
Advances on K Nearest Neighbour Search in

Spatial Databases

by

Geng Zhao

Thesis

Submitted by Geng Zhao

for fulfillment of the Requirements for the Degree of

Doctor of Philosophy (0190)

Supervisor: A/Professor David Taniar

Associate Supervisor: Professor Bala Srinivasan

Clayton School of Information Technology

Monash University

March, 2013

 Notice 1
Under the Copyright Act 1968, this thesis must be used only under the normal conditions of
scholarly fair dealing. In particular no results or conclusions should be extracted from it, nor
should it be copied or closely paraphrased in whole or in part without the written consent of the
author. Proper written acknowledgement should be made for any assistance obtained from this
thesis.

c© Copyright

by

Geng Zhao

2013

To My Supportive Family, Friends and Academics

iii

Contents

List of Tables . vii

List of Figures . viii

Abstract . xi

Acknowledgments . xiv

1 Introduction . 1

1.1 Overview . 1

1.2 Major Issues . 4

1.2.1 Problem 1: Poor performance of Network Expansion 4

1.2.2 Problem 2: Discrete Points are the input and output of Spatial

Queries . 6

1.3 Contributions . 8

1.3.1 Contribution 1: Using the Voronoi Diagram to enhance the

performance . 8

1.3.2 Contribution 2: Bringing route into kNN spatial queries . . . 10

1.4 Thesis Organization . 13

2 Preliminary and Related Work . 17

2.1 Introduction . 17

2.2 Related Work . 19

2.2.1 Preliminaries . 19

2.2.2 Typical kNN Queries . 23

iv

2.2.3 Continuous kNN Queries . 27

2.2.4 Route Search query . 30

2.2.5 Other k Nearest Neighbor queries 35

2.3 Problem Definition . 40

2.4 Summary . 42

3 Voronoi Based k Nearest Neighbor Search 45

3.1 Introduction . 45

3.2 Approach 1: Voronoi-based Continuous kNN Search 47

3.3 Approach 2: Voronoi based Multiple kNN Search 61

3.4 Performance Evaluation . 74

3.4.1 Voronoi based Continuous kNN 74

3.4.2 Voronoi based Multiple types kNN 77

3.5 Summary . 79

4 Route and Path related kNN Queries 83

4.1 Introduction . 83

4.2 Approach 1: Path based kNN Search Queries 88

4.2.1 Definition of road network elements 88

4.2.2 Data structure . 89

4.2.3 Proposed Method . 90

4.3 Approach 2: Path Branch Point based kNN Search 98

4.3.1 Preliminaries . 98

4.3.2 Proposed Approach . 101

4.4 Approach 3: Time Constraint Route Search 107

4.4.1 Preliminaries . 107

4.4.2 Proposed Methods . 110

4.5 Performance Evaluation . 122

4.5.1 Path based kNN search . 122

4.5.2 Path Branch Point based kNN Search Queries 126

v

4.5.3 Time Constraint Route Search over Multiple Locations 129

4.6 Conclusion . 133

5 Conclusion . 137

5.1 Contributions . 137

5.2 Open Problems and Future Work . 139

Appendix A Simulation Source Code 143

A.1 kNN Implementation . 143

A.2 kNN Demo Code . 147

A.3 Path kNN Query Search Simulation 155

A.4 Time Constraint Route Search Simulation 164

Bibliography . 173

vi

List of Tables

3.1 VCkNN vs. DAR vs. IE . 50

3.2 Movement of each border point in p1 56

4.1 RFix Filter Process . 115

4.2 Proposition 3 Demo for RFlex . 119

4.3 Proposition 4 Demo for RFlex . 120

vii

List of Figures

1.1 Example of road navigation . 2

1.2 Example of route search . 2

1.3 Example of object finding . 2

1.4 Example of range matching . 2

1.5 Network Expansion vs. the Voronoi Diagram 5

1.6 Spatial Element Types . 7

1.7 Traditional kNN input and output are discrete points 7

1.8 Comparison of kNN and path kNN result 10

1.9 An example of Path Branch Point based kNN Search Queries 11

1.10 Motivation of time constraint route search over multiple locations . . 13

1.11 Thesis structure . 14

2.1 An example of road networks . 20

2.2 The Voronoi Diagram . 21

2.3 Network Voronoi Diagram . 22

2.4 Related Work Summary Chart . 23

2.5 An example of INE query . 25

2.6 An example of V N3 query . 27

2.7 An example of DAR: step one . 28

2.8 An example of DAR: Step 2 . 29

2.9 An example of DAR: Step 3 . 29

2.10 An example of reverse nearest neighbor query approach 36

2.11 An example of reverse nearest neighbor query approach - SAA 37

viii

2.12 An example of reverse nearest neighbor query approach - Half-Plane

Pruning RNN . 38

2.13 Related Work vs. Approaches proposed in this thesis 42

3.1 Segments using DAR and IE . 49

3.2 Segments using VCkNN . 49

3.3 Example of VCkNN . 55

3.4 p1 border . 58

3.5 Each p . 58

3.6 2ndNN . 58

3.7 3rdNN . 58

3.8 Example 3.3.1 - One NVD for each object type 63

3.9 Example 3.3.1 - One NVD for all objects 64

3.10 Example 3.3.2 - One NVD for each object type 67

3.11 Example 3.3.2 - One NVD for all objects 70

3.12 Example 3.3.3 - One NVD for all objects 73

3.13 Segment in different path density . 76

3.14 Segment in different POI density . 76

3.15 Runtime in high and low density of interest points 77

3.16 Runtime in different query path lengths 77

3.17 Split nodes in high and low density of interest points 78

3.18 Processing Time Comparison . 80

4.1 Result comparisons . 84

4.2 An example of road networks . 88

4.3 An example of Local minima scenario 96

4.4 An example of looping scenario . 97

4.5 An example of U-Turn scenario . 97

4.6 An example of path branch points query 100

4.7 An example of Lemma 4.3.4 . 103

ix

4.8 An example of Lemma 4.3.5 . 104

4.9 Road network vs. travel time network 111

4.10 RFix Example . 114

4.11 Pruning Cond. 3 . 118

4.12 Pruning Cond. 4 . 120

4.13 Expansion steps for different loops in maps 123

4.14 Runtime for different loops in maps 123

4.15 Expansion steps of different POI densities 124

4.16 Runtime of different POI densities . 124

4.17 Expansion steps with or without Pruning conditions 125

4.18 Runtime with or without Pruning conditions 125

4.19 Operation time of different POI densities 126

4.20 Memory size of different POI densities 126

4.21 AS values of different POI densities 127

4.22 Factor change based on different overlap increment-AS all negative . . 127

4.23 Factor change based on different overlap increment-AS partial nega-

tive and partial positive . 128

4.24 Factor change based on different overlap increment-AS all positive . . 128

4.25 Time and memory comparison between different number of locations

and traffic status in RFix and Time and memory incremental ratio

when adding more locations . 130

4.26 Proc. time and memory comparison between RFix and traversal

methods . 131

4.27 PDT is optimum (RFix) ratio . 131

4.28 Proc. time and memory comparison for different object densities in

RFlex and Proc. time and memory incremental ratio when adding

more locations . 134

4.29 RFlex in different time intervals . 134

x

Advances on K Nearest Neighbour Search in

Spatial Databases

Geng Zhao

Monash University, 2013

Supervisor: A/Professor David Taniar

Associate Supervisor: Professor Bala Srinivasan

Abstract

A spatial database is a database that stores data and makes queries which are re-

lated to objects in space, including points, lines and polygons. The spatial database

is designed to process the spatial data type which cannot be processed by typical

databases. k Nearest Neighbor search is a type of query to classify objects based

on closest distances in the feature space, as a result, a large portion of k nearest

neighbor search queries are based on road network. Consequently, the most popular

method that has been fully discussed is called Network Expansion. By process-

ing more and more complex queries, network expansion methods show a significant

drawback which is poor performance because the underlay road network is crossed

and connected. Do expansion for each intersection points in road network is unre-

alistic. The other problem in k Nearest Neighbor (kNN) query processing is that

most of the existing k nearest neighbor searches are concentrated on points. In other

words, the discrete points are the input and output of k Nearest Neighbor search

query. While in reality, points, lines as well as polygons are three types of spatial

elements. How to utilize Lines/Route in spatial query becomes another question for

our researchers. Motivated by these two points, the following paragraph summarizes

the contribution of this thesis.

The first main contribution of this thesis is called Voronoi Based k Nearest

Neighbor search query. Compared to the Network Expansion method, the Voronoi

xi

based method aggregates the road segments using a Voronoi Diagram. Instead of

expanding from each intersection in road network, the Voronoi Diagram divides

the map into polygons by treating the points of interest as generators. In this

part, we have proposed 2 algorithms which use the Voronoi Diagram to improve the

performance for Multiple types of k Nearest Neighbor Search query and Continuous

k Nearest Neighbor Search query respectively. Our experiments have shown the

proposed algorithms can improve the performance significantly either from a cost

and a processing time point of view compared to the traditional Network Expansion

method.

The second main contribution of this thesis is called Route and Path related kNN

Queries. The aim of this part in the thesis is to bring lines/routes into the input

and(or) output of k Nearest Neighbor search. As a result, users can use lines to find

points, use points to find routes, or even use route to find route. Correspondingly,

there are three novel approaches discussed in this part, namely, Path Based kNN

Search Queries, Path Branch Point based kNN Search Queries and Time Constraint

Route Search over Multiple Locations. By proposing these three approaches, the

k Nearest Neighbor Search has been enriched and can satisfy various types of user

queries.

To sum up, the thesis is concentrated on two main category of query process-

ing: i) Voronoi based k Nearest Neighbor Search which is aiming at improving the

Network Expansion Method which is the most popular technique used by existing k

Nearest Neighbor Search approaches. ii) Route and Path related kNN Query which

brings route and path into the input or/and output of kNN queries and which fills

up the blanket area in kNN query that only concrete points are utilized in spatial

queries.

xii

Advances on K Nearest Neighbour Search in

Spatial Databases

Declaration

I declare that this thesis is my own work and has not been submitted in any
form for another degree or diploma at any university or other institute of tertiary
education. Information derived from the published and unpublished work of others
has been acknowledged in the text and a list of references is given.

Geng Zhao
March 18, 2013

xiii

Acknowledgments

Doctoral thesis is a long and tough journey and, I would like to thank everyone who

helped me to achieve the accomplishment of my doctoral degree. I learned to be

self-initiated, self-organizable and optimistic.

First of all, I would like to express my gratitude to my supervisor, Associate

Professor David Taniar. Without his insightful supervision, I could not have such

a smooth path in this research. Without his patient guidance, I could not enjoy

my study. Without his inspiriting encouragement, I a be so optimistic even facing

the unprecedented difficulties and pressure. He is extremely considerate to me,

especially during my maternity period. Moreover, what is a great honor that my

baby is named by David.

I am also very thankful to my joint-supervisor Professor Bala Srinivasan. He

taught me the overview of the research scope as well as urging me from time to

time. He helped me out when I was suffering with minor technical details and

outlined the big picture of my research.

I want to take this golden opportunity to thank my parents who support me

since I came to Australia not only financially but also mentally. They gave me the

environment in which I could do research without any other worries and supported

all my decisions. The support from them is the most selfless friendship in the world.

Lastly, but the most importantly, I am thankful to my husband, Kefeng. Being

my accompanier, and he has supported me along the way from my bachelor study

until now. We went through hardness and shared joyful moments. Research time

became enjoyable with his accompaniment. I want to take this opportunity to thank

him and hope we can support each other in future.

Geng Zhao

Monash University

March 2013

xiv

Publications resulting from this thesis: Below is a list of publications re-

sulting from this thesis. I am very grateful to all of the people who collaborated

with me for these publications. Their comments and suggestions were always very

helping and insightful.

1. Zhao, G., Xuan, K., Rahayu, W., Taniar, D., Safar, M., Gavrilova, M. and

Srinivasan, B. Voronoi-based continuous k nearest neighbor search in mobile

navigation. IEEE Transactions on Industrial Electronics (TIE), 56(10):

2247-2257. 2010. (Tier B)

2. Zhao, G., Xuan, K. and Taniar, D. Path kNN query processing in Digital

Ecosystems, IEEE Transactions on Industrial Electronics (TIE). 2011.

DOI (identifier) 10.1109/TIE.2011.2167113. (Tier B)

3. Zhao, G., Xuan, K., Taniar, D., Safar, M. and Srinivasan, B. Time Constraint

Route Search over Multiple Locations. in The Knowledge Engineering

Review (KER). 2010. (Tier B)

4. Zhao, G., Xuan, K., Taniar, D. and Srinivasan, B. LookAhead Continuous

kNN Mobile Query Processing. International Journal of Computer Sys-

tems Science and Engineering (IJCSSE). 25(3). 2010.

5. Zhao, G., Xuan, K., Taniar, D., Safar, M., Gavrilova, M. and Srinivasan, B.

Multiple object types kNN search using network Voronoi diagram. In Pro-

ceedings of International Conference for Computational Science and

Its Applications (ICCSA), pages 819-834, Yongin, Korea, 2009.

6. Zhao, G., Taniar, D., Safar, M., Rahayu, W. and Srinivasan, B. Path Branch

Points in Mobile Navigation, Proceedings of The 8th International Confer-

ence on Advances in Mobile Computing and Multimedia (MoMM’10),

pages 329-336, Paris, France, 2010

7. Xuan, K., Zhao, G., Taniar, D., Safar, M. and Srinivasan, B. and Gavrilova,

M.L. (2009), Network Voronoi Diagram Based Range Search. in The 23rd

xv

International Conference on Advanced Information Networking and

Applications, pages 741-748, Bradford, United Kingdom, May 2009. (Best

Paper Award)

8. Xuan, K., Taniar, D., Safar, M. and Srinivasan, B. (2010), Time constrained

range search queries over moving objects in road networks. in The 8th In-

ternational Conference on Advances in Mobile Computing and Mul-

timedia, pages 329-336, Paris, France, November 2010.

9. Xuan, K., Zhao, G., Taniar, D., Rahayu, J.W., Safar, M. and Srinivasan,

B., Voronoi-based range and continuous range query processing in mobile

databases. J. Comput. Syst. Sci. (JCSS), 77(4):637-651, 2011. (A*)

10. Xuan, K., Zhao, G., Taniar, D., Safar, M. and Srinivasan, B., Constrained

range search query processing on road networks. Concurrency and Com-

putation: Practice and Experience (CONCURRENCY), 23(5):491-04,

2011. (A)

xvi

Chapter 1

Introduction

1.1 Overview

Due to heavy traffic load and complex road connections, more and more users need

an application to help them navigate crowded roads, guide them to the best route

and even give answers to users’ queries. With the development of personal com-

puting devices and wireless networks, mobile devices using inexpensive wireless net-

works provide unlimited convenience to mobile users [WST05a]. A spatial database

is a database that stores data and makes queries which are related to objects in

space, including points, lines, polygons and paths. The spatial database is designed

to process the spatial data type which can not be processed by typical databases.

The application of spatial databases include Geographic Information Systems (GIS),

Computer Aided Design (CAD), Very-Large-Scale Integration (VLSI) designs, Mul-

timedia Information System (MMIS) and medicine and biological research. Spatial

related query processing has played a more and more important role in our daily

life with the decreasing cost of wireless network access, upgrading mobile device’s

processing ability and widening internet coverage.

With the developing processing efficiency and the growing complexity of road

connection, nowadays users are sending out diverse spatial queries based on objects

locations. A number of queries can be listed here as samples, e.g. navigating from

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Example of road navigation Figure 1.2: Example of route search

Figure 1.3: Example of object finding Figure 1.4: Example of range matching

A to B, finding the nearest neighbor from current locations, searching all objects

within given range and so on. We summarize them using different points of view.

From the query point of view, these objects of interest can be a snapshot or

continuously moving objects.

In a snapshot query, the results of the query are to be computed only once.

In contrast to the snapshot queries, a continuous query requires the results to be

continuously updated as the underlying data is updated.

Example 1.1.1. Snapshot query: a user may want to find the nearest 5 petrol

stations from Monash University. He may issue a snapshot k Nearest Neighbor query

with a query location set as Monash University.

1.1. OVERVIEW 3

Example 1.1.2. Continuous query: For instance, a person driving a car may

want to find the nearest 5 petrol stations of his current location. Since the car is con-

tinuously moving, the results are required to be updated continuously. He may issue

a continuous k Nearest Neighbor query with the query location set as the location of

car..

Example 1.1.3. Continuous moving query: While in the above example only

the query is moving, in many applications, all of the query objects and data objects

may be continuously moving. For instance, a taxi driver might want to continuously

monitor his nearest walking customers of his location. In this example, the query

and the data objects all are continuously moving.

From the data accuracy point of view, points of interest can be certain or uncer-

tain data.

Usually, it is assumed that the objects (e.g., locations) have accurate value and

the spatial queries to use these locations. However, uncertain data is inherent most

of the time such as sensor databases, moving object databases, market analysis,

and quantitative economic research. The reason of the inaccuracy might be the

limitation of measuring equipment, delayed data updates, incompleteness or data

anonymization to preserve privacy. In such applications, the spatial queries are

issued on the uncertain data and probabilistic results are returned.

Example 1.1.4. Certain Data:Find the nearest restaurant of point q (X =

116◦23′17′′, Y = 39◦54′27′′). The query point (q) has accurate location.

Example 1.1.5. Uncertain Data:Find the nearest restaurant of point q (116 <

X < 117, 38 < Y < 39) . The query point (q) has uncertain value.

From the result’s type point of view, we can summarize the spatial query into

the following categories: route search, object finding and range matching.

Example 1.1.6. Route Search: Find the best road that satisfied users’ diverse

conditions. For example, the route navigation we use everyday: find the shortest

4 CHAPTER 1. INTRODUCTION

road starting from point A to destination point B (Fig.1.1 as an example). There

might be some other road navigation variants: finding the route with shortest travel

time or less traffic lights and so on. In addition, there are some other route search

queries. Fig.1.2 gives another example of route search query. In this example, 16

famous tourist places have been chosen by the traveler. The query is to find the

route that can visit 4 tourist places with the shortest distance.

Example 1.1.7. Objects Finding: Find the objects that fulfill users’ requirements

(k nearest neighbor or within the range and so on). Fig.1.3 shows an example of

objects finding: show all pharmacies in my local suburb.

Example 1.1.8. Range Matching: Find the range or area that meets users’

specification. Fig.1.4 shows an example of range matching: find the area that are

close (within 2km walking distance) to shops, schools and train stations.

The following sections emphasis the major problems of the existing methods and

the contributions in this thesis in detail.

1.2 Major Issues

Although k Nearest Neighbor query search has been fully investigated over the recent

decades, there are still some significant problems or, in other words, there are still

some gaps/blank zones which have not been explored. Moreover, even the existing

methods which can solve the problems perform poorly under some circumstance.

After summarizing various spatial queries, we draw several conclusions:

1.2.1 Problem 1: Poor performance of Network Expansion

All of the approaches are constructed based on the underlying road connection be-

tween objects. Within the road map, roads are connected and joined by thousands

of intersection nodes which break the roads into small segments. The total distance

of the road is calculated by summing up the component segments distances. As a

1.2. MAJOR ISSUES 5

(a) Network Expansion (b) Voronoi Diagram

Figure 1.5: Network Expansion vs. the Voronoi Diagram

result, network expansion is the technique which has been widely used in existing

methods. Network expansion is processed as follows: when encountering any inter-

section node, the traverse expansion takes every possible directions. In other words,

if we suppose every node has four possible directions to go, then the expansion would

be 4n, where n is the number of expansion nodes. From this calculation, we can infer

that the performance cost will behave like a parabola with the increasing number

of intersection nodes. The poor performance is inevitable because the complex road

connection will result in large number of intersection nodes. Consequently, how to

merge the intersection nodes or how to avoid the expansion becomes a new topic to

the researchers who are engaged in spatial query processing. This is the first main

chapter of the thesis.

Fig.1.5(a) demonstrates the expansion directions for each intersection node. The

expansion should be invoked for every possible moving direction when the query

point is located at this intersection node. Fig.1.5 shows the illustration of a Network

Voronoi Diagram which merges lots of segments into polygons.

6 CHAPTER 1. INTRODUCTION

1.2.2 Problem 2: Discrete Points are the input and output

of Spatial Queries

The second main chapter of the thesis is to bring line/route into spatial queries. In

spatial databases, there are three types of spatial data elements: i) Point ii)Line

and route iii)Region and polygon.

Points: A spatial point is a primitive notion upon which other concepts may be

defined. In general, points are zero-dimensional; i.e., they do not have volume, area,

length or any other higher-dimensional analogue. In branches of mathematics deal-

ing with set theory, an element is sometimes referred to as a point. In spatial query

processing, points of interest belong to this type. They are distributed discretely

over the map. The discrete location on the surface of the planet, represented by an x

and y coordinate pairs. Each point on the map is created by latitude and longitude

coordinates, and is stored as an individual record in the shape file, see Fig.1.6(a).

Lines: As an extension of a point, an elongated mark, is the connection between

two points, Lines are the paths through networks, which may have line feature, such

as a street, highway, river or pipe. Lines are formed by connecting two data points.

The computer reads this line as straight, and renders the line as a vector connecting

two x-y coordinates (X = longitude, Y = latitude). The more points used to create

the line, the greater the detail. FPA requires that the line and polygon features

include topology. For lines, this means that the system stores one end of the line

as the starting point and the other as the end point, giving the line direction, see

Fig.1.6(b).

Polygons: An area fully encompassed by a series of connected lines. Because

lines have direction, the system can determine the area that falls within the lines

comprising the polygon. Polygons are often of an irregular shape. Each polygon

contains one type of data (e.g., vegetation, streets, and dispatch locations would be

different polygons). All of the data points that form the perimeter of the polygon

must connect to form an unbroken line. When preparing files, the polygons are

verified as closed area, see Fig.1.6(c).

1.2. MAJOR ISSUES 7

(a) Point (b) Line (c) Region

Figure 1.6: Spatial Element Types

(a) traditional kNN input (b) traditional kNN output

Figure 1.7: Traditional kNN input and output are discrete points

Nearly all spatial queries are objects related which means both the input(fig.1.7(a))

and output (fig.1.7(b)) of the queries are discrete points, for example, traditional k

nearest neighbor search tries to find the nearest neighbors (points) of query points.

But lines have not been fully introduced into the query processing. Motivated by

this point, the second main chapter of my thesis is called Route and Path related

kNN Queries.

While in reality, path/route is another important element in spatial space, the

user might want to input a path to find a set of points, or input a set of points to

create an optimal path, or even input a query path and output a result path at the

same time.

8 CHAPTER 1. INTRODUCTION

1.3 Contributions

Based on the problems and possible extensions of existing works listed in section

1.2, we list our contributions generally in this section. Altogether there are 2 main

categories of contribution which includes 5 topics.

1.3.1 Contribution 1: Using the Voronoi Diagram to en-

hance the performance

As stated in section 1.2, network expansion is the widely used methodology to

process the spatial queries based on underlying road network. The performance has

become a significant drawback because each intersection node will perform traverse

expansion to different directions. As a result, our first contribution of the thesis

is using a Voronoi Diagram to merge the road segment although it requires pre-

calculation. In this chapter, we have proposed 2 approaches which use the Network

Voronoi Diagram as the methodology.

• Query Optimization on Continuous kNN Query Search

In Section 3.2, we propose an alternative approach for Continuous k Nearest

Neighbor query processing, which is based on a Network Voronoi Diagram (we

call our proposed method VCkNN, for Voronoi CkNN).

This approach avoids the weakness of existing work [GR03, GR99] and im-

proves the performance by utilizing a Voronoi diagram. VCkNN ignores inter-

sections on the query path; instead, it uses Voronoi polygons to subdivide the

path. In section 3.2, the Voronoi diagram, which originates in computational

geometry and has been used successfully in other areas, such as industrial

electronic area [VS08], and will demonstrate its effectiveness in a mobile envi-

ronment.

Our proposed VCkNN approach is based on the attributes of the Voronoi

diagram itself and using a piecewise continuous function to express the distance

1.3. CONTRIBUTIONS 9

change of each border point. At the same time, we use Dijkstra’s algorithm

to expand the road network within the Voronoi polygon.

VCkNN, DAR [SE06] and IE [KS05] are all approaches for CkNN queries.

But VCkNN is different from DAR and IE in most aspects. Therefore before

introducing our VCkNN algorithm, we would like to highlight the main differ-

ences between VCkNN and DAR and IE: a) Path division mechanism, b)kNN

processing, c) Sequence finding of split nodes, d)Processing split nodes. These

are discussed in detail in section 3.2.

• Query Extension on Multiple Objects Types

Current approaches of k nearest neighbor search focus on one object type,

which narrows down the mobile query scope. For example, find the nearest

3 hospitals from my current location. In some cases, users may want to get

kNN of different object types (multiple object types), as well as to obtain the

shortest routes. Motivated by these, section 3.3 proposes new approaches on

three different queries involving multiple object types using a network Voronoi

Diagram. In these queries, more than one object type is considered and the

query result is highly related with the object types. Every object belongs to

one of the category and there is no overlap between categories. That is the

basic property of a multiple-object-type query.

Section 3.3 focuses on three different types of kNN mobile queries, including:

a) query to find nearest neighbor for multiple types of interest point (or 1NN

for each object type), b) query to give the shortest path to cover multiple-

object-types in a pre-defined sequence, and c) query to find an optimum path

for multiple object types that gives the shortest path that covers the required

interest objects in a random sequence.

10 CHAPTER 1. INTRODUCTION

(a) kNN Demonstration (b) Path kNN Demonstration

Figure 1.8: Comparison of kNN and path kNN result

1.3.2 Contribution 2: Bringing route into kNN spatial queries

As stated in section 1.2, most of the existing queries put discrete points as input

and output. Consequently, Chapter.4) concentrated on bringing route/path into the

input or output or both of the queries.

• Path based kNN Search Query

A possible query that a user may invoke is as follows: A market researcher

wants to do a survey on restaurants and the sample size should be 10. The

question is to find the shortest path for the user to visit all the 10 restaurants

one by one. Range search cannot be used as there is no fix range. kNN search

cannot be used either because after we visit the first interest point, the user

may not want to return to query point and go to the second one. In this case,

the user wants to continue to go to the second location from the first, and

so on. This is a typical path based k nearest neighbor query (pkNN) and we

propose a corresponding method in section 4.2 to process this type of query

efficiently.

Fig.1.8(b) shows the aim result of the Path based k nearest neighbor queries.

Unlike fig.1.8(a) which considers all objects as discrete points, Path bases k

nearest neighbor search is to find the shortest path which goes through k

1.3. CONTRIBUTIONS 11

Figure 1.9: An example of Path Branch Point based kNN Search Queries

objects. In general, the overall distance of the path becomes the selection

criteria.

• Path Branch Point based kNN Search Queries

In section.4.3, we bring a novel query which is called path branch point (PBP).

PBP can be defined as follows: given a set of candidate interest objects and a

pre-defined path which starts at S and end at E, find a path which starts at

S, via an interest point P and ends at E. This path should overlap with the

pre-defined path as much as possible with acceptable distance increment. This

is a novel query which is motivated by users’ common requirements because

most users have ad hoc paths in their daily travel and they can tolerate a

longer driving distance to some extent if they can drive on a familiar path

when they want to visit a certain type of object on the way. In this proposed

approach, an Adjust Score is calculated for each path which is determined

by overlapping distance and increased distance cost. The following example

explains the query.

Fig.1.9 shows an example of Path Branch Point based kNN Search Query. The

path from S through red line to E is the query path. User query is to find an

12 CHAPTER 1. INTRODUCTION

alternative path which starts from S and ends at E as well as on the way, an

object (p) should be visited. So yellow (via object p2) and purple lines (via

object p1) are two candidate results. We will calculate the Adjust Score for

each candidate path and decide which path is optimal.

• Time Constraint Route Search over Multiple Locations

Conventional route search queries aim at finding the shortest distance which

is certainly useful, but often impractical, due to these following reasons: (i)

each location or place, which are normally a spatial business entity (e.g. bank,

dry cleaner, supermarket) has the opening hours - this implies that when this

place is visited, it must be during their business hours; and (ii) the traveling

time from one location to another needs to be considered, as in many cases,

traveling time is more useful than the distance alone. Hence, in order to make

route planning over visiting locations, we must take these two constraints into

account. Section 4.4 defined these constraints as Time Constraints. Therefore,

we proposed an approach called route search over multiple locations which

takes time constraints into consideration (see fig.1.10).

It is therefore imperative to assume that the route or path that arrives on the

location outside the operation hours is considered as an invalid path. This

problem exists in daily life, whereby we sometime have to choose a longer

path to go back and forth to places just to meet the business hours of one

location before its closing time. Hence, we need to draw time constraints into

our proposed methods.

In section 4.4, we focus on two problems of route search over multiple het-

erogenous locations: one for fixed locations, and the other for flexible loca-

tions. Fixed locations refer to predetermined locations by the user, such as

Citibank on a specific location, Pharmore pharmacy on a specific location, etc.

In this case, not only a specific business entity is specified, such as Citibank

and not any bank, or Pharmore pharmacy and not any pharmacy, but also

1.4. THESIS ORGANIZATION 13

(a) Fix Location Route Search (b) Flexible Location Route Search

Figure 1.10: Motivation of time constraint route search over multiple locations

the specific location, such as Citibank on 180 High Street, or Pharmore phar-

macy on 25 Cure Road, etc. Hence, a Route Search over Fixed Locations (our

proposed algorithm is then called RFix) finds the most efficient route to visit

the user-defined fixed locations in a non-predefined order (see fig.1.10(a)).

Flexible locations, on other hand, refer to predetermined location types that

are not the exact location itself. For example, if user wants to visit a pharmacy,

which can be the pharmacy anywhere; or to visit Citibank, but can be in any

branch. So, a route search over flexible locations for example is to find the

most efficient route to visit Citibank, a pharmacy, etc, in a non-predefined

order. Our proposed algorithm for Route Search over Flexible Locations is

abbreviated as RFlex, (see fig.1.10(b)).

Both RFix and RFlex use the travel time network to estimate the travel time

between any two locations, as well as using the time constraints imposed by

not only the operating hours of each location, but also the traveling time itself.

1.4 Thesis Organization

This thesis is organized as follows (Refer to Fig. 1.11).

• Chapter 1 gives a brief introduction of spatial database, problems and contri-

butions.

14 CHAPTER 1. INTRODUCTION

Figure 1.11: Thesis structure

• Chapter 2 provides a survey of the related works.

• Chapter 3 is the first main part of the thesis, which includes 2 approaches of

Voronoi based k Nearest neighbor query. More specific descriptions are:

– Section 3.2 optimizes the existing continuous k nearest neighbor search

query by using a Network Voronoi Diagram. It improves the efficiency of

the CkNN methods.

– Section 3.3 presents a k nearest neighbor search query with multiple types

of objects and uses a Voronoi Diagram to find k Nearest Neighbor which

has been proven to outperform existing methods.

• Chapter 4 is the second main chapter, which includes 3 approaches of path/route

based k Nearest neighbor search. More specific descriptions are:

– Section 4.2 proposes a query that is called path based k nearest neighbor

search. It aims at providing a path that visits k objects and the length

of the path is the shortest.

1.4. THESIS ORGANIZATION 15

– Section 4.3 explains a query which is called path branch point route

search. By given the query path and an object type, path branch point

route search retrieves the optimal path that balances the overlap ratio of

query path and the length of result path.

– Section 4.4 describes a novel route research which adds time constraint

into the search. In addition, a user may define the objects visiting se-

quence as sequential or random.

• Chapter 5 concludes our research, describes some of the open problems and

provides several possible directions for future work.

16 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminary and Related Work

2.1 Introduction

In this chapter, we consider the literature review on the work related to spatial

query processing which requires the database system to access the objects with

spatial features in the database. We briefly describe the queries which process the

queries more accurately and efficiently. To sum up, in most cases, the distances

between the objects are the merits in the results of these queries. The distance is

calculated using Euclidean distance or network distance relying on the underlying

road networks. The special purpose spatial index and query specific properties are

used in order to reduce the system cost. As a result, the spatial objects are treated

as points in the space throughout this thesis.

This chapter is constructed as follows:

Firstly, section 2.2 is the literature review with the motivation that originated

this thesis. After introducing the basic concepts of spatial query processing elements,

the following 5 subsections survey the related work on kNN queries summarized by

Fig.2.4.

• Section 2.2.1, we review the basic concepts of spatial queries elements and the

features of the Voronoi Diagram and the Network Voronoi Diagram.

17

18 CHAPTER 2. PRELIMINARY AND RELATED WORK

• Section 2.2.2 describes the typical k nearest neighbor approaches including

IER, INE and V N3. IER, INE are using Network Expansion as the tech-

nique and V N3 is using the Voronoi Diagram as its metrology. These two

methods are the most popular methodology in spatial query processing named

as Network Expansion and Voronoi Diagram. There is a brief demonstration of

these methods illustrated and the differences are analyzes as well. The conclu-

sion is drawn that under most of the case, the Voronoi Diagram outperforms

Network Expansion. That is the motivation of the first main chapter of my

thesis.

• Section 2.2.3 focuses on the continuous k nearest neighbor queries including

DAR/eDAR and IE. Both DAR/eDAR and IE are using Network Expansion

whereas we proposed another approach using Voronoi Diagram to merge the

road segments into polygon. The performance Evaluation has proven that our

new method can significantly improve the efficiency.

• Section 2.2.4 discusses the existing route search queries although it is still new

to spatial queries. The second main chapter of the thesis is to enrich the route

search queries.

• Section 2.2.5 introduces other k nearest neighbor queries including Reverse

Nearest Neighbor Queries and Mutual k Nearest Neighbor Queries search.

Secondly, section 2.3 points out the outstanding problems after reviewing the

existing works and formally defines the problems.

Finally, before proposing new approaches, section 2.4 concludes this chapter

by using fig.2.13 to compare the contribution with the existing works in order to

highlight the principle points of this thesis.

2.2. RELATED WORK 19

2.2 Related Work

2.2.1 Preliminaries

Spatial Queries Elements

Definition 2.2.1. (Road networks) (R) is a weighted graph G={V , E}, where

V is a set of vertices {v1, v2,...vn}, and E is a set of edges {e1, e2,...em} and ∀ei∈E,

weight(ei)∈R+.

In Def. 2.2.1, the underlying road network is constructed by choosing the layer

of the map. In the road network diagram, the objects are called vertices while the

connections between vertices are called edges, in other word, road segments.

Definition 2.2.2. (A vertex) vi∈{n1, n2,...nj}∪{p1, p2, ... pk}, where n is an

intersection node, and p is an interest point.

Definition 2.2.3. (Vertex Scope) Let N={n1, n2,...nj} be a set of intersec-

tion nodes, and P={p1, p2, ... pk} be a set of intersection points, then a vertex

vi∈{N∪P}.

Def. 2.2.2 and Def. 2.2.3 defines the scopes of vertices, which includes intersection

nodes and interest objects. N represents the set of intersection nodes while P

represents the set of interest objects.

Definition 2.2.4. (Weight) ∀ei=(vi, vj) ∈ E, weight(ei) = dnet(vi, vj), where

dnet is the network distance between vj and vk.

The weight of the edges is determined by the measure of the query (def.2.2.4. If

the optimal result is based on the travel time, then the weight of the edges is the

cost of travel time, while in this chapter, the shortest network distance determines

the weight because the query result is defined as the shortest path.

Fig.2.1 is an example of road networks, in which road network intersections n1-

n10 (white points), and interest points p1-p3 (black points) are vertices and the solid

lines connecting these vertices are edges. The number on each edge represents the

20 CHAPTER 2. PRELIMINARY AND RELATED WORK

Figure 2.1: An example of road networks

shortest distance, in other words, the weight of the edge. Most of the spatial query

is based on Euclidean distance. In reality, the distance between objects should not

be determined by the length of the direct line linked objects. The network distance

between objects suits the spatial query the most.

