHKL approach.
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3.4 Hierarchical Kernel Learning for Structured Output

Spaces

In section 3.2, we have categorized relational features and identified Simple Conjuncts

(SC) and Composite Features (CF) as powerful features for sequence labeling tasks. In

the previous section, we discussed our greedy feature construction approach for learning

SCs as features for Hidden Markov Models. Since greedy approaches cannot guarantee

optimal models, we propose a Hierarchical Kernels based feature learning approach for

structured output spaces, which can learn optimal SCs. We refer to this approach as

Hierarchical Kernel Learning for Structured Output Spaces (StructHKL).

In this section, we derive our approach in general settings of features (for structured

output spaces) that follow a partial order and then discuss the possibility of learning SCs

using this approach. The size of such an ordering is 2N for N basic inputs. We develop

our approach, that derives from the norm employed in RELHKL (Jawanpuria et al. 2011)

and uses the loss function of StructSVM (Tsochantaridis et al. 2004, Tsochantaridis 2006)

to discover optimal discriminative features from the partial order for solving sequence

labeling problems. We build on the Support Vector Machines for Structured Output

Spaces (StructSVM) model (Tsochantaridis et al. 2004, Tsochantaridis 2006) for sequence

prediction problems. The StructSVM objective posed by Tsochantaridis et al. (2004) is

given in equation (2.2). We modify the feature vector to include all possible label specific

features (that are compositions of basic features), while preserving all possible transitions.

The following paragraph explains the notations we use in the derivations of our approach.

We have presented the training and inference objectives of sequence labeling prob-

lems in equations (3.3), (3.4) and (3.5), where the features and feature weights are rep-

resented by ψ and f respectively. Elements of ψ correspond to the input/observation

(emission) features and the transition features. We represent the emission and transition

parts of the vector ψ as ψE and ψT respectively. We assume that both ψE and ψT are

vectors of dimension equal to the dimension of ψ with zero values for all elements not

in their context. That is, ψE has dimension of ψ, but has zero values corresponding to

the transition elements. In a similar spirit, we split the feature weight vector f to fE and

fT. Similarly, V , the indices of the elements of ψ, is split into VE and VT. Our proposed

approaches are to discover discriminative input features (ψE) that capture complex rela-
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tionships among input variables. To learn emission features, ψE has to include all possible

(composition/conjunction) features, which has a partial ordering. The top node in the

partial order is the empty node and the bottom node is constructed from all the basic

features. The nodes at level 1, denoted by B, are basic features themselves. For the sake

of visualization, we assume there is a partial order for each label. Therefore, elements

of ψE vector correspond to the nodes in the partial ordering of features for each label.

As followed in (Jawanpuria et al. 2011), D(v) and A(v) represent the set of descendants

and ancestors of the node v in the lattice. Both D(v) and A(v) include node v. The hull

and the sources of any subset of nodes W ⊂ V are defined as hull(W) =
⋃
w∈W A(w) and

sources(W) = {w ∈ W|A(w)
⋂
W = {w}} respectively. In other words, the hull of a set

of nodes is the set of all ancestors of the set and sources of a set of nodes are those nodes

in the set that have no ancestor in the set other than itself. The size of set W is denoted

by |W|. fW is the vector with elements as fv, v ∈ W . Also let the complement of W

denoted by Wc be the set of all features belonging to the same label that are not in W .

Further let the input/observation at pth sequence step of the ith example be xpi , where xpi

is a vector of binary values. Each element of the vector represents the value of an input

at the position p. For instance, in activity recognition, these binary values represent the

values of sensors fixed at locations such as groceries cupboard, bathroom door etc. at pth

time step. Similarly, output/label at pth time step of the ith example is represented by

ypi . Let ypi can take any of n values. Other notations are consistent with that given in the

previous sections.

To use the hierarchical ρ-norm regularizer on the feature weights corresponding to

the emission nodes, we separate the regularizer term into those corresponding to emission

and transition features. Since all the state transitions are to be preserved, a conventional

2-norm regularizer is used for transition features. The new SVM formulation is,

min
f ,ξ

1

2
ΩE(fE)2 +

1

2
ΩT (fT)2 +

C

m

m∑
i=1

ξi,

∀i, ∀Y ∈ Y \ Yi : 〈f ,ψδ
i (Y )〉 ≥ 1− ξi

∆(Yi, Y )

∀i : ξi ≥ 0 (3.10)

where ΩE(fE) is defined in (2.3) as
∑
v∈VE

dv ‖ fED(v) ‖ρ, ρ ∈ (1, 2] and ΩT (fT) is the 2-norm
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regularizer
(∑
j

f2Tj
) 1

2

The 1-norm in ΩE(fE) forces many of the ‖ fED(v) ‖ρ to be zero. Even in cases where

‖ fED(v) ‖ρ is not forced to zero, the ρ-norm forces many of node v’s descendants to zero.

Since transition feature space is not exponential, no sparsity is desired and therefore a

2-norm regularizer is sufficient for transition. The above SVM setup has two inherent

issues which makes it a hard problem to solve. The first is that the regularizer, ΩE(fE),

consists of ρ-norm over descendants of each lattice node, which makes it exponentially

expensive. The second problem is the exponential number of constraints for the objective.

The rest of the section discusses how to solve the problem efficiently.

By solving (3.10), we expect most of the emission feature weights to be zero. As

illustrated by Bach (2009) and Jawanpuria et al. (2011), the solution to the problem

when solved with the original set of features is the same but requires less computation

when solved only with features having non zero weights at optimality. Therefore, an

active set algorithm can be employed to incrementally find the optimal set of non zero

weights (Bach 2009, Jawanpuria et al. 2011). In each iteration of the active set algorithm,

since the constraint set in (3.10) is exponential, a cutting plane algorithm has to be used to

find a subset of constraints of polynomial size so that the corresponding solution satisfies

all the constraints with an error not more than ε. We now modify (3.10) to consider only

the active set of features W .

min
f ,ξ

1

2

(∑
v∈W

dv ‖ fED(v)
⋂
W ‖ρ

)2

+
1

2
‖ fT ‖2

2 +
C

m

m∑
i=1

ξi,

∀i, ∀Y ∈ Y \ Yi : −

(∑
v∈W

〈fEv, ψδEvi(Y )〉+
∑
v∈VT

〈fTv, ψδTvi(Y )〉+
ξi

∆(Yi, Y )
− 1

)
≤ 0

∀i : −ξi ≤ 0 (3.11)

where ρ ∈ (1,2]

The active set algorithm can be terminated when the solution to the small problem

(reduced solution) is the same as the solution to the original problem; otherwise the active

set has to be updated. We follow a similar approach to that defined in (Jawanpuria et al.

2011) for deriving a sufficiency condition to check optimality, which we discuss in the

following paragraphs.

Applying lemma 26 in (Micchelli & Pontil 2005), the regularizer term corresponding
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to the emission weights in (3.10) can be written as,

ΩE(fE)2 = min
γ∈∆|VE|,1

min
λv∈∆|D(v)|,ρ̂∀v∈VE

∑
w∈VE

δ−1
w (γ,λ) ‖ fEw ‖2

2

where, ρ̂ = ρ
2−ρ , ∆d,r =

{
η ∈ Rd|η ≥ 0,

d∑
i=1

ηri = 1

}
, and δ−1

w (γ,λ) =
∑

v∈A(w)

d2
v

γvλwv
.

Using the variational characterization and representer theorem (Rakotomamonjy et al.

2008), the partial dual (wrt. f , ξ) of (3.10) can be derived as,

min
γ∈∆|VE|,1

min
λv∈∆|D(v)|,ρ̂∀v∈VE

max
α∈τ (Y,C)

G(γ,λ,α)

(3.12)

where

G(γ,λ,α) =
∑
i,Y 6=Yi

αiY −
1

2
α>

(∑
w∈VE

δw(γ,λ)κEw

)
α− 1

2
α>κTα

and

τ (Y , C) = {α ∈ Rm(nl−1) | αi,Y ≥ 0, m
∑
Y 6=Yi

αiY
∆(Y, Yi)

≤ C, ∀i, Y }

.

The kernel functions κEw and κT are those corresponding to emission kernel at node

w and the transition respectively. This is briefly discussed in the appendix section A.3.

Now, let the duality gap with (γ,λ,α) in (3.12) be given by

max
α̂∈τ (Y,C)

G(γ,λ, α̂) − min
γ̂∈∆|VE|,1

min
λ̂v∈∆|D(v)|,ρ̂∀v∈VE

G(γ̂, λ̂,α)

≤ 1

2
ΩE(fE)2 +

1

2
ΩT (fT)2 +

C

m

∑
i

ξi

−
(
min

γ̂∈∆|V|,1
min

λ̂v∈∆|D(v)|,ρ̂∀v∈VE

∑
i,Y 6=Yi

αiY −
1

2

∑
w∈VE

δw(γ,λ)α>KEwα −
1

2
α>KTα

)
From this, we can derive a sufficient condition for the reduced solution with W to

have a duality gap less than ε as,

max
u∈sources(Wc)

∑
i,Y 6=Yi

∑
j,Y ′ 6=Yj

α>WiY

li∑
p=1

lj∑
q=1

2
(∏
k∈u

ψEk(x
p
i )ψEk(x

q
j)

b2

)
(∏
k 6∈u

(
1 +

ψEk(x
p
i )ψEk(x

q
j)

(1 + b)2

))
αWjY ′

≤ ΩE(fEW)2 + ΩT (fTW)2 + 2(ε− eW)

(3.13)
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where eW = ΩE(fEW)2 + ΩT (fTW)2 + C
m

∑
i

ξi + 1
2
α>WκTαW −

∑
i,Y 6=Yi

αW iY .

If the current solution satisfies the above condition in any iteration of the active

set, the algorithm terminates; else the active set is updated by adding the nodes in

sources(Wc) which violate the condition. To solve the optimization problem efficiently,

we now derive the complete dual of (3.10) from the partial dual (3.12) as,

min
η∈∆|V|,1

g(η) (3.14)

where g(η) is defined as,

max
α∈τ (Y,C)

∑
i,Y 6=Yi

αiY −
1

2
α>κTα−

1

2

(∑
w∈V

ζw(η)(α>κEwα)ρ̄
) 1
ρ̄
,

(3.15)

and ζw(η) =
( ∑
v∈A(w)

dρvη
1−ρ
v

) 1
1−ρ and ρ̄ = ρ

2(ρ−1)
.

Since (3.14) is a 1-norm regularized problem, many of the ηs are expected to be

zero at optimality. A zero value for η at node v makes the weights ζw(η) of all of v’s

descendant nodes w to be equal to zero and essentially discourages selection of kernels

near the bottom of the lattice. It can be shown that the maximization term is similar to

a ρ̂-norm (ρ̂ = ρ
2−ρ) MKL formulation (Kloft et al. 2009). If ρ ∈ (1, 2), the kernel κw may

not be selected even in cases when ζw(η) 6= 0 (Jawanpuria et al. 2011). Therefore the

formulation ensures that large conjunctive features are not selected and that selection of

a feature does not warrant selection of its subsets.

The solution to the dual problem in (3.14) with V restricted to the active setW gives

the solution to the restricted primal problem given in (3.11). The active set algorithm,

adapted from Jawanpuria et al. (2011), is briefly outlined in Figure 3.310. It starts with

the top nodes in the lattice and iteratively adds new nodes that violate the sufficiency

condition. The algorithm terminates when no new nodes violate the sufficiency condi-

tion. Parameters are updated in each step of the active set by solving (3.14). We follow

the mirror descent (Ben-Tal & Nemirovskiaei 2001) approach to solve (3.14) as done by

Jawanpuria et al. (2011).

10Although, the derivations and procedures in this work and that in Jawanpuria et al. (2011) are

different, the structure of active set algorithm is same. It has been included here for completion.
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Let ᾱ be the optimal solution to (3.15) with some η, then the ith sub-gradient is

computed as

(5g(η))i = − dρi η
−ρ
i

2ρ̄

(∑
w∈VE

ζw(η)(ᾱ>κEwᾱ)ρ̄
) 1
ρ̄
−1( ∑

w∈D(i)

ζw(η)ρ(ᾱ>κEwᾱ)ρ̄
)

(3.16)

To compute the gradient, ᾱ is to be obtained by solving (3.15) using the cutting

plane method. The cutting plane algorithm, adapted from Tsochantaridis et al. (2004),

is outlined in Figure 3.411. The algorithm starts with no constraints for (3.11) and in

each step, adds a constraint that most violates the margin. The dual problem (3.15) is

then solved and the process is continued. The algorithm stops when there are no more

margin violations. We develop a modified version of Viterbi algoithm (Forney 1973) to

add constraints in each iteration of the cutting plane algorithm (Inference for predicting

the label sequence for test data is also performed in a similar way). Derivations in detail

are explained in Appendix section A.4.

In this section, we derived an approach that discovers an optimal set of discriminative

features from the feature space of emission features. We use the active set algorithm to

handle exponential feature space. Each active set iteration solves the dual formulation

using mirror descent algorithm. The subproblem in the mirror descent step is solved

efficiently by a cutting plane algorithm that handles the exponential constraint space.

In general, StructHKL can be used in structured output classification problems to learn

from complex feature spaces that can be ordered as a directed acyclic graph and where

the summation of descendant kernels can be computed in polynomial time in the number

of basic inputs (Bach 2009). We briefly discuss the possibility of learning SCs using

StructHKL.

An SC is defined as a conjunction of basic boolean inputs at any single sequence

position. The space of conjunctions can be ordered in the form of a partial order, with an

empty node as the top node and the conjunction of all basic inputs as the bottom node.

This space of features is similar to the space explored by Jawanpuria et al. (2011), but

for a different problem setting. While Jawanpuria et al. (2011) explored this space in a

binary classification setting, we explore this space (we have this ordering for each label)

11Although, the derivations and procedures in this thesis and that in Tsochantaridis et al. (2004) are

different, the structure of cutting plane algorithm is the same. It has been included here for completion.
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Input: Training data D, Oracle for computing kernels, Maximum tolerance ε

1. Initialize W = Top nodes in the lattice as the active set

2. Compute η,α by solving (3.14) using mirror descent

3. while sufficiency condition is not satisfied, do

4. Add sufficiency condition violating nodes to active set W

5. Recompute η,α by solving (3.14)

6. end while

7. Output: Active-set W ,η,α

Figure 3.3: Active set algorithm for solving StructHKL.

Input: kernels, C, εmargin

1. Si ← φ ∀i = 1, ...,m

2. repeat

3. for i = 1, ...,m do

4. Define H(Y ) ≡
[
1− 〈f , ψδi (Y )〉

]
∆(Yi, Y )

5. Compute Ŷ = arg max
Y ∈Y

H(Y ).

6. Compute ξi = max{0,max
Y ∈Si

H(Y )}.

7. if H(Ŷ ) > ξi + εmargin, then

8. Si ← Si
⋃
{Ŷ }.

9. α← optimize dual over S, S =
⋃
i Si.

10. end if

11. end for

12.until no Si has changed during the iteration.

Figure 3.4: Cutting plane algorithm for solving dual with a fixed η.

in a multi-class structured output classification setting. In the case of SCs, the kernel κv

at node v for sequence positions p and q (of examples i and j respectively) κv(x
p
i , x

q
j) is

the kernel induced by the vth conjunction in the partial order evaluated at the pth and

qth positions of examples i and j respectively. Therefore, κv(x
p
i , x

q
j) is the product of vth

conjunction evaluated at (i, p) and (j, q), which is equal to the product of basic boolean

inputs in v evaluated at (i, p) and (j, q). As in (Jawanpuria et al. 2011), for a sub-space

formed by descendants of a node in the ordering, this sum of products can be written as
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products of sums. For instance,
∑
v∈V

κv(x
p
i , x

q
j) =

∏
k∈B

(1 + ψk(x
p
i )ψk(x

q
j)), where B is the

set of nodes in level 1 (basic inputs). Therefore, StructHKL can be employed to discover

SCs efficiently. We now look into the category of complex relational features that capture

sequential information among input variables to build efficient sequence labeling models.

3.5 Learning Complex Relational Features for Sequence

Labeling

Our objective is to learn complex relational features (CF), that are derived from inputs at

different relative positions. TildeCRF (Gutmann & Kersting 2006) is an existing approach

that explores such feature space, using relational regression trees. However the approach

pursued is greedy. Here we look into the possibility of leveraging optimal feature learning

approaches to explore such feature space.

Although, the StructHKL algorithm optimally solves the objective of learning the

most discriminative SCs for sequence labeling, its applicability in learning complex rela-

tional features, that are derived from inputs at different relative positions, is non-trivial

and challenging. In section 3.2, we have identified CFs as powerful set of features that

capture relationships among inputs at multiple sequence positions. Composite Features

(CF ) are particularly interesting in our case, because they capture most of the seman-

tics of definite clauses and do not allow clauses that are not complete in its meaning.

