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Symbols and Notations

Symbol Description

|x| Absolute value of x.
||Y ||n Ln norm of vector Y.
Ā Mean of matrix A.
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V (j) Element number j of an image feature vector V .
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−→
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Abstract

In this research we concentrate on adaptive texture feature extractors which are auto-

matically extracted from an image collection. We use independent component analysis

(ICA) to extract independent component filters (ICF). ICF have previously been shown

to include edge filters, having properties similar to the receptive fields of simple cells of

the human visual cortex. In this thesis we evaluate the utility of ICF-based collection-

specific features in the context of content-based image retrieval (CBIR), with the view to

demonstrate the viability of using such automatic collection-specific features.

We find that global features extracted using a small number of ICF outperform those

extracted by a bank of Gabor filters, even when very large number of Gabors are used.

We also present comparisons against a variety of state-of-the-art features and show that

ICF-based features perform better than these, without the need for any hand-tuning.

ICA extracts large number of filters. In order to find a useful smaller subset we

evaluate a previously-published variance-based filter selection method. We identify the

shortcomings of this method. Our proposed improvements to filter-based feature selection

and extraction, response scaling and locally normalised convolution, was a result of trying

to address some of these shortcomings. Even with these improvements the variance-based

method has an intrinsic flaw of being susceptible to selecting redundant filters. We propose

a new filter selection method based on normalised cross-correlation and clustering. We

show that our method selects a more useful subset compared to the previously published

variance-based method.

We also propose a salient-point based local feature which uses ICF and show that our

proposed feature performs better than SIFT features and also the global ICF features. We

further illustrate the utility of ICFSIFT by developing a grid-based adaptive local feature

and we demonstrate that ICFSIFT extracts different and useful information compared to

the ICF-based global and grid-based local features.

After applying the techniques proposed in this thesis to four standard texture collec-

tions, we show that, while hand-tuned features can work well for their target collection,

the automatic adaptive features perform better for the general case.
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Chapter 1

Introduction

1.1 Motivation

Image features are an integral part of many image processing applications. They are the

key to the understanding of the content of an image for an automated-system. If the

features are good at describing the content, the system will have good results. Equally,

if the features are misleading, then the system will also give misleading results. With the

advent of the web, the affordability of digital cameras, the availability of cheap storage,

and the increasing application of image processing techniques in important fields such as

medicine — image processing applications are more important now than ever before, and

so is the role of image features.

There are a multitude of features from which a system designer can choose. Typical

feature types include colour, shape, and texture. There is, however, no consensus on what

are the best features. A designer usually chooses a feature set and their configuration

that is thought to serve a given purpose best. In cases where the images in question come

from a particular collection and/or domain, the designer can tune the features to suit that

domain. The effectiveness of such tuning is usually measured through the performance

of the system. When a system has to deal with a more general problem, the features are

usually selected to cater for a broad range of images. In both cases the systems end up

with a set of fixed and pre-defined features.

This thesis is based on the hypothesis that:

For many image processing applications, adapted collection-specific features

would be more effective at identifying useful and pertinent image content than

pre-defined and fixed features, for the target image collection.

Such collection-specific features may be determined manually using human participa-

tion. The hand-tuning process in such a scenario usually consists of trying a large set

of features (maybe in different combinations and configurations) and choosing the set-up

that performs best. This requires that a judgement be made for what is “best”, and will

require human participation in such a decision. As one can appreciate, with a large enough

image collection, and a large enough set of candidate features, such a determination can

be a time-consuming and exhaustive undertaking. It might be possible to automate the

1



2 CHAPTER 1. INTRODUCTION

feature extraction and processing part, but determining “what is performing well” is not

an easy task outside of the standard collections used by researchers.

So, imitating human action and going through a large list of features and combina-

tions is not a suitable method for an automated system which wants to use adaptive

collection-specific features. A method which can learn the collection-specific features from

a sample of the images of the collection directly is more suitable, as it would not require a

measurement of “what is performing well”. In this thesis we use one such method, inde-

pendent Component Analysis (ICA), which has been successfully used to extract adaptive

collection-specific independent component filters (ICF) from image collections. These ICF

are learnt automatically without any human intervention and are known to extract texture

features. This brings us to the first specific concentration of the thesis: we exclusively

concentrate on texture features, in particular our contributions are all based on texture

features extracted by collection-specific filters.

We have just said that the advantage of using a technique like ICA is that there is

no requirement to measure “what is performing well”. This however depends on having

confidence that features extracted using ICF can be useful. The work in this thesis aims

to explore whether such a confidence is justified. To do so we used the following broad

approach:

1. Extract collection specific filters from standard texture collections.

2. Extract images features using these filters.

3. Extract features using numerous texture features.

4. Compare the performance of the different features in an image processing application.

The contributions arising out of this thesis concentrate on first two steps. However we

needed an image processing application through which to compare the performance of the

different features. We have done all our evaluations using content-based image retrieval

(CBIR). Given these two parameters, CBIR and collection-specific texture features, we

can state our hypothesis as follows:

Many CBIR systems apply a set of fixed pre-defined texture features for every

image collection. It is entirely possible that such fixed pre-defined features will

not identify useful and pertinent image content for every collection. Some of

these features can be blind to textures present in the collection, as has been

shown in previous studies. In such a case, automatically learnt collection-

specific ICF, found through ICA, will be more useful than collection neutral

features.

We do not claim that the automated methods presented in this thesis are always su-

perior to human hand-tuning. It is very difficult to replace human intuition and ingenuity

with an automated measure. We simply present techniques which make automatically
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learnt collection-specific texture features a viable option for CBIR designers when hand-

tuning is not done, and which perform better than hand-chosen feature sets in many

cases.

The application of ICA to extract ICF from image collections is already documented

in literature. ICA and ICF has also been applied to some image processing applications,

i.e. image classification, by some researchers. In this thesis we document the contribu-

tions mentioned in the next section, which enable us to demonstrate the validity of our

hypothesis.

1.2 Contributions

Improvements to filter-based feature extraction, also resulting in improvement

to previously published variance-based filter selection: It is common to use con-

volution to obtain the filter response of an image. In fact CBIR systems such as the GNU

Image Finding Tool (GIFT) use the responses obtained from a bank Gabor filters to ex-

tract its texture features. Previous ICF-based image classification work used the variance

of filter responses for filter selection. We demonstrate that even after doing global nor-

malisation, the responses of ICF vary by orders of magnitudes. Any statistics gathered

from these will thus be unduly affected. We introduce response scaling as a method to

ensure that statistics gathered from filter responses (or their energies) are not affected

by the differences in their scales. We show that response scaling improves overall CBIR

performance and also improves the filter selection of the variance-based filter selection

method proposed by Le Borgne and Guérin-Dugué (2001).

We have also found the standard convolution does not cope well with local image

intensity differences. We introduce locally normalised convolution (LNC), an adaptation

of normalised cross-correlation to deal with such local intensity differences. We show that

by using LNC, it is possible to identify texture features which standard convolution would

not identify. We show that it improves CBIR performance. We also show that combining

LNC with response scaling gives significantly better performance for filter-based featuers

(ICF and Gabors). We show that ICF-based adaptive features perform better than banks

of Gabor filters, two GLCM features, HOG and PHOG when applied to images with

globally consistent texture. The details of response scaling and LNC are described in

chapter 4 (Mohammed and Squire, 2013c).

New filter selection technique based on normalised cross-correlation followed

by clustering: ICA extracts a large number of filters, typically hundreds. It may not

always be practical to use such a large number of filters. Consequently, we need techniques

that select a smaller subset of useful filters. The variance-based method proposed by

Le Borgne and Guérin-Dugué (2001) calculates the variance of filter responses across

the image collection (or a representative subset). The filters with the highest variance

are deemed to be most useful. We have already mentioned that any statistics gathered

from convolution energies have the potential to be affected by the difference in scales of

the responses of different filters. The variance-based filter selection method was similarly
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affected, and we addressed it through response scaling. However this method does not take

into account the fact that ICA can extract ICF which are close to being shifted/duplicate

versions of each other. Such similar filters naturally have similar responses, leading to

similar variances, causing the variance-based method to select a filter subset which has

redundancies.

To address this problem we propose a filter selection method which uses normalised

cross-correlation as a method to judge filter similarity. We use the similarity measure-

ments in an implementation of complete-link clustering followed by a simple heuristic to

choose a filter from each cluster. We show that filters selected by this method consistently

outperform the filters selected by the variance-based method. A demonstration of the

shortcomings of the variance-based method is shown in chapter 3 and the clustering-based

method is described in chapter 4 (Mohammed and Squire, 2011b, 2013c,a).

ICFSIFT: A salient point-based adaptive local feature: In chapter 3 we show

that features which divide an image into sub-regions and extract features from each sub-

region performs poorly for images with globally consistent texture, if they encode local

information in their feature vectors. We present ICFSIFT, which uses SIFT-like keypoints

to identify locations of interest. Collection-specific ICFSIFT filters are learnt from key

point patches of training images. They are then applied to image collections and the bag of

words method is used to create an image descriptor from the ICFSIFT local descriptors.

We show that ICFSIFT features consistently outperforms its fixed pre-defined counter-

part SIFT for our test collections, which also means they outperform other features such

as HOG, PHOG, GLCM features, and features extracted from a bank of Gabor filters

ICFSIFT is described in chapter 5 (Mohammed and Squire, 2013b).

To further illustrate the utility of ICFSIFT, especially its keypoint-based processing,

we create an ICF-based local feature extracted from a image regions after an image is

divided into a fixed grid. We use the bag of words method to create a spatial location in-

dependent image descriptor. We show that this feature, ICF-BOW, performs better than

other similar counterparts using fixed and pre-defined filters as well as ICFSIFT. How-

ever combining ICFSIFT with ICF-BOW results in significant performance improvements,

leading us to conclude that the keypoint-based processing of ICFSIFT gives different and

useful information. This is further discussed in chapter 6.

1.3 Thesis outline

This thesis has nine chapters. They can be broken down into five parts.

Part 1: This chapter which introduced the motivation behind the research and presented

the hypothesis.

Part 2: Chapters 2 and 3 set the context in which the rest of the research is carried

out. Chapter 2 is a review of topics which are related to our research. In chapter 3 we

present the image collections we use most often, the details about ICF extraction, some
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global and grid-based features, concrete details about how we evaluate performance, and

shortcomings of the variance-based filter selection method.

Part 3: Chapter 4, 5 and 6 document the contributions arising from this thesis. Chap-

ter 4 documents response scaling, locally normalised convolution and the clustering-based

filter selection method. Chapter 5 describes ICFSIFT, our proposed keypoint-based adap-

tive local features. In Chapter 6 we describe a grid-based adaptive local feature which

does not encode spatially local information in its feature vector. We demonstrate the

utility of the ICF-based features by showing that using all of them together gives better

performance compared to using any one individually or two in combination.

Part 4: In chapter 7 we do not describe any new technique, rather we apply the adaptive

features in a comparison with hand-tuned features. We compare against four texture col-

lections and show that while hand-tuned features can work well for their target collection,

the adaptive features perform better for the general case.

Part 5: In chapter 8 we briefly describe some future work and conclude this thesis in

chapter 9.
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Chapter 2

Background

This chapter discusses topics relevant to this research. This thesis concentrates on collection-

specific adaptive features, especially related to texture. We start by describing some

commonly used image features in §2.1–§2.4. We then present Independent Component

Analysis (ICA), and, show how it can be used to extract collection-specific filters, in §2.5.

One of the main challenges with using these adaptive filters is their large number, so we

present some techniques, from existing literature, that can be used to select a useful subset

of filters in §2.5.6, although they are very limited. We use Content Based Image Retrieval

(CBIR) as a method to evaluate the performance of collection-specific filters. We present

CBIR and methods to evaluate its results in §2.6 and §2.7

2.1 Image features

Most digital images are collections of discrete pixel data. The challenge of any image fea-

ture is to extract useful information from this. Using just the raw pixel data can be difficult

due to its size, or the fact that it is usually not stable even under minute changes of posi-

tion, lighting, rotation, and scale. Image features aim to extract image descriptors/feature

vectors which can be useful and discriminative without being easily influenced by these

changes. They should ideally be compact, and for certain applications, efficient (e.g. real

time systems). We use the following three categories proposed by Marques and Furht

(2002) to organise the vast number of features present:

1. Low-level features (such as colour, texture, etc). These are typically extracted di-

rectly from the raw pixel values of an image.

2. Middle-level features (such as regions or blobs). These are extracted using image

segmentation.

3. High-level features. This class of features is concerned more with the semantics

(meanings, role, etc.) of an image and its contents.

Currently the most widespread practice in CBIR is to use low-level features (Datta

et al., 2008). Extraction of high-level features still requires human assistance, and these

are the hardest to automate. In this chapter we present a brief review of shape and colour

7
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features and a more in-depth review of some features that can be employed to represent

image textures.

2.2 Shape and Shape-Based Features

Shape is a very important characteristic present in certain images and can be a very useful

feature. However, ascertaining it is a difficult task and is made even more so by the loss of

a dimension in projecting a 3-D object onto a 2-D image plane (Zhang and Lu, 2004). One

of the challenges in extracting such features is finding salient regions/blobs within images

from which to extract the features (Shapiro et al., 2001; Datta et al., 2008). A discussion

on image segmentation is out of the scope of this thesis, however we briefly describe some

shape-based features here.

Shape-based features can be split in two broad categories, contour-based and region-

based, depending on whether the features are extracted just from the boundary of the

shape or from the whole region.

2.2.1 Contour-based shape features

Commonly used contour-based shape features include area, eccentricity, major axis ori-

entation, circularity and bending energy (Young et al., 1974). These are usually global

descriptors and are useful for differentiating shapes which are significantly different and

are used often (Carson et al., 1999).

Belongie et al. (2001) proposed shape contexts, which extracts a shape context for each

point on the shape’s boundary. So, if pi is one of N sample points lying on the contour of

a shape, for every pi, the relative position of every pj , j 6= i is computed. A histogram of

these positions forms the “shape context” of pi. The context is extracted from log-polar

space to make the feature more sensitive to positions of nearby points. An example is

shown in Figure 2.1.

Count the number of points inside each bin.

Count = 3

Count = 5

Compact representation of distribution of points 
relative to each point.

Figure 2.1: Shape context being calculated for a point.

There are numerous other approaches to contour-based shape features. Asada and

Brady (1986); Mokhtarian and Mackworth (1986); Daoudi and Matusiak (2000) and others

have attempted to interpret interval-trees resulting from space analysis, as shape features.
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Methods to break down the boundary into segments called primitives and extract features

from them are mentioned in numerous studies including Pavlidis (1982).

Fourier descriptors have been used to extract shape features and have the advantage

of coming from a widely used and understood Fourier theory background. El-ghazal et al.

(2009); Chen et al. (2009); Ortega et al. (1997); Arbter (1989); Brill (1968); Sanchez-Marin

(2000) and many others have used Fourier descriptors to represent shapes.

Wavelet-based descriptors have also been used to describe shapes (Ohm et al., 2000;

Tieng and Boles, 1997; Yang et al., 1998), but they have the drawback of having complex

matching schemes which make it difficult for practical use.

2.2.2 Region-based shape features

In region-based techniques the shape feature is extracted from all the pixels that lie within

a shape.

Grid-based features have a grid of cells overlaid on a shape (Lu and Sajjanhar, 1999;

Safar et al., 2000). The grid is scanned and if a cell overlaps the shape it is given a value

of one. A cell which does not overlap the shape gets a value of zero. This bitmap is then

used as the feature vector. A similar idea with a circular grid is proposed by Goshtasby

(1985), called a shape matrix. However this uses sparse sampling and is sensitive to noise.

Zhang and Lu (2002) introduces Generic Fourier Descriptor (GFD), extracted by ap-

plying a two dimensional Fourier descriptor on a shape image obtained by polar-raster

sampling. Compared to moment-based features (Teague, 1980; Liao and Pawlak, 1996),

the GFD features perform better.

There are many other shape features and this is a very active area of research. As

far as adaptive features go, the challenge would be to find shapes which are peculiar to

certain image classes. This then becomes not only a shape extraction problem but also

a shape discrimination and assignment problem. There is great potential in this area to

develop methods to identify shapes which are the building blocks for images in a particular

collection.

2.3 Colour

Colour features have been used extensively in image processing with numerous color feature

extraction techniques being proposed. The choices in extracting colour features involve

choosing both the colour model to use and the actual procedure of feature extraction.

We first present some of the most commonly used colour models and then describe some

popular colour feature extraction methods.

2.3.1 Colour Models:

Three commonly used colours models are presented here:

• RGB: This scheme is used mostly in hardware-based colour schemes to represent

digital images. The colour space can be represented as a unit cube (Marques and
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Furht, 2002). A colour is formed by using the basic colours (red, green and blue in

this model) in combinations.

• HSV: HSV stands for Hue-Saturation-Value, sometimes also called Hue-Saturation-

Brightness (HSB). This was developed to transform the RGB unit cube into a set

of dimensions that better mimic the way an artist mixes colours (Smith, 1978).

Hue-Saturation-Lightness (HSL), which is also referred to as HLS sometimes, is also

similar to HSV (Joblove and Greenberg, 1978). These models are non-uniform and

are often represented graphically as a double cone, an example of which is shown

in Figure 2.2, representing the HSV cone. Changing H is equivalent to traversing

a colour circle (Figure 2.2(b)), decreasing V increases blackness and decreasing S

increases saturation. There is some evidence from experiments conducted on hu-

man subjects that these colour models are more compatible with human perception

compared to RGB (Berk et al., 1982).

White

Black

Intensity (Value)

Saturation

Hue

(a) HSV cone (b) Color plane

Figure 2.2: The HSV colour model (Marques and Furht, 2002)

• CIELAB: The CIELAB is an international standard to ensure perceptual uniformity

of colour. The motivation was to ensure that Euclidean distances in the CIELAB

space map to human perception of colour difference (Schwarz et al., 1987). The

coordinates of this colour model is described as L∗, a∗ and b∗, where L∗ is a measure

of lightness, a∗ a measure of red/green balance and b∗ is a measure of blue/yellow

balance.
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2.3.2 Colour Features

Colour features are low-level features. Some commonly used colour features are described

below.

Colour Histograms

The use of colour histograms in various different ways is probably the most popular colour

feature. Colour histograms are obtained by counting the number of occurrences of each

colour in a given image (Swain and Ballard, 1990). These histograms are useful as they

remain invariant even if the images are translated or rotated about the viewing axis and

change slowly when changes occur in the viewing angle, scale and occlusion (Swain and

Ballard, 1990). Global colour histograms are calculated over the whole image, as imple-

mented in the GNU Image Finding Tool (GIFT). It uses the HSV colour model and a

palette of 166 colours (Squire et al., 1999). Such global colour features do not contain

any information pertaining to the spatial arrangement of the colour values, therefore very

different images can have identical colour histograms, such as the ones shown in Figure

2.3.

(a) (b)

Figure 2.3: Two images with identical global colour histograms.

This shortcoming can be addressed somewhat by calculating colour histograms on

image regions as does the QBIC system (Faloutsos et al., 1994), where colour features are

extracted on regions selected by the user, or as in the work by Vimina and Jacob (2012),

where colour histograms are extracted from pre-determined sub-regions.

Another Content Based Image Retrieval system that uses region-based colour his-

tograms is Blobworld (Carson et al., 1999). In Blobworld, an image is divided into mul-

tiple regions, and the colour histograms are calculated for each region. The histograms

have a bin width of 20 in each dimension of the L*a*b* colour space. With 5 bins in the

L* dimension and 10 bins in a* and b* dimensions, there are a total of 500 bins. 282 of

them are never used as they don’t fall in the range 0 ≤ (R,G,B) ≤ 1. Colour regions are

matched using a quadratic distance calculation.

Colour Moments

Stricker and Orengo (1995) describes the use of the first three statistical moments of each

colour channel as a colour feature. The first moment provides information about the

mean colour value. The second and third moments provide information about variance

and skewness. Calculated on each of the three colours channels of a colour model like

HSV, there will be a total of 9 features. Each moment has a different weight associated
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with it. Using these weights, the difference between images is calculated as the weighted

sum of the absolute value of the differences of the moments.

Colour sets

Smith and Chang (1996) first proposed colour sets. It provides a method to extract colour

features and retain some regional information. An image is split up into salient image

regions. Each region is analysed to find the dominant colours. The presence of just the

dominant colours is encoded in a binary vector. The criterion of choosing dominant colours

is controlled by a threshold, for example: the number of occurrences of a colour must be

at least 20% of the total for it to be considered a dominant colour. Note that the presence

of the colours is stored, as either present or absent (hence the binary nature of the vector),

as opposed to colour histograms which store the amount of colour present.

Smith and Chang (1997) describe VisualSEEK, a CBIRS which uses colour sets as

a method of colour feature extraction. They leverage this technique to allow users to

draw simple images and search for images with a similar regional distribution of dominant

colours.

2.4 Texture

The research described in this thesis concentrates almost exclusively on texture. Giving

an accurate description of visual texture is difficult, as no single definition exists for it,

although it has been studied for a very long time. The following are some of the numerous

definitions that exist in relevant literature.

We may regard texture as what constitutes a macroscopic region. Its struc-

ture is simply attributed to the repetitive patterns in which elements or prim-

itives are arranged according to a placement rule” (Tamura et al., 1978).

The image texture we consider is nonfigurative and cellular... An image

texture is described by the number and types of its (tonal) primitives and

the spatial organization or layout of its (tonal) primitives... A fundamental

characteristic of texture: it cannot be analyzed without a frame of reference

of tonal primitive being stated or implied. For any smooth gray-tone surface,

there exists a scale such that when the surface is examined, it has no texture.

Then as resolution increases, it takes on a fine texture and then a coarse

texture. (Haralick, 1979)

The notion of texture appears to depend upon three ingredients: (i) some

local order is repeated over a region which is large in comparison to the order’s

size, (ii) the order consists in the non-random arrangement of elementary parts,

and (iii)the parts are roughly uniform entities having approximately the same

dimensions everywhere within the textured region. (Hawkins, 1970)
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The variation of data at scales smaller than the scales of interest. (Petrou

and Garćıa-Sevilla, 2006)

From the definitions above, we can deduce the following properties about texture.

• Texture is a property of a region, unlike colour which is a property of a pixel.

• For texture to be discernible it must have some kind of order or repetition.

• The visual elements which are repeating would have some appearance of similarity

between each other.

Not following from the definitions — an aggregation of visual elements with the char-

acteristic of having a shape might create a textured region, however in general a texture

is not an indication of the shape of objects which may be present in an image.

