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The fairest order in the world is a heap of random sweepings.

Heraclitus†

†Collected in Charles H. Kahn, The Art and Thought of Heraclitus, 1979.
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Abstract

We consider integer random access machines (RAMs) that receive one of two types of

special integers as extra inputs: arbitrary numbers and random numbers.

Arbitrary numbers are numbers that have no special property, other than being large-

valued. Informally, one can consider them as adversarially-chosen numbers.

Intuitively, it would not seem that arbitrary numbers offer any value. However, previous

studies have shown for specific problems that such numbers contribute to the computational

power of a RAM. The present work gives, for the first time, a broad characterisation of the sce-

narios in which arbitrary numbers do and those in which they do not increase computational

power, rather than considering specific problems.

The second type of extra inputs, random numbers, is conceptually an intermediate ground

between Oracle-given certificates and adversarially-chosen arbitrary numbers. The contribu-

tion of random inputs to Turing machines is the famous P = RP problem. In the context

of RAMs, it was posed as an open question by Simon (1981). The present study closes this

problem, by showing that for certain RAMs randomness does provide an advantage, whereas

for others it does not.

In order to achieve the results presented, this work also reviews classical results regarding

certificates and the use of indirect addressing (which is a pseudo-operation available to RAMs,

but which can be conceptually disabled so as to have its contribution modelled). In both

xv



cases, our results sharpen the state-of-the-art. In the case of certificates, we show how results

by Simon (1981) on RAMs with certificates continue to hold also with a slightly reduced

operation set (as well as with new operation sets). In the case of indirect addressing, we show

how, for specific RAMs, this pseudo-operation can be simulated with no loss of complexity,

whereas previously the state of the art was for a loss of complexity by a factor of the inverse

Ackermann function.

The following are some of our main results. We define a new complexity class, PEL, which

formalises the idea of describing the power of a RAM in terms of its capacity to generate large

numbers, and show that for a wide class of RAMs (specifically those that support addition,

Boolean operations, left-shift by a variable amount and division) computational power is,

indeed, directly related to this capacity. In particular, the addition of an arbitrary large

number to any RAM belonging to this class gives it the ability to recognise any recursively

enumerable set in O(1) time. Indeed, functions computable in this model are on the second

level of the arithmetical hierarchy. When adding to this the ability to generate additional

arbitrary large numbers at will, we show that an O(1)-time computation has the same power

as the entire arithmetical hierarchy, and an ω(1)-time computation extends even beyond that.

For certain other RAMs, we are able to show that the addition of arbitrary large numbers

does not increase their computational power at all.

For RAMs that have access to random numbers, we close an open problem raised by

Simon (1981), who asked for a characterisation of the power of certain RAMs working in

polynomial time on random numbers. Intriguingly, the power of these RAMs is PEL, too.

However, it remains an open question whether they, too, enjoy the power-boost afforded by

arbitrary large numbers.
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Preface, on a personal note

Some time ago, as I was contemplating whether or not to register for the “Three Minute

Thesis” competition (which, unfortunately, I was ultimately unable to attend), I raised with

the Discrete Math Research Group the question of how they think a topic as complex and

background-requiring as that of the present work can be presented in only three minutes.

Among the pieces of advice that I received was the following (by a person who shall remain

anonymous): “Sometimes a lie is the quickest way to the truth”.

This advice is applicable not only to three-minute thesis presentations. It is also commonly

used in general pedagogical situations. My wife, who teaches grade school, once asked me

what I learned in the first semester of my B.Sc., to which I replied that the first semester was

devoted almost entirely to addition and multiplication. She was completely flabbergasted by

this prospect, as — she told me — her grade school students were already quite adept at these

tasks. Indeed, when she asked me if during my M.Sc. studies I also had to learn addition and

multiplication, I was forced to reply that in my M.Sc. the material was not that advanced,

and that, at the time (having taken a course in elementary set theory), I was still struggling

with the concept of what a number is.

And yet, this description of my studies is accurate: the understanding of addition and

multiplication gained in post-high-school studies is the basis for ring, group and field the-

ory, as well as linear algebra, which, in turn, form the basic structures and concepts upon

which many other mathematical disciplines are built. In grade school, though we learn the

mechanical proficiency of addition and multiplication, we are “deceived” into believing that

this mechanical proficiency is the same as a deep understanding.

1
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This “lie to get to the truth” methodology is in common use, but for some reason where

I find it most unacceptable is in how complexity is taught. My experience (and in my belief,

this is the common experience) is that complexity is typically taught after an introduction

to Turing machines, it is explained in the context of Turing machines, it is shown to hold

beautiful properties for Turing machines, and then, from that point and throughout the rest

of a person’s professional training, complexity is used often and as a central tool, but always

as it pertains to high-level code or pseudocode, which acts like a Random Access Machine.

In all such cases, the computational model is never exactly specified, nor is there ever a

discussion of how RAM complexities differ from Turing machine complexities, nor how they

relate to each other.

Personally, I find the pedagogically-beneficial simplification of addition for grade-school

students to be acceptable, because they are novices, not professionals seeking specialisation

in the field. For university-level mathematics students, who do specialise in the field, a much

deeper presentation of the topic is expected — and, indeed, given. On the other hand,

for exactly the same reason, the simplification given in the treatment of complexity I find

questionable. In this case, the simplified version is the version presented to students of IT

and Computer Science, specialising in the development and analysis of algorithms. The very

people who should gain an in-depth understanding of this topic are denied it.

This work grew from my personal frustration over this convenient simplification, the truth

behind which I found to be virtually unknown and exceptionally fascinating. It is my hope

that the present text will lead more people to take the high road of complexity theory, and

to use it more judiciously.

Of course, now, if my wife asks me the follow-up question of what I learned during my

Ph.D. studies, I will have to answer that this time I did not learn to add or multiply nor what

a number is, but rather the essential meaning of what it is to compute.



Chapter 1

Introduction

1.1 Complexity and its underlying model

There is arguably no other theoretical tool in the arsenal of the algorithm developer that is as

powerful as complexity, in its ability to compare the theoretical performance of algorithms.

Complexity computation is a ubiquitous part of the development and presentation of any new

algorithm, and much of the theory of algorithms deals with their classification into complexity

classes. In fact, many basic texts (e.g. Brassard and Bratley, 1995) devote entire chapters

specifically to it.

The idea of complexity is of some seniority, with many precursors (e.g. Rabin, 1960) that

laid out the foundations to the notion that not all problems are equally complex, and that

the complexity relations between problems define a hierarchy. This idea ultimately led to

Hartmanis and Stearns (1964) where complexity in its modern form, relating the length of a

problem’s description to the time and resources necessary to solve it, was established.

Complexity is not, however, an intrinsic property of algorithms. Algorithms can only be

attributed a complexity with respect to a particular computational model.1 The computa-

tional model widely regarded as canonical is the Turing machine (Turing, 1936), and most

1Blum (1967) describes general axioms for deciding whether a function can reasonably be called a complexity
measure, via a construction that does not require any underlying computational model to be explicitly defined.
However, this is merely a general framework. Practical specific complexities are almost invariably tied to a
specific model. On the contrary, some natural measures, such as the average run-time of a probabilistic Turing
machine, have been shown (Gill, 1977) to not satisfy Blum’s axioms. Complexity measures discussed in this
thesis are all Blum complexity measures.

3
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of the theoretical study of complexity has been devoted to Turing machine complexity. (A

representative treatment of Turing machine complexity is Fortnow and Homer (2003), a 39-

page review of the history of complexity that does not mention RAM complexity, the type of

complexity that is the object of study in this work, even once.)

One of the appealing properties of the Turing machine computational model, with respect

to complexity, is that many of the possibilities to vary over it (e.g. by the addition of extra

tapes, by a change in alphabet size, etc.) only affect the complexity of algorithms by a

polynomial function. As such, it is convenient to discuss algorithms and problems in terms

of complexity classes (such as P, the class of problems that can be solved by polynomial-time

algorithms) rather than specific complexities (such as O(n) or O(n2)). This is an extension

of the abstraction level already present in basic complexity notation, which ignores, e.g.,

multiplication by a constant. A discussion of this equivalence up to a polynomial appears,

for example, in Arora and Barak (2009), where an entire chapter is devoted to “why the

computational model doesn’t matter”.

However, contrary to this (unfortunately common) presentation, the computational model

does matter. General computational models do not share this good property of equivalence

up to a polynomial exhibited by Turing machines. The complexities they attribute to algo-

rithms are not polynomially-related to Turing-machine complexity, to each other, or even to

variations over the same computational model.

As an example, consider sorting by comparisons2. Although algorithms for sorting by

comparisons are often described as being, e.g., O(n2)-time or O(n log n)-time (Wikipedia,

2012b,a), in fact, they require O(n2) (or O(n log n)) comparison operations. Nothing guaran-

tees a priori that a single comparison can be performed in O(1) time, or even time that is

polynomial in the length of the input. Though this is true for RAMs, where the comparison

of two integers, a and b is often assumed to be a basic, O(1), operation, and is also true for

Turing machines (which require O(log min(a, b))-time for the case of multi-tape Turing ma-

chines and O(log2 min(a, b))-time for the case of single tape Turing machines), the same is not

true for Minsky machines (Minsky, 1961), which require O(min(a, b))-time to accomplish the

2Otherwise known as “comparative sorting” or “comparison sort”.
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same task. Comparison between two numbers is, for Minsky machines, an exponential time

complexity problem. (Yet other computational models, such as Church’s λ-calculus (Church,

1936), do not describe a hypothetical computing machine at all, and have no explicit concept

comparable with time- or space-complexity.)

1.2 Random Access Machines

Among the wealth of possible computational models to choose from, the study of Random

Access Machines (RAMs) is of particular importance. RAMs are a family of models of com-

putation that allow the definition of basic operations that can be performed over an infinite

set of registers, each of which can take values from an infinite set (typically, the non-negative

integers). Basic operations can each be assigned any complexity, but typically they are re-

garded as operating in constant time. This is known as the “unit cost model”. The reason for

the importance of the RAM model is its ability to encapsulate high-level computer language.

In the three-quarters of a century that have passed since Turing introduced his seminal

model, software-programmable computers have become a household product and a necessary

ingredient of everyday life, having been integrated in mobile telephones, automobiles, televi-

sion sets, gaming consoles and a host of other products that are integral to our daily routines.

Almost without exception, the software driving these devices is written in some high-level

programming language, abstracting over the computers’ native assembly language. Not only

does the high-level programming language function far more like a RAM than like a Turing

machine, even the assembly language, with its ability to randomly access the device’s internal

memory, resembles a RAM far more than any other computational model.

Furthermore, the use of pseudocode, which is a facsimile of a high-level programming

language, in the description (and subsequent analysis) of algorithms has become standard

practice, and it, too, suggests a RAM by its use of high-level commands and its abstraction

over data types.

As such, RAM complexity deserves a closer look and more focus than it currently receives.

The field has been largely abandoned since the 1980s, after several breakthroughs led to the
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remarkable conclusion that even fairly limited RAMs are able, in polynomial time, to solve

every PSPACE problem. (That is, any problem that a Turing machine can solve using an

amount of tape that is polynomial in the size of its input, regardless of the amount of run-

time.) As evidence of this abandonment, consider the following comments by Hagerup (1998)

regarding Paul and Simon’s (1982) application of RAMs to sorting problems. Hagerup writes:

The latter results did not bring about a revolution in the theory and practice

of sorting because the corresponding algorithms were felt to cheat in a very real

manner. In order to sort n integers of w bits each, they use intermediate results

of nw or more bits, which makes them practically irrelevant and theoretically less

interesting – the unit-cost assumption had never been intended to be stretched

that far.

The new results essentially indicated that a RAM is far more powerful than any realistic

computational device. Hagerup’s description reflects the zeitgeist, stipulating that the drive

for studying computational models should be fuelled by the industry’s desire to create better

computers and to equip these with optimal architectures. The conclusion that the RAM

model is unrealistic shifted the focus of research to other, more promising avenues, such as

the word-RAM (Kirkpatrick and Reisch, 1984).

We consider the present work to be mathematical research. In such a context, the criti-

cisms of Hagerup and others are as persuasive as a call to abolish the study of infinite cardinals

in set theory, because they are unreasonably large.3 Certainly, large integers – the manipu-

lation of which is the source of the RAMs’ extraordinary power – emerge naturally in many

mathematical disciplines. Indeed, much larger numbers than are used here can be found in

research areas such as Ramsey Theory (Graham and Rothschild, 1971), analytic number the-

ory (Skewes, 1933) and graph theory, e.g. when using the Robertson-Seymour machinery (see

Lovász, 2006). In algorithm analysis outside the subdomain of RAMs, fast-growing functions

that give rise to large numbers are just as prevalent (see, e.g., Tarjan, 1975; Brand, 2012).

3The reader is invited to seek out the history of this particular example. Cantor’s work on cardinals did,
indeed, meet with ferocious opposition of this kind exactly.
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Some results regarding RAMs are about proving limits regarding what can be done with

large numbers, demonstrating that in certain cases manipulation of large numbers can be

simulated by actions on smaller numbers. In fields where the manipulation of large numbers

is necessary, the machinery developed regarding RAMs can be used to provide mathematical

workarounds (in the same sense as is often done with modular arithmetic).

On the flip side, the most interesting results regarding RAMs show that in some cases

the ability to manipulate large numbers holds great powers. When seeking a technological

motivation for investigations of this latter case, the situation is more complex, because the

numbers used in RAMs are often so large that they cannot be written down, even when

filling the entire observable universe with digits represented on the Plank scale.4 However,

whereas such an argument could have, in the past, been used to prove that numbers of so

large a magnitude can never be used in practical computation, with the advent of quantum

computation, which uses as its means of storage not the state of objects but rather their state

distributions, we see that as our understanding of the physical universe improves it is not

impossible for such hard limits to be exceeded. On the other hand, our engineering ability

to manipulate computing objects seems to be forever constrained by what we can express,

what Simon (1977) refers to as “feasible numbers”. As such, knowing how to harness the

power of simple operations on extremely large numbers may yet prove to be a much-needed

technological key.

Furthermore, whereas conclusions reached on one computational model cannot be used

directly for another computational model, the study of RAMs is interesting from a theoretical

computer science point of view, where it can provide new insights into classical problems that

have been at the forefront of research for years, in the context of Turing machines.

Ultimately, however, the prime motivation for studying RAMs is not the investigation of

numbers at all, but rather the investigation of operations on numbers, either as standalone

operations or in sets. The operations investigated here (and, for the most part, throughout

RAM theory) are among the most natural operations, appearing everywhere in mathematics

and computer science. Much as logic is the study of derivation, important because the validity

4This is not always the case. Paul and Simon (1982), mentioned earlier, do not require significantly more
intermediate storage than the size of the input and output.
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of derivations is the underpinning of the validity of all mathematics, so is the study of the

power of operations important, because understanding this power is understanding the power

of all mathematics.

The time is therefore perhaps ripe to re-visit the integer RAM model, hoping that it may

shed light on some of the tantalising theoretical problems of computer science and beyond. As

for the farther future: if one day we do find ways to manipulate large numbers, the implications

of the tools of RAM theory on practical computations would be profound. This is theory

waiting for technology to catch up, a situation not unfamiliar to the field of mathematics.

1.3 Nondeterminism

Consider, again, the class P of decision problems solvable by Turing machines in time that is

polynomial in the length of their input. The introduction of nondeterminism as one possibility

to vary over Turing machines was as early as Rabin and Scott (1959) (and possibly even as

early as Turing, 1936). This was described via a process wherein a Turing machine’s state

was allowed to change simultaneously to several different new states. A computation was

designated as “accepting” (returning a positive answer to a yes/no question) if at least one

of the computation paths of the underlying state machine terminated in an accepting state.

This idea introduced the new computational complexity class NP, those languages that can

be recognised in polynomial time on a nondeterministic Turing machine.

An equivalent definition for NP (due to Scott, 1967), which is more relevant in the context

of the present work, is that it is the set of problems that can be solved in polynomial time

by a deterministic Turing machine, when this machine is also given as input a second, read-

only tape containing a “hint” (sometimes referred to as a “certificate” or a “witness”). For

a problem to be in NP, the machine should always terminate in polynomial time, and there

should be some hint that will allow the machine to accept an input if that is the correct

answer, whereas for an input that should not be accepted, the machine should never accept,

regardless of the hint. It is clear that nondeterministic machines can be represented in this

way, because the hint may simply indicate the accepting computation path.
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In the early 1970s, Cook (1971) and, independently, Levin (1973) proved the existence

of a specialised class of NP problems, which became known as NP-complete or NPC. The

essence of NPC lies in the introduction of reducibility between different problems. Problem

A is polynomial-time reducible to problem B if one is able to use an Oracle that solves A

in O(1) time to solve B in polynomial time. Using this tool, Cook and Levin introduced

problems that all NP problems can be reduced from. In other words, the complexity of any

NPC problem is, up to a polynomial, an upper bound on the complexity of all NP problems.

In particular, they showed that if any NPC problem was shown to be in P, then P=NP.

This gave, for the first time, an avenue to attack the problem of whether nondeterminism

adds to the power of a Turing machine. Shortly after, Karp (1972) published a list of 21

natural problems in combinatorics and graph theory and showed these to be NPC, effectively

pushing the P=NP question to the forefront of computer science research, where it has been

ever since.

1.4 Randomness

Another problem, of a similar flavour, is the question of whether P=RP, that is, whether the

availability of randomness increases computational power. Random computation was first

introduced by Rabin (1963). Its power was demonstrated by Solovay and Strassen (1977) (and

later by Rabin (1980)) who solved the question of random polynomial time primality testing,

introducing algorithmic tools that have been utilised ever since, e.g. in implementations of the

popular RSA cryptosystem (Rivest et al., 1978). However, this particular hallmark-problem

of RP was shown by Agrawal et al. (2002) to also lie in P and, in general, the question of

whether P=RP remains both open and of high interest.

Like in the case of NP, RP can be described both in terms of specialised (random) Turing

machines, and in terms of regular Turing machines that are helped by special inputs. In

the latter approach, RP is described as the set of decision problems that can be solved by a

Turing machine that receives, in addition to its normal input, a second tape with random,

uniformly and independently distributed bits, where by “solve” we mean that if the correct
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answer is “no”, this answer must be given always, whereas if the correct answer is “yes”, it

must be given with probability of at least 0.5.5

It is the insight into these and similar problems that may be the most important benefit

from the study of RAMs. RAMs give us the opportunity to study, in a context similar to but

distinct from Turing machines, the benefits afforded by the availability of nondeterminism

and randomness. In RAMs, we model nondeterminism and randomness by the availability to

the RAM of the certificate as an extra input number.

1.5 Arbitrariness

An even more extreme example for an extra input number for RAMs, and one that does

not have any immediate equivalent in Turing machines, is an arbitrary number. This is a

number, perhaps adversarially chosen, whose only distinction is that it is large. We define

the class P-ARAM as the class of problems solvable in polynomial time by a RAM when this

RAM is given as an additional input a number, such that there exists an integer N such that

given any additional number n > N the RAM is guaranteed to terminate with the correct

answer. Because different RAMs are not polynomially reducible to each other, P-ARAM is a

complexity class that must be parameterised by the underlying RAM.

Though the availability of an arbitrary number may seem unhelpful, previous studies (e.g.

Bshouty et al., 1992), have shown for specific algorithms that such numbers contribute to

the computational power of a RAM, but this power contribution has never yet been fully

characterised.

1.6 Outline of the thesis

The present work answers, for several RAMs (differing in their choice of instruction sets),

whether the availability of random or arbitrary numbers is of significant help to the run-time

of algorithms.

5RP itself is just one of many setups for random computation. A more detailed overview of the topic can
be found in Section 6.1.
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The rest of this work is arranged as follows:

In Chapter 2, we give the formal definition of the RAM model, present the common

variations of RAM models, survey the literature on RAMs and present known results. Addi-

tionally, we specify the Turing machine to be used as a comparison.

In Chapter 3, we present a somewhat restricted variation on the RAM model and prove

that the restricted model is as powerful as the original to the extent that the restricted model

and the original RAM model can simulate each other in real time, thus addressing an open

question regarding the power of indirect addressing.

In Chapter 4, we define formally the notion of arbitrary large numbers in RAM programs.

We determine the strength of arbitrary numbers in RAM computations that involve addition,

Boolean operations, bit shifts and potentially also multiplication. We then go on to determine

the strength of arbitrary numbers when division is also admitted as a basic operation.

In Chapter 5, we consider a generalisation of the model where an arbitrary large number

is provided as input. In the generalisation, arbitrary large numbers can be generated by

the model at will. We show that this capability increases computational power even under

arithmetic complexity, and quantify this power exactly both with and without the availability

of a division operation.

In Chapter 6, we review the existing models of randomised computation and how they

have been applied to RAMs. We improve (and correct) existing results on the RAM equivalent

of PP and finally close the longstanding open problem of characterising the power of the RP

model in RAMs by introducing a new data type that facilitates parallelisation of universal

computation. We also address the question of equivalence between variations of the stochastic

RAM model.

Finally, in Chapter 7, we present our new findings in the context of known results

from the field, speculate on possible implications for Turing machines, and describe potential

questions for follow-up research.

The thesis is also accompanied by Appendices, as follows.
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Appendix A presents a constant-time sorting algorithm, the existence of which is a direct

corollary of Theorem 8 of Chapter 4, but whose implementation here is superior to that

guaranteed by the theorem, in that it uses only polynomial-sized registers. Appendix B details

how the techniques described are equally applicable to settle the open problem regarding the

density of Friedman numbers. For example, use is made of Ona,m vectors, defined in Chapter 3

and used throughout the thesis. The last appendix, Appendix C, contains full listings of

implementations of algorithms discussed in Chapter 4.



Chapter 2

Background

2.1 The RAM model

The Random Access Machine (or RAM) is a generalisation of counter machines. Aho et al.

(1975) provides a full and more formal description of RAMs. We summarise here:

Computations on RAMs are described by programs. RAM programs are sets of commands,

each given a label. Without loss of generality, labels are taken to be consecutive integers. The

bulk of RAM commands belong to one of two types. One type is an assignment. It is described

by a triplet containing a k-ary operator, k operands and a target register. The other type is a

comparison. It is given two operands and a comparison operator, and is equipped with labels

to proceed to if the comparison is evaluated as either true or false. Other command-types

include unconditional jumps and execution halt commands.

The execution model for RAM programs is as follows. The RAM is considered to have

access to an infinite set of registers, each marked by a non-negative integer. The input to the

program is given as the initial state of the first kin registers, where kin is algorithm-dependent.

The rest of the registers are initialised to 0. Program execution begins with the command

labelled 1 and proceeds sequentially, except in comparisons (where execution proceeds accord-

ing to the result of the comparison) and in jumps. When executing assignments, the k-ary

operator is evaluated based on the values of the k operands and the result is placed in the

target register. The output of the program is the state of the first kout registers at program

13
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termination, where the choice of kout is also algorithm-dependent. (Alternatively, and more

resembling Turing machines, RAMs may be equipped with special halting instructions that

either “accept” or do not.)

Types of RAM models differ in what the contents of their registers can be, what qualifies

as operands, which operations are permitted, which comparisons are permitted and how

complexity is measured. For the present purposes, we will use the most common choices

among these. These are:

Register contents The contents of registers are non-negative integers. Other models in-

clude general integers, rational numbers, reals (Blum et al., 1989) and even elements of

general abelian groups (Gaßner, 2001).

Operands Operands can be explicit integer constants, the contents of explicitly named reg-

isters or the contents of registers whose numbers are specified by other registers. This

last mode is known as “indirect addressing”.

We note that the target register of RAM assignments may likewise be specified either

explicitly or by indirect addressing.

Operations The choice of operations for RAMs differs widely from paper to paper. There

is no common consensus regarding it. We consider it at length in Section 2.2.

Comparisons We will mainly use the more restrictive set of comparison operators, including

only equality “=”. It is also possible to include the full complement of comparison

operators. This is normally denoted simply as the inclusion of “≤”, from which all

other comparisons can be calculated.

Complexity We will measure complexity in what is known as the “uniform cost” or “unit

cost” model. This assigns the cost of a single time unit to each command executed.

Other models assign higher costs for operations with larger operands.

Lürwer-Brüggemeier and Ziegler (2008) prefer this model because it is both convenient

and largely realistic, whereas Stockmeyer (1976) provides deeper reasoning, based on

the idea that the model is a good platform on which to examine the relative strengths
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of various operations. Whichever the case, the uniform cost model is by far the most

commonly used cost metric.

As can be seen, the RAM model closely resembles the intuitive notion of an idealised

computer. Ben-Amram and Galil (1995) write

“The random access machine (RAM) seems to be the computational model in

widest use for algorithm design and analysis. The RAM is intended to model

what we are used to in conventional programming, idealised in order to be better

accessible for theoretical study. [It is] the standard platform for the study of

algorithms.”

Aho et al. (1975), a canonical text in the field of algorithm design, says about RAMs that

they are

“simple enough to establish analytical results but [. . . ] at the same time accurately

reflect the salient features of real machines”.

This quote serves as an example of how the distinction between what RAM models are able

to do and how “real machines” behave sometimes becomes blurred, even in a carefully written

text. When Aho et al. later begin analysing specific algorithms, this distinction is omitted

altogether. For example, regarding inserting an element into a linked list, Aho et al. write

“Any reasonable translation to RAM code would result in an execution time for

INSERT that is independent of the size of the list.” (p. 46)

thereby glossing entirely over cost models for RAM operations and any hidden implications

in the use of the loaded word “time” in this context.1

A key point, however, is that RAM complexities are typically not the same complexities

as those afforded by Turing machines for the same tasks. This was exemplified in Section 1.1.

Typically, the fact that RAMs are able to perform complex actions in constant time gives them

1The INSERT is performed in a constant number of operations. Stating that it is performed in constant
time is only as “reasonable” as the assumptions of the unit-cost model. The author can attest, from personal
experience, that inserting into a linked list that contains 240 elements is far slower than doing so for a list that
fits in memory.
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considerable complexity advantages over Turing machines. However, the difference between

the computational models is, perhaps surprisingly, not always in favour of the seemingly more

powerful RAM. Stockmeyer (1976) proves that a RAM using arithmetic operations, working

under the unit cost model, takes Ω(n) time to check if an n-bit integer is even - a procedure

that can be accomplished in O(1) time by a suitable Turing machine.

The example above demonstrates also the non-triviality of the choice regarding which

parameter to use for complexity calculations. Typically, in Computer Science, in saying that

sorting by comparisons requires Ω(n log n) comparisons one takes n to be the number of

inputs. As is demonstrated in Chapter 3, this approach is not always viable: it is sometimes

possible to compress any number of inputs into a bounded number of inputs. A stricter and

more universal metric is the total bit-length of the input. This is the metric we will use here. It

will make comparisons between RAM performance and TM performance an apples-to-apples

comparison, because in TMs, the bit-length metric is the metric in use always.

2.2 RAM operations

There is no general consensus regarding which operations should be permitted implicitly in

any RAM model. Schönhage (1979), in comparing between a large number of RAM variations,

assumes only that RAMs must be able to increment a number. This seems to be a minimum

requirement for all RAMs. Most other treatments also assume a basic decrement operation.

Usually, addition and subtraction are also assumed (c.f. Regan, 1993). On the other hand,

Trahan et al. (1994), in describing the closely-related model of the Parallel Random Access

Machine (PRAM)2 writes

“The basic PRAM has unit-cost addition, subtraction, Boolean operations, com-

parisons and indirect addressing”,

thus adding Boolean operations (which we denote here collectively as Bool) to the list of basic

operations.

2PRAMs (see, e.g., Eppstein and Galil, 1988) are a family of computational models similar to RAMs but
incorporating, additionally, explicit modelling of parallelisation. This work does not deal with PRAMs.
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Notably, when registers can only be non-negative integers, these basic operations are

augmented in such a way as to ensure a non-negative result: subtraction, for example, is

replaced by natural subtraction, which is defined as max(a − b, 0) and is denoted by the

symbol “ ”.3 Similarly, Boolean negation, “¬”, is augmented so as to only affect binary

digits up to (and including) the most significant 1-bit of the operand.

In addition to the basic operations presented (inc, dec,+, ,Bool), there are other, more

advanced operations. Listed here in approximate order of increasing computational power,

these are:

Bit shift operations These include left shift, a ← b ≡ a × 2b, and right shift, a → b ≡

ba/2bc, which are sometimes introduced together and sometimes separately, sometimes

without further restrictions and sometimes restricted to b = 1. Without restrictions,

these are known as variable shift operations, whereas if b is required to be 1 (or, equiv-

alently, to be bounded by any value that is independent of the input) then they are

referred to as bounded shift operations. Variable shift is generally considered to be a

stronger operation than bounded shift.

Multiplication Multiplication raises the computational power of a RAM model consider-

ably. Trahan et al. (1992) and van Emde Boas (1990), for example, agree that having

multiplication places RAM models outside the framework of sequential models and into

the stronger class of parallel models. In the literature, RAMs with O(1) multiplication

capability are often referred to as MRAMs.

Division Perhaps surprisingly, division was demonstrated by Simon (1981) to be much

stronger than multiplication. The power boost afforded by division is not only super-

polynomial, but is, in fact, larger than any elementary function, i.e. any function that

can be described by a finite number of exponentiations and arithmetic operations. The

availability of division can increase the power of some poly-time RAMs from PSPACE

to ER.4 (Compare this with Strassen (1973) and Granlund and Montgomery (1994),

3Natural subtraction will be taken here to share the same properties as normal subtraction in terms of
operator precedence, etc..

4The definition of ER is given later on in this section.
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where it is shown that in certain other RAM models division can be avoided altogether,

and so entails no advantage.) Division comes in three flavors. Rational division is some-

times allowed in models where registers can store rational numbers. Where registers are

integers, division is typically integer division, ba/bc, and denoted “÷”. However, there

is a weaker version known as “exact division” (“/”). It operates in the same way as

integer division and as rational division. However, it is defined only when both other

types of division yield the same answer. Simon (1981) conjectures that “÷” is stronger

than “/”, showing that #P ⊆ PTIME-RAM[+,×,÷], whereas Schönhage (1979) proves

PTIME-RAM[+,×, /] ⊆ FP . Thus, this conjecture is a weaker form of the FP 6= #P

conjecture. (A definition of #P can be found in Valiant (1979). The class FP is defined

in Rich (2008).)

In addition, some papers (e.g., Simon and Szegedy, 1992) introduce specialised operations,

tailored for their needs. For example, one can introduce string manipulation operations that

treat the RAM register contents as bit strings.

In this work we use the convention RAM[op; comp] to denote a RAM with assignment

operations from the set op and comparisons from the set comp. The operation “inc” and the

comparison “=” are always assumed to be supported, and do not have to be listed. For clarity,

all other operations are given explicitly. The syntax RAM[op] indicates that comp = {=}.

Operations appearing in brackets (“[ ]”) within the operation list of a computational model

are taken to be optional, in the sense that statements regarding the computational model

hold both when the operation is part of op and when it is not. Indirect addressing is always

assumed for RAMs. Where it is not, we use the syntax RAM0[op; comp], instead. Complexity

classes are given their standard names, with the computational model appended to them as

a suffix. When the computational model is not specified, it defaults to the Turing machine

model. Where neither “SPACE” nor “TIME” is specified in the complexity class, “TIME” is

the default.

So, for example, P-RAM[+, [ ],×] denotes the class of languages accepted in polynomial

time by a RAM capable of unit-cost addition, multiplication, and optionally also natural

subtraction, but not ≤ comparisons. (This is not to be confused with PRAM[+, [ ],×], which



2.3. RELATED WORK 19

is a class of parallel random access machines.) On the other hand, PSPACE denotes the class

of languages accepted in polynomial space by a Turing machine. For Turing machines, space is

measured by the number of tape cells used. For RAMs — by the highest-numbered register.5

2.3 Related work

The following are some of the known results regarding RAMs.

Schönhage (1979), Hartmanis and Simon (1974) and Bertoni et al. (1981) jointly prove

the following equivalences:

PSPACE = P-RAM[+, [ ],×,Bool]

= P-RAM[+, ,×,÷]

= P-RAM[+, [ ],×,←].

These extend results by Pratt et al. (1974) regarding Vector Machines (VMs), which are a

model closely related to RAMs, where both Boolean and arithmetic operations are allowed,

but on two different sets of registers. The original conclusions of Pratt et al. apply also to

nondeterministic classes:

PSPACE(= NPSPACE)

= P-VM = NP-VM

= PSPACE-VM = NPSPACE-VM.

This is interesting, in that it shows that for vector machines P = NP. There is no benefit

from nondeterminism. Pratt et al. conclude their discussion with the open question of whether

unrestricted left shifting would make the VM model stronger, and whether allowing arithmetic

and Boolean operations on the same registers would make the model stronger. They write:

5This method of measuring the space requirements of a RAM in registers rather than in bits may seem like
a cheat. It is provided here to be used in the review of prior results. None of the results in this paper considers
space-bounded RAMs.
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“Although the motivation in the previous section suggests that a vector machine

should simply be a RAM with additional bit-wise Boolean and shift operations,

we have not succeeded in finding any reasonable upper bound on the power of such

a machine. The difficulty is that very rapidly growing functions may be computed

simply by repeatedly shifting a vector a distance equal to its value. We have as

yet found no use for the particular functions so computable; neither have we found

a way to compute them in a small amount of space on a Turing machine.”

This problem was ultimately solved by Simon (1977), who showed that

P-RAM[+, [ ],←,Bool] = PSPACE,

and by Simon and Szegedy (1992), who showed the same for P-RAM[+, [ ],×,←,Bool].