Voronoi Diagram based on Euclidean Distance

Voronoi Diagram is a special kind of decomposition of a metric space determined

by distances to a specified discrete set of objects in the space [OBSC00]. Given a

set of points S, the corresponding Voronoi diagram will be generated. Each point s

has its own a Voronoi cell V(s), which consists of all points closer to s than to any

other points. The border points between polygons are the collection of the points

with equation of distance to shared generators. Fig.2.2 gives an example of Voronoi

Diagram based on Euclidean distance. Pi represents the interest points and the lines

are the shared border edge between polygons.

There are some basic properties associated with Voronoi Diagram, which have

been well presented by Okabe, et al [Saf05]. We will list some of the relevant

properties below:

• Property 1: The Voronoi diagram of a point set P , V (P), is unique.

2.2. RELATED WORK 21

Figure 2.2: The Voronoi Diagram

• Property 2: The nearest generator point of pi (e.g. pj) is among the generator

points whose Voronoi polygons share similar Voronoi edges with V (pi).

• Property 3: Let n and ne be the number of generator points and Voronoi

edges, respectively, then ne ≤ 3n-6.

• Property 4: From property 3, and the fact that every Voronoi edge is shared by

exactly two Voronoi polygons, we notice that the average number of Voronoi

edges per Voronoi polygon is at most 6, i.e., 2(3n-6)/n = 6-12/n ≤ 6. This

means that on average, each generator has 6 adjacent generators.

Using Voronoi Diagram to find nearest neighbor will let the algorithm perform

more efficiently as all distance between borders and generators can be pre-calculated

and stored. V N3 and PINE utilize Voronoi diagram efficiently to find kNN. While

currently there is no CkNN approach using Voronoi diagram to ignore the real

network connection within the polygon, this point becomes our motivation of this

chapter, Voronoi-based CkNN.

22 CHAPTER 2. PRELIMINARY AND RELATED WORK

Figure 2.3: Network Voronoi Diagram

Network Voronoi Diagram

Voronoi diagram mentioned previously is the Voronoi diagram based on Euclidean

distance. In the real world, when we want to search nearest neighbor or to generate

the appropriate moving path, we use network distance, and not Euclidean distance.

Network Voronoi Diagram is the Voronoi diagram, which uses network distance to

generate the diagram, instead of Euclidean distance [XZTS08, Saf05]. In a typical

Voronoi diagram, the shared borderline is the mid perpendicular of the links con-

nected with two corresponding generators. However, in Network Voronoi Diagram,

the borderline consists of discrete points, which are the middle points of network

roads connected with two corresponding generators. A polygon in a network is the

set of nodes and edges, which are closer to one generator than to any other. This is

the principal difference between Voronoi Diagram and Network Voronoi Diagram.

Network Voronoi Diagram will be used in our proposed method. The most basic

property is the generators with shared border points have equal network distance to

the same border point they shared. In fig.2.3, the different colors represent different

polygons and the border points of the Network Voronoi Diagram are the discrete

points on the roads.

2.2. RELATED WORK 23

Figure 2.4: Related Work Summary Chart

In the following 4 sections, we are going to categorize existing works which

are highly related to this thesis. The following chart, fig.2.4, shows the general

categorized criterion as well as the techniques that are used in these existing works.

2.2.2 Typical kNN Queries

The existing methods for static kNN cover Incremental Euclidean Restriction (IER),

Incremental Network Expansion (INE) [PZMT03] and Voronoi Based Network Near-

est Neighbor (V N3).

Incremental Euclidean Restriction (IER)

Incremental Euclidean Restriction (IER) was proposed in 2004 [PZMT03]. Firstly,

IER uses the entity R-tree to retrieve the kth node’s Euclidean distance. Secondly,

IER restricts the interest point by this distance and calculates every point’s network

distance to a query point that is within the range of kth node’s Euclidean distance

and then sorts them in ascending order of network distance to query point. Then

set the kth node’s network distance as dmax. Finally, for the following interest points

in Euclidean distance sequence continue to calculate their network distance to query

point. If it is smaller than dmax, insert in into network distance queue and update

24 CHAPTER 2. PRELIMINARY AND RELATED WORK

dmax. These operations will terminate until next node’s Euclidean distance is larger

than dmax.

IER algorithm performs well when there are not many false interest points which

means its Euclidean distance falls into the restrict zone while its network distance is

far from the query point. Too many false points will reduce the performance sharply

and if the density of the interest points is high, the performance of IER leaves much

to be desired.

For example, there are 10 interest points and their Euclidean distances to query

point are {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10} = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. The

query is 3NN.

Firstly, the 3rd node according to its Euclidean distance will be p3.

Secondly, calculate {p1, p2, p3} network distance to query point. Suppose {DN(p1),

DN(p2), DN(p3)}= {3, 7, 12}. dmax= 12.

Then as next node is p4, calculate its network distance DN(p4) = 4. Then insert

p4 into the queue and dmax=7. Continue to do p5, DN(p5) = 5. Then dmax= 5.

Queue will become {p1, p4, p5}.

Finally, next node will be p6,, because its Euclidean distance (6) is larger than

dmax(5). This algorithm terminates.

Incremental Network Expansion(INE)

Incremental Network Expansion (INE) is an approach of k nearest neighbor query

that was proposed in the same paper of IER. The INE algorithm is based on Dijk-

stra’s algorithm. The basic idea of INE is network expansion.

INE firstly locates the query point to find which segment includes the query

point. It records the start and end nodes of this segment with their distance to

query point, puts them in RS and sorts them in ascending sequence. Then checks

whether there is any interest point on this segment and add these points into the

result list. Expand the top node in RS, add its adjacent nodes into RS and loop

these operations until kNN has been found. This distance should be record as dmax.

2.2. RELATED WORK 25

Figure 2.5: An example of INE query

Continue to expand the other nodes in RS, once the kNN has been found, update

dmax if the new distance is smaller than origin dmax. Terminate the algorithm if all

other nodes in RS have a larger distance to q than dmax.

Take Fig.2.5 as an example. The query is defined as finding 2NN from query

point q.

Firstly, locate q to find the segment which covers q, the result is FB. Then check

whether any object exists in this segment.

Secondly, add F and B into S set. S = {(F ,1), (B,3)}. Sort the nodes in S by

their distance to R in ascending order. Then add F in the top of S, expand F and

check whether any object is on FA or FG or FE. We find p1 as first NN. Then add

all F ’s adjacent node into S set and sort again. S = {(B,3), (G,4), (E,4), (A,8)}.

Thirdly, expand B and check whether any object is on BA. Then we find p4 as

the second NN, and dmax = 7. Check whether any object is on BC. If p2 is nearer

than p4, update dmax = 5 and S = {(G,4), (E,4), (C,6), (A,8), (D,8), (A,11)}.

Finally after expanding G and E, the distance is over dmax, INE terminates.

The main advantage of INE is that its architecture can be used in other query

solutions, although compared to PINE its performance is not the best [Saf05].

26 CHAPTER 2. PRELIMINARY AND RELATED WORK

Voronoi-based k nearest neighbor search (V N3)

Voronoi-based k nearest neighbor search (V N3) was proposed [KS04] in 2004. V N3

is based on the properties of the Network Voronoi diagrams and also localized pre-

computation of the network distances for a very small percentage of neighboring

nodes in the network. In general, it keeps the result in ascending order, adopts a

filter and makes refinement steps to generate and filter candidate results, it also uses

localized pre-computed network distances to save response time.

To talk in detail, the first nearest neighbor query point can be told directly by

intuition via the Voronoi diagram. The polygon that contains the query point will

be the first nearest neighbor. Subsequently, 1stNN ’s adjacency information can be

utilized to provide a candidate set for other nearest neighbors of q. Finally, the

actual network distances from q to the generators in the candidate set can be pre-

computed and this step will refine the set. The filter/refinement process in V N3

is iterative: at each step, firstly, a new set of candidates is generated from the

NVPs of the generators that are already selected as the nearest neighbors of q, then

the pre-computed distances are used to select only the next nearest neighbor of q.

Hence, the filter/refinement step must be invoked k times to find the first k nearest

neighbors of q ([KS04]).

The following figure.2.6 shows the example of V N3. Suppose the query is 3NN.

First of all, we can tell 1stNN of query point is p1. Then candidate set CS

updates as CS = {p2, p3, p4, p5, p6, p7, p8}.

Secondly, calculate the distance from candidate interest points in CS to query

point and select the 2ndNN. Suppose it is p6. Then update CS by pop out 2ndNN

and add all its adjacent interest points into CS.

CS = {p2, p3, p4, p5, p6, p7, p8, p18, p17, p16, p15}.

Subsequently, repeat the previous step and suppose p5 is the 3rdNN. As k = 3,

which means all interest points have been found, the algorithm terminates.

In summary, V N3 performs well if we are only concerned with a static kNN

query.

2.2. RELATED WORK 27

Figure 2.6: An example of V N3 query

2.2.3 Continuous kNN Queries

If the query point is moving, it is infeasible to apply kNN at every point of the

line, because it will generate a large number of queries and a large overhead. So

the objective of a moving or continuous query is to efficiently find the location

of the split node(s) on the path, in other words, where kNN changes. There are

two important existing works on continuous k nearest neighbor (CkNN) based on

network distance. The first one is DAR and eDAR based on PINE, proposed by

Safar and Ebrahimi [Saf06]. Another CkNN work is Intersection Examination (IE)

based on V N3 proposed by Kolahdouzan and Shahabi [KS05]. Hence, the following

section will discuss these two works and analyze their strengths and weaknesses.

DAR/eDAR

DAR/eDAR was proposed by Safar and Ebrahimi [Saf06]. These are based on PINE,

which uses road networks as the underlying map. These two algorithms start by

dividing the query path into segments, each of which is separated by a network

28 CHAPTER 2. PRELIMINARY AND RELATED WORK

Figure 2.7: An example of DAR: step one

intersection node. Then they find kNN tables for two adjacent nodes, compare the

two tables, and swap the position to make these two the same. Every swap would

incur a split node, and when the two tables are exactly same, all split nodes have

been found. Then split nodes’ position and kNN tables are the result of the query.

In order to illustrate this clearly, the following shows an example of the process.

Firstly, we divide the query path into segments using the intersect nodes on the

path as shown in fig.2.7. In this example, the query starts from S and ends in E.

The path from S to E has a number of intersections, and the path separated by an

intersection is a segment. In this example, the path from S to A is one segment,

and from A to B is another, and so on.

Secondly, for every segment (e.g. like AD in fig.2.8), we find the kNN of the two

ending points (A and D), from which we generate two kNN lists for both ending

points (see fig.2.9, assume the query is 2NN). Then we aggregate these lists to form

one complete list (see fig.2.9).

Then for every adjacent interest points, calculate λ according to the following

formula (note that I is the distance column in the ready queue RQ for a particular

interest point, and Dist is a distance function).

λi,i+1 =
Dist(A,D) +Dist(D, I ′i)−Dist(A, I ′i)

2

Then apply the same operation between the last interest point and every point

in RQ. The smallest λ will be the moving direction of query point. Swap the list to

find another split until the two lists are the same.

2.2. RELATED WORK 29

Figure 2.8: An example of DAR: Step 2

Figure 2.9: An example of DAR: Step 3

It is an undeniable fact that DAR and eDAR perform well for a CkNN query,

except that they divide the query path into segments. This will let the performance

go worse as the number of intersections increases. Also a large number of overheads

will be incurred even if there is no split node in some segments. Nevertheless, we

need to do kNN for every segment although we find no split node. In view of the

above mentioned reasons, an approach should be proposed which does not take

intersections into account.

30 CHAPTER 2. PRELIMINARY AND RELATED WORK

Intersection Examination (IE)

The second approach of CkNN is Intersection Examination (IE) which is based on

V N3. In general, similar to eDAR, IE separates the query path into segments. IE

then tries to find the split nodes by defining the trend for each interest point in the

current kNN result list and sorts them in an ascending order. When there is any

change in the position of the interest point, it becomes a split node.

To be specific, if the query is to find continuous 1NN, it can simply find all nodes

that intersect with the border of the Voronoi diagram. The IE algorithm divides the

query path into smaller segments using the intersection nodes on the path. From

every segment, IE uses V N3 to find kNN for the two terminating nodes.The kNN

results of every segment should be within the combination congregation of the kNN

result of the two terminating nodes. We can obtain the trend of every interest point

at the start point’s kNN results, and then find the point where two adjacent nodes

have the same distance to the query point, that is the split node.

Similar to DAR and eDAR, IE indeed is an alternative approach to a CkNN

query, except that it also needs to divide the query path into segments. Using IE,

the trend of interest points can be monitored either moving closer or away from the

current position of the query. Our approach of Voronoi CkNN will provide a more

comprehensible way to let the user read kNN results for any node on the query path.

2.2.4 Route Search query

Route search has many important applications in various fields such as commerce,

transportation, tourism, security and health-care services. In such applications, a

route search should be efficient, intuitive and expressive, allowing a user to specify

complex search queries and receive an immediate answer. However, current route-

search applications on the Web are limited to a point-to-point search. When com-

puting a route, different goals and constraints can be defined, such as minimizing

the traveling length, limiting the route to be over roads of a certain type, etc.

2.2. RELATED WORK 31

In this section, we are going to review some popular route search query although

the area has not been widely discussed followed by couple of algorithms discussed

in detail because they are close to the approaches I proposed in the thesis. More

specifically, we will present the related work on efficient orienteering-route search

over uncertain spatial data sets and Incremental Route Search Query.

Efficient Orienteering-Route Search over Uncertain Spatial Data sets

Paper [DKD08] considers route search over uncertain data sets. Spatial data might

be instinctively uncertain due to various reasons such as its acquisition process,

imprecise modeling and manipulation. An uncertain data set can contain correct

and incorrect objects. The uncertainty of the data represents a confidence value

indicating its probability to be correct. When it is a real-world entity, the object

is considered as correct, it is considered as incorrect otherwise. A user may be

able to test the correctness of an object by visiting the entity at the location of

that object. In this paper, the author defined a problem called a generalization

of the Orienteering Problem (OP). OP considers a route search where the aim is

finding a route that starts at a given location and traverses through as many correct

objects as possible without exceeding a given distance. Finding a solution to OP

is a problem that cannot be computed efficiently because OP is a generalization

of TSP (Traveling Salesman Problem); hence, it is an NP-hard (nondeterministic

polynomial-time hard) problem that is unlikely to have a polynomial-time algorithm.

This paper presents heuristics to OP that are efficient and scalable.

The Greedy Algorithm: The first algorithm proposed in paper [DKD08] is

called the greedy algorithm. The greedy algorithm constructs a route iteratively by

making the most profitable increase in each step. Suppose Pi is the path constructed

in step i and let oi is the last object of Pi. Pi will be considered as the starting point

s in step 0. For each step i, the algorithm checks the set N of objects that are

in D and are not already in Pi. In each step, the object o′ is retrieved from N

if distance(oi, o
′)/confidence(o′) 6 distance(oi, o

′′)/confidence(o′′) for any object

32 CHAPTER 2. PRELIMINARY AND RELATED WORK

o′′ in N . If length(Pi) +distance(oi, o
′)6Lmax,it adds the edge(oi, o

′) to Pi and

continues to step i+1. Else, it returns Pi. The performance evaluation illustrated

that the greedy algorithm is simple and relatively efficient as it does not require

any preprocessing and its time complexity is O(|D|2) where |D| is the size of D.

The greedy algorithm is effective when the objects of D are uniformly distributed,

i.e., the data set is uniform in all directions and their confidence values have a small

variance, i.e., when all the confidence values are approximately equal. In other word,

the greedy algorithm for any direction performs as well as in any other direction, and

the produced route will have an expected prize value close to the optimal. However,

when the data set is not uniform, the greedy algorithm may not provide good results.

The Double-Greedy Algorithm: The Double-Greedy Algorithm (DG) in

paper [DKD08] is an improvement of the Greedy Algorithm. The Double-Greedy

Algorithm (DG) intuitively examines pairs of edges for deciding which node to add.

Formally, in step i, the algorithm extends Pi by adding the object o′ such that there

exists o′′ for which confidence(o′)/distance(oi, o
′) + confidence(o′′)/distance(o′, o′′)

> confidence(o∗)/distance(oi, o∗) + confidence(o∗∗)/distance(o′, o∗∗) for any o∗

and o ∗ ∗ that are in D and are not in Pi (Note that also o′ and o′′ are in D and

are not in Pi). Algorithm DG has time complexity O(|D|3). In order to increase

efficiency, DG checks a pair of edges only when the following condition holds: α

* distance(oi−1, oi) > distance(oi, o
′), where α>1 is a fixed factor. Intuitively this

condition is satisfied when the next edge we consider to add to the route is much

longer than its preceding one. The factor α is to detect when the route leaves a

cluster and we want to direct the route to a new cluster.

The Adjacency-Aware Greedy Algorithm: Motivated by the entities’s dis-

tribution, for example, hotels are usually located near the coast or near tourist sites;

restaurants are located in the city center, clusters should be taken into account.

Given a data set that contains clusters of objects, a good heuristic for constructing

an OP route is to give precedence to objects that are in a cluster over objects that

2.2. RELATED WORK 33

are not in a cluster. This is defined as The Adjacency-Aware Greedy Algorithm

(AAG).

AAG does modeling on the given data set as a directed weighted graph where the

objects of the data set are the nodes and the weight of the edge between every pair

of nodes is a combination of the distance between the objects and the confidence of

the target node. Then, AAG computes for each node the probability of reaching this

node in a random walk on the graph. Next, AAG replaces the confidence values on

nodes by a combination of the confidence values and the random-walk probabilities.

Finally, it applies the greedy algorithm using the new values. AAG outperforms the

other algorithms of the Greedy for data sets that have clusters. The AAG improves

the Greedy algorithm by giving a higher weight to objects that have many near

neighbors, especially if the near neighbors have high confidence values.

The Adjacency-Aware Greedy Algorithm with Buffering: The Adjacency-

Aware Greedy Algorithm with Buffering starts by a similar computation as in AAG,

and for each edge in the route, AAGB builds a buffer. It applies a pre-processing

step similar to AAG by the calculation of new weights. In addition, it finds the

distance between every pair of objects in D, and it computes the mean of these

distances, denoted this mean by L. AAGB constructs the route greedily in the same

way as AAG, but uses a buffer to add objects that are near the route constructed

by AAG. The buffering is computed as follows. Suppose in step i the last object is

oi, AAGB increases the route by adding the object oj. di,j = distance(oi, oj) and

bi,j is the width of the buffer. We compute the size of bi,j to guarantee that ∆Li,j

= distance(oi, o
′) + distance(o′, oi) - di,j 6 L. That is, the added distance by going

to some object o′ in the buffer ∆Li,j should not exceed the mean distance between

objects in the dataset.

Incremental Route Search Query: The following paragraphs are going to

summarize some existing works of route search query which have attracted increasing

attention nowadays. Li et al. [LLT11] propose a new query called Trip Planning

Query (TPQ) in spatial databases, in which each spatial object has a location and

34 CHAPTER 2. PRELIMINARY AND RELATED WORK

a category, and the objects are indexed by an R-tree. Each Trip Planning Query

consists of three components: a start location s, an end location t, and a set of

categories C, and it is to find the shortest route that starts at s, passes through

at least one object from each category in C and ends at t. TPQ has been proven

that it is a deduction from the Traveling Salesman problem (NP problem). Based

on the triangle inequality property of metric space, two approximation algorithms

including a greedy algorithm and an integer programming algorithm are proposed.

Compared with TPQ, keyword-aware optimal route query, denoted by KOR,

which is to find an optimal route such that it covers a set of user-specified keywords,

a specified budget constraint is satisfied and the objective score of the route is

optimized. The problem of answering KOR queries is NP Problem. Paper [CCCX12]

devises two approximation algorithms, i.e., OSScaling and BucketBound. Results

of empirical studies show that all the proposed algorithms are capable of answering

KOR queries efficiently, while the algorithms BucketBound and Greedy run faster.

We also study the accuracy of approximation algorithms.

Sharifzadeh et al. [SKS08] propose a variant problem of TPQ, called optimal

sequenced route query (OSR). A total order of OSR on the categories C is imposed

and only the starting location s is specified. Two elegant exact algorithms LLORD

and R-LORD are proposed to deal with query OSR. OSR are constructed under

the same setting which is indexed by an R-tree. The metric space based pruning

strategies are developed in the two exact algorithms.

Chen et al. [CKSZ08] define the multi-rule partial sequenced route (MRPSR)

query, which is a unified query of TPQ and OSR. Three heuristic algorithms are

proposed to answer MRPSR. KOR is different from OSR and MRPSR and their

algorithms are not applicable to process KOR.

Kanza et al. [KSSD08] brings in a different route search query on the spatial

database: the length of the route should be smaller than a specified threshold while

the total text relevance of this route is maximized. Greedy algorithm is proposed

2.2. RELATED WORK 35

without guaranteeing to find a feasible route. Their team develop several heuris-

tic algorithms for answering a similar query in an interactive way [KLSS09]. The

progress is like this: the user provides feedback on whether the object satisfies the

query after visiting each object and the feedback is considered when computing the

next object to be visited. Another work proposed by this team, [LKSS10], devel-

oped approximate algorithms to solve OSR with order constraints in an interactive

way. Kanza et al. also study the problem of searching optimal sequenced route in

probabilistic spatial database [KSS09].

Malviya et al. [MMB11] is aiming at answering continuous route planning queries

over a road network, in other words, to find the shortest path in the presence of

updates to the delay estimates.

Roy et al. [RDAYY11] consider the problem of interactive trip planning. The

query helps the users’ itineraries based on the users preferences and time budget.

Yao et al. [YTL11] propose the multi-approximate-keyword routing (MARK)

query. A MARK query is specified by a starting and an ending location, and a set of

(keyword, threshold) value pairs. It searches for the route with the shortest length

such that it covers at least one matching object per keyword with the similarity

larger than the corresponding threshold value.

2.2.5 Other k Nearest Neighbor queries

In this section, the popular variants of nearest neighbor queries are described. More

specifically, we present the related work on reverse nearest neighbor queries in section

2.2.5. Then section 2.2.5 reviews the mutual k nearest neighbor queries.

Reverse Nearest Neighbor Queries

Reverse nearest neighbor queries search, as one of the most popular variant of nearest

neighbor query, focuses on the inverse relation of k nearest neighbor search. The

definition of reverse neighbor query (RNN) is to find all the objects that consider q

as nearest neighbor, which is formally defined in Definition 2.2.5.

36 CHAPTER 2. PRELIMINARY AND RELATED WORK

Figure 2.10: An example of reverse nearest neighbor query approach

Definition 2.2.5. Reverse Nearest Neighbor: Given a set of objects P and a query

object q, a reverse nearest neighbor query RNN = {p | q = NNp, p∈P}.

The query result set of RNN may contain 0 element or one or more elements.

In [Ber93], the formal definition of reverse nearest neighbor query and some appli-

cations are proposed. For example, when a shopping mall chooses a site to open a

new branch, we may use RNN to find the customers effected by this shopping mall.

Moreover, RNN can also be used to choose the location which maximizes the number

of potential customers. That is a bichromatic example. Take another monochro-

matic example, a RNN query may be issued to find petrol stations that are affected

by opening a new petrol station at the new site. In summary, a bichromatic query

(the first example) is to find the reverse nearest neighbors within two different types

of objects. A monochramtic RNN query (the second example) is to find the reverse

nearest neighbors where the data set contains only one type of object [Ber93].

There are a lots of existing approaches of reverse nearest neighbors proposed in

the past few years [SRAE01,SAE00,MVZ02,LNY03,YL01]. We will briefly describe

some most popular and general algorithms in the following paragraphs.

In paper [KM00], a RNN query firstly pre-calculates a circle of each object p

that its nearest neighbor lies on the perimeter of the circle as shown in Fig.2.10.

2.2. RELATED WORK 37

Figure 2.11: An example of reverse nearest neighbor query approach - SAA

Another technique that does not have any preprocessing involved was proposed

by Stanoi et al. [SAE00], denoted as SAA. They partitioned the whole space centered

at the query point q into six equal regions of 60 degrees each (b, c, d, e, f and h

in Fig. 2.11). In each region, only the nearest neighbor to q can be the reverse k

nearest neighbor result. So the other point in the same region can be pruned. Take

fig.2.11 as an example, in the left-below region, assume h is the nearest neighbor of

q, they observe that for a nearest neighbor object h of q in this region; either h is

the RNN of q or there is no RNN in this region. But we can observe that h is closer

to i than q. As a result, there is no RNN of q in this left below region and we do

not need to consider other objects in this region. To sum up, SAA processes RNN

queries in two steps: firstly, find the nearest neighbor for each of the six regions and

then form as a candidate list. Secondly, for each point in the candidate list, generate

its nearest neighbor query. If the result is q, it should be included into q’s RNN

result. Otherwise, discard this point. As a result, a, i and g are pruned. When k

≥ 1, the RkNN queries can be solved in a similar way, i.e., in each region, the kth

nearest neighbor of q defines the pruned area.

Another reserve k nearest neighbor search approach is proposed by Tao et al

[TPL04], denoted as Half-Plane Pruning RNN. It brought the idea of perpendicular

38 CHAPTER 2. PRELIMINARY AND RELATED WORK

Figure 2.12: An example of reverse nearest neighbor query approach - Half-Plane
Pruning RNN

bisector into the methods in order to reduce the search space. Firstly we link d with

q, then find the midpoint of the the link dq. After that we form the perpendicular

bisector line (line d : q) with the link dq. Line d : q divides the space into two half

planes PLq and PLd where PLq contains q and PLd contains d. In other words,

there will not be any point considering q as nearest neighbor in plane PLd because

in this plane, points are closer to d other than q. Based on this property, we can

use the line to prune the MBRs which completely fall into Plane PLd. The same

steps are invoked for the rest of the objects until the smallest region is found. Their

approach can also be extended to answer RkNN queries that is to find all objects

for which q is one of their k nearest neighbors (see fig.2.12).

Mutual k Nearest Neighbor Search

Definition 2.2.6. Given a dataset P , a query point q and user defined k, mutual k

Nearest Neighbor search is to find the set of object S ⊆ P , that S = p | p ∈ NNk(q)

and q ∈ NNk(p), ∀p ∈ S.

kNN search is asymmetric. However, MkNN retrieval is symmetric. For example,

MkNN(p1) = {p2} indicating that MkNN(p2) = {p1}.

2.2. RELATED WORK 39

The following items list the popular mutual k nearest neighbor approaches [GZCL09].

SP is very inefficient in terms of I/O overhead and CPU cost, especially for large val-

ues of k. To overcome this deficiency, the last 4 approaches are proposed to improve

the performance of MkNN query processing via different optimization techniques.

• Simple processing algorithm (SP)

Simple processing algorithm (SP) is proposed based on the definition of MkNN

query by [GZCL09]. It firstly conducts a kNN search to retrieve the candidate

set CandidateSet = kNNq. Then it verified each candidate p ∈ CandidateSet.

The verification of a candidate p can be conducted again via a kNN search

to check whether q ∈ kNNp. If the result is yes, it means that q is among

the kNN of p and hence p is returned as an answer object. Otherwise, p is

discarded, i.e., it is a false hit.

• Two-step Algorithm (TS)

As every object included in the candidate set CandidateSet need to be verified

in the SP algorithm, the overhead and cost are extremely high. Since reverse

k nearest neighbor search can verify the object p as well, so this step can be

made to do the reserver k nearest neighbor of query point q. This method is

defined as two-step algorithm in [GZCL09].

• Reuse Two-heap Algorithm (RTH)

Reuse two-heap algorithm (RTH) is proposed together with SP and TS in

[GZCL09] , which attempts to fully use locally available nodes in order to re-

duce the redundant node accesses. In addition, an early termination condition

is developed to be applied in the verification process of the CandidateSet.

It is possible that any p in CandidateSet may be terminated earlier without

finding all the kNN of p.

• NN search with Pruning (NNP)

NN search with Pruning (NNP) introduces pruning heuristics at two places to

improve the search performance. The first pruning is conducted in integrating

40 CHAPTER 2. PRELIMINARY AND RELATED WORK

with kNN search, handled by an NNP Finding algorithm; and the second

pruning is introduced as a self-pruning process. The main target is to remove

those candidates that will not have any possibility to be RkNN(q).

• RNN search with pruning (RNNP)

When Size(kNNq) > Size(RkNNq), there is a better way to do the reverse k

nearest neighbor search of query point first, then verify each object in RkNNq

set. It is a reverse way of the traditional mutual k nearest neighbor, which

does the kNNq first and verifies it after that.

To sum up, this chapter reviews the existing works related to typical k nearest

neighbor search, continues k nearest neighbor search as well as k nearest neighbor

variants. Although the areas of interest have been filled up in the recent decades,

there are still some significant problems or, in other words, there are still some gap-

s/blank zones which have not been explored. Moreover, even the existing methods

which can solve the problems, but perform poorly under some circumstances.

2.3 Problem Definition

As mentioned above, the following list summarizes the general problems of existing

methodologies which are the motivation of this thesis as well. Fig.2.13 compares the

our proposed approaches with related works.

• Poor performance of Network Expansion Methodology

All of the approaches are constructed based on the underlying road connec-

tion between objects. Within the road map, roads are connected and joined

by thousands of intersection nodes which break the roads into small segments.

The total distance of the road is calculated by summing up the component

segment distances. As a result, network expansion is the technique which has

been widely used in the existing methods. Network expansion is processed as

follows: when encountering any intersection node, the traverse expansion is

done in every possible direction. In other words, if we suppose every node has

2.3. PROBLEM DEFINITION 41

four possible directions to go, then the expansion would be 4n, n is the number

of expansion nodes. From this calculation, we can infer that the performance

cost will behave like a parabola with the increasing number of intersection

nodes. This poor performance is inevitable because the complex road connec-

tion will result in large number of intersection nodes. Consequently, network

expansion methodology has an instinctive drawback which will lead to poor

performance of spatial queries. How to merge the intersection nodes or how

to avoid the expansion becomes a new topic to researchers who are engaged

in spatial query processing.

• Discrete points as kNN input and output.

Nearly all spatial queries are objects related which means both the input and

output of the queries are discrete points. While in reality, path/route is an-

other important element in spatial space. The second outstanding problem

is the unicity of the input/output types. Consider that the user might want

to input a path to find a set of points, or input a set of points to create an

optimal path, or input a query path and output a result path at the same time,

the second contribution can be made is bringing the path into kNN input and

output.

Consequently, the problem and contributions are summarized as follows:

Contribution 1 Network Voronoi Diagram is used to merge the road segment

which highly proves the performance of k Nearest Neighbor Search compared

to Network Expansion Methodology. Two Voronoi based k Nearest Neighbor

search queries are proposed in chapter 3, namely Voronoi-based Continuous

kNN Search Queries in section 3.2 and Multiple object types kNN Search in

section 3.3.

Contribution 2 As stated above, most of the existing queries put discrete points as

input and output. Consequently, Chapter 4 concentrated on bringing route/-

path into the input or output or both of the queries. Three route search queries

42 CHAPTER 2. PRELIMINARY AND RELATED WORK

Figure 2.13: Related Work vs. Approaches proposed in this thesis

are proposed in this chapter which are all route related, namely Path based

kNN Search Queries in section 4.2, Path Branch Point based kNN Search

Queries in section 4.3 and Time Constraint Route Search over Multiple Loca-

tions in section 4.4.

2.4 Summary

In this chapter, firstly we introduce the divisions of spatial queries from a query

point of view, a result point of view as well as the accuracy point of view. Then

it outlines the structure of this related work chapter. Secondly, a comprehensive

summary of the existing work is explained. Preliminarily it goes first followed by

several example and goes through a process of static k Nearest Neighbor Search,

continuous k Nearest Neighbor Search, route search queries and other spatial queries.

2.4. SUMMARY 43

After reviewing these approaches, two outstanding problems are pointed out which

also lead our two main part of contribution in my thesis. Finally, it summarizes this

chapter in this conclusion section and illustrates the contribution to existing work

in fig. 2.13.

44 CHAPTER 2. PRELIMINARY AND RELATED WORK

Chapter 3

Voronoi Based k Nearest Neighbor

Search1

3.1 Introduction

With the developing wireless devices and booming spatial query searching, nearly all

of the approaches are constructed based on the underlying road connection between

objects. Within the road map, roads are connected and joined by thousands of

intersection nodes which break the roads into small segments. The total distance

of the road is calculated by summing up the component segments distances. As

a result, network expansion is the technique which has been widely used in the

existing methods. Network expansion is processed as follows: when encountering

any intersection node, the traverse expansion is made to every possible directions.

In other words, if we suppose every node has four possible directions to go, then the

expansion would be 4n, n is the number of expansion nodes. From this calculation,

we can infer that the performance cost will behave like a parabola with the increasing

number of intersection nodes. This poor performance is inevitable because the

complex road connection will result in a large number of intersection nodes.

1Part of this chapter has been published in Zhao, G., Xuan, K., Rahayu, W., Taniar, D., Safar,
M., Gavrilova, M., and Srinivasan, B. Voronoi-based continuous k nearest neighbor search in mobile
navigation. IEEE Transactions on Industrial Electronics (TIE), 56(10):2247-2257. 2010.

45

46 CHAPTER 3. VORONOI BASED K NEAREST NEIGHBOR SEARCH

Consequently, Network Voronoi Diagrams are chosen to merge the network seg-

ments which obviously improves the performance and reduces the cost. In this chap-

ter, we propose two approaches, namely Voronoi based k Nearest neighbor search

and Voronoi based multiple types k Nearest neighbor. In both queries, Voronoi

Diagrams are used as the methodology which has been proven to be applicable and

efficient. The following paragraphs introduce them in detail.

Voronoi based k Nearest neighbor search is an approach to deal with the Con-

tinuous kNN (abbreviated as CkNN) query. CkNN [SE06,KS05,TPS02a] also have

attracted other researchers’ interest. In order to find split nodes, all existing con-

tinuous kNN approaches divide the query path into segments, find kNN results for

the two terminate nodes of each segment and then, for each segment, find the split

nodes. One segment of the path starts from an intersection and ends at another in-

tersection. For every segment, a kNN process is invoked to find split nodes for each

segment. If there are too many intersections on the path, there will be many seg-

ments, and consequently, the processing performance will degrade. These are the ob-

vious limitations of the current CkNN approaches. As a result, section 3.2 proposes

an alternative approach for CkNN query processing, which is based on the Network

Voronoi Diagram (we call our proposed method VCkNN, for Voronoi CkNN). This

approach avoids these weakness mentioned above and improves the performance by

utilizing a Voronoi diagram. VCkNN ignores intersections on the query path; in-

stead, it uses Voronoi polygons to subdivide the path. In this chapter, the Voronoi

diagram, which originated in the computational geometry [GR03, GR99] and has

been used successfully in other areas, such as industrial electronic area [VS08], will

be demonstrated in its effectiveness in a mobile environment.

Current approaches for kNN mainly use network expansion. Network expansion

consumes a large amount of processing time because segments invoke functions it-

eratively. Consequently, a Voronoi diagram is adopted as the most suitable tool to

solve kNN queries because it aggregates lots of segments into polygons. However,

current approaches focus on one object type, which narrows down the mobile query

3.2. APPROACH 1: VORONOI-BASED CONTINUOUS KNN SEARCH 47

scope. For example, to find the nearest 3 hospitals to a current location. In some

cases, users may want to get kNN of different object types (multiple object types),

as well as to obtain the shortest routes. Motivated by these, this chapter proposes

new approaches on three different queries involving multiple object types using a

network Voronoi Diagram. In these queries, more than one object type is considered

and the query result is highly related with the object types. Every object belongs to

one category and there is no overlap between categories. That is the basic property

of multiple-object-type query. In section 3.3 focuses on three different types of kNN

mobile queries, including: a) query to find nearest neighbor for multiple types of

interest point (or 1NN for each object type), b) query to give the shortest path

to cover multiple-object-types in a pre-defined sequence, and c) query to find an

optimum path for multiple object types that gives the shortest path that covers the

required interest objects in a random sequence.