For instance, the example clause 4 in section 3.2 does not give any information about

the newly introduced time variable T2, and thus is not a CF . In section 3.2, we have

proved that composite features (CF ) can be constructed from absolute features (AF )

with unary/multiple conjunctions without unifications and that AF s can be constructed

from primary features (PF ) with unifications. Therefore, the space of CF s can be defined

as a partial order over PF s with unifications and conjunctions. However, since CFs (and

AFs) share local variables across predicates in the condition part and the refinement of

such a clause is performed by operators such as unification and anti-unification, Struc-

tHKL cannot be applied to learn CFs (and AFs). It is easy to observe that, if AFs can

be constructed by other approaches, StructHKL can be employed to efficiently construct

CFs from AFs. We identify two possibilities to meet this objective, viz. (i) enumerating

AFs and discovering their useful compositions (CF) using StructHKL or (ii) developing
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methods to learn optimal AFs (or CFs directly). We now study the former choice of

constructing CFs from a set of enumerated AFs.

3.5.1 Constructing Composite Features from Enumerated

Absolute Features

Since the ordering of CFs is based on complex refinement operators such as unification

and anti-unification, the ordering does not comply with the requirement of StructHKL

that the summation over descendant kernels should be able to be computed in polynomial

time. Therefore, as CFs are conjunctions of AFs, we enumerate all AFs and construct

an ordering of their conjunctions. Considering AFs as individual basic features (features

at level 1), the new setting can be viewed as the projection of CFs into the space of SCs.

StructHKL can be employed to discover CFs from this new ordering.

The space of AFs is prohibitively large and therefore it is not feasible to enumerate

all AFs in a domain. We therefore, propose to selectively enumerate AFs based on

some relevance criteria such as support of the AF in the training set. We define an

AF as strongly relevant if it helps the classification model to discern classes optimally.

On the other hand, we consider a feature to be weakly relevant if it covers at-least a

threshold percentage of examples. Since discovering strongly relevant AFs is a hard task,

we discover weakly relevant AFs using Inductive Logic Programming tools (Dehaspe &

Toivonen 1999, Dehaspe & Toironen 2000). Once a set of relevant AFs are enumerated,

StructHKL can be employed to learn useful compositions of AFs and their parameters

to get the final model. We now discuss leveraging relational kernels to implicitly learn

relational features efficiently.

3.5.2 Leveraging Complex Relational Kernels for Sequence

Labeling

As discussed in the previous subsection, since the partial ordering of AFs does not com-

ply with the requirements of StructHKL, it is not feasible to leverage StructHKL for

learning features in the space of AFs (and its super-space of CFs). For this reason, in

the sequence labeling model, we leverage a relational kernel that computes the similarity

between instances in an implicit feature space of CFs. To this end, we employ the rela-

tional subsequence kernel (Bunescu & Mooney 2006) at each sequence position (over a
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time window of inputs around the pivot position) for the classification model. We now

briefly discuss about the relational subsequence kernels in the following paragraph.

Relational subsequence kernels have been used to extract relations between entities

in natural language text (Bunescu & Mooney 2006), where the relations are between

protein names in biomedical texts. The features are (possibly non-contiguous) sequences

of word and word classes anchored by the protein names at their ends. They extend the

string kernels (Lodhi et al. 2002) for this task.

We have defined CFs as features that capture the subset of features at the current

position as well as its relative positions. To implicitly capture this feature space, we

employ a relational subsequence kernel at each position of the input sequence, with the

current position as the pivot position. Suppose we consider an input xpi at position p for

example i. Let the previous k positions relative to p have inputs xp−1
i , . . .xp−ki and next

l positions relative to p have inputs xp+1
i , . . .xp+li . Let there be N basic features at a

time-step t denoted by x1t . . . xN
t12. Essentially our sequence for the particular time-step

pivoted at p denoted by Qp is as follows :

Qp = {x1
p−k

, . . . xN
p−k

}, . . . , {x1
p−1

, . . . xN
p−1

}, {x1
p

, . . . xN
p

}, {x1
p+1

, . . . xN
p+1

} . . . {x1
p+l

, . . . xN
p+l

}

Given two sequences Qp and Qq, we define the relational subsequence kernel

SSK(Qp, Qq) as elaborated in (Bunescu & Mooney 2006). This kernel will implicitly

enumerate all possible common subsequences between Qp and Qq. We now show that

the feature space of CFs are indeed that captured by our relational subsequence kernel.

Claim 7. Relational subsequence kernels implicitly enumerate all the features in the

feature space defined by Composite Features (CF) given a constant context window.

Proof. By definition the relational subsequence kernel SSK(Qp, Qq) will implicitly enu-

merate all possible common subsequences between Qp and Qq. CFs are conjunctions of

features in the present time-step with features present in time-steps before and after the

current time-step. Since we are considering all the sub-sequences in the given context

(time) window in the relational kernel, we implicitly enumerate space of CFs.

We now discuss the incorporation of relational subsequence kernels in the StructSVM

formulation.

12Ignoring the example number i for simplicity
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We define the kernel for StructSVM framework below, which represents the kernel

resulting from the difference in values for the original and the candidate sequences. This

stands for the inner product, 〈ψiδ(Y ),ψj
δ(Y

′
)〉 with ψδj (Y ) defined as ψ(Xi, Yi)−ψ(Xi, Y ).

The kernel is,

κδ
(
(Xi, Yi, Y ), (Xj, Yj, Y

′
)
)

= κδT (Yi, Y, Yj, Y
′
) + κδE

(
(Xi, Yi, Y ), (Xj, Yj, Y

′
)
)

(3.17)

where κδT (.) and κδE(.) stand for the transition and emission parts of the kernel κδ(.) and

are defined below.

κδT
(
Yi, Y, Yj, Y

′
) = κT (Yi, Yj) + κT (Y, Y

′
)− κT (Yi, Y

′
)− κT (Yj, Y ), (3.18)

κT (Yi, Yj) =

li−1∑
p=1

lj−1∑
q=1

Λ(ypi , y
q
j )Λ(yp+1

i , yq+1
j )

=

li∑
p=2

lj∑
q=2

Λ(yp−1
i , yq−1

j )Λ(ypi , y
q
j ), (3.19)

Λ(ypi , y
q
j ) = 1 if ypi = yqj ; 0 otherwise. and

κδE
(
(Xi, Yi, Y ), (Xj , Yj , Y

′
)
)

=

li∑
p=1

lj∑
q=1

κE(xpi ,x
q
j)
(

Λ(ypi , y
q
j ) + Λ(yp, y

′q)− Λ(ypi , y
′q)− Λ(yp, yqj )

)
(3.20)

Relational subsequence kernels can be employed to compute κE(xpi ,x
q
j), where the kernel

is computed from subsequences extracted from a window of sequence positions around

the positions p and q for examples i and j respectively, where p and q are pivots.

The dual of (2.2) with the new kernel can be written as,

max
α

∑
i

∑
Y ∈Si

αiY −
1

2

∑
i

∑
Y ∈Si

∑
j

∑
Y ′∈Sj

αiY αjY ′
(
κδT (Yi, Y, Yj , Y

′
) + κδE

(
(Xi, Yi, Y ), (Xj , Yj , Y

′
)
))

s.t. ∀i,∀Y ∈ Si, αiY ≥ 0

∀i, m
∑
Y ∈Si

αiY
∆(Yi, Y )

≤ C. (3.21)
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Now the margin violation cost function for a candidate output sequence Y for ex-

ample i (for the cutting plane algorithm) can be written as,

H(Y ) =
(

1− 〈ψδ
i (Y ), f〉

)
∆(Yi, Y )

. =
(

1−
∑
j

∑
y′∈Sj

αjY ′ 〈ψ
δ
i (Y ),ψδ

j(Y
′
)〉
)

∆(Yi, Y )

. =
(

1−
∑
j

∑
y′∈Sj

αjY ′κ
δ
(
(Xi, Yi, Y ), (Xj, Yj, Y

′
)
))

∆(Yi, Y ) (3.22)

where Sj is the active constraint set for example j.

The dual objective and the margin violation cost function can be plugged into the

cutting plane algorithm to solve the objective. While this way of modeling does not

result in interpretability, relational subsequence kernels do efficiently capture the relational

sequential information on the inputs.

Although the main contribution of the thesis is feature learning for sequence la-

beling, we have also contributed in two related problem domains, that is, satisfiability

based inference in probabilistic first order logical systems and dimensionality reduction

in classification settings, which we discuss in the following chapters. The next chapter

discusses our efficient search space reduction in satisfiability checking for inference in first

order systems.
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Chapter 4

Pruning Search Space for Weighted First Order Horn

Clause Satisfiability

We have discussed our feature induction techniques in Chapter 3. In this chapter, we dis-

cuss our contribution in another area, that is, satisfiability based inference in probabilistic

first order settings.

Inference in sequence labeling requires assigning a label to each observation instance

in the sequence. As observations at successive time instances are related, it is intuitive

that assigning labels to all instances at once yields better solutions. Globally assigning

labels to all the instances is selecting a solution (a sequence of labels) from an exponential

number of possible solutions (for a sequence of length T with n possible labels for each time

step, there are nT possible solutions), which is a difficult task. The problem could be more

complex in first order settings, where models can have a complex first order structure, a

huge set of groundings, and the like. If it is feasible to ground all the variables, this can

be solved in polynomial time using a dynamic programming algorithm called the Viterbi

algorithm (Forney 1973). In all other cases (sequence labeling or general), we derive a

Satisfiability approach for fast and memory efficient inference1. In our implementation

for sequence labeling, we employ the Viterbi algorithm for predicting the actual sequence

of labels. We first explain the background of our work in the following section.

4.1 Background

Representing sets of objects and their relationships in a compact form has been the focus

of researchers for more than a decade. Weighted first order formulas proved to be one

1Since we could not find such a sequence labeling data to demonstrate the validity of our approach,

we present our work in a general setting
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such representation also allowing inference and learning in a structured way. Satisfiability

testing is one of the techniques for inference in these sets of formulas. We summarize

some of the works that addressed the problem of satisfiability, in the next paragraph.

Traditional SAT solvers in propositional logic try to find an assignment for all the

literals that makes all the clauses true. They return a model if it exists or return unsatisfi-

able. SAT solvers such as DPLL (Davis et al. 1962) give exact solutions but employ back-

tracking and take exponential time in the worst case. Local search methods for satisfying

the maximum number of clauses (Max-SAT) have been implemented in GSAT (Selman

et al. 1992), WalkSAT (Selman et al. 1993) etc.. As there could be many contradictions

in real world, it is better to perform weighted satisfiability. Weighted Max-SAT problems

assign weights to the clauses and aim to minimize the sum of the weights of unsatisfied

clauses. MiniMaxSAT (Heras et al. 2008) uses a depth-first branch-and-bound search

approach for satisfiability.

Satisfiability of first order logic (universally quantified Conjunctive Normal Form

(CNF)) can be done by grounding all the clauses (exponential memory cost) and then

running satisfiability as in a propositional case. Since, many learning techniques require

the repeated use of inference and satisfiability, a complete grounding of the clauses be-

comes a bottle neck. Weighted satisfiability solvers are used for MPE/MAP inference

in relational domains (Richardson & Domingos 2006). However, the complete grounding

issue remained unsolved. A LazySAT approach (Singla & Domingos 2006) that does not

ground all clauses was proposed for satisfiability in domains where a majority of ground

atoms are false. Their approach, a variation of MaxWalkSAT, keeps track of all the clauses

that can be affected when a literal in an unsatisfied clause is flipped2. Recently, in (Shav-

lik & Natarajan 2009), the ground clauses that are satisfied by the evidence are excluded.

2In lazySAT, the unsatisfied clauses are obtained by simply going through each possible grounding of

all the first order clauses and materializing the groundings that are unsatisfied. In contast, our approach

grounds clauses that have a potential to be unsatisfied. As we have restricted our case to horn clauses

(where all clauses are satisfied if all atoms are false), we can explore the search space in a directed way.

In contrast to LazySAT and walkSAT, we get an initial truth assignment in the end of pruning, which

is very close to the final solution. Our approach is different from lazySAT, also in the sense that, we

ground all relevant clauses before the maxWalkSAT step. The LazySAT paper reports running time for

LazySAT that is comparable with maxWalkSAT. Whereas, our approach converges much quicker than

maxWalkSAT.
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The approach, which depends only on the evidence set, processes each clause indepen-

dently and does not find the dependent clauses transitively. Mihalkova & Richardson

(2009) cluster query literals and perform inference for cluster representatives. Queries are

clustered by computing signatures using a recursive procedure based on adjacent nodes.

Inference is performed for each cluster representative by running the MaxWalkSAT on the

corresponding Markov Network constructed recursively. Alen Fern mentions the applica-

bility of Forward Chaining in horn clauses (Fern 2009) but has not given any algorithm

or proof for doing so. In the case of contradicting clauses, it is not straight forward to do

forward chaining. We state the objective of our work in the next paragraphs.

We address the issue of complete grounding by restricting our domain to first order

horn clauses and pruning the search space for satisfiability. Our approach caters to several

real world applications that use the horn clausal language. We formally discuss our

approach in the next section.

4.2 Satisfiability in Horn Clauses

The objective of Satisfiability checking is to find an interpretation that makes all (or

maximum number of) the clauses in a system to be true. In horn clauses, if a set of

horn clauses are fully satisfiable, then a minimal model can be found using TΣ operator

(referred to as the immediate consequence operator TP in (Hogger 1990)) in polynomial

time. However weighted unsatisfiable problems require to find the most likely state based

on the weights. We propose an extension to the minimal model approach in which we

find (i) the relevant set of ground horn clauses which has the potential to be part of a

contradiction and (ii) an interpretation close to the result. The MaxSAT algorithm can

be used on this subset of clauses, (optionally) starting from the interpretation returned,

to get the most likely state. We also prove that the local search for optimality in the

pruned space cannot affect the satisfiability of the rest of the clauses. We first give the

intuition for our approach before going into the details.

If any of the atoms in the body part of a horn clause is false, then the clause is

satisfied because of its inherent structure of containing one positive atom at the most,

while all others are negative. The groundings of a set of first order horn clauses (Σ) with

all the constants give a large set in which majority of the atoms are false in the real

world. This makes a large subset of these clauses satisfied by default. We can neglect
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these clauses and restrict our attention to the clauses that have a potential to be a part

of a contradiction. We call this set, the relevant set (RS).

We propose an algorithm, Modified TΣ, to identify the relevant set along with the

truth assignments that are almost close to the result. A local search for optimality can

be done on this set, starting with the interpretation returned, rather than considering the

huge set of clauses and arbitrary truth assignments. Next, we explain TΣ before going to

the Modified version.

4.2.1 TΣ Operator

TΣ Operator provides a procedure to generate an interpretation from another. It builds

on the concept that for satisfiability in horn clauses, all the unit clauses should be True

and if the body of a clause is True, then the head should also be True. Let Ik be the

interpretation at the kth step of the operation. Then,

Ik+1 = Ik ∪ TΣ(Ik) (4.1)

where, TΣ(I) = {A : A← body ∈ Σ and body ⊆ I} (4.2)

If we start with I = ∅, and iteratively apply the above function assignment (with respect

to the set of clauses), we will eventually converge at an interpretation that is the minimal

model of the formulae if one exists. If there is no model for this set, the operation will

reach a contradiction and will return Unsatisfiable.

In weighted satisfiability problems, if the given set is unsatisfiable, we need to get

a most likely state based on the weights. MaxSAT algorithms can do this optimization.

Since applying MaxSAT to the complete groundings is expensive, we improve the above

method to prune the search space for MaxSAT. The Modified TΣ Step described in the

next section helps us to prune the search space.

4.2.2 Modified TΣ Step

The Modified TΣ operation returns a model, if one exists; Otherwise, it returns the set

of clauses to be used by a local search algorithm and an initial interpretation for the local

search. The method is outlined in Figure 4.1 and is explained below.

Start with applying TΣ to the set of ground clauses until it converges in a model or

some contradiction is attained. In the former case, we can stop and return the current
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interpretation as the solution. If we land up in a contradiction, we get an atom whose

truth value determines the set of clauses satisfied. We assign true to the atom and proceed

further till no more clauses can be visited. All the clauses discovered by Modified TΣ

irrespective of whether satisfied or not form the relevant set. The interpretation which is

obtained at the end of the algorithm can optionally be used as an initial truth assignment

for the optimization step. Note that the truth values for evidences given are always true

and cannot be changed.

Any Weighted satisfiability algorithm can be applied on the Relevant Set of clauses

and the (optional) initial truth values to get a minimum cost interpretation. We now

discuss the weighted satisfiability approach using Modified TΣ.