Two general techniques are used to obtain many of these results. RAMs with finite-

time execution can be described by “Computation Trees” (CTs). This is a model similar to

RAM, where execution never repeats the same commands, but rather proceeds down one of

the branches of an execution tree, chosen by the result of comparison operators. An even

weaker model is the “Straight Line Program” (SLP), where comparisons are not supported

and execution proceeds linearly from the start of the program to its termination. Schönhage

(1979) developed a technique to assess the power of a RAM by considering SLPs of the same

instruction set, and addressing the question of what resources (time and space) are required

by a TM accepting two such SLPs as input, to determine which of the two SLPs calculates

the larger number. (A more in-depth discussion of these notions follows in Section 4.2.)

Simon (1977) and Simon and Szegedy (1992) build on this and similar techniques by

showing how such a TM can store the results of SLP computations, even those involving

significant usage of the left-shift operation, in limited space. The general method of Simon

(1977) is an “interesting bit” notation. Integers are denoted as runs of 1 bits and runs of 0 bits.

An “interesting bit” is a place where one run ends and another begins. It is demonstrated

that Boolean operations, addition, natural subtraction and bit shifts are all operations that

do not expand the number of interesting bits in their operands very quickly. Note that the
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“interesting bit” notation is a hierarchical notation, where the place in which a run ends

and another run begins is, itself, denoted in interesting bit notation. In order to support

multiplication, too, Simon and Szegedy (1992) extend the interesting bit notation from a

notation for integers to a notation for polynomials.

In stark contrast to all results presented so far, Simon (1981) shows that adding the

division operator makes a significant contribution to the computational power. Simon proves

P-RAM[+, ,←,Bool, /;≤] = ER, where ER is the class of languages accepted by a Turing

machine in time

22
. .

.
2
}
n, (2.1)

where n is the length of the input.

The technique used for this result, first developed by Yarbrough (1963), is the generation

of “universal strings”, these being numbers whose Boolean expansion includes every substring

of length n, for some chosen n. It was later also used by Trahan et al. (1994).

2.4 The Turing machine model

Turing machines do not normally require an introduction. In much of the literature (and

parts of the present work) they do not need an exact specification, either. This is due to the

well known fact (see, e.g., Arora and Barak, 2009) that all Turing machines can simulate each

other with at most a polynomial cost in time and space. This means that complexity classes

such as P and PSPACE are well-defined without having to detail the exact model.

In parts of this work, however, the granularity of complexity classes we examine is different

to what is defined by polynomial closure. We therefore specify our model exactly in this

section.

The Turing machine we take throughout as a reference is a one-tape Turing machine

working over a one-sided-infinite tape. The tape’s alphabet is the binary digits, {0, 1}, where

0 doubles as the blank. The machine’s head begins at the first position of the tape. Moving

the head beyond the edge of the tape results in the machine halting and rejecting its input.

The finite control has a special state for halting and accepting the input. The reading head
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can go one element right, one element left or stay in the same place at any move. The input is

the initial state of the tape, with the input’s length being the position of the right-most “1”.

The machine has no output other than its accept/reject decision. As always, a non-halting

Turing machine rejects its input.

We point out that this version of the Turing machine, despite being a standard description

(see e.g. Radó, 1962, for an almost identical model), does not comply with the basic require-

ment of being Turing complete. Consider, for example, whether this machine can accept the

language containing only the empty string (that is, the all-zeros tape) as its input. If there

existed some machine that accepted the all-zeros tape, it would have had to do it in a certain

finite number of steps, N . This means that the reading head could not have reached beyond

point N in the tape. If the input was non-zero, but with the first “1” at position N + 1 or

beyond, it would certainly have been accepted as well.

In order to make this description into a Turing complete one, one solution is to encode the

input in a more machine-friendly manner. For example, one can write it using Manchester

coding: each “0” is encoded as “01” on the tape and each “1” as a “10”. This is already

enough for Turing completeness.

The reasons we stress this issue are two-fold. First, we wish to make the point that encod-

ing the input properly for each machine is standard practice. This fact serves as background

to the discussion in Appendix A.3, where we examine the question of whether it is valid to re-

encode algorithm inputs and outputs for the benefit of using a RAM0 instead of a RAM. (For

a more in-depth discussion of the need to properly encode a program’s inputs, see Schroeppel

(1973).)

Second, the need for input encoding, be it Manchester encoding or another method,

changes the length of the input. In order to attain Turing completeness in the present model,

some inputs will necessarily have to become longer. This demonstrates the fact that it is not

particularly constructive (though it is well defined) to speak about an “input of length n”.

Instead, when we consider inputs of length n this should be taken to mean that the input

is of length Θ(n), where the necessity for the use of big-O notation stems from the need to

encode. We remark that other factors may cause the input length to shrink by a constant
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multiplicative factor. For example, an increase in the tape’s alphabet size (For a discussion,

see Stearns et al., 1965). The need for the multiplicative ambiguity regarding the length of

the input is therefore inherent.

The purpose of introducing a particular variant of a Turing machine here is to allow us,

later on, to formally compare the computing power of Turing machines (and specifically, of

this Turing machine) with the computing power of the RAM under study. For example,

we may want to claim that the function computed by the RAM is in PSPACE. However,

before we can do so we must first define in what sense a RAM can be said to compute at all.

Turing machines accept their input in the form of a word on the input tape, and, typically,

compute a Boolean function by halting in an accepting state or not. A RAM, on the other

hand, receives any number of integers as inputs, and may terminate with any number of

integers written in its registers (or may not terminate at all). In order to bring the RAM

into the same playing field as Turing machines, we first restrict ourselves to considering only

RAMs that accept a single input (in their first register), and whose output is deemed to be

“accept” if at termination time the content of their first register is nonzero. In all other

cases, including cases of non-termination, the output is deemed to be “reject”. We call these

computing RAMs.

Though the qualification “computing” precludes all but a select few RAMs, it is clear

that in terms of sheer computing power nothing has been lost, as any function can be reduced

to the form described. On the other hand, the model provides a straightforward analogy in

the Turing machine world: by assuming the model of the Turing machine described here, the

single input integer to the RAM can be represented by its binary digits on the Turing ma-

chine’s tape at start-up, and the question of comparing RAM computational power with TM

computational power becomes well-defined: a RAM computes a function that is in PSPACE

if and only if there exists a Turing machine that, given the same input, returns the same

output, and this Turing machine uses only an amount of tape that is polynomial in the length

of the input.
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The length of the input for a computing RAM is defined so as to be equivalent to the

length of the corresponding input to a Turing machine. That is,

length(input) =


0 if input = 0,

blog2 inputc+ 1 else.

So as not to confuse the “left” and “right” direction of binary representation with the

“left” and “right” direction of tape motion, let us picture the tape as being finite to its right

and infinite to its left.

2.5 Some redundant operations

This work concentrates on RAMs that are equipped with operation sets such as {+,←,Bool}

and potentially also multiplication and division. In handling the computational tasks de-

scribed, various other operations turn out to also be very useful. These include “ ”, “→”,

“mod” and the comparator “≤”. For the most part, these operations appear as optional in

the operation sets used. In proofs of existence their presence is taken for granted, and in

upper bound calculations they are treated as absent. The justification for this treatment

lies in the fact that these operations can all be simulated in O(1) steps given the operations

available in each proof where they are used.

Specifically:

• {+,Bool} implies both “ ” and “≤”. (In fact, “ ” alone already implies “≤”, making

all comparisons other than comparison for equality superfluous.)

• { ,×,÷} (and therefore also {+,Bool,×,÷}) imply both “→” and “mod”.

To see how these reductions are implemented, consider first that had our RAMs been

working on general integers (not necessarily non-negative), and numbers had been stored in

their registers in standard two’s complement notation (see Koren, 1993), then Bool would

have included the standard bitwise negation operator ¬, and standard arithmetic subtraction

(“−”) would have been implementable as a − b = a + ¬b + 1. Because we deal with RAMs
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working over nonnegative integers, we have a negation operator that only works up to (and

including) the most-significant bit (the MSB) of its operand. This means, for example, that

for any a, a ∨ ¬a is a number of the form 2m − 1, with the minimal m such that 2m − 1 ≥ a.

This is a number whose binary representation is a string of m “1”s. We therefore define a

function

SET(a) = a ∨ ¬a,

with which we can implement natural subtraction (“ ”) as follows:

a b =



0 if SET(a) ∨ SET(b) 6= SET(a),

0 if SET(a) = SET(b)

and (a+ ¬b) ∧ (SET(a) + 1) = 0,

(a+ ¬(b+ SET(a))) ∧ SET(a) else.

The rest of the implementations are straightforward:

a ≤ b⇔ a b = 0,

a mod b = a (a÷ b)× b,

a→ b = a÷ (1← b).

Another operation that can be made redundant, but in a less universal fashion, is given

by the following lemma.

Lemma 1. For op = {←,→, [+], [ ],Bool}, if a RAM[op] does not use indirect addressing

and is restricted to shifts by bounded amounts, it can be simulated by a RAM[op\{→}] without

loss in time complexity. This result remains true also if the RAM can apply “a→ b” when b

is the (unbounded) contents of a register, provided that the calculation of b does not involve

use of the “→” operator.

Proof. We begin by considering the case of bounded shifts.
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A RAM that does not use indirect addressing is inherently able to access only a finite

set of registers. Without loss of generality, let us assume that these are R[0], . . . , R[k]. The

simulating RAM will have R′[0], . . . , R′[k + 1] satisfying the invariant

∀i : 0 ≤ i ≤ k,R[i] = R′[i]/R′[k + 1].

To do this, we initialise R′[k+ 1] to be 1, and proceed with the simulation by translating any

action by the simulated RAM on R[i], for any i, to the same action on R′[i].6 We do this

for all actions except R[i] → X, which is an operation that is unavailable to the simulating

RAM.

To simulate “R[j]⇐ R[i]→ X”, we perform the following.

1. R′[j]⇐ R′[i].

2. ∀x : x 6= j, R′[x]⇐ R′[x]← X.

3. R′[j]⇐ R′[j] clr ¬R′[k + 1].

We note regarding the second step that this operation is performed also on x = k + 1. The

fact that k is bounded ensures that this step is performed in O(1) time.

Essentially, if “R[j] ⇐ R[i] → X” is thought of as “R[j] ⇐ bR[i]/2Xc”, Step 1 performs

the assignment, Step 2 the division, and Step 3 the truncation.

The operator “clr” used above is the standard Boolean operator X clr Y
def
= X ∧ ¬Y .

However, in our case, the operation “¬” has been tweaked so as to avoid negative outputs.

That being the case, X ∧ ¬Y in the operation set actually available to the RAM0 may not

clear the bits of X at exactly the bit positions of Y , as one may expect. Though “clr” is a

Boolean operation and should, as such, be part of the full complement of Boolean operations

at our disposal, if this operation is missing, for any reason, and our Bool includes only ∧, ∨

and the modified ¬, it is still possible to simulate “X clr Y ” by a slightly more complicated

6An action involving an explicit “1” (except for shifting by 1) will have the “1” replaced by R′[k+ 1] in the
simulation.
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sequence of operations:

X ∧ ¬(Y ∨ (inc(X ∨ Y ∨ ¬(X ∨ Y )))),

using only Boolean operations, and the increment operation which is implicitly assumed for

all RAMs.

In order to support “R[j] ⇐ R[i] → X” also when X is the product of a calculation,

the simulating RAM also performs, in parallel to all of the above, a direct simulation that

keeps track of the register’s native values. In this alternate simulation, right shifts are merely

ignored. Any calculation performed by the simulated RAM that does not involve right shifts

will, however, be calculated correctly, so the value of X will always be correct.
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Chapter 3

Indirect addressing

3.1 The RAM0 model

All RAMs have indirect addressing and an infinite number of registers. However, this feature

of RAMs often introduces great difficulties for analysis, which is why some papers (e.g. Simon,

1977; Mansour et al., 1991a) only analyse RAMs that make no use of indirect addressing (and

therefore necessarily utilise only a bounded number of registers). We denote the RAM model

without indirect addressing as RAM0. Regarding this choice, Mansour et al. (1991a) write

“The power of indirect addressing has not been characterised, and it is not known

whether it is a substantial advantage.”

This statement is largely still true. Results with and without indirect addressing are

typically handled in separate papers (e.g., Simon (1977) vs. Schönhage (1979)), with indi-

rect addressing requiring more advanced mathematical techniques. In Ben-Amram and Galil

(1992), sufficient conditions are given, under which indirect addressing is essential, in the

sense that a machine without indirect addressing cannot simulate a machine with indirect

addressing. Even in cases where indirect addressing can be simulated, it may entail a per-

formance cost. For example, in Paul and Simon (1982) a computational model is described

under which the symbol table problem is Ω(n log n) time if and only if indirect addressing is

not allowed. Furthermore, Paul and Simon (1982) proves that given indirect addressing, any

program that achieves o(n log n) time performance for this task must necessarily use space

29
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unbounded by any function of n, the size of the input. The symbol table problem is the

problem of finding, given (x1, . . . , xn, y1, . . . , yn) as input, for each i : 1 ≤ i ≤ n, a value, t,

such that yt = xi, or asserting than no such t exists.)

We show, however, that for powerful enough operation sets, indirect addressing entails no

advantage. To clarify the term “powerful”: in the case of RAMs in the unit cost model many

innocuous-looking operation sets are surprisingly powerful. For example, a RAM[+, ,×,÷]

can simulate any PSPACE Turing machine in polynomial time (Schönhage, 1979). The op-

eration set used by Ben-Amram and Galil (1995), being the starting point of our research,

is {+, ,←,→,∧}. It was shown by Simon (1977) to also span PSPACE in polynomial time.

The operation sets we consider are {+, ,←,→} (not known to be as strong as the previous

examples) for Theorem 2, and {+, , /,←,→,∧} (shown in Simon (1981) to be even more

powerful than the above) for Theorem 3.

One of the most general statements proven regarding the power of indirect addressing is

given by Ben-Amram and Galil (1995):

Theorem 1 (Ben-Amram and Galil (1995)). For the set of operations op = {+, ,←,→,∧},

a RAM[op] algorithm that takes t time and s space can be simulated by a RAM0[op] in tα(s),

where α is the inverse Ackermann function.1

It is conjectured in Ben-Amram and Galil (1995) that this is best possible. Note, however,

that Ben-Amram and Galil’s results pertain to a different model to that of the above-cited

examples. It considers in the model of the on-line RAM, which is a model where the input is

not given in advance, nor is the output read at the end of the process. Rather, the RAM is

equipped with “READ” and “WRITE” instructions that can be accessed at any time. The

initial state of the registers is assumed to be all zeroes. The on-line model is a stronger model

in the sense that the on-line model is able to simulate off-line behaviour, while the converse

is not necessarily true.

We complement the result of Ben-Amram and Galil (1995), by showing that for the

standard (not on-line) RAM indirect addressing can be simulated at no cost to the run-time

1Here ∧ denotes bitwise conjunction.
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complexity of an algorithm, even using a smaller instruction set than the one used by Ben-

Amram and Galil (1995). Using a slightly larger instruction set (adding the exact division

operation, “/”), we demonstrate that real-time simulation is possible even in the on-line

model.

Specifically, we claim

Theorem 2. For the set of operations op = {+, ,←,→}, a RAM[op] can be simulated by

a RAM0[op] in linear time. (That is, a RAM[op] requiring n steps can be simulated in O(n)

steps on a RAM0[op].)

Theorem 3. For the set of operations op = {+, , /,←,→,∧}, an on-line RAM[op] can

be simulated by an on-line RAM0[op] in real time. (That is, each operation of the on-line

RAM[op] can be simulated in O(1) steps on an on-line RAM0[op].)

3.2 Linear time simulation

In order to simulate a RAM on a RAM0, we must first describe a method to encode the data

from n registers (an unbounded number of registers) in a bounded number of registers. We

encode the values k0, . . . , kn−1 from n registers as follows:

• Let Z = 2m be a number greater than max(ki).

• Let V =
∑n−1

i=0 Z
iki.

The triplet (m,V, n) contains all the information of the original values.

We use the following terminology.

Definition 1 (Vectors). A triplet (m,V, n) of integers will be called an encoded vector. We

refer to m as the width of the vector, V as the contents of the vector and n as the length of

the vector. If V =
∑n−1

i=0 2miki with ∀i : 0 ≤ i < n ⇒ 0 ≤ ki < 2m, then [k0, . . . , kn−1] will

be called the vector (or, the decoded vector), and the ki will be termed the vector elements.

Notably, vector elements belong to a finite set of size 2m and are not general integers. It is

well-defined to consider the most-significant bits (MSBs) of vector elements. Nevertheless,

any n integers can be encoded as a vector, by choosing a large enough m.
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Actions described as operating on the vector are mathematical operations on the encoded

vector (typically, on the vector contents, V ). However, many times we will be more interested

in analysing these mathematical operations in terms of the effects they have on the vector

elements. Where this is not ambiguous, we will name vectors by their contents. For example,

we can talk about the “decoded V ” to denote the decoded vector corresponding to some

encoded vector whose contents are V .

We comment that the expression of input and output parameters as vectors allows the

RAM0 model surprising powers, compared to the ostensibly more powerful RAM. An example

is given in Appendix A.

We begin by considering a simpler scenario than that of Theorem 2.

Lemma 2. For the set of operations op = {+, ,←,→}, the first n execution steps of a

RAM[op] can be simulated in O(n) time by a RAM0[op] program to which n is given as an

additional input.

Proof. Let M = Mop(n, inp) be the largest number that can appear in any register of a

RAM[op] initialised by inp in the course of its first n execution steps. We take inp, in this

context, to be a K-tuple. We denote its i’th element by inpi.

Our first claim is that there is a RAM0[op] initialised by inp and n that calculates

Mop(n, inp) in O(n) execution steps. For our particular choice of op, an example of such

a RAM0 is one that first calculates

r1 ⇐ max ({inpi : 0 ≤ i < K} ∪ {1}) , (3.1)

and then goes through n rounds of

ri+1 ⇐ ri ← ri. (3.2)

Here, “⇐” indicates assignment, as opposed to “←” which indicates left shifting.

Let us temporarily assume that the RAM0 supports multiplication. We want to store all

registers of the original RAM as an encoded vector of width large enough to store M . One
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way to do this is to choose m = M . It takes O(n) steps to calculate this m value. Following

this, loading the value stored in register i, for any i, can be simulated by

LOAD(i) = (V → mi) ((V → (mi+m))← m),

and storing a new value N in register i, STORE(N, i), can be simulated by

V ⇐ V + (N ← mi) (LOAD(i)← mi).

Hence, each instruction can be simulated in O(1) time, following an O(n)-time setup, for

a total of O(n) operations.

We note that the only use made of multiplication is in calculating mi. Therefore, by

switching to a vector of width 1← m rather than width m, this multiplication can be made

into a left shift.

As a side note, we mention that the LOAD and STORE procedures described above,

though described here in the context of retrieving and altering an element in a properly-

encoded vector, can also be considered natively in the natural number space, without resorting

to vector terminology. If the number is thought of as being represented in base 2m, these

procedures allow access to a single digit in a number. The combination of digit access and

integer arithmetic is, itself, quite powerful. An example is given in Appendix B.

We now move to the general case, where n is not available as part of the input.

Proof of Theorem 2. The proof of Lemma 2 allows us, in O(n) time, to execute a RAM0[op]

program simulate(n) that simulates the first n execution steps of the target RAM. Without

expanding the operation set, we can run on the same RAM0 Algorithm 1.

If the simulated RAM does not halt, neither will the simulating RAM0, but if it halts

after n steps, the RAM0 will terminate after having completed O(n) simulation steps and

O(log n) iterations of the loop, for a total of O(n).

Corollary 3.1. For the set of operations op = {←,→,Bool}, a RAM[op] can be simulated

by a RAM0[op] in linear time.
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Algorithm 1 Linear-time simulation of indirect addressing
1: n⇐ 1
2: loop
3: simulate(n)
4: if Simulation halts then
5: return Halting state
6: end if
7: n⇐ n← 1
8: end loop

Proof. The only use of the operations “+” and “ ” in the proof of Theorem 2 is in the

implementation of LOAD and STORE. However, they can equally be implemented using

Boolean operations, instead:

LOAD(i) = (V → mi) clr (V → mi→ m)← m),

STORE(N, i): V ⇐ V clr (LOAD(i)← mi) ∨ (N ← mi).

3.3 Real time simulation

The proof of Theorem 3 is more involved, because it is no longer possible to have an O(n)

preparatory step. For this proof, we require the vector

Ona,m
def
= ((a← nm) a)/((1← m) 1). (3.3)

We note that this vector is equivalent to a×On1,m, but makes no use of multiplication, except

for the multiplication “nm” which can be eliminated by the same technique as was used in the

proof for Lemma 2, if m is a known power of 2. For a < 2m, the resulting vector is [a, . . . , a].

Also, we require the following lemma:

Lemma 3. It is possible to convert, in O(1) operations from the set { ,÷,×,←,∧}, a vector

(m,V, n) to a vector (m′, V ′, n) for any choice of m′ so as to retain the original vector elements
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(given that m′ is large enough to store the values that are in V ). Furthermore, if m′ is a large

enough known power of 2, this can be done with the operation set { , /,←,∧} only.

Proof. We handle three cases:

Case 1: m′ ≥ m(n + 1) This is done by V ′ = On
V,m′ m

∧On
(1←m) 1,m′

.

Case 2: m′n < m This is done by V ′ = V mod ((1 ← m) (1 ← m′)), where a mod b is

calculated as a−(a÷b)×b. To see this, recall that V is the value of the polynomial whose

coefficients are the vector elements k0, . . . , kn−1 evaluated at the point Z = 2m = 1← m.

In order to evaluate the polynomial at Z ′ = 2m
′
, we take its value modulo Z − Z ′.

Because Z ≡ Z ′ (mod Z −Z ′), for any polynomial p, p(Z) ≡ p(Z ′) (mod Z −Z ′). The

condition of Case 2 ensures that the desired V ′ is smaller than Z − Z ′, so this residue

can be evaluated without ambiguity.

Case 3: none of the above To handle this, first calculate (m′′, V ′′, n) for a sufficiently

large m′′, using Case 1, then lower to the final m′ using Case 2.

If m′ is large enough, only the first case is needed, so no integer division is required (only

exact division). Furthermore, if m′ is known to be 2k then the multiplication nm′ in the

calculation of On
(1←m) 1,m′

can be replaced by n ← k. For the calculation of On
V,m′ m

, n

can be replaced by any value that is at least as large as n, without affecting the result after

the ∧ operation. As a result, the multiplication n(m′ m) can be replaced by (m′ m)← n,

effectively replacing n by 2n.

We now continue to prove the main Theorem.

Proof of Theorem 3. To prove the theorem, one only needs to prove that the operations

“LOAD” and “STORE” can each be simulated in O(1), after a one-time initialisation. (The

initialisation receives no parameters, and therefore necessarily works in constant time.) This

statement was made rigorously in Lemma 2 of Ben-Amram and Galil (1992). In essence,

the RAM0 is able to compute exactly as the RAM does. Its only difficulty is in reading the

inputs to the computations from the registers and writing the computation results back to the
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registers. Therefore, if it can simulate loading and storing properly, the rest of the problem

is solved trivially.

Our simulation of the new “LOAD” and “STORE” works very much like the “LOAD” and

“STORE” of Lemma 2. However, because we can no longer anticipate the size of integers the

program will be required to handle (The RAM’s first command may be a “READ” instruction,

which will read from the user an integer of arbitrary size), we cannot use m = M directly,

as was done before. Instead, we begin by using m = 1, which is sufficient to store the initial

all-zeroes state of the registers, then increase m whenever a “STORE” command requests

storage of a value greater than or equal to 2m.

In case a value r, r ≥ 2m, needs to be stored, the RAM0 changes the width of the encoded

vector, as per Lemma 3, from m to m′ = max(m(n + 1), r). The new width is necessarily

large enough to ensure Lemma 3 can be implemented with a restricted set of operations. If

the new width is not a known power of 2, we can use 1← m′ as a width, instead of m′.

In this way, in O(1) operations we are able to widen the vector enough to allow the

simulation of any assignment.

Correspondingly, we also update n to signify the greatest register address used thus-far

in the program’s execution. Updating n is a simple “max” operation, affecting neither m nor

V .

The proof of Theorem 2 is applicable not only to op = {+, ,←,→}, but also to any

op ⊇ {+, ,←,→}, given the restriction that there exists a RAM0[op] that calculates any

number at least as large as Mop(n, inp) in O(n) steps. This condition holds for any reasonable

set of operations. The proof of Corollary 3.1 applies similarly to any op ⊇ {←,→,Bool}, with

the same restriction.

For the proof of Theorem 3, any op ⊇ {+, , /,←,→,∧} will do, with no added restriction.

We have shown, therefore, that for RAMs with a sufficient set of operations, the use of

indirect addressing entails no advantage.



Chapter 4

Arbitrary numbers

4.1 Introduction

4.1.1 RAMs with special numbers

Many papers deal with characterising broad complexity classes such as P and PSPACE for var-

ious RAMs, but there is a parallel effort to analyse the RAM complexity of specific problems,

where specific complexities, rather than complexity classes, are required. Examples include

Mansour et al. (1991a) (improving on Euclid’s greatest common divisor algorithm), Man-

sour et al. (1989a) (calculating square root approximations), Mansour et al. (1991b, 1989b)

(handling a class of functions including checking whether a number is a perfect square and

calculating blog xc mod 2), Bshouty et al. (1992) (calculating 22
k
), Shamir (1979) (factoring a

composite), Paul and Simon (1982) (sorting and related operations) and Lürwer-Brüggemeier

and Ziegler (2008) (polynomial evaluation and related operations, building on tools from

Bertoni et al. (1981)).

A repeating theme in these examples is the use of additional integers to speed up the

computation. To understand how this can be done, consider first computation models over

the reals, as in Blum et al. (1989). A reasonable computation model that includes reals must

either forbid programs to hard-code a real number, or forbid any operation that allows O(1)

37
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bit-access to a number1. A program that is able to store a real and access its bits can simply

store in that single number the correct output associated with any possible input to it (e.g.

by storing in the i’th bit a “1” if and only if the input corresponding to the integer i is in the

language). Such a program will enjoy O(1) complexity regardless of the problem at hand.

The computation tree and the straight line program exhibit similar behaviours, but for

different reasons. Unlike the RAM model, CTs and SLPs are non-uniform computational

models. This means that for every problem-size, n, a completely different CT/SLP can be

presented, and there does not need to be any way (reasonable or otherwise) of generating the

CT/SLP for any given n. In a sense, this also allows pre-storing the answers to all possible

questions, but instead of using a single real number capable of storing an infinite number of

answers, the information is split into an infinite number of integers, each handling a finite

number of possible inputs.

To see how additional integers can be used in the RAM context, consider the SLP presented

in Lürwer-Brüggemeier and Ziegler (2008) to calculate the value of a polynomial p of degree

at most d at x. Given a large enough Z,

p(x) = ((p(Z)(Zd+1 ÷ (Z − x)))÷ Zd) mod Z.

At face value, this seems like an O(1) time algorithm to evaluate polynomials (because Zd

and p(Z) can be pre-calculated), but there is a catch: because Z must be “large enough”

(with “large enough” being an attribute that is a function of the polynomial p and the input

value x) Z must be determined only after p is given. However, now p(Z) and Zd must be

calculated on the fly. If calculating p(Z) is not faster than calculating p(x), nothing has been

gained.2

Incorporating “arbitrary” large values that need to satisfy additional constraints (such as

one being a computed function over another) seems to give the RAM model power similar to

that of a non-uniform model.

1See Mulmuley (1999) for a discussion of the power of bit operations in the context of the closely-related
PRAM model.

2The proof of the formula used by Lürwer-Brüggemeier and Ziegler is somewhat involved. However, consider
the simpler equality p(x) ≡ p(Z) (mod Z − x), which follows immediately from x ≡ Z (mod Z − x).
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On the other hand, it appears that unconstrained arbitrary large numbers for which no

function is precalculated can still make a difference in resulting complexities. Consider 22
k
.

Calculating this value can be accomplished trivially in O(k) time by repeated squaring. For

a RAM using no precalculated constants and for which repeated squaring is the fastest way

to reach any large number, O(k) time is also the best possible complexity. However, Bshouty

et al. (1992) shows that by allowing the RAM access to a large enough but otherwise arbitrary

integer, computation of 22
k

can be reduced to O(
√
k) time.

The availability of arbitrary large numbers is therefore known to have a beneficial effect

on the complexities of specific problems. In this chapter, we quantify this effect over general

problems.

We begin by formally defining the question.

4.1.2 Formal definition of the model

The use of additional numbers as inputs to RAMs can be divided into several cases. The

first case is the RAM analog of nondeterminism. Hartmanis and Simon (1974) prove that the

following equalities among deterministic and nondeterministic RAMs:

PSPACE = P-RAM[+, ,×,Bool] = NP-RAM[+, ,×,Bool]

= P-RAM[+, ,×,÷,Bool] = NP-RAM[+, ,×,÷,Bool].

So, for RAMs with multiplication P = NP. Pratt et al. (1974) proves the same for vector

machines, and Simon (1981) generalises this to all powerful RAM variations. Basically, the

power to move nondeterministically from one command to the next in a RAM functioning

in polynomial time allows one to obtain only a polynomial number of nondeterministic bits,

or one of an exponential number of possibilities. Whereas for Turing machines this is (pre-

sumably) a significant leap, RAMs are able to generate and test in parallel an exponential

number of options, e.g. by use of the universal strings of Simon (1981).

In order to allow RAMs a true benefit from nondeterminism, one must take a different

view on what nondeterminism is. Although the classic method to describe nondeterminism

in Turing machines is to allow the machine to move to more than one state simultaneously
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(Rabin, 1963), an equivalent description is that a nondeterministic Turing machine is a de-

terministic Turing machine aided by a second input tape that includes a “certificate”. In

this view, a nondeterministic Turing machine is an “existential acceptor”: it accepts an input

(nondeterministically) if there exists a certificate for which the equivalent deterministic Tur-

ing machine will accept (deterministically). The class NP is the class of all languages that

can be accepted in polynomial time by a deterministic Turing machine given a certificate.

(A similar notion is that of the “universal acceptor”, where an input is accepted only if it

is accepted by a deterministic Turing machine given any certificate. This is an alternate

definition of co-NP.)

This notion of nondeterminism can easily be generalised to RAMs, but, critically, in the

context of RAMs the two approaches to nondeterminism are not equivalent. If we define the

class P-NRAM[ ] as the class of languages accepted in polynomial time by a RAM given an

additional integer as a certificate, then the power of the P-NRAM is greater than the power of

the P-RAM. Simon (1979) shows that any recursively enumerable (r.e.) set can be recognised

by an NRAM[+,×,Bool;≤], with no need of division.

By contrast, from Hartmanis and Simon (1974),

P-RAM[+,×,Bool;≤] = PSPACE,

so here P-RAM = NP-RAM ⊂ P-NRAM.3

The idea of nondeterminism as existential acceptance allows us to study what can be done

with an additional integer that is tailored specifically for our needs. The use of “arbitrary,

large-enough” numbers is in many senses the opposite end of the scale: here, numbers can be

chosen adversarially. This idea has never yet been properly formalised. We do so now, in the

spirit of the “universal acceptor” leading to co-NP (but differing in details).

Definition 2 (ARAM). The ARAM is the RAM model assisted by an arbitrary large number

(or ALN). Formally, we say that a set S is computable by an ARAM[op] in f(n) time if there

3Recall that an NP-RAM is a RAM working in polynomial time with nondeterministic state transitions,
whereas a P-NRAM is a polynomial time RAM using an integer certificate. An NP-RAM is equivalent to a
P-NRAM using a certificate that is restricted to polynomial length.
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exists a Boolean function g(inp, x), computable in f(n) time on a RAM[op], such that inp ∈ S

implies g(inp, x) 6= 0 for almost all x (all but a finite number of x) whereas inp 6∈ S implies

g(inp, x) = 0 for almost all x. Here, n conventionally denotes the bit length of the input, but

other metrics are also applicable.

The parameter x is referred to as the program’s ALN.

In this chapter we prove two main Theorems.

Theorem 4. P-ARAM[+, [ ], [×],←, [→],Bool] = PSPACE

Theorem 5. Any recursively enumerable (r.e.) set can be recognised by an ARAM[+, /,←

,Bool] in O(1) time.

We see, therefore, that the availability of arbitrary numbers has no effect on the compu-

tational power of a RAM without division. However, for a RAM equipped with division, the

boost in power is considerable, to the extent that any problem solvable by a Turing machine

in any amount of time or space can be solved by an ARAM in O(1) time.

This result agrees with the observation that in all examples cited in Section 4.1.1 (and

elsewhere in the literature) the use of arbitrary large numbers has so far been restricted to the

context of the modulo operation, where it enables speeding up the calculation of polynomials

beyond what is afforded by Horner’s method, which is a method known to be optimal in the

general case (Bürgisser et al., 1997, Theorem 6.5), when large numbers are not available.

Theorem 5 suggests, however, that the power of arbitrary large numbers in conjunction

with division is far greater than the ability to compute polynomials quickly, and this power

has thus far not been harnessed in the RAM literature.

4.2 P-ARAM[+,×,←,→,Bool]

In order to prove Theorem 4, we begin by presenting a new proof for the following claim.