From this point, two methods are proposed in the following sections followed

after the performance evaluation.

3.2 Approach 1: Voronoi-based Continuous kNN

Search

Continuous k nearest neighbor search is not a novel type of query in a mobile

environment, as it has been well studied in the past. Continuous k nearest neighbor

can be defined as given a moving query point, its pre-defined moving path and a set

of candidate interest points, to find the point on the way where k nearest neighbor

changes. This is a traditional query in mobile navigation. To get the exact point on

the road in short response time is not easy. Almost all of the approaches try to find

the split nodes, which are the locations where the kNN results are changed. The

already existing works on CkNN have some limitations as follows.

• Both DAR/eDAR and IE need to divide the pre-defined query path into seg-

ments using the intersections on the road. It means that once there is an

48 CHAPTER 3. VORONOI BASED K NEAREST NEIGHBOR SEARCH

intersect road in the path, it becomes a new segment, and we need to check

whether there are any split nodes on this segment.

• Using DAR/eDAR and IE, for every segment we should find kNN for the

start and end nodes of the segment. It obviously reduces the efficiency of

the performance when the number of intersections on the query path becomes

large.

• DAR/eDAR uses PINE (based on a Voronoi diagram) to do the kNN for

the start and end nodes of each segment. But when doing continuous kNN,

DAR/eDAR discards the Voronoi diagram and adopts another method to de-

tect split nodes. While in our proposed approach, we use Voronoi diagram all

the way through both in the kNN and CkNN stages. Hence, the properties of

the Voronoi diagram are used to enhance the CkNN process.

• Both DAR/eDAR and IE cannot predict where split nodes will appear. In

our proposed Voronoi-CkNN (VCkNN), it is known even before we reach the

point and also it gives us the visibility of which interest point is moving out

or into the list and at which position the node will become a split node.

Our proposed VCkNN approach is based on the attributes of the Voronoi diagram

itself and using a piecewise continuous function to express the distance change of

each border point. At the same time, we use Dijkstra’s algorithm to expand the

road network within the Voronoi polygon.

Comparison (VCkNN vs. DAR vs. IE)

VCkNN, DAR and IE are all approaches for CkNN queries. But VCkNN is different

from DAR and IE in most of aspects. Therefore before introducing our VCkNN

algorithm, we would like to highlight the main differences between VCkNN and

DAR and IE.

• Path division mechanism

For the same network connection, DAR and IE divide the query path into

3.2. APPROACH 1: VORONOI-BASED CONTINUOUS KNN SEARCH 49

Figure 3.1: Segments using DAR and IE

Figure 3.2: Segments using VCkNN

segments as shown in Fig.3.1, whereas VCkNN processes the path as in 3.2.

Note that in Fig.3.1, for every intersection in the query path, it becomes a

segment. In this example, the query path is divided into 18 segments, as

there are as many intersections along the query path. In contrast, using the

same query path, our approach has only 5 segments (see 3.2). The number of

segments is determined by the number of Voronoi polygons. Even though there

are many intersections in each Voronoi polygon, our method will process each

Voronoi polygon as a unit, and hence, there is no need to check intersection

by intersection.

• kNN processing

For each segment, DAR and IE use either PINE or V N3 to perform kNN

processing for the two terminating nodes (e.g. start and end of the segment).

In contrast, VCkNN does not need any algorithm to do kNN on any point on

the path. VCkNN finds kNN level by level (from 1stNN, then 2ndNN, then

3rdNN, and so on) for the entire query path. Hence, kNN results can easily be

visualized using VCkNN.

50 CHAPTER 3. VORONOI BASED K NEAREST NEIGHBOR SEARCH

• Sequence finding of split nodes

DAR and IE use formulae to calculate the distance between two adjacent

split nodes. Subsequently, we find split nodes one by one. This also means

that we do not know the (k + 1)th split node until we find kth split node.

In contrast, VCkNN locates split nodes using query point moving distance.

For each interval, we identify the split nodes directly, which are the nearest

distance between the query point and the intersected paths in the Voronoi

polygon. Consequently, all split nodes are identified in one go.

• Processing split nodes

DAR and IE compare the kNN results of the two terminate nodes of each

segment to find all split nodes within this segment. On the other hand, VCkNN

finds all split nodes top down from 1stNN, and then 2ndNN and so on. The

following Tab.3.1 summarizes the differences between DAR, IE and VCkNN.

VCkNN DAR IE
Query Continuous k nearest neighbor search
Basic idea Monitor border

points
Swap the position
to calculate the split
nodes

Monitor candidate
POI and using trend
to find split nodes

Segment Ignore Need to check segment by segment
Voronoi
polygon

Expansion polygon
by polygon

Ignore Ignore

Split node
predicable

Yes No No

Visible Yes No No
Do kNN No Yes Yes

Table 3.1: VCkNN vs. DAR vs. IE

VCkNN Algorithm

The benefits offered by the proposed VCkNN processing are supported by the in-

herent propositions of a Network Voronoi Diagram, which are as follows:

Proposition 1. The generator of the Voronoi polygon that includes the query point

must be the nearest neighbor of the query point.

3.2. APPROACH 1: VORONOI-BASED CONTINUOUS KNN SEARCH 51

Proof. It is self-evident because the polygon defines the area where any point in this

area is closer to the polygon’s generator than other generators (refer to Property 2

listed in section 2.2.1).

The split nodes in Network Voronoi Diagram are determined by the following

lemmas, which are the basis of our VCkNN algorithm. The first lemma is about the

split nodes, whereas the second lemma is about kNN results.

Lemma 3.2.1. In Voronoi CkNN, all border points that intersect with the query

path and the generator edge are split nodes.

Proof. It is obvious that when the query path reaches the generator edge, the 1stNN

will change because the distance to the shared edge generators are the same (refer

to Property 2 listed in section 2.2.1).

Axiom 3.2.1. If the query path overlaps with generator edge for a while, the first

time when they intersect will be the split node and the last point where they no longer

overlap will be the split node too.

Lemma 3.2.2. Suppose q’s kNN = p1, , pk, the (k + 1)thNN of q should be within

the neighbor of p1, , pk.

Proof. According to the a property of the Voronoi diagram, Let G = g1,, gk P be

the set of the first k nearest generators of a location q inside V (g1), then gk is among

the adjacent generators of G\gk.

Before the VCkNN algorithm is presented in Algorithm.1, we need to define

moving interval (ML):

Definition 3.2.1. (Moving interval) (ML) is the interval between two split

nodes; in other words, ML is determined by two split nodes.

The location of split node is marked by the query point moving out distance.

For example, if ML is 0.73̃.0, whereby 0.7 and 3.0 are two adjacent split nodes in

current split nodes list, then 0.7 refers to the split node that is located at the point

52 CHAPTER 3. VORONOI BASED K NEAREST NEIGHBOR SEARCH

Algorithm 1 Algorithm VCkNN (q, k, moving path SE)

1: 1stNN = contain (q)
2: Initial CS = 1stNN ’s neighbor generator.
3: M = 1
4: Result = 1stNN (moving interval of query point)
5: if M>1 then
6: for each polygon where SE goes across do
7: Expand q to each border point
8: Draw the line for each border point AND get piecewise function for each

border point
9: Add border to generator distance to the line

10: end for
11: end if
12: The lowest line will the 2ndNN . Intersect points will be split nodes. Set M =

2
13: Result+= 2ndNN(MovingInterval1),,2

ndNN(MovingIntervaln)
14: while M<K do
15: for each intervals which separate by split node do
16: CS = CS + M th neighbor generator
17: for each interest point in CS do
18: draw a line for this interval
19: The lowest line will be the (M + 1)thNN
20: Result+=(M + 1)thMovingInterval1,,(M + 1)thMovingIntervaln
21: M = M +1
22: Intersect nodes are split nodes
23: end for
24: end for
25: end while
26: if M = K then
27: Terminate the algorithm
28: end if

3.2. APPROACH 1: VORONOI-BASED CONTINUOUS KNN SEARCH 53

where query point moves out in a distance of 0.7. The same is applied to 3.0 which

is the split node location away from the current query point. The proposed VCkNN

algorithm is given in Algorithm.1. Our VCkNN algorithm is explained as follows:

• Step 1: 1st NN

Use the contain(q) function to get the Voronoi polygon, which includes the

query point. This polygon’s generator will be the 1st NN until it moves out

from this polygon (according to preposition 1).

• Step 2: Split nodes

The intersections between query paths and polygon borders are split nodes

(refer to lemma 1).

• Step 3: Moving Interval (ML)

Moving interval (ML) will have segments within the Voronoi polygons and the

query path is divided into several MLs. For each ML, we do the following.

From the beginning point of the interval, expand the road network to every

border point of this polygon and record the distance. For each border point,

monitor the change of the distance. Get the piecewise function for each border

point according to query point’s moving out distance, and then a set of can-

didate interest points (CS) is initialized that contains all adjacent neighbors

of 1st NN.

• Step 4: Candidate Interest Points (CS)

For all interest points in CS, calculate its distance to the beginning of the

interval and generate the corresponding lines and functions. Every time a line

is generated, put it into a chart which x axis is the moving distance of the

query point. The chart records all the changes of kNN. One thing should be

mentioned here is that, if one interest point has more than one border point

in the current polygon, keep the one which has the shortest distance.

• Step 5: 2nd NN and more split nodes

After finishing all interest points in CS, the lowest line (the one closest to x

54 CHAPTER 3. VORONOI BASED K NEAREST NEIGHBOR SEARCH

axis) will be the 2nd NN and the intersections of lines will be the split nodes.

These split nodes divide the current interval into multiple small ones. Then

add the 2nd NN’s adjacent interest points into CS.

• Step 6: k > 2

If k > 2, then for every new interval, do the following: Remove the lowest

lines from the chart in this interval. For all interest points in CS, calculate its

distance to the beginning of interval and generate the corresponding line and

functions. Every time we generate a line, put it into the chart. The lowest

lines will be the next level of NN. New split nodes are the intersections on the

lowest lines, and new intervals are generated by these split nodes. Update CS

by adding new NN’s neighbor into CS. If the NN level is still less than k, do

this step again until all kNNs have been found.

• Step 7: Process termination conditions

Finally, after all Voronoi polygons where a query path goes across have been

checked, and all split nodes have been found, the algorithm terminates.

Walk through Example of VCkNN

This section describes a walk through of the VCkNN process. It not only explains

the VCkNN step by step but also compares it with other works, including DAR and

IE. We will list the piecewise function and draw the line in the chart to make it easy

to understand. Fig.3.3 shows an example. The query is to find CkNN along the

query path, shown as a thick black line, which starts from q and ends at p10. The

borders of V (P1) and the paths from P1 to the border points are also shown.

The first set of split nodes is the intersection nodes between Voronoi polygons

and the moving path. In this case, SplitNodes = b2, b9, b10. Refer to Lemma 3.2.1

on the split nodes. Split node b2 is the border point between Voronoi polygon V (P1)

and V (P2), split node b9 is the border point between V (P2) and V (P3), and split

node b10 is the border point between V (P3) and V (P10).

3.2. APPROACH 1: VORONOI-BASED CONTINUOUS KNN SEARCH 55

Figure 3.3: Example of VCkNN

Note the 1st NN results are p1 with a range of distance from 0.0 and 5.0, p2 with

a range of distance from 5.0 and 10.0, p3 with a range of distance from 10.0 and

13.0, and P10 with a range of distance 13.0 and 14.0. In short, we can write the 1st

NN results something like this:

1st NN = p1(0.0 5.0), p2(5.0 10.0), p3(10.0 13.0), p10(13.0 14.0)

All ranges of distance are the distance from the starting query point. This means

that when the query point q moves from 0.0 to 5.0, p1 is 1st NN, and when q moves

from 5.0 to 10.0, p2 will be the 1st NN, and so on.

Then for V (P1), V (P2), V (P3) and V (P10), do the following steps. Take V (P1)

as an example.

Firstly we need to set some initial values according to the VCkNN algorithm (1:

M = 1 as we have found the 1st level of kNN, and CS = p2, p3, p4, p5, p6, p7, p8,

which are the adjacent nodes of V (P1).

Secondly, expand the query point q to every border point in this polygon. With

the movements of q, draw a line for every border point and get the piecewise function

56 CHAPTER 3. VORONOI BASED K NEAREST NEIGHBOR SEARCH

for each border point. Table 3.2 shows the line along the movement of query point.

The first column is the moving distance from the current location of query point q.

Tab.3.2 Movement of each border point in p1.

q moving distance (km) NN b1 b2 b3 b4 b5 b7 b8

0.0 4.0 5.0 8.0 5.0 1.0 3.5 5.5

1.0 3.0 4.0 7.0 4.0 2.0 2.5 4.5

1.5 2.5 3.5 7.5 4.5 2.5 2.0 4.0

2.0 2.0 3.0 8.0 5.0 3.0 2.5 4.5

Table 3.2: Movement of each border point in p1

The corresponding chart (see fig.3.4) and the piecewise function 3.2 are shown

as follows. Note from fig.3.4, the line for border point b2 goes down from 5 when

the position of q is 0, to 0 when the position of q is around 5. The opposite is the

line for border point b5 where it goes up as q is moving from 0 to 5 (in this case the

line for b5 increases from 1 to 6). These two lines explain that when q moves, the

distance from q to b2 will be decreasing and b2 is getting closer to q. The opposite

is to b5, where q is actually moving away from it.

The rest of the border points, such as b1, b3, b4, b7, and b8, are all getting closer to

q when q moves from 0 to some points before 2, but then they all increase after that.

This indicates that initially the distance from q to these border points is decreasing

(the border points are getting closer to q), but later it will be increased as q moves

away from these border points.

In term of mathematical functions, these distance movements can be expressed

in a piecewise function as shown in fig.3.4. Note that the functions for b2 and b5

are straight functions, whereas the rest have some conditions when to increase and

when to decrease.

b1 =

 4− x x ∈ [0, 2]

x x ∈ (2, 5]
b3 =

 8− x x ∈ [0, 1]

x+ 6 x ∈ (1, 5]

b5 = x+ 1[0, 5]

b2 = 5− x[0, 5]

3.2. APPROACH 1: VORONOI-BASED CONTINUOUS KNN SEARCH 57

b8 =

 5.5− x x ∈ [0, 1.5]

x+ 2.5 x ∈ (1.5, 5]
b4 =

 5− x x ∈ [0, 1]

x+ 3 x ∈ (1, 5]

b7 =

 3.5− x x ∈ [0, 1.5]

x+ 0.5 x ∈ (1.5, 5]

(3.1)

Thirdly, for each interest point, add its distance to the corresponding border into

table 3.2 and do the chart again (as shown in fig.3.5). Suppose their distances to

the borders are as follows:

Distn(b1, P2) = 2.2

Distn(b2, P2) = 3.2

Distn(b3, P2) = 7.8, Distn(b3, P3) = 7.8, Distn(b3, P4) = 7.8

Distn(b4, P5) = 4.8

Distn(b5, P6) = 2.8

Distn(b7, P7) = 2.3

Distn(b8, P8) = 4.3

(3.2)

Note that p2 is adjacent to b1, b2, and b3. Also note that the adjacent polygons

of b3 are p2, p3, and p4. Others indicate that b4 adjacent with p5, b5 with p6, b7

with p7, and finally b8 with p8. Fig.3.5 shows how each interest point, p2 to p8

are adjacent with the corresponding border points. For example, the top line in

fig.3.5 indicates the distance from q to p4, p3 and p2 (all through b3). The line, as

explained previously, shows that initially p4, p3 and p2 are getting closer to q but

are then getting farther.

In fig.3.6, we only focus on the bottom lines. The intersections between all

bottom lines are new split nodes. The first intersection is between line p6 and

line p7 at q = 1.0 (This is pointed by the first vertical dotted line). The second

intersection is between line p7 and line p2 at q = 1.7 (pointed by the second vertical

dotted line). The third intersection is between line p2 (through border point b2) and

line p2 (through border point b1). And finally the last intersection for this interval

is the lowest point of line p2 (through border point b2). Hence, we have four new

split nodes for this interval.

58 CHAPTER 3. VORONOI BASED K NEAREST NEIGHBOR SEARCH

Figure 3.4: p1 border Figure 3.5: Each p

Figure 3.6: 2ndNN Figure 3.7: 3rdNN

3.2. APPROACH 1: VORONOI-BASED CONTINUOUS KNN SEARCH 59

2ndNN for this interval are: p6, p7, p2 (through b1), and p2 again (but through

b2). In summary, 2ndNN for the 0.0–5.0 interval are:

2ndNN for 0.0–5.0 interval = {p6(0.0–1.0), p7(1.0–1.7), p2(1.7–3.0), p2(3.0–5.0)}

In other words:

• When q moves from 0.0 to 1.0, 2ndNN = p6

• When q moves from 1.0 to 1.7, 2ndNN = p7

• When q moves from 1.7 to 3.0, 2ndNN = p2 (through b1)

• When q moves from 3.0 to 5.0, 2ndNN = p2 (through b2)

Fourthly, after we get 2ndNN, we update CS for every interval of the new split

nodes, that is interval 0.0–1.0, interval 1.0–1.7, and interval 1.7–5.0. There is no

need to split interval 1.7–5.0 into two intervals of 1.7–3.0 and 3.0–5.0, since the

2ndNN for this interval is the same, that is p2.

• For interval 0.0–1.0: CS = {p2, p3, p4, p5, p7, p8, p15, p16, p17, p18}, and 2ndNN

= {p6(0.0–1.0)}. This means that when q moves from 0.0 to 1.0, p6 is 2ndNN.

• For interval 1.0–1.7: CS = {p2, p3, p4, p5, p6, p8, p18}, and 2ndNN = {p7(1.0 1.7)}.

This means that when q moves from 1.0 to 1.7, p7 is 2ndNN.

• For interval 1.7–5.0: CS = {p3, p4, p5, p6, p7, p8, p9, p10}, and 2ndNN =

{p2(1.7 5.0)}. This means that when q moves from 1.7 to 5.0, p2 is 2ndNN.

Fifthly, if k > 2, for every interval listed above, we need to process further. Note

that the process is done iteratively from a larger interval to a smaller interval, until

the smallest interval cannot further be divided. To illustrate our example, we take

the 1.0–1.7 interval. This process can be thought like using a magnifying glass on

the 1.0–1.7 interval of the previous process (in fig.3.6), and the result is shown in

fig.3.7. We need to update the line in fig.3.7 for all interest points in CS.

Fig.3.7 shows the 1.0–1.7 interval, where the lines are updated for all interest

points in CS. CS for 1.0–1.7 interval is CS = {p2, p3, p4, p5, p6, p8, p18}, and the

2ndNN for this interval is p7. The adjacent nodes of p7 are p6, p18, and p8.

60 CHAPTER 3. VORONOI BASED K NEAREST NEIGHBOR SEARCH

Suppose the distances between b7 and these adjacent nodes are:

Distn(b7, P6) = 3

Distn(b7, P18) = 5

Distn(b7, P8) = 4

(3.3)

Note that we only need to get the distance between border point b7 and all

adjacent polygons of the 2ndNN which is p7, because border point b7 is the border

between p7 and p1 (the Voronoi polygon of the query point).

After calculating the above three distances, which represent three lines on the

chart, we draw the three lines on the chart again. The split nodes are found at the

interactions of the bottom lines (refer to figure 13). As a result the 1.0–1.7 intervals

is now divided into two smaller intervals: 1.0–1.2 and 1.2–1.7.

For interval 1.0–1.2:CS = {p2, p3, p4, p5, p8, p15, p16, p17, p18}, and 3rdNN = {p6

(1.0–1.2)}. This means that when q moves from 1.0 to 1.2, p6 is 3rdNN.

And For interval 1.2–1.7: CS = {p3, p4, p5, p8, p9, p18}, and 3rdNN = {p2

(1.2–1.7)}. This means that when q moves from 1.2 to 1.7, p2 is 3rdNN.

In summary, 3rdNN for the 1.0 – 1.7 interval are: 3rdNN for 1.0 – 1.7 interval =

{p6 (1.0–1.2), p2 (1.2–1.7) }

We need to do the same thing for the other two intervals of the 2nd NN, which

are 0.0 – 1.0, and 1.7 – 5.0. This is repeated until the desired k is achieved.

Finally, after the algorithm finishes, we can see clearly where the split nodes are

and also every point on query path; in other words, we can tell the kNN results

straightaway, without processing kNN on every single split node like DAR and IE.

If we just look at the 1.0 – 1.2 interval, for an example sake, if the query is

3rdNN, then the 3rdNN for this interval is p1, p7, and p6. p1 will remain 1stNN until

distance 5.0 (p1 actually starts becoming the 1stNN from distance 0.0), and p7 will

remain 2ndNN until distance 1.7. Finally, p6 is only the 3rdNN for this interval only

(e.g. 1.0–1.2 interval).

3.3. APPROACH 2: VORONOI BASED MULTIPLE KNN SEARCH 61

3.3 Approach 2: Voronoi based Multiple kNN

Search

In this section, we present our proposed algorithms for the three kinds of multiple-

object-type kNN queries. The first two proposed query processing (M NN and

iM NN) use two approaches, namely: using one NVD for each object type, and

using one NVD for all object types, whereas the last proposed query processing for

PM NN uses one NVD for all object types model.

Before proposing approaches for kNN queries for multiple object types, we firstly

introduce the taxonomy of these three queries with examples:

1. Multiple-object-types Nearest Neighbor (M NN) query is to find nearest neigh-

bors for multiple object types. It is common in mobile navigation. Around

the query point, there are k different types of interest points. For each object

type, to find the nearest neighbor among the same object type is the objective

of the query.

Example 3.3.1. Suppose a group of colleagues wants to have dinner together,

and around their company there are hundreds of restaurants. They prefer

French, Italian and Chinese food. As a result, they want to know the nearest

French, Italian and Chinese restaurant respectively first and then make the

final decision.

2. Incremental Multiple-object-types Nearest Neighbors (iM NN) query is to find

optimum/shortest path to pass multiple object types in the pre-defined se-

quence. This query can be used when the sequence of passed interest points

is critical for the user.

Example 3.3.2. Suppose a person falls ill at home suddenly, the family wants

to tell their driver the following path. Firstly, obviously they want to go to the

nearest hospital because the sickness is acute. Secondly, they need to go to

the nearest medical checkup clinic. After that, they will go to find the nearest

62 CHAPTER 3. VORONOI BASED K NEAREST NEIGHBOR SEARCH

GP office to check the checkup result and finally go to the nearest pharmacy

according GP’s prescription.

3. Optimum Path Multiple-object-type Nearest Neighbors (PM NN) query is to

find optimum/shortest path to pass multiple object types in random sequence.

Although it seems similar with 2nd query, it is a novel issue actually because

the interest points can be random passed.

Example 3.3.3. Suppose a secretary has plan to do the following things: go

to post office to post a letter, go to bank to deposit a cheque, go to shop to buy

some print chapter and go to dry cleaner to deliver a piece of clothes. So she

wants to get the best routine which not only covers all places but also makes

her travelling path shortest.

In summary, they are novel queries as there is no approach touching the query about

kNN of multiple object types and they are reality-oriented and practical. Now let

using the following 3 sections to proposed approaches to these quires in sequence.

Multiple-object-types Nearest Neighbor(M NN)

In this section, we propose two ways to solve M NN query: (i) For each object

type, generate a NVD and find the nearest neighbor. (ii) Generate one NVD for all

objects then filter them while searching the target result. NVD for each object

type:

A straight approach is firstly generating NVD for each object type. For each

type, find its nearest neighbor for query point using its NVD. The result comes out

directly when all nearest neighbors of each type have been found. There is no reason

to doubt its correctness. But concerning its efficiency, it becomes infeasible because

if there are too many different kinds of object, loading different NVDs will consume

most of the processing time. Consequently in this section, an alternative way is

proposed for the query: one NVD for all objects.

3.3. APPROACH 2: VORONOI BASED MULTIPLE KNN SEARCH 63

(a) French restaurant NVD (b) Italian restaurant NVD

(c) Chinese restaurant NVD

Figure 3.8: Example 3.3.1 - One NVD for each object type

Based on example 3.3.1, Fig.3.8(a), 3.8(b) and 3.8(c) represent NVDs of French,

Italian and Chinese restaurants respectively. As a result, the nearest French (p1),

Italian (p7) and Chinese (p12) restaurant can be told directly.

One NVD for all object types: Generate just one NVD for all objects which

not only includes the types that the user concerns but also includes the objects of

other types. It will definitely improve the performance both in time and storage

aspects. The algorithm performs as follows.

Firstly, generate NVD considering all objects as polygon generators. Then ”con-

tain” function is invoked to get the generator whose polygon covers query point.

This generator is the first nearest neighbor of its type.

Secondly, do an expansion within this polygon and record the distance from the

query point to all border points. Calculate the distances from the query point to

64 CHAPTER 3. VORONOI BASED K NEAREST NEIGHBOR SEARCH

Figure 3.9: Example 3.3.1 - One NVD for all objects

all adjacent polygon generators. As all border points to generators’ distances are

pre-computed, this process can be finished transitorily.

Thirdly, the generators will be put in a queue sorting by their distance to the

query point. From the shortest one, if by now a query result for its type have not

found, it will be recorded as query result for this type; otherwise, just discard it.

Then add its adjacent generators into the list and sort again. Do this step iteratively

until all object types’ nearest neighbors have been found.

Finally, we get a result list which is for each object type there is an interest point

nearest to query point among others in this type.

The algorithm can be expressed in Algorithm 2.

The following example fully illustrates how the algorithm works. The scenario is

based on example 3.3.1 as well. In this case, the query should retrieve 3 restaurants

because the user only concerns 3 types of restaurants, French, Italian and Chinese.

The processing steps are as follows:

3.3. APPROACH 2: VORONOI BASED MULTIPLE KNN SEARCH 65

• Generate NVD as in Fig. 3.9. White triangle, black dot and black triangle

indicate French, Italian and Chinese restaurants respectively. Use contain()

function to locate p1 which is the 1st NN of q.

• As Type(p1) = French, initial RL = {(French, p1), (Italian, ∅), (Chinese, ∅)}

Initial NP = {p2, p3, p4, p5, p6, p7} by adding all p1’s adjacent into NP .

• Expand q within p1’s polygon and record all distance from q to border points.

Calculate the distance from q to each p in NP and sort them in ascending

order. Update NP , suppose NP = {(p5, 5), (p7, 7), (p2, 9), (p3, 11), (p6, 16),

(p4, 18)}

• Pop out p5. As type(p5) = French & in RL, French already has value p1,

ignore p5. Add p5’s adjacent neighbors into NP and update NP . Suppose the

distance is: NP = {(p7, 7), (p2, 9), (p3, 11), (p8, 14), (p6, 16), (p4, 18), (p9,

19), (p10, 22), (p11, 28)}

• Then Pop out p7. As type(p7) =Italian & in RL, Italian has null value, update

RL as RL = {(French, p1), (Italian, p7), (Chinese, ∅)}. After that, add all p7’s

adjacent neighbors into NP and update NP . Suppose the distance is: NP =

{(p2, 9), (p12, 10), (p3, 11), (p8, 14), (p6, 16), (p4, 18), (p9, 19), (p10, 22),(p11,

28)}

• Then pop out p2 and ignore it as it is Italian restaurant. Then Pop out p12.

As type(p12) = Chinese & in RL, Chinese has null value, update RL as RL =

{(French, p1), (Italian, p7), (Chinese, p12)}. Algorithm terminates.

Incremental Multiple-object-types Nearest Neighbors (iM NN)

The query of incremental nearest neighbors for sequential multiple object types is

to find the shortest path which goes through multiple object types in pre-defined

sequence. In this case, the sequence is crucial to the user and the user wants to pass

these object types in a certain order as in example 3.3.2.

66 CHAPTER 3. VORONOI BASED K NEAREST NEIGHBOR SEARCH

Algorithm 2 M NN(k, query point)
1: Generate Voronoi diagram using all interest points
2: RL (Result List) = {(type1, ∅), (type2, ∅), ..., (typek, ∅)}
3: pi = 1stNN = contain (q)
4: typei = Check type (pi)
5: RL (Result List) = {(type1, ∅), (type2, ∅), ..., (typei, Pi), ..., (typek, ∅)}
6: Initial NP (Neighbor point) = {pi’s adjacent generator}
7: Expand q within this polygon & record distance from q to border point.
8: Calculate distance from q to each p in NP & sort them in ascending distance order.
NP = {(p1, dist(q, p1)),..., pi, dist(q, pi)}

9: Pop out the first p in NP , suppose it is pj
10: typej = Check type (pj)
11: if in RL, typej has null values then
12: update RL as (typej , pj)
13: else
14: ignore pj
15: end if
16: if all type has values in RL then
17: terminate algorithm
18: else
19: Add pj ’s adjacent neighbor into NP & go to step 8
20: end if

From the example, we can tell that the sequence of object types is crucial, in

other words, the routine should begin at home then pass the hospital, the medical

checkup clinic, the GP office and end at one pharmacy. It is not hard to see that the

approach performs in the following steps: when the path reaches the interest point,

it is treated as the new query point. Then continue to search the nearest neighbor

of the next type until all object types have been found. There are two ways in which

we can solve this query, naming as one NVD for each object type and one NVD for

all objects.

One NVD for each object type: This method firstly generates NVD for the

1st object type and finds the nearest one of this type. Then it generates NVD for

the 2nd object type and finds the nearest one of this type considering 1st NN as the

query point. Continue to do so for the following object types until nearest neighbors

for all types have been found.

Fig. 3.10 shows the processing steps based on example 3.3.2. The result is auto-

matically shown in the figures: Shortest path starts at q, firstly goes to hospital p2,

3.3. APPROACH 2: VORONOI BASED MULTIPLE KNN SEARCH 67

(a) NVD for hospital (b) NVD for medical clinic

(c) NVD for GP office (d) NVD for pharmacy

Figure 3.10: Example 3.3.2 - One NVD for each object type

then heads to checkup clinic p3, after that, towards to GP office p8, finally arrives

pharmacy p12 for medicine.

One NVD for each object type is actually dividing this query into multiple 1 NN

queries. There is no reason to doubt its correctness. But concerning its efficiency, it

becomes infeasible because if there are too many different kinds of interest points,

loading different NVDs will consume most of the processing time. One NVD

for all object types: This method generates just one NVD for all object types,

including not only the type of user concerns but also other object types. It saves

time and storage. The following steps illustrate how it works.

Firstly, one NVD is generated considering all objects as polygon generators.

Then invoke the ”contain” function to get the first nearest neighbor. Check whether

68 CHAPTER 3. VORONOI BASED K NEAREST NEIGHBOR SEARCH

it is the 1st type the user wants. If yes, go to the 2nd step; otherwise check the

adjacent neighbors of this interest point until find the nearest neighbor of 1st type.

Algorithm 3 iM kNN(k, query point)

1: Generate Voronoi diagram using all interest points within given types
2: RL (Result List) = (type1, ∅), (type2, ∅), ..., (typek, ∅)
3: Initial M =1
4: pi = 1stNN = contain(q)
5: typei = Check type (pi)
6: if typei = typem then
7: update typem’s values as pi&M=M+1
8: else
9: Expand q within this polygon&record distance from q to border

10: Initial NP (Neighbor point) = pi’s adjacent generator
11: Calculate distance from q to each p in NP & sort them in ascending order.

NP = {(p1, dist(q, (p1))),...,(p1, dist(q, (p1))) }
12: Pop out the first p in NP , suppose it is pj . typej = Check type (pj)
13: if typej = typem then
14: update typem’s values as pj&M=M+1
15: else
16: update NP by adding pj ’s adjacent neighbor into NP&go to step 11
17: end if
18: end if
19: while M ≤ k do
20: Suppose pm−1= typem−1’s values in RL
21: Initial NP (Neighbor point)=pm−1’s adjacent generator
22: Calculate distance from pm−1 to each p in NP and sort them in ascending order.

NP = {(p1, dist(q, p1)),..., (pi, dist(q, pi))}
23: Pop out the first p in NP , suppose it is pn. Typen = Check type (pn)
24: if Typen = typem then
25: update typem’s values as pn&M=M+1
26: else
27: update NP by adding pn’s neighbor into NP&go to step 22
28: end if
29: end while
30: return NP

Secondly, consider the 1st NN as query point; find its nearest neighbor of 2nd

type using the pre-computed distance to its adjacent neighbors.

Thirdly, do these operations iteratively until all object types have been found.

Finally, a shortest path comes out which begins at the query point, passes mul-

tiple object types in user defined sequence until it reaches the last object. That is

the optimum path of this kind of query.

The algorithm can be expressed in Algorithm 3.

3.3. APPROACH 2: VORONOI BASED MULTIPLE KNN SEARCH 69

A case study based on example 3.3.2 fully illustrates the approach. In this case,

the user concerns 4 object types (k = 4) because they want to pass the hospital,

checkup clinic, GP office and pharmacy one by one. The processing steps are as

follows:

• Generate NVD as Fig. 3.11. White triangle, black dot, black triangle and white

dot indicate hospital, checkup clinic, GP office and pharmacy respectively.

• Initial RL={(hospital, ∅), (checkup clinic, ∅), (GP office, ∅), (pharmacy, ∅)}

& M = 1

• Use contain() function to locate p1 which is the 1stNN of q.

• Expand q within p1’s polygon and record all distances from q to borders.

• As type(p1) = pharmacy 6= typem, Initial NP = {p2, p3, p4, p5, p6, p7, p8} by

adding all p1’s adjacent into NP .

• Calculate the distance from q to each p in NP and sort them in ascending

order. Update NP as NP={(p2,2),(p3,4),(p4,6),(p8,8), (p7,9),(p5,12),(p6,16)}

• Pop out p2. As Type (p2) = hospital = typem, update RL as RL = (hospital,

p2), (checkup clinic, ∅), (GP office, ∅), (pharmacy, ∅). M = 2

• As M < k, typem−1’s value is p2. Initial NP = {p1, p3, p4, p9} by adding all

p2’s adjacent into NP .

• Calculate the distance from p2 to each p in NP and sort them in ascending

distance to p2. Update NP , suppose NP={(p1,3),(p3,6),(p9, 8),(p4,9)}

• Then pop out p1. As type(p1)=pharmacy 6= typem=checkup clinic, ignore p1.

Add p1’s adjacent neighbors into NP and update NP . Suppose the distance

is NP={(p3,6),(p9,8),(p4,9),(p8,13),(p7,15),(p5,18),(p6,21)}

• Pop out p3. As type(p3) = checkup clinic = typem, update RL as RL =

{(hospital, p2), (checkup clinic, p3), (GP office, ∅), (pharmacy, ∅)}. M = 3

70 CHAPTER 3. VORONOI BASED K NEAREST NEIGHBOR SEARCH

Figure 3.11: Example 3.3.2 - One NVD for all objects

• As M < k, typem−1’s value is p3. Initial NP = {(p8, 12), (p1, 14), (p2, 17), (p9,

23), (p12, 25), (p13, 27), (p11, 30), (p10, 31)}.

• Then pop out p8. As type(p8) = GP office = typem, update RL as RL =

{(hospital, p2), (checkup clinic, p3), (GP office, p8), (pharmacy, ∅)}. M = 4

• As M = k, typem−1’s value is p8. Initial NP = {(p12, 15), (p1, 16), (p7, 17),

(p14, 26)}.

