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Abstract

Spinor Bose-Einstein condensates (BECs) are multi-component superfluids
with magnetic interactions, formed from dilute gases of atoms in the Zeeman
sublevels mF of a single hyperfine ground state F. Spinor BECs are inherently
magnetic quantum objects, and exhibit a multitude of features such as spin
domains, magnon excitations, and distinct magnetic phases. At the heart of
the magnetic nature of a spinor BEC is the spin-dependent collisional interac-
tion c, which determines the overall magnetic behaviour of the superfluid. In
conjunction with the quadratic Zeeman shift q, the magnitude and sign of c
give rise to an intricate magnetic phase diagram. The magnetic phase of a
spinor BEC is tunable, and c and q are the knobs.

In addition to realising quantum simulators of magnetism, spinor BECs
are also precise magnetic sensors. Atomic magnetometry measures the
Larmor precession frequency of atoms, which is proportional to the magnetic
field strength. The sensitivity of an atomic magnetometer is principally
dependent on the duration of the measurement (interrogation time) and
number of atoms participating in the measurement. BECs are highly suitable
as atomic magnetometers, allowing for long interrogation times and high
atomic density, with microscopic sensor volumes. The latter is an important
consideration, as measurement of small magnetic sources demand equally
microscopic sensors. Established forms of magnetometry (such as warm-
vapour magnetometers) use large sensing volumes and are not trivially
miniaturised.

The exquisite sensitivity of a spinor BEC to magnetic fields becomes a
liability when one studies low energy (∼ 1 Hz) spinor physics over long
evolution times (100 ms) in a typical laboratory environment. To first order,
the spin-collisional interaction is independent of the magnetic field. However,
spatially inhomogeneous magnetic fields are problematic, exerting mechani-
cal forces on the magnetically sensitive spin components, suppressing spin
collisions and possibly introducing relaxation mechanisms that confound the
observation of intrinsic equilibration. Precise characterisation of magnetic
field gradients and their cancellation is thus of paramount importance.

In this thesis, the interaction of a spinor BEC with its environment is
studied. The construction, operation and optimisation of a BEC machine is
described in detail, as well as the quantum state preparation and control tech-
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niques used. Spin-mixing collisions were studied by observing population
oscillations, the characteristic hallmark of such coherent phenomena. The
observed population dynamics showed strong evidence of the deleterious
effects of magnetic field gradients. A series of experiments were performed
using spin-echo pulse sequences to decouple the evolving spinor condensate
from the inhomogeneous magnetic environment with encouraging results,
but which posed further questions. The fidelity of spin-echo pulses in the
strong radiative coupling regime was also studied.

Spinor condensates were then employed as sensitive magnetometers
to characterise the magnetic landscape they inhabit. A new method of
measuring magnetic field gradients was developed, using a pair of spinor
BECs separated in space that are simultaneously addressed by a Ramsey
interferometry sequence. Combined with a re-orientable magnetic bias field,
the resulting gradiometer was used to measure the magnetic field gradient
tensor in vacuo. This scheme can be extended to realise a high-precision vector
co-magnetometer, with spatiotemporal sensitivity comparable to established
forms of magnetometry.

Vector light shifts (VLSs) are optically-induced energy shifts that result in
effective magnetic fields, which in our case originate from the laser beams
used to trap the atoms. The VLS vanishes for purely linearly polarised light,
which is experimentally difficult to obtain in vacuo. Small elliptical polarisa-
tion imperfections originating from birefringent optics and the glass vacuum
cell result in a non-zero shift that contaminates magnetometry measurements.
The VLS is spatially varying due to the intensity gradient of the trapping
light. Due to gravitational sag of the trapping potential, the spatial variation
of the VLS is accentuated, resulting in an effective magnetic field gradient
that contributes to dephasing and component separation. The simultane-
ous Ramsey interferometry experiments are then adapted to measure the
VLS-induced Zeeman shift and diagnose its elimination. Up to 99.96% of the
VLS is eliminated using this method, and extensions to the technique are
described.
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Introduction
1

This thesis describes experiments using spinor Bose-Einstein condensates
(BECs) as sensitive probes of their environment. BECs are macroscopic
quantum objects that allow a range of phenomena integral to the behaviour
of myriad quantum systems to be observed in a simple, controllable form
on modest spatio-temporal scales; from µm to mm and ms to seconds. BECs
are isolated from thermal contact with their environment, as they exist
in a vacuum cell. However, a number of environmental factors such as
ambient magnetic field gradients and any residual spin-dependence of the
trapping potential mean that dephasing mechanisms still exist, and can have
deleterious consequences for observing fragile, low-energy spin interactions.
This thesis investigates these effects, exploring the behaviour of spinor BECs
in magnetic field gradients, and using spinor BECs as high-precision sensors
to characterise the magnetic environment.

This thesis is divided into three parts. The construction and optimisation
of experimental apparatus to produce and scientifically interrogate BEC is
an elaborate process, which has become only marginally simplified over
time. This forms the first part of this thesis. In the next part, I present
an experimental study of spin-dependent collisional dynamics in magnetic
field gradients. This work motivates the third part of the thesis, the precise
characterisation of magnetic field gradients and trapping-potential induced
spin-dependent light shifts. This introductory Chapter sets the scene for my
work in the context of the achievements in spinor BEC physics to date.

1.1 Bose-Einstein condensates

The study of Bose-Einstein condensates is now a mature field; twenty years
have passed since the first BECs were manufactured in 1995 by the JILA [1],
MIT [2] and Rice groups [3]. A plethora of physics has issued forth, and
BEC is being made in physics laboratories across the world. While none of
the intrinsic interest in these fascinating macroscopic quantum objects has
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2 Introduction

waned, the uses to which BECs can be put is as relevant as ever.

There is significant interest in BEC and ultracold non-degenerate gases
for realising quantum simulators [4]. A BEC is a clean, highly controllable
system in which to study the fundamental quantum behaviour of analogue
condensed matter systems, where constituent atoms are typically strongly
interacting and coupled to a range of environmental factors. Computer
simulations of these systems are generally infeasible or limited to a few
special cases. Effects limited to extreme circumstances in real condensed
matter systems, such as spin-orbit coupling, can be realised in ultracold
atomic systems [5]. Ultracold atoms are essentially real life ‘spherical cows’ in
vacuum chambers [6]: real quantum systems where real quantum behaviour
is directly observable on comparatively macroscopic scales.

While insights into fundamental physics can be gained using BECs as
quantum simulators, they also offer the prospect of advanced sensors. In this
capacity cold atoms and BECs have been used to precisely probe the strength
of gravitational [7, 8] or magnetic fields [9–11].

1.2 Spinor BECs

Spinor BECs are multi-component condensates composed of different internal
spin states of an atom. Our spinor condensates are formed from a superposi-
tion of Zeeman sublevels mF of the F = 1 hyperfine ground state of 87Rb, and
are therefore three-component BECs, although five-component F = 2 [12]
and seven-component S = 3 53Cr [13] have been produced. The spin degree
of freedom is frozen in a magnetic trap, as only weak-field seeking states
(mF = −1 in F = 1 87Rb) can be trapped. Spinor BECs are produced in
spin-independent trapping potentials, primarily optical dipole traps, which
use the AC Stark shift of an atom in a high-intensity, off-resonant linearly
polarised laser field to form a conservative potential that traps all mF states
equally.

We reserve Chapter 2 for an in-depth discussion of the myriad interest-
ing features exhibited by spinor condensates, and summarise here a few
important points. The key feature of spinor BECs is their fundamentally
magnetic nature: they form magnetic spin domains [14] and exhibit ferro-
and anti-ferromagnetic ground states [15] (without Neél order). Moreover,
this quantum magnetism can be visualised and controlled directly: transi-
tions between magnetic phases of BECs have been experimentally performed,
showing the rich spatial dynamics at play [16, 17]. At the heart of the mag-
netic nature of a spinor BEC is the spin-dependent collisional interaction:
atoms in different spin states colliding coherently and reversibly, allowing the



1.3 Spinor BEC – the state of the art 3

population of spin states within the BEC to change without heating or trap
losses [18] - something generally not possible with other multicomponent
condensates, where collisions are typically associated with loss processes
and dephasing. Mediated by these coherent collisions, the populations of the
spin components of a condensate can then oscillate in time, in some cases
for up to several seconds. The magnitude and sign of the spin-dependent
interaction, c, determines the magnetic nature of the condensate, as well as
the details of the population oscillations.

Despite being vivid quantum simulators of magnetism, the same benefits
associated with a magnetic superfluid come with caveats. Spinor BECs are
very sensitive to magnetic fields: this makes them fantastic magnetometers,
as demonstrated in Ref. [10] and in Chapter 6 of this thesis. Spin-mixing
interactions are immune to the linear Zeeman shift from a magnetic field, with
only the weaker quadratic shift contributing. However, inhomogeneous linear
Zeeman shifts introduce unwanted dephasing mechanisms that suppress the
low-energy spin dynamics.

The first step to ensuring a truly clean environment for spinor quantum
gases is precise characterisation of the magnetic landscape. It is not just
magnetic field gradients that lead to dephasing in spinor experiments –
the trapping potential itself is assumed to be spin-independent. For far off-
resonant, high power laser beams used in optical dipole traps this is generally
the case, provided the light is linearly polarised to an extremely high purity.

Any ellipticity results in an atomic vector light shift (VLS), a spin-state
dependent energy shift that behaves like an effective, or ‘fictitious’, mag-
netic field. These fields may be fictitious, but that in no way makes them
negligible, or any less problematic than real magnetic fields and gradients.
Along with the overall VLS effective field is an effective gradient, proportional
to the intensity gradient of the light. For tightly focused trapping beams,
these gradients can be comparable to typical background gradients of or-
der 10 mG/cm even for polarisation imperfections of order 1%. Precision
characterisation and elimination of the VLS is of considerable interest to
other areas in atomic physics: it contaminates optical magnetometry experi-
ments [19, 20] and limits the attainable temperatures in single atom optical
tweezer experiments [21, 22].

1.3 Spinor BEC – the state of the art

Spinor BEC research has matured. During the course of my PhD, two
major review articles were published, one detailing primarily the theoretical
advancements in the field [23] and the other strongly inclined towards
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experimental progress [24]. Aside from the Les Houches Summer school
notes [25] and several high-quality PhD theses, these review articles constitute
the first major attempts to summarise the achievements and outstanding
questions in the field of spinor condensates.

Spinor BECs are at the forefront of quantum simulation with neutral
atoms. Recent progress has seen the experimental realisation of a Dirac
monopole in a spinor BEC [26], an exquisite example of the capability of these
systems for quantum simulation of exotic physics. A number of interesting
proposals exist for further experiments, such as creating an interface between
topologically distinct phases of a BEC [27].

The eminent controllability of these atomic systems can potentially be
harnessed to change the magnetic nature of a spinor BEC. By manipulating
the atomic scattering properties of the atoms, techniques such as optical
Feshbach resonances could be used to change the sign of the spin-dependent
interaction, effectively allowing a ferromagnetic BEC to be turned into a
antiferromagnetic one, or vice versa [28, 29]. This remains an elusive goal due
to the difficulty of implementing non-magnetic scattering resonances in the
alkali atoms, but a worthwhile one nevertheless. It was this aim that initially
formed the overall goal of my thesis.

Precision sensing with spinor BECs, however, has progressed rather
slowly. Since the first results from the Stamper-Kurn group at Berkeley
in 2007 [10], there has been little progress in realising the full capabilities
of spinor BECs as precision magnetic sensors. There are reasons as to
why this is so. Magnetometers are parametrised by both their sensitivity
and sensing volume. Interesting, microscopic magnetic samples typically
require highly sensitive, similarly microscale magnetometers. The most
sensitive magnetometers measure polarisation rotations in optically pumped
atomic vapour (‘warm vapour’ magnetometers) and attain sensitivities below
1 fT Hz−1/2 [30]. These devices interrogate many spins, but necessarily have
large sensing volumes: the useful sensing volume is typically the size of the
atomic vapour cell, of order ∼ cm3.

Obtaining the superlative sensitivities demonstrated by large atomic mag-
netometers in microscopic sensing regions is a profound challenge. Small
volume atomic magnetometers necessarily interrogate fewer spins, increasing
the effects of quantum noise. Recent advances have resulted in microfabri-
cated glass cells with sub-femtotesla sensitivities [31] and sensor volumes of
∼ 1 mm3. Ultra-small volume magnetic sensors can be formed from SQUID
devices [32] or nitrogen-vacancy (NV) centre detectors [33], with spatial
resolutions ranging from µm to nm. The sensitivity of microscopic sensors is
less than that of larger sensors that interrogate more spins, with NV centre
probes typically achieving ∼ 100 nT Hz−1/2 per active centre [34].
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Where do BEC sensors fit in, and are condensed sensors really better than
thermal atomic magnetometers? This parallels other discussions within the
precision measurement community, such as the comparison of thermal and
condensed sources for precision gravimetry [8]. In the first ‘BEC magnetome-
ter’, that of Ref. [9], it is the coherent properties of the condensed state that
confer sensitivity to magnetic fields, but this does not necessarily mean it is
more sensitive than other atomic magnetometers of a similar size.

Harnessing the spin degree of freedom in atomic gases gives a much
more direct measurement of a magnetic field, and in this case a spinor BEC
allows the macroscopic coherent properties of the condensed state to be com-
bined with the precision of atomic spin manipulation. Magnetometry with
spinor condensates has advantages over thermal gases: compared to thermal
clouds, condensed clouds have a higher density of spins to interrogate in a
microscopic volume, which reduces the effects of atomic shot noise. A sensor
formed from a thermal cloud can have many more atoms than a condensed
cloud, but is necessarily larger; a small thermal cloud of the same spatial
extent as a condensate is correspondingly less dense. Condensation can be
seen as an inevitable consequence of increasing the density of the atomic
sample within microscopic volumes, making BECs perfect for high-precision
small-volume magnetometry. The nature of collisions in a condensed cloud
is also different to that of a thermal cloud – spin-mixing collisions conserve
the condensate magnetisation – and allow for lifetime-limited measurement
times [35] with concomitantly higher precision.

Consider the parameters of the most prominent example to date of a
spinor BEC-based magnetometer, that of Ref. [10], which has a sensitivity
of 8.3 pT Hz−1/2 and a sensing region of ∼ 100µm2, i.e. an effective spatial
resolution of 10µm. This is roughly in-between the two extreme specifications
mentioned earlier. The applicability of BECs to useful magnetic measurement
is often criticised due to the requirements of in-vacuum measurement with
vacuum-compatible samples, and generally speaking, a BEC apparatus is
not particularly field-deployable, yet. Nevertheless, there are prospects for
practical magnetic sensing with such a scheme [36].

1.4 What’s new in this thesis

Initially, my project was to devise methods to coherently control collisions
in spinor BECs. In order to implement and quantitatively evaluate these
schemes, we require an unambiguous signature of spin-dependent collisional
dynamics – namely spin population oscillations. The magnitude and sign of
the spin-dependent interaction c can be determined by observing population
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oscillations. If we want to change c, this is a good place to start.
But first, it was necessary to build the apparatus to produce BEC. Al-

though the BEC recipe is a well known one, it is still complex and well
worth documenting for the sake of posterity. Every BEC apparatus is unique,
improving on previous designs or utilising schemes from other apparatuses.
Every step towards simplifying and optimising the BEC production process is
a step closer to realising practical technologies with quantum gases. Our ap-
paratus routinely produces spinor condensates of ∼ 5× 105 atoms every 25 s,
and utilises a hybrid magnetic quadrupole crossed-beam optical dipole trap
method, which is being adopted in many labs since the initial realisation [37].

Having built a spinor BEC factory, we immediately put it to work. How-
ever, we were unable to observe sustained, large amplitude population oscil-
lations. Inhomogeneous magnetic fields – both real and fictitious – meant
that the delicate spin-mixing oscillations were strongly suppressed, and maxi-
mum evolution times limited to 50 ms. We conducted a series of experiments
to decouple a spinor BEC from this treacherous magnetic environment. We
used spin-echo pulses to reverse the deleterious effects of magnetic field
gradients, switching the populations of the magnetically sensitive spin com-
ponents before the gradients could pull the BEC apart. These experiments
met with limited success. Much investigation eventually led to the under-
standing that this was primarily due to the time-varying nature of vector light
shift-induced effective field gradients manifesting as irreproducibility. Nev-
ertheless, we were able to demonstrate successful rephasing of spin-mixing
oscillations in a noisy, inhomogeneous magnetic environment, with coherent
population oscillations preserved to almost 200 ms for particular choices of
rephasing times. We also studied the robustness of radiofrequency π-pulses
beyond the rotating-wave approximation, and the consequences this has for
demonstrating improved spin-echo rephasing schemes in noisy magnetic
environments.

We then set out to perform a series of measurements to precisely charac-
terise the magnetic landscape of a spinor BEC. Using simple modifications
to the optical dipole trap, we are able to create a pair of spinor BECs, in
two separate dipole traps spatially separated by just less than 1 mm. We
developed a new measurement technique, differential Ramsey interferometry
(DRI), that allows us to use the pair of spinor BECs as a high-precision,
interferometric magnetic gradiometer. In this scheme, radiofrequency (rf)
spin-manipulation pulses are used to drive transitions between all Zeeman
states mF of each BEC. DRI simultaneously addresses the pair of BECs: each
BEC is an independent spin-1 interferometer, and the relative phase of Ram-
sey fringes is proportional to the magnetic field difference between the two
BECs.
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Shot-to-shot magnetic field fluctuations of order 0.1 mG scramble the
phase of Ramsey fringes from each interferometer for interrogation times
longer than 1 ms, which impedes high-precision interferometry at long in-
terrogation times. However, parametrically plotting the output from one
interferometer against the other yields an ellipse: the relative phase is unaf-
fected by common-mode magnetic field noise. Differential interferometry
exhibits common-mode rejection of 50 dB, making high-precision gradiome-
try and magnetometry possible in noisy environments.

The dipole trap beam positions are easily reconfigurable: by changing the
position of the BECs and the orientation of the magnetic bias field, we are
able to measure the entire magnetic field gradient tensor. This is the near-
definitive measurement of the magnetic field spatial variation on the scale of
a trapped quantum gas, a significant result. Our magnetic gradiometer is a
substantial achievement in its own right, demonstrating high sensitivity at
microscale spatial resolution and has applications as potential high-precision
in vacuo co-magnetometer. Conservative enhancements to the technique
could result in spatiotemporal sensitivities comparable to or even surpassing
established, mature forms of magnetometry.

The magnetic gradiometry experiments were performed in freefall to
circumvent the spurious contribution of vector light shifts to the measured
gradients. This means that the long interrogation times necessary for su-
perlative sensitivity could not be reached, as the cloud will have long since
left the microscopic interrogation region: the longest freefall interrogation
time used was 3 ms. The vector light shift was also found to change shot-
to-shot due to thermal polarisation transients in acousto-optic modulators
used for intensity and position control of the trapping beams. High-precision
in-trap gradiometry is possible only when the vector shift is eliminated; this
motivated a systematic characterisation of the VLS, adapting the techniques
developed for measuring magnetic field gradients to realise high-precision
measurement of optically-induced ‘fictitious’ magnetic fields.

The origin of the vector shift is a polarisation imperfection in the dipole
trapping light, due to passage through birefringent optics (such as the glass
vacuum cell) making the near linear input light slightly elliptical at the
atoms. Carefully placed Glan-laser polarising prisms were ultimately used
to eliminate the polarisation drifts that wreaked havoc with spin-mixing
experiments and differential interferometry was used to measure the trapping
light polarisation in vacuo. A single quarter-wave plate was then used to
counter the birefringence of the downstream optics and glass cell, which in
theory is sufficient to attain perfect linear polarisation in the vacuum cell.
Using this method we were able to eliminate up to 99.96 % of the vector light
shift.
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1.5 Outline of this thesis

This thesis is divided into eight Chapters. In the next Chapter, we focus on
the theoretical description of spinor BECs, deriving the single-mode theory
from the second-quantised many-body Hamiltonian. Chapter 2 also contains
a more detailed summary of the major results in experimental spinor BEC
physics. The key results of this Chapter are the mathematical formulation
of single-mode spin-mixing dynamics, which is explored in more detail
experimentally in Chapter 5.

The construction and optimisation of the BEC apparatus is described in
Chapter 3. The most important specifications of the experiment such as atom
numbers and temperatures at various points of the experiment are included
here, and serve as a benchmark for future generations in the Spinor BEC lab
at Monash. Chapter 4 continues the discussion about experimental apparatus
but focuses on the techniques used for state preparation and manipulation.

Our experimental studies of spin-mixing dynamics are presented in
Chapter 5. In this Chapter, we describe how the presence of magnetic
field gradients suppresses spin-mixing dynamics, leading to substantially
reduced coherent evolution times. We implemented a spin-echo rf pulse
sequence in an attempt to mitigate the effects of gradients, with modest
success, but confounded by time varying vector light shifts which resulted in
irreproducibility. We describe these effects, including the fidelity of refocusing
pulses outside the domain of validity of the rotating-wave approximation in
this Chapter as well.

Our magnetic tensor gradiometry experiments are discussed in Chapter 6

and the work on characterising and eliminating vector light shifts is presented
in Chapter 7. These Chapters form the basis of two upcoming publications:

• A. A. Wood, L. M. Bennie, A. Duong, M. Jasperse, L. D. Turner and R.
P. Anderson Magnetic tensor gradiometry using Ramsey interferometry of
spinor condensates. Accepted, to appear in Physical Review A.

• A. A. Wood, L. D. Turner and R. P. Anderson Measurement of vector
light shifts using differential Ramsey interferometry of spin-1 Bose-Einstein
condensates. In preparation for submission to Physical Review A.

In Chapter 8, we make concluding remarks and outline extensions of the
results of this thesis as well as future directions.



Spinor Bose-Einstein
condensates

2

The wealth of physics that comes from unlocking the spin degree of freedom
in a BEC cannot be understated. Simultaneous confinement of BECs in
different internal states allows the study of multicomponent superfluidity,
with intercomponent interactions and multicomponent ground states a few
of the intrinsically interesting facets. A spinor condensate is but one example
of such fascinating quantum matter, an example of a magnetic superfluid
which also has practical applications: a high precision sensor for magnetic
fields or a quantum amplifier, for instance [10, 38].

It is the purpose of this Chapter to explain what a spinor BEC is and
why it is interesting. The first part is a brief review of scientific literature,
outlining the major achievements, from the creation of the first spinor BECs
in 1998 to the first major reviews which appeared in 2012-13. In Sections 2.3
and 2.4 the theoretical formulation of a spin-1 BEC is looked at in more detail.
As a magnetic condensate, the effect of external magnetic fields and the
spin-mixing interaction gives rise to magnetic ground states, this is covered
in Section 2.5. The final Sections comprise details about the aspect of a spinor
BEC most studied in this thesis, that of coherent spin-mixing collisions.

2.1 Introduction

The first spinor BECs were produced by the Ketterle group at MIT in 1998 [39]
from a BEC of sodium atoms loaded into an optical dipole trap from a
magnetic trap. Only one Zeeman state in the hyperfine ground state of
23Na can be magnetically trapped; the optical dipole trap confines all three
Zeeman sublevels of the F = 1 manifold equally, and radiofrequency or
microwave fields can be used to create various superpositions of Zeeman
states once loaded into the dipole trap. Several seminal results followed,
the most notable of which was the exploration of the ground state magnetic
phase diagram of a sodium spinor BEC [14], which highlighted the role
of both the quadratic Zeeman shift and conservation of magnetisation in

9
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determining the ground state phase diagram. These experiments confirmed
the antiferromagnetic nature of the F = 1 sodium spinor BEC ground state.

Early theoretical works by Ho [15] and Ohmi and Machida [40] gave
the first in-depth theoretical treatment of the zero magnetic field properties
of an optically trapped spinor gas. Law et al. had identified the process
of spin collisional mixing [41], however without consideration of the effect
of magnetic fields. Later works described the single-mode approximation
(SMA) [42] and the effect of the quadratic Zeeman shift arising from magnetic
fields [43].

The next period of substantial experimental progress occurred in 2005,
from the groups of Sengstock and Bongs (Institut für Laserphysik, Hamburg)
and Chapman (Georgia Tech). The population of Zeeman states in a spinor
BEC is generally not constant in time: coherent, reversible collisions between
atoms result in coherent population oscillations, called spin-mixing oscillations.
The Hamburg group observed spin-mixing oscillations in an F = 1 [44] and
F = 2 [12] 87Rb spinor BEC, albeit in the presence of a thermal component
that lead to dissipation and short evolution times. The Chapman group
made the first unambiguous observations of long-timescale spin population
evolution in F = 1 87Rb [18, 45], confirming the predictions of their previous
theoretical formulation of spinor condensates in the SMA [46].

Spin-mixing oscillations in optical lattices were investigated in the group
of Bloch (Mainz), who observed population dynamics between pairs of
87Rb atoms in single sites of an optical lattice [47]. They also demonstrated
coherent control of spin-mixing collisions by applying a detuned microwave
field to create an effective quadratic Zeeman shift [48].

Non-destructive imaging of spinor BECs was developed [35] by the
group of Stamper-Kurn (UC Berkeley), and in a remarkable experiment
they showed the formation of spin domains in an F = 1 87Rb condensate
that was quenched across a phase transition from a polar state into a ferro-
magnetic state [16]. Another experiment from this group in 2007 used spinor
BECs as small volume, high-precision magnetometers by observing spatially
resolved Larmor precession across the condensate due to an imposed optical
vector light shift [10]. The year 2007 also saw the first observation of spin-
mixing oscillations in 23Na, in the Lett group at NIST Gaithersberg [49]. Later
results from this group demonstrated a minimally destructive dispersive
measurement of in situ spinor evolution using Faraday rotation of an off-
resonant probe laser [50] as well as investigations into long-term dissipative
relaxation [51].

Considerable theoretical interest was also devoted to dipolar effects in
spinor condensates [52–55] as well as experimental probing of the weak
dipolar effect in 87Rb [56]. Dipolar effects significantly enrich the physics
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of spin-1 condensates, but are weak and elusive in alkali metals. Strong
dipolar effects are a motivation for producing spin-3 BECs of chromium [57],
a system where – due to strong dipolar interactions – magnetisation is
no longer conserved [58], collisions can change the magnetisation of the
BEC. Experimental efforts to study dipolar effects in alkali metal spinor
BECs continues [59], with more magnetic atoms such as erbium [60] and
dysprosium [61] offering interesting prospects.

Spinor condensates as sensors for precision metrology have also been
explored. Chief among the benefits a spinor BEC brings to atomic magne-
tometry is the ultra-small volume of the sensor, offering precise, calibration
free measurement of magnetic fields over spatial regions of ∼ (10µm)3.
Squeezing too has been of interest, with spinor BECs providing a highly
suitable system to explore squeezing of macroscopic atomic ensembles [62].
In a spinor BEC, the squeezing arises from the atom-optical analogue of para-
metric down conversion: spin-mixing collisions produce a entangled pairs of
mF = ±1 atoms from a pure mF = 0 condensate, with vacuum fluctuations
seeding pair creation [63]. Squeezing of up to 10 dB in the nematic spin space
of an F = 1 87Rb BEC was demonstrated in condensates of 104 atoms [64].

As a magnetic superfluid with an accessible, intricate phase diagram,
quantum phase transitions of spinor condensates have received substantial
experimental attention in both 87Rb [16] and 23Na [17, 50, 65]. Particular
importance is attached to the equilibration behaviour of spinor condensates
over long evolution times: as an isolated, essentially dissipationless quantum
system, a spinor BEC prepared out of equilibrium takes on the order of
seconds to relax to an equilibrium state. The precise mechanism for this
equilibration remains unclear [24]. Experiments in 87Rb [66] and 23Na [51]
have explored long term equilibration, and others have studied the mean-field
phase diagram of 23Na [67, 68].

The study of topological defects and structures in spinor condensates
has matured recently, with several notable experimental results [26, 69–72].
Creating an interface between BECs of distinct order parameter symmetries
has been proposed, which gives rise to a range of novel topological features
at the interface [27].

2.2 General features of a BEC

Before plunging into the details of a spinor BEC, we note here a few general
properties of single-component ‘scalar’ BECs that are of importance. Our
experiments typically begin with single-component condensates, and most of
what we discuss here carries over to spinor condensates in the single-mode
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approximation, such as the characteristic spatial profile of the condensate
wavefunction. The detailed theory of BEC is well documented in numerous
sources, such as Ref. [73] or the monograph [74]. In this Section, we present
only the key theory that aids the understanding of a spinor BEC, as well as
other results that are important for the experimental procedure discussed in
Chapter 3.

In the mean-field approximation, a single-component ground state con-
densate described by the order parameter ψ(r, t) = φ(r)e−iµt/h̄ obeys the
Gross-Pitaevskii equation [73]:(

− h̄2

2m
∇2 + V(r) + g|φ(r)|2

)
φ(r) = µφ(r), (2.1)

with µ the chemical potential, g = 4πh̄2a/m (where a is the single-component
s-wave scattering length and m the atomic mass) and

∫
|φ(r)|2dr = N, the

number of atoms. The trapping potential V(r) is assumed to be harmonic,
V(r) = ∑i

1
2 mω2

i x2
i , with ωi the harmonic oscillator frequency of the trap

along the spatial axes xi = x, y, z.
To determine the ground-state structure of the BEC, we make the Thomas-

Fermi approximation: for large N, the nonlinear interaction g|φ(r)|2 is much
larger than the kinetic energy, which we neglect [75]. Solving the GP equation
(Eq. 2.1) in the Thomas-Fermi approximation, we arrive at

|φ(r)|2 =
µ−V(r)

g
. (2.2)

Since the number density |φ(r)|2 = n(r) > 0, we can write the density profile
as

n(r) = n0 max

(
1−

(
x

Rx

)2

−
(

y
Ry

)2

−
(

z
Rz

)2

, 0

)
(2.3)

where the Thomas-Fermi radii Ri are given by

1
2

mω2
i R2

i = µ (2.4)

and the peak density n0 = µ/g. The spatial profile of the condensate is
therefore parabolic, with the density going to zero at the Thomas-Fermi
radii, as shown in Figure 2.1. In general, the interaction between different
components of a multicomponent spinor condensate give rise to complicated
time-dependent spatial dynamics. In the discussions that follow, we will
introduce the concept of the single-mode approximation, which states that
under certain conditions the spatial and spin degrees of freedom of a spinor
BEC can be decoupled. In particular, we will consider the case where all
three components of an F = 1 BEC share the same spatial wavefunction,
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Figure 2.1: Radial Thomas-Fermi density profile (z = 0 in Eq. 2.3) of a
3× 105 atom 87Rb condensate, elongated along z in a harmonic trap with
ωx, ωy = 2π × 70 Hz, the Thomas-Fermi radii are ∼ 8.5µm and the peak
density is n0 = 2× 1014cm−3.

which satisfies Eq. 2.1: the spin-dependent physics are then isolated to the
time-dependent evolution of the relative populations. Another key feature of
a single-component BEC that is important is the condensate healing length

ζ =

√
h̄2

2mgn0
, (2.5)

which describes the minimum distance over which density perturbations
exist in a stationary condensate wavefunction. For spinor condensates, there
exists an analogous quantity for the spatial variation of the condensate spin,
called the spin healing length (described in Section 2.4). We will refer back
to some of the results of this Section where useful analogies and pertinent
results can be understood with reference to the case of a single-component
BEC.

2.3 Theory of a spin-1 BEC

In this Section, the theory of a spin-1 BEC is derived. In the interests of
completeness, I feel it proper to derive the primary aspect of a spinor BEC
studied during this thesis (in particular Chapter 5), coherent spin-mixing,
from the theoretical formulation of the spin-dependent collisional interaction.
In doing so, I collate the results of several other works and echo their
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discussions, making small corrections and changes to notation for consistency.
Among the works I have drawn from are primarily the PhD theses of Ming-
Shien Chang and Wenxian Zhang from the Georgia Tech group [76, 77] and
the major review articles [23, 24] as well as the 2001 Les Houches summer
school notes by Ketterle and Stamper-Kurn [25]. M-S. Chang’s thesis was the
first document to clearly illuminate the theory of spinor BECs to me, and I
have attempted to parallel the clear, concise formulation presented therein.

A spinor BEC is a multi-component BEC composed of a superposition of
atoms in different Zeeman sublevels of a single hyperfine manifold F. For an
F = 1 BEC, the order parameter is a three-component spinor,

ψ =

 ψ−1

ψ0

ψ+1

 . (2.6)

The mean-field order parameter of a spinor condensate transforms as a
vector under rotations in spin space, but in contrast to other multicomponent
condensates comes with a rotationally-invariant interaction between the
different components. This has important consequences when we consider
the collisional interaction that underlies much of the physics of a spinor BEC,
and results in a considerable simplification of the interaction Hamiltonian.

2.3.1 Hyperfine and Zeeman interactions

Alkali metal atoms such as 87Rb have hyperfine structure. The nuclear
angular momentum I couples to the electronic angular momentum J = L + S,
itself the sum of the spin (S) and orbital (L) electron angular momentum. The
resulting total angular momentum is F = I + J and the hyperfine interaction
Hamiltonian is

Hhfs =
Ahfs

2
(F2 − I2 − J2). (2.7)

The hyperfine interaction splits the energy levels of the 5S1/2 ground state
of 87Rb into states F = 1, 2 separated by an energy Ehfs = h × 6.834 GHz.
In the presence of a magnetic field B, the degeneracy of the F hyperfine
manifold is lifted by the Zeeman interaction HZ = −µ ·B, and the eigenstates
of Hhfs + HZ at low fields are |F, mF〉 ≡ |I, J, F, mF〉, with mF the projection of
F on the quantisation axis z, normally taken as the direction of the magnetic
field.

The energies of the Zeeman states |F, mF〉 are dependent on the strength
B = |B| of the magnetic field, and are described by the Breit-Rabi equation,
an analytic expression that applies to ground state alkali metal atoms [78–80]:

E|F=1,mF〉 = −
Ehfs

2(2I + 1)
+ gIµBmFB− Ehfs

2

√
1 +

4mF

2I + 1
x + x2 (2.8)
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with x =
(gJ−gI)µBB

Ehfs
. Retaining only mF-dependent terms to second order in a

series expansion of Eq. 2.8 for small B gives a total Zeeman energy EZ for an
atom in the state |F = 1, mF〉 as

EZ/h̄ = p mF + q m2
F, (2.9)

with

p =
E+1 − E−1

2h̄

= − gJ − 2(I + 1)gI

h̄(2I + 1)
BµB

= −2π B× 702.37 kHz/G (2.10a)

and

q =
E+1 + E−1 − 2E0

2h̄

=
(gJ − gI)

2µ2
B

h̄ Ehfs(2I + 1)2 B2

= 2π B2 × 71.89 Hz/G2 (2.10b)

the linear and quadratic Zeeman shifts, respectively for B in Gauss. At
typical laboratory fields of B ∼ 1 G, the linear Zeeman shift is four orders of
magnitude larger than the quadratic shift, but as we shall see in Section 2.4.1,
the quadratic shift primarily determines the magnetic interaction of a spinor
BEC. The F = 1 and F = 2 hyperfine levels, Zeeman states and energy shifts
from the linear and quadratic Zeeman shifts are depicted in Figure 2.2.

2.3.2 Collisional interactions

Interatomic interactions determine the physics of all ultracold gases. For
spinor BECs, the internal state of each colliding atom is fundamental to the
outcome of the collision, and underlies the nature of the spin-dependent
interaction. Coherent population oscillations are driven by spin-exchange
collisions, where a colliding |mF = ±1〉 pair can result in the production of
an |mF = 0〉 pair and vice versa.

In the case of atoms in eigenstates |F1, mF1〉 and |F2, mF2〉 colliding, the
collision couples the individual angular momenta F1, F2 of each atom to
form a total angular momentum f = F1 + F2. To describe atomic collisions
theoretically, we make the assumption that the temperature and density of
the gas are low enough so that two-body, rotationally symmetric s-wave
collisions dominate, and that the interaction can be described as a contact
interaction. The interaction between two atoms with angular momenta
F1, F2 with position vectors r1, r2 can be written in the form of a Fermi
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702.37 kHz/G

699.6 kHz/G

6834.682 MHz
71.9 Hz/G2

Figure 2.2: Hyperfine splitting, Zeeman states and energy shifts from
magnetic fields for the 87Rb 5S1/2 ground state. Hyperfine levels F = 1 and
F = 2 are split into Zeeman sublevels by a magnetic field; the magnitude of
the linear Zeeman splitting is given by |p| in Eq. 2.10a for F = 1. The small
quadratic shift q (Eq. 2.10b) of the mF = 0 state relative to the other two
Zeeman states is shown.

pseudopotential that projects the spin state of the individual atoms |Fi, mFi〉
onto the total spin

∣∣ f , m f
〉
, with f = |F1 − F2|, ..., F1 + F2 [76]:

V(r1 − r2) =
4πh̄2

m
δ(r1 − r2)

F1+F2

∑
f=0

a f P f , (2.11)

where P f is the projection operator onto the total spin f and the s-wave
scattering length for the relevant f collision channel is denoted by a f : bosonic
symmetry restricts the total spin f = 0, 2, ... to even values. For spin-1 bosons,
the sum evaluates to:

V(r1 − r2) = δ(r1 − r2)(c0 + c2F1 · F2), (2.12)

with:

c0 =
4πh̄2

3m
(a f=0 + 2a f=2) c2 =

4πh̄2

3m
(a f=2 − a f=0). (2.13)

The constants c0 = 5.16× 10−51 J m3 and c2 = −2.39× 10−53 J m3 are referred
to as the spin-independent and spin-dependent interactions strengths, re-
spectively, with |c0| � |c2| due to the near equality of the singlet and triplet
scattering lengths. The fact that all inter- and intra-component collisional
effects can be parametrised by only two parameters is a direct consequence
of the rotational symmetry of the system: different states are related to each
other by rotations in spin space. The collisional interaction depends only
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on the total spin of the colliding atom pair, not on the orientation of the
constituent spins, which allows the interaction Hamiltonian to be expressed
in the form of Eq. 2.11 [15, 25].

The two-atom picture outlined above can be generalised to the many-
body atomic ensemble using the formalism of second quantisation. We
introduce the field creation and annihilation operators Ψ†

m and Ψm, with
the index m ∈ {+1, 0,−1} corresponding to the Zeeman sublevels mF. The
second-quantised field operators Ψm(r, t) satisfy the commutation relations:[

Ψi, Ψ†
j

]
= δijδ(r− r′), (2.14a)

[
Ψi, Ψj

]
=
[
Ψ†

i , Ψ†
j

]
= 0. (2.14b)

The spin-1 Hamiltonian in second-quantised notation (summation over
repeated indices is implied) is given by [15]:

H =
∫

dr Ψ†
i

(
− h̄2

2m
∇2 + U(r) + ÊZ

)
Ψi

+
c0

2
Ψ†

i Ψ†
j ΨjΨi +

c2

2
Ψ†

i Ψ†
k(Fα)ij(Fα)klΨlΨj, (2.15)

where we have ignored dipole-dipole interactions. The Zeeman energy
operator is ÊZ = pFz + qF2

z , we also assume uniform magnetic fields. The
matrices Fα are the spin-1 Pauli matrices:

Fx =
1√
2

 0 1 0
1 0 1
0 1 0

 , Fy =
i√
2

 0 −1 0
1 0 −1
0 1 0

 , Fz =

 1 0 0
0 0 0
0 0 −1

 .

(2.16)
The trapping potential U(r) is state-independent and is assumed to not cou-
ple different hyperfine states mF. The spin-independent and spin-dependent
interaction terms c0 and c2 are given by Equation 2.13.

The final two terms in the lower line of Eq. 2.15 can then be expanded,
and we obtain the spin interaction Hamiltonian:

Hspin =
1
2

∫
dr
[
(c0 + c2)Ψ†

+Ψ†
+Ψ+Ψ+ + c0Ψ†

0Ψ†
0Ψ0Ψ0

+(c0 + c2)Ψ†
−Ψ†
−Ψ−Ψ− + 2(c0 + c2)Ψ†

+Ψ†
0Ψ0Ψ+

+2(c0 − c2)Ψ†
+Ψ†
−Ψ−Ψ+ + 2(c0 + c2)Ψ†

0Ψ†
−Ψ−Ψ0

+2c2Ψ†
−Ψ†

+Ψ0Ψ0 + 2c2Ψ†
0Ψ†

0Ψ−Ψ+

]
. (2.17)

The last two terms in Eq. 2.17 describe the spin-mixing collisions and have a
particularly simple intuitive explanation, i.e. the annihilation of an mF = 0
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pair to create a mF = ±1 pair and vice versa. The equations of motion for
the field operators are found by solving the Heisenberg equation of motion,
∂Ψ
∂t = −i

h̄ [H, Ψ]. Using the commutation relations Eq. 2.14, this evaluates to
three coupled partial differential equations:

ih̄
∂Ψ0

∂t
= (HS + EZ,0)Ψ0 + c0

(
Ψ†

+Ψ+ + Ψ†
−Ψ− + Ψ†

0Ψ0

)
Ψ0

+c2

(
Ψ†

+Ψ+ + Ψ†
−Ψ−

)
Ψ0 + c2Ψ†

0Ψ+Ψ− (2.18a)

ih̄
∂Ψ±

∂t
= (HS + EZ,±)Ψ± + c0

(
Ψ†
±Ψ± + Ψ†

∓Ψ∓ + Ψ†
0Ψ0

)
Ψ±

+c2

(
Ψ†
±Ψ± −Ψ†

∓Ψ∓ + Ψ†
0Ψ0

)
Ψ± + c2Ψ†

∓Ψ0Ψ0. (2.18b)

with HS = − h̄2

2m∇2 + U(r). The above equations encapsulate all non-dipole
physics of an F = 1 spinor BEC.

2.3.3 Mean-field theory

To construct a mean-field theory from the results of the previous Section,
we make the assumption of large atom numbers, such that quantum fluc-
tuations may be neglected. With the substitution Ψm → ψm ≡ 〈Ψm〉 into
the Hamiltonian (Eq. 2.15), we obtain the mean-field energy functional
〈HS〉+ 〈Hint〉 [23]:

〈Hint〉 =
∫

dr
1

∑
m=−1

EZnm +
c0

2
n2 +

c2

2
|〈F〉|2 , (2.19)

where the density nm = ψ†
mψm, n = ∑m nm is the total density, and the final

term
|〈F〉|2 = ψ†

i ψ†
k (Fα)ij(Fα)klψlψj (2.20)

is interpreted as a magnetisation density. The bare Hamiltonian contains the
kinetic energy terms and spin-independent potential

〈HS〉 =
∫

dr
1

∑
i=−1

ψ†
i

(
− h̄2

2m
∇2 + U(r)

)
ψi. (2.21)

The mean-field equations of motion are:

ih̄
∂ψ0

∂t
= (HS + EZ,0)ψ0 + c0 (n+ + n− + n0)ψ0

+c2 (n+ + n−)ψ0 + c2ψ†
0ψ+ψ−, (2.22a)

ih̄
∂ψ±
∂t

= (HS + EZ,±)ψ± + c0 (n± + n∓ + n0)ψ±

+c2 (n± − n∓ + n0)ψ± + c2ψ†
∓ψ0ψ0. (2.22b)

Equations 2.22 are the coupled Gross-Pitaevskii (GP) equations for a spin-1
BEC.
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2.4 Single-mode approximation

The equations of motion (Eq. 2.22) may be simplified further by making the
single mode approximation (SMA) [42]. In the SMA, each spin component is
assumed to have the same spatial wavefunction, with the spin dependence
isolated to the time-dependent relative population amplitudes. The validity
of the SMA hinges on the energetic suppression of spatial structures, or spin
domains. The spin healing length ζS, in analogy with the healing length of
the condensate wavefunction (Eq. 2.5), describes the minimum length scale
over which the spin projection of the BEC may spatially vary [24]:

ζS =

√
h̄2

2m|c2|n
. (2.23)

For typical densities of n ∼ 1014 cm−3, the spin healing length of 87Rb con-
densates is ζS ∼ 4µm, which is generally smaller than many trapped clouds;
the SMA is only strictly valid for low atomic densities. Provided that the
overall spatial extent of the cloud1 is less than ζS, spin population dynamics
are well described by SMA theory. Magnetic field gradients inherently violate
the SMA by driving spatial separation of the magnetically sensitive mF = ±1
components, an effect discussed in Chapter 5 of this thesis. For now, we will
neglect this effect and proceed with simplifying Eqs. 2.22 under the SMA.
The SMA wavefunction is written as

ψm(r, t) =
√

NΦSMA(r)e−iµt/h̄ζm(t) (2.24)

with N the total atom number and µ the chemical potential. The time
dependent spin dynamics are wholly described by spinor ζm(t). All spin
components share the same time-independent spatial wavefunction ΦSMA(r),
which satisfies [23, 81]:(

− h̄2

2m
∇2 + U(r) + c0n

)
ΦSMA(r) = µΦSMA(r). (2.25)

This is essentially Eq. 2.1, the time-independent GP equation for the case of
a single-component BEC, with c0n playing the role of the spin-independent
self-interaction term. We now substitute the SMA wavefunction Eq. 2.24 into
the GP equations Eq. 2.22. Integrating over space and using the fact that∫

dr |ΦSMA(r)|2 = 1, we obtain:

ih̄
∂ζ0

∂t
= EZ,0ζ0 + c

(
|ζ+|2 + |ζ−|2

)
ζ0 + cζ†

0ζ+ζ− (2.26)

ih̄
∂ζ±
∂t

= EZ,±ζ± + c
(
|ζ±|2 − |ζ∓|2 + |ζ0|2

)
ζ± + cζ†

∓ζ0ζ0 (2.27)

1Elongated clouds – much longer than ζS – where the tight radial Thomas-Fermi radii are
less than ζS are still well described by SMA theory for reasonably long evolution times.
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with c = c2〈n(r)〉 = c2N
∫

dr |ΦSMA(r)|4. This final relation is important
when we consider violation of the SMA, due to magnetic field gradients.
Since the spin interaction strength c is effectively an overlap integral between
the spatial wavefunctions of the three Zeeman components, when ψ±1,0(r) 6=
ΦSMA(r), the effective spin-mixing interaction strength is reduced.

2.4.1 Conservation of magnetisation

Before proceeding with further simplification of Equations 2.27, we must first
consider the conservation of the overall condensate spin. This is an important
result, as it allows spinor physics to be observed in realistic laboratory
conditions. Two of the energy scales we have considered to this point are
roughly comparable at low magnetic fields: the quadratic shift at 250 mG is
q ∼ 2π × 4.5 Hz, the spin interaction energy is |c| ∼ 2π × 4 Hz for an 87Rb
condensate with n ∼ 1014, but the linear Zeeman shift is p = 2π × 176 kHz.
For a linear Zeeman shift to be comparable to c, a magnetic field environment
of ∼ 1µG is required, which would be a singularly demanding experimental
task. However, conservation of magnetisation eliminates the linear Zeeman
shift from the process of spin-mixing collisions.

We use the terms ‘spin projection’ and ‘magnetisation’ interchangeably, as
both correspond to the expectation value of the longitudinal spin projection
operator.2 The spin of an alkali metal spinor condensate is a conserved quan-
tity as the relaxation mechanisms are extremely weak – dipolar interactions
being the primary means of such relaxation [24]. This means that a conden-
sate prepared in a superposition of Zeeman states with spin Fz ∈ {−1, 1}
will persist in that state for a long time. A spinor condensate composed of
atoms with strong dipole-dipole interactions, such as 52Cr, does not exhibit
conservation of magnetisation [55].

The early theoretical treatments of spinor ground states and dynamics
did not consider conservation of magnetisation [15, 40–42]. Conservation
of magnetisation is also essential for minimising the mean-field energy to
determine the spinor ground state [14]. The mean-field ground state of
mF = +1 for F = 1 87Rb is thus not the ground state with the requirement of
spin conservation; there is no obvious mechanism to relax to this state [25].
We will discuss this in more detail in Section 2.5.

Conservation of magnetisation has very important consequences for the
linear Zeeman shift, as described in Ref. [25]. The mean-field energy of
a spinor BEC in the presence of a uniform magnetic field is E = E0 +

2We will define this as Fz = 〈F̂z〉 throughout this thesis (particularly in the context of
spin-mixing observables), except where the context requires explicit representation as an
expectation value, such as in the following discussion.
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p
∫

dr n〈Fz〉, with E0 the energy of all other interaction terms. The linear
Zeeman energy3 is minimised by making 〈Fz〉 = +1, that is, all atoms in
mF = +1. Since magnetisation is a conserved quantity, the condensate with
an arbitrary configuration of spins cannot relax to a pure mF = +1 state,
E is minimised subject to the constraint

∫
dr n〈Fz〉 is fixed. This is done

with the insertion of a Lagrange multiplier, p0, which depends on the net
magnetisation of the condensate. The energy is then minimised subject to
this constraint: i.e. E = E0 + (p− p0)

∫
dr n〈Fz〉. For the case of 〈Fz〉 = 0,

p0 = p and so the linear Zeeman shift vanishes.
An equivalent picture to describe how conservation of magnetisation

affects spinor dynamics is to transform to a frame rotating at the Larmor
frequency. The magnetic energy of a colliding mF = ±1 atom pair is the same
as that of a colliding mF = 0 pair, up to the quadratic shift. In the presence of
a spatially varying magnetic field the magnetisation is only locally conserved,
as the linear Zeeman shift p(z) varies across the length z of the condensate
(the associated spatial variation of q is negligible).