Even after all these attempts at describing visual texture, it is perhaps best described

by showing some examples of it. Figure 2.4 illustrates a few images with texture charac-

teristics in them.

(a) Building (b) Fabric (c) Painting (d) Metal

Figure 2.4: Some examples of visual texture

Figure 2.4(a) shows an obvious challenge of having multiple textures in a single image

(the pavement, the brick wall, and the windows). However even for an image which has

apparent global consistency, like Figure 2.4(b), it is easily seen that there are at least

three different scales of texture present — (i) The granularity within the threads, (ii) the

granularity of each individual thread, and then the (iii) granularity of the collection of

threads woven together. The painting in Figure 2.4(c) is an interesting example where,

if the textures present in the image are analysed and used for image similarity, we al-

most disregard the subject of the painting but concentrate on an artefact of the painting

technique.

The second definition mentioned above encapsulates one main challenge with texture

analysis, that of scale. Figures 2.5(a) and 2.5(b) show the same fabric photographed at

different scales. From a purely visual point of view these are very different textures, but

in certain situations they need to be treated as similar.

Another issue is that the same material exhibits different textures under different

lighting conditions. Figure 2.6(a) and 2.6(b) show the same material photographed under

two different illumination levels, and they clearly exhibit different textures.

There are other challenges, such as rotation (especially out of image plane rotation),

image noise etc. The texture features described below can cope to a certain extent with

some of these issues, e.g. scale, illumination, rotation. However the challenge of catering
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(a) (b) Fabric

Figure 2.5: The same material photographed at different scales.

(a) (b)

Figure 2.6: The same material photographed under different illumination conditions.

to differing user intent is still difficult. Most research gets around this issue by testing

against standard image collections with pre-defined ground-truth. The results are always

dependent on the relevance judgements of the collection and sometimes they can appear

to be counter-intuitive. For example Figures 2.7(a) and 2.7(b) show two textures which

are judged to be similar, although the scales are quite different. In the same collection the

textures in Figures 2.8(a) and 2.8(b) are judged to be different although they look exactly

the same in scale, rotation and illumination and also in colour. Results presented in this

thesis and in fact in any texture research should be interpreted with this in mind.

(a) (b)

Figure 2.7: Two textures at different scales judged to be similar in a standard texture
collection.

(a) (b)

Figure 2.8: Two textures which are visually similar in terms of scale, illumination and
rotation but judged to be different in a standard texture collection.
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Below we discuss some texture features which have been used quite successfully for

texture analysis. No one feature exists which works best for all situations, so there exists

a multitude of techniques for texture feature extraction. Different authors have made dif-

ferent categorizations of these techniques (Tuceryan and Jain, 1998; Gonzalez and Woods,

2007; Howarth and Rüger, 2004). Here the broad but inclusive categorisation by Gonza-

lez and Woods (2007) is used. This categorization includes statistical models, structural

models and spectral models. These are not strict categorisations and in fact many of the

features discussed here can very easily fall into multiple categories. We haved added a

fourth category called “Gradient-Based Features” to include SIFT, HOG and PHOG fea-

tures. These are features which do not necessarily fit into any of the above three categories,

and have not been popularly employed as texture features. They can, however, be thought

of as texture features as they find information similar to texture feature extractors.

2.4.1 Statistical Models

Statistical methods are some of the earliest methods proposed, as the spatial distribution

of grey values in texture seems to fit this model rather well. The simplest features in

this category employ first, second or high-order statistics to extract texture features, for

example calculating the variance from the grey-level histogram of an image region has also

been used to extract information about relative smoothness (Kelly et al., 1995). There

are also the Wold features, the six Tamura features, Grey Level Co-Occurence Matrix and

Local binary patterns. We presented these in more detail here.

Wold features

Rao and Lohse (1992) described “periodicity”, “directionality” and “complexity” as the

most perceptually relevant dimensions of texture. As discussed is §2.4.1, the Tamura

features also try to capture some of these aspects of texture.

Francos et al. (1993) proposed a texture model called the Wold decomposition model

which models texture as a 2-D homogeneous random field. The Wold decomposition

theorem (Liu and Picard, 1996) decomposes a real-valued, regular, homogeneous random

field into three mutually orthogonal fields:

y(m,n) = p(m,n) + d(m,n) + c(m,n) (2.1)

where {p(m,n)} is deterministic, {d(m,n)} is deterministic and generalised evanescent,

and {c(m,n)} is non-deterministic. p can be used as a model of the “periodicity” of a

texture. d can used to model the directionality, and c can be used to model the complexity.

Liu and Picard (1996) analyse the local maxima of the discrete Fourier transform of a

zero-mean, Gaussian-tapered image to estimate the periodicity component. A histogram

of line slope angles, built from the Hough transform of the DFT, is used to estimate the

directionality. The complexity is modelled using the 2-D autoregressive model.
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Tamura features

Tamura features were proposed by Tamura et al. (1978) and are still widely used (Datta

et al., 2008; Kaur and Mann, 2012; Ho et al., 2012). In total six features were proposed

that could be extracted from pixel statistics. In the original paper the authors used four

of their proposed features, as the other two utilised one or more of the first four. We will

briefly discuss the six features below.

The six Tamura Features

Coarseness: Textures at multiple scales are usually present in an image, as highlighted

previously in Figure 2.4(b). The coarseness measure is an estimate of the size of textures

present in the images. The coarseness measure estimates a size that best characterises

the scale of textures present in the image. It is designed with the intention to choose a

large size as best when coarse texture is present, even if micro-texture is also present. The

method will pick a small size as best if only micro-texture is present. The following steps

can be used to calculate the coarseness feature Fcrs:

• Step one: For neighbourhood sizes which are powers of two, e.g 1×1, 2×2, 4×4..., 32×
32, the average intensity of the neighbourhood is found. So, if k is the neighbourhood

size, then Ak(x, y) is the average of the 2k×2k neighbourhood around the point (x, y)

and is calculated as

Ak(x, y) =
x+2k−1∑
i=x−2k−1

y+2k−1∑
j=y−2k−1

f(i, j)

22k
(2.2)

Where f(i, j) is the gray-level at (x, y).

• Step two: For each point, for each size, differences between non-overlapping neigh-

bourhoods on opposite directions of a point (x, y) are found. This is done for both

horizontal and vertical orientations as shown below.

Dk,horizontal(x, y) = |Ak(x+ 2k−1, y)−Ak(x− 2k−1, y)| (2.3)

Dk,vertical(x, y) = |Ak(x, y + 2k−1)−Ak(x, y − 2k−1)| (2.4)

• Step three: For each point, Sbest = 2k is chosen such that Dk is the highest.

• Step four: Finally the coarseness measure Fcrs is calculated as the average of Sbest(x, y)

for all x and y of the image.

Contrast: Tamura et al. (1978) describes four factors to take into considerations for any

measure of contrast, which are:

1. The range of grey-levels.

2. The polarization of the distribution of black and white on the grey level histogram.
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3. Sharpness of edges.

4. Period of repeating patterns.

σ or σ2 can measure the dispersion of the gray level values, being a good indication

of factor one and also to some extent factor two. But they propose the kurtosis of the

distribution, as shown in Equation 2.5, as a better measure for factor two:

α4 =
µ

σ4
(2.5)

Tamura et al. (1978) propose the following measure which takes into consideration

factors one and two.

Fcon =
σ

(α4)n
(2.6)

Experimentally the authors arrived upon n = 1
4 to give the best result and did not

make any changes to incorporate factors three and four.

Directionality: An orientation histogram calculated over an image region (or the whole

image) is used to extract the directionality feature. The magnitude |∆G| and local orien-

tation θ is approximated as follows

|∆G| = |∆H |+ |∆V |
2

(2.7)

θ = tan−1
(

∆V

∆H
+
π

2

)
(2.8)

where ∆H and ∆V are the horizontal and vertical differences measured using the

following 3× 3 matrices.  1 0 1

1 0 1

1 0 1


 1 1 1

0 0 0

−1 −1 −1


A threshold t is determined and every point with magnitude |∆G| above t is counted

in a histogram HD obtained by quantising the orientation θ.

HD(k) =
Nθ(k)∑n−1
i=0 Nθ(i)

, k = 0, 1, ....n− 1 (2.9)

Where Nθ(k) is the number of points at which (2k−1)π
2n ≤ θ < 2k+1

2n . The sharpness

of the peaks of the histogram HD can be used as a measure of the directionality. The

approach taken by Tamura et. al. is to sum the second moments around each peak from

valley to valley using Equation 2.10.

Fdir = 1− r.np
np∑
p

∑
φεwp

(φ− φp)2.HD(φ) (2.10)

where
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• np: number of peaks

• φp: pth peak position of HD

• wp: range of pth between valleys,

• r: normalising factor related to quantizing levels of φ

• φ: quantized direction code

Line-likeness: The line-likeness feature is an attempt to describe a texture element

that is composed of lines. For this, when the direction of an edge and the direction of a

neighbouring edge (by a distance d) are nearly equal, they may be regarded as one line.

In reality Tamura et al. (1978) first construct a direction co-occurence matrix PDd(i, j)

where i and j are direction codes. PDd(i, j) is the frequency at which edges with direction

i and j occur at neighbouring cells separated by a distance d along the edge direction of

i. Trivial edges are disregarded by using a threshold t. The following is used to give a

quantitative value of line-likeness. It gives a weight of +1 for directions codes of the same

direction and −1 for perpendicular combinations.

Flin =

∑n
i

∑n
j PDd(i, j)cos

(
(i− j)2πn

)∑n
i

∑n
j PDd(i, j)

(2.11)

Regularity: A texture is considered to be irregular if it varies over the whole image.

Using the previous four features Tamura et al. (1978) devised the following measure for

regularity

Freg = 1− r(σcrs + σcon + σdir + σlin) (2.12)

Where σxyz is the standard deviation of feature Fxyz and r is a normalising factor.

Roughness: Tamura et al. (1978) put an emphasis on coarseness and contrast when

characterising roughness. This is based on their knowledge of human perception attained

from the psychological experiments conducted by them. It is defined as follows.

Frgh = Fcrs + Fcon (2.13)

The original paper used only the first four features, Fcrs, Fcon, Fdir, Flin, and two

distance metrics, the Mahalanobis distance and the Euclidean distance, to determine the

nearest neighbour of texture images and compare the results with the human judgements.

Prasad and Krishna (2011) uses three Tamura features — coarseness, contrast and direc-

tionality — on CT scan images and uses Euclidean distance as a similarity measurement.

Patil and Talbar (2012) uses multiple texture features, including Tamura features, and

compare their performance using multiple distance measures including Euclidean, Man-

hattan, Chi-squared, etc.
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Grey Level Co-Occurence Matrix (GLCM)

One of the best known statistical methods for texture analysis is the use of Co-occurrence

matrices. The grey levels of images are used to construct the grey level co-occurrence

matrix (GLCM). This was proposed by Haralick et al. (1973) and has become a very

popular technique. The basic principle of the technique is simple: for a given displacement

d = (dx, dy), each entry (i, j) in the co-occurrence matrix is the count of the number of

occurrences of the pair of grey levels i and j at a distance d. The following simple example

shown in Figure 2.4.1 involving a 4× 4 image with 3 different grey values 0, 1 and 2 may

serve to explain GLCM better.

Figure 2.9: Example 4 × 4 image region on which a GLCM with d = (1, 0) is being
calculated. There are three grey scale values, here represented by white(1), black(0) and
grey (2)

Given the image, and d = (1, 0), the GLCM would be the following:

glcm(1,0) =

 4 0 2

2 2 0

0 0 2


The (0, 0) element of the GLCM represents the number of times a grey level value of

0 follows (horizontally) a grey level value of 0. So, the (0, 2) element of the GLCM has a

value of 2 because it is only twice that a grey level value of 2 follows (horizontally) a grey

level value of 0. Typically the choice of d is fixed for certain systems and for others it is

hand-tuned on a case-by-case basis. Some studies use multiple values of d like Howarth

et al. (2005), where multiple GLCM are extracted for d = 1, 2, 3, and 4 and four equally

spaced orientations between 0 and π. Vimina and Jacob (2012) uses a single value of d

(1) with the same four orientations.

A total of 14 texture features have been proposed by Haralick et al. (1973) using the

GLCM. These include entropy, contrast, correlation, etc. La Cascia and Ardizzone (1996)

describe a prototypal content-based video search system which makes use of grey-level

co-occurrence matrices to extract texture features. A video sequence is split up into shots,

and representative frames are chosen. These frames are used as the source to extract

colour and texture features.

In the context of domain-specific CBIR, there are a few issues with the co-occurrence

matrix. Haralick et al. (1973) does not seem to provide any information about how to
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choose d, although the coarseness measure proposed by Tamura et al. (1978) may be of

some value. The usefulness of the information stored in the matrix when comparing with

a query image would hinge on the correct (or as close to correct as possible) choice for

the value of d and the orientations. If the image database has images which have textural

properties spread over various scales, multiple values of d would be more suitable, however

which combinations will work best is still an issue that need to be addressed through trial

and error.

Local Binary Patterns

Local Binary Patterns (LBP) were first proposed in Ojala et al. (1996). A variation was

then presented in Ojala, Pietikainen and Maenpaa (2002). Since then it has become a

widely used texture features and has gained wide acceptance due to good performance in

different image processing applications and also through simplicity of calculation. Here

we will discuss the version presented in Ojala, Pietikainen and Maenpaa (2002).

LBP features are calculated over a circular neighbourhood around a central pixel. The

size of the number of pixels in the neighbourhood (P ) and its radius (R) can be varied.

For this discussion we will assume that the images are grey scale.

The authors begin by defining a texture T in a local neighbourhood of an image as the

joint distribution of the gray scale pixel values of P, (P > 1) pixels

T = t(gc, g0, ...gP−1) (2.14)

Where gc is the grey level value of the central pixel in the neighbourhood and gp(p =

0, ..., P − 1) are the grey level values of P equally spaced pixels at a distance of radius

R. This forms the circular neighbourhood. The grey level values which do not correspond

to an actual pixel can be found by interpolation. To achieve invariance to luminance the

value of the center pixel gc is subtracted from the neighbourhood pixels Gp, giving

T = t(gc, g0 − gc, ...gP−1 − gc) (2.15)

Assuming that the differences gp − gc is independent of gc, Equation 2.15 can be

refactored to

T ≈ t(gc)t(g0 − gc, ...gP−1 − gc) (2.16)

As t(gc) here describes the overall luminance in the image, and as LBP features want

to gain invariance to luminance, the gc components is dropped and the texture of the

neighbourhood is approximated by

T ≈ t(g0 − gc, ...gP−1 − gc) (2.17)

This data can be used to produce a P dimensional histogram which can be used as a

feature. But to achieve invariance to scaling of the grey scale values just the sign of the

differences are considered.
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T ≈ t(s(g0 − gc), ...s(gP−1 − gc)) (2.18)

where

s(x) =

1 x ≥ 0

0 x < 0
(2.19)

Incorporating a binomial factor operator 2p for each sign, Equation 2.18 can be con-

verted to a number. This number can be used as a representation of local texture. Ojala,

Pietikainen and Maenpaa (2002) and other works have referred to this in terms of P and

R as LBPP,R.

LBPP,R =
P−1∑
p=0

s(gp − gc)2p (2.20)

This process is illustrated in Figure 2.4.1, showing how the LBP pattern can be calcu-

lated for an image region with the following grey scale values.

30 25 10

85 50 120

70 60 100

The calculation is performed around the central pixel, with a grey scale value of 50,

with R = 1 and P = 8. Three of the eight neighbours have a pixel value less than 50,

resulting in a corresponding 0 in the pattern entry. The others get a 1 in the pattern entry

as their pixel value is larger than that of the central pixel. The order of how the pattern is

read is immaterial as long as it is read consistently. In this example, we can start reading

from the top right in a clockwise manner to end up with 01111100 as the pattern with

LBPP,R = 124 using Equation 2.20.

50

25

60

12085

30 10

10070

-25

10

7035

-20 -40

5020

0

1

11

0 0

11

Figure 2.10: Illustration of the LBP calculation.

An extension to this is presented by the authors based on the observation that certain

binary patterns occur frequently in texture images. They demonstrate this using image

statistics gathered from their experimental images. They named these patterns “uniform”
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as they had a small number of spatial transitions in their circular neighbourhood. These

can be thought of as templates which can help identify microstructures in an image such

as bright spots, dark spots and edges. The following measure is used to measure the

uniformity of a regions.

U(LBPP,R) = |s(gP−1 − gc)|+
P−1∑
p=1

|s(gp − gc)− s(gp−1 − gc)| (2.21)

In a scheme which is called LBP u2PR, patterns which have a U value of less than or equal

to 2 are placed in a bin corresponding to their number. Other patterns are all placed in one

bin. So, for a an LBPP,R value which has 8 bits, there are 58 uniform patterns, resulting

in a histogram of 59 bins when using LBP u2PR .

LBPP,R is easily transformed into its rotation invariant version LBP riP,R by rotating the

pattern to maximise the number of 0s in the most significant bits starting from gp−1. So,

the pattern 01111100 found from the illustration in Figure 2.4.1 would become 00011111.

Using equation 2.22 each uniform LBP riu2P,R pattern gets a unique label assigned to it,

which depends on the number of 1s in the pattern. Every non-uniform pattern gets the

label P + 1. This scheme produces P + 2 unique values. The image feature is calculated

as a histogram of LBP riu2P,R values, summed over a texture region.

LBP riu2P,R =


∑P−1

p=0 s(gp − gc) if U(LBPP,R) ≤ 2

P + 1 otherwise
(2.22)

LBP is a simple and effective feature with excellent results in many applications.

However, just like the GLCMs, the effectiveness of an LBP feature is dependent on the

choice of the parameters dictating the window in which the pixel statistics are gathered.

In this case the choices of R and P are crucial. Also, there is a choice between using

the LBPP,R, LBP
u2
P,R and LBP riu2P,R . This needs to be determined experimentally. For

example although LBP riu2P,R seems be the most advantageous feature, Doshi and Schaefer

(2012) found that the best performing feature for a texture database was one which is

not rotation invariant. Their best performing results use a combination of LBP features

extracted at multiple P,R. The issue is that the combinations need to be found through

experimentation and are essentially hand-picked. In this thesis we aim to use techniques

that will automatically give us feature extractors that are adapted to the image collection,

without having to tweak them by hand as with LBP. This is explored further in chapter

7.

2.4.2 Structural Models

Some authors place this category of texture features as a sub-category of the statistical

models (Zhang, Islam and Lu, 2012). It is also entirely possible to place the texton dictio-

nary based features described below as spectral features. In general the techniques which

fall under this category define texture to be composed of primitives or texture elements
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(texel) or textons (Tuceryan and Jain, 1998) and utilize textons and their placements to

describe a texture (Materka et al., 1998; Fu and Albus, 1982; Leung and Malik, 2001).

Identifying texels/textons is one of the challenges of this field. One of the techniques

filters an image with a Laplacian of Gaussian (LoG) filter at different scales (Voorhees and

Poggio, 1987). The information gained from the filtering is combined to extract “blobs”

from the image which were thought to be important for texture perception. Tüceryan and

Jain (1990) present the use of Voronoi tessellation to determine textons from an image.

They also use a LoG filter to extract textons. The local maxima of the filtered image are

used to do a connected component analysis using 8 nearest neighbours.

Leung and Malik (2001) have done some interesting work on 3D textons. While the 3D

aspect is not relevant to what we want to pursue in this research, their initial presentation

of 2D textons has potential to be applied for adaptive texture features. They use the

filters shown in Figure 2.4.2, now known as the Leung-Malik (LM) filter bank. There are

36 elongated filters at 6 orientations, 3 scales and 2 phases. The rest are made up of 4 low

pass Gaussian filters and 8 center surround difference of Gaussian filters.

Figure 2.11: The Leung-Malik (LM) Filter Bank used to extract Textons in Leung and
Malik (2001)

Similarly Schmid (2001) use Schmid(S) filters found from Equation 2.23 using 13 com-

binations of σ, τ .

F (r, σ, τ) = F0(σ, τ) + cos
(πτr
σ

)
)
e−

r2

2σ2 (2.23)

To extract textons Varma and Zisserman (2005) use a bank of 38 filters knows as the

Maximum Response 8 filters, Ahonen and Pietikäinen (2009) uses a bank of 24 Gabor

filters and also the local derivative (LD) filter set, Haddad (2005) uses ring filters and

wedge shaped orientation filters in combination.

Each image is filtered with filters such as these. The responses of each filter at every

pixel of an image is assembled in an n dimensional vector, where n is the total number

of effective filters. These vectors are quantized using a K-means implementation into K

centers. These K centers are then treated as the textons.

When using textons in a textons-based dictionary representation for images, the local

descriptors of images are obtained through filtering (as above) or other techniques. De-

scriptors of images from each category are used to extract T textons using K-means as

described above. If there are C categories, this gives a total of T × C textons to be used

in a texton dictionary.
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When creating an image signature the local descriptors are again found for the image

and then each local descriptor is labelled by finding its closest texton using the Euclidean

distance. The count of label occurrence is used to create a frequency histogram which is

used as the image signature. This method is very similar to the “Bag-of-Visual-Words”

representation evaluated in Yang et al. (2007).

Texton-based dictionaries have often been used in image classification using the nearest

neighbour classifier or support vector machines etc. The distance between two represen-

tations can be calculated in many ways, but the Chi-square distance is quite popular

(Zhang, Zhao and Liang, 2012). This is shown in Equation 2.24, where Vp and Vq are

feature vectors and i is the index of the feature vector.

χ2(Vp, Vq) =
∑
i

(Vp(i)− Vq(i))2

Vp(i) + Vq(i)
(2.24)

Textons are particularly suited for collection-specific texture features. The issue how-

ever is how to decide which filters/methods to use to extract the local descriptors. We

have only mentioned a few of the filter sets used so far to create a texton dictionary. When

working with a collection it is possible to arrive at a filter set through experimentation,

which would give a good texton dictionary for a collection. In this thesis we are interested

in techniques which would allow us to bypass this experimentation/hand-tuning phase.

2.4.3 Spectral Models

Research has shown that the human brain performs a frequency analysis of images (Camp-

bell and Robson, 1968), and that this kind of analysis suits texture very well. Signal pro-

cessing techniques have been used to analyse texture and extract textural features because

of this affinity.