4.3 Modified Weighted SAT

In the new approach, the Modified TΣ operation is used to find the relevant subset as

well as an initial truth assignment. Then, the weighted MaxSAT version presented in

Figure 4.2 is used. Figure 4.3 shows the overall algorithm.

Lemma 4.1. All the unsatisfied clauses will be in RS.

Proof. A horn clause c′ is unsatisfied if c′.body ⊆ {TS ∪DB} and c′.head /∈ {TS ∪DB}.

Step 6 in Modified TΣ adds all clauses c′ of the form (c′.head∨¬True) to RS irrespective

of whether it is satisfied or not. Step 17 in Modified TΣ adds all clauses c′ where c′.body ⊆

{TS ∪DB}. This covers both the cases of c′.head is True and c′.head is False. All other

clauses c′′ where c′′.body * {TS ∪ DB} are satisfied by default. So set of unsatisfied

clauses is a subset of RS.

Lemma 4.2. Any flip done in any maxSAT step to make an unsatisfied clause satisfiable

only affects the satisfiability of clauses in RS.

Proof. Let us prove this by contradiction.

Suppose a clause, c′ = (l1∨¬l2∨¬l3∨· · ·∨¬ln) is not satisfied by the current assignments in

{TS∪DB}. This happens only when l1 /∈ {TS∪DB} and ∀i = 2 . . . n li ∈ {TS∪DB}.

To make c′ satisfied, there are two cases. case 1: flip l1, case 2: flip any of l2, l3, . . . , ln.

case 1: Flip l1 (False to True). Assume that flipping l1 will affect the state of a clause

c′′ /∈ RS. Since c′′ /∈ RS, c′′.body * {TS ∪ DB}. Otherwise step 17 in Modified TΣ
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Input: Σ, the set of first order clauses with weights; DB, evidence set given.

Output: RS, the set of clauses to be considered for optimization; TS, truth assignments

of all atoms in RS except those in DB.

1. TS := ∅

2. RS := ∅

3. for each unit clause c in Σ do

4. for each grounding c′ of c do

5. if c′ /∈ RS then

6. Add c′ to RS

7. end if

8. if c′.head /∈ {TS ∪ DB} then

9. Add c′.head to TS

10. end if

11. end for

12. end for

13. repeat

14. for each non unit clause c in Σ do

15. for each grounding c′ of c where c′.body ⊆ {TS ∪ DB} do

16. if c′ /∈ RS then

17. Add c′ to RS

18. end if

19. if c′.head /∈ {TS ∪ DB} then

20. Add c′.head to TS

21. end if

22. end for

23. end for

24. Until no new clauses are added to the set RS

25. Return {RS, TS}

Figure 4.1: Modified TΣ algorithm

would have covered c′′ and it would have been in RS. Also all the unit clauses are covered

by step 6 in Modified TΣ.

61



Now let c′′.head = l1. Since flipping c′′.head to True changes the state of c′′, c′′.body ⊆

{TS ∪DB}. If this is the case, c′′ should have been covered by step 17 in Modified TΣ

and would have been in RS. Hence the assumption that c′′ /∈ RS is wrong.

Now let l1 ∈ c′′.body and flipping it to True changes the state of c′′. Then c′′.body \ l1 ⊆

{TS ∪DB}. But applying our approach to c′ would have made l1 ∈ TS and transitively

c′′.body ⊆ {TS ∪DB} and c′′ ∈ RS. Hence the assumption that c′′ /∈ RS is wrong.

case 2: Flip any li ∈ {l2, l3, . . . , ln} (True to False). Assume that flipping li will affect

the state of a clause c′′ /∈ RS. Since c′′ /∈ RS, c′′.body * {TS ∪DB}. Otherwise step 17

in Modified TΣ would have covered c′′ and it would have been in RS. Also all the unit

clauses are covered by step 6 in Modified TΣ.

Now let c′′.head = li. Since flipping c′′.head to False changes the state of c′′, c′′.body ⊆

{TS ∪DB}. If this is the case, c′′ should have been covered by step 17 in Modified TΣ

and would have been in RS. Hence the assumption that c′′ /∈ RS is wrong.

Now let li ∈ c′′.body and flipping it to False changes the sate of c′′. Then before flipping,

c′′.body ⊆ {TS ∪ DB} which must have been covered by step 17 in Modified TΣ and

c′′ ∈ RS. Hence the assumption that c′′ /∈ RS is wrong.

Lemma 4.3. If α is the cost of an optimal solution to RS, then α is the cost of an optimal

solution to Σ

Proof. let µ and µ̂ be the cost of optimal solutions to Σ and RS respectively. That is µ

should be the sum of costs of RS and Σ \ RS. Increase in cost occurs only because of

contradictions and this is in the set RS (proved in claim 1). The best possible solution to

the non contradicting part is zero. We get a minimum cost solution for the RS part using

MaxSAT and any modification to that can result in (proved in claim 2 that this doesn’t

affect Σ \RS) an increase in cost only in RS. Therefore µ = 0 + µ̂ and thus µ = µ̂.

Our approach has some similarities to the LazySAT approach (Singla & Domingos

2006) that adds clauses to the active set lazily (as and when required) in a general Markov

Logic Network framework. LazySAT, a variation of WalkSAT, keeps track of all the clauses

that can be affected when a literal is flipped. In lazySAT, unsatisfied clauses are selected

by going through all possible groundings and adding those groundings that are unsatisfied.

In contrast, our approach grounds clauses that have the potential to be unsatisfied, and

does not require to go through all possible groundings. As we have restricted our case to
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Input: Σg, all grounded clauses with weights; TS, initial truth assignment; DB, the

evidence given; target, the upper bound of cost.

Output: TS, An interpretation that is the best solution found.

1. atms := atoms in Σg

2. repeat

3. cost := sum of weights of unsatisfied clauses

4. if cost ≤ target

5. Return Success, TS

6. end if

7. c := a randomly chosen unsatisfied clause

8. for each atom a ∈ c and a /∈ DB do

9. compute DeltaCost(a), the cost incurred if a is flipped

10. end for

11. af := a with lowest DeltaCost(a)

12. TS := TS with af flipped

13. cost := cost + DeltaCost(af )

14.until the cost is no more decreasing

15.Return Failure, TS

Figure 4.2: Modified Weighted MaxSAT algorithm

horn clauses (where all clauses are satisfied when all atoms are false), we can explore the

search space in a more directed way. In contrast to LazySAT and walkSAT, we get an

initial truth assignment at the end of pruning, which is very close to the final solution. Our

approach takes less time for pruning and the walkSAT step. HornSAT is different from

lazySAT, also in the sense that, we ground all relevant clauses before the maxWalkSAT

step.

In the next chapter, we discuss our second related contribution, the integrated non-

parametric dimensionality reduction approach.
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Input: Σ, the set of first order clauses with weights; DB, evidence set given; target,

maximum cost expected for the optimization step if required.

Output: TS, An interpretation when combined with DB gives the (local) optimum

solution.

1. {RS, TS} := Modified TΣ(Σ, DB)

2. if {TS ∪ DB} is a model for Σ then

3. Return TS

4. else

5. TS := Modified Weighted MaxSAT(RS, TS, DB, target )

6. end if

7. Return TS

Figure 4.3: Weighted HornSAT algorithm
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Chapter 5

Optimally Extracting Discriminative Disjunctive

Features for Dimensionality Reduction

In this chapter, we discuss our contribution in a related area, that is, integrated non-

parametric dimensionality reduction using hierarchical kernel learning.

Many classification and regression settings have redundant and irrelevant data,

which could negatively impact the efficiency of models learned. Therefore, dimension-

ality reduction is a relevant area of research in machine learning applications. This is also

true in case of sequence labeling. In chapter 3, we have discussed our feature induction

approaches, that discard irrelevant inputs and construct higher order features from rele-

vant basic inputs. However, our main objective in that chapter was to construct higher

order features. In this chapter, we extend hierarchical kernel learning in the domain of

dimensionality reduction. Here, we discuss the problem and solution in general classifica-

tion settings, which can be extended to sequential domains. However, since, we could not

find good sequential data (large number of inputs that have the curse of dimension) to

validate our approach, we limit our discussion to binary classification settings. We now

give a brief introduction to dimensionality reduction approaches.

Several real world applications domains are characterized by a large set of features

containing a non-trivial amount of redundant and irrelevant information. Therefore, using

the entire feature space often leads to over-fitting and therefore less effective classifier

models. To alleviate this problem, significant research has been invested in pre-processing

approaches to reduce dimensionality of the data, either by selecting a subset of features

or by projecting the features onto a smaller space. Most of these approaches suffer from

the drawback that the dimensionality reduction objective and the objective for classifier

training are decoupled (the two tasks are performed one after the other) and often, the
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approach for dimensionality reduction is greedy. Recently, there have been some efforts

to address the two tasks in a combined manner by attempting to solve an upper-bound

to a single objective function (Zhu et al. 2010),(Xu 2010). However, the main drawback

of these methods is that they are all parametric, in the sense that the number of reduced

dimensions needs to be provided as an input to the system. Assuming that all the input

features have been transformed into Boolean features, we propose an integrated non-

parametric learning approach to supervised dimensionality reduction by exploring a search

space of all possible disjunctions of features1 and discovering a sparse subset of disjunctions

that minimize a regularized loss function. For datasets with nominal features, it is quite

natural to consider disjunctions (or sets of synonymous features) as dimensions. Here, in

order to discover good disjunctive features, we employ algorithms from hierarchical kernel

learning to achieve simultaneously, efficient feature selection and optimal classifier training

in a maximum margin framework. We demonstrate the effectiveness of our proposed

method by evaluating on bench-mark datasets.

5.1 Introduction

In building machine learning models using features, it may happen that several features

might be either irrelevant or contain redundant information, which could befuddle the

model learner or lead to over-fitting and consequently, a less effective model. Therefore, a

small set of relevant and non-redundant features that effectively discern classes is desired.

Identifying the best feature subspace for classification comes under the broad area of

dimensionality reduction (DR) techniques, which can be divided into methods for feature

subset selection and methods for feature extraction.

Feature subset selection (FSS) is the process of selecting a subset of features that

embodies relevant and non-redundant information for use in model construction. Some

approaches like Relief (Kira & Rendell 1992), FOCUS (Almuallim & Dietterich 1991)

and wrapper methods (Kohavi & John 1997) select the subset of features (often greedily)

based on some local relevance criteria such as information gain (Hall 1998), or chi-squared

test (Jin et al. 2006), etc., or some global objective such as the L1 norm in an SVM

classifier. Sparse SVM (Tan et al. 2010) is one recent approach that selects a sparse subset

1Disjunctions effectively capture the information contained in statistically synonymous basic features.

Moreover, disjunctions are tractable.
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of features efficiently by posing L0 norm objective as a mixed integer programming and

employing a cutting plane algorithm combined with multiple kernel learning to solve a

convex relaxation of the objective. Another recent feature selection approach is the one

that is proposed by Zhai et al. (2012), where feature groups that have high correlation

are identified from high dimensional data. Their approach performs embedded feature

selection by encoding correlation measures as constraints and solves the problem using a

cutting plane method. Both these approaches optimize feature selection and classification

objectives simultaneously. We now discuss the background for feature extraction, which

is the main focus of this chapter.

On the other hand, feature extraction approaches attempt to discover a lower-

dimensional embedding of the feature space that will approximately retain the statis-

tical relation between the instances and the class label as in the original space. Any

approach for dimensionality reduction can be adjudged parametric or non-parametric re-

spectively depending on whether the number of reduced dimensions of the embedding is

considered as an input parameter or whether it is estimated within the approach. Fur-

ther, each line of work can be classified as supervised, weakly-supervised or unsupervised.

Unsupervised parametric methods include projective methods like Principal Component

Analysis (PCA) (Jolliffe 1986a), Kernel PCA (Schölkopf et al. 1997) and its variants,

manifold methods like Multi-Dimensional Scaling (Cox & Cox 2001), Laplacian Eigen-

Maps (Belkin & Niyogi 2002), discriminant analysis techniques such as Linear Discrim-

inant Analysis (Ye & Ji n.d.), Kernel Discriminant Analysis (Mika et al. 1999), Hybrid

Discriminant Analysis (Yu et al. 2007) (a combination of Principal Component Analysis

and Linear Discriminant Analysis which is claimed to lead to more robust models), and

Continuous Latent Variable methods like Latent Semantic Indexing, Probabilistic Latent

Semantic Indexing (Hofmann 1999), Latent Dirichlet Allocation (Blei, Ng & Jordan 2003).

Motivated by the use of dimensionality reduction techniques in predictive learning

problems, there has been considerable amount of work on adapting these methods in

supervised or weakly-supervised settings by exploiting some user provided supervision

or incorporating prior background knowledge. Some of the natural extensions of unsu-

pervised dimensionality reduction techniques in this regard are those of supervised and

semi-supervised versions of PCA, multidimensional scaling, self-organizing map and lapla-

cian Eigen-map. More specifically, supervised latent variable models include supervised
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latent dirichlet allocation (sLDA) (Blei & Mcauliffe 2007), hierarchical supervised LDA

(HsLDA) (Perotte et al. 2011) which extends sLDA to the case of hierarchical supervi-

sion, labeled-LDA (Ramage et al. 2009) which focuses on multi-labeled supervision for

multi-labeled collections. An Empirical comparison of HsLDA against sLDA has shown

that the former gives a better recall but at the price of poorer precision because of an

increased number of false positives (Perotte et al. 2011). There have also been a few

attempts at building a discriminative framework for supervised dimensionality reduction,

mainly driven by the observation that the parameter estimates obtained in the para-

metric generative counterparts that employ maximum likelihood or Bayesian posterior

inference do not necessarily lead to optimum models for predictive tasks, for example,

discLDA (Lacoste-Julien et al. 2008) and Kernel Dimension Reduction (Fukumizu et al.

2003). Some of these methods make assumptions which may not be appropriate in reality.

For example sLDA assumes a normal distribution for the response variable and further

assumes it to be linearly dependent on its empirical mixture proportions. On the other

hand, discLDA assumes that the mixture proportions of each class after a linear trans-

formation should be close to each other. This assumption seems very restrictive and also

appears to go directly against classification requisites.

The approach generally adopted for dimensionality reduction in nonparametric set-

tings is to employ stochastic processes instead of distributions, which are flexible in the

sense of accommodating infinite number of variables and hence being able to estimate

the number of reduced dimensions implicitly. Two such stochastic variants of the un-

supervised approaches are Hierarchical Dirichlet Processes (HDP) (Teh et al. 2004) and

hierarchical LDA (Blei, Griffiths, Jordan & Tenenbaum 2003) that use nested Chinese

Restaurant Processes. Both these approaches assume that the data has a hierarchical

structure to it. Other than this, there have been some approaches to determine the size of

learned ontologies, in the area of topic-modeling, by studying the change in average cosine

distances between topics with respect to the increase in the number of topics. Arun et al.

(2010) additionally consider information from the topic-document matrix (in contrast to

HDP which takes into account only the topic-word matrix) and propose a measure for

the estimation of the ‘correct’ number of topics based on Kullback-Leibler divergence of

the singular value distributions of these matrices. There have been some attempts at

extending these nonparametric methods to a supervised setting. For example (Xie & Pas-
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sonneau n.d.) introduces different levels of supervision to an HDP, where the supervision

itself dictates the number of topics and concentration of information within topics.

The above methods that treat dimensionality reduction as an isolated problem, allow

for the use of any classification or regression model building on the discovered subspace.

However, since dimensionality reduction and classifier training are decoupled from each

other, these approaches cannot generally guarantee optimality of feature selection with

respect to the classifier objective. There have been some attempts (Li et al. 2003) to de-

velop models that integrate dimensionality reduction with model building, and which have

shown the ability to discover predictive topic representations that are more suitable for su-

pervised prediction tasks. Maximum Entropy Discrimination Latent Dirichlet Allocation

(medLDA) (Zhu et al. 2010) is a maximum margin variant of maximum-entropy discrim-

ination LDA which integrates the maximum margin criterion with LDA by optimizing a

single objective function with a set of expected margin constraints. A more recent ap-

proach, Multi-Modal Probabilistic Latent Semantic Analysis (MMpLSA) (Xu 2010), that

evolved along the same lines, has integrated PLSA (in place of its Bayesian version LDA)

with the maximum margin criterion and has shown to perform better than its predeces-

sors (Blei & Mcauliffe 2007, Lacoste-Julien et al. 2008, Zhu et al. 2010). Further, these

studies have shown that building another classifier using the induced dimensions does not

introduce much performance gain. The main limitation of these methods is that they are

parametric – they need the number of reduced dimensions as input and have no intrinsic

mechanism for estimating this number within the system.

There has not been much discussion on the optimality of the models built subse-

quently from the reduced set of features produced by dimensionality reduction techniques.

Chechik (2008) solves the maximum margin objective in the dual but does not guarantee

optimality, while medLDA (Zhu et al. 2010) and MMpLSA (Xu 2010) have both solved

a tight bound approximation of the original objective in the interest of tractability.