• Then pop out p12. As type(p12)=pharmacy=typem, update RL as RL =

{(hospital,p2), (checkup clinic,p3), (GP office,p8), (pharmacy,p12)}. M = 5

• As M > k, algorithm terminates.

Results are: The optimum path firstly goes to hospital p2, then heads to checkup

clinic p3, GP office p8 and finally arrives at pharmacy p12 for medicine.

Optimum Path Multiple-object-type Nearest Neighbors (PM NN)

Optimum path for multiple object types’ query is similar with the 2nd query except

that object types can be passed in any sequence. In this query, the length of whole

3.3. APPROACH 2: VORONOI BASED MULTIPLE KNN SEARCH 71

path is the criterion of assessment. As multiple 1 NN cannot guarantee the final

path is the shortest one, this approach is different with IM NN approach in the last

section. More details can be told based on example 3.3.3.

In example 3.3.3, the sequence of interest points is unimportant because posting

letter, depositing cheque and so on are independent tasks and it does not matter

which task the user does first. In addition, the objective of this query is to make

the whole path short not to find any nearest object. There may be an instance that

after choosing the nearest post office, the path to other place will become farther.

Maybe choosing the second or even third nearest post office is better. In addition,

how to arrange the sequence of interest points is another issue needed to be solved.

The following steps illustrate the process of the approach.

Firstly, generate NVD considering all objects as polygon generators. Then invoke

”contain” function to get the nearest generator P . Check its type and record P as

the first object type that the user will visit. For all P ’s adjacent neighbors, sort

them in the ascending sequence of their distance to P . Check their types one by

one, if the path has not visited that object type, record it as the next P . From

now on, start from this P , do the same operation as the first P until all types have

been found and the path is completed. The obove operation cannot guarantee this

path is shortest but it did set a boundary for the query (dmax) which means once

expansion is over this boundary, it should be terminated.

Secondly, every object whose distance to q is smaller than dmax can be treated

as potential first interest point. Sort them in a queue by their distance to q.

Thirdly, for each interest point in the queue, pop it out, find its closest neighbor

whose type has not been covered and then from that neighbor do the same things

until all types of interest points have been covered. If in the process of the expansion,

the distance is over the boundary, terminate it directly. If the path is completed,

compare its path length with the boundary and update the boundary if it is smaller.

Terminate the algorithm when there is no interest point in the queue. The opti-

mum path shows how the user can pass multiple object types in random sequence.

72 CHAPTER 3. VORONOI BASED K NEAREST NEIGHBOR SEARCH

Algorithm 4 PM NN(k, query point)

1: Initial TS={type1,...,typek} R={distq, ∅1,∅2,..., ∅k},dmax=∞,RL = ∅,S = ∅
2: p1=1stNN=contain(q), tp1=Check type(p1)
3: Suppose typei = tp1, remove it from TS
4: R={distq, p1, ∅2,..., ∅k}
5: Initial NP (Neighbor point)=p1’s adjacent generator
6: Calculate distance from p1 to each P in NP in ascending order.

NP = {(p1, dist(q, (p1))),...,(pi, dist(q, (pi)))}
7: Pop out the first P in NP , suppose it is pj
8: if tpj=Check type(pj) is in TS then
9: update tpj in R & remove tpj from TS

10: if TS is not ∅ then
11: add pj ’s neighbor into NP & go to step 7
12: else
13: if distq < dmax then
14: update dmax = distq & RL = R
15: else
16: ignore it
17: end if
18: end if
19: else
20: add pj ’s adjacent neighbor into NP & go to step 7
21: end if
22: Expand q within this polygon & record distance from q to border point
23: Update S={all objects (dist) to q < dmax sort in ascending distance order}
24: for each P in S do
25: Pop out the first P & Initial TS={type1,type2,...,typek}
26: t=Check type(P)
27: R={distq,P ,∅2,...,∅k}
28: Initial NP (Neighbor point)=P ’s adjacent generator
29: Calculate distance from P to each pi in NP & Wipe out P whose dist(q, P) > dmax

NP={(p1,dist(q,(p1))),...,(pi,dist(q,(pi)))}
30: if NP 6= ∅ then
31: Pop out the first p in NP , suppose it is pj
32: else
33: go to step 23
34: end if
35: tpj=Check type(pj)
36: if tpj is in TS then
37: update tpj in R & remove tpj from TS
38: if TS is not ∅ then
39: add pj ’s neighbor into NP & go to step 23
40: else
41: if distq < dmax then
42: update dmax = distq & RL = R & wipe off p in S dist(P)>dmax

43: end if
44: go to step 29
45: end if
46: end if
47: add pj ’s adjacent neighbor into NP & go to step 29
48: end for

3.3. APPROACH 2: VORONOI BASED MULTIPLE KNN SEARCH 73

Figure 3.12: Example 3.3.3 - One NVD for all objects

The algorithm can be express in Algorithm 4.

To clarify the algorithm, a case study will fully illustrate how it works.

• Generate NVD as in Fig. 3.12. White triangle, black dot, black triangle and

white dot indicate post office, bank, shop and dry cleaner respectively.

• Initial dmax =∞, TS = {post office, bank, shop, dry cleaner}, R= {distq, ∅1,

∅2,..., ∅k}, RL = ∅

• Use contain() function to locate p1 which is the 1stNN of q.

• As Type(p1)=dry cleaner, update TS={post office, bank, shop} by removing

it from TS & R = {1, P1, ∅2, ..., ∅k}// suppose p1 to pq’s distance is 1

• From p1, find nearest neighbor whose type in TS. Suppose p4. As Type(p3)

= bank, update TS = {post office, shop} & R = {5, P1, P4, ..., ∅k}// suppose

p4 to p1’s distance is 4

• Do the same to p4 as the step above until TS = ∅. Suppose R = {15, p1, p4,

p11, p53} Update dmax =15

74 CHAPTER 3. VORONOI BASED K NEAREST NEIGHBOR SEARCH

• Expand q within p1’s polygon and record all distances from q to borders.

• Initial S = {p4, p3, p6, p5, p7, p2...pn} // whose distance to q within dmax

• Pop out p4&update TS={post office,dry cleaner,shop} & R= {3,p4,∅2,...,∅k}.

Search p4’s nearest neighbor whose type in TS and do the same for the rest

interest points iteratively until TS = ∅. Suppose R = {12, p4, p3, p12, p11},

then update dmax=12. Wipe out p in S distq > 12.

• Do the same operation to every P in S until S is empty. In the process, once

the distance is over dmax, terminate expansion for this path.

The result comes out finally R = {10, p3, p12, p13, p14}. The user firstly goes to

post office p3, then heads to dry cleaner p12, after that, towards bank p13 and finally

arrives at shop p14 and the length of the final path is 10.

3.4 Performance Evaluation

In this section, we evaluate these two methods using different data and environment

settings.

3.4.1 Voronoi based Continuous kNN

Melbourne city map and Geelong map in Victoria, Australia, are chosen in the

experimentations from the ”whereis” website [Cor] to represent high-density and

low-density scenarios of interest points. All interest points, network links and in-

tersect nodes are real-world data. We analyze the behavior of our approach in the

aspects such as segment division in different path or point of interest density by

DAR/IE and VCkNN and runtime with various lengths of path and the values of k.

Segment division

Firstly, we aim at finding the differences in the number of segments divided along

the path in different path densities. The Melbourne city map is used to indicate

3.4. PERFORMANCE EVALUATION 75

high path density, in other words, more network intersections along the path (2.1

intersection/km). Correspondingly, the Geelong city map is used to indicate low

path density (1 intersection/km). Interest points are distributed at 10.93/km2 on

two different maps. From fig.3.13, we can draw several conclusions:

• Segment increases show a nearly linear trend;

• In the VCkNN algorithm, paths are divided into the same segment no matter

whether the path density is high or low;

• DAR/IE algorithm divides into more segments in high path density than in

low path density;

• VCkNN always generates less segments than DAR/IE no matter the path

density.

Secondly, we aim at finding the differences of number of segments divided along

the path in different point of interest point density. Restaurants in the Melbourne

city map indicate a high point of interest density (23/km2), whereas petrol sta-

tions indicate a low point of interest density (1.8/km2). Path density is about 1.2

intersection/km. From fig.3.14, several conclusions lists below:

• In the VCkNN algorithm, more segments occur if the objects of interest are

distributed in high density then in low density;

• DAR/IE algorithms remain the same no matter the points of interest are in

low or high density;

• VCkNN always generates less segment than DAR/IE no matter the density of

objects of interest.

Run time

Firstly, we report our experimentation results on runtime of different density of

points of interest. We use 20 points of interest to represent a low-density sample

76 CHAPTER 3. VORONOI BASED K NEAREST NEIGHBOR SEARCH

Figure 3.13: Segment in different path
density

Figure 3.14: Segment in different POI
density

and 100 interest points to represent a high density sample. Also we test 20 different

query positions to get the average runtime based on k from 1 to 7.

For the runtime factor, we can easily tell that if k increases, runtime increases

sharply, and in a high-density scenario it is even more time consuming. Figure 16

shows the trend of these two scenarios.

From fig.3.15, we can also conclude that the runtime increases sharply after k>5.

This is because too many operations on small intervals and too many operations and

checkings need to be executed for the candidate interest points. The high density

will do more looping and the runtime consequently goes up.

Secondly, we aim at finding the differences of runtime between shorter and longer

query paths. We put 50 interest points on each map to compare the runtime.

We choose 20 query paths (all equal to 20km) to get the average runtime in the

Melbourne city map based on k=3. For these 20 moving paths, we record the

runtime every time when query point moves 1km and after query point moves 5km.

As the shorter distance query point moves out, the less time is consumed as less

polygon is checked and less expansion is involved.

Fig.3.13 presents the average runtime and it can tell that the line is nearly linear

which means that every part of the query path is generally independent. With the

increase of query path’s length, the runtime will definitely increase.

3.4. PERFORMANCE EVALUATION 77

Figure 3.15: Runtime in high and low
density of interest points

Figure 3.16: Runtime in different
query path lengths

Split nodes number between different point of interest density

In this section, we use the same experimental conditions as the previous ones to

compare the split nodes number in different point of interest density. It is known

that normally for the same map, if the interest point density is low, the split nodes

will be less than the high density one, because there is less chance that another

interest point will be found.

From fig.3.17, because the density decides the polygon average area, the same

query path will go across fewer polygons in the low density map than in the high

density map. So when k=1, the low density performance is better than the high

density performance. While we cannot conclude that for the same k and query path,

the low density one has less split nodes than that of high density. At the same time,

we can draw a conclusion that for the same map and same query path, split nodes

will increase or decrease with k but the increasing amount is not constant.

3.4.2 Voronoi based Multiple types kNN

In the experimentations, Melbourne city map and Frankston map in Australia are

chosen from the ”whereis” website [wM06]. In these maps, shops and restaurants

represent a high-density scenario of interest points, on the other hand, hospitals and

shopping centers represent low-density scenario of interest points. All interest points

78 CHAPTER 3. VORONOI BASED K NEAREST NEIGHBOR SEARCH

Figure 3.17: Split nodes in high and low density of interest points

are real-world data. The performance of our approaches is analyzed in runtime

aspect in different diversity of interest point or in different interest points’ density.

For the nearest neighbor for multiple object types, the processing time is increas-

ing with the number of object types (M). In Fig. 3.18(a), the dash line indicates

the performance of one NVD for each object type approach and the solid line in-

dicates the performance of one NVD for all objects approach. In this case, we use

different types of shops as candidate types and the average density is 5/km2. From

Fig. 3.18(a), we can easily tell that one NVD for each object type performs better

than one NVD for all objects if objects types are small, especially smaller than 4.

Otherwise, one NVD for all objects is a better choice because it saves time for gen-

erating NVD. We can also tell that with the increasing object types, the processing

time increases sharply because more polygon expansions will be invoked and more

NVDs should be generated.

For incremental nearest neighbors for sequential multiple object types query, the

processing time is increasing with the number of object types (M). Here a definition

is introduced: density relative rate (DRR). DRR is ratio of the highest density to

lowest density of all object types. As a result, DRR is not smaller than 1. The closer

to 1 DRR is, the more evenly objects distribute. For example, if the user concerns

4 object types and their densities are 5.5/km2, 3.6/km2, 2.5/km2 and 1.1/km2

respectively. So this scenario’s DRR is 5.5/km2 (highest) 1.1/km2(lowest)=5. In

3.5. SUMMARY 79

Fig. 3.18(b), the first two bars indicate the processing time of one NVD for each

object type approach and the last two bars indicate the processing time of one NVD

for all objects approach. The first and third bars are operating in low DRR scenario

(DRR=1) and the second and forth bars are in high DRR scenario (DRR=10).

Fig. 3.18(b)illustrates that processing time will increase if DRR increases. In

addition, the higher DRR is, the closer two approaches (one NVD for each & one

NVD for all) performs. In addition, generally, one NVD for all interest points

performs better than one NVD for each object types because generating and loading

NVD are time consuming tasks.

The processing time for optimum path for multiple object types query, the pro-

cessing time is increasing with the object types (M). In Fig. 3.18(c), the dash line

indicates the performance of the query when density relative rate (DRR) = 1 and the

solid line indicates the performance of the query when density relative rate (DRR)

= 5.

From Fig. 3.18(c), with the increasing object types, the processing time increases

sharply because more polygon expansions will be invoked. Moreover, DRR is another

critical factor for the performance of the approach. The processing time increases

more sharply if DRR increases from 1 to 5.

3.5 Summary

In this chapter, firstly we present a novel approach of Voronoi-based continuous

k nearest neighbor search based on network distance, which we call VCkNN. The

basis of VCkNN is using network expansion within each polygon and a drawing

line for every border point. VCkNN gives users the split nodes as k increases and

there is no need to perform kNN processing for any node on the path. In addition,

VCkNN does not consider the segment between every intersection. This feature

improves the performance because finding split nodes segment by segment is not

efficient, especially if there are too many intersections on the query path. We have

performed several experiments to measure the performance of VCkNN in different

80 CHAPTER 3. VORONOI BASED K NEAREST NEIGHBOR SEARCH

(a) M NN (b) iM NN

(c) PM NN

Figure 3.18: Processing Time Comparison

3.5. SUMMARY 81

network conditions. In general, our algorithm performs better if the density is low,

especially in segment division mechanism. If the number of interest objects is smaller

than 5, the performance is acceptable no matter how complex the road condition

is. However, as expected, if k is greater than 5, the runtime increase sharply. Also

the runtime is related to the length of the query path and the polygon it goes

across. On average, high density of interest points and more crossing polygons will

let the runtime and expansion step increase. If k is large, the runtime will increase

sharply. When comparing VCkNN with other approaches, we can conclude that

the advantage of VCkNN becomes obvious if the interest points are highly density

distributed.

Secondly, inspired by novel kNN search involving multiple object types, we dis-

cussed another 3 set of queries using the Voronoi Diagram. The first query (nearest

neighbor for multiple object types) provides a solution if the user wants to get 1 NN

for each category of interest points. The second query (incremental nearest neigh-

bors for sequential multiple object types) helps users to find the shortest path to

pass through multiple object types in pre-defined sequence. The last query (opti-

mum path for multiple object types) provides an optimum path for users if they want

to pass multiple object types without any sequential constrain. These approaches

investigate novel kNN in multiple object types using a network Voronoi Diagram

which enriches the content of our mobile navigation system and gives more benefits

to mobile users.

To sum up, both approaches can solve their corresponding queries efficiently

when the Voronoi Diagram is utilized compared to Network Expansion.

82 CHAPTER 3. VORONOI BASED K NEAREST NEIGHBOR SEARCH

Chapter 4

Route and Path related kNN

Queries1

4.1 Introduction

Traditional query in spatial databases are range search [PZMT03,JT05] and k near-

est neighbor search (kNN) [?, RKV95, Saf05]. Range search is to find all interest

objects within a predefined range, while kNN is to find k interest objects which are

closest to a query point. Both range and kNN searches provide users the candidate

set of interest points and allow users to choose any one in the set because they have

been previously filtered by user’s conditions. From the description, we call tell the

traditional range search and k nearest neighbor search are retrieving discrete points.

Motivated by this, we propose 3 approaches in this chapter which brings path into

the input or/and output of spatial queries.

Firstly, a possible query that a user may invoke is as follows: A market researcher

may want to do a survey on restaurants and the sample size should be 10. The

question is to find the shortest path for the user to visit all the 10 restaurants one

by one. Range search cannot be used as there is no fixed range. kNN search cannot

be used either, as after we visit the first interest point, the user may not want to

1Part of this chapter has been published in Zhao, G., Xuan, K., and Taniar, D. Path kNN query
processing in Digital Ecosystems, IEEE Transactions on Industrial Electronics (TIE) 2011.

83

84 CHAPTER 4. ROUTE AND PATH RELATED KNN QUERIES

(a) Range search (b) Traditional kNN (c) Proposed pkNN

Figure 4.1: Result comparisons

return to query point and go to the second one. In this case, the user wants to

continue to go to the second location from the first, and so on. This is a typical

path based k nearest neighbor query (pkNN). The difference between range search,

traditional kNN, and our proposed pkNN is highlighted in Fig.4.1 in section 4.2.

pkNN is described as given a set of candidate interest objects, a query point and

the number of objects k, find the shortest path which starts from the query point

and goes through k interest objects. By following this path, a user can visit all k

interest objects one by one, and furthermore, this path has the shortest distance

among all other possible paths.

Secondly, another query comes into our minds that is called path branch point(PBP)

and which is discussed in section 4.3. PBP can be defined as: given a set of can-

didate interest objects and a pre-defined path which starts at S and end at E, find

a path which starts at S, via an interest point p and ends at E. This path should

overlap with the pre-defined path as much as possible with acceptable distance in-

crement. This is a novel query which is motivated by users’ common requirements

because most users have ad hoc paths in their daily travel and they can tolerate a

longer driving distance to some extent if they can drive on a familiar path. In this

4.1. INTRODUCTION 85

proposed approach, an Adjust Score is calculated for each path which is deter-

mined by overlapping distance and increased distance cost. The following example

explains the query.

Fig.4.6 is an example of a path branch points query. The pre-defined path is

marked as a red line in Fig.4.6 which starts at S and ends at E. Our aim is to

find another path which starts from S, via one p and ends at E. This path should

overlap the pre-defined path as much as possible under the condition that the driving

distance increment is acceptable. As an example, take two paths which go through

p1 and p2 respectively. One of the possible paths via p1 (Path1) is S →p1 →n2 →n6

→E and one of the possible paths via p2 (Path2) is S →n2 →n10 →p2 →E. How

to determine which path is more suitable (optimal) to the user’s requirement is the

main target of this chapter.

This section makes three main contributions. First, the path branch point

(PBP) query problem is defined. Second, we incorporate kNN search query and

route search algorithms to process our PBP query using the network distance met-

ric and three factors, Distance Cost (DC), Overlap Factor (OF) and Adjust Score

(AS) are introduced and defined. By using these three factors, we can scale whether

the path is the one the user wanted or not. For the third contribution, we evaluate

this approach using experiments under different interest point distributions. Our

experiments verified the applicability of the proposed approach to solve the queries,

which involve finding the optimal path branch points.

Thirdly, as route search has been extended to include locations to be visited along

the planned route [KSSD08,YS05,HJ04,ZXTS08,ZXR+,TBPM05,KSS09,KSSD08,

Zha08]. The aim was to find the shortest distance, and sometimes the most reliable

route, that covers all user-defined locations or places. Although this is certainly

useful, it is often impractical, due to a couple of reasons: (i) each location or place,

which are normally a spatial business entity (e.g. bank, dry cleaner, supermarket)

has the opening hours - this implies that when this place is visited, it must be during

their business hours; and (ii) the traveling time from one location to another needs

86 CHAPTER 4. ROUTE AND PATH RELATED KNN QUERIES

to be considered, as in many cases, traveling time is more useful than the distance

alone. Hence, in order to make route planning over visiting locations, one must

take into account these two constraints. In section 4.4, we refer to these constraints

as Time Constraints. Therefore, our chapter focuses on route search over multiple

locations taking into consideration time constraints.

It is therefore imperative to assume that the route or path that arrives on the

location outside the operation hour is considered as an invalid path. This problem

exists in daily life, whereby we sometime have to choose a longer path to go back

and forth places just to meet the business hours of one location before its closing

time. Hence, we need to draw time constraints into our proposed methods.

Route search over multiple locations is often assumed to be the problem of kNN

or continuous kNN in spatial and mobile databases [?]. There is a huge distinction

between kNN and route search. kNN finds spatial objects that are closest located

to the query point, without considering the path that needs to be established as

the user has to visit each objects in the query result. Because of this, existing

work on kNN is inapplicable to solve route search problems. Our previous work on

incremental kNN (called ikNN) [ZXTS08] attempts to solve route search problem

whereby it could find the shortest distance to cover k number of homogenous type of

locations - however, it does not consider time constraints, nor heterogenous multiple

types of locations.

In section 4.4, we focus on two problems of route search over multiple heteroge-

nous locations: one for fixed locations, and the other for flexible locations. Fixed

locations refer to predetermined locations by the user, such as Citibank on a specific

location, Pharmore pharmacy on a specific location, etc. In this case, not only a

specific business entity is specified, such as Citibank and not any bank, or Pharmore

pharmacy and not any pharmacy, but also the specific location, such as Citibank

on 180 High Street, or Pharmore pharmacy on 25 Cure Road, etc. Hence, a Route

Search over Fixed Locations (our proposed algorithm is then called RFix) finds

4.1. INTRODUCTION 87

the most efficient route to visit the user-defined fixed locations in a non-predefined

order.

Flexible locations, on other hand, refer to predetermined location types, are not

the exact location itself. For example, if user wants to visit a pharmacy, which can

be the pharmacy anywhere; or to visit Citibank, but can be in any branch. So, a

route search over flexible locations for example is to find the most efficient route to

visit Citibank, a pharmacy, etc, in a non-predefined order. Our proposed algorithm

for Route Search over Flexible Locations is abbreviated as RFlex. Both RFix and

RFlex use the travel time network to estimate the travel time between any two

locations, as well as using the time constraints imposed by not only the operating

hours of each location, but also the traveling time itself.

To sum up, chapter.4 is the second main chapter of this thesis, which includes

3 approaches of path/route based k Nearest neighbor search. More specific descrip-

tions are:

• Section 4.2 proposes a query that is called path based k nearest neighbor

search. It aims at providing a path that visits k objects and the length of the

path that is the shortest.

• Section 4.3 explains a query which is called path branch point route search.

By given the query path and an object type, path branch point route search

retrieves the optimal path that balances the overlap ratio of query path and

the length of result path.

• Section 4.4 describes a novel route research which adds time constraint into

the search. In addition, a user may define the objects visiting sequence as

sequential or random.

Let us begin the main part of these three approaches with the performance

evaluation followed after.

88 CHAPTER 4. ROUTE AND PATH RELATED KNN QUERIES

Figure 4.2: An example of road networks

4.2 Approach 1: Path based kNN Search Queries

Nowadays, most queries in mobile databases take the road networks into considera-

tion because Euclidean distance, in most situations, cannot reflect the real connec-

tions between interest objects. The driving distance, or time cost, are determined

by the shortest distance in road connection between objects. As a result, firstly, we

define the method that how a weighted map is constructed. Also in this section, we

introduce the data structures which is going to be used in the approach.

4.2.1 Definition of road network elements

Fig.4.2 is an example of road networks, in which query point q, road network inter-

sections n1-n7 (white points), and interest points p1-p8 (black points) are vertices

and the solid lines connecting these vertices are edges. The number on each edge

represents the shortest distance, in other word, the weight of the edge.

4.2. APPROACH 1: PATH BASED KNN SEARCH QUERIES 89

Definition 4.2.1. (Expansion) Expansion is the traversal from a vertex vi to all

of its adjacent vertices.

In Fig.2.1, from q, three q’s adjacent vertices n1, n2 and p5 will be expanded.

4.2.2 Data structure

In the approach processing progress, couple of data structures are going to be used,

such as pkNN tuple, Result Set, Expanded Set, Boundary Set and distance. The

following definitions defines them in details.

Definition 4.2.2. (pkNN tuples) t=(v, dnet(v,q), V P) where v∈V , visited point

set V P=(p1, p2, ..., pm) where m≤k. Each tuple represents a path which starts from

q to v.

In Fig.2.1, t1=(n3, 4, {p5}) and t2=(n3, 4, {∅}) are two paths. t1 starts from

q to n3 via p5, in other word, q → p5 → n3 while t2 is the path via null object of

interest which is q → n2 → n3.

Definition 4.2.3. (Result Set RS) RS={t|t.v is a current expansion node
⋂

t.dnet(v,q) 6 dmax}. RS holds the pkNN tuples after expansion and sorted by

t.dnet(v,q).

Definition 4.2.4. (Expanded Set ES) ES={t|t is the expanded pkNN tuple
⋂

t.dnet(v,q) 6 dmax}. ES is designed to hold all expanded pkNN tuples to do further

pruning.

See example shown in Fig.2.1, after expanded from q, RS={(n2, 1, {∅}), (n1, 2,

{∅)}, (p5, 3, {p5})}. And the pkNN tuple which has been expanded is moved into

ES. As result, ES= {(q, 0, {∅})}.

Definition 4.2.5. (Boundary Set and distance) Boundary distance dmax= min

(t.dnet(v,q)) where ∀t.V P=(p1, p2, ..., pk). Boundary Set BS={t|ti.V P=(p1, p2,

90 CHAPTER 4. ROUTE AND PATH RELATED KNN QUERIES

..., pk)
⋂
t.dnet(v,q) = dmax}. BS stores all candidate shortest path based on current

dmax.

Suppose the query of example in Fig.2.1 is to find 2kNN, in the query processing,

dmax is 8 because one complete path is found, which is q → p5 → p4 and the the

path length is 8. As a result, BS={p4,8,{p5,p4}}. Although at last, another shorter

path is found as optimal path, at this stage, BS holds the candidate result path.

4.2.3 Proposed Method

In this subsection, the pkNN approach will introduce basic expansion, pruning con-

ditions, accelerated approach and special issues in turn.

Basic Expansions

The approach of pkNN performs network expansion, which is similar with INE

(Incremental Network Expansion). The expansion starts from query point q to all

adjacent vertex and store the pkNN tuples into RS. Every time pop out one pkNN

tuple to do further expansion until boundary set (BS) is found. In the processing

progress, using pruning conditions to prune some redundant pkNN tuples to speed

up the expansion. Then keep updating the boundary distance (dmax) until RS has

been cleared. In INE, the visited nodes will not be expanded during the expansion,

while in pkNN, all adjacent nodes are expanded to no matter whether the nodes

have been visited or not.

Specifically, pkNN first initials ES and RS as {(q, 0, {∅})}. Secondly, as q is on

the top of the RS, we pop it out and retrieve all adjacent nodes of q (n1, n2 and p5),

expand to each of them and put their pkNN tuples into RS. As a result, RS={(n2,

1, {∅}), (n1, 2, {∅)}, (p5, 3, {p5})}. (p5, 3, {p5}) tuple means the path starts from

q, ends at p5 with distance 3 via interest objects p5. Then following the former

steps, pop (n2, 1, {∅}) out, add it into ES and do expansion to all n2’s adjacent

4.2. APPROACH 1: PATH BASED KNN SEARCH QUERIES 91

nodes. Update boundary set BS and dmax until at least one completed route has

been found. Keep updating BS and dmax until RS is empty.

Lemma (Pruning conditions)

As we stated before, in every expansion, all adjacent nodes are expanded which will

cause a lot of redundant pkNN tuples because we allow go-and-back expansion. As

a result, pruning conditions can speed up the algorithm by reducing useless pkNN

tuples.

Lemma 4.2.1. Given tx, ty ∈ RS, if tx.vx = ty.vy, tx.V P = ty.V P and tx.dnet(vx, q)

≤ ty.dnet(vx, q), then ty needs to be pruned. Summarized as prune path with vain

distance.

Proof. Given an pkNN query, all candidate interest points are in Set POI, suppose

tx, ty∈RS,tx.vx=ty.vy, tx.V P=ty.V P , tx.dnet(vx, q)≤ty.dnet(vx, q), we should prove

that ty can not lead the optimal path under this assumption.

As tx.vx=ty.vy, tx.V P=ty.V P={p1,...,pm}, then this becomes another ik′NN

query where k′=k-m and POI ′=POI-{p1,...,pm}. Suppose Path′ is the optimal

path of ik′NN which starts from tx.vx.

Under this condition tx.dnet(vx, q) ≤ ty.dnet(vx, q), then tx.dnet(vx, q) + Path′ ≤

ty.dnet(vx, q) + Path′. pkNN is to find the shortest path which starts from q and goes

through k interest points, given tx.dnet(vx, q)+Path
′ and ty.dnet(vx, q)+Path

′ are two

candidate pkNN path, we should prune the longer path which is ty.dnet(vx, q)+Path
′.

So ty needs to be pruned.

Example 4.2.1. As t3=(p4,8,{p5,p4}) and t4=(p4,10,{p5,p4}), because t3.v = p4

= t4.v, t1.V P = {p5,p4} = t2.V P and t3.dnet(v, q) =8 ≤ t2.dnet(v, q)=10, so t4 is

pruned. In other words, t3 and t4 represent two paths with some start and end node

as well as the visited nodes are identical (includes both interest nodes name and

visiting sequence). The path with longer distance is pruned because it costs vain

driving distance.

92 CHAPTER 4. ROUTE AND PATH RELATED KNN QUERIES

Algorithm 5 PrunCond1 Lemma1(RS)

1: for i=0,i<Size(RS),i++ do
2: for j=0,j<Size(RS),j++ do
3: if dnet(vi,q)≤dnet(vi,q)||vi.V P=vj .V P then
4: RS=RS-tj
5: end if
6: end for
7: end for
8: return RS

Lemma 4.2.2. Given tx, ty ∈ RS, if tx.vx = ty.vy, tx.V P ⊃ ty.V P and tx.dnet(vx, q)

≤ ty.dnet(vy, q), then ty needs to be pruned. Summarized as prune path with less

efficiency.

Proof. Given an pkNN query, all candidate interest points are in Set POI, suppose

if tx.vx=ty.vy, tx.dnet(vx, q) ≤ ty.dnet(vy, q) and tx.V P⊃ty.V P , we should prove that

ty can not lead the optimal path under this assumption.

Given the conditions tx.vx=ty.vy, tx.V P⊃ty.V P , suppose tx.V P={p1,...,pn,...,pm},

ty.V P = {p1,...,pn}. Then from tx.vx, how to find optimal path becomes another

ik′NN query where k′=k-m and POI ′=POI-{p1,...,pm}, and from ty.vy, how to

find optimal path becomes another ik′′NN query where k′′=k-n and POI ′′=POI-

{p1,...,pn}.

Suppose Path′′ is the optimal path of pk′′NN which starts from tx/y.vx/y, so

Pathty+Path′′ is one candidate pkNN path.

If Path′′ contains some interest points say 0≤i≤m − n of tx.V P -ty.V P , then

Pathtx+Path′′ contains m+k-n-i>k interest points. As tx.dnet(vx, q) ≤ ty.dnet(vy, q),

so Pathtx+Path′′ ≤ Pathty+Path′′. Suppose Pathsub is the sub-path of Pathtx+Path′′

which goes through k interest points, so Pathsub ≤ Pathtx+Path′′ ≤ Pathty+Path′′.

As a result, ty needs to be pruned.

Example 4.2.2. Suppose t1=(n3, 4, {p1,p5}) and t2=(n3, 4, {p1}), because t1.v =

n3 = t2.v, t1.dnet(v, q) =4 ≤ t2.dnet(v, q)=4 and t1.V P={p1,p5} ⊃ t2.V P={p1}, as

a result, t2 is pruned. To sum up, t1 and t2 represent two paths with some start and

end node. t1 visits more interest objects than t2, in other word, t1 visits more objects

4.2. APPROACH 1: PATH BASED KNN SEARCH QUERIES 93

after visiting all t2.V P in same sequence. Moreover, t1’s distance is not longer than

t2’s distance. We can conclude that t2 is a path with less efficiency, so prune it.

Algorithm 6 PrunCond2 Lemma2(RS)

1: for i=0,i<Size(RS),i++ do
2: for j=0,j<Size(RS),j++ do
3: if dnet(vi,q)≤dnet(vi,q)||vi.V P⊃vj .V P then
4: RS=RS-tj
5: end if
6: end for
7: end for
8: return RS

Lemma 4.2.3. Given tx∈RS, if tx.dnet(vx, q)>dmax, then t should to be pruned.

Summarized as shrink RS by Boundary Distance (dmax).

Proof. Suppose Path is the full path which contains tx, then lengthPath > tx.dnet(vx, q).

Because tx.dnet(vx, q)>dmax, then lengthPath>dmax, in other word, Path is not the

optimal path of pkNN. So tx is pruned.

Example 4.2.3. If dmax=7, there is a tuple t5=(n1, 8, {p3}) in RS. It is pruned

because t5.dnet(n1, q)=8>dmax. This lemma is summarized as following: the pkNN

tuples in RS represent uncompleted path but with longer distance than the completed

path has been found. So there is no chance this tuple can be the optimal path, this

tuple is pruned. As a result, RS shrink using dmax.

Algorithm 7 PrunCond3 Lemma3(RS,dmax)

1: for i=0,i<Size(RS),i++ do
2: if dnet(vi,q)>dmax then
3: RS=RS-tj
4: end if
5: end for
6: return RS

Lemma 4.2.4. Tuples in ES can prune pkNN tuples in RS using Lemma 1 and 2.

Summarized as ES can prune RS by lemma 1 and 2.

94 CHAPTER 4. ROUTE AND PATH RELATED KNN QUERIES

Proof. Def. 4.2.4 tells RS is to keep the expansion history. Suppose t1∈RS, t2∈ES,

t1 and t2 fit Lemma 1 and 2, t1 can be pruned. The reason are the same as proof of

Lemma 1 and 2.

Example 4.2.4. As stated before, after first expansion from q, tuple ti=(q, 0, {∅})

is in ES. Then after couple of expansions, there is tuple tj=(q, 2, {∅}) in RS. ti

and tj fit Lemma 1, so tj in RS is pruned which accelerates the approach as well.

This is main reason we use ES to keep expansion history.

Algorithm 8 PrunCond4 Lemma4(RS,ES)

1: for i=0,i<Size(ES),i++ do
2: for j=0,j<Size(RS),j++ do
3: if dnet(vi,q)≤dnet(vi,q)||vi.V P=vj .V P then
4: RS=RS-tj
5: end if
6: if dnet(vi,q)≤dnet(vi,q)||vi.V P⊃vj .V P then
7: RS=RS-tj
8: end if
9: end for

10: end for
11: return RS

Most redundant pkNN tuples can be pruned by lemma 1-4 which accelerates

the processing time of pkNN approach. There is no order between four pruning

conditions. For each tuple in RS, if it fits one pruning condition, just prune it.

RS keeps the tuples which are unfit for all four pruning conditions. Tuples which

fits one pruning conditions commonly exist after each expansion. As a result, the

performance can be accelerated by using four pruning lemmas after each expansion.

The following accelerated approach algorithm (Algorithm 9) is produced based on

these pruning conditions.

Special Issues

After addressing the approach, there are three important issues need to be clarified

in this section.