Fourier Transforms (Lee and Chen, 2005; Hervé and Boujemaa, 2007), discrete cosine

transforms (Lu et al., 2006), wavelets (Wang et al., 2001; Fan et al., 2004; Park et al.,

2004) and Gabor filters (Tuceryan and Jain, 1998; Salembier et al., 2002; Manjunath and

Ma, 1996; Zhang et al., 2005, 2000) are common methods employed to obtain texture

features in this category. Fourier transforms and discrete cosine transforms are efficient to

calculate but have the disadvantage of not being invariant to scale and rotation. Wavelets

are limited in their orientations. Gabor-based features have the ability to capture texture

patterns at multiple scales and orientations and are considered to be more robust (Zhang,

Islam and Lu, 2012).

Gabor transforms are related to Fourier transforms. Fourier transforms carry out the

analysis globally, but in applications where localised information is required a method

called a windowed Fourier transform is used (Tuceryan and Jain, 1998). Equation 2.25

shows a one dimensional windowed Fourier transform.

Fw(u, ξ) =

∫ ∞
−∞

f(x)w(x− ξ)e−j2πuxdx. (2.25)
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Figure 2.12: The 12 Gabor filters used by the GIFT/Viper CBIRS which gives good
coverage.

When the window function w(x) is a Gaussian, the resulting transform becomes a

Gabor transform. Gabor filters have been proposed as a means of modelling the simple

cells in the visual cortex and motivating their use in texture analysis (van Hateren and

van der Schaaf, 1998; Daugman, 1980), and have been used in many image processing

applications including CBIR (Squire et al., 1999), image classification (Liao et al., 2009)

and others.

The GNU Image Finding Tool (GIFT) is an open source CBIRS (Squire et al., 1999).

It uses a bank of 12 Gabor filters defined in the spatial domain by,

Gabormn(x, y) =
1

2πσ2m
e
−x

2+y2

2σ2m cos(2π(u0mx cos θn + u0my sin θn)) (2.26)

where m and n index the scale and orientation of the filters respectively. u0 specifies

the centre frequency and the half peak radial bandwidth is given by

Br = log2

(
2πσmu0m + (2 ln 2)

1
2

2πσmu0m − (2 ln 2)
1
2

)
(2.27)

Setting Br to 1, gives σm to be

σm =
3(2 ln 2)

1
2

2πσmu0m
(2.28)

the highest centre frequency is

u01 =
0.5

1 + tan(13)
(2.29)

For each change of scale, u0m is halved, doubling σm. Filters at three scales are used in

GIFT. The orientations are acquired in π
4 steps, giving a total of 12 filters in three scales

and four orientations which gave a good coverage without overlapping filters (Squire et al.,

1999). These filters are reproduced and shown in Figure 2.4.3.

GIFT extracts two kinds of texture features. The global texture feature is just the

mean of the filter response energy. The local features are described below.

For each filter, GIFT finds the filter response energy and divides the energy images

into 16 × 16 blocks. The mean energy in each block is calculated and quantized into 10
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bins. The bin centres were chosen after examining the filter response of 500 images. Unlike

other systems, in GIFT every bin in the histograms are mapped to a feature.

In the context of adaptive texture features, using pre-defined Gabor filters has some

drawbacks. There may be some textures to which all the filters in the bank may be blind.

As like other techniques mentioned previously, it might be possible to hand-tune the

filters. As we show in later chapters, it is not effective to just have filters in multiple scales

and many orientations. In fact just blindly using multiple scales can lead to decreased

performance as we will show in Chapter 3.

GIFT is a versatile CBIRS and in an evaluation done by Kosch and Maier (2010) it

performed best among seven CBIR systems when they were tested on six different image

collections representing images coming from different domains. Even so, the fact that it

uses fixed pre-defined feature extractors is a weakness which was recognised by Müller

et al. (2003), where they had to hand-tune the Gabor filters used for texture features to

adapt to a collection of medical images.

In this thesis we will describe methods which we show perform better than banks

of Gabor filters. These feature extractors are adapted to image collections without any

human intervention. The process we will describe can easily be incorporated in CBIR

systems like GIFT which would help bypass the type of hand-tuning done by Müller et al.

(2003).

2.4.4 Other Gradient Based Methods

We present scale invariant feature transform (SIFT), histogram of gradients (HOG) and

pyramid histogram of oriented gradients (PHOG) features here as a separate category

as an important part of these three features is calculating gradients at image locations.

However these three features could have easily been included in the category of statistical

models. We first present SIFT followed by HOG and then briefly PHOG.

Scale Invariant Feature Transform

Scale Invariant Feature Transform (SIFT) was first proposed in Lowe (1999) and further

explained in Lowe (2004). It has since become one of the most widely used features in

object recognition (Pinto et al., 2011), image classification (Xiao et al., 2010) , content

based image retrieval (Wangming et al., 2008) and many other domains. Extracting SIFT

features from an image is a four-step process as described in Lowe (2004):

• Detecting keypoints

• Identifying stable keypoints

• Assigning keypoint orientation

• Creating the keypoint descriptor

We describe each step in more detail below.
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Detecting keypoints: Here we discuss the keypoint detection mechanism proposed

in Lowe (2004). This is by no means the only way to identify keypoints in an image. The

following steps can be applied after detecting a keypoint using other methods, such as

those described in Mikolajczyk and Schmid (2004), e.g. Harris corner detector.

Searching through the scale-space (Witkin, 1983) of an image, SIFT tries to find loca-

tions with properties (usually calculated from a region around the location) which remain

invariant under changes of scale and viewing angle. In Lowe (2004), the method described

convolves a variable-scale Gaussian function G(x, y, σ) with an image I(x, y) to produce a

scale-space L(x, y, σ) (Equation 2.30) which can then be used to calculate the Difference-

of-Gaussian(DoG) function (Equation 2.31).

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (2.30)

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y)

= L(x, y, kσ)− L(x, y, σ) (2.31)

Lowe (2004) outlines an efficient method of calculating D(x, y, σ) by incrementally

convolving the image with Gaussians to produce images which would be separated by

some factor k in scale-space. The DoGs are produced by subtracting adjacent images.

The next octave can be initiated by taking the image which has twice the value of the

original σ and re-sampling it to reduce the size by half. This process is depicted in Figure

2.13

The extrema in the DoGs are considered to be candidate keypoints. Every pixel value

in a DoG image is compared to its eight neighbours as well as its nine neighbours from

each of the adjacent scales. So, for each location there are 26 comparisons and a location

is considered to be an extremum only if its pixel value is found to be the highest or the

lowest. If an octave is divided in s intervals, the SIFT keypoint detection process generates

s + 3 scales to ensure that DoG extrema can be detected from the whole octave. These

candidate keypoints are further refined to select those that are stable as described next.

Identifying stable keypoints: A keypoint location is refined by fitting a 3D quadratic

function to the local sample points. The Taylor expansion of D(x, y, σ) shifted so that

the keypoint is at the origin (Equation 2.32) is used to take the derivative of the function

with respect to x (x = (x, y, σ)T ). This is set to zero, and solved for x. The solution is

used to refine keypoint location and scale.

D(x) = D +
δDT

δx
x +

1

2
xT

δ2D

δx2
x (2.32)

As the DoG method is susceptible to finding keypoints lying on edges, the keypoints

are further refined to eliminate those lying on an edge. This can become a problem

when trying to use SIFT as a texture feature as texture elements made up of lines are

well known and features like line-likeness described previously are specifically designed
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Gaussian Difference of 
Gaussian (DOG)

Scale
(next

octave)

Figure 2.13: DoG calculation outlined in Lowe (2004)

Figure 2.14: Comparing a point (marked with “x”) with its 26 neighbours in from its own
and its neighbouring scales

to capture them better. Figure 2.4.4 shows a pattern made up of lines where no SIFT

keypoints were detected.
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Figure 2.15: Patterned image made up of lines where no SIFT keypoints were detected.

Assigning keypoint orientation: SIFT ascribes a consistent orientation to each

keypoint. It then represents the keypoint descriptor relative to this orientation, thus

achieving rotation invariance. Orientation is assigned to the keypoint as follows.

The Gaussian-smoothed image L with the closest scale to the scale of the keypoint is

used to perform all operations. This ensures scale invariance. For each (x, y) in a region

around the keypoint at this scale, the gradient magnitude m(x, y) and orientation θ(x, y)

are calculated, as shown in Equations 2.33 and 2.34:

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2 (2.33)

θ(x, y) = tan−1
(
L(x, y + 1)− L(x, y − 1)

L(x+ 1, y)− L(x− 1, y)

)
(2.34)

The magnitudes of the orientation gradients are multiplied by a Gaussian window.

An orientation histogram is created and the magnitudes are accumulated in locations

corresponding to the orientation values. The peak of the histogram is used as the orien-

tation of the keypoint. All other orientations are then normalised relative to the keypoint

orientation.

Creating the keypoint descriptor: The SIFT keypoint descriptor is created by

assigning an orientation (normalised by the keypoint orientation) and a gradient magnitude

to every sample point in a fixed region around the keypoint. To avoid abrupt changes in

the descriptor these are weighted by a Gaussian window with σ one half the width of the

descriptor region. Then the keypoint region is divided in 4× 4 subregions. The contents

of the subregions are represented using an orientation histogram where the magnitudes at

each orientation bin are summed. Trilinear interpolation is used to distribute the value of

each gradient sample into neighbouring histogram entries. In the experiments conducted

in Lowe (2004), orientation histograms with 8 bins are used. The orientation histograms

are concatenated over the 4× 4 region giving a 128-dimensional SIFT descriptor.

SIFT-based features: There are quite a few variations of SIFT and several features

based on it. Some of the more popular features are Dense SIFT (DSIFT) (Lazebnik et al.,

2006) and Pyramid Histogram of Words (PHOW) (Bosch, Zisserman and Muoz, 2007).

DSIFT, as the name suggests, is a dense feature where SIFT descriptors are calculated
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on the same scale and orientation at specified sample steps in the image, rather than at

identified keypoints. PHOW descriptors are essentialy DSIFT done at multiple scales.

Other variations include PCA-SIFT (Ke and Sukthankar, 2004), which pre-computes

an eigenspace from training patches around keypoints (extracted at the appropriate scale

and rotated to align the dominant orientation). When extracting features, patches around

keypoints are projected to this eigenspace. PCA-SIFT usually gives more compact descrip-

tors but in the evaluation done by Mikolajczyk and Schmid (2005) it had lower performance

compared to SIFT features.

Most of the above are usually applied on grey-scale images. Verma et al. (2010)

proposes a colour SIFT descriptor where a SIFT descriptor is calculated on each of the

three colour channels giving a combined SIFT descriptor of 384 dimensions, which shows

improvement over grey-scale SIFT descriptors.

Histogram of Oriented Gradients

Histogram of Oriented Graidents (HOG) is a very popular feature initally used for Human

detection but has been widely used in other fields (Dalal and Triggs, 2005). It utilises

image gradient information extracted from images after subdividing the image into small

regions which are referred to as “cells”. The gradients at sampled pixels within a cell are

used to compute a histogram. The combined histogram of all the cells becomes the image

descriptor. We will discuss the technique in more detail below. The discussion will be

based on the work presented by Dalal and Triggs (2005).

Gradient computation Dalal and Triggs (2005) reports the use of different tech-

niques to compute the gradient at a pixel, however through experimentation they have

found that using the simple masks [−1, 0, 1] and [−1, 0, 1]T on a non-smoothed image

works best. When dealing with colour images their proposed method is to calculate the

gradients on each of the colour channels and choose the one with the largest norm as the

pixel’s gradient vector.

Orientation bin assignment An orientation histogram is calculated for every cell.

In their work a cell is a block of 8 × 8 pixels. The orientation bins of the histogram are

evenly spaced between 0◦ − 180◦ or 0◦ − 360◦. The gradient magnitude at each pixel is

used as a weighted vote for this histogram, which is distributed using bilinear interpolation

between neighbouring bin centres. Other schemes were tested including using the square

of the magnitude, its square root or a thresholded value indicating presence or absence.

The paper reports that the best combination for its experiments was obtained when using

the gradient magnitude in a histogram of 9 bins evenly spaced between 0◦ − 180◦.

Descriptor blocks and normalisation To combat the issue of local intensity differ-

ences within an image, and also the issue of foreground-background contrast, the authors

propose multiple strategies to do local normalisation. Most of them group multiple neigh-

bouring cells into what they call “blocks” and normalise each block separately. They use a
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strategy of using overlapping blocks so that each cell response actually contributes to mul-

tiple entries of the final descriptor. They experimented with four normalisation schemes,

namely L2-norm (Eq 2.35), L2-Hys (L2 normal followed by thresholding), L1-norm (Eq.

2.36 ) and L1-sqrt (Eq. 2.37). These are shown in equations 2.35 - 2.37, where −→v is the

un-normalised block descriptor, ||−→v ||k is the k− norm and ε is a small constant. Of these

L2-norm, L2-hys and L1-sqrt performed comparably and best in their experiments.

vnormalised ←
v√

||v||22 + ε2
(2.35)

vnormalised ←
v

||v||1 + ε
(2.36)

vnormalised ←
√

v

||v||1 + ε
(2.37)

Pyramid Histogram of Oriented Gradients The Pyramid Histogram of Gradi-

ents (Bosch, Zisserman and Munoz, 2007) is an extension of the HOG descriptor which

combined HOG and image pyramids as described by Lazebnik et al. (2006). It was initally

utilised for shape matching. Each image is divided into smaller regions successively. A his-

togram of image gradients is calculated for for each region (starting from the whole image

to each subregion). In the method proposed in Bosch, Zisserman and Munoz (2007) the

histogram represents the number of occurrences of an orientation rather than its magni-

tudes. The histograms of all the regions are concatenated to create the PHOG descriptor.

This process is depicted in Figure 2.4.4.

Figure 2.16: Dividing the image into sub-regions to calculate the PHOG descriptor.

SIFT and HOG as texture features

SIFT has been widely used for object recognition and HOG and PHOG have been suc-

cessfully applied to human detection as well as other object recognition and classification

systems. In this study we have used them to extract texture features, as at a basic level

both these features calculate gradients within some image region. This we believe is not

all that different from using a bank of Gabor filters on an image region. Some justification

for this is presented in A.1. The main point related to this thesis is, the manner of feature

extraction for both these features is fixed and pre-defined and does not automatically vary

for different image collections.
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It would be ideal if we could learn automatically details about feature extractors which

would be adapted to the image collections. As will be discussed in the next section, ICA,

a high order statistical technique, provides techniques necessary to extract filters from

images which are adapted to the data (Le Borgne et al., 2004).

2.5 Independent Component Analysis (ICA)

Independent Component Analysis (ICA) is a statistical technique used to estimate under-

lying hidden factors from multivariate data. It uses the assumption that the underlying

factors are statistically independent and non-Gaussian. The estimated factors, called

independent components (IC), can be thought of as basis vectors whose weighted sum de-

scribes the data. Comon (1994) credits Herault and Jutten as the first to have addressed

the problem, around 1983, and as having coined the term around 1986. The initial mo-

tivation behind ICA was to perform Blind Source Separation (BSS), which refers to the

task of discovering the source signals from some observed linear mixture of the sources

(Hyvarinen, Karhunen and Oja, 2001). In fact BSS is a good example to use to describe

ICA as a mathematical problem. Here a simple version of ICA is presented, where we

assume that the number of observed signals and the number of source signals are equal.

Let x1(t), x2(t) and x3(t) represent the observed signals of some source signals s1(t), s2(t)

and s3(t) at time t. Based on this information, it can be said that for i = 1, 2, 3

xi(t) = ai1s1(t) + ai2s2(t) + ai3s3(t). (2.38)

In this situation, the source signals si(t) are unknown and so are the mixing weights

aij . The only known values are the observed signals xi(t). The problem of BSS is to find

the original signals {si(t)}) from the observed mixtures {xi(t)}). The assumption is that

the mixing coefficients aij are sufficiently different so that it would be possible to allow

the inversion of the matrix formed from those values. The inference then is that there is

a matrix W , with wij as coefficients, which would allow the separation of each si, as

si(t) = wi1x1(t) + wi2x2(t) + wi3x3(t). (2.39)

Therefore the matrix A, formed by the mixing coefficients aij , is the inverse of W ,

W = A−1. This is the basic mathematical problem that needs to be solved, and ICA

provides a solution to this seemingly hard problem by the assuming that the signals are

statistically independent (Comon, 1994). That is, the value of their joint probability is the

product of their marginal probabilities. Independence is stronger then uncorrelatedness.

Figures 2.17(a) shows the joint distribution of two random sources with zero mean and

unit variance. Figure 2.17(b) shows the joint distribution of two mixed signals obtained

by mixing the original sources by the following matrix:

(
1 0.3

0.3 1

)
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The data still is centered and Figure 2.17(c) shows the joint distribution of the whitened1

mixture obtained through Principal Component Analysis. Whitening through PCA solves

a large part of the ICA problem and is used quite frequently as a pre-processing step to

ICA. Figure 2.17(d) shows the ICA transformation of the whitened mixture obtained by

an implementation of the FastICA algorithm, which will be discussed later.

(a) Original (b) Mixed source

(c) PCA (d) ICA

Figure 2.17: Difference between ICA and PCA

The central limit theorem tells us that the distribution of a random variable which is the

sum of non-Gaussian random variables will be distributed closer to a Gaussian compared

to the original random variables. Therefore finding maxima in non-Gaussianity in a linear

combination of the mixture variables (y =
∑

i bixi) gives us the independent components

(Hyvarinen, Karhunen and Oja, 2001). Two frequently used methods of estimating the

non-Gaussianity of a sample from a random variable are Kurtosis and Negentropy. We

discuss them further here.

2.5.1 Kurtosis

Kurtosis is the fourth-order cumulant and is defined by

kurt(y) = E{y4} − 3(E{y2})2 (2.40)

If y has unit variance E{y2} becomes 1, and Kurtosis can be simplified to E{y4} − 3.

For Gaussian variables E{y4} is equal to 3(E{y2})2, so the kurtosis value in this case

is zero. Kurtosis is positive and negative for super-Gaussian and sub-Gaussian random

1Whitening is an operation that transforms a set of random variables with a known covariance matrix
to another set whose covariance matrix is the identity matrix, resulting in a data set which is uncorrelated
and has a variance of 1.
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variables respectively. For ICA estimation the absolute value of kurtosis is typically used.

However it is not a very robust measure as it is very sensitive to outliers. From a sample

of 1000 values from a whitened random variable, only one value equal to 10 is sufficient

to make the kurtosis value at-least 7. Researchers have used negentropy as a more robust

estimate of non-Gaussianity, which is described now.

2.5.2 Negentropy

Entropy is the fundamental concept in information theory and is a measure of the expected

value of the information in a random variable. The differential entropy of a random variable

is defined in Equation 2.41

H(Y ) = −
∫
Y
p(y)log(p(y))dy (2.41)

where p is the probability density function of Y .

We know from information theory that a Gaussian variable has the largest entropy

among all random variables of equal variance (Hyvarinen, Karhunen and Oja, 2001;

Comon, 1994). This allows for entropy to be used as a measure of non-Gaussianity.

Negentropy is just such a measure. It is zero for Gaussian variables and positive for non-

Gaussian variables. Equation 2.42 defines the negentropy J(Y ) of a random variable Y

where Ygauss is a Gaussian variable with the same covariance matrix as Y :

J(Y ) = H(Ygauss)−H(Y ). (2.42)

Using negentropy as a measure of non-Gaussianity is justified by statistical theory and

may be considered to be an optimal estimator of non-Gaussianity (Hyvarinen, Karhunen

and Oja, 2001; Hvyarinen, 1998; Hyvarinen, 1999). Calculating it however requires an

estimate of the probability density function (PDF), which makes is very difficult to com-

pute. In practice some approximations of negentropy is used for ICA. We describe here

the approximations developed by (Hvyarinen, 1998) which were shown to work better than

other approaches, such as kurtosis or other cumulant based approaches by Amari et al.

(1996); Comon (1994).

As a model, the approximations take the form in Equation 2.43

J(yi) ≈ c[E{G(yi)} − E{G(v)}]2 (2.43)

where G can be any non-quadratic function, c a constant and v is a Gaussian vari-

able of zero mean and unit variance (assuming, yi is also zero mean and unit variance).

If G(yi) = y4i then this model encapsulates the cumulant-based approximation shown in

Comon (1994). The function G should be such that it should be locally consistent (Hy-

varinen, 1999) and robust against outliers (Hampel et al., 2011). Using these Hvyarinen

(1998) lists the following functions as suitable approximations of negentropy.
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G1(y) =
1

a1
log cosh(a1y) (2.44)

G2(y) = − 1

a2
exp(

−a2y2

2
) (2.45)

G3(y) =
1

4
y4 (2.46)

(2.47)

where 1 ≤ a1 ≤ 2 and a2 ≈ 1 are constants.

2.5.3 FastICA

Having presented negentropy and the approximations used for its estimation, we now

present a fixed point algorithm for ICA called FastICA proposed by Hyvärinen and Oja

(1997). It has many desirable characteristics, including rapid convergence (Oja and Yuan,

2006) and simplicity of implementation. All experiments conducted in this research have

been carried out using FastICA. The algorithm is as shown in Algorithm 1.

Algorithm 1 The FastICA algorithm

1: Center the data to make the mean zero.
2: Set threshold to some threshold value to determine convergence.
3: Whiten the data and let the whitened data be z.
4: Choose m, the number of ICs to be estimated.
5: counter ← 1.
6: Choose a random vector of unit norm for wcounter.
7: temp ← wcounter.
8: Update wcounter = E{zG(wTcounterz)} − E{G′(wtcounterz)}w.
9: Orthogonalize: wcounter = wcounter −

∑counter−1
j=1 (wTcounterwj)wj

10: w ← w
||w||2

11: if ||temp − wcounter||2 > threshold or ||temp + wcounter||2 > threshold then
12: go back to step 7
13: end if
14: counter ← counter + 1
15: if counter < m then
16: go back to step 5
17: end if

Where G is one of the functions mentioned in Equations 2.44–2.46.

The algorithm presented here does deflationary orthogonalization, and is the one used

in this research. For the symmetric version please refer to Hyvarinen, Karhunen and Oja

(2001).

2.5.4 Limitations of ICA

The assumption that ICA operates under is that the underlying sources are non-Gaussian.

Hence it uses maxima of non-Gaussianity as a tool to identify the independent components.

This brings us to its first limitation: it does not work for Gaussian sources. Secondly
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unlike PCA, which orders the components by maximal variance, ICA does not give any

information about the ordering of the extracted components. Neither does it retrieve the

original sign or magnitude of the components. These restrictions are not prohibitive. The

original direction and magnitude of the components is not important for image processing

applications. An ordering of the components would have been useful. There has been some

effort to estimate the relative utilities of the extracted components, when interpreted as

filters. This will be presented in §2.5.6, when we discuss filter selection.

