
Exploratory Data Analysis using Scalable Self-Organising

Maps

by

Kakusanda Mudiyanselage Hiran Shyanaka Ganegedara

Thesis

Submitted by Kakusanda Mudiyanselage Hiran Shyanaka Ganegedara

for fulfilment of the requirements for the degree of

Doctor of Philosophy (0190)

Supervisor: Associate Professor Damminda Alahakoon

Associate Supervisor: Dr. Susan Bedingfield

Clayton School of Information Technology

Monash University

August, 2014

c© Copyright

by

Kakusanda Mudiyanselage Hiran Shyanaka Ganegedara

2014

Notice 1: Under the Copyright Act 1968, this thesis must be used only under the

normal conditions of scholarly fair dealing. In particular no results or conclusions should

be extracted from it, nor should it be copied or closely paraphrased in whole or in part

without the written consent of the author. Proper written acknowledgement should be

made for any assistance obtained from this thesis.

Notice 2: I certify that I have made all reasonable efforts to secure copyright

permissions for third-party content included in this thesis and have not knowingly added

copyright content to my work without the owner’s permission.

To my parents

iii

Contents

List of Tables . ix

List of Figures . x

Abstract . xii

Acknowledgments . xv

1 Introduction . 1

1.1 Research motivation . 5

1.2 Research questions . 5

1.2.1 Research questions on distributed SOM algorithm development . . . 6

1.2.2 Research questions on distributed algorithm implementation 6

1.2.3 Research questions on large scale data analysis 6

1.3 Research objectives . 7

1.4 Research contributions . 8

1.5 Research methodology and chapter outline 9

2 Literature Review . 11

2.1 Exploratory data analysis and clustering . 12

2.2 Self-organising maps . 13

2.2.1 The SOM algorithm . 14

2.3 Growing self-organising map (GSOM) . 16

2.3.1 The GSOM algorithm . 17

2.4 Applications of the SOMs . 20

2.5 The SOM based algorithms as data analysis tools 22

2.6 Using SOMs for large scale data analysis . 23

iv

2.7 Advancements in parallel and distributed computing systems 24

2.8 Parallel and distributed data analysis . 25

2.8.1 Shared vs distributed memory models 25

2.8.2 Data vs task parallelism . 26

2.8.3 Horizontal vs vertical data layouts 26

2.9 Parallel and distributed SOM algorithms . 28

2.9.1 The parSOM . 28

2.9.2 Sparse batch SOM . 29

2.9.3 Graphic processing unit implementation of the SOM 29

2.9.4 Scalable GSOM . 30

2.9.5 PartSOM . 30

3 Distributed Self-Organising Maps . 32

3.1 The Distributed GSOM Algorithm . 33

3.2 Data Partitioning . 34

3.2.1 Random partitioning . 36

3.2.2 Class based partitioning . 37

3.2.3 Structure based partitioning . 37

3.2.4 Heuristic based partitioning . 38

3.3 Parallel network training . 38

3.4 Redundancy Reduction . 40

3.4.1 Notations . 41

3.4.2 Redundant hit neuron reduction . 42

3.4.3 Redundant non-hit neuron reduction 43

3.5 Merging . 45

3.6 Evaluation of the Distributed GSOM . 47

3.6.1 Datasets . 47

3.6.2 Redundancy Statistics . 48

3.6.3 Efficiency Analysis . 49

3.6.4 Scalability analysis . 52

3.6.5 Accuracy analysis . 52

3.6.6 Evaluation of visualisation properties 56

v

3.7 Discussion . 58

4 A deeper look . 60

4.1 SOM vs GSOM for exploratory data analysis 61

4.1.1 SOM for data exploration . 61

4.1.2 GSOM for data exploration . 62

4.2 SOM and GSOM comparison . 66

4.3 Redundancy reduction . 69

4.3.1 A new redundancy reduction method 70

4.3.2 Experiments and results . 72

4.3.3 Applications of the two redundancy reduction methods 76