5.1.1 Our Contribution

Our work falls in the league of integrated maximum margin linear dimensionality reduc-

tion approaches for model building in a supervised classification2 setting. For simplicity,

2While our approach can be very naturally extended to the regression setting by changing the loss function, we have

not empirically studied supervised dimensionality reduction for regression in this work.
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we assume that all our basic features (attributes themselves) are Boolean. For example,

the presence or absence of a word in the dictionary can be a basic Boolean feature. Nev-

ertheless, our approach can be applied to settings with nominal features by constructing

one Boolean feature for each value of the nominal feature. Similarly, a numeric attribute

can be discretized into different intervals and Boolean features be constructed for each of

these intervals.

We intend to learn fewer features that capture the redundant information present

in basic features by grouping and representing them as a single disjunctive feature. For

instance in text classification, disjunction of synonymous words can be treated as a single

feature. The disjunctive feature is relevant to the classification problem at hand if and

only if any one or more of the basic features that share same meaning are relevant. For

example, words such as beautiful and gorgeous could convey the same sense about an

entity and therefore a single feature that is a disjunction of these will be relevant if, and

only if, any one or both of them are relevant. The preferred disjunctive features should

be maximum in the sense that we try to include as many synonymous basic features as

possible and exclude any non-synonymous basic feature in a disjunction. For example,

ugly is not a synonym of beautiful and therefore we would generally not expect ugly and

beautiful to co-occur in the same disjunctive feature. Our objective is to construct an

optimal set of relevant and non-redundant features for classification, with hinge loss as

the objective. As noted above, any approach with the dimensionality reduction approach

decoupled from the classifier training has limitations in finding optimum models. In this

thesis, we propose an integrated supervised approach for dimensionality reduction in a

maximum margin framework.

To the best of our knowledge, there has not been any approach in discriminative

learning that integrates non-parametric dimensionality reduction with optimal model

building for classification. There has been some work on employing maximum margin

based nonparametric dimensionality reduction in a multi-task setting (Argyriou et al.

2007) and in the area of learning underlying shared structures amongst classes (Amit et al.

2007) in a multi-class setting. Although these methods solve their objectives optimally,

they are not directly comparable to our work, since in the case of binary classification

or 1-task case, their dimensionality reduction approach reduces to a trivial feature selec-

tion using 1-norm regularization. Our main contribution in this thesis is an integrated
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optimal and efficient classifier learning and dimensionality reduction technique based on

the Hierarchical Kernel Learning (HKL) setting (Bach 2009). Although we discuss our

approach in the context of general SVMs for binary classification, our approach can be

trivially extended to other variants. We conclude this section by briefly introducing the

hierarchical kernel learning framework.

Hierarchical kernel learning (HKL) (Bach 2009) approaches have gained interest

recently due to their ability to learn kernels in a large kernel space. Bach (2009) has

introduced HKL framework that efficiently explores an exponential kernel space where

individual kernels can be decomposed into base kernels (Bach 2009). Their approach

selects kernels from the space of all possible kernels embedded in a directed acyclic graph

using a graph based sparsity inducing norm. The complexity of HKL is polynomial in

the number of selected kernels. The regularizer used discourages complex kernels and,

thereby, helps to learn a small set of simple kernels. In this thesis, we leverage the HKL

framework to simultaneously perform dimensionality reduction and classifier training. We

prune irrelevant features and group redundant features in the form of disjunctions, which

also adds a logical significance to it. The sparsity inducing hierarchical regularizer used

in HKL selects a sparse set of non-synonymous disjunctions. From our experiments on

standard datasets, we observe that the disjunctions discovered by our method are more

refined than the topics identified by competitor methods. In the following paragraph, we

discuss the proposed approach and algorithm for learning disjunctions for dimensionality

reduction in a hierarchical kernel learning setting.

5.2 Optimal Non-Parametric Max Margin Dimensionality

Reduction

We now formally define our problem of simultaneously performing dimensionality reduc-

tion and classifier training and present an efficient polynomial time algorithm to solve

the objective optimally. We consider features that do not discern classes as irrelevant

and therefore can be discarded. For example, in sentiment classification, a set of similar-

meaning words such as method, algorithm, and others might not help in discerning classes

and can be omitted. On the other hand, multiple features capturing the same information

(synonyms) are redundant and might result in an ineffective classifier. For example, words
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such as beautiful, exquisite, gorgeous, charming, and the like, capture similar information

about the entity being discussed and should probably be clubbed together in the same

dimension.

For effectively capturing the meaning of a group of synonymous basic features with-

out redundancy, we explore the space of disjunctive features that are disjunctions (∨)

of basic features. For instance, in document classification, synonymous words beautiful,

exquisite, and gorgeous can be used to construct a disjunctive feature and the feature is

instantiated when any one or more of the component features are active. We refer to

such features as DisjunctProjs (Disjunctive Projections).The space of all possible Dis-

junctProjs can be visualized as a lattice, with a structure similar to the subset lattice,

where the top node is the empty node, the nodes at the next level are the individual basic

features and so on. The bottom node in the lattice is the disjunction of all the basic

features. Upward and downward refinements of a node can be defined in terms of deletion

or addition of a basic feature from or to the node respectively.

We aim at automatically selecting good maximal DisjunctProjs from the ordering.

A good DisjunctProj is a disjunction which does not contain any statistically different

feature. A maximal DisjunctProj is a disjunction of the maximum number of basic features

capturing (statistically) similar information about the classes being discriminated against

each other. Therefore, a good and maximal DisjunctProj corresponds to a disjunction of

synonymous basic features in which no more basic features can be added without affecting

its meaning. With this understanding, if a DisjunctProj is not effective for classification,

we assume that the feature will not become more effective by the addition of a new basic

feature to the disjunction. For example, if beautiful ∨ ugly is not good, then beautiful

∨ ugly ∨ gorgeous may not be good in general. Therefore, in the ordering, if a node

is not selected, we expect that none of its descendants be selected either. Now let us

assume that we have a good DisjunctProj in the form of beautiful ∨ exquisite ∨ gorgeous.

This is maximal if adding a new word to the disjunction results in a bad DisjunctProj

for classification. Therefore, if ugly is added, in the new DisjunctProj formed by this

addition, ugly can be considered as noise. Next, we formally define our problem.
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5.2.1 Formal Specification of the Problem

We pose our requirement as a maximum margin optimization problem which is expected

to select a sparse set of good DisjunctProjs from the ordering and learn their optimal

feature weights simultaneously. Let each element of vector ψ corresponds to a node in

the disjunction lattice and f the corresponding weights. Let V be the set of indices to the

nodes in the lattice. A node ψv(.) in the ordering is a disjunction of a set of basic features

and can be represented as ∨v̂∈v ψv̂(.), where v̂ stands for a basic feature present in v.

To select a sparse set of DisjunctProjs from the exponential feature space, we em-

ploy a hierarchical regularizer on the exponential feature space and present the SVM

formulation for binary classification as,

min
f ,b,ξ

1

2

(∑
v∈V

dv ‖ fD(v) ‖ρ
)2

+ C 1>ξ (5.1)

s.t. ∀i : yi

(∑
v∈V

〈fv, ψv(xi)〉 − b
)
≥ 1− ξi, ξ ≥ 0

where fD(v) is the vector of feature weights corresponding to the elements in the de-

scendant nodes D(v) of node v including the node v itself, ρ ∈ (1, 2], dv is the prior

parameter that can be interpreted as the usefulness of node v, C is the regularization

parameter, ξi is the slackness in the margin for ith example, xi is the input vector of

dimension N (where N is the number of basic features) corresponding to the ith example,

yi ∈ {0, 1} is the predicted output value of the ith example, b is the bias term, fv is the

feature weight corresponding to vth node and ψv(xi) is the truth value of vth node for

the ith training example. To discourage very large and potentially ineffective Disjunct-

Projs, we define dv as β|v|−k, where β and k are some parameterized constants and |v|

is the size of the node v. Many of ‖ fD(v) ‖ρ are expected to be zero due to the 1-norm

which will force fu, ∀u ∈ D(v), to reduce to zeros. This effectively discourages selection of

large number DisjunctProjs. Additionally, as illustrated by Szafranski & Rakotomamonjy

(2008), ρ-norm, where ρ ∈ (1, 2], induces further sparsity among the nodes. Therefore,

for ‖ fD(v) ‖ρ that are not reduced to zero by 1-norm, the ρ-norm forces many of the

descendants of node v to zero and thus ensures a sparse solution.

The kernel for a node v can be defined as, Kv(xi,xj) = 〈ψv(xi), ψv(xj)〉 = (1 −∏
v̂∈v ψv̂(xi))(1 −

∏
v̂∈v ψv̂(xj)) This enables the sum of the kernels over a sub-lattice V
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to be computed efficiently. For instance, the sum of kernels over the entire lattice is,∑
v∈V

Kv(xi,xj) = 2N +
N∏
l=1

(1 + ψl(xi)ψl(xj)) −
N∏
l=1

(1 + ψl(xi)) −
N∏
l=1

(1 + ψl(xj)). This is

consistent with the requirement of polynomial time summability of descendant kernels in

HKL (Bach 2009) and thus the active set algorithm can be employed to iteratively select

a sparse set of features, since the optimality condition check (which has been discussed

afterwards) in it culminates into a more efficient computation with the exponential number

of summations being reduced to polynomial number of products.

We now discuss the solution to the problem defined in equation (5.1). The solution

to equation (5.1) is expected to yield a sparse set of features with non-zero weights.

Therefore, as illustrated in (Bach 2009), the solution to equation (5.1) when solved with

the entire set of features is the same when solved with the optimum set of features.

As the latter has lesser computational complexity, an active set algorithm, which starts

with a small subset of DisjunctProjs and iteratively adds nodes that violate a sufficiency

condition, can be employed. The primal optimization problem with an active set of

features W (restricted primal) can be represented as

min
f ,b,ξ

1

2

(∑
v∈W

dv ‖ fD(v)∩W ‖ρ
)2

+ C 1>ξ (5.2)

s.t. ∀i : yi

(∑
v∈W

〈fv, ψv(xi)〉 − b
)
≥ 1− ξi, ξ ≥ 0

To solve efficiently, we use variational characterization proposed in lemma 26 of (Mic-

chelli & Pontil 2005) and reduce the regularizer term of equation (5.1) as,

(
∑
v∈V

‖ fD(v) ‖ρ)2 = min
γ∈∆|V|,1

∑
v∈V

d2
v ‖ fD(v) ‖2

ρ

γv
.

where ∆d,r = {λ ∈ Rd,
∑
j∈Nd

λrj = 1, λj ≥ 0}.

Further by appying the same lemma again we have

‖ fD(v) ‖2
ρ= min

λv∈∆|D(v)|,ρ̂

∑
u∈D(v)

‖ fu ‖2
2

λvu

where ρ̂ = ρ
2−ρ .
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By appyling variational characterization, we can represent equation (1) as

min
γ∈∆|V|,1

min
λv∈∆|D(v)|,ρ̂∀v∈V

min
f ,b,ξ

∑
u∈V

δ−1
u (γ,λ) ‖ fu ‖2

2 + C 1>ξ

s.t. ∀i : yi

(∑
v∈V

〈fv, ψv(xi)〉 − b
)
≥ 1− ξi, ξ ≥ 0

where δ−1
u (γ,λ) =

∑
v∈A(u)

δ2
v

γvλvu
, A(u) denotes ancestors of u which includes the

node u itself. By applying the representer theorem (Rakotomamonjy et al. 2008) on the

variational characterization of the regularizer term, we can derive the partial dual of the

above primal form with respect to f , b, ξ alone as,

min
γ∈∆|V|,1

min
λv∈∆|D(v)|,ρ̂∀v∈V

max
α∈τ (y,C)

G(γ,λ,α)

where

G(γ,λ,α) = 1>α− 1

2
α>

(∑
u∈V

δu(γ,λ)Ku

)
α

and τ (y, C) = {α ∈ Rm | 0 ≤ α ≤ C,
∑m

i=1 yi αi = 0}

The final dual of equation (5.1) can be derived as,

min
η∈∆|V|,1

g(η) (5.3)

where

g(η) = max
α∈τ (y,C)

1>α− 1

2

(∑
v∈V

ζv(η)(α>Kvα)ρ̄
) 1
ρ̄

where ζv(η) =
( ∑
u∈A(v)

dρuη
1−ρ
u

) 1
1−ρ

and ρ̄ = ρ
2(ρ−1)

.

The solution to the final dual, with V restricted to the active setW gives the solution

to the restricted primal problem.

To solve the problem efficiently, we employ an active set algorithm. The active set

algorithm (Bach 2009) starts with an initial set of features and at every iteration, solves

the dual problem with the current active features, checks a sufficiency condition on the

nodes that are sources of the complement set of current active set (sources(Wc) = {w ∈

Wc|A(w)
⋂
Wc = {w}}, where Wc is the complement of W in V), A(w) is the set of an-

cestor nodes of w and adds the violating nodes to the active set. The process is continued

until no new node violates the sufficiency condition. A mirror descent algorithm (Ben-Tal
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& Nemirovskiaei 2001) is employed to solve the dual. The active set algorithm adapted

from (Bach 2009) is outlined in figure (5.1). We now derive the sufficiency condition that

determines whether a given active set of features yield an optimal model.

The sufficiency condition for the solution to the primal, is essentially obtained by

restricting the duality gap by a threshold ε and is specified below. The duality gap is

given by

max
α∈τ (y,C)

min
γ∈∆|V|,1

min
λv∈∆|D(v)|,ρ̂∀v∈V

G(γ,λ,α)− min
γ∈∆|V|,1

min
λv∈∆|D(v)|,ρ̂∀v∈V

max
α∈τ (y,C)

G(γ,λ,α)

≤ 1

2
(
∑
v∈V

‖ fD(v) ‖2
ρ +C1>ξ − min

γ̂∈∆|V|,1
min

λ̂v∈∆|D(v)|,ρ̂∀v∈V
G(γ̂, λ̂,α))

=
∑
v∈V

‖ fD(v) ‖2
ρ +C1>ξ − 1>α) +

1

2

(∑
v∈V

‖ fD(v) ‖2
ρ

− max
γ̂∈∆|V|,1

max
λ̂v∈∆|D(v)|,ρ̂∀v∈V

∑
u∈V

δu(γ, λ)α>Kuα

)

Taking the Lagrange dual and applying the Lemma 26 of (Micchelli & Pontil 2005)

we derive the final form of the sufficiency condition from the upper bound of the duality

gap as,

max
u∈sources(Wc)

α>WR(u)αW ≤
(∑
v∈W

δv ‖ fD(v) ‖ρ
)2

+ ε

The (i, j)th component of R(u) can be simplified to

R(u)ij =

(
β

2k
N (1 + 1

(1+β)2 )
)N(

β2(1 + 1
(1+β)2 )

)|u| −∏
û∈u

ψû(xi)
β2(

1 + ψû(xi)
(1+β)2

) N∏
l=1

(
β

2k
N

(
1 +

ψl(xi)

(1 + β)2

))

−
∏
û∈u

ψû(xj)

β2(
1 +

ψû(xj)

(1+β)2

) N∏
l=1

(
β

2k
n

(
1 +

ψl(xj)

(1 + β)2

))

+
∏
û∈u

ψû(xi)ψû(xj)

β2(
1 +

ψû(xi)ψû(xj)

(1+β)2

) N∏
l=1

(
β

2k
N

(
1 +

ψl(xi)ψl(xj)

(1 + β)2

))
At each iteration, the dual problem (5.3) is solved with the current set of active features,

the sufficiency condition (5.4) is checked and the violating nodes are added to the active
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Input: Training data D, Maximum tolerance ε

1. Initialize Active set W = Top node in the lattice

2. Compute η,α by solving (5.3)

3. while sufficiency condition is not satisfied, do

4. Add nodes from the set sources(W) violating sufficiency condition to W

5. Recompute η,α by solving (5.3)

6. end while

7. Output: active-set W ,η,α

Figure 5.1: Active set algorithm

set. The mirror descent algorithm employed to solve (5.3) is as follows. For a given η, let

ᾱ be the solution to (5.4), then the vth sub-gradient of g(η) can be obtained from,

(5g(η))v = −d
ρ
vη
−ρ
v

2ρ̄

(∑
u∈V

ζu(η)(ᾱ>κuᾱ)ρ̄
) 1
ρ̄
−1( ∑

u∈D(v)

ζu(η)ρ(ᾱ>κuᾱ)ρ̄
)

The updated η is then used to solve (5.4) by using the sequential minimal opti-

mization (SMO) algorithm. Active set iterations are continued until no nodes violate the

sufficiency condition.

The active set algorithm thus returns a sparse set of DisjunctProjs and their optimal

weights. For settings where some background knowledge is available, the feature space

can be explored more efficiently. We discuss this next.