Theorem 6. P-RAM[+, [ ], [×],←, [→],Bool] = PSPACE

This classic result first appeared in Simon and Szegedy (1992). In Section 4.2.1, we prove

it using substantially different methods to those used by Simon and Szegedy (though the
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derivation is heavily inspired by the original paper). Then, in Section 4.2.2, we show how the

new methods can be adapted to handle arbitrary large numbers. This adaptation alone would

have been reason enough to re-prove the original result. However, upon close inspection of

the methods used by Simon and Szegedy, we discovered several errors in key points in Simon

and Szegedy’s derivation (as detailed in Section 4.2.1), which, put together, invalidate the

original argument. As such, the proof appearing in Section 4.2.1 is, in fact, not a re-done

proof, but rather the first appearance of a proof for this major claim.

4.2.1 Errata on Simon and Szegedy (1992)

We begin with a definition.

Definition 3 (Straight Line Program). A Straight Line Program, or SLP[op], is a list of tuples,

s2, . . . , sn, where each si is composed of an operator, sopi ∈ op, and k integers, s1i , . . . , s
k
i , all

in the range 0 ≤ sji < i, where k is the number of operands taken by sopi . This list is to be

interpreted as a set of computations, whose targets are v0, . . . , vn, which are calculated as

follows: v0 = 0, v1 = 1, and for each i > 1, vi is the result of evaluating the operator sopi on

the inputs vs1i
, . . . , vski

. The output of an SLP is the value of vn.

A technique first formulated in a general form by Schönhage (1979) allows results on

SLPs to be generalised to RAMs. Schönhage’s theorem, as worded for the special case that

interests us, is that if there exists a Turing machine, running on a polynomial-sized tape and

in finite time, that takes an SLP[op] as input and halts on an accepting state if and only if

vn is nonzero, then there also exists a TM running on a polynomial-sized tape that simulates

a RAM[op].

This technique is used both in Simon and Szegedy (1992) and in our new proof, and is a

repeating theme in many similar proofs (e.g. Hartmanis and Simon, 1974). It is demonstrated

visually in Figure 4.1.

The method in which this technique bounds the computing power of a RAM (in the sense

introduced in Section 2.4) is by following a cascade of reductions.

The first reduction in our case is meant to avoid all uses of indirect addressing in the RAM.

Though Schönhage’s original method was different, in our case we can simply reduce from
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R[i]⇐ 5
i⇐ i+ 1

i < 3?

return R[2] 6= 0

no

yes

i⇐ 0

STORE(5, i)
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(a) RAM (b) RAM0 (c) CT (d) SLPs

Figure 4.1: Cascade of reductions

RAM to RAM0 by using the methods described in Section 3.1. This is because the RAMs we

need to consider all have operation sets that allow use of Corollary 3.1 (after application of

Lemma 1, when right shifting is not in op).

Thus, a P-RAM can be simulated by a P-RAM0. Figure 4.1(a) shows an example RAM

program, and Figure 4.1(b) its transformation into a RAM0 by elimination of indirect ad-

dressing. The next reduction, depicted in Figure 4.1(c), demonstrates how this RAM0 can be

reduced to a Computation Tree (CT). This is essentially a loop-unrolling procedure: a tree

structure is built by following all possible execution paths through the RAM0. In the figure,

coloured boxes retain the meaning associated with their colours in the previous figures.

The tree resulting from the loop unrolling process may be infinite in size and height, but

because the original RAM’s execution is, by assumption, bounded by a polynomial, only a

part of the tree of polynomial depth is ever really explored. The move from a RAM0 to a

CT eliminates all complex flow control. Whereas the RAM0’s flow control is general, the

CT describes a simple bifurcation process, where each split is the result of a comparison. As

described in Section 2.5, given the operation “ ”, all comparison operators can be described

in terms of only “a 6= 0?”.

The last step in the cascade of reductions, demonstrated in Figure 4.1(d), is the transfor-

mation of the Computation Tree into a sequence of Straight Line Programs (SLPs). Initially,
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an SLP is built by following the CT’s path up to the first bifurcation. This SLP is a sequence

of operations from op only, without any comparisons. The return value of the SLP is the

answer to whether the last term evaluated is nonzero. Given this bit of information, it is

possible to tell which path the execution of the CT is to follow after the first comparison step.

It is therefore possible at this point to create a new SLP that bypasses the first comparison

(having already established its outcome) and continues down the correct path in the tree.

This process continues, generating additional SLPs whenever a comparison is encountered,

until the tree reaches a halting instruction, which is guaranteed to happen after at most a

polynomial number of steps, at which point the last term computed is evaluated as either zero

or nonzero (as in all previous steps), and the outcome of this comparison is the output of the

final SLP. Necessarily, it will coincide with the output of the original RAM, so the simulation

is correct.

This process is a formal guarantee that in order to prove that a polynomial time RAM

can be simulated by a (for example) PSPACE Turing machine, it is enough to show that a

PSPACE Turing machine can simulate the much simpler SLP model.

Formally, this is what is required from the Turing machine: it is to accept as input an

SLP, should terminate in finite time, use up at most a polynomial amount of tape, and halt

on an accepting state if and only if vn is nonzero, where vn is the final value calculated by

the SLP.

As noted, the SLP in question has no “input”, per se, but if the original RAM was

initialised by r[0] = x, then x can be created as a vi where i is O(log x). Hence, adding the

necessary commands s2, . . . , si to the SLP is an operation that can also be simulated by a

PSPACE TM.

Simon and Szegedy (1992) follow this scheme, and attempt to create such a Turing ma-

chine. In doing so, Simon and Szegedy’s TM generates what the paper refers to as “monomi-

als”, but are, for our purposes, integers that are powers of two.

The main error in Simon and Szegedy (1992) begins with the definition of a relation, called

“vicinity”, between monomials, which is formulated as follows.
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We define an equivalence relation called vicinity between monomials. Let M1 and

M2 be two monomials. Let B be a given parameter. If M1/M2 < 22
B

[. . .], then

M1 is in the vicinity of M2. The symmetric and transitive closure of this relation

gives us the full vicinity relation. As it is an equivalence relation, we can talk

about two monomials being in the same vicinity (in the same equivalence class).

It is unclear from the text whether the authors’ original intention was to define this relation

in a universal sense, as it applies to the set of all monomials (essentially, the set of all powers

of two), or whether it is only defined over the set of monomials actually used by any given

program. If the former is correct, any two monomials are necessarily in the same vicinity,

because one can bridge the gap between them by monomials that are only a single order of

magnitude apart. If the latter is correct, it is less clear what the final result is. The paper

does not argue any claim that would characterise the symmetric and transitive closure in this

case.

However, the paper does implicitly assume throughout that the vicinity relation, as orig-

inally defined (in the M1/M2 < 22
B

sense) is its own symmetric and transitive closure. This

is used in the analysis by assuming for any Mi and Mj which are in the same vicinity (in the

equivalence relation sense) that they also satisfy 2−(2
B) < Mi/Mj < 22

B
, i.e. they are in the

same vicinity also in the restrictive sense.

Unfortunately, this claim is untrue. It is quite possible to construct an SLP that violates

this assumption, and because the assumption is central to the entire algorithm, the proof

does not hold.

We therefore provide here an alternate algorithm, significantly different from the original,

that bypasses the entire “vicinity” issue.

Our proof adapts techniques from two previous papers. First, consider the technique used

by Hartmanis and Simon (1974) to prove P-RAM[+, ,×,Bool] = PSPACE. This technique

involves lazy evaluation of the operands one bit at a time, recursively where necessary, in

order to avoid the need to store the operands whole: because multiplication is one of the

operators considered, register contents may increase their bit-lengths at exponential rate, for

which reason storing an entire register is impossible. An example of how this is done is given
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in Algorithm 2. The example is of the (arguably) most complicated evaluation required,

namely the evaluation of the product of two operands.

The code of Algorithm 2 is a C++ implementation. The class Index is a type designating

a bit position. The code calculates the bit in the index ’th position of the multiplication result

of arg1 and arg2.4

Algorithm 2 Lazy evaluation of a product

int Mult::eval(const Index& index) const
{
int acc=0;
for(Index i=begin();i<=index;++i) {

acc>>=1;
for(Index p1=begin();p1!=end();++p1) {

Index p2=i−p1;
acc+=arg1[p1]*arg2[p2];
}
} 10

return (acc%2)!=0;
}

The procedure for calculating the product looks, on the face of it, like straightforward

bit-by-bit multiplication. However, there are some subtleties.

First, note that when arg1[p1] and arg2[p2] are called, these are not table look-ups. Each

of arg1 and arg2 is potentially exponentially long. Therefore, they are not stored. The bit in

the required position in each is retrieved by recursive calls.

Second, note that only the bit in position index is actually retrieved by the function. Even

though all previous bits were calculated, these intermediate results cannot be stored (because

there are too many of them). Therefore, the next time any additional bit is required, the

entire process must begin anew with the first bit.

Lastly, note that the algorithm does manage one integer, namely acc, which is used to

store the carry. This can be done, because the carry can only be as large as the number of

bits in the operands. If the operands are double exponential, their bit-length is exponential,

and acc only needs to be of polynomial length. Furthermore, the depth of the recursion is

4This code fragment, and all other code fragments appearing in this section, are provided as part of an
entire C++ implementation in Appendix C. Readers are encouraged to refer to the complete implementation
for such details as how the parameters arg1 and arg2 are passed to the function.
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at most n, the length of the SLP, so in total a polynomial amount of space is utilised by the

simulating Turing machine.

This algorithm handles all operations that we need to simulate except for bit shifting.

Bit shifting fails, because it allows operands to grow far more quickly than even double-

exponentially, so, once it is admitted, neither the indexes nor the bit carry value can be

stored any longer.

On the other hand, Simon (1977) describes a method that is able to handle bit shifts

properly, but not multiplication. This is done by keeping track not of all the bits in the

operands, but only of the “interesting” bits, where an interesting bit is a bit position where

the bit-value of the operand is different from the bit-value of the preceding bit. Clearly,

the list of interesting bits contains all the information regarding an integer. However, even

though the number itself can grow rapidly with bit shifts, in the absence of multiplication

the list of interesting bits remains only exponentially large. By what Simon himself, in his

abstract, refers to succinctly as “a messy recursive method”, his algorithm is able to perform

calculations directly on the interesting bit data structure, while simultaneously generating

this data structure on the fly because it is too large to store.

We note that the interesting bit notation is a recursive notation: the positions of the

interesting bits must, themselves, be denoted in interesting bit notation, as they can be the

result of many left shifts, and hence very large.

However, this method of keeping track of the interesting bits fails for multiplication,

because in multiplication the number of interesting bits may grow double exponentially, rather

than exponentially. Simon and Szegedy (1992) sum up the state of the art as follows.

The only previous technique to deal with this situation uses the fact that there

are only an exponential number of interesting bits in a register [and] cannot be

used either, as multiplications can square the number of interesting bits. Thus

if this approach is directly used, it would lead to a double exponential estimate

of the number of interesting bits, placing the simulation into EXPSPACE. [. . .]
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As a result, any algorithm based on interesting bits must use space at least loga-

rithmic in the number of interesting bits: the exponential tape simulation of the

instruction set {+,×,←,Bool} cannot be improved using these methods.

By contrast, at the end of the same paper Simon and Szegedy comment

We note that it is a corollary to our results that the number of interesting bits

remains only exponential even if multiplication is included in the operation set.

The method of the present proof is, fittingly enough, a hybrid of the two methods de-

scribed, honing the advantages inherent in each. We begin by giving an explicit proof to

Simon and Szegedy’s (1992) commented corollary (following along the same reasoning as the

original paper), and then follow this up by constructing a new algorithm around the observa-

tion. Specifically, we show that, even with multiplication, the list of interesting bits is always

bounded by an exponential function, doing so by describing a set of positions of exponential

size and proving that all interesting bit positions must necessarily lie within the set. A posi-

tion in this set of exponential size can be described in a polynomial number of bits. We will

show that it is possible to use this description as an index into the operands, to iterate over

the interesting bits by use of this index and to perform calculations using it.

The proof is given as a sequence of lemmas.

Lemma 4. In an SLP[+, ,×,←,→,Bool], the number of interesting bits in the output vn

grows at most exponentially with n. There exists a Turing machine working in polynomial

space that takes such an SLP as its input, and that outputs an exponential-sized set of de-

scriptions of bit positions, where bit positions are described as functions of v0, . . . , vn−1, such

that the set is a superset of the interesting bit positions of vn.

Proof. Consider, for simplicity, the instruction set op = {+,×,←}. Suppose that we were to

change the meaning of the operator “←”, so that, instead of calculating a ← b = a × 2b, its

result would be a ← b = aX, where X is a formal parameter, and a new formal parameter

is generated every time the “←” operator is used. The end result of the calculation will now

no longer be an integer but rather a polynomial in the formal parameters. The following are

some observations regarding this polynomial.
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1. The number of formal parameters is at most n, the length of the SLP.

2. The exponent of each formal parameter is at most 2n−k, where k is the step number in

which the parameter was defined. (This exponent is at most doubled at each step in

the SLP. Doubling may happen, for example, if the parameter is multiplied by itself.)

3. The sum of all coefficients in the polynomial is at most 22
n−2

. (During multiplication,

the sum of the product polynomial’s coefficients is the product of the sums of the

operands’ coefficients. As such, this value can at most square itself at each operation.

The maximal value it can attain at step 2 is 2.)

If we were to take each formal variable, X, that was created at an “a ← b” operation, and

assign to it the value 2b (Simon and Szegedy (1992) call this “the standard evaluation”), then

the value of the polynomial will equal the value of the SLP’s output. We claim that if p

is an interesting bit position, then there is some product of formal variables appearing as a

monomial in the result polynomial such that its standard evaluation is 2x, and p ≥ x ≥ p−2n.

The claim is clearly true for n = 0 and n = 1. For n > 1, we will make the stronger claim

p ≥ x ≥ p − 2n−2 − 2. To prove this, note that any monomial whose standard evaluation

is greater than 2p cannot influence the value of bit p and cannot make it “interesting”. On

the other hand, if all remaining monomials have degree smaller than p − 2n−2 − 2, the total

value that they carry within the polynomial is smaller than 2p−2
n−2−2 times the sum of their

coefficients, hence smaller than 2p−2. Bits p− 1 and p, however, are both zero. Therefore, p

is not an interesting bit.

We proved the claim for the restricted operation set {+,×,←}. Adding logical AND

(“∧”) and logical OR (“∨”) can clearly not change the fact that bits p − 1 and p are both

zero, nor can it make the polynomial coefficients larger than 22
n−2

.

Incorporating “ ” and “¬” into the operation set has a more interesting effect: the values

of bit p− 1 and p can both become “1”. This will still not make bit p interesting, but it does

require a small change in the argument. Instead of considering polynomials whose coefficients

are between 0 and 22
n−2

, we can now consider polynomials whose coefficients are between

−22
n−2

and 22
n−2

. This changes the original argument only slightly, in that we now need to
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argue that in taking the product over two polynomials the sum of the absolute values of the

coefficients of the product is no greater than the product of the sums of the absolute values

of the coefficients of the operands.

Similarly, adding “→” into consideration, we no longer consider only formal variables of

the form a← b = aX but also a→ b = baY c, where the standard evaluation of Y is 2−b and

b·c is treated as a bitwise Boolean operation (in the sense that, conceptually, it zeroes all bit

positions that are “to the right of the decimal point” in the product).

We can therefore index the set of interesting bits by use of a tuple, as follows. If i1, . . . , ik

are the set of steps for which sopij ∈ {←,→}, the tuple will contain one number between

−2n−i−j and 2n−ij for each 1 ≤ j ≤ k, to indicate the exponent of the formal parameter

added at step ij , and an additional k+ 1’th element, between 0 and 2n to indicate a bit offset

from this bit position.

Though this tuple may contain many non-interesting bits, or may describe a single bit

position by many names, it is a description of a super-set of the interesting bits in polynomial

space.

In Appendix C.1, such an enumeration is implemented by the method Index::next. We

refer to the set of bit positions thus described as the potentially-interesting bits, or po-bits, of

the SLP.

Lemma 5. Let O be an Oracle that takes an S ∈ SLP[+, ,×,←,→,Bool] as input and

outputs the descriptions of all its po-bits in order, from least-significant to most-significant,

without repetitions. There exists a TM working in polynomial space but with access to O that

takes as inputs an S ′ ∈ SLP[+, ,×,←,→,Bool] and the description of a po-bit position, i,

of S ′, and that outputs the i’th bit of the output of S ′.

Proof. Given a way to iterate over the po-bits in order, the standard algorithms for most

operations required work as expected. For example, addition can be performed bit-by-bit

if the bits of the operands are not stored, but are, rather, calculated recursively whenever

they are needed. The depth of the recursion required in this case is at most n. Algorithm 3

describes such an implementation.
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Algorithm 3 Lazy evaluation of a sum

int Add::eval(const Index& index) const
{
int acc=0;
for(Index i=begin();i<=index;++i) {

acc>>=1;
acc+=arg1[i]+arg2[i];
}
return acc%2;
}

The fact that iterating only over the po-bits, instead of over all bit positions, makes no

difference to the results is exemplified in Figure 4.2.

po-bits non-po-bits po-bits
1 1 1 1 1 1 1 1 1 1

+
1 0 0 1 1 1 1 1 1 0 1 1

1 1 1 1 1 1 1 1 0 1

1 1 0 1 1 1 1 1 1 0 0 0

Figure 4.2: An example of summing two numbers

As can be seen, not only are the non-po-bits all equal to the last po-bit preceding them,

in addition, the carry bit going over from the last po-bit to the first non-po-bit is the same

as the carry bit carried over from the last non-po-bit to the first po-bit. Because of this, the

sequential carry bits across non-po-bits (depicted in light blue in Figure 4.2) can be replaced

by a single non-contiguous carry operation (the red arrow).

This logic works just as well for subtraction and Boolean operations. The only operation

acting differently is multiplication. Implementing multiplication näıvely leads to incorrect

results. Instead, we re-encode the operand bits in a way that reflects our original observation,

that the operands can be taken to be polynomials with small coefficients in absolute value,

though these coefficients may not necessarily be nonnegative.

The new encoding is as follows: going from least significant bit to most significant bit, a

“0” bit is encoded as a 1 if preceded by a “1” and as 0, otherwise. A “1” bit is encoded as

a 0 if preceded by a “1” and as −1, otherwise. This encoding procedure is known as Booth

encoding. It is a special case of redundant binary encoding, and was introduced by Booth
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(1951) specifically for the purpose of simplifying the handling of carry in multiplication (in

computer hardware).5

It is easy to see that a number, A, encoded in regular binary notation but including

a leading zero by a {0, 1} sequence, a0, . . . , ak, denoting coefficients of a power series A =∑k
i=0 ai2

i, does not change its value if the ai are switched for the bi that are the result of the

re-encoding procedure described. The main difference is that now the value of all non-po-bits

is 0. An example of Booth encoding is given in Figure 4.3.

po-bits non po-bits po-bits
212 211 210 29 28 27 26 25 24 23 22 21 20

=
0 1 0 0 1 1 1 1 1 1 0 1 1

1 -1 0 1 0 0 0 0 0 -1 1 0 -1

5 -5

Figure 4.3: Example of Booth encoding: 2555 = 5× 29 + (−5)

After re-encoding, multiplication works as expected. The final algorithm is given in Al-

gorithm 4.

To prove that the algorithm works correctly, consider the following.

1. When multiplying a single monomial with a single monomial, the answer is correct,

because this case effectively requires only operations on contiguous bits.

2. When multiplying a general polynomial by a general polynomial, the answer remains

correct, because all summations remain on contiguous bits, and the function calculated

by the procedure is clearly bilinear.

3. No overflows can occur to non-contiguous bits, because coefficients are small. If a

calculated coefficient is negative, this will result in its most significant bit being 1, with

a carry of −1. For this carry, the algorithm is oblivious as to whether the carry is

calculated over contiguous bits or not.

5The resulting multiplication procedure is known as Booth’s multiplication. It is different to what is
presented here, because Booth’s multiplication does not use po-bits or lazy evaluation. However, much as was
the case with addition and subtraction, what is shown here is an implementation of Booth’s multiplication
which, by some care, was made oblivious to the question of whether it iterates over all bits or just the po-bits
and whether its operands are stored or evaluated on the fly.
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Algorithm 4 Final code for evaluating a product

int Mult::make pn(Command& command, const Index& index) const
{
int curr bit=command[index];
if (index<begin()) {
return 0;
} else if (index==begin()) {
return −curr bit;
} else {

Index prev=index;
−−prev; 10

int prev bit=command[prev];
return prev bit−curr bit;
}
}

int Mult::eval(const Index& index) const
{
int acc=0;
for(Index i=begin();i<=index;++i) {

acc>>=1; 20

for(Index p1=begin();p1!=end();++p1) {
Index p2=i−p1;
acc+=make pn(arg1,p1)*make pn(arg2,p2);
}
}
return (acc%2)!=0;
}
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4. The carry is limited in size by the number of contiguous bits, and so can always be

stored directly.

Note that other than the ability to enumerate over po-bits in order, the only prerequisite

for the multiplication procedure described is the ability to calculate “p2 ⇐ i− p1”. However,

as explained, po-bits correspond to offsets from the bit positions of monomials. For example,

a bit position at offset c from the monomial X2Y , where X, in the standard evaluation, is 2α

and Y is 2β, is the bit position c+ 2α+ β. Adding and subtracting indices can therefore be

achieved by adding and subtracting the tuples (c, α, β), representing the coefficients.

Lemma 6. Let Q be an Oracle that takes an S ∈ SLP[+, ,×,←,→,Bool] and two po-bit

positions of S and determines which position is the more significant. Given access to Q,

Oracle O, described in Lemma 5, can be implemented as a polynomial space Turing machine.

Proof. Given an Oracle able to compare between indices, the ability to enumerate over the

indices in an arbitrary order allows creation of an ordered enumeration. The algorithm for

doing so (with some error-handling removed) is given in Algorithm 5.

Algorithm 5 Finding the next index

Index& Index::operator++()
{

Index rc=end();
for(Index i=begin();i!=end();i.next()) {
if ((i>*this)&&((rc==end())| |(rc>i))) {

rc=i;
}
}
*this=rc;
return *this; 10

}

Essentially, the algorithm begins by choosing the smallest value, then continues sequen-

tially by choosing, at each iteration, the smallest value that is still greater than the current

value. This value is found by iterating over all index values in an arbitrary order and trying

each in turn.

Lemma 7. Oracle Q, described in Lemma 6, can be implemented as a polynomial space

Turing machine.
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Proof. Recall that an index position is an affine function of the coefficients of the formal

variables introduced, in their standard evaluations, as shown above, with the example c +

2α + β. To determine which of two indices is the larger, we subtract these, again reaching

an affine function of the same form. The coefficients themselves (in this case, c, 2 and 1)

are small, and can be stored directly. Determining whether the subtraction result is negative

or not is a problem of the same kind as was solved earlier: subtraction, multiplication and

addition need to be calculated over variables, in this case α and β, instead of X and Y .

However, there is a distinct difference in working with α and β, as opposed to working

with X and Y , in that X and Y are formal variables, but α and β are polynomials over

formal variables. The calculation can, therefore, be transformed into addition, multiplication

and subtraction, once again over X and Y .

Although it may seem as though this conclusion returns us to the original problem, it

does not. Consider, among all formal variables, the one defined last. This variable cannot

appear in the exponentiation coefficients of any of the new polynomials. Therefore, the new

equation is of the same type as the old equation but with at least one formal parameter less.

Repeating the process over at most n recursion steps (a polynomial number) allows us to

compare any two indices for their sizes.

In Appendix C.1, this algorithm is implemented by the function cmp and the method

Command::cmp.

Proof of Theorem 6. We begin by recalling that P-RAM[+,←,Bool] = PSPACE was al-

ready shown by Simon (1977). Hence, we only need to prove P-RAM[+, ,×,←,→,Bool] ⊆

PSPACE. This is done, as per Schönhage’s (1979) method, by simulating a polynomial time

SLP[+, ,×,←,→,Bool] on a polynomial space Turing machine.

Lemmas 4–7, jointly, demonstrate that this can be done.

We remark that Theorem 6 is a striking result, in that right shifting is part of the SLP

being simulated, and right shifting is a special case of integer division. Compare this with

the power of exact division, described in Theorem 8, which is also a special case of integer

division.
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4.2.2 Incorporating arbitrary numbers

The framework described in Section 4.2.1 can readily incorporate simulation of arbitrary large

number computation. We use it now, to prove Theorem 4.

Proof of Theorem 4. Having proved Theorem 6, what remains to be shown is

P-ARAM[+, ,×,←,→,Bool] ⊆ PSPACE.

As demonstrated in the proof to Theorem 6, it is enough to show that an SLP that is able to

handle all operations can be simulated in PSPACE.

We begin by noting that because the P-ARAM must work properly for all but a finite

range of numbers as its ALN input, it is enough to show one infinite family of numbers that

can be simulated properly. We choose X = 2ω, for any sufficiently large ω. In the simulation,

we treat this X as a new formal variable, as was done with outputs of “a← b” operations.

Lemmas 4–6 continue to hold in this new model. They rely on the ability to compare

between two indices, which, in the previous model, was guaranteed by Lemma 7. The tech-

nique in which Lemma 7 was previously proved, was to show that comparison of two indices is

tantamount to evaluating the sign of an affine combination of the exponents associated with a

list of formal variables, when using their standard evaluation. This was performed recursively.

The recursion was guaranteed to terminate, because at each step the new affine combination

must omit at least one formal variable, namely the last one to be defined. Ultimately, the

sign to be evaluated is of a scalar, and this can be performed directly.

When adding the new formal variable X = 2ω, the same recursion continues to hold, but

the terminating condition must be changed. Instead of evaluating the sign of a scalar, we must

evaluate the sign of a formal expression of the form aω + b. For a sufficiently large ω (which

we assume ω to be), the sign is the result of lexicographic evaluation, as in Algorithm 6.

Lemma 7 also continues to be true for the SLP model incorporating an arbitrary large

number. Hence, the model can be simulated in polynomial space, so any P-ARAM with the

same set of operations can be simulated in polynomial space.
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Algorithm 6 Lexicographic evaluation of sign

1: function Sign(aω + b)
2: if a = 0 then
3: return sign(b)
4: else
5: return sign(a)
6: end if
7: end function

A full C++ implementation of the solution appears in Appendix C.2.

4.3 P-ARAM[+, /,←,Bool]

In Section 4.2 we corrected and then built upon Simon and Szegedy (1992). In this section,

we do the same for Simon (1981), in order to analyse the situation after adding division into

the operation set (with or without multiplication) and to prove Theorem 5.

4.3.1 The new results

The main result from Simon (1981) is as follows.

Theorem 7 (Simon (1981)). P-RAM[+, , /,←,Bool;≤] = ER.

Here, ER is as defined in Equation (2.1):

Definition 4 (ER). ER is the class of languages accepted by a Turing machine in time

22
. .

.
2
}
n,

where n is the length of the input.

Despite being a classic result and one sometimes quoted verbatim (See, e.g., Trahan et al.,

1992), the result is, in fact, erroneous.

We will show a number of logical fallacies in the proof, and will then correct these via a

refinement of Simon’s (1981) solution.

In a sense, the errata here are a case diametrically opposed to that of Section 4.2. On the

one hand, despite the large number of errors and corrections, the revised proof of this section,



58 CHAPTER 4. ARBITRARY NUMBERS

unlike that of Section 4.2, is merely a refinement over Simon’s (1981) basic proof, using the

techniques of the original paper, rather than a completely new algorithm. On the other hand,

our results differ greatly from those reported by Simon.

To present them, we begin with two definitions, following from the definition of M in

Section 3.2 and the definition of “reasonable” in Section 3.3, respectively.

Definition 5 (Expansion Limit). Let Mop(n, inp) be as defined in Section 3.2. We define

ELop(f(n)) to be the maximum of Mop(f(n), inp) over all inp for which len(inp) ≤ n. This is

the maximum number that can appear in any register of a RAM[op] that was initialised by

an input of length at most n, after f(n) execution steps.

The subscript “op” may be omitted if understood from the context.

As a slight abuse of notation, we use EL(t) to be the maximum of Mop(t, inp) over all inp

of length at most n, when n is understood from the context and t is independent of n. (The

following definition exemplifies this.)

Definition 6 (RAM-Constructability). A set of operations op is RAM-constructable if the

following two conditions are satisfied: (1) there exists a RAM program, el, that, given inp

and t as its inputs, with n being the length of inp, returns in O(t) time a value no smaller

than ELop(t), 6 and (2) each operation in op is computable in EL(O(l)) space on a Turing

machine, where l is the total length of all operands and of the result.

Any “reasonable” set of operations, and certainly any subset of the operations mentioned

in this work, is RAM-constructable. The restriction on computability can, in fact, be made

stricter (e.g. requiring that operations be computable in EL(l + O(1)) space, instead of in

EL(O(l)) space) without this excluding any set of operations that would be deemed “rea-

sonable”. When choosing a stricter definition of RAM-constructability, the results developed

here can be made correspondingly sharper. The exact details are left to the reader, but are

straightforward from an examination of the constructive nature of the proofs.

Our results are as follows.

6This is not guaranteed from the definition of EL, for example because the definition of EL does not require
the calculation of EL to be uniform over n.
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Theorem 8. For a constructable op ⊇ {+, /,←,Bool} and any function f(n),

O(f(n))-RAM[op] = O(f(n))-RAM0[op]

= ELop(O(f(n)))-TM

= N-ELop(O(f(n)))-TM

= ELop(O(f(n)))-SPACE-TM

= N-ELop(O(f(n)))-SPACE-TM.

We remind that the notation f(n)-TM means “the set of all functions that can be cal-

culated by a Turing machine (as described in Section 2.4) in f(n) execution steps”. The

remaining notations refer to nondeterministic Turing machines, space-bounded Turing ma-

chines and nondeterministic space-bounded Turing machines.

To compare these results with those of Simon, let us first quantify the relation between

EL and ER, for op = {+, , /,←,Bool}, which is the operation set investigated by Simon.

Simon introduces a restricted tetration function, stexp, defined by stexp(n) = n2
def
=

22
. .

.
2
}
n, and defines ER as stexp(n)-TIME, where n is the input length. Thus, Simon’s

ER is equivalent to stexp(n)-TIME. For the chosen op, the EL function is as described in

Equations (3.1) and (3.2). Thus, in a computing RAM with a nontrivial input, EL(0) = inp.

This places it at stexp(0) ≤ EL(0) ≤ stexp(len(inp)). In all further steps, EL(n + 1) =

EL(n)← EL(n), so 2EL(n) ≤ EL(n+ 1) ≤ 22
EL(n)

. Thus, EL(f(n)) is stexp(O(f(n)), where n

is the length of the input. In particular, we get that

P-RAM[+, , /,←,Bool;≤] = stexp(Poly(n))-TIME,

as opposed to Simon’s (1981)

P-RAM[+, , /,←,Bool;≤] = stexp(n)-TIME.

These results are substantially different. Whereas Simon equates the computing power of

all polynomial RAM[op] machines, regardless of the polynomial degree, to a single class, ER,
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we show that the equality is really to ELop(O(f(n))), which varies directly with the run-time

complexity of the RAM. Taking op to be Simon’s chosen instruction set, any RAM algorithm

that requires ω(n) time is, in fact, not in ER. A RAM algorithm that requires Θ(n) time may

or may not be in ER, because ER is equivalent to ELop(n) but what is actually required is

ELop(O(n)). It is not difficult to find cases where ER does not suffice.

In short, the new result implies for polynomial-time RAMs that their computational power

is far greater than what was previously believed.

For RAM algorithms that require o(n) time, Simon’s theorem is correct, for a large enough

n, but our bound is sharper. For example, taking f(n) to be O(1), we get

P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXP ⊆ NEXP ⊆ EXPSPACE

= NEXPSPACE ⊂ O(1)-RAM0[op] = O(1)-RAM[op]

for any RAM-constructable op ⊇ {+, /,←,Bool}.

The relationships noted above between TM complexity classes are well known. Equal-

ities noted among space classes are a result of Savitch’s Theorem (Savitch, 1970). Known

results that are, in fact, sharper than what appears above are P ⊂ EXP (Hartmanis and

Stearns, 1965; Hennie and Stearns, 1966), NP ⊂ NEXP (Cook, 1973; Seiferas et al., 1978;

Žák, 1983) and PSPACE ⊂ EXPSPACE (Stearns et al., 1965; Geffert, 2003; Seiferas, 1977).

The sharpness of the comparison between TM complexity classes and RAM complexity classes

is likewise derived by these known theorems: to prove

EXPSPACE ⊂ O(1)-RAM[op]

we merely apply

EXPSPACE ⊂ EXPEXPSPACE ⊆ EL(O(1))-TM = O(1)-RAM[op].

The result continues to be sharp given any bounded number of finite exponentiations, for the

same reason.
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A simple constant time sorting algorithm, being an example for

P ⊂ O(1)-RAM0[op]

is given in Appendix A.

Our results also differ from Simon’s in that they are more general, being applicable to a

large class of operation sets, whereas the original result is restricted to a single specified set.

When more powerful operations are admitted into op, such as ones calculating the Ackermann

function (Conway and Guy, 1996) or numbers in Knuth’s up-arrow notation (Knuth, 1976),

EL can become arbitrarily large.

We define the complexity class PEL[op] to be the union of ELop(f(n))-TM over all poly-

nomial f(n). A special case of Theorem 8 is that for a constructable op ⊇ {+, /,←,Bool},

P-RAM[op] = PEL[op]. When PEL is used without qualification of an operation set, op is

taken to be {←}. It is trivial to show that PEL = PEL[op] for all op ⊆ {+, ,×,÷, /,←,→

,Bool} where left shifting is in op.