4.2. APPROACH 1: PATH BASED KNN SEARCH QUERIES 95

Algorithm 9 pkNN(q,k)

1: Initial P={p|all interest objects}, N={n|all intersection nodes}, V=q∪P∪N
2: Initial RS={(q, 0, {∅})}, ES=∅, BS=∅, dmax=∞
3: Initial pkNN tuple structure t=(v, dnet(v,q), V P⊂P , when Size(V P)=k, the path is

complete.
4: Do{
5: De-queue the top t in RS and ES=ES∪t
6: Find all t’s adjacent nodes in V
7: for Each t’s adjacent node nd do
8: if nd∈P and nd/∈t.V P then
9: if Sizet.V P< k-1 then

10: RS=RS∪(nd,dnet(v,q)+dnet(v,nd),{t.V P∪nd})
11: else
12: if dnet(v,q)+dnet(v,nd)< dmax then
13: dmax=dnet(v,q)+dnet(v,nd)
14: BS={(nd,dnet(v,q)+dnet(v,nd),{t.V P∪nd})}
15: else
16: if dnet(v,q)+dnet(v,nd)=dmax then
17: BS=BS∪(nd,dnet(v,q)+dnet(v,nd),{t.V P∪nd})
18: end if
19: end if
20: end if
21: else
22: RS=RS∪(nd,dnet(v,q)+dnet(v,nd),{t.V P})
23: end if
24: end for
25: PrunCond1 Lemma1(RS)
26: PrunCond2 Lemma2(RS)
27: PrunCond3 Lemma3(RS,dmax)
28: PrunCond4 Lemma4(RS,ES)
29: } While (RS 6=∅)

96 CHAPTER 4. ROUTE AND PATH RELATED KNN QUERIES

Figure 4.3: An example of Local minima scenario

Local minima: One main question from the pkNN queries is that whether we

can use multiple 1 NN, instead of pkNN to answer the same query? For example, if

we want to find p2NN, can we use 1 NN first in query point to find nearest pi and

then use 1 NN on pi to find nearest pj ? The answer is NO. See example in Fig.4.3,

using multiple 1 NN, we will get a path q→p5→p4 because p5 is closest to q and p4

is closest to p5. Whereas using p2NN, the path would be q→p2→p1. And actually

distance dist(q→p2→p1)= 7, which is shorter than dist(q→p5→p4)= 8. This simple

example shows that it is impossible to use multiple 1 NN technique to answer pkNN

queries.

Looping scenario: In pkNN, we do a full expansion, which means we expand to

all adjacent neighbor nodes. It is different from INE and Dijistra’s algorithm because

will full expansion, we allow go-and-back path. As a result, a looping scenario is well

performed in pkNN. But lemma 1 and 2 can prune the redundant looping paths.

See example in Fig.4.4. Starting from q, after few expansion to n1, n2, p4,n3,n4

in turn, the path ends at n4. Then the next expansion will go to q and this is a

typical looping scenario. This looping tuple can be pruned by lemma 1 because the

second round will cost longer distance than the first round.

4.2. APPROACH 1: PATH BASED KNN SEARCH QUERIES 97

Figure 4.4: An example of looping scenario

Figure 4.5: An example of U-Turn scenario

U-Turn scenario: As we expand the path to all adjacent nodes, we allow the

user to go back anytime. Fig.4.5 shows that this condition should be allowed in the

algorithm; otherwise the answer of the query can be wrong.

Suppose the query is 2pNN. After expansion from q, we got the following tuples

in RS = {(p1, 1, {p1}), (n1, 1, {∅})}. When we expand p1, if we do not allow

U-Turn, we will not add q into RS, so we cannot find n1, then p2 in future, so the

result will be q→p1→p4. Actually, the shortest path should be q→p1→p2 because

dist(q→p1→p2)= 5 is smaller than dist(q→p1→p4)= 6.

Now we can summarize pkNN algorithm in general, our pkNN approach essence is

full expansion with four pruning conditions to improve the performance evaluation,

in other word, accelerate the query processing, at the same, three issues (local

98 CHAPTER 4. ROUTE AND PATH RELATED KNN QUERIES

minima, looping and U-turn scenarios) are been emphasized to ensure the correctness

of the pkNN result.

4.3 Approach 2: Path Branch Point based kNN

Search

4.3.1 Preliminaries

Euclidean distance, which has been widely used in most queries in mobile database,

cannot reflect the real connections between interest points. The measure which is

investigated in this approach is network distance. The network distance depends

on the underlying road network which links the interest points, while Euclidean

distance reflects the relative positions of interest points. So at the beginning of this

section, the road network and network distance are defined.

In addition, the two factors DC (distance cost) and OF (overlap factor) are

introduced. By using DC and OF , a formula can distinguish one path from the

others.

Finally, the data structure is also illustrated to clarify the algorithm in section

4.3.2.

Definitions

In the query of our approach, one of the given condition is pre-defined path. Def. 4.3.1

defines the notation of pre-defined path.

Definition 4.3.1. (Pre-defined Path) is one condition in the query, which starts

at point S and ends at point E. Pre-defined path can be notated as Pathpre.

Definition 4.3.2. (Overlap Segment) If both of Patha and Pathb contain seg-

ment si, si is defined as Patha and Pathb’s overlap segment, marked as OSa,b.

Definition 4.3.3. (Separation) and (Regression Point) If ninj is one of the

overlap segment OSa,b of Patha and Pathb and according to the direction of Pathpre,

4.3. APPROACH 2: PATH BRANCH POINT BASED KNN SEARCH 99

ni is antecedent point while nj is the succedent point, ni and nj are defined as a pair

of Separation Point (SPa,b) and Regression Point (RPa,b) respectively.

Factors and Formula

Definition 4.3.4. Overlap Factor(OF) of pathn is the percentage of OSn,pre out

of dist(Pathn), if pathn starts from S, via pi and ends at E, pi∈P .

OFpathn =

n∑
i=1

dist(OSn,pre)

dist(Pathn)
(4.1)

From Def. 4.3.4 and equation(4.1), we can see that the OF is the factor of overlap

distance divide Pathn. For example, if the overlap part of Pathn and Pathpre is

7km and Pathn is 11km, we can calculate that the OF of Pathn is 7
11.

Definition 4.3.5. Distance Cost(DC) of pathm is the percentage of dist(Pathpre)

compared to dist(Pathm), if pathm starts from S, via pi and ends at E, pi∈P .

DCpathm =
dist(Pathpre)

dist(Pathm)
(4.2)

From Def. 4.3.5 and equation(4.2), we can see that is the DC is the percentage

of dist(Pathpre) compared to dist(Pathm). For example, if the Pathpre is 10km,

while Pathm is 11km, the DC is 10
11.

Definition 4.3.6. Adjust Score(AS) is determined by the result of Overlap Decre-

ment (OF) multiple Distance Cost (DC). The closer to 1, the better the path is.

ASpathi
= OFpathi

∗DCpathi
(4.3)

After clarifying the Defs. 4.3.5-4.3.6 and equations 4.2-4.3, we can summarize

as follows: factor DC examines the distance cost of path, factor OF represents

the overlap, while OF multiplied by DC, which is factor AS examines whether the

100 CHAPTER 4. ROUTE AND PATH RELATED KNN QUERIES

Figure 4.6: An example of path branch points query

balance between OF and DC is optimal. The closer to 1, the better the path is. To

continue the example above, the AS is 7
11 ∗

10
11 = 70

121 ≈ 0.579.

Definition 4.3.7. (Path branch points) Given Pathpre and pi∈P , a Path branch

point query finds the optimal Patha (with largest AS) and the pair of SPa,pre and

RPa,pre. Patha should start at S, via pi and end at E.

Example 4.3.1. Fig.4.6 is an example of a path branch points query. The pre-

defined path is marked as a red line in Fig.4.6 starting at S and ending at E. Taking

p1 and p2 as an example, one possible path through p1 (Path1) is S→ p1→n2 →n6

→E and one possible path through p2 (Path2) is S→n2 →n10 →p2 →E. The factors

of Path1 and Path2 are calculated as follows.

OFPath1 = 1 + 5
3 + 2 + 1 + 5 = 6

11 .

DCPath1 = 3 + 1 + 5
3 + 2 + 1 + 5 = 9

11 .

ASPath1 = OFPath1 ∗DCPath1 = 6
11 ∗

9
11 = 54

121 ≈ 0.446.

OFPath2 = 3
3 + 2 + 3 + 2 = 0.3.

DCPath2 = 3 + 1 + 5
3 + 2 + 3 + 2 = 0.9.

ASPath2 = OFPath1 ∗DCPath1 = 0.3 ∗ 0.9 = 0.27.

4.3. APPROACH 2: PATH BRANCH POINT BASED KNN SEARCH 101

From this example, we call see that Path1 is better than Path2 even Path1’s

distance is longer than Path2. As Path1 has more overlap with the pre-defined path,

which means the user can drive further on the familiar path, Path1 is determined

to be a better path than Path2 which fits our motivation as well.

4.3.2 Proposed Approach

In this part, the path branch points approach (PBP) will be introduced, including

lemmas, pruning conditions, algorithms and the process will be outlined.

PBP query

In this part, the query of our proposed path branch points (PBP) approach is

described.

In daily life, most people have a preferred route if the start point and destination

are given. For example, when traveling from the office to home, a person generally

takes the same route each day, which is usually the shortest or fastest. Users are

disinclined to change the route, even when they need to visit another destination

along the route. Most users agree that if the driving distance is not too much

greater, they prefer to keep as much as possible to the same route. How to balance

the increment of the driving path with the overlapping percentage of the pre-defined

path is the motivation of this chapter.

Given a pre-defined path which starts at S and ends at E, a user decides to visit

one specific type of interest point along the path. Choosing the best path which not

only intersects with the user’s pre-defined path, but also overlaps with it as much

as possible, providing the increase in the driving distance is acceptable, is a general

description of the PBP query. In fig.4.6, our approach is to determine which is the

better path from S→p1→n2→n6→E and S→n2→n10→p2→E, and to finally find

the optimal path of all possible paths.

102 CHAPTER 4. ROUTE AND PATH RELATED KNN QUERIES

Lemmas

Section 4.3.1 has already clarified the factors which determine the optimal path. In

this section, lemmas are illustrated based on an in depth analysis of OF , DC and

AS factors.

Lemma 4.3.1. If dist(Patha) = min{∀dist(Path)—Path starts at S and ends at

E} and dist(Pathb) = min{∀dist(Path) —Path starts at S, via P and ends at

E,pi∈P}, dist(Patha) ≤ dist(Pathb), in other words, ∀ pathb, 0 ≤ DCpathb
≤ 1.

Proof. Lemma 4.3.1 can be proven by contradiction.

Suppose dist(Patha)>dist(Pathb), which means Pathb is shorter than Patha.

Because Pathb starts at S and ends at E, which satisfies the condition of Patha as

well, and dist(Patha) > dist(Pathb), Patha 6= min∀dist(Path)—Path starts at S

and ends at E. This is against the given condition.

As a result, we can conclude that dist(Patha)≤dist(Pathb) under given condi-

tions.

So 0 ≤ DCpathm =
dist(Pathpre)
dist(Pathm)

≤ 1.

Lemma 4.3.2. ∀ pathc — pathc starts at S, via P and ends at E, pi ∈ P , a

conclusion can be drawn: 0 ≤ OFpathc ≤ 1.

Proof. BecauseOFpathn =

n∑
i=1

dist(OSn,pre)

dist(Pathn)
, according to Lemma 4.3.1, dist(Pathpre)

≤ dist(Pathn).

With reference to Def. 4.3.2, we can conclude
∑n

i=1 dist(OSn,pre)≤ dist(Pathpre).

As
∑n

i=1 dist(OSn,pre)≤ dist(Pathpre)≤ dist(Pathn), OFpathn =

n∑
i=1

dist(OSn,pre)

dist(Pathn)

≤ 1.

Lemma 4.3.3. Given dist(Pathpre)=min (∀dist(Path)—Path at from S and ends

at E), then 0 ≤ AS ≤ 1.

4.3. APPROACH 2: PATH BRANCH POINT BASED KNN SEARCH 103

Figure 4.7: An example of Lemma 4.3.4

Proof. According to Lemma 4.3.1 and 4.3.2, 0 ≤ OFpathi
≤ 1 and 0 ≤ DCpathc ≤ 1,

as a result, 0≤ASpathi
=OF*DC ≤ 1.

By deep analysis of Lemma 4.3.1, 4.3.2 and 4.3.3, we can conclude that the closer

AS to 1, the more optimal the path.

Lemma 4.3.4. If there is any interest point on the Pathpre, the optimal path is

Pathpre with no branch point.

Proof. If there is any interest point on the Pathpre, we can conclude that dist(Pathk)

= dist(Pathpre) as well as
∑n

i=1 dist(OSk,pre) = dist(Pathpre).

Consequently OFpathk
=

n∑
i=1

dist(OSk,pre)

dist(Pathk)
=1 and DCpathk

=
dist(Pathpre)
dist(Pathk)

=1. So

ASpathk
=DC*OF=1.

This is the optimal path because it has the largest AS value.

Example 4.3.2. Fig.4.7 is an example of Lemma 4.3.4. In Fig.4.7, there is an

interest point p3 located on the pre-defined path. According to Lemma 4, it is the

optimal path with no branch point. We can demonstrate this using the following

calculations.

Suppose pathi is S→P3→n2→n6→E. OFpathi
=12

12=1 and DCpathk
= 12

12=1. So

ASpathi
=DC*OF=1.

104 CHAPTER 4. ROUTE AND PATH RELATED KNN QUERIES

Figure 4.8: An example of Lemma 4.3.5

pathi is the optimal path as it already reaches the top boundary of AS. It also

fits our motivation because this path will allow the user to travel an a familiar route

for as long as possible (in this case, the whole path is familiar to the user) with an

acceptable increase in the driving distance (no distance increase in this case). It is

clear that this is the optimal path.

Lemma 4.3.5. If ∀Pathj—
∑n

i=1 dist(OSj,pre)=0, ASpathj
=0 and should be dis-

carded.

Proof. If
∑n

i=1 dist(OSj,pre)=0

obviously OFpathk
=

n∑
i=1

dist(OSj,pre)

dist(Pathk)
= 0,

so ASpathj
=DC*OF=0.

This is the worst path because it has the smallest AS value.

Example 4.3.3. Fig.4.8 is an example of Lemma 4.3.5. In Fig.4.8, the red path is

Pathpre and the blue path (Pathblue) is the candidate path which starts at S, via p2

and ends at E. According to Lemma 4.3.4, it is the worst path because there is no

overlap between Pathpre and Pathblue. We can demonstrate this using the following

calculations.

As
∑n

i=1 dist(OSblue,pre)=0

4.3. APPROACH 2: PATH BRANCH POINT BASED KNN SEARCH 105

obviously OFpathblue
=

n∑
i=1

dist(OSblue,pre)

dist(Pathblue)
= 0,

so ASpathblue
=DC*OF=0.

From lemma 4.3.5, we can see that although pathblue has no driving distance

increment (dist(pathblue)=dist(pathpre)), it is still considered as the worst path be-

cause the entire path is not familiar to the user. The user may want to drive further

provided most of the path is familiar to him.

Implementing the PBP query

In this section, the steps involved in implementing the PBP query are described.

Firstly, initial BoundaryAS = 0, ResultList=∅, array Intersections = [∅],

DistBoun = ∞, ResultList = ∅.

Secondly, find all interest points along Pathpre. If any, terminate the algorithm

by returning these interest points and Pathpre. According to Def.3, this is the

optimal path of this query.

Thirdly, consider S and E as group kNN and find all group NN results then group

them into a set CandidateSet sorted by the sum distance to S and E. Whenever

BoundaryAS is updated, update the DistBoun using the following formula:

DistBoun =
2

√
dist(Pathpre)

2

BoundaryAS
.

Then pop out the first pi from CandidateSet. Find the shortest path pathl from

S via pi to E. Let nx be the separation point of pathl and pathpre (spl,pre) and

ny the regression point of pathl and pathpre (rpl,pre). Calculate ASpathl
. If ASpathl

> BoundaryAS, set BoundayAS = ASpathl
, and replace ResultList as pathl, nx,

ny. If ASpathl
= BoundayAS, add pathl, nx, ny into ResultList. If ASpathl

<

BoundaryAS, put all intersections between nx and ny into Intersections including

nx and ny in the visiting sequence. For each pair of ni and nj in Intersections

and ni is forehead of nj, form a pathi as S →ni → pi → nj → E. If dist(pathi) ≤

DistBoun, calculate ASpathi
and follow the comparison above.

106 CHAPTER 4. ROUTE AND PATH RELATED KNN QUERIES

Algorithm 10 PBP (Pathpre,P)

1: Initial BoundaryAS=0
2: Initial ResultList=∅
3: Initial array Intersections=[∅]
4: Initial DistBoun=∞
5: Initial ResultList=∅
6: OnPath=p—pi on Pathpre
7: if Size(OnPath)¿0 then
8: Return OnPath
9: end if

10: CandidateSet=GkNN(S,E) sorted by dist(S,pi)+dist(pi,E).
11: Pop out first pi in CandidateSet
12: Find the shortest path pathl from S via pi to E
13: if dist(pathl)¡DistBoun then
14: nx=spl,pre and ny=rpl,pre
15: Calculate ASpathl

16: if ASpathl
¿BoundaryAS then

17: Set BoundayAS=ASpathl
, ResultList={pathl, nx, ny}

18: Update DistBoun =
2

√
dist(Pathpre)

2

BoundaryAS
19: end if
20: if ASpathl

=BoundaryAS then
21: ResultList=ResultList∩{pathl, nx, ny}
22: end if
23: if ASpathl

¡BoundaryAS then
24: Intersections={n—nx,intersections between nx and ny, ny} in visiting sequence

25: for Each pair of ni, nj , i¡j do
26: Form a pathi as S→ni→pi→nj→E
27: if dist(pathi)<DistBoun then
28: Calculate ASpathi

29: if ASpathi
¿BoundaryAS then

30: Set BoundayAS=ASpathi
, ResultList={pathi, ni, nj}

31: Update DistBoun =
2

√
dist(Pathpre)

2

BoundaryAS
32: end if
33: if ASpathi

=BoundaryAS then
34: ResultList=ResultList∩{pathl, nx, ny}
35: end if
36: Break
37: end if
38: end for
39: end if
40: Break
41: end if
42: if Size(CandidateSet)¿0 then
43: Go to Line 11
44: end if
45: Return ResultList

4.4. APPROACH 3: TIME CONSTRAINT ROUTE SEARCH 107

Next, continue pop out pi from CandidateSet and follow the previous steps until

the sum distance to S and E in CandidateSet is larger than DistBoun. Lastly, the

optimal path is in ResultList. Algorithm 10 is produced to find the path branch

points.

4.4 Approach 3: Time Constraint Route Search

4.4.1 Preliminaries

Some variations of route search have been investigated in earlier works [KSSD08,

YS05,HJ04,ZXTS08,TBPM05,KSSD08,Zha08,EL05,PG98]. In [YS05,HJ04], they

try to find the route with smallest deviation to visit a new point when a user travels a

pre-defined route. [ZXTS08,TBPM05] have single type of interest points and no time

constraint involved. Considering the inaccuracy and incomplete issues, some works

assigned scores or probabilities to each locations and the result path should pass

the locations with high probabilities [KSS09,KSSD08]. In our query, the criteria is

the path with shortest travel time which is different from shortest path [ZXT+09b].

In addition, in some route search, the path can go through multiple locations of

the same type [KSSD08, KSS09] while our path only visits one location for each

type. Moreover, even if a lot of different constraints have been studied, there is no

paper which draws time constraint into Route Search query. Although our proposed

methods are significantly different from existing works [EL05], they are still worth

to be reviewed as they become our motivation.

Route Search Query

Route search query was proposed by Yaron Kanza et. al in 2008 [KSSD08]. There

are three semantics covered in this chapter, such as given start point, end point

and all types of user interests, the first semantic is to return the shortest route that

goes via all relevant entities. A second semantic is to find the most-profitable route,

which is the route having the highest accumulative relevance and the length of the

108 CHAPTER 4. ROUTE AND PATH RELATED KNN QUERIES

route is within the given limit. A third semantic is to compute the most-reliable

route, which goes through as much higher relevant entities as possible and the length

of the route is within the given limit.

Route search query uses greedy insertion from both start point and end point to

find the final path. In route search, similar as our methods, multiple location types

are concerned and the final path must pass one location of each type in any order.

Outstanding Problems

• Route search query chooses multiple criteria such as shortest distance, highest

relevance or more relevant entities with higher relevance. While we choose

the shortest travel time because we draw time constraint into the query and

shortest distance cannot guarantee the shortest travel time.

• Route search query has a pre-defined path length limit while our methods are

indifferent to travel distance.

• Route search query pre-defined the start and end point while our methods

only give the start point.

• Route search query does not concern arriving time for any interest point while

the optimum path of our methods should meet the time constraint of each

type.

Path Based kNN

Path Based k nearest neighbor (PkNN) [ZXTS08] is given a set of candidate interest

points to find the shortest path which starts at query point and goes through k in-

terest points. For example, find the shortest path which goes through 3 restaurants

from q. It is a novel kNN because the result is the shortest path and the interest

points are visited one by one. While it is not a Route Search query neither because

all candidate interest points are single type, while our Route Search query involves

4.4. APPROACH 3: TIME CONSTRAINT ROUTE SEARCH 109

multiple types which needs access to different data structures such as multiple Net-

work Voronoi Diagram [ZXT+09b, KS04, OBSC00] and the result path must cover

every type.

PkNN uses network expansion as Incremental Network expansion (INE). In

the process of network expansion, PkNN records all expansion branches until one

path is full of k interest points. The path is set as the boundary. Continue to do

the expansion, once there is a path shorter than the boundary; shrink it until all

possible branches are expanded out of boundary. PkNN is similar with our proposed

methods, such as both methods have a boundary identifier (D/Tmax) to shrink the

expansion scope and numbers of points to be visited are given.

Outstanding Problems

Single vs. Multiple types: PkNN considers all interest points as single type.

In reality, the user may want to process the k nearest neighbor search in a

multiple type objects environment.

Time Constraint: PkNN does not concern arriving time constraint for any interest

point while the optimum path of our methods should meet the time constraint.

Additional Specifications

Before we move on to the proposed methods, more specifications are described and

compared with other existing works:

• Why cannot kNN solve Route Search query?

kNN cannot guarantee all locations to be fully covered, since the distance from

query point to all interest points is the only criteria, and not the complete path.

• What are the differences between incremental kNN and Route Search query?

In path based kNN, all interest points are considered as single type while in

route search query, there are multiple types of interest points and the optimal

path should go through all types of interest points.

110 CHAPTER 4. ROUTE AND PATH RELATED KNN QUERIES

• Can multiple 1 NN find all interest points?

If we use 1 NN to find the nearest neighbor until all types have been found,

there is high possibility that the final path is not the most optimum one. The

first nearest interest point may lead to a further distance to other interest

points, as a result, it does not yield an optimum path. This is a common local

minimal problem in scheduling.

• Why does the shortest time need to be used instead of the shortest distance?

Since the problem of answering Route Search queries is a generalization of the

traveling salesman problem, it is unlikely to have an efficient solution, i.e.,

there is no polynomial-time algorithm that solves the problem (unless P=NP)

[KSSD08]. Hence, as a solution, this chapter incorporates time constraint

in order to prune as many expansion branches as possible and makes the

query more realistic. If we use time constraint to prune the expansion branch,

choosing traveling time as criteria is straightforward and can be adjusted to

different travel time period.

4.4.2 Proposed Methods

In this section, our proposed Route Search for fixed locations (RFix) and flexible

locations (RFlex) are described. In each method, the query is given first followed by

detailed explanations of the key issues, then after listing the algorithm, an example

will illustrate the processing steps. As travel time is chosen as criteria, travel time

network needs to be introduced first.

In Travel time network [KZWW05], the measurement between nodes is the travel

time 4.9(b) instead of network distance 4.9(a). This is often more desirable because

under certain conditions travel time is more meaningful than network distance, such

as whether the path arriving at locations within their operating hours depends on

the travel time, not travel distance. In this chapter, we use the average travel

speed in routine profile to estimate the approximate travel time. Fig. 4.4.2 gives an

4.4. APPROACH 3: TIME CONSTRAINT ROUTE SEARCH 111

(a) Road Network Denotation (b) Travel Time Network Denotation

Figure 4.9: Road network vs. travel time network

example of a travel time network. We assume that the average travel time for each

road segment is read from the traffic profile.

Route Search for fixed locations (RFix)

When the query is a route search for fixed locations, this query can be categorized

as Route Search for fixed locations (RFix). Example 4.4.1 illustrates a RFix query.

It can be expressed as follows: Start at q at 4:30pm, find the optimum path whose

travel time is shortest and this path should visit A, B, C and D between 9:00am–

5:00pm, 9:00am–5:30pm, 4:30pm–5:40pm and 6:00pm–6:30pm respectively. Now we

can treat q, A,B,C and D as locations and invoke our proposed method RFix to

find an optimum path. The pruning conditions are explained as follows:

Example 4.4.1. Secretary will leave her office at 4:30pm. She has a plan to do:

♦ Fetch a suit from dry cleaner A and A’s trading time is 9:00am–5:00pm.

♦ Fetch a contract from Company B and B’s open hours are 9:00am–5:30pm.

♦ Send a report to manager’s apartment C and he is at home 4:30pm–5:40pm.

♦ Pick up her son from kindergarten D and D’s pick up period is 6:00pm–6:30pm.

RFix Definition

The RFix query can be formally defined like this:

112 CHAPTER 4. ROUTE AND PATH RELATED KNN QUERIES

Definition 4.4.1. RFix is a route search query consisting of:

Input: Type Set T={t1,t2,...,tn}, Locations set P={p1,p2,...,pn}, ∀ pi ∈ ti.

Output: A Path l which goes through all ps in P and distancel is the shortest.

Pruning Conditions Since the problem of answering Route Search queries is

a generalization of the traveling salesman problem, it is unlikely to have an efficient

solution, hence an efficient pruning method is crucial. With the prune conditions,

the candidate permutation is greatly reduced and that is the basis of our solutions.

Two pruning conditions are discussed in this section. Firstly, definition for Invalid

Path and Valid Path are introduced here.

Definition 4.4.2. A path is invalid when at least one location’s arriving time fol-

lowed by this path is out of its operating hours; otherwise if it visits all user defined

location types, it is a valid path.

∃Pi

Path(q → P1 → ...→ Pi → ...→ Pj)

T (q → P1 → ...→ Pi) /∈ OperatingHour(Pi)

⇒ Invalid(q → P1 → ...→ Pi → ...→ Pj)

(4.4)

Pruning condition 1: non-reversible visiting sequence. If q → pi → pj is a valid

path while q → pj → pi is an invalid path as in Equation (1), (pi, pj) have non-

reversible visiting sequence (q → pi → pj). Hence, any solution visiting pj before pi

should be pruned.

valid(q → Pi → Pj)

Invalid(q → Pj → Pi)

Type(Pi), Type(Pj) ⊆ LocationTypelist

⇔ P →i8 Pj (4.5)

Proposition 2. Given a query point q and two locations p1 and p2

StartT ime > OpenT ime(P1)

StartT ime > OpenT ime(P2)

CloseT ime(P1) < CloseT ime(P2)

Invalid(q → P1 → P2)

; Invalid(q → P2 → P1) (4.6)

4.4. APPROACH 3: TIME CONSTRAINT ROUTE SEARCH 113

Proof. If CloseT ime(p1)< CloseT ime(p2) which means p1 closes earlier than p2, it

is possible that (p1, p2) have a non-reversible visiting sequence q → p1 → p2 because

if we visit p2 first, when we arrive p1, it is already closed. It is self-evidence.

If CloseT ime(p1) < CloseT ime(p2) and q → P1 → P2 is invalid, we will prove

that we can not conclude q → P2 → P1 is invalid by contrapositive.

T (q, P1) + T (P1, P2) ≈ 2 ∗ T (q, P1) > CloseT (P2)⇒ Invalid(q → P1 → P2)

T (q, P2) + T (P2, P1) ≈ T (q, P1) < CloseT (P1)⇒ V alid(q → P2 → P1)

⇔ ∃P →28P1

(4.7)

Pruning condition 2: Invalid sub-paths make the entire path invalid. Any per-

mutation containing invalid sub-path should be pruned. See Proposition 2.

Proposition 3.

Invalid(q → Pi → Pj)

StartT ime > Max(OpenT ime(Pi), OpenT ime(Pj))

⇒ Invalid(q → ...→ Pi → ...→ Pj)

(4.8)

Proof.

T (q → Pi → Pj) > CloseT ime(Pj)

T (q → ...→ Pi → Pk → Pj) > T (q → Pi → Pj)

Pk 6= Pi 6= Pj

⇒ T (q → ...→ Pi → ...→ Pj) > CloseT ime(Pj)

⇒ Invalid(q → ...→ Pi → ...→ Pj)

(4.9)

The RFix method is processed in the following steps and the algorithm is shown

in Algorithm 11.

114 CHAPTER 4. ROUTE AND PATH RELATED KNN QUERIES

Algorithm 11 RFix(q,StartT ime,LocationSet,LocationOperatingHour)

1: Load routine traffic speed and calculate travel time for all segments
2: Initial EntitySet = q + LocationSet
3: For any two in EntitySet, calculate its travel time
4: First=All locations whose travel time to q within earliest CloseT ime
5: For any two locations pi and pj in LocationSet, check q → pi → pj is valid or not. If

it is invalid, put q → pi → pj in PruneList
6: CandidatePath= Permutations of LocationSet whose first point in First and contain

no subpath in PruneList
7: Initial Total T imeCost =∞
8: for each candidate path in CandidatePath do
9: TimeCost=sum up all travel time and once TimeCost>Total T imeCost, terminate

this loop
10: if at some step, TimeCost is out of pi’s LocationOperatingHour then
11: ignore this path and prune all path from CandidatePath whose has it as sub

path
12: TimeCost =∞
13: end if
14: if Total T imeCost > TimeCost then
15: Total T imeCost = TimeCost
16: end if
17: end for
18: Final Total T imeCost is travel time cost and its path is the optimum path

Figure 4.10: RFix Example

4.4. APPROACH 3: TIME CONSTRAINT ROUTE SEARCH 115

Traversal Permu. Action & Reason CandidatePath

q→B... Pruned (B not in First) None

q→C... Pruned (C not in First) None

q→A→B→C→D None

q→A→B→D→C None

q→A→D→B→C Pruned None

q→D→A→B→C Invalid subpath —-

q→D→B→A→C (q→B→C) None

q→D→B→C→A None

q→A→C→D→B None

q→A→D→C→B Pruned None

q→D→A→C→B Invalid subpath None

q→D→C→A→B (q→D→B) None

q→D→C→B→A None

q→A→C→B→D Unpruned q→A→C→B→D

Table 4.1: RFix Filter Process

Firstly, depending on current time period, retrieve the traffic speed and calculate

the time cost between any two locations in the set which includes the query point

and all fixed locations. The process is similar to Dijkstra algorithm if the weight

between entities are travel time cost.

Secondly, find all locations in First whose travel time to q is within the earliest

close time, meaning that if the path goes to the other points first, the path already

misses the location with the earliest close time. After checking its arriving time is in

the operating hours, put it into First. As a result, First holds all possible locations

which can be the first visited.

Thirdly, for any two locations (pi and pj), calculate whether q → Pi → Pj match

i, j’s operating hours or not. If not, record q → Pi → Pj into PruneList. Then

116 CHAPTER 4. ROUTE AND PATH RELATED KNN QUERIES

generate all permutations of visiting sequence whose first visiting node is in First

and do not include any sub path in PruneList.

Fourthly, for each candidate path, sum up its cost time and compare the time

with time constraint. Once it exceeds the time constraint, ignore it and filter the

other path who has the same sub path. E.g. if q → p1 → p2 → p3 fails to

match time constraint and when query starts, p1, p2 and p3 have opened already,

q → p1 → p5 → p2 → p6 → p3 should be pruned as well.

Finally, compare the time cost of the paths left and choose the optimum one.

A Case Study To clarify the algorithm, a case study (see in Fig. 4.10) is

presented. This case study is based on Example 4.4.1. Table 4.1 shows the RFix

filter process. Firstly, q → B → A will make A over its close time, so B is not in

the First list. The same goes for C.

Secondly, according to Proposition 2, q → C4:55pm → B5:19pm is valid and q →

B5:18pm → C5:42pm cannot meet C close time (5:40pm), so B→8C. Add q → B → C

into pruneList.

Thirdly, the same as second step, add q → D → B into PruneList.

Finally, generate the permutation whose first node is A or D (in First) and does

not contain sub path in PruneList. In this case, only one path lists. After checking

this path satisfy all time constraints, it is the result of this query (q → A4:35pm →

C5:03pm → B5:27pm → D6:22pm).

Route Search for flexible locations (RFlex)

When the user has pre-defined the location types whereby any locations of that type

can be visited, this query can be categorized as Route Search for flexible locations,

see example 4.4.2. As there are no fixed locations, we should distill the location types

first according to the query specification. Then the query can be summarized as

finding an optimum path which goes through these types within the time constraint.

Example 4.4.2. Secretary will leave her office at 4:30pm. She has a plan to do:

♦ Deposit a cheque in any bank and all banks’ trading hour is 10:00am–5:00pm.

4.4. APPROACH 3: TIME CONSTRAINT ROUTE SEARCH 117

♦ Buy a printer in any shop and all shops’ operating hours is 11:00am–5:30pm.

♦ Post a letter in any post office and posts’ trading hour is 10:00am–5:40pm.

♦ Buy some medicine in any pharmacy and all pharmacies’ trading hour is 10:00am–

6:30pm.

RFlex Definition The RFlex query can be formally defined like this:

Definition 4.4.3. RFlex is a route search query consisting of:

Input: Type Set T = {t1,t2, ... ,tn}, Locations set P = {p1,p2, ... ,pm}, m > n.

Type(pi,...,pj) = tk ∈ T

Output: A Path l which goes through ps and ps cover all types in T . Also distancel

is the shortest.

Pruning Conditions Traditional Route Search query is an NP complete prob-

lem and the focus of this section is how to use time constraint to prune most of

expansion branches. Basically, our pruning conditions prune the path which leads

to unreachable point or which is out of time.

Proposition 4. (Pruning condition 3): If P satisfies Equation 7, P NN holds P ś

nearest NN of all types in unvisited type,P leads to a unreachable point. P will be

pruned out candidate next set. See Algorithm 12.

TimeCost(P, P NN(Typei)) + TimeCost(q, P) > CloseT ime(Typei)

Typei ∈ unvisited type

⇒ Unreachable(P)

(4.10)

Proof.

CloseT ime(Typei) < TimeCost(P, P NN(Pk) ≤ TimeCost(P,∀Pi)

Pi&Pk ∈ Typem ∈ unvisited type

⇒ TimeCost(P,∀Pi) > CloseT ime(Typei)⇒ Unreachable(P)

(4.11)

Example of Pruning condition 3 : Fig. 4.11 is a case study of Example 4.4.2.

Suppose p1 is the candidate next point, according to Proposition 3, whether it

118 CHAPTER 4. ROUTE AND PATH RELATED KNN QUERIES

Algorithm 12 Untouch(candidate next,visited type,T ,TimeCost)

1: for each p in candidate next do
2: p type=get Location type()
3: visited type = visited type+ Ptype
4: unvisited type = unvisited type− Ptype
5: Initial boolean=0
6: Find pś nearest NN of all types in unvisited type and put in p NN
7: p T imeCost=get POI T imeCost()
8: TimeCost=TimeCost+p T imeCost
9: for each NN in p NN do

10: NN type=get POI type(NN)
11: NN TimeCost=get Location T imeCost(NN)
12: if NN TimeCost + TimeCost > NN type’s close time then
13: boolean=1
14: Return
15: end if
16: end for
17: if boolean=1 then
18: Delete this p from candidate next
19: end if
20: end for

should be pruned or not depends on the data in Table 4.2. pi is the nearest neighbor

of p1 in Typei. As p1’s type is T1, then unvisited type = T2, T3, T4, T5. Find p1’s

NN for each type in unvisited type (Column 1 in Table 2). We can easily tell that

p2 is out of OperatingHours of Type2, in other words, p1 leads unvisited type T2

unreachable. Consequently p1 cannot be the candidate next point.