2.5.5 ICA in image processing

Barlow theorised that edge detectors in the human visual cortex are a result of a “re-

dundancy reduction” process leading to an arrangement where the activation of feature

detectors are as statistically independent from one another as possible (Barlow, 1989).

Independent component analysis, as described before, is a method which can find compo-

nents which are as statistically independent as possible. Bell and Sejnowski (1997) use this

property of ICA to hypothesise that, if Barlow’s reasoning is correct, ICA should extract

localised edge detectors. In their experiments they used a training set of natural scene

images which included trees, leaves etc. They took 17, 595, 12 × 12 patches from these

images, made the patches zero mean and whitened them using a symmetrical whitening

filter. These whitened patches were then unrolled into vectors and aggregated into a data

matrix on which ICA was executed. Experiments were repeated multiple times to ensure

that the results were not affected by the ICA initialisation conditions. The extracted

independent components were transformed back into the image space and are re-formed

into patches to form the filters. Figure 2.5.5 shows the 144 filters extracted from this

process. Most of the filters are edge filters, localised and oriented matching some of the

properties of the simple cell receptive fields in the visual cortex (Hubel and Wiesel, 1968).

Their resemblance to the Gabor filters shown earlier is also noteworthy. Bell and Sejnowski

(1997) also show that the ICA filters have the property of sparseness, which is each feature

detector activating as rarely as possible.

van Hateren and van der Schaaf (1998) also used ICA to extract filters, calling them

independent component filters (ICF), and compared them to the simple cells in the primary

visual cortex. Their method is similar to Bell and Sejnowski (1997) except they used

120, 000 18 × 18 patches and used PCA to reduce the dimensionality of the data matrix

from 324 to 240. They report findings that by reducing the dimensionality by PCA they

were able to extract only the oriented filters. In their comparison they found that while

the ICF were localised and oriented, they have a fixed scale whereas the simple cells

of the visual cortex have receptive fields which act on multiple scales. As far as ICF

extraction goes, Hyvarinen, Karhunen and Oja (2001) describes a similar method but take

10, 000 random 16×16 patches. Each patch is whitened separately and dimensionality was

reduced to 160. Similar methods are employed in many other studies (Le Borgne et al.,

2004; Le Borgne and Guérin-Dugué, 2001) and is depicted in Figure 2.19.

Motivated by factors such as statistical independence, similarities with the simple cells

of the visual cortex, similarities with Gabor filters etc., ICA has been used in many different
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Figure 2.18: Example of filters extracted through ICA from images of natural scenes by
Bell and Sejnowski (1997). The filters are localised and mostly oriented, properties in
common with simple cell receptive fields

image processing applications, including image classification (Duan et al., 2009; Wu et al.,

2012; Le Borgne et al., 2004), edge detection (Chen et al., 2002), blind deconvolution

(Kaplan and Ulrych, 2003). It has also been used in certain medical imaging, e.g. breast

cancer detection (Boquete et al., 2012), fMRI images (Calhoun et al., 2009) etc.

In terms of content-based image retrieval, Khaparde et al. (2008) compares ICs ex-

tracted from the query image and images in the database to determine the results. Sun

et al. (2006) also uses ICA in conjunction with Generalized Gaussian Density for the

purposes of CBIR. The results shown in the paper are very encouraging, however their

method also suffers from the use of ICA in the image feature extraction process. Bai et al.

(2007) uses Probabilistic ICA to extract image features and uses the z-values of ICs to

find a component-wise similarity measure. Wang and Dai (2007) uses ICA features and

other low-level features, along with a learning algorithm for image retrieval and they show

very promising results. Li et al. (2009) employs ICA as a dimension reduction method.

The study extracted eight different features from images and used ICA to extract the ICs

of each feature.

Apart from Khaparde et al. (2008), these approaches do not utilise ICA components

as filters. Khaparde et al. (2008) mentions the use of an ICF bank but does not clarify
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Figure 2.19: ICF extraction process following the methods of Le Borgne et al. (2004) and
Le Borgne and Guérin-Dugué (2001)

how the filters were designed. It seems as if the process proposed extracts ICs from the

query image, uses them as filters and collects filter responses from the database. If this is

indeed the case, then it requires repetitive execution of ICA on the query image. This can

be quite an expensive process. In a survey published in 2009, Vassilieva (2009) mentions

that there have not been any studies comparing the performance of ICF with other texture

feature extraction techniques in the retrieval space. Since then, apart from our work first

published in 2011 (Mohammed and Squire, 2011a,b), there has been some use of ICF

for image retrieval. Yarygina et al. (2011) employs ICF for their texture features in the

context of CBIR. Unfortunately they do not provide much in the way of analysis of the

performance of their ICF-based texture features as their work is not a proper evaluation

of the performance of ICF but rather it concentrates on mechanisms to handle complex

queries. In Khaparde et al. (2011) the authors compare the performance of ICF with
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Gabor filters in a CBIR application. Their features are the mean and standard deviation

of the filter response energies. However their results are harder to interpret as they use a

non-standard database which has a mixture of textured images, flags, animals and trees in

18 categories, with 10 images per category for a database size of 180. Also when presenting

their results they show statistics gathered from the first 32 images retrieved, when in each

class they have only 10 images.

ICA can extract a large number of filters, e.g. 144 in Bell and Sejnowski (1997), 225

in Le Borgne et al. (2004) etc. and none of these address the problem of filter selection.

For practical purposes using such a large number of filters is difficult. Methods need to

be found which would reduce the number of independent component filters to give us

the most important ones. There is also the issue pointed out by Trojan (2004) where

it is shown that ICA can extract components which when re-formed into filters seem to

be shifted/duplicate versions of each other. When used as filters these shifted/duplicate

versions will give redundant features. None of the CBIR studies address this issue at all.

In the image classfication space, Le Borgne et al. (2004) and Le Borgne and Guérin-Dugué

(2001) used measurements of dispersal and sparseness to assign importance to each ICF

and employed their selection strategy in an image classification context. There is however

problems with this technique which will be discussed in more detail next in §2.5.6.

2.5.6 Filter selection from current literature

Variance based method

Le Borgne and Guérin-Dugué (2001) state that independent component filters have the

desirable properties of sparseness and dispersal (Le Borgne and Guérin-Dugué, 2001).

They used only dispersal to select filters, which was calculated as normalised variance.

The idea is the variance of the response of a filter across the collection indicates how

useful the filter is for discriminating between the images. Let X be a list of variances,

where σ2i is the variance of the responses of filter i . The list of dispersal values D is

constructed from

Di =
σ2i

max(X)
(2.48)

A subset of filters with the largest Di is selected.

This method does not solve the problem of the shifted/near-duplicate components

(Figure 2.20) mentioned in other works (Hyvärinen and Hoyer, 2000; Hyvärinen, Hoyer

and Inki, 2001; Hyvärinen et al., 2000b; Hyvarinen et al., 2000a; Hyvärinen and Hoyer,

2001) and identified by Trojan (2004) as a potential problem when these components are

used as filters for image feature extraction, as it will choose multiple shifted/duplicate

filters so long as they have high variance, leading to redundant features.

Kurtosis of the distribution of components

Wu and Liu (2007) used ICA on Dynamic contrast-enhanced (DCE) imaging data to assess

cerebral blood perfusion without the use of any prior information of underlying anatomical
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Figure 2.20: Some ICF which are seemingly shifted/duplicate versions of each other. When
used as filters they would provide very similar features leading to redundancy.

information. In trying to ascertain the “meaningful” subset of the components, they used

the kurtosis of the distribution of the components. Kurtosis values closer to zero would

indicate that the distribution is closer to Gaussian and they deemed these components to

be most likely to be noise. Arfanakis et al. (2002) and Formisano et al. (2002) use a similar

criteria for choosing ICs from Diffusion tensor imaging data and fMRI data respectively.

This method would also have the same problem as the variance-based method, as similar,

shifted, filters will have similar Kurtosis values.

Both the variance-based and the kurtosis-based filter selection methods have the po-

tential problem of selecting filters which would extract very similar features. We propose

a solution to this problem in Chapter 4.

2.6 Content-Based Image Retrieval

Content Based Image Retrieval (CBIR) is, as the name suggests, a method to search

for images. Unlike popular image search facilities like Google image search, where the

search criteria is supplied by the user in a textual form, the common method used in

CBIR is query by example, where the user provides an image as the search criteria. In

its basic model, CBIR depends on image features extracted from the query image to

perform the query. Some systems have used metadata to aid in this process. However,

metadata associated with images are not always available and it is expensive to obtain

annotations from humans. Even in cases where humans produce metadata, an image can

mean different things to different people, so there is no guaranteed consistency. Also, there

are some visual elements that are hard to describe in text, such as texture. In these cases

it is easier to do a query using an example image. While using metadata/annotations

associated with an image can certainly improve search results (Marques and Furht, 2002),

it is not suitable to be the sole technique.

2.6.1 The semantic gap

As described in Müller (2001), and Marques and Furht (2002), and other sources, there

are many difficulties which make the implementation of a universally optimal CBIR sys-

tem (CBIRS) almost impossible. One of the main problems is the semantic gap, which,

simplistically, could be defined as the difference between what a user perceives to be im-

portant in an image compared with the information that is extracted from image features

for the same image. Compounding the problem is the fact that different users can have

different judgements of what is important in an image. Indeed, the same user can have

different opinions on the matter for different times, context, needs etc. (ten Brinke et al.,

2006). There has been much research on trying to bridge this gap (Rho and Yeo, 2013;
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Tang et al., 2012) including some which performs fMRI brain scanning on test subjects

while they are exposed to multimedia content in order to understand what kind of features

work best to minimise this gap (Hu et al., 2012), but a solution to this issue is still elusive.

2.6.2 CBIR architecture

Nevertheless the potential usefulness of CBIR motivates much research in the field, and any

improvements are desirable. The areas in which improvements can be made are numerous,

as can be seen from Figure 2.21, which depicts a typical architecture of a CBIRS.

Images

Fetching

result images

Visualization

query formulation

feature 
extraction

image id's

features

matching

query features

feature extraction

query image/sketch

index 
construct

index structure

direct query

browsing

query by
example

UI

Figure 2.21: Architecture of a CBIRS, adapted from Veltkamp et al. (2001)

There are a wide range of CBIR systems, e.g. Caliph & Emir (Lux, 2009), Picture-

Finder (Schober et al., 2005), SIMPLIcity (Wang et al., 2001), VisualSEEk (Smith and

Chang, 1997), ImageRover (Sclaroff et al., 1997), MARS (Ortega et al., 1997) and the

previously mentioned GIFT (Squire et al., 1999). While the details of implementation

and functionality of each system are different, almost all of them follow the architecture

shown in Figure 2.21. Veltkamp et al. (2001), Kekre et al. (2011), and Marques and Furht

(2002) provide a broad survey of CBIR systems, techniques, and semantics which confirms

the high-level architecture shown in Figure 2.21. In this thesis we mainly concentrate on

areas which are related to query by example or direct query. In particular we concentrate

on feature extraction which is performed on the entire collection and at times on query

images if the features are not already known, as shown in Figure 2.21. These features

are used to determine image similarity and any improvements in this space can easily be
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used in other image processing applications. CBIR systems extract features from image

databases using a variety of techniques, some of which have been discussed in §2.1.

2.6.3 Domain/collection-specific CBIR

There have generally been two ways to perform domain/collection-specific CBIR. The first

method is to design such systems with the particular domain in mind. This method is

very popular in fields such as medical CBIR systems. Texture features quite often play

a prominent role in such systems (Deserno et al., 2008; Xue et al., 2008). Such systems

deal with specialised requirements and often have specialised query interfaces Long et al.

(2009). The Image Retrieval in Medical Applications (IRMA) project for example uses

global texture descriptors to perform queries such as: all chest x-rays taken from a certain

view (Lehmann et al., 2004; Long et al., 2009). The CervigramFinder system on the other

hand uses texture and other features extracted from regions specified by the user to find

similar images from a database of images related to cervical uterine cancer (Xue et al.,

2008).

Another approach is to take an existing CBIRS and change it to suit the collec-

tion/domain. Müller et al. (2003) show how GIFT was modified to perform domain-specific

CBIR for medical images. The modifications included changes to the colour quantisation

levels for the colour feature and also changes to the texture features. GIFT uses Gabor fil-

ters to extract texture features from images and Müller et al. (2003) increased the number

of filters and adjusted their orientations as part of the changes. These changes allowed for

more suitable feature extraction from the images pertaining to the domain. It is notable

that even a CBIRS like GIFT, which generally performs well in different domains (Kosch

and Maier, 2010), needed to be customised through inspection and trial-and-error. The

process of catering to collection-specific and/or domain-specific needs would be greatly

simplified if human inspection could be minimised or removed. Although it might not

be completely achievable currently, the part about hand-tuning texture feature extractors

may be eliminated by the approaches proposed in this thesis.

2.7 CBIR performance evaluation

In order to evaluate the effectiveness of the different feature sets used in CBIR, perfor-

mance measures are required. “Performance” here does not mean speed, but accuracy

when compared to pre-determined human relevance judgements. A wide range of meth-

ods have been employed by researchers. Some of them are rather naive, such as simply

presenting screen-shots of the query results (Flickner et al., 1995), while others use well

known measures from information retrieval (IR). Others still expand on this and use a

graphical representation of their results. An exhaustive description of such methods is out

of the scope of this thesis. We present descriptions of a smaller subset. A more detailed

description can be found in Müller et al. (2001).

There are a few basic challenges in the performance evaluation of a CBIRS. The first

problem is that of finding a common image collection, which would help in critically
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comparing the results of the methods proposed in this thesis with other studies. One of

the suggestions put forward by Müller et al. (2001) is to use image collections which are

free to use, such as VisTex, a database which was created by the Vision and Modelling

group at MIT. The second problem is that of obtaining judgements of similarity between

images. While some databases might have agreed upon ground-truths, e.g. the VisTex

database2, that is certainly not the case with the image collections used in various other

studies. Müller et al. (2001) suggest the following mechanisms:

• Use of collections with pre-defined relevance sets: This method employs standard

image databases which have a pre-defined, agreed upon set of relevance judgments.

Some studies might use only sub-sets of the databases depending on the particu-

lar nature of the study. These databases however reduce the amount of overhead

associated with experimentation.

• Image Grouping: Employ a domain expert to categorise images according to some

criteria, which may not be based on any easily perceptible visual element. This is

very useful in medical CBIR (Shyu et al., 1999).

• User Judgements: A user is asked to examine the entire database or a representative

sub-set to establish relevance for a given query image. However studies have shown

that this method does not yield consistent results, as different users select different

relevant images (Squire and Pun, 1997). However this method leads to an interesting

avenue of work, which uses relevance feedback.

• Simulating users: This method assumes that the metric used in a CBIR, with the

addition of noise, simulates user judgement (Vendrig et al., 1999). The amount of

noise can be controlled and hence “user behaviour” can also be controlled. However

modelling real users is a non-trivial problem and real users don’t necessarily obey a

deterministic metric, let alone one based on noise.

The performance of CBIR systems has been measured using various different methods.

Some of these methods are more subjective than others, while others provide numeric

evaluations of performance. Some of the methods are presented here.

• Rank of the best match: Berman and Shapiro (1999) give a description of work

done in evaluating some methods to create an efficient CBIR system. To perform

their experiments, the authors decided on 51 pairs of images, where each image in

a pair was judged to be similar to the other. For each pair, they performed a query

with one of the images, and measured the position (rank) of the other image in the

results. They had also established a ‘true’ sequence for query images, allowing them

to compare the actual rank of the target image with the ‘true’ rank.

• Precision and Recall: These are widely used measures in IR (Salton, 1971; Saracevic,

1995; Salton, 1992) and was first proposed by Kent et al. (1955). In the context of

CBIR they are defined as:

2Even with a collection like VisTex, the ground-truth is not always consistent. Images belonging to
different relevance classes have very similar visual texture. We describe this further in chapter 3.
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Precision =
Number of relevant images retrieved so far

Total number of images retrieved so far
. (2.49)

Recall =
Number of relevant images retrieved so far

Total number of relevant images
(2.50)

These measures reflect the effectiveness of the system based on the fraction of the

results inspected so far. Using just one of the measures is not sufficient, as it provides

an incomplete picture. Recall can be made 1, by retrieving all images, and precision

can be made high by only retrieving a few images (Müller et al., 2001). Average

precision at recall values have been used (Belongie et al., 1998) and is useful for

presenting an overall picture of CBIR performance over multiple queries. Precision

after N images have been retrieved, P (N), is also a useful metric and has been used

to report results in this thesis.

• Target testing: In this method, users are provided with a target image. Then, the

number of images that a user has to evaluate before reaching the target image is

counted (Cox et al., 1996). Users are required to mark each image as relevant or

not.

For this research we have opted to use quantitative evaluation for CBIR performance.

Precision and recall are well established criteria and should be used jointly as the primary

evaluation mechanism. Although studies such as He (1997) used recall vs precision graphs,

we have chosen to use precision vs recall graphs as our method of presenting results and

to avoid confusion (Müller et al., 2001). Using the appropriate methods to establish

relevance, as stated earlier, followed by a numerical and graphical analysis should provide

sufficient information about the performance of any new techniques. It would also assist

other researchers to compare the performance of the new techniques with existing and/or

other techniques.

2.8 Conclusion

In this chapter we presented topics related to the work in this thesis. We mainly con-

centrated on texture features and highlighted how existing approaches have fixed or pre-

defined parameters that need to be manually adjusted to optimise for different image col-

lections. We have also seen that even a versatile CBIRS like GIFT needs to be customised

through experimentation and hand-tuning, when used for domain-specific purposes. We

discussed ICA as a method to automate the customisation/hand-tuning of features and

showed how it can been used to automatically find filters which are adapted to image

collections. We discussed some challenges with using the filters extracted by ICA. The

coming chapters will address these issues. We have discussed CBIR and and the role of

features in this application. We will use a CBIRS to evaluate the performance of our

proposed adaptive features so we also discussed metrics utilised in such an evaluation. In

the next chapter we present our initial experiments.
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Comparison of global ICF-based

feature with various features and

an evaluation of the variance-based

filter selection technique

The goal of this thesis is to demonstrate the viability of using collection-specific adaptive

texture features for CBIR. Improvements to the adaptive features will be presented in

chapters 4, 5, and 6. In this chapter we set the scene for the rest of the thesis. We present

the image collections we used to test our methods. We also present the basic framework

used to conduct CBIR, and describe how we evaluated performance.

We then present results indicating the utility of the variance-based filter selection

mechanism discussed in §2.5.6, and demonstrate its shortcomings. It is vital to understand

this issue, as our proposed filter selection method and the performance improvements

which are presented in chapter 4 were developed in an effort to address these shortcomings.

We compare the collection-specific ICF-based features against four well known features

which were discussed in chapter 2: GLCM, HOG, PHOG and features extracted from

banks of Gabor filters. We divide the features into two broad categories, global features

and local grid-based features. We are classifying HOG and PHOG as grid-based features.

For the other methods we present both global and grid-based features.

We show in this chapter that the adaptive ICF-based features outperform the other

four features. We also show that grid-based features are not very effective for images with

globally consistent texture. We also highlight some restriction of Gabor filters and PHOG

features when applied to images with globally consistent texture.

3.1 Image Collections

As mentioned in chapter 2, it is recommended to conduct experiments on freely available

image collections to facilitate comparison. As the goal of this research is exploring methods

to automatically find adaptive texture features, we limited our data sources to texture

45
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collections. To demonstrate the repeatability of our findings, we have reported all results

on two standard texture databases, the VisTex and the Brodatz collections, for most of

the thesis. We discuss these two databases in more detail below. In chapter 7 we present

results on two more collections which will be discussed there.

3.1.1 Brodatz

The Brodatz collection (Brodatz, 1966) is the most well known data set in texture analysis.

It is derived from the Brodatz album and is a scanned version of glossy black and white

prints obtained from the author. It contains 112, 512 × 512 images at 256 grey levels.

Many studies do not report results on the entire set. Sayadi et al. (2008) uses only 25 of

the Brodatz textures, Ojala and Pietikainen (1998) uses 15 textures etc. Even studies

that claim to report on the entire database report on 111 classes (Lazebnik et al., 2005),

and the online source1 also has 111 images available. This collection has been criticised

for its lack of intra-class variation. However, the quality of the images, the uniform

lighting condition and the high exposure to relevant texture with almost no noise makes

this database extremely popular for texture analysis applications. Some example original

Brodatz images are shown in Figure 3.1.

(a) D1.gif (b) D4.gif (c) D45.gif

Figure 3.1: Examples images from the Brodatz collection

The image set used in this study is similar to the one used in Picard et al. (1993). From

each of the original Brodatz images, we took nine non-overlapping 128×128 samples giving

a total collection size of 999 images. In this thesis we report results on this entire collection.

3.1.2 VisTex

The VisTex database2 contains a set of 167, 512 × 512 images of various kinds of visual

texture. Although quite old, this database is still widely used for texture studies (Hossain

and Serikawa, 2013). Unlike the Brodatz collection, the VisTex images are not taken

under controlled lighting conditions or camera angles. This makes this collection more

challenging than the Brodatz. The common practice is to take 16 128×128 non-overlapping

samples from each each 512 × 512 image, leading to a total collection of 2672 images as

1The Brodatz database is available from http://www.ux.uis.no/~tranden/brodatz.html
2The Vistex Database is available from

http://vismod.media.mit.edu/vismod/imagery/VisionTexture/
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done in Bai, Zou, Kpalma and Ronsin (2012). However there are a few issues with this

method as illustrated in Figure 3.2, in which every pair of images belong to the same

relevance class, as they are extracted from the same original 512 × 512 VisTex image. It

is immediately clear that these image combinations don’t have any texture similarity or

even any apparent mutual relevance. To combat this problem many studies use a smaller

subset of 40 homogeneous VisTex textures to report their results (Xu and Zhen, 2009; Bai,

Zou, Kpalma and Ronsin, 2012; Bombrun et al., 2011; Bai, Kpalma and Ronsin, 2012).

(a) Buildings.0000.jpg (b) Buildings.0004.jpg

(c) Buildings.0006.jpg (d) Clouds.0001.jpg

(e) Terrain.0002.jpg

Figure 3.2: Examples of sub-images obtained from the original VisTex database when 16
non-overlapping samples are taken from each image. The original image names are shown
as captions. One of the images in Figure 3.2(a) is a white background.

The version used for this study was first used in the development of the Viper/GIFT

system at the University of Geneva (Squire et al., 1999). Ten 256 × 256 patches were

sampled from random locations from the original VisTex images, and then downsized to

128× 128 pixels. These leads to more of the original VisTex image being included in each

sample, giving a better chance of significant similar texture being present in each sample.