Note that by their very definition as complexity classes of languages that can be recognised

by deterministic TMs working under certain defined time and space constraints, closure under

union, intersection and complement is guaranteed for all EL-TIME and EL-SPACE classes,

including PEL.

4.3.2 Errata on Simon (1981)

Before going into the errors in Simon (1981), it is worth noting that the wording of Simon’s

result is for a RAM that is clearly over-equipped. A common theme in the study of the power

of operation sets is the attempt to distil the minimal set of operations required for each each

proof. Simon (1981) is even given as an example (in Ben-Amram and Galil, 1995) for doing

so. And yet, by the methods of Section 2.5 it is clear than anything that can be done using a

P-RAM[+, , /,←,Bool;≤] can equally be attained by a P-RAM[+, /,←,Bool]. In fact, the

operation “≤” is never used in Simon’s proof.
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Furthermore, Simon is misrepresenting his own result by claiming P-RAM[+, , /,←

,Bool;≤] = ER, as his proof at no point attempts to demonstrate an inclusion of the form

P-RAM[+, , /,←,Bool;≤] ⊆ ER. Even if the proof had contained no errors, it would there-

fore have only sufficed to claim ER ⊇ P-RAM[+, , /,←,Bool;≤].

The serious errors in Simon (1981) begin, however, with the Turing machine model used

by Simon. Simon writes:

For technical reasons,. . . we shall consider a special model of Turing machine: it

has a single tape, it is oblivious, and, if the length of the tape used is s, the position

of the read/write head at time t is t mod s. For our purposes this is not a serious

restriction: we are interested in super-polynomial speedups and it is not hard to

verify that given a T (n) time bounded ordinary multitape Turing machine, there

is a one tape machine with the restrictions above that accepts the same language,

using at most T 2(n).

It is interesting to note that Simon uses the terminology “oblivious Turing machine”, but

not in the sense used by Pippenger and Fischer (1979), which is the classical source for the

oblivious model. An oblivious Turing machine is one that does not contain right/left motion

instructions for the reading head as part of its finite control. Rather, the reading head is moved

by a predefined infinite sequence (possibly, one computed by a second Turing machine, with

no access to the first machine or to its input). Pippenger and Fischer show that any Turing

machine working on any number of tapes can be simulated by an oblivious Turing machine

using only two tapes, so that an algorithm requiring n steps from the original machine will

require O(n log n) steps of the simulating machine. Pippenger and Fischer’s solution requires

rather complex motions of the reading head and constant usage of the second tape both as a

stack, keeping track of the motions of the reading head, and as a buffer for copy operations.

The algorithm uses a large number of copy operations to ensure that the relevant data does,

eventually, meet the reading head. Without a second tape, the algorithm would have required

a significantly larger run-time, beyond the O(n2) predicted by Simon.

There are two problems with Simon’s simplistic “t mod s” reading head motions, which

Pippenger and Fischer’s algorithm solves by far more complex means. The first problem is
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that Simon is considering “a T (n) time bounded ordinary multitape Turing machine”, and

yet simultaneously bounds the tape length used by s. These are two independent restrictions.

The machine should therefore not be taken as a “time-bounded” machine, but rather as a

“time-and-space bounded” machine. In fact, Simon’s machine, restricted to work on a tape

of predetermined length s, is no more than a finite automaton or a look-up table.

The difference between a space-bounded TM and a look-up table is in that the TM model

is uniform. It is not bounded by s, a length of tape that is a constant, but rather by

s = s(n), where n is the length of the input. It must be able to handle any input, of any

length, without change to its finite control. (For example, a PSPACE TM is one where s is

determined as a polynomial function of n.) Consider, now, Simon’s model. Although he omits

the details of the model, leaving it at “it is not hard to verify”, his claim that the machine

uses “at most T 2(n) steps” (note the lack of any big-O) suggests that what is being done is

that the head moves one element to the left at each execution step. If the (non-oblivious)

algorithm being simulated requires a motion to the left at this step, the simulating algorithm

continues as usual. If, however, the simulated algorithm requires a motion to the right, the

simulating machine continues s− 1 steps, noting that s ≤ T (n), and then writes the desired

new element into the tape, having returned to the correct position after having gone full-circle.

Unfortunately, this does not work, at least not in the trivial manner described. The reason

for this is that this requires the finite control of the Turing machine to be able to calculate a

time delay of s− 1 steps. Clearly, this requires at least s− 1 states. For s that is a function

of n, not bounded by any number, this cannot be handled by a uniform model.

Whereas the delay problem can be fixed by appropriate handling, the fact that s is a

function of n means that “t mod s”-type motions require the motions of the reading head to

be a function of the input. Hence, this is no longer an oblivious model.

Lastly, Simon’s main idea is in the use of “proof strings” (being, essentially, tableaux).

The critical point in understanding the complexity of the RAM programs designed by Simon

is in understanding the length of these proof strings. In the paper itself, this is not discussed.

At one point, Simon suggests that the process takes O(x) steps, where x is the input (note:

not the length of the input). Clearly, however, that cannot be the case: Turing machines
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are known for their ability to use tape and time disproportionate to their input, and any

tableau-based solution would need to reckon with this fact.

Given the previous discussion regarding s, Simon’s avoidance of an exact calculation is

understandable: the initial assumption of non-uniformity would now render any attempt to

analyse the complexity meaningless. Instead, Simon opts to assume, without reason, that the

O(x) steps (being, essentially, the linear case in which Simon’s original results coincide with

our corrected results) can be generalised to a polynomial number of steps without this having

any effect on the computational power.

We attempt, in Section 4.3.3, to re-introduce Simon’s ideas while side-stepping the logical

pitfalls.

4.3.3 A revised proof

We prove Theorem 8 by first establishing a sequence of lemmas.

Lemma 8 (Step by step simulation). A TM can be simulated by a RAM0[←,→,Bool] using

only bounded shifts. A TM run requiring n execution steps can be simulated in this way by

O(n) RAM steps. In the simulation, advancing the TM by a single step is simulated by an

SLP[←,→,Bool].

Proof. The simulation will store the state of the TM on three registers: tape, head and state.

Register tape will store the current state of the tape. The format for this is the direct one

described in Section 2.4, where the bits on the tape are translated to the binary digits of the

number on tape. At start-up, this register is initialised by

tape⇐ inp.

Register head will store the position of the reading head. The format for doing so is that

if the reading head is at position i on the tape, the value of head will be 2i, this being a “1”

at binary digit position i and “0” everywhere else. At start-up, the register is initialised by

head⇐ 1.
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This places the head at the first position on the tape. (The count of position numbers begins

at 0.)

Register state will signify the instantaneous state of the finite control. We number the

states of the TM arbitrarily from 0 to k − 1, where k is the total number of states. By

convention, state 0 will be the initial state of the machine. The format for storing the state

number on the state variable is that the variable equals the state number times head. In other

words, the number is stored starting at the bit position of the reading head. At start-up,

state⇐ 0.

Let c = dlog2 ke, this constant being the number of bits required to store the state number.

The transition function of the Turing machine is a function from the current state and the

value of the tape currently under the reading head to a new state, a new value and a new

position of the reading head (which is at most one position from its previous position).

Consider the function only for the new value under the reading head. This is a function

from c + 1 bits to 1 bit, and can therefore be described by a finite number of Boolean

operations, e.g. by use of a Karnaugh map (Karnaugh, 1953). Applying this Boolean function

requires, however, that all operands be available as bits. Consider, now, the numbers state→

0, . . . , state→ (c−1). In each of these numbers a different bit of the original state description

is aligned with the bit position of the reading head. Boolean algebra on these numbers along

with the number tape will result in the output value having the correct new bit value for tape

in the bit position that is under the reading head (though its other values may not signify

anything meaningful). Let us refer to this numerical result as output.

To calculate the new value for tape, we note that the value under the reading head is the

only one that requires updating. All other bit positions retain their original values. Hence,

tape⇐ (output ∧ head) ∨ (tape clr head)

is the correct update.
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Computing the value of the i’th bit of the new state number is attained by the same

means as computing the new tape bit value. Let outstatei denote the result of applying

Boolean operations on tape and state → 0 through state → (c − 1) to calculate this i’th bit.

The update of state is

state⇐ ((outstate0 ∧ head)← 0) ∨ · · · ∨ ((outstatec−1 ∧ head)← (c− 1)).

Lastly, we need to update the variable head. To do so, we calculate three functions from

tape and state→ 0 through state→ (c− 1), namely IsRightMotion, IsStay and IsLeftMotion,

calculating whether the head is to move to the right, stay in place, or move to the left,

respectively. The update required is

head⇐ ((IsLeftMotion ∧ head)← 1) ∨ (IsStay ∧ head) ∨ ((IsRightMotion ∧ head)→ 1).

This simulation, as described above, is already correct. However, we will change it slightly

in order to make it more elegant. Specifically, we wish to avoid the scenario of the reading

head dropping off the edge of the tape, which may happen if head = 1 and the next motion

is a motion to the right, in which case the present calculation yields 0 for the new value of

head.7

To avoid this, we introduce a new element into the simulation. This is a constant. Its

name is boundary and its value is 1. Furthermore, we add one new state into the state

machine, this being a rejecting halting state, signifying that the tape head has dropped off

the tape. (Adding a new state may cause an increase in c, requiring a change in the update

functions.) The boundary condition is a new bit in the input of the update functions. Its

value is boundary ∧ head ∧ IsRightMotion, and it triggers a transition to the new rejecting

state, and ultimately no head motion.

Lemma 9 (Bounded tape step-by-step simulation). A TM working on a bounded tape of

length s can be simulated by a RAM0[←,→,Bool] using only bounded shifts if the RAM is

7The TM being simulated may legitimately move the reading head beyond the edge of the tape as a method
of rejecting the input.
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given B = 1 ← s as an additional input. The simulation is required to be uniform in this

input. Note that the parameter s is not given as an input to the RAM. A TM run requiring n

execution steps can be simulated in this way by O(n) RAM steps. In the simulation, advancing

the TM by a single step is simulated by an SLP[←,→,Bool].

Proof. We want to make the simulation of Lemma 8 into a tape-bounded one. In the new

simulation, the value of boundary will be 1 ∨ (B ← (c− 1)).

To the boundary condition discussed in Lemma 8 we now add a second, triggered by

head ∧ IsLeftMotion ∧ (boundary → c), which will cause the state machine to transition to

another new halting state, namely one signifying that the simulation was stopped due to the

reading head exceeding its tape allocation.

An explanation is due as to the question of why the second 1 bit of the boundary is at

position s+ c−1, and not at position s. The reason is that boundary does not signify the end

of the tape, but rather the end of all bits used in the simulation process. When the reading

head is at its left-most position (position s− 1) the state of the TM is written in parameter

state between its s − 1’th and s + c − 2’th position. Therefore, the s + c − 1 bit is the first

not to be part of the simulation. Some of the bits before the s + c − 1 bit, such as the last

c− 1 bits of tape are not used in the simulation process.

This property is put to use in Lemma 10.

Lemma 10 (Simultaneous simulation). For any nonnegative k, and any naturals s1, . . . , sk,

k + 1 copies of the same TM, working on inputs inp1, . . . , inpk+1 on tapes of sizes s1, . . . , sk

and infinity, respectively, can be simulated by a RAM0[←,→,Bool] using only bounded shifts,

given that the RAM is given its input in the following format:

B =
k∑
i=0

2
∑i

j=1(sj+c−1),

inp =

k∑
i=0

inpi+1 ←

 i∑
j=1

(sj + c− 1)

 ,
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and that the output is described by

output =

k∑
i=0

outputi+1 ←

 i∑
j=1

(sj + c− 1)

 ,

where output1, . . . , outputk+1 are the halting states of the k+ 1 TMs at program termination.

The simulation requires O(n) RAM steps, where n is the number of steps required by the

longest running of the executions. In the simulation, advancing all the TMs together by a

single step is simulated by an SLP[←,→,Bool].

Proof. We simulate all TMs in parallel. In doing so, it is convenient to simulate an “advance

one step” also on the TMs that have already halted. Let us therefore reconsider the term

“halting state”, in order for us to allow continued execution of the simulation even after a

halt. To allow this, transition functions need to be defined also for halting states. We define

these as follows: if x is a halting state, transitions from x are all to x, the tape contents are

never changed, and the reading head will always move to the right, unless it is already at

the end of the tape, in which case it will stop. Clearly, all this can be encapsulated by the

Boolean functions already discussed.

We note that if a TM runs for n steps, its reading head is no more than n positions from

the right end of the tape. Hence, in O(n) steps, the TM’s state, head-position and tape

contents will have reached their final values.

The reason for the strange behaviour we require for the halting states is that it allows us

to easily query the TM simulator, at the end of the simulation, regarding its halting condition.

Let us assume, without loss of generality, that the only halting states are

• state = 1, signifying an accepting calculation,

• state = 2, signifying a rejecting calculation, and

• state = 3, signifying that the calculation was aborted due to exceeded tape length.

Because the ultimate position of the reading head is known to be 0, querying the simulator

for the final state is simply a test for equality.
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To initialise the simulator we set

boundary⇐ B,

head⇐ B,

state⇐ 0,

tape⇐ inp.

Because the positions of the “1”s on boundary signify a separation of the bit positions into

segments that cannot interact, simply using the SLP[←,→,Bool] described in Lemma 8 and

then re-used in Lemma 9 results in all TMs advancing one step in parallel.

Lastly, we need to test whether all TMs have halted. This can be split into the following

conditions. First, we verify that

head = B

and

state clr (B ∨ (B ← 1)) = 0.

This guarantees that all TMs are either in one of the three halting states or in the initial

state, 0. To verify that none are in zero, we simply check that the set of TMs that have halted

in one of the halting conditions covers all TMs. This is done by

(state ∨ (state→ 1)) ∧B = B.

When all of the above conditions are satisfied, execution of the RAM terminates, and the

output can be read off state.

Two side-notes should be made regarding the lemmas so far. First, note that in each of

Lemmas 8, 9 and 10, Lemma 1 can be applied in order to omit the operation “→” from the

operation set of the RAM.

Second, we note regarding Lemma 10 that even though parallelisation over k+1 machines

is possible, it is not necessary. By zeroing-out all bits of head in any given segment, the TM
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related to that segment ceases to advance. Indeed, that would have been a different method to

approach the question of how to simulate the execution of machines that have already halted.

(Although, taking that approach would have required different methods to check whether the

simulated machine halted and what its halting state is.)

Before proceeding further, we introduce two definitions.

Definition 7 (Instantaneous Description). Let T be a TM working on a bounded tape of

size s and having a state space that can be described (including up to 3 additional halting

states, as in Lemma 10) by c bits.

An instantaneous description of T at any point in its execution is the value of tape +

2s+c−1state + 22(s+c−1)head at that point in its execution, where tape, state and head are as

in Lemma 9.

Definition 8 (Tableau). Let T , s and c be as in Definition 7. A tableau is a vector (in the

sense of Definition 1) of width 3(s+c−1), whose i’th element is the instantaneous description

of T after i execution steps.

The proofs below will also use the notation Ona,m defined in Equation (3.3).

Lemma 11 (Fast nondeterministic simulation). There exists a constant, K, such that for

every TM, T , there exists a RAM0[←,Bool], R, that takes K + 1 inputs, such that for every

number inp, T accepts inp if and only if there exist witness numbers w1, . . . , wK , for which

R accepts on

(inp, w1, . . . , wK),

and R executes in O(1) time on every set of inputs.

Proof. The TM T accepts if and only if there is an accepting computation path beginning

at the initial instantaneous description at the start of execution with inp as its input. (The

terminology “accepting computation path” is more commonly applied to nondeterministic

computation. In deterministic computation, there is exactly one path. The question is only

whether it is accepting or not.) If there exists an accepting computation path, it can be

described by a tableau. (If it does not exist, no corresponding tableau exists.) Let (m,V, n)
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be this tableau. We will choose witness integers so that the RAM is able to verify the existence

and correctness of the tableau.

We use K = 5. The auxiliary inputs to the RAM will be the following five witness integers.

w1 = m/3,

w2 = V,

w3 = (n− 1)m,

w4 = On
2m/3−1,m,

w5 = On1,m.

The triplet (w1, w2, w3) defines the tableau, by a reversible transformation. The first step

of the verification process is not to test the validity of this tableau, but rather to ascertain

that w4 and w5 correspond properly to this tableau definition.

Let a = 2m/3 − 1, and note that it can be computed by ¬(1 ← w1). Ascertaining the

validity of w4 is done by verifying that

w4 − a = (w4 − (a← w3))← w1 ← w1 ← w1.

This follows directly from the definition of On
2m/3−1,m.

We do not actually have subtraction as part of our operation set, but A − B can be

simulated in this case by A clr B after having verified that A ∧B = B.

Validating w5 is done following exactly the same principles, only replacing a for 1 in the

computation.

At first glance, it may seem that w3 also needs to be verified in order to ascertain that

it is a multiple of 3w1, but in fact this has already been covered by the previous checks: if

2x − 1 is a multiple of 2y − 1 then x is a multiple of y. That being the case, the fact that we

have already established

w5 =
2w3+3w1 − 1

23w1 − 1

directly implies that w3 + 3w1 is a multiple of 3w1, and therefore also w3 is a multiple of 3w1.
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With these verified, the vector contents of the tableau, V , given in w2 can be decomposed

into its constituents, as demonstrated below. The equations below use right-shifting as well

as left-shifting. This is justified by Lemma 1, which can be applied here, because all shifts

are by w1.

tape = V ∧ w4,

state = (V ∧ (w4 ← w1))→ w1,

head = (V ∧ (w4 ← w1 ← w1))→ w1 → w1.

Furthermore, a corresponding boundary parameter can be devised by

boundary = w5 ∨ (w5 ← w1).

On the assumption that the tableau is legitimate, if we were to use these new values as

inputs for the RAM described in Lemma 10 (which can be used here, because, again, the

right-shift operations can be circumvented, as per Lemma 1), then what these inputs describe

is n copies of the same TM, each performing execution on the same input, but at a different

stages in the execution. The first TM is at execution start, the next one is after one execution

step, etc..

We can now use the RAM described in Lemma 10 to simulate, in O(1) total time, one

execution step of each of these n TM steps. Let us denote the output variables after a single-

step operation (tape′, state′, head′). The legitimacy of the tableau can now be verified. A true

tableau will satisfy two conditions:

1. The state of the machine described in element 0 of the original tableau is the correct

initial state of the TM to be simulated.

2. For each i, the instantaneous description of the machine described in element i of the

tableau, after advancing by a single step, equals the original instantaneous description

in element i+ 1 of the tableau.
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Verifying these conditions for tape, for example, is done by checking that

(inp ∧ a) ∨ ((tape′ clr (a← w3))← w1 ← w1 ← w1) = tape.

The idea is that tape′ ← m should equal tape in all but the first and last elements. These are

handled separately. The same method works for verifying the validity of state and head.

Once the tableau is known to be correct, we finish by ascertaining that its final state is

an accepting state:

(head ∧ (a← w3 ← w1 ← w1) = 1← w3 ← w1 ← w1

and

(state ∧ (a← w3 ← w1 ← w1) = 1← w3 ← w1 ← w1

Though not required for the main proofs that these lemmas have all been building up

towards, it is still illuminating to see that Lemma 11 implies the following much stronger

claim.

Theorem 9. All recursively enumerable (r.e.) sets can be recognised in O(1) time by an

NRAM[op], where op is a superset of any of the following: {←,Bool}, {→,Bool}, {/,Bool}

and {×,Bool}.

We note that a lemma corresponding to Theorem 9 appears also as Lemma 1 of Simon

(1981), but our results are somewhat sharper in that the instruction sets used by Simon are

slightly larger and the operations stronger.

We prove separately for each of the instruction sets in the theorem.

Proof for op ⊇ {←,Bool}. For this part of the proof, the missing piece from Lemma 11 is the

ability to extract all 5 required integers, w1, . . . , w5, from a single, Oracle-provided integer,

α, in O(1) time.
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A critical observation is that there are some degrees of freedom in the choice of witnesses.

For example, w1 merely needs to be large enough. It signifies the length of the tape available

to the TM, so choosing a larger value does not invalidate the simulation. As such, we can

restrict w1 to be a power of two at no cost.

Next, we note that w3 is not actually needed from the Oracle. The number w3 provides

the length, n, of the tableau, but choosing an overly long tableau is not a problem. All that

needs to be ascertained is that the chosen length is not too small.

Consider how many simulation steps are needed to decide how a TM’s execution termi-

nates. A TM on a bounded-length tape is essentially a finite state machine (FSM). It only

has a constant number of instantaneous descriptions that it can be in. In our case, each

instantaneous description is stored by m bits. Hence, the size of the state space is trivially

bounded by S = 2m. There is no reason to simulate a deterministic FSM to more steps than

the size of its state space, because if it has not terminated after S steps this indicates that it

has revisited a state more than once, and is therefore in an infinite loop.

Assuming that w1 is a power of two, multiplication by 3 can be performed by

m⇐ w1 ∨ (w1 ← 1).

Using w3 ⇐ m← m is then equivalent to choosing S+1 for n, which is more than enough.

This leaves us with the necessity to extract w1, w2, w4 and w5 from α.

We do so by first considering inc(α) clr α. If α’s u lowest bits are ones, but the u+ 1 bit is

0, this operation yields the number 2u. We will take this to be w1, noting that by construction

it is a power of two, as desired.

The next observation to make is that w2, w4 and w5 all have at most W = w3 +m bits.

As such, consider α as the contents of a vector of width W and length 4. The vector element

in the 0’th position, of which u + 1 bits were already specified, we ignore. The remaining

elements we take to be w2, w4 and w5, respectively.

Let M = 2W . This value can be calculated by

M ⇐ 1← w3 ← w1 ← w1 ← w1.
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Given a right-shift operator, the three witness values would have been extractable by

w2 = (α→ w3 → w1 → w1 → w1) ∧ ¬M,

and similarly for w4 and w5, from which point the rest of the construction could follow that

of Lemma 11.

Because right-shifting is, in fact, not assumed to be part of op, we note, instead, that all

shifts in both the construction above and that of Lemma 11 are by amounts that require no

right-shifting to calculate. (Aside from shifts by a constant, they are by w1, w3 and m, which

we show here how to calculate explicitly with no use of right-shifting.) That being the case,

we can apply Lemma 1 to show that the right-shift operator is not necessary.

Proof for op ⊇ {→,Bool}. When right-shifting is the only shift available, we employ a slightly

different tactic. Given a right-shift operator, unpacking in O(1) time K integers, a1, . . . , aK

from a given integer, α, is fairly straightforward. We do this by storing in α the contents

of the vector [u − 1, a1, . . . , aK ], where u is the width of the vector and is a power of two

and greater than any of the ai. (Regardless of what values we wish to store in the ai, it is

always possible to choose an appropriate width, u. We note that unlike in the first part of

the proof, here u does not serve any role other than being the width of this vector. It does

not participate in the actual simulation of the TM.)

Finding u is done by

u⇐ inc(α) clr α

as in the first part of the proof. Extracting the elements is done by

ai = (α

i times︷ ︸︸ ︷
→ u · · · ,→ u) ∧ ¬u.

In order to proceed from K extracted integers to a proof regarding a TM, we use the

same algorithm as that of Lemma 11 (not using any of the short-cuts introduced for op ⊇

{←,Bool}). However, we switch every left shift for a right shift by the following technique.
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First, note that Lemma 11 guarantees a procedure that terminates in O(1) time. As such,

it can only use a bounded number of left-shift operations.

We can therefore transform each X ⇐ Y ← Z operation in the original proof to a

comparison step: X = Y ← Z. If all of X, Y , Z and W = 2Z − 1 are given as part of α, this

can be performed simply by the following verification steps.

First, we verify that W + 1 is a power of two by inc(W ) ∧W = 0. Next, we verify that

it is the correct power of two by inc(W ) → Z = 1. Lastly, we verify the actual operation by

X → Z = Y coupled with X ∧W = 0.

Proof for op ⊇ {/,Bool}. As before, we work from Lemma 11 and only need to complete two

details.

1. How does one unpack K general integers from a single α?

2. How does one simulate left-shifting using op?

Extracting multiple integers from α is done in this case by storing in α the contents of the

vector [2u − 1, 0, a1, . . . , aK ], where u is the width of the vector. Extracting 2u − 1 is done as

before, and the rest of the elements can be retrieved by repeatedly dividing by 2u, and then

ultimately taking the bitwise intersection with 2u − 1.

Next, we wish to simulate X ⇐ Y ← Z, which, as before, is done by verifying X = Y ← Z.

Specifically, note that Z is always either a constant or one of w1 and w3, and that this is the

only context in which either w1 or w3 are ever used. Instead of storing these values directly,

we therefore store Z1 = 2w1 − 1 and Z3 = 2w3 − 1.

Ascertaining that Z1 and Z3 are valid can be performed by inc(Zi) ∧ Zi = 0. Following

the transformation from wi to Zi, the left shifts become multiplications: X = Y × inc(Zi).

We verify them by X ∧Zi = 0 and Y = X/ inc(Zi), where the first comparison ascertains that

the second comparison involves an exact division (utilising the fact that inc(Zi) is a power of

two).

Proof for op ⊇ {×,Bool}. We use the same α as in the proof for op ⊇ {/,Bool}, noting that

X = Y ← wi can be verified now simply by X = Y × Zi. This leaves us with the need to
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extract multiple integers, a1, . . . , aK from a single α, which is done by

ai × 2u(i+1) ⇐ ((2u − 1)

i+ 1 times︷ ︸︸ ︷
×2u × · · · × 2u) ∧ α.

Notably, the ai themselves are not extracted, but rather a shifted version of them. The

reason that this partial extraction suffices is because in all operations, X×Z will be offset by a

known power of 2u compared to the offset with which we calculate Y , and simply multiplying

one side by 2u the appropriate (and bounded) number of times will serve to prove equality.

We now turn to prove the main theorem.

Proof of Theorem 8. The statement of the theorem involves equality among four Turing ma-

chine related complexities, one RAM complexity and one RAM0 complexity. The equivalence

between the deterministic time and deterministic space TM complexities stems from the well-

known argument that

TIME(n) ⊆ SPACE(n) ⊆ TIME(EXP(n)).

In n execution steps, the reading head cannot reach more than n elements into the tape,

proving TIME(n) ⊆ SPACE(n), whereas an execution bounded by n tape elements cannot

proceed more than EXP(n) execution steps without retracing its steps, proving SPACE(n) ⊆

TIME(EXP(n)). In expansion limit terms, 2ELop(n) is greater than ELop(n) but is bounded

from above by ELop(n + O(1)). This argument shows equivalence between ELop(n + O(1))

time-bounded TMs and ELop(n + O(1)) space-bounded TMs, which is a stricter condition

than the one actually needed for the theorem.

The addition of nondeterminism to a space-bounded TM requires only a limited amount

of extra space to simulate on a deterministic TM, as is proved by Savitch’s Theorem (Savitch,

1970), so here, too, an ELop(n+ O(1)) is all that is needed. Simulating an n time nondeter-

ministic TM by a deterministic TM requires at most n nondeterministic bits, and can hence

be simulated by EXP(n) runs of the deterministic algorithm, enumerating over the witness

string. Exponentiation is, again, within ELop(n+ O(1)).
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The equivalences among TM complexities presented are therefore trivial.

The equivalence between RAM and RAM0 complexities is given by Theorem 3, even

without requiring the operation set to be constructable. We remark that for computing

RAMs, the transformation from RAM-style input to RAM0-style input is trivial. An input

inp can be represented as a vector of length 1 and width inp whose contents are inp. This

transformation costs O(1) time.

We will, therefore, only need to prove the following equality.

O(f(n))-RAM0[op] = ELop(O(f(n)))-SPACE-TM.

This, in turn, can be thought of as two statements. We begin by demonstrating the

simpler

O(f(n))-RAM0[op] ⊆ ELop(O(f(n)))-SPACE-TM, (4.1)

then continue to our main argument,

O(f(n))-RAM0[op] ⊇ ELop(O(f(n)))-SPACE-TM. (4.2)

To prove Equation (4.1) we show that an ELop(O(f(n)) space-bounded TM can simulate

an O(f(n))-RAM0. We allow this simulation to use a larger set of tape symbols than the

original {0, 1}, knowing that this costs at most a linear increase in the amount of space

required (Stearns et al., 1965), which cannot violate the ELop(O(f(n)) bound.

Consider the following memory layout which may be used by the TM. Each of the (finite)

number of registers of the RAM0 is allocated a new tape-alphabet character. We refer to

these as “control” characters. During the TM’s execution, each control character will appear

on the tape exactly once. All characters to the right of it and to the left of the next control

character are deemed to be the contents of the relevant register. Additionally, a further

control character, appearing last on the tape, marks the start of a “scratchpad”. The TM is

initialised by moving the input one element to the right in order to make room for the R[0]
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control character, then writing the R[0] control character before the input and the rest of the

control characters after (signifying registers whose contents are zero).

At each execution step, the operands are copied to the scratchpad, the operation required

by the RAM0 is performed, the tape elements are moved enough to allocate enough space

on the target register, and then the scratchpad result is copied to the target register and the

scratchpad is cleared.

By the definition of EL, each register’s contents requires at most EL(f(n)) elements to

store. To store all registers we require O(EL(f(n))). By definition of RAM-constructability,

the scratchpad requires no more than EL(O(f(n))) elements of memory.8 Together, the

amount of tape required is bounded by EL(O(f(n))), as required by the theorem.

We now turn to the main problem of proving Equation (4.2). We do this by working from

Lemma 11, noting that if there exists a tableau computation (m,V, n), then there also exists

one with (m′, V, n′), where m′ can be any number at least as large as m, and n′ is determined

from m′ so as to be at least as large as the number of possible instantaneous descriptions for

the TM. (This point, regarding the maximum necessary length for the simulation, was made

in the proof of Theorem 9: if the TM requires more steps, it will necessarily have retraced its

steps and have entered an infinite loop.)

Given a chosen value for m′, the computed value of n′ allows us to determine the number

of bits in V . It is T = n′m′. V is, therefore, one of finitely many possibilities. If we were to

enumerate over all 2T of these possibilities, we would be able to answer whether a tableau for

an accepting computation exists for a particular value of m′.

Consider now several tableau candidates, tableau0, . . . , tableauk−1, each of which is a vari-

able in the range 0 ≤ v < 2T . We wish to check simultaneously which of these (if any) is a

correct tableau of bit-length T , describing the execution of a TM running on a tape of length

s on input inp. To do this, we describe a new variable, V =
∑k−1

i=0 2T itableaui.

Consider now Lemma 10. It allows the verification of a tableau by use of only bitwise

operations and shifts by values that are functions only of s. Because all candidates share the

8This follows from Mop(a + b, inp) = maxxMop(b, x)), where the maximum is taken over all x that are
computable from inp in a calculation steps.
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same s, each of these operations is executed on all candidates simultaneously, by executing

them on V . There are only two places where this strategy fails.

First, the verification requires the use of several constants, such as 1 and inp. In order

to apply these simultaneously to all simulations, we need to replace the original constants by

Ok1,T and Okinp,T , respectively.

Second, the final step in verifying whether a tableau candidate is correct involves several

comparisons of the type “a = b”. These must now be executed in parallel. This can be

performed by the operation EQ, described in Appendix A.4. The operation EQ takes two

vectors and outputs a new vector of the same length and width as its two operands, whose

elements are 1 in positions where ai = bi and 0 otherwise. A correct tableau is one that

passes all equality checks outlined in the proof of Lemma 10. To simulate this in parallel for

all candidates, we perform the necessary EQ per equality test, then take the bitwise AND

over all results. The resulting integer, res, has a 1 in its Ti’th position if and only if the

tableaui candidate is correct.

For the purposes of the present proof, we are not interested in finding which of the tableau

candidates is correct, but rather whether any of them are correct. This can be checked by a

simple “res = 0”.

(Readers may wish to verify that the proof of Lemma 10 can be readily adapted to work

on a tableau candidate that has been shifted left by an arbitrary amount; the tools for doing

so are basically those of Lemma 1. Furthermore, the verification process is not disrupted by

having any additional non-zero bits to the left or right of the tableau bits. The verification

process does not use or disturb any bits in the integer, other than the T being checked.)

The above argument, showing that the condition “the tableau is correct” can be verified

in constant time can be applied equally well with additional checks such as “the tableau is

correct and the halting state is 1”. Thus, if we were to check all 2T tableau candidates, the

program does not only work as a verifier, but also as a complete simulator: it takes an input,

and can return (in constant time) what the final state of the TM finite control is. In our case,

the interesting final states are 1, 2 and 3. The simulator should return which of these three

the TM halted on, or return that none of the above occurred.
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The only remaining question is how to create all k = 2T possible tableaux in a single

integer, for them to be verified simultaneously. One way to do this is as follows. The function

described produces the contents of a vector of width T and length 2T , whose elements are all

unique.

UT =
2T−1∑
i=1

Oi1,T =
2T−1∑
i=1

2T i − 1

2T − 1
=

2T×2T−1
2T−1 − 2T

2T − 1
(4.3)

= ((¬(1← (T ← T ))/¬(1← T )) clr (1← T ))/¬(1← T )

It is computed solely by use of left-shifting, exact division and Boolean operations.

We see, therefore, that all tableaux can be created and verified for correctness in constant

time. Let us refer to the RAM program that verifies simultaneously and in constant time all

possible tableaux pertaining to the execution of a TM on a tape of size s as simulate(s, inp).

By the assumption of constructability, there also exists a RAM program, el(n) that cal-

culates a value no smaller than ELop(n) in O(n) time. In order to complete the proof of

the theorem, we therefore present Algorithm 7 that enables a RAM working in O(n) time to

simulate any TM working in EL(O(n)) time.