Figure 4.11: Pruning Cond. 3

4.4. APPROACH 3: TIME CONSTRAINT ROUTE SEARCH 119

p1 NN Type Oper.Time Arriving Time

p2 T2 5:00pm StartT+15+65=5:20pm

p3 T3 5:30pm StartT+15+45=5:00pm

p4 T4 5:40pm StartT+15+25=4:40pm

p5 T5 6:30pm StartT+15+20=4:35pm

Table 4.2: Proposition 3 Demo for RFlex

Proposition 5. (Pruning condition 4): Locations whose types are in unvisited Type

within TimeCon (see equation 9) can be in candidate next. Equation 10 which col-

lects the candidate next set can prune lots of interest points.

StartT ime > max
∀i∈n

(OperatingHours(Pi))⇒ TimeCon = max(CloseT ime(unvisited Type))

(4.12)

candidate next(P) =

∀Pi

TimeCost(P, Pi) < TimeCon

Type(Pi) ∈ unvisited Type

(4.13)

Proof. Suppose when we start the query, all locations are open, TimeCon should

be set as the earliest close time in unvisited Type as if the earliest close time type

has not been visited, the locations which are going to be visited must be finished

ahead of the earliest close time, otherwise when expanding to the earliest close time

type, the arriving time is already out of the time constraint.

Algorithm 13 CandidateNext(p,visited type,T ,TimeCost)

1: unvisited type = T − visited type
2: TimeCon = Earliest CloseT ime of unvisited type
3: Candidate next = all points whose type in unvisited type and travel time within
TimeCon

Example of Pruning condition 4 :Referring to Fig. 4.12 and Table 3, suppose p3

of T3 is the current expansion point. In Table 4.2, each line represents one scenario

as the unvisited Type is different. Take the first line as an example, if the only

visited type is T3, then the unvisited Type = {T1, T2, T4, T5} and TimeCon = T1’s

120 CHAPTER 4. ROUTE AND PATH RELATED KNN QUERIES

Figure 4.12: Pruning Cond. 4

close time = 4:30pm. Only p1 can be the candidate next point because all of the

other points are out of TimeCon according to Proposition 4. Algorithm 13 shows

the process of how to find candidate next points which satisfies pruning conditions

4.

Visit Type Unvisit Type TimeCon Cand Next

T3 T1, T2, T4, T5 5:00pm p1

T1, T3 T2, T4, T5 5:30pm p4, p5, p7

T2, T3 T1, T4, T5 5:00pm p1

T1, T2, T3 T4, T5 5:40pm p5, p7

Table 4.3: Proposition 4 Demo for RFlex

With these two pruning conditions, most expansions branches have been pruned.

Although the execution time could potentially be exponential in the worst case

because the pruning strategy is only heuristic, the pruning conditions do improve

the performance significantly.

The detailed steps are shown as follows.

Firstly, initialize Tmax as∞ and it is the boundary identifier which will hold the

final result. Initialize the visited type as ∅ which is the collection of the location

types that have been visited. Also, initialize T as all location types of user interest.

4.4. APPROACH 3: TIME CONSTRAINT ROUTE SEARCH 121

Algorithm 14 RFlex(q,StartT ime,T ,LocationT table)

1: if q= start point then
2: Load routine traffic speed in current period
3: Initial Tmax=∞
4: visited type = ∅
5: unvisited type = T
6: Static TotalT imeCost=0
7: TimeCost=0
8: end if
9: CandidateNext(q,visited type,T ,TimeCost)

10: Untouch(candidate next,visited type,T ,p T imeCost,TimeCost)
11: for each p in candidate next do
12: TotalT imeCost = TotalT imeCost+TimeCost
13: StartT ime = StartT ime+TimeCost
14: if visited type = T then
15: if TimeCost ≤ Tmax then
16: Update Tmax=TotalT imeCost and record its path tree
17: end if
18: Break
19: else
20: RFlex(p,StartT ime,T − visited type,LocationT table)
21: end if
22: end for
23: Final Tmax is Time Cost and its path is optimum path

122 CHAPTER 4. ROUTE AND PATH RELATED KNN QUERIES

Secondly, according to the current time period, load routine traffic speed and

get all interest points around q whose travel time to q is within TimeCon. Collect

them in a set call candidate next and prune these points using pruning condition 3.

Thirdly, for any point in candidate next, do the following. Remove any p in

candidate next, add p’s type into visited type. Then repeat the second step until

all types have been visited. Once this path’s cost time is shorter than Tmax, replace

Tmax with its cost time.

Finally, Tmax is the shortest travel time and its path is the optimum path.

The algorithm of RFlex is shown in Algorithm 14.

4.5 Performance Evaluation

In this section, we evaluate these three methods using different data and environment

setting.

4.5.1 Path based kNN search

In the experimentations, different simulation data (stored as several tables) are

chosen to represents high (45 interest points), medium (20 interest points) and low

density of interest points (10 interest points) respectively. In addition, a netlike map

is created to represent more looping map (136 links), a general map with couples

of loops (127 links) and an emanative map with few loops (101 links) are chosen to

represent the medium and less looping maps in our performance evaluation.

Moreover, we examined pkNN for different values of k. All interest points, net-

work links and intersect nodes are simulated data. The experiments were performed

on a Mac with Intel Core 2 Duo processors, 2GB of RAM, and MS Access as our

database. We analyze the behavior of our approach in the aspects such as expansion

steps and run time with different densities of interest points and the values of k.

The looping in the map has also been evaluated in expansion steps and run time

4.5. PERFORMANCE EVALUATION 123

Figure 4.13: Expansion steps for dif-
ferent loops in maps

Figure 4.14: Runtime for different
loops in maps

using different values of k. We also compare the performance of our approach in

expansion steps and run time with pruning and without pruning.

Looping map

In this section, we aim at finding the differences of expansion steps and runtime if

less or more loops are involved in the searching map. A simulate map like Melbourne

city is chosen as more looping map because it is a netlike map and in the expansions,

more looping scenarios accrue there. A simulate map like Malvern suburb is chosen

as normal which consists of couples of loops. A simulate map like Peninsula map

is chosen as less looping map because it is emanative map. Also 50 different query

positions which were generated randomly are tested to get the average expansion

steps and runtime based on k which from 1 to 8. Less looping maps will give us a

better performance because less expansion will be acted and runtime will be less.

Fig.4.13 and Fig.4.14 show the trend of the expansion steps and runtime if k

increases and gives the comparison among less looping map, medium looping map

and more looping map.

From Fig.4.13 and Fig.4.14, we can draw a conclusion that the expansion steps

and runtime go up with the increasing value of k. This can be easily understood

as more k requires more computations. At the same time, we found there is no

124 CHAPTER 4. ROUTE AND PATH RELATED KNN QUERIES

Figure 4.15: Expansion steps of dif-
ferent POI densities

Figure 4.16: Runtime of different POI
densities

significant difference in expansion steps and runtime under different conditions of

loops. In other words, the performance of pkNN performs at the same scale in

a netlike map or an emanative map. This may surprise us because according to

common sense, more loops mean more redundant cost. This outcome is due to 4

pruning conditions proposed by us.

Density of interest points

In this section, we aim at finding the difference of expansion steps and runtime

with various densities of interest points. The performance is evaluated based on

the different interest points distributions, such as high density distributed objects

(42 interest points), medium density distributed objects (20 interest points), and

low density distributed objects (9 interest points). In addition, 50 different query

positions are tested to get the average performance result based on different values

of k. It is known that for the same map, if the interest point density is low, the

runtime will increase because more time will be a cost to do expansion. Also if

k increases, the runtime will increase because more time will be spend on trying

to find more interest points. Fig.4.15 and Fig.4.16 demonstrate the trend of each

scenario.

From Fig.4.15 and Fig.4.16, we can conclude that with the increment of k, pkNN

performs exponential growth in expansion steps as well as runtime. Another factor

4.5. PERFORMANCE EVALUATION 125

Figure 4.17: Expansion steps with or
without Pruning conditions

Figure 4.18: Runtime with or without
Pruning conditions

which effects expansion steps and runtime is the density of interest points. The

higher the density is, the lower cost in expansion and runtime, in other words, the

better performance. The performance result coincides with our prediction because

the more k required, the more operations are in the approach. Also the lower density

distributed of the interest points, the more cost to find the next node on the route.

Pruning Conditions

The pruning conditions are the bright spots of our pkNN approach. Instead of

computing all possible permutations, full expansion is inducted. In addition, in

the process of expansion, the expansion history is stored into a list in order to

optimize the expansion as well as accelerate the processing efficiency. Fig.4.17 and

Fig.4.18 show the expansion steps and runtime improvements respectively between

algorithms without and with pruning conditions.

Fig.4.17 and Fig.4.18 illustrate how pruning conditions improves the perfor-

mance. With the increasing values of k, the expansion steps and runtime go up

in linear growth instead of exponential growth. With the pruning condition, it is

possible to implement pkNN with larger values of k. To sum up, pruning conditions

not only improve the performance, but also enhance the feasibility of our pkNN

algorithm.

126 CHAPTER 4. ROUTE AND PATH RELATED KNN QUERIES

Figure 4.19: Operation time of differ-
ent POI densities

Figure 4.20: Memory size of different
POI densities

4.5.2 Path Branch Point based kNN Search Queries

In these experiments, Sydney city map, Canberra city map and Hobart city map

from the Whereis website (www. whereis.com) were chosen to represent high,

medium and low density of interest points. All interest points, network links and

intersect nodes are real-world data. We analyze the behavior of our approach in

aspects such as operation time, memory size and AS values with different densities

of interest points and the length of Pathpre.

Interest Point distribution density

In this section, we aim to find the differences in runtime, memory size and AS

values between low, medium and high density interest points. We use restaurants in

Sydney to represent a high density sample, parks in Canberra represent a medium

density sample and hospitals in Hobart to represent a low density sample. Also we

test 20 different query positions to obtain the average runtime, memory size and AS

values based on the distance of the pre-defined path from 10 to 80.

From Fig.4.19, the conclusion can be drawn that the run time will increase if

the density decreases. This is because the lower the density, the less chance that

the interest point is close to the path. As a result, lower density will cause more

4.5. PERFORMANCE EVALUATION 127

Figure 4.21: AS values of different
POI densities

Figure 4.22: Factor change based
on different overlap increment-AS all
negative

comparisons which will cause the delay of the operation. Also, we can see that there

is no fixed relation between run time and the length of the pre-defined path.

From Fig.4.20, the conclusion can be drawn that the memory size will increase

when the length of the pre-defined path increases, at the same time, the density of

interest points and memory size seem to be unrelated according to our experiments.

This is because the shorter the pre-defined path, the shorter the boundary distance.

In other word, there is only a small chance that this will be the optimal path. At

the same time, most interest points are pruned by boundary distance, which saves

memory size.

From Fig.4.21, the conclusion can be drawn that the AS value is closer to 1 when

either the density of interest points or the length of the pre-defined path increases.

Both these two factors increase the possibility that there are some interest points

on the path or around the path. In other words, with an increase in the density of

the interest points and the length of the pre-defined path, the greater the possibility

that the path is more suitable to the user.

Factor Increment/decrement

In this section, we aim to find the factor’s increment or decrement when the path

becomes longer in order to have more overlapping distance. From Figs.4.22, 4.23 and

128 CHAPTER 4. ROUTE AND PATH RELATED KNN QUERIES

Figure 4.23: Factor change based on
different overlap increment-AS partial
negative and partial positive

Figure 4.24: Factor change based
on different overlap increment-AS all
positive

4.24, we can tell that the DC becomes increasingly smaller because the increment

is always negative, while the OF becomes increasingly larger because the increment

is already negative. After the calculation, we can see that there are three possible

results: the AS increases, the AS decreases or the AS increases then decreases.

Fig.4.22 shows an example where the AS decreases. In this case, the shortest

path is the one which has chance to be optimal, after the increment in the driving

distance, although it may take overlap in return, but the overlap increment cannot

increase the AS.

Fig.4.23 shows an example where the AS increases then decreases. The turning

point is where the optimal path is and this shows that the shortest path is not

always the optimal path.

Fig.4.24 shows an example where the AS increases. In this case, there is a

chance that by increasing the driving distance to increase the section of the path

that overlaps, the path becomes better than the shortest path.

4.5. PERFORMANCE EVALUATION 129

4.5.3 Time Constraint Route Search over Multiple Loca-

tions

We used network and interest points data in Los Angeles in our experiments. We

extracted 8 different types of interest points to simulate different location types,

including 15 parks, 29 coffee lounges, 31 bank branches, 54 hotels, 78 post offices,

158 pharmacies, 283 shops and 597 restaurants and all interest points are normally

distributed. In our experiments, we varied the following parameters: the number of

location types, the congestion level (speed), density of interest points and the average

time interval between locations to observe their effects on average processing time,

memory as well as their improvement compared with the exhaustive traversal of all

permutation approach.

Experimental Results of RFix

Since number of locations highly influences our method’s performance, we test the

processing time (Fig. 4.25(a)) and memory (Fig. 4.25(b)) for 2 to 8 locations based

on 3 different traffic status (low, medium and high congestion). From Fig. 4.25(a)

and Fig. 4.25(b), we can easily tell that with the increasing number of locations,

the processing time and memory are directly proportional to the number of loca-

tions. In addition, when the congestion level increases from low to high, the speed

decreases at the same time and it causes a slight increase of the processing time

and memory. When it is extremely congested, the processing time and memory will

cost approximately 8% to 14% more than the lower level. While adding one more

location into query list, there will be exponential growth in processing time and log-

arithmic growth in memory size required, referring to Fig. 4.25(c) and Fig. 4.25(d)

when location number is greater 8, the performance scale increases sharply.

Without using our method, Route Search for fixed locations query can be solved

by traversing all permutations at the cost of processing time and memory size. To

improve its performance, we have proposed two pruning conditions in this chapter.

Fig. 4.26(a) and Fig. 4.26(b) give the performance comparison in processing time

130 CHAPTER 4. ROUTE AND PATH RELATED KNN QUERIES

(a) Time RFix (b) Memory RFix

(c) Time Incr-Ratio (d) Mem. Incr-Ratio

Figure 4.25: Time and memory comparison between different number of locations
and traffic status in RFix and Time and memory incremental ratio when adding
more locations

4.5. PERFORMANCE EVALUATION 131

(a) Proc. time-Prun. cond. (b) Memory-Prun. cond.

(c) Time&Memory Improv.

Figure 4.26: Proc. time and memory comparison between RFix and traversal meth-
ods

(a) PDT -speed (b) PDT -TTD

Figure 4.27: PDT is optimum (RFix) ratio

132 CHAPTER 4. ROUTE AND PATH RELATED KNN QUERIES

and memory between with and without pruning conditions. Fig. 4.26(c) highlights

the advantages of our pruning conditions.

To sum up, with the increasing number of locations, our methods with pruning

conditions outperform the traversal methods in both processing time and memory

aspects especially when the location number is greater than 3.

In section 4.4, we include time constraint into Route Search query, normally the

user will follow rules: earliest close, first visit. In other words, the path is sorted

by the close time sequence and this path is abbreviated as PDT . PDT ratio is

the possibility that PDT is the optimum path (Equation 11). In this section, we

analyze factors that will affect the visiting path, see Fig. 4.27(a) and Fig. 4.27(b).

PDT Ratio =
number of times(PDT = optimum path)

n times experiments
(4.14)

Before analyzing our experiment results, first we define a factor called Travel dis-

tance span in average Time interval to objects Distribution region (TTD). Object

Distribution Region (ODR) is the size of the region that user can arrive within the

last location close time. TTD represents the coverage percentage of ODR in average

time interval between locations.

ODR = π((maxCloseT imei − StartT ime) ∗ t)2 (4.15)

TTD =
(
∑n

i=1(CloseT imen − CloseT imen−1)/n) ∗ t
ODR

(4.16)

Fig. 4.27(a) shows that low travel speed will lead to a high possibility that an op-

timum path is PDT until the average interval increases to 2 hours or more, while

high travel speed leads more possibility that optimum path is different from PDT

when the average interval is greater than 0.4 hour. This result is in conformity with

common sense as if the average time interval between locations is small and speed is

relatively slow, visiting locations along the close time sequence has a higher possibil-

ity to meet the time constraint because if we visit the later close time location, there

will be a high possibility that we cannot catch the earlier location, and vice versa.

Fig. 4.27(b) illustrates that if TTD increases, which means its coverage percentage

4.6. CONCLUSION 133

in average time interval increases, the possibility that PDT is the optimum path

drops. The percentage remains stable until TTD increases to around 1.

Experimental Results of RFlex

For Route Search for flexible locations query, the average time interval between

locations is a factor which affects the visiting sequence. People generally believe that

if the average time interval between locations is large, the performance falls badly.

While Fig. 4.29(a) and Fig. 4.29(b) prove that this conjecture is not correct because

our RFlex goes down to get the first path and this path is set as boundary. As a

result, the processing time is nearly linear and the memory decreases a little with

the increasing average time interval between locations. As a result, our approach

performs well even if there is no time constraint when the number of locations

remains constant.

The processing time and memory will steeply increase with the increasing number

of locations and this is already proven in RFix. In this section, we compare the

differences between high density distributed objects (e.g. restaurant, density =

0.09375) and low density distributed objects (e.g. parks, density = 0.0024). In our

experiments we test the processing time and memory for locations numbers from 2

to 7 refer to Fig. 4.28(a) and Fig. 4.28(b) for low and high densities of locations.

Fig. 4.28(c) and Fig. 4.28(d) show that if Route Search query involves more low

density objects, with the increasing number of locations, the processing time and

memory do increase, but much slower than the high density objects.

4.6 Conclusion

This chapter discusses the route and path related kNN queries. The motivation is

to bring route/path into the input or output of spatial queries.

In this chapter, a novel approach called path based k nearest neighbor based on

network distance on road network is been introduced firstly. The basis of pkNN is

network expansion. The proposed approach, pkNN, gives users correct paths, even

134 CHAPTER 4. ROUTE AND PATH RELATED KNN QUERIES

(a) Time-Density (b) Time-Density

(c) Time-Density (d) Time-Density

Figure 4.28: Proc. time and memory comparison for different object densities in
RFlex and Proc. time and memory incremental ratio when adding more locations

(a) Proc. Time (b) Memory

Figure 4.29: RFlex in different time intervals

4.6. CONCLUSION 135

when the route is complex like that in real world. We have also taken care of complex

circumstances involving local minimum, loops, and U-Turns. We performed several

experiments to measure the performance of pkNN in various network conditions.

In general, our algorithms performs well if the density is high and the number of

interest objects is smaller than 7. However, as expected, if the density of the interest

objects is low and number of interest objects is large, the performance of pkNN will

degrade sharply. On average, if k is given, lower density of interest points will let

the runtime and expansion step increase. If k is large, the runtime and expansion

step will increase sharply. Furthermore, there is no significant increase if more

loops are involved on the underlying map because pruning conditions are proposed

in this chapter. With pruning conditions, even the expansion steps and runtime

will increase with the increasing values of k, it makes the increase in linear growth

instead of exponential growth.

Secondly, we defined the path branch path query and proposed an approach

which can scale the path into fit or unfit user requirement categories. We aim

at using a mathematical formula to quantify the percentage of fitness to the user’s

requirement. In this chapter, we examine several special scenarios such as an interest

point on the pre-defined path, no overlap with the pre-defined path, and a scenario

where distance cost is negligible. We performed several experiments to measure

the performance of PBP in different interest point distributions. In general, our

algorithms perform well if the density is high. However, as expected, if the density

of the interest objects is low and the pre-defined path is too short, there will be

a high possibility that the path is not optimal because it is likely that there is no

interest point around the path and driving path to it will not have any overlap with

the pre-defined path. The more interest points around the path, the longer the

pre-defined path, hence the more optimal the path.

The third part of this chapter proposes novel Route Search methods with time

constraint involving multiple object types. Route Search for fixed locations provides

a solution to users if they want to find the shortest travel time path for multiple

136 CHAPTER 4. ROUTE AND PATH RELATED KNN QUERIES

location types and the locations of these types are fixed. Route Search for flexible

locations helps users to find the shortest travel time path if the locations of these

types are flexible. Both queries do not concern visiting sequence of objects subject

to the final path as long as they arrive at each location within its operating hours.

In our method, the network Voronoi Diagram is used to find the candidate next

visiting point within certain time range and it enriches the content of our mobile

navigation system and gives more benefit to mobile users as well. We performed

several experiments to measure the performance of RFix and RFlex in different

network conditions and object distributions. In general, our algorithm performs

better if the number of locations is small. If the number of locations is smaller than 7,

the performance is acceptable no matter how complex the road condition is and how

objects are distributed. However, as expected, if the number of locations is greater

than 7, the processing time and memory increase sharply. In addition, if the average

location close time interval is large, our optimum path has a high possibility that

it is not PDT which means discarding PDT and using our methods can give users

a better path choice. Lastly when comparing RFix with the traditional traversal

permutation method, it performs better and the advantage becomes obvious when

the number of locations increases up to 4.

To sum up, all approaches bring route into input or/and output of spatial queries

which highly enrich the type of spatial queries contents. These approaches have been

proven that they can solve their corresponding queries efficiently.

Chapter 5

Conclusion

5.1 Contributions

In this thesis, we presented efficient techniques to deal with Voronoi Diagram based k

Nearest Neighbor Search queries and route based k nearest neighbor queries search

under different settings. Chapter 3 presents some variants of k nearest neighbor

search respectively in section 3.2, section 3.3. Chapter 4 presents the novel cate-

gory of k nearest neighbor search which is based on route/path. Three different

approaches are discuss respectively in section 4.2, section 4.3, section 4.4. At last,

section 5 summarizes this thesis as well as pointing out the future work.

• Contribution 1: Chapter 3 does the optimization by utilizing Voronoi Dia-

gram to merge the road segments into polygons in order to replace the Network

Expansion. Two approaches are proposed in the chapter, summarized as fol-

lows:

In section 3.2, we proposed an alternative approach for Continuous k Nearest

Neighbor query processing, which is based on Network Voronoi Diagram (we

call our proposed method VCkNN, for Voronoi CkNN). This approach avoids

the weakness of existing work [GR03, GR99] and improves the performance

by utilizing the Voronoi diagram. VCkNN ignores intersections on the query

path; instead, it uses Voronoi polygons to subdivide the path. Our proposed

137

138 CHAPTER 5. CONCLUSION

VCkNN approach is based on the attributes of the Voronoi diagram itself and

using a piecewise continuous function to express the distance change of each

border point. Our experiment verified the applicability of VCkNN approach to

solve CkNN queries and demonstrated that it outperforms existing algorithms.

Section.3.3 presents new approaches on three different queries involving multi-

ple object types using a network Voronoi Diagram, including: a) query to find

nearest neighbor for multiple types of interest point (or 1NN for each object

type), b) query to give the shortest path to cover multiple-object-types in a

pre-defined sequence, and c) query to find an optimum path for multiple object

types that gives the shortest path that covers the required interest objects in

a random sequence. In these queries, more than one object type is considered

and the query result is highly related with the object types. Every object be-

longs to one of the category and there is no overlap between categories. That

is the basic property of multiple-object-type query. Our experiment verified the

applicability of our approach to solve k nearest neighbor over a multiple type

of objects.

• Contribution 2: Chapter 4 opens up new route search queries which are able

to bring path into the input or/and output of spatial queries. The tradition

spatial queries use discrete points as input and output. So this chapter is

mainly doing exploring a new area. Three approaches are proposed in the

chapter, summarized as follows:

Section 4.2 investigates a novel route based k nearest neighbor query which is

called Path based kNN Search Query. Path bases k nearest neighbor search

is to find the shortest path which goes through k objects. In general, the

overall distance of the path becomes the selection criteria. We propose an

efficient algorithm and present several pruning conditions to do optimization

that significantly reduces the overall computation cost and processing time.

The efficiency of our proposed approach is demonstrated using real data sets

and simulated data sets.

5.2. OPEN PROBLEMS AND FUTURE WORK 139

Section 4.3 brings a novel query which is called path branch point(PBP). PBP

can be defined as: given a set of candidate interest objects and a pre-defined

path which starts at S and end at E, find a path which starts at S, via an

interest point P and ends at E. This path should overlap with the pre-defined

path as much as possible with acceptable distance increment. This is a novel

query which is motivated by users’ common requirements because most users

have ad hoc paths in their daily travel and they can tolerate a longer driving

distance to some extent if they can drive on a familiar path when they want

to visit a certain type of objects on the way. In this proposed approach, an

Adjust Score is calculated for each path which is determined by overlapping

distance and increased distance cost.

Section 4.4 introduces time constraint into route search over multiple loca-

tions. Each spatial business entity has its own valid time which implies the

time constraint of the route. Moreover, instead of finding the shortest path,

the aim is to find the path with shortest time cost. Meanwhile, all spatial

entities are visited within their valid time frame. The query definitions are

clearly stated at first, followed by two types of query scenarios: route search

over objects with flexible locations and route search over objects with fixed

locations. Extensive experiments demonstrate the efficiency of our proposed

algorithms.

To sum up, the main contribution of the thesis can be summarized as the fol-

lowing two aspects in general: 1) optimization using Voronoi Diagram 2) exploring

new area in spatial query search which brings route into it.

5.2 Open Problems and Future Work

Spatial query processing has been studied over decades, but we still see that possible

extensions can be made in the future.

140 CHAPTER 5. CONCLUSION

Firstly, a novel route based k nearest neighbor query is proposed which is called

Path based kNN Search Query. Our approach has been proven that it can give the

user precise results. But when the k increases over 10, the efficiency of this approach

drops dramatically. One open problem leaves to us is how to improve the efficiency

with small preciseness sacrifice.

Secondly, we bring a novel query which is called path branch point(PBP). In

this chapter, I defined a function to judge the length increment cost as well as

the length overlap percentage. There might be the other proposals on defining the

concepts. With the different cost modeling, the query will produce different routes

as result because some users might want to sacrifice the driving distance but prefer

the familiar road, while other users might lay emphasis on shortest distance and are

tolerant of unfamiliar paths.

Thirdly, time constraint is introduced into route search over multiple locations.

We present two different processing procedures when the user wants to visit flexible

or fixed locations. Another open problem which can be investigated in future work

might be the various visiting sequences assigned by users. In other words, the

visiting sequence of the objects can be sequential, random or partial sequential and

random. The objects location can be flexible, fixed or partial flexible and fixed.

To sum up, there are still a few open problems for us to investigate in the future

work. Our algorithm performs well under some settings. We may introduce more

parameters into the spatial queries. By solving these open problems, the queries can

assist user’s lives. The following are several possible directions for future work.

• Query processing in P2P and Ad-hoc networks: In this thesis, all al-

gorithms and queries are based on client-server architectures. Whereas, it is

interesting to adjust our proposed algorithms for P2P based networks or Ad-

hoc networks [Muh09]. As our algorithms outperform existing works in the

most of circumstances, we conjecture that Voronoi based algorithms in P2P or

Ad-hoc networks will outperform existing techniques as well. We also would

like to investigate whether it is possible to let each peer to handle a portion

5.2. OPEN PROBLEMS AND FUTURE WORK 141

of Voronoi diagrams, which may reduce the load and computation cost of the

server seriously. Another potential problem is how to let moving objects or

queries to cooperate to manage the relative positions in the P2P or Ad-hoc

networks.

• Spatial queries in a high dimensional space: Most of the existing works

of spatial query concentrate on the processing in a 2D space. The spatial

query processing in a high dimensional space, e.g., 3D space, land surface,

inside space of a building, has only become a target ever in the past few

years [STX08, XSP09]. It is an interesting problem to investigate how the

higher dimensional Voronoi diagram or other geometric theories would help to

improve the performance of spatial query processing.

• Join up spatial query results: All the existing spatial queries are univocal.

But some of the user queries might contain more than one query types, e.g.

joining k nearest neighbor search with range search. In the future, we may

find that the joining result of two categories might represent users’s special

requirements.

• Incorporate some intelligent features in mobile navigation In the fu-

ture, it can be expected that mobile navigation incorporates some intelligent

features, such as extracting movement patterns of mobile users [GT04b], and

these can be adopted for mobile navigation. There have also been some suc-

cessful works in incorporating Voronoi diagrams and network Voronoi dia-

grams in mobile navigation [XZTS08] as well as the use of ontology in query

expansion [WST03,WST04]. Further, there are two important issues in mobile

navigation, scalability and performance. Data broadcasting has been known

to be able to address the scalability issues and indexing can be used to speed

up performance. Further investigations on these two issues in mobile navi-

gation can be useful [TR04, TR02] and the k nearest neighbor algorithm can

be broadly investigated in various area of research, such as digital ecosys-

tems [MP07,LZL08,BX11,CLLP11].

142 CHAPTER 5. CONCLUSION

Appendix A

Simulation Source Code

A.1 kNN Implementation

Point.Java

1 package algorithm;

2

3 import java.util.ArrayList;

4 import java.util.Collections ;

5 import java.util.HashMap;

6 import java.util.List ;

7 import java.util.Map;

8

9 public final class Algorithm {

10 public Algorithm(final List<Point> all, final int maxK) {

11 this. all = all ;

12 this.maxK = maxK;

13 this.nearest = new HashMap<Point, List<Point>>();

14 this.findNearestAtMaxK();

15 }

16

17 @SuppressWarnings({ "null", "boxing" })

18 public Map<Integer, List<Cluster>> findClusters() {

19 final Map<Integer, List<Cluster>> clusters = new HashMap<Integer, List<Cluster

>>();

143

144 APPENDIX A. SIMULATION SOURCE CODE

20

21 clusters .put(0, new ArrayList<Cluster>());

22 for (final Point p : this. all) {

23 clusters .get(0) .add(new Cluster(p));

24 }

25 for (int i = 1; i <= this.maxK; ++i) {

26 final Map<Point, List<Point>> pairs = this.findPairs(i);

27 final List<Cluster> previousClusters = clusters.get(i − 1);

28 for (final Cluster c : previousClusters) {

29 if (c.isMerged()) {

30 continue;

31 }

32 final Cluster mergedCluster = new Cluster();

33 final List<Cluster> mergingCluster = new ArrayList<Cluster>();

34 mergedCluster.getPoints().addAll(c.getPoints()) ;

35 c.setMerged(true);

36 int j = 0;

37 double mergingMinStableFactor = c.getStableFactor();

38 while (mergedCluster.getPoints().size() > j) {

39 final Point p = mergedCluster.getPoints().get(j);

40 if (pairs .containsKey(p)) {

41 for (final Point p2 : pairs .get(p)) {

42 if (! c.getPoints() .contains(p2)) {

43 Cluster p2Cluster = null;

44 for (final Cluster whereIsP2 : previousClusters) {

45 if (whereIsP2.getPoints().contains(p2)) {

46 p2Cluster = whereIsP2;

47 break;

48 }

49 }

50 for (final Point p2Point : p2Cluster.getPoints()) {

51 if (!mergedCluster.getPoints().contains(p2Point)) {

52 mergedCluster.getPoints().add(p2Point);

53 }

54 }

A.1. KNN IMPLEMENTATION 145

55 mergingCluster.add(p2Cluster);

56 p2Cluster.setMerged(true);

57 if (p2Cluster.getStableFactor() < mergingMinStableFactor) {

58 mergingMinStableFactor = p2Cluster.getStableFactor();

59 }

60 }

61 }

62 }

63 ++j;

64 }

65 if (! clusters .containsKey(i)) {

66 clusters .put(i , new ArrayList<Cluster>());

67 }

68 int connections = 0;

69 for (final Point p : mergedCluster.getPoints()) {

70 if (pairs .containsKey(p)) {

71 connections += pairs.get(p).size () ;

72 System.out.println(p + "\t" + pairs.get(p).size ()) ;

73 }

74 }

75 System.out.println(mergedCluster.getPoints().size () + " merged points");

76 final double newStableFactor = connections

77 / Math.pow(mergedCluster.getPoints().size(), 2);

78 System.out.println(newStableFactor + " is newStableFactor");

79 System.out.println(mergingMinStableFactor

80 + " is mergingMinStableFactor");

81

82 if (newStableFactor > mergingMinStableFactor

83 || Math.abs(newStableFactor − mergingMinStableFactor) < 0.00001) {

84 clusters .get(i) .add(mergedCluster);

85 mergedCluster.setStableFactor(newStableFactor);

86 System.out.println("!!! MERGED");

87 } else {

88 clusters .get(i) .add(c);

89 clusters .get(i) .addAll(mergingCluster);

146 APPENDIX A. SIMULATION SOURCE CODE

90 System.out.println("!!! ORIGINAL CLUSTERS RETAINED");

91 }

92 }

93 for (final Cluster c : clusters .get(i)) {

94 c.setMerged(false);

95 }

96 }

97 return clusters;

98 }

99

100 public Map<Point, List<Point>> findPairs(final int k) {

101 final Map<Point, List<Point>> pairs = new HashMap<Point, List<Point>>();

102 for (final Point p1 : this. all) {

103 for (final Point p2 : this.nearestTo(p1, k)) {

104 if (this.nearestTo(p2, k).contains(p1) && p1 != p2) {

105 if (! pairs .containsKey(p1)) {

106 pairs .put(p1, new ArrayList<Point>());

107 }

108 pairs .get(p1).add(p2);

109 }

110 }

111 }

112 return pairs;

113 }

114

115 @SuppressWarnings("boxing")

116 private void findNearestAtMaxK() {

117 for (final Point p : this. all) {

118 final Map<Double, Point> distances = new HashMap<Double, Point>();

119 for (final Point p2 : this. all) {

120 if (p == p2) {

121 continue;

122 }

123 distances .put(p.distanceTo(p2), p2);

124 }

A.2. KNN DEMO CODE 147

125

126 final List<Double> sortedDistances = new ArrayList<Double>(

127 distances . size ()) ;

128 sortedDistances.addAll(distances.keySet());

129 Collections . sort(sortedDistances);

130 final List<Point> nearestPoints = new ArrayList<Point>(100);

131 for (final Double d : sortedDistances.subList(0, this.maxK)) {

132 nearestPoints.add(distances.get(d));

133 }

134 this.nearest.put(p, nearestPoints) ;

135 }

136 }

137

138 private List<Point> nearestTo(final Point p, final int k) {

139 return this.nearest.get(p).subList(0, k);

140 }

141

142 private final List<Point> all;

143 private final int maxK;

144

145 private final Map<Point, List<Point>> nearest;

146 }

A.2 kNN Demo Code

Point.Java

1 package demo;

2

3 import java.awt.BorderLayout;

4 import java.awt.Color;

5 import java.awt.Graphics;

6 import java.awt.Graphics2D;

7 import java.awt.RenderingHints;

8 import java.awt.event.ActionEvent;

148 APPENDIX A. SIMULATION SOURCE CODE

9 import java.awt.event.ActionListener;

10 import java.awt.event.MouseAdapter;

11 import java.awt.event.MouseEvent;

12 import java.util.ArrayList;

13 import java.util.HashMap;

14 import java.util.List ;

15 import java.util.Map;

16 import java.util.Random;

17

18 import javax.swing.JButton;

19 import javax.swing.JFrame;

20 import javax.swing.JLabel;

21 import javax.swing.JOptionPane;

22 import javax.swing.JPanel;

23 import javax.swing.JTextField;

24 import javax.swing.WindowConstants;

25

26

27 import algorithm.Algorithm;

28 import algorithm.Cluster;

29 import algorithm.Point;

30

31 public final class DemoFrame extends JFrame {

32 public DemoFrame() {

33 this. setTitle ("KNN Demo");

34 this. setSize(1024, 600);

35 this.setDefaultCloseOperation(WindowConstants.DISPOSE ON CLOSE);