Some of the images in the original VisTex database are visually very similar, as shown

in Figure 3.3. Assigning relevance based solely on the 167 source image IDs is thus not

always accurate. Human relevance judgements were used to classify the collection into

124 relevance classes. One query image was selected from each class. The results in this

thesis are presented using these 124 texture classes.
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(a) Fab-
ric.0018.jpg

(b) Fab-
ric.0019.jpg

(c)
Grass.0001.jpg

(d)
Grass.0002.jpg

(e)
Metal.0004.jpg

(f)
Metal.0005.jpg

Figure 3.3: Example of some 512× 512 images from the original VisTex collection which
have very similar textures yet are used as a source for difference relevance classes for the
work in (Squire et al., 1999)

In Appendix D we present results comparing the performance of the features developed

in this thesis on the 40 VisTex textures for comparison with the results from other studies

reporting on the same texture classes.

3.2 Independent component filter extraction

The ICF were extracted from these collections using the method described in §2.5.5. We

tried different patch sizes and eventually found 17 × 17 to be the most suitable size. So,

for each image collection 10, 000 random 17× 17 patches were taken from a subset of the

collection containing one example of each texture class. Each patch was converted to a 289

dimensional vector, yielding a 289× 10, 000 data matrix. As is common in the application

of ICA in image processing, Principal Component Analysis (PCA) (Hotelling, 1933) was

used to reduce the dimensionality of the dataset, by dropping the components responsible

for the least significant 1% of the variance. An implementation of FastICA in MATLAB

was used to extract over 200 ICF for each image collection, examples of which are shown

in Figure 3.4 and Figure 3.5.

3.3 Variance-based independent component filter selection

We followed the method described in §2.5.6, which was proposed by Le Borgne and

Guérin-Dugué (2001). We created a set of training images T consisting of one train-

ing image from each texture class. For each filter fj and image Ii, Ii ∈ T we found

EIi,fj , the response energy image of the filter with training images Ii. The variances of

the response energies were calculated across the training images Ii for each filter j, giving

σ2j = σ2([ĒI1,fj , ĒI2,fj ...ĒIn,fj ]), where ĒIi,fj is the average filter response energy of filter
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Figure 3.4: Sample ICFs extracted from the VisTex collection.
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Figure 3.5: Sample ICFs extracted from the Brodatz collection.
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(a) Image (b)
Filter

(c) Response, scale for visualisa-
tion

(d) Response energy, scaled for vi-
sualisation

Figure 3.6: An example of an image, its filter response and the response energy

fj with image Ii. We then choose the top m filters with the highest σ2j values. The nor-

malisation step to calculate dispersal done in Le Borgne and Guérin-Dugué (2001) is not

needed for our purpose as all it does is scales all the variances between 0 and 1.

3.4 Feature Extraction

3.4.1 Global features

For each image Ii in the database, the energy of the response of each filter fj is calculated

as

EIi,fj = (Ii ⊗ fj)2 (3.1)

where ⊗ is the two dimensional convolution operation.

The feature vector Vi for image Ii holds N entries, where N is the total number of

ICF/filters. Vi(j) is the average energy of filter j with image i found by:

Vi(j) =

∑
x

∑
y EIi,fj (x, y)

size(EIi,fj )
(3.2)

where size(EIi,fj ) is the number of pixels in EIi,fj and EIi,fj (x, y) is the value of the

response energy at location (x, y). This process is depicted in Figure 3.7.
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The distance between two images Ia and Ib is calculated to be the Euclidean distance

between their feature vectors.

dab =

√∑
n

(Va(n)− Vb(n))2 (3.3)

3.4.2 Grid-based local feature

When extracting grid-based features using filters, we follow a method closely related to

that used in the GIFT system (Squire et al., 1999). For each filter fj , the filter response

energy for image Ii is calculated at each pixel. The energy image is then divided in a

16 × 16 grid resulting in 256 blocks. The average energy in each block of the grid is

calculated AEijk where 1 ≤ k ≤ 256. For each block of image Ii we form a vector bik

which is the concatenation of the average response energies of all the filters. So, for each

block, bik would be an N dimensional feature vector, where N is the total number of filters

used. The image feature is simply the concatenation of all the bik for image Ii.

3.5 Features for comparison

3.5.1 Bank of Gabor filters

Initially in these experiments we used a bank of 12 circularly symmetric Gabor filters

using the same configuration as used in the GIFT system (Squire et al., 1999). The filters

are generated at 3 scales and 4 orientations and seem to give good coverage. We tried

different combinations of scales and orientations, and we found that increasing the number

of scales to more than 3 actually decreased performance (Figure 3.8). In the coming

sections of this chapter we will present results for filters at 3 scales and 4, 8, 25, 50 and

80 orientations resulting in 12, 24, 75, 150 and 240 filters. Features are extracted following

the steps described in §3.4.
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Filter Response

Filter Response Energies

Image

Filters

Average Energy 
of Filter ‘i’.

1 ≤ i ≤ n

Feature Vector
for Image

2D Convolution

LEGEND:

Figure 3.7: Global feature extraction process. This method is used for both the ICF and
Gabor filters.
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(a) VisTex
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Figure 3.8: Increasing the scale of the Gabor filters seems to have a detrimental effect on
performance on the VisTex and the Brodatz collections.
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3.5.2 Grey level co-occurence matrix

We have described grey level co-occurence matrices (GLCM) in §2.4.1. Here we give the

details of the implementation we have used in the experiments. We chose to implement the

method used by (Howarth et al., 2005) where GLCMs were extracted for medical images,

which could be classified as a specialised collection.

The study in Howarth et al. (2005) divided each images in 7 × 7 sub-regions and

calculated 16 GLCMs for each. The GLCMS were generated for vectors of lengths 1,2,3

and 4 pixels and orientations 0, π
4 , π

2 and 3π
4 . For each GLCM P (i, j), they calculated a

homogeneity feature Hp,

Hp =
∑
i

∑
j

P (i, j)

1 + |i− j|
. (3.4)

Using the Manhattan distance between these features they calculated the similarity

between the query images and the images in the database.

For our work, we implemented their scheme and used it as local GLCM features. For

global GLCM features, we calculated GLCMs for whole images, rather than breaking it

up into patches.

3.5.3 HOG and PHOG

We treat HOG features as a grid-based feature. The HOG features we compared against do

not vary much from the description given in §2.4.4. A nine bin histogram is calculated for

every 8× 8 cell. Cells are merged into blocks and normalised in an overlapping manner as

described in §2.4.4. Each block thus contains a 36 dimensional feature vector. The vectors

from each block are concatenated to create the image feature vector. This is similar to

the HOG features extracted in Zhu et al. (2006); Wu and Nevatia (2008); Paisitkriangkrai

et al. (2008).

Most PHOG results are shown for image descriptors extracted at 3 levels and 8 bins,

as done in Bosch, Zisserman and Munoz (2007). The method is described in more detail

in §2.4.4. Results with smaller levels are also shown at the end.

3.6 Performance Evaluation

The ICF experiments were repeated 10 times for each image collection, as patch selection

and other elements of the algorithm have some randomness. The ICF results are presented

using error-bars indicating the standard deviation of the precision values at each recall

value. For each unique recall value, the precision values are averaged over all query images.

One query image was chosen from each relevance class. This gave us 124 and 111 query

images for the VisTex and Brodatz collections respectively. For the VisTex database, we

have relevance classes with different numbers of relevant images. In this case, where a

recall value does not exist for a particular query image, the corresponding precision value

is inferred through interpolation.
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3.7 Results and Discussion

3.7.1 Feature set labels

Table 3.1 summarises the labels used to present the results.

Label Description

ICF-ALL Features extracted using all the ICF

ICF-Var-N Features extracted using N ICF filters, where the filters are
selected using the variance-based method as desribed in §3.3

ICF-Local Grid-based ICF features using all the extracted ICF

Gabor-N Feature extracted using N Gabor filters. We have employed
Gabor filters at three scales. So, the number of orientations
is N

3 .

Gabor-Local Grid-based Gabor features using 24 Gabor filters at three
scales and eight orientations

GLCM-Global Grey level co-occurrence matrix based global features

GLCM-Local Grey level co-occurrence matrix based local features

HOG Histogram of oriented gradients feature

PHOG N level(s) PHOG features extracted at N levels and eight bins

Table 3.1: Feature set labels used to present the results.

3.7.2 Initial experiments

We have already shown in Figure 3.8 that increasing the number of scales of the Gabor

filters from three seems to have an adverse effect on performance. In Figure 3.9 we present

the performance of the Gabor filters at different orientations. We can immediately see a

large improvement in performance going from four orientations to eight. Increasing the

number of orientations after eight, however does not seem to have any extra benefit. This

is consistent also with the findings of Lowe (1999) and Dalal and Triggs (2005) where they

found that increasing the number bins in the orientation histograms from eight and nine

respectively did not yield any extra benefit.

In Figure 3.10 we see a comparison between the performance of the features extracted

by all the ICF filters contrasted with the performance of 240 Gabor filters and also GLCM-

Global. We note that using 240 Gabor filters results in very similar performance as 24

Gabor filters. In this case the ICF features perform better than the other two global

features.

3.7.3 Performance of filters selected using the variance-based method

200 plus is a rather large number of filters, consequently we used the variance-based

method to select a smaller subset of filters. In figure 3.11 we show how 10 selected filters

perform against 12 Gabor filters and also global GLCM.

For the VisTex database the Gabor and GLCM features outperform the 10 ICF fea-

tures. In fact from the errorbars we can see that the variation of results for the 10 selected
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ICF is quite significant. For the Brodatz collection the global GLCM features outperform

the ICF features.

In Figure 3.12 we can see that progressively adding further ICF actually improves the

performance of the ICF-based features. In fact for both the collections there is still an

improvement in performance going from using 160 ICF to 200 ICF. This is at odds with

the original intent of using variance as a measure of the discriminatory ability the filters.

Le Borgne and Guérin-Dugué (2001) state that 20%− 25% of the filters with the highest

variance should have results similar to using all the filters. The performance of 40 (≈ 20%

of all filters) filters selected using the variance-based method is closer to the performance

of using all the ICF for the Brodatz collection than it is for the VisTex collection. However,

for both the collections the difference is significant enough to translate into an inferior user

experience. There is scope to investigate the types of filters chosen by the variance-based

method and improve upon the selection procedure. This is discussed further in chapter

4. For now, in a comparison to Gabor filters, where adding any new filters beyond 24

was fruitless, the ICF filters chosen using the variance-based method kept on adding value

untill all the filters were selected.

3.7.4 Comparison with GLCM, HOG, PHOG features

In Figure 3.13 we compare the ICF global features with other global features and also some

grid-based features: HOG, PHOG, and the grid-based features using ICF and Gabor filters

described in §3.7. In summary, we can say that none of the grid-based features perform

as well as the global features for images with globally consistent texture. This is not

surprising, as all the grid-based features used here encode spatially local information by

assigning each grid block to fixed places in the feature vector. This creates an image

descriptor which would work quite well if we were interested in comparing images where

the shape of the object is significant or where the texture is different in different regions.

However for images with globally consistent texture the local variations might not be

fixed in particular regions of the image and using such a grid-based approach is actually

counter-productive. This is highlighted even more in the performance of the ICF-Local

and PHOG features. From the results in Figure 3.13 we have seen that, in this set up, the

ICF filters extracted the most discriminatory features when applied globally. That is, the

filters responded to texture artefacts within an image which the other features did not.

However when encoding the same discriminatory features in an image descriptor which

enforces spatial locality we see that the ICF features lose their effectiveness. The difference

in the performance of the global and local features is highest for the ICF features. Among

the grid-based features, the PHOG descriptor performs best. One possible reason is that it

actually encodes a global descriptor at the base level of the pyramid and then incrementally

extends the image descriptor by adding the other levels of the image pyramid. The image

pyramid employed is again fixed sub-regions of the image. Figure 3.14 shows support

of this hypothesis where we show the results of PHOG descriptors extracted at different

pyramid levels. The descriptor extracted from only level 0 alone is the best performing
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PHOG descriptor. This essentially is a global HOG descriptor extracted by summing the

orientation histograms rather than concatenating them.

3.8 Conclusion

In this chapter we have attempted to set the scene for the rest of the thesis. We have

presented the image collections we will be using, and outlined our feature extraction

and comparison process. We have presented results using two image standard texture

collections, which show that ICF-based features outperform the four features we have

chosen for comparison. We have also shown that local features extracted using a grid-based

method perform poorly for images with globally consistent texture. We have demonstrated

this experimentally using the PHOG feature at multiple levels. We have experimented

with the variance-based filter selection method proposed by Le Borgne and Guérin-Dugué

(2001) and found that the ICF being selected, especially when it is a very small number

(≈ 10) do not perform as well as some of the other features (GLCM, 12 Gabors, PHOG

with 0 levels). In the next chapter we examine the reasons for this poor performance,

address some of the issues with the variance-based selection method, and propose an

alternate clustering-based method which outperforms the variance-based method in terms

of the effectiveness of the selected filters.
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Chapter 4

Improved performance of ICF

features with response scaling,

locally normalised convolution and

clustering-based filter selection

In the previous chapter we presented the results of performing CBIR using a smaller subset

of ICF, selected using the variance-based method proposed by Le Borgne and Guérin-

Dugué (2001). We showed that this method of filter selection has some shortcomings. It

does not perform as well as a similar number of Gabor filters when very small number of

filters are chosen. It seems that it does not choose the most effective filters initially, as the

performance improves as more and more filters are added. In this chapter we present an

improved filter selection technique based on our investigation of these results. We describe

response scaling, which deals with ICF responses differing by two orders of magnitudes. We

also describe our use of locally normalised convolution (LNC) to deal with local variations

of illumination within an image that cannot be handled by global normalisation. We show

that both response scaling and LNC individually give better performance for ICF-based

features compared with the method that was presented in chapter 3. Combining them

however gives even more significant improvement. We then show that these techniques

also increase the performance of the Gabor filter-based features. We present results that

show a clear improvement in the performance of the variance-based filter selection strategy

resulting from applying our proposed changes.

Further investigation reveals that the variance-based filter selection method is suscep-

tible to selecting certain filters which are very similar in nature and excluding others.

We propose a method to choose a more varied filter set with fewer similar and/or shifted

filters that uses two-dimensional cross-correlation as a measure of filter similarity followed

by complete-link clustering. We show that filters chosen using this method consistently

outperform the filters chosen by the variance-based filter selection method of Le Borgne

and Guérin-Dugué (2001).

65
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4.1 Response scaling

Figure 4.1 shows a set of ICF extracted from the Brodatz database sorted by the variance

of their response energies, calculated as described in §3.3. The method proposed by

Le Borgne and Guérin-Dugué (2001) would select n filters row-wise and down from the

top left in order. From visual inspection alone it is clear that the initial filters selected

would respond to texture elements which are at large scales. Also many of the selected

filters would be shifted/near-duplicate versions of each other (e.g. filters five and six and

also filters ten and eleven). Also, the filters which have low variance are largely those that

have smaller scales.

Figure 4.1: Filters sorted by the variance of their response energies. The filter with the
highest variance is at the top left, with the one with the second highest variance to its
right and so on.

Inspecting the average response energies of these filters reveals another problem. Figure

4.2(a) shows the average response energy of a filter with the highest variance and Figure

4.2(b) another with the lowest variance in their response energies, when applied to a set

of training images of the Brodatz database. It is clear that the response energy of the

filter with the highest variance is orders of magnitude larger than that of the filter with

the lowest variance. Figure 4.3 shows the average response energy of each filter across

the same training images, showing that the difference in scale of the response energies is

not isolated to these two filters. Selecting filters based on the variance values obtained
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from such different scales of response energy will not select filters based on the significance

of their variance across the image classes, but rather based simply on the scale of their

response energies. We propose response scaling, as described below, as a method to solve

this problem.

(a) Response energies for filter with highest variance

(b) Response energies for filter with lowest variance

Figure 4.2: Response energies for filters with the highest and lowest variance.

From each relevance class we select one or more training images. For each filter fj and

training image ti we calculate the average response energy Vi(j) as described in §3.4.1.

We then find mj , the maximum average response energy of fj . We then scale each of the

responses

V ′i (j) =
Vi(j)

mj
(4.1)
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Figure 4.3: The average response energy of filters

These V ′i (j) are then used for filter selection and feature calculation. This ensures that

filter selection is based on the degree to which each filter response varies across texture

classes, rather than their overall scales.

Figure 4.4 shows the scaled response energies of the filters with the highest and lowest

variances. The energy range is now limited between zero and one and the filters can be

selected based on the variances of their response energies, rather than the scales of the

responses1.

The utility of response scaling is shown in Figure 4.5 where we present CBIR results

comparing the performance of all the filters with and without response scaling. For both

the Brodatz and the VisTex collections, the improvement is significant without any filter

selection being employed. This is easily understood by the fact that we are using Eu-

clidean distance and by using response scaling we now let each entry of the feature vector

contribute equally to the distance measure, whereas previously the distances would be

skewed by certain entries of the feature vector due to their larger scales.

Figure 4.6 shows how response scaling a ffects the variance-based filter selection. We

see the same trend that we saw in the previous chapter, which is the performance improving

as more and more filters are selected. However comparing to the old results we can now

see the features extracted using only 40 ICF selected with response scaling perform as well

as the features extracted from all the ICF without response scaling. Features extracted

from 80 ICF selected with response scaling has performance very close to using all the ICF

with response scaling. Using the same filter set, just by doing a simple scaling of response

energies we have been able to achieve a significant improvement in CBIR performance.

As can be expected, the variance-based filter selection technique selects a very different

filter set when response scaling is used, as shown by the ordering in Figure 4.7. The results

presented thus far shows that variance calculation after response scaling gives overall

better CBIR performance. However the issue with this filter selection method is also well

1Figure 4.4(b) shows that the filter with the lowest variance has a higher sparsity compared to the filter
with the high variance. We compare the performance of these sparse filters in Appendix E.
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(a) Response energies for filter with highest variance

(b) Response energies for filter with lowest variance

Figure 4.4: Response energies for filters with the highest and lowest variance after response
scaling.

illustrated in Figure 4.7. At least three of the first ten filters chosen are very similar but

shifted (filters 3, 5, and 6) and it can be argued that there are two more that would also

provide similar features (filters 4 and 9). Also, if a small number of filters are chosen

(≈ 40) the filters with the lowest variance, which may respond to small scale textures,

are completely ignored. So, not only does this method lead to the selection of redundant

features, but it also leads to the exclusion of potentially useful features. Our proposed

clustering-based filter selection method described in §4.3 overcomes these issues. Now we

discuss another change to the feature extraction method, introduced to deal with local

intensity differences within an image which affects filter-based feature extraction.
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4.2 Locally normalised convolution

Figures 4.8(a) and 4.8(b) show images belonging to the same relevance class from the

VisTex collection. They have different intensities due to shadow. The energies of the

responses to the filter in Figure 4.8(c) are shown in Figure 4.9. Parts of the image in

Figure 4.8(a) that are in the shadow have a low response despite having similar texture

leading to a large disparity in average filter response energy. The average energy value of

the energy images shown in Figure 4.8 is 108 and 2.57 × 104 respectively. This is a very

large difference due mainly to the local differences in image intensity.

We used Equation 4.2 to do global normalisation of our images, to make the pixels

values zero mean and unit variance. The same normalisation was also applied to the filters.

I ′ =
I(x, y)− Ī

σ(I)
(4.2)

Where I is an image, and I ′ is the normalised image. This is a standard method of

normalising for global image intensity, however it does not compensate for local intensity

differences. What we need is to do normalisation on local image regions as the filter is

being convolved with them. Normalised cross-correlation as defined in Equation 4.3 does

just such a normalisation.

CI,t(a, b) =

∑
x,y[I(x, y)− Īu,v][t(x− u, y − v)− t̄]√∑

x,y[I(x, y)− Īu,v]2
∑

x,y[t(x− u, y − v)− t̄]2
, (4.3)

where t is the template and t̄ is the mean of the template. I is the image and Īu,v is

the mean of the region of the image under the template (Lewis, 1995).

We perform locally normalised convolution (LNC) by doing normalised cross-correlation,

but by rotating the filter by 180◦. So, the LNC energy image of image Ii and filter fj can

be found by:

EIi,fjLNC = C2
Ii,f̂j

(4.4)

where f̂j is fj rotated by 180◦.

Figure 4.10 shows that by using this locally normalised convolution we can indeed

detect texture patterns that were missed earlier.

We now modify the feature extraction steps mentioned in §3.4.1, where for filter fj

and image Ii, instead of calculating the average response energy using two dimensional

convolution we use the average LNC response energy,

ViLNC (j) =

∑
x

∑
y EIi,fjLNC (x, y)

size(EIi,fjLNC )
(4.5)

Figure 4.11 shows the results of using LNC to extract features using all the ICF,

instead of two dimensional convolution. Note that the LNC results shown here do not

include response scaling. It is evident that just by using LNC it is possible to achieve a

similar amount of improvement as using response scaling. This can be attributed to both
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identifying texture features which were not found by two dimensional convolution, and

to each entry in the feature vector being within the range 0 − 1 and therefore not being

skewed by differences in the scales of the response energies.

The most significant improvement however comes when we change the feature extrac-

tion to use LNC and response scaling as shown in Equation 4.6, where mjLNC is the

maximum average LNC response energy of filter j found from the training images.

V ′iLNC (j) =
ViLNC (j)

mjLNC

(4.6)

Figure 4.12 shows that combining these two steps gives consistently good results across

the two image collections were are testing against. From Figure 4.13 we see that the

improvements are not limited only to ICF, but are equally applicable to Gabor filters.
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Figure 4.5: Increased performance after response scaling.
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Figure 4.6: Better performance of the selected filters after response scaling.
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Figure 4.7: Filters sorted by the variance of their response energies after response scaling.

(a) (b)

(c)

Figure 4.8: Two relevant images with localised differences in intensity. Figure 4.9 shows
the response energy when these two images are convolved with the filter shown in Figure
4.8(c)
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(a) (b)

Figure 4.9: Filter energies when the images in Figures 4.8(a) and 4.8(b) are convolved
with the filter in Figure 4.8(c)

. Resized for visualisation.

(a) (b)

Figure 4.10: Filter energies when the images in Figures 4.8(a) and 4.8(b) are convolved
with the filter in Figure 4.8(c) using locally normalised convolution. Resized for visuali-
sation.
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Figure 4.11: Increased performance after using LNC.
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Figure 4.12: Increased performance after using LNC and response scaling.
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Figure 4.13: These changes also increase the performance of the Gabor filters.