Algorithm 7 A complete TM simulator
1: n⇐ 1
2: loop
3: s⇐ el(n)
4: simulate(s, inp)
5: if halting state is 1 then return Accept
6: end if
7: n⇐ n← 1
8: end loop

We remark that Algorithm 7 accepts if the original TM accepts, and continues indefinitely

if the original TM does not, but this is merely because we check only for a halting state of 1.

It is also possible to terminate the run and reject if the halting state is 2 (signifying that the

TM halted and rejected) or if the halting state is not in 1-3 (signifying that the TM returned

to a previous instantaneous description, and has therefore entered an infinite loop). However,

if the TM continues indefinitely while consuming unbounded amounts of tape, the simulation
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cannot detect this, and will continue forever. This is, of course, inherent, because had the

simulator been able to determine in finite time for every TM whether it halts or not, this

would have contradicted Turing’s halting theorem (Turing, 1936).

4.3.4 Adding arbitrary numbers

Despite the fact that the main ideas in the proof of Theorem 8 can all be traced back to Simon

(1981), unlike Simon’s original construction, our Theorem 8 strongly suggests Theorem 5: any

recursively enumerable (r.e.) set can be recognised by an ARAM[+, /,←,Bool] in O(1) time.

The reason for this, informally, is that once arbitrary numbers are admitted, the numbers that

can be present in the RAM after even one execution step become arbitrarily large, making EL

effectively infinite. If the power of the RAM is only bound by its ability to generate larger and

larger numbers, as is implied by Theorem 8, adding ALNs should make the RAM arbitrarily

powerful.

We now present this as a formal argument.

Proof of Theorem 5. If S is an r.e. set, then there is a TM that recognises it, indicating that

inp ∈ S if and only if there is an accepting computation of the TM with inp as the TM’s

input. This accepting computation by definition requires only a finite number of execution

steps of the TM, and therefore only a finite number, sreq, of tape cells. Consider Algorithm 8,

using the RAM-implementable function simulate discussed at Algorithm 7.

Algorithm 8 Simulating a TM in constant time

1: s⇐ ALN
2: simulate(s, inp)
3: if halting state is 1 then
4: return Accept
5: else
6: return Reject
7: end if

By the arguments of the proof for Theorem 8, a sufficient condition for simulate to return

the proper result is s ≥ sreq. This is clearly satisfied by making s “large enough”, which

is what is guaranteed by “s ⇐ ALN”. Formally, almost all choices for s return the correct
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result, as the number of s values that return an incorrect result is finite and bounded by

sreq.

We have shown, therefore, that while arbitrary numbers have no effect on computa-

tional power without division, with division they provide the strongest possible computational

model: Turing completeness in O(1) computational resources.

4.4 Arbitrary numbers and the arithmetical hierarchy

In light of Theorem 5, which shows that ARAMs with division can perform in O(1)-time

everything that a Turing machine working without time or space limitations can do, it is

natural to ask whether these ARAMs can do even more, and if so, how to quantify their

power.

One model which provides us with terminology for assessing computational power beyond

what is available to Turing machines is the arithmetical hierarchy. A full exposition of the

arithmetical hierarchy is available in Rogers (1987) and Moschovakis (2009). We introduce it

here briefly.

The set Σ0
0, also denoted Π0

0 is the set of formulae logically equivalent to formulae including

only bounded quantifiers. For any i > 0, the set Σ0
i is the set of formulae logically equivalent

to ∃a1∃a2 · · · ∃akφ, where φ ∈ Π0
i−1, and the set Π0

i is the set of formulae logically equivalent

to ∀a1∀a2 · · · ∀akφ, where φ ∈ Σ0
i−1. For any i ≥ 0, the set ∆0

i is defined by ∆0
i = Σ0

i ∩Π0
i .

In our context, we take formulae as representing the languages composed of the values

for which the formulae hold. The recursively enumerable sets are exactly Σ0
1, whereas the

decidable sets (those which can be decided by a TM that is guaranteed to eventually halt)

are exactly ∆0
1. The set Π0

1 is exactly the co-r.e. languages.

Theorem 10. Denote by ARAM[+, /,←,Bool] the set of languages that can be recognised

by such an ARAM, regardless of time constraints. This set is on the second level of the

arithmetical hierarchy, in the following sense:

Π0
1 ⊂ ARAM[+, /,←,Bool] ⊆ Π0

2,
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Proof. Theorem 5 already established Σ0
1 ⊆ ARAM[+, /,←,Bool]. Note, however, that be-

cause the ARAM programs used in the proof of Theorem 5 are all guaranteed to terminate, it

is possible to invert their ultimate result. This observation establishes Π0
1 ⊆ ARAM[+, /,←

,Bool], and, as a corollary, Σ0
1 ∪Π0

1 ⊆ ARAM[+, /,←,Bool].

Clearly, this union is larger than either base set. (The halting problem and its comple-

ment provide examples of languages that are in Σ0
1 and, respectively Π0

1, but not in Π0
1 and,

respectively, Σ0
1.)

This observation is sufficient to establish the proper inclusion in the statement of the

theorem.

We now turn to proving ARAM[+, /,←,Bool] ⊆ Π0
2.

By definition, an ARAM is the result of a RAM working with an extra input n, such that

n is greater than some threshold value, N . The RAM itself is computationally equivalent to

a TM, so is known to compute a formula φ ∈ Σ0
1. This indicates that φ can be written as

φ = ∃aχ, (4.4)

where χ is a formula with only bounded quantifiers.

In logic formulation, an ARAM computes a formula ψ that satisfies two conditions

ψ(inp) = ∃N∀n(n ≤ N) ∪ φ(n, inp), (4.5)

and

ψ(inp) = ∀N∃n(n > N) ∩ φ(n, inp). (4.6)

The first of these conditions stipulates that if ψ(inp) is true then the ARAM must accept

inp for almost all values of the ALN extra input.9 On the other hand, if ψ(inp) is false, then

there must be an infinite number of ALN values that will make the ARAM reject inp.

9That is to say, all except a finite number.
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The second condition stipulates that if ψ(inp) is false then the ARAM must reject inp for

almost all values of the ALN extra input. On the other hand, if ψ(inp) is true, then there

must be an infinite number of ALN values that will make the ARAM accept inp.

Together, these two conditions describe the requirement of an ARAM, namely that if the

extra input is large enough, then the ARAM computes ψ.10

To prove that any function computed by an ARAM is in Π0
2, we need only Equation (4.6).

Substituting Equation (4.4) in, we get

ψ(inp) = ∀N∃n∃a(n > N) ∩ χ(a, n, inp),

where χ contains only bounded quantifiers. This places the formula in Π0
2 by definition.

Corollary 10.1. For an ARAM program A ∈ ARAM[+, /,←,Bool] that is guaranteed to

halt,

A ∈ ∆0
2.

In particular,

P-ARAM[+, /,←,Bool] ⊆ ∆0
2.

Proof. If an ARAM is known to terminate, the same is true for its underlying RAM (calculat-

ing what was previously denoted as φ). This RAM, therefore, calculates a decidable problem,

so φ ∈ ∆0
1. In particular, φ can be described as

φ = ∀aχ̄. (4.7)

Substituting this into Equation 4.5, we get

ψ(inp) = ∃N∀n∀a(n ≤ N) ∪ χ̄(a, n, inp).

10By definition, an ARAM computes ψ(inp) if its underlying RAM computes φ(n, inp) and the two coincide
for all but a finite number of n values. A succinct way of writing this is

∞
∀nφ(n, inp) = ψ(inp).
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This places ψ in Σ0
2. Together with Theorem 10, we have ψ ∈ ∆0

2.



Chapter 5

Arbitrary number sequences

5.1 Introduction

Before departing completely from arbitrary numbers, we give in this chapter a short vignette

into how arbitrary numbers interact with each other. For this, we introduce a new computa-

tional model, which we refer to as the ASRAM, for “arbitrary sequence RAM”.

Just as the ARAM model provides the RAM with the power boost of a single arbitrary

number, the ASRAM allows us to study the case where arbitrary numbers are available in

unlimited amounts. Specifically, in the ASRAM, ALN is provided as a pseudofunction: the

program may call it at any step to generate a new arbitrary number.

This chapter quantifies the power of the ASRAM and, specifically, discusses the added

contribution in power of the availability of multiple arbitrary numbers, as compared to a

single ALN.

We note that the ASRAM model further provides us with a platform on which to in-

vestigate the intermediate scenario, in which only a predefined number (e.g. 2) of ALNs are

available to the algorithm. This is simply done by limiting the number of times the ALN

pseudofunction can be executed.

87
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5.2 Formal definition of the model

Definition 9 (ASRAM). An ASRAM is a computational model that provides the same

functionality as the RAM, but also allows calls to a pseudofunction, “ALN()”, that returns

integers. We refer to the integer returned on the k’th call to this function as Ak.

A language L is said to be accepted by the ASRAM if for every input to the ASRAM

there exists a subset, S, of the set of (infinite) integer sequences, that satisfies the following

conditions.

1. S is nonempty.

2. If the {Ak} sequence is taken from S, the underlying RAM computation accepts if and

only if the input is in L.

3. For any i and any sequence {Ak} ∈ S there exists a sequence {Bk} ∈ S such that

Bi = Ai + 1, and if j < i, then Bj = Aj .

This definition of an ASRAM reflects a situation where every application of the function

“ALN()” results in a number that is arbitrary and large enough with respect to everything

that occurred in earlier steps of the ASRAM’s execution. This generalises the notion of an

ARAM, where the ALN is taken to be arbitrary and large enough with respect to the RAM’s

input.

The original ARAM is simply an ASRAM that is restricted to use only a single call to

ALN(), and whose output therefore depends only on A1. The definition, as it pertains to

ARAMs, is that if S contains a sequence beginning with some A1, indicating that A1 is “large

enough”, then B1 = A1 + 1 is also “large enough”, and a sequence beginning with this value

should also exist in S. By induction, any number larger than A1 is similarly “large enough”,

and a sequence beginning with it exists in S, and is therefore admissible as a sequence returned

by the ALN() pseudofunction.
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5.3 Arithmetic complexity

At face value, one may believe that multiple arbitrary numbers are no more powerful than a

single arbitrary number. However, this is not so.

In this section we detour slightly from the main theme of this work, which focuses on

RAMs that use shift left and mixed field operations as their basic operation set, to show that

the extra power of arbitrary sequences is present already in the more conservative arithmetic

complexity model, this being the computational model in which the basic operations used are

the four arithmetic functions, {+, ,×,÷}.

We stress that the results presented rely heavily on the non-arithmetic nature of these

so-called “arithmetic” operations. In the literature (Lürwer-Brüggemeier and Ziegler, 2008),

the operation “÷” is, in fact, sometimes referred to as non-arithmetic division.

Formally stated, what we prove is the following theorem.

Theorem 11. P-ARAM[+, ,×,÷] ⊂ P-ASRAM[+, ,×,÷].

Proof. Consider Algorithm 9.

Algorithm 9 An arithmetic ASRAM calculating 22
2x

in O(x) time

1: for i ∈ 1, . . . , x do
2: Ai ⇐ ALN()
3: end for
4: Px ⇐ Ax ×Ax
5: for i ∈ x− 1, . . . , 1 do
6: temp⇐ Pi+1 mod (Ai+1 −Ai)
7: Pi ⇐ Pi+1 mod (Ai+1 − temp)
8: end for
9: temp⇐ P1 mod (A1 − 2)

10: rc⇐ P1 mod (A1 − temp)
11: return rc

This algorithm utilises the fact that for an ALN, A, and a polynomial, P , the calculation

P (A) mod (A−x) is an algorithm for computing P (x). Utilising this property, the algorithm

calculates each Pi so that it equals A22
(x−i)

i . After O(x) steps, it returns the value 22
2x

.
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From Bshouty et al. (1992), we know that an ARAM[+, ,×,÷] can only calculate 22
x

in

Ω(
√
x) time. The fact that Algorithm 9 calculates it in Θ(log x) time places calculation of

22
x

inside P-ASRAM but outside P-ARAM, proving that the inclusion is proper.

Thus, ASRAM is a more powerful model than the ARAM even under arithmetic complex-

ity. Full quantification of this extra power is still an open problem. In the remaining sections

of this chapter we consider ASRAMs with the instruction sets discussed in all other chapters

of this work, and for the powers of these we are able to provide more complete quantification.

5.4 Without division

Theorem 12. P-ASRAM[+, [ ], [×],←, [→],Bool] = PSPACE

Proof. The proof is a direct extension of the proof to Theorem 4.

We begin by picking our ALNs, A1, A2, . . . so as to be powers of two: 2ω1 , 2ω2 , . . .. We

then simulate the ASRAM in exactly the same way as was done before. Once again, we see

that Lemmas 4–6 continue to hold in the new model. In order to complete the proof, we need

a replacement for Lemma 7: a method to compare two po-bits to determine which is the most

significant.

In the RAM model, proving Lemma 7 was done by recursively eliminating the last formal

variable to be defined, until the comparison becomes a comparison between scalars. In the

ARAM model, the same recursion yielded a formal expression of the form aω+b, which could

then be evaluated lexicographically, based on the assumption that ω, being an ALN, is “large

enough”.

In the new model, the recursion yields a formal expression of the form
∑n

i=0 aiωi, where

ω0 is taken to be 1. Once again, because each ωi is, per assumption, large enough compared

to all ωj with j < i, a simple lexicographic comparison is enough to determine which of two

formal expressions has a larger value.

Thus, Lemma 7 continues to hold, and the entire simulation of the ASRAM can be per-

formed in PSPACE.
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5.5 With division

In this section we prove two main theorems.

Theorem 13. O(1)-ASRAM[+, [ ], [×], /, [÷],←, [→],Bool] = AH.

Theorem 14. ω(1)-ASRAM[+, [ ], [×], /, [÷],←, [→],Bool] ⊃ AH.

In the statements of Theorems 13 and 14, AH refers to the entire arithmetic hierarchy,⋃∞
i=0 Σ0

i ∪Π0
i .

Proof of Theorem 13. This proof builds on the proof of Theorem 10. We begin by recalling,

as was shown there, that an ASRAM running k steps (and therefore utilising at most k ALNs)

is logically equivalent to a formula with k “∀Ni∃ni(ni > Ni)∩” clauses, one for each ALN

used, followed by a formula, φ, that is logically equivalent to a RAM, and is, hence, in Σ0
1.

This shows that the ASRAM is in Π0
2k.

We have thus established that the formula computed by the ASRAM is in AH. We will

now show that it can be in an arbitrarily high level in the hierarchy.

To do so, we now show that any formula, “φ = ∃a1∀a2 · · · ∃akχ(inp, a1, . . . , ak)”, with any

k quantifiers, can be computed by an ASRAM with k ALNs. The way to do this is to bound

every ai by ni. The formula φ is logically equivalent to “∃N1∀n1(n1 ≤ N1)∪· · · ∃Nk∀nk(nk ≤

Nk) ∪ ∃a1 < n1∀a2 < n2 · · · ∃ak < nkχ(inp, a1, . . . , ak)”. (If an ai exists to satisfy some

condition, its value can be bounded by some Ni, whereas if something is true for every ai, it

will also be true for every bounded ai.)

This derivation shows that an ASRAM using k ALNs can simulate any formula with k

quantifiers. In particular, it can simulate Σ0
k ∪ Π0

k, and is, therefore, strictly above the k’th

level of the arithmetical hierarchy.

Following the techniques of Theorem 5, we know that the ASRAM that performs this

calculation can be implemented as k ALN-generating steps, followed by O(k) additional pro-

cessing. (The additional processing includes O(k) packing steps, in which all input is packed

into a single integer, followed by an O(1)-time simulation step.) Thus, it is an O(k)-time

ASRAM.
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Any formula in AH is on some level of the hierarchy. To simulate it, we fix k to be that

level. Thus, the simulating ASRAM runs in O(1)-time.

Corollary 14.1. An ASRAM restricted to use only k ALNs is equivalent to a formula on

the Θ(k)-th level of the arithmetical hierarchy.

Proof. This result is a direct corollary of the proof for Theorem 13, which shows that an

ASRAM utilising k ALNs can compute any formula in Σ0
k ∪ Π0

k, and can be computed by a

formula in Π0
2k.

Consider, now, what happens when the ASRAM (not restricted to any fixed number of

ALNs), is allowed to run in ω(1) time.

Proof of Theorem 14. A well-known example of a function that is not in AH is “TRUTH”.

This is a function that takes as input a formula, ψ, suitably encoded as an integer, and

determines whether this formula is true or not.

The inability to describe TRUTH as a formula is known as Tarski’s undefinability theorem

(Tarski, 1939). It is a corollary of Gödel’s incompleteness theorem (Gödel, 1931) and, in the

formulation given above, is a direct result of Post’s theorem, stating that the arithmetical

hierarchy does not collapse (see Rogers, 1987).

Consider, first, an ASRAM working in Θ(k) time. As demonstrated in Theorem 13, such

an ASRAM can compute, directly, any formula with Θ(k) quantifiers. Consider a formula, ψ,

encoded in the straightforward manner as an integer with k bits. This formula will necessarily

have O(k) quantifiers, so a Θ(k)-time ASRAM can be used to compute its truth value. Hence,

TRUTH is in O(k)-ASRAM[+, [ ], [×], /, [÷],←, [→],Bool].

To extend this result from Θ(k)-time execution to ω(1)-time execution, we note simply

that the straightforward formula encoding used above may be, perhaps, the most efficient

encoding possible, but is certainly not the only one. For example, it is possible to encode the

statement less efficiently by re-encoding the original input number, inp as (2inp + 1) × 2T .

An arbitrary choice of T allows decoding of the original inp. By choosing a large enough T ,

the execution time allotted to an ω(1)-time ASRAM becomes Θ(k), regardless of its actual

complexity.
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Tarski’s undefinability theorem is independent of the exact choice of encoding used to make

the input formula, ψ, into a number. The new, tweaked TRUTH function must, therefore,

also lie outside of AH.

Thus, any ω(1)-time ASRAM can compute functions that are outside of AH.
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Chapter 6

Random numbers

6.1 Introduction

In Turing machines, the idea of random computation was first introduced by Rabin (1963).

The computational model that supported random computation was a Turing machine able

to switch in each step to one of two new states depending on the results of a random bit.

This gave rise to the complexity class RP composed of those sets that can be recognised by a

probabilistic Turing machine in polynomial time, where if the answer is true the machine is

required to reach this answer with probability at least half, whereas if the answer is false the

machine is required to always reach this answer.

Since Rabin’s original paper, randomisation has contributed to the definition of many new

complexity classes. These include BPP (Adleman, 1978), PP and ZPP (Gill, 1977), and RL

and ZPL (Borodin et al., 1989). These classes differ among themselves in two respects. The

first is the respect used to differentiate conventional complexity classes as well, namely their

time and tape requirements (taking into account that here these restrictions can be made

more varied, because the requirements are now random variables, rather than deterministic

functions of the input). The other respect in which the classes differ is in their acceptance cri-

teria. Because a randomised Turing machine’s final state is a random variable, such a machine

has false-acceptance and false-rejection probabilities. Table 6.1 summarises the possibilities.

For convenience of presentation, in the table non-termination is treated as termination in a

95
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non-accepting final state. In practice, the two are, of course, distinct occurrences, and in all

algorithms presented they are handled separately.

inp ∈ S inp 6∈ S

Final state is accepting Correct acceptance (ta) False acceptance (fa)

Final state is not accepting False rejection (fr) Correct rejection (tr)

Table 6.1: The four possibilities for termination in a randomised Turing machine.

The expressions appearing in parentheses in Table 6.1 are acceptance and rejection prob-

abilities. Generally, these probabilities are taken to be the probabilities given a specific input,

inp. That is, given some inp, if inp ∈ S, ta = ta(inp) is the probability that it will be accepted

and fr = fr(inp) is the probability that it will be rejected, with ta + fr = 1. For inp 6∈ S, we

have the corresponding tr + fa = 1.

The conditions for belonging to randomised complexity classes are generally worded as

“fa ≤ A and fr ≤ B” (with the “≤” sometimes replaced by “<”) where A and B are

constants. This condition should be taken to mean “For all inp, if inp ∈ S, fa(inp) ≤ A,

and if inp 6∈ S, fr(inp) ≤ B”. That is, the bounds A and B relate to the worst-case inputs.

For our purposes, choosing A (or B) to be 0 is shorthand for the stronger condition that a

false acceptance (or rejection) never occurs. (The two conditions coincide for programs that

terminate in finite time for every input and every random choice.)

Table 6.2 summarises the criteria used in each random complexity class mentioned. For

example, a set, S, belongs to BPP if there exists a Turing machine, T , running in polynomial

time, such that T accepts an input with probability greater than 2/3 if it belongs to S and

rejects with probability greater than 2/3 if it does not.



6.1. INTRODUCTION 97

Class fa fr

RP, RL, ZPL = 0 ≤ 1
2

BPP ≤ 1
3 ≤ 1

3

PP, ZPP ≤ 1
2 < 1

2

Table 6.2: Acceptance criteria for various randomised computational classes.

In general, it not known whether randomisation helps Turing machines, in the sense that

it is not known whether any of the complexity classes mentioned contains any problem that

is not in P .

As mentioned previously, what used to be perhaps the canonical example for the power of

randomness is primality testing (Solovay and Strassen, 1977; Rabin, 1980), however, in light

of Agrawal et al. (2002) this example, now known to be in P, is no longer a candidate for

RP \ P, which may or may not be the empty set.

Having said this, several weak inclusion relations are evident directly from the definition

of randomised complexity classes. Consider, for example, the classes P, RP, NP and PP, all

defined by the acceptance criteria listed previously and the limitation to polynomial run-time.

It is known that P ⊆ RP ⊆ NP ⊆ PP, but it is not known regarding any of these whether

they are proper inclusions.

The reasoning that leads to these inclusions is fairly straightforward.

• P ⊆ RP because adding the ability to use randomness certainly cannot detract from

computational powers. At worst, this ability can simply be ignored.

• RP ⊆ NP because, if a random string of bits has at least 50% chance of leading to a

correct accept and 100% chance of leading to a correct reject, then one can pick any one

of the at least 50% of the random strings that lead to the correct result, and use it as an

Oracle input. The NP success criterion merely requires that at least one Oracle string

should lead to the correct result, and that none should lead to a false accept. Both of

these are guaranteed by the RP success criterion. Therefore, any TM that recognises a

language under the RP criterion would also recognise it under NP.
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• Lastly, NP ⊆ PP because one can allot an extra random bit, x, and then accept an

input if either x = 0 or a randomly chosen string of bits happens to be a working

Oracle witness. The probability that such a random string is a valid Oracle witness

may be slim, but it is nonzero because at least one Oracle witness is known to exist.

Its existence pushes the probability for true acceptance to be greater than 1/2, whereas

false acceptance rate is exactly 1/2.

The idea of randomised computation has been extended to RAMs by Simon (1981). There,

a RAM model is introduced that incorporates a special instruction RAND, such that

X ⇐ RAND(Y )

places in X a random integer, uniformly distributed in the interval [0, Y ). As in standard

operations, Y can be a literal constant, the contents of an explicitly specified register or the

contents of a register specified by indirect addressing. The results of any set of calls to RAND

are assumed to be independent.

We use a slightly more restrictive model, in which Y is required to be 2k for some known

k. When Y is thus restricted, X contains, in its least significant k bits, k random, uniformly

distributed and independent bit values. This model is interesting for theoretical study, because

it is more directly comparable with the Turing machine model, where randomisation is given

in the form of bits. It highlights the basic distinction between randomisation in RAMs and

randomisation in TMs, in that the difference is not in the type of randomisation allowed, but

rather in the RAM’s ability to digest simultaneously large quantities of input. See Section 6.8

for a discussion of the equivalence of the restricted model and the unrestricted one.

Simon’s results relate to the model of the RAM equipped with the RAND instruction,

running an acceptance criterion equivalent to that of PP. In Simon (1981), this model is called

a “P-time stochastic RAM”. We refer to it as a PP-RAM[], so as to place it inside the larger

framework of other choices of acceptance criteria. If execution time is not restricted to be

polynomial, we call this a stochastic RAM as per Simon’s terminology.
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Simon claims regarding PP-RAM[+, ,←,Bool;≤] that it equals ER. This error is clearly

the result of propagation from the paper’s earlier mistakes, discussed in the previous chapter.

The correct (and stronger) claim is

Theorem 15. For a constructable op ⊇ {←,Bool} and any f(n),

O(f(n))-stochastic RAM[op] = O(f(n))-stochastic RAM0[op]

= ELop(O(f(n)))-TM

= R-ELop(O(f(n)))-TM

= N-ELop(O(f(n)))-TM

= ELop(O(f(n)))-SPACE-TM

= R-ELop(O(f(n)))-SPACE-TM

= N-ELop(O(f(n)))-SPACE-TM.

Proof. The equivalence of most classes described is given in the proof of Theorem 8. Regarding

the equivalence of the randomised TM classes, this follows from the same reasoning as P ⊆

RP ⊆ NP , noting that at no point did this reasoning rely on the execution time being

polynomial. The argument is equally valid when the execution time is ELop(O(f(n)). In fact,

it continues to be valid when considering space-bounded TMs, rather than time-bounded

ones.

We need therefore only prove the following relations.

O(f(n))-stochastic RAM[op] ⊆ R-ELop(O(f(n)))-SPACE-TM. (6.1)

O(f(n))-stochastic RAM0[op] ⊇ ELop(O(f(n)))-SPACE-TM. (6.2)

Equation (6.1) is proved along the same lines as Theorem 8, noting that the RAND

operation can be simulated by an R-ELop(O(f(n)))-SPACE-TM by allotting the random bits

individually. Because the machine is not time restricted, this is possible to do. Where the
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construction of Theorem 8 fails is in that it does not handle indirect addressing. We therefore

provide a more powerful simulating algorithm for the TM, which can account for it.

In the new simulation, instead of storing the value of each of the RAM’s registers in a

portion of the TM’s tape that has been specifically labelled for this use, we store the values of

all non-zero-valued registers as (address, value) pairs. In each step of execution, we scan the

available pairs for those with the appropriate addresses (creating a new pair for the target

register if necessary), copy the values into a scratchpad area, calculate over the scratchpad

and then copy the result out. Because at each step of the RAM at most one new tuple is

created, the total space requirements are still within ELop(O(f(n))).

Equation (6.2), although more involved, follows from the proof of Theorem 9. The theorem

itself states that all r.e. sets can be recognised in O(1) given op = {←,Bool} and an Oracle-

given integer. The proof of Theorem 9 allows one to bound the size of the required integer.

It is no more than what can be produced in O(f(n)) exponentiation steps. Because these

can be performed by the left-shift operation within the allotted time, it is possible to use the

RAND operation in the PP-RAM model to simulate an NP-RAM execution, for which we

know (from Theorem 9) that it can simulate the desired TM.

The actual simulation follows the argument for NP ⊆ PP. If the NP-RAM is to accept

the input, there is an Oracle number, o that will lead to acceptance. If o can be bounded by

2k, the calculation X ← RAND(2k) yields a number that has a positive probability of being

equal to o, and therefore having a positive probability of leading to acceptance. We therefore

first compute RAND(2) and reject the input if the answer is zero. If it is not zero, we compute

2k (which we can do within the required time budget), and from it X, then use X as if it

was provided by an Oracle. This leads to correct rejection having probability 0.5 and correct

acceptance probability being (slightly) larger. Thus, the computation is in PP-RAM.

Simon conveys dissatisfaction with his own result. He writes:

The previous results rely, perhaps unfairly, on our definition of acceptance for

stochastic RAMs. It would be more reasonable to require acceptance with bounded
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error probability. Ideally, the machine should not accept x if x is not in the lan-

guage, and accept it with high probability if it is. We have been unable to prove

[the theorem] for this strong notion of acceptance. (Simon, 1981)

Utilising modern terminology, we can say that the acceptance criterion wished for by

Simon is that of RP, and one can therefore say that the open problem described is to charac-

terise the power of RP-RAM[op]. When not restricting to polynomial time execution, we will

refer to this computation model as an RRAM. The problem of characterising the power of

RRAMs in general and RP-RAM in particular has remained open now for over 30 years. The

present work closes this longstanding open problem by presenting a proof to the following

theorem.

Theorem 16. For any f(n),

O(f(n))-RRAM[+, [ ], [×], [÷],←, [→],Bool] = O(f(n))-RAM[+, [ ], [×], /, [÷],←, [→],Bool].

In particular,

RP-RAM[+, [ ], [×], [÷],←, [→],Bool] = P-RAM[+, [ ], [×], /, [÷],←, [→],Bool] = PEL.

The power of RAM[+, [ ], [×], /, [÷],←, [→],Bool] has been characterised by Theorem 8.

The result suggests, perhaps surprisingly, that a random number is more powerful than

an arbitrary number for the operation set {+,←,Bool}, but an arbitrary number is more

powerful than a random number for the operation set {+, /,←,Bool}. (The latter conclusion

can be derived from Theorem 5 because an RRAM[+, /,←,Bool] working in O(1) time can

only produce a bounded number of random bits, and so can be simulated in bounded time

by a deterministic TM that enumerates over the random choices. Therefore, it cannot solve

the halting problem, which the corresponding ARAM does.)

Note also that

P-RAM[+, /,←,Bool] ⊃ P-RAM[+,←,Bool],
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(The former equals PEL by Theorem 8, the latter equals PSPACE by Theorem 6, and the

two are known to be distinct (Stearns et al., 1965; Geffert, 2003; Seiferas, 1977)) so, by the

theorem,

RP-RAM[+,←,Bool] ⊃ P-RAM[+,←,Bool].

Thus, Theorem 16 provides, for the first time, evidence that the RP model may be strictly

more powerful than the P model, a question for which the answer was so far not known within

the context of RAMs, and which, in the context of TMs, is one of the central open problems

in computer science.

Before presenting the proof of Theorem 16, we begin with the following helper lemma.

Lemma 12. For any f(n),

O(f(n))-RRAM0[+,←,Bool] ⊇ ELop(O(f(n))-SPACE-TM.

The proof of this lemma spans Sections 6.2–6.7.

6.2 Outline of the proof

Similarly to what we have done in Theorems 8 and 9, one of the main tools we use here is

Lemma 11, which guarantees an O(1)-time nondeterministic verification of any TM, given K

Oracle-provided integers. In the original proof of Lemma 11, we used K = 5. The proof of

Theorem 9 later showed that K can be reduced to 1. Here, we take a middle ground, with

K = 2. Let w1 through w5 be as defined in the proof of Lemma 11. If w1 is given by the

Oracle, then for w3 it is possible to use (3w1) ← (3w1), which can be calculated from w1 in

O(1) time. The remaining values can be encoded into a single integer by packing them as the

contents of a vector, X, of length 3 and width w = w3 + 3w1.

In Theorem 16 all computations must be performed without access to any Oracle. We will

therefore compute w1. The parameter w1 signifies, in the proof of Lemma 11, the amount of

tape utilised by the simulated TM. There is no need to compute this amount exactly, because
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there is no penalty for overestimation. The number w1 therefore only needs to be “large

enough”, and it can be computed by means of a function like el, described in Algorithm 10.

Algorithm 10 Calculating w1

1: function el(inp, N)
2: rc⇐ inc(inp)
3: for i ∈ 0, . . . , N do
4: rc⇐ rc← rc
5: end for
6: return rc
7: end function

For all operation sets discussed in Theorem 16, this function is the el program guaranteed

by definition to exist for any RAM-constructable operation set, which, basically speaking,

generates numbers that are as large as possible, as quickly as possible.

Note that w1 (and therefore also w, the width of X) is calculated with no need of the right-

shift operator. We can therefore assume the availability of right-shifting, as per Lemma 1, in

order to unpack X into its elements, w2, w4 and w5.

Our general algorithm for the solution of the problem, without resorting to the use of

Oracles, is to try out, simultaneously and in parallel, many candidates for X, much as was

done in Theorem 8. A high-level overview is given in Algorithm 11.1

The loop of Step 2 of Algorithm 11, similar to the outside loop of Algorithms 1 and 7, is

a means of simulating a TM of unknown space requirements, s, by use of a sequence of RAM

programs that simulate the TM over a predetermined and increasing sequence of candidate

s values. Each program in the sequence simulates a TM running on s = el(maxstep) ≥

ELop(maxstep) space in O(maxstep) time for the simulating RAM. The outside loop ensures

that even without prior knowledge of the needed s, the total simulation time for the RAM

will be O(β(s)), where β is the functional inverse to the ELop function.

In order to prove the theorem, we need to show that each iteration of the loop of Step 2

can be completed in a total of O(maxstep) time. Specifically, we will show that Step 8 can

be performed in O(maxstep) time, and the entire loop of Step 9 can subsequently run in O(1)

time, by parallelising over all candidates for X.

1As is, this algorithm is still not in RRAM[+,←,Bool ]. However, in Section 6.7 we show how it can be
made into an RRAM.
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Algorithm 11 Simulating a TM on an RRAM[+,←,Bool]

1: maxstep⇐ 1
2: loop
3: s⇐ el(inp,maxstep)
4: w1 ⇐ s
5: m⇐ w1 + w1 + w1

6: w3 ⇐ m← m
7: w ⇐ w3 +m
8: Generate candidates for X
9: for all Candidate X do

10: Extract [w2, w4, w5] as elements of the encoded vector (m,X, 3)
11: Check if [w1, . . . , w5] describes a consistent tableau, correct for the simulated TM.
12: Check if the tableau is correct for the given input.
13: Check if the final state described by the tableau is accepting.
14: end for
15: if all three checks above pass then return Accept
16: end if
17: maxstep⇐ maxstep + maxstep
18: end loop

The rest of the proof is organised as follows. We begin by demonstrating how Steps 10,

11 and 13 can all be performed in parallel. We then go back to explain Step 8. Then, in the

last part of the proof, we discuss Step 12.