36 this.setLayout(new BorderLayout());

37 this.canvas = new Canvas();

38 this.controlPanel = new ControlPanel(this.canvas);

39 this.getContentPane().add(this.controlPanel, BorderLayout.NORTH);

40 this.getContentPane().add(this.canvas, BorderLayout.CENTER);

41 }

42

43 private final Canvas canvas;

A.2. KNN DEMO CODE 149

44

45 private final ControlPanel controlPanel;

46

47 public static void main(final String[] args) {

48 new DemoFrame().setVisible(true);

49 }

50

51 private static final long serialVersionUID = −2297653670935822145L;

52 }

53

54 @SuppressWarnings("serial")

55 final class Canvas extends JPanel {

56 public Canvas() {

57 this.addMouseListener(new MouseAdapter() {

58 @Override

59 public final void mousePressed(final MouseEvent e) {

60 for (final Point p : Data.points) {

61 if (p.distanceTo(new Point(e.getX(), e.getY())) < 10) {

62 double sum = 0;

63 double previous=0;

64 double giniIndex=0;

65 for (int i = 1; i <= Data.clusterK; ++i) {

66 final Algorithm a = new Algorithm(Data.points, i);

67 final Map<Point, List<Point>> pairs = a.findPairs(i);

68 if (pairs .containsKey(p)) {

69 sum += pairs.get(p).size()+previous;

70 JOptionPane.showMessageDialog(null, " (" + (int)p.getX()+

" , "+(int)p.getY()+") " +"When K = "+i+", the MKNN number is "+ pairs.get(

p).size());

71 previous=pairs.get(p). size () ;

72 }

73 else

74 JOptionPane.showMessageDialog(null, " (" + (int)p.getX()+

" , "+(int)p.getY()+") " +"When K = "+i+", the MKNN number is 0");

75 }

150 APPENDIX A. SIMULATION SOURCE CODE

76 giniIndex=1−sum/(Data.clusterK ∗ Data.clusterK);

77 JOptionPane.showMessageDialog(null, "GINI-index: " + giniIndex);

78 break;

79 }

80 }

81 }

82 });

83 }

84

85 @SuppressWarnings("boxing")

86 @Override

87 public final void paintComponent(final Graphics g) {

88 ((Graphics2D) g).setRenderingHint(RenderingHints.KEY ANTIALIASING,

89 RenderingHints.VALUE ANTIALIAS ON);

90 g.setColor(new Color(0, 3, 97));

91 g. fillRect (0, 0, this.getWidth(), this.getHeight());

92

93 g.setColor(Color.white);

94 for (final Point p : Data.pairs.keySet()) {

95 for (final Point to : Data.pairs.get(p)) {

96 g.drawLine((int) p.getX(), (int) p.getY(), (int) to.getX(),

97 (int) to.getY());

98 }

99 }

100

101 g.setColor(Color.yellow) ;

102 for (final Point p : Data.points) {

103 g. fillOval ((int) p.getX() − 2, (int) p.getY() − 2, 5, 5);

104 g.drawString(p.toString(), (int) p.getX(), (int) p.getY());

105 }

106 if (Data.showClusters) {

107 final Random r = new Random();

108 if (Data.clusters .containsKey(Data.clusterK)) {

109 for (final Cluster c : Data.clusters .get(Data.clusterK)) {

110 g.setColor(new Color(r.nextFloat(), r.nextFloat(), r .nextFloat())) ;

A.2. KNN DEMO CODE 151

111 for (final Point p : c.getPoints()) {

112 g. fillOval ((int) p.getX() − 5, (int) p.getY() − 5, 10, 10);

113 }

114 }

115 }

116 }

117 }

118 }

119

120 @SuppressWarnings("serial")

121 final class ControlPanel extends JPanel {

122

123 public ControlPanel(final Canvas canvas) {

124 this.numberTextField.setText("15");

125 this.nearDistanceTextField.setText("50");

126 this.nearPercentageTextField.setText("20");

127 this.kTextField.setText("3");

128 // this .clusterKTextField.setText(”1”);

129 this.add(this.numberLabel);

130 this.add(this.numberTextField);

131 this.add(this.kLabel);

132 this.add(this.kTextField);

133 // this .add(this .clusterKLabel);

134 // this .add(this .clusterKTextField);

135 this.add(this.nearDistanceLabel);

136 this.add(this.nearDistanceTextField);

137 this.add(this.nearPercentageLabel);

138 this.add(this.nearPercentageTextField);

139 this.add(this.viewClusterButton);

140 this.add(this.randomButton);

141 this.add(this.runButton);

142 this.add(this.clearButton);

143 this.randomButton.addActionListener(new ActionListener() {

144 @SuppressWarnings({ "boxing", "synthetic-access" })

145 @Override

152 APPENDIX A. SIMULATION SOURCE CODE

146 public final void actionPerformed(final ActionEvent e) {

147 ControlPanel.clear() ;

148 final Random r = new Random();

149 final double width = canvas.getWidth(), height = canvas.getHeight();

150 final int nearDistance = Integer

151 .valueOf(ControlPanel.this.nearDistanceTextField.getText()),

nearPercentage = Integer

152 .valueOf(ControlPanel.this.nearPercentageTextField.getText());

153 Point previous = null;

154 for (int i = 0; i < Integer.valueOf(ControlPanel.this.numberTextField

155 .getText()); ++i) {

156 if (previous == null) {

157 previous = new Point(r.nextDouble() ∗ width, r.nextDouble()

158 ∗ height) ;

159 } else {

160 double x, y;

161 do {

162 double d;

163 final double angle = r.nextDouble() ∗ 2 ∗ Math.PI;

164 if (r .nextInt(101) <= nearPercentage) {

165 d = r.nextDouble() ∗ nearDistance;

166 } else {

167 d = r.nextDouble() ∗ width;

168 }

169 x = previous.getX() + d ∗ Math.cos(angle);

170 y = previous.getY() + d ∗ Math.sin(angle);

171 } while (x < 0 || x > width − 1 || y < 0 || y > height − 1);

172 final Point p = new Point(x, y);

173 previous = p;

174 }

175 Data.points.add(previous);

176 }

177 canvas.repaint() ;

178 }

179 });

A.2. KNN DEMO CODE 153

180 this.runButton.addActionListener(new ActionListener() {

181 @SuppressWarnings({ "boxing", "synthetic-access" })

182 @Override

183 public final void actionPerformed(final ActionEvent e) {

184 final Algorithm a = new Algorithm(Data.points, Integer

185 .valueOf(ControlPanel.this.kTextField.getText()));

186 Data.pairs = a.findPairs(Integer .valueOf(ControlPanel.this.kTextField

187 .getText())) ;

188 Data.clusterK = Integer.valueOf(ControlPanel.this.kTextField.getText());

189 Data.showClusters = false;

190 canvas.repaint() ;

191 }

192 });

193 this.viewClusterButton.addActionListener(new ActionListener() {

194 @SuppressWarnings({ "boxing", "synthetic-access" })

195 @Override

196 public final void actionPerformed(final ActionEvent e) {

197 Data.clusterK = Integer.valueOf(ControlPanel.this.kTextField.getText());

198 final Algorithm a = new Algorithm(Data.points, Integer

199 .valueOf(ControlPanel.this.kTextField.getText()));

200 Data.pairs = a.findPairs(Integer .valueOf(ControlPanel.this.kTextField

201 .getText())) ;

202 Data.clusters = a.findClusters() ;

203 Data.showClusters = true;

204 canvas.repaint() ;

205 }

206 });

207 this.clearButton.addActionListener(new ActionListener() {

208 @SuppressWarnings("synthetic-access")

209 @Override

210 public final void actionPerformed(final ActionEvent e) {

211 ControlPanel.clear() ;

212 canvas.repaint() ;

213 }

214 });

154 APPENDIX A. SIMULATION SOURCE CODE

215 }

216

217 private final JLabel numberLabel = new JLabel("Number of points: "),

218 kLabel = new JLabel("K:"), clusterKLabel = new JLabel("Cluster K:"),

219 nearPercentageLabel = new JLabel("Near%: "),

220 nearDistanceLabel = new JLabel("Near distance: ");

221 private final JTextField numberTextField = new JTextField(4),

222 kTextField = new JTextField(2), nearPercentageTextField = new JTextField(

223 2), nearDistanceTextField = new JTextField(3),

224 clusterKTextField = new JTextField(2);

225 private final JButton randomButton = new JButton("Random"),

226 runButton = new JButton("Draw the link"), clearButton = new JButton("

Clear"),

227 viewClusterButton = new JButton("Show Clusters");

228

229 private static void clear() {

230 Data.points.clear () ;

231 Data.pairs. clear () ;

232 Data.clusters . clear () ;

233 }

234 }

235

236 final class Data {

237 static {

238 Data.points = new ArrayList<Point>();

239 Data.pairs = new HashMap<Point, List<Point>>();

240 Data.clusters = new HashMap<Integer, List<Cluster>>();

241 }

242 public static int clusterK;

243 public static Map<Integer, List<Cluster>> clusters;

244 public static Map<Point, List<Point>> pairs;

245 public static List<Point> points;

246 public static boolean showClusters;

247 }

A.3. PATH KNN QUERY SEARCH SIMULATION 155

A.3 Path kNN Query Search Simulation

1

2 using System;

3 using System.Collections.Generic;

4 using System.ComponentModel;

5 using System.Data;

6 using System.Data.Odbc;

7 using System.Drawing;

8 using System.Text;

9 using System.Windows.Forms;

10 using System.Collections;

11

12 namespace IKNN

13 {

14 public partial class IKNNMain : Form

15 {

16 private DataTable dtRoutine;

17 private DataTable dtPassedRoutine;

18 private DataTable dtSegment = new DataTable();

19 private DateTime StartTime;

20

21 private int intDmax;

22

23 private struct Query

24 {

25 public string strSP;

26 public int intSPDistance;

27 public string strEP;

28 public int intEPDistance;

29 public int intKpoints;

30 }

31

32 public IKNNMain()

33 {

156 APPENDIX A. SIMULATION SOURCE CODE

34 InitializeComponent();

35

36 LoadSegmentData();

37 }

38

39 private void btnRun Click(object sender, EventArgs e)

40 {

41 dtPassedRoutine = new DataTable();

42 dtRoutine = new DataTable();

43 intDmax = int.MaxValue;

44 Query myQ = new Query();

45

46 myQ.strSP = txtA.Text.Split(’,’)[0];

47 myQ.intSPDistance = Convert.ToInt32(txtA.Text.Split(’,’)[1]);

48 myQ.strEP = txtB.Text.Split(’,’)[0];

49 myQ.intEPDistance = Convert.ToInt32(txtB.Text.Split(’,’)[1]);

50 myQ.intKpoints = Convert.ToInt32(txtK.Text);

51

52 DataColumn dcNode = new DataColumn("Node", Type.GetType("System.String"

));

53 dtRoutine.Columns.Add(dcNode);

54 DataColumn dcDistance = new DataColumn("Distance", Type.GetType("System.

Int32"));

55 dtRoutine.Columns.Add(dcDistance);

56

57 for (int i = 0; i < myQ.intKpoints; i++)

58 {

59 DataColumn dcWaypoint = new DataColumn("WP" + i, Type.GetType("

System.String"));

60 dtRoutine.Columns.Add(dcWaypoint);

61 }

62

63 DataRow myQueryRowA = dtRoutine.NewRow();

64

65 myQueryRowA["Node"] = myQ.strSP;

A.3. PATH KNN QUERY SEARCH SIMULATION 157

66 myQueryRowA["Distance"] = myQ.intSPDistance;

67

68 dtRoutine.Rows.Add(myQueryRowA);

69

70 DataRow myQueryRowB = dtRoutine.NewRow();

71

72 myQueryRowB["Node"] = myQ.strEP;

73 myQueryRowB["Distance"] = myQ.intEPDistance;

74

75 dtRoutine.Rows.Add(myQueryRowB);

76

77 int intDminRow = −1;

78 int intK = 1;

79

80 StartTime = DateTime.Now;

81

82 intDminRow = FindMinDistanceRow();

83 GetLinkedSegments(intDminRow, myQ.intKpoints);

84

85

86 while (intDminRow == −1 || intDmax > Convert.ToInt32(dtRoutine.Rows[

FindMinDistanceRow()]["Distance"]) || intDmax == int.MaxValue)

87 {

88 intDminRow = FindMinDistanceRow();

89 GetLinkedSegments(intDminRow, myQ.intKpoints);

90 intK++;

91 }

92

93 lstOutput.Items.Add(intK + " Time: " + DateTime.Now.Subtract(StartTime));

94

95 //for (int i = 0; i < dtRoutine.Rows.Count; i++)

96 //{

97 // lstOutput.Items.Add(dtRoutine.Rows[i][”Node”] + ” ” + dtRoutine.Rows[i][”

Distance”] + dtRoutine.Rows[i][”WP0”]);

98 //}

158 APPENDIX A. SIMULATION SOURCE CODE

99

100 dtRoutine.Clear();

101 dtPassedRoutine.Clear();

102 dtRoutine.Dispose();

103 dtPassedRoutine.Dispose();

104 }

105

106 private void GetLinkedSegments(int intMinRowId, int intKpoints)

107 {

108 for (int i = 0; i < dtSegment.Rows.Count; i++)

109 {

110 DataRow myRow = dtRoutine.NewRow();

111

112 if (dtSegment.Rows[i]["StartPoint"].Equals(dtRoutine.Rows[intMinRowId]["

Node"]))

113 {

114 if (! isPassedRoutine(intMinRowId, intKpoints, i))

115 {

116 myRow["Node"] = dtSegment.Rows[i]["EndPoint"];

117 UpdateWayPoints(myRow, intMinRowId, intKpoints, i);

118 }

119 }

120 else if (dtSegment.Rows[i]["EndPoint"].Equals(dtRoutine.Rows[intMinRowId][

"Node"]))

121 {

122 if (! isPassedRoutine(intMinRowId, intKpoints, i))

123 {

124 myRow["Node"] = dtSegment.Rows[i]["StartPoint"];

125 UpdateWayPoints(myRow, intMinRowId, intKpoints, i);

126 }

127 }

128 }

129 //lstOutput.Items.Add(dtRoutine.Rows[intMinRowId][”Node”].ToString() + ” ” +

130 // dtRoutine.Rows[intMinRowId][”Distance”].ToString() + ” ” +

A.3. PATH KNN QUERY SEARCH SIMULATION 159

131 // (dtRoutine.Rows[intMinRowId][”WP0”].Equals(DBNull.Value) ? ”Null” :

dtRoutine.Rows[intMinRowId][”WP0”].ToString()));

132

133 if (dtPassedRoutine.Rows.Count <= 0)

134 dtPassedRoutine = dtRoutine.Clone();

135

136 DataRow myPassedRow = dtPassedRoutine.NewRow();

137 for (int i = 0; i < dtRoutine.Columns.Count; i++)

138 {

139 myPassedRow[i] = dtRoutine.Rows[intMinRowId][i];

140 }

141 dtPassedRoutine.Rows.Add(myPassedRow);

142

143 dtRoutine.Rows.RemoveAt(intMinRowId);

144

145 FilterDuplicateRoutines(intKpoints);

146 }

147

148 private void UpdateWayPoints(DataRow myRow, int intMinRowId, int intKpoints, int

i)

149 {

150 myRow["Distance"] = Convert.ToInt32(dtRoutine.Rows[intMinRowId]["Distance"

]) + Convert.ToInt32(dtSegment.Rows[i]["Length"]);

151

152 for (int j = 0; j < intKpoints; j++)

153 {

154 myRow["WP" + j] = dtRoutine.Rows[intMinRowId]["WP" + j];

155 }

156

157 int intTmp;

158 if (! int.TryParse(myRow["Node"].ToString(), out intTmp))

159 {

160 for (int k = 0; k < intKpoints; k++)

161 {

162 if (myRow["WP" + k].Equals(DBNull.Value))

160 APPENDIX A. SIMULATION SOURCE CODE

163 {

164 myRow["WP" + k] = myRow["Node"];

165 if (intKpoints == k + 1)

166 {

167 if (intDmax > Convert.ToInt32(myRow["Distance"]))

168 {

169 intDmax = Convert.ToInt32(myRow["Distance"]);

170 }

171 }

172 break;

173 }

174 else

175 {

176 if (myRow["WP" + k].Equals(myRow["Node"]))

177 break;

178 }

179 }

180 }

181 dtRoutine.Rows.Add(myRow);

182 }

183

184 private bool isPassedRoutine(int intMinRowId, int intKpoints, int i)

185 {

186 if (dtPassedRoutine.Rows.Count > 0)

187 {

188 for (int m = 0; m < dtPassedRoutine.Rows.Count; m++)

189 {

190 if (dtPassedRoutine.Rows[m]["Node"].Equals(dtSegment.Rows[i]["EndPoint

"]))

191 {

192 bool isNotSame = false;

193 for (int n = 0; n < intKpoints; n++)

194 {

195 if (!dtPassedRoutine.Rows[m]["WP" + n].Equals(dtRoutine.Rows[

intMinRowId]["WP" + n]))

A.3. PATH KNN QUERY SEARCH SIMULATION 161

196 {

197 isNotSame = true;

198 break;

199 }

200 }

201

202 if (! isNotSame)

203 {

204 if (Convert.ToInt32(dtPassedRoutine.Rows[m]["Distance"]) <=

Convert.ToInt32(dtRoutine.Rows[intMinRowId]["Distance"]) + Convert.ToInt32(

dtSegment.Rows[i]["Length"]))

205 {

206 return true;

207 }

208 }

209 }

210 }

211 }

212 return false;

213 }

214

215 private void FilterDuplicateRoutines(int intKpoints)

216 {

217 for (int i = 0; i < dtRoutine.Rows.Count; i++)

218 {

219 for (int j = i + 1; j < dtRoutine.Rows.Count; j++)

220 {

221 if (dtRoutine.Rows[i]["Node"].Equals(dtRoutine.Rows[j]["Node"]))

222 {

223 bool isNotSame = false;

224 for (int k = 0; k < intKpoints; k++)

225 {

226 if (!dtRoutine.Rows[i]["WP" + k].Equals(dtRoutine.Rows[j]["WP" +

k]))

227 {

162 APPENDIX A. SIMULATION SOURCE CODE

228 isNotSame = true;

229 break;

230 }

231 }

232

233 if (! isNotSame)

234 {

235 if (Convert.ToInt32(dtRoutine.Rows[i]["Distance"]) >= Convert.

ToInt32(dtRoutine.Rows[j]["Distance"]))

236 {

237 dtRoutine.Rows.RemoveAt(i);

238 i = i > 0 ? i−− : i;

239 j = i + 1;

240 }

241 else if (Convert.ToInt32(dtRoutine.Rows[i]["Distance"]) <

Convert.ToInt32(dtRoutine.Rows[j]["Distance"]))

242 {

243 dtRoutine.Rows.RemoveAt(j);

244 }

245 }

246 else

247 {

248 for (int l = 0; l < intKpoints; l++)

249 {

250 if (!dtRoutine.Rows[i]["WP" + l].Equals(dtRoutine.Rows[j]["WP

" + l]))

251 {

252 if (dtRoutine.Rows[i]["WP" + l].Equals(DBNull.Value))

253 {

254 if (Convert.ToInt32(dtRoutine.Rows[i]["Distance"])

>= Convert.ToInt32(dtRoutine.Rows[j]["Distance"]))

255 {

256 dtRoutine.Rows.RemoveAt(i);

257 i = i > 0 ? i−− : i;

258 j = i + 1;

A.3. PATH KNN QUERY SEARCH SIMULATION 163

259 }

260 }

261 else if (dtRoutine.Rows[j]["WP" + l].Equals(DBNull.Value)

)

262 {

263 if (Convert.ToInt32(dtRoutine.Rows[j]["Distance"])

>= Convert.ToInt32(dtRoutine.Rows[i]["Distance"]))

264 {

265 dtRoutine.Rows.RemoveAt(j);

266 }

267 }

268 break;

269 }

270 }

271 }

272 }

273 }

274 }

275 }

276

277 private int FindMinDistanceRow()

278 {

279 int intDmin = −1;

280 int intRowId = −1;

281

282 for (int i = 0; i < dtRoutine.Rows.Count; i++)

283 {

284 int intTmp;

285

286 intTmp = Convert.ToInt32(dtRoutine.Rows[i]["Distance"]);

287

288 if (intTmp < intDmin || intDmin == −1)

289 {

290 intDmin = intTmp;

291 intRowId = i;

164 APPENDIX A. SIMULATION SOURCE CODE

292 }

293 }

294

295 return intRowId;

296 }

297

298 private void LoadSegmentData()

299 {

300 string strSQL = "select * from segment";

301

302 OdbcConnection dbConn = new OdbcConnection(@"Dsn=MS Access Database;dbq

=IKNN.mdb;driverid=25;fil=MS Access;maxbuffersize=2048;pagetimeout=5");

303 OdbcCommand dbCmd = new OdbcCommand(strSQL, dbConn);

304 OdbcDataAdapter dbAdapter = new OdbcDataAdapter(dbCmd);

305

306 dbConn.Open();

307 dbAdapter.Fill(dtSegment);

308 dbCmd.Dispose();

309 dbAdapter.Dispose();

310 dbConn.Close();

311 }

312 }

313 }

A.4 Time Constraint Route Search Simulation

1

2 package undesignated;

3

4 import classes .Global;

5 import classes .Point;

6 import classes .QueryPoint;

7 import java. util .∗;

8 import java. util .ArrayList;

A.4. TIME CONSTRAINT ROUTE SEARCH SIMULATION 165

9

10 public class Main {

11

12 public static void main(String[] args) {

13 // for (int p=0; p<10; p++){

14 generateRandomPoints();

15 createQueryPoint();

16 printPoints(Global.pointList) ;

17 ArrayList<Object> candidateNext=candidateNext(Global.queryPoint);

18

19 ArrayList<Integer> visitedType=new ArrayList<Integer>();

20 for (int i=0; i< Global.typeList.size () ; i++){

21 Global.TC.add(0.00);

22 }

23 run(candidateNext,visitedType);

24 }

25

26 public static void printObjects(ArrayList<Object> aObjects){

27 ArrayList<Point> pointSet=(ArrayList<Point>)aObjects.get(1);

28 printPoints(pointSet);

29 }

30

31 public static void run(ArrayList<Object> candidateNext, ArrayList<Integer>

visitedType){

32 Global.TC.set(Global.level−1, Global.timeCost);

33 ArrayList<Point> candidateNext1=(ArrayList<Point>)candidateNext.get(1);

34

35 for(int i=0; i<candidateNext1.size(); i++){

36 if (Global. level ==1){

37 if (getTravelTime(getDistance(candidateNext1.get(i),(QueryPoint)

candidateNext.get(3)))+ Global.timeCost<Global.Tmax){

38 Global.timeCost+=getTravelTime(getDistance(candidateNext1.get(i),(

QueryPoint)candidateNext.get(3)));}

39 else {

40 if (i==candidateNext1.size()−1){

166 APPENDIX A. SIMULATION SOURCE CODE

41 Global. level−−;

42

43 if (Global. level ==0){

44 System.exit(0);

45 }

46 else{

47 Global.timeCost= Global.TC.get(Global.level−1);

48 visitedType.remove(visitedType.size()−1);

49 break;

50 }

51 }

52 else continue;

53 }

54 }

55 else{

56 if (getTravelTime(getDistance((Point)candidateNext.get(3),candidateNext1.get(

i)))+Global.timeCost<Global.Tmax){

57 Global.timeCost+=getTravelTime(getDistance((Point)candidateNext.get(3),

candidateNext1.get(i)));}

58 else {

59 System.out.println("*****TimeCost is too large go back to super

*****");

60 if (i==candidateNext1.size()−1){

61 Global. level−−;

62 if (Global. level ==0){

63 System.exit(0);

64 }

65 else{

66 Global.timeCost= Global.TC.get(Global.level−1);

67 visitedType.remove(visitedType.size()−1);

68 break;

69 }}

70 else continue;

71 }

72 }

A.4. TIME CONSTRAINT ROUTE SEARCH SIMULATION 167

73

74 visitedType.add(candidateNext1.get(i).getType());

75 Global. level ++;

76 for(int k=0; k<visitedType.size(); k++){

77 System.out.println("****Visited Type**"+visitedType.get(k)+" ");

78 }

79

80 if (visitedType. size ()==Global.typeList.size()){

81 if (Global.timeCost<=Global.Tmax) Global.Tmax=Global.timeCost;

82 System.out.println("Tmax: "+Global.Tmax);

83

84 visitedType.remove(visitedType.size()−1);

85 Global. level−−;

86 if (Global. level ==1)

87 Global.timeCost=0;

88 else

89 Global.timeCost−=getTravelTime(getDistance((Point)candidateNext.get(3),

candidateNext1.get(i)));

90 if (i==candidateNext1.size()−1){

91 Global. level−−;

92 if (Global. level ==0){

93 System.out.println("The algorithm finish");

94 System.exit(0);

95 }

96 else{

97 Global.timeCost= Global.TC.get(Global.level−1);

98 visitedType.remove(visitedType.size()−1);

99 break;

100 }}

101 else continue;

102 }

103 ArrayList<Object> CN=new ArrayList<Object>();

104 CN=candidateNext(candidateNext1.get(i), visitedType, Global.timeCost, Global.

level);

105 ArrayList<Point> temp=(ArrayList<Point>)CN.get(1);

168 APPENDIX A. SIMULATION SOURCE CODE

106 System.out.println("Global.level: "+Global.level);

107 System.out.println("Global.typeList.size(): "+Global.typeList.size());

108 if (temp.size()!=0)

109 {

110 run(CN,visitedType);

111 }

112 else

113 {

114 Global. level−−;

115 Global.timeCost= Global.TC.get(Global.level−1);

116 visitedType.remove(visitedType.size()−1);

117 }

118

119 if (i==candidateNext1.size()−1){

120 Global. level−−;

121 if (Global. level ==0){

122 System.exit(0);

123 }

124 else{

125 Global.timeCost= Global.TC.get(Global.level−1);

126 visitedType.remove(visitedType.size()−1);

127 break;}

128 }

129 }

130 }

131

132 public static void generateRandomPoints(){

133 int noPoints, noTypes=0;

134 Random r=new Random();

135 Global.mx=8;//input.nextInt();

136 Global.my=8;//input.nextInt();

137 noTypes=10;//input.nextInt();

138

139 for (int i=0; i<noTypes; i++){

140 int hour=0;

A.4. TIME CONSTRAINT ROUTE SEARCH SIMULATION 169

141 double min=0;

142 hour=5;//input.nextInt();

143 min=0.0+(double)i∗30.0;//input.nextDouble();

144 Global.typeList.add(hour+min/60);

145 noPoints=6;//input.nextInt();

146

147 for(int j=0; j<noPoints; j++){

148 int x, y=0;

149 x=r.nextInt(Global.mx)+1;

150 y=r.nextInt(Global.my)+1;

151 Global.pointList .add(new Point(x,y,i));

152 }

153 }

154 }

155

156 public static void createQueryPoint(){

157 int qx, qy, hour=0;

158 double min=0;

159 qx=4;//input.nextInt();

160 qy=4;//input.nextInt();

161 hour=4;//input.nextInt();

162 min=30.0;//input.nextDouble();

163 Global.queryPoint=new QueryPoint(qx, qy, hour+min/60);

164 Global.speed=30.00;//input.nextDouble();

165 }

166

167 public static double getDistance(Point x, Point y){

168 return Math.sqrt(Math.pow(x.getX()−y.getX(),2) + Math.pow((x.getY()−y.getY()),2))

;

169 }

170

171 public static double getDistance(Point x, QueryPoint y){

172 return Math.sqrt(Math.pow(x.getX()−y.getX(),2) + Math.pow((x.getY()−y.getY()),2))

;

173 }

170 APPENDIX A. SIMULATION SOURCE CODE

174

175 public static double getTravelTime(double distance){

176 return distance/Global.speed;

177 }

178

179 public static void printPoints(ArrayList<Point> aSet){

180 for(int i=0; i<aSet.size() ; i++){

181 aSet.get(i) .printPoint() ;

182 }

183 }

184

185 public static ArrayList<Object> candidateNext(Point p, ArrayList<Integer> visitedType,

double timeCost, int level){

186 ArrayList<Integer> T=new ArrayList<Integer>();

187 for(int i=0; i<Global.typeList.size() ; i++) T.add(i);

188 ArrayList<Point> result=new ArrayList<Point>();

189

190 ArrayList<Integer> unvisitedType=new ArrayList<Integer>();

191 for(int i=0; i<T.size(); i++){

192 if (visitedType.indexOf(T.get(i))==−1){unvisitedType.add(T.get(i));}

193 }

194 double timeCon=100;

195 for(int i=0; i<unvisitedType.size(); i++){

196 double time=Global.typeList.get(unvisitedType.get(i));

197 if (time<timeCon)timeCon=time;

198 }

199 for(int i=0; i<unvisitedType.size(); i++){

200 for(int j=0; j<Global.pointList.size () ; j++){

201 if (Global.pointList .get(j) .getType()==unvisitedType.get(i)){

202 double distance=getDistance(Global.pointList.get(j),p);

203 if (getTravelTime(distance)<=(timeCon−timeCost−Global.queryPoint.

getQueryTime())&&touch(Global.pointList.get(j), unvisitedType, distance, timeCost)){

204 if (getTravelTime(distance)<=(timeCon−timeCost−Global.queryPoint.

getQueryTime())){

205 result .add(Global.pointList.get(j)) ;

A.4. TIME CONSTRAINT ROUTE SEARCH SIMULATION 171

206 }

207 }

208 }

209 }

210 ArrayList<Object> r=new ArrayList<Object>();

211 r .add(level) ;

212 r .add(result) ;

213 r .add(timeCost);

214 r .add(p);

215 printObjects(r) ;

216 return r;

217 }

218

219 public static boolean touch(Point p, ArrayList<Integer> unvisitedType, double

pTimeCost, double timeCost){

220 for(int i=0; i<unvisitedType.size(); i++){

221

222 double dmax=Math.sqrt(Global.mxˆ2+Global.myˆ2);

223 for(int j=0; j<Global.pointList.size () ; j++){

224 if (Global.pointList .get(j) .getType()==unvisitedType.get(i)){

225 double distance=getDistance(Global.pointList.get(j),p);

226 if (distance<dmax)dmax=distance;

227 }

228 }

229 if (getTravelTime(dmax)>(Global.typeList.get(unvisitedType.get(i))−timeCost−

pTimeCost−Global.queryPoint.getQueryTime())){return false;}

230 }

231 return true;

232 }

233

234

235 public static ArrayList<Object> candidateNext(QueryPoint p){

236 ArrayList<Integer> unvisitedType=new ArrayList<Integer>();

237 for(int i=0; i<Global.typeList.size() ; i++) unvisitedType.add(i);

238 ArrayList<Point> result=new ArrayList<Point>();

172 APPENDIX A. SIMULATION SOURCE CODE

239

240 double timeCon=100;

241 for(int i=0; i<unvisitedType.size(); i++){

242

243 double time=Global.typeList.get(unvisitedType.get(i));

244 if (time<timeCon)timeCon=time;

245 }

246 for(int j=0; j<Global.pointList.size () ; j++){

247 double distance=getDistance(Global.pointList.get(j),p);

248

249 if (distance<=(timeCon−p.getQueryTime())∗Global.speed) {

250 result .add(Global.pointList.get(j)) ;

251

252 }

253 }

254

255

256 ArrayList<Object> r=new ArrayList<Object>();

257 r .add(1);

258 r .add(result) ;

259 r .add(0);

260 r .add(p);

261 printObjects(r) ;

262 return r;

263 }

264

265 }

Bibliography

[AB04] Peter F. Ash and Ethan D. Bolker. Generalized dirichlet tessellations.

Geometriae Dedicata, 20(2):209–243, October 2004.

[ABS08] Markus Aleksy, Thomas Butter, and Martin Schader. Architecture

for the development of context-sensitive mobile applications. Mobile

Information Systems, 4(2):105–117, 2008.

[Bay97] Rudolf Bayer. The universal b-tree for multidimensional indexing: gen-

eral concepts. In Proc. of Worldwide Computing and Its Applications

(WWCA), pages 198–209. Springer, March 1997.

[BdAG06] Thomas Behr, Victor Teixeira de Almeida, and Ralf Hartmut Gut-

ing. Representation of periodic moving objects in databases. In Proc.

of 14th ACM-GIS, pages 43–50, Arlington, Virginia, November 2006.

ACM.

[BER85] Dennis Albert Beckley, Martha Walton Evens, and V. K. Raman. Mul-

tikey retrieval from k-d trees and quad-trees. In Proceeding of ACM

SIGMOD, pages 291–301. ACM Press, May 1985.

[Ber93] Marshall W. Bern. Approximate closest-point queries in high dimen-

sions. Inf. Process. Lett., 45(2):95–99, 1993.

[BM72] Rudolf Bayer and Edward M. McCreight. Organization and mainte-

nance of large ordered indices. Acta Inf., 1:173–189, 1972.

173

174 BIBLIOGRAPHY

[BMW07] Oliver Bohl, Shakib Manouchehri, and Udo Winand. Mobile informa-

tion systems for the private everyday life. Mobile Information Systems,

3(3-4):135–152, 2007.

[BS67] L J Bass and S R Schubert. On finding the disc of minimum radius

containing a given set of points. Mathematics of Computation, 12:712–

714, 1967.

[BX11] L. Barolli and F. Xhafa. Jxta-overlay: A p2p platform for distributed,

collaborative, and ubiquitous computing. IEEE Transactions on In-

dustrial Electronics, 58(6):2163 – 2172, 2011.

[CC] Hyung-Ju Cho and Chin-Wan Chung. An efficient and scalable ap-

proach to cnn queries in a road network. In VLDB, pages 865–876.

ACM.

[CCCX12] Xin Cao, Lisi Chen, Gao Cong, and Xiaokui Xiao. Keyword-aware

optimal route search. PVLDB, 5(11):1136–1147, 2012.

[CF98] King Lum Cheung and Ada Wai-Chee Fu. Enhanced nearest neighbour

search on the r-tree. SIGMOD Record, 27(3), 1998.

[CFP+05] Domenico Cantone, Alfredo Ferro, Alfredo Pulvirenti, Diego Reforgiato

Recupero, and Dennis Shasha. Antipole tree indexing to support range

search and k-nearest neighbor search in metric spaces. IEEE Trans.

Knowl. Data Eng., 17(4):535–550, 2005.

[CHC04] Ying Cai, Kien A. Hua, and Guohong Cao. Processing range-

monitoring queries on heterogeneous mobile objects. In Mobile Data

Management, pages 27–38, 2004.

[CKSZ08] Haiquan Chen, Wei-Shinn Ku, Min-Te Sun, and Roger Zimmermann.

The multi-rule partial sequenced route query. In GIS, page 10, 2008.

BIBLIOGRAPHY 175

[CL07] Edward P. F. Chan and Heechul Lim. Optimization and evaluation of

shortest path queries. VLDB J., 16(3):343–369, July 2007.

[CLLP11] B. Choi, J. Lee, J. Lee, and K. Park. A hierarchical algorithm for indoor

mobile robot localization using rfid sensor fusion. IEEE Transactions

on Industrial Electronics, 58(6):2226 – 2235, 2011.

[CLZ+09] Muhammad Aamir Cheema, Xuemin Lin, Ying Zhang, Wei Wang, and

Wenjie Zhang. Lazy updates: An efficient technique to continuously

monitoring reverse knn. PVLDB, 2(1):1138–1149, 2009.

[CMG+06] Jidong Chen, Xiaofeng Meng, Yanyan Guo, Stephane Grumbach, and

Hui Sun. Modeling and predicting future trajectories of moving objects

in a constrained network. In Proc. of 7th MDM, page 156, Nara, Japan,

May 2006. IEEE Computer Society.