Whilst a uniform linear Zeeman shift has no contribution to spin-mixing
collisions, the magnetic energy per atom is still dependent on the value of
p. Even a small magnetic field gradient results in a variation of p across the
extent of a condensate comparable to c and q, resulting in spin domains, as
described in the next Section.

2.5 Spinor ground states

The magnetic nature of spinor BECs is most apparent when we consider
the ground state properties. For clarity, we will cast Eq. 2.19 in a simpler
form, where we consider only the spin-dependent terms of the mean-field
interaction energy within the SMA [24]:

E =
c
2
〈F〉2 + p〈Fz〉+ q〈F2

z 〉. (2.28)

The sign of c2, and hence c, determines the nature of the mean-field
spinor ground state: for c2 > 0, the spinor that minimises Eq. 2.28 is one
with |F| = 0. Such an unmagnetised state is called antiferromagnetic if the
condensate is composed primarily of mF = ±1 states4 or polar if composed
of mF = 0 atoms. For c2 < 0, the condensate favours a magnetised state with
|F| = 1, termed a ferromagnetic state. For 87Rb, c2 < 0 and for 23Na, c2 > 0,
with the result that these two atomic species are said to have ferromagnetic
and antiferromagnetic interactions, respectively.

3Recall the definition of p in Eq. 2.10a, for positive B, p < 0.
4There is no spatial correlation of anti-aligned spins, i.e. there is no Neél order.
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Figure 2.3: Spin-domain diagrams for antiferromagnetic (c > 0) 23Na
and ferromagnetic (c < 0) 87Rb. The mean-field ground state consists
of different population distributions depending on the quadratic Zeeman
energy q and the linear Zeeman shift/magnetisation p̃, resulting in distinct
phases (discussed in body text). In the antiferromagnetic (III) and broken-
axisymmetric (V) phases, multiple Zeeman states overlap, whereas the I, II
and IV states correspond to pure occupation of mF = +1,−1 and mF = 0,
respectively; dashed or solid lines correspond to smooth or sudden changes
of population distributions [14]. Figure is the author’s work, based on
examples in Refs. [14, 23].

Consideration of magnetic fields, including conservation of magnetisation
discussed previously, leads to a rather more detailed phase diagram. Some of
the first high-profile experiments with spinor BECs concerned the elucidation
of the ground state phase diagram [14, 82]. Figure 2.3 illustrates the different
magnetic phases of antiferromagnetic (left) and ferromagnetic (right) spin-1
BECs. The full derivation of such a figure may be found in the original
work [14] or in the most recent reviews [23, 24]. The mean-field ground
state for a given value of c, q and p̃ = p0 − p can be deduced from such
spin-domain diagrams. The p̃-axis is effectively the variation of the linear
Zeeman shift from the Larmor frequency: a BEC at a magnetic bias field B0

with 〈Fz〉 = 0 occupies a single point, p̃ = 0, q = q(B0). A magnetic field
gradient samples a range of linear Zeeman shifts, it is represented on Figure
2.3 as a line. If the overall condensate spin is zero, this line is symmetric
about p̃ = 0, for positive magnetisations it is shifted to p̃ > 0 and for 〈Fz〉 < 0
to p̃ < 0.

The boundaries separating different phases correspond to sharp (solid)
or gradual (dashed) changes of population across the boundary (a domain
wall). The important role of magnetic field gradients is immediately apparent:
gradients result in spatial structure in a spinor BEC.
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Five magnetic phases [14] are represented in Fig 2.3:

• I, II Ferromagnetic: Longitudinally magnetised states |mF = ±1〉 re-
spectively.

• III Antiferromagnetic: Spatially overlapping superposition of | ± 1〉
states.

• IV Polar: longitudinally polar state, purely |mF = 0〉.

• V Broken-axisymmetric (BA) phase: superposition of overlapping
magnetically-polarised and polar states predominantly consisting of
mF = 0. The overall condensate spin is tilted away slightly from
quantisation axis, hence the name.

Experimental investigations of quantum phase transitions can be well
understood using the map provided by Figure 2.3. One notable example is the
study of the polar-antiferromagnetic transition in 23Na by the Raman group
at Georgia Tech [17,65]. In their experiments, an off-resonant microwave field
induced a detuning-dependent quadratic Zeeman shift that could be swept
from positive to negative, the phase transition from polar to antiferromagnetic
was studied in terms of spatial structure and population instabilities.

Studies of spinor ground states are linked to studies of relaxation and
equilibrium behaviour. Early experiments looked at metastable spin struc-
tures and populations [82] over long evolution times of several seconds, and
more recently with thermal components [66]. The precise mechanism for
such equilibration is not apparent. We will discuss this in more detail later
when discussing spin population dynamics in Chapter 5.

2.6 Spin-mixing oscillations

As well as long-timescale equilibration physics, there are many interesting
dynamical features of spinor condensates that happen on timescales on the
order of 10 ms to greater than 1 s. As mentioned previously, coherent spin-
changing collisions result in population interconversion amongst Zeeman
sublevels. The process can be represented by

|mF = +1〉+ |mF = −1〉
 |mF = 0〉+ |mF = 0〉. (2.29)

We can utilise conservation of magnetisation to simplify Equations (2.22)
and derive the equations of motion that describe spin-mixing collisions. We
define the time-dependent fractional populations ρm(t) = |ζm|2 with ζm(t) in
Eq. 2.24, which satisfy ∑m ρm = 1; the population fractions can equivalently
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be represented by Nm/N, the fractional atom numbers in each spin state. We
then make the transformation to the rotating frame [46, 76]:

ζ±1 → ζ±1e−i(EZ,0±p)t/h̄; ζ0 → ζ0e−iEZ,0t/h̄, (2.30)

and take ζm(t) =
√

ρm(t)e−iθm(t), with θm(t) the phase of each spin compo-
nent. The single-mode dynamics of a spin-1 BEC can then be described by
only two variables: ρ0, the fractional population in the mF = 0 state and
θ = θ+ + θ− − 2θ0, the relative phase:

ρ̇0 =
2c
h̄

ρ0

√
(1− ρ0)2 −m2 sin θ, (2.31a)

θ̇ = −2q +
2c(1− 2ρ0)

h̄
+

2c
h̄

(
(1− ρ0)(1− 2ρ0)−m2√

(1− ρ0)2 −m2

)
cos θ, (2.31b)

with m = 〈Fz〉 = ρ+ − ρ− the magnetisation. Equations (2.31) can also be
derived from the classical energy functional [46]:

E = (1− ρ0)q + cρ0

(
(1− ρ0) +

√
(1− ρ0)2 −m2 cos θ

)
, (2.32)

with

ρ̇0 = −2
h̄

∂E
∂θ

, θ̇ =
2
h̄

∂E
∂ρ0

. (2.33)

Equation 2.32 is the energy of a classical non-rigid pendulum, with the
dynamical variables (ρ0, θ) in place of the length and rotational phase of the
pendulum. The equal energy contours of Eq. 2.32 are plotted in Figure 2.4
for two different magnetic fields in terms of ρ0 and θ. Overlaid with the
energy landscape are solutions of Equations 2.31 for a state initialised with
m = 0 and ρ0(t = 0) = 0.5. These are the spin-mixing oscillations, as shown
in Figure 2.5. The two particular solutions in Figure 2.4 are differentiated
from each other by the phase behaviour: for low fields, the phase oscillates
in time (closed contours) whereas at higher fields, the term linear in q in Eq.
2.31b dominates and the phase increases with time. These two distinct reg
ions – oscillating phase and running phase – are visible in the plot on the left.
The boundary known as the separatrix defines the crossover point, a contour
in the phase space with E(ρ0, θ) = 0 for a given quadratic shift. For some
configuration of ρ0 and θ, the system will evolve along the separatrix at a
quadratic shift q(Bsep), which for 87Rb, with c < 0, is given by [46]

q(Bsep) = |c|ρ0 (1 + cos θ) . (2.34)

At the separatrix, the period of the spin-mixing oscillations is longest, and
the specific behaviour for different magnetisations differs between ferro- and
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Figure 2.4: Equal energy contours of the classical spinor energy E in terms
of the conjugate variables ρ0 and θ for two different magnetic bias fields
(different quadratic shifts), with m = 0 and c = −2π × 5 Hz. The dashed
red lines are parametric plots of solutions to the Eq. 2.31, which correspond
to spin-mixing oscillations, and the white line on the left plot the separatrix.
The example on the left corresponds to an oscillating phase solution, with
B < Bsep, whereas a running phase solution is shown on the right. The
separatrix can be seen to divide the phase space between oscillating and
running phase solutions. Note the different energy scales used.

antiferromagnetic atomic species [46]. Returning to the nonlinear pendulum
analogy, the oscillating and running phase regimes as well as the separatrix
can be given a satisfying physical interpretation. Oscillating phase solutions
correspond to familiar libration modes of the pendulum, and running phase
solutions to that of rotation around the pivot. The separatrix corresponds to
the pendulum perfectly inverted, neither librating nor rotating.

The interplay between the quadratic Zeeman shift and the spin interaction
strength determine the period and amplitude of spin-mixing oscillations. The
period of population oscillations is not as easily shown as the amplitude
in the phase space trajectories of Figure 2.4, in general the period varies
considerably with each trajectory. Figure 2.5 shows population oscillations in
the time domain for 87Rb, initialised with m = 0 and ρ0 = 0.5 for different
magnetic bias fields.

Single-mode spinor dynamics are a fascinating manifestation of the spin
collisional interaction in BECs. Observing the amplitude and period of spin-
mixing oscillations informs the magnitude and sign of c, providing a useful
means of characterising the magnetic nature of a spinor BEC. In particular,
when the aim of an experiment is to change c (by tuning the scattering lengths,
for example), the observation of the resulting spin-mixing oscillations allows
the imparted change to c to be measured directly.

Spin-mixing dynamics are intrinsically compelling, a manifestation of
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Figure 2.5: Spin-mixing oscillations. The amplitude and period of spin-
mixing oscillations is determined by the value of the quadratic Zeeman shift
q = 2π B2 × 72 Hz/G2 and the spin-mixing interaction, which in this case is
c = −2π × 5 Hz.

coherent, reversible atomic collisions in a many body ensemble. The analogue
dynamics of spin-mixing collisions and oscillations of a non-rigid pendulum
have been explored in a recent work, where a condensate prepared in the
unstable equilibrium state (on the separatrix) is subject to quantum fluctua-
tions that drive evolution [83]. Application of periodic microwave pulses that
modulate q can also be used to prevent fluctuations driving spin population
evolution, dynamically stabilising the pendulum [84]. Spin-mixing oscilla-
tions are also not limited to condensed clouds, as recent experiments have
discovered for both 23Na and 87Rb [85, 86].

While conservation of magnetisation results in reasonable experimental
requirements for magnetic fields (for B = 500 mG, q ∼ c), single-mode spin-
mixing oscillations are difficult to observe in the presence of magnetic field
gradients: spatial dynamics are incompatible with the SMA, and generally
lead to loss of collisional coherence; this can be readily observed in damping
of the population oscillations [18]. Magnetic field gradients are often present
in labs, originating from magnetic sources such as ion pumps or magnetic
vacuum hardware. Whilst the exact phenomenology exhibited in the presence
of an inhomogeneous magnetic field depends on factors such as the size
and density of the condensate, one can readily estimate the magnitude of
gradients that affect spinor condensates from simple energy considerations,
and show that small gradients create energy shifts on the order of c and q.
Consider a condensate with a spatial extent of 10µm, with |c| = 2π× 4 Hz in
a magnetic field gradient B′ = 10 mG/cm. This gradient imposes a 2π× 7 Hz
frequency shift across the condensate, almost double c. Gradients of this
strength are common in laboratories, and must be cancelled or circumvented
in order to observe long-timescale spinor physics. In Chapter 5, we focus
on the experimental observations of coherent spin-mixing, in the presence
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of these stray magnetic field gradients. In that Chapter, the motivations
behind studying spin-mixing oscillations are also discussed, as well as the
implications of the experimental results.

2.7 Chapter summary

In this Chapter, we have described how atomic collisions give rise to the
myriad rich physics of spinor condensates, such as magnetic ground states
and coherent spin-mixing oscillations. The latter is studied experimentally
in Chapter 5. The results discussed herein describe the essential theory
necessary to understand single-mode spin-mixing oscillations.
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The first Bose-Einstein condensates of dilute gases were produced in 1995

[1–3]. It is a testament to the complexity of the experimental techniques that
it took 70 years before theoretical predictions made by Bose and Einstein
could be realised in the lab. A completely new device (the laser) and an entire
field of physics (laser cooling) had to be invented along the way. Making a
BEC was worthy of a Nobel prize in 1995, whereas today there are about 50
active groups worldwide who routinely make BECs of 12 different atomic
species.

Lasers have become cheaper and more powerful, the complicated optics
and electronics to stabilise and control them have been engineered into self
contained off-the-shelf systems and ultracold atoms have become common-
place in atomic physics laboratories. The first ever commercial BEC machine
was released in 2013 by ColdQuanta Inc., a company born from the JILA
group that made the first BECs. Although still in their infancy, it may be
not long before commercial BEC machines are being used in undergraduate
teaching laboratories.

The drive to make better BEC machines has largely been influenced by
prospective applications, such as metrology and quantum simulation. The
future of ultracold science lies in what BECs do, and this requires exception-
ally well characterised, robust experimental apparatus that mass produce
ultracold atoms in the same way that lasers produce coherent light.

After a little more than twenty years since making the first BEC of 87Rb,
the procedure may be well-known and highly optimised for the alkali metal
atoms, with only a few major variations, but it is still technically challenging.
Just as every atom ’marches in lockstep’ in a BEC [87], so must every laser,
current driver, shutter, camera, radiofrequency antenna and acousto-optic
modulator in a BEC experiment. The laboratory environment must be temper-
ature and humidity controlled to combat the nemesis of drift; stray magnetic
fields must be actively cancelled or screened; atomic beam sources must
be monitored and interlocked to prevent their catastrophic self-annihilation

29
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and the entire vacuum system must be kept at a pressure less than that at
the surface of the moon. Only a few of these requirements have become
simplified over time.

3.1 Getting to BEC

Bose-Einstein condensation in alkali gases is a mature field. The in-depth
theoretical formulation of BEC can be found in any of the notable reviews on
the subject [73, 74]. Here I provide a brief summary, sufficient to understand
and motivate the experimental requirements.

A BEC is an ensemble of bosonic atoms that have all condensed into a
single-particle quantum state. This macroscopic occupation takes place under
specific conditions for dilute gases of atoms: it is restricted to certain atomic
species and environmental parameters; the most important of which is low
temperature, a direct consequence of the low-density atomic samples used. It
is generally regarded that BECs are the coldest known objects in the universe,
with temperatures of only 100 nK or less.

Low temperature is the essential requirement for making a BEC out of
an alkali gas. Consider an ensemble of bosonic atoms with mass m and
temperature T. The thermal de Broglie wavelength of each atom is given by [88]:

λdB =

√
2πh̄2

mkBT
, (3.1)

which increases with decreasing temperature. When λdB becomes comparable
to the interatomic separation, the individual atomic wavepackets begin to
overlap. For a critical temperature Tc, the atoms begin to condense into the
lowest available energy level, which depends on the confining potential.

For gas of N atoms, Tc is such that the phase-space density (PSD), nλ3
dB = 2.61,

where n is the peak number density. The fraction of condensed atoms N0/N
near the critical temperature for a 3d harmonic potential is well-approximated
by [74]

N0

N
= 1−

(
T
Tc

)3

. (3.2)

The PSD of a thermal atomic vapour of 87Rb, our starting point, is about
10−21 for a temperature of 80◦C. To get to BEC we thus need to increase
the PSD by over 20 orders of magnitude. A BEC can only exist when it
is thermally isolated from the ambient environment: for this reason, it is
suspended by electromagnetic forces in an ultra-high vacuum vessel.

The remainder of this Chapter is devoted to the experimental methods
used to manufacture BECs of 87Rb. In Chapter 4 we consider the primary
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tool we use to prepare and manipulate spinor BECs: radiofrequency state
manipulation.

3.2 Overview

What we now call the spinor BEC machine was a pair of empty optics tables
in Room g07a, Building 27, when I first started in the group in Summer 2009.
Over the course of four undergraduate projects, three honours projects and
the best part of three PhD projects it came into being. It is now a reliable,
well understood conglomeration of equipment that can produce over 2800

BECs a day, with a ’service delivery rate’ in excess of 90%. Like any other
accumulation of occasionally somewhat reluctant equipment it has its days,
where it reminds us with every failed experiment run “I’m doing exactly
what you told me to do!”.

In this Chapter I compile the construction and optimisation of the appa-
ratus. The process was inherently a team effort, with various components or
processes the focus of one or more lab members. That said, everyone had
at least some input into the development of most aspects of the machine,
whether from design, development and construction up to using, optimising
and of course, debugging.

The most natural way to introduce all the components of the apparatus is
to summarise what actually happens with each experimental run. In each 25 s
iteration (or ‘shot’) of the experiment, a BEC of several hundred thousand
87Rb atoms is created by reducing the temperature of a thermal atomic beam
to the point it can be trapped, and then performing a series of cooling stages
on the trapped gas until the BEC transition is reached. At the conclusion of
this process, the temperature has been reduced by nine orders of magnitude
and the phase-space density increased by over 20 orders of magnitude. The
atom number is reduced similarly; of the 1015 atoms that leave the oven
during the loading cycle, we trap only ∼ 109 and from that condense only
105.

Here I briefly summarise the function of each component and design work
I and the rest of the group participated in. Each of stage of the experiment is
discussed in more detail later in this Chapter.

Oven

The oven is the atomic source. It forms an atomic beam by heating a 5 g sam-
ple of rubidium metal to 80◦C and collimating the resultant atomic vapour
through a thin tube heated to 120◦C. The atomic beam then passes through
an aperture in a copper cup kept at −30◦C that catches the off-axis atomic
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emission from the tube. An in-vacuum shutter allows the atomic beam to be
gated, and a pneumatically actuated gate valve forms an isolating vacuum
seal between the oven vacuum and downstream UHV system. The oven is
controlled by a microcontroller system that ensures stable temperatures and
robustness to component failures.

I was particularly involved in the development of the oven, and it consti-
tuted my undergraduate Summer (2009) and Honours (2010) projects [89, 90].
Development and testing of the microcontroller and associated electronics
were carried out in conjunction with M. Jasperse, and are discussed further
in Section 3.3.

Zeeman slower

The atomic beam is at a temperature of 353 K, corresponding to an average
atomic velocity of > 300 m/s. The atomic beam is used to load the magneto-
optical trap (MOT), which has a capture velocity of ∼ 30 m/s for typical
MOT parameters1. It is therefore necessary to slow the atoms down, which
is accomplished using the Zeeman slower. Our Zeeman slower is a length
of vacuum tubing, surrounded by a variable pitch solenoid [37, 91]. A red
detuned laser propagates against the atomic beam. Atoms in the beam
absorb photons and experience a momentum kick opposite to the direction
of motion, and after many scattering events the atoms experience an overall
deceleration and slow down. The changing velocity results in a decreasing
Doppler shift of the oncoming photons. The varying pitch solenoid produces
a magnetic field that adds a compensating Zeeman shift that varies along the
length of the slower to keep atoms resonant with the slowing laser.

The design and construction of the Zeeman slower was the third-year
undergraduate project of fellow PhD student L. Bennie [92]. Installing it on
the apparatus and getting it operational was a whole-group effort. More
details about the specifics of the Zeeman slower are given in Section 3.3.3.

MOT

The MOT is the first trapping stage of the experiment. It is formed from three
orthogonal pairs of counter-propagating beams and a magnetic quadrupole
field. The laser beams alone do not form a trap, as there is no centre-
directed restoring force associated with the optical potential. This ‘optical
molasses’ results in a velocity-dependent damping force. The addition of the
quadrupole field results in a spatially varying Zeeman shift and so atoms

1The capture velocity can be deduced from simple kinematic arguments to be vc ≈√
2Fscd/m the maximum atomic speed that can be brought to rest across the spatial extent

(diameter d) of the MOT beam, assuming Fsc = h̄kΓ/2.
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in a MOT feel a net laser cooling force that results in preferential scattering
towards the quadrupole zero.

The MOT was a whole group effort. The design, purchasing and manu-
facturing of vacuum components and supports was conducted by all group
members. Assembly and vacuum bakeout was conducted in parallel with
Helmerson group’s efforts on their own apparatus, and mutual exchange
of ideas and effort was of great importance. The optics layout and design
was completed by L. Bennie, while the associated laser design, locking and
assembly was conducted by all group members. The magnetic quadrupole
and bias coil assembly (and current driver) was designed by R. P. Anderson
with assistance from A. Benci.

Magnetic trap and evaporative cooling

The MOT cannot be used to cool 87Rb atoms to quantum degeneracy. The
Doppler limit of 290µK is the minimum attainable temperature in a MOT,
and so we transfer to a purely magnetic trap (MT). Before loading the
MT, the 15 G/cm quadrupole gradient is relaxed and polarisation gradient
cooling takes place, resulting in an ’optical molasses’ with temperature of
between 10-30µK. The increase in density and reduction in temperature this
process confers vastly improves the MT load efficiency. The molasses stage
additionally optically depumps atoms into the F = 1 state, from which we
‘catch’ 109 atoms in the |F = 1, m + F = −1〉 state.

Unlike the MOT, there is no active dissipative cooling process at work in
a magnetic trap (there is in fact a heating process). In order to cool the atoms
further, we perform evaporative cooling by effectively reducing the trap depth.
To accomplish this, a radiofrequency (rf) magnetic field with a frequency
corresponding to the Zeeman splitting at a given magnetic equipotential is
applied. The Zeeman shift is highest at the greatest spatial extent of the cloud,
and so at the edge of the cloud, warm atoms are transferred to anti-trapped
states and lost. Reducing the frequency of the rf field continuously removes
the warmest atoms, the atoms rethermalise via collisions, reducing the overall
temperature.

In a pure quadrupole trap non-adiabatic spin flips at the quadrupole
zero lose atoms from the trap and increase temperature. A red detuned
far off resonant laser beam positioned near the quadrupole zero forms a
hybrid optical dipole-magnetic quadrupole trap [37]. The spin-flip losses are
suppressed and the loading into the purely dipole trap is enhanced.

There is minimal technical overhead in adapting the apparatus used in the
MOT stage for the MT setup. The coil drivers for the MOT coils designed by
R. P. Anderson were capable of fast switching of high currents, and a simple
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high power rf amplifier and coil is sufficient to attain high Rabi frequencies
for optimum evaporative cooling.

Optical dipole trap

The final trap is a purely optical potential, which is essential for making
spinor condensates. As discussed in Chapter 2, large magnetic fields and
gradients present in the magnetic trap would strongly suppress spinor colli-
sions, but more importantly a magnetic trap can only trap a single Zeeman
state in the F = 1 hyperfine level.

The scalar AC Stark shift is independent of spin state2, and so a high
power, far off resonant red-detuned laser beam can be used to trap atoms at
an intensity maximum, such as a focused waist or the intersection between
two beams. The crossed-beam optical dipole trap we use is switched on
during the magnetic trapping stage to suppress spin flip losses, forming
the hybrid trap. The quadrupole gradient is then relaxed to zero after rf
evaporative cooling, resulting in a purely optical trap. Like the magnetic trap,
we perform evaporative cooling in the dipole trap by reducing the trap depth,
which is accomplished by simply reducing the laser power. The power in our
crossed beam trap is reduced from 4 W in each beam to about 500 mW in each
beam over 5 s after which we are left with a pure Bose-Einstein condensate
of typically 3× 105 atoms.

The design, construction, characterisation and optimisation of the dipole
trap was principally my responsibility. This included design of the optical
layout, selection and purchase of suitable optics and the fibre laser as well as
testing and optimisation.

3.3 Oven

We now discuss the operation and theory of each stage of the apparatus
in more detail. The following in-depth discussions of each stage of the
apparatus additionally provide a benchmark for future generations of lab
users. There is therefore particular attention drawn to technical details; more
theoretically inclined readers may wish to peruse the following Sections,
examine the figures and otherwise proceed unhindered by the realisation
that very rarely things go to plan in experimental physics.

The atom beam source, which of the experimental stages mentioned
earlier in Section 3.2 comprises the oven and Zeeman slower, was a focus
area of my PhD. I was responsible for the design and construction of the

2For linearly polarised light, this is true, but elliptically polarised trapping light results in
a slight spin-dependence to the trapping potential, the vector light shift.
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Collimation tube (120  C) 0

Cold Cup (-30  C) 0

Copper Feedthrough

Peltier Coolers

Shutter

Figure 3.1: Schematic of the oven and associated vacuum system. Molten
rubidium in the bellows is collimated into an atomic beam inside the
6 mm diameter, 250 mm long collimation tube. Off-axis emission from the
tube is collected by the copper cold cup (−30◦C). A differential pumping
tube isolates the oven from the remainder of the apparatus, and a shutter
allows the beam to be blocked when loading of the MOT is complete. A
pneumatic gate valve (not shown) isolates the oven from the remainder of
the apparatus. The ion pump is connected to the rear of the main chamber.
Figure reproduced from Ref. [90].

oven, which is detailed in my Honours thesis [90]. The atomic beam became
fully operational in the first year of my PhD.

3.3.1 Theory

The purpose of the atomic beam is simple: to load the MOT with as many
atoms as possible in a short time. A high-flux source of atoms is combined
with a cooling mechanism to achieve this; our experiment uses an effusive
oven combined with a Zeeman slower. The oven contains a 5 g ampoule
of rubidium atoms, of which 27.8% (natural isotopic abundance) are 87Rb.
It is contained within an ultra-high vacuum (UHV) chamber at a pressure
of 1× 10−9 torr, maintained by a large ion pump. Figure 3.1 schematically
shows the oven.

Rubidium melts at 39◦C; heating the sample of metal to 80◦C creates
a vapour pressure of 2× 10−4 torr in the reservoir section (the ‘bellows’).
The atomic beam is formed by channelling the vapour through a 6 mm
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diameter, 250 mm long collimation tube. A common problem with alkali
metal sources is lifetime – high flux sources typically expend the metal source
very quickly without some form of recirculation mechanism, which adds
additional complexity [93, 94]. In the molecular flow regime, the mean free
path of the atoms at UHV pressure is larger than the dimensions of the
apparatus: atomic trajectories follow straight lines. The collimation tube
effectively limits the bulk of the output atomic flux to usable atomic beam [78],
with atoms striking the walls of the tube returning to the reservoir or exiting
the tube off-axis.

The off-axis atomic emission from the collimation tube presents a problem.
The lifetime of trapped ultracold atoms is highly dependent on losses due to
one-body inelastic collisions from background atoms, the overall motivation
for achieving ultra-high vacuum. In addition to background losses, alkali
metal vapour is detrimental to the operation of ion pumps. If an ion pump
is exposed to rubidium vapour for an extended period, a process referred
to as ‘alkali poisoning’ deteriorates the pump cathode. Off-axis atomic
emission in our oven is prevented from entering the ion pumps by a copper
baffle, the ‘cold cup’, which is kept sufficiently cold that the rubidium atoms
that strike it stick. The cold cup is connected to a thick copper vacuum
feedthrough, which is cooled by two two-stage thermoelectric coolers (TECs,
Melcor ms2-11). The TECs are housed in an airtight vessel mounted to the
exterior of the vacuum system, which is pumped down to ∼ 1 torr. The
vessel completely eliminates condensation of water vapour onto the TECs,
improving system reliability. Feedthroughs to the vessel supply the electrical
power and recirculated cooling water for the TECs. Ensuring the cold cup
remains at temperature and does not overheat in a cooling failure is the
primary motivation for the control and interlock system discussed in Section
3.3.2.

3.3.2 Interlocking and Control

Of all the elements in the apparatus, the oven is capable of the most severe
failures that would result in extensive downtime. The most pressing failure
mode is loss of the cooling water supply to the TECs. If there is no cooling
water to remove the heat pumped by the TECs they will simply dissipate
the 140 W of electrical power into the cold cup, which will subsequently
heat up, re-emitting all of the rubidium metal that has accumulated on its
surface. Such a failure event will likely destroy the ion pump in a few hours,
and would require disassembly, removal of the contaminating rubidium,
replacement of the ion pump, reassembly and re-baking. An approximate
down time of several months would be a conservative estimate.
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As well as an interlock, there are several other aspects of the oven that
demand automation and control. The temperature stability of the reservoir
and collimation tube are good examples, as they determine atomic flux; a
variable, drifting MOT load rate is highly undesirable. The malfunction of a
simple heater may also result in premature expenditure of the metal sample.

Motivated by these concerns, we implemented a robust interlock and
control system using a Galil rio-47100 programmable logic controller (PLC).
Sensors for temperature, water flow and vacuum pressure are interfaced with
the PLC’s eight analog inputs, and the digital outputs of the PLC are used to
control relays that actuate the gate valve or deactivate the TEC power supply.
A digital state-machine was implemented by Martijn Jasperse using the PLC.
I will summarise here only several salient features of the system, which is
shown in Figure 3.2.

• Interlock. In response to a failure of cooling water, which is detected
using a flowmeter in the return line, the PLC responds by entering a
fail-safe state: the TEC power supply is turned off, the oven heaters are
deactivated and the gate valve shuts (if open). This mode is entered
regardless of the previous state of the controller, resulting in a well-
defined response to failures if the system is either running or idle.

• Control. The oven heaters are each connected to programmable power
supplies (Manson hcs-3042) that are driven by two analog output
channels from the PLC. The temperatures of the bellows and collimation
tube are each measured by a thermistor, which is part of a proportional-
integral-derivative (PID) control loop. This confers the benefits of rapid
heat-up and stable atomic flux.

• Logging: the PLC is interfaced with the network, and can output the
values of critical sensors (such as the temperature of the cold cup or
the oven) for long term monitoring and remote diagnosis.

More details can be found in the PhD thesis of Martijn Jasperse [95]. The
oven interlock, as well as similar interlocking setups for the water cooling of
the Zeeman slower and quadrupole coils are indispensable elements of the
apparatus, and have saved us from many a catastrophe.

3.3.3 Zeeman slower

The Zeeman slower is a zero-crossing design [37, 91], with the axial magnetic
field changing direction along the length of the slower. This allows the use
of more modest magnetic field strengths, and thus currents. Two varying
pitch coils surround the vacuum tubing of the Zeeman slower, as shown in
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Figure 3.2: The oven control and interlock state machine. A) The oper-
ational states of the machine, with transitions between states determined
by user input (pressing control buttons, green and blue), loops converging
on setpoints (purple) or errors (red). B) Typical sequence of operations
for failsaifing the experiment, where monitor inputs are checked before
execution of stages. Harsh errors deactivate the TECs, close the gate valve
and require manual intervention, whereas soft errors return the experiment
to a ‘cold’ state with the TECs operational. Image from Martijn Jasperse’s
PhD thesis [95], where further details can be found.
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Figure 3.3. The first coil carries a current of 95 A and the second 46 A. Both
coils are hollow, and allow recirculated cooling water to be pumped through
to prevent overheating. Two lasers propagate counter to the atomic beam in
the slower; a 13 mW circularly polarised cooling beam detuned −162 MHz
from the F = 2 → F′ = 3 transition and an overlapping 22 mW repump
beam, detuned −183 MHz from the F = 1 → F′ = 1 transition. We will
discuss the optimisation of the Zeeman slower in more detail in Section 3.8.1.

3.4 Ultra high vacuum system and bakeout

It is natural to delineate at some point the technical exploits of construction
from the more interesting (though no less challenging) process of working
with atoms and lasers. In this Section we discuss the final, gruelling, and
most demanding aspect of vacuum system construction: bakeout.

All UHV apparatus regardless of supplier, cleanliness or cost, must be
baked to attain ultra high vacuum. When assembled and pumped down, the
lowest attainable pressure is unremarkable, typically between 10−6 and 10−9

torr, even with high capacity pumps operating. This is because outgassing
from the steel, glass or copper surfaces in the system vastly outpaces the
pumping speed. Water vapour is the primary contributor, although gases
like hydrogen become important at lower pressures once the water is elim-
inated. This outgassing can be accelerated, and the resident contaminants
thus depleted, by increasing the temperature of the outgassing components.
A ‘vacuum oven’ is a machine built specifically for the task, and allows
individual components to be heated to ∼ 300◦C under low vacuum. It is
however demanding, or rather impossible, to assemble the system under
vacuum or to put the entire ∼ 1.5 m apparatus in a vacuum oven. As soon
as the baked components are exposed to atmosphere a microlayer of water
forms and must be baked again when fully assembled.

Bakeout of the assembled system is rather hazardous. The whole vacuum
system must be heated to 200-300◦C with minimal temperature gradients,
particularly across sensitive areas like the glass-to-metal seal of the quartz
science cell. Once heated, it must be kept in this precarious state for 2 weeks.
The heat-up and cool-down phases are of particular difficulty. Such was the
story of our bakeout.

Figure 3.3 shows the constituent vacuum components. Two turbomolecu-
lar pumps (Pfeiffer tmu-064, backed by a Varian Triscroll roughing pump),
one on either end of the system were used to pump from atmospheric pres-
sure to ∼ 10−6 torr. Below this pressure the three ion pumps were active: a
Perkin-Elmer d-i 50 L/s on the oven, a smaller 10 L/s Perkin-Elmer pump
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Figure 3.3: Profile of the apparatus following assembly (late 2010). Vacuum
pumps are shown outlined in blue – including the blocked-off flanges where
the turbo pumps were connected for pumpdown and bakeout. During
bakeout, the MOT assembly was absent whereas the Zeeman slower coils
(outlined in magenta) could not be removed. Absent from this image are the
dipole trapping optics, imaging setup and cameras which would otherwise
obscure the view of the science cell.

in the Zeeman slower and a 75 L/s Gamma pump. During bakeout, all
pumps were operational, whereas the turbo pumps are isolated by conflat
angle valves and removed during normal operation. A titanium sublimation
pump (TSP) is used after bakeout to reach pressures < 10−11 torr. Pressure is
monitored with a UHV-grade ion gauge at the oven and UHV ends, and a
residual gas analyser (RGA) provides a readout of the constituent elemental
partial pressures in the vacuum system down to ∼ 10−12 torr.

3.4.1 Procedure

Our cleaning and bakeout preparation loosely followed that described in
Refs. [96, 97]. To begin with, all vacuum parts were cleaned using solvents
– acetone for bulky items, methanol for glassware – before pre-baking in a
small vacuum oven. Small parts were treated in an ultrasonic bath of acetone
or methanol. It was often necessary to use detergents on parts that had come
from the mechanical workshop, or in several cases, fresh from the suppliers.
The Pyrex rubidium ampoule was treated with a similar cleaning process,3

albeit with a mild pre-bake in the vacuum oven.
The entire system was then assembled over the course of several weeks.

The oven was actually assembled earlier than the rest of the apparatus due
to delays with the arrival of the quartz science cell.4 Pre-assembly and
testing of the oven was done until the cell arrived. I will only discriminate

3A safety precautions sticker on the ampoule proved difficult to remove. A citrus-based
cleaner was used to lift it prior to solvent treatment.

4Complications associated with ‘disconnection’ of the glass-metal seals, we were informed.
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between the two bakeouts where necessary, as the procedures for each
were essentially identical. The only major difference between the two bakes
was the temperature reached. The oven contains numerous complicated
vacuum components, such as valves, shutters, feedthroughs and the rubidium
ampoule which limited the bakeout to 180◦C.

After assembly and initial pumpdown, resistive heater tapes (AC, 0-250 V)
were wrapped around the steel components and covered in aluminium foil
to distribute the heat. Figure 3.4 shows the vacuum system being prepared
for a bake. Glassware would be thermally stressed if in direct contact with
the heater tape or aluminium foil, so foil cages incorporating tape were
assembled around windows. Thermocouples were connected to monitor
temperature of each section of the system. The Zeeman slower coils could
not be removed for baking, and so a heater tape was wound around the
vacuum tubing inside, with water flowing in the coils to prevent the adhesive
tape holding the coil forms together from melting. A current of ∼ 20 A was
maintained in the TSP filaments during the bakeout.

The glass science cell is the most challenging aspect of the bake. An
oven was built around the ‘locus of anxiety’ from fire bricks and thermally
insulating fibreglass (shown in Figure 3.4). A single heater element was
placed inside the oven, with several heater tape assemblies on each glass-
metal seal to minimise the temperature gradient to < 10◦C. Another concern
was the temperature of the optics table – the bonding adhesive inside the
table limited surface temperatures to ∼ 70◦C. This required some degree
of thermal isolation of the baking apparatus from the table, although heat
loss from the exposed aluminium support mounts was sufficient to maintain
a safe temperature. This effect would become critically important to the
structural integrity of the system during cool-down phases.

Each heater tape and the heater element was connected to a 0-250 V
variable transformer (Variac). The voltage was gradually increased to ensure
the temperature would increase by more than 20◦C/hour. The temperature
of the bakeout was limited to 300◦C by the glass-to-metal seal on the cell,
and we aimed for higher temperatures in other parts of the system, primarily
to accelerate the outgassing rate of hydrogen from large metal surfaces.
The RGA allowed us to determine the presence of leaks, contaminants and
additionally analyse the efficacy of the bake on certain partial pressures. We
also monitored total pressure with an ion gauge, which was the sole source
of pressure information above 100◦C, where the RGA could no longer be
operated.

The first bake proceeded well initially, reaching an average temperature
of 300◦C. Upon cooldown however, a massive leak opened up in the 4.5"
chamber underneath the titanium sublimation pump (Figure 3.3) while the
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Figure 3.4: Bakeout of the UHV system. Left: Heater tapes wrapped
around the aluminium foil-coated vacuum system in preparation for a bake.
Right: The glass cell inside the fire brick baking oven prior to the roof being
put on.

system was at 150◦C. This leak was sufficiently large to limit the system
pressure to a few torr under roughing vacuum, which allowed the leak to
be detected by spraying methanol on the system joins.5 The cause of the
leak was suspected to be an excessive temperature rate-of-change at the time
but we now suspect that unequal thermal expansion of the vacuum system
support structures, which tightly constrained the system, may have led to
shearing forces between the vacuum joins which opened under the strain.

Leaks opened up during subsequent bakes, possibly due to the copper
gaskets having suffered damage upon sudden exposure to oxygen at high
temperature during first leak. With each leak, we had to cool down the
system (usually over the course of a day or two if the leaks opened at high
temperature), analyse the RGA spectrum to confirm the presence of a leak
(a 4:1 N2:O2 ratio was the first sign), unwrap the layers of heater tape and
aluminium foil covering the system and finally locate the leak by using
the RGA to detect helium gas sprayed over suspect joins. From here we
could either attempt an in-situ repair, or in most cases undergo a full re-
pressurisation and replacement of the offending part. After four such aborted
bakes, removal of an all-metal gate valve and close-coupler from the system,

5The leak could be detected by the ‘slurping’ sound it made when solvent was applied.
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Figure 3.5: Combined loss rate curves for BECs in the crossed dipole
trap; different coloured curves correspond to different initial atom numbers.
Accounting for density-dependent losses due to three-body recombination,
the vacuum limited lifetime due to one-body collisions is 39± 7 s. Figure
courtesy M. Jasperse [95]

and the replacement of a damaged turbo pump, we achieved a post-bake
pressure of 10−10 torr. The final, successful bake was undertaken with only
minimal support structures, suggesting the cause of the leaks was likely
due to over-constraining the system during bakeout. We fired the titanium
sublimation pump filaments and achieved a pressure of 3× 10−11 torr, as
measured by an ion gauge in the UHV system. This pressure gradually
fell, and when the ion gauge and RGA were disconnected it had reached
1-2× 10−11 torr. From RGA readings, only residual amounts of hydrogen
remained with water being well into the noise floor of the device. The
presence of methane, comparable to hydrogen partial pressures, was observed
– methane is actually outgassed from TSP filaments and is not readily pumped
[98, 99].

The most definitive metric for successful vacuum preparation is not
necessarily pressure measured by the vacuum gauges. There is no ion gauge
in the glass cell; the only measurement of background pressure there is
the lifetime of the magnetically trapped thermal cloud or a BEC. Figure 3.5
shows the number of atoms remaining in a BEC as a function of hold time.
The measured lifetime of 39± 7 s indicates the preparation of high quality
vacuum, despite the setbacks.
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3.5 Lasers

Lasers are a major component of the apparatus. We require a minimum of five
laser frequencies to laser cool atoms: a red detuned cooling (F = 2→ F′ = 3)
and resonant repump (F = 1 → F′ = 2) for each of the MOT and Zeeman
slower as well as a resonant imaging probe. We source our cooling light from
a single MOGlabs external-cavity diode laser (ECDL) with an Eagleyard rwe-
810 150 mW diode driving a tapered amplifier (m2k Laser ta-0785-2000-dhp),
in a master oscillator-power amplifier (MOPA) configuration. The MOPA
produces over 800 mW of light, which is then split into beamlines for the
MOT, Zeeman slower and imaging. Acousto-optic modulators (AOMs) are
used to both adjust the frequency of light in each beam line and as high-speed
gates. Repump light for the MOT and Zeeman slower is sourced from two
independent MOGlabs ECDLs: an Axcel Photonics m9-780-0150-s5s for the
Zeeman slower repump and a 30 mW Sharp diode on the MOT repump. All
of the lasers are located on a different optics table; polarisation-maintaining
(PM) fibres are used to transport light to the vacuum system.

3.5.1 Locking

Precise stabilisation of laser frequency is essential for laser cooling. A laser
locked to a single frequency must additionally be relatively immune to ambi-
ent perturbations for robust day-to-day operation. For the purposes of laser
cooling, the requirements for laser linewidths are modest; typically several
hundred kilohertz is acceptable. All our ECDLs are driven by MOGlabs
diode laser controllers (‘MOGboxes’, models dlc-202 Revs. 5 and 7) that
provide current and frequency control as well as locking functions.

The master cooling laser has the most stringent requirements for fre-
quency stability and linewidth. It is locked to an absolute atomic reference,
the F = 2→ F′ = 3 cooling transition using modulation transfer spectroscopy
(MTS) [100]. MTS is notable among laser locking schemes in that it allows
for high signal-to-noise dispersive error signal lineshapes primarily localised
to cycling atomic transitions. Our MTS setup, designed and built by Vlad
Negnevitsky, uses AOMs rather than EOMs for frequency modulation of the
pump beam [101]. Additionally, the demodulation electronics for synthe-
sising the error signal are implemented digitally on a commercial software
radio (Ettus Research usrp n210).

The Zeeman repump laser is locked 183 MHz below the F = 1→ F′ = 1
transition. This frequency was optimised based on operation of the Zeeman
slower, the reasoning behind this is discussed in Section 3.8. We use an offset
locking scheme [102] to lock the Zeeman repump laser: light from the master



3.6 Absorption imaging 45

laser is mixed with a repump beam on a high speed photodiode (Hamamatsu
g4176). The resulting beatnote is then electronically processed to create an
error signal, with the laser controller closing the feedback loop.

The final laser is the dedicated MOT repump laser. It is locked to the
F = 1→ F′ = 0, 1 crossover transition using a simple saturated absorption
spectroscopy setup and current modulation provided by the MOGbox. A
double-passed 80 MHz AOM in the locking setup and single-pass 110 MHz
AOM before the fibre couple are used to bring the light to resonance with
the F = 1→ F′ = 1 transition.

The detunings used for the various laser cooling stages of the experiment
as well as that of the individual ECDLs and the MOPA are depicted in
Figure 3.6.

3.5.2 Optical layout

The complete laser setup is shown in Figure 3.7. Frequency control of each
beamline is achieved with AOMs in either single- or double-pass configu-
rations [103]. Double-pass AOMs are useful when frequency changes are
required during experiments: if the frequency of a single-pass AOM sys-
tem were changed, the pointing direction of the beam would also change
and substantially reduce the fibre coupling efficiency. Double-pass AOMs
alleviate this difficulty by retro-reflecting the diffracted order through the
AOM. Higher diffraction bandwidths are achievable, which is an essential
requirement for reaching large red detunings (> 60 MHz) for polarisation
gradient cooling. The AOMs also serve as very high speed (< 1µs) beam
shutters. Mechanical shutters (Stanford Research Systems sr-474 as well as
shutters built in-house based on Ref. [104]) are positioned after each AOM to
totally isolate optical leakage from the atoms.

Polarisation-maintaining fibres connect the optics table to the vacuum
table. We typically achieve fibre coupling efficiencies of 50-85% or more,
subject primarily to the spatial mode of various lasers and the tapered
amplifier output.

3.6 Absorption imaging

We use absorption imaging to characterise cold atomic clouds and BECs.
There are many references that cover absorption imaging in depth, and
Ref. [105] is perhaps the most definitive source. Here, we will briefly sum-
marise the main features of the technique.

The atomic cloud is exposed to a resonant probe laser that is directed
onto a camera via magnifying (or demagnifying) optics. The image we obtain
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Figure 3.6: Laser detunings for ECDLs, MOPA and various laser cooling
frequencies used in experiments. The master, Zeeman repump and resonant
MOT repump are independent ECDLs; the master laser locked −80 MHz
below resonance and is down-shifted −160 MHz before seeding the MOPA
(−240 MHz), and the Zeeman repump is offset-locked 6305 MHz to the red
of the master (−183 MHz detuned from the F = 1 → F′ = 1 transition).
The MOT (−16 MHz), Zeeman slower (−162 MHz) and resonant imaging
beam are all up-shifted by AOMs in independent beamlines after the MOPA
(Figure 3.7). Figure reproduced with permission from the PhD thesis of M.
Jasperse [95].
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Figure 3.7: The complete laser setup. A master laser ECDL locked 80 MHz
to the red of the 87Rb 5S1/2F = 2 → 5P3/2F′ = 3 transition using MTS
drives a tapered amplifier, which provides all the cooling light for the MOT,
Zeeman slower (ZS) and absorption imaging. Independent lasers are used
for the Zeeman slower repump beam (offset locked to the master) and MOT
repump (independent spectroscopic lock).
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Figure 3.8: Schematic example of absorption imaging setup. Atoms absorb
light from a resonant probe laser, casting a shadow. The image of the cloud
is focused onto a CCD camera. Three images are taken to produce an image
of the optical depth (OD): atoms (laser beam + atom signal), flat (laser beam
alone) and dark (no laser, only dark counts and stray light).

is that of the shadow cast by the atoms; from this image we can deduce the
atom number, temperature and the spatial structure of the cloud. A basic
schematic of the imaging setup is shown in Figure 3.8, with the imaging
probe beam propagating along the x-axis, as it does in our apparatus.

The intensity of the probe beam depends on x, and thus so to does the
optical absorption cross-section when saturation of the atomic transition is
significant. Beer’s law relates the transmitted intensity to the optical absorp-
tion cross-section and atomic density along the direction of propagation:

dI(x)
dx

= −I(x)
σ0

1 + δ2 + I(x)/Isat
n(x), (3.3)

where the on-resonant absorption cross section σ0 = 3λ2/2π for circularly
polarised light on the cycling transition, I/Isat the ratio of the intensity to
the saturation intensity Isat and ∆ the detuning, expressed in half-linewidths
(δ = ∆/Γ/2).

In practice, a single ‘absorption image’ is actually composed of at least
two raw frames: the flat frame, which is essentially an image of the spatial
profile of the imaging light and the atoms frame, which actually contains the
shadow. A third frame is also taken to account for the effects of dark counts
on the CCD. These three frames are then combined on a computer into a final
image of the optical depth (OD) as shown in Figure 3.8. The OD is given by

OD = ln
(

Iatoms − Idark

Iflat − Idark

)
(3.4)
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with Iatoms, Iflat and Idark corresponding to the intensity in the atomic, flat
and dark exposures. The fraction of light transmitted through the atoms can
be written as e−OD(y,z).

3.6.1 Saturation correction

As is evident from Eq. 3.3, the effects of saturation must be considered to
accurately determine the atomic density. High optical intensities saturate
the atomic transition, and if not accounted for the atomic density will be
underestimated. It can be shown that Eqs. 3.3 and 3.4 can be combined and
solved to determine the atomic column density ñ(y, z) =

∫
n(x, y, z) dx from

an OD image [106]:

ñ(y, z) =
1
σ0

[
(1 + δ2)OD(y, z) +

Iflat(y, z)− Idark(y, z)
Isat

(
1− e−OD(y,z)

)]
,

(3.5)

and the total atom number given by

Natoms = d2
pix ∑

pixels
ñ(y, z). (3.6)

with dpix the effective pixel size (accounting for the magnification of imaging
optics). To correct for saturation, Isat must be determined. We follow the pro-
cedure outlined in Ref. [106], whereby the saturation intensity is determined
(in units of camera analog digital units). The atomic column density calcu-
lated at each pixel is then based on the local saturation correction parameter
(Iflat(y, z)− Idark(y, z))/Isat.