6.3 Parallelised extraction and verification

Let us begin by considering the loop of Step 9 of Algorithm 11. Lemma 11 provides the

means to perform one such verification in O(1) time. The parallelisation of all checks has so

far been discussed only in Theorem 8, where extensive use was made of the division operator,

which is not available in the present context. However, it is illuminating to note that most

of the construction of Theorem 8 remains intact: any Boolean operation and any shift used

in the proof is implicitly parallel, operating simultaneously on all X candidates (utilising the

fact that the shifts used are all shifts by a function of s, never a function of X, and no use is

made of the special properties of the tweaked negation operator).

In fact, examining the details of the proof of Theorem 8 reveals that division was used in

exactly three contexts:
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1. In generating UT ,

2. In generating Ok1,T , and

3. In generating Okinp,T .

The first value was calculated as per Equation (4.3), and the latter two by use of Equa-

tion (3.3).

Note further that in our present algorithm the only part of the verification process that

depends on inp is Step 12. We will discuss this step in Section 6.6. For all other steps, the

value of Okinp,T is not needed. The algorithm therefore merely requires the first two values to

be calculated. Suppose, however, that the output of Step 8 is two integers, L and I, such that

L can be used in place of the UT value and I can be used in place of Ok1,T . When that is the

case, simply following the proof of Theorem 8 produces the required O(1)-time parallelisation

over Steps 10, 11 and 13 of the loop in Step 9. The value pair (L, I) carries the information

of the X candidates to be verified.

Sections 6.4–6.5 now deal with the generation of this pair, meant to implement Step 8 of

Algorithm 11.

6.4 Producing X candidates as maps

Unfortunately, we cannot produce X candidates by directly following the same methods as

in Theorem 8, because division is not available. In order to replace division by stochasticity

in the generation of L and I, we will relax, somewhat, our requirements of L and I, instead

of trying to produce L = UT and I = Ok1,T exactly. This can be done as long as we do not

compromise the usability of the numbers produced for the type of parallelisation described in

Section 6.3, above.

Specifically, the construction of Theorem 8 packs all X candidates side-by-side to each

other, with no spacing between them in the bit-string representing L. We will now relax this

condition, allowing arbitrary amounts of spacing between the candidates.

More formally, we introduce the following definition.
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Definition 10 (Map). A map (or, an encoded map) is a triplet, (L, I, w), of integers, where

L is the contents of the map, I is the domain of the map and w is the width of the map.

The domain, I, must satisfy the criterion that any two “1”s in its binary representation are

at least w bit positions apart. The contents, L, must satisfy L = L ∧ ((I ← w)− I) and for

simplicity we assume w > 1.

Conceptually, a map represents a mapping from a list of indices ind1, . . . to a list of map

elements k1, . . ., in the following way: I =
∑

i(1 ← indi) and L =
∑

i(ki ← indi). The ki

are required to be in the range 0 ≤ ki < 2w. The indi are required to satisfy that for every

i, w + indi ≤ indi+1. Under these restrictions, there is a one-to-one correspondence between

mappings and encoded maps. Such mappings will be termed decoded maps. A map will often

be referred to by the name of the encoded map contents. This is done, for example, in the

following notation, which we introduce to signify the relation between an encoded map and

its underlying mapping: ki = L[indi].

Note that the map elements belong to a finite set, the elements of which are representable

by w-bit strings. As such, it is well-defined to consider their most significant bits (MSBs).

Operations on maps are RAM operations performed on the encoded maps. We will,

however, mostly be interested in the effects these have on the map elements. Such operations

may include multiple maps that share the same I and w, in which case, when we say that

we apply a function f on two maps, V and U , we typically mean that we wish to produce a

result, W , such that for all indices W [indi] = f(V [indi], U [indi]).

To demonstrate that maps provide all the functionality that was required in Section 4.3

from vectors, and generally by use of the same methods, we briefly develop here an O(1)-time

function that calculates element-wise equality between two maps, this following the element-

wise equality function between two vectors that is developed in Appendix A.4 and used in

Section 4.3.

Let (V, I, w) and (U, I, w) be two maps.

The total set of bits that can be used by the map contents is

MASK(I, w) = (I ← w) I.
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For convenience, we divide these into two subsets. We take the lowest w − 1 bits of each

map element to be its “data” bits, and the MSB to be the “flag” bit. The following functions

extract these positions.

FLAGS(I, w) = I ← (w 1),

DATA(I, w) = FLAGS(I, w) I.

To actually extract the data from the positions we use

FLAGS(V, I, w) = V ∧ FLAGS(I, w),

DATA(V, I, w) = V ∧DATA(I, w).

Summing the data of two maps can be performed by

ADD(V,U, I, w) = (DATA(V, I, w) + DATA(U, I, w))⊕ FLAGS(V, I, w)⊕ FLAGS(U, I, w),

where “⊕” signifies the exclusive or (XOR) bitwise operation. The ADD function, as imple-

mented here, avoids overflows by calculating the sum modulo 2w. In order to find out if an

overflow occurred, we can calculate the carry bit.

CARRY(V,U, I, w) = (V + U ADD(V,U, I, w))→ w.

The following function implements bitwise negation:

NEG(V, I, w) = MASK(I, w) V

Calculating a map, RC, such that for every i, RC[indi] is 1 if V [indi] > U [indi], and is 0,

otherwise, this being an element-by-element “greater than” comparison:

GT(V,U, I, w) = CARRY(V,NEG(U, I, w), I, w).



108 CHAPTER 6. RANDOM NUMBERS

With this build-up, we can finally implement element-by-element equality as follows:

EQ(V,U, I, w) = I GT(V,U, I, w) GT(U, V, I, w).

In order to satisfy the requirements of Section 6.3, what we need is a map, (L, I, w), in

which with probability of at least 0.5 there exists an element equal to the desired X. Because

we do not know in advance which X is the desired one, we simply extend this requirement to

be true for any of the possible X values.

Once such a map is available, all operations required by Theorem 8 (Boolean operations,

left shift, addition and, as a special case of addition, incrementation) can all be done as previ-

ously demonstrated, switching in L and I for UT and Ok1,T , respectively, wherever necessary.

6.5 Generating L and I

Summarising the conditions required of Step 8 of Algorithm 11:

1. In the binary representation of the output I, any two “1”s should be at least w bit

positions apart.

2. Any bit string of length w should appear with probability of at least 0.5 as a substring

of the bits of L beginning at some “1” position of I.

3. The generation of I and L, with w ≥ ELop(maxstep), should be performed in O(maxstep)

time.

In this description of our requirements we omitted the criterion that L must be zero in all

bit positions other than those describing map elements. The reason for this omission is that

this last condition is unnecessary: simply perform

L⇐ L ∧MASK(I, w)

in order to make (L, I, w) a valid map.
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Of the three conditions listed for L and I, the second is the most straightforward: if

the Hamming weight of the bit-string of I is t, then there are t candidates for the tableau

simultaneously being tested. Pick L to be a random integer taken from the range of numbers

up to I ← w or higher. Under this choice, the t candidates are uniformly distributed and

independent. Each map element therefore has probability 2−w to be the correct tableau.

By choosing t ≥ 2w we guarantee that the probability that none of the elements have the

appropriate value is bounded by approximately 1/e, so better than the 0.5 that is required.

Generating I is more difficult. It must meet two criteria: first, its “1”s must be separated

by at least w bit positions; second, with high probability it must have a Hamming weight of

at least 2w. For now, let us concentrate on the problem of satisfying the first criterion.

One thing that is important to note regarding these criteria is that the second condition

is a probabilistic condition, but the first condition is a deterministic one. We cannot generate

I by a random process that is simply biased towards “0” bits. Even if such a process has

high probability of meeting the criterion, it still admits the possibility that the condition will

not be satisfied and, as a result, that the calculation will be incorrect. Such an approach can

create a positive false-accept probability, which is not acceptable in the RP model.

Let Ri, for i = 0, . . ., be independent random values generated by calls to RAND(2k) for

some chosen k. We note that for a fixed-sized w, a suitable I can be devised in O(1) time

simply by applying Algorithm 12.

Algorithm 12 Creating I for a fixed-sized w

1: I ⇐ R0

2: for j = 1, . . . , w − 1 do
3: I ← I clr (I ← j)
4: end for
5: return I

This procedure will work for any w, but the time it takes is O(w). We, on the other hand,

require O(maxstep) time, for values of w that are in ELop(O(maxstep)). To solve this, we

introduce an induction step. At step i, the input will be Ii and wi, where Ii is a vector that

satisfies the sparseness condition for wi. The output will be Ii+1, satisfying the condition for

wi+1 = (wi ← wi) + 1. By implementing each such step in O(1)-time, it is possible to reach
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w = el(O(s)) in O(s) steps and O(s) time. For the chosen operation sets, ELop(s) is el(O(s)),

so the procedure meets the time bound.

The full code for implementing the induction step is given in Algorithm 13. The algorithm

is described with use of “ ” and “→”, as we have already established that the operation set

given suffices to simulate both.

Algorithm 13 Creating (Ii+1, wi+1) from (Ii, wi)

1: Ri ⇐ RAND(2k)
2: Ibegin ⇐ Ii clr (Ii ← wi)
3: Iend ⇐ (Ii ← wi) clr Ii
4: Imiddle ⇐ Ii Ibegin
5: Igoodbegin ⇐ EQ(Ri ∧MASK(Ibegin, wi), 0, Ibegin, wi)
6: Igoodend ⇐ EQ((Ri ← wi) ∧MASK(Iend, wi),MASK(Iend, wi), Iend, wi)
7: Igoodmiddle ⇐ EQ(ADD((Ri ← wi) ∧ MASK(Imiddle, wi), Imiddle, Imiddle, wi), Ri ∧

MASK(Imiddle, wi), Imiddle, wi)
8: Ii+1 ⇐ (MASK(Igoodbegin + Igoodmiddle, wi) + Igoodbegin) ∧ Igoodend
9: return (Ii+1, (wi ← wi) + 1)

The idea behind Algorithm 13 is to use the same tools we developed in order to verify

a tableau, only this time to use them in order to verify the separation between “1” bits.

Specifically, we begin by assuming that every “1” bit in Ii is followed by wi zero bits. The

entire integer can therefore be thought of as occurrences of the repeating pattern “(0wi−11)+”,

separated by zeroes. We want to measure the lengths of these repeating patterns. It is

straightforward to find where such a pattern begins, where it ends, and which “1” bits are its

middle bits. These are designated Ibegin, Iend and Imiddle, respectively. The question is only

how to count the number of consecutive “middle” bits.

To do this, we treat Ri as an Oracle string. Specifically: a counter. We verify (in Igoodbegin,

Igoodend and Igoodmiddle, respectively) that the counter begins with a zero, ends with 2w − 1

and increments each time by one. In the last step, the addition by Igoodbegin sends a carry bit

through the entire verified part of the vector. If it reaches Igoodend, this is an indication that

the counting was correct. We can therefore now take one bit (Igoodend) from the sequence,

knowing that there must be at least wi × 2wi zero bits preceding it.

We remark that because all we are interested in is to verify that the “1” bits are spaced far

enough apart, it is not important to check, for example, that the counter did not go through
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several entire revolutions, instead of just one, between the beginning and the ending of each

repetition. The omitted checks are all for conditions which, if invalidated, merely extend the

number of zero bits that separate the “1” bits.

6.6 Verifying the input

In the previous sections, we have shown how tableau candidates can be generated, tested

for satisfying the criterion of properly advancing the simulated TM and checked for their

terminating condition, all within the allotted time budget. To make the validation complete,

we must also verify that the tableau begins with the appropriate value.

Specifically, the elements of the map L are candidate X values, which are vectors, the

elements of which are [w2, w4, w5], of which the first element, w2, is, itself, a vector (it is the

contents of a tableau), of which the first element is the initial instantaneous description of the

TM being described by the tableau, which is, by definition, tape+2s+c−1state+22(s+c−1)head,

as they are in the beginning of the execution (where s is the length of the TM’s tape and c

is the number of bits required to store the state of the finite control). The vector’s width is

tableauwidth = 3(s+ c− 1).

By construction, tape is initialised as inp, state is initialised as 0 and head is initialised as

1. The value of the tableau’s first element should therefore be init
def
= inp + 22(s+c−1). The

values of s and c are known, so this is a value that is both known and easy to calculate given

the available operations. The problem is that in order to verify in parallel over all tableau

candidates whether they begin with the correct elements, we need access to the value init×I.

If the operation set available to the simulating RAM had contained multiplication, this value

would have been straightforward to calculate, however, in the present context we must assume

multiplication not to be available, and must therefore provide alternate means to create the

same effect.
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To do this, we begin by making a small change in our TM simulation: instead of having

consecutive elements of the tableau represent progressively advancing instantaneous descrip-

tions of the simulated TM, we will have them represent progressively less advanced instanta-

neous descriptions. In other words, we reverse the element order within the (correct) tableau.

The equations to verify a correct advancement of the TM must now compare an element with

its preceding element, rather than with the element following it, and the test for the TM’s

halting state is now a test over the vector’s first element, rather than over its last. Neither of

these changes makes a material difference in the presented algorithms.

Similarly, X will no longer represent [w2, w4, w5]. Rather, it will represent the reversed-

order [w5, w4, w2].

Together, these two changes have the effect that the test that is still missing from the

simulation, namely the test for the correct initial instantaneous description, is now no longer

a test of the least significant bits of X, but rather a test of its most significant ones.

As the next step, consider that the tools which we have already developed suffice in order

to simulate a TM working without input. In this case, inp = 0, init = 22(s+c−1), and init× I

can be calculated using the available operations as I ← (s+ s+ c+ c 1 1).

In fact, the vector being verified does not need to correspond to a tableau, and the function

relating consecutive elements need not be the advancement function of a TM: in Algorithm 13

it was demonstrated, for example, that the tools available are already enough in order to verify

whether a sequence is the all-ones vector and whether a sequence is an arithmetic progression

starting with 0 and advancing by one between consecutive elements (a “counter”). Let us

therefore, for now, ignore the original TM that we intend to simulate and ignore its input.

Instead, let us assume that we have at our disposal a pair (Ix, wx), where wx is not equal

to w but rather larger than (2w) ← (2w). (Such a pair can be found simply by running

Algorithm 13 two additional iterations.) Consider, now, Algorithm 14, where Ix, wx, w and

init are as above, and where tableauwidth is the width of the tableau to be verified (the bit

length of each of its elements).

Let us analyse this algorithm line by line.
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Algorithm 14 Verifying the input

1: function InputVerify(Ix, wx, w, init, tableauwidth)
2: elementwidth⇐ 1← w
3: width⇐ elementwidth← elementwidth
4: Lconst ⇐ RAND(2k) ∧MASK(Ix,width)
5: Igoodbegin ⇐ EQ(Lconst ∧MASK(Ix, elementwidth), Ix, Ix, elementwidth)
6: Igoodtransition ⇐ (MASK(Igoodbegin,width) clr (Lconst ⊕ (Lconst ← elementwidth))) ∨

MASK(Igoodbegin, elementwidth)
7: Igood ⇐ Igoodbegin ∧ ((Igoodtransition + Igoodbegin)→ width)
8: Lcounter ⇐ RAND(2k) ∧MASK(Igood,width)
9: Igoodbegin ⇐ Igood ∧ EQ(Lcounter ∧MASK(Ix, elementwidth), 0, Ix, elementwidth)

10: temp⇐ ADD(Lcounter, Lconst, Lconst, elementwidth)← elementwidth
11: gbmask⇐ MASK(Igoodbegin, elementwidth)
12: Igoodtransition ⇐ (MASK(Igoodbegin,width) clr (Lcounter ⊕ temp)) ∨ gbmask
13: Igood ⇐ Igoodbegin ∧ ((Igoodtransition + Igoodbegin)→ width)
14: M ⇐ MASK(Igood ← (init ← (w + w tableauwidth)), elementwidth ←

(w tableauwidth))
15: Loutput ⇐ Lcounter ∧M
16: Ioutput ⇐ Lconst ∧M
17: return (Loutput, Ioutput, elementwidth)
18: end function

Steps 4 through 7 generate a map (Lconst, Igood,width) that has the bit-string

(
0elementwidth−11

)2elementwidth

as each one of its elements. The program performs this by considering all elements in the

map (Lconst, Ix,width) and filtering out first those indices whose elements do not begin with

the substring

0(elementwidth−1)1

(Step 5), and then those elements which are not composed entirely of repetitions of a constant

string of length elementwidth. The latter is tested in Step 6 by verifying equality between

each substring of length elementwidth of Lconst and the substring of the same length following

it immediately. As was done in Algorithm 13, an addition operation, carried out on Step 7,

propagates a carry bit through every element. The good elements, remaining in the final

index set, Igood, are those for which the carry propagated through the entire element, thereby

verifying that all the element’s bits are correct.
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A similar technique, used in Steps 8 through 13, filters Igood even further, until it is

known additionally that every element of the map (Lcounter, Igood,width) is a counter of width

elementwidth. That is to say, its first elementwidth bits are all zero, its next elementwidth

bits are the binary representation of the number 1, and so on, in arithmetic progression, until

the last element, being 2elementwidth− 1. This second phase of filtering on Igood is, once again,

performed by verifying first the lowest elementwidth bits (which, in this case, must equal 0)

and then the relation between each element and the next (which is here incrementation).

Simultaneous incrementation of all substrings of length elementwidth is done by adding Lconst

to Lcounter.

The two maps generated, (Lconst, Igood,width) and (Lcounter, Igood,width), now have in any

one of their remaining elements (assuming such elements still exist) an exact copy of the value

O
(2elementwidth)
1,elementwidth and the value U elementwidth, respectively, much like those that are used in the

proof of Theorem 8.

Now, however, we consider a new map: (Lcounter, Lconst, elementwidth). If this map has any

elements at all, then it has every possible element of bit-length elementwidth. In particular,

it would have our desired tableau.

However, while this procedure has so far presented an alternate method for producing

candidates for X, it still has not addressed the main problem of verifying that the candidate

tableau begins with the correct bit-string, init.

The method by which this entire construction can now overcome the problem of verifying

init is by noting that in the new structure the value of each tableau candidate is determined

completely by its bit-position relative to the “1” bit of Igood immediately preceding it. Specif-

ically, the mask M , built in Step 14, is able to mask out all candidates whose initial bits do

not match the desired value.

We remark that M is constructed by use of left-shifting by a value that was calculated

as a function of inp, and not just as a function of w1. However, because the shift-by value

is calculated, once again, with no use of right shifting, we are still justified, by Lemma 1, in

continuing to assume the availability of right-shifting, even though it is not part of the RAM’s

native operation set.
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6.7 Completing the proof

Proof of Lemma 12. The techniques developed above provide most of the proof of the lemma.

Two more details are still missing. In order to claim that the algorithm developed is in RRAM,

we must show that

1. it is guaranteed to terminate within the allotted time, and

2. if inp is in the language, its probability of being accepted is greater than 0.5.

Algorithm 11, as presented, does not meet the first of these conditions. This algorithm,

regardless of its success probability, is not guaranteed to terminate at all, and much less

within a time budget. A bad choice of random variables (e.g. consistently allotting the value

0) will cause the algorithm to continue indefinitely, regardless of how many steps are made

by the simulated TM.

To fix this, we change the termination condition in Step 15 of Algorithm 11. As written,

this termination condition merely checks whether the simulation succeeded and the simulated

TM halted and the halting state was an accepting one. Instead, we can check each of these

conditions separately, and choose as follows.

• If the simulation failed, halt and reject the input; else

• If the simulated TM halted on a rejecting state (or entered an infinite loop), halt and

reject the input; else

• If the simulated TM halted and accepted the input, halt and accept the input; else

• In the remaining case (the simulated TM exhausted its tape) continue to the next

iteration of the loop in Step 2.

We see that this change now fits within the time budget: the total number of iterations

through Step 2 cannot exceed the number of iterations used in the deterministic simulation

(of the same time budget) presented in Algorithm 7. Any bad choice of random numbers can

only cause the program to halt prematurely (as per the first item listed above). Furthermore,
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because all such halts reject the input, an input value that is not in the language is guaranteed

to be rejected.

The remaining condition required for the simulation is that for a value of inp in the

language, the probability for acceptance is at least 0.5. The only possibility for a false reject

is, as before, a failure of the simulation due to a bad choice of random numbers. We need

this probability to be bounded by 0.5 in total, regardless of the number of times the program

iterates through the loop of Step 2. To do this, we will design the program so that a failure of

the simulation will occur with probability less than 1/4 in the first iteration, 1/8 in the second

iteration, 1/16 in the third iteration, and so on. The probability that any of the choices is

bad is no higher than the sum of the probabilities across all choices, hence no more than 0.5.

Let us now bound from above the probability of a bad choice. A bad choice, specifically,

is one that ultimately results in Igood = 0 in Step 13 of Algorithm 14. Consider, therefore, a

single bit of Igood (of sufficiently large significance value), and let us calculate its probability

of being “1”.

A bit of Igood is “1” if

1. The width elements of Lconst beginning at the chosen bit position all have exactly the

required values.

2. The width elements of Lcounter beginning at the chosen bit position all have exactly the

required values.

3. This bit position is “1” in Ix.

Of these, the first two conditions relate to bits that are output directly by RAND. As

such, the probability for their occurrence is straightforward to calculate. It is 2−2width. The

third condition, however, is regarding a value that is an output of Algorithm 13. The value

Ix is really Imaxstep+2 of that algorithm. For it to be “1”, approximately wx different bits

need to have exactly the correct values in both Rmaxstep+1 and Imaxstep+1. As before, the

former is directly an output of RAND, but the latter is calculated recursively. (Requiring

the various random integers to have specific bit values in specific bit positions is, in fact, a

stricter requirement than what is actually necessary. Several different bit masks may work
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equally well. Nevertheless, in order to keep the calculation simple, wherever several different

bit values can be used to reach the same result, we pick one of them that constrains the least

number of bits. In this way, we bound from below the probability that a particular bit of Ix

is “1”. The bound itself may be very loose.)

Ultimately, a value of “1” in a specific position of Igood relies on O(wx) randomly, in-

dependently and uniformly chosen bits being of pre-specified values in each of O(maxstep)

integers. The probability is therefore p
def
= 2−O(wx×maxstep). Let W (being of the same order

of magnitude as wx) be the length of the bit-window where all these affected bits lie. Now,

consider Igood as a bit-vector split into windows of size W . In each of these windows, the

probability of having a “1”-bit is bounded from below by p, and the probability that any t of

them have no “1”-bits is bounded from above by (1− p)t.

If we were to choose k, the bit-length of all our random numbers, to be K ≥ W/p,

which is W × 2O(wx×maxstep), we ensure that the probability of a non-zero Igood is at least

(1− p)1/p ≈ 1/e. If, however, we choose

k ⇐ K ← K,

then this probability drops much more quickly than the 1/4, 1/8, 1/16, . . . geometric sequence

described earlier, and the probabilities will certainly sum up to less than 1/2.

Clearly, calculating a k value that is at least as large as this is possible in O(maxstep)

time.

We now turn to proving the main theorem.

Proof of Theorem 16. Let fullop = {+, ,×, /,÷,←, rightarrow,Bool} and let op be an op-

eration set in {+, /,←,Bool} ⊆ op ⊆ fullop.

The relation

O(f(n))-RRAM[fullop] ⊆ O(f(n))-RAM[op]
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is evident from

O(f(n))-RRAM[fullop] ⊆ O(f(n))-stochastic-RAM[fullop]

= ELfullop(O(f(n))-SPACE-TM

= ELop(O(f(n))-SPACE-TM

= O(f(n))-RAM[op],

where the relation between RRAMs and stochastic-RAMs stems from the fact that any RRAM

is by definition also a stochastic-RAM, the first equality is simply a special case of Theorem 15,

the second equality stems from the functions ELop and ELfullop being equal, and the third

equality is a special case of Theorem 8.

The reverse direction,

O(f(n))-RAM[fullop] ⊆ O(f(n)-RRAM[op],

completing the statement of the theorem, is provided by Lemma 12.

6.8 Generic RAND

The discussion above pertained to a RAM model that incorporates an X ⇐ RAND(2k)

function. This still leaves the question of whether the more general X ⇐ RAND(Y ) is

perhaps more powerful. Here we prove that this is not the case. Formally:

Corollary 16.1. For any f(n),

f(n)-RRAM[+, [ ], [×], [÷],←, [→],Bool] = f(n)-R∗RAM[+, [ ], [×], [÷],←, [→],Bool],

where R∗RAM is the computational model that provides a generic RAND function.

Proof. First, due to Theorem 16, we know that we can assume the existence of “÷”, “×” and

“ ”, from which we can further assume the existence of a modulo operation.
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Second, considering the technique that was showcased in Algorithm 1 and then reused in

Algorithms 7 and 11, we know that it is enough if we are able to simulate the R∗RAM by

an RRAM (with appropriate success criteria) when we are given, as an additional input, the

number of RAM steps, maxstep, that need to be simulated.

During maxstep steps, an R∗RAM can invoke RAND(Yi) at most maxstep times, and the

Yi parameter used in each invocation is at most ELop(maxstep).

The first step in the proof is to collate all calls to RAND(Yi) in the maxstep-step simulation

into a single call. If we were able to know in advance the Yi parameter used in each call, it

would have been possible to make all calls into a single call whose parameter is the product of

all Y parameters used. The individual random results can then be separated by applications

of “÷” and “mod”.

In fact, we do not know the parameters in advance, but can bound their product, Y =∏
Yi, by (ELop(maxstep))maxstep. Because this is clearly within ELop(maxstep + O(1)), it is

possible to generate a value, 2k, that exceeds this limit.

Let us now continue with the result from the call to RAND(2k) as though it was a call to

RAND(Y ). The extraction process of the individual Xi from X depends only on X mod Y .

As such, the termination probabilities that it affords are the same as those of the R∗RAM if

we condition over X < 2k − (2k mod Y ). For higher X values, the RRAM will not accept the

input if it is not in the language, and will accept the input with some probability if it is in

the language.

It is not difficult to see that the worst-case for the total probability of acceptance for an

input that is within the language is p/(2 − p) for the RRAM, if this probability is p for the

R∗RAM.2 This worst-case is attained when 2k is approximately (2− p)Y , and the accepting

computations are those that work with X ≥ Y (1− p).

To meet with the acceptance criteria of the RRAM model, we simply run the simulation

three times for each maxstep value. If in each of three independent runs the probability of

acceptance is at least p/(2 − p), the probability of acceptance in at least one of the three is

2The total R∗RAM algorithm must succeed with probability 0.5 or more, but this does not mean that
the same is true for each one of the bounded-step simulations individually. This is the reason why a general
parameter, p, is required.
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at least

1−
(

1− p

2− p

)3

.

A little calculus shows that this is never less than p for the entire range 0 ≤ p ≤ 1, so

the success rate of the simulating RRAM is always at least as good as that of the simulated

R∗RAM.



Chapter 7

Conclusions

7.1 Summary

This work dealt with characterising the power of arbitrary and of random numbers when used

as part of the RAM computational model. In the process, it uncovered hitherto unknown

powers of the standard RAM model as well.

Table 7.1 presents a comparison of the power of the computational models investigated.

For simplicity, it describes only the central models investigated, and measures these only in

terms of their polynomial-time performance, as compared with the performance of Turing

machines.

We also present similar information in graphical form in Figure 7.1.

op P-RAM[op] P-ARAM[op] P-ASRAM[op] RP-RAM[op]

{+, [ ],←, [→],Bool} PSPACE PSPACE PSPACE PEL

{+, [ ],×,←, [→],Bool} PSPACE PSPACE PSPACE PEL

{+, [ ], [×], /,←, [→],Bool} PEL Σ0
1 ∪Π0

1 ⊆ ⊆ ∆0
2 AH ⊂ PEL

Table 7.1: Comparison summary of the power of RAM models

The table reveals the interesting fact that multiplication does not add computational

power to any of the models, but division adds to both the standard RAM and to the ARAM

and ASRAM models. (This lack of effect of multiplication is surprising in light of the power

121
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ω(1)-ASRAM[+, [ ], [×], /, [÷],←, [→],Bool]

AH
O(1)-ASRAM[+, [ ], [×], /, [÷],←, [→],Bool]

∆0
2

P-ARAM[+, [ ], [×], /, [÷],←, [→],Bool]

PEL
P-RAM[+, , [×], /, [÷],←, [→],Bool]

RP-RAM[+, [ ], [×], [/], [÷],←, [→],Bool]

PSPACE
P-RAM[+, [ ], [×],←, [→],Bool]

P-ARAM[+, [ ], [×],←, [→],Bool]

Σ0
1Π0

1

Figure 7.1: Graphical comparison of the power of RAM models
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attributed to it by Trahan et al. (1992) and van Emde Boas (1990).) The benefit of stochastic-

ity, available in RRAMs, provides exactly the same power as division. However, for ARAMs

and ASRAMs the power boost afforded by division is far greater than for the other models.

With division, an ARAM can recognise any recursively enumerable set in O(1) time, as well

as at least some sets that are not, but are on the second level of the arithmetic hierarchy. This

places the ARAM model as weaker than the RRAM model when division is not available, but

stronger when it is. (While not quite this strong, the RAM and the RRAM can still attain

much in O(1) time: they can accept any set that can be accepted by a TM in time/space

that is any elementary function of the input length.)

The use of ALNs proves to not add any power when division is not present. However,

not only is the ARAM with division far more powerful than the corresponding RAM, the

ASRAM, allowing access to an unlimited number of ALNs, is even more powerful. Whereas

the ARAM is only on the second level of the arithmetical hierarchy, the O(1)-time ASRAM

conquers the entire arithmetical hierarchy, and the ω(1)-time ASRAM is more powerful still.

Perhaps most interesting of all is the relationship between RAMs and RRAMs, and specif-

ically the relationship between P-RAM and RP-RAM. One motivation for this work has been

that investigating the P
?
= RP question in RAMs may give additional clues to the answer for

this central question in the context of Turing machines. The table reveals that for models

without division, P-RAM 6= RP-RAM, but for models with division P-RAM = RP-RAM.

Considering the general question of whether stochasticity adds computational power under

RP acceptance criteria, not only does this result give a proven example for either direction, it

demonstrates that the question is not one with a single, universal answer. Rather, the answer

depends on the specifics of the computational model examined.

To the best of the author’s knowledge, there is no other general-purpose computational

model for which it is known that randomisation adds computational power in a P-vs.-RP-like

comparison. (The results most comparable, in this respect, are those of Heller (1986), in the

context of comparing relativised polynomial hierarchies with relativised RP hierarchies.)

For Turing machines, however, the P vs. RP question remains tantalisingly open. We

remark regarding Turing machines only the following: all Turing machine complexity classes
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described in Table 7.1 are ones for which randomisation is known not to add computational

power under the TM model. The equivalence of PEL and R-PEL is given by Theorem 15.

The equivalence of PSPACE and R-PSPACE is a corollary of PSPACE ⊆ R-PSPACE ⊆

N-PSPACE, in light of PSPACE = N-PSPACE from Savitch’s theorem (Savitch, 1970).

To summarise, we reiterate the open problems solved in the present work and the new

results innovating over or correcting older results.

1. Perhaps the most significant contribution of the present work is in quantifying the power

of the RP-RAM model for a large number of operation sets, including all the operation

sets studied in Simon (1979), where the question of the power of this model was left as

an open question and has stayed open for 34 years.

2. The power of the RAM model over the same operation sets was also quantified. This

corrected results that appeared in Simon (1979) and Simon (1981), as well as proofs

that appeared in Simon and Szegedy (1992). These are oft-quoted papers that appeared

in central venues and solved major problems, and yet the errors in them have not been

spotted for several decades. (The newest of these results appeared in STOC 92.)

3. We improve on results by Ben-Amram and Galil (1995), where it was conjectured that

their results are best possible in terms of simulating indirect addressing. We show that

in the standard (not-online) RAM model, such simulation can be performed with no

loss of time complexity. These new results are best possible.

4. In Appendix A, we improve over results of Paul and Simon (1982), which showed that

sorting can be performed in O(n)-time in the RAM model. Our solution effectively

reduces this to O(1)-time, making it, again, best possible.

5. In Appendix B, we settle, using the same tools as are used throughout the thesis, a 13-

year-old open question regarding the density of Friedman numbers among the integers.

6. We introduce two new models of computation, the ARAM and the ASRAM, and quan-

tify their powers. We show that without division these models are equivalent to a RAM,

but with division they are far more powerful, with ASRAM being the more powerful
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of the two. The O(1)-time ASRAM conquers the entire arithmetical hierarchy and the

ω(1)-time ASRAM goes even beyond that. This makes ASRAM complexities a useful

tool in discussing computational power beyond the arithmetical hierarchy.

7. Furthermore, we show that ASRAMs are more powerful than ARAMs even in terms of

the arithmetic complexities they afford to problems. This extends results by Bshouty

et al. (1992), showing, effectively, that ARAMs are more powerful than RAMs in arith-

metic complexity.

8. In total, the work examines four distinct computational models, each parameterised

by its underlying operation set, and considers four distinct families of operation sets.

(A typical result in this field handles a single computational model on a single family

of operation sets.) This cross-model and cross-operation-set comparison allows us to

make some across-the-board observations. The most salient of these is that, in stark

contrast to division, multiplication never adds computational power when appended to

an operation set that already includes left-shift. Surprisingly, right-shifting also never

adds computational power to an operation set that already includes left-shift, regardless

of whether division is present or not.