4.2. LOCALLY NORMALISED CONVOLUTION 79

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

P
re

ci
si

on

Recall

Precision vs Recall, filter selection using variance based method

ICF-ALL
ICF-Var-10 (LNC and response scaling)
ICF-Var-20 (LNC and response scaling)
ICF-Var-40 (LNC and response scaling)
ICF-Var-80 (LNC and response scaling)

ICF-Var-200 (LNC and response scaling)

(a) Brodatz

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

P
re

ci
si

on

Recall

Precision vs Recall, filter selection using variance based method

ICF-ALL
ICF-Var-10 (LNC and response scaling)
ICF-Var-20 (LNC and response scaling)
ICF-Var-40 (LNC and response scaling)
ICF-Var-80 (LNC and response scaling)

ICF-ALL (LNC and response scaling)

(b) VisTex

Figure 4.14: LNC and response scaling resulting in improved performance for the variance-
based filter selection.
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4.3 Cross-correlation and clustering based filter selection

We concluded §4.1 by explaining a shortcoming of the variance-based filter selection

method. To recapitulate, Figure 4.7 shows filters sorted by the variance of their response

energies from highest to lowest. The variance-based filter selection method would choose

the top N filters, where N is the number of filters that needs to be chosen from the whole

set. We have discussed in previous chapters how ICA is known to extract ICF which

are approximately shifted/duplicate versions of each other. When used as filters, these

duplicate versions give very similar responses, leading to redundant features. We also

pointed out that by choosing filters in order from a sequence sorted by the variance, the

method is susceptible to leaving out a class of filters which may extract texture features at

different scales which may prove to be useful. The goal then is to find a method which will

choose a smaller subset of filters without having shifted/duplicate versions and which will

include as many filters as possible that lead to different types of non-redundant features.

Our method described here concentrates on attaining the first goal and as a result also

achieves the second one to a certain extent.

4.3.1 Filter similarity measure

Any attempt to reduce the selection of shifted/duplicate filters would require some kind

of metric indicating the similarity of filters. The filters are initially components extracted

using ICA, so, as vectors they are statistically as independent as possible. However the

problem of the shifted/near-duplicate filters manifests when we re-form the components

into patches and interpret them as filters. We need a similarity metric that will take into

account the filter shapes when interpreted as filters. From the examples shown in Figures

4.7 and 4.1 we see that it would be possible to use the variance of response energies as a

potential measure. However this metric depends on the filter responses rather than the

actual impulse response structure of the filter. We define similarity between filters as the

maximum absolute value of their normalised cross-correlation matrix as this will be high

for filters that are approximately shifted versions of each other. For filters fi and fj , their

similarity measure S(i, j) is found from the following

S(i, j) = max(|Cfi,fj |) (4.7)

where Cfi,fj is the two dimensional normalised cross-correlation matrix of fi and fj as

defined by Equation 4.3.

4.3.2 Clustering and filter selection

Clustering filters

If similar filters are clustered together, it makes it easy to choose one from them. We

wanted a clustering algorithm that would impose a strict within-cluster similarity require-

ment. We also wanted a clustering algorithm which would give repeatable results every
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time it was executed with the same group of filters. K-means has a random initial condi-

tion and also requires a sensible definition of a mean, which introduced some difficulties.

Given that we already had a similarity matrix, we can easily use one of the agglomera-

tive hierarchical clustering techniques, which would give us repeatable results . Between

single-link, average-link and complete-link, complete-link clustering imposes a stricter in-

ter cluster distance measure, where the distance between two clusters is the maximum of

all the pairwise distances of the cluster members (Jain et al., 1999). As the process of

merging clusters looks at clusters with the minimum distance, imposing this strict criteria

gives a better chance of each cluster having filters which are highly similar as judged by

Equation 4.7.

If ICA extracts N filters, then for each filter fi where 1 ≤ i ≤ N , we calculate its

similarity with every other filter using normalised cross-correlation as mentioned above.

Using these values we construct a N ×N similarity matrix S which is used as a measure

of the similarity between fi and fj . The distance matrix is easily calculated as D = 1−S.

When filters are grouped together in clusters, the distance between two clusters CL1 and

CL2 is measured as the maximum of all pairwise distances between the filters of CL1 and

CL2. As our implementation uses a similarity matrix, the similarity between two clusters

CL1 and CL2 is measured as the lowest of all pairwise similarities between the filters of

these clusters. The implementation of complete-link clustering, shown in Algorithm 2, is

an adaptation of a version shown in Jain et al. (1999). It uses a threshold similarity value

to group filter clusters together. The appropriate similarity threshold that will group the

filters into the desired number of clusters is found by a simple binary search of values

between 0–1. The algorithm has an upper limit of 1000 attempts, but in reality we find

the desired number of clusters within a few iterations.

Figure 4.15 shows examples of some filter clusters when the entire filter set was grouped

into 40 clusters. For the first three clusters we see that our method has successfully grouped

very similar filters together. In the fourth example we see filters which are mostly edges

at an angle, however there is a visual difference between some of the filters within the

cluster.

Filter selection from each cluster

Once the filters have been separated into clusters we need to choose one filter from each

cluster. Our consideration was to choose a filter that would be representative of the cluster

when viewed as a filter (instead of a vector, as in the original independent component).

We again made use of the similarity measure shown in Equation 4.7. From each cluster,

we calculate the average similarity of each filter with other filters in the same cluster, as

shown in Equation 4.8:

AS i =

∑
j|fjεCLk,j 6=i S(i, j)

size(CLk)− 1
(4.8)

We simply choose the filters with the highest average similarity from each cluster.
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Algorithm 2 The complete-link clustering algorithm

1: maxThreshold← 1
2: minThreshold← 0
3: desiredNumberOfFilters = the required number of filters.
4: S = Filter similarity matrix.
5: count← 0
6: while (count < 1000 and number of clusters 6= desiredNumberOfFilters) do
7: set each filter into its own cluster
8: set cluster similarity matrix to S
9: threshold = maxThreshold+minThreshold

2
10: repeat
11: merge clusters together that have a similarity higher than the threshold.
12: recalculate the similarity matrix for clusters.
13: until There were no merges
14: numberOfClusters← new number of clusters
15: if numberOfclusters < desiredNumberOfClusters then
16: maxThreshold← threshold
17: else
18: if numberOfclusters > desiredNumberOfClusters then
19: minThreshold← threshold
20: end if
21: end if
22: count← count+ 1
23: end while

(a)

(b)

(c)

(d)

Figure 4.15: Examples of some filter clusters found by our implementation of complete-link
clustering which uses the filter similarity measurement shown in Equation 4.7

Figure 4.16 shows 10, 20 and 40 filters chosen using this method. We can see that there

is a significant reduction in duplicate/similar filters being selected compared to the results

of variance-based filter selection (Figure 4.7). Also, more filters that respond to textures

at small scales are included.
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(a) 10 chosen filters

(b) 20 chosen filters

(c) 40 chosen filters

Figure 4.16: 10, 20, and 40 filters chosen using our proposed clustering approach. A
comparison with Figure 4.7 shows that the filters chosen have a lot more variation.

Figure 4.17 shows a comparison of the performance of 10, 20 and 40 filters selected

using the variance-based method and our clustering-based method. The results from the

clustering-based method is marked as “ICF-CLC-N”, where N is the number of filters

chosen. Other labels follow the format described in Table 3.1. All results displayed use

LNC and response scaling, so there is no indication shown for these techniques.

Our proposed clustering-based method consistently outperforms the variance-based

method for both the image collections. In fact we can see that 10 filters chosen using

our method performs comparably with 40 filters chosen using the variance-based method.

This leads to significant computational savings in feature computation and comparison.

Figure 4.18 compares the the performance of 40 and 80 filters chosen using our clustering-

based technique with that of using all the ICF. We see that ICF-CLC-40 perform compa-

rably with ICF-ALL. For the VisTex database ICF-CLC-80 seem to have a slightly better

performance compared to ICF-ALL. Compared with the results of the 40 and 80 filters

chosen using the variance-based method, this is a large improvement. The results match

our expectations, as our method chooses a filter set with less redundancy. These selected

filters respond to more varied textures compared to the variance-based filters, thus leading

to improved performance.
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4.4 Conclusion

In this chapter we have presented two techniques, response scaling and locally normalised

convolution, which improve the performance of global features extracted using filters. We

have shown that by using response scaling we address the problem of filter responses dif-

fering by orders of magnitude, which had an adverse affect on the variance-based filter

selection technique and also on feature comparison. We have shown that LNC allows

us to identify textures which would otherwise be ignored. We have shown that LNC

and response scaling both individually improve CBIR performance, but the most signifi-

cant performance improvement comes when they are combined. These improvements are

present when using all the ICF, and also when selecting a smaller sub-set of filters using

the variance-based method. We have found that combining these two steps also improves

the performance of the Gabor filters.

We have demonstrated a problem with variance-based filter selection: it is susceptible

to choosing filters which are shifted/duplicate versions of each other, leading to redun-

dant features. As a solution we have proposed a new method to select filters, which

uses normalised cross-correlation as a method to measure filter similarity and then uses

complete-link clustering to group similar filters together. Our heuristic to choose filters

from each cluster gave filter sets that had less redundancy and we have demonstrated

through experimentation that our method leads to filter selection which has better CBIR

performance compared to the variance-based method.

With this chapter we conclude our development of ICF-based global features. We have

shown in Chapter 3 that grid-based local features have poor performance on the class of

images we are testing against. In the next chapter we present an adaptive local feature

which uses salient points and the “bag of words” model. These perform much better than

grid-based local features.
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Figure 4.17: Results comparing the performance of the variance-based filter selection to
the clustering-based filter selection.
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Figure 4.18: Results comparing the performance of the variance-based filter selection to
the clustering-based filter selection.



Chapter 5

ICFSIFT:Local features that

improve performance

5.1 Introduction

In this chapter we build on work described in Chapters 3 and 4. That work used global

features, with some grid-based local features presented in Chapter 3. These grid-based

features (average filter response energies, GLCM, etc.) were computed on image regions

after the image was divided into a fixed set of rectangular subregions. We showed that

these features performed poorly on the VisTex and Brodatz image collections, which have

globally consistent texture. We also showed that one of the reasons for the poor perfor-

mance of these features was the encoding of fixed locations in the feature vectors. In this

chapter we propose the use of a different set of local texture features, which are extracted

by identifying salient points in images. We show that these salient point-based local fea-

tures perform better than global features, even for images with globally consistent texture.

We present results using the popular Scale Invariant Feature Transform (SIFT) feature

(Lowe, 1999) and then propose a new-ICF based feature—ICFSIFT—which utilises SIFT

keypoints, but employs descriptors that are adapted to the image collection. Our pro-

posed ICFSIFT features perform consistently better than the standard SIFT features and

also the global ICF features. We further illustrate the utility of the ICFSIFT features by

combining them with global features to achieve an even further improved performance.

The ICFSIFT features lead to a large improvement in the performance of local features

for this category of images, compared to the results presented earlier.

5.2 ICFSIFT

As with our previous ICF-based features, there are two distinct stages in learning and using

the ICFSIFT features. In the first stage we learn the ICF from an image collection. The

second stage can be further divided into two parts, (i) extracting the ICFSIFT features

and, (ii) creating the image descriptor. All these steps involve extracting patches from

a region around each keypoint. We describe patch extraction first, then filter learning,

ICFSIFT feature extraction, and image descriptor creation.

87
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5.2.1 Extracting keypoint patches

From an image I we first extract its keypoints. For each keypoint lk, the following infor-

mation is of interest:

• The keypoint scale (sk).

• The keypoint orientation (θk).

• The keypoint location at the relevant scale (xk, yk).

We resize the image to the scale sk to obtain the re-scaled image Isk . We want to

extract 17× 17 patches, so from Isk we extract a patch of size 17
√

2 centered on (xk, yk).

We rotate this patch by θk and from this rotated patch we extract a 17×17 patch pk. Thus

we get patches from the relevant scale for which the orientation has been normalised. It

is important to note that our method extracts a patch from a scaled version of the image,

not the DoG images. Figure 5.1 depicts this process.

Rescaled Image

√2×17 patch

Keypoint

17×17 patch

√2×17 patch rotated 17×17 patch sample

Figure 5.1: The ICFSIFT Patch Extraction Process
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5.2.2 Learning the ICFSIFT filters

For each image collection we select a set of training images T . For each It ∈ T we

extract SIFT keypoint patches pkt, as described above, and unstack them into vectors.

These vectors are collected in a data matrix D. We execute ICA on D to get n filters

fi, 1 ≤ i ≤ n. These are the Independent Component Filters (ICF) extracted from SIFT

keypoint patches. We call them ICFSIFT filters.

5.2.3 Extracting ICFSIFT keypoint descriptor

For an image I we have z SIFT keypoint patches pk, 1 ≤ k ≤ z. For a keypoint patch pk

we calculate its descriptor vk(i) = max(Cpk,fi) for every filter fi, 1 ≤ i ≤ n resulting in a

n dimensional descriptor (here Cpk,fi is the normalised cross-correlation matrix of pk and

fi as defined in equation 4.3).

Image descriptor and distance measurement

Unlike the features presented in Chapter 3 and 4, SIFT and ICFSIFT do not provide a

single descriptor for an image, but rather provide multiple local descriptors per image,

each one around an interest point. An obvious decision would be to avoid any extra pro-

cessing and use a pairwise distance measure calculated over the local descriptors. This

approach is complicated by the fact that each image can have a different number of key-

point descriptors. However we wanted to avoid using a specialised distance measure for

these local features. The goal was to vary a minimum number of elements in the CBIRS

process chain to make inferences about the features themselves. So we chose a method

which would allow us to create an image descriptor which can be used sensibly with the

distance measures commonly employed by the texture features we are comparing against,

but at the same time provide independence from spatial location of the local descriptors.

We used the bag of words method (Yang et al., 2007) to create a single image feature

vector from all descriptors extracted around keypoints. For an image collection we clus-

ter the training image local descriptors using K-means clustering. When generating the

feature vector for an image, each of its local descriptors is mapped to one of the clusters.

We count how many descriptors are mapped to each cluster and from that generate a

histogram which encodes the frequency of cluster mappings giving us a K-dimensional

image descriptor. The distance between images is calculated as the Euclidean distance

between their histograms for these experiments, but such a descriptor can also be sensibly

used with other commonly used distance measures. This method is similar to the method

of generating textons as described in §2.4.2, which motivated its use even further.

5.3 Experiments

We extracted 117 and 101 ICFSIFT filters for the VisTex and Brodatz collections re-

spectively, using one training image per relevance class. The filters have some different

characteristics compared to the ICF extracted in the previous chapters from randomly
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located patches, which had no rotation or scale correction. In general, they are much

more regular in orientation and some show aspects of shapes. Figures 5.2 and 5.3 shows

the two types of ICA based filters.

We then used these filters to extract the ICFSIFT descriptors for each image in the

two collections using the method outlined in 5.2.3. We used 50, 100 and 500 dimensional

descriptors to conduct our experiments. The same method was employed for the SIFT

features.

5.4 Performance Evaluation

As before as there is some randomness in the filter extraction through ICA, and also in

the clustering to the image descriptors for the ICFSIFT features. We thus extracted 10

different ICFSIFT filter sets and used them in 10 iterations of feature extraction. The

results for the ICFSIFT features using K = 500 had the best performance among the

local features and we present these results using errorbars. The mean precision of the 10

repetitions is the location of the centre of the errorbar and the standard deviation of the

precision values are reflected in the length.

One query image was chosen from each relevance class, giving, 124 and 111 query

images for the VisTex and Brodatz collections respectively. For the VisTex database, we

have relevance classes with different numbers of relevant images. In this case, where a

recall value does not exist for a particular query image, the corresponding precision value

is inferred through interpolation.

As before, we present results predominantly using Precision-Recall (PR) graphs but

in this chapter we also use P (n) values to compare the performance of different features

for certain query images.

5.5 Results

Table 5.1 describes the labels used to present the results.

Label Description

ICF-Global Global features extracted using all collection-specific ICF

ICF-Local ICF-based local feature as described in §3.4.2 using an image
descriptor which encodes spatially local information

ICFSIFT-{K}bins ICFSIFT Features extracted using ICFSIFT filters. Image
descriptor created using the bag of words method for a de-
scriptor of K dimensions.

SIFT-{K}bins SIFT features. Image descriptor created using the bag of
words method for a descriptor of K dimensions.

Table 5.1: Feature set labels used to present the results.

Figures 5.4(a) and 5.4(b) shows the results of comparing ICF-Global, ICFSIFT and

SIFT features. We see that the performance of the ICFSIFT features are consistently

better than the other two features. Figure 5.5 shows the average precision calculated
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Figure 5.2: ICF extracted from the VisTex database
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Figure 5.3: ICFSIFT filters extracted from the VisTex database

for different numbers of images retrieved for the VisTex collection. In terms of user

experience, showing relevant pictures in the first few results is important. In this respect

the best performing feature is ICFSIFT, closely followed by the ICF-Global feature and

then the SIFT features.

The SIFT features perform better than ICF-Global for the Brodatz collection, but falls

short for the VisTex collection. However the issue with the SIFT features in this scheme

seems to be its lack of consistency in behaviour with varying of the descriptor size K. This

is very apparent in the results of the Brodatz collection (Figure 5.4(b)) where the best

performing SIFT features had K = 50. Increasing K actually decreased performance.

For the VisTex collection SIFT features with K = 100 and K = 500 have comparable

performance, however the worst is the features with K = 50. For the ICFSIFT features,

increasing K from 50 to 500 improves performance, and after that increasing K did not

yield any further benefit. However the behaviour is more consistent.

We analysed the first 10 result images returned from the queries for the VisTex collec-

tion. The VisTex collection was chosen specifically because it has a few classes where the

images do not have globally consistent texture. Some of these are shown in Figure 5.6.

The performance of ICF-Global for the image in Figure 5.6(a) is poor with a precision of

0.2 for the first 10 images retrieved. The global features performed better for the pumpkin

query, Figure 5.6(b), with a precision of 0.8 for the first 10 images retrieved, but it does

have much more regular texture compared to the image of the buildings.
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Figure 5.4: Salient point-based local features for the VisTex and Brodatz database
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For each query image we calculated P (10) for each of the three feature types. Table 5.2

summarises this data. Unsurprisingly the ICF-Global features have good P (10) for a large

number of images. It is interesting to see that SIFT features outperform the other two

features in 21 images classes. The ICFSIFT features seem to have a better overlap with

both the global features and the SIFT features. Given that it fits into the spectral class of

texture features due to use of filters, and also incorporates SIFT’s keypoint information,

this is not surprising.

Feature Number of images with best P (10)

Only ICF-Global 35

Only ICFSIFT-500bins 15

Only SIFT-500bins 21

ICF-Global and ICFSIFT-500bins 14

ICF-Global and SIFT-500bins 5

ICFSIFT-500bins and SIFT-500bins 18

All Three 16

Total query images 124

Table 5.2: Best P(10) results for the different feature sets

Figure 5.4(a) shows that overall the SIFT features have lower performance than the

ICFSIFT features. Figure 5.7 shows a bar graph which compares P (10) of the different

feature types for every query image for which the SIFT features outperform the other two

feature types. For 5 of the 21 image classes shown in Figure 5.7, the SIFT features have

at least double the precision of the ICF-Global features. The ICFSIFT feature perform

much better, and for 15 of the 21 classes it has a precision that is within 70% of the SIFT

features. It never drops below 57%.

Figure 5.8 shows P (10) for the queries in which the ICFSIFT features perform best.

For 6 out of 15 queries the SIFT features have P (10) values which are half or less than

the ICFSIFT features.

It is interesting to examine the image classes for which the SIFT features performed

best. SIFT features are well known for object recognition and have been shown to be

effective for that task (Lowe, 2004). In the VisTex collection there are 10 relevance classes

which are comprised of different views of buildings, some of which are shown in Figure 5.9.

We had expected the texture-based features (ICF-Global and ICFSIFT) to not perform

as well as SIFT in these classes. However of the 21 classes where the SIFT features have

the best performance, only 2 have to do with the buildings, and in only one of them is the

performance improvement remarkable.

Figure 5.10 shows a bar graph where the performance of the different feature sets

are shown for the building queries. SIFT features have clearly superior performance for

one query, in all other cases the performance of the SIFT feature are comparable to the

ICFSIFT features, or slightly worse.
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Figure 5.7: Comparing P (10) for query images where the SIFT features performed best

5.5.1 Combining global and local features

In Chapter 3 we showed that that combining the global and grid-based local features de-

creased the performance of the ICF-based features compared to the performance of global

features alone. The grid-based local features employed had a much lower performance

compared to the global features. In this chapter, the proposed ICFSIFT features actually

have improved performance so there is an incentive to test the performance of a combina-

tion of global and local features. To test this, we created a combined feature vector which

was a concatenation of the global and local feature vectors extracted using the method

outlined before. We then used this combined feature vector as the image feature and

performed CBIR with the relevance classes used for the results shown above.

Figure 5.11(a) and 5.11(b) show the results of these experiments for the VisTex and

the Brodatz database respectively. It can be seen that combining the global features with

the grid-based local features decreases performance very slightly for the VisTex collection

and quite markedly for the Brodatz collection. However, for both collections, combining

the global features with the ICFSIFT features improves performance. This leads us to

conclude that not only do the ICFSIFT features work well as a local feature for this class

of images, but they also provide different information that can be usefully combined with

the global ICF features.
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(a) (b) (c)

Figure 5.9: 3 of the 10 query images which are different views of buildings.
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Figure 5.10: Comparing P(10) for query images of different views of buildings

Combining features using separate normalisation

So far we have combined the global and local features naively by concatenating the feature

vectors obtained from each individual feature into one feature vector. The ICF-Global and

ICFSIFT features vectors were 200+ and 500 dimensions respectively, giving a feature

vector over 700 dimensions. We use Euclidean distance to calculate distance measure. In

this scheme it is clear that the ICFSIFT feature entries will have a greater influence on

the distance calculation. To implement a more equal system we take ideas from the GIFT

system which uses separate feature normalisation as a default setting. We implemented

the normalisation scheme shown in Equation 5.1, where the distance between images Ip

and Iq are calculated using k features Vp,1..Vp,k and Vq,1..Vq,k. The distance is calculated

as the sum of the distances of the individual normalised features. We have used Euclidean

distance here, but this can be replaced with other distance measures like L1 or χ2.

distance(Ip, Iq) =

k∑
j=1

d

(
Vp,j

sum(Vp,k)
,

Vq,k
sum(Vq,k)

)
(5.1)

Figure 5.12 shows that implementing separate normalisation has improved the perfor-

mance of the combined features even further, signifying the utility of separate normalisa-

tion.
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5.6 Conclusion

In this chapter we have presented a new ICA-based adaptive local feature, ICFSIFT,

which utilises SIFT keypoints. The new ICFSIFT feature combines keypoint detection,

scale and orientation invariance of SIFT with the collection-specific adaptive properties

of ICF features. We have tested this feature on the Brodatz and VisTex collections,

comparing its performance against SIFT features and previously presented ICF-Global

features. On both collections the ICFSIFT features performed best. We have also shown

that combining these ICFSIFT features with the ICA-Global features improves CBIR

performance for texture images, which is a marked improvement over the previous attempt

using fixed grid-based local features. We have also shown the utility of performing separate

normalisation when combining features, especially when they differ in size markedly.
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Chapter 6

Was it necessary to use keypoints

in ICFSIFT?