3.6.2 Imaging orientations and hardware

We can image the atoms from two different directions. ‘Side imaging’, where
we can see the atoms fall along gravity, is our workhorse imaging diagnostic.
The imaging probe beam and objective lens are parallel to the x-axis of the
experiment (as shown in Figure 3.10). The objective lens used in side images
has a magnification of 2.2 and is composed of two achromatic lenses of focal
lengths f = 50 mm and f = 100 mm. We use an interline CCD camera (Allied
Vision Technologies avt-gx1920) for side imaging, which is capable of very
fast interframe times.

We can also image clouds from above. ‘Top imaging’ is highly beneficial –
when combined with side imaging, it gives an almost complete description
of the atomic cloud and is useful for diagnosing the alignment of the dipole
trap. Our top imaging setup uses the MOT beams as the resonant probe and
a flipper mirror to deflect the MOT beams either onto the atoms or into the
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camera. As such, the top imaging setup is only able to measure stages of the
experiment post-molasses; the flipper mirror must be positioned to allow the
MOT probe beam into the camera, which takes ∼ 100 ms, the molasses cloud
will be destroyed within several ms of the flipper mirror moving. The probe
beam is focused onto a camera (Andor Neo scmos) by a pair of achromats
with f = 200 mm and f = 400 mm as well as a single plano-concave lens
with f = −100 mm, the overall magnification is 2.04.

3.6.3 Back-to-back images

The flat-field frame is most useful when the spatial profile of the imaging
beam does not change significantly between flat and atomic frames. Imaging
with coherent light inevitably produces a multitude of interference fringes
from the glass cell6 as well as other optical components, as can be seen in the
flat frame shown in Figure 3.8. Any vibration of the apparatus would result
in these fringes changing position between the atomic and flat exposures, and
as such will be present as spatial fringes appearing in the resulting OD image.
This motivates reducing the time between frames: the shorter inter-frame
time reduces the translation of fringes between frames. The avt gx1920 has a
minimum interframe time of 30µs, but there is one caveat: the atoms cannot
be in both atomic and flat frames. Acquiring the atoms frame before the
flat frame requires that the cloud fall from the interrogation region between
frames, but this limits the interframe time to tens of ms, and if vibrations are
particularly intense7 then the flat-field subtraction will be poor.

Since we are principally interested in imaging F = 1 atoms, we are able
perform the flat frame first while the atoms are still in the F = 1 state,
6.8 GHz detuned from the F = 2→ F′ = 3 probe laser. We then repump the
atoms into the F = 2 state with the MOT repump beams for 40µs between
the atomic and flat frame, immediately before performing the 100µs atomic
exposure. With back-to-back imaging we can reach interframe times of 40µs,
with substantially better subtraction of fringes.

3.6.4 Time of flight imaging and Stern-Gerlach analysis

Absorption images of trapped atomic clouds and BEC are performed after
freefall, so that the gas can expand. A trapped BEC would have an OD of over

6Our glass cell is not anti-reflection coated – the additional cost for this was prohibitive.
Multiple reflections of the imaging beam (at normal incidence to the cell) within the cell
result in light passing multiple times through the atoms; creating spatial modulation of the
column density (present in the absorption image in Figure 3.9, left), this effect is not trivially
corrected.

7As is the case of our experiment. We attribute this to the water cooling of the TECs in
the oven.
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100 and is typically only 10µm in size. Extracting atom number, for example,
is therefore very difficult. Extinguishing the trapping forces and allowing for
time of flight, the condensate can expand enough so that the optical depth
is within the realm of the imaging system (which is limited by imperfect
subtraction in Eq. 3.4 and the bit depth of the camera to ODmax ∼ 5). Time-
of-flight absorption imaging is a powerful technique, albeit destructive; each
image requires a new atomic sample.

As well as calculating BEC atom number accurately, freefall allows the
temperature of a thermal cloud can be deduced by monitoring the expansion
of the cloud. This is an important diagnostic for the success of various
cooling stages of the experiment. The time-dependent root mean square
widths (σx(t) and σy(t), unrelated to laboratory coordinates) of an expanding
thermal cloud is related to the temperature by

σ(t)2 =
kBT
m

t2 + σ2
0 , (3.7)

where σ(t) is the width, t is the time of flight and σ0 the initial width, which
can be used to determine the phase space density, from

PSD =
Natoms

(2π)
3
2

1
σ2

0,x σ0,y

(
h√

2πmkBTave

)3

(3.8)

where Tave = (Tx + Ty)/2 and Tx, Ty are the effective temperatures deter-
mined by applying Eq. 3.7 to expansion data σx(t), σy(t) and we have
assumed cylindrical symmetry about the y-axis of the cloud, and harmonic
confinement.

For long enough drop times, the thermal wings of even a cloud on the
threshold of condensation can be reliably extracted from a Gaussian fit to an
absorption image. A sample thermometry experiment is shown in Figure 3.9,
for two clouds: a partially evaporated magnetically trapped cloud and a
cloud nearing the threshold of condensation in the crossed dipole trap.

For optically trapped clouds (where multiple Zeeman sublevels can be
trapped simultaneously) we can image the population in each magnetic
sublevel by briefly applying a sufficiently strong magnetic field gradient
during time of flight to spatially separate the spin components. The reduction
in density effectively switches off the interatomic interactions, the gradient
thus exerts only a mechanical force on the atoms. In analogy with the
seminal experiment [107] this technique is called Stern-Gerlach absorption
imaging. The population as well as the spatial structure of each sublevel is
then mapped to spatially distinct regions.

For our Stern-Gerlach separation, we apply a 60 G/cm gradient with
the quadrupole coils over 3 ms, 11 ms after the atoms are released from the
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Figure 3.9: Thermometry performed using time of flight. Plotting the
squared Gaussian widths of a thermal cloud in a magnetic trap (left) and
approaching the threshold of condensation in the dipole trap (right) against
time of flight (drop time) yields a straight line. Shown in inset are absorption
images of each cloud at 20 ms drop time, scale in comparison with each
other.

trap. These parameters are chosen so that the Stern-Gerlach kick distinctly
separates all three Zeeman components after typical 20 ms drop times.

3.7 Controlling experiments

Experimental hardware is controlled by computer. A single control computer
interfaces with a SpinCore PulseBlaster dds-ii-300 usb, which serves as the
master clock for experimental timing. Three National Instruments data
acquisition and control cards: 2×ni-pcie6363 (digital outputs mostly) and
ni-pcie6733 (analog outputs) provide analog and digital I/O with which we
control individual coil currents, beam amplitudes and shutters, for example.

3.7.1 Radiofrequency devices

We use two different types of direct-digital synthesiser (DDS) as sources
for radiofrequency. The commercial SpinCore PulseBlaster DDS is used for
low-grade applications where pulse phase stability is not important, such as
driving AOMs and rf evaporation. An in-house designed and manufactured
DDS8, the RFBlaster, is used in demanding applications, such as rf pulse
synthesis for state preparation. The superior phase stability and flexibility
of the RFBlaster over the PulseBlaster was demonstrated by the ANU Atom
Laser group in high precision gravity measurements [108]. The RFBlaster is
programmable with up to ∼ 106 amplitude/frequency/phase instructions,
in contrast to the PulseBlaster, which is limited to ∼ 103 in our application.

8Designed and assembled by Vlad Negnevitsky.



3.8 MOT and Magnetic trap 53

This allows the RFBlaster to implement many sophisticated pulse sequences,
ramps, and sweeps without recourse to additional devices.

3.7.2 Control system

The control system we use was created in-house by members of the Monash
BEC group. It differs from more widespread schemes by allowing exper-
iments to be written as Python code and then compiled into hardware
instructions for the various devices. The full details of the experimental
control system can be found in Ref. [109].

3.8 MOT and Magnetic trap

Our MOT is formed from six laser beams arranged as three orthogonal
counter-propagating pairs, as shown in Figure 3.10. An anti-Helmholtz
coil pair provides a 14.8 G/cm quadrupole magnetic field gradient. The
6 mm 1/e2 diameter beam output from the fibre collimator is increased
to 20 mm in diameter by a beam expander for each MOT beam, the full
details of which can be found in Ref. [110]. The MOT beams pairs are σ+σ−

polarised and have about 14 mW of optical power in each beam, each with
a 1 mW overlapping resonant repump beam. The cooling light in the MOT
is detuned −16 MHz from resonance. We typically load ∼ 3× 109 atoms in
5 s, corresponding to a peak load rate of 7× 108 atoms/s. The temperature of
the atoms in the MOT is about 1-2 mK.

3.8.1 Optimising the MOT load

Optimising the MOT is a complicated procedure, as it is intrinsically linked
to the performance of the Zeeman slower. The goal is simple – to achieve
maximum loaded atom number. Temperature is less of a concern, as sub-
Doppler temperatures can be routinely achieved after an optical molasses
stage (Section 3.8.2).

We tried a number of methods to independently diagnose the perfor-
mance of the Zeeman slower: atomic absorption of a resonant probe beam
was used to measure atomic flux, and varying the angle of the probe allows
for velocimetry. The absorption signal was very weak, and difficult to inter-
pret in most cases. The perturbative effect of the Zeeman slowing beam on
the MOT (which depending on beam intensity and detuning can result in
poor MOT loading) could not be considered without a MOT to load. We thus
resolved to optimise the performance of the MOT and Zeeman slower with
but one metric, loaded atom number.
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Figure 3.10: Beam geometry of the MOT. Each MOT beam enters a beam
expander that produces a 20 mm collimated beam. Approximately 1 mW of
resonant repump light is mixed with each MOT beam, for a combined total
of 14 mW in each beam. The quadrupole magnetic field is produced by two
anti-Helmholtz coils, not shown are the bias magnetic field coils used to
shim stray magnetic fields.

The Zeeman slower laser is focused to a waist of ∼ 300µm at the oven
collimation tube output, from an initial diameter of 30 mm. This maximises
scattering of photons at the start of the slower while minimising the pertur-
bative effect on the MOT, which was found to be quite severe for smaller
beam widths at the position of the MOT. The wide control bandwidth of the
microwave offset lock allows the Zeeman repump detuning to be changed
over a substantial range. The optimum detuning is found to be −183 MHz
detuned from the F = 1 → F′ = 1 transition, the corresponding beatnote
frequency is 6305 MHz.9

Power drifts in the MOT cooling light cause the load rate and total atom
number to drift, which can be problematic for subsequent stages of the
experiment. We monitor the MOT atom number by collecting a fraction
of the MOT fluorescence with a photodiode each experimental run. The
photodiode signal is calibrated into atom number, from which we extract the
MOT load rate and total atom number from each run. Figure 3.11 shows the

9The double-passed MTS setup results in the lock point being 80 MHz to the red of the
actual cooling transition.
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Figure 3.11: Loading the MOT. A photodiode collects flourescence from
the loading MOT, which is then calibrated to absolute atom number. Each
experimental run, we acquire a load rate curve to monitor the performance
of the MOT.

result of such a measurement. The predominant cause of MOT beam power
drift is thermal stabilisation of the MOPA over the course of several hours, a
design failure of particular irritance. In future, the photodiode signal will be
used to measure the atom number load and feedback to the control system
in a servo, alleviating these difficulties.

3.8.2 Molasses

Each stage of the production process is designed to optimise the number of
atoms transferred to the next stage. To optimise the transfer of a spatially ex-
tended and comparatively warm MOT into the magnetic trap, we perform an
optical molasses stage. The Doppler temperature TDoppler = h̄Γ/2kB = 290µK
for 87Rb is the lowest attainable temperature predicted by a simple two-level
analysis of laser cooling [75]. The transfer of atoms into the magnetic trap is
optimum for cold, dense clouds with consequently less spatial extent. Attain-
ing sub-Doppler temperatures is possible by performing optical molasses,
which in turn greatly improves the load into the magnetic trap.

Optical molasses circumvents the Doppler limit due to additional, multi-
level cooling processes that take place when the quadrupole magnetic field of
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the MOT is switched off. The resulting purely optical potential is no longer
a trap, an atom transiting the optical molasses thus behaves like a particle
moving through a viscous fluid, hence the name.

In the absence of the quadrupole field, the magnetic states of the atoms
are approximately degenerate. Each pair of MOT beams consists of an
opposing pair of σ+σ− polarised beams, which form a spatially periodic
polarisation grating. This in turn gives rise to a spatially varying vector
AC Stark shift of the magnetic sublevels, which drives polarisation gradient
cooling (PGC) [75, 111]. Although we omit here the details of PGC, we make
note of an important experimental requirement for its success: low magnetic
fields, where the Zeeman shift of magnetic sublevels is small compared with
the optical pumping rate [112]. We minimise the background magnetic fields
using bias magnetic fields that cancel the contribution from Earth’s field
as well as that of stray fields from magnetic lab components. A bias field
coil pair is aligned along each axis (x, y and z) and each coil is driven by a
separate transconductance current driver.

The minimum temperature attainable with PGC scales with the amplitude
of the spatial polarisation modulation, which is determined by the magnitude
of the Stark shift, Tmin ∼ 1

kB
I/|∆| [75]. Coldest temperatures are thus achieved

by increasing the detuning and reducing the power, which in turn reduces
the rate of the cooling process. In practice one must limit the time over
which PGC takes place, as the absence of a restoring force in the molasses
potential can lead to the cloud falling substantially, making loading into the
magnetic trap inefficient. Before initiating pure PGC, the quadrupole gradient
is reduced to 2 G/cm and the MOT beam detuning increased to −30 MHz
for 5 ms. We found that this precursor stage improved the atom number
compared to when the final molasses (0 G/cm, −60 MHz) parameters were
immediately switched to after the MOT stage, which may be attributable to
an issue with the switch-off time of the coils.

We then perform PGC for 8 ms by setting the quadrupole gradient to
zero, reducing the repump amplitude to ∼ 100µW and detuning the MOT
beams −60 MHz from resonance. The repump beam is then completely
extinguished for the final 2.5 ms of PGC, which transfers most of the atoms to
the F = 1 hyperfine state via passive optical depumping. At the conclusion
of optical molasses, the temperature of the ∼ 109 atoms10 is 31(3)µK.

10Attaining accurate atom numbers for the molasses stage with absorption imaging is very
difficult, due to the high optical depth. Ideally the molasses number is NMOT.
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3.8.3 Magnetic trap

After concluding the laser cooling processes with molasses, the atoms
are transferred to a purely magnetic trap. Each 87Rb atom in the state
|F = 1, mF = ±1〉 carries a magnetic moment of |µ| = µB/2; mF = −1
atoms, which are attracted to regions of low magnetic field strength, can
be magnetically trapped in a local magnetic field minimum. The magnetic
potential derives from the Zeeman Hamiltonian:

HZ = −µ · B. (3.9)

The simplest magnetic trap is a quadrupole potential, which we already
discussed in the context of providing a spatially varying Zeeman detuning
in a MOT. A quadrupole magnetic field can be produced by a pair of anti-
Helmholtz coils aligned along the y−axis:

B =
B′q
2

(x x̂− 2y ŷ + z ẑ) , (3.10)

with the field gradient strength B′q. The Zeeman potential for a quadrupole
magnetic field is thus

U(x, y, z) = mFgFµBB′q

√
x2

2
+ y2 +

z2

2
. (3.11)

It is straightforward to show that a quadrupole gradient of B′q = 30.45 G/cm
is sufficient to support F = 1, mF = −1 atoms against gravity (along y).

Quadrupole coils

Our quadrupole coils are formed from a pair of water-cooled, square cross-
section copper wire coils with 42 turns per coil. Current is driven through
the coils from by a high-current driver circuit, which takes a 0-5 V analog
control signal and sources up to 100 A from an Agilent 6690a power supply.
The approximate current-to-gradient calibration is 1.89 G cm−1 A−1.

The water flow through the quadrupole coils is maintained parallel
through each coil by a magnetically-geared pump (Micropump gj-120), at
a rate of 0.26 l/min. The Micropump also drives cooling water through the
coils of the Zeeman slower, with a Julabo he-fp60 chiller keeping the coolant
at 20◦C. The water cooling system is interlocked using a Galil rio-47100

PLC in a similar manner to the oven system: water cooling failures trigger
the PLC to disable both Zeeman supplies as well as the quadrupole power
supply.
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Bias coils

Magnetic bias fields are integral elements of the apparatus. We use three sets
of rectangular coil pairs to produce magnetic fields that cancel stray fields or
provide bias fields for state preparation. The application of bias fields also
allows the quadrupole centre to be moved, which is important for optimising
the transfer of the atomic cloud from one stage of the experiment to another,
such as molasses to magnetic trap and the particularly sensitive decompres-
sion of the magnetic trap into the dipole trap. Figure 3.12 depicts the bias
coil geometry; each coil of the y and z oriented pair is driven independently,
allowing gradients to be applied along these directions, whereas the x coils
are driven in series. Current is sourced from a 40 A power supply by five
independent transconductance circuits that drive current through each coil
in proportion to a 0-5 V control voltage from the ni-pcie6733 analog outputs.
Double-pole double throw relays are installed on the y-bias coils to allow the
field direction to be inverted, as the current driver circuits are not able to
provide negative currents in the interest of maintaining linear response near
zero current. The driver circuits were designed and built by R. P. Anderson,
and are encased in a rack-unit box affectionately called the Magneato.

Operation

The process of transferring the laser cooled cloud into the magnetic trap
is known as the catch. The name is apt, as during the molasses stage the
cloud is essentially in freefall experiencing no restoring force from the optical
potential. We catch the atoms by ramping the quadrupole gradient from zero
to 40 G/cm in 3 ms. The bias coils are again configured to fields that optimise
this process; any severe discrepancy in the position of the quadrupole zero
(which is assumed to be at the geometric centre of the coil pair) and the
molasses (assumed to be close to the centre of the laser beam intersection)
results in sloshing of the cloud. We find that a 5 G y-bias field is needed to
ensure the quadrupole zero matches the molasses – this is may be due to
a manufacturing fault that renders one of the quadrupole coils with more
turns than the other.

A very important metric for the success of the catch is the number of
transferred atoms. Although temperature should be kept as close to that
of the molasses, some heating during the transfer is inevitable. We can
determine the caught atom number in two ways: comparing the number
of atoms in the MOT (determined via fluorescence) to the integrated atom
number from an absorption image, or by performing a recapture measurement.
The former is straightforward but is not a like-for-like comparison, as there
are inherent ambiguities in comparing the fluorescence measurement to an
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Figure 3.12: Magnetic bias coil assembly. Top: Design schematic of the bias
coils: each coil has a rectangular shape, with 16 turns per coil. Bottom: Bias
coil assembly set up around glass cell, showing MOT beams and bias field
axes. Images courtesy R. P. Anderson.
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Figure 3.13: Recapture measurement. Fluorescence signal from the MOT is
used to determine the fraction of atoms transferred to the magnetic trap by
loading a MOT, performing a molasses stage and then transferring the laser
cooled atoms into the magnetic trap. After a hold time, the magnetic trap is
turned off and the MOT switched back on, while the atom beam is shuttered.
The fluorescence signal is thus a measure of the atoms transferred to the
magnetic trap. The capture fraction of 34% is consistent with only passive
optical pumping to the |F = 1, mF = −1〉 magnetically trappable state.

absorption image; the molasses is too dense to reliably extract atom numbers
from an absorption image directly. A recapture measurement in contrast is
like-for-like. We can compare the fluorescence of the loaded MOT to the
magnetically trapped cloud by ’recapturing’ the latter with the MOT, so that
the fluorescence of the recaptured atoms may be compared to the loaded
MOT fluorescence. We show the results of a recapture measurement in
Figure 3.13. The atom number and temperature of the cloud loaded into the
magnetic trap is N ≈ 1× 109 and T = 46(4)µK, corresponding to a phase
space density of 7(2)× 10−5.

3.8.4 Evaporative cooling

Until only recently [113], evaporative cooling was used at some point in the
creation of every BEC. Evaporative cooling works by selectively removing
warm, energetic atoms from a thermal distribution of energies. When these
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atoms are removed from the sample, the ensemble rethermalises via elastic
collisions to a lower overall temperature, and atoms repopulate the high-
energy tail of the lower-temperature thermal distribution. Continuously
removing these hot atoms allows lower temperatures and high phase space
densities to be reached. We use evaporative cooling in the magnetic trap to
cool atoms for loading into the hybrid trap as well as during final cooling in
the pure dipole trap to quantum degeneracy. In this Section, we give a brief
overview of the process and refer the reader to several notable references
(such as Ref. [114]) for a more detailed treatment.

Forced evaporative cooling in the magnetic trap

Forced evaporative cooling is performed in the magnetic trap by using
radiofrequency (rf) transitions to selectively outcouple atoms from the out-
ermost region of the cloud. For the quadrupole potential, the magnetic
field increases linearly from the centre of the trap, thus the atoms with the
highest potential energies populate the edges of the trap. Applying an rf
field resonant at a point in space such that (along the x-axis, for instance)
h̄ωrf = mFgFµBB′qx will selectively drive rf transitions between the Zeeman
sublevels. As mF = 0 atoms are not trappable and mF = +1 atoms are re-
pelled from the trap, the atoms interacting with the rf are expelled. Changing
the rf frequency to be resonant with other, lower energy equipotential shells
allows us to progressively remove the warmest atoms from the quadrupole
trap.

The same effect could also be achieved by reducing coil current, which
would ’spill’ hot atoms from the trap edges. However, the crucial factor in
sustaining successful evaporative cooling is the elastic collision rate, which
rethermalises the atoms to a lower temperature. As the trap depth is reduced,
the confinement strength in turn drops, and cooling stagnates when the ratio
of ‘good’ elastic collisions to ’bad’ collisions (such as inelastic losses from
background atoms) becomes comparable. Forced evaporative cooling in the
dipole trap can only be done by reducing the trap depth at the expense of the
elastic collision rate.

After the catch stage, we adiabatically ramp the quadrupole gradient up
to 155 G/cm over 500 ms. Increasing the strength of the trapping potential
by a factor of k increases the collision rate by k

4
3 , the density by k and

the temperature by k
2
3 [114]. We then apply an rf field at 25 MHz and

gradually reduce the frequency linearly to 6 MHz over 5 s. The atom number,
temperature and phase-space density of the cloud in the compressed MT
prior to evaporation is N = 8.2× 108, T = 128(2)µK and 3.7(2)× 10−6, and
at the conclusion of the rf evaporation sequence we are left with 1.5× 108
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atoms with T = 36.1(6)µK with a phase-space density of 3.42(5)× 10−4.

3.9 Dipole trap

At the instigation of magnetic trapping, we also switch on the dipole beams,
forming a hybrid magnetic quadrupole – optical dipole trap. We now con-
sider the operation of the dipole trap in more detail.

3.9.1 Theory

The optical forces on an atom in the dipole trap are distinct from those at
work in laser cooling, in which near-resonant photons impart momentum
onto atoms with each scattering event. In a dipole trap, the light is typically
many nanometres off-resonant from electric dipole transitions, where photon
scattering is minimal. The dipole force is due to the induced dipole moment
of the atom due to the electric field of the laser interacting with the intensity
gradient of the light. The review by Grimm et al. [115] is the definitive
reference for optical trapping using far off-resonant light, and this Section
summarises a few key results.

The strength of the induced dipole moment is related to the electric
field amplitude by p = αE, where the complex polarisability α depends on
the atomic eigenstate, polarisation of the light and detuning from atomic
transition lines. The corresponding potential is given by

Udip(r) = −
1

2ε0c
Re(α)I(r), (3.12)

with ε0 the free space permittivity, c the speed of light, and I the optical
intensity. A spatially varying electric field, such as that of a tightly focused
laser beam can be used to form a trap with the force imparted on the atoms
proportional to the intensity gradient of the light field. The dipole potential
can also be explained as the AC Stark shift of the atomic eigenstate, with
the detuning-dependent energy shift giving rise to a attractive potential for
red-detuned light (∆ = ω − ω0 < 0) and repulsive for blue (∆ > 0). The
residual photon scattering rate γ ∝ I/∆2 is reduced for large detuning, and
trap depths can be made appreciable by using higher intensities.

In the case of an alkali metal atom in the state |F, mF〉, Eq. 19 of Ref. [115]
gives the form of the dipole potential for light with ∆ � ∆′hfs, the excited
state hyperfine splitting (∼ 500 MHz for 87Rb):

Udip(r) =
πc2Γ
2ω3

0

(
2 + PgFmF

∆D2,F
+

1− PgFmF

∆D1,F

)
I(r), (3.13)
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with Γ = 2π × 6.066 MHz and the detunings ∆D1,D2 are from line-centre
of the D1 (2S1/2 →2 P1/2) and D2 (2S1/2 →2 P3/2) lines respectively. The
polarisation of the light P = 0,±1 for linear and σ± circularly polarised
light respectively lifts the degeneracy of the mF states for P 6= 0, yielding a
potential that depends on the spin state via mF. This is a manifestation of the
vector atomic polarisability, discussed at length in Chapter 7.

When designing a dipole trap, the principal concerns are that the trap can
support the atoms against gravity and that the scattering rate is low. High
power near-infra red lasers are eminently suited for the latter purpose, with
powers of tens of watts readily available at Nd:YAG (1064 nm) or telecommu-
nications (1565 nm) wavelengths. Larger beams result in higher volume traps
with more atoms, but require more power than beams focused to a smaller
waist.

In cylindrical coordinates, a beam with wavelength λ0 and total optical
power P focused to a waist w0 has an intensity profile given by

I(r, z) =
2P

πw(z)2 exp
(
− 2r2

w(z)2

)
, (3.14)

with the 1/e2 width w(z) as a function of the distance along the axial direction
from the focal point (z = 0) given by w(z) = w0

√
1 + (λ0z/πw0)2. The dipole

potential (Equation 3.13) for various optical powers is plotted in Figure 3.14.
In order to form BEC in a dipole trap, forced evaporative cooling is

initiated by reducing the trap depth. In a dipole trap, this is done by
reducing the power in the beam, with a caveat: reducing the power by
k also reduces the confinement strength by

√
k, and thus makes efficient

rethermalisation difficult to achieve. Figure 3.14 shows the reduction in
depth and accompanying reduction in harmonic confinement. Numerous
schemes have been conceived to circumvent this issue [116–118], but the
added complexity is often avoided by using a crossed-beam trap geometry or
axial quadrupole gradient, or both [119]. In all cases the confinement relaxes
along with the power reduction, but the initial (and thus final) trapping
frequencies are higher than the single-beam case due to the added axial
confinement. Evaporation is thus faster and more efficient in a crossed-beam
optical dipole trap, allowing for large BECs.

3.9.2 Optical layout

Our dipole trap is formed from the intersection of two beams originating
from the same 1064 nm 20 W fibre laser (Keopsys cyfl-20w-mega) with a
nominal linewidth of 5 MHz. Figure 3.15 shows the layout of the optical
components. We based our optical design off the cross-beam trap used by
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Figure 3.14: Evaporation in the crossed-beam dipole trap. Plotting the
dipole trap potential (Eq. 3.13, with gravity) for different beam powers
(left) and computing trap frequencies as a function of power (right). The
powers are equal in each beam, whereas the beam waists are wz′ = 65µm
and wx′ = 100µm for the beams travelling along the z′ and x′ directions, as
described in Figure 3.15.

the group of David Hall at Amherst College [120]. Notably, we use dichroic
mirrors to steer the dipole beams into the glass cell along the direction of the
MOT beams. The 780 nm MOT beams are transmitted by the dichroics while
1064 nm is reflected. This configuration has the advantage of maximising the
optical access for probing the condensate without obstruction by trapping
light optics.

We refer to the dipole beams by the approximately orthogonal axes x′ and
z′, pointing in the propagation directions of each beam (Figure 3.15). The two
beams are quite different, the z′ beam has a design waist11 of wz′ = 70µm
and the x′ beam waist is wx′ ∼ 100µm. The z′ beam is the principal trapping
beam, with the x′ beam providing axial trapping along the z′ axis, as shown
in Figure 3.15, inset.

The amplitude and position of the dipole beams are controlled by a
110 MHz AOM in each beam path. The power in each beam is controlled
by altering the amplitude of the AOM rf drive, and the position may be
varied by ∼ 500µm by changing the rf frequency. Each AOM is operated
at a centre frequency of 101.1 MHz and use opposite diffraction orders to
attain a relative frequency shift of 202.2 MHz between the two beams, which
eliminates standing wave effects.

3.9.3 Hybrid trapping

The addition of the dipole beams circumvent a severe difficulty of quadrupole
magnetic traps, Majorana spin-flip losses. Atoms cannot be cooled to quan-
tum degeneracy in a quadrupole trap. An atom traversing the quadrupole

11Due to aberrations, the actual waist is different. When the dipole beams are split and
translated, as in Chapters 6 and 7, the waist is as low as 65µm.
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Figure 3.15: Schematic of the dipole trap optical setup. A fibre collimator
with an in-built optical isolator supplies 13 W of 1064 nm light, which is
split into two beam paths using a polarising beam-splitter cube (PBS). Each
beam is then focused to a waist of 1 mm and passes through an AOM. The
first diffracted order from each AOM is then split off (the zeroth order
enters a beam dump) and increased to ∼ 4 mm in diameter. An f = 300 mm
achromatic doublet lens in each beam path then focuses each beam to a
waist in the glass cell. Each dipole beam is steered by a dichroic mirror in
the path of a MOT beam. The dichroic mirrors reflect the 1064 nm dipole
trapping light into the glass cell; the dipole beams define near orthogonal
axis x′ and z′; the z′ beam provides the primary trapping force, with the
x′ giving radial confinement (inset top right). See Chapters 6 and 7 for
additional changes to the optical setup.



66 Apparatus

zero has a probability to undergo a non-adiabatic spin-flip, which transfers it
to an untrapped state. As this process is strongest around the quadrupole
zero, the atoms with the lowest potential energy are lost, which heats the gas.
The rate of Majorana losses can be estimated as [37]

ΓMaj = 1.85
h̄
m

(
mFgFµBB′q

kBT

)2

, (3.15)

with B′q the quadrupole gradient and T the temperature of the gas. Majorana
losses are thus most severe at low temperatures and high field gradients. The
quadrupole trap ‘leaks’ atoms with lowest potential energy, making runaway
evaporation at low temperatures impossible [114].

There are several methods that overcome Majorana losses in quadrupole
traps: a blue-detuned plug beam located at the centre of the trap, for instance,
actively repels atoms from the quadrupole zero [2, 121]. Additional static
or time-varying magnetic bias fields may be added to make Ioffe-Pritchard
traps or time-orbiting potential traps, which formed the basis of the first
generation of BEC experiments.

In the hybrid trapping scheme [37], the quadrupole trap is used to enhance
the load into a red detuned dipole trap. Loading a dipole trap from a purely
laser cooled cloud is highly inefficient, as the spatial extent of the cloud is
far greater than the trapping volume of the tightly focused dipole beam and
this leads to a poor transfer fraction. Evaporative cooling in the quadrupole
trap results in very cold, dense clouds that can be transferred into the
dipole trap with considerably greater efficiency. The hybrid trap is also a
considerably simpler system to implement than Ioffe-Pritchard magnetic
traps, requiring lower coil currents and simpler coil geometries. Although
our hybrid trap serves as merely a precursor stage to the purely optical trap,
which is discussed in depth in the following Sections, the addition of the
quadrupole field provides axial trapping along the dipole beam, which is
essential for sustaining evaporative cooling in a large volume single-beam
trap.

Loading the hybrid trap

To load the hybrid trap, we reduce the quadrupole gradient from 155 G/cm
to 29 G/cm over 3 s, while simultaneously sweeping the rf knife from 6 MHz
to 3.75 MHz during the first half of this decompression. The decompression
phase results in a substantial temperature reduction, from 36.1(6)µK to
6.3(1)µK. The positioning of the dipole beam is crucial to this stage, as this
temperature reduction increases the spin flip loss rate when the dipole beam
is misaligned. We were able to ensure the correct positioning of the dipole
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beams by observing heating and losses of the optically trapped atoms with
reference to the position of the quadrupole zero, using methods described in
Ref. [122]. The loaded hybrid trap contains 2.3× 107 atoms at a temperature
of 6.3(1)µK, with a corresponding phase-space density of 9(1)× 10−3.

3.9.4 Formation of BEC

When evaporating to BEC in the crossed-beam trap, the quadrupole gradient
is further reduced from 29 G/cm to zero over half the duration of the optical
evaporation, meaning that for the last half of the sequence the confinement
is purely optical. Forced evaporation is then instigated in the dipole trap
by reducing the optical power in each beam from ∼ 4 W initially to about
600 mW over 5 s in the crossed-beam trap. Figure 3.16 shows the optical trap
evaporation sequence after various truncated evaporation sequences. The
formation of BEC is heralded by the presence of a bi-modal (Thomas-Fermi
+ Gaussian) density distribution in absorption images. We found that the
crossed-beam trap can yield BEC in as little as 3 s of optical evaporation,
whereas at least 15 s was required in the single beam hybrid trap. This differ-
ence may be due to the sensitivity of the evaporation process lower trapping
frequencies in the single-beam hybrid trap and possibly the proximity of the
quadrupole zero. Also, we find that the alignment of the crossed-beam trap
is very robust, remaining aligned and operational over the course of several
months.

The entire trajectory from MOT to BEC is shown in Figure 3.17. There
are some minor areas for improvement - particularly in hybrid load stage
and dipole evaporation stages. We suspect the excessive loss of atoms in
these stages is related to the population of atoms in the ‘wings’ of the crossed
dipole potential [117], thermal atoms that contribute to the measured atom
number but are not loaded into the beam intersection. This effect is absent
for single beam hybrid traps. With minor optimisation work we anticipate
the atom number can be improved significantly, so that pure BECs of 1× 106

atoms could be created in as little as 13 s (2 s MOT load + 5 s rf evaporation +
3 s hybrid load + 3 s optical evaporation).

Trap varieties: The semi-isotropic trap

The simplest trap we can form consists of roughly equal powers in each
dipole beam, so that the relative confinement is dictated primarily by the
beam waists. To form BEC in this trap, we lower the beam powers until a
pure condensate is formed; any further reduction of the trap depth cuts into
the condensed fraction. We refer to this trap as the ‘semi-isotropic’ (SI) trap
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Figure 3.16: Onset of BEC in the crossed dipole trap. The truncation
parameter η characterises the progress of the 5 s evaporation ramp: η = 0.8
corresponds to the dipole beam amplitudes stopping at 80% of their final
amplitude, over 4 s. The final frame shows an almost pure BEC of 3× 105

atoms. The maximum optical depth shown is OD 3. The time-of-flight is
20 ms.

due to the near equality12 of the trapping frequencies. The SI trap is our
workhorse trap, due to its considerable simplicity and robustness, although
the low atomic densities make observing spinor physics difficult.

Trap varieties: The elongated trap

The trap geometry in which we can evaporatively cool a thermal cloud to
BEC is limited almost exclusively to the semi-isotropic trap. As the trap
depth must be reduced to force evaporation, the scope to alter the geometry
by increasing the power in one of the beams is limited. However, once BEC is
formed, we can then modify the trapping potential by changing the relative
intensities of the two beams. We can form an elongated trap by increasing the
intensity of one dipole beam and reducing that of the other, so that the BEC

12In contrast to the elongated trap!
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phase-space density (bottom) during three stages of the experiment - RF
evaporation in the magnetic trap, decompression and transfer into the
hybrid trap followed by pure optical evaporation in the crossed dipole trap.

is spatially extended along the weaker beam. We can never totally extinguish
one of the beams, as the condensate will simply expand to no end along the
single beam13 or, in our observations, slide off to one side due to slight tilting
of the beams. To transfer the BEC to the elongated trap, the z′ beam power
is increased from 500 mW to ∼ 3 W and the x′ beam power reduced from
500 mW to 50 mW over 2 s, the trap is left to stabilise over a further 100 ms.

The elongated trap is particularly useful for exploring spinor physics, as
the higher densities available (discussed in the next Section) give rise to a
spin interaction strength almost double that of the SI trap. This comes at the
cost of several irksome features, the most serious of which is the presence of
a thermal component that appears during the transfer process. Due to the

13Axial trapping frequency from a single beam is < 1 Hz.
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higher trap depth, this thermal component persists.

3.9.5 Trap frequency measurements

The trapping strength of the dipole trap and the size of the condensate may be
characterised by approximating the potential as harmonic and determining
the trapping frequencies. In the simplest case, exciting bulk motion (such as
a sudden translation) along each direction of symmetry x′, y, z′ will result in
centre of mass oscillation (‘sloshing’) at an angular frequencies ωx′,y,z′ . Both
our crossed-beam dipole traps can be described by three trap frequencies: a
tight radial frequency ωx′ from the beam with a smaller waist, ωz′ , the weaker
radial confinement of the larger dipole beam that serves as the elongation
axis of the condensate and ωy, the trapping frequency along the direction
of gravity (see Figure 3.15). Although the dipole beam intensity profile is
roughly symmetric in the tight radial direction, gravity displaces the trap
minimum below the peak intensity point by ∼ 10µm; this gravitational sag
typically results in ωy < ωx′ .14

In practice it is often not possible to excite single oscillation modes of the
trap without exciting others, particularly in the SI trap. The resultant motion
is difficult to study in 2d absorption images due to mode interconversion
between motion along and orthogonal to the imaging axis. Figure 3.18 shows
sloshing excited in the SI trap, with strong amplitude modulation due to
precession in the trap and sloshing excited along the elongated (z′) axis of
the trap, showing simpler behaviour.

An alternative to sloshing measurements is parametric heating. Modulat-
ing the strength of a trap with trapping frequencies ωi at frequencies 2ωi/n
for integer n results in parametric resonance (PR), with atoms being rapidly
heated and expelled from the trap [123, 124]. To excite PR, we program the
RFBlaster that controls the dipole trap beams to amplitude-modulate the rf
power (by between 5-10%) sent to the AOMs at a frequency ω for between
1-2 s. With each iteration of the experiment we vary ω and measure the
number of atoms remaining in the trap after time of flight. Figure 3.19 shows
the parametric resonance ‘spectrum’ for the two different trap varieties.

Determining the trap frequencies from a PR spectrum requires some
attention. Although the strongest resonances occur at ωmod = 2ω0, they are
not the only feature we observe. We use sloshing measurements to estimate
the fundamental modes ωx′ , ωy, ωz′ , and thus identify features in the PR
spectrum. Trap frequency measurements in the elongated trap showed
strong resonances at 2ωr, 2ωy as well as the fundamentals, whereas only

14Any misalignment of the crossing beams along y strongly effects the overall trapping
strength along that direction.
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Figure 3.18: Sloshing measurements in the SI trap. Left: sloshing along
the long (z′) axis of the trap. Right: mode interconversion between sloshing
in the x′ and y directions. Observation of this behaviour informs the
assignment of trap frequencies in parametric resonance experiments.

resonances at the fundamental modes were observed in the weaker, SI trap.
The underlying reason for this is unclear and possibly related to the near
equality of two of the trap frequencies (ωx′ and ωy), although we can confirm
from sloshing measurements that the features observed in the PR spectrum
correspond to the fundamental modes.

3.9.6 Thomas-Fermi radii

The characteristic size of the condensate is parametrised by the Thomas-
Fermi (TF) radii, which are dependent on the trap frequencies and number of
atoms. Referring to Eq. 2.4, the TF radii expressed in terms of the chemical
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potential are

Ri =

√
2µ

mω2
i

. (3.16)

The chemical potential is given by [73]

µ =
h̄ω̄

2

(
15Na

ā

) 5
2

(3.17)

with ā =
√

h̄/(mω̄) the harmonic oscillator length and ω̄ = (ωx′ωyωz′)
1/3

the geometric mean of the trapping frequencies. We can determine the TF
radii from the trapping frequencies for both the semi-isotropic trap and the
elongated trap, as shown in Table 3.1. Comparing the geometric mean of
the trapping frequencies for each trap, we see that ω̄SI trap = 2π × 59.8 Hz
whereas ω̄E trap = 2π × 98.6 Hz. The average densities for the SI trap and
elongated trap are 8.8(4)× 1013 cm−3 and 1.43(3)× 1014 cm−3.

Trap (ωx′ , ωy, ωz′)/2π (Hz) NT(×105) Rx′ , Ry, Rz′ (µm)

SI trap 81.0(7), 59.0(2), 44.8(1)S 1.8(2) 6.5(2), 9.0(2), 11.8(3)

Elongated trap 245.6(5), 224.1(4), 17.4(1)S 1.35(7) 2.75(3), 3.01(3), 38.8(5)

Table 3.1: Trapping frequencies, total atom numbers NT and calculated
Thomas-Fermi radii for the two different trapping geometries. Note: S in-
dicates trap frequency derived from sloshing measurements; all other trap
frequencies determined from parametric resonance.

3.10 Chapter summary

In this Chapter we have described our experimental apparatus, used for
producing BECs. Our apparatus produces condensates of ∼ 3× 105 atoms in
about 25 s, and is routinely capable of producing over 2800 condensates a day,
a satisfying outcome given our initial design philosophy of industrial produc-
tion of BEC. The apparatus was constructed and commissioned during the
first two years of my candidature, before relocating to the New Horizons cen-
tre across campus in early 2013. The gruelling task of moving the apparatus
was performed whilst under vacuum to minimise the associated down-time
upon resettlement in the new facility; nevertheless it still absorbed at least
nine months of time in preparation, delays and re-commissioning. In the next
Chapter, we discuss radiofrequency and microwave state preparation: the
principal tools we use to make spinor condensates from single-component
BECs and extract information from them.
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4

In this Chapter we continue the description of our experimental appara-
tus and procedure, but this time focus on the steps used to produce well
characterised superpositions of Zeeman states – state preparation. Although
the state of the BEC throughout the production process is important, only
passive state preparation techniques are used. For instance, depumping the
molasses with a weak repump beam transfers at best 33% of the atoms to
the |F = 1, mF = −1〉 state for magnetic trapping. Experiments with a spinor
condensate require that the initial state be a highly reproducible combination
of Zeeman sublevels with a given phase.

4.1 Radiofrequency and microwave transitions

We prepare BEC in one or a superposition of several quantum states by
driving magnetic dipole transitions between angular momentum states. The
frequency and pulse duration of the applied field can be controlled with high
precision, allowing preparation of states with well defined relative population
fractions and phases. Resonant transitions between Zeeman sublevels |F, mF〉
are dependent on the amplitude of the bias magnetic field, with the requisite
frequency typically in the radiofrequency (rf) region of the electromagnetic
spectrum (Equation 2.8). Transitions between states of different F are centred
around 6.8 GHz, requiring microwave (mw) frequency photons to drive
population transfer. We routinely use magnetic dipole transitions to prepare
certain superpositions and measure the magnitude of magnetic fields.

In this Section, the theory of rf and mw transitions is discussed, before
describing the various experimental apparatus designed and built over the
course of this project. Several concepts introduced in this Section will be
discussed further in Chapter 5, such as rf coupling effects outside the rotating
wave approximation.

75
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4.1.1 Magnetic dipole transitions

The simplest example we can consider to formulate a mathematical under-
standing of how an atom interacts with a coupling field is that of the two-level
system. There is considerable motivation to do so, as the physics is universally
similar for most multi-level quantum systems – indeed a three-level spin-1
system can be represented using two spin-1/2 two level systems – and much
insight can be gained from such a simple model.

We consider a two-level system with states |a〉 and |b〉, separated by
an energy h̄ω0. In the matrix representation, with the convention that the
energy splitting h̄ω0 is symmetric about zero, the individual eigenstates and
Hamiltonian can be written as

a =

(
1
0

)
, b =

(
0
1

)
, H0 =

h̄ω0

2

(
−1 0
0 1

)
. (4.1)

We now introduce the coupling field, oscillating at ω = ω0 + ∆ with am-
plitude h̄Ω/2: we will later identify Ω as the the Rabi frequency, a more
familiar measure of coupling strength. The coupling field can be written as
G(t) = (h̄Ω/2) exp(i(ωt + φ)) + c.c, with φ representing the phase of the
field. The Hamiltonian describing magnetic dipole coupling is a matrix that
has only non-zero elements in the off-diagonal entries: Vii = 0, Vij = G. The
combined time-dependent Hamiltonian H = H0 + V is then expressed in
terms of only the driving frequency ω and detuning ∆:

H =
h̄
2

(
∆−ω G

G ω− ∆

)
=

h̄
2

(
−ω 0

0 ω

)
+

h̄
2

(
∆ G
G −∆

)
, (4.2)

where in the final step we have decomposed H = H′ + V into a sum of
a Hamiltonian rotating at the driving frequency H′ and a coupling poten-
tial V. We can simplify the coupling potential by transforming into the
frame rotating at the driving frequency ω. Defining the unitary opera-
tor U = exp(−iH′t/h̄), we transform the Hamiltonian H into the inter-
action picture, Hint = U†HU. Invoking the rotating-wave approximation
(RWA) [80, 125] allows us to ignore terms rotating at twice the driving fre-
quency (exp(±2i(ωt− φ))→ 0), and we are left with

Hint =
h̄
2

(
∆ Ω e−iφ

Ω eiφ −∆

)
. (4.3)

Now let us solve the Schrodinger equation ih̄ ∂
∂t |ψ〉 = Hint|ψ〉, for |ψ〉 =

ca|a〉+ cb|b〉 with Hint and the initial condition |ψ(t = 0)〉 = |a〉. Computing
the squared amplitude of the coefficients ci(t) allows us to determine the
probability that the system will be found in states |a〉 or |b〉 at time t. For a
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large ensemble of two-level atoms, this is equivalently the normalised number
of atoms in each state after a projective measurement onto the {|a〉, |b〉} basis.
For the case of resonant coupling (∆ = 0) we have the well known result of
‘Rabi flopping’ between the two states:

|ca(t)|2 = cos2 Ωt
2

; |cb(t)|2 = sin2 Ωt
2

. (4.4)

This simple model accurately describes one of the most profound and ubiqui-
tous properties of quantum systems, the oscillation of probability amplitude
between coupled states.

Extending the description of a two-level system to the F = 1 hyperfine sys-
tem, the coupling field specifically takes the form of an oscillating magnetic
field,

Hrf = −µ · Brf cos(ωrf t), (4.5)

with µ the atomic magnetic dipole moment.
In Section 2.3 of Chapter 2 we discussed how the hyperfine and Zeeman

interaction give rise to hyperfine ground states denoted by total angular
momentum F with associated Zeeman sublevels mF in alkali metal atoms
(Figure 2.2). The Hamiltonian Hrf couples different hyperfine levels or
Zeeman sublevels, depending on the magnetic field-induced Zeeman splitting
determined by Eq. 2.8. Coupling two Zeeman states in different hyperfine
levels with microwaves can be treated as a spin-1/2 two-level system, but
radiofrequency resonant with the Zeeman splitting within the hyperfine
manifold drives transitions between all three Zeeman sublevels due to the
near degeneracy of the Zeeman splitting: for low fields the quadratic Zeeman
shift is much smaller than the linear Zeeman shift and in most cases Ωrf � q.
The interaction Hamiltonian of F = 1 magnetic dipole coupling within the
RWA, in analogy with Eq. 4.3 is

Hint = h̄


−∆ 1√

2
Ωrf 0

1√
2

Ωrf q 1√
2

Ωrf

0 1√
2

Ωrf ∆

 , (4.6)

where we have identified Ωrf = µBgFBrf/2h̄ as the rf Rabi frequency [80].
We can compute the probability amplitudes directly by acting on a state1

ψ = (1, 0, 0)T with the operator exp(−iHintt/h̄), and computing the popula-
tion amplitudes. Varying the time traces out characteristic Rabi oscillations
amongst the three Zeeman sublevels.

1In this thesis, when writing spinors in-line the order of magnetic sublevels is
ψ = (ψ−1, ψ0, ψ+1).
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Figure 4.1: Left: Time domain Rabi flopping of the pseudospin Fz, as a
function of the applied rf pulse duration. Each point corresponds to a run of
the experiment, with Fz computed from absorption images of Stern-Gerlach
separated clouds (Section 3.6). Right: Frequency domain ‘Rabi spectrum’,
centred at the resonant transition frequency for a magnetic field of 752 mG.

It is often convenient to consider the Rabi oscillations of the expectation
value Fz = 〈F̂z〉 rather than individual states. We thus define

Fz = ∑ mF|cmF(t)|2 (4.7)

=
∑ mF NmF

∑ NmF

(4.8)

where the lower line corresponds to a measurement on a large ensemble
of atoms, with NmF the total number of atoms in each spin state. We can
now look at the behaviour of the spin projection as the detuning is varied
for constant pulse duration (Figure 4.1, right). Such a Rabi spectrum is an
indispensable tool for measuring magnetic fields: the centre frequency gives a
direct measurement of the magnetic field via the Larmor frequency ωL = γB.
For F = 1 87Rb, γ is related to the linear Zeeman shift, Equation 2.10a by
γ = |p|/B.

As shown in Figure 4.1, Fz oscillates in the presence of a resonant driving
field at the Rabi frequency. Off-resonant Rabi oscillations are faster, and at
lower amplitude, with the oscillation frequency given by the generalised Rabi

frequency, Ω =
√

Ω2
rf + ∆2. For the sake of brevity, we will hereafter denote

the resonant Rabi frequency Ω(∆→ 0) simply by Ω.