Incorporating Background Knowledge: In domains such as sentiment classification,

where some background knowledge about the features is available, it is possible to control

the number of nodes to be considered for inclusion in each iteration of the active set

algorithm and thus speed up the learning process. For instance, in sentiment classification,

the background information is often derived from user-preferences on terms by modifying

the Dirichlet prior or by adding some prior knowledge of word sentiments as available in

SentiWordNet, HowNet and others (He 2011, Li et al. 2010, Lin & He 2009). This helps

to explore lexical properties of words. For example, words in a synonymous wordset are

likely to possess similar polarities.

Since words representing similar meanings are likely to have the same part-of-speech,
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we can restrict our space of DisjunctProjs to disjunctions of words belonging to the same

part-of-speech. This reduces the number of potential features to explore which in turn

effectively speeds up the learning process. Prior information about the polarity of words

can be embedded in the prior parameter dv of node v, in our integrated dimensionality

reduction approach. This effectively helps the system to select features that are strongly

related to the classification task.

To incorporate sentiment prior of node v, dv has been heuristically computed as the

product of the absolute sentiment score of the individual words in the disjunction corre-

sponding to that node. i.e. dv =
∏
v̂∈v

SS(v̂) where SS(v̂) ∈ [0, 1] is the absolute sentiment

score of the word v̂, measured as |positive sentiment score− negative sentiment score|,

where the sentiment scores are obtained from the SentiWordNet. The parameter dv en-

courages selection of the more strongly polar features over the weaker ones. On this

account, the R(u)ij term in the sufficiency condition for optimality is modified as

R(u)ij =
1∏

û∈u

(
SS(û)

1 + SS(û)
)

( N∏
l=1

(1 +
1

(1 + SS(l))2
)∏

û∈u

(1 + (1 + SS(û))2)
−

N∏
l=1

(1 +
ψl(xi)

(1 + SS(l))2
)

∏
û∈u

(1 +
(1 + SS(û))2

ψû(xi)
)

−

N∏
l=1

(1 +
ψl(xj)

(1 + SS(l))2
)

∏
û∈u

(1 +
(1 + SS(û))2

ψû(xj)
)

+

N∏
l=1

(1 +
ψl(xi)ψl(xj)

(1 + SS(l))2
)

∏
û∈u

(1 +
(1 + SS(û))2

ψû(xi)ψû(xj)
)

)

We leave the complete theory and experiments on sentiment datasets as future work and

move on to discuss our experiments and results in the next section.
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Chapter 6

Experiments and Results

In Chapter 5, we discussed our main contribution in the form of efficient methods for

feature induction for sequence labeling problems. In Chapter 4 and 5, we discussed our

contribution in two related areas, that is, the fast and memory efficient satisfiability

checking for inference in first order logic systems and the integrated non-parametric di-

mensionality reduction approach, respectively. We have implemented all our proposed

approaches in java and have evaluated the approaches on standard datasets. In this chap-

ter, we discuss our experiments and results for each of our contributions. We performed

all our feature induction experiments and dimensionality reduction experiments on a 12-

core (2.66 GHz) 64 bit AMD machine with 8 GB RAM and running Ubuntu 11.04. Our

satisfiability experiments are performed on a dual-core (2.66 GHz) 64 bit AMD machine

with 3 GB RAM and running Ubuntu 8.04. We start with the discussion for experiments

with feature induction approaches.

6.1 Learning Discriminative Features for Sequence Labeling

In chapter 3, we categorized first order definite features and identified the class of Simple

Conjuncts (SC) and Composite Features (CF ) as important categories for sequence label-

ing. We have presented a greedy feature induction approach for learning SCs. A learning

approach using Hierarchical Kernel Learning for learning optimal SCs is also presented.

We then presented two strategies to learn optimal CF s. Here we discuss the experimental

results. We evaluate our feature induction approaches on activity recognition data. This

is mainly because activity recognition problems have sparse, skewed and noisy data and

thus learning is challenging. Our approach can be easily applied to other non sparse,

non skewed and non noisy data as well. In all the sequence labeling experiments, we use
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Viterbi algorithm for inference, unless stated otherwise. We first discuss experimental

results of our greedy approach on activity recognition data in the next subsection.

6.1.1 Greedy Feature Induction for Sequence Labeling

For greedy approach, we have carried out experiments on the activity recognition data

set made available by van Kasteren et al. (2008) of the University of Amsterdam. The

dataset consists of binary values reported at each time interval by 14 sensors installed

at various locations in a house. Activities are daily house hold activities like sleeping,

usingToilet, preparingDinner, preparingBreakfast, leavingOut, and the like. There

are eight activities annotated for 28 days. The data is marked for each one minute time

slot and there are 40006 instances. Since the authors of the dataset are from the University

of Amsterdam, we will refer to the dataset as the UA data. In the dataset, some activities

occurred more frequently than others and some activities occurred for a longer duration,

and hence there are distribution errors.

As discussed in the previous chapters, we proposed mapping labels and group of in-

puts/observations to improve the performance of sequence labeling approaches. Our initial

experiments with a standard Inductive Logic Programming (ILP) system Aleph (Srini-

vasan 2007) did not learn useful rules. This is basically because these approaches tend

to maximize logical coverage, whereas our objective is probabilistic coverage (probability

by which examples are covered). The scoring function used in many ILP systems is a

function of positive (pos) and negative (neg) examples covered. Moreover the examples

covered in each step are removed. In typical activity recognition datasets that tend to

be sparse, skewed and noisy, probabilistic coverage is the objective. Hence, we experi-

ment with our greedy approach that employs HMM evaluation as scoring function. In

a typical activity recognition setting, sensor observations are sparse and therefore, the

systems that do not consider the temporal dependencies between activities fail to give

comparable results, as observed in our experiments. For example, activities like sleeping

may cause a sensor at the bedroom door to fire only at the start and at the end of the

sleeping period. It is intuitive to think that a person most likely will be sleeping at a

particular time step if he was sleeping at the previous time step. This justifies the use of

HMM evaluation as score, since HMMs capture the transition dependencies along with

the observation dependencies.
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We assume the data is complete in our case. We constructed 28 sequences of equal

length (1428 time instances) from the whole data and performed our experiments in a

leave one day out manner in a 28 fold cross validation set-up. We report both micro-

average and macro-average prediction accuracies. The micro-average accuracy is referred

to as time-slice accuracy in (van Kasteren et al. 2008), and is the average of per-class

accuracies, weighted by the number of instances of the class. Macro-average accuracy,

referred to as class accuracy in (van Kasteren et al. 2008), is simply the average of the per-

class accuracies. Micro-averaged accuracy is typically used as the performance evaluation

measure. However in data that is biased towards some classes, macro-average also is an

indicator of the quality of the model.

We ran four experiments on the data. The First experiment is the tradi-

tional/standard HMM1 as suggested in (van Kasteren et al. 2008). The second

experiment, B&BHMM, uses Aleph to learn emission rules in the form of definite

clauses for each activity. These rules along with the data are passed to a customized

implementation of HMM for probabilistic learning and inference. The third and fourth

experiments are the proposed greedy Feature Induction assisted HMM (Greedy FIHMM)

which inductively learns HMM emission model using HMM evaluation as the score. The

emission model is combined with the n2 inter state transitions and the probabilities

are learned to obtain the complete HMM model. The third experiment optimizes

macro-average accuracy (Greedy FIHMM (macro-average)) while the fourth experiment

optimizes micro-average accuracy (Greedy FIHMM (micro-average)). The results are

shown in tables 6.1. The performance comparison is also illustrated in Figure 6.1.

From the results, it can be noted that the B&BHMM gave a worse macro-average

accuracy than traditional HMM while giving comparable micro-average accuracy. This

is due to the inappropriate evaluation function used by the branch & bound structure

learning systems while doing refinement of learned clauses. The proposed feature in-

duction assisted HMM model construction with micro-average accuracy as the scoring

function performed better than all other approaches both in micro-average and macro-

average accuracies. Our statistical significance test for micro-average using Wilcoxon

Signed Rank Test (Siegel & Castellan 1988) indicates a 0.00012 level of significance over

traditional HMM and 0.00156 level of significance over B&BHMM. As our objective is

1Use the assumption of conditional independence when there are multiple inputs at a sequence position.

81



Table 6.1: Micro average accuracy and macro average accuracy of classification in per-

centage using standard HMM, B&B learning assisted HMM and greedy feature induction

assisted HMM (macro-average and micro-average accuracies as scoring function sepa-

rately) on UA dataset with 28 fold cross validation.

Micro avg. Macro avg.

Std. HMM 55.41 45.62

B&B HMM 56.94 27.81

Greedy FIHMM (macro-average) 54.98 55.11

Greedy FIHMM (micro-average) 71.59 55.13
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Figure 6.1: Performance comparison of standard HMM, B&B learning assisted HMM and

greedy feature induction assisted HMM with scoring function defined by macro-average

accuracy (Greedy (macro)) and micro-average accuracy (Greedy (micro)) on UA dataset.

to improve micro-average accuracy of labeling and as it is evident from the results that

macro-average as score did not show improvement over the approach with micro-average
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accuracy as score, we use micro-average accuracy as the score in further experiments.

In contrast to standard HMM, which has training and evaluation times in the order

of seconds, the learning part of feature induction approaches take an average of three hours

to train a model. The inference is faster and converges in fraction of a second. Since the

learning is done once and inference, more often, this relatively long learning time is not

considered as affecting system performance. Moreover, the relatively longer training time

can be justified by the accuracy gain and fast inference. The B&BHMM takes one hour for

training and a few seconds for evaluation. As explained in previous chapters, the greedy

approaches cannot guarantee optimum models. We therefore proposed and developed an

optimal feature learning approach using hierarchical kernel learning.

6.1.2 Optimal Feature Induction using Hierarchical Kernels

for Sequence Labeling

In this subsection, we discuss the results of our experiments with Hierarchical Kernel

Learning on Structured Output Spaces for learning simple conjuncts (SC) for sequence

labeling. Our experiments are carried out on two publicly available activity recognition

datasets. The first is the UA data provided by van Kasteren et al. (2008) of University

of Amsterdam (UA data), which we explained in subsection 6.1.1. The second data is

recorded at MIT Place-Lab by Tapia (2003, 2004) (we call the dataset PlaceLab data).

The data is extracted from the apratments of two single-persons’ (subject one and sub-

ject two). The apartments are fitted with 76 and 70 sensors for subject one and two,

respectively; data is collected for two weeks (20160 instances). Annotated activities are

categorized into nine high level activities such as employmentRelated, personalNeeds,

domesticWork, educational, entertainment, and the like.

In this experiment, we split the whole UA data into 40 sequences of length 1000

each and each sequence is treated as an example. Similarly we split PlaceLab data, which

has 20160 instances, into 14 sequences of length 1440. We used 25% of example sequences

for training and the rest for testing. There are 10 sequences in the training set for UA

data and 4 sequences in the training set for PlaceLab data. We report all accuracies

by averaging across the four folds. We report both micro-average and macro-average

prediction accuracies. In the following paragraphs, we compare our approach with other

approaches that gave comparable results or better.
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For UA data, we compare our results with eight other approaches: (a) standard

HMM (Rabiner 1990), (b) Branch and Bound structure learning assisted HMM model con-

struction (B&BHMM), where the rules learned by Aleph (Srinivasan 2007) (an ILP system

which learns definite rules from examples) for each activity determine the HMM emission

structure, (c) greedy feature induction assisted HMM approach (Greedy FIHMM) (Nair,

Ramakrishnan & Krishnaswamy 2011), (d) StructSVM approach (Tsochantaridis et al.

2004), (e) Conditional Random Field (CRF) (Lafferty, McCallum & Pereira 2001), (f)

Conditional Random Field with Feature Induction (FICRF) (McCallum 2003, 2002), (g)

RELHKL (without considering transitions) (Jawanpuria et al. 2011) and (h) RELHKL

+ StructSVM. While standard approaches such as HMM, CRF and structSVM use basic

features (binary sensor values) as emission features, feature induction approaches such

as Greedy FIHMM and FICRF use conjunctions of basic features as emission features.

In contrast to greedy feature induction approaches, RELHKL, and StructHKL find the

feature conjunctions efficiently and optimally. While RELHKL without the transition

features does not consider the structure in output space, RELHKL + StructSVM solves

the problem in two steps. In the first step, RELHKL (without considering transitions) is

employed to learn rules for each label. In the second step, the rules learned in the first

step are fed as features into the StructSVM algorithm to get the final model. In contrast,

StructHKL does the classification in structured output space (rules and parameters are

learned simultaneously for structured output classification) and performs better2. The

results are summarized in Table 6.2 and illustrated in Figure 6.23. We observed that

the proposed StructHKL approach reports better micro-averaged accuracy than all other

approaches. While our macro average accuracy is slightly less than FICRF, StructSVM,

RELHKL + StructSVM and better than others, our standard deviation is much less. This

suggests that the model is not skewed towards any particular activity. In general, our

approach exhibits much lower standard deviation, reflecting its consistency.

In our experiments on PlaceLab dataset, we observed that the performance of stan-

dard HMM, B&B structure learning assisted HMM, and RELHKL without transition

2The basic HMM and CRF approaches were performed by considering features that are negations also.

For feature learning, when we considered negations, due to the sparsity of inputs, the constructed features

were dominated by a lot of meaning less rules. Therefore, we restricted our work to only positives.
3Since the cross validation sets are different, the Std. HMM, B&B HMM and Greedy FIHMM results

are different from those that are given in table 6.1.
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Table 6.2: Micro average accuracy and macro average accuracy of classification in percent-

age using standard HMM, B&B learning assisted HMM, greedy feature induction assisted

HMM, StructSVM, CRF, CRF with feature induction, RELHKL without transitions,

RELHKL + StructSVM and the proposed StructHKL approach on UA dataset.

Micro avg. Macro avg.

Std. HMM 25.40 (±18.55) 21.75 (±12.12)

B&B HMM 29.54 (±20.70) 16.39 (±02.74)

Greedy FIHMM 58.08 (±10.14) 26.84 (±04.41)

StructSVM 58.02 (±11.87) 35.00 (±05.24)

CRF 48.49 (±05.02) 20.65 (±04.82)

FICRF 59.52 (±11.76) 33.60 (±07.38)

RELHKL 46.28 (±11.44) 23.11 (±07.46)

RELHKL+StructSVM 55.74 (±10.88) 38.56 (±10.68)

StructHKL 63.96 (±05.74) 32.01 (±03.04)

features was poor and the greedy feature induction assisted HMM did not converge at all.

Therefore, we compare our results with (a) StructSVM approach (Tsochantaridis et al.

2004), (b) Conditional Random Field (CRF) (Lafferty, McCallum & Pereira 2001), and

(c) Conditional Random Field with Feature Induction (FICRF) (McCallum 2003, 2002).

The results are summarized in Table 6.3 and illustrated in Figure 6.3 and Figure 6.4

respectively for subject one and subject two. Our results show that StructHKL returns

better results than other approaches in micro-averaged accuracy for both subject one and

two, while maintaining comparable macro-averaged class accuracies. Our approach shows

less standard deviation in subject one data while giving slightly higher standard deviation

than most of the other approaches in subject two data.

Our statistical significance tests for micro-average using Wilcoxon Signed Rank Test

(Siegel & Castellan 1988) indicate a 0.01 level of significance over all other approaches we

compared against for both the UA dataset and the placeLab dataset.

In a setting with n labels and N basic inputs, an exhaustive search for optimum

features needs evaluation at n×2N nodes. This amounts to 131072 nodes in UA data and
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Figure 6.2: Performance comparison of different approaches on UA dataset.

Table 6.3: Micro average accuracy and macro average accuracy of classification in percent-

age using StructSVM, CRF, CRF with feature induction and the proposed StructHKL

approach on PlaceLab dataset. (Std.HMM, B&B HMM, Greedy FIHMM, and RELHKL

without transitions either failed to give comparable results or did not converge)

Micro avg. Macro avg.

S
u
b

je
ct

1

StructSVM 75.03 (±04.51) 26.99 (±07.73)

CRF 65.54 (±06.80) 31.19 (±07.39)

FICRF 68.52 (±07.19) 29.77 (±03.59)

StructHKL 82.88 (±0.43) 28.92 (±01.53)

S
u
b

je
ct

2

StructSVM 63.49 (±02.75) 25.33 (±05.8)

CRF 50.23 (±06.80) 27.42 (±07.65)

FICRF 51.86 (±07.35) 26.11 (±05.89)

StructHKL 67.16 (±08.64) 24.32 (±02.12)
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Figure 6.3: Performance comparison of different approaches on PlaceLab subject one data

(Std.HMM, B&B HMM, Greedy FIHMM, and RELHKL without transitions either gave

worse results or did not converge).

to the order of 1022 in PlaceLab data, which is computationally infeasible. In contrast,

due to the active-set algorithm and sufficiency condition check, our approach explores

only a few thousand nodes and converges in 24 hours approximately. In our experiments

we have observed that traditional sequence labeling algorithms such as HMM and CRF

take a few seconds for training. In contrast, greedy feature induction approaches such as

FIHMM, FICRF take a few hours for training. RELHKL (without transitions) took 24

hours approximately for training. StructSVM’s running time ranges between a few hours

to a few days, depending on the regularization parameter used. Since all approaches use

dynamic programming for prediction, time for inference depends only on the number of

features used. While approaches such as StructSVM, HMM, and CRF take less than a

second for inference, feature induction approaches such as FIHMM, FICRF, RELHKL,

RELHKL + StructSVM and StructHKL take 1.2 seconds for inference.