In chapter 3 we presented results of local features which are extracted using a fixed grid-

based method. The details of how such local features are extracted is given in §3.4.2.

We concluded that the reason that these features did not perform well was that they

encode spatially local information by assigning each grid block to a fixed place in the

feature vector. In an effort to get around this spatial location dependence, in Chapter 5

we presented the ICFSIFT feature. It identified SIFT-like keypoints and extracted local

features from a region around each keypoint. It then used the BOW method to create an

image descriptor which does not encode the spatial location of the local feature vectors.

The product of using the BOW method is a feature vector which is independent of the

spatial locations of the keypoints.

The question we want to answer in this chapter is:

Was the improved performance of ICFSIFT a by-product of using BOW, or

does the keypoint-based processing and, scale and rotation invariance, of ICF-

SIFT give some extra benefit?

In other words, what makes us sure that using the keypoint-based processing gave

us any advantage? It is entirely possible that the improved performance was due to the

removal of spatial location dependence in the feature vector.

We explore this question by creating a local feature which subdivides an image into

fixed sub-regions similar to the GIFT-like local features presented in chapter 3. However,

instead of simple concatenation, this feature uses the BOW method to create the image

descriptor. We call this the ICF-BOW feature and we show that it outperforms ICF-

SIFT. However we also demonstrate combining ICF-BOW and ICFSIFT features leads to

significant improvement, leading us to believe that they both extract different but useful

information. Thus we can reasonably conclude that while some of the performance im-

provements of the ICFSIFT features reported in Chapter 5 is due to the removal of fixed

spatial dependencies, creating a keypoint-based descriptor gives us different but useful

features.
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6.1 Filter-based “Bag of words” features extracted from im-

age regions

In this section we present two features which combine the 16× 16 sub-division of images,

and the BOW method, to give spatial location independent local features extracted from

image grids instead of keypoints. We chose 16× 16 because the grid-based local features

presented in chapter 3, which were based on the GIFT texture features, use this sub-

division, and uses the average response energy of each block as an entry into a histogram.

For each filter fj , the LNC response energy for image Ii is calculated at each pixel.

The energy image is then divided in a 16× 16 grid resulting in 256 blocks. For image Ii,

filter fj and block bk we extract the following information for comparison with each other:

• The average energy of the block AEijk.

• The maximum energy of the block MXijk.

Local feature vectors are created for each of the two feature types filter-wise for each

block:

vAE
ik (j) = AEijk (6.1)

vMX
ik (j) = MXijk (6.2)

For each image we have 256 local feature vectors, each of N dimensions, where N is

the total number of filters. We follow the BOW method described in §5.2.3 to create the

image descriptor V . The results presented in this chapter uses K = 500, where K is the

number of clusters used to find the visual words, which gives descriptors of 500 dimensions.

Apart from collection specific ICF, we used a bank of 24 Gabor filters at 3 scales

and 8 orientations, and also Leung-Malik filters described in §2.4.2. The Leung-Malik

filters in particular have been used to extract textons and the BOW method used here

has similarities with the texton extraction method described in §2.4.2, motivating our

inclusion of these filters in this evaluation.

6.2 Results and Discussion

We present the results in two stages. Initially we compare results of the two region-based

features mentioned above in §6.1. Afterwards we show results from combining different

ICF-based adaptive features to demonstrate the utility of ICFSIFT. All combination was

done through separate normalisation (§5.5.1) The following are the labels used for the

different feature types.
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Label Description

ICF-Global Global features extracted using all collection-specific ICF

ICF-Local ICF-based local feature as described in §3.4.2 using an image
descriptor which encodes spatially local information

ICF-BOW-MX ICF-based local features extracted as described in §6.1. The
features extracted from each block is MXijk.

ICF-BOW-AE ICF-based local features extracted as described in §6.1. The
features extracted from each block is AEijk

ICF-BOW Same as ICF-BOW-MX

Gabors-BOW Local features extracted as described in §6.1 using a bank
of Gabor filters at 3 scales and 8 orientations. The features
extracted from each block is MXijk

LeungAndMalik-BOW Local features extracted as described in §6.1 using The Le-
ung and Malik filters as described in §2.4.2. The features
extracted from each block is MXijk

ICFSIFT ICFSIFT Features extracted using ICFSIFT filters. Image
descriptor created using the BOW method with K=500 for
a descriptor of 500 dimensions.

Table 6.1: Feature set labels used to present the results.

6.2.1 Comparison of region-based Bag of Words features

Figure 6.1 compares the performance of the two ICF-based BOW features proposed here.

We have labelled the V AE features as “ICF-BOW-AE” and V MX features as “ICF-BOW-

MX”. Both these features are extracted from image sub-regions, similar to the ICF-Local

features presented in Chapter 3. However, unlike the ICF-Local features, these two features

create image descriptors which do not encode spatially local information. From Figure

6.1 we can see that this leads to a significant improvement in performance on both the

Brodatz and VisTex collections. The ICF-Local features and the ICF-BOW-AE features

presented here use LNC response energy and perform response scaling at a region level.

For more details on LNC and response scaling please refer to chapter 4.

The two new features, ICF-BOW-AE and ICF-BOW-MX, have comparable perfor-

mance. In the Brodatz database ICF-BOW-MX has a slightly better precision at re-

call one. The ICF-BOW-AE features have performance similar to ICFSIFT features for

the Brodatz collection and better performance for the VisTex collection. ICF-BOW-MX

features outperform the ICFSIFT features on both the image collections. We use only

ICF-BOW-MX in all the results from now and we will refer to it simply as ICF-BOW.

To emphasise the effectiveness of using adaptive ICF, we show the results of BOW

features extracted using a bank of 24 Gabor filters at 3 scales and 8 orientations (Gabor-

BOW) and the Leung and Malik filters described in §2.4.2 (LMFilters-BOW).

These results are shown in Figure 6.2. Quite clearly the collection-adapted ICF-BOW

features do significantly better than the BOW features using fixed pre-defined filter sets.

A comparison with the results presented in chapters 3 and 4 show that the ICF-BOW

features outperform both ICF-Global and ICF-Local. This can be unintuitive, so we have

explained the reason further in Appendix F.
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6.2.2 Utility of the ICFSIFT feature

The fact that ICF-BOW features outperform the ICFSIFT features brings into question

whether the latter feature was necessary at all. From the results it is clear that the

spatial location independence obtained by BOW gives improved performance over fixed

grid-based methods, even without identifying keypoints. To understand whether using the

keypoint-based ICFSIFT gives any extra benefit, we adopt the same strategy that we used

in chapter 5. We first combine ICF and ICF-BOW features. We then compare its results

with a further combination with ICFSIFT features. If adding the ICFSIFT features to

a combination of ICF-BOW and ICF features improves the retrieval performance than

we can conclude that the ICFSIFT features gain some benefit from its keypoint-based

processing.

Figure 6.2 shows the results of combining the ICF-based features in different com-

binations. In all cases we use separate normalisation to combine features (§5.5.1). The

ICF-Global features are the features extracted using LNC and response scaling as described

in chapter 4.

Combining ICF and ICF-BOW features gives a slight improvement over the ICF-BOW

features for both image collections. As we have shown in chapter 5, combining the ICF

and ICFSIFT features also gives an improved performance. However the most significant

improvement comes when all three are used together. In particular we would like to draw

attention to the difference in performance between using ICF-Global and ICF-BOW (the

magenta line) and using all three features together (the red line with errorbars1). The

increase in performance between them can be attributed to the inclusion of the ICFSIFT

features.

Figure 6.4 and 6.5 shows some examples where adding the ICFSIFT feature with

ICF+ICF-BOW improved the retrieval performance within the first 10 retrieved results.

For each group of three images, the leftmost image is the query image. The middle image

is one which was retrieved by both ICF+ICF-BOW and ICF+ICF-BOW+ICFSIFT. The

rightmost image is one which was only retrieved after adding ICFSIFT with ICF+ICF-

BOW. We can see from Figure 6.4(a) that the rotation invariance introduced by ICFSIFT

helps to identify a relevant image, that was otherwise missed by ICF+ICF-BOW. In the

case of Figure 6.4(b) and 6.5(b) the scale invariance of ICFSIFT helps to identify an

otherwise missed relevant image. Figure 6.5(a) shows an example where ICFSIFT helped

identify a relevant image which has some significant distortion when compared with the

query image.

This allows us to conclude that ICFSIFT identifies information that is different and

useful compared with ICF-BOW. As both features use the BOW method, we infer that the

keypoint-based processing outlined in chapter 5 is useful and helps to find image content

which the other two adaptive features could not identify.

The combination of ICFSIFT and ICF-BOW performs comparably with the use of all

three features, with an improvement observed when ICF-Global features are included as

1The experiments using all three ICF-based features were repeated 10 times with 10 different sets of
ICF and ICFSIFT filters, for each image collection. The mean precision of the 10 repetitions is the location
of the centre of the errorbar and the standard deviation of the precision values are reflected in the length.
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well. This again emphasizes the utility of the ICFSIFT features, as it is possible to get

large improvements just by combining it with ICF-BOW.

6.3 Conclusion

In this chapter we explored the utility of ICFSIFT even further. We posed the question:

Is the improved performance of ICFSIFT features a by-product of using BOW only, or

does the keypoint-based processing give some extra benefit?

We attempted to answer this question by creating a feature that used fixed sub-

divisions of images, like GIFT’s Gabor-based texture features, but instead of concate-

nating the features vectors from each image region, we used the BOW method to create a

spatially local information independent image descriptor.

We have shown that features extracted using collection-specific ICF filters outper-

form features extracted by pre-defined banks of filters, re-enforcing our point about using

collection-adapted texture features.

In our results the ICF-BOW features outperform the ICFSIFT features. However we

have highlighted the utility of keypoint-based processing of ICFSIFT by demonstrating

that ICFSIFT extracts useful and different features compared to ICF-BOW, as combining

ICFSIFT features with a combination of ICF-BOW and ICF features gives the greatest

improvement in performance. We have shown examples where the scale and rotation

invariance of ICFSIFT features resulted in retrieving relevant images which the other two

adaptive features failed to retrieve within the first 10 result images. In conclusion we can

make the following claims.

• The BOW method is an effective way to achieve spatial location independence in an

image descriptor. However in the comparison between SIFT and ICFSIFT in chapter

5 and also in the comparison between ICF-BOW, Gabor-BOW and LMFilters-BOW

we see that using collection-adapted methods can give superior performance over

using pre-defined/fixed methods.

• ICFSIFT features through their keypoint identification, and scale and rotation in-

variance, can provide different but useful features compared to ICF-BOW and ICF-

Global, thus justifying the use of ICFSIFT.

This marks the end of describing improvements to the adaptive features. In the next

chapter we build on the findings of this and previous chapters, where we compare the

combined performance of the three ICF-based adaptive features (ICF-Global, ICFSIFT,

ICF-BOW) with the performance of LBP features which have been hand-tuned for a

particular texture collection.
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Figure 6.1: Comparison of ICF-BOW-AE and ICF-BOW-MX features
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Figure 6.2: Performance of ICF-BOW compared with other features features using the
Bag of words model and LBP-Doshi.
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Figure 6.3: Performance of the combined adaptive features compared with LBP-Doshi
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(a) Tile 0000

(b) Tile 0001

Figure 6.4: Examples relevance classes from the VisTex collection, for which adding the
ICFSIFT feature improved performance. For each group of three images, the left most
image is the query image. The middle image is one which was retrieved by both ICF+ICF-
BOW and ICF+ICF-BOW+ICFSIFT. The right most image is one which was only re-
trieved by ICF+ICF-BOW+ICFSIFT.
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(a) D104

(b) D112

Figure 6.5: Examples relevance classes from the Brodatz collection, for which adding
the ICFSIFT feature improved performance. For each group of three images, the left
most image is the query image. The middle image is one which was retrieved by both
ICF+ICF-BOW and ICF+ICF-BOW+ICFSIFT. The right most image is one which was
only retrieved by ICF+ICF-BOW+ICFSIFT.



Chapter 7

Comparing the LBP features

In chapter 3 we showed that collection-specific ICF-based global features perform better

than global and grid-based features extracted using pre-defined fixed features. In chapter

4 we demonstrated how our proposed techniques improve the performance of ICF-based

global features. In chapter 5 we presented ICFSIFT, a SIFT keypoint-based collection-

specific local feature. In chapter 6 we presented ICF-BOW, a grid-based collection-specific

local feature which uses the BOW method. We also showed in chapter 6 how the combi-

nation of ICF-based global features, ICFSIFT features and ICF-BOW features performs

better than any of the adaptive features individually. In this chapter we will use the

combined ICF-based feature in a comparison meant to mimic a plausible CBIR scenario.

When designing a generic CBIRS, the designer will usually try to select features which

should work well for a broad range of image collections. We have already shown that

collection-specific ICF-based features can perform better than these generically chosen

features, such as the GIFT-like Gabor-based features, HOG, PHOG, SIFT, etc. In this

chapter we want to compare the adaptive features with collection-specific human hand-

tuned features. In particular we want to demonstrate the following:

Features that are hand-tuned for one particular collection may not be suited

for other collections, even if the collections apparently contain images with

similar characteristics. As it is both difficult and time consuming to hand-

tune features for every collection added to a CBIRS, automatically discovered

collection-specific features can be a better option than just using the same

feature for each collection.

We limit our discussion to texture features and texture collections containing images

with globally consistent texture. The hand-tuned feature we used is a combination of LBP

features which was found to work best for the Outex TR 0000 image collection by Doshi

and Schaefer (2012). We chose to find a hand-tuned feature which has been shown to

work well on a database with images with globally consistent texture, as we were applying

it to other databases with images with similar properties. We employed the same LBP

combination on the Brodatz, VisTex and CureT collections. At the same time we extracted

ICF-Global, ICFSIFT and ICF-BOW features from these collections. We compare the

113
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performance of the hand-tuned LBP features with performance of the combined ICF-

based adaptive features here. We show that hand-tuned features can perform better than

the adaptive features for its target image collection, but when presented with different

collections the adaptive features perform as well as or better than the hand-tuned feature.

We briefly describe the work of Doshi and Schaefer (2012) below followed by our

evaluation mechanism. Then we present individual sections for each image collection.

7.1 Doshi and Schaefer (2012)

Doshi and Schaefer (2012) tried 16 variants of LBP along with Gabor filters, Tamura

features, and two different GLCM features to find the most effective texture feature for

the Outex TR 00000 image collection. In reality the numbers are even more extensive,

as they tried different combinations of the LBP variants for a total of 38 LBP features.

These were tested using three different distance measures: the Bhattacharya, chi-squared

and L1 distances. The non-LBP features were only tested using the chi-squared distance.

There was in total 118 different attempts to find the best performing texture feature.

The Outex TR 00000 has 319 image classes with 20 images in each class. Doshi et al.

used every image as a query for the whole database. For each query the percentage of

relevant images retrieved in the top 20 retrieved images is used as a metric of evaluation.

The best performing non-LBP feature was the Gabor-filter based features which had

an accuracy of 44.43%. All the other non-LBP features had accuracy below 30%. The best

performing texture feature for this collection was a concatenation of LBP1,8, LBP3,8 and

LBP5,8, which gave an accuracy of 63.74% when using the L1 distance. The L1 distance

measure coupled with the fact that all three individual features have a 256 dimensional

feature vector means that Doshi and Schaefer (2012) did not encounter the problem with

concatenation that we described in §5.5.1.

It is worth noting that the best performing feature was a combination of multiple LBP

features, which do not use the uniform patterns and are not rotation invariant. We compare

CBIR performance of the combined adaptive features (ICF-Global+ICFSIFT+ICF-BOW)

with these combined LBP features. We will refer to the combined LBP features as LBP-

Doshi features from now.

7.2 Evaluation method

We performed our evaluation on the following four image collections:

• Outex TR 0000

• Brodatz

• VisTex

• CureT



7.2. EVALUATION METHOD 115

All four collections largely have images with globally consistent texture. We have

already discussed the Brodatz and VisTex collections in §3.1. We will discuss the other

two further when we discuss the results. Below we describe the features used to do the

evaluations, followed by the metrics used.

7.2.1 Texture features and distance measure

ICF-based collection-adapted texture features

We extracted ICF and ICFSIFT filters from each collection. We then extracted ICF-

Global, ICFSIFT (using 500 bins) and ICF-BOW (using 500 bins) features using the

collection-specific filters. The results of the adaptive features presented are obtained by

combining these three features using separate normalisation as described in §5.5.1.

LBP-Doshi features

As discussed earlier, the LBP-Doshi feature is a combination of LBP1,8, LBP3,8 and

LBP5,8. We extracted each LBP feature separately and concatenated them together to

form a feature vector of 768 dimensions. This was done to remain faithful to the imple-

mentation of Doshi and Schaefer (2012).

Distance measure

Doshi and Schaefer (2012) found that the LBP-Doshi features performed best when used

with the L1 distance measure, as defined in equation 7.1, where Vp and Vq are two feature

vectors of n dimensions, and j is the index into the vectors.

d1(Vp, Vq) =
n∑
j=1

|Vp(j)− Vq(j)| (7.1)

The results present in this chapter were obtained by using this distance measure.

7.2.2 Performance measurement

As before, for each image collection we choose one image per relevance class as the query

image. We perform queries and calculate the average precision for each unique recall value.

These are used to generate the PR graphs.

Doshi and Schaefer (2012) use a measure of the average percentage of relevant images

retrieved in the top 20 retrieved images. In this case, all the images in the database are

used as query images. This is no different from calculating average P(20) of all the query

images and expressing it as a percentage, or the average retrieval rate (ARR) used by Bai,

Zou, Kpalma and Ronsin (2012), Bombrun et al. (2011) and Stitou et al. (2009) to report

results for a subset of the VisTex collection. The recall rate (RR) for a query image Iq

calculated for the first N images retrieved is calculated as

RRN (Iq) =
number of relevant images retrieved by N

N
∗ 100 (7.2)
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and ARR for a set of query images Q is then simply

ARRN =

∑
qεQ RRN (Iq)

size(Q)
(7.3)

We will report ARRN results, using all the images in the database as queries, where

N is the number of images per relevance class in the collection.

As before to account for the randomness in the ICF-based feature extraction process,

the experiments were repeated ten times when using these features. The results are pre-

sented using errorbars in the PR graphs. The mean precision of the 10 repetitions is the

location of the centre and the standard deviation of the precision values are reflected in the

length. When presenting ARRN values, we present the mean and the standard deviation.

Such details are not shown for the LBP-Doshi features as there is no randomness in its

feature extraction process.

7.3 Results

We present results for one database at a time.

7.3.1 Outex TR 0000

The Outex framework (Ojala, Maenpaa, Pietikainen, Viertola, Kyllonen and Huovinen,

2002) mainly concentrates on image classification and segmentation. However it provides

the Outex TR 00001 collection as a benchmark for retrieval evaluation. As mentioned

before this collection has 319 relevance classes, each with 20 images for a total of 6380,

128×128 images. Most of the images have globally consistent texture. Some examples are

shown in Figure 7.1. The images in this collection have a wide variety of surface textures

varying in illumination direction, rotation and resolution.

Figure 7.2 shows the comparative performance of the ICF-based adaptive features and

the LBP-Doshi features. Quite clearly the LBP-Doshi features outperform the adaptive

features. This is not surprising, as we mentioned that this combination of LBP features

was found after extensive experimentation for this particular collection.

The ICF-based adaptive features achieve an average ARR20 of 55.13%±0.06%. This is

lower than the 63.74% achieved by LBP-Doshi. However, these ICF-based results are the

best non-LBP results with the next best one being the Gabor-based features at 44.43%.

In fact, the ICF-based features outperform 53 other LBP-based features.

7.3.2 Brodatz

Figure 7.3 shows that the LBP-Doshi and the ICF-based adaptive features have compa-

rable performance for the Brodatz collection.

The ICF-based adaptive features achieve an ARR9 of 77.60%± 0.20%. The LBP fea-

tures achieve 77.67%. Both these values are lower than the 84% reported by Xu et al.

1http://www.outex.oulu.fi/index.php?page=retrieval
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(a) 000000.jpg (b) 000024.jpg (c) 000104.jpg (d) 000240.jpg (e) 000296.jpg (f) 000344.jpg

(g) 000424.jpg (h) 000536.jpg (i) 000608.jpg (j) 000816.jpg (k) 000960.jpg (l) 001168.jpg

(m) 001296.jpg (n) 001496.jpg (o) 001616.jpg (p) 001880.jpg (q) 002584.jpg (r) 002684.jpg

Figure 7.1: Example images from the Outex TR 0000 collection.

(2000), which used multi-resolution simultaneous autoregressive (MRSAR) model. MR-

SAR has been criticised for its limited ability to measure perceptual similarity (Lazebnik

et al., 2005). The next best results as far as we could find is 76.26% by Lazebnik et al.

(2005) which is comparable with the results of the ICF-based features and the LBP-Doshi

features.

7.3.3 VisTex

Figure 7.4 shows that the ICF-based adaptive features outperform the LBP-Doshi features

for the VisTex collection. The VisTex collection has a wider variety of illumination in-

tensities and viewing angles compared to the Outex TR 0000 and the Brodatz collections

and for this collection the ICF-based adaptive features perform slightly better than the

LBP-Doshi features.

The VisTex collection we used has a different number of images per relevance class.

Table 7.1 reports results for different values of N . Again both feature types perform very

well, with a slight lead for the adaptive features.

ICF-Global+ICFSIFT+ICF-BOW LBP-Doshi

ARR10 89.87%± 0.20% 90.39%

ARR20 59.14%± 0.18% 58.23%

ARR30 42.84%± 0.16% 41.99%

ARR40 33.86%± 0.14% 32.74%

Table 7.1: ARR results for the VisTex collection.