Figure 4.2 shows the spin projection as a function of detuning and pulse
duration, with the experimentally measured plots corresponding to the
resonant case, i.e lines bisecting the centre of each axis. We can create a
superposition of states with spin projection Fz between −1 and 1 by varying
the pulse duration of a resonant pulse, for which we have two special cases
that are particularly important:
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Figure 4.2: The ‘Rabi landscape’ from applying an rf pulse of variable
detuning and duration to a state with Fz = −1. Resonant time oscillations
(Figure 4.1, left) and a frequency spectrum with a pulse duration π/Ω
(Figure 4.1, right) are overlaid. Only a resonant π-pulse results in full
transfer to the mF = +1 state.

• π/2-pulse: A resonant pulse with duration π/2Ω that creates a state
with Fz = 0. After acting on a large ensemble of atoms initially all in
state mF = −1 with a π/2-pulse, a projective measurement of a spin-1
system would find the population distributed amongst the Zeeman
states with (N−1, N0, N+1)/N = (1/4, 1/2, 1/4). This corresponds to a
90◦ rotation of the spin vector on the Bloch sphere, as discussed below.

• π-pulse: a resonant pulse twice as long as a π/2-pulse that is equivalent
to a 180◦ spin rotation. It maps Fz to −Fz, so for an atomic sample
initially all in mF = −1, a π-pulse transfers all population to mF = +1.

A useful tool for understanding these spin rotations is the Bloch sphere. The
reader is referred to any of the references listed in this Section, particularly
[80] for a more thorough treatment. We can represent a two-level quantum
system in the absence of decoherence by the unit-normalised state vector

|ψ〉 = cos(θ/2)|a〉+ eiφsin(θ/2)|b〉, (4.9)
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Figure 4.3: The Bloch sphere provides a very satisfying depiction of spin
rotation pulses. A general spin-1/2 state |ψ〉 = cos(θ/2)|a〉+ eiφsin(θ/2)|b〉
can be represented (in the absence of decoherence) by a vector of unit length
with polar angle θ and azimuthal angle φ. The poles of the Bloch sphere
correspond to pure states, the angle θ the degree of state mixture and φ the
relative phase.

where θ ∈ [0, π] is an angle representing the degree of population admixture
and φ ∈ [0, 2π] the relative phase. Such a state can be diagrammatically
represented as vector on a sphere with unit radius, azimuthal coordinate φ

and polar angle θ, as shown in Figure 4.3. The poles of the Bloch sphere
correspond to pure states, and the equator an equal superposition with some
relative phase. Although the Bloch sphere is a fundamentally two-level
construct, many of the state preparation and interferometric procedures we
perform on a spin-1 system can be understood in an analogous manner.
For example, a spin-1 state vector can be represented as two spin-1/2 state
vectors on the Bloch sphere, in the Majorana representation (Ref. [23] and
references therein). However, for understanding spin rotation pulses and
Ramsey interferometry in a spin-1 system, the conceptual picture provided by
a single spin vector on the Bloch sphere is very illuminating and encapsulates
much of the essential physics.

4.2 Ramsey interferometry

The principal magnetic resonance technique we use for precision measure-
ment is Ramsey interferometry. Originally devised as a way of measuring
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Free evolution time, Trf amplitude
time

Figure 4.4: Ramsey interferometry explained on the Bloch sphere. A π/2-
pulse is applied to the pure state |ψ〉 = |b〉. In the frame rotating at the
pulse frequency ω, the state vector |ψ′〉 rotates around the equator at the
detuning ∆. After the free evolution time T, a second π/2-pulse is applied,
which converts the relative phase into relative population.

nuclear magnetic moments in a molecular beam using two oscillating fields
at different points along the beam [126], Ramsey interferometry has evolved
into a widely applicable metrological technique: atomic clocks, which de-
fine the SI second, use Ramsey interferometry to attain extremely precise
measurements of atomic transition frequencies [127].

We can utilise our simple model of two-level systems developed in Section
4.1.1 to explain how Ramsey interferometry works. The original method
called for ‘separated oscillatory fields’, in the sense that a molecule in an
atomic beam would briefly sample each a region of oscillating field during
transit along the apparatus. Our fields are separated not in space, but in
time.

The interferometry sequence begins by acting on an atomic sample in an
eigenstate of the bare atomic Hamiltonian with a π/2-pulse. The π/2-pulse
puts the ensemble of atoms into an equal superposition of states, after which
the sample is then left to freely evolve. In this free evolution time, which may
be called the ‘interrogation time’ or ‘Ramsey time’, the two states develop a
relative phase; if the two energy states have opposite sign magnetic moments,
the phase difference is due to the different linear Zeeman shifts experienced.
A second, phase-coherent π/2-pulse is then applied, which converts the
phase difference into population difference. Schematically this is represented
on the Bloch sphere in Figure 4.4.

The action of a π/2-pulse on the state |ψi〉 = (0, 1)T can be described by
applying the operator U = e−iHintt/h̄ for t = π/2Ω, with Hint for the spin-1/2

case defined in Eq. 4.3. The π/2-pulse operator is then Uπ/2 = U(t =
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π/2Ω, ∆). Rabi broadening of the π/2-pulse when Ω � ∆ allows us to
neglect the detuning during each pulse: the detuning of the centre frequency
of the pulse from resonance is what is measured in a Ramsey experiment.
The Ramsey interferometry sequence can thus be written succinctly as

|ψ f 〉 = Uπ/2 Ufree Uπ/2|ψi〉, (4.10)

with Ufree = U(t = T, Ω→ 0) the free evolution operator over the interroga-
tion time T. The final π/2-pulse converts the phase acquired in the free evolu-
tion time to a population difference: we then compute |〈ψ f |ψ f 〉|2 and find for
the probability amplitudes ca, cb and spin projection Fz = 〈F̂z〉 = |ca|2 − |cb|2

|ca|2 = sin2(T∆/2); |cb|2 = cos2(T∆/2); Fz = cos(T∆). (4.11)

These characteristic oscillations are the output from the interferometer: Ram-
sey fringes. The measurement utility is immediately apparent: the period of
the Ramsey fringes corresponds to the detuning of the pulse from resonance.
If the oscillator frequency (ωrf) is well known the resonance frequency can
then be determined with extremely high precision from the slow Ramsey
fringes.

Time-domain fringes may be acquired by increasing the Ramsey time,
which increases the precision of a detuning measurement. A complimentary
technique is to vary the phase of the second pulse, which then traces out
Ramsey fringes as a function of pulse phase: this is equivalent to changing
azimuthal direction of the final Bloch vector rotation depicted in Figure 4.4.

For the case of a spin-1 system, the operators in Eq. 4.10 are given by
U = e−iHintt/h̄, with Hint now the spin-1 interaction Hamiltonian, Eq. 4.6.
Evaluating Eq. 4.10, we find

Fz = cos(qT)cos(T∆), (4.12)

i.e. Ramsey fringes at the detuning from resonance ∆ as per the spin-1/2

case, amplitude modulated at the quadratic Zeeman frequency. The physical
interpretation of this can be garnered by considering two spin-1

2 interfer-
ometers, formed from the |F = 1, mF = −1〉 ↔ |F = 1, mF = 0〉 and
|F = 1, mF = 0〉 ↔ |F = 1, mF = +1〉 spin-1/2 transitions being simultane-
ously addressed in the Ramsey sequence. The quadratic shift gives rise to a
slightly different detuning for each interferometer; the Ramsey fringes from
each interferometer beat together at the angular frequency q.

Having now elucidated the physical basis of how oscillating magnetic
fields couple quantum states in alkali atoms, we turn now to the experimental
realisation.
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4.3 Radiofrequency apparatus

We use separate DDSs to produce low-amplitude (typically less than 5 dBm)
rf signals in the range 50 kHz to 2 MHz for state preparation (RFBlaster)
and 3 to 25 MHz for rf evaporation (PulseBlaster). For rf evaporation, the
PulseBlaster drives a 40 dB Delta RF amplifier (Delta RF la10-1-525-40) that
produces 10 W of rf power. This is then connected to a single-loop antenna
oriented in the x-z plane of the apparatus, concentric with the quadrupole
coils. Antennas must be designed for maximum transmitted power in a given
frequency band. As such, the single-turn loop antenna is well suited to the
range of rf frequencies used in rf evaporation, but is unsuitable for attaining
high Rabi frequencies2 for low field state preparation, where the requisite
frequencies are of order 0.2 to 1 MHz.

Our low field state preparation setup consists of an RFblaster driving a
high power 30 W amplifier (MiniCircuits lzy-22-+), which is connected to
one of two multi-turn coils oriented along the y- and x-axes. Depending on
the magnetic bias field orientation3 we switch between the two coils.4 The
coils are near identical and optimised for superior response at frequencies
< 1 MHz: both are 60 mm in diameter and have 20 turns. The two coils are
located different distances from the atoms, the ‘side’ coil, along the x-axis is
approximately 100 mm from the atoms whereas the ‘top’ coil (along the y-axis)
is ∼ 30 mm distant. We can achieve typical Rabi frequencies of 20-50 kHz
with the side coil, and over 250 kHz with the top coil. Since the ‘top’ state
preparation coil is concentric with the single-turn evaporation antenna, cross
coupling between the two antennae results in shielding currents that disrupt
evaporation unless the high power amplifier is gated during rf evaporation.

4.3.1 Measuring magnetic fields

Radiofrequency is the workhorse state preparation tool in our experiments.
One of the most common experiments we perform is to measure the magnetic
field |B|, which determines the quadratic shift for a spinor BEC. Accurate
knowledge of the magnetic field is necessary in order to optimise the fidelity
of state preparation pulses. Resonant rf transitions occur when γB = ωrf;
varying the rf frequency for constant pulse duration and magnetic field
traces out a Rabi spectrum, as described in Section 4.1.1. The symmetrical

2The Rabi frequency should ideally be high enough to confer the benefits of power
broadening on a driven transition, making state preparation relatively insensitive to magnetic
field noise. Typically Ω ∼ 2π × 10 kHz is required in our applications.

3As there are no linearly polarised rf transitions, rf parallel to the magnetic bias field will
not drive any transitions.

4The evolution of our rf state preparation hardware was largely driven by the results
discussed in Section 5.3.
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centre point of the Rabi spectrum defines the resonant centre frequency,
i.e. the Larmor frequency for a given magnetic field. If we then vary the
pulse duration for rf fixed at the resonant centre frequency we trace out time
domain Rabi oscillations. From these two measurements, shown in Figure
4.1, we have all the parameters required for a well characterised resonant
state preparation pulse. Moreover, acquiring Rabi spectra at various applied
external field currents allows the magnetic bias fields to be calibrated.

4.4 Microwaves

To drive magnetic dipole transitions between hyperfine states, which are
split by 6.834 GHz, we require microwave photons. Unlike rf coupling within
the hyperfine ground state, hyperfine transitions can be driven with both
linear and circularly polarised microwave photons. Microwaves thus bring a
substantial amount of state preparation controllability: using a combination
of microwave and rf pulses and sweeps, any combination of fractional popu-
lations in either (or both) hyperfine manifolds can be created. In addition
to state preparation, microwave fields are used to create effective quadratic
Zeeman shifts (Section 4.5).

Fine control of microwave coupling translates to similarly high levels of
state preparation control. To this end we have designed an built a flexible
microwave setup with exquisite frequency, phase and amplitude control.
Our scheme is centred around the concept of single-sideband quadrature
amplitude modulation, which in contrast to traditional mixing of carrier and
low-frequency rf signal results in only one dominant frequency component.
Tuning the low-frequency rf signal thus controls a single-sideband output
at the sum or difference frequency fcarrier ± frf, allowing the precision of
rf-band electronics to be translated to microwave frequency domains. This is
important, as obtaining comparable levels of frequency control with a single
commercial microwave source requires substantial investment.

In quadrature amplitude modulation, a high frequency local oscillator
(LO) is mixed with two low frequency signals, called the in-phase (I) and
quadrature (Q) signals, which differ in phase by 90◦. The output from a
quadrature amplitude modulator, or IQ mixer, consists of a single sideband
and suppressed carrier (typically up to 30 dB from the sideband).

Figure 4.5 schematically shows the quadrature amplitude modulation
hardware we use for microwaves. We drive a Polyphase Microwave am4080n

quadrature modulator with two channels of an RFBlaster DDS and a local
oscillator (GPS-locked PhaseMatrix fsw-0010). The LO frequency is set to
6934.682 MHz, and the DDS channels centred at 100 MHz. The relative phase
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Figure 4.5: Microwave setup. A RFBlaster DDS drives a quadrature mod-
ulator with two 100 MHz rf signals 90◦out of phase, which imparts single-
sideband modulation onto the microwave frequency carrier (6.934 GHz) at
the difference frequency (6.834 GHz). The microwave signal is then ampli-
fied and applied to the atoms using a half-wave dipole antenna.

of the two IQ signals is adjusted to utilise the lower sideband, we observe
carrier suppression by 20 dB and up to 40 dB upper sideband suppression.5

Changing the frequency of the DDS outputs to fDDS + δ f changes the output
frequency to fLO − fDDS − δ f . The RFBlaster outputs are essentially always
phase coherent, so sweeping the DDS frequency allows the microwave fre-
quency to be swept.

The output from the IQ mixer is preamplified before being fed into a high
power (3 W) 35 dB amplifier (MiniCircuits zve-3w-83+). The output from
the amplifier is used to drive a single half-wave dipole antenna. Between
the amplifier and antenna are a directional coupler (Pasternack pe2204), to
monitor output power and a circulator (Pasternack pe8402), which prevents
back reflections from the antenna returning to the amplifier. The dipole
antenna is a simple half-wave dipole antenna formed from an SMA connector
and non-magnetic coaxial cable core, with the long axis approximately 2.4 cm
– this is optimised by using the circulator to measure back reflected power
with a constant power 6.834 GHz signal input to the amplifier. When the di-
mensions of the antenna are optimal for 6.834 GHz radiation to be broadcast,
the reflected power is minimised. Our optimised antenna reflects about 1%
of input power back.

Maximising the input power and broadcast power are essential for a
dipole antenna due to the poor directionality – the microwave field is radiated

5The suppression should be up to 35 dB, but damaged SMA pins on the LO input lead to
increased carrier leakage.
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near isotropically. Since our target, the BEC, is suspended in an entirely
glass vacuum chamber, there is not steel tubing to act as a convenient
reflector/waveguide and so the dipole antenna is positioned as close as
possible to the cell. The output from the antenna is primarily linearly
polarised, but inevitable defects associated with such a simplistic design
result in a preference for either right or left circularly polarised radiation, as
can be seen by measuring on-resonant Rabi frequencies for σ+σ− microwave
transitions and accounting for the transition strength factor. This becomes an
important factor when we consider the contribution of these transitions to
microwave-induced quadratic Zeeman shifts, discussed in Section 4.5.

4.4.1 AC line synchronisation

Parasitic time-varying magnetic fields are also present in the lab. These fields
are predominantly at 50 Hz and odd harmonics which originate from lab
equipment power supplies. Although rudimentary measures may be taken
to minimise these fields, such as maximising the distance of the noise source
from the atoms, there is typically a substantial component that remains,
which contributes as background magnetic noise. Since the experimental
duty cycle is� AC line period and subject to minor variations shot-to-shot, a
state preparation pulse samples a variable phase of AC magnetic noise every
run, which we measure as shot-to-shot noise. For microwave transitions,
where the maximum attainable Rabi frequencies are only ∼ 5 kHz due to
drive power and distance from the atoms, AC line noise is particularly
detrimental to the fidelity of mw state preparation pulses.

Like the stray DC fields, cancellation coils may be added that create
opposing AC fields [128]. However, a simpler solution is to ensure the
experiment performs magnetically sensitive steps at well-defined phases of
the AC line, which can be assumed to be fairly stable over 100 ms. We can
synchronise the experiment to a zero-crossing of the AC power line using a
straightforward circuit based on an lm339 comparator [129] and a monostable
multivibrator (‘one-shot’, 74hc423) [130], as shown in Figure 4.6.

In this circuit, the comparator produces an edge whenever the 50 Hz
AC input (18 V rms from an AC power supply) crosses zero. Without the
additional one-shot board, the free-running comparator circuit produces an
output rising or falling edge at the respective zero-crossing of the AC line.
The one-shot allows for integration into the control system. As shown in
Figure 4.6, when the line-sync sequence is initiated, a TTL pulse from the
control hardware arms the one-shot, which is configured so that it outputs
a falling edge upon receiving a falling edge from the comparator circuit.
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Figure 4.6: Schematic of the AC line synchronisation circuit (left) and
operation (right). The comparator circuit, based on the lm339 comparator,
outputs rising and falling edges on the zero-crossings of the 50 Hz AC mains
voltage. The comparator output is directed into a one-shot circuit, using
the 74hc423 metastable monovibrator. When armed by the control system,
the one-shot outputs a falling edge on the falling-edge zero-crossings of
the AC line, allowing the experimental procedure to be phase synchronised
with the same point of the AC line every run, improving repeatability of
magnetically sensitive state preparation.

The control system then waits6 for the time between activating the arming
pulse and receiving the output edge from the one-shot. This output pulse is
fed to the master clock (PulseBlaster, Section 3.7); upon receipt of this pulse
the control hardware deactivates the arming input, and proceeds to execute
subsequent stages of the experiment. Since the experiment only proceeds
from the moment it receives an edge synchronous with the same part of the
AC line every shot, the sequence of experimental procedure takes place at
well-defined phases of the AC line magnetic noise profile.7 The circuit is
armed 85 ms before the state preparation pulse. Synchronising the experiment
to the AC line effectively removes a source of shot-to-shot noise and improves
repeatability of state preparation. We can directly quantify the AC noise
by performing Rabi spectroscopy. We alter the detuning of a microwave
π-pulse on the |F = 1, mF = −1〉 ↔ |F = 2, mF = 0〉 transition so that the
spin projection is zero, creating a state maximally sensitive to magnetic field
fluctuations (Figure 4.7, left). Around Fz ≈ 0, the deviation of Fz due to small
detuning perturbations from AC magnetic fields is approximately linear,
allowing direct mapping of δFz to BAC. Varying the time between acquiring
AC synchronisation and applying the π-pulse samples the time variation
of the AC field, as shown in Figure 4.7, right. The fidelity of microwave

6All experimental procedure proceeds with initial settings for a variable time run-to-run.
7The measured jitter of the line-synchronisation pulse is on the order of 100µs about the

zero-crossing of the AC line.
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Figure 4.7: A measurement of the background AC field variation. Left:
frequency-domain Rabi spectrum of the |F = 1, mF = −1〉 ↔ |F = 2, mF =
0〉 transition, with Ωmw = 2π × 2.8 kHz. Around Fz ≈ 0, the deviation of
Fz due to small detuning perturbations from AC magnetic fields is approxi-
mately linear, allowing direct mapping of δFz to BAC. We vary the time at
which the state preparation pulse is performed after the experiment is line-
synchronised and measure the variation in Fz due to the AC field magnetic
field BAC (right). The curve corresponds to a five-harmonic sinusoidal fit,
yielding BAC(rms) = 0.925 mG.

and rf state preparation pulses is greatly improved with the AC line sync
active. Microwave transitions with low Rabi frequencies (< 3 kHz) are only
able to be driven reproducibly with the line sync active (Figure 4.7, left,
where Ωmw = 2π × 2.8 kHz). Radiofrequency transitions with higher Rabi
frequencies also benefit; the standard deviation of Fz from 15 repeated rf
π/2-pulses is found to be typically δFz = 0.007 and as low as δFz = 0.004.
The former corresponds to a value ∼ 3 times that of the spin-projection noise
(δFz)SQL = 1/

√
2N for typical BEC atom numbers of N ≈ 1× 105 spin-1

atoms.

4.5 Microwave-induced quadratic shift

In addition to state preparation, off-resonant microwaves can also be used
to impart an effective quadratic Zeeman shift, and as such are valuable for
investigating spinor physics. This effective shift can be negative depending
on detuning and can be thus used to reduce the overall shift qtot = q(B) +
qmw(Ωmw, ∆mw) to low values at large background magnetic fields of 1 Gauss
or more. This is in contrast to actually reducing the magnetic field to
< 100 mG, where AC field noise would otherwise cause spurious spin-flip
transitions [131]. A microwave-induced quadratic shift can also be used to
achieve q < 0, in contrast to q > 0 in Eq. 2.10b from magnetic fields only.

We can write the microwave induced quadratic shift from a microwave
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Figure 4.8: Tuning the quadratic Zeeman shift with microwaves. The
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fringe phase is quickly scrambled after 1 ms. Applying a microwave field
detuned 100 kHz from the clock transition imposes an effective quadratic
Zeeman shift, which changes the position of the contrast nulls.

field detuned by ∆mw from a transition with resonant Rabi frequency Ωmw

as:

qmw = − Ω2
mw

4∆mw
. (4.13)

For Ωmw = 2π × 5 kHz microwaves detuned 90 kHz from the |F = 1, mF =

0〉 ↔ |F = 2, mF = 0〉 clock transition, the microwave induced shift approxi-
mately cancels the quadratic shift q(B) of the state |F = 1, mF = 0〉 from a
1 G bias field.

We developed a method to precisely measure the induced quadratic shift
using Ramsey interferometry. As described in Section 4.2, Ramsey fringes
from a spin-1 interferometer initiated with a π/2-pulse with detuning ∆
take a simple form for short interrogation times, Eq. 4.12. The faster fringes,
oscillating at ∆ are amplitude modulated by the overall quadratic shift. We
can measure the quadratic shift by determining the position of nulls or max-
ima in the fringe contrast as a function of microwave detuning. Figure 4.8
shows such a measurement, where the position of the first contrast null in
time-domain Ramsey fringes has been pushed out to ∼ 7 ms from 3 ms by
applying microwaves blue-detuned 72 kHz from the clock transition. The ab-
solute phase of the fast Ramsey fringes is quickly scrambled due to AC field
fluctuations8 and shot-to-shot drifts of the magnetic bias field strength, but
the amplitude modulation contrast nulls are relatively unaffected. A dephas-
ing envelope due to magnetic field gradients damps the overall interference
contrast (discussed further in Section 5.3.3).

8These experiments pre-date the implementation of the line synchronisation circuit.
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We can refine the measurement in several ways. First, we perform phase
domain Ramsey interferometry by varying the phase of the second π/2-pulse:
this allows phase-domain Ramsey fringes to be acquired at fixed evolution
time. We then measure the contrast, or fringe visibility, by determining the
maximum and minimum values from 20 runs of the experiment. The contrast
of Ramsey fringes vanishes past about 15 ms Ramsey time due to the overall
dephasing envelope. We can access longer interrogation times by interposing
a single π-pulse in the interferometry sequence, which mitigates the gradient
induced dephasing. There is no loss of contrast information by performing
a spin-echo pulse, as shown in Figure 4.9, the phase of the fast fringes is
random and essentially irrelevant, with the contrast the only quantity of
interest.

We can then precisely determine the microwave detuning that nulls the
quadratic shift by measuring the fringe contrast for different detunings at a
fixed Ramsey time. When qtot = 0, the amplitude modulation disappears.
Fixing the Ramsey time and varying the total quadratic shift would thus
result in maximum fringe contrast when qtot = 0. The results of exactly
such a measurement are shown in Figure 4.9, at T = 18.5 ms. Each data
point corresponds to the fringe contrast determined from 20 iterations of the
experiment sampling fringe phase fluctuations from magnetic noise. The
peak of the curve determines the microwave detuning where qtot = 0.

The overlaid red curve in Figure 4.9 corresponds to a fit of the fringe con-
trast, | cos(qtotT)|, where T = 18.5 ms and qtot the total microwave-induced
shift:

qtot = q(B) + ∑
i
−αi

Ω2
i

4δi
, (4.14)

where the sum is taken over the three possible transitions from the state
|1, 0〉 = |F = 1, mF = 0〉 due to off-resonant dressing (at detuning δi) of the
nearby σ± transitions, and αi parametrises the relevant transition strengths
(Clebsch-Gordan coefficients). The model contains free parameters for the
Rabi frequencies for the |1, 0〉 ↔ |2, 0〉 clock transition as well as off-resonant
dressing from the |1, 0〉 ↔ |2,±1〉 transitions due to ellipticity of the mi-
crowave polarisation; these fitted parameters are close to the experimentally
measured Rabi frequencies.9

As well as elimination of the quadratic shift, we can equivalently use
this method to determine a precise calibration of induced quadratic shift.
Such a measurement may be of interest to experiments seeking to precisely
access the spinor condensate phase diagram [132]. We also point out that the

9Accurate measurement of σ± Rabi frequencies without the line sync in these experiments
was difficult, with only the clock transition Rabi frequency able to be measured with any
degree of confidence.
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technique of differential Ramsey interferometry, expounded in Chapter 6 of
this thesis, could be used in a similar manner to measure small differences in
quadratic shifts from microwaves, or even optically induced effective shifts.
The reader is also directed to the PhD thesis of Martijn Jasperse [95], where
related measurements show how the amplitude of a Faraday rotation signal
depends on the detuning of applied off-resonant microwaves.

4.6 Chapter summary

In this Chapter we have introduced the relevant theory for understanding
radiofrequency and microwave state preparation and manipulation of a
spinor BEC. We have discussed the state preparation apparatus, including
the techniques used to measure magnetic fields. Ramsey interferometry was
also introduced, which underlies several results in Chapter 5 and forms the
basis of Chapters 6 and 7.
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Figure 4.9: Top: Ramsey fringe contrasts from 20 experimental shots
at free evolution times up to 25 ms. Adding a spin-echo pulse halfway
through the free evolution time reverses the effects of gradient dephasing
and recovers the fringe contrast. The addition of the spin echo pulse does
not effect the fringe contrast; and allows for higher precision through longer
interrogation times. Bottom: High precision nulling of the quadratic shift.
The interrogation time is now fixed and an off-resonant microwave field
is applied. The contrast of fringes is maximum when the quadratic shift
is minimised. Each point corresponds to a measurement of the contrast at
18.5 ms Ramsey time from 20 realisations of the Ramsey experiment, as in the
plot on the left. Plotting the measured contrasts against microwave detuning
allows us to determine the nulling detuning. The solid line corresponds to a
model that includes off resonant contributions from dressing nearby states
and σ± transitions (described in text).
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5

An initial aim of this thesis was to develop new methods for controlling
collisional interactions in spinor condensates. Controlling the magnitude and
sign of both the quadratic Zeeman shift and the spin collisional interaction
allows full access to the phase diagram (Figure 2.3) of a magnetic superfluid.
A plethora of interesting experiments await the realisation of this aim: phase
transitions between ferromagnetic and antiferromagnetic states, improved
prospects for metrologically useful squeezing and the creation of junctions
and interfaces between magnetic superfluids of differing nature.

Controlling spinor collisions amounts to experimentally manipulating the
collisional energetics: the quadratic shift q and the collisional strength c. A
range of techniques exist to control the quadratic shift, such as magnetic bias
fields, microwave dressing (as discussed in Chapter 4) as well as more exotic
schemes using optical fields that are yet to be demonstrated experimentally
[133]. While there are difficulties associated with controlling q with lasers or
microwaves (such as losses to other hyperfine levels or photon scattering),
they pale in comparison to the difficulties associated with controlling c –
which is a fundamental property of the scattering wavefunction.

Controlling c involves changing the scattering properties of a colliding
atom pair, which requires the use of scattering resonances in one form or
another. While tremendously successful in changing the scattering properties
of single-component BECs and degenerate Fermi gases [134], magnetic Fesh-
bach resonances are inflexible, occurring at high magnetic fields that preclude
use in spinor BEC experiments, since they result in q � c. Schemes based
on photoassocation (optical Feshbach resonances [135–137]) or microwave
coupling of free scattering atoms to bound states (microwave Feshbach res-
onances [138]) are in theory are highly applicable to spinor condensates,
although optical Feshbach resonances have been given less attention since
the experiments of Ref. [29].

In order to study and quantify any scheme that purports to alter c or q,
we require an atomic metric to diagnose its effect. As discussed in Chapter

93
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4, we developed a scheme for measuring and controlling the quadratic shift
imposed by off-resonant microwave dressing. To study schemes that change
c, we look at the period and amplitude of spin-mixing oscillations, which
provide a direct means of determining the magnitude and sign of c. We
require a well characterised spinor condensate with a long coherence time
to study population oscillations, which in turn requires a well characterised
magnetic environment.

Ultimately this thesis did not explore changing c experimentally. Instead,
this Chapter details our experimental efforts to realise spin-mixing oscilla-
tions, and to understand why our observations differed from the expected
behaviour, primarily because of magnetic field gradients and vector light
shifts. Chapters 6 and 7 detail our efforts to measure and minimise these
systematics. In this Chapter, we also discuss a scheme we developed that
uses spin-echoes to eliminate the effects of gradient-induced dephasing.

5.1 Introduction

Spin-mixing oscillations are initiated by preparing an out of equilibrium spin
superposition. In the simplest case, we consider the dynamics of the state
created by applying a π/2-pulse to a single-component mF = −1 condensate.
The resulting fractional population distribution is (ρ−1, ρ0, ρ+1) = ( 1

4 , 1
2 , 1

4 ),
i.e. ρ0 = 0.5, Fz = 0.

There are several reasons why this initial superposition is chosen. Follow-
ing on from the reasoning in [139], we summarise the two salient benefits for
us as

• Simple, highly reproducible state initialisation using rf pulses applied
to a single-component BEC, that produce a state with θ = 0;

• The single π/2 initialisation pulse is the first step in other magnetic
resonance experiments, such as radiative spin-echo and Ramsey inter-
ferometry.

In an archetypical spin mixing experiment, we apply a single π/2-pulse
to a pure mF = −1 BEC at some magnetic bias field, with or without a
microwave dressing field (Section 4.5) to attain lower (or even negative)
values of q. We then vary the evolution time after the state preparation pulse
in subsequent iterations (‘shots’) of the experiment. In each shot we use Stern-
Gerlach absorption imaging to measure the population in each magnetic
sublevel, and compute the normalised fractional populations ρi = Ni/N.
For the bulk of our spin mixing experiments we used the elongated trap
described in Section 3.9.4. It was not until we developed the elongated trap
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Figure 5.1: Spin mixing oscillations at different quadratic shifts, from
bottom: q/2π = 38 Hz, from a Bx = 727 mG bias field; q/2π = 18 Hz
achieved by applying an off-resonant microwave dressing field (described
in Chapter 4) with the same 727 mG bias field; and q/2π = 4.5 Hz reached
by ramping the field from 727 mG to 251 mG immediately after the state
preparation pulse. All results exhibit damped population oscillations after
∼ 50 ms, as well as a general trend towards higher ρ0 population.

that we saw any evidence of spin mixing, which appeared to be totally absent
in the semi-isotropic trap and were instead dominated by gradient-driven
component separation. The results for several spin-mixing experiments at
different quadratic shifts are shown in Figure 5.1.

Two observations that deviate from theoretical expectation are immedi-
ately apparent. Firstly, the amplitude of spin mixing oscillations is damped in
all cases, and exhibit a general drift towards increasing ρ0. Both effects – but
most notably the latter – are present at all magnetic field strengths and when
shots have been shuffled, i.e. spin-mixing times are randomly sampled are
not increased sequentially with each run (to account for drift of atom number
or trapping beam optical power). We also observe component separation:
spatial separation of the constituent spin components of the condensates.
We observe the centre-of-mass motion of the spin components after time
of flight, which gives an indication of the component separation occurring
in-trap. Figure 5.2 shows the centre-of-mass positions of the magnetically
sensitive components after time-of-flight, normalised to the coordinates of the
mF = 0 component, as well as the spin-mixing oscillations at 727 mG. Unlike
the semi-isotropic trap, where initial experiments showed strong component
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Figure 5.2: Spin mixing oscillations and spin component separation at
Bx = 727 mG (q/2π = 38 Hz). We define the separation directions as ȳ,
along gravity and xI , perpendicular to the imaging plane (i.e. a combina-
tion of x and z), and normalise the fitted centroid position to the initial
position at t = 0 as well as the position of the mF = 0 component. This
ensures that we detect only relative, state dependent motion. Such mF-
dependent behaviour is indicative of magnetic gradient-driven separation.
The normalised separation is after 23 ms time-of-flight, and not the in-trap
separation.

separation into distinct spin domains, there remains some overlap between
all components in the elongated trap.

The observation of component separation is indicative of the presence
of magnetic field gradients, which account for the damping of spin-mixing
oscillations and possibly for the observed ρ0 drift as well. Following Ref. [76],
in the Thomas-Fermi approximation (Section 2.2) the spin interaction strength
can be determined using c = c2〈n(r)〉 = c2nave, with nave = 4n0/7 = 4µ/7g.
Using the measured trap frequencies ω̄ = (ωx′ωyωz′)

1
3 and atom number N,

we compute the chemical potential in the Thomas-Fermi approximation

µ =
1
2

(
15h̄2m1/2Nω̄3 ā

) 2
5

(5.1)

with ā = (2a2 + a0)/3. For the elongated trap (Table 3.1), nave = 1.43(3)×
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1014 cm−3 and so c = −2π × 5.2(1)Hz. This is consistent with what we
observe experimentally, fits to the first period of oscillation suggesting
c ∼ −2π × 5 Hz. Precise determination of c from experimental results
is difficult due to the ρ0 drift, which is significant even during the first pe-
riod of oscillations. We can compute the corresponding spin healing length,
ζS = 3.35µm for the elongated trap (using Eq. 2.23), and we observe that
since ζS is greater than the tight Thomas-Fermi radii (2.7µm and 3µm), the
system is effectively 1d along the elongation axis. A BEC in the semi-isotropic
trap has c = −2π× 3.2 Hz and ζS = 4.3µm, and so is fully three-dimensional
(since the smallest Thomas-Fermi radius is 6.5µm). This is likely why we
cannot see spin mixing in the semi-isotropic trap in the presence of gradients,
as the spatially dependent spinor dynamics are more prevalent.

5.1.1 Dissipative relaxation?

There are a number of features of the observed ρ0 drift that warrant inves-
tigation. Using the phenomenological dissipation model of Ref. [51], the
equations of motion Eq. 2.31 are modified to include a phenomenological
phase-damping term, β. With E given by the energy functional in Eq. 2.32,
we have

ρ̇0 = −2
h̄

∂E
∂θ

, θ̇ =
2
h̄

∂E
∂ρ0

+ βρ̇0. (5.2)

The addition of the parameter β is equivalent to dissipative energy loss from
the system,

Ė = − h̄
2

β(ρ̇0)
2. (5.3)

Trajectories in the (ρ0, θ) phase space are altered with dissipation added.
The spinor loses energy with time, and so the (ρ0, θ) solutions to Eqs. 5.2
dissipatively relax to the lowest energy configuration, as shown in Figure 5.3.
For 87Rb with q > qsep (with qsep = q(Bsep) the quadratic shift corresponding
to the separatrix magnetic field defined in Eq. 2.34), the ρ0 population drifts
upwards with evolution time. The addition of dissipation to the SMA model
was first used by the Lett group to explain the long-term behaviour of spin
mixing in sodium condensates [51]. Condensates prepared on the low-field
(high energy in 23Na) side of the separatrix were observed to lose enough
energy to cross the separatrix after evolution times of between 0.1 to 1 s. The
underlying cause for this dissipation was not determined, although thermal
effects are highlighted as a possible cause [24, 140]. Ref. [51] did not report
significant magnetic field gradients, or speculate if they were responsible for
observed phenomena.

Several aspects of our observations are consistent with the predictions
of the dissipative model for 87Rb, such as the characteristic relaxation to
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Figure 5.3: (ρ0, θ) trajectories (left) and spin-mixing oscillations with and
without the simple dissipative relaxation term β. Two example fields are
shown, corresponding to oscillating phase and running phase solutions: for
magnetic fields below the separatrix (B = 251 mG) the spinor relaxes to the
ground state ρ0 ∼ 0.7 (top), whereas for higher fields dissipation manifests
as a gradual drift towards higher ρ0 population (bottom).

ρ0 ∼ 0.7 for q below the separatrix, as exhibited by spin-mixing data with
q = 2π × 4.5 Hz, ρ0(0) = 0.5 and θ = 0, qsep = |c| = 2π × 5.2 Hz from
Eq. 2.34. For q > qsep the drift is towards still higher ρ0. In general, the
increasing ρ0 population is evidence of energy loss, and relaxation to the
mean-field ground state ρ0 = 1 for ferromagnetic 87Rb (The ‘polar’ state in
Figure 2.3, Chapter 2). While the simple dissipative model and our data
share qualitative similarities, our observations suggest that the relaxation
tapers off, or has a more complicated phase dependence, with no value of β

satisfactorily fitting the data. A concrete, physical explanation of relaxation
behaviour is warranted, and constitutes an outstanding problem in spinor
condensate physics.

A number of other experimental works have encountered similar relax-
ation/equilibration effects, albeit over longer timescales (up to a second or
more) in both 23Na and 87Rb [51, 66, 68]. Our observations are distinguished
from others by the timescale on which relaxation occurs; namely, relaxation
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is obvious after ∼ 10 ms and essentially over by 100 ms. No two experiments
are identical, with trapping geometry, atom number and magnetic environ-
ments differing considerably between the experiments of other groups and
our own. For both sodium and rubidium the effect is characterised by relax-
ation to the mean-field ground state, and thus indicative of an environmental
factor, rather than some intrinsic characteristic of the atomic species such
as dipolar effects or ferro/antiferromagnetic interactions. Perhaps the most
distinguishing feature of our system are the comparatively high ambient
field gradients, 10-20 mG/cm: in Ref. [141] the gradient is claimed to be
minimised to less than 0.1 mG/cm, with relaxation occurring over several
seconds. The results discussed later in this Chapter also further implicate
magnetic field gradients as agents contributing to relaxation behaviour. In
general, the behaviour of spinor BECs in magnetic field gradients remains
a somewhat experimentally unexplored research area with scant documen-
tation, and thorough, concerted efforts in this direction may elucidate the
mechanism for equilibrium relaxation.

In addition to the relaxation behaviour described above, the oscillation
amplitude is observed to decay. For fields far away from the separatrix, the
amplitude of spin-mixing oscillations depends primarily on the magnitude
of c and the period on q. Increasing q reduces the period of oscillations
and also reduces the amplitude, whereas increasing (reducing) c increases
(reduces) the amplitude of oscillations, with little effect on the period (Figure
2.5). Since c is weakly dependent on atom number (∝ N

2
5 ) and the trapping

potential is assumed to remain constant over the course of an experiment (we
observe insignificant atom loss over typical spin-mixing times), any reduction
in spin-mixing oscillation amplitude is due to either

• Increasing q; or

• Reduced spatial overlap due to component separation.

The latter can be understood by noting that c ∝
∫

dr |ΦSMA(r)|4, with the
SMA assuming φmF(r) = ΦSMA(r). Component separation inherently in-
validates this assumption. In the case of a changing q, we note that the
period appears to be roughly constant, perhaps slightly increasing with time,
indicating that q is either constant or decreasing, which is incongruent with
the observed amplitude decay.

Another possible explanation may lie in the presence of thermal (non-
condensed) atoms. Among the early experiments on spinor BEC performed
by the group of Sengstock and Bongs, their first observations of spin-mixing
oscillations exhibited both damping and drift towards increasing ρ0 [44].
Their experiments were performed using a cloud with a significant non-
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condensed fraction; bi-modal fitting of the density distributions showed the
thermal component does not exhibit spin-mixing oscillations, but instead
drifts towards an equipartition distribution [44]. Typically only one period of
oscillation could be resolved. Although the results later described in Sections
5.2.1 and 5.2.2 are highly indicative that the cause of relaxation and damping
is not due to thermal effects, we occasionally detect the presence of a small
thermal component in our spinor BECs that may have deleterious effects.
Typically, this thermal fraction is very small, and experiments studying
relaxation with varied thermal fractions show no clear dependence on the
fraction of thermal atoms.

5.2 Eliminating gradient dephasing

Magnetic field gradients are the prime candidates for the underlying cause
of both drift and damping. The most obvious effects are the mechanical
forces on the | ± 1〉 components that drive component separation. Gradients
also result in a spatially varying magnetisation across the BEC, so that the
mean-field ground states include spin domains [14]. We hypothesise that the
spatial separation is responsible for damping of the spin-mixing oscillations.
The drifting mF = 0 population may be due to gradient-driven relaxation
towards the mean-field ground state.

Whatever the mechanisms at work, it is reasonable to posit field gradients
as the cause of the problems. In order to eliminate them, we need to apply
cancelling gradients with magnetic field coils or current-carrying bars. This
is no simple undertaking, as the coil geometry required depends on the
gradients to be cancelled: only diagonal gradients ∂Bxi /∂xi could be cancelled
by imbalancing the currents in the existing bias coils. Component separation
provides a useful metric for determining the magnitude and direction of the
predominant gradient, but can be misleading due to the imaging integration
direction being oblique to the condensate’s elongated axis.

A brute force approach could be used, whereby we apply different bias
coil current imbalances and use an atomic metric (spin-mixing amplitude
or component separation at ∼ 50 ms, for example, or width of a microwave
frequency-domain Rabi spectrum) to diagnose the nulling procedure, but this
is highly indirect and adding diagonal gradients does not affect off-diagonal
gradient terms ∂Bi/∂xj, with i 6= j. In the case of Ref. [141], three anti-
Helmholtz coils combined with their dispersive optical probing technique
(that directly determines the spatial variation of the Larmor frequency) were
able to reduce the background field inhomogeneity to < 0.1 mG/cm. Our
early attempts to minimise component separation with applied gradients
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proved largely fruitless, but the findings of Section 5.4 may shed some light
on why.

In Chapter 6 of this thesis, we describe a high precision interferometric
measurement – using spinor BECs as magnetometers – that measures the en-
tire magnetic field gradient tensor. Once the whole gradient tensor is known,
the total field inhomogeneity can be reduced substantially by changing the
direction of the bias field alone, which effectively picks out different terms
of the gradient tensor, as discussed in Section 6.7.1 of Chapter 6. Before
setting out to measure the gradient tensor, we developed a promising scheme
that uses radiofrequency spin-echo pulses to counteract deleterious gradient
dephasing.

The scheme is essentially a simple spin-echo pulse sequence used in
nuclear magnetic resonance experiments [142]: a π/2-pulse initiates spin-
mixing, and after a given time we apply an rf π-pulse that swaps the popu-
lations and phases in the | ± 1〉 states. Prior to the π-pulse, gradients drive
component separation; applying the π-pulse effectively reverses the sign of
the gradient and hence the component separation is also reversed, as shown
in Figure 5.4. For this reason, we also refer to a π-pulse used in this manner
as a refocusing pulse. Since the magnetisation, ρ0, and θ before and after the
π-pulse are assumed to be the same, the coherent collisional process (Eq.
2.29) and thus spin-mixing dynamics are unaffected by the π-pulse. Earlier
work described the use of spin-echo pulses to revive coherence in thermal
mixtures of atoms in different hyperfine states [143, 144]. In these works,
spatial inhomogeneity of the differential scalar light shift results in broaden-
ing of microwave hyperfine transitions, an effect discussed in more detail in
Chapter 7. Spin-echo pulses have also been used to rephase interferometric
contrast in a pseudospin-1/2 condensed Ramsey interferometer [145], where
mean-field dephasing driven by interactions has deleterious effects similar to
that of gradients in our system.

In theory, we could prolong the gradient-mitigating effect of this scheme
by applying a sequence of refocusing pulses, reminiscent of Carr-Purcell
(CP) [146] and Carr-Purcell-Meiboom-Gill (CPMG) [147] pulse sequences.
Provided the cumulative error of refocusing pulses is kept small, it is foresee-
able that such a scheme could mitigate the effects of magnetic field gradients
entirely.
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Figure 5.4: Spin-echo pulses to eliminate gradient dephasing. Immediately
following preparation of the ρi = ( 1
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4 ), θ = 0 state, gradient magnetic
fields exert opposite forces on the magnetically sensitive states, causing
spatial separation. Defining the rephasing time TR, a π-pulse is applied at
TR/2, effectively swapping the populations in the mF = ±1 states. The gra-
dient force now acts to "reassemble" the components, leading to rephasing
of the overall spin. Reducing component separation is expected to eliminate
the observed damping of spin-mixing oscillations.

5.2.1 Single π-pulses

To begin with, we apply a single π-pulse after a time TR/2 of evolution.1

Several factors must be considered that affect the fidelity of the refocusing
pulse, which is assumed to map Fz(r) → −Fz(r) and leave ρ0 and the
overall spinor phase θ unchanged. Any imperfection in the pulse amplitude,
frequency or phase will result imperfect refocusing and different population
distributions, confounding the observation of spin-mixing oscillations.

The most important contributing factor is the magnetic field strength
at the time of the pulse: this determines the instantaneous detuning of the
pulse, and is determined primarily by the 50 Hz mains power (AC line)
variation. Synchronising to the AC line (as described in Section 4.4.1) only
partially alleviates this, as the π-pulse is then restricted to be applied when
BAC(t = TR) = BAC(t = 0), i.e. at odd integer multiples of the AC line period.
The effect of magnetic field fluctuations can be reduced by using stronger
rf coupling. Increasing the rf Rabi frequency reduces the requisite time for
the pulses and in turn makes the pulses less susceptible to small detuning
fluctuations due to power broadening.

Initial experiments had mixed results. These experiments utilised the

1By convention, we define the time at which the first pulse is applied as TR/2, with
refocusing occurring at TR, subsequent pulses are spaced in time by TR.
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semi-isotropic (SI) trap, where component separation due to gradients is
unambiguously present, and thus suppression of these effects provides a
useful metric for determining the success of the scheme. Refocusing pulses
were applied at evolution times TR/2 < 20 ms at several different quadratic
shifts. We did observe the desired preservation of a common spatial mode
structure of the different spin components, but also observed the onset of
‘noise’ on both Fz and ρ0, presumably due to pulse imperfections.

We refer to the ρ0(t) and Fz(t) data as noisy in the sense that the values of
these quantities after the refocusing pulses were highly variable shot-to-shot,
even for fixed evolution times, indicating that some random process is at work.
This is of some importance, and contrary to expectations commensurate with
our efforts to ensure pulse reproducibility. The observation of this noise
led to much investigation into possible causes of the irreproducibility. The
results of this suggested that shot-to-shot pulse amplitude, frequency, and
phase variation were not significant, and thus unable to account for the post-
refocusing onset of noise. Issues with the phase behaviour of the PulseBlaster
DDS (used as the primary rf source for these earlier experiments) were
identified, but did not appear to correlate to the observed (ρ0, Fz) fluctuations.

Without any clear spin-mixing metric to refer to in the semi-isotropic
trap we began implementing refocusing pulses in the elongated trap, where
spin-mixing oscillations are higher amplitude. We observed much of the
same ‘noise’ for certain times when π-pulses were applied in the SI trap.
Figure 5.5 shows the onset of noise on both ρ0 and Fz immediately after
the application of a π-pulse at 10 ms free evolution time. Before uncovering
the source of this noise, we experimented with increasing the refocusing
time. The first hint of success came from a single refocusing pulse applied
at TR/2 = 30 ms to a spinor BEC in the elongated trap, with a microwave
dressing field (Section 4.5) applied to give q/2π ∼ −17 Hz, as shown in
Figure 5.6. Such a case is interesting: for q < 0 the observed drift is towards
lower ρ0, consistent with relaxation to the mean-field ground state for q < 0.
As well as resolving two clear oscillations not present in the data without
refocusing pulses, the drift towards lower ρ0 is arrested, strongly indicating
that gradients are the underlying cause of this behaviour.

5.2.2 Multiple spin echo pulses

As is evident from Figure 5.6, a single refocusing pulse is shown to reduce
damping and relaxation of the spin-mixing oscillations. However, a single
pulse is not sufficient to ensure gradient-free evolution over several hundreds
of ms. We then turned our attention to applying multiple pulses, using a
fixed bias field of Bx = 727 mG for all experiments to this end. Although
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Figure 5.5: Noise on spin-mixing observables ρ0 and Fz after the application
of a refocusing pulse. Shown are ρ0 and the magnetisation (Fz) during free
evolution at a bias field of 727 mG for the semi-isotropic trap (left, top) and
the elongated trap (right, top). Applying a refocusing pulse at TR/2 = 10 ms
immediately induces strong shot-to-shot variations (‘noise’) on both ρ0 and
Fz for both traps (bottom). The origin of this effect is discussed in Section
5.3. In the bottom two datasets, a second refocusing pulse was applied at
T = 30 ms (as part of other experiments). It is clear however that the onset
of noise after the first pulse is severe, and unrelated to pulse errors, which
are negligible in comparison.

the previous example utilised microwave dressing fields to attain q < 0, we
stress that there is no reason to expect general behaviour in this regime to
be dissimilar from a positive q from a bias field alone. Gradients still act to
drive component separation and relaxation. Initially, it was intended that
a large (∼ 1 G) bias field would be applied, for optimum response of the
rf amplifier (originally the 10 W Delta RF la10-1-525-40) and hence highest
possible Rabi frequency. Microwaves would then be used to dress the system,
and achieve values of q where spin-mixing oscillations were high-amplitude.
Dressing to q/2π = −17 Hz from q/2π = 38 Hz is essentially a step in this
direction. The behaviour of spinor condensates at negative quadratic shifts
has also recently been characterised [68].