9. As a last achievement, we define a new computational complexity class, PEL, which

seems to occur naturally in many of the models studied. This includes both P-RAMs

with division and RP-RAMs. Why randomisation should provide exactly with the same

power boost as division is an intriguing question.

7.2 Future work

There have been relatively few advances in the study of integer RAMs in recent years. It

is our hope that the new results presented here will inspire follow-up work from others, by

sending out the message that we have only begun to scratch the surface in our understanding

of the workings of the RAM model.
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In this section we present two follow-up directions, following directly from the results of

the present work.

7.2.1 Arbitrariness and randomness together

The concept of the arbitrary number, presented here, is a new one and invites further research.

Specifically, though we have studied it in isolation, it is unclear what its interactions are with

other RAM features.

Consider the RP-ARAM. This is a RAM that has access to both arbitrary and random

numbers. As shown in Table 7.1, the availability of random numbers allows, effectively,

the simulation of a division function. We also know that arbitrary numbers with a division

function allow any r.e. set to be recognised in O(1) time. However, we do not know whether

in a model that contains both random and arbitrary numbers, but that does not contain

division, the ability to simulate division with random numbers is enough to recognise any r.e.

set in O(1) time. It may be that the two properties do not have this type of synergy, so the

actual computational power of the model may be as low as PEL, with no power contribution

from arbitrary numbers.

7.2.2 Arbitrariness and randomness in one input

In all models studied here, numbers are either purely arbitrary or purely random. Equiva-

lently, they are chosen either by an adversary or by a neutral process. To this we can add

Oracle numbers, which are chosen in a beneficial manner.

A different class of numbers would be ones which are, somehow, jointly picked by a mixture

of these different types of processes. For example, one can consider a game-like setup, in which

an Oracle, an adversary and a random process jointly formulate a single input integer.

The contribution of such integers would be interesting to study. These can be thought of,

for example, as RAM analogues to standard studied complexity classes, such as those defined

by interactive proofs (Goldwasser et al., 1989) (a combination of Oracle and adversarial

inputs) or by Arthur-Merlin protocols (Babai, 1985) (a combination of Oracle and random

inputs).
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Constant time sorting

We present an algorithm for sorting an arbitrary number of arbitrary-length integers in con-

stant time on a RAM0. The algorithm forms a Straight Line Program. Unlike other parts

of this work, the algorithm presented here requires registers to hold values whose bit-length

is only polynomial in the bit-length of the input parameters. Without the restriction of

polynomial bit-length, this result is a special case of Theorem 8.

A.1 Background

The task of sorting is a standard algorithmic benchmark. For sorting by comparisons, the

lower bound of Ω(n log n) time (Knuth, 1997; Cormen et al., 2001) is very well known, and is,

in fact, one of the cornerstones of modern algorithm design. Integer sorting, on the other hand,

is much less understood. It is studied predominantly in the context of models of computation

where arithmetic operations on integers are assumed to be computable in O(1) time. Such

models include, for example, the Straight Line Program (SLP), the Computation Tree (CT)

and the Random Access Machine (RAM), but, notably, not the Turing machine.

Despite claims to the contrary (see e.g. Dittert and O’Donnell (1985), a claim that was

retracted in Dittert and O’Donnell (1986)), the problem of giving a tight lower bound for the

complexity of sorting under the operation set {+, ,×,÷} remains open. However, certain

related problems have been successfully tackled. For example, in Hong (1979), it is proved
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that a RAM with these operations requires Ω(n log n) time for sorting if it makes no use of

indirect addressing, and in Paul and Simon (1982) it is shown that the Ω(n log n) bound holds

even with indirect addressing, but without division. (See Kirkpatrick and Reisch (1984) for a

review of this topic, as well as Han (2004) and Hagerup (1998) for more modern approaches.)

On the other hand, using {+, ,×,÷,←,→,Bool}, Paul and Simon (1982) present a sort-

ing algorithm in O(n) time.

We improve over this by presenting an algorithm running on a RAM without indirect

addressing, over the operation set {+,×,÷,←,Bool}, that sorts n integers in O(1) time.

Effectively, this is an SLP that sorts.

A.2 Input and output

One dilemma regarding the definition of the sorting problem under the RAM0 model is that

the customary methods for reading the input and writing the output of a RAM fail for

the sorting problem when indirect addressing is unavailable. Typically, one would begin

the program with, for example, R[0] holding the value n, and R[1], . . . , R[n] storing the

actual inputs. At program termination, the output could, similarly, be stored in positions

R[0], . . . , R[n − 1]. However, without indirect addressing a RAM program necessarily uses

only a fixed number of registers. It cannot read n as part of the input, and then read R[n].

The input and output must necessarily be encoded into a bounded number of registers.

To solve this problem, we encode inputs and outputs as vectors.

Definition 11 (Sorting). In the context of RAM0 machines, sorting is an operation that

accepts an encoded vector (m,V, n) and returns an encoded vector with the same length and

width parameters but with contents V ′, such that the elements of the returned vector are a

permutation of the elements of the input vector, ordered in such a way that if the decoded

V ′ is [k0, . . . , kn−1] then ∀i, j : 0 ≤ i < j < n⇒ ki ≤ kj .

In the present context, we allow vectors to also be encoded as either (Z, V, n) or (m,Z, V, n),

where Z = 2m.

We claim:
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Theorem 17. Sorting (m,V, n) under RAM0[+,÷,×,←,Bool] can be performed in O(1)

time.

In Chapter 3 it is shown that any RAM with the given set of operations can be stripped

of its use of indirect addressing, given the vector input and output format, at no cost to

the algorithm’s time-complexity. This is done, essentially, by loading and storing register

contents in a simulated way. In Section 3.2, where LOAD and STORE are described, they

are implemented using, among others, the operators “→” and “ ”, which are not available

to the RAM0 machines in Theorem 17. However, in Section 2.5 we show that these can both

be simulated given the available operations. Hence, each RAM instruction can be simulated

in O(1) time.

A.3 Validity of the model

It is, of course, true that in any RAM model, regardless of its basic operation set, using the

standard input and output formats, rather than vector notations, imposes an immediate Ω(n)

lower bound on any sorting algorithm, simply due to the need to read n input register values

and to write n output register values. As such, the new algorithm described here does not

directly contradict the fact that, in the conventional sense, the algorithm described in Paul

and Simon (1982) is best possible.

This raises the question of whether the switch to alternate input/output format is a valid

one, or whether it should be taken as a “leg up” in the sorting process.

We claim that the Ω(n) is due only to the need to read inputs and write outputs, and not

due to any part of the sorting itself.

To demonstrate this point, suppose that a RAM (maybe using indirect addressing) is

programmed to accept n inputs and calculate n output values in the standard input/output

format, but requires, for the calculation, to perform f(n) sorts, each of n numbers (derived in

some way from its inputs). Taking the algorithm of Paul and Simon (1982) as best possible

would suggest that the algorithm must spend Ω(nf(n)) on sorting, whereas the algorithm

presented here gives a better (and best possible) O(n + f(n)), which is attained as follows:
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first, in O(n)-time, encode the input as a vector, then, in O(f(n))-time, perform f(n) sorting

computations, and lastly, in an additional O(n)-time, return the output from vector format to

the standard format. The translation to and from vector format only needs to be performed

once, because, as shown in Chapter 3, all operations can subsequently be performed within

the vectorised storage format.

As such, this algorithm allows us to improve performance and bounds even in the unlimited

RAM model using standard input/output formats. It is, therefore, not merely an artefact of

the model used.

A.4 The algorithm

The algorithm is essentially divided into three parts. First, we “uniquify” the input, by which

we mean that we create a new vector that has the same sorting order as the original vector

but whose elements are unique. As a second step, we find the permutation that sorts the

uniquified vector. Then, as a last step, we apply the permutation on the original vector.

Throughout, we do not work on vectors of the original width, m. Instead, we begin the

algorithm by translating the original vector to a wider m1, perform all actions on the wider

vectors, then translate back to a width of m at the last step. The uniquification step requires

blog nc bits to be added to the width and the rest of the algorithm requires one additional

bit. Altogether, any m1 ≥ m + blog nc + 1 would have sufficed. For convenience, we use

m1 = m+ n+ 1.

The top-level algorithm is described in Algorithm 15.

Algorithm 15 An O(1) sorting algorithm

1: m1 ⇐ m+ n+ 1
2: V1 ⇐ CHANGE WIDTH(m,V, n,m1)
3: V2 ⇐ UNIQUIFY(V1, n,m1)
4: O ⇐ FIND ORDER(m1, V2, n)
5: V3 ⇐ MAKE ORDERED(m1, V1, n,O)
6: return CHANGE WIDTH(m1, V3, n,m)

Before detailing the subroutines used, we introduce some convenience functions.
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First, recall that

RAM0[+,÷,×,←,Bool] = RAM0[+, ,÷,mod,×,←,→,Bool,≤].

This was demonstrated in Section 2.5.

Next, we define other useful functions that can be implemented in O(1) basic operations.

Use of “/” instead of “÷” indicates that arithmetic division can be replaced by exact division

because the numerator is known to be a multiple of the denominator.

• The integer composed of m 1s:

MASK(m) = (1← m) 1.

• The vector [v, . . . , v] of length n and width m:

CONSTANT(m, v, n) = v ×MASK(nm)/MASK(m).

• The counter [0, 1, . . . , n− 1] of width m:

COUNTER(n,m) =((n 1)← (mn) (1← (mn) 1← (m))/MASK(m))

/MASK(m).

• “Greater than” comparison between the elements of two vectors (where, if an element

in the first operand is greater than the corresponding element in the second operand

this is indicated by a 1 in the result vector, and 0 otherwise):

GT(m,V1, V2, n) =((V1 + CONSTANT(m,MASK(m 1), n) V2)→ (m 1))

∧ CONSTANT(m, 1, n).
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• Equality check between the elements of two vectors (using the same convention of 1 for

“true” and 0 for “false” as above):

EQ(m,V1, V2, n) =CONSTANT(m, 1, n)

GT(m,V1, V2, n) GT(m,V2, V1, n).

• A simple maximum between two integers:

MAX(a, b) = (a b) + b

We remark that the “if a � b then X else Y ” constructs used both here and elsewhere in

the construction can be implemented as

X × (a � b) + Y × (1 (a � b)),

where (a � b) is the assignment operator that calculates the indicator function for the com-

parator a � b.

These basic functions allow defining the highly-useful width-change function. (This func-

tion was already defined in Lemma 3, but we repeat here, briefly, in order to present all

definitions in a consistent format.)

We begin by describing two “easy” cases: where the target width is known to be sufficiently

large (i.e., m1 ≥ m(n+ 1)), and where the target width is known to be sufficiently small (i.e.,

m1n < m).

• Changing the width of a vector to a sufficiently large new width:

MAKE WIDE(m,V, n,m1) =CONSTANT(m1 m,V, n)

∧ CONSTANT(m1,MASK(m), n).
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• Changing the width of a vector to a sufficiently narrow new width:

MAKE NARROW(m,V, n,m1) = V mod (MASK(m) MASK(m1)).

Using MAKE WIDE and MAKE NARROW, the width change function can be imple-

mented simply by case-based handling. The code for this function is given in Algorithm 16.

Algorithm 16 CHANGE WIDTH(m,V, n,m1)

1: if m1 ≥ m× (n+ 1) then
2: return MAKE WIDE(m,V, n,m1)
3: else if m1 × n < m then
4: return MAKE NARROW(m,V, n,m1)
5: else
6: l⇐ MAX(m× (n+ 1),m1 × n+ 1)
7: return MAKE NARROW(l,MAKE WIDE(m,V, n, l), n,m1)
8: end if

The following two operations exemplify the power of width change.

• Repeat the vector k times:

REPEAT(m,V, n, k) = CONSTANT(mn, V, k).

• Repeat each element of the vector k times:

STRETCH(m,V, n, k) =CHANGE WIDTH(m,V, n,mk)

× CONSTANT(m, 1, k).

REPEAT and STRETCH now allow us to define the two main procedures of the sorting

algorithm. These are FIND ORDER(m,V, n), a procedure for finding the sorting permutation

for a vector of distinct elements and MAKE ORDERED(m,V, n,O), a procedure for applying

a permutation to a vector’s elements. These are described in Algorithm 17 and Algorithm 18,

respectively.
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Algorithm 17 FIND ORDER(m,V, n), find the sorting permutation

1: Vr ⇐ REPEAT(m,V, n, n)
2: Vs ⇐ STRETCH(m,V, n, n)
3: C ⇐ GT(m,Vr, Vs, n× n)
4: return C mod MASK(n×m)

Algorithm 18 MAKE ORDERED(m,V, n,O), applying a permutation

1: Vs ⇐ STRETCH(m,V, n, n)
2: Os ⇐ STRETCH(m,O, n, n)
3: Cr ⇐ REPEAT(m,COUNTER(n,m), n, n)
4: E ⇐ EQ(m,Os, Cr, n× n)
5: return (Vs ∧ (E ×MASK(m))) mod MASK(m× n)

The last remaining function is the uniquification function. Uniquification is performed by

inserting a counter into the LSBs of the input, as follows.

UNIQUIFY(V1, n,m1) = V2 ⇐ (V1 ← n) + COUNTER(n,m1).

Here, shifting left by n indicates that n bits have been allocated for the counter. In fact,

fewer bits would have sufficed.

A.5 Additional results

Algorithm 15 provides a constructive proof for Theorem 17. For completion, this section

provides an analysis of the complexity of sorting when left shifting, arguably the most powerful

of the operators used above, is omitted from the model.

Corollary 17.1. Sorting (Z, V, n) under RAM0[+,×,÷,Bool] is a Θ(log n)-time problem.

Proof. We begin by constructing an O(log n)-time sorting algorithm.

The proof of Theorem 17 requires handling of vectors of two widths: m (the original width,

2m = Z) and m1 (the width after the addition of an MSB and a counter, for uniquification).

In order to calculate Z ′ = 2m1 , we need to find a number, Z ′′ = 2k, s.t. Z ′′ ≥ n. The

conventional way of doing this is by repeated squaring, which would take O(log log n) time.

However, as previously shown, SET(n) provides an O(1)-time solution to the same problem.
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After the width-change step, all shifts required are by m1, m1n or m1n
2. Shifting by m1

is equivalent to multiplication by Z ′. Shifting by m1n is equivalent to multiplication by Z ′n

and shifting by m1n
2 is equivalent to multiplication by Z ′n

2
. Both Z ′n and Z ′n

2
are numbers

that can be calculated in O(log n) time using repeated squaring and multiplications.

The total cost of the sort is O(log n) time.

To see that this complexity is best possible, consider sorting the input

(Z, V, n) = (2m, 1, 2m).

The decoded vector is, in this case, [1, 0, . . . , 0], whereas the decoded output vector should be

[0, . . . , 0, 1], leading to a V ′ value on the order of nn.

The fastest growing sequence that can be computed in the given RAM model is the one

computed by iterative squaring, beginning with n. Even so, reaching nn, the desired order of

magnitude for V ′, requires Ω(m) = Ω(log n) steps.
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Appendix B

Friedman numbers

A Friedman number is a positive integer which is the result of an expression combining all of its

own digits by use of the four basic operations, exponentiation and digit concatenation. One

of the fundamental questions regarding Friedman numbers, first raised by Erich Friedman

in August 2000, is how common they are among the integers. In this appendix, we prove

that Friedman numbers have density 1. We further prove that the density of Friedman

numbers remains 1 regardless of the base of representation, and show that the density of

“nice” Friedman numbers is also 1, when considered in binary, ternary or base four.

Despite the fact that RAMs and Friedman numbers seem to have little in common, the

operation sets considered in the thesis are, in fact, very similar to those allowed in Friedman

number computations: arithmetic functions are allowed in both, left shifting can be viewed as

a combination of multiplication and restricted exponentiation, and bitwise Boolean operations

in RAMs are replaced in Friedman numbers by digit operations. As such, it is not surprising

that tools developed in this thesis and used throughout it, such as, for example, Ona,m vectors,

find their uses also in the study of Friedman numbers.

As such, the study of RAMs has inadvertently provided the tools needed to close here a

number theoretical question that has been open for 13 years.
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B.1 About Friedman numbers

Friedman numbers are numbers that can be computed from their own digits, each digit

used exactly once, by use of the four basic arithmetic operations, exponentiation and digit

concatenation (as long as digit concatenation is not the only operation used). Parentheses

can be used at will. An example of a Friedman number is 25, which can be represented as 52.

An example of a non-Friedman number is any power of 10, because no power of 10 can be

expressed as the result of a computation using only arithmetic operations and exponentiation

if the initial arguments in the computation are a smaller power of 10 and several zeros.

Friedman numbers are sequence A036057 of the Encyclopedia of Integer Sequences (Fried-

man, n.d.). They were first introduced by Erich Friedman in August 2000 (Friedman, 2000),

and the first question to be asked about them was what their density is, inside the population

of integers. That is, if F (n) is the number of Friedman numbers in the range [1, n], what is

limn→∞ F (n)/n?

This question has remained open for the decade that has passed since then. However,

much progress was made on other aspects of the problem. The following review summarises

some of these advances, as detailed in Friedman (2000).

Mike Reid, Ulrich Schimke and Philippe Fondanaiche calculated the exhaustive list of all

Friedman numbers up to 10,000 (there are 72 of them), and these were later supplemented

by Erich Friedman to an exhaustive list that ranges until 100,000. In total, there are 842

Friedman numbers smaller than 100,000, or 0.842%. This is not much higher than the 0.72%

among the first 10,000 numbers, and does not suggest the density 1 proved here.

Ron Kaminsky proved the existence of infinitely many prime Friedman numbers. Brendan

Owen and Mike Reid showed (independently) that any string of digits can be the prefix to a

Friedman number by appending to it a fixed suffix. (For example, 12588304 forms one such

suffix. Any number N followed by the digits 12588304 is a Friedman number and can be

calculated from its own digits as N × 108 + 35482.) Erich Friedman augmented this result by

showing that any string of digits can be the suffix to a Friedman number by preceding it with

a prefix that is dependent only on the length of the suffix. (For example, if XY is a two-digit
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number, then 2500XY = 5002 + XY is a Friedman number. More generally, 25 × 10k is a

prefix that can precede any k-digit suffix to make a Friedman number.)

While these results, and many like them, were able to show that the density of Friedman

numbers is greater than 0, only less than one percent of the integers were previously known

to be Friedman numbers, whereas in this appendix we prove that the density of Friedman

numbers within the integers is 1.

B.2 The basic techniques

The proof makes use of two basic techniques, which we now describe.

B.2.1 Encoding

The first building-block used in the proof is the ability to encode tuples of integers into a

single integer in a way that later allows unambiguous decoding.

For the present proof, we do not require the tuple to be composed of arbitrary integers.

A sufficiently rich set of integers is enough. However, it is important that the encoding be

compact, in the sense that computing the encoded integer from the tuple being encoded should

require minimal use of extraneous digits not originally from the tuple. The encoding chosen

for the proof requires no extraneous digits in the computation. However, it does require that

the tuple be composed only of radical-free integers, that is, of integers greater than one that

cannot be represented as a nontrivial integer power (an integer taken to an integer power

greater than one).

Specifically, the encoding used for {xi}ti=1, where all xi are radical-free integers (not

necessarily distinct), is by the number enc
(
{xi}ti=1

)
= x

x
x3...
2

1 . It can easily be seen that

enc
(
{xi}ti=1

)
contains all information necessary to unambiguously reconstruct the entire tuple

(including its length, t).
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B.2.2 Self-description by repetition

Friedman numbers use their own digits to describe themselves. A second building block

used in the proof is self-description by repetition. An example for a Friedman number that

uses repetition is 10411041 = 1041 × (104 + 1). One can think of one repetition (“1041”) as

containing data to be copied, and the other repetition (“×(104+1)”) as containing instructions

regarding how to manipulate the data to form the repetitions of the original number.

In this appendix, we require a process that generates a large number of repetitions from

the original data. If the data is s and the base of representation is 10, this can be done by

10L(s)r − 1

10L(s) − 1
s,

where L(s) is the digit length of s and r is the number of desired repetitions. More generally,

in base b we can use

bL(s)r − 1

bL(s) − 1
s.

B.3 Outline of the main proof

We wish to prove the following claim:

Theorem 18. If F (n) is the number of Friedman numbers in the range [1, n], then

lim
n→∞

F (n)/n = 1.

Let us first introduce some notation.

Let x and y be integers. We use the notation L(x) to denote the digit length of x, x.y to

be the concatenation of the digits of x and of y, and [x]k to be the concatenation of k copies

of x.

The proof itself can be divided into three steps.

In the first step, we combine the results of Owen and Reid with the results of Friedman.

Owen and Reid showed that there exists a number m such that for all b, b.m is a Friedman

number. That is, they found a suffix that, when appended to any string of digits, creates
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a Friedman number. Friedman, on the other hand, showed that there exists a number m

and a number k such that the number m× 10k + b is a Friedman number for any b satisfying

L(b) ≤ k. Here, m is not a suffix, but rather a prefix placed at a specific digit position. We say

that m is placed here “at position k”. Friedman furthermore showed that such (m, k)-pairs

can be found with arbitrarily large k.

We extend on these results by showing pairs of (m, k) values where m is not necessarily

a prefix or a suffix, but is rather an infix. Specifically, we claim the existence of (m, k)-pairs

such that any number, n, is a Friedman number if the substring of n of length L(m) starting

at digit-position k of n is m. (That is, if m is a substring of n such that the least significant

digit of m occupies the k’th least significant digit of n, then n is a Friedman number.)

In the second step, we show how for a given infix length l = L(m) we can construct a large

number of such (m, k)-pairs with distinct k values. In fact, for each value of l we utilise only a

single m, and even so we demonstrate that the number of (m, k)-pairs increases exponentially

with l.

In the third step, we show that the rate at which the number of (m, k)-pairs increases

with l is sufficient to prove that F (n)/n converges to 1, completing the proof of the theorem.

Once completing the main proof, that base-10 Friedman numbers have density 1, we

augment the proof for use with the Friedman numbers of any other base of representation.

In the last section, we modify the main proof for use with a specific subset of the Friedman

numbers known as the nice (or “orderly”) Friedman numbers. The same proof shows that

this subset is already of density 1. However, this extended proof is base-dependent, and works

only for bases 2, 3 and 4.

B.4 Constructing a basic (m, k)-pair

Let the span of a nonnegative integer, x, be the set of nonnegative integers that can be

produced from x’s digits by use of the four basic arithmetic operations, exponentiation and

digit concatenation. (It is tempting, at this point, to redefine Friedman numbers as the set

of integers, x, for which x ∈ span(x). However, such a redefinition would not be correct:
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span(x) includes x for every x, because x can be produced from itself by concatenating all

of its own digits in order. In the definition of Friedman numbers, such concatenation-only

calculations are disallowed explicitly.)

Theorem 19. There exist numbers m and k, such that for any a and any b < 10k, x =

a.m.[0]t.b is a Friedman number if t = k − L(b). Moreover, for any s > 2 there exists a

C, such that for any sufficiently large r′, the number m = [s]r
′s, in combination with any

k ∈ span
(

[s](s−2)r
′−C
)

, forms an (m, k)-pair that satisfies this condition.

We name such an (m, k)-pair an “infix”, and L(m) the “infix length”. The reason that

we are looking at infixes that are of the form m = [s]r is that, as discussed above, repetition

provides us with a general tool to induce self description.

Consider the span of such repetitions:

Lemma 13. For any positive integer s and any nonnegative i, there exists a number, ci, such

that i ∈ span([s]ci).

Proof. If i = 0, i = s − s provides a solution with ci = 2. For positive values of i, one can

choose ci = 2i by representing i as

s

s
+ · · ·+ s

s︸ ︷︷ ︸
i times

.

This is not necessarily the smallest possible ci for any particular i.

With this lemma, it is possible to prove Theorem 19 as follows:

Proof. Let s be some constant value, s > 2. The numbers 0, 1, 10 and L(s) are all constants,

and therefore, by Lemma 13, there exist ci values c0, c1, c10 and cL(s) for which i ∈ span([s]ci).

Let r = r′s. For such a value of r, r ∈ span
(

[s]r
′
)

holds, because r can be represented as

the summation of r′ copies of s: r = s+ · · ·+ s︸ ︷︷ ︸
r′ times

.

Let ck be such that k ∈ span([s]ck).
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We can now use the numerical technique for self-description introduced in Section B.2.2,

to create an infix containing r copies of s. This is done with the calculation

(
a× (0 + 10)L(s)r +

10L(s)r − 1

10L(s) − 1
s

)
× 10k + 0 + · · ·+ 0︸ ︷︷ ︸

t times

+b,

which can be computed by use of the digits of a, of b, of t zeros and by use of c0 + 2c1 +

4c10 + 3cL(s) + 1 + 2r′ + ck copies of s. If c0 + 2c1 + 4c10 + 3cL(s) + 1 + 2r′ + ck = r, then this

computation yields x, proving that x is a Friedman number.

The reason we require the form (0 + 10)L(s)r in the expression is in order to enable its

replacement with 0× 10L(s)r for the case a = 0.

Let C = c0 + 2c1 + 4c10 + 3cL(s) + 1. To prove that x is a Friedman number, we want

to choose ck such that C + 2r′ + ck = r. Utilising the fact that r = r′s, we can rearrange

the equation to get ck = (s − 2)r′ − C. For any value of r′ greater than C
s−2 , any choice of

k ∈ span
(

[s](s−2)r
′−C
)

yields a Friedman number.

B.5 Finding many Friedman numbers with a given infix length

So far, we have considered the ability to generate a number from a number, but, technically,

what we needed was to generate, for example, from [s]r three copies of L(s), four copies of 10,

etc.. It is therefore natural to also consider the ability to generate a tuple of numbers from a

number. We say that (L(s), L(s), L(s), 10, 10, . . .) ∈ tuplespan([s]r).

Formally, let the tuplespan of an integer, s, be the set of tuples (x1, . . . , xn) such that

∀i : 1 ≤ i ≤ n, xi ∈ span(si), where {si}ni=1 are numbers that result from a partitioning of the

digits of s.

Let N(s) be the size of the largest subset of tuplespan(s) in which each tuple is composed

only of radical-free numbers and no two tuples are prefixes of each other, in the sense that

if x = (x1, . . . , xn) and y = (y1, . . . , ym) are both elements of the subset, with n < m, then

∃i : 1 ≤ i ≤ n, such that xi 6= yi. We say, borrowing terminology from coding theory, that

the subset is a “prefix code”.
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Theorem 20. If m = [s]r, for some constant s > 3, then the number of k values that are

divisible by L(m) for which (m, k) is a pair that forms an infix for a Friedman number is in

Ω(gr), where g = N(s)
s−3
s .

Proof. Theorem 19 shows that any k ∈ span
(

[s](s−2)r
′−C
)

yields a Friedman number for

m = [s]r
′s. Here, we restrict ourselves to k values of the form k′l, where l, the infix length,

is l = L(m) = L(s)r′s. The value L(s) can be computed by cL(s) copies of s and r′s can be

computed using r′ copies of s, so l ∈ span
(

[s]r
′+cL(s)

)
.

Accordingly, choosing k′ ∈ span
(

[s](s−3)r
′−C−cL(s)

)
yields a Friedman number. For con-

venience, we define C ′ = C + cL(s). Our aim is to prove that

lim
r→∞

∣∣∣span
(

[s](s−3)r
′−C′

)∣∣∣ g−r > 0.

To show this, consider once again the tuple-encoding procedure enc(·) introduced in Sec-

tion B.2.1. It ensures that any tuple of radical-free numbers can be encoded uniquely. Specif-

ically, tuplespan(s) includes N(s) distinct tuples composed of radical-free integers that form

a prefix code, and consequently tuplespan
(

[s](s−3)r
′−C′

)
includes the concatenation of any

(s−3)r′−C ′ of these tuples, creating a total of N(s)(s−3)r
′−C′ tuples, all of which are distinct

due to the prefix-code constraint. Each of these tuples can now be encoded by enc(·) to form

a distinct value of k.

The total number of possible k values is therefore at least

N(s)(s−3)r
′−C′ ∝ N(s)(s−3)r

′
= gr

′s = gr,

proving the claim.

This completes the proof for m = [s]r
′s. If r is not a multiple of s, the number of possible

k values is at least as many as there are for m′ = [s]br/scs, because m′ is a substring of m.

This bounds the number of possible k values at

N(s)(s−3)br/sc−C
′
> N(s)(s−3)(

r
s
−1)−C′ ,
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which is still in Ω(gr).

B.6 Bounding the density of Friedman numbers

We return now to proving Theorem 18, for which we require an additional lemma.

Lemma 14. There exists a value of s, for which g = N(s)
s−3
s > 10L(s).

Proof. There are 5 radical-free integers that are 1 digit long, 82 radical-free integers that are

2 digits long and 872 radical-free integers that are 3 digits long. Let us define the constant

s to be the digit concatenation of 13 copies of each of these radical-free integers. The digit

length of s, L(s), is 2785× 13 = 36205.

The specific s we have chosen is composed of 13 copies of each of the 959 radical-free

integers below 1000. If we partition s into these radical-free integers and form all tuples

of length 959 that can be created by distinct permutations of these numbers, then we have

G = (959 × 13)!/13!959 distinct tuples. This number is a lower bound for N(s), because the

tuples, being of constant length, necessarily form a prefix code.

Either direct calculation or use of Stirling’s formula can be used to show that G is a

value with 36258 digits, whereas 10L(s)
s

s−3 has only L(s) + 1 = 36206 digits. Therefore,

G > 10L(s)
s

s−3 , and g ≥ G
s−3
s ⇒ g > 10L(s).

As a side note, for this particular s it is possible to choose c0 = c1 = c10 = cL(s) = 1, and

even more complicated expressions such as 10L(s)−1 are still within the span of a single copy

of s. This should come as no surprise, because s contains over 2000 copies of each of the ten

digits. However, the present proof does not rely on the specific value of any ci.

With Lemma 14 it is possible to prove Theorem 18 as follows:

Proof. In order to bound the density of Friedman numbers within the integers, consider all

(m, k)-pairs constructable using a specific infix length l = L(s)r, where k = k′l, and let K be

the maximum value of k among them. Furthermore, let M be a number greater or equal to

l+K, and let x be an integer chosen randomly and uniformly in [0, 10M ). We wish to bound
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from above the probability that x is not any of the Friedman numbers corresponding to any

of the (m, k)-pairs in the set.

For any given (m, k), this probability is 1− 10−l, because exactly l digits are restricted to

a specific value. However, the probabilities relating to any two (m, k)-pairs with the same l

are independent, because the restricted digits do not overlap (hence our requirement that k

be divisible by l). This means that the total probability is bounded by (1− 10−l)C0gr , where

C0 is the multiplicative constant in the Ω(gr) bound from Theorem 20.

Our goal is to prove that this probability drops to zero as r tends to infinity. Equivalently,

we wish to prove that 10−lC0g
r = C0

(
g/10L(s)

)r
tends to infinity with r. However, Lemma 14

already showed that g > 10L(s).

This proves that as n increases, the probability that an integer uniformly sampled in [1, n]

is a Friedman number approaches 1. However, we have only showed this for some sub-sequence

of the integers, n, namely those describable as n = 10M − 1. Within this sub-sequence, the

density F (n)/n tends to 1. Formally, this means that lim supn→∞ F (n)/n = 1. To prove

that limF (n)/n = 1 we need to show that for any density ρ′ < 1 there is an N , such that

n ≥ N ⇒ F (n)/n ≥ ρ′.

Consider, however, what has been demonstrated up to this point. The proof so far shows

that for any density ρ < 1 (given above as (1−10−l)C0gr) there is a number m (given above as

10l+K) such that there exists a set S, of size at least ρm, of numbers in the range 0 ≤ x < m,

such that for any number, n, if n mod m is in S, then n is a Friedman number.

Now, choose ρ =
√
ρ′, let k be a number greater than ρ/(1 − ρ) and choose N = mk. If

n ≥ N , n = mk′ + r with 0 ≤ r < m and k′ ≥ k. By the claim proved, F (n) ≥ ρmk′, so

F (n)

n
≥ ρmk′

n
≥ ρmk′

m(k′ + 1)
≥ ρ k′

k′ + 1
≥ ρ k

k + 1
≥ ρ2 = ρ′.

Therefore, the limit exists and equals 1.
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B.7 Other bases of representation

The operations defining Friedman numbers are operations on digits, and hence the definition

of a Friedman number is dependent on the base of representation. What is a Friedman number

in decimal notation may not be a Friedman number in binary, and vice versa. This may be

one reason why Friedman numbers have not been studied much within the context of number

theory.

In this section, we show that the proof given above can be augmented to work in any

representation base.

Theorem 21. For any b, if F (n, b) is the number of base-b Friedman numbers in the range

[1, n], then limn→∞ F (n, b)/n = 1.

The base 10 proof relies on a specific choice of s: s was chosen to be the concatenation of

13 copies of the radical-free integers up to 3 digits long. In base b we replace the maximum

number of digits by a variable, t, and the number of copies by a variable, d. We show that

for any b, suitable t and d can be found.

First, we note that the constants needed (0, 1, b and L(s)) can always be calculated using

enough copies of s, and that the proof is not reliant on the exact number of any of these ci.

Any t and d will do here.

Choosing t and d arbitrarily allows, in fact, most of the base-10 proof to remain intact.

The only difficulty is in finding a (t, d)-pair that satisfies the final inequality:

g > bL(s).

Let fi be the number of radical-free integers with i digits, and let f =
∑t

i=1 fi. As a

reminder, the total number of radical-free integers in s is fd.