The StructHKL approach discovered rules such as
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Figure 6.4: Performance comparison of different approaches on PlaceLab subject two data

(Std.HMM, B&B HMM, Greedy FIHMM, and RELHKL without transitions either gave

worse results or did not converge).

usingToilet(t)← bathroomDoor(t) ∧ toiletF lush(t),

sleeping(t)← bedroomDoor(t) ∧ toiletDoor(t) ∧ bathroomDoor(t),

preparingDinner(t)← groceriesCupboard(t),

and the like.

The conjunction bathroomDoor(t)∧toiletF lush(t) strongly indicates that the activ-

ity is usingToilet while groceriesCupboard indicates a higher chance of preparingDinner.

Similarly bedroomDoor(t)∧ toiletDoor(t)∧ bathroomDoor(t) increases the chance of pre-

dicting sleeping as the activity. This is reasonable as people access these doors dur-

ing the night before going to sleep and the sensors at bedroomDoor, toiletDoor, and

bathroomDoor fire once when the person accesses the door, and goes to off-mode while

s/he is sleeping. However, since, the conjunction just before sleep gives a higher weight to

the activity sleeping, the weight gets accrued and gets combined with transition weights
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to accurately predict the activity as sleeping. We now discuss our experiments on learning

complex relational features derived from relative sequence positions.

6.1.3 Learning Complex Relational Features for Sequence

Labeling

In section 3.5, we identified composite features (CF ) as the relevant category of features

for capturing sequence information among input variables. We then proved that CF s can

be constructed from a simpler class of features called absolute features (AF ). We have also

shown that CF s can be constructed efficiently from AF s by leveraging the StructHKL

framework. We seek to leverage optimal feature learning in all the steps of relational

feature induction, which can be addressed either by i) enumerating AFs and discovering

their compositions (CF) using StructHKL or by ii) developing methods to learn optimal

AFs (or CFs directly).

As the space of AFs is prohibitively large, enumerating all possible AF s is infeasible

in real world settings. We therefore selectively enumerate AFs based on the support of

the rule/feature in the data (weak relevance) and then leverage the StructHKL algorithm

to learn composite features. We use Warmr (Dehaspe & Toivonen 1999, Dehaspe &

Toironen 2000), an ILP data mining algorithm that learns frequent patterns reflecting

one to many and many to many relationships, to learn absolute features. Warmr uses an

efficient level wise search through the pattern space and, with proper language bias, and

generates absolute features. The absolute features learned by Warmr are then input to

StructHKL code to learn the structure and parameters of the final model. We refer to

this approach as CF from enumerated AF approach (enumAF).

For the second option discussed, we leverage a relational kernel that computes the

similarity between instances in an implicit feature space of CFs. To this end, we employ

the relational subsequence kernel (Bunescu & Mooney 2006) at each sequence position

(over a time window of inputs around the pivot position) for the classification model.

We refer to this approach as Relational Subsequence Kernels for StructSVM approach

(SubseqSVM). We now discuss the datasets we used for these experiments and then discuss

the results.

We use two publicly available activity recognition datasets, that is, i) the data

provided by van Kasteren et al. (2008), which we discussed at the beginning of this
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section, where we perform a 4 fold cross validation, as discussed in the previous section

and ii) the relational activity recognition data provided by Landwehr et al. (2009) of

Katholieke University, Leuven. We refer to the data as KU data. The data has been

collected from a kitchen environment with 25 sensors/RFID attached to objects. There

are 19 activities annotated. The data has been divided into 20 sequences. Each sequence

has a length of 250 approximately. In this data, we perform our experiments in a leave

one out cross-validation setup and report the average of the accuracies returned from each

fold.

We have compared our approach with TildeCRF (Gutmann & Kersting 2006) and

StructSVM (Tsochantaridis et al. 2004). TildeCRF is the state-of-the-art ILP approach

for learning relational features for sequence labeling, and works in the same feature space

that we are interested in, while we use StructSVM as a baseline for this experiment. In

our experiments with StructSVM, individual basic features are inputs.

The comparison of results for UA data is outlined in Table 6.4 and Figure 6.5.

Results show that our approaches for learning complex features for sequence labeling, that

is, enumAF and SubseqSVM performed better than the base line approach (StructSVM)

and the state-of-the-art approach (tildeCRF). Although enumAF optimally finds CFs as

conjunctions of (selectively enumerated) AFs, the step for selectively enumerating AFs

is based on heuristics. In contrast, SubseqSVM works on a convex formulation and learns

an optimal model, thus giving the best performance. This explains the difference in the

performances of our two approaches.

The comparison of results for KU data is outlined in Table 6.5 and Figure 6.6. Since

a single sequence step in this data has only one input feature, the feature space is not rich

enough to evaluate the efficiency of our approaches. For this reason, the performance of

our approaches is inferior to the baseline and the state-of-the-art. The baseline reported

the best performance. While the performance of SubseqSVM approach is slightly inferior

to the baseline and the state-of-the-art, enumAF performed badly in this data.

In UA data, both our approaches (enumAF and SubseqSVM) took 24 hours approx-

imately to train the model. Whereas, StructSVM and TildeCRF took 20 hours and 0.5

hours, respectively, for training. In KU data, enumAF took around 24 hours and Subse-

qSVM took approximately 1.5 hours to train the model while StructSVM and TildeCRF

took 15 hours and 10 minutes, respectively. Inference with SubseqSVM takes, on average,
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Table 6.4: Micro average accuracy and macro average accuracy of classification in percent-

age using tildeCRF, CF from enumerated AF approach (enumAF), StructSVM (with

basic inputs as features) and relational subsequence Kernels for StructSVM approach

(SubseqSVM) on UA data (exploring the space of CFs).

Micro avg. Macro avg.

TildeCRF 56.22 (±12.08) 35.36 (±6.55)

StructSVM 58.02 (±11.87) 35.00 (±05.24)

enumAF 60.36 (±6.99) 30.39 (±4.31)

SubseqSVM 65.25 (±4.81) 29.34 (±2.78)

six hours for UA data and eight minutes for KU data. Where as other approaches take

a few seconds only for inference. The difference is due to the kernel computation. Our

statistical significance test for micro-average using Wilcoxon Signed Rank Test (Siegel

& Castellan 1988) indicates a 0.01 level of significance with SubseqSVM over other ap-

proaches on UA data. We now present an analysis of the progression of results on UA

data, using different categories of features we have experimented.

The progression of results on UA data based on feature categories is shown in

Table 6.6 and Figure 6.7. The baseline for sequence labeling can be one among the

approaches that considers only basic inputs for model construction. HMM, CRF, and

StructSVM falls into this category. Since StructSVM is the state-of-the-art in this cat-

egory, we use StructSVM results for comparison. The next level of features is the set

of simple conjuncts SC, which are conjunctions of input features at a single sequence

step. SCs capture relationships among co-occurring features. We present our StructHKL

results. Next is the category of CFs, which are capable of capturing input relationships

across time steps in sequence labeling. We presented two approaches for CFs, that is,

enumAF approach and the SubseqSVM approach. Since the SubseqSVM approach per-

formed better, we report that here.

We now present evaluation of our related contributions. The following section dis-

cusses our experiments on the approach for pruning the search space for satisfiability

checking in weighted first order logical systems.

91



tild
eCRF

Stru
ctSVM

enumAF

SubseqSVM
0

10

20

30

40

50

60

70 Micro avg.
Macro avg.

Approach

A
cc

u
ra

cy
 (

%
)

Figure 6.5: Performance comparison of different approaches on UA data (exploring the

space of CFs).

6.2 Pruning Search Space for Satisfiability in Weighted Horn

Clauses

We now discuss the results of our contribution in the area of satisfiability based inference

in first order weighted horn clause settings.

In this thesis, we have proposed and developed an approach that prunes a major part

of the search space for satisfiability, which we refer to as Modified TΣ, and thereby speeds

up satisfiability in first order weighted horn clauses. The overall approach is referred to

as HornSAT.

We used the uwcse knowledge base and dataset provided by alchemy (Richardson

& Domingos 2006) for our experiments after making small modifications to make the

clause set horn. The constants given as the evidence set is considered as the complete

domain for each variable. We have performed three experiments on each dataset. The first

experiment does the complete groundings and employs MaxWalkSAT on that. the second
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Table 6.5: Micro average accuracy and macro average accuracy of classification in per-

centage using various approaches on KU data. As a single sequence step in this data has

only one input feature, the feature space is not rich enough to evaluate the efficiency of

our approaches. For this reason, the performance of our approaches is slightly inferior, as

observable from the table.

Micro avg. Macro avg.

tildeCRF 66.04 (±13.50) 84.01 (±8.76)

StructSVM 66.35 (±17.16) 66.64 (±16.04)

enumAF 33.24 (±15.72) 23.02 (±11.13)

SubseqSVM 64.66 (±8.42) 63.08 (±7.05)
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Figure 6.6: Performance comparison of different approaches on KU data (exploring the

space of CFs).

grounds the clauses with pruning and employs traditional MaxWalkSAT with random

truth assignments. The third experiment employs MaxWalkSAT on the pruned clauses
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Table 6.6: progression of sequence labeling results on UA data based on feature categories.

Feature Approach Micro avg. Macro avg.

Basic StructSVM 58.02 (±11.87) 35.00 (±05.24)

SC StructHKL 63.96 (±05.74) 32.01 (±03.04)

CF SubseqSVM 65.25 (±4.81) 29.34 (±2.78)
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Figure 6.7: progression of sequence labeling results on UA data based on feature cate-

gories.

set with the initial truth assignment returned by Modified TΣ (HornSAT). Evidence set

of different sizes are used. The number of grounding for uwcse language and AI KBs with

different evidence set using the complete grounding and pruned approach are compared

in Table 6.7. The time versus cost analysis of different approaches discussed here is given

in Table 6.8. Figures 6.8, 6.8, 6.8 portrays the results when 181 atoms of uwcse language

dataset, 87 atoms of uwcse language dataset and 766 atoms of uwcse AI dataset are used,

respectively, as the evidence set. Experimental results show that the proposed method

94



Table 6.7: Comparison of number of groundings after i) Complete grounding and ii)

Pruning on uwcse knowledge base.

Evidence set Complete grounding After pruning

language 181 atoms 508788 6908

language 87 atoms 177738 3205

AI 766 atoms Memory error 182690

Table 6.8: Performance comparison of satisfiability approaches on uwcse knowledge base

and different evidence sets.

Evidence set

Complete grounding Pruned
HornSAT

+ MaxWalkSAT + MaxWalkSAT

Converged Time Converged Time Converged Time

cost (ms) cost (ms) cost (ms)

lang. 181 atm. 90.452 2475736 70.265 1823778 70.265 6896

lang. 87 atm. 81.463 2329459 37.892 1098285 37.892 2351

AI 766 atm. Memory error 344.584 7507578 344.584 7462967

outperforms the traditional approach in terms of memory and speed.

We used similar maxWalkSAT settings for our experiments (with or without prun-

ing). Since our goal was to evaluate the efficiency of pruning under similar maxWalkSAT

settings, we did not try large maxWalkSAT tries or filps. Trying large maxWalkSAT tries

or flips does, of course, result in a longer running time4.

As described earlier, inference in sequence labeling is typically performed using the

dynamic programming approach, the Viterbi algorithm (Forney 1973). We hypothesize

that there could be complex first order settings where it is possible to have complex models

with a huge set of groundings. In such sequence labeling settings, if it is feasible to ground

all the variables, the Viterbi algorithm (Forney 1973) is the best choice. In all other cases

4Experimental comparison with LazySAT under similar conditions is not trivial. However, the

LazySAT paper reports a comparable running time for LazySAT with maxWalkSAT. Whereas, our ap-

proach converges much quicker than maxWalkSAT.
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Figure 6.8: Performance comparison of different satisfiability approaches on uwcse lan-

guage KB. All 181 atoms are given as evidence.
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Figure 6.9: Performance comparison of different satisfiability approaches on uwcse lan-

guage KB. 87 atoms are given as evidence.

(sequence labeling or general), we suggest using our satisfiability based inference5. Here

we compare the performance of both Viterbi algorithm and our satisfiability based ap-

proach in a subset of UA data. While the Viterbi algorithm globally assigns labels to

5Since we do not have access to such a sequence labeling data to demonstrate the validity of our

approach, we presented our results in general settings in the previous paragraphs
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Figure 6.10: Performance comparison of different satisfiability approaches on uwcse AI

KB. All 766 atoms are given as evidence. In this experiment, complete grounding resulted

in an out-of-memory error

each position of a sequence optimally and in a fast manner, the satisfiability approach

(HornSAT) we proposed uses a modified maxSAT approach to find the final truth assign-

ments after pruning the search space. The maxSAT algorithm used in HornSAT is greedy

and thus the final interpretation may not be optimal. Moreover, the maxSAT step in the

approach might do a large number of flips and tries, thus making the inference slower

than the Viterbi algorithm6. We compare the proposed HornSAT results with that of the

Viterbi algorithm in solving inference in activity recognition problems (sequence labeling)

in Table 6.9 and illustrated in Figure 6.117. Here, we train a model using StructHKL on

a subset of the UA data (van Kasteren et al. 2008); two experiments are then performed

for inference using the learned model on a subset of test data. The two inference methods

performed are the Viterbi algorithm and the HornSAT. The aim is to predict labels for

a sequence of length 1000, with 8 activity labels and 14 sensors. As discussed above,

the Viterbi algorithm performed much better than the HornSAT. Moreover, the dynamic

programming approach is much faster. HornSAT took seven hours to converge while the

6In other first order problems where dynamic programming is infeasible, the proposed HornSAT

performs better than the traditional satisfiability solvers.
7Since the training and test sets are different from that used in table 6.1 and 6.2, the Viterbi algorithm

results are different here.
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Table 6.9: Micro average accuracy and macro average accuracy of classification in per-

centage using two methods of infernce, that is, the Viterbi algorithm and the HornSAT.

A model is first trained using StructHKL and the two experiments for inference are per-

formed. The time taken for inference for each of the approaches are also reported.

Micro avg. Macro avg. Time

Viterbi 94.5 33.31 3 sec.

HornSAT 45.8 26.57 7 hrs.
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Figure 6.11: Performance comparison of the two inference approaches on activity recog-

nition data (sequence labeling).

Viterbi algorithm took a few seconds.

We now discuss the evaluation of our integrated non-parametric dimensionality re-

duction approach in the next section.
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6.3 Optimally Extracting Discriminative Disjunctive Features

for Dimensionality Reduction

We now discuss the results of our contribution in a related area, that is, integrated non-

parametric dimensionality reduction using hierarchical kernel learning. We discuss our

experimental setup and compare our results with the state-of-the-art methods for dimen-

sionality reduction. We report our results on two publicly available datasets, the first

set belonging to UCI data repository (Frank & Asuncion 2010) and the second is the

20 Newsgroups data (Lang n.d.).

6.3.1 UCI data

We performed our first set of experiments on the following data-sets: Breast-cancer(286

instances, 9 attributes), Wisconsin breast-cancer(699 instances, 10 attributes), Hepati-

tis(185 instances, 19 attributes), Monk-1, Monk-2, Monk-3 (432 instances, 7 attributes),

Transfusion(748 instances, 5 attributes), Tic-Tac-Toe(958 instances, 9 attributes) and

Vote(435 instances, 16 attributes), from the UCI repository. Each of these datasets cor-

responds either to a binary or a multi-class classification problem. We performed experi-

ments on each of the above datasets with all the wrapper-based dimensionality reduction

approaches available in Weka (Hall et al. 2009), a machine learning toolbox. Out of all

the wrapper methods provided by weka, only those which give comparable results are

reported. For each dataset, and for each choice of the wrapper, we considered two choices

for the classifier: 1) a 2-norm SVM (LibSVM implementation Chang & Lin (2011)) and

2) a 1-norm SVM (LibLinear implementation Fan et al. (2008)). The comparison of

the methods mentioned earlier with our dimension reduction approach is provided in Ta-

ble 6.10. Among the approaches that we compare against, we report the accuracies of only

those (namely, Correlated Subset Evaluator, Consistency Subset Evaluator and Filtered

Subset Evaluator) which perform comparably or better. For each of the subset selection

approaches, various search strategies such as, BestFirst, GreedyStep, LinearFwd, Rank

and SubsetSizeFwd have been employed and the results reported.
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Table 6.11: Comparison of accuracies of different approaches on 20 Newsgroups dataset

(MedLDA accuracy is not exactly reported in (Zhu et al. 2010) and therefore, it has been calculated from

the relative improvement ratios reported in (Xu 2010). The results of the competitor approaches are the

best ones obtained by the authors by cross validating on the parameter, number of topics.).