Improvements to the trap load and state-preparation allowed us to focus
on the q/2π = 38 Hz case, without applied microwave dressing fields to
increase the amplitude of oscillations. The PulseBlaster rf source was replaced
with the RFBlaster DDS and the amplifier with the MiniCircuits lzy-22+, a
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Figure 5.6: Rephasing of spin-mixing oscillations using a spin-echo pulse. A
microwave dressing field is applied that creates an effective q/2π = −17 Hz,
the observed spin-mixing oscillations are reminiscent of earlier results:
damping of oscillation amplitude and relaxation (towards lower ρ0 in this
case, consistent with mean-field theory for q < 0). Applying a π-pulse at
TR/2 = 30 ms reverses the deleterious gradient-induced dephasing, and
resolves at least two further oscillations as well as arresting the relaxation
towards lower ρ0 population.

low-frequency optimised multi-turn rf coil was added specifically for low
field state preparation, as described in Chapter 4. The source of noise on
Fz and ρ0 at short refocusing times encountered previously (Figure 5.5) was
assumed to be from detuning noise; the new rf setup was capable of rf Rabi
frequencies of greater than 100 kHz. However, the noise remained. Even with
large, 100 kHz Rabi frequencies we still observed significant variation of Fz

and ρ0 after a refocusing pulse applied 5-10 ms after the initial π/2-pulse.
Indeed, at such high Rabi frequencies the fidelity of π/2-pulses seemed to
exhibit fluctuation2, ultimately we reduced the rf drive power to achieve Rabi
frequencies on the order of Ωrf ∼ 2π × 50 kHz, a modest improvement over
the original configuration, which at best yielded Ωrf ∼ 2π × 30 kHz. The
source of the noise on refocusing pulses at short times remained a mystery.
Before determining the source of this noise, we were able to find a regime
where for certain refocusing times, the pulse fidelity was satisfactory.

An example of applying multiple refocusing pulses is shown in Figure

2This was no doubt due to coarse sampling of Rabi oscillations and effects beyond the
RWA, as discussed in Section 5.3.
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Figure 5.7: Rephasing of spin-mixing oscillations with multiple π-pulses.
Pulses are applied every 50 ms, with the first pulse at TR/2 = 25 ms. At
least six further oscillation maxima are unambiguously resolved, and the
relaxation towards higher ρ0 evident in the bare data (centre panel) is
arrested. The lower panel shows the behaviour of the magnetisation, Fz: a
small residual negative magnetisation is due to imperfect state preparation,
refocusing pulses flip this to positive and back again. The onset of noise is
evident after subsequent pulses, which originates from cumulative pulse
errors.

5.7. The first π-pulse is applied at TR/2 = 25 ms, with subsequent pulses
separated by TR = 50 ms. Spin-mixing oscillations are resolved well past
100 ms, in contrast to the case where no π-pulses are applied. The small
negative magnetisation in the data is due to miscalibration of the π/2-pulse
duration: as discussed in Section 5.3, for our pulse parameters, the rotating
wave approximation is not valid, and so the pulse duration for a π/2-pulse,
Tπ/2 6= Tπ/2. Since we had used a preparation pulse duration of half the
measured π-pulse duration Tπ, we were consistently failing to prepare Fz = 0,
but very reproducibly so. Here the residual negative magnetisation provides
a convenient metric for the reproducibility of our refocusing pulses; the
π-pulse inverts it to a small positive magnetisation, confirming that the pulse
duration is accurate, and quite reproducible. A small increase in the spread
of points is apparent by the second and third pulses, evidence of cumulative
noise from pulse errors.

We also performed identical experiments on BECs with Fz ≈ 0, by em-
pirically changing the pulse duration to achieve Fz = 0, as shown in Figure
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Figure 5.8: Multiple-pulse refocusing with zero magnetisation. Although
the magnetisation is optimised to be zero, no major differences are observed
between this the data shown in Figure 5.7. Around T = 40 ms, distortion to
the spin-mixing oscillations is clearly apparent after refocusing pulses have
been applied.

5.8, with very similar results. Although encouraging, our results also pose
some questions. For instance, why does an inter-pulse time of TR = 50 ms
‘work’, when shorter inter-pulse times resulted in the onset of noise (Figure
5.5), which seemed inconsistent with detuning fluctuations or pulse errors?
A number of reproducibility issues also arose, with the quality of rephasing
varying for repeated shots as well as day-to-day.

We therefore return to considering component separation, and the ef-
fects refocusing pulses have on the centre-of-mass motion of each Zeeman
state. Figure 5.9 shows component separation data (fitted centroids exhibit-
ing relative motion) for the corresponding spin-mixing results (with and
without π-pulses) shown in Figure 5.7. A number of features are immedi-
ately apparent; the most obvious of which is the centre-of-mass separation
before the application of the first π-pulse. The initial centre-of-mass motion
is vastly different for the two datasets; indeed the separation directions
are opposite. This suggests a form of irreproducibility, and is consistent
with a time-dependent gradient that drifts over the course of one or two
experimental runs (10-15 minutes).

Before we consider the consequences of this rather disappointing finding,
we address a few general observations. For example, the maximum sepa-
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ration reached after the application of the first refocusing pulse is ∼ 30µm,
and during the period where spin mixing is unambiguously preserved by
refocusing pulses, the two components appear to periodically move apart
and rephase. For the bare case with no refocusing pulses, the centroids
diverge away from each other. The former observation somewhat confirms
our expectation that spatial component overlap of the spin components is
necessary to preserve coherent spin-mixing, but also points to a more detailed
mechanism at work – the component overlap is by no means constant in
time. Also, shown in Figure 5.10 are Stern-Gerlach absorption images of the
BEC immediately before and after the application of the π-pulse at 75 ms for
the data shown in Figure 5.7, showing exactly the behaviour depicted in the
simple schematic of Figure 5.4.

5.3 Refocusing pulse fidelity

To determine how the irreproducible component separation illustrated in
Figure 5.9 affects the preservation of spin-mixing oscillations with refocusing
pulses, we first need to uncover why the fidelity of the refocusing pulses is
dependent on the time the pulse is applied. This is important: a time varying
gradient means that the optimum rephasing time will vary shot-to-shot.

It is not immediately clear why applying π-pulses with TR = 50 ms seems
to work. The fidelity of refocusing pulses was highly dependent on TR: at
short inter-pulse times, such as TR = 10 ms (first pulse at 5 ms) we observed
significant shot-to-shot variation of Fz and ρ0, whereas at longer TR we
observed successful rephasing and no noise on either quantity. For multiple
refocusing pulses such as that depicted in Figure 5.7, we observed very
little cumulative pulse error. For π-pulses applied after TR/2 = 30 ms, we
observed no rephasing of spin-mixing oscillations. The observation of noise
at short TR is particularly concerning: as encouraging as the results discussed
earlier are, the success of the scheme hinges on being able to mitigate gradient
dephasing at the earliest possible time, before the components have a chance
to separate, i.e. we desire TR/2� 2π/ωtrap.

5.3.1 Radiofrequency coupling beyond the rotating-wave

approximation

Such observations may not be able to be explained with the simplistic consid-
eration of the rf coupling scheme described in Chapter 4. Given the tenuous
validity of the RWA for the refocusing pulse experiments, we investigated the
possibility that the observations of ρ0 and Fz variability were due to effects be-
yond the RWA. In order to reduce the effect of detuning errors on pulses, we
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Figure 5.9: Component separation (after time of flight) as measured by
centre-of-mass dynamics of each spin component; without (top) and with
(bottom) applied refocusing pulses. The irreproducibility between the two
experiments is clearly apparent, as the fitted centroid displacement before the
application of the π-pulse is markedly different, the components actually
separate in different directions. At the time refocusing pulses are applied,
we can clearly see that they swap the positions of the mF = ±1 components.
The coloured points around the 75 ms mark refer to the absorption images
shown in Figure 5.10.
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just after π pulse 

-1 +10 T = 73.5 ms
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Figure 5.10: Stern-Gerlach absorption images of the BEC before (top) and
after (bottom) the application of a π-pulse. It is clearly seen that the pulses
effectively swap the mF = ±1 populations, as described in the simple
schematic of Figure 5.4.

use high rf powers with Rabi frequencies ranging from between 50-100 kHz
at Larmor frequencies of ∼ 500 kHz, so that we typically have ωL/Ωrf ∼ 5-10.
The RWA is only valid when Ωrf � ωL; in which case rapidly oscillating
terms ωrf + ωL average to zero over the shortest timescale of the system, i.e.
(Ωrf)

−1. Any effects of rf coupling not explained by the simple RWA model
in Chapter 4 may be contributing to the observed refocusing pulse variability.

We first consider the solution to the Schrödinger equation for the three
component spinor ψ(t) = (ψ−1(t), ψ0(t), ψ+1(t))t for a π/2-pulse at t = 0.
Spin collisions and spatial dynamics are neglected in this analysis, where
we focus purely on the rf coupling scheme, for which the dynamics are on a
much faster timescale. We write:

ih̄ψ′(t) = Hrfψ(t) (5.4)

With the coupling matrix

Hrf = h̄

 ωL
√

2Ωrf sin(ωrft + φrf) 0√
2Ωrf sin(ωrft + φrf) −q

√
2Ωrf sin(ωrft + φrf)

0
√

2Ωrf sin(ωrft + φrf) −ωL


(5.5)

the Hamiltonian for spin-1 rf coupling in the stationary laboratory frame
without the RWA applied3; ωL is the Larmor precession frequency, q the
quadratic shift, ωrf the rf frequency, Ωrf the Rabi frequency and φrf the pulse
phase. The operators for a π- and π/2-pulse applied at time t0 are denoted
by Uπ, Uπ/2 and correspond to application of Hrf a duration Tπ = π/Ωrf and
Tπ/2 = π/2Ωrf respectively: UTi = exp

(
−i
∫ t0+Ti

t0
Hrf(t)/h̄

)
.

3The spin-1 rf coupling Hamiltonian within the RWA is Eq. 4.6.
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We see evidence of the breakdown of the RWA in simple Rabi flopping
experiments. On top of the familiar temporal oscillations of Fz from which
we determine the Rabi frequency, there is a lower amplitude, high-frequency
modulation at ∼ 2 ωL. When ωL/Ωrf ∼ 10, as in our experiments, this effect
becomes substantial. A Rabi oscillation sampled coarsely in time appears
noisy, but when densely sampled reveals a higher frequency component, as
shown in Figure 5.11. Overlaid with the data in Figure 5.11 is the solution
to Equation 5.4, with ψ(t = 0) = (1, 0, 0)t. The solution uses our known
experimental parameters ωL = 2π × 527.4 kHz and Ωrf = 2π × 51.3 kHz –
the only free parameter is due to saturation effects associated with measuring
optically thick clouds, which causes |Fz| near unity to be underestimated. It
pays to mention that Fz(Tπ/2) 6= 0, where the pulse duration (Rabi frequency)
is measured by fitting to multiple complete oscillation periods. Radiofre-
quency coupling beyond the RWA is accurately described by such theory,
and we can thus consider what effects violating the RWA has on the fidelity
of refocusing pulses.

5.3.2 Sensitivity of refocusing pulses to Larmor phase

We consider the full sequence for a refocusing pulse experiment. The free
evolution operator from the time immediately after the π/2-pulse for a time
TR/2 when π-pulse is applied is written as Ufree = e−iHrf(Ωrf→0)TR/2h̄, so that
the state immediately after the refocusing pulse can be written as

ψ f = Uπ Ufree Uπ/2ψi. (5.6)

We now proceed to compare the numerical evaluation of Eq. 5.6 at
different π-pulse application times, TR/2. It suffices to consider the state
vector immediately after the π-pulse, without the second period of free
evolution (i.e. during which the refocusing would occur). To emulate the
residual shot-to-shot variation of magnetic field,4 we compute final wave
functions ψ f for a range of small perturbations of the Larmor frequency.
These perturbations δωL ∼ 2π× 100 Hz are indeed small, and do not hamper
the fidelity of a π inversion pulse (π-pulse applied to pure mF = −1 state) or
π/2-pulse for our Rabi frequencies. However, during the free evolution time
of the refocusing pulse sequence, the Larmor phase in the stationary laboratory
frame φL = (ωL + δωL)T increases linearly with the time T. This is analogous
to Ramsey interferometry: the second π/2-pulse of the Ramsey sequence
converts the relative phase (ωrf − ωL)T to a relative population difference.

4Even with AC line synchronisation, small field fluctuations on the order of 0.1 mG from
other sources still exist. We quantify this noise in Section 6.5.1.
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Figure 5.11: Time-domain Rabi oscillations beyond the rotating wave
approximation (RWA), (a) over the course of an entire Rabi period and (b)
specifically in the region of a π/2-pulse. When ωL is no longer� Ωrf, the
effects of the counter-rotating term neglected in the RWA become apparent,
leading to modulation of time-domain Rabi oscillations at ωrf + ωL. The
experimental parameters are ωL = 2π× 527.4 kHz and Ωrf = 2π× 51.3 kHz.
The solid line corresponds to the solution for Equation 5.4 using the known
Larmor frequency, with a correction imposed to account for saturation
effects at high optical depths. Many complete Rabi periods are used to
determine Ωrf, which we use to define Tπ/2 = π/2Ωrf = 4.869µs; notably
Fz(Tπ/2) 6= 0 as a result of the high frequency modulation.

The small detunings δωL scramble the fringe phase for long Ramsey times,
as mentioned in Section 4.5.

In the Bloch sphere representation (Figure 4.3), the Larmor phase after free
evolution is the azimuthal phase of the Bloch vector. The Larmor frequency
variations δωL originating from magnetic field fluctuations are sampled shot-
to-shot in the case of our experiment. These variations are then amplified
by the free evolution time T and give rise to Bloch vectors with substantially
different azimuthal phases φL that are then acted on by a refocusing pulse.
Since each shot of the experiment samples the instantaneous magnetic field
strength the moment the π-pulse is applied, the spread of Larmor frequencies
sampled in the following analysis corresponds to a series of experimental
shots, each randomly sampling one of the Larmor perturbations. For typical
magnetic noise of order 100µG, the spread of Larmor frequencies is ∼ 70 Hz,
the spread of Larmor phases at T = 5 ms is on the order of π.

Figure 5.12 shows the simulated spin projection Fz and ρ0 during a
refocusing pulse, at evolution times TR/2 of 5 ms and 15 ms. Each coloured
curve corresponds to a different Larmor phase, and the fast modulation of
each is a consequence of the counter-rotating ωrf + ωL term included in the
Hamiltonian. While other results, such as that in Figure 5.11 showed that a π-
or π/2-pulse applied to the pure state Fz = −1 is exceptionally reproducible,
the fidelity of a π-pulse applied to the Fz = 0 state after free evolution is
inherently dependent on the Larmor phase. Since the Larmor phase changes
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with free evolution time T, the outcome of the refocusing pulse depends on
the time after the π/2-pulse, and since the Larmor phase sampled each run is
essentially random, the outcome of a refocusing pulse observed shot-to-shot
appears noisy.

We now explain why this is the case. The relative phase between the
radiofrequency field and Larmor-precessing spin determine the axis about
which the pulse rotates the spin – this is why changing the phase of the
second π/2-pulse Ramsey interferometry results in fringes (Section 4.2).
Within the RWA, the outcome of a resonant refocusing pulse of duration Tπ

applied to an equatorial spin with any azimuthal phase will always be Fz = 0.
However, when the RWA is no longer valid, the non-negligible ωrf + ωL

modulation of the spin trajectory apparent in Figure 5.11 renders the same
resonant refocusing pulse intrinsically sensitive to the Larmor phase φL. The
phase of the modulation of the spin trajectory (the Larmor phase) therefore determines
the outcome of a refocusing pulse.

A spin-1/2 system exhibits much of the same behaviour for the spin pro-
jection Fz, and allows us to use the Bloch sphere directly to visualise the spin
vector evolution; a similar depiction of the ρ0 evolution is less obvious with
the Bloch sphere. The evolution of the Bloch vector for an inversion pulse and
refocusing pulses applied to equatorial spins with different azimuthal phases
are shown in Figure 5.13. In the case of Figure 5.13, the Rabi frequency is
scaled to unity, and the ratio ωL/Ωrf = 10 corresponds to typical parameters
used in refocusing pulse experiments. Depending on the initial azimuthal
phase of the Bloch vector, a resonant refocusing pulse maps the vector to
Fz 6= 0, i.e above or below the equator.

The free evolution time at which the refocusing pulse is applied corre-
sponds to ΩrfT = 5000, roughly T = 16 ms for Ωrf = 2π × 50 kHz as used
in experiments. The ‘rippling’ of time-domain Rabi oscillations apparent in
Figure 5.11 can be clearly seen; for higher Larmor frequencies, the helical
pitch of the Bloch vector’s trajectory is small and so the modulation of Rabi
oscillations is faster, and of lower amplitude. Consequentially, any deviation
above or below the equator (which maps to a non-zero Fz) is minimal, in
contrast to that observed in Figure 5.13.

Were Ωrf � ωL, the refocusing pulse would no longer be dependent on
atomic phase and the effects described previously would be absent. However,
the pulse fidelity would suffer from conventional magnetic detuning noise,
since reducing Ωrf reduces its power-broadening effect and fidelity would
inevitably be variable shot-to-shot as well. Increasing ωL whilst keeping Ωrf

high comes with the caveat of high quadratic Zeeman shifts, which suppress
spinor collisions. In principle, strong off-resonant microwave dressing fields
could be used to reduce q, making the scheme feasible at high Larmor
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Figure 5.12: Larmor phase sensitivity of refocusing pulses on Fz (top) and
ρ0 (bottom) after TR/2 = 5 ms (left) and 15 ms free evolution times (right).
The time axis is the duration of the pulse, which takes place after a π/2-
pulse and free evolution for 5 or 15 ms. Each coloured curve corresponds
to a different Larmor phase δωL, spread over ±100 Hz in 10 Hz increments,
which originates from magnetic noise not synchronous with the AC line.
Arrows denote the π-pulse duration, Tπ = 2π/(2Ωrf). Unlike π-pulses
applied to pure states (Fz = −1), refocusing pulses applied to the Fz = 0
superposition are sensitive to the Larmor phase: for a fixed π-pulse duration,
sampling of individual Larmor phases shot-to-shot leads to an inherent
variability in the outcome for both ρ0 and Fz (inset). Each curve can then
be regarded as an instantaneous magnetic field strength, which is then
randomly sampled by each iteration of the experiment, even with line
synchronisation. As the Larmor phase is dependent on free evolution time,
the time at which the π-pulse is applied determines the fidelity.

frequencies.

Returning to numerical solutions of the spin-1 system, we can plot the
variation of both Fz and ρ0 after different evolution times by sampling a
range of Larmor phases from a distribution of width σ(ωL)T (with σ(ωL) =

±2π × 100 Hz). We then compute the standard deviation of the resulting
distribution of Fz and ρ0 immediately after the π-pulse. Figure 5.14 shows
the standard deviation of Fz and ρ0 as a function of the time at which the
π-pulse is applied.

The predictions of Figure 5.14 are confirmed experimentally by observing
the shot-to-shot fluctuations in ρ0 and Fz at different times. At T = 6.6 ms,
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Inversion π-pulse, ω/Ω = 10 

Refocusing π-pulse, δ = 0, T = 5000/2π 

Refocusing π-pulse, δ  = 2 x 10-4

initial spin vector �nal vector rf coupling (t = 0)

Figure 5.13: Inversion and refocusing pulses outside the validity of the
RWA depicted on the Bloch sphere. In the RWA, the Bloch sphere rotates at
the rf coupling frequency, and so resonant spin rotations execute lines of
constant latitude about the sphere around the axis of the rf coupling field.
Including the counter-rotating term in the coupling Hamiltonian (in the
stationary frame) shows that during an inversion π-pulse (top) the Bloch
vector executes a spherical spiral; the pitch of this spiral (which is vanish-
ingly small for ωL � Ωrf) is responsible for the ‘rippling’ of time-domain
Rabi oscillations (Figure 5.11). For refocusing pulses (middle and lower
frames), the azimuthal phase (Larmor phase) of the Bloch vector is different
shot-to-shot due to small magnetic detuning perturbations amplified by
long free-evolution times. Due to violation of the RWA, the atomic phase
determines the fidelity of the refocusing pulses, resulting in Fz 6= 0 above
or below the equator after a resonant refocusing pulse. The complicated
trajectories shown in the middle and lower frames correspond to individual
coloured curves in Figure 5.12.
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Figure 5.14: Simulated sensitivity of refocusing pulse fidelity to Larmor
phase variations as a function of time at which the pulse is applied (TR/2).
Each point in this plot corresponds to a simulation of the refocusing pulse
sequence, calculating the standard deviation of Fz and ρ0 after a fixed
pulse duration; i.e. the area shown in the inset of Figure 5.12, with ωL =
2π× 527.4 kHz, Ωrf = 2π× 51.3 kHz, q = 2π× 38 Hz and 20 Larmor phases
sampled over the range (±2π × 100 Hz)T at each time. The uncertainty
in Fz after a refocusing pulse is in quadrature with that of ρ0, i.e. there
are times at which a refocusing pulse is minimally perturbative to Fz and
near-maximally perturbative to ρ0, and vice versa.
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Figure 5.15: Onset of noise on ρ0 (left) and Fz (right) from applying a π-
pulse at TR/2 = 6.6 ms (maximum δρ0, minimum δFz) and TR/2 = 13.2 ms
(minimum δρ0, maximum δFz). The observed shot-to-shot variations are
concordant with the predictions of Figure 5.14.

variation in Fz is maximum and ρ0 minimum, whereas for T = 13.2 ms
the case is reversed, with maximal Fz variations and minimum ρ0 noise.
The results are shown in Figure 5.15. We observe noise on one or the
other quantity, in concordance with Figure 5.14. The variation of Fz is
minimised at the points where the transverse spin length vanishes (due to
the quadratic shift, 1/(4 q) = 6.6 ms), and variation of ρ0 is minimsed at
points in between. This appears to be an insurmountable difficulty for the
success of the scheme: we can never minimise the fluctuations in Fz and ρ0

simultaneously, particularly at short inter-pulse times.

In Figure 5.7, with a π-pulse applied at TR/2 = 25 ms, we observed
refocusing and minimal variation of ρ0 and Fz. While the discussion in this
Section explains why refocusing pulses applied at short evolution times
exhibit noise, it does not account for the fact that refocusing pulses at longer
times (25 ms and greater) do not: based on Figure 5.14, the variation of Fz

should be near maximal at this point. The solution to this conundrum lies
in effect we seek to mitigate – gradient dephasing. To best explain this, we
return to Ramsey interferometry.

5.3.3 Gradient dephasing

Ramsey interferometry provides a direct method for quantifying the timescale
on which gradient dephasing takes place. Gradients cause the contrast of
Ramsey fringes to decay with evolution time: the Larmor frequency varies
across the BEC, so that spins in different locations precess faster or slower.
During the free-evolution stage of Ramsey interferometry, we can best view
this as a group of vectors precessing at different rates around the equator of
the Bloch sphere (Figure 4.4), with the contrast steadily decreasing until the
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individual spin vectors are distributed isotropically around the Bloch sphere
equator, at which point the overall contrast (vector sum) vanishes. We can
express this mathematically by determining the time at which the spread of
Larmor frequencies equates to 2π of relative phase,

τ =
2π

2RTF,z′γB′
(5.7)

with RTF,z′ the largest (z′) Thomas-Fermi radius of the BEC (38.8µm), γ

the gyromagnetic ratio (2π × 702 kHz/G) and B′ the field gradient. This
dephasing time τ is not equal to the time it takes the contrast to vanish, due
to the inhomogeneous density profile of the BEC, but provides a meaningful
characteristic timescale for dephasing. We then consider Ramsey fringes
obtained over 30 ms in the elongated trap at the same bias field Bx = 727 mG,
as shown in Figure 5.16. The contrast of Ramsey fringes, which is essentially
the overall transverse spin length, is amplitude modulated by the quadratic
Zeeman shift. Including the effects of gradient dephasing, the Ramsey fringes
take the form

Fz = cos(∆t) cos(qt) e−(
t
τ )

2

, (5.8)

so that at t = τ, the amplitude of Ramsey fringes has dropped to e−1 of the
maximum value. In the nomenclature of NMR experiments this is roughly
equivalent to the inhomogeneous broadening time, T∗2 , although this quantity
in our case is dependent only on the background gradient strength as intrinsic
dephasing mechanisms (dipolar relaxation) are weak. The data in Figure
5.16 has been overlaid with a gradient dephasing envelope, with τ = 12.5 ms,
from which we infer a field gradient of B′ ≈ 14.7 mG/cm. We note that after
T = 20 ms, the Ramsey contrast has all but vanished, which corresponds
to the typical times at which we have applied refocusing pulses without
inducing noise on either ρ0 or Fz and observed successful rephasing.

Recall that Figure 5.14 suggests that at typical refocusing pulse times
of 25 ms we should observe shot-to-shot irreproducibility, when our exper-
imental observations did not. Now we consider how gradient dephasing
affects the sensitivity of refocusing pulses to Larmor phase. We can visualise
this directly with the aid of the Bloch sphere and Figure 5.12. Consider
the results of Figure 5.12, which are valid for a single atom subject to a
small perturbation of the Larmor phase, and the resulting Fz sampled with
each shot: each shot randomly samples a different coloured curve, and the
outcome of each refocusing pulse varies.

In a uniform magnetic field, all spatial locations in the BEC experience
the same overall Larmor perturbation due to magnetic field noise, and the
overall spin (i.e. the vector sum of the constituent Bloch vectors) has the
same azimuthal phase when the refocusing pulse is applied. This can be
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Figure 5.16: Time domain spin-1 Ramsey interference fringes. Shot-to-shot
magnetic field fluctuations on the order of 0.1 mG quickly scramble the
Larmor phase and hence fringe phase, but the quadratic Zeeman amplitude
modulation and gradient-induced dephasing envelope remain obvious. The
gradient dephasing envelope is approximated as Gaussian by Eq. 5.8, with
τ = 12.5 ms. After T = 20 ms, the fringe contrast is essentially zero.

represented by a single one of the coloured curves in Figure 5.12. After
the refocusing pulse, the resultant spin (of the whole BEC) varies shot-to-
shot. A BEC in a magnetic field gradient is composed of many spin vectors,
precessing at different rates in different locations. Each spatial region of the
condensate, and eventually every atom, is a Bloch vector with a different
azimuthal phase: for long enough evolution time the azimuthal phases of the
spin ensemble are isotropically distributed around the equator of the Bloch
sphere. Now, the entire range of coloured curves in Figure 5.12 are sampled
in a single shot by the BEC, and the resultant net variation out averaged out.
This is why refocusing pulses work at longer evolution times.

In much the same way as the quadratic shift is responsible for the refo-
cusing pulse noise on Fz being in quadrature with that of ρ0, it is apparent
that gradient dephasing is an effect common to each, and destroys the co-
herent effects responsible for shot-to-shot variation of refocusing pulses at
short evolution times. The effect of spatial spin dephasing on spin-mixing
oscillations also remains something of a mystery, as spin-mixing oscillations
take place for some time after the Ramsey contrast has vanished (Figure 5.1),
and somewhat unexpectedly, even when Fz exhibits strong variation (Figure
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5.15, right).

The overriding result is that the optimum time to apply a refocusing pulse
is dependent on the strength of the gradient. As we have seen (Figure 5.9),
we have a gradient that varies run-to-run. It is clear therefore that without
rectifying the drifting gradient, refocusing pulses are limited in effectiveness.

Sometime after the wrap-up of work on refocusing pulses, we became
aware of work from the group of Takuya Hirano in Tokyo applying very
similar techniques to F = 2 spinor BECs of 87Rb [148]. This work focused on
stabilising centre-of-mass motion of the magnetically sensitive components (a
spin current) and preventing spin-mixing collisions at comparable magnetic
field gradients of ∼ 15 mG/cm. The origin of a possible gradient-induced
momentum manifesting as an effective quadratic Zeeman shift is described,
although our results are largely at odds with the time varying quadratic
shift they posit. Data from Ref. [148] shows refocusing pulses applied at
10 ms intervals, with negligible perturbation of spin component populations.
The authors also draw attention to the role of spin-mixing collisions on
the fidelity of refocusing pulses, and consider them inherently detrimental,
although our results suggest that this is not the case in general. A more
thorough interpretation of these results, specifically for F = 1 with a detailed
comparison with our own results is warranted.

5.4 The presence of vector light shifts

With the optimum π-pulse timing dependent on the magnitude of the gra-
dient, a time varying gradient poses a serious problem. Figure 5.9 suggests
that exactly such a time-dependent gradient exists. We therefore devoted
considerable effort into tracking down its origin. It was not difficult to deduce
that the time variation of the gradient was related to the experimental duty
cycle: after ∼ 15 min of continued operation, highly reproducible centroid
separations were obtained. However, this is not a solution to the problem
and constitutes an unsustainable way to run the experiment; especially given
the tendency of the RFBlaster DDS devices to unpredictably crash requiring
manual rebooting that interrupts contiguous shot execution.

We began a process of exclusion testing, where we would run the exper-
iment for 10 min with one of the suspect devices deactivated: quadrupole
driver, bias coils, and finally dipole trap AOMs, and then perform centroid
separation experiments immediately after reactivating the device. This al-
lowed the suspect device to remain in a ‘cold state’ during the time when
the remainder of the experiment ‘warmed up’, and when reactivated for the
centroid measurements would exhibit the trademark drift, allowing for easy
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identification of the culprit.

The problem was localised to the dipole trap, specifically the thermal
transients of the AOMs. This came as something of a surprise: photodiodes
monitoring the dipole beam power showed no evidence of power drift, nor
did the position of the condensate vary in trap, either of which would be
red flags for the AOMs, which are well known to exhibit thermal drifts
in diffraction efficiency and pointing direction. After some deduction we
concluded that the thermal cycling of the AOMs was inducing a drifting
polarisation anomaly in the dipole beams, which resulted in a time-dependent
vector light shift (VLS).

The AC Stark shift imposed by the high power, off-resonant dipole beams
forms a spin-state independent trapping potential provided the trapping
light is linearly polarised; a VLS constitutes an effective Zeeman potential, or
fictitious magnetic field [19, 149, 150]. The strength of the VLS is proportional
to the intensity of the light, and since gravitational sag displaces the trap
minimum (BEC position) from the intensity maximum of the light, the atoms
additionally experience a gradient of the VLS. For a 0.1 mG VLS field at the
peak intensity of the beam, typical gravitational sag of 10µm results in the
atoms sampling a 8 mG/cm gradient for a polarisation imperfection of a few
degrees and our trapping beam parameters (see Section 7.1.1 of Chapter 7).

The full details about the nature of the VLS and our steps to eliminate
it can be found in Chapter 7 of this thesis. Needless to say, optimising
the π-pulse refocusing scheme with such an experimental systematic as a
time-varying VLS gradient was essentially futile. We thus devoted our efforts
to a series of experiments to characterise the magnetic gradient landscape
our spinor BEC exists in, and developed a high-precision interferometric
tensor gradiometer to this end, discussed in the following Chapter. We return
to the theme of spinor dynamics in the presence of gradients in both these
Chapters, with encouraging results.

5.5 Conclusions

In so many ways, our work in spin-mixing dynamics is largely unfinished.
Questions remain unsolved: pressingly the origin of the observed drift of
ρ0 population at positive and negative values of q, and if this is a result of
magnetic field gradients. Although we have speculated on the solutions to
these questions in this thesis, more experimental data is needed to confirm
any deduction. This reflects a general lack of detailed work in this area, and
something that we feel requires thorough investigation.

Much time was spent pursuing the initial aims of this thesis, to control
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spin-mixing collisions using dressing fields, the collated results of which
could fill a standalone chapter of this thesis, at the expense of brevity. Indeed,
it was after all the experimental difficulties had been identified and solved
(Chapters 6 and 7) that the opportunity to pursue our coherent control ideas
during the course of my candidature had all but expired. In Chapter 7, we
had the opportunity to revisit spin mixing: we considered the effect of a
vector-light shift gradient on an evolving spinor BEC, where the magnetic
field gradient is minimised to below 6 mG/cm by applying a bias field in a
particular direction (using the results described in Section 6.7.1). Under these
conditions, we are able to observe coherent spin mixing to almost one second
of evolution time, that tantalisingly retains the features of drifting mF = 0
population and damping. The Chapters of this thesis that follow describe the
means by which we characterise, measure and where possible eliminate the
dephasing mechanisms we suffered during the investigations described in
this Chapter.
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This Chapter describes our experiments using spinor BECs as ultra-small
volume precision magnetic gradiometers. Our experiments to observe spin-
mixing oscillations in the previous Chapter were largely thwarted by the
presence of magnetic field gradients, we thus set out to perform the definitive
characterisation of the magnetic landscape the BEC inhabits. As well as
measuring field gradients for the purposes of eliminating them for future
work with spin-mixing oscillations, the results of this Chapter further advance
the use of spinor BECs as precision magnetic sensors.

The spatial extent of a magnetic sensor is an important characteristic
that determines its sensitivity and applicability. Large sensors such as warm
vapour magnetometers [30] are the most sensitive available, with sensitivities
per unit bandwidth of order fT Hz−1/2. However, the spatial interrogation
region of order cm3 is too large to precisely map out magnetic fields from
microscopic biomagnetic or surface-science samples. Other sensors, which
have considerably smaller sensor volumes, such as nitrogen-vacancy (NV)
centre probes [34, 151] have comparatively modest sensitivities. Obtaining
high field sensitivity in a microscopic sensing volume is an experimental
challenge.

We have developed a magnetic gradiometer that measures the gradient
of all the vector components of the magnetic field in all spatial directions.
Formed from a pair of BECs, the spatial volume of the detector is only
2× 10−5 mm and it operates with a sensitivity of around 360 pT Hz−1/2. With
plausible improvements to the technique, sensitivities 500 times better could
be obtained.

6.1 Introduction

The more information we can extract from a magnetic field measurement,
the more we can know about a sample veiled by the diffraction limit of

123
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light [152] or buried beneath the surface of the earth, waiting to explode [153].
Measuring the magnetic field of the brain provides high temporal resolution
insights into the fundamental processes of cognition [154].

The most sensitive magnetometers today are atomic magnetometers, using
warm atomic vapours. Atomic vapour magnetometers detect small rotations
of optical polarisation due to magnetic fields in an spin-polarised atomic
gas. There are several comprehensive reviews on the subject, the reader is
directed to Refs. [20, 155] for a more detailed exposition. The most sensitive
warm vapour magnetometers operate in the spin-exchange relaxation free
(SERF) regime with field sensitivities of better than 1 fT Hz−1/2 [30, 156].

It is not just the strength of the magnetic field that is important; magnetic
fields in nature change on length scales generally the size of the magnetic
source. Broadly speaking, the most appropriate sensor for measuring such
variation is also comparable to the size of the source. Measuring the variation
of magnetic fields on the microscopic scale therefore demands equally micro-
scopic sensors. In the case of atomic magnetometers, a challenge arises in
obtaining high sensitivities within small sensor volumes: the atomic density
must be increased to mitigate the decrease in atom number associated with
lower volumes.

In warm vapour magnetometers, miniaturisation is not trivial – the vapour
cell itself must be shrunk to the length scale of interest. Microfabricated
vapour cells [31] attain fT Hz−1/2 sensitivities in sensing volumes of 1 mm3,
but this is still too large to be used on the micro- or nanoscale. The smallest
sensors to date are based on microfabricated SQUIDs [32] and NV-centres
in diamond [33, 151, 155]. Although typically operating with sensitivities far
below that of SERF warm vapour magnetometers, recent proposals suggest
comparable sensitivities are possible [157].

What magnetic fields could we measure on the microscale? Consider,
for example, the magnetic field of a single 87Rb Bose-Einstein condensate.
A 106 atom spin-polarised BEC is equivalent to a single magnetic dipole,
with |µ| = 106(µB/2). The magnetic field 50µm from the condensate, along
the quantisation axis, is 7 pT. Although such fields are readily detectable by
existing sensors, a sensor on the same scale as a BEC with high sensitivity is
not quite so trivially obtained, much less implemented in vacuum. A BEC
itself is one such sensor.

BECs and cold atoms have been heralded as precision magnetometers for
much of their existence. The reason is high spatial resolution: cold atoms
can be trapped on length scales of microns, and have long coherence times,
meaning similarly long measurement times are possible to partially offset the
loss in sensitivity from lower atom numbers. The increasing sophistication
of optical trapping potentials allows for myriad spatial configurations of
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ultracold and condensed atoms, allowing for novel microscale magnetic
sensing configurations. Additionally, ultracold atoms offer calibration-free
magnetic measurements in terms of well known fundamental constants. In
warm atom vapour magnetometers, spin exchange relaxation collisions result
in short coherence times; only by making the Larmor precession frequency
much smaller than the collision rate (i.e. at low magnetic fields) can extremely
high sensitivities be reached. Spin relaxation is largely absent in ultracold
systems in their lowest hyperfine ground state (such as F = 1 87Rb), so there
is no need for magnetic shielding to reach long interrogation times. Ultracold
atomic magnetometers can be used in comparatively high magnetic fields,
making them appropriate for real-world magnetic sensing.

BECs offer higher densities within a smaller sensing volume than ultra-
cold thermal atoms. Although collisional shifts [158] are problematic for
condensed clouds and have somewhat precluded their implementation as
high-precision sensors, spinor BECs are unaffected by hyperfine collisional
shifts [10] . Single-component BECs were first employed as magnetometers
by observing how the density of a spatially elongated condensate varies
due to the added potential of the magnetic field to be measured [9]. Spinor
gases are a more direct magnetic field probe. Vengalattore et al. [10] made
the most significant contribution to spinor BEC magnetometry to date by
producing high-resolution spatial maps of the condensate magnetisation by
imaging with a dispersive optical probe. The sensitivity of their technique
(8.3 pT Hz−1/2) was comparable to SQUID probes operating with comparable
spatial resolution.

The primary means of extracting magnetic information from atomic
samples – warm, ultracold and condensed – has been dispersive optical
probes. In this scheme, the atomic polarisability rotates the linear polarisation
of the light in the presence of the magnetic field through the Faraday effect.
Faraday probing of thermal atoms in optical dipole traps has been used
for magnetometry [11, 159–162], obtaining nT to pT Hz−1/2 sensitivity over
spatial regions of 10-100µm. Optical probing offers time-resolution within
a single measurement,1 but contends with photon shot noise and in some
cases, perturbative effects on the trapped atoms from scalar and vector AC
Stark shifts.

6.1.1 Tensor magnetometry

Measuring the variation of the total magnetic field strength in a microscopic
region is often not enough. The magnetic field is a vector quantity, and so

1In contrast to shot-based projective measurements, such as rf spectroscopy and Ramsey
interferometry.
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a determination of the vector components of the magnetic field is a more
incisive measurement. The vector components of the magnetic field vary
separately in space as well. In total, there are nine magnetic field gradient
terms, forming the magnetic field gradient tensor

Gij = ∂Bi/∂xj (6.1)

for field components Bi ∈
{

Bx, By, Bz
}

along directions xj ∈ {x, y, z}. Maxwell’s
laws for magnetic fields in a vacuum, specifically Gauss’s law for magnetic
fields2 ∇ · B = 0 and Ampere’s law ∇× B = 0 restrict the number of in-
dependent gradient terms to five. In order to measure the components of
the gradient tensor, a tensor magnetometer must be sensitive to the variation
of all vector components across at least two spatial directions. Tensor gra-
dient magnetometers have to date been macroscopic devices – employing
SQUID [163–165] or fluxgate [166, 167] sensors – primarily applicable to
geophysics and ordinance detection [168]. Tensor gradiometers make use of
Maxwell’s laws to infer the complete tensor from as few as five independent
gradient terms [163, 166, 167, 169, 170].

What are the benefits of a tensor measurement? The primary example
is the localisation of magnetic source distributions: the gradient tensor at a
single point in space determines the bearing, normalized source-strength,
and orientation of a single magnetic dipole source [171]. Complex real-world
magnetic source distributions are more readily inferred from arrays of tensor
measurements than from total magnetic field measurements [172, 173].

Knowledge of the full gradient tensor also confers numerous advantages
to experiments with spinor condensates. As we have discussed in Chapter 5,
the presence of magnetic field gradients is a serious problem for experiments
with spinor BECs, leading to component separation and suppression of spin-
mixing collisions. As we shall see later in this Chapter, knowing is half the
battle – once the gradient tensor has been determined, the field gradients
can be reduced by simply changing the orientation of the magnetic bias field
to a predicted minimising direction. Also, additional cancellation coils can
be tailored to cancel specific gradient terms, and applied inhomogeneous
magnetic fields can be precisely characterised by the atoms themselves.

The remainder of this Chapter is devoted to our realisation of an ultra-
small spatial volume, high sensitivity tensor gradiometer using spinor BECs.
In Section 6.2 we present basic magnetic relations that underlie the operation
of our gradiometer. Section 6.3 follows with a discussion of differential Ram-
sey interferometry (DRI), the scheme that allows us to measure the difference
in Larmor frequencies between nearby spins, an essential requirement for

2Also called the ‘no magnetic monopoles’ relation.
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gradiometry. The apparatus layout and experimental procedure are detailed
in Section 6.4 and the results of a measurement of the background field gra-
dient tensor are presented in Section 6.6. A number of systematics limit our
sensitivity; the most pressing of which is the presence of vector light shifts
in the trapping beams which serve to limit the interferometric interrogation
time. With realistic modifications detailed in Section 6.8, our technique could
attain substantially higher sensitivities on the order of 600 fT Hz−1/2.

6.2 Magnetic field gradiometry

A scalar magnetometer measures the total magnetic field strength at a given
point in space

B(r) ≡ |B(r)| =
√

Bx(r)2 + By(r)2 + Bz(r)2. (6.2)

A measurement of the magnetic field strength at two different points in space
r1, r2 can then be used to approximate the magnetic field gradient for static
magnetic fields across small enough baselines r1 − r2

B(r1)− B(r2) ≈ (∇B(r)r=r12) · (r1 − r2) , (6.3)

where the gradient is evaluated at the midpoint r12 = (r1 + r2)/2 of the
separation vector. The gradients of the total field strength take the form

∂B
∂xi

=
Bx

B
∂Bx

∂xi
+

By

B
∂By

∂xi
+

Bz

B
∂Bz

∂xi
. (6.4)

where we have suppressed the dependence of all scalar fields on r. We
identify an important result, that underlies the vector sensitivity of this
scheme: to achieve vector magnetic field sensitivity along a given direction, a
bias field large compared to the two other orthogonal directions is applied.
Specifically, to measure only gradients of the x-oriented component of the
magnetic field, cancellation fields are applied along y and z, leaving a
magnetic field with |Bx| �

∣∣By
∣∣ , |Bz|. Sensitivity to specific components

of the gradient tensor is then achieved by changing the orientation of the
separation vector between the two sensors. For example, if the two sensors
are aligned along the x axis, separated by ∆x, and a By bias is applied, the
measured gradient is well approximated by

Finite difference︷ ︸︸ ︷
∆B
∆x
≈ ︸ ︷︷ ︸
|By|�|Bx |,|Bz|

∂B
∂x
≈

|By|≈|B|︷ ︸︸ ︷
≈ sign(By)

∂By

∂x
By

B
∂By

∂x
≈ sign(By)

∂By

∂x
(6.5)
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where the braces denote the separate approximations used and ∆B is the raw
field difference measured by the two sensors. In order to measure the whole
gradient tensor, three fields in orthogonal directions and two orthogonal
separation directions are needed.3 This configuration emulates commercially
available tensor gradiometers based on SQUIDs [174]. As a SQUID is coupled
to an inductive pickup loop in these designs (i.e. a coil normal to x only
detects Bx), it is intrinsically vector sensitive and additional bias fields are
not required.

In addition to providing vector sensitivity to a gradiometer, bias fields
may be applied that pick out the smallest gradient of total field strength.
Once the gradient tensor has been measured, linear algebra can determine
the lowest possible gradient achievable without adding additional counter-
gradients, we discuss this in more detail in Section 6.7.1. Applying only
a single gradient then augments carefully chosen uniform bias fields to
eliminate the gradient entirely.

6.3 Differential Ramsey interferometry

We now discuss the sensors themselves. Our tensor gradiometer uses a pair
of spinor BECs to measure the difference in magnetic field strength across a
dynamically reconfigurable baseline. We determine the difference in Larmor
frequency using radiofrequency (rf) differential Ramsey interferometry (DRI),
which simultaneously addresses the pair of BECs, each of which can be
considered an independent, spin-1 Ramsey interferometer. The wavelength
of the rf is much greater than the separation between the BECs and the
Larmor frequency difference much smaller than the rf Rabi frequency; the
BECs are thus simultaneously addressed by effectively the same rf pulse. The
difference in the phase acquired by each interferometer ∆φ is proportional
to the magnetic field difference between the two condensates, and is thus
immune to common-mode magnetic field noise. The pair of BECs can be
aligned along two near-orthogonal axes, and bias magnetic fields may be
applied along three orthogonal directions, allowing us to reconstruct the
entire magnetic field gradient tensor.

The techniques used to prepare a pair of BECs separated along a particular
axis will be discussed in Section 6.4. Recall that in Section 4.2 we introduced
Ramsey interferometry for a spin-1 system, and that spin-1 Ramsey fringes
in the rotating wave approximation take the form

Fz = cos(qT) cos(∆T), (6.6)

3Or vice-versa – in general, it is easier to apply three orthogonal fields than to span all
three separation directions in a typical BEC experiment.
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with T the Ramsey interrogation time. For two spin-1 interferometers at
positions x1 and x2 sampling a magnetic field difference ∆B = |B1| − |B2| 6=
0, the Ramsey fringes from one interferometer will be faster than that of
the other. Assuming that q(B1) ≈ q(B2) = q, the fringes are written as
F(1)

z = cos(qT)cos(φ1), F(2)
z = cos(qT)cos(φ2), with φ1, 2 = ωrf − γB1, 2, γ the

gyromagnetic ratio and ωrf is the π/2-pulse frequency. Defining the relative
phase

∆φ = φ2 − φ1, (6.7)

the magnetic field difference is related to the relative phase by

∆φ = γ ∆B T. (6.8)

Combining Equations 6.5 and 6.8, DRI can be used to measure the com-
ponents of the magnetic field gradient tensor, for example

∂By

∂x
≈ sign(By)

1
γ ∆x

∆φ

T
, (6.9)

for a bias field in the y-direction and the two interferometers aligned along
the x-axis, separated by ∆x.

The relative phase can be extracted by comparing the Ramsey fringes from
the two interferometers. The precision with which Ramsey interferometry can
be used to infer ∆φ improves linearly with interrogation time, and for a spinor
BEC the Zeeman coherence time of order seconds does not limit the attainable
precision [35]. We will discuss this more when we consider the sensitivity
analysis of our system and prospective extensions in more detail (Section
6.8). As we shall see in Section 6.4 the scrambling of the absolute phase φi

from each interferometer by common-mode field fluctuations necessitates a
more sophisticated data analysis procedure than simply fitting sinusoids to
the fringes from each interferometer.

The principle advantage DRI offers in simultaneous interrogation of
the two interferometers is rejection of common-mode field fluctuations and
variations in imaging efficiency. A related experiment measuring field gra-
dients using simultaneous interrogation of two atomic fountains (where
the interfered states have different momentum) was presented in Ref. [175].
Simultaneous interrogation renders the gradiometer insensitive to the bulk
of AC magnetic field noise in the lab, assuming the sources are far away
from the atoms compared to the separation baseline. Static field gradients
can then be measured in a comparatively noisy magnetic environment. The
gradiometer could attain AC field gradient sensitivity by the inclusion of
spin-echo pulses [176].

As well as measuring components of the gradient tensor, the gradiome-
ter can also be operated as a more conventional magnetometer, with the
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gradiometer configuration eliminating common mode noise [177]. In this ‘co-
magnetometer’ configuration, the spatial variation of magnetic field strength
can be mapped by scanning the position of one BEC in the vicinity of a small
magnetic source while keeping the other ‘reference’ BEC fixed. We return
to this concept in Section 6.8, where we discuss the sensitivity limits of a
prospective gradiometer.

6.4 Making two BECs

We produce two BECs by making a three-beam crossed optical dipole trap.
Our standard dipole trap is modified by the inclusion of a second rf frequency
into one of the AOMs that control the position and intensity of the dipole
beams. The two radiofrequency signals are combined using a Minicircuits
zf-sc-2-4-s+ splitter combiner and fed into the same rf amplifier. This con-
figuration is mirrored on the other dipole beam, so that either beam may be
independently split. The frequency difference between the two signals being
combined is typically initiated at around 6 MHz – for splitting frequencies of
3 MHz or less, strong heating effects are observed in the trap.