[CMNN09] Chi-Yin Chow, Mohamed F. Mokbel, Joe Naps, and Suman Nath.

Approximate evaluation of range nearest-neighbor queries with quality

guarantee. In Proc. of 11th SSTD, pages 283–301, Aalborg, Denmark,

July 2009. Springer.

[Com79] Douglas Comer. The ubiquitous b-tree. Computing Surveys, 11(2):123–

137, 1979.

[Cor] Telstra Corporation. Whereis website. http://www.whereis.com. Ac-

cessed 10 June, 2012.

[CSS08] Shigang Chen, Meongchul Song, and Sartaj Sahni. Two techniques for

fast computation of constrained shortest paths. IEEE/ACM Trans.

Netw., 16(1):105–115, February 2008.

[CSZY] Zaiben Chen, Heng Tao Shen, Xiaofang Zhou, and Jeffrey Xu Yu.

Monitoring path nearest neighbor in road networks. In SIGMOD Con-

ference, pages 591–602. ACM, June.

http://www.whereis.com

176 BIBLIOGRAPHY

[dA] Victor Teixeira de Almeida. Towards optimal continuous nearest neigh-

bor queries in spatial databases. In GIS, pages 227–234. ACM, Novem-

ber.

[dAG05] Victor Teixeira de Almeida and Ralf Hartmut Guting. Supporting

uncertainty in moving objects in network databases. In Proc. of 13th

ACM-GIS, pages 31–40, Bremen, Germany, November 2005. ACM.

[Dij59] Edsger W. Dijkstra. A note on two problems in connection with graphs.

Numerische Mathematik, 1(22):269–271, 1959.

[DKD08] Nir Dolev, Yaron Kanza, and Yerach Doytsher. Efficient orienteering

route search over uncertain spatial datasets. In GIS Algorithms and

Techniques, pages 329–336, Stockholm, Sweden, 14-19 June 2008.

[DKS09] Ugur Demiryurek, Farnoush Banaei Kashani, and Cyrus Shahabi. Ef-

ficient continuous nearest neighbor query in spatial networks using eu-

clidean restriction. In SSTD, pages 25–43, Aalborg, Denmark, July

2009. Springer.

[Dye86] M E Dyer. On a multidimensional search technique and its application

to the euclidean one-centre problem. SIAM Journal on Computing,

15:725–738, 1986.

[DZS+06] Ke Deng, Xiaofang Zhou, Heng Tao Shen, Kai Xu, and Xuemin Lin.

Surface k-nn query processing. In Proc. of 22nd ICDE, page 78, At-

lanta, GA, USA, April 2006. IEEE Computer Society.

[EH72] J Elzinga and D W Hearn. Geometrical solutions to some minimax

location problems. Transportation Science, 6:379–394, 1972.

[EL05] Andreas Ehliar and Dake Liu. Flexible route lookup using range search.

In Communications and Computer Networks, pages 345–350, 2005.

BIBLIOGRAPHY 177

[FB74] Raphael Finkel and J.L. Bentley. Quad trees: A data structure for

retrieval on composite keys. Acta Informatica, 4(1):1–9, 1974.

[For87] Steven Fortune. A sweepline algorithm for voronoi diagrams. Algorith-

mica, 2:153–174, 1987.

[FSAA] Hakan Ferhatosmanoglu, Ioana Stanoi, Divyakant Agrawal, and

Amr El Abbadi. Constrained nearest neighbor queries. In SSTD, pages

257–278. Springer, July.

[Gad08] David A. Gadish. Introducing the elasticity of spatial data. IJDWM,

4(3):54–70, 2008.

[GG98] Volker Gaede and Oliver Günther. An introduction to spatial database

systems. ACM Comput. Surv., 30(2):170–231, 1998.

[GGPS07] Stephen R. Gulliver, George Ghinea, M. Patel, and Tacha Serif. A

context-aware tour guide: User implications. Mobile Information Sys-

tems, 3(2):71–88, 2007.

[GKTD05] Dimitrios Gunopulos, George Kollios, Vassilis J. Tsotras, and Carlotta

Domeniconi. Selectivity estimators for multidimensional range queries

over real attributes. VLDB J., 14(2):137–154, April 2005.

[GL04] Bugra Gedik and Ling Liu. Mobieyes: Distributed processing of con-

tinuously moving queries on moving objects in a mobile system. In

EDBT, pages 67–87, 2004.

[GR99] Marina L. Gavrilova and Jon G. Rokne. Swap conditions for dynamic

voronoi diagrams for circles and line segments. Computer Aided Geo-

metric Design, 16(2):89–106, 1999.

[GR03] Marina L. Gavrilova and Jon G. Rokne. Updating the topology of the

dynamic voronoi diagram for spheres in euclidean d-dimensional space.

Computer Aided Geometric Design, 20(4):231–242, 2003.

178 BIBLIOGRAPHY

[Gra72] Ronald L. Graham. An efficient algorithm for determining the convex

hull of a finite planar set. Inf. Process. Lett., 1(4):132–133, 1972.

[GT] John Goh and David Taniar. Mining frequency pattern from mobile

users. In Proc. of the 8th KES, volume 3215 of LNCS. Springer.

[GT04a] Jen Ye Goh and David Taniar. Mobile data mining by location depen-

dencies. In Proc. of 5th Intelligent Data Engineering and Automated

Learning (IDEAL), pages 225–231, Wellington, New Zealand, Septem-

ber 2004. Springer.

[GT04b] John Goh and David Taniar. Mining frequency pattern from mobile

users. In KES, pages 795–801, 2004.

[GT05] John Goh and David Taniar. Mining parallel patterns from mobile

users. International Journal of Business Data Communication and

Networking, 1(1):50–76, 2005.

[Gut84] Antonin Guttman. R-trees: A dynamic index structure for spatial

searching. In Proceeding of ACM SIGMOD, pages 47–57. ACM Press,

June 1984.

[Gut94] Ralf Hartmut Guting. Multidimensional access methods. VLDB J.,

3(4):357–399, 1994.

[GZ09] Yunjun Gao and Baihua Zheng. Continuous obstructed nearest neigh-

bor queries in spatial databases. In SIGMOD Conference, pages 577–

590, Providence, Rhode Island, USA, June 2009. ACM.

[GZC+09a] Yunjun Gao, Baihua Zheng, Gencai Chen, Wang-Chien Lee, Ken C. K.

Lee, and Qing Li. Visible reverse k-nearest neighbor queries. In ICDE,

pages 1203–1206, Shanghai, China, April 2009. IEEE.

[GZC+09b] Yunjun Gao, Baihua Zheng, Gencai Chen, Wang-Chien Lee, Ken C. K.

Lee, and Qing Li. Visible reverse k-nearest neighbor query processing

BIBLIOGRAPHY 179

in spatial databases. IEEE Trans. Knowl. Data Eng., 21(9):1314–1327,

2009.

[GZCL09] Yunjun Gao, Baihua Zheng, Gencai Chen, and Qing Li. On efficient

mutual nearest neighbor query processing in spatial databases. Data

Knowl. Eng., 68(8):705–727, 2009.

[HCLZ09] Mahady Hasan, Muhammad Aamir Cheema, Xuemin Lin, and Ying

Zhang. Efficient construction of safe regions for moving knn queries

over dynamic datasets. In SSTD, pages 373–379, Aalborg, Denmark,

July 2009. Springer.

[HGNM08] Nicola Honle, Matthias GroBmann, Daniela Nicklas, and Bernhard

Mitschang. Preprocessing position data of mobile objects. In Proc. of

9th MDM, pages 41–48, Beijing, China, April 2008. IEEE.

[HJ04] Xuegang Huang and Christian S. Jensen. In-route skyline querying for

location-based services. In W2GIS, pages 120–135, 2004.

[HL06] Haibo Hu and Dik Lun Lee. Range nearest-neighbor query. IEEE

Trans. on Knowledge and Data Engineering (TKDE), 18(1):78–91,

January 2006.

[HXL05] Haibo Hu, Jianliang Xu, and Dik Lun Lee. A generic framework for

monitoring continuous spatial queries over moving objects. In SIGMOD

Conference, pages 479–490, Baltimore, Maryland, USA, June 2005.

ACM.

[ISS03] Glenn S. Iwerks, Hanan Samet, and Kenneth P. Smith. Continuous k-

nearest neighbor queries for continuously moving points with updates.

In VLDB, pages 512–523, 2003.

[JLO07] Christian S. Jensen, Dan Lin, and Beng Chin Ooi. Continuous clus-

tering of moving objects. IEEE Trans. Knowl. Data Eng., 19(9):1161–

1174, September 2007.

180 BIBLIOGRAPHY

[JT05] James Jayaputera and David Taniar. Data retrieval for location-

dependent queries in a multi-cell wireless environment. Mobile Infor-

mation Systems, 1(2):91–108, 2005.

[KGT99] George Kollios, Dimitrios Gunopulos, and Vassilis J. Tsotras. Nearest

neighbor queries in a mobile environment. In Spatio-Temporal Database

Management, pages 119–134, 1999.

[KHK07] Jongbum Kim, B. F. Hobbs, and J. F. Koonce. Analysis of the sensi-

tivity of decision analysis results to errors and simplifications in prob-

lem structure: Application to lake erie ecosystem management. IEEE

Transactions on Systems, Man, and Cybernetics, Part A, 37(4):505–

518, 2007.

[KKR08] Hans-Peter Kriegel, Peer Kroger, and Matthias Renz. Continuous prox-

imity monitoring in road networks. In Proc. of 16th ACM-GIS, page 10,

Irvine, California, November 2008. ACM.

[KLH+07] H.J. Koskimaki, P. Laurinen, E. Haapalainen, L. Tuovinen, and J. Ron-

ing. Application of the extended knn method to resistance spot welding

process identification and the benefits of process information. IEEE

Transactions on Industrial Electronics, 54(5):2823 – 2830, 2007.

[KLSS09] Yaron Kanza, Roy Levin, Eliyahu Safra, and Yehoshua Sagiv. An

interactive approach to route search. In GIS, pages 408–411, 2009.

[KM00] Flip Korn and S. Muthukrishnan. Influence sets based on reverse near-

est neighbor queries. In SIGMOD Conference, pages 201–212, 2000.

[KS04] Mohammad R. Kolahdouzan and Cyrus Shahabi. Voronoi-based k

nearest neighbor search for spatial network databases. In Proc. of 30th

VLDB, pages 840–851, Toronto, Canada, August 2004. Morgan Kauf-

mann Publishers Inc.

BIBLIOGRAPHY 181

[KS05] Mohammad R. Kolahdouzan and Cyrus Shahabi. Alternative solutions

for continuous k nearest neighbor queries in spatial network databases.

GeoInformatica, 9(4):321–341, 2005.

[KSS09] Yaron Kanza, Eliyahu Safra, and Yehoshua Sagiv. Route search over

probabilistic geospatial data. In SSTD, pages 153–170, 2009.

[KSSD08] Yaron Kanza, Eliyahu Safra, Yehoshua Sagiv, and Yerach Doytsher.

Heuristic algorithms for route-search queries over geographical data.

In GIS, page 11, 2008.

[KZWW05] Wei-Shinn Ku, Roger Zimmermann, Haojun Wang, and Chi-Ngai Wan.

Adaptive nearest neighbor queries in travel time networks. In Proceed-

ing of ACM GIS, pages 210–219. ACM Press, Nov 2005.

[LCLC09] Dongsheng Li, Jiannong Cao, Xicheng Lu, and Kaixian Chen. Effi-

cient range query processing in peer-to-peer systems. IEEE Trans. on

Knowledge and Data Engineering (TKDE), 21(1):78–91, January 2009.

[Lee82] Der-Tsai Lee. On k-nearest neighbor voronoi diagrams in the plane.

IEEE Trans. Computers, 31(6):478–487, 1982.

[LGYL11] Chuanwen Li, Yu Gu, Ge Yu, and Fangfang Li. wneighbors: A method

for finding k nearest neighbors in weighted regions. In DASFAA, pages

134–148, Hong Kong, China, April 2011. Springer.

[LJOS05] Dan Lin, Christian S. Jensen, Beng Chin Ooi, and Simonas Saltenis.

Efficient indexing of the historical, present, and future positions of

moving objects. In Proc. of 6th MDM, pages 59–66, Ayia Napa, Cyprus,

May 2005. ACM.

[LKSS10] Roy Levin, Yaron Kanza, Eliyahu Safra, and Yehoshua Sagiv. In-

teractive route search in the presence of order constraints. PVLDB,

3(1):117–128, 2010.

182 BIBLIOGRAPHY

[LLL11] Wookey Lee, C.K. Leung, and J.J.H. Lee. Mobile web navigation in

digital ecosystems using rooted directed trees. IEEE Transactions on

Industrial Electronics, 58(6):2154 – 2162, 2011.

[LLT11] Eric Hsueh-Chan Lu, Chih-Yuan Lin, and Vincent S. Tseng. Trip-

mine: An efficient trip planning approach with travel time constraints.

In Mobile Data Management (1), pages 152–161, 2011.

[LNY03] King-Ip Lin, Michael Nolen, and Congjun Yang. Applying bulk in-

sertion techniques for dynamic reverse nearest neighbor problems. In

IDEAS, pages 290–297, 2003.

[LWF08] Wenting Liu, Zhijian Wang, and Jun Feng. Continuous clustering of

moving objects in spatial networks. In Proc. of 12th Knowledge-Based

Intelligent Information and Engineering Systems (KES), Zagreb, Croa-

tia, September 2008. Springer.

[LXWX05] Yingwei Luo, Guomin Xiong, Xiaolin Wang, and Zhuoqun Xu. Spatial

data channel in a mobile navigation system. In Proceedings of ICCSA

2005, volume 3481 of LNCS, pages 822–831, Singapore, 2005. Springer.

[LZL08] Ken C. K. Lee, Baihua Zheng, and Wang-Chien Lee. Ranked reverse

nearest neighbor search. IEEE Trans. Knowl. Data Eng., 20(7):894–

910, 2008.

[LZZ06] Dan Lin, Rui Zhang, and Aoying Zhou. Indexing fast moving ob-

jects for knn queries based on nearest landmarks. GeoInformatica,

10(4):423–445, 2006.

[McK09] Matt McKeon. Harnessing the information ecosystem with wiki-

based visualization dashboards. IEEE Trans. Vis. Comput. Graph.,

15(6):1081–1088, 2009.

[Meg83] N Megiddo. Linear-time algorithms for linear programming in r3 and

related problems. SIAM Journal on Computing, 12:759–776, 1983.

BIBLIOGRAPHY 183

[Meg84] N Megiddo. Linear programming in linear time when the dimension is

fixed. Journal of ACM, 31:114–127, 1984.

[MHP05] Kyriakos Mouratidis, Marios Hadjieleftheriou, and Dimitris Papadias.

Conceptual partitioning: An efficient method for continuous nearest

neighbor monitoring. In SIGMOD Conference, pages 634–645, 2005.

[MK89] Avraham Margalit and Gary D. Knott. An algorithm for computing the

uniou, intersection or difference of two polygons. Comput & Graphics,

13(2):167–183, 1989.

[MMB11] Nirmesh Malviya, Samuel Madden, and Arnab Bhattacharya. A con-

tinuous query system for dynamic route planning. In ICDE, pages

792–803, 2011.

[MMHM09] Zoubir Mammeri, Franck Morvan, Abdelkader Hameurlain, and Nad-

hem Marsit. Location-dependent query processing under soft real-time

constraints. Mobile Information Systems, 5(3):205–232, 2009.

[MP07] Kyriakos Mouratidis and Dimitris Papadias. Continuous nearest neigh-

bor queries over sliding windows. IEEE Trans. Knowl. Data Eng.,

19(6):789–803, 2007.

[MPBT05] Kyriakos Mouratidis, Dimitris Papadias, Spiridon Bakiras, and Yufei

Tao. A threshold-based algorithm for continuous monitoring of k near-

est neighbors. IEEE Trans. Knowl. Data Eng., 17(11):1451–1464, 2005.

[Muh09] Rashid Bin Muhammad. Range assignment problem on the steiner

tree based topology in ad hoc wireless networks. Mobile Information

Systems, 5(1):53–64, 2009.

[MVZ02] Anil Maheshwari, Jan Vahrenhold, and Norbert Zeh. On reverse near-

est neighbor queries. In CCCG, pages 128–132, 2002.

184 BIBLIOGRAPHY

[MXA04] Mohamed F. Mokbel, Xiaopeng Xiong, and Walid G. Aref. Sina: Scal-

able incremental processing of continuous queries in spatio-temporal

databases. In SIGMOD Conference, pages 623–634, 2004.

[MYPM06] Kyriakos Mouratidis, Man Lung Yiu, Dimitris Papadias, and Nikos

Mamoulis. Continuous nearest neighbor monitoring in road networks.

In Proc. of 32th VLDB, pages 43–54, Seoul, Korea, September 2006.

ACM.

[NTZ07] Sarana Nutanong, Egemen Tanin, and Rui Zhang. Visible nearest

neighbor queries. In DASFAA, pages 876–883, Bangkok, Thailand,

April 2007. Springer.

[NTZ10] Sarana Nutanong, Egemen Tanin, and Rui Zhang. Incremental eval-

uation of visible nearest neighbor queries. IEEE Trans. Knowl. Data

Eng., 22(5):665–681, 2010.

[NZTK08] Sarana Nutanong, Rui Zhang, Egemen Tanin, and Lars Kulik. The

v*-diagram: a query-dependent approach to moving knn queries. Pro-

ceedings of the VLDB Endowment, 1(1):1095–1106, August 2008.

[OBSC00] Atsuyuki Okabe, Barry Boots, Kokichi Sugihara, and Sung Nok Chiu.

Spatial Tessellations: Concepts and Applications of Voronoi Diagrams.

John Wiley and Sons Ltd., West Sussex, England, second edition, 2000.

[PG98] John Pearson and Hans W. Guesgen. Some experimental results of

applying heuristic search to route finding. In FLAIRS Conference,

pages 394–398, 1998.

[PJ03] Dieter Pfoser and Christian S. Jensen. Indexing of network constrained

moving objects. In GIS, pages 25–32, New Orleans, Louisiana, USA,

November 2003. ACM.

BIBLIOGRAPHY 185

[PKX08] Sunil Prabhakar, Dmitri V. Kalashnikov, and Yuni Xia. Indexing,

query and velocity-constrained. In Encyclopedia of GIS, pages 518–

523. 2008.

[PMS07] Kostas Patroumpas, Theofanis Minogiannis, and Timos K. Sellis. Ap-

proximate order-k voronoi cells over positional streams. In Proc. of

15th ACM-GIS, page 36, Seattle, Washington, November 2007. ACM.

[PS07] Kostas Patroumpas and Timos K. Sellis. Semantics of spatially-

aware windows over streaming moving objects. In MDM, pages 52–59,

Mannheim, Germany, May 2007. IEEE.

[PSTM04] Dimitris Papadias, Qiongmao Shen, Yufei Tao, and Kyriakos Moura-

tidis. Group nearest neighbor queries. In Proc. of 20th ICDE, pages

301–312, Boston, MA, USA, March 2004. IEEE Computer Society.

[PTMH05] Dimitris Papadias, Yufei Tao, Kyriakos Mouratidis, and Chun Kit Hui.

Aggregate nearest neighbor queries in spatial databases. ACM Trans.

Database Syst., 30(2):529–576, 2005.

[PZMT03] Dimitris Papadias, Jun Zhang, Nikos Mamoulis, and Yufei Tao. Query

processing in spatial network databases. In Proceeding of 29th VLDB,

pages 802–813, Berlin, Germany, 2003. Morgan Kaufmann Publishers

Inc.

[RDAYY11] Senjuti Basu Roy, Gautam Das, Sihem Amer-Yahia, and Cong Yu.

Interactive itinerary planning. In ICDE, pages 15–26, 2011.

[RKV95] Nick Roussopoulos, Stephen Kelley, and Fredeic Vincent. Nearest

neighbor queries. In SIGMOD, pages 71–79, San Jose, California, June

1995. ACM Press.

[SAE00] Ioana Stanoi, Divyakant Agrawal, and Amr El Abbadi. Reverse nearest

neighbor queries for dynamic databases. In ACM SIGMOD Workshop

186 BIBLIOGRAPHY

on Research Issues in Data Mining and Knowledge Discovery, pages

44–53, 2000.

[Saf05] Maytham Safar. K nearest neighbor search in navigation systems. Mo-

bile Information Systems, 1(3):207–224, 2005.

[Saf06] Maytham Safar. Enhanced continuous knn queries using pine on road

networks. In ICDIM, pages 248–256, 2006.

[SE06] Maytham Safar and Dariush Ebrahimi. edar algorithm for continu-

ous knn queries based on pine. International Journal of Information

Technology and Web Engineering, 1(4):1–21, 2006.

[SGZ07] Lionel Savary, Georges Gardarin, and Karine Zeitouni. Geocache: A

cache for gml geographical data. IJDWM, 3(1):67–88, 2007.

[SH75] M I Shamos and D Hoey. Closest-point problems. In Proc. of 16th

Annual IEEE Symposium on Foundations of Computer Science, pages

151–162, Los Angeles, 1975. IEEE Computer Society Press.

[Sha75] M I Shamos. Geometric complexity. In Proc. of 7th Annual ACM

Symposium on Theory of Computing, pages 224–233, New York, 1975.

ACM.

[SK98] Thomas Seidl and Hans-Peter Kriegel. Optimal multi-step k-nearest

neighbor search. In SIGMOD Conference, pages 154–165, 1998.

[SKS08] Mehdi Sharifzadeh, Mohammad R. Kolahdouzan, and Cyrus Shahabi.

The optimal sequenced route query. VLDB J., 17(4):765–787, 2008.

[SRAE01] Ioana Stanoi, Mirek Riedewald, Divyakant Agrawal, and Amr El Ab-

badi. Discovery of influence sets in frequently updated databases. In

VLDB, pages 99–108, 2001.

BIBLIOGRAPHY 187

[SS08] Mehdi Sharifzadeh and Cyrus Shahabi. Processing optimal sequenced

route queries using voronoi diagrams. GeoInformatica, 12(4):411–433,

December 2008.

[SS09] Jagan Sankaranarayanan and Hanan Samet. Distance oracles for spa-

tial networks. In ICDE, pages 652–663, Shanghai, China, April 2009.

IEEE.

[SSA08] Hanan Samet, Jagan Sankaranarayanan, and Houman Alborzi. Scal-

able network distance browsing in spatial databases. In Proc. of ACM

SIGMOD, pages 43–54, Vancouver, BC, Canada, June 2008. ACM

Press.

[STX08] Cyrus Shahabi, Lu An Tang, and Songhua Xing. Indexing land surface

for efficient knn query. PVLDB, 1(1):1020–1031, 2008.

[SWCD97] A. Prasad Sistla, Ouri Wolfson, Sam Chamberlain, and Son Dao. Mod-

eling and querying moving objects. In ICDE, pages 422–432, 1997.

[SX08] Shashi Shekhar and Hui Xiong, editors. Encyclopedia of GIS. Springer,

2008.

[Syl75] J J Sylvester. A question in the geometry of situation. Quarterly

Journal of Mathematics, 1(79), 1875.

[TBPM05] Manolis Terrovitis, Spiridon Bakiras, Dimitris Papadias, and Kyriakos

Mouratidis. Constrained shortest path computation. In SSTD, pages

181–199, Angra dos Reis, Brazil, August 2005. Springer.

[TFPL04] Yufei Tao, Christos Faloutsos, Dimitris Papadias, and Bin Liu. Predic-

tion and indexing of moving objects with unknown motion patterns.

In SIGMOD Conference, pages 611–622, 2004.

[TG07] David Taniar and John Goh. On mining movement pattern from mobile

users. IJDSN, 3(1):69–86, 2007.

188 BIBLIOGRAPHY

[TP02] Yufei Tao and Dimitris Papadias. Time-parameterized queries in

spatio-temporal databases. In SIGMOD Conference, pages 334–345,

2002.

[TP03] Yufei Tao and Dimitris Papadias. Spatial queries in dynamic environ-

ments. ACM Transactions on Database Systems (TODS), 28(2):101–

139, June 2003.

[TPL04] Yufei Tao, Dimitris Papadias, and Xiang Lian. Reverse knn search in

arbitrary dimensionality. In VLDB, pages 744–755, 2004.

[TPS02a] Yufei Tao, Dimitris Papadias, and Qiongmao Shen. Continuous nearest

neighbor search. In Proc. of 28th VLDB, pages 287–298, Hong Kong,

China, August 2002. Morgan Kaufmann Publishers Inc.

[TPS02b] Yufei Tao, Dimitris Papadias, and Qiongmao Shen. Continuous nearest

neighbor search. In VLDB, pages 287–298, 2002.

[TR02] David Taniar and J. Wenny Rahayu. A taxonomy of indexing schemes

for parallel database systems. Distributed and Parallel Databases,

12(1):73–106, 2002.

[TR04] David Taniar and J. Wenny Rahayu. Global parallel index for multi-

processors database systems. Inf. Sci., 165(1-2):103–127, 2004.

[TST+11] David Taniar, Maytham Safar, Quoc Thai Tran, J. Wenny Rahayu,

and Jong Hyuk Park. Spatial network rnn queries in gis. Comput. J.,

54(4):617–627, 2011.

[TTS09] Quoc Thai Tran, David Taniar, and Maytham Safar. Reverse k nearest

neighbor and reverse farthest neighbor search on spatial networks. T.

Large-Scale Data- and Knowledge-Centered Systems, 1:353–372, 2009.

BIBLIOGRAPHY 189

[TWHC04] Goce Trajcevski, Ouri Wolfson, Klaus Hinrichs, and Sam Chamber-

lain. Managing uncertainty in moving objects databases. ACM Trans.

Database Syst., 29(3):463–507, March 2004.

[TXC07] Yufei Tao, Xiaokui Xiao, and Reynold Cheng. Range search on multidi-

mensional uncertain data. ACM Trans. on Database Systems (TODS),

32(3):15, August 2007.

[TYSK09] Yufei Tao, Ke Yi, Cheng Sheng, and Panos Kalnis. Quality and effi-

ciency in high dimensional nearest neighbor search. In SIGMOD Con-

ference, pages 563–576, Providence, Rhode Island, USA, June 2009.

ACM.

[VS08] Leena Vachhani and K. Sridharan. Hardware efficient prediction cor-

rection based generalized voronoi diagram construction and fpga imple-

mentation. IEEE Transactions on Industrial Electronics, 55(4):1558–

1569, 2008.

[WCY06] Kun-Lung Wu, Shyh-Kwei Chen, and Philip S. Yu. Incremental pro-

cessing of continual range queries over moving objects. IEEE Trans.

Knowl. Data Eng., 18(11):1560–1575, 2006.

[wM06] Telstra Corporation whereis Melbourne, Feb 2006.

http://www.whereis.com.

[WRTS09] Agustinus Borgy Waluyo, J. Wenny Rahayu, David Taniar, and Bala

Srinivasan. Mobile service oriented architectures for nn-queries. Jour-

nal of Network and Computer Applications, 32(2):434–447, March

2009.

[WRTS11] A.B. Waluyo, W. Rahayu, D. Taniar, and B. Scrinivasan. A novel

structure and access mechanism for mobile data broadcast in digital

ecosystems. IEEE Transactions on Industrial Electronics, 58(6):2173

– 2182, 2011.

190 BIBLIOGRAPHY

[WST03] Agustinus Borgy Waluyo, Bala Srinivasan, and David Taniar. Optimal

broadcast channel for data dissemination in mobile database environ-

ment. In APPT, pages 655–664, 2003.

[WST04] Agustinus Borgy Waluyo, Bala Srinivasan, and David Taniar. A tax-

onomy of broadcast indexing schemes for multi channel data dissemi-

nation in mobile database. In AINA (1), pages 213–218, 2004.

[WST05a] Agustinus Borgy Waluyo, Bala Srinivasan, and David Taniar. Research

in mobile database query optimization and processing. Mobile Infor-

mation Systems, 1(4):225–252, 2005.

[WST05b] Agustinus Borgy Waluyo, Bala Srinivasan, and David Taniar. Research

on location-dependent queries in mobile databases. Comput. Syst. Sci.

Eng., 20(2), March 2005.

[WW06] Xiaoyuan Wang and Wei Wang. Continuous expansion: Efficient pro-

cessing of continuous range monitoring in mobile environments. In

DASFAA, pages 890–899, 2006.

[WZK06] Haojun Wang, Roger Zimmermann, and Wei-Shinn Ku. Distributed

continuous range query processing on moving objects. In DEXA, pages

655–665, 2006.

[XSP09] Songhua Xing, Cyrus Shahabi, and Bei Pan. Continuous monitoring

of nearest neighbors on land surface. PVLDB, 2(1):1114–1125, 2009.

[XTSS10] Kefeng Xuan, David Taniar, Maytham Safar, and Bala Srinivasan.

Time constrained range search queries over moving objects in road

networks. In MoMM, pages 329–336, Paris, France, November 2010.

[XZT+09] Kefeng Xuan, Geng Zhao, David Taniar, Bala Srinivasan, Maytham

Safar, and Marina L. Gavrilova. Network voronoi diagram based range

search. In AINA, pages 741–748, 2009.

BIBLIOGRAPHY 191

[XZT+11a] Kefeng Xuan, Geng Zhao, David Taniar, J. Wenny Rahayu, Maytham

Safar, and Bala Srinivasan. Voronoi-based range and continuous range

query processing in mobile databases. J. Comput. Syst. Sci. (JCSS),

77(4):637 – 651, 2011.

[XZT+11b] Kefeng Xuan, Geng Zhao, David Taniar, Maytham Safar, and Bala

Srinivasan. Constrained range search query processing on road net-

works. Concurrency and Computation: Practice and Experience (CON-

CURRENCY), 23(5):491 – 504, 2011.

[XZT+11c] Kefeng Xuan, Geng Zhao, David Taniar, Maytham Safar, and Bala

Srinivasan. Voronoi-based multi-level range search in mobile naviga-

tion. Multimedia Tools Appl., 53(2):459–479, 2011.

[XZTS08] Kefeng Xuan, Geng Zhao, David Taniar, and Bala Srinivasan. Contin-

uous range search query processing in mobile navigation. In ICPADS,

pages 361–368, 2008.

[YL01] Congjun Yang and King-Ip Lin. An index structure for efficient reverse

nearest neighbor queries. In ICDE, pages 485–492, 2001.

[YLK09] Bin Yao, Feifei Li, and Piyush Kumar. Reverse furthest neighbors in

spatial databases. In ICDE, pages 664–675, Shanghai, China, April

2009. IEEE.

[YMP05] Man Lung Yiu, Nikos Mamoulis, and Dimitris Papadias. Aggregate

nearest neighbor queries in road networks. IEEE Transactions on

Knowledge and Data Engineering (TKDE), 17(6):820–833, June 2005.

[YS05] Jin Soung Yoo and Shashi Shekhar. In-route nearest neighbor queries.

GeoInformatica, 9(4):117–137, 2005.

[YS10] Wenjie Yuan and Markus Schneider. Supporting continuous range

queries in indoor space. In Mobile Data Management, pages 209–214,

Kanas City, Missouri, USA, May 2010. IEEE Computer Society.

192 BIBLIOGRAPHY

[YTL11] Bin Yao, Mingwang Tang, and Feifei Li. Multi-approximate-keyword

routing in gis data. In GIS, pages 201–210, 2011.

[Zha08] Qiong Zhang. Hierarchical route representation, indexing, and search.

IEEE Pervasive Computing, 7(2):78–84, 2008.

[ZJDR10] Rui Zhang, H. V. Jagadish, Bing Tian Dai, and Kotagiri Ramamoha-

narao. Optimized algorithms for predictive range and knn queries on

moving objects. Inf. Syst., 35(8):911–932, 2010.

[ZXR+] Geng Zhao, Kefeng Xuan, Wenny Rahayu, David Taniar, Maytham

Safar, Marina Gavrilova, and Bala Srinivasan. Voronoi-based continu-

ous k nearest neighbor search in mobile navigation. IEEE Transactions

on Industrial Electronics, 56(10). In press.

[ZXR+08] Geng Zhao, Kefeng Xuan, Wenny Rahayu, David Taniar, Maytham Sa-

far, Marina L. Gavrilova, and Bala Srinivasan. Incremental k-nearest-

neighbor search on road networks. Journal of Interconnection Net-

works(JOIN), 9(4):455–470, December 2008.

[ZXR+11] Geng Zhao, Kefeng Xuan, Wenny Rahayu, David Taniar, Maytham Sa-

far, Marina L. Gavrilova, and Bala Srinivasan. Voronoi-based continu-

ous k nearest neighbor search in mobile navigation. IEEE Transactions

on Industrial Electronics, 58(6):2247–2257, 2011.

[ZXT+09a] Geng Zhao, Kefeng Xuan, David Taniar, Wenny Rahayu, and Bala

Srinivasan. Intelligent transport navigation system using lookahead

continuous knn. In Proc. of ICIT, pages 1–6, Churchill, Victoria, Aus-

tralia, February 2009. IEEE.

[ZXT+09b] Geng Zhao, Kefeng Xuan, David Taniar, Maytham Safar, Marina

Gavrilova, and Bala Srinivasan. Multiple object types knn search using

network voronoi diagram. In Proceeding of International Conference for

Computational Science and Its Applications, Yongin, Korea, 2009.

BIBLIOGRAPHY 193

[ZXT11] Geng Zhao, Kefeng Xuan, and David Taniar. Path knn query process-

ing in mobile systems. IEEE Transactions on Industrial Electronics,

99, 2011.

[ZXTS08] Geng Zhao, Kefeng Xuan, David Taniar, and Bala Srinivasan. Incre-

mental k-nearest-neighbor search on road networks. Journal Of Inter-

connection Networks, 9(4):455–470, 2008.

[ZZS+05] Panfeng Zhou, Donghui Zhang, Betty Salzberg, Gene Cooperman, and

George Kollios. Close pair queries in moving object databases. In GIS,

pages 2–11, Bremen, Germany, November 2005. ACM.

	List of Tables
	List of Figures
	Abstract
	Acknowledgments
	Introduction
	Overview
	Major Issues
	Problem 1: Poor performance of Network Expansion
	Problem 2: Discrete Points are the input and output of Spatial Queries

	Contributions
	Contribution 1: Using the Voronoi Diagram to enhance the performance
	Contribution 2: Bringing route into kNN spatial queries

	Thesis Organization

	Preliminary and Related Work
	Introduction
	Related Work
	Preliminaries
	Typical kNN Queries
	Continuous kNN Queries
	Route Search query
	Other k Nearest Neighbor queries

	Problem Definition
	Summary

	Voronoi Based k Nearest Neighbor Search
	Introduction
	Approach 1: Voronoi-based Continuous kNN Search
	Approach 2: Voronoi based Multiple kNN Search
	Performance Evaluation
	Voronoi based Continuous kNN
	Voronoi based Multiple types kNN

	Summary

	Route and Path related kNN Queries
	Introduction
	Approach 1: Path based kNN Search Queries
	Definition of road network elements
	Data structure
	Proposed Method

	Approach 2: Path Branch Point based kNN Search
	Preliminaries
	Proposed Approach

	Approach 3: Time Constraint Route Search
	Preliminaries
	Proposed Methods

	Performance Evaluation
	Path based kNN search
	Path Branch Point based kNN Search Queries
	Time Constraint Route Search over Multiple Locations

	Conclusion

	Conclusion
	Contributions
	Open Problems and Future Work

	Appendix A Simulation Source Code
	kNN Implementation
	kNN Demo Code
	Path kNN Query Search Simulation
	Time Constraint Route Search Simulation

	Bibliography