Approach Accuracy

L1SVM 93.14%

L2SVM 91.38%

MMpLSA 84.7%

DiscLDA 83.0%

MedLDA 73.12%

Integ.Dim.Red. 94.55%

Further all accuracies (except for Monk-1, Monk-2 and Monk-3 ), are presented as

averages over a 4-fold cross validation. For Monk-1, Monk-2 and Monk-3, the train and

test splits provided in the UCI repository have been used.

We observe that our approach (Integrated Dim. Red.) performs consistently better

than most of the other approaches we compared against. On each dataset, our results

are comparable with the best results among all the approaches and better in many cases.

Wilcoxon Signed Rank Test was performed in order to compare each of the Feature

Selection wrappers provided by Weka, when LibSVM (2-norm regularized SVM (L2))

and LibLinear (1-norm regularized SVM (L1)) are used for model building. The results

show that our approach is significantly better, at 0.01 level of significance8 than each of

the 15 Feature Subset Selection methods provided by Weka, when LibLinear is used as

a model builder. Correspondingly when LibSVM is used for model building, our model

is found to be signifcantly better, at 0.05 level of significance (that is, error probability),

than only three out of the 15 Feature Subset Selection methods, namely those in which

Consistent Subset Evaluator is used with the Search Methods Greedy-Step and Linear-

Forward and when Filtered Subset evaluator is used with Rank as the Search Method,

8Significance tests are done with all the 10 datasets taken together and therefore the numbers are not

pertaining to any one datset.
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while for the remaining methods, our approach is found to have comparable performance.

For the baseline 1-norm and 2-norm regularized SVM, where no feature selection

has been applied, the Wilcoxon signed rank test indicates that our method, Integrated

Dimension Reduction, is significantly better than 2-norm SVM at the 0.05 level of signif-

icance and also significantly better than 1-norm SVM at the 0.005 level of significance.

This indicates that the sparse variant of SVM with 1-norm regularization cannot lever-

age feature selection with model learning, whereas our approach can simultaneously learn

dimension reduction and optimal model building better and suffers less from over-fitting.

Some wrappers that use ChiSquare, GainRatio, InfoGain, LSA-based, PCA-based

or Relief-based attribute evaluator showed significantly worse performance and are not

included in the table. The training time for our approach is comparable to the approaches

it is being compared against.

6.3.2 20 Newsgroups data

In order to compare against the current state-of-the-art supervised dimension-

ality reduction-cum-classification techniques, we evaluated our approach on the

20 Newsgroups dataset that contains postings to Usenet newsgroups. We apply our

approach on the binary classification problem of distinguishing postings from two

newsgroups alt.atheism and talk.religion.misc, which is considered to be a hard task,

owing to the content similarity between them. This benchmark dataset has the train

and test splits provided, thus making it convenient for us to compare against existing

approaches. This dataset has been used as a benchmark data by most of the recent

approaches. In Table 6.11, we present a comparison of the accuracy achieved by our

approach with the best values reported by the existing approaches such as DiscLDA,

MedLDA and MMpLSA on this dataset and in Table 6.10, the comparison has been

reported on the feature selection wrappers provided by Weka.

We note that the proposed integrated dimensionality reduction approach outper-

forms other approaches. The number of disjunctions discovered (automatically) by our

approach is 170. Some of the disjunctions reported are as follows:

{religion, sandvik, benedikt}
8MedLDA accuracy is not exactly reported in Zhu et al. (2010) and therefore, it has been calculated from the relative

improvement ratios reported in Xu (2010). The results of the competitor approaches are the best ones obtained by the

authors by crossvalidating on the parameter, number of topics.
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{religion, kent, benedikt}

{biblical, islam}

{atheism, historical}

{reading, writes}{fax, run,mode}

{data,mode, graphics}

{version, order, directory}

{version, works, help,mail}

{use, interested, need}{book, bill}

{images,mode}

{mode, algorithm}

{works, run}

{god, beliefs}

{book, edu}

MedLDA (Zhu et al. 2010) is reported to have a best improvement ratio of 0.2 at 20

topics, over its baseline which is a two-step LDA + SVM approach as well as the baseline

used in Xu (2010) which is a two-step pLSA + SVM approach. Whereas MMpLSA Xu

(2010), which gives best accuracy of 84.7% at 3 topics, shows a 0.39 relative improvement

ratio over its baseline, that is, pLSA + SVM and a 2% relative improvement over DiscLDA

and claims to perform better than MedLDA consistently. DiscLDA itself has the best

accuracy of 83.0% which is achieved at 60 topics.

In addition to the improvement in performance, unlike other approaches that require

the number of topics to be learned as an input, our approach automatically learns the

number of disjunctive features. Since other methods do not discover the number of topics,

they often have to resort to enumerating the classifier model’s performance for different

values of this parameter and have to report the number of topics that leads to the best

performance in classification. Moreover, parametric approaches to determine the number

of topics may not yield an optimum result, especially if there is no integrated learning of

the topic detection parameters and the classification parameters. As a result, an inappro-

priate number of topics may be used by such systems and thus, can result in over-fitting,

as hypothesized by the authors of Xu (2010). We overcome this limitation by our non-

parametric approach and learn an optimum number of disjunctive projections. Since our
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model assimilates topic selection within the classifier and handles over-fitting by regular-

ization in a unified manner, our approach guarantees an optimum model that performs

efficient dimension reduction without compromising on the classifier performance.

Our approach takes around 26 hours on 20 newsgroups data for training. For other

datasets, our approach takes a few minutes to train.
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Chapter 7

Conclusion

Conventional approaches in sequence labeling capture the state-observation relationships

(observation/emission dependency) at each step and the transition relationships between

states during successive steps. These approaches, unless the input structure is provided

upfront, ignore the input structure and assume independence among the individual input

features. In this report, we have discussed the drawbacks of this assumption. On the other

hand, considering the joint state of input features as a single variable results in exponen-

tial feature space and is infeasible in real world settings. Since strong independence or

dependence assumptions have their own drawbacks, we proposed an intermediate solution,

wherein, we seek to discover the input structure in the form of relational features that

map compositions of input features to labels. These relational features can be represented

in the form of definite clause rules/features. To get more insight into the feature spaces,

we categorized definite features based on their complexity and identified feature classes

that are relevant to sequence labeling. Among the feature categories, we identified Simple

Conjuncts (SC) and Composite Features (CF) as useful categories for sequence labeling

tasks. While SCs are derived from inputs/observations at a single sequence position, CFs

are derived from inputs from multiple sequence positions relative to a pivot position.

We first developed a greedy feature induction approach for discovering SCs for se-

quence labeling, which searches the lattice of possible features using a heuristic score. In

each iteration of the search, our system drops or adds a conjunctive feature to the cur-

rent emission model, combines it with the transition features, learns the parameters for

the current HMM model and based on the performance of the current model on training

data, decides on whether to include the new feature in the model or not. Although this

approach yields a better performance than conventional approaches, since the approach
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is greedy, an optimum model is not guaranteed. Searching exhaustively in the lattice

of features for optimum models is not feasible in real world settings. To learn optimum

SCs, we proposed and developed a Hierarchical Kernel Learning based feature learning

approach for Structured Output Spaces (StructHKL) such as sequence labeling.

The StructHKL approach optimally discovers features from a feature space that

follows a partial order and that follows a property that the summation over descendant

kernels of any node can be computed in polynomial time. This approach builds on the

StructSVM framework and considers all possible features in the emission model. A hier-

archical regularizer is employed to select a sparse set of useful features. The exponential

search space is explored using an active set algorithm and the exponential constraint space

is searched by a cutting plane algorithm.

Although StructHKL efficiently learns SCs, it has limitations in discovering complex

features that are derived from basic inputs at relative positions (CF). We have shown

that CFs are conjunctions of features belonging to a simpler category called Absolute

Features (AF). We proposed and developed two strategies to learn optimal CFs. One is

to selectively enumerate absolute features and employ structHKL to learn their conjunc-

tions. The second strategy is to incorporate a type of relational kernels called relational

subsequence kernels, that implicitly capture the information about all possible relational

features, without explicitly enumerating them.

We have demonstrated the efficiency of our approaches by evaluating on publicly

available activity recognition datasets. From our experiments, it is evident that the

accuracy of labeling increases when higher order features that capture input relations are

used. Our model with features constructed from individual inputs at a single sequence

position performed better than the conventional approaches that assumed independence

among them. We also observed in our experiments that the models constructed from

relational features derived from inputs at relative sequence positions performed better

than the models with features derived from inputs at single sequence position. It is

also observed that leveraging relational subsequence kernels for sequence labeling tasks

captures relational information implicitly and performs better than other approaches.

Although feature learning for sequence labeling is the main contribution of this

thesis, we have contributed in two other problem domains. One is to perform fast and

memory efficient inference in general first order problem settings which cannot be solved
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using dynamic programming and the other is learning optimal disjunctive projections for

dimensionality reduction in a maximum margin framework. We present our concluding

remarks on these contributions in the following paragraphs.

Several ground clauses formed as a result of propositionalization of first order horn

formulae are satisfied by default and it is a wastage of resources to consider them for

optimization. We presented an algorithm that prunes the search space and proved that

the optimal solution must lie in the pruned space. Experiments indicate the scope for

efficient inference using MaxSAT for the set of horn clauses. This in turn helps in fast

and memory efficient inference in weighted first order horn clause settings.

Most existing approaches to dimensionality reduction for classification decouple the

dimensionality reduction and classification phases. Some approaches are greedy while

some others are parameterized, imposing a restriction on the learning system. In this

paper we pose the requirement of optimal dimensionality reduction as an integrated non-

parametric supervised max-margin optimization problem. We project the original features

into the space of disjunctions and present algorithms inspired by the hierarchical kernel

learning approach to select a sparse set of important disjunctions. We have shown ana-

lytically and empirically that our integrated approach learns optimal features in the form

of interpretable disjunctions of features capturing similar discriminative information for

classification and leads to accurate models. We discuss a few potential future directions

that can be explored based on the theory developed in our research work.

Future research directions:

The main focus of this research has been improving the efficiency of sequence pre-

diction problems. Our contributions can be extended to other structured output spaces

such as trees, graphs, lattices and the like. The formulations that we derived, serve as

templates for deriving formulations for other structured output spaces.

Our work can be extended to regular first order problem settings. It would be

interesting to investigate the applicability of Hierarchical Kernel Learning to optimize

all the steps of structure learning in Markov Logic Networks, without compromising the

interpretability of resultant clauses.

Leveraging the learning approaches we developed to learn efficient models for other

problem domains such as Natural Language Processing, Bio-informatics etc. is another
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interesting future work.

Leveraging Hierarchical Kernel Learning for learning disjunctions for dimensionality

reduction in domains with background knowledge (which we briefly discussed in chapter 5)

is also a potential future work.

108



Appendix A

Derivations and Proofs

A.1 Sufficiency Condition

We first derive a variational characterization of the regularizer ΩE(fE)2

Lemma 26 of (Micchelli & Pontil 2005) says,

if r ≥ 0 and p = 1 + 1
r

then (
∑
j∈Nd
|aj|

2
p )

p
2 = min

λv∈∆d,r

√∑
j∈Nd

a2
j

λj

where ∆d,r = {λ ∈ Rd,
∑
j∈Nd

λrj = 1, λj ≥ 0}

By applying the above lemma on objective function ΩE(fE)2

ΩE(fE)2 = ((
∑
v∈Ve

(dv ‖ fED(v) ‖ρ)1)1)2

= min
γ∈∆d,r

(√
(
∑
v∈Ve

d2
v‖fED(v)‖2ρ

γv
)
)2

= min
γ∈∆d,r

(
∑
v∈Ve

d2
v‖fED(v)‖2ρ

γv
)

(where p = 2 i.e. r = 1 and d = |v| i.e. ∆|v|,1 = {η ∈ R|v|,
∑
v∈V

ηv = 1, ηv ≥ 0})

= min
γ∈∆d,r

∑
v∈V

d2
v

γv
((
∑

w∈D(v)

fρEw)
1
ρ )2

By applying the lemma again

= min
γ∈∆d,r

∑
v∈V

d2
v

γv
min

λv∈∆|D(v)|,r

(√ ∑
w∈D(v)

‖fEw‖22
λwv

)2

where 2
p

= ρ i.e. ρ = 2
p

and r = 1
p−1

= ρ
2−ρ = ρ̂ and ∆|D(v)|,r = {λ ∈ R|D(v)|,

∑
w∈D(v)

λrwv = 1}

= min
γ∈∆|v|,1

min
λv∈∆|D(v)|,ρ̂∀v∈Ve

∑
v∈Ve

∑
w∈D(v)

‖fEw‖22
λwv

γv
d2v

= min
γ∈∆|v|,1

min
λv∈∆|D(v)|,ρ̂∀v∈Ve

∑
w∈Ve

∑
v∈A(w)

‖fEw‖22
λwv

γv
d2v
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= min
γ∈∆|v|,1

min
λv∈∆|D(v)|,ρ̂∀v∈Ve

∑
w∈Ve

‖ fEw ‖2
2

∑
v∈A(w)

1
λwv

γv
d2v

= min
γ∈∆|v|,1

min
λv∈∆|D(v)|,ρ̂∀v∈Ve

∑
w∈Ve

δw(γ,λ)−1 ‖ fEw ‖2
2

where δw(γ,λ)−1 =
∑

v∈A(w)

d2
v

λwvγv

Now we derive the dual of equation 3.10 before giving a sufficiency condition for the

reduced solution to be the final solution.

By applying the variational characterization of the regularizer, the lagrangian for

equation 3.10 can be written as

1

2

∑
w∈VE

δ−1
w (γ,λ) ‖ fEw ‖2

2 +
1

2
||fT||22 +

C

n

m∑
i=1

ξi −
∑
i

θiξi

−
∑
i,Y 6=Yi

αiY

[∑
v∈VE

〈fEv, ψδEvi(Y )〉+ 〈fT , ψδT i(Y )〉+
ξi

∆(Yi, Y )
− 1

]

where α,θ are lagrange multipliers. The partial derivative of Lagrangian with respect to

f alone is

f̄E + fT −
∑
i,Y 6=Yi

αiYψ
δ
Ei(Y )−

∑
i,Y 6=Yi

αiYψ
δ
Ti(Y )

where f̄E has elements ¯fEw = δ−1
w (γ,λ)fEw. By KKT conditions, equating the partial

derivative to zero yeilds,

f̄E + fT =
∑
i,Y 6=Yi

αiYψ
δ
Ei(Y ) +

∑
i,Y 6=Yi

αiYψ
δ
Ti(Y )

From our definition, it is easy to observe that

f̄E =
∑
i,Y 6=Yi

αiYψ
δ
Ei(Y )

and

fT =
∑
i,Y 6=Yi

αiYψ
δ
Ti(Y )

There fore, each element of fE is

fEw = δw(γ,λ) ¯fEw = δw(γ,λ)
∑
i,Y 6=Yi

αiY ψ
δ
Ewi(Y )
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Partial derivative with respect to ξ gives additional constraint,

∀i : m
∑
Y 6=Yi

αiY
∆(Y, Yi)

≤ C

Putting these back to the objective function gives the following partial dual problem,

min
γ∈∆|VE|,1

min
λv∈∆|D(v)|,ρ̂∀v∈VE

max
α∈τ (Y,C)

G(γ,λ,α) (A.1)

where

G(γ,λ,α) =
∑
i,Y 6=Yi

αiY −
1

2
α>

(∑
w∈VE

δw(γ,λ)κEw

)
α− 1

2
α>κTα

and τ (Y , C) = {α ∈ Rm(nl−1) | αi,Y ≥ 0, m
∑
Y 6=Yi

αiY
∆(Y,Yi)

≤ C, ∀i, Y }, which is same as

that given in equation (3.12).