The frequency of the AOM drive determines the pointing of the diffracted
order, smoothly changing this frequency allows the trap position to be
smoothly translated. To produce two BECs, we split a single dipole beam
by about 100µm, creating two crossed-beam dipole traps, and run our usual
BEC experimental sequence (Section 3.9.4), resulting in cold atoms loaded
into into two traps, which are then evaporated to BEC by reducing the power
in both diffracted orders from the AOM. We then implement a transfer stage,
where the separation between the two traps is smoothly increased over 2 s. A
schematic illustration of the setup is shown in Figure 6.1.

Instead of using two rf sources to split a single trapping beam, one DDS
may be programmed to quickly ‘hop’ between two (or more) frequencies,
which has been used by the Kjaergaard group (Otago) for similar multi-well
trapping potentials [178]. We initially experimented with this procedure and
found that attaining a two-beam trap in this way was difficult, as it required
a single trap to be smoothly deformed into two. In contrast to the simplicity
of adding rf frequencies via a combiner, the ‘hopping’ method also requires
very fast switching rates (∼ 100 kHz) between frequencies to prevent heating
of the condensate. This proved difficult to implement with a single RFBlaster
DDS.

As described in Section 3.9, the two dipole beams define axes x′ and z′,
and the two BECs are separated along one of these axes. For the purposes
of gradiometry, the largest possible separation is desirable to maximise the
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Figure 6.1: Diagram of the experimental setup (a). The gradiometer spans
a spatial baseline given by ∆x′ (b) or ∆z′ (c) in the horizontal plane (gravity
along −ŷ) by translating the pair of condensates in opposite directions along
one of the dipole beams, which are oriented at ∼ 45◦ to the magnetic bias
field axes, x, z. This translation is achieved by feeding a second rf frequency
into the AOMs that control the position and amplitude of the dipole beams.
Note that in this Chapter, we have taken for the positive direction of the
x′-axis the opposite to that in Figure 3.15 and that used in Chapter 7, where
the propagation direction of the beam defines positive x′.

measured phase difference for a given gradient (Eq. 6.8). The maximum sep-
aration distance is limited largely by the diffraction bandwidth of the AOMs.
Larger deviations from the centre frequency of 110 MHz are demanded for
larger beam displacement, more rf power is required to maintain sufficient
intensity to trap the atoms against gravity.

The baselines spanned by the gradiometer are along x′ and z′, but our
magnetic axes are defined by the orientation of the magnetic bias coils,
which are along x, y, and z. We must therefore measure gradients in the
(x′, y, z′) coordinate system and transform these to the (x, y, z) frame. We
calibrated the splitting of each dipole beam using a combination of side
and top absorption images, through which we are able to determine the
angle between the two beams and the baseline spanned for a given frequency
difference of the two-tone AOM drive. Figure 6.2 shows absorption images of
the BECs in the split configurations at the maximum achievable separations.

The (x′, y, z′) coordinate system is related to the (x, y, z) coordinate system
by the following transformation:

x̂′ = sin θx′z x̂ + cos θx′z ẑ (6.10)

ẑ′ = − sin θz′z x̂ + cos θz′z ẑ (6.11)
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Figure 6.2: False colour absorption images after 2 ms drop (from the top
imaging camera, looking down on the x′-z′ plane) of the two BECs split
along the x′ and z′ directions.

with θx′,z = 43.2(1)◦ the angle the x′-axis makes to the z-axis, and θz′,z =

45.0(6)◦ the angle the z′ axis makes to the z axis. The two approximately
orthogonal baselines are not centred at the same point in space, largely
due to asymmetric AOM diffraction bandwidths. Splitting the x′-dipole
beam yields a separation baseline ∆z′, and splitting the z′ beam spans a
baseline ∆x′. The x′ beam splitting was determined to be ∆z′ = 28.3(1)µm
per MHz of frequency difference between the diffracted beams, with a
maximum separation of ∆z′max = 847(3)µm. The z′ beam splitting was
found to be quite asymmetric, with each beam x′0, x′1 having a different
separation calibration: ∆x′0 = 19.8(1)µm/MHz and ∆x′1 = 22.9(1)µm/MHz.
The maximum separation along the x′ axis is ∆x′max = 686(4)µm. More
details on the transformation between primed and un-primed coordinates
can be found in Section 6.6.3 of this Chapter.

As the frequency of the rf drive to the AOMs is changed, the diffraction
efficiency also changes. The AOMs (Crystal Technologies 3110-197 units)
are anti-reflection coated for 1064 nm light and have a centre frequency of
110 MHz, although we find optimum diffraction efficiency at 101.1 MHz.
During the frequency ramp that extends the gradiometer baseline from the
initial value of 100µm to the maximum ∆x′ or ∆z′, we ramp up the rf power
to compensate for the reduced diffraction efficiency. The transfer stage is
optimised for equal atom number in each BEC, typically we have 5× 104

to 1× 105 atoms in each trap. The interferometry sequence is performed in
freefall, as discussed in the following Sections, to prevent the contributions
to the measured gradient from vector light shifts. Differences in the beam
powers at the end of the transfer ramp would lead to different vector light
shifts are thus not an issue, rendering in-depth characterisation of the final
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optical powers unnecessary.

6.5 Differential interferometry

Once the pair of BECs has been translated to the maximum baseline sepa-
ration, we initiate freefall Ramsey interferometry. To make the gradiometer
sensitive to only spatial variations of magnetic field, we must extinguish all
the trapping light, which eliminates the contribution of vector light shifts
from the trapping beams, which plagued spinor dynamics experiments in
Chapter 5. This also eliminates the systematics caused by time variation of
the VLS shift. This simple solution is not without limitations. The maximum
Ramsey interrogation time, and hence ultimate precision, is limited to a
few milliseconds to prevent significant movement of the atoms through the
interrogation region. After 3 ms of freefall interrogation time, the BEC has
fallen 44µm, about four Thomas-Fermi radii. This in turn increases the
effective sensor volume: the sensing volume is now that which is swept out
by a falling, expanding BEC. For the immediate application of measuring the
background gradient tensor, where |∂Bi/∂xj|min ≈ 1-2 mG/cm, we are not
limited by either sensor volume or operating precision.

In order to measure a magnetic field difference, we perform DRI on the
falling BECs, which begins 100µs after the trapping light is switched off. The
fringes from each interferometer take the form

F(1)
z = cos(qT) cos([∆1 + δ∆]T + ϕ) (6.12)

F(2)
z = cos(qT) cos([∆2 + δ∆]T + ϕ) (6.13)

where ∆1 and ∆2 are the detuning from resonance due to the magnetic field
difference between the two BECs, ϕ is the phase of the second π/2-pulse and
δ∆ is a common-mode field fluctuation due to AC magnetic fields or shot-
to-shot drift of the background magnetic field. Varying the pulse phase ϕ

over 2π traces out phase-domain Ramsey fringes, and for short interrogation
times where the product δ∆ is small they are clearly sinusoidal, as shown
in Figure 6.3. At longer interrogation times the absolute fringe phase is
scrambled by the common-mode fluctuations δ∆. The relative phase (Eq. 6.8)
however, is preserved. Plotting the output from one interferometer against
the other parametrically yields an ellipse – this has been known for some
time by the gravity gradiometry community, who use exactly this method to
eliminate common-mode baseline movement [179, 180]. As shown in Figure
6.3, there is negligible degradation of the plotted ellipse with interrogation
time.
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Figure 6.3: Common-mode rejection using ellipse fitting. Top: Phase
domain Ramsey fringes at 100µs (left) and 3 ms (right) Ramsey interrogation
times. Common mode magnetic noise scrambles the absolute phase of the
fringes from each interferometer, but a parametric plot of the outputs of
one interferometer against another yields an ellipse (bottom). The relative
phase, and hence magnetic field difference, between the two interferometers
can the be determined by fitting an ellipse to the lower plots.

To determine the relative phase from such a plot, we fit an ellipse to the
parametric dataset. The general form of a conic is

ax2 + bxy + cy2 + dx + ey + f = 0, (6.14)

with an ellipse satisfying b2 − 4ac < 0. The relative phase ∆φ satisfies [179]

cos ∆φ =

(
b

2
√

ac

)
. (6.15)

Note that the ∆φ reported from an ellipse at some interrogation time T may
be aliased, this must be accounted for when determining the actual magnetic
field difference.

We use the widely cited method of Fitzgibbon et al. [181] to perform least-
squares direct fitting of ellipses.4 The uncertainty in the fitted relative phase

4Ellipse fitting is a very active field of research, least squares fitting of ellipses is non-trivial
due to the constraint b2 − 4ac < 0.
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is not trivial. At short interrogation times, the entire ellipse is uniformly
sampled in roughly 12 experimental shots (pulse phases ϕ), but at longer
evolution times, this is generally not the case, with one or more axes of the
ellipse sparsely sampled, this results in a poor estimate of ∆φ that is not
necessarily reflected in the reported uncertainty.

Although not a significant issue for T = 3 ms interrogation times, for the
measurements in Chapter 7, where T = 15 ms it is significant. We initiated a
collaboration with Zygmunt Szpak (in the group of Wojciech Chojnacki) at
the University of Adelaide with the aim of using their fitting procedures [182]
to report accurate uncertainties in the relative phase. Our own testing of this
method (using simulated data drawn from randomly sampled distributions of
phase noise, amplitude noise, etc.) indicated that the reported fit uncertainty
in ∆φ depends only on the number of points sampled on each ellipse, and
the specified uncertainty of each point (i.e. the uncertainty in each measured
Fz, typically 0.4%). The uncertainty in ∆φ did not depend on the scatter of
data (i.e. the width of the sample distributions) and as such is typically an
underestimate of the error in the fit, although for uniformly sampled ellipses
it is expected to be valid. More details on this can be found in Section 7.6.5
of Chapter 7.

6.5.1 Common-mode rejection

We can quantify the common-mode rejection of the gradiometer by observing
the onset of phase noise with Ramsey time for each interferometer. For
short Ramsey times, perturbations to the Larmor frequency from shot-to-
shot magnetic field fluctuations – ‘Larmor noise’, σ(ωL) – result in small
deviations to the fringe phase, δφ = σ(ωL)T and in turn the measured spin
projection Fz. The scatter of many repeated measurements of Fz at the mid-
fringe point could thus be used to infer the magnitude of the Larmor noise.
At longer Ramsey times though, the small Larmor noise is amplified, and
can result in more than π of fringe phase shift (σ(Fz) = 1). The uncertainty
in Fz should thus increase linearly with Ramsey time before saturating to
σ(Fz) = 1. The true phase noise keeps increasing linearly with interrogation
time, however, a consequence of circular statistics [183].

To determine the amplitude of the common-mode noise, we measure the
standard deviation of Fz after a Ramsey sequence for one of the BECs from
15 repeated shots at two different phases (separated by 90◦)

σ̄(Fz) =
√

σ(Fz(φ))2 + σ(Fz(φ + 90◦))2 (6.16)

and use this to determine the underlying ‘mid-fringe’ standard deviation.
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Measuring in quadrature ensures that we retain sensitivity to phase noise
even if one of the interferometers is at the fringe extrema, where for short
Ramsey times δFz is smaller. Figure 6.4 shows the results of this measurement
as well as the fitted phase noise derived using numerical simulations of the
quadrature noise sampling. The fitted function σ(Fz) = f (σ(ωL)T) is an
interpolation of phase noise estimates from 15 samples at each π/2-pulse
phase (30 per Ramsey time) as a function of numerically simulated phase
noise, σ(ωL)T. The Larmor noise σ(ωL) is the only free parameter used
to fit the numerical model to the data. After only 1 ms the phase noise
has almost reached π rad, indicating the common-mode magnetic noise is
significant, and that direct fitting of the phase domain fringes is impossible.
The fitted Larmor frequency noise is equal to σ(ωL) = 2π × 191(13)Hz (or
δB = 271(18)µG), and at T = 3 ms corresponds to a phase uncertainty of
∼ 3.6 rad.

The uncertainty in relative phase, which measures noise that is not
common-mode in the two condensates is extracted from typical ellipse fits
and determined primarily by the uncertainty in Fz. From repeated Stern-
Gerlach absorption images of a condensate immediately after a π/2-pulse
we are able to determine σ(Fz) ≈ 0.007, which is ∼ 3 times the standard
quantum limit for 1× 105 F = 1 atoms. Since the atomic shot noise of each in-
terferometer is uncorrelated, the relative phase uncertainty is approximately
σ(∆φ) ≈ 2× 7 mrad, and the common mode rejection ratio (CMRR) for our
gradiometer operating at T = 3 ms is 20 log10

3.6
2×7 mrad ∼ 50 dB.5

6.6 Measuring magnetic field gradients

Using Equation 6.5, it is enough to know the relative phase ∆φ at a given
Ramsey time and the separation baseline (∆x′ or ∆z′) to determine the
magnitude of the gradient. A magnetic field biases the gradiometer to be
sensitive to only certain vector components of the field gradient: we use
the components of the background magnetic field as the bias, cancelling the
field in the two other directions with applied fields. We will discuss the
implications of this more in Section 6.6.2.

Although the relative phase linearly increases with Ramsey time, aliasing
of the measured phase must be taken into account. For this reason, we make
a relative phase measurement at five different Ramsey times to determine the
true phase. Figure 6.5 shows a measurement of a gradient dBy/dz′ at Ramsey
times of 0.1 to 3 ms as well as the corresponding phase-unwrapping process,

5Since the phases considered in this calculation are effectively amplitudes of the mag-
netic field, the CMRR is given by 20 log10

Bc-m
Bdiff.

, with Bc-m and Bdiff. the common-mode and
differential magnetic field noise.
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Figure 6.4: Measurement of phase noise onset in each interferom-
eter with Ramsey time. Each data point corresponds to σ̄(Fz) =√

σ(Fz(φ))2 + σ(Fz(φ + 90◦))2 from 15 repeated shots at two different
phases separated by 90◦. Error bars are calculated from δσ̄(Fz) = σ(Fz)/

√
30.

Overlaid is a fitted interpolation function derived from numerical simula-
tions of the quadrature phase sampling technique (dashed lines indicate
one standard deviation from the mean of the fit line relating the spin pro-
jection fluctuations to the interrogation time via σ̄(Fz)) = f (σ(ωL)T). The
discrepancy between the numerical model and the data at longer Ramsey
times is due to quadratic Zeeman induced loss of contrast underestimat-
ing the maximum values of Fz in a measurement: all points have been
approximately corrected based on the QZE contrast, which limits the max-
imum range of σ(Fz) at longer Ramsey times. The fitted phase noise is
σ(ωL) = 2π × 191(13)Hz.

which resolves the apparent similarity of the ellipses at T = 0.1 and 3 ms.
The transformation between primed and un-primed coordinate systems is
described in Section 6.6.3. The measured gradient is −5.33(3)mG/cm: we
can determine the sign of the gradient by looking at phase domain fringes at
short interrogation times: faster fringes correspond to higher amplitude of B,
so one fringe leads the other (Figure 6.3, left).

We determine the magnetic field gradient from the slope of the linear fit in
plots such as that in Figure 6.5 using Eq. 6.9. Doing so aids the measurement
of the field gradient and assists the phase unwrapping, but also includes
contributions from systematic errors due to the increasing drop time. We
determine a nominal precision of 30µG/cm in the measured gradient from
the uncertainty in the slope ∆B = 1

γ
d∆φ
dT reported from such a fit. This
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Figure 6.5: Measurement of magnetic field gradients. The relative phase
∆φ is extracted from each ellipse, and plotted as a function of Ramsey time.
Varying the Ramsey interrogation time accounts for aliasing – each ellipse
is marked with a coloured pointer to indicate the phase-unwrapped value
shown on the right of the plot.

method requires 60 iterations of the experiment to measure a single gradient.
However, we stress that once the approximate un-aliased relative phase is
known, substantially better precision is possible by fixing the interrogation
time at the longest possible duration and measuring gradients at higher duty
cycles. We discuss this more in Section 6.8.

6.6.1 Applied gradients: tensor sensitivity

The tensor sensitivity of our gradiometer hinges on two features. These are
the ability to selectively measure field gradients by applying bias fields that
render the gradiometer sensitive to gradients of one only field component
and the ability to span baselines to discern gradients across a particular
spatial direction. Due to the dipole beam axes being 45◦ rotated from the
magnetic field axes, we are required to measure two gradients in the x′, z′

basis to measure a single x, y, z gradient. Ensuring that only single field
component gradients are measured amounts to ensuring that only that one
field component is large compared to the other two.

Let us take a concrete example. The gradiometer is spanning a baseline
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Figure 6.6: Measurement of an applied gradient, created by driving a
current imbalance across the z-bias coils. We measure gradients with two
different bias fields: a z-bias makes the gradiometer maximally sensitive to
gradients ∂Bz/∂xi, including the applied gradient, and a y-bias that renders
it insensitive to the applied gradient. The observed insensitivity of the
y−biased measurements to the applied gradient quantifies the precision
with which we can bias the gradiometer along that direction.

xi and field-biased along y, rendering it sensitive to only ∂By/∂xi gradients.
A large ∂Bz/∂z gradient is applied by driving a current imbalance ∆I across
the z-bias coils, no change should be detected in the measured field gradients
with a y-bias. Driving a current difference across the z-coils creates primarily
a ∂Bz/∂z gradient, as well as two other diagonal terms that satisfy Gauss’s
law ∇ · B = 0: all of the applied gradients can be eliminated from the mea-
surement by y-bias choice (eliminating ∂Bx/∂x, ∂Bz/∂z) and baseline configu-
ration (eliminating ∂By/∂y). Figure 6.6 shows the result of this measurement,
with a y−bias and a z−bias applied to the gradiometer in the presence of
an applied gradient measured to be ∂Bz/∂z = 32.8(1)× ∆I mG/cm. The
insensitivity of the other measured gradients (< 0.51(6)mG/cm) indicates
that biasing the gradiometer with magnetic fields renders tensor sensitivity
to gradients, as the coils are reasonably well aligned to their respective axes.
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6.6.2 Coil-induced gradients

The bias coils themselves produce magnetic field gradients if the condensates
are not positioned about the geometric centre of the coils. To measure
the true background gradient tensor, these coil-induced gradients must be
considered. Numerical magnetostatic calculations of the of the field profile
from each coil pair as a function of current and displacement from geometric
centre were performed by R. P. Anderson using the Mathematica package
Radia. The gradients induced by each coil pair can be conveniently expressed
as individual tensors and depend on coil current Ix,y,z and displacement
(δx, δy, δz) from the geometric centre of the coils:

Gx−coils =

 1.88 δx −1.74 δy −0.14 δz
−1.74 δy −1.74 δx 0
−0.14 δz 0 −0.14 δx

 Ix (6.17a)

Gy−coils =

 −1.11 δy −1.11 δx 0
−1.11 δx 1.07 δy 0.04 δz

0 0.04 δz 0.04 δy

 Iy (6.17b)

Gz−coils =

 −0.77 δz 0 −0.77 δx
0 −0.63 δz −0.63 δy

−0.77 δx −0.63 δy 1.40 δz

 Iz , (6.17c)

where currents are in A, gradients are in mG/cm and displacements are in
mm. In general, we can minimise the contribution of coil-induced gradients
by using the background magnetic field to bias the gradiometer. Bias fields
are applied that approximately cancel the field in the two other directions,
leaving only a single vector component of the background magnetic field– the
current is zero in the bias coils in the direction used to bias the gradiometer
(By, for example). This makes Gy-coils = 0, and eliminates these current-
induced gradients. Alternatively, we could apply a sufficiently large bias
field such that |By| � |Bx|, |Bz| but to sufficiently overcome the orthogonal
background fields, Iy > 6 A would be needed, making coil-induced gradients
significant. All components of the background field are > 300 mG, and we
are able to null the background fields to lower than ∼ 5 mG in any given
direction.

For displacements from geometric centre of < 1 mm, all coil induced
gradients (Eq. 6.17) are < 1 mG/cm. When we measure components of the
gradient tensor, we measure both the background gradient terms as well as
the coil-induced gradients, i.e. Gtot = Gbg + Gcoils. Specifically, for the case of
a measurement of ∂By/∂x, we measure(

∂By

∂x

)
meas

=

(
∂By

∂x

)
bg

+

(
∂By

∂x

)
x−coils

+

(
∂By

∂x

)
z−coils

. (6.18)
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Figure 6.7: We can measure the coil-induced magnetic field gradients
by applying different bias fields, corresponding to different coil currents.
The variation with applied field is a measure of the coil induced magnetic
field gradient, which is principally due to misalignment of the gradiometer
interrogation region from the geometric centre of the coil pairs. Dashed
lines denote the applied field which cancels the background field. The
largest of the coil induced gradients is ∂Bz/∂z. As is seen from Equation
6.17 this suggests that the primary misalignment from geometric centre is
along z. In this Figure, the measurements for gradient terms ∂Bi/∂y were
made using the technique described in Section 6.6.4, and not by inference
from the symmetry of the gradient tensor.

As can be seen from the tensors in Eq. 6.17, one of the coil induced gradient
terms always vanishes for non-diagonal gradients: the z-coils do not produce
a ∂By/∂x in this case.

We quantified the effects of coil induced gradients by measuring gradients
with bias fields corresponding to the background field |Bi| x̂i (I = 0), and
applied fields −|Bi| x̂i and −1.5|Bi| x̂i (I = 2 IN and I = 3IN respectively, IN

the current required to null the background field). The measurements are
shown in Figure 6.7, from which we see that the z-coils exhibit a significant
current dependent gradient, principally ∂Bz/∂z; primarily due to the larger
currents needed (coil calibration is 0.38 G/A). Our dominant misalignment
from geometric centre may also be along the z-axis, which is plausible as
the z-coils are the smallest coils separated by the greatest distance. The
contribution from coil-induced gradients is small enough not to hamper a
reasonably accurate determination of the background tensor, but may play a
role in explaining several minor discrepancies, discussed in the next Section.

6.6.3 Measurement of the field tensor

We measure derivatives of magnetic fields (Bx, By, Bz) in the (x′, y, z′) basis.
In order to express the gradient tensor Gij in the (x, y, z) basis, we must trans-
form the measured field gradients from the form ∂Bi/∂x′j to ∂Bi/∂xj, where
xi ∈ {x, y, z} and x′j ∈ {x′ , y, z′}. Referring to the coordinate transformation
(Eq. 6.11), we can construct the transformation matrix Sij = ∂xi/∂x′j, so that
the transformation of a vector from one basis to the other may be written
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as xi = Sijx′j and x′i = Aijxj, with Aij = (Sij)
−1. Derivatives transform as

follows

∂Bi

∂xj
=

∂x′k
∂xj

∂Bi

∂x′k
(6.19)

= (AT)jk
∂Bi

∂x′k
(6.20)

= Tjk
∂Bi

∂x′k
, (6.21)

with the transformation matrix given by

T =

 cos θz′z csc θx′z′ 0 − cos θx′z csc θx′z′

0 1 0
sin θz′z csc θx′z′ 0 sin θx′z csc θx′z′

 (6.22)

with θx′z′ = θx′,z + θz′,z ∼ 90◦.
Maxwell’s laws for magnetic fields in a vacuum are used to complete

the measurement of the gradient tensor. Gauss’s law for magnetic fields
(∇ · B = 0) and Ampere’s law (∇× B = 0) require the gradient tensor to be
traceless and symmetric respectively. We can infer the three gradient terms
we cannot measure with x′-z′ baselines, namely ∂Bi/∂y, from measurements
with a y-bias field. The measured background gradient tensor is

G =

 −5.71(7) −6.92(4) 14.70(7)
−6.92(4) 15.18(8) 2.66(4)
14.95(3) 2.66(4) −9.47(3)

 mG cm−1 , (6.23)

where the inferred gradients have been outlined in the dashed region. Our
measurements additionally give us a direct measure of the systematic un-
certainty inherent to the technique by independently quantifying two of the
off-diagonal matrix elements that should be equal by Maxwell’s laws: ∂Bx/∂z
and ∂Bz/∂x, which disagree by 0.25 mG/cm, which should be compared to
the statistical uncertainty of ∼ 0.08 mG/cm. As discussed in Section 6.6.2,
the possible causes of such a discrepancy may include coil induced gradi-
ents, which are of a comparable magnitude. As will be discussed in Section
6.6.4, we performed a consistency check for the inferred values by directly
measuring gradients along a y-oriented baseline, with mixed results.

6.6.4 A consistency check

We also measured gradients using a baseline primarily along gravity. Using
single-axis AOM deflection limits the available gradiometer baselines to the
x-z plane in our experiments. To spatially separate two BECs along gravity
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(the y-direction), we simply create two BECs with a small separation along
x′ or z′, drop one, and release the second once the first has fallen a suitable
distance. The complete scheme is shown in Figure 6.8. Typically, we use
the z′ axis for the initial horizontal baseline; the two BECs are separated
by ∼ 100µm. We then drop the positive z′ BEC first, denoted as BEC1,
by extinguishing one of the dipole beams, the single remaining beam is
insufficient to overcome gravity and so BEC1 falls. We delay the drop of BEC2

by Tfreefall = 10 ms to allow BEC1 enough time to reach a distance comparable
with the other baselines (> 500µm). Additionally, the residual trapping force
from the single remaining dipole beam distorts BEC1, spatially extending the
cloud along the dipole beam. This limits the maximum drop delay time, and
hence baseline distance, due to the need to obtain reasonable Stern-Gerlach
separation for absorption imaging. We define the separation axis between
the two BECs as ŷ′, with the position along this axis given by αẑ′ + β(t)ŷ,
with α ≈ 70µm, β ≈ 536µm at t = 10 ms. Once the two BECs have reached a
separation ∆y′ = 545µm, we drop BEC2 and perform freefall DRI.

There are further complications that must be considered. The sensor vol-
ume increases, and asymmetric displacement from bias coil geometric centre
(in contrast to x′ and z′ separations) results in a greater contribution from
coil-induced gradients. The falling BEC1 is by no means stationary during the
Ramsey interrogation, either. In comparison to the other freefall experiments,
it falls relative to BEC2; over the course of a 3 ms Ramsey interrogation, BEC1

will fall a further 300µm. This means that as the Ramsey time increases, the
vertical baseline does as well. We accommodate this difficulty by altering
the timing of the experiment so that BEC2 is dropped earlier or later de-
pending on the Ramsey interrogation time, which ensures that the average y
separation is constant. Specifically, we drop BEC2 t = 100µs + 1

2 (T − Tmax)

before the first π/2-pulse, with Tmax = 3 ms the maximum Ramsey time. The
vertical separations for two different Ramsey times are shown in Figure 6.9:
the average separation vector remains constant.

We measured gradients using all three bias fields and spatial baselines
along y′ in order to compute the gradient tensor terms ∂Bi/∂y. The coordinate
transform matrix becomes rather more complicated, the y′ unit vector is
written as

ŷ′ = − tan θz′z
∆z
∆y′

x̂ +
∆y
∆y′

ŷ +
∆z
∆y′

ẑ, (6.24)

with ∆y′2 = ∆y2 + (1 + tan2 θz′z)∆z2. The transformation matrix, in analogy
with Eq. 6.22, for transforming gradients from the x′ , y′ , z′ basis to the x, y, z
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Figure 6.8: Measuring gradients along a vertical baseline: 1) Two BECs
are initialised along a z′ baseline of ∼ 70µm. 2) We drop one of them
by extinguishing the split beam that confines it, it then expands slightly
along the length of the beam before falling out. 3) The Ramsey sequence
is initiated after dropping BEC2 for Tfreefall. 4) At the conclusion of the
Ramsey pulse sequence, the two BECs have fallen a further distance. Figure
6.9 describes how we account for this effect to ensure the average y baseline
remains constant.
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Figure 6.9: The y′-baseline for two different Ramsey times, with BEC2
dropped as a function of Ramsey time before the first π/2-pulse. Red and
blue colours indicate positions of the two falling BECs at the beginning and
end of the Ramsey sequence, respectively. The average y′ baseline (grey) is
constant for the two different Ramsey times.

basis now takes the form

T =

 cos θz′z csc θx′z′ 0 − cos θx′z csc θx′z′

0 ∆y′/∆y −∆z sec θz′z/∆y
sin θz′z csc θx′z′ 0 sin θx′z csc θx′z′

 (6.25)

and the gradient tensor is

G =

 −5.71(7) −6.68(9) 14.70(7)
−6.92(4) 10.97(5) 2.66(4)
14.95(3) 3.37(2) −9.47(3)

 mG/cm. (6.26)

We immediately notice that Tr(G) = −4.21(9)mG/cm 6= 0, and that in
contrast to the symmetric terms directly measured using in-plane gradiome-
try

(
∂Bx
∂z , ∂Bz

∂x

)
, the gradients ∂By

∂z and ∂Bz
∂y differ by almost 1 mG/cm. In order

to resolve this, we performed a number of variations of the experiment,
specifically focused on measuring ∂By/∂y. These included:
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• Measuring the diagonal gradient ∂By/∂y′ across a smaller vertical
baseline: ∂By/∂y = 11.51(9)mG/cm

• Using an x′ initial splitting rather than z′: ∂By/∂y = 9.78(2)mG/cm

• Dropping BEC2 first (i.e. on the −z′ side) and comparing with dropping
BEC1 first; this changes the direction the y′ axis points: ∂By/∂y =

10.99(9)mG/cm

All of these measurements are remarkably consistent given the different
configurations, and cannot account for the observed Tr(G) 6= 0. We are thus
lead to conclude that the technique is sound, and that the large ∼ 500µm
displacement from geometric centre of the coils may result in sampling
significant coil-induced gradients that are largely absent for the x′-z′ in-
plane measurements. We could modify the in-plane measurements so that
they interrogate the same spatial region as the y′ measurements do, i.e. by
dropping both BECs at the maximum x′ or z′ splitting so that the x′-z′ plane
is now at the centre point of the ∆y′ baseline. However, the comparative
simplicity of using in-plane measurements to infer y-gradients is certainly
preferable to any of the complicated schemes used to span all spatial axes.
Indeed, we have no reason to believe that even in the presence of such
systematics as small coil induced gradients the inference is at all invalid. We
draw attention to the observed near equality of the off-diagonal terms to
within 0.25 mG/cm in Eq. 6.23, which provides a reasonable estimate of the
magnitude of systematic error encountered in in-plane measurements.

6.7 Applications of the gradient tensor

Here, we make note of a few specific applications that motivate measuring
the gradient tensor. Magnetometers in various forms have long held interest
as devices for remote sensing: detecting buried ore bodies and unexploded
ordinance are a few of the popular applications. As such, magnetometers can
be operated in a number of configurations, which in general correspond to
measurements of the scalar, vector and tensor characteristics of the magnetic
field. A scalar magnetometer is used to produce maps of |B|, the ‘total
magnetic field intensity’ (TMI), whereas a vector magnetometer is able to
resolve vector components of the magnetic field. Both scalar and vector
magnetometers can be operated in gradiometer configurations, which are
more informative and robust to environmental noise.

Measuring the full gradient tensor has several advantages. In geophysical
applications, where the sensor is large and often towed behind aircraft, tensor
gradiometers are immune to orientation errors, unlike vector component
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magnetometers [171, 173]. The real power of tensor gradiometry lies in the
ability to localise and characterise magnetic dipole sources. The eigenvectors
of the gradient tensor are mutually orthogonal and correspond to a coordi-
nate system where all off-diagonal gradient terms vanish. The eigenvector
corresponding to the largest magnitude eigenvalue points at the dipole mo-
ment of the magnetic source [171,173,184]. When we perform this analysis on
our own measured tensor, we find that the corresponding eigenvector points
within 20◦ of the large unshielded magnets of the Perkin-Elmer ion pump
attached to the oven end of the apparatus. Since our gradients originate from
multiple sources (there are two other ion pumps), the discrepancy is not
really surprising; for multiple sources the principal eigenvector points at the
equivalent point source.

6.7.1 Minimising gradients with bias direction alone

As a consequence of applying different bias fields to measure certain gra-
dients, we discovered that the net gradient can be reduced substantially by
changing the direction of the bias field. A scalar figure of merit that quantifies
the magnitude of the field inhomogeneity is the norm of ∇B, termed the
‘total gradient’. From Eq. 6.4, the total gradient is given by

|∇B| = |G · B|
B

. (6.27)

The BEC itself is spatially anisotropic, meaning that gradients along certain
directions (such as the longest elongation direction) will be more impor-
tant than others in determining the dephasing time of the spinor BEC. To
encapsulate the anisotropic spatial extent of the BEC, we can weight the
components of ∇B according to the measured Thomas-Fermi radii (Table 3.1)
before taking the norm using

∣∣∇B̃
∣∣ = ∣∣∣∣(Ry

(π

4

) G · B
B

)
∗ RTF

|RTF|

∣∣∣∣ , (6.28)

where RTF = (Rx′ , Ry, Rz′) are the Thomas-Fermi radii (Eq. 3.16) and ∗
denotes element-wise multiplication.6 The Thomas-Fermi weighted gradient
gives an indication of the coherence time of the BEC in the presence of certain
gradients. For instance, a large ∂B/∂x′ will not cause fast dephasing for a
1d-BEC elongated along the z′-axis, due to the small spatial extent in the x′

direction (Equation 5.7).

6Note that we have rotated (about y) the product G · B into the x′, z′ basis using the
rotation matrix Ry before weighting by the Thomas-Fermi radii, as this basis defines the axes
of symmetry of the condensate.



148 Magnetic tensor gradiometry

0 50 100 150

-50

0

50

90

-90
180

inclination, θ (deg)

az
im

ut
h,

 φ
 (d

eg
)

0 50 100 150 180

Raw gradient (mG/cm)

y - bias
x’ - bias z’ - bias

z - bias

4
45

6
7

9
10

10

11

11

12

15
16

8
10

11
13

17

17

18

21

22

Figure 6.10: Left: Magnitude of total gradient |∇B| (Eq. 6.27), and right:
weighted effective gradient

∣∣∇B̃
∣∣ (Eq. 6.28) as a function of bias field

direction for our measured gradient tensor in Eq. 6.23. The coloured
markers denote bias fields routinely used, note that the typical x′-bias
gradient is on the order of 8 mG/cm whereas a z′-bias gradient is over
23 mG/cm. The effective (Thomas-Fermi weighted) gradient can be reduced
to as little as 2 mG/cm.

We evaluate the total gradient (Eq. 6.27) and Thomas-Fermi weighted
effective gradient (Eq. 6.28) as a function of the bias field direction by
expressing the magnetic bias field vector in spherical coordinates:

B = B (cos φ sin θ, cos θ, sin θ sin φ) , (6.29)

with θ the inclination angle (θ = 0, B/B = +ŷ) and φ the azimuthal angle,
measured from the z axis (θ = −45◦, B/B = ẑ′). The two metrics are plotted
as a function of θ and φ in Figure 6.10 for the measured magnetic field
gradient tensor, Eq. 6.23.

Minimising the gradients with a particular choice of bias direction alone
allows us to substantially reduce the background gradient from that typically
present at the usual orthogonal lab-frame bias fields Bx, By and Bz. Simply
aligning the field along x′ reduces the total gradient to < 8 mG/cm; later
in Chapter 7 we show how this allows observation of coherent spin-mixing
for > 500 ms, in contrast to most other experiments that had |∇B| ∼ 15-
20 mG/cm. A future work will consider the prospect of applying gradients
with the bias coils (i.e. imbalanced currents in each coil) and changing the
direction of B to actually obtain |∇B| ≈ 0. Initial theoretical efforts in this
direction have shown that it is possible with two diagonal gradients from the
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y and z-coil pairs applied and a bias field with varying direction to make
|∇B| = 0. To make G = 0 would require two coils aligned along the principal
eigenaxis of G, an elegant but technically awkward approach.

6.8 Operational and prospective sensitivity

We now discuss the operational sensitivity of our gradiometer, as well as the
potential sensitivity that could be achieved with modest improvements. The
fundamental sensitivity of an atomic magnetometer amounts to how well
the Larmor precession frequency can be measured. The standard quantum
limited precision of a measurement of the atomic spin is given by

(δFz)SQL =

√
F

2N
(6.30)

for N spin-F atoms [155]. The corresponding Larmor phase uncertainty for
F = 1 atoms is

(δφ)SQL =

√
1

2N
. (6.31)

The quantum limited magnetic field sensitivity of a sample with N spin-1
atoms used in a projective measurement of atomic phase of duration T is
thus

δBSQL =
1
γ

δφSQL√
NT

. (6.32)

We can improve the precision by making repeated measurements; M repeated
measurements increases the signal-to-noise by a factor 1/

√
M. In our specific

case, multiple experimental shots are required to impute a differential phase
from the elliptical data reduction, a single-shot phase sensitivity is ill-defined.
However, the differential phase uncertainty from fitting an ellipse with M
points7 scales with 1/

√
M, and thus the quantum limited field sensitivity is

δBSQL ∼ 1/
(

γ
√

NTDTint

)
(6.33)

for N/2 atoms per condensate, a total integration time Tint = MTshot, a duty
cycle D = T/Tshot, and a single-shot duration of Tshot, the time for the total
duration of an experiment cycle, in our case the ∼ 25 s it takes to make
BEC. The units of the sensitivity per unit bandwidth δB

√
Tint are tesla per root

Hertz, T Hz−1/2, and have a simple physical interpretation that belies the
unusual (for a non-specialist) units: if one makes a single measurement of a
B per second, and the sensitivity is δB0, taking M measurements per second
improves this to δB0/

√
M, this metric incorporates the highly important

7As determined from Monte-Carlo simulations of the data analysis procedure. See also
the discussion in Section 7.6.5.
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nature of measurement dead time and cycle duration, which can be quite
large for a BEC experiment.

Since our measurement does not use a dispersive optical probe and has
negligible spin relaxation, it is atomic spin-projection noise that limits the
fundamental sensitivity of the technique. From repeated absorption images
we determine that the uncertainty in our measurements of spin projection
δFz are ∼ 3 times that of the standard quantum limit for N = 105 atom
condensates, and this ultimately determines the relative phase uncertainty
extracted from ellipse fits, following on the discussion in Section 6.3.

Our scheme could also function as a precision co-magnetometer, where one
BEC placed in the vicinity of a small magnetic source acts as a sensor and the
other condensate a reference interferometer, providing substantial common-
mode rejection of ambient noise. This is the mode of operation we have
in mind when specifying field sensitivities per unit bandwidth or per unit
spatiotemporal bandwidth below, the standard metrics for magnetometry. No
common, analogous metric is in use for gradient sensitivity per spatiotemporal
bandwidth. The corresponding field sensitivity per unit bandwidth of this
gradiometer – or co-magnetometer – is δB

√
Tint = 360 pT Hz−1/2 for Tshot =

25 s and T = 3 ms.

6.8.1 A prospective gradiometer using trapped condensates

A gradiometer formed from a pair of trapped condensates offers a smaller
sensor volume and a significant improvement in sensitivity compared to
one formed from condensates in freefall. For an in-trap magnetometer to
be possible, it is necessary to suppress the vector light shift (VLS) induced
by residual elliptical polarisation of the trapping beams. The vector light
shift may be reduced several orders of magnitude by ensuring the dipole
trapping beams are linearly polarised with conventional ex vacuo polarimetry,
but accounting for the birefringent glass vacuum cell requires an atomic
measurement [19, 185]. Chapter 7 of this thesis describes exactly such a
measurement to eliminate vector light shifts, and discusses in more detail
the spurious contribution of the VLS to gradiometry experiments.

The sensitivity of each interferometer scales with the evolution time and
the atomic density. A Zeeman coherence time approaching one second
was observed in a spin-1 87Rb condensate [35], limited by losses due to
density-dependent collisions. For a 87Rb BEC with a peak number density of
1014 atoms cm−3 (corresponding to N = 106 atoms for the current trap), an
interrogation time of T = 200 ms is foreseeable, an order of magnitude lower
than the three-body limited lifetime. Recently, experiments with a dispersive
Faraday probe beam by M. Jasperse have shown coherence times on the order
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of several seconds [95]. The prospective in-trap magnetometer could thus
achieve a differential field sensitivity per unit bandwidth of 600 fT Hz−1/2 at
the standard quantum limit, even with the same trap and single-shot duration
used here (corresponding to a non-unity duty cycle of D = 0.008). The duty
cycle of BEC experiments is often lamented, but is improving and newer
generations of experiments offer higher duty cycles: all-optical experiments
can reduce cycle times to a few seconds [118].

6.8.2 Spatial resolution

Spatial resolution is conventionally quantified by the sensing volume. For the
freefall measurements described herein, the sensor volume V = 2× 10−5 mm3

is that swept out by a falling, expanding condensate during the Ramsey
interrogation. Using the metric of spatiotemporal sensitivity, which incorpo-
rates the sensing volume V, our demonstrated measurement has δBs-t =

δB
√

Tint
√

V = 51 fT cm3/2 Hz−1/2. The above prospective in-trap magnetome-
ter has V = (20µm)3, corresponding to δB

√
Tint
√

V = 0.05 fT cm3/2 Hz−1/2.
This large prospective improvement is not unprecedented in microscale mag-
netometry where first demonstrations are far from fundamental limits; warm
vapour magnetometry in microfabricated cells (V ∼ mm3) was first demon-
strated at a sensitivity of 5500 fT cm3/2 Hz−1/2 [186], rapidly developed to
5.0 fT cm−3/2 Hz−1/2 [187], and more recently 0.16 fT cm3/2 Hz−1/2 [31].

Another comparative metric for precision magnetometers is the magnetic
field energy resolution per unit bandwidth ε = (δBs-t)2/2µ0 [31,156,188] with
δBs-t the spatiotemporal sensitivity per unit bandwidth. The units of ε are J s;
ε is thus often quoted in multiples of h̄. The value of ε for the freefall measure-
ments described here is about 107 h̄, but with the improvements described
can be substantially reduced. Compared to vapour cell magnetometers, the
low duty cycle and number of spins in BEC based measurements limits
their sensitivity per unit bandwidth, but the far smaller volume results in
a comparable ε, with ε ∼ 50–100h̄ for vapour magnetometers [31, 156], and
ε ∼ 10h̄ for the prospective magnetometer described above, using the in-trap
volume of a spherical BEC with Thomas Fermi radii ∼ 10µm.

A note on prospective improvements

The improvements we have detailed here to realise a high precision co-
magnetometer are eminently feasible and highlight the power of the DRI
technique in achieving high spatiotemporal sensitivities. After the prepara-
tion of the manuscript detailing our gradiometry experiments, we became
aware of a related work performed in the group of M. Oberthaler, their
experiment uses spin-squeezing enhanced Ramsey interferometry to measure
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magnetic field gradients across a 1d array of 30 BECs in a lattice [189]. Many
of the techniques used are familiar, including common-mode rejection from
simultaneous addressing of multiple quantum gases. Here, a few of the key
differences between our work and that of Ref. [189] are outlined to highlight
the relative advantages and disadvantages of each technique.

The use of squeezing in Ref. [189] is an interesting and encouraging
result, though its metrological advantages are not yet demonstrated. The
squeezing-enhanced sensitivity is only present for Ramsey interrogation
times of < 350µs due to field fluctuations, which results in a magnetometric
sensitivity of 1.9 nT Hz−1/2. The scheme is claimed to be ‘scalable’: the
squeezing demonstrated in ensembles of 1× 104 atoms can be realised with
N ∼ 107 atoms, and interrogation times of up to 250 ms are possible, giving
sensitivities approaching 1pT Hz−1/2.

The sensitivities, both demonstrated and prospective, attained by Ref.
[189] are less than that of our own work and come with the formidable
experimental complexity required for squeezing. Such a squeezing scheme
only operates at magnetic Feshbach resonances (a 9.1 G bias field is required)
making actual metrological application very limited. The proof-of-principle
demonstration of sub-shot noise magnetometry is interesting and a consider-
able achievement, but we highlight the fact that the improvements offered
by squeezing still result in unremarkable metrological sensitivity that can be
bettered by more conventional means.

6.9 Conclusions

In this Chapter, we have demonstrated magnetic tensor gradiometry using
differential Ramsey interferometry of spatially separated BECs in freefall.
The gradiometer senses vector components of the magnetic field, rejecting
gradient components orthogonal to the biasing direction. The gradiometer
is immune to common-mode magnetic noise orders of magnitude larger
than the field difference, and operates without field cancellation or screening.
The gradiometer could also be used as a high-precision co-magnetometer
with substantial common-mode rejection, allowing for microscale magnetic
sensing in vacuo. In the penultimate Chapter of this thesis, we describe the
adaptation of differential Ramsey interferometry to measuring and elimi-
nating the vector light shift from the optical dipole trap. The successful
outcomes of these experiments make the prospective improvements detailed
herein one step closer to being experimentally feasible. In the final Chapter
of this thesis, we discuss future work and prospective applications of the
techniques described here.



Vector light shifts in optical
dipole traps
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This Chapter describes our experiments measuring and cancelling the vector
light shift (VLS) from the optical dipole trap. As discussed in Section 5.4,
we first became aware of the VLS when experiments suggested the presence
of irreproducibility in the mF = ±1 state component separation. This was
consistent with a time-varying magnetic field gradient: a gradient that
changes magnitude (and even sign) on a shot-to-shot basis is a daunting
prospect when considering gradient cancellation strategies. A time-varying
gradient also poses a severe difficulty for spin-echo rephasing experiments.
As discussed in Chapter 5, the time variation of this ‘magnetic’ field gradient
was duty-cycle dependent and localised to the dipole trap. We deduced that
it was an effective magnetic field gradient caused by a non-zero VLS due to
residual circular polarisation of the dipole trapping beams. The transient
nature of the effect was due to thermal effects in the dipole trap AOMs
causing shot-to-shot drifts of the polarisation and intensity of the dipole
beams at the atoms.

The presence of the VLS was also a complication for magnetic tensor
gradiometry, discussed in the previous Chapter, which necessitated perform-
ing interferometry on atoms in freefall. The many interesting extensions to
differential interferometry – in particular, the realisation of high magneto-
metric sensitivities – are thwarted by the VLS, which contributes a spurious,
transient magnetic field to a measurement. The dipole trap VLS posed a
serious impediment to the observation of spinor physics as well as magnetic
gradiometry, its elimination is thus of paramount importance.

We resolved to characterise the VLS and develop a measurement scheme
based on differential Ramsey interferometry to achieve high-precision can-
cellation. This Chapter is sectioned as follows: Section 7.1 provides an
introduction to the VLS, including details of previous work. Section 7.2
provides a theoretical treatment, and Section 7.4 covers the experimental
setup, which is similar to that described in Chapter 6. We then proceed
to describe two specific measurements: Section 7.5 explains the first set of

153
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Figure 7.1: Spin-1 energy level shifts due the scalar, vector and tensor
light shifts. The scalar light shift, responsible for optical trapping of atoms,
shifts all mF states equally. The VLS can be seen to act as an effective linear
Zeeman shift, whereas the tensor shift has the characteristics of a quadratic
Zeeman shift.

measurements we performed to characterise the VLS, using a pair of BECs to
sample different positions of the radial intensity profile of a single trapping
beam, and thus determining the differential VLS across the beam. These
measurements are then used to determine the effective VLS-induced field
gradient. In Section 7.5.2, we return to our previous studies of spin-mixing
dynamics and examine how collisional dynamics are affected by the applica-
tion (and elimination) of the VLS gradient. Finally, in Section 7.6 we present
a high precision measurement technique using differential interferometry
over interrogation times of 15 ms. This allows us to ultimately cancel the VLS
to within 0.04 %. An extension to the techniques demonstrated in this thesis
is presented in Section 7.7.

7.1 Introduction

Light shifts were first outlined (experimentally and theoretically) by Barrat
and Cohen-Tannoudji in 1961 [190], and an in-depth theoretical description
was performed by Happer and Mathur in 1967 [191]. The early article [192]
and review [193] concern calculation of atomic polarisabilities, and Ref. [194]
conducted the first experimental study of inhomogeneous broadening due
to light shifts. Figure 7.1 illustrates the energy level shifts due to the scalar,
vector and tensor light shifts; the vector and tensor shift can be regarded
as effective linear and quadratic Zeeman shifts respectively. The magnitude
and sign of each energy shift is proportional to intensity and varies with
frequency ω of the light as described by the atomic polarisability αk

η(ω), with
k = s, v, T denoting the scalar vector and tensor shift of the atomic energy
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level η. For a given atomic state, all three polarisabilities vary considerably
with frequency, as we shall see in the following Section where we calculate
scalar and vector polarisabilities at several important wavelengths. In the
far-detuned limit relevant to most dipole traps, it is generally the case that
αS

η � αv
η � αT

η . Aside from the integral presence of the scalar light shift in
optical trapping, the vector shift (and to a lesser extent the tensor shift) are
frequently encountered in atomic physics experiments, particularly in the
same way we discovered them: as small, unwanted frequency shifts.

In the brief and by no means exhaustive review of the literature that
follows, we make note of a few key themes that motivate precise measurement
of vector light shifts. Our specific motivations for eliminating the vector light
shift mirror the general aims of many related works concerning light shifts.
The principal benefits trapped neutral atoms bring to metrology and quantum
information processing is absolute, calibration free measurements in terms
of precisely known physical constants and long coherence times by virtue of
isolation from their environment. The ability to manipulate atomic ensembles
with lasers or magnetic fields with high precision has applications in spatial
addressing of individual qubits as well as microscopic-volume magnetometry.
However, the spin-dependence of the optical trapping potential is an issue.
While we have concerned ourselves with effective Zeeman shifts within a
given hyperfine level, different hyperfine levels experience slightly different
energy shifts – the differential light shift (DLS). The DLS typically refers to
the different scalar shift of hyperfine levels F, due to the different detuning
of the light from a transition to an excited state. This results in a intensity-
dependent frequency shift of a hyperfine transition, a well-known example
is that of the alkali metal clock transitions, which are used abundantly in
metrology for reasons of magnetic field insensitivity.