We begin with a lemma:

Lemma 15. There exists a value of t for which f logb f >
∑t

i=1 ifi.
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Proof. For x > 1, the number of integers in the range (1, x] that are not radical-free is at

most ∑
p ≤ log2 x

p prime

b p
√
x− 1c.

The number of summands can be bounded by log2 x and the largest one among them

is smaller than
√
x. Therefore, the total number of integers in the range (1, x] that are

not radical-free is smaller than
√
x log2 x. The number of radical-free integers is at least

x−
√
x log2 x.

If we take x to be bt, we see that the number, f , of radical-free integers with up to t digits

satisfies f > bt − bt/2t log2 b (noting that bt itself is not radical-free).

We claim:

lim
t→∞

(
t− f logb f

bt

)
= 0 <

1

b
≤ lim

t→∞

(
t−

∑t
i=1 ifi
bt

)
,

A direct corollary of which is that for a sufficiently large t the inequality of Lemma 15 holds.

The first equality in the claim is given by

lim
t→∞

(
t− f logb f

bt

)
≤ lim

t→∞

(
t− (bt − b

t
2 t log2 b) logb(b

t − b
t
2 t log2 b)

bt

)

= lim
t→∞

(
t− (1− b−

t
2 t log2 b)(t+ logb(1− b−

t
2 t log2 b))

)
= lim

t→∞

(
b−

t
2 t2 log2 b+ b−

t
2 t log2 b logb(1− b−

t
2 t log2 b)− logb(1− b−

t
2 t log2 b)

)
= lim

t→∞

(
− logb(1− b−

t
2 t log2 b)

)
= 0,

whereas t− f logb f
bt ≥ 0 is guaranteed by f ≤ bt, the total number of integers up to bt.

On the other hand, ft cannot be larger than bt−1(b− 1) because this is the total number

of t-digit numbers, whereas the rest of the fi together cannot accumulate to more than bt−1

for the same reason. Therefore:

lim
t→∞

(
t−

∑t
i=1 ifi
bt

)
≥ lim

t→∞

(
t− (t− 1)bt−1 + tbt−1(b− 1)

bt

)
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= lim
t→∞

(
t− tbt − bt−1

bt

)
=

1

b
.

We claim that an s = s(t, d) calculated with the value of t as provided by Lemma 15 and

a sufficiently large d satisfies logb g > L(s).

Specifically, we claim

Lemma 16. For an s = s(t, d) calculated with a value of t satisfying f logb f >
∑t

i=1 ifi,

lim
d→∞

logb g − L(s)

d
> 0.

Proof. g can be bounded from below by G
s−3
s , where

G =
(fd)!

d!f
.

Substituting Stirling’s formula

lim
d→∞

√
2πd

(
d

e

)d
(d!)−1 = 1

we get

lim
d→∞

(2πd)−(f−1)/2fdf+1/2G−1 = 1

and

lim
d→∞

logbG− (df + 1/2) logb f +
f − 1

2
logb(2πd) = 0.

Recall that by definition L(s) = d
∑t

i=1 ifi. Substituting this in, we get

lim
d→∞

logb g − L(s)

d
≥ lim

d→∞

s−3
s logbG− L(s)

d

= lim
d→∞

s− 3

s
f logb f −

t∑
i=1

ifi = f logb f −
t∑
i=1

ifi > 0.
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Using the values of d and t guaranteed by the two lemmas to exist, we are now able to

construct a value of s that satisfies the inequality logb g > L(s), completing the proof of

Theorem 21, and demonstrating that the Friedman numbers of any base b have density 1.

B.8 Nice Friedman numbers

Several interesting subsets of Friedman numbers have been defined since the introduction of

Friedman numbers. For example, there are several conflicting definitions in the literature

(see e.g. Wilson, 2009; Weisstein, 2009) for the term “vampire numbers”, initially introduced

by Pickover (1995). By one definition, these are Friedman numbers that make no use of

exponentiation.

Another interesting subset, introduced by Mike Reid, is the “nice” Friedman numbers

(sometimes referred to as “orderly” or “good” Friedman numbers) (Rattner, 2003). These

are the Friedman numbers that can be calculated from their own digits without changing the

digit order.

It is not known, in general, what the density of either of these subsets is. Specifically,

the method of the “infix” introduced here cannot be used in these other cases. For vampire

numbers, the infix method fails because infixes explicitly make use of exponentiation. For

nice Friedman numbers, infixes are constructable using the same method as shown above.

However, not for every base of representation, b, is it true that there exists a value of s, for

which Lemma 14 holds, once restricting span(s) to include only computations that do not

change the order of the digits of s. Where such an s can be found, the previous proof remains

intact for nice Friedman numbers, and shows that their density is 1.

Let us define span′(s) similarly to span(s), but for span′(s) to include only those elements

of the original span that can be calculated without changing the digit order of s, and let us

also define tuplespan′(·) and N ′(·) accordingly.

The limitations of the infix method can be expressed as follows:

Theorem 22. In any base of representation b ≥ 28, every s satisfies bL(s) > | span′(s) |.
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This means that even though infixes can be constructed for these bases, there are too few

of them to establish a density of 1 by the same means as in the proof to Theorem 21.

Proof. span′(s) is the set of numbers that can be produced by a calculation from the digits

of s while retaining the order of s’s digits. The size of span′(s) can be bounded from above

by the size of the set of strings that describe these calculations. Each character in the strings

is a base-b digit, one of 5 permitted operations or an opening/closing parenthesis.

In addition to the 5 binary operations we must also consider unary negation. This adds a

sixth operation: x−y. In all other operations, when used in conjunction with unary negation,

we can eliminate the unary operation by pushing it forward in the string until it is voided or

until it reaches the beginning of the string, via operations such as “x × −y” 7→ “−(x × y)”.

After applying these normalisation procedures all inter-digit operations are one of the six

binary operations described, and if there remains a unary negation it must be at the very

beginning of the string.

After the normalisation, any digit can have at most one operation preceding it, for a total

of 6+1 = 7 possibilities, and the number of possible arrangements to surround l = L(s) digits

with pairs of parentheses is the Catalan number C(l − 1) =
(
2l−2
l−1
)
/l, which is smaller than

4l. The total number of possibilities for such strings is therefore less than (7× 4)l.

On the other hand, for nice Friedman numbers it is still possible to use the infix method

for small enough values of b.

Theorem 23. In binary, ternary and base four the density of nice Friedman numbers is 1.

Proof. Let us consider b = 2. Table B.1 lists the radical-free integers and the tuple-sizes

of such that can be produced from a string of the form [1BINARY ]n. The left-most column

gives n, followed by the number [1BINARY ]n. The next two columns gives the radical-free

integers that can be produced from this string but not from any smaller n, as well as their

total number. Lastly, we give N ′([1BINARY ]n).
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n Number radical-free total N ′

1 1BIN {} 0 0

2 11BIN {2, 3} 2 2

3 111BIN {7} 1 3

4 1111BIN {5, 6, 15} 3 8

5 11111BIN {10, 12, 14, 21, 26, 28, 31} 7 18

6 111111BIN {. . .} 23 55

7 1111111BIN {. . .} 80 170

Table B.1: Radical-free numbers that can be formed from [1BIN ]n

As can be seen, the maximal-sized prefix code composed of tuples of radical-free numbers

that can be calculated from [1BIN ]7 is already more than 27, giving an example of an s for

which N ′(s) > bL(s) and proving that the density of binary nice Friedman numbers is 1. The

prefix code, in this case, is composed of all tuples that can be calculated from [1BIN ]7 but

not from [1BIN ]5.

To prove for ternary and quaternary numbers, we require a finer tool. To explain it, we

re-prove the claim regarding the density of binary nice Friedman numbers without making

use of the last two rows of Table B.1.

If X is a set of integer tuples, let X be the subset of X containing only the tuples composed

solely of radical-free integers.

Let M(n) be tuplespan′([1BIN ]n) \ tuplespan′([1BIN ]n−1). Clearly, N ′([1]n) ≥ |M(n)|,

because M(n) is a prefix code. Furthermore, if x ∈M(n) and y ∈M(m) then the tuple that

is x appended to y is in M(n+m).

Consider, again, the values of the first five rows of Table B.1. The number of radical-

free numbers found for n = 1, . . . , 5 is 0, 2, 1, 3, 7, respectively. For any n > 5, any member

of tuplespan′([1]n−i) with i ≤ 5 can be extended by a suffix composed of any member of

span′([1]i) to make a unique member of M(n). This indicates that for any n > 5,

N ′([1BIN ]n) ≥M(n) ≥ 2M(n− 2) +M(n− 3) + 3M(n− 4) + 7M(n− 5).
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The value of N ′([1]n) must therefore be in Ω(zn), where z is the greatest real solution to

P (x) = x5 − 2x3 − x2 − 3x− 7. However, substituting x = 2 we get that P (x) = −1 < 0, so

the greatest real solution to P (x) must be greater than b = 2. If so, then for a sufficiently

large n, N ′([1BIN ]n) > bn, and using s = [1BIN ]n we can prove that the density of binary

nice Friedman numbers is 1.

This principle can also be applied for ternary and quaternary. In base three we use

[2THREE ]n to get the following number of radical-free numbers in a partial count of n =

1, . . . , 6: 1, 1, 4, 22, 98, 454. The corresponding polynomial P (x) = x6 − x5 − x4 − 4x3 −

22x2 − 98x − 454 has P (3) = −175 < 0 and for [3FOUR]n the corresponding polynomial is

P (x) = x6− x5− 3x4− 13x3− 59x2− 369x− 2279 with P (4) = −740 < 0. In both cases, the

polynomials have a solution greater than b, the base of representation, proving the claim.

There is a gap between Theorem 22 and Theorem 23, consisting of the bases between 5

and 27 inclusive, that still needs to be fully addressed, but note that even for bases over 27,

the claims do not immediately imply that the density of nice Friedman numbers is not 1.
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Appendix C

P-ARAM code listing

The following is C++ code giving full, functioning implementations for the simulation pro-

grams discussed in Section 4.2. These programs incorporate all code fragments given in

Section 4.2.

C.1 Code to simulate P-RAM in PSPACE

This section contains a C++ program implementing the algorithm to simulate a polynomial

time RAM in PSPACE that is described in Section 4.2.1.

C.1.1 slp.h

/*

Interface file to the SLP and related classes.

This class simulates a P-SLP[+,-,*,<<,>>,Bool] in PSPACE on a Turing machine.

*/

#include <algorithm>

#include <vector>

class SLP; 10

class Command;

155
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class Index

{

public:

Command* command;

std::vector<Command*> values;

std::vector<int> counters;

std::vector<int> lines;

std::vector<int> maxima; 20

public:

Index begin() const;

Index end() const;

Index rbegin() const;

Index zero() const;

Index unity() const;

Index& next();

public:

Index() {}

Index(Command* command, const Index& old); 30

void make index(int line, Command& value);

Index& operator++();

Index& operator−−();

Index normalize(const Index& ref) const;

};

int cmp(const Index& index1, const Index& index2);

bool operator<(const Index& index1, const Index& index2);

bool operator>(const Index& index1, const Index& index2); 40

bool operator==(const Index& index1, const Index& index2);

bool operator>=(const Index& index1, const Index& index2);

bool operator<=(const Index& index1, const Index& index2);

bool operator!=(const Index& index1, const Index& index2);

Index operator+(const Index& index1, const Index& index2);

Index operator−(const Index& index1, const Index& index2);
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class Command

{ 50

private:

int m line;

Index m begin;

Index m end;

Index m rbegin;

protected:

virtual int eval(const Index& index) const=0;

Index make index(Command& exponent);

SLP* slp;

public: 60

const Index& begin() const { return m begin; }

const Index& end() const { return m end; }

const Index& rbegin() const { return m rbegin; }

virtual int cmp(const Index& index1, const Index& index2) const;

public:

Command(SLP& slp);

void set slp(SLP* slp, int line);

int operator[ ](const Index& index);

int is nonzero();

int line() { return m line; } 70

};

class Const : public Command

{

private:

int val;

protected:

virtual int eval(const Index& index) const;

public:

virtual int cmp(const Index& index1, const Index& index2) const; 80

Const(SLP& slp, int val) : Command( slp), val( val!=0) {}

};
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class And : public Command

{

private:

Command& arg1;

Command& arg2;

protected:

virtual int eval(const Index& index) const; 90

public:

And(SLP& slp, int arg1, int arg2);

};

class Or : public Command

{

private:

Command& arg1;

Command& arg2;

protected: 100

virtual int eval(const Index& index) const;

public:

Or(SLP& slp, int arg1, int arg2);

};

class Not : public Command

{

private:

Command& arg;

protected: 110

virtual int eval(const Index& index) const;

public:

Not(SLP& slp, int arg);

};

class Add : public Command

{

private:

Command& arg1;
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Command& arg2; 120

protected:

virtual int eval(const Index& index) const;

public:

Add(SLP& slp, int arg1, int arg2);

};

class Sub : public Command

{

private:

Command& arg1; 130

Command& arg2;

protected:

virtual int eval(const Index& index) const;

public:

Sub(SLP& slp, int arg1, int arg2);

};

class Mult : public Command

{

private: 140

Command& arg1;

Command& arg2;

int make pn(Command& command, const Index& index) const;

protected:

virtual int eval(const Index& index) const;

public:

Mult(SLP& slp, int arg1, int arg2);

};

class LShift : public Command 150

{

private:

Command& mantissa;

Index exponent;

protected:
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virtual int eval(const Index& index) const;

public:

LShift(SLP& slp, int mantissa, int exponent);

};

160

class RShift : public Command

{

private:

Command& mantissa;

Index exponent;

protected:

virtual int eval(const Index& index) const;

public:

RShift(SLP& slp, int mantissa, int exponent);

}; 170

class SLP

{

private:

std::vector<Command*> commands;

public:

SLP();

void push back(Command* command);

Command& operator[ ](int line) { return *commands[line]; }

int is nonzero() { return (*commands.rbegin())−>is nonzero(); } 180

˜SLP();

};

C.1.2 slp.cpp

/*

Implementation file of the SLP and related classes.

This class simulates a P-SLP[+,-,*,<<,>>,Bool] in PSPACE on a Turing machine.
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*/

#include "slp.h"

#include <numeric>

using namespace std; 10

Index Index::begin() const

{

Index rc=*this;

for(int i=0;i<maxima.size();++i) {

rc.counters[i]=−maxima[i];

}

return rc;

}

20

Index Index::end() const

{

Index rc=*this;

rc.counters.clear();

rc.values.clear();

rc.maxima.clear();

return rc;

}

Index Index::rbegin() const 30

{

Index rc=*this;

for(int i=0;i<maxima.size();++i) {

rc.counters[i]=maxima[i];

}

return rc;

}

Index Index::zero() const

{ 40
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Index rc=*this;

for(int i=0;i<maxima.size();++i) {

rc.counters[i]=0;

}

return rc;

}

Index Index::unity() const

{

Index rc=zero(); 50

rc.counters[counters.size()−1]=1;

return rc;

}

Index& Index::next()

{

int i;

for (i=0;i<maxima.size();++i) {

++counters[i];

if (counters[i]==maxima[i]+1) { 60

counters[i]=−maxima[i];

} else {

return *this;

}

}

if (i==maxima.size()) {

*this=end();

}

return *this;

} 70

Index::Index(Command* command, const Index& old)

: command( command), values(old.values), counters(old.counters),

lines(old.lines), maxima(values.size())

{

for(int i=0;i<values.size();++i) {



C.1. CODE TO SIMULATE P-RAM IN PSPACE 163

maxima[i]=1<<(command−>line()−lines[i]);

}

}

80

void Index::make index(int line, Command& value)

{

values.push back(&value);

counters.push back(0);

lines.push back(line);

maxima.push back(1<<(command−>line()−line));

}

Index& Index::operator++()

{ 90

if (counters.size()==0) {

return *this;

}

Index rc=end();

for(Index i=begin();i!=end();i.next()) {

if ((i>*this)&&((rc==end())| |(rc>i))) {

rc=i;

}

}

*this=rc; 100

return *this;

}

Index& Index::operator−−()

{

if (counters.size()==0) {

return *this;

}

Index rc=end();

for(Index i=begin();i!=end();i.next()) { 110

if ((i<*this)&&((rc==end())| |(rc<i))) {

rc=i;
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}

}

*this=rc;

return *this;

}

Index Index::normalize(const Index& ref) const

{ 120

if (counters.size()==0) {

return *this;

}

Index rc=ref.end();

for(Index i=ref.begin();i!=ref.end();i.next()) {

if ((*this>=i)&&((rc==ref.end())| |(rc<i))) {

rc=i;

}

}

return rc; 130

}

int cmp(const Index& index1, const Index& index2)

{

if (index1.counters.size()==0) {

if (index2.counters.size()==0) {

return 0;

} else {

return 2;

} 140

} else if (index2.counters.size()==0) {

return −2;

}

Index indexL,indexR;

if (index1.counters.size()>=index2.counters.size()) {

indexL=indexR=index1;

} else {

indexL=indexR=index2;
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}

for(int i=0;i<indexL.counters.size();++i) { 150

indexL.counters[i]=indexR.counters[i]=0;

}

for(int i=0;i<index1.counters.size();++i) {

indexL.counters[i]=max(index1.counters[i],0);

indexR.counters[i]=max(−index1.counters[i],0);

}

for(int i=0;i<index2.counters.size();++i) {

indexL.counters[i]+=max(−index2.counters[i],0);

indexR.counters[i]+=max(index2.counters[i],0);

} 160

// comparing indexL to indexR is equivalent to comparing index1 to index2,

// but none of the coefficients are negative.

return indexL.command−>cmp(indexL,indexR);

}

Index Command::make index(Command& exponent)

{

m begin.make index(line(),exponent);

m begin=m begin.zero();

m end=m begin.end(); 170

m rbegin=m begin.rbegin();

return m begin.unity();

}

int Command::cmp(const Index& index1, const Index& index2) const

{

Command* command=(*index1.values.rbegin());

Index i=command−>begin();

int maximum=max(accumulate(index1.counters.begin(),index1.counters.end(),0),

accumulate(index2.counters.begin(),index2.counters.end(),0)); 180

int logmax=0;

while (1<<logmax<maximum) ++logmax;

i.maxima[0]+=logmax;

int acc1=0;
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int acc2=0;

int sign=0;

for(;i!=command−>end();++i) {

acc1>>=1;

acc2>>=1;

for(int j=0;j<index1.counters.size();++j) { 190

int bit=(*index1.values[j])[i];

acc1+=index1.counters[j]*bit;

acc2+=index2.counters[j]*bit;

}

if (acc1%2>acc2%2) {

sign=1;

}

if (acc1%2<acc2%2) {

sign=−1;

} 200

}

return sign;

}

Command::Command(SLP& slp)

{

slp.push back(this);

}

void Command::set slp(SLP* slp, int line) 210

{

slp= slp;

m line= line;

if (m line>0) {

m begin=Index(this,(*slp)[m line−1].begin());

m begin=m begin.zero();

m end=m begin.end();

m rbegin=m begin.rbegin();

}

if (m line==1) { 220
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make index(*this);

}

}

bool operator<(const Index& index1, const Index& index2)

{

return cmp(index1,index2)<0;

}

bool operator>(const Index& index1, const Index& index2) 230

{

return cmp(index1,index2)>0;

}

bool operator==(const Index& index1, const Index& index2)

{

return cmp(index1,index2)==0;

}

bool operator>=(const Index& index1, const Index& index2) 240

{

return cmp(index1,index2)>=0;

}

bool operator<=(const Index& index1, const Index& index2)

{

return cmp(index1,index2)<=0;

}

bool operator!=(const Index& index1, const Index& index2) 250

{

return cmp(index1,index2)!=0;

}

Index operator+(const Index& index1, const Index& index2)

{
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Index rc=index1;

for(int i=0;i<rc.counters.size();++i) {

rc.counters[i]=index1.counters[i]+index2.counters[i];

} 260

rc.normalize(index1);

return rc;

}

Index operator−(const Index& index1, const Index& index2)

{

Index rc=index1;

for(int i=0;i<rc.counters.size();++i) {

rc.counters[i]=index1.counters[i]−index2.counters[i];

} 270

rc.normalize(index1);

return rc;

}

int Command::operator[ ](const Index& index)

{

if (index<begin()) {

return 0;

}

Index normalized=index.normalize(begin()); 280

return eval(normalized);

}

int Command::is nonzero()

{

for(Index index=begin();index!=end();++index) {

if (eval(index)==1) {

return 1;

}

} 290

return 0;

}
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int Const::eval(const Index& index) const

{

return val&&(index==begin());

}

int Const::cmp(const Index& index1, const Index& index2) const

{ 300

return index1.counters[0]−index2.counters[0];

}

int And::eval(const Index& index) const

{

return arg1[index]&&arg2[index];

}

And::And(SLP& slp, int arg1, int arg2)

: Command( slp), arg1( slp[ arg1]), arg2( slp[ arg2]) 310

{

}

int Or::eval(const Index& index) const

{

return arg1[index]| |arg2[index];

}

Or::Or(SLP& slp, int arg1, int arg2)

: Command( slp), arg1( slp[ arg1]), arg2( slp[ arg2]) 320

{

}

int Not::eval(const Index& index) const

{

int rc=1;

for(Index i=rbegin();(i>=index)&&(rc==1);−−i) {

rc=1−arg[i];
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}

if (rc==1) { 330

return 0; // The tweaked NOT operator

}

return 1−arg[index];

}

Not::Not(SLP& slp, int arg) : Command( slp), arg( slp[ arg])

{

}

int Add::eval(const Index& index) const 340

{

int acc=0;

for(Index i=begin();i<=index;++i) {

acc>>=1;

acc+=arg1[i]+arg2[i];

}

return acc%2;

}

Add::Add(SLP& slp, int arg1, int arg2) 350

: Command( slp), arg1( slp[ arg1]), arg2( slp[ arg2])

{

}

int Sub::eval(const Index& index) const

{

int acc=0;

Index i;

for(i=begin();i<=index;++i) {

acc>>=1; 360

acc+=arg1[i]−arg2[i];

}

int rc=(acc%2)!=0;

for(;i!=end();++i) {
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acc>>=1;

acc+=arg1[i]−arg2[i];

}

if (acc==0) {

return rc;

} else { 370

return 0; // arg2>arg1

}

}

Sub::Sub(SLP& slp, int arg1, int arg2)

: Command( slp), arg1( slp[ arg1]), arg2( slp[ arg2])

{

}

int Mult::make pn(Command& command, const Index& index) const 380

{

int curr bit=command[index];

if (index<begin()) {

return 0;

} else if (index==begin()) {

return −curr bit;

} else {

Index prev=index;

−−prev;

int prev bit=command[prev]; 390

return prev bit−curr bit;

}

}

int Mult::eval(const Index& index) const

{

int acc=0;

for(Index i=begin();i<=index;++i) {

acc>>=1;

for(Index p1=begin();p1!=end();++p1) { 400
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Index p2=i−p1;

acc+=make pn(arg1,p1)*make pn(arg2,p2);

}

}

return (acc%2)!=0;

}

Mult::Mult(SLP& slp, int arg1, int arg2)

: Command( slp), arg1( slp[ arg1]), arg2( slp[ arg2])

{ 410

}

int LShift::eval(const Index& index) const

{

return mantissa[index−exponent];

}

LShift::LShift(SLP& slp, int mantissa, int exponent)

: Command( slp),

mantissa( slp[ mantissa]), exponent(make index( slp[ exponent])) 420

{

}

int RShift::eval(const Index& index) const

{

return mantissa[index+exponent];

}

RShift::RShift(SLP& slp, int mantissa, int exponent)

: Command( slp), 430

mantissa( slp[ mantissa]), exponent(make index( slp[ exponent]))

{

}

SLP::SLP()

{
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new Const(*this,0);

new Const(*this,1);

}

440

void SLP::push back(Command* command)

{

commands.push back(command);

(*commands.rbegin())−>set slp(this,commands.size()−1);

}

SLP::˜SLP()

{

for(vector<Command*>::iterator it=commands.begin();

it!=commands.end();++it) { 450

delete *it;

}

}

C.1.3 main.cpp

/*

Example program, using the class SLP.

*/

#include <iostream>

#include "slp.h"

using namespace std;

10

int main(void)

{

SLP sample slp; // The SLP being simulated is: s[0] := 0; s[1] := 1;

new LShift(sample slp,1,1); // s[2] := s[1] << s[1];

new Sub(sample slp,2,1); // s[3] := s[2] - s[1];
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new Sub(sample slp,3,1); // s[4] := s[3] - s[1];

cout << sample slp.is nonzero() << endl; // (s[4] != 0) ?

return 0;

}

20

C.2 Code to simulate P-ARAM in PSPACE

This section contains a C++ program implementing the algorithm to simulate a polynomial

time ARAM in PSPACE that is described in Section 4.2.2. The program requires both the

new files described here and those of Appendix C.1.

C.2.1 aln.h

/*

Interface file to the ALN class.

This class extends the capabilities of class SLP by adding support of

arbitrary large numbers.

Together, the two enable simulation of an SLP[+,-,*,<<,>>,Bool] that has access to an ALN

in PSPACE on a Turing machine.

*/

10

#include "slp.h"

class ALN : public Command

{

private:

Index exponent;

protected:

virtual int eval(const Index& index) const;

public:

virtual int cmp(const Index& index1, const Index& index2) const; 20

ALN(SLP& slp) : Command( slp), exponent(make index(*this)) {}
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};

C.2.2 aln.cpp

/*

Implementation file of the ALN class.

This class extends the capabilities of class SLP by adding support of

arbitrary large numbers.

Together, the two enable simulation of an SLP[+,-,*,<<,>>,Bool] that has access to an ALN

in PSPACE on a Turing machine.

*/

10

#include "ALN.h"

int ALN::eval(const Index& index) const

{

return index==exponent;

}

int ALN::cmp(const Index& index1, const Index& index2) const

{

if (*index1.counters.rbegin()==*index2.counters.rbegin()) { 20

Index indexL=index1;

Index indexR=index2;

indexL.counters.pop back();

indexL.values.pop back();

indexL.maxima.pop back();

indexR.counters.pop back();

indexR.values.pop back();

indexR.maxima.pop back();

return Command::cmp(indexL,indexR);

} else { 30
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return (*index1.counters.rbegin())−(*index2.counters.rbegin());

}

}

C.2.3 main w ALN.cpp

/*

Example program, using the class ALN.

*/

#include <iostream>

#include "aln.h"

using namespace std;

10

int main(void)

{

SLP sample slp; // The SLP being simulated is: s[0] := 0; s[1] := 1;

new ALN(sample slp); // s[2] := 2^\omega;

new Add(sample slp,1,2); // s[3] := s[1] + s[2];

cout << sample slp.is nonzero() << endl; // (s[3] != 0) ?

return 0;

}
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Afterword, on a personal note

Whew, what a ride this has been. What a journey! I am grateful to have been able to

undertake, over the past few years, this safari into a rarely-visited mathematical no-man’s-

land, and to come back with pictures of some exotic, and in some cases never-before-seen

creatures.

Like most trips away from the beaten path, this excursion did not come without its share of

forewarnings. Many a concerned friend advised me, before and during, that perhaps I should

rethink this idea of studying the unit cost integer RAM. Their reasons were compelling: the

RAM, they said, is notorious for being too powerful to be a realistic model. It is unreasonable,

outmoded and unfashionable. Publishing about the integer RAM will be difficult, and any

results about it are bound to lack any real-world import.

Not without some foreboding, I have chosen to embark on my quest despite all this

advice, but this does not mean that I ignored it. In the preface, I mention that this thesis

is an exploration into the essence of computing. The “Conclusions” section is written in this

spirit, giving hard, mathematical truths about the nature of computing, RAMs, ALNs, etc..

However, in parallel to this study, I have also, over the same time span, been busy with a

different sort of exploration, this one, following the calls against the practicality of what I

was doing, into understanding the nature of practicality itself. In this afterword, allow me to

share some of the softer truths that I uncovered in this other quest.

In the thesis itself, I compare the study of RAMs to the study of cardinals. A comparison

closer to home would perhaps be to number theory, where it is quite common to use “un-

reasonably large” integers to prove a point regarding all integers. If we were bound, in our

discussions, to numbers that can easily be stored and manipulated by computers, there would
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not be any Graham’s number or Skewes’ number to shed light on important combinatorial

problems. In this limited range of integers, even the density of Friedman numbers, discussed

in Appendix B, would be close to 0.01, rather than 1. And yet, it is the 1, not the 0.01, that

is the interesting number-theoretical result.

Are the rules different in computer science? Do we restrict ourselves there only to what

is practically computable? If so, then one has to wonder about the centrality of NP, or, in

fact, any Oracle-based computation, and yet we use these all the time, we build hierarchies

around them, and we pose P vs. NP as, perhaps, the central question of computer science.

Realistic integer sorting is done in O(n) time using radix sorting. And yet, the most

celebrated result in integer sorting, Han’s (2004) O(n log log n)-time sorting algorithm, is only

applicable when using the transdichotomous computational model (Fredman and Willard,

1993), which is not only unrealistic, but also on philosophically shaky grounds because it

violates the basic dichotomy between machine model and problem size.

One can argue the reverse direction equally well. Is P realistic? Under the auspices of

P, academic papers time and again present algorithms that are unrealistic, either because

the exponent is too large or because the multiplicative factor is too large. The author of

these lines has many times — more often than not, in fact — used in practical industry

settings exponential time algorithms, because in practice these turn out to be faster than the

polynomial-time ones. In fact, I challenge the reader to find a case in which either O(1)-

time array initialisation or linear-time median finding — both, cornerstone algorithms in

data structure design — have any practical use. In twenty years of algorithmics, I have not

encountered a first case of this.

Realism — if, by realism, we mean “what can be implemented by a computer” — seems

to be an irrelevant metric for theoretical study. To paraphrase a well-known quote: computer

science is no more about computers than astronomy is about telescopes. (Fellows, 1993)

So, why do we study Oracles and transdichotomous models? For the same reason that

we study the unit-cost RAM: because it is beautiful. To paraphrase from Lockhart’s (2002)

moving plea, teaching math because it is useful is akin to teaching people to read in order for

them to fill out vehicle registration forms.
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The reason why we study the complexity class P is because its closure properties and

invariance to Turing machine flavour make it an elegant object of study. In the same way,

the unit cost RAM is an elegant device.

Moreover, the objects of study in this thesis are, in my mind, not the RAMs themselves,

but the nonnegative integers, the arithmetic and nonarithmetic operations allowed, and, of

course, delicate and little-understood properties such as randomness. Like many mathemati-

cal objects, these are simple constructs that engender fascinatingly complex behaviours, and

it is this tendency that makes them worthy of study, and it is this tendency that makes them

appear again and again in different contexts, making their study in one context sometimes

pay off in another.

Indeed, the two new mathematical objects introduced by this thesis exemplify well this

idea of mathematical beauty. First, ALNs were introduced. This essentially simple concept

was shown to exhibit fantastically complex behaviours and, moreover, to generate unexpected

amounts of computational power. The study disproves our strong intuition that such arbitrary

numbers cannot be useful. Even by sheer force of the surprise factor involved, this exploration

of ALNs proved itself to be worthwhile.

Next, we introduced the complexity class PEL. This demonstrated its innate simplicity

and elegance by cropping up in the context of studying two completely different machines, one

a deterministic RAM, the other an RRAM, both being able to recognise exactly the languages

in this set in polynomial time, without there seeming to be any reason for this convergence.

(And, to make the point even further, we have no idea whether this strange equality continues

to hold if, say, both machines are now given an ALN to work with.)

The beauty or elegance of our objects of study is therefore not in question. However,

having thought much about this idea of “practicality”, my present belief is that skepticism

about RAMs is actually grounded elsewhere. I believe it is, in fact, skepticism about the

study of RAMs, on the grounds that such study has little potential to impact on classically

“interesting” problems.

Here is how I see the impact of the present thesis on non-RAM-related problems:
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First, consider the arithmetical hierarchy and what lies beyond it. By considering the

ASRAM time-complexity of problems, we have gained an unexpected new tool with which to

stratify the difficulty of problems that are outside this hierarchy.

Second: stochasticity. One of the fundamental questions in computer science is the P

vs. RP question. Going into this research, I did not believe any RAM result could possibly

have any implication for this central problem. And yet, the results arrived at uncover an

interesting truth: P vs. RP is a relative question. Its answer depends on the computational

model within which it is asked. While, perhaps, not shedding any light on the answer to

this question for Turing machines, this sheds light on the question itself, in that now it

is not whether stochasticity adds computational power, but whether it does so for Turing

machines. At least in my mind, the importance of this find is that it makes the original P vs.

RP question less important. It is now no longer a fundamental, universal question about the

nature of computation, but merely one about a particular model of computation, invented at

a particular moment in history.

Third: the thesis pushed through the apparently best-possible bound of O(n)-time sorting.

Once again, the achievement is not in the algorithm itself, but rather in forcing us to reconsider

what we mean by “sorting” (or any other specific algorithm), and therefore what we take as its

absolute, best-possible time-bounds (or memory bounds, or any other resource). The answers

to these questions are still far from given.

And last, as a cherry on top, the same techniques developed here were put to use in solving

a (minor) question from number theory, again demonstrating a cross between disciplines.

So, with the hindsight of having all of these results, I think the unit-cost integer RAM can

no longer be so readily dismissed. It is a powerful tool, whose true powers we have only just

now begun to discover. It holds many other secrets that it still has not told us, both about

itself and about many other, completely unrelated problems. I feel lucky for having studied

RAMs, and hope to continue studying them, and letting them uncover new secrets, for many

years to come.

I can only hope you will join me in this quest.