We consider this partial dual problem as a new primal. In the new formulation, let

the primal solution, min
γ,λv

max
α
G(γ,λ,α), be p∗ and the dual solution, max

α
min
γ,λv

G(γ,λ,α),

be d∗. The duality gap p∗ − d∗ can be written as

min
γ̂∈∆|VE|,1

min
λ̂v∈∆|D(v)|,ρ̂∀v∈VE

G(γ̂, λ̂,α))−max
α̂
G(γ,λ, α̂) (A.2)

where α = argmax
α̂

G(γ,λ, α̂) and (γ,λ) = G
γ̂,λ̂v

(γ̂, λ̂,α))

since dual ≤ primal,

max
α̂

min
γ̂,λ̂v

G(γ̂, λ̂, α̂) ≤ 1
2
ΩE(fE)2 + 1

2
ΩT (fT)2 + C

m

m∑
i

ξi (A.3)

Combining equation (A.2) and equation (A.3), we get,

min
γ̂∈∆|VE|,1

min
λ̂v∈∆|D(v)|,ρ̂∀v∈VE

G(γ̂, λ̂,α))−max
α̂
G(γ,λ, α̂)

≥ min
γ̂∈∆|VE|,1

min
λ̂v∈∆|D(v)|,ρ̂∀v∈VE

( ∑
i,Y 6=Yi

αiY −
1

2

∑
w∈VE

δw(γ̂, λ̂)α>κEwα−
1

2
α>κTα

)
−
(1

2
ΩE(fE)2 +

1

2
ΩT (fT)2 +

C

m

∑
i

ξi

)
which is equivalent to,

min
γ̂∈∆|VE|,1

min
λ̂v∈∆|D(v)|,ρ̂∀v∈VE

G(γ̂, λ̂,α))−max
α̂
G(γ,λ, α̂)

≥ min
γ̂∈∆|VE|,1

min
λ̂v∈∆|D(v)|,ρ̂∀v∈VE

−
(1

2

∑
w∈VE

δw(γ̂, λ̂)α>κEwα−
1

2

(
ΩE(fE)2 + ΩT (fT)2

))
− e
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where e = ΩE(fE)2 + ΩT (fT)2) + +C
m

∑
i

ξi + 1
2
α>κTα−

∑
i,Y 6=Yi

αiY

Therefore, the sufficiency condition for the active set to get a duality gap less than

ε where ε ≥ 0 is

max
γ̂∈∆|VE|,1

max
λ̂v∈∆|D(v)|,ρ̂∀v∈VE

(∑
w∈VE

δw(γ̂, λ̂)α>WκEwαW

)
≤ ΩE(fEW)2 + ΩT (fTW)2 + 2(ε− eW)

(A.4)

where eW is the gap associated with the computation of αW . The lagrange dual of

max
γ̂∈∆|VE|,1

max
λ̂v∈∆|D(v)|,ρ̂∀v∈VE

( ∑
w∈VE

δw(γ̂, λ̂)α>WκEwαW

)
with respect to γ (Jawanpuria et al.

2011) is given by

max
λ̂v∈∆|D(v)|,ρ̂∀v∈VE

min
k∈L

max
v∈V

∑
w∈D(v)

k2
vwλvwα

>
WκEwαW
d2
v

,

where L = {k ∈ R|V|×|V||k ≥ 0,
∑

v∈A(w) kvw = 1,
∑

v∈A(w)c kvw = 0 ∀w ∈ V}. By

minmax theorem (Sion 1958), this is less than min
k∈L

max
v∈V

max
λ̂v∈∆|D(v)|,ρ̂

∑
w∈D(v)

k2
vwλvwα

>
WκEwαW
d2
v

.

Applying Lemma 26 in (Micchelli & Pontil 2005), we get,

min
k∈L

max
v∈V

d−2
v

 ∑
w∈D(v)

(
k2
vwα

>
WκEwαW

)ρ̂ 1
ρ̂

(A.5)

Since W = hull(W), for all w ∈ W , k is taken to be the optimal k obtained by solving

the small problem in equation (3.11) and for all w ∈ Wc, kvw = dv

(∑
u∈A(v)

⋂
Wc du

)−1

.

With this choice, the upper bound can be written as

max

ΩE(fEW)2, max
u∈Wc

( ∑
w∈D(u)

( α>WκEwαW
(
∑

v∈A(w)
⋂
Wc

dv)
2
)ρ̂) 1

ρ̂


Since W = hull(W) and using the condition

∑
v∈A(w)

⋂
Wc dv ≥

∑
v∈A(w)

⋂
D(u) dv, we get

the upper bound of LHS as,

max

ΩE(fEW)2, max
u∈sources(Wc)

( ∑
w∈D(u)

( α>WκEwαW
(
∑

v∈A(w)
⋂
D(u) dv)

2

)ρ̂) 1
ρ̂


which is

≤ max
u∈sources(Wc)

( ∑
w∈D(u)

( α>WκEwαW
(
∑

v∈A(w)
⋂
D(u) dv)

2

)ρ̂) 1
ρ̂

Since for any β̂, ‖ β̂ ‖ρ̂≤‖ β̂ ‖1, the upper bound of LHS can be written as

max
u∈sources(Wc)

∑
w∈D(u)

α>WκEwαW
(
∑

v∈A(w)
⋂
D(u) dv)

2
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In a sequence labeling setup, this is equivalent to

max
u∈sources(Wc)

∑
i,Y 6=Yi

∑
j,Y ′ 6=Yj

α>WiY

li∑
p=1

lj∑
q=1( ∑

w∈D(u)

κEw(xpi ,x
q
j)
(
Λ(ypi , y

q
j ) + Λ(yp, y′q)− Λ(ypi , y

′q)− Λ(yp, yqj )
)

(
∑

v∈A(w)
⋂
D(u) dv)

2

)
αWjY ′

≤ max
u∈sources(Wc)

∑
i,Y 6=Yi

∑
j,Y ′ 6=Yj

α>WiY

li∑
p=1

lj∑
q=1

2
∑

w∈D(u)

κEw(xpi ,x
q
j)

(
∑

v∈A(w)
⋂
D(u) dv)

2
αWjY ′

dv is given values 1 for the top node and βi for nodes at level i, where β is a con-

stant (Jawanpuria et al. 2011). There fore,∑
v∈A(w)

⋂
D(u) dv) = βu + (w − u)βu+1 +

(
w−u

2

)
βu+2 +

(
w−u

3

)
βu+3 + · · · +

(
w−u
w−u

)
βw =

βu(1 + β)w−u.

The upper bound can now be written as

≤ max
u∈sources(Wc)

∑
i,Y 6=Yi

∑
j,Y ′ 6=Yj

α>WiY

li∑
p=1

lj∑
q=1

2
∑

w∈D(u)

κEw(xpi ,x
q
j)

β2u((1 + β)w−u)2
αWjY ′ (A.6)

Now, ∑
w∈D(u)

κEw(xpi ,x
q
j)

β2u((1 + β)w−u)2
=

∑
w∈D(u)

〈ψEw(xpi ), ψEw(xqj)〉
β2u((1 + β)w−u)2

=
∑

w∈D(u)

〈
∏

k∈w ψEk(x
p
i ),
∏

k∈w ψEw(xqj)〉
β2u((1 + β)w−u)2

=
∑

w∈D(u)

〈∏
k∈u

ψEk(x
p
i )

β

∏
k 6∈u,k∈w

ψEk(x
p
i )

1 + β
,
∏
k∈u

ψEk(x
q
j)

β

∏
k 6∈u,k∈w

ψEk(x
q
j)

1 + β

〉
≤

∑
w∈D(u)

〈∏
k∈u

ψEk(x
p
i )

β
,
∏
k∈u

ψEk(x
q
j)

β

〉〈 ∏
k 6∈u,k∈w

ψEk(x
p
i )

1 + β
,
∏

k 6∈u,k∈w

ψEk(x
q
j)

1 + β

〉
=
∏
k∈u

ψEk(x
p
i )ψEk(x

q
j)

β2

∑
w∈D(u)

〈 ∏
k 6∈u,k∈w

ψEk(x
p
i )

1 + β
,
∏

k 6∈u,k∈w

ψEk(x
q
j)

1 + β

〉
Applying the kernel trick (Jawanpuria et al. 2011), it can be written as∏

k∈u

ψEk(x
p
i )ψEk(x

q
j)

β2

∏
k 6∈u

(
1 +

ψEk(x
p
i )ψEk(x

q
j)

(1 + β)2

)
Therefore, the upper bound for the LHS of sufficiency condition becomes,

max
u∈sources(Wc)

∑
i,Y 6=Yi

∑
j,Y ′ 6=Yj

α>
WiY

li∑
p=1

lj∑
q=1

2
(∏
k∈u

ψEk(xpi )ψEk(xqj)

β2

)(∏
k 6∈u

(
1 +

ψEk(xpi )ψEk(xqj)

(1 + β)2
))
αWjY ′

(A.7)
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The sufficiency condition can thus be written as,

max
u∈sources(Wc)

∑
i,Y 6=Yi

∑
j,Y ′ 6=Yj

α>
WiY

li∑
p=1

lj∑
q=1

2.
(∏
k∈u

ψEk(xpi )ψEk(xqj)

β2

)(∏
k 6∈u

(
1 +

ψEk(xpi )ψEk(xqj)

(1 + β)2
))
αWjY ′

≤ ΩE(fEW)2 + ΩT (fTW)2 + 2(ε− eW)

(A.8)

which is same as that given in equation (3.13)

A.2 Solution to the Reduced Problem

We consider the partial dual of equation 3.10, as derived in equation (A.1), as new primal

and derive the dual of the new primal problem here.

max
α∈τ (Y,C)

min
γ∈∆|VE|,1

min
λv∈∆|D(v)|,ρ̂∀v∈VE

− 1

2
α>

(∑
w∈VE

δw(γ,λ)κEw

)
α− 1

2
α>κTα+

∑
i,Y 6=Yi

αiY

which is equivalent to

max
α∈τ (Y,C)

∑
i,Y 6=Yi

αiY −
1

2
α>κTα− max

γ∈∆|VE|,1
max

λv∈∆|D(v)|,ρ̂∀v∈VE

1

2
α>

(∑
w∈VE

δw(γ,λ)κEw

)
α

(A.9)

In equation (A.5), we got,

max
γ∈∆|VE|,1

max
λv∈∆|D(v)|,ρ̂∀v∈VE

α>

(∑
w∈VE

δw(γ,λ)κEw

)
α = min

k∈L
max
v∈V

d−2
v

 ∑
w∈D(v)

(
k2
vwα

>κEwα
)ρ̂ 1

ρ̂

Dual of this term (Jawanpuria et al. 2011) is given as,

max
η∈∆|D(v)|,1

(∑
w∈V

ζw(η)(α>κEwα)ρ̂
) 1
ρ̂

where ζw(η) =
( ∑
v∈A(w)

dρvη
1−ρ
v

) 1
1−ρ . Substituting in equation (A.9), we get the final dual

which is,

max
α∈τ (Y,C)

∑
i,Y 6=Yi

αiY −
1

2
α>κTα−

1

2
max

η∈∆|D(v)|,1

(∑
w∈V

ζw(η)(α>κEwα)ρ̂
) 1
ρ̂

where ζw(η) =
( ∑
v∈A(w)

dρvη
1−ρ
v

) 1
1−ρ . Which is same as that given in equation (3.14) and

equation (3.15). The solution to the dual problem in equation (3.14) with V restricted to

W gives the solution to the restricted primal problem given in equation (3.11).
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If ᾱ is the optimal solution to equation (3.15) with some η, then the ith sub-gradient

for the objetive function g(η) is given by

(5g(η))i = −d
ρ
i η
−ρ
i

2ρ̂

(∑
w∈VE

ζw(η)(ᾱ>κEwᾱ)ρ̂
) 1
ρ̂
−1( ∑

w∈D(i)

ζw(η)ρ(ᾱ>κEwᾱ)ρ̂
)

where

ᾱ>κEwᾱ =
∑

i,Y 6=Yi

∑
j,Y ′ 6=Yj

αiY αiY ′
li∑
p=1

lj∑
q=1

κEw(xpi ,x
q
j)
(
Λ(ypi , y

q
j ) + Λ(yp, y′q)− Λ(ypi , y

′q)− Λ(yp, yqj )
)
.

In each iteration of the mirror descend algorithm, ᾱ is obtained by using a cutting

plane algorithm to solve equation (3.15), the parameters of equation (3.14) are updated

with the sub-gradient. The algorithm terminates when the sufficiency condition given in

equation (3.13) is satisfied.

A.3 Kernels in StructHKL

The kernel functions κEw and κT are those corresponding to emission kernel at node w

and the transition respectively. We briefly discuss this in the following paragraph.

The kernel κEw stands for the inner product of the feature node values corresponding

to two different input-output pairs of sequences (Tsochantaridis 2006). The inner product

with respect to node w of examples i, j and their corresponding sample sequences Y and

Y ′ is given by,

〈ψδEwi(Y ), ψδEwj(Y
′)〉 = 〈(ψEw(Xi, Yi)− ψEw(Xi, Y )),(ψEw(Xj, Yj)− ψEw(Xj, Y

′))〉

= 〈ψEw(Xi, Yi), ψEw(Xj, Yj)〉+ 〈ψEw(Xi, Y ), ψEw(Xj, Y
′)〉

− 〈ψEw(Xi, Yi), ψEw(Xj, Y
′)〉 − 〈ψEw(Xi, Y ), ψEw(Xj, Yj)〉.

We define a kernel for each of these inner products and since sum of these kernels

is a kernel, κEw for two input output pairs can be split into κEw((Xi, Yi), (Xj, Yj)) +

κEw((Xi, Y ), (Xj, Y
′))− κEw((Xi, Yi), (Xj, Y

′))− κEw((Xi, Y ), (Xj, Yj)).

Since, the input and output are sequences, each of these kernels can be defined such

as

κEw((Xi, Yi), (Xj, Yj)) =
li∑
p=1

lj∑
q=1

κEw((xpi , y
p
i ), (x

q
j , y

q
j )),

where li is the length of the ith sequence, xpi is the pth input vector of Xi and ypi is the pth

output label of Yi. The kernel corresponding to a time step in a sequence can be defined

as

κEw((xpi , y
p
i ), (x

q
j , y

q
j )) = κEw(xpi ,x

q
j)Λ(ypi , y

q
j ),
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where Λ(ypi , y
q
j ) = 1 if ypi = yqj ; 0 otherwise. Therefore, κEw for i, j, Y and Y ′ is

li∑
p=1

lj∑
q=1

κEw(xpi ,x
q
j)
(
Λ(ypi , y

q
j ) + Λ(yp, y′q)− Λ(ypi , y

′q)− Λ(yp, yqj )
)

,

where κEw(xpi ,x
q
j) = 〈ψw(xpi ), ψw(xqj)〉. Further as described in (Jawanpuria et al. 2011),

for any sublattice U formed by the descendants of a node,
∑
v∈U

κv(x
p
i ,x

q
j) =

∏
k∈B

⋂
U
(1 +

ψk(x
p
i )ψk(x

q
j)) , where B is the set of basic features. Similarly, κ

T
over two sequences Yi

and Yj is defined as
li−1∑
p=1

lj−1∑
q=1

Λ(ypi , y
q
j )Λ(yp+1

i , yq+1
j ) .

A.4 Cutting Plane Algorithm

Our objective is to incrementally find a solution to equation (3.14) using mirror descent.

In each iteration of the mirror descent algorithm, we find an optimal value of α using

cutting plane algorithm, then find the sub-gradient to g(η) using the value of α and

update the η value. The objective to the cutting plane algorithm is equation (3.15). ie,

max
α∈τ (Y,C)

∑
i,Y 6=Yi

αiY −
1

2
α>κTα−

1

2

(∑
w∈V

(
∑

v∈A(w)

dρvη
1−ρ
v )

1
1−ρ (α>κEwα)ρ̂

) 1
ρ̂

(A.10)

Merging the vlaue of ζw(η) =
( ∑
v∈A(w)

dρvη
1−ρ
v

) 1
1−ρ into kernel, we can write the above

equation as,

max
α∈τ (Y,C)

∑
i,Y 6=Yi

αiY −
1

2

∑
i,Y

∑
j,Y ′

αiY αjY ′κT iY jY ′ −
1

2

(∑
w∈V

(∑
i,Y

∑
j,Y ′

αiY αjY ′κ
′

EwiY jY ′
)ρ̂) 1

ρ̂

(A.11)

To implement cutting plane algorithm, we define a cost function (the amount by

which the margin is violated by a constraint). This is derived from the constraints of

equation (3.10). It is defined as for each i,

H(Y ) ≡
[
1−

∑
j,Y ′∈Sj\Yj

αj,Y ′
(
κTiY jY ′ +

∑
w∈W

δw(γ,λ)κEiY jY ′

)]
∆(Yi, Y ) (A.12)

The cutting plane algorithm is outlined in Fig. 3.4. (Tsochantaridis et al. 2004) suggests to

use dynamic programming to compute line 5 in the algorithm. We use Viterbi algorithm

to solve this. Line 9 needs to solve the dual objective given in equation equation (A.11)

with the constraint set restricted to S. Cutting plane algorithm ends with a polynomial

number of constraints from an exponential number of constraints.
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