Unlike optical transitions, where ‘magic’ or ‘tune-out’ wavelengths ex-
ist that allow differential AC Stark shifts to be eliminated – allowing the
realisation of ultra-high precision optical clocks [195, 196] – there are no
such magic wavelengths for hyperfine differential shifts. Ideally a hyperfine
transition for precision metrology would be DLS free and magnetic field
insensitive [197]. The effects of differential light shifts on sensitive metrology
experiments, including the SI definition of the second, are important – these
small frequency shifts can hamper the accurate determination of time. Much
experimental [197, 198] and theoretical [199–202] work has been devoted to
characterisation and elimination of the clock state DLS, including methods
using the vector light shift to cancel the DLS [197, 203–205]. In addition to an
overall frequency shift, the light shift also varies spatially – due to inherently
inhomogeneous optical intensities of trapping potentials and lattices – mean-
ing that the DLS is also spatially dependent. It therefore has the effect of an
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inhomogeneous dephasing mechanism, limiting the coherent evolution time
of a quantum system [144, 198, 206], in much the same way as was discussed
in Chapter 5 of this thesis. Indeed, the first demonstration of spin-echo
rephasing of Ramsey fringes in ultracold gases was concerned with reducing
DLS-induced inhomogeneous dephasing [143].

Optical magnetometry experiments – including vapour-cell magnetome-
ters – also contend with the VLS and DLS, where pump-probe intensity
fluctuations give rise to noise of the effective VLS magnetic field [20] and
thus limit attainable sensitivities unless steps are taken to eliminate the
shift [207]. The VLS (and tensor shift) were identified early on as sources
of systematic uncertainty in prospective atomic measurements of the per-
manent electron electric dipole moment [19]. The first spinor-condensate
magnetometer actually measured a VLS, and cannot in practice distinguish
real magnetic fields from trapping beam-induced vector light shifts [10].

Since we use the Zeeman states of a single hyperfine level in our inter-
ferometry experiments, we have no sensitivity to the differential light shift
and instead suffer from the vector light shift of the Zeeman states within a
single hyperfine level. The manifestation of this shift in our experiments is
essentially identical to those described above, however. The inhomogeneity
of the VLS (accentuated by gravitational sag of the trap minimum from the
intensity maximum) leads to dephasing that is manifest in both Ramsey inter-
ferometry and spin-mixing experiments, and the overall intensity-dependent
VLS contaminates magnetic gradiometry experiments.

There is somewhat less published experimental work in considering the
effects of VLS-shifted Zeeman states on metrology, primarily due to the more
widespread use of approximately field-insensitive microwave transitions for
precision measurements where the DLS is significant. A recent experiment
concerning measurement of the VLS of ground-state Zeeman sublevels of
133Cs was performed by Zhu et al. in Ref. [208]. This experiment essentially
uses the VLS as a metric of absolute polarisation purity in an optical lattice,
using a variation of the Hanle effect to measure inhomogeneous dephasing
times. This is used as a diagnostic for improving the polarisation linearity,
obtaining a minimum VLS corresponding to a polarisation imperfection
∼ 10−5 rad.

A VLS can also serve beneficial purposes. Early work highlighted the
usefulness of spin-dependent optical trapping potentials [209], and using the
VLS for state control in optical lattices [210–212]. More recent advances have
used the VLS in the demonstration of synthetic gauge fields and spin-orbit
coupling in BECs [5,213]. Here, the synthetic field is generated by momentum-
dependent Raman coupling originating from the effective vector potential
provided by the VLS, rather than the ‘fictitious’ field. One can indeed use the
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VLS for constructive purposes in a spinor condensate, as a means of tailoring
a spatially-varying Zeeman potential: a laser tuned to the magic wavelength
(∼ 790 nm for 87Rb, eliminating the scalar shift) can be focused onto particular
regions of the condensate. This has application in the continuing study of
magnetic excitations (magnons) in spinor condensates [214].

7.1.1 Magnetometry and the vector light shift

Before delving into an in-depth theoretical treatment of atomic vector polar-
isabilities, we provide a simple explanation for how the VLS contributes to a
spurious magnetometry signal as well as a spatially inhomogeneous energy
shift in our experiments. For the former, we consider our magnetic tensor
gradiometer described in the previous Chapter, with the interferometry se-
quence performed in-trap, so that the atoms are sensitive to the VLS. We
consider the case of one dipole beam split into two (beams 1 and 2) forming
two traps along a third crossing beam. The atoms sample the differential
VLS due to a polarisation imperfection common to beams 1 and 2 (we ignore
the VLS from the third crossing beam). As shown in Figure 7.2, the VLS
contributes to a gradiometric measurement when the light is not linearly
polarised and an intensity difference exists between the two traps.

The polarisation of laser light used for optical trapping can be made
highly linear using polarisers, etc. but passage through birefringent materials
such as the glass vacuum cell result in elliptically polarised light at the atoms.
We assume that the spatial dependence of the birefringence responsible for
the polarisation imperfection is weak, and can be neglected for small beam
separations of several hundred microns between beams 1 and 2. We therefore
consider an approximately common polarisation imperfection of beam 1 and
2 sampled by each trapped cloud, resulting in a VLS difference proportional
to the intensity difference of the beams. In this example, we have assumed
that beams 1 and 2 initially have a common polarisation, in reality, each
beam originates from the diffracted order of an AOM, and this assumption
is not immediately applicable. However, a polarising element (such as a
Glan-laser prism) placed immediately after the AOM ensures the beams
are linearly polarised, and have negligible relative polarisation imperfection.
This does not rectify the problem of passage through birefringent optics after
the polariser however. The two linearly polarised dipole beams propagate
through the same birefringent optics, so we can assume the two beams in
general share a common polarisation imperfection.

In principle, we could eliminate the differential VLS from a gradiometry
experiment by means of common-mode rejection with balanced intensities
with a common polarisation imperfection, as in Figure 7.2(c). Equal beam
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Figure 7.2: Contribution of the VLS to magnetic gradiometry experiments,
which detect the differential magnetic field as well as the differential VLS
field ∆BVLS = B(2)

VLS− B(1)
VLS. In (a), we have the ideal case of equal intensities

in each trap and linear polarisation: B(1)
VLS = B(2)

VLS = 0. (b) When an intensity
difference exists but there is no polarisation imperfection, the VLS-induced
field difference is still zero. We assume that the two dipole beams exhibit a
common polarisation imperfection from passage through birefringent optics,
allowing us to consider the VLS as arising from an overall polarisation
common to each trap. (c) For equal intensities, common-mode rejection
eliminates the VLS field contribution. In most experimental cases however a
VLS difference exists between the two traps due to the cloud sampling a local
intensity difference (originating from misalignment or power differences)
and non-linear polarisation (d), this contributes a spurious magnetic field to
a gradient measurement.
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intensities are still challenging to achieve in vacuo, however, and susceptible
to relative intensity fluctuations and drift. This is also complicated by the
fact that the atomic cloud samples a local intensity, due to gravitational sag
and beam misalignments: equal beam power does not correspond to equal
intensity. Only by making the trapping light exceptionally linearly polarised
in vacuo can we truly eliminate the VLS.

The VLS results in inhomogeneous frequency shifts which lead to de-
phasing. The origin of this effect in our case is due to gravitational sag of
the trapping potential: the atoms do not sample the peak intensity of the
trapping beam where the VLS is roughly spatially constant; instead gravity
pulls the trap minimum below the peak intensity. The BEC, located at the
trap minimum, therefore samples a spatially varying vector shift, as shown in
Figure 7.3. The vector polarisability at 1064 nm in 87Rb is 0.336 Hz W−1 cm2;
for an intensity of I ∼ 104 W cm−2 this gives an overall effective field of
0.3 mG for a polarisation imperfection of 2◦. For in-trap magnetometry, a 1 %
intensity imbalance thus results in a 3µG field difference, which is readily
detectable by the prospective magnetometer described in Chapter 6. The tight
focusing of the trapping beams results in an effective gradient of 24 mG/cm
for the example shown in Figure 7.3. This gradient is greater than any of
the background gradients measured in the previous Chapter, and as such
is a considerable problem for both spinor dynamics and gradiometry ex-
periments, where it limits the maximum interrogation time and hence the
ultimate achievable precision.

7.2 Theory of atomic polarisabilities

Here we consider the theoretical description of atomic polarisabilities with
the aim of computing numerical values of the proportionality constant αV(ω).
First principles calculation of atomic polarisabilities is non-trivial, requir-
ing demanding simulations of atomic structure [215]. However, dynamic
(frequency dependent) polarisabilities can be determined from numerically
calculated dipole matrix elements and angular momentum algebra. We fol-
low the formulation given in Ref. [216] to derive the theoretical formulation
of scalar and vector light shifts, while also drawing from Refs. [202, 217]. We
will ignore tensor shifts where appropriate for specific results concerning the
VLS and scalar shifts.

The VLS is just part of the AC Stark shift that arises from the interaction
between an atom and electric field of the form

E(t) =
1
2

E0 ε̂ e−iωt + c.c. , (7.1)
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Figure 7.3: Gravitational sag of the dipole potential results in a trapped
BEC sampling a spatially varying VLS. Top panel shows the potential from
only the intensity profile of the laser along the direction of gravity. The
blue trace is the dipole potential shifted by gravity. The BEC (positioned
at the trap minimum) therefore samples an accentuated intensity gradient
which results in a gradient of the VLS (lower panel). The magnitude of the
effective field is 0.3 mG for a 0.6% polarisation imperfection, but the gradient
is 24 mG/cm due to the tightly focused beams. We have used the scalar
(31.73 Hz W−1 cm2) and vector (0.336 Hz W−1 cm2) light shifts at 1064 nm,
calculated in the following Section. The beam power (550 mW) and waist
(67µm) are approximately what is used in experiments, for these parameters
gravity shifts the trap minimum by 10µm from the peak intensity point.

with ε̂ the polarisation vector and E0 the complex electric field amplitude.
The light-atom interaction in the dipole approximation is written as

UE = −E · d, (7.2)

with the d the atomic electric dipole operator, d = αE; the constant of
proportionality α is the atomic polarisability. The AC Stark shift is the time-
average of the induced dipole moment:

δEa = −
1
2
〈E(t) · d(t)〉, (7.3)

where the factor of 1
2 accounts for the fact that this is an induced dipole

moment [115, 216]. For atomic eigenstates with energies h̄ωa and h̄ωb, which
we call the ground state and excited state respectively, the second-order
energy shift of the ground state (E1 = 0 if the states are eigenfunctions of the
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parity operator [215]) is given by [216]:

δEa = −
|E0|2

4h̄ ∑
b

Re

(
|〈b|ε̂ · d|a〉|2

ωb −ωa −ω− iΓba/2
+

|〈a|ε̂ · d|b〉|2

ωb −ωa + ω− iΓba/2

)
(7.4)

where the sum runs over multiple excited states b and Γba is the natural
linewidth of the a↔ b transition. When considering only fine-structure cou-
pling (i.e. when detuning from resonance is much larger than fine structure
splitting), the Stark shift operator can be expressed as [202, 216]

UE = −|E0|2

4

[
αs

nJ − iαv
nJ

ε̂∗ × ε̂ · J
2J

+ αT
nJ

3 ((ε̂∗ · J)(ε̂ · J) + (ε̂ · J)(ε̂∗ · J))− 2J2

2J(2J + 1)

]
,

(7.5)

with the scalar, vector and tensor reduced polarisabilities given by

αs
nJ =

1√
3(2J + 1)

α
(0)
nJ (7.6a)

αv
nJ = −

√
2J

(J + 1)(2J + 1)
α
(1)
nJ (7.6b)

αT
nJ = −

√
2J(2J − 1)

3(J + 1)(2J + 1)(2J + 3)
α
(2)
nJ (7.6c)

with

α
(K)
nJ =(−1)K+J+1

√
2K + 1 ∑

n′,J′
(−1)J′

{
1 K 1
J J′ J

} ∣∣(n′ J′ ‖d‖ nJ
)∣∣2

× 1
h̄

Re
(

1
ωn′ J′nJ −ω− iΓn′ J′nJ/2

+
(−1)K

ωn′ J′nJ + ω− iΓn′ J′nJ/2

)
, (7.7)

where ωn′ J′nJ = ωn′ J′ − ωnJ , Γn′ J′nJ is the natural linewidth of the nJ → n′ J′

transition, {jn...} denotes the Wigner 6j-symbol and |(n′ J′ ‖d‖ nJ)|2 the re-
duced dipole matrix element. In order to accurately calculate atomic polar-
isabilities, one must know the dipole matrix elements, which are measured
experimentally or numerically calculated [79, 215, 217].

We note here a few results from Eqs. 7.6 specific to our case (J = 1/2, K =

0, 1; we omit the result for the tensor shift1), namely

αs
nJ =

1√
6

α
(0)
nJ (7.8a)

αv
nJ = −

1√
3

α
(1)
nJ . (7.8b)

1The tensor shift is typically < 1 Hz, at dipole-trapping wavelengths and is of little
consequence for our experiments.
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Also, by permuting columns of the 6j-symbol in Eq. 7.7, it is clear it is
equivalent to Eqs. 7–9 of Ref. [217]. We note this specifically since the
theoretically calculated polarisabilities in Ref. [217] are in fact αs,v,T

nJ and do
not include hyperfine terms. The fine-structure polarisabilities can be related
to hyperfine polarisabilities as we shall see below.

The previous discussion focused on polarisabilities and energy shifts
of atoms in a single fine structure state |nJ〉. However, to determine the
light shifts of atoms in hyperfine states, we must include the effects of the
hyperfine interaction and recast Eqs. 7.5, 7.7, and 7.6 in the |nJF〉 basis. The
Stark shift operator becomes

UE = −|E0|2

4

[
αs

nJF − iαv
nJF

ε̂∗ × ε̂ · F
2F

(7.9)

+αT
nJF

3 ((ε̂∗ · F)(ε̂ · F) + (ε̂ · F)(ε̂∗ · F))− 2F2

2F(2F + 1)

]
, (7.10)

and the corresponding polarisabilities become

αs
nJF =

1√
3(2J + 1)

α
(0)
nJ (7.11a)

αv
nJF = (−1)J+I+F

√
2F(2F + 1)

F + 1

{
F 1 F
J I J

}
α
(1)
nJ (7.11b)

αT
nJF = (−1)J+I+F

√
2F(2F− 1)(2F + 1)

3(F + 1)(2F + 3)

{
F 2 F
J I J

}
α
(2)
nJ . (7.11c)

Picking the specific cases of interest, F = 1, I = 3/2, we see that

αs
nJF = αs

nJ (7.12a)

αv
nJF =

1
2
√

3
α
(1)
nJ = −1

2
αv

nJ . (7.12b)

As is clear from Eq. 7.12a, the scalar shift is independent of F, whereas in
reality there is a small F dependence (the differential scalar shift mentioned
earlier). According to Ref. [216], when the hyperfine interaction is much
larger than the Stark shift the atomic polarisabilities are given by

αs
F =

1√
3(2F + 1)

α
(0)
F (7.13a)

αv
F = −

√
2F

(F + 1)(2F + 1)
α
(1)
F (7.13b)
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where

α
(K)
F =(−1)K+F+1(2F + 1)

√
2K + 1 ∑

n′,J′

∣∣(n′ J′ ‖d‖ nJ
)∣∣2

×∑
F′
(−1)F′(2F′ + 1)

{
1 K 1
F F′ F

}{
F 1 F′

J′ I J

}2

× 1
h̄

Re
(

1
ωn′ J′F′nJF −ω− iΓn′ J′F′nJF/2

+
(−1)K

ωn′ J′F′nJF + ω− iΓn′ J′F′nJF/2

)
.

(7.14)

The atomic energy level shift due to the scalar and vector light shifts is
given by

UE = −|E0|2

4

[
αs

F − iαv
F

ε̂∗ × ε̂ · F
2F

]
. (7.15)

It is this final form that we numerically calculate polarisabilities and
light shifts for F = 1 87Rb with, using only the contribution from the D1

(25S1/2 →2 5P1/2) and D2 (25S1/2 →2 5P3/2) lines. Note that the dipole
matrix elements used for 87Rb in Table 7 of Ref. [79] must be multiplied
by
√

2J + 1 to use the same convention as those in other works [215–217].
Reduced dipole matrix elements are generally represented by the notation
(J ‖d‖ J) =

√
2J + 1 〈n′ J′ ‖d‖ nJ〉, although adherence to this convention is

inconsistent. The result is that reduced dipole matrix elements in one source
may differ from another by a factor

√
2J + 1.2

In this work, and in the works cited, the dipole matrix elements used are
the reduced dipole matrix elements and we use the round-bracket convention
to be explicit: the dipole matrix elements in Ref. [79] (Steck) are multiplied
by
√

2J + 1 =
√

2 to conform to the convention used in Ref. [216].
We now explicitly define the polarisation vector ε̂, in the spherical basis

in terms of the unit vectors ε̂R = (x̂− iŷ) /
√

2, ε̂L = (x̂ + iŷ) /
√

2 it is given
by

ε̂ = sin
(

θ +
π

4

)
ε̂L + e2iφ cos

(
θ +

π

4

)
ε̂R . (7.16)

The angle θ characterises degree of circular polarisation and φ the orienta-
tion of the polarisation axis, for θ = 0 the light is linearly polarised. The
previous analysis has assumed that the quantisation axis, determined by

2The resolution of this ambiguity lies in the definition of the natural linewidth:

ΓJ→J′ =
ω3

0
3πε0h̄c3

2J + 1
2J′ + 1

|
〈

J′ ‖d‖ J
〉
|2︸ ︷︷ ︸

Steck, Ref. [79]

=

Kien, Ref. [216]︷ ︸︸ ︷
ω3

0
3πε0h̄c3

1
2J′ + 1

∣∣(J′ ‖d‖ J
)∣∣2, although frustratingly

Ref. [216] does not use the round-bracket notation.
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an external magnetic field, is parallel to the wavevector of the laser, which
is also the direction of the VLS ‘fictitious’ field. When this is not the case,
the VLS shift is given by the projection of the effective VLS magnetic field
onto the quantisation axis [201]. For a bias field making an angle ϕ to the
wavevector of the laser beam the cross product in Eq. 7.15 thus reduces to
−iε̂∗ × ε̂ · F = sin 2θ cos ϕ mF. Varying ϕ is equivalently a method of min-
imising the VLS, but of limited utility to us as it restricts the vector sensitivity
of our magnetometry experiments to only one direction where the VLS is
cancelled.

We make the following substitution, expressing the squared electric field
amplitude as an optical intensity |E0|2 = 2I0/c ε0:

UE/h = −I0 (αS + αV sin 2θ cos ϕ mF) , (7.17)

where we have defined the scaled polarisabilities as a frequency shift per
unit intensity

αS =
αs

F
2ε0c

(7.18a)

αV =
αv

F
4ε0c

(7.18b)

for the specific case of F = 1. The scaled polarisabilities are plotted as a
function of wavelength in Figure 7.4. We calculate αV = −0.336 Hz W−1 cm2

at λ = 1064 nm, thus the energy shift for the vector light shift is

EVLS/h = −0.336 Hz W−1 cm2 × I0 sin 2θ cos ϕ mF. (7.19)

7.2.1 Polarisabilities in different unit systems

Obtaining previously calculated theoretical values of the vector polarisability
proved a challenge. To our knowledge, there has been no published exper-
imental or theoretical work on the vector polarisability of F = 1 87Rb at
1064 nm. In adapting Ref. [216] to calculate vector shifts for 87Rb, we can
compare our calculated values for other polarisabilities against those previ-
ously presented in the literature; namely Ref. [217]. This then requires a unit
conversion from atomic units (a.u.) into SI units, Hz W−1 cm2. Additionally,
we must make use of several relations derived in the preceding Section to
convert polarisabilities between unit systems and angular momentum bases,
specifically Eqs. 7.12, since Ref. [217] calculates αs,v

nJ rather than αs,v
F .

To begin, we note that the form we have used (Eq. 7.14) actually accounts
for the differential (F-dependent) shift. If we assume this is a small correction,
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Figure 7.4: Scalar (αS) and vector (αV) polarisabilities, calculated using
Eqs. 7.18 and 7.14. The sharp dip between the D1 and D2 lines (794 nm and
780 nm) corresponds to the magic wavelength (λ = 790 nm) where the scalar
light shift vanishes. At λ = 1064 nm, the scalar and vector polarisabilities
are 31.73 Hz W−1 cm2 and 0.336 Hz W−1 cm2 respectively.

we still identify Eqs. 7.12 as holding, so that αs
nJ ≈ αs

F and vector polarisabili-
ties αv

nJ (calculated in Ref. [217]) are related to the hyperfine polarisabilities
calculated in Eq. 7.14 by

αv
F ≈ −

1
2

αv
nJ . (7.20)

Using the conversion factors in Ref. [215], we can convert a calculated αs,v
nJ

in a.u. into an αS,V in Hz W−1 cm2 using

αS =
0.2488

103

αs
nJ

2ε0c
αv =

0.2488
103

1
2 αv

nJ

4ε0c
. (7.21)

We can now compile Table 7.1, which shows good agreement between
our calculated values and those of Ref. [217].

7.3 Controlling polarisation

Polarisation is our principal knob for tuning and ultimately eliminating
the VLS. The VLS exists in our experiments because the otherwise linearly
polarised dipole trapping light acquires a small polarisation imperfection
from reflecting off and passing through a number of optical components, such
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λ αS αV
(nm) Calc. Ref. [217] Calc. Ref. [217]

770 431.44 430.22(5) 52.29 52.29(1)
1064 31.73 32.21(2)† 0.336 −

Table 7.1: Scalar and vector polarisabilities, in units of Hz W−1 cm2 for
87Rb computed using Eqs. 7.18 and 7.14. Good agreement is found between
the calculated values and the polarisabilities calculated by Ref. [217] using
the conversion in Eq. 7.21. †An earlier experiment [218] measured the value
of αS at λ = 1064 nm to be 36(3)Hz W−1 cm2.

as the dichroic mirrors and most importantly of all, the glass cell. No matter
what effort we go to to make the light purely linearly polarised before the cell
(i.e. where it is easy to do so), the light at the atoms will have some slight
ellipticity due to the birefringence of the vacuum cell. We therefore require
an in vacuo polarimetry technique to measure the VLS and diagnose the
linearity of the light, which is adjusted using an ex vacuo quarter-wave plate.
A previous work used the differential vector shift imparted on a cloud of
133Cs in a dipole trap with λ = 866 nm (where the vector shift is substantial)
to essentially measure the birefringence of vacuum windows [185].

In this Section, we will address two issues before plunging into the
experimental details. The first concerns the identification of the angle θ in
Eqs. 7.16 and 7.19 with that of a quarter-wave plate rotated by the same
angle, and the second the is the quarter-wave plate’s ability to compensate
the birefringence of down-stream optical components.

To describe polarised light, we use the Jones calculus. Polarisation states
are represented by Jones vectors Ẽ, and optical components such as wave-
plates and polarisers by Jones matrices. Jones matrices act on Jones vectors,
transforming the polarisation state of the light. Polarised light propagating
along z with orthogonal electric field components Ex(t) and Ey(t) is described
by the Jones vector [219]

Ẽ =

(
Ex(t)
Ey(t)

)
= eiφ

(
E(0)

x eiφx

E(0)
y eiφy

)
(7.22)

with φx,y the phase of each electric field component in addition to the overall
phase φ = kz−ωt. In practice, we neglect the overall phase φ, normalise the
electric field amplitude (and hence each Jones vector), and define the relative
phase between components δφ = φy − φx. Elliptically polarised light with an
arbitrary orientation can then be written as

Ẽ(δφ, θ) =

(
cos θ

eiδφ sin θ

)
(7.23)
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where the angle θ is the angle the Jones vector makes to the x axis. We can
thus define basis vectors corresponding to vertical and horizontal linear and
right and left circularly polarised light:

Linear: ε̂V =

(
0
1

)
, ε̂H =

(
1
0

)
, (7.24)

Circular ε̂R =
1√
2

(
1
−i

)
, ε̂L =

1√
2

(
1
i

)
. (7.25)

The action of a birefringent optical component on polarised light can be de-
scribed by the action of a Jones matrix on a Jones vector: the Jones matrix for
a quarter-wave plate Aλ/4 whose fast axis is an angle θ measured clockwise
from vertical is given by

Aλ/4(θ) =

(
cos2 θ + i sin2 θ (1− i) cos θ sin θ

(1− i) cos θ sin θ i cos2 θ + sin2 θ

)
. (7.26)

We can then compute the projection of the product Ẽout = Aλ/4(θ)Ẽlin onto
the circular basis states, with the quarter-wave plate fast axis an angle θ

from vertical and the Jones vector Ẽlin a linearly polarised input state, ε̂H or
ε̂V . The resulting light expressed in the circular basis has the form Ẽout =

α(θ)ε̂L + β(θ)ε̂R, with the circularity given by C(θ) = |α(θ)|2 − |β(θ)|2, the
normalised difference of left and right circular polarisation projections.3 The
circularity essentially tells us the relative fraction of right and left circularly
polarised light, the normalised length of the effective VLS field along the
direction of the wavevector, and using Jones calculus it can be shown that

− iẼ∗ × Ẽ · ẑ = C = |α|2 − |β|2 (7.27)

for an arbitrary polarised state Ẽ = α(θ)ε̂L + β(θ)ε̂R.
Computing C for the polarisation vector in Equation 7.16 and for a quarter-

wave plate acting on a linearly polarised state reveal both to have exactly the
same functional form, sin 2θ. This result is general; an arbitrary elliptically
polarised state can be written in the linear basis as Ẽarb. =

1√
2
(ε̂V + e2iθ ε̂H),

and is equivalent up to a rotation and overall phase factor to ε̂ in Eq. 7.16

3We use circularity for the single number that describes the polarisation state of light in
the circular basis, which is equivalently the Stokes parameter S3 [219]. The ellipticity as such
a number is not a widespread convention to our knowledge; the ellipticity is occasionally
referenced as the ratio of the semi-major to semi-minor axes (b/a) of the polarisation ellipse
(related to the eccentricity, e =

√
1− (b/a)2); or simply as the relative phase between electric

field components. The ellipticity angle χ = tan−1
(

b
a

)
is also used. The circularity as we have

defined it naturally incorporates the handedness of the light and is a natural extension of the
Jones formalism used here.
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and the state Ẽout. Computing the circularity and the cross product for the
state Ẽarb. also yields sin 2θ.

We are thus able to identify the mixing angle in Eq. 7.16 with the rotation
angle of a quarter-wave plate, and deduce that for a 180◦ rotation of the
quarter-wave plate the VLS varies between −αV I0 < EVLS/h < αV I0. This
also gives an indication of the experimental requirements needed to precisely
eliminate the polarisation imperfection: the degree to which the VLS can be
cancelled then requires a waveplate rotation mount capable of very small,
reproducible rotations.

Before we conclude, we note how Jones calculus can be applied to con-
firm a quarter-wave plate can be used to ‘undo’ the elliptical polarisation
imperfection induced on light from an arbitrary phase shifter, such as the
combined effect of the post-waveplate optics including the glass cell. The
arbitrary phase shifter can be represented by the matrix Aφk . The light in the
vacuum cell seen by the atoms is given by Ẽatoms = Aφk Aλ/4Ẽlin, with Aφk

taking the form of a Jones matrix that imparts a relative phase shift of some
inconvenient amount φk, with fast axis oriented at some angle θk;

Aφk =

(
cos2 θk + eiφk sin2 θk (1− eiφk) cos θk sin θk

(1− eiφk) cos θk sin θk eiφk cos2 θk + sin2 θk

)
. (7.28)

Eliminating the VLS therefore amounts to finding a quarter-wave plate
rotation angle θnull such that for Ẽatoms, C(θnull) = 0. The circularity of Ẽatoms

is given by
C = cos φk sin 2θ − cos 2θ sin 2(θ − θk) sin φk. (7.29)

Analytically proving that there always exists some quarter-wave plate angle
θ that satisfies C(θ) = 0 is not trivial. However, after visual inspection of
the effect of each matrix4 it is apparent that any circularity generated by an
arbitrary phase shifter at some fixed angle can equivalently be generated by
a quarter-wave plate at some rotation angle, which produces −1 ≤ C ≤ +1
for θ ∈ [0, π]. The unknown phase shifter can always be cancelled by a
quarter-wave plate rotation. Colloquially the mechanism is called ‘pre-fudge5

– un-fudge’, and is depicted in Figure 7.5.

7.4 Experimental methods

We now describe the experimental protocol used to measure vector light
shifts. We adapt the differential Ramsey interferometry technique described

4One can examine polarisation ellipses or plots of C.
5This is perhaps the most phonologically similar and acceptable version of an adverb

that can take another form, particularly when the phase shift to be cancelled is especially
insidious.
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Figure 7.5: A quarter-wave plate (QWP) is used to correct for the bire-
fringence due to optical components and the glass cell; allowing for the
preparation of high-quality linear polarisation in vacuo. The initial state
need not be linear; the method can be equivalently used to correct residual
elliptical polarisation in the incident beam.

in Chapter 6 to measure the VLS by performing the Ramsey interrogation
whilst the atoms are still exposed to trapping light. To detect a VLS as a
differential interferometric signal, the BECs in the two dipole traps must
experience either a different polarisation in each beam, or a different intensity
with a common polarisation, as shown in Figure 7.2. It is also useful to be
able to measure the VLS from each dipole beam separately.

We devised two methods for measuring the VLS using differential in-
terferometry, referred to as ‘delayed drop’ and ‘in-trap’ for simplicity. The
optical experimental configurations for measuring the VLS and schematic
illustrations of the two measurement schemes is shown in Figure 7.6.

7.4.1 Delayed drop technique

In the ‘delayed drop’ technique, one dipole trapping beam is split into two,
A and B, positioning two BECs axially along the crossing beam (beam C), as
shown in Figure 7.6 (b). It is the VLS from the crossing beam that we will
measure as a differential signal:

1. We extinguish one of the split beams (beam A) first: since the crossing
beam alone is insufficient to support the BEC against gravity, BECA

falls.

2. After a short (up to 5 ms) delay, we extinguish the second split beam
(beam B), so that the two clouds are now vertically separated along the
radial direction of beam C by the distance fallen by BECA, typically
10-20µm.
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3. The two clouds now sample the Gaussian intensity profile of beam C,
and when beam C has some circularity, the two BECs thus sample the
differential VLS across the radial extent of the beam.

4. Immediately after extinguishing beam B we begin the Ramsey sequence,
while beam C is still on. During the Ramsey interrogation time, the two
clouds continue to fall through the beam, but for short enough times
(∼ 250µs) this can be neglected. The second π/2-pulse is then applied,
closing the interferometric sequence.

The measured relative phase is thus proportional to the absolute VLS shift of
beam C. Neglecting the axial dependence of intensity and any background
magnetic field differences, the intensity difference the BECs sample by virtue
of falling distances yA and yB results in a differential phase that takes the
form

∆φ

2πT
= αV [IC(yA)− IC(yB)] sin 2θ cos ϕ, (7.30)

with yA, yB the y position of BECA and BECB within beam C, θ the po-
larisation imperfection of beam C (equivalently the rotation angle of the
quarter-wave plate in beam C) and ϕ the angle the magnetic bias field makes
to the beam C wavevector. This configuration can be implemented on either
dipole beam, allowing for independent measurement of the VLS from each
beam. It is also a spatially resolved measurement that can determine the VLS
gradient if the vertical distance between the BECs is known.

There are a number of undesirable caveats associated with the delayed
drop technique. For example, it is limited to short Ramsey interrogation
times of ∼ 250µs to prevent motional blurring of the measured VLS, in much
the same way as the freefall gradiometry experiments were in Chapter 6.
Although BECA feels some residual trapping force due to beam C, and as
such falls less distance than if it were in freefall, there remains the question of
how to identify a metric for a nulled VLS. Any difference in the Zeeman shift
between the two BECs (with beam C on, beams A and B off) is due to the
VLS of beam C alone and a background magnetic field gradient. When the
relative phase between them is equal to the relative phase measured with the
same spatial separations and no light on, the VLS is zero. The background
magnetic field difference between the two BECs can be measured using
freefall gradiometry.

Consider the first three stages of the experimental procedure outlined
above. If we replicate the same spatial separation configuration for a VLS
measurement with these steps, but extinguish the crossing beam in the final
step, we perform a measurement of the background relative phase, without
the VLS. The spatial separation between the two clouds for a measurement
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performed with beam C on is essentially the same for a measurement per-
formed with beam C off for sufficiently short Ramsey times (∼ 100µs).
The background gradient, ∆φBG can then be determined directly, and when
∆φmeas ≡ ∆φBG + ∆φVLS = ∆φBG (i.e. at the nulling angle θN), there is no
VLS. The Ramsey time must still be kept short so that ∆φBG remains a valid
measurement of the background gradient and a suitable metric for defining
∆φVLS = 0.

7.4.2 In-trap measurement

An alternative measurement to delayed-drop is to keep the two BECs in trap
and create an intensity difference between beams A and B, with both beams
having common polarisation defined by a quarter-wave plate (i.e. both beams
pass through it, and travel the same optical path). Aligning the magnetic bias
field parallel to the split beams (cos ϕ = 1 in Eq. 7.19) ensures maximum
sensitivity to the VLS difference between beams A and B, whilst minimising
any contribution to the differential signal from beam C. The interferometry
sequence is then performed in-trap, the scheme is depicted in Figure 7.6(c)
and proceeds as follows:

1. An intensity difference is applied between the two beams, so that the
measured phase depends on the polarisation imperfection and intensity
difference as ∆φ ∝ ∆I sin 2θ′ ≈ 2∆Iθ′ for a small imperfection θ′.

2. For a fixed common-mode polarisation, the VLS is revealed in the
differential intensity dependence of the relative phase between the two
BECs. The relative phase is related linearly to the intensity difference;
the gradient of this line depends on the polarisation imperfection of
the light.

3. When the quarter-wave plate is turned to some angle θN , the ‘nulling
angle’ where ∆φ is independent of ∆I, the light is linear and the VLS is
cancelled.

4. The experimental aim is therefore to reduce the gradient ∂(∆φ)/∂(∆I)
to zero, which amounts to finding the nulling angle θN .

For these measurements, the relative phase is given by:

∆φ

2πT
= αV [IA(r)− IB(r)] sin 2θ′

= 2αV∆Iθ′, (7.31)

where we have assumed that the bias field is in the direction of beams A
and B, so that cos ϕ = 1. In the intervening step we have also suppressed
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the dependence of the intensity in each beam on the position of the BEC;
∆I = IA(r)− IB(r). This assumes each beam is identical and each BEC is in
exactly the same position within each beam, with the intensity difference
driven by imbalancing the optical power. This assumption is invalid in prac-
tice for experiments, as misalignments and different beam waists mean each
BEC samples a different local intensity. More will be said on this in Section
7.6, Eq. 7.31 is still valid for an intensity difference due to misalignments.
The gradient of a ∆φ vs. ∆I plot for a given polarisation imperfection θ′ is
thus

∂(∆φ)

∂(∆I)
= (2πT) 2αVθ′

= (2πT)2αV(θ − θN). (7.32)

with θ′ = θ− θN now represented as the difference between the quarter-wave
plate rotation angle θ and the nulling angle θN . This gradient ∂(∆φ)/∂(∆I)
scales linearly with interrogation time, typical background gradient dephas-
ing times of ∼ 15-30 ms allow for substantially improved precision and thus
more comprehensive nulling of the VLS than delayed drop measurements.
The contribution from background magnetic fields is eliminated and phase
aliasing does not need to be accounted for sufficiently small polarisations.
In this sense, the delayed drop measurements serve as a useful precursor
measurement that roughly obtains θN , an estimate that can be substantially
improved on with the more sensitive in-trap method.

In contrast to the delayed drop measurements, the scheme discussed
in this Section is a measurement of the relative polarisation between two
beams. Both beams travel through similar optical paths and can be made
to originate in a well-characterised common polarisation state (from a Glan-
laser prism immediately after the AOM, as discussed in Section 7.1.1). We
can approximate the absolute polarisation of a single beam passing through
essentially the same optical path by the differential polarisation obtained
by in-trap differential VLS measurements. We discuss the validity of this
approximation at length in Section 7.6.5.

7.5 Characterisation of the VLS: delayed drop

The delayed drop technique allows us to measure the VLS from each beam
independently with a dynamic range spanning the maximum and minimum
VLS. Figure 7.7 shows the results of the measurement for both dipole beams,
for different magnetic bias field directions. Each data point corresponds to
a relative phase extracted from an ellipse containing 12 points, taken every
10-20◦ of quarter-wave plate rotation. The angle of the waveplate is not the
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Figure 7.6: Schematic of the experimental apparatus (a) and two configura-
tions to measure vector light shifts (b-c). The position and amplitude of each
dipole beam is controlled by an AOM, introducing a second rf frequency to
the AOM allows independent control of two dipole beams. Splitting either
the x′ or z′ oriented dipole beams allows us to measure the difference in
vector light shift at different locations of the same beam (b): the two BECs
are positioned along the axial extent of the crossing beam C by splitting one
beam into two; beams A and B. We then turn the beams off at different
times to allow each BEC to fall a different distance, and sample a different
intensity. Rotating the quarter-wave plate (QWP) in the beam then varies
the VLS sampled by each BEC. Higher precision measurement is achieved
by keeping the BECs in trap (c): we vary the power difference between
beams A and B for a common polarisation of the two split beams, which
then measures the intensity dependence of the VLS at a given quarter-wave
plate angle.

orientation of the fast axis, and corresponds to its arbitrary alignment in
the rotation mount; this manifests as some overall offset to the quarter-wave
plate rotation angle in the Jones calculus discussed previously.

It should be noted that for these data, several differences exist between
this setup and that described in Figure 7.6. The two Glan-laser polarising
prisms were not present,6 and the rotation mounts used were low-precision
Thorlabs CRM1 stages with 2◦ increments. The quarter-wave plates used
in all VLS experiments were zero-order (wpf-4225-1064) from Union Optics,
the half-wave plate after each quarter-wave plate is also a zero-order type
(wpf-2225-1064).

We measured the relative phase versus waveplate angle for three different

6The Glan-laser prisms were added incrementally after the completion of delayed-drop
measurements, as we probed ever more precisely the VLS with in-trap measurements it
became clear that the Glan-laser prisms were required for suppression of residual thermal
transients.
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Figure 7.7: Measurement of vector light shifts from individual dipole
beams: a) z′-oriented dipole beam and b) x′-beam, for three different bias
field directions. Each BEC samples a different region of the radial inten-
sity profile of the dipole beam, and thus a differential VLS. Rotating the
quarter-wave plate in the dipole beam then changes the differential VLS.
The applied bias fields are Bz = (0, 0, 670 mG), By = (δB, 293 mG, 0) and
By + Bz, where δB is a stray transverse component. The dashed lines repre-
sent the background magnetic field gradient contribution to ∆φ from each
field direction. Overlaid is a phenomenological fit from which we determine
the amplitude of the VLS gradient (Eq. 7.30). Error bars on each point
(∼ 0.003 π) are smaller than the data points.



7.5 Characterisation of the VLS: delayed drop 175

bias field directions: Bz = (0, 0, 670 mG), By = (δB, 293 mG, 0) aligned along
the z and y axes respectively (δB is a stray field component discussed below)
as well the combined field |Bz + By| = 731 mG. The Ramsey interrogation
time is set at 250µs. Each VLS measurement has a corresponding background
gradient measurement determined by performing the delayed drop Ramsey
interferometry sequence with the crossing beam (beam C) extinguished, as
described in Section 7.4.1. Immediately it is observed that VLS has the
expected 180◦ periodicity with waveplate angle.

However, when we consider the circularity for the light the atoms experi-
ence, represented by the Jones vector

Ẽatoms = Aφk(θk)Aλ/4(θ)Ẽlin, (7.33)

the functional form is more complicated (Eq. 7.29). Consider the matrix
Aφk(θk), the phase retarder defined in Eq. 7.28 as representing the glass
vacuum cell and any birefringent optics between the quarter-wave plate and
the atoms. The Jones vector Ẽlin is assumed to be linearly polarised. Based
on Eq. 7.29, the general form of the circularity (and hence VLS) is more
complicated than simply sin 2θ. Indeed, it is only the case for small φk that
the light transmitted through the cell has a circularity that varies as sin 2θ:
the small angle approximation for small φk in Eq. 7.29 yields:

C ≈ sin 2θ − φk cos(2θ) sin 2(θ − θk). (7.34)

We can therefore conclude, from the data in Figure 7.7, that the cell is indeed
only weakly birefringent. This is commensurate with what has been reported
in other works [220]. The action of the quarter-wave plate in eliminating
the VLS is twofold. The input state, which has been subjected to reflection
off various optical elements after the AOM is slightly elliptically polarised.
The quarter-wave plate corrects this, but does not make the output state
linearly polarised, rather it prepares a state that when subjected to the slight
birefringence of the subsequent optics and cell, becomes linearly polarised at
the atoms.

We observe that for a y-bias field, which should eliminate the VLS
by virtue of being perpendicular to the propagation direction of the laser
(cos ϕ = 0 in Eq. 7.19), there is a measurable VLS. This all but confirms our
suspicions noted in Chapter 6 that a stray field component perpendicular
to By exists. The magnitude of this stray field was later found to be of
order 70 mG. The amplitude of the VLS in the x′-oriented dipole beam (waist
∼ 100µm, z′-beam w0 ∼ 70µm) is less than that of the higher-intensity z′

beam, as expected. We also note that the phase of the By data in the z′ and
x′ plots: it is in phase and 180◦ out of phase respectively with the primarily
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Figure 7.8: Fresnel losses through cell as a function of quarter-wave plate
angle for both the x′ and z′ dipole beams. Overlaid is a fit that models the
transmission of light through the birefringent optical path (cell, optics, etc.)
and reproduces the observed variation of transmitted power with waveplate
angle well. The larger residuals in the z′ dataset is a result of limited optical
access to the beam, making it considerably more difficult to measure power
reproducibly with an optical power meter.

z-biased data. This can be understood by considering the projection of the
z-bias field on the wavevector k̂ of each beam, which determines the sign of
the VLS. The sign of k̂x′ · ŷ is the same for both bias configurations (which
suggests the stray component for a y-bias field is most likely due to imperfect
nulling of the x-bias field), whereas for the z-biased measurements k̂z′ · ẑ
and k̂x′ · ẑ are opposite sign. Since the y-bias field used had only 300 mG
amplitude, any stray component perpendicular to it of only small amplitude
is enough to tilt the field direction so that we measure a VLS shift.

A small confounding effect is that the variation of the circularity of the
light with waveplate angle leads to a varying transmission of light through
the cell. This results in a changing intensity of the trapping light. The
reflection of light off the vacuum cell is quite severe: it is not anti-reflection
coated. The intensity variation is determined by measuring powers before
and after the cell and using the Fresnel equations to determine the fraction
of light transmitted through the cell. Shown in Figure 7.8 is the variation of
the transmitted intensity fraction with waveplate angle. We can use the Jones
matrix formulation of polarised light – specifically that described in Eq. 7.33

– in conjunction with the Fresnel equations to determine the functional form
of the transmitted intensity.

We can then fit to the transmission data in Figure 7.8 a model with free
parameters for the orientation of the linear polarisation incident upon the
quarter-wave plate and the phase φk and orientation θk of the unknown
composite phase retarder (this does not include the cell), as well as an offset
angle to account for the orientation of the waveplate axis. This is overlaid with
the transmission data in Figure 7.8, showing agreement for both beams. The
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optical power inside the cell can then be determined using the fitted values
and considering only passage through one of the cell walls. This calculation
will be important later when we consider the intensity calculation for in-trap
measurements of the VLS. The overall intensity variation is of order 10-20%,
which maps to a commensurate variation of the VLS amplitude in the delayed
drop measurements across the full rotation range of the waveplate.

There are several complications to this analysis that are worth mentioning.
The analysis does not take into account the birefringence of the cell, with
polarisation state of light remaining unchanged during passage through
the cell. This is concordant with the observations of Figure 7.7 and Eq.
7.34, and is not expected to adversely affect the inferred transmittance. The
fitted parameters extracted for the phase shift φk and angles θi, θk do not
correspond to uniquely defined permutations of optical elements, nor do
they serve to definitively inform the circularity inside the cell independent of
VLS measurements.

Without adjusting the rotation axis of the approximately linear polarisa-
tion state incident on the quarter-wave plate it is not possible to achieve fully
right or left circularly polarised light at the atoms: this reduces the overall
amplitude of the VLS as a function of quarter-wave plate angle. An ellip-
tically polarised state input to a quarter-wave plate reduces the maximum
range of the output circularity. Rotating this input state (with a half-wave
plate, for example) can rectify this. In our experiment, however, the half-wave
plate is located after the quarter-wave plate:7 our aim is to eliminate the VLS,
not maximise it. Both configurations can be used to eliminate the VLS (only
a quarter-wave plate is essential), but only the latter can achieve maximum
circularity. This will be discussed more in Section 7.6.5.

We extract the quarter-wave plate angle that minimises the VLS by fitting
sinusoids to the data and determining the point at which the differential
phase from the delayed drop VLS measurement is equal to that measured
from background gradients alone: ∆φ ≈ ∆φBG. For the z-biased data, the
nulling angles are measured to be 46.6(6)◦ and 24.9(1.1)◦ for the z′ and x′

beams respectively. At best, we are able to match ∆φmeas = ∆φBG within fitted
ellipse uncertainties, so for an absolute upper bound to VLS suppression
at best we could achieve around 0.4 % of the maximum value, assuming
I0 = 8 × 103 W cm−2, αV = 0.336 Hz W−1 cm2 and σ(∆φ) ≈ 0.003 π. In
practice the suppression is limited to 2 %, the typical fitted uncertainty
divided by the maximum imparted VLS amplitude. We use the higher
precision in-trap measurements discussed later in this Chapter to rigorously
eliminate the VLS.

7For space reasons and in the interests of preparing a state that is reflected maximally off
the dichroic mirrors
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The VLS-induced gradient is determined by measuring the differential
distance δy = yA − yB between the BECs along and converting the relative
phase to a frequency difference: the radial intensity gradient along y is as-
sumed to be responsible for the VLS gradient, the axial separation along the
beam is not relevant.8 Due to the residual trapping force of beam C retarding
the fall of BECA, the intensity variation with waveplate angle means that this
distance varies slightly with waveplate angle as well, although our observa-
tions suggest this effect to be small. Around the vicinity of the nulling angle,
the differential distances fallen in the z′ and x′ beams respectively were de-
termined to be 41.7µm and 35.7µm respectively. The VLS gradient induced
for small angle changes around the nulling angle can then be determined as
8.2(2)mG cm−1 deg−1 for the z′ beam and 5.5(2)mG cm−1 deg−1 for the x′

beam. This calculation assumes that the radial intensity of the dipole beam
varies linearly between the two BECs, which is by no means guaranteed. The
reported gradients are almost certainly underestimates, but in any case are
severe. The polarisation imperfections induced by thermal transients of the
AOM need only be as small as 1-2◦ to create gradients comparable to the
background gradients measured in Chapter 6.

7.5.1 Interferometer contrast

We can observe the contrast of Ramsey fringes as the quarter-wave plate is
rotated around the nulling angle as further confirmation that our technique
eliminates the VLS. The fringe contrast is affected by inhomogeneous dephas-
ing brought about by spatial variation of the VLS shift as well as background
magnetic gradients. Varying the waveplate angle about the nulling angle
at fixed Ramsey time allows the effect of the VLS gradient to be observed.
The results for this measurement are shown in Figure 7.9. Each contrast
measurement is composed of 20 measurements of a phase domain Ramsey
fringe9 at an interrogation time of 15 ms, with a Bz bias field. The contrast
is clearly seen to peak around the nulling angle, indicating suppression of
inhomogeneous dephasing when the VLS is nulled. The offset of the peak
contrast point from the nulling angle is due to the fact that the VLS gradient
may partially cancel the background magnetic field gradient contribution,
leading to a higher contrast.

8Axial intensity variation along the single beam is weak, with the Rayleigh range on the
order of 1 cm.

9The absolute fringe phase sampled with each measurement at T = 15 ms is random; the
contrast is the maximum fringe amplitude from 20 repeated measurements at fixed Ramsey
time.
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Figure 7.9: Interferometric contrast improved by VLS cancellation. The
vector light shift is spatially inhomogeneous due to gravitational sag, re-
sulting in spatial dephasing that reduces the contrast of Ramsey fringes.
Varying the quarter-wave plate that tunes the VLS amplitude shows the
fringe contrast peak near the nulling angle for z′ dipole beam (main figure)
and the x′ beam (inset). The small shift from the measured nulling angle
may be the result of partial cancellation of a component of the background
gradient, resulting in a non-zero VLS but higher contrast. Shaded regions
represent uncertainty in the nulling angle, calculated in previous Section.