When varying N for each query image such that N is the number of relevant images in

the associated relevance class, the ICF-based features achieve an ARR of 78.09%± 0.23%
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Figure 7.2: Performance of LBP-Doshi and ICF-based adaptive features on the OU-
Tex TR 0000 database.
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Figure 7.3: Performance of LBP-Doshi and ICF-based adaptive features on the Brodatz
database.
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Figure 7.4: Performance of LBP-Doshi and ICF-based adaptive features on the VisTex
database.
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and the LB-Doshi features achieve an ARR of 77.10% percent. However the adaptive

features reach a recall of one at a slightly higher precision compared to the LBP-Doshi

features.

It is difficult to compare our VisTex performance with other work as we use a differ-

ent relevance judgement. However in Appendix D we compare the performance of the

the three ICF-based features with LBP-Doshi as well as other methods for a subset of

40 homogeneous VisTex textures. We call this the VisTex40 collection. We show that

the ICF-based features are the best performing texture-only features with an ARR16 of

88.95%. The LBP-Doshi features also perform well on the VisTex40 collection with an

ARR16 of 86.29%.

7.3.4 CUReT

The Columbia-Ultrecht Reflectance and Texture (CUReT) collection is a very challeng-

ing database and has been used widely in texton-based image classification (Varma and

Zisserman, 2005; Zhang, Zhao and Liang, 2012). It has a total of 61 image classes with

many real world textures. The images are obtained from a wide range of view and illu-

mination directions. Images in the collection contain specularities, shadows and surface

normal variation (Varma and Zisserman, 2005). They do not have significant scale vari-

ation, so non scale-invariant features usually perform well on this collection compared to

scale invariant features (Hossain and Serikawa, 2013). Some example images are shown in

Figure 7.5, where each pair of images belong to the same relevance class. Immediately it

is apparent that variations in illumination intensity and directions within the same class

poses a challenge for judging similarity.

(a) 01 (b) 27 (c) 33

(d) 49 (e) 55 (f) 59

Figure 7.5: Example images from the CureT collection.

The version in study has 92, 200 × 200 images per texture category. This version

has been prepared by Varma and Zisserman (2009) and is often used by other studies

(Hossain and Serikawa, 2013). Figure 7.6 shows that the ICF-based adaptive features

perform much better than the LBP-Doshi features on this collection. LBP features are

designed specifically to be invariant to illumination intensity, but even so on this collection

the LBP-Doshi features do not perform as well as the adaptive features.

The ICF-based features achieve an ARR92 of 47.02% ± 0.028% and the LBP-Doshi

features achieve 44.91%.
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7.4 Conclusion

In this chapter we have demonstrated that while hand-tuned features can in fact outper-

form automatic collection-specific features for the target collection, in cases when hand-

tuning is not performed, using the automatic collection-specific ICF-based texture features

can be a better alternative to using fixed pre-defined texture features, even if the fixed

pre-defined features were hand-tuned for some other collection.

We used the LBP-Doshi feature, which was hand-tuned for the Outex TR 0000 collec-

tion. We applied it to that collection and three other texture collections. For two out of

the four texture collections, the adaptive features performed better than the LBP-Doshi

features. For one the performance was comparable. The LBP-Doshi features performed

better than the adaptive features for the Outex TR 0000 collection, for which it was hand-

tuned. However even for Outex TR 0000, the adaptive features were the best non-LBP

feature and in fact had better performance than 53 of the LBP features tried by Doshi and

Schaefer (2012) . These results demonstrate the viability and utility of using automated

collection-adapted texture features in CBIR systems.
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Chapter 8

Future work

In this thesis we have presented the use of ICF-based collection-specific features that are

automatically found from image collections. Our results are very promising and we would

like to explore these ideas further. In the next sections we present some possible avenues

of future work, and in chapter 9 we conclude this thesis.

8.1 Experimenting on larger image collections

So far we have used standard texture collections used for research. The largest of these

had 6380 images in 319 different texture classes. In terms of practical applications these

are small collections, so we need to study how the techniques developed in this thesis

perform on much larger collections.

8.2 Experimenting on other class of images

In this thesis we conducted experiments on texture collections. The images in general

have had globally consistent texture. Most real world cases will have images with much

more diverse texture in them. We need to study whether adaptive features are effective

in those cases and what other changes are necessary for these features to work in more

general problem domains.

8.3 More work on filter selection

Our proposed clustering-based filter selection uses cross-correlation followed by complete-

link clustering. While this choice of clustering algorithm suited our purpose well, there is

a scope of exploring the performance of other methods to group filters. Given the presence

of training data it might be even possible to select filters on completely different criteria,

i.e. inter-class and intra-class response statistics, etc.
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8.4 More work on ICFSIFT

We have utilised SIFT keypoint information in our proposed ICFSIFT. However this

feature needs more study to have a better understanding of its scale and rotation invariance

properties. Also, we have found it has performed better than standard SIFT for texture

images, but we have not explored the application of ICFSIFT in object recognition or

interest point matching. Work on this area will give a more robust understanding of the

possible applications of ICFSIFT outside of texture collections.

With the current implementation, ICFSIFT extracts the local descriptors sequentially.

With sufficiently large number of keypoints, this can be a slow process. However this

calculation can easily be translated into a parallel version which can make the application

of this feature suitable for systems with time constraints.

Also, so far we have used the the DoG-based keypoint detection mechanism proposed

by Lowe (2004). There is scope to try other keypoint detectors that may give better

texture information.

8.5 Per relevance class filters

So far we have worked with ICF extracted for entire collections. In cases where the

relevance classes are known it is possible to extract ICF for each individual class and

apply them to the problem of image similarity/distance judgement. The problem of filter

selection will be more challenging in this case.

8.6 Texton-based dictionaries

The proposed ICFSIFT and ICF-BOW features employ ideas very similar to texton-based

dictionaries, although the process has some differences. Instead of using pre-defined fixed

filters, we would like to employ collection-specific ICF to create texton-based dictionaries.

This work is currently in progress.

8.7 Extension into image classification and segmentation

So far we have only tested the utility of collection-specific features using CBIR. The results

are positive and encourage the use of such features to other image processing applications,

most immediately image classification and segmentation.
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Conclusion

The work reported in this thesis was built on the hypothesis that: “for many image pro-

cessing applications adapted collection-specific features would be more effective at identi-

fying useful and pertinent image content compared to pre-defined and fixed features, for

the target image collection”. There can be two ways to find such collection-specific fea-

tures, either by human experimentation, or by automatic means. Most human attempts

at hand-tuning features for particular collections involve trying different configurations of

a set of features and choosing the combination that is deemed to perform best. This is

almost always time consuming and in reality hard to do for every collection. In this thesis

we concentrated on using automated means of finding collection-specific texture features.

Instead of doing an automated imitation of a human’s effort, we concentrated our work

on using collection-specific independent component filters (ICF) found by ICA. We used

standard texture collections and extracted ICA-based collection-specific filters for each

collection. To compare the performance we used content-based image retrieval (CBIR) as

the image processing application. In the context of CBIR we compared the performance

of features extracted using these filters with other well known features: banks of Gabor

filters, GLCM, HOG, PHOG, SIFT, LBP.

In our initial chapters, we showed that global features extracted using collection-specific

ICF can indeed perform better than a pre-defined bank of Gabor filters. In fact we

showed that ICF filters can outperform very large banks of Gabor filters. At the same

time we showed that features which are extracted by sub-dividing an image into grids can

be ineffective for images with globally consistent texture, if they encode spatially local

information in their feature vectors.

For practical purposes we evaluated a previously published variance-based filter selec-

tion method used to choose a smaller subset of all the extracted ICF. We demonstrated

the shortcomings of this technique and to address some of the problems with this method

we developed the first contribution we reported: the use of response scaling. Response

scaling was performed to ensure that filter response energies were scaled on a per-filter

basis to prevent the response energies of different filters differing by orders of magnitudes.

We demonstrated that the response-scaled energies were more effective when used as a

global feature. The technique also improved the filter selection of the variance-based

method, ensuring that it was selecting filters which had high variance due to the variation
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of its responses in the image classes, and not due to the energies varying by orders of

magnitudes.

Our next contribution was the use of locally normalised convolution (LNC) to find the

filter response energies. We demonstrated that LNC can be an effective method to deal

with local intensity differences within an image which can influence standard convolution

in a detrimental way. We have shown that using LNC improves the performance of filter-

based features, with the ICF-based adaptive features having the greater improvement.

We then demonstrated that combining the use of LNC and response scaling gave the best

results.

The set of ICF extracted by ICA for a particular collection often contains shifted/near-

duplicate filters. Even with the above mentioned improvements, the variance-based filter

selection method is susceptible to selecting a subset of filters with these duplicate versions

in them, leading to redundant features. To address this issue we proposed a filter selection

technique that does not depend on filter responses but utilises the structure of the filter.

Our technique used normalised cross-correlation as a similarity measure and complete-link

clustering as a grouping technique to group similar filters together, along with a simple

heuristic to choose a filter from each group. We demonstrated that our clustering-based

filter selection method consistently outperforms the previously published variance-based

filter selection method.

Earlier we had theorised that some grid-based features do not perform well on im-

ages with globally consistent texture because they encode spatially local information in

their feature vector. So, we developed an adaptive local feature which utilises SIFT key-

points, ICFSIFT. We used the bag-of-words (BOW) method to create a spatial location

independent image descriptor. We demonstrated that ICFSIFT consistently outperforms

its pre-defined counterpart SIFT. It also outperformed the ICF-based adaptive global fea-

tures. To clarify the utility of employing a keypoint-based technique we used ICF response

energies (using LNC and response scaling) in a grid-based method to extract local fea-

tures, but created the image descriptor using BOW. This ICF-BOW performed better

than the ICFSIFT features. Their combination, however, resulted in significant increase

in performance. We have shown that this improvement can be attributed to the scale and

rotation invariance properties of ICFSIFT.

This thesis did not just document a comparison of features, but documented techniques

which have resulted in a significant improvement in CBIR performance using just auto-

mated collection-specific texture features. Figure 9.1 shows the performance of ICF-based

features at the start of the thesis compared to the performance achieved by its end.

While hand-tuned texture features can work well for the collection for which they were

designed, the adaptive features proposed in this thesis perform better in the general case.

This was shown using four standard texture collections, thus demonstrating the utility of

the automatically learnt collection-specific features presented in this thesis.
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Appendix A

Similarity between HOG and

GIFT like Gabor-based features

A.1 Similarity between HOG and GIFT features

The HOG descriptor calculates gradients within a cell after dividing the region using a

grid-like method. The texture features used in the GNU Image Finding Tool (Müller,

2001; Squire et al., 1999) also divides an image into subregions using a grid-like method.

Instead of calculating the gradients within each region, the GIFT texture features employ

a bank of 12 circularly symmetric Gabor filters. The response energy of each filter is

quantized into histogram bins. These histograms are then used to create entries into an

inverted file index. These filters identify images features that are very similar to those

extracted by HOG. The original implementation of the GIFT texture features used Gabor

filters with 3 magnitudes and 4 orientations (Squire et al., 1999). To evaluate whether the

HOG and GIFT features do indeed extract similar features, we replaced those filters with

9 filters of the same magnitude and orientations ranging from 0◦ – 180◦.

Figure A.1(a) shows an image of a building and some cars. There are strong edge

orientations in this image making it a suitable test case. Figure A.1(b) shows the gradient

image generated from the HOG features. Figure A.1(c) shows a similar image generated

from the histogram entries of the 9 filters. Although there are some differences, by and

large the GIFT features detect gradients similar to those that the HOG features detect.
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(a) Original Image

(b) HOG gradients

(c) GIFT gradients



Appendix B

The use of Hamming windows

We have conducted some experiments to test ICF which do not have abrupt edges. To

extract such filters we modified the process mentioned in §3.2 slightly. On each of the

10, 000 patches extracted from ICF extraction, we applied a two dimensional Hamming

window as per the work of Le Borgne and Guérin-Dugué (2001). The Hamming window

in one dimension is defined as in Equation B.1, where n is the size of the window.

h(n) = 0.54− 0.46 cos
(

2π
n

N

)
0 ≤ n ≤ N (B.1)

We obtained the two dimensional window by h2 = h ∗ h′. From Figure B.1(d) shows

the two dimensional Hamming window. This had a very sharp peak and discarded a large

area of each patch, leading to filters with a very small useful region. We performed an

element-wise square root of this two dimensional window to obtain the version shown in

Figure B.1(e) which has a slightly wider peak and allows for more useful information to

be retained. Figure B shows an example set of 175 such ICF.

However from Figure B.3 we see that in the context of CBIR using our setup there is

no advantage in applying using such smoothing techniques. In-fact in both cases there is

a slight drop in performance from using these smoothed filters.
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(d) Two dimensional Hamming window

(e) Square rooted Two dimensional Hamming window

Figure B.1: Figure B.1(d) shows a two dimensional Hamming window. It has a sharp
peak and discarded a large area of each patch. Figure B.1(e) shows the version used for
experiments which is obtained by doing an element-wise square root of the two dimensional
Hamming window giving a much flatter peak
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Figure B.2: Some filters extracted from patches which had a Hamming window applied to
them. The smooth edges are noticeable in the filters.
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Figure B.3: Comparing the results of ICF extracted with and without Hamming windows



Appendix C

Principal component analysis

The goal of principal component analysis (PCA) and other such techniques is to find

a representation of a multivariate data which gives a good representation with reduced

redundancy. PCA uses the measure of correlation to determine redundancy and can be

thought of as finding a transformation of the data into a new set of basis vectors which

maximises the variance thereby making the transformed data uncorrelated.

The PCA model can be described in terms of a random vector v of size nc which

has zero mean. The assumption is that values are mutually correlation. If the values

are already independent than PCA cannot find anything useful. We want to transform

v to a new vector y with nuc elements, where nuc ≤ nc, so that the variables in y are

uncorrelated. So,

y1 =

nc∑
k=1

wk1vk = wT1 x, (C.1)

where v1, v2...vnc are the elements of the vector v and w1, w2..wnc are elements of a unit

norm vector w. y1 would be considered to be a the first principal component if its variance

is maximally large. Each successive component y2, y3... also has the highest variance with

the constraint that it is uncorrelated (or orthogonal) with the previous components. In

practice the solution to the PCA problem is found in terms of the unit-norm eigenvectors

e1, e2..enc of the covariance matrix, which is also the correlation matrix for zero mean

random variables.

Cv = E{vvT } (C.2)

The eigenvectors are arranged in the order of their sorted eigenvalues d1, d2...dnc such

that d1 ≥ d2 ≥ ... ≥ dnc . So, the first principal component is y1 = eT1 x and the jth

principal component is yj = eTj x.

The eigenvectors e1, e2..enc of the covariance matrix actually form the basis vectors

of the transformed space in which the data is uncorrelated. The variance of a principal

component yj are just the eigenvalues of the covariance matrix because:

E{y2j } = E{eTj vvT ej} = eTj Cvej = dj . (C.3)
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Small eigenvalues indicate that the corresponding principal component captures only a

small part of the variance of the data. So, when trying to reduce dimensionality, the user

can choose a smaller set of eigenvectors e1, e2..es where s < nc so that their cumulative

eigenvalues satisfies the user requirement of how much variance needs to be retained.

Whitening is an operation that transforms a zero-mean random vector v to z

z = Gv (C.4)

where the elements of z are uncorrelated and has unit variance. The PCA transforma-

tion makes data uncorrelated, so all that is required is a scaling operation. The following

linear transformation does both:

G = D−
1
2ET . (C.5)

The matrix E has the unit-norm eigenvectors of the covariance matrix Cv and D is

the diagonal matrix of the eigenvalues.



Appendix D

VisTex40 results

When discussing the image collections used in this thesis we discussed the problems with

the VisTex collection and how a smaller subset of 40 VisTex textures have been used to

report results. Figure D.1 shows these 40 textures which are deemed to be homogeneous

and have been used by some recent studies to report their results.

Figure D.1: 40 VisTex homogeneous textures used in multiple recente studies
.

Here we compare our results against the results presented by the four studies shown in

Table D.1. All these studies use average recall rate (ARR) to report their results, which

is defined in §7.2.2.

The studies divide each of the original 40 VisTex textures in 16 non-overlapping sub-

images. So, there are 40 relevance classes, and each relevance class has 16 images. Every

sub-image is used as a query, so size(Q) = 640 and they report results for n = 16.

The best results are reported by Bai, Zou, Kpalma and Ronsin (2012) and Bai, Kpalma

and Ronsin (2012) with ARR close of 90.16% and 91.68%. Both these studies however

extract features from each colour channel to achieve such high performance. The best
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results obtained just by using texture features is reported by Bombrun et al. (2011) at

79.38% and Stitou et al. (2009) at 83.45%.

Study Colour and Texture Just Texture

Bai, Zou, Kpalma and Ronsin (2012) 91.68% Did not report

Bai, Kpalma and Ronsin (2012) 90.16% Did not report

Bombrun et al. (2011) 88.23% 79.38%

Stitou et al. (2009) Not done 83.45

Table D.1: State of the art results for the VisTex 40 collection

Our basic global ICF feature has and ARR16 of 77%. When we use the combined

ICF-based features as done in chapter 5 and 7 and use the L1 distance measure, we get

an ARR of 89.95% which is the best performing texture only results. All results which

are better than this use a combination of colour and texture. The LBP-Doshi features as

described in chapter 7 also do very well with 86.29%, but the adaptive features perform

better.

Features Euclidean CHI2 L1

ICF-Global 77.30% 77.30% 76.87%

ICF-Global+ICFSIFT+ICF-BOW 83.67% 88.00% 88.95%

LBP-Doshi 83.33% 86.33% 86.29%

Table D.2: VisTex 40 results using features presented in this thesis.



Appendix E

Sparse filters vs CLC filters

In Chapter 4 we mentioned that after using response scaling, the filter with the lowest

variance exhibited greater sparseness compared to the filter with the highest variance.

Figure E.1 shows the the response energy of four Vistex ICF, two with the lowest variance

and two with the highest variance, calculated across 124 images, one coming from each

relevance class. These energy values are obtained after using LNC and response scaling.

We see that the low variance ICFs here also exhibit greater sparseness compared to the

high variance ICFs.

As sparseness is a property of the simple cells of the human visual cortex and is a

desirable property in feature extractors, it is reasonable to assume that these filters with

low-variance in their response energies would perform well for CBIR. Figure E.2 shows

231 ICF extracted from the VisTex collection sorted in ascending order of the variance

of their response energies across the 124 images. As discussed in Chapter 4, the low

variance filters seem to be those with smaller scales. Figure E.3 shows 40 filters chosen

using the clustering-based method. It also has quite a few filters with smaller scales, but

also includes some filters which are clearly edge filters and have larger scales (and high

variance).

We have proposed a clustering-based filter selection method in this thesis. In this

appendix we compare the performance of 10, 20 and 40 filters with the lowest variance

with an equal number of filters selected using the clustering-based method. The results are

labelled as ICF-LowVar-N and ICF-CLC-N for N filters selected using the low-variance

criteria and the clustering-based method respectively.

From Figure E.4 we can see that the filters chosen using the clustering-based method

has better performance compared to the low-variance filter selection, when 10 and 20

filters are selected. When 40 filters are selected, the performance gap is very small, but

the clustering-based filter selection still has better performance.

The VisTex collection has 124 query images, one from each relevance class. We calcu-

lated P(10) for each query image for ICF-CLC-40 and ICF-LowVar-40. Figure E.5 shows

the 24 query images for which the ICF-LowVar-40 performed better than ICF-CLC-40.

Figure E.6 shows the 37 query images for which the ICF-CLC-40 performed better than

the ICF-LowVar-40.
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(a) Low variance

(b) High variance

Figure E.1: Filter response energies of four filters. Two with the lowest variance and two
with the highest.
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Figure E.2: ICF extracted for the VisTex collection sorted from lowest variance to highest

Figure E.3: 40 filters chosen using the clustering-based method
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Figure E.5: The ICF-LowVar-40 filters perform better on these images compared to the
ICF-CLC-40
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Figure E.6: The ICF-CLC-40 filters perform better on these images compared to the
ICF-LowVar-40 filters



Appendix F

Analysis of the improved

performance of ICF-BOW

In Chapter 6 we presented the ICF-BOW feature. This feature is extracted by sub-dividing

an image into a 16 × 16 grid, similar to the ICF-Local feature presented in Chapter 3.

However comparing the results we see that the ICF-BOW outperforms not only ICF-

Local, but also ICF-Global. The difference between ICF-Local and ICF-BOW is the use

of the Bag-of-Words (BOW) technique to create the image feature vector, which achieves

independence from the spatial location of each grid block, whereas the ICF-Local feature

mapped grid blocks to particular locations of the feature vector, thereby enforcing a spatial

location dependence.

The question then is, why is spatial location dependence or independence important

when dealing with images with globally consistent texture? We discussed in Chapter 2

that, even images which have globally consistent texture visually, are actually made up of

multiple textures. We show two query images from the VisTex collection in Figure F.1.

Figure F.1(a) has two obvious textures: the cloud and the flat background of the sky.

Figure F.1(b) is maybe less obvious, but it too has at-least two textures: the actual flower

petals and the leaves.

(a) Clouds 0000 sub0 (b) Flowers 0002 sub0

Figure F.1: Two query images from the VisTex collection

Now, ICF-Global is calculated by using the average filter energy, calculated on the

whole image. This means, for two images to be judged to be similar, the textures present
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in each image would have to be similar, and the ratio of the individual textures present

in each image would have to be similar, irrespective of their spatial location. If the ratios

are quite different, the global energies would be quite different, even if the actual textures

are similar.

ICF-Local encodes spatial location information in the feature vector. So, for two images

to be judged to be similar, they would need to have similar textures present in similar

grid locations, thus enforcing a much stricter criteria for similarity. This is reflected in

its poor performance, as images with globally consistent visual texture tend to have the

individual textures spread out in irregular patterns.

ICF-BOW, utilises a grid similar to ICF-Local, however as it does not encode spatially

local information in the feature vector, it is much better suited to these class of images.

In fact, ICF-BOW can be thought of as a feature that encodes the frequency of different

textures that are present in an image.

Figures F.2(a) and F.2(b) are two images which are in the relevance classes of Figures

F.1(a) and F.1(b) respectively. However they are not included in the first 10 results when

using ICF-Global and ICF-Local. The ratio of the individual textures are different enough

of ICF-Global to exclude them. The location of the individual textures are also different

enough for ICF-Local to exclude them. However, these two images are included in the top

10 results when using ICF-BOW.

(a) Clouds 0001 sub6 (b) Flowers 0002 sub6

Figure F.2: Two images not included in the top 10 results by ICF-Global and ICF-Local,
but found by ICF-BOW
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