7.5.2 Spin-mixing dynamics in a VLS gradient

We drew special attention to the effects of gradients on coherent spin-mixing
dynamics in Chapter 5, in particular the nefarious time-varying nature of VLS
gradients originating from thermal AOM-induced polarisation transients.
The delayed drop measurements described previously did not appear to
suffer from these effects, which would manifest as shot-to-shot horizontal
scatter of points. We did not observe this, which may be due to the lower
rf powers dissipated in the AOMs, by virtue of attenuation in the splitter-
combiner used in these experiments. We did not use splitter combiners
during spin-mixing experiments, and our measurements of irreproducible
drift behaviour suggested the effect was strongest when the initial rf power
was highest. Initialising the dipole trap AOMs to have maximum rf amplitude
at the magnetic trap switch-on, rather than the final power at the end of
optical evaporation lead to the most severe irreproducibility. The dipole
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beams stay at their maximum amplitude for the majority of the time they
are on (6 s every run), this led to a gradual heating of the AOMs over the
course of ∼ 10 experimental cycles. The polarisation state exiting the AOM
became more elliptical with each run as the temperature increased. The
splitter-combiners attenuate the input power by approximately 10 dB, hence
reducing the overall power in the AOMs and thus the thermal polarisation
transient.

We can now show the effect of a VLS induced gradient on spin-mixing
dynamics directly. We used the results of Section 6.7.1 to find a magnetic
field direction that minimises the background magnetic gradient so that the
contribution from the VLS is easily seen. From Figure 6.10, we see that
the effective gradient is only ∼ 4 mG/cm for a x′-oriented bias field, which
additionally allows for maximum sensitivity to the x′-oriented beam VLS.
With this reduced gradient, we are able to see spin-mixing dynamics in the
trap used for the VLS measurements – the semi-isotropic trap – despite the
small value of c = −2π × 3.2 Hz. Shown in Figure 7.10 are the spin-mixing
dynamics and spatial separations with approximately nulled VLS at a bias
field of 372 mG (q = 2π × 10 Hz), and a measurement with a large VLS shift
(and hence a VLS induced gradient of 132(6)mG/cm). These observations
are consistent with our findings in Chapter 5: spin-mixing dynamics are
preserved when spatial separation between the spin components is minimised.
With a large VLS gradient applied, strong component separation along
the y-axis is observed, that has consequentially deleterious effects on spin-
mixing dynamics. Not shown is the component separation along the axis
perpendicular to y, which is prevalent in both low-VLS and high-VLS cases,
a result of the residual background gradients. This possibly accounts for
the observed drift of mF = 0 population present in the spin-mixing data
consistent with that seen in Chapter 5.

Further investigation into spin-mixing dynamics in various, well-calibrated
gradients would be particularly interesting to consider. The application of a
range of gradients of varying magnitude could potentially reveal the mech-
anism that drives the evolving spinor to the ground state: note the slope
towards lower ρ0 after the initial peak near 25 ms, which differs from that
observed in previous experiments. Also, we observe the spin projection (mag-
netisation) Fz appears to no longer be conserved. This has been the study of
a previous theoretical work that explores the consequences of non-conserved
magnetisation on spin-mixing dynamics [221], and may be interesting to
pursue.

As an aside, we mention here the vastly longer spin-mixing times available
with a nulled VLS and the x′ bias field. Figure 7.11 shows population
oscillations persisting to almost one second. Under these circumstances, the
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Figure 7.10: Spin-mixing dynamics of a spinor BEC with the VLS approxi-
mately nulled (top) and when set to 132(6)mG cm−1: fractional population
evolution (left) and centroid displacement, relative to the mF = 0 centroid
position (right). The VLS induces an effective magnetic field gradient along
the gravitational direction (y), driving strong component separation. In
this regime, the spatial overlap of the three Zeeman sublevels is reduced,
suppressing spin-mixing from the mF = ±1 states into the mF = 0 state.

effects of gradients are sufficiently weak to render this system eminently
suitable for realising weak spinor physics, allowing long-timescale dynamics
to be observed. This result highlights the power of performing a rigorous
characterisation of the magnetic landscape of a quantum gas.

7.6 High precision cancellation: In-trap VLS

measurements

The sensitivity of differential Ramsey interferometry to a magnetically or
optically induced Zeeman shift increases linearly with interrogation time.
The maximum interrogation time that can be reached in delayed drop is
limited by the effect of motional blurring. Moreover, background magnetic
field gradients contribute to the measured differential phase; these must be
subtracted to infer the VLS suppression. The in-trap measurements discussed
in Section 7.4.2 allow much longer interrogation times, limited by decay of
contrast (dephasing time). Measuring differential phase as a function of
differential intensity naturally eliminates any contribution from background
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Figure 7.11: Spin-mixing oscillations with an x′ bias field and nulled
VLS. The effective background gradient is around 4 mG/cm, resulting in
spin-mixing oscillations preserved up to almost 1 s.

magnetic gradients. The task of eliminating the VLS is reduced to finding a
quarter-wave plate angle that minimises the dependence of the relative phase
on the intensity difference between the two traps.

We assume that the quarter-wave plate angle defines the common polar-
isation of each of beam A and B. Unlike the delayed drop method, this is
fundamentally a relative polarisation measurement: both beam A and B to a
good approximation samples the same optical path dependent birefringence
as the other. There will inevitably be a small polarisation difference between
the two beams due to spatially varying birefringence of the cell, or different
angles of incidence onto birefringent optical components between the quarter-
wave plate and cell. Eliminating the VLS with the in-trap technique may
not map directly to true linear polarisation in the case of a single un-split
beam, but it does eliminate optical Zeeman shifts in a magnetic gradiometry
experiment. Later in Section 7.6.5 we make comments on how the magnitude
of differential polarisation may be accounted for.

7.6.1 Procedure for in-trap VLS measurements

The experimental procedure for the in-trap technique is as follows. For each
quarter-wave plate angle, we incrementally vary the intensity in one of the
split beams (beam A) by changing the corresponding rf power in channel
A, and for each optical power imbalance ∆P = PA − PB ∝ ∆I we measure a
relative phase ∆φ by performing in-trap Ramsey interferometry and fitting
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to an ellipse. Based on Eq. 7.32, ∆φ should vary linearly with intensity
difference and (in the small angle regime, near the nulling angle) linearly
with quarter-wave plate angle θ. For each waveplate angle we thus extract the
gradient of ∆φ vs ∆P, which is proportional to the difference in VLS between
the beams. When this gradient is zero, the beams are linearly polarised and
the VLS is zero.

Assuming that the quarter-wave plate indeed defines the overall polari-
sation of beams A and B, when the intensities of the beams are equal, the
measured phase will be the same for all waveplate angles. Each BEC samples
the local intensity of the trapping light at its respective trap minimum, posing
a complication: the local intensity is dependent on the optical power, beam
waist and beam alignment (i.e. where the crossing beam intersects). The local
intensity is different for both traps: equal optical powers and beam waists
does not correspond to equal intensity. There is no simple, independent way
to measure the intensity sampled by each BEC. A full numerical calculation
of the trapping potential from measured optical powers and beam waists
is non-trivial, and there is also the problem of astigmatism induced by the
glass cell that is difficult to account for with ex vacuo measurements and
calculation. However, any local intensity mismatch between the two traps
can be accommodated by an optical power difference ∆P between the beams,
so that IA(PA, wA, rA) = IB(PB, wB, rB), with IA, IB the intensity profiles of
beams A and B, with waists wA, wB and rA,B defines the position of each BEC
within each beam. The optical power difference ∆P0 at which IA = IB can be
determined by measuring ∆φ vs ∆P for different quarter-wave plate angles:
the point at which all linear curves ∆φ(∆P) intersect defines ∆P0. Measuring
and calculating the local intensity is discussed more in Section 7.6.3.

Optical setup differences

Two changes were made to the optical setup for in-trap VLS measurements,
both of which reflect the higher sensitivity of the technique. We replaced
the quarter-wave plate rotation mount with a high-precision Thorlabs crm1-
p rotation mount, which has 2.5 arcmin resolution on a micrometer drive.
This change inevitably means the absolute angle determined in the previous
Section had to be re-measured, owing to the arbitrary alignemnt of the
waveplate fast axis within the rotation mount. The new nulling angle for
the z′ dipole beam was determined using delayed drop measurements to
be in the vicinity of ∼ 340◦. For all in-trap measurements, we measure the
differential VLS from only the z′-oriented dipole beam, applying a bias field
parallel to this direction for these measurements for maximum sensitivity
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but also for maximum insensitivity to the approximately nulled10 VLS of the
orthogonal x′-beam.

Initial experiments used Ramsey times of 3 ms and showed very strong
fluctuations of ∆φ consistent with drift as the experiment ‘warmed up’. This
drift was comparable to the change in ∆φ imparted with changing the power
imbalance, and thus represented a significant barrier to progress. We imme-
diately identified this with the same drifting VLS observed in spin-mixing
experiments and concluded it was due to thermal polarisation transients from
the AOM, and not power drifts11 as was previously thought. This drift was
not observed in the delayed drop measurements, presumably due to the
reduced sensitivity and coarser sampling of waveplate rotation angles: the
3 ms in-trap technique is 12× more sensitive by virtue of interrogation time.
We estimate that the AOM-induced polarisation drift is on the order of no
more than several degrees: too small to affect delayed-drop measurements
but large enough to be problematic for 3 ms in trap measurements, where
the waveplate is rotated by only 5◦. In Section 7.5, we saw how polarisation
imperfections on the order of several degrees resulted in effective gradients
of ∼ 10 mG/cm. This is commensurate with the observed drift that thwarted
reproducible spin-mixing experiments in Chapter 5, providing a satisfying
(if still disappointing) resolution to this problem.

Two Glan-laser (GL) polarisers (Thorlabs gl-5 and gl-10 respectively) were
placed immediately after the AOMs on the z′ and x′ dipole beams. The GL
polariser removes any polarisation drifts, differential or otherwise, induced
by the AOM, resulting in an exceptionally well defined linear polarisation
state for both beams A and B. The polarisation deviations induced by the
AOMs were therefore converted to common-mode power variations on the
same order (< 2%) which are far less problematic.

7.6.2 Results of in-trap VLS measurements

Our initial experiments used Ramsey interrogation times of 3 ms and quarter-
wave plate rotation ranges of 5◦. We used equal rf drive powers for each
beam, which corresponds to ∼ 550 mW in beam A, and 730 mW in beam B,
a 33% optical power imbalance due to asymmetry of the AOM diffraction
bandwidth. We vary ∆Prf between −0.04 and 0.04, and for each value of
∆Prf we extract the relative phase from an ellipse formed from 12 varied
Ramsey π/2-pulse phases. The results are shown in Figure 7.12. In order to
determine the rf drive power imbalance required for balanced intensities, we

10Approximately nulled using the delayed drop technique.
11Previously we assumed that the AOM was minimally perturbative to the polarisation,

and the observed drift was due to to power drifts at a fixed, non-zero polarisation.
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measure the intersect of several ∆φ vs. ∆Prf curves (top panel, Figure 7.12),
where ∆Prf is the rf drive power imbalance (in arbitrary units). The ∆Prf axis
in the Figure is scaled so the intersect point (approximately ∆Prf = 0.0052
in absolute units) is zero. Given that this corresponds to an optical power
imbalance of around 30%, the degree to which beam alignment determines
the local sampled intensity is clearly evident.

The suppression of the VLS is determined by computing the ratio of the
smallest achieved ∂(∆φ)

∂(∆Prf)
to the maximum VLS. We define the gradient of

each ∆φ vs ∆Prf plot as

M(θ) =
∂(∆φ)

∂(∆Prf)
= (2πT)× αVk sin 2(θ − θN)

≈ (2πT)× 2αVk(θ − θN) (7.35)

where k is the constant of proportionality that converts power imbalances to
intensity differences; ∆I = k∆Prf (discussed in the next Section). The slope of
the M vs. θ plot is S = 2πT× 2αVk. Denoting the smallest achieved gradient
as Mmin(θ), the suppression ratio is

Mmin(θ)/Mmax =
(2πT)× kαV2(θmin − θN)

(2πT)× kαV

= 2Mmin/S. (7.36)

The suppression ratio is thus the ratio of the smallest achieved M to half the
slope S. Using this metric, we determine that the VLS is suppressed by a
factor of 230, or to almost 0.4 %.

Higher precision measurement and nulling is obtained by increasing the
Ramsey interrogation time. For the z′ bias field, the interferometric contrast
peaks around T = 15 ms: quadratic Zeeman contrast nulls at 7 and 22 ms
and background gradient dephasing after 20 ms makes 15 ms a reasonable
trade-off between long evolution time and contrast. These measurements are
therefore 5× more sensitive than the previous data taken at 3 ms Ramsey
time.

During initial experiments using 15 ms interrogation times we observed
that the uncertainty on fitted gradients close to the nulling angle increased.
We attributed this to polarisation fluctuations in the x′ (crossing) dipole beam,
which we assumed we were insensitive to by virtue of bias field orientation.
A GL polarising prism was added to the x′-dipole beam setup, and the VLS
nulled again using the delayed-drop technique: the addition of the GL prism
resulted in an overall drop in power of the x′-beam that was compensated for
with an rf drive power increase to the AOM. The optical power change was
not precisely calibrated and caused a shift in the measured VLS nulling angles
for both beams by about 1◦, presumably due to a different local intensity
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Figure 7.12: In-trap measurement and nulling of the VLS at 3 ms Ramsey
interrogation time. The top panel shows the variation of ∆φ with power
imbalance ∆Prf for different quarter-wave plate angles (symbols map to
angles in lower frame). In the lower frame, the gradient M(θ)/π (Equation
7.35) of each of the ∆φ vs.∆Prf datasets is plotted against waveplate angle.
When ∆φ is independent of intensity, the gradient is zero and the VLS is
nulled. This occurs around an angle of θN = 337.5◦ (arrow). At this angle,
the VLS is suppressed by a factor of almost 230. Error bars on each plot are
smaller than data points.
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being sampled in the split beams, which is dependent on the alignment of
the crossing beam, or removal of residual x′ VLS. We will forgo presentation
of the final 15 ms dataset until after we have discussed the calculation of the
intensity in the following Section.

7.6.3 Calculation of the intensity

In order to determine the values of vector shifts in more useful units (namely
Hz W−1 cm2) we need to know the optical intensity difference sampled by the
BECs, which is no trivial undertaking. Optical power and beam waists can be
determined very accurately ex vacuo using standard optical test equipment
(power meters and beam profilers). However, is not simple to estimate the
overall trapping potential, including the crossing beam and gravitational sag,
which ultimately determines the trap minimum and hence the position of the
BEC in each of the traps. As we have indirectly seen, the relative alignment of
the crossing beam with beams A and B dramatically affects the local intensity
sampled by each cloud.

We considered a number of strategies to infer the intensity sampled by
each BEC. To begin, we measure the waists of beams A and B, and optical
power as a function of ∆Prf. Shown in Figure 7.13 are the results of these
beam profiling measurements. Waists are measured ex vacuo by projecting
both dipole beams upwards with a fold mirror placed in the path of the
beams prior to the cell and translating a Thorlabs beam profiler (bc106-vis)
along both beams. The waists are calculated from fitted 1/e2 Gaussian
widths. We see that the beams are both astigmatic and divergent, almost
certainly a result of aberrations from the 300 mm dipole beam focusing lens,
which may be severe given the beam spots are displaced from the optical
axis of the lens. We determine the beam width ‘at the atoms’ by measuring
the distance between the beam centroids on the CCD profiler. When this
distance is equal to the distance between the two BECs (342µm, measured
from absorption images, as described in Section 6.4), the beam widths at that
point are approximately equal to the beam widths at the atoms.

We see immediately that the trapping beam widths at the atoms w̄A, w̄B =

66.25, 69.75µm are different (bar denotes mean beam width). This, in addi-
tion to the beam alignment difficulty contributes to the local intensity each
BEC samples. Shown in Figure 7.14 is the optical power in each beam as
a function of ∆Prf. Due to the addition of the GL polariser in the x′ beam,
the equal-intensity intersect point had to be remeasured and was found to
be ∆Prf ≈ 0.027. This corresponds to an optical power imbalance of about
15 %, and is not accounted for by the measured difference in beam widths as
described below.
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Figure 7.13: Determination of dipole beam waists at the positions of the
atoms, (a) schematic of configuration to measure beam waists along the
propagation directions of the two split dipole beams. The CCD beam profiler
is used to measure the beam waists (c, d) as well as the separation between
the fitted centroids (b). When the measured separation is equal to the
inter-trap distance measured using absorption images in vacuo, the waists of
beam A (c) and B (d) can be determined, at the position of the atoms. The
measurements to the left of the solid line in (d) exhibit saturation effects in
the beam profiler due to higher optical powers (which were subsequently
reduced).

We estimate the trapping light intensity seen by the atoms by defining
effective beam intensities IA,B = 2PA,B/πw2

A,B, and assuming that at the
balanced intensity point IA = IB so that wA/wB =

√
PA/PB. We then

substitute wA = 66.25µm, the measured beam waist of beam A and infer
wB = 71.2µm. We therefore are able convert dimensionless DDS control
units ∆Prf into a differential intensity, ∆I. This is a simplistic assumption,
which is expected to overestimate the intensity since we assume that BECA

is subjected to the peak intensity of the dipole beam. In a single beam trap
such an assumption is manifestly inadequate, but in a cross beam trap the
additional trapping force of the second dipole beam can indeed result in a
trap minimum that samples the peak intensity of one beam but not the other,
in which case our assumption has a degree of validity.
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Figure 7.14: Calibration of rf drive power imbalance ∆Prf to intensity
imbalance. Left: optical power in the cell, calculated from measuring beam
powers and accounting for the transmission through the cell (T ≈ 0.965),
as a function of rf drive power imbalance. Assuming the intersect point
of different ∆φ vs. ∆Prf curves determines the power imbalance required
for equal intensities, we can define effective beam intensities sampled by
each BEC. For this data, the balanced intensity point is at 0.027, the ratio
wA/wB =

√
PA/PB allows us to determine the ratio of beam waists required

for equal intensities based on our measurement of wA. The differential
intensity ∆I = IA − IB is then plotted as a function of ∆Prf (right).

Absorption images of thermal atoms allowed to expand along the length
of the dipole beams can be used to trace the position of the dipole beams, and
hence characterise misalignment. The optical power in a single beam at the
drive powers used for typical experiments is insufficient to support the atoms
against gravity, so higher optical powers (and hence higher rf drive powers)
are used. Thermal effects in AOMs cause the position of the dipole beams to
change reproducibly as the rf power is changed (during optical evaporation,
for instance). It is known that the position of the dipole beams change slightly
as the rf power is is changed: the beam positions inferred from atoms tracing
out the beam path at higher optical powers are therefore only approximate,
and at lower powers the effect of gravitational sag is stronger. In any case we
see that the AOM splitting axis is slightly tilted with respect to the crossing
dipole beam C (possibly by as much as 8◦), with the result that the crossing
beam ‘holds’ the BECs at different positions relative to the peak intensity
point of each of the A, B dipole beams. In conjunction with the different
beam waists this effective misalignment accounts for the intensity difference
between the two beams for equal drive powers.

A better estimate of the intensity could be made with the aid of a simple
model of the trapping potential and our measured trap frequencies. The trap
potential is given by

U(r)/h = −I(r) (αS + αV sin 2θ mF) , (7.37)

with αS at 1064 nm given in Table 7.1 and I(r) the trapping laser profile
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(Eq. 3.14). This model can be used to determine the trap depth, trap
minimum (x0, y0, z0) (i.e. position of the BEC in the beam), and in the
harmonic approximation, trap frequencies from ωx = ( 1

m
∂2

∂x2 U|x=x0)
1/2. A

model with free parameters for beam alignment can be used to determine
the configuration that most accurately matches the trap frequencies we
measure using parametric resonance and sloshing, described in Chapter 3.
We attempted this and found that simply calculating the trap frequencies in
the harmonic approximation with our measured trap parameters typically
gave trap frequencies ∼ 2 times what we measure. The source of this error
was never definitively identified. While phenomenological factors can be
introduced to give trap frequencies (and intensities) consistent with what
was measured, the discrepancy speaks to the simplicity of the model and
the rudimentary way trap frequencies were calculated. The dipole potential,
complete with misalignments and gravitational sag, is also anharmonic. A
more detailed simulation that directly probes the oscillatory behaviour of a
perturbed BEC may result in a better estimate of trap frequencies and hence
an improved intensity estimate.

We note here that the problem of intensity overlap encountered here is one
that frequently vexes experiments that seek to determine optically-induced
energy shifts [197, 215]. For our purposes it is a systematic that frustrates
efforts to quote values of light shifts in terms of physical units. This does not
hamper our elimination of the VLS: when the measured ∆φ is independent
of ∆Prf at some waveplate angle, the VLS is zero in any case. More will be
said about the estimation of intensity in Section 7.6.5.

7.6.4 Elimination of the VLS and determination of αV

With our rf-drive power imbalance ∆Prf now able to be converted to an
approximate intensity imbalance ∆I, we are able to determine the amplitude
of the VLS in units of Hz W−1 cm2. Figure 7.15 shows the results of measure-
ments at a Ramsey time of 15 ms. Uncertainties on the measured gradients
are derived from fitted error in each gradient. We see a number of differences
between the data and that taken at 3 ms, the most obvious of which is the
inverted sign of the gradient vs. θ plots, a result of aliasing.12 The balanced
intensity point is less clearly defined also, the scatter of intersection points is
discussed later in this Chapter. The precision with which the technique senses
small magnetic fields is also apparent. For two measurements in the top
panel of Figure 7.15 separated by 0.02 π (a frequency difference of 0.67 Hz),

12We assume that the sign of the vector polarisability is negative, and could confirm this
by observing short Ramsey time fringes directly, and gradually increasing the Ramsey time to
account for aliasing, as in Figure 6.5. We would necessarily also need to know the helicity of
the light.
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the corresponding effective magnetic field difference clearly resolved in this
measurement is approximately 94 pT.

Each point in the lower plot of Figure 7.15 is an effective vector polar-
isability, α′(θ) ≈ 2αVθ, which follows directly from Eq. 7.36 once relative
phases are converted to frequency differences and ∆Prf converted to ∆I,
k = 4.03 × 108 W cm−2(∆Prf)

−1. The minimum achieved effective VLS is
α′min = −1.5(5)× 10−4 Hz W−1 cm2. The slope of the line in the lower panel
of Figure 7.15 is a measurement of the vector polarisability of 87Rb at λ =

1064 nm, which we determine to be αV(meas.) = −0.331(18)Hz W−1 cm2

in remarkable agreement with the theoretical value calculated in Section
7.2, αV = −0.336 Hz W−1 cm2. The suppression of the VLS from Eq. 7.36

is α′min/αV(meas.) = 4(1)× 10−4, independent of the uncertainty in optical
intensity. Assuming the polarisation purity determined here is an equivalent
metric of the polarisation of a single, un-split dipole beam with intensity
I = 8.37× 103 W cm−2 (the beam intensity at the intersect point calculated
previously), the overall VLS is only 1.2(4)Hz, corresponding to an effective
magnetic field of 1.7(6)µG. The nulling angle that eliminates the VLS is
determined to be 337.115(3)◦.

7.6.5 Experimental systematics and potential improvements

Intensity calibration

We make note here of several important systematics. We have chosen to
express light shifts and polarisabilities in units of Hz W−1 cm2, which in-
troduces a large systematic error due to the assumptions associated with
the local intensity experienced by each BEC. It is difficult to determine the
local intensity of each beam (beam A and B, the split dipole beams), and the
relative alignment of the crossing beam could create a trap minimum very
near the peak intensity point. In any case we assume that the method used
here overestimates the intensity, which may be less than the peak intensity
used here.

Birefringence of the cell

A competing systematic is associated with the maximum slope of the plot
used to infer αV (Figure 7.15), which is representative of degree to which one
can achieve purely right (or left) circularly polarised light with only quarter-
wave plate adjustments. The VLS we measure is essentially proportional to
the circularity of an initially linearly polarised state, oriented at an angle
θi from the vertical, passing through a quarter-wave plate and a φk-phase
retarder, representing post-waveplate birefringent optics. The functional



192 Vector light shifts in optical dipole traps

0.18

0.20

0.22

0.24

0.26

0.28

0.30

re
la

tiv
e 

ph
as

e 
(  

   
   

   
   

)

-0.2 -0.1 0.0 0.1 0.2
(in units of      ) 

-1.0

-0.5

0.0

0.5

1.0

337.00 337.05 337.10 337.15 337.20

quarter wave plate angle (deg)

Figure 7.15: High precision measurement and cancellation of the VLS.
The upper plot shows the variation of phase with intensity difference, for
different quarter-wave plate rotations (this time over a range of 10 arcmin).
The single error bar is representative of typical uncertainty reported from
ellipse fits, δ ≈ 0.011 π. The gradient of each line M is an effective polaris-
ability α′(θ), and is plotted vs. waveplate angle in the lower plot, error bars
represent the uncertainty in each fitted gradient. The slope of this curve
is equal to 2αV . We can determine the minimum achieved VLS (indicated)
and find the suppression ratio (Eq. 7.36) α′min/αV(meas.) = 4(1)× 10−4.
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form of the circularity is in general complicated (Equation 7.29), but for
small phase shifts φk can be represented by Equation 7.34. The delayed drop
VLS measurements show that the functional form of the circularity is very
close to sin 2θ, indicating that φk is indeed small. The circularity when the
polarisation state incident on the quarter-wave plate is rotated by an angle θi

is
C = sin 2(θ − θi)− cos 2(θ − θi) sin 2(θ − θk)φk, (7.38)

with θk the orientation of the fast axis of the φk-phase retarder. The input
linear state rotation angle is just an offset to the quarter-wave plate angle,
substituting θ → θ + θi yields

C = sin 2θ − cos 2θ sin 2(θ − θk + θi)φk

= sin 2θ − cos 2θ sin 2(θ − δθ)φk (7.39)

where we have defined the angular difference between the fast axis of the
φk-retarder and θi as δθ. Assuming θ to be near the nulling angle, we expand
Eq. 7.39 in a power series, retaining terms linear in θ:

C = 2θ − 2θφk cos 2δθ + sin 2(δθ)φk +O(θ2). (7.40)

The in-trap VLS measurements infer the slope S of a plot of ∂EVLS/∂∆I
against θ to be 2hαV . Since this is proportional to ∂C/∂θ ≈ 2, the correction
to S due to a small birefringent phase shift is

∂C
∂θ

= 2− 2φk cos 2δθ. (7.41)

For δθ = π/4 or φk = 0, the maximum slope is achieved. This effect can
reduce or increase the inferred αV , depending on the quarter-wave plate
orientation.13 We believe this effect to be small, however.

Based on the possible systematic errors associated with intensity our mea-
surement is a lower bound on the value of αV . The combined uncertainty in
the estimated intensity is almost 25 %, highlighting the difficulty in obtaining
accurate intensity measurements. We note that in the face of these systematics
it is quite remarkable, if not coincidental, to get a value for αV close to what
is expected from theory. This either suggests the systematics are small or that
some other factor, such as the reduced/increased slope of S from Eq. 7.41

results in measuring a larger αV , partially cancelling the intensity systematics
mentioned previously. The alignment of the magnetic bias field along z′ also
reduces the measured gradient. The necessity of further work in rigorously
quantifying these systematics is not a pressing matter for our application. It

13The circularity begins to resemble an asymmetric sawtooth as opposed to sin 2θ, so the
slope at the waveplate angles where C = 0 is alternately greater or smaller than 2αV .
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would be satisfying to account for them numerically to improve the absolute
precision of the technique, although we have no a priori reason to question
the real value as deviating significantly from the theoretical value based on
the two-transition line (D1 and D2) approximation made. We stress again
that neither of these systematics impede precision nulling of the VLS, there
still exists a θ that satisfies C = 0.

Rotation stage precision

The precision of the technique can be improved with longer Ramsey times,
although this requires the background magnetic field gradient to be reduced
to allow for longer dephasing times. Also, a higher precision rotation stage
is necessary: the angular increments used in Figure 7.15 are 2.5 arcmin
(0.7 mrad) and result in coarse sampling. We attempted to procure such a
stage, but space constraints in the dipole trap setup precluded its immediate
implementation. State-of-the-art digitally controlled rotation stages are able
to achieve minimum incremental rotations on the order of 10µrad, although
absolute reproducibility can be poor. This is not expected to impede an
empirical minimisation of the VLS, however.

Relative polarisation imperfections

One systematic that will affect the degree to which we can eliminate the
VLS is the presence of optical-path dependent birefringence, which can be
caused by spatially varying birefringent stress across the cell, or waveplate
thickness variations. This induces a relative polarisation imperfection, which
invalidates our assumption that high-quality linearly polarised light achieved
using a differential polarisation measurement maps to similarly pure linearly
polarised for a single beam (that follows approximately the same beam path).
Despite this, the setup used for the VLS experiment is immediately applicable
to in-trap magnetic gradiometry experiments, and our technique can be used
to cancel the VLS at a range of different gradiometer baselines.

A relative polarisation imperfection would effectively result in a VLS that
is impossible to completely remove with a differential measurement, although
the discussion to follow suggests that this may be a very small correction.
Differential interferometry of course offers a means to quantify the effect: we
could perform measurements for a range of splitting separations and beam
translations. This would allow the spatial dependence of the birefringence
of the cell (and other optical components on the beam path) to be directly
probed.

The increased scatter of points in ∆φ vs. ∆Prf plots (and corresponding
increased uncertainty of gradients, Figure 7.15) in the vicinity of the nulling
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angle is of some interest and may offer information about the magnitude of
the relative polarisation imperfection. The balanced-power intersect point
(Figure 7.15,top) is less well-defined than in the case of the 3 ms data, we
assume here that the higher sensitivity of the 15 ms data reveals what appears
to be an intensity difference induced by the waveplate rotation; although the
results in Figure 7.16 suggest that this is small. There may indeed be a relative
polarisation difference that is subject to the alignment of the dipole trapping
beams, possibly induced by the waveplate itself. Such an effect could be easily
investigated with ex vacuo polarimetry and would be interesting to pursue.
Relative intensity noise, which may be of a transient nature14 between the
two split beams can also result in the observed noise of the intersect point,
and could also be examined with standard polarimetry.

Common-mode rejection using balanced intensities

Referring to Figure 7.2(c), the spurious differential VLS signal in an in-trap
magnetic gradiometry experiment can be eliminated by ensuring equal beam
intensities. As part of the calibration we performed to convert rf drive power
differences into intensity differences, the rf drive power imbalance that results
in equal intensity in each beam was experimentally determined. Figure 7.16

shows the results of an imposed common-mode polarisation imperfection
(from rotating the quarter-wave plate) with imbalanced intensities and when
the rf drive power difference is set so that IA = IB. In this example, the
Ramsey interrogation time is 15 ms and the quarter-wave plate is rotated
over 10 arcmin: three ellipses at 5 arcmin increments are acquired and then
whole dataset combined: when the power is imbalanced by ∼ 20%, the result
is noise. With balanced intensities, there is no differential VLS imposed by
rotating the waveplate, and so the points are tightly confined on a single
ellipse. This scenario is hence a plausible alternative to eliminating residual
elliptical polarisation for the purposes of in-trap magnetic gradiometry, free
from the VLS.

Elliptical data reduction

We mentioned previously in this Chapter the limitations of elliptical data
reduction, particularly in extracting a fit uncertainty that accounts for asym-
metric sampling of the ellipse and typical scatter of points. The fit uncertainty
associated with an ellipse depends only on the intrinsic uncertainty in each Fz

measurement (∼ 3× SQL) and the number of phases sampled. For gradiome-

14Some noise sources appear and disappear on an irregular basis, which may be a result
of ambient laboratory equipment and originate from temperature/humidity fluctuations in
the building.
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Figure 7.16: Balanced optical intensities in the two beams can be used for
common-mode rejection of small, common mode polarisation imperfections.
Left: Shown are the results of 9 ellipses, three each at quarter-wave plate
angles differing by 5 arcmin. An intensity difference of ∼ 20% between
the two split beams results in a non-zero differential VLS, that manifests
as scatter of points. Right: with the intensities in each beam equal, the
differential VLS is zero, and so in a repeat of the previous measurement
the points are constrained along a single ellipse. The measured ∆φ is
thus independent of the VLS, making this an ideal scenario for magnetic
gradiometry.

try experiments at short interrogation times, an ellipse is generally uniformly
sampled. At short interrogation times (< 3 ms), the azimuthal direction the
second π/2-pulse rotates the spin vector about is well defined, and changing
the pulse phase between 0-360◦ results in well-defined phase domain Ramsey
fringes (Figure 6.3, top). The π/2-pulse phase can then be incremented
with each shot to trace out an evenly sampled ellipse. At longer times, the
rotation axis is completely scrambled by detuning perturbations and the
common fringe phase sampled in each iteration of the Ramsey experiment is
essentially random. The result of this is that an ellipse may not necessarily
be evenly sampled by the normal 10-15 shots of different π/2-pulse phases.

Figure 7.17 shows the relative phase ∆φ reported from an ellipse fit
(with uncertainty) as a function of the number of shots (π/2-pulse phases)
used in the fit. Ellipses with 12 points are used for most experiments in
this work, which offers a good trade-off between fit uncertainty and duty
cycle. Although the phase measured from 12 shots compares well with the
relative phase from 24 shots (in this example), some ellipses are primarily
sampled in a single quadrant for many shots, the reported ∆φ may then
be inaccurate from only 12 shots.15 We speculate that some points near the

15Extreme examples of this problem are generally manually discarded.
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Figure 7.17: Relative phase ∆φ and fitted uncertainty δ(∆φ) reported from
ellipse fits as a function of shots (π/2-pulse phases). Most analyses in this
thesis use 12 points, a compromise between accuracy and duty cycle. The
fitted ∆φ uncertainty depends on the intrinsic uncertainty of each point and
the number of shots used in the fit. Uneven sampling of an ellipse results in
an inaccurate measurement of ∆φ, using more points in each ellipse fit also
improves the accuracy of the fitted ∆φ by sampling the ellipse more evenly.

nulling angle in the 15 ms data (outside the bounds of the sample error bar
shown) may be subject to this effect and representative of the scatter of points
for certain, poorly sampled ellipses where the reported ∆φ uncertainty is an
underestimate. This problem can be overcome in the short term by increasing
the number of phases used to sample each ellipse.

Contribution from orthogonal beam

The greater scatter of ∆φ data close to the nulling angle (present to some
extent in the 3 ms data as well) still remains something of an enigma. We
are yet to determine a satisfying explanation for this observation, even
accounting for the effects described previously. A small relative polarisation
imperfection that is time varying and random due to acoustic vibration of
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optical components may be to blame. We also suspected it may be the result
of residual VLS from the crossing beam (which we detect in quadrature) that
is detected due to imperfect alignment of the magnetic bias field with the z′

dipole beam. This may only be significant when the VLS from the z′ beam is
very small.

We performed a series of measurements to determine if this was plausible.
We measure a differential VLS phase ∆φ from the split z′ beams, and then
rotate the x′ beam quarter-wave plate whilst a z′-bias field presumably
renders the measurement immune to the x′ VLS. We can thus determine
to what extent the magnetic bias field is aligned with the z′-axis. We did
not detect any substantial variation of the measured ∆φ for x′ waveplate
deviations of up to 10◦ from the nulling angle. This observation strongly
suggests that the spurious contribution of the x′ dipole beam is not the cause
of the additional scatter.

7.7 Absolute polarisation measurement with a spin

echo sequence

Extremely high precision absolute polarisation measurement is possible us-
ing the vector light shift. While we have focused on the case of a relative
polarisation measurement that well approximates an absolute polarisation
measurement in this thesis, we can adapt the technique to function as an
absolute polarisation measurement. Consider the experimental setup imme-
diately prior to performing the delayed drop measurements, i.e. two BECs
axially positioned along the crossing beam in two cross dipole traps; we in-
tend to measure the absolute polarisation of the crossing beam. We have seen
that the two clouds will in general always feel an overall intensity difference
from the crossing beam due to small misalignments and different trapping
beam waists (Section 7.6.3), so dropping the clouds is not essential. Also,
aligning a bias field along the direction of the crossing beam eliminates the
VLS contribution from the intersecting split beams. However, simply rotating
the quarter wave plate that controls the polarisation of the crossing beam
will induce a VLS phase that is indistinguishable from a magnetic gradient
contribution. For small enough rotations, the effect of intensity variation due
to transmission of polarised light through the cell can be safely neglected.
The relative phase induced per wave plate rotation angle (which can be very
small, ∼ 10µrad) can then be assumed to be purely from the VLS and hence
a direct, absolute measure of the polarisation of the trapping beam.

However, to make such a measurement of the polarisation worthwhile it
is essential to decouple the magnetic field gradient contribution from that of
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the VLS, which is essentially equivalent to a nulling measurement since we
seek to find the relative phase that corresponds to a magnetic-gradient only
contribution. Simply changing the intensity of the beam will translate the
clouds, and hence change the magnetic gradient phase. In order to separate
the effect of an intensity dependent VLS shift from a gradient magnetic field,
we can modulate the trapping light and apply a spin echo pulse at the centre
of the modulation cycle. In a normal spin-echo sequence applied to DRI, the
phase developed by each interferometer will be zero, and thus the relative
phase will be zero. Unlike background magnetic fields, we are able to change
the strength of the VLS field with the intensity of the light. Before the spin-
echo pulse, the relative phase of the system increases as ∆φ = (ω1 − ω2)t,
with ωi = γBi. After the spin-echo pulse, the phase decreases at exactly
the same rate, since the magnetic field at each BEC is the same before and
after the spin-echo pulse. However, if we apply a step modulation of light
intensity δI (a VLS field) either side of the spin-echo pulse (applied halfway
through the Ramsey sequence), such that

∆φbefore = [(γB1 + ω1,VLS + δω1,VLS)− (γB2 + ω2,VLS + δω2,VLS)]
T
2

,

∆φafter = − [(γB1 + ω1,VLS − δω1,VLS)− (γB2 + ω2,VLS − δω2,VLS)]
T
2

,

∆φtotal = 2(δω1,VLS − δω2,VLS)T, (7.42)

where the first two lines are before and after the spin-echo pulse respectively,
ωi,VLS ∝ Ii sin 2(θ − θN) is the baseline VLS shift at each BEC and δωi,VLS ∝
δIi sin 2(θ− θN) the VLS imparted with the intensity modulation, and θN the
nulling angle. Naturally, for θ = θN the VLS shift vanishes and the light is
linearly polarised, the target result now being to minimise the relative phase,
rather than eliminate the dependence on intensity. For long Ramsey times
the modulation depth can be made quite small, minimising the perturbative
effect on the trapping potential. The spin-echo sequence will also result
in narrow-band sensitivity to AC magnetic field gradients, although we
can choose the number of spin-echo pulses so that these effects may be
minimised.

The cross-beam, in-trap experiments described in this thesis (Section 7.6)
serve to substantially eliminate the VLS shift from the orthogonal beams
before undertaking the more precise spin echo measurements. If we assume
we are able to align the bias field with the crossing beam wavevector to
a precision of 1 part in 103, the results of this thesis suggest that the VLS
from the intersecting split beams can be eliminated to less than 1 part in
106. Additionally, balancing the intensities of the split beams offers a third
means of eliminating any extraneous VLS from the intersecting beams. If we
now consider the specifics of the current experimental setup and measuring
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the VLS from the x′-oriented dipole beam, we have seen that the effective
background gradient can be reduced to as low as ∼ 4 mG/cm for an x′-bias
field, allowing for Ramsey interrogation times of 50-100 ms.

Take the case of an overall beam intensity of 104 W cm−2, the two BECs
sampling a 20% intensity difference, and a modulation depth of 10 %. As-
suming we are able to measure phases from well-sampled elliptical data
sets to a precision of δ(∆φ) ≈ 0.003π (typical fitted uncertainty from well
sampled ellipses) and a Ramsey time of 100 ms, the polarisation of the light
can be made linear to within 50µrad.

7.8 Conclusions

Our measurements constitute the first high-precision interferometric mea-
surement of the vector light shift and allow it to be suppressed to 0.04(1)%
of its maximum value. We have demonstrated variations of the technique, as
well as discussed sources of systematic error. These results make possible the
realisation of in-trap magnetic gradiometry using differential Ramsey inter-
ferometry. The technique can be applied to measure and eliminate the VLS
from other beams, not just dipole trapping beams as we have demonstrated
here. Further applications and extensions of the technique will be discussed
in Chapter 8.
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In this thesis we have seen how spinor BECs behave in noisy, inhomogeneous
magnetic field environments and that they can still be used as precision
sensors. In this concluding Chapter, we summarise what we have learnt
and describe what extensions and applications the findings of this thesis
engender.

The initial aims of this thesis were to develop methods to coherently
control spin-mixing interactions in spinor BECs. Towards that aim, we built
and commissioned a BEC apparatus that reliably produces condensates of
3× 105 atoms every ∼ 25 s. We explored spin-mixing dynamics and found the
magnetic environment our BEC exists in to be inhomogeneous and unsuitable
for long-timescale observations of spinor physics. We then undertook a
series of experiments to precisely characterise the magnetic field landscape
of the BEC, due to real magnetic field gradients and ‘fictitious’ optically-
induced magnetic fields arising from vector light shifts. These techniques
have spawned a range of ideas and extensions that will be discussed further
in this Chapter.

8.0.1 Spin-mixing experiments

The combined results of this thesis constitute progress toward ensuring a
clean magnetic environment for a spinor BEC, and as such the future of
spin-mixing experiments appears bright. Much remains to be explored in the
area of spin collisional dynamics and we note here a few avenues of future
investigation.

The results in Chapter 5 offer strong evidence that magnetic field gradi-
ents play a key role in the equilibration of an evolving spinor BEC. A number
of interesting theoretical models in the literature may assist identifying the
mechanism for this, which will require further experimental work. It would
be particularly interesting to rigorously explore how the relaxation time
scales with the strength of the gradient, in both the high-gradient regime ex-
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plored in this thesis and the low and intermediate-gradient regime, as well as
at different quadratic shifts. In this way we could compare the results of this
thesis and the future work it engenders with the equilibration experiments
of the Berkeley group [66] and the observation of dissipative relaxation by
the NIST group [51].

The efforts towards eliminating gradient dephasing with spin-echo pulses
heralded several interesting results, none more so than the suppression of
ground state relaxation. The results of Section 5.3 have described in detail
the effects of refocusing pulses in the strong rf coupling regime. With these
lessons in mind, future work could explore refocusing pulses within the
rotating-wave approximation, i.e. at higher Larmor frequencies, and use
microwave fields to dress q to levels where spin dynamics are appreciable.
In the RWA regime, where the sensitivity to Larmor phase is minimal and
refocusing pulses can be applied (theoretically) at any evolution time, the
limit of almost continuous decoupling could be explored. There are many
other extensions to the general scheme we envisioned, such as composite
adiabatic pulses [222] where the amplitude and frequency of the pulses are
varied. Indeed, we envision applying refocusing pulses separated by ∼ 1 ms
and employing strategies to deal with cumulative pulse errors; a vast array of
NMR pulse sequences with ever more sophisticated acronyms exist exactly
for this purpose.

Precisely characterising magnetic field gradients using the results of Chap-
ter 6 offers the prospect of diagnosing gradient cancellation to unprecedented
precision. Gradient coils can be specially designed to cancel dominant gradi-
ent terms and the use of bias coils aligned along the eigenaxes of the gradient
tensor could potentially be explored: this reduces the problem of gradient
elimination to only diagonal gradients. With the elimination of gradients
one could explore coherent collisional control as well as weak equilibration
mechanisms otherwise obfuscated by gradient-attributed effects.

8.0.2 Magnetic gradiometry

Microscale magnetic sensors are required where magnetic fields change over
similarly microscopic length scales. The magnetic gradiometry experiments
in this thesis constitute the first measurement of the magnetic field gradient
tensor at the microscale. This is an important result, demonstrating high
common-mode rejection of ambient magnetic field noise and allowing for
precise measurement of magnetic fields in a noisy environment. The future
for these measurements is particularly promising. With the elimination
of vector light shifts making possible the realisation of contrast-limited
interrogation times, the sensitivity of in-trap gradiometry measurements can
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immediately be improved fivefold over the freefall measurements described
in this thesis. Suppressing the background gradient allows for much longer
interrogation times: the sensitivity limits of the technique could be probed,
potentially surpassing the spatio-temporal sensitivity per unit bandwidth
of existing magnetometers. A range of experiments can be foreseen to test
and validate the predictive power of tensor measurements on the microscale,
such as in vacuo characterisation of small magnetic structures or current
distributions. Recently, we were able to use the gradiometer to determine the
presence of a magnetic source near the atoms.1

A number of interesting extensions exist. For example, at what point
does the interaction of the magnetic moment of each condensate with the
other factor into the measurement of a magnetic field? Each condensate
has its own magnetic field, generated by the ∼ 105 magnetic dipoles it is
composed of. Although this field is small, it may play an interesting role
when the separation between the BECs is reduced to ∼ 10-20µm, which
is highly feasible with a tighter dipole trapping beam and an AOM with
a higher number of resolvable spots. The magnetic field 25µm from a 105

atom BEC is 6 pT, easily detectable using in-trap gradiometry at prospective
interrogation times. Ultracold neutral atoms are promising candidates for
realising atomic analogues of magnetic quantum systems, and the ability to
perform incisive magnetic measurements on them enriches the prospective
experiments considerably.

8.0.3 Vector light shifts

Optical dipole traps are only spin-independent when the trapping light is
linearly polarised. Even a small elliptical polarisation imperfection gives
rise to effective magnetic fields that contaminate magnetometry experiments
(Figure 7.2), and in the case of a trapped cloud displaced from the position
of peak intensity, strong spatial gradients of the VLS result in large effective
magnetic field gradients (Figure 7.3).

Our measurements probed the VLS-induced effective field and its spatial
variation. We were able to suppress the VLS by a factor of 2500 by adjusting
the trapping beam polarisation. These measurements constitute a high-
precision interferometric measurement of the trapping beam polarisation,
and can be adapted to measure the polarisation of other optical fields.

Our measurement protocol could be extended in a number of ways. For
instance, precisely characterising the VLS could supplement comprehensive
elimination of the differential light shift of the clock transition. We could

1A magnetic ball driver unintentionally left near the science cell registers a measurable
gradient, despite being hundreds of mm away from the atoms.



204 Future and conclusions

also extend the interrogation time to make a significantly more sensitive VLS
measurement: with an x′-bias field, Ramsey interrogation times of between
50-100 ms should be possible with the current experimental configuration.
Future demonstration of the spin-echo VLS measurement discussed in Sec-
tion 7.7 will allow for improved VLS suppression. The work described in
this thesis has already been applied in the experiments performed by Mar-
tijn Jasperse on Faraday MRI of a spinor BEC [95]: the VLS at 790 nm is
290 Hz W−1 cm2, making the effective field induced by the Faraday beam
significant.

Since the scalar light shift vanishes at 790 nm, light at this wavelength
can be used as a minimally-perturbative means of engineering optically-
induced magnetic fields. For example, one can even investigate the possibility
of using the VLS gradient to cancel background magnetic field gradients.
Measurement of the VLS could be used to map the spatial intensity profile
of trapping or probe laser beams. Simply varying the timing of the ‘delayed
drop’ method (Section 7.5) allows the falling BEC to traverse the intensity
profile for a fixed beam polarisation. The variation of ∆φ with drop time
would then be a direct measure of the intensity profile. The trapped clouds
could be translated axially along the length of the beam, allowing for full
in vacuo spatially resolved beam characterisation. This could be applied
to characterise other beams, such as the dispersive Faraday probe or even
Raman coupling beams, where spatially varying Rabi frequencies must be
accounted for.

Together with the results of Chapter 6, the VLS measurements described
here constitute novel applications of a new atomic magnetometer, one with
demonstrated precision sensitivity and a promising future.



List of Acronyms

AC alternating current
AOM acousto-optic modulator

BEC Bose–Einstein condensate

CCD charge-coupled device
CMOS complementary metal-oxide-semiconductor
CP Carr-Purcell
CPMG Carr-Purcell-Meiboom-Gill

DDS direct digital synthesis
DLS differential scalar light shift
DRI differential Ramsey interferometry

ECDL external-cavity diode laser
EOM electro-optic modulator

IQ in phase and in quadrature

LO local oscillator

MOPA master oscillator-power amplifier
MOT magneto-optical trap
MT magnetic trap
MTS modulation transfer spectroscopy
MW microwave

OD optical depth

PGC polarisation gradient cooling
PLC programmable logic controller
PM polarisation maintaining
PSD phase-space density
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RF radiofrequency
RGA residual gas analyser
RWA rotating-wave approximation

sCMOS Scientific cmos

SI trap semi-isotropic trap
SMA single-mode approximation

TEC thermoelectric cooler
TSP titanium sublimation pump

UHV ultra high vacuum

VLS vector light shift
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