4.4 Dynamic data integration into the Distributed GSOM 77

4.5 Discussion . 81

5 The Distributed GSOM on Hadoop . 83

5.1 MapReduce . 84

5.2 Hadoop framework . 86

5.3 Hadoop Distributed File System (HDFS) 88

5.4 Using Hadoop for large scale data analysis 88

5.4.1 Processing power . 88

5.4.2 Storage capacity . 89

5.4.3 Hadoop ecosystem . 89

5.4.4 Economy . 90

5.5 Challenges in Hadoop development for processor intensive multi variate data 91

5.5.1 Data loading . 91

5.5.2 Splitting . 92

5.5.3 Load balancing and node assignment 93

5.5.4 Processing . 93

5.6 Applications of Hadoop for data clustering 94

5.7 A MapReduce architecture for the Distributed GSOM 95

5.7.1 Why Hadoop? . 95

5.7.2 The Distributed GSOM on Hadoop 96

5.7.3 Data transformation . 97

vi

5.7.4 Data partitioning . 98

5.7.5 Node assignment . 100

5.7.6 Data reading . 101

5.7.7 GSOM execution . 103

5.7.8 Combiners . 103

5.7.9 Reducer . 104

5.8 Experiments and results . 104

5.9 Discussion . 107

6 A Distributed GSOM Application . 109

6.1 Smart grids . 110

6.2 Analysis requirements . 111

6.3 Problem scope . 113

6.4 The advantages of the Distributed GSOM 113

6.4.1 Higher efficiency of the Distributed GSOM 113

6.4.2 Ability to use partitioning to improve the quality of the results . . . 114

6.4.3 Customisability of GSOM parameters of partition networks 115

6.4.4 Ability to integrate data continuously 117

6.5 The analysis process . 118

6.5.1 Pre-processing . 118

6.5.2 Data Partitioning . 120

6.5.3 Network training . 120

6.5.4 Clustering . 121

6.6 Analysis outcomes . 121

6.6.1 Dataset . 121

6.6.2 Data configurations . 121

6.6.3 Daily electricity consumption analysis 123

6.6.4 Weekly electricity consumption profiles 128

6.6.5 Annual electricity consumption profiles 129

6.7 A Multi-Granular Profile (MGP) analysis framework 133

6.7.1 Profile generation . 135

6.7.2 MGP extraction . 135

vii

6.7.3 Identified multi-granular profiles . 136

6.8 Discussion . 137

7 Conclusion . 140

7.1 Summary of contributions . 141

7.2 Addressing the main research questions . 142

7.2.1 Research questions on distributed SOM algorithm development . . . 143

7.2.2 Research questions on distributed algorithm implementation 144

7.2.3 Research questions on large scale data analysis 146

7.3 Future work directions . 147

7.4 Concluding remarks . 148

Vita . 149

viii

List of Tables

2.1 Parallel and distributed SOM algorithm comparison 31

3.1 Redundancy reduction (RR) statistics for SMH dataset 49

3.2 Redundancy reduction(RR) statistics for CoverType dataset 49

3.3 F-measure values for the WBC dataset . 53

3.4 F-Measure values for the SMH dataset . 54

3.5 F-measure values for the CoverType dataset 56

4.1 Statistics for the SOM and the GSOM for the rectangular dataset 65

4.2 Statistics for the SOM and the GSOM for the distributed algorithm 67

4.3 Redundancy reduction method comparison for the SMH dataset 73

4.4 Redundancy reduction method comparison for the CoverType dataset . . . 73

4.5 F-measure values for the WBC dataset . 75

4.6 F-measure values for the SMH dataset . 76

4.7 F measure values for the CoverType dataset 77

5.1 Hadoop execution time for SMH dataset . 105

5.2 Hadoop execution time for CoverType dataset 106

6.1 Dataset statistics . 122

6.2 Daily electricity consumption statistics . 124

6.3 Daily electricity consumption for sub clusters 126

6.4 Entire dataset: weekly electricity consumption profile statistics 129

6.5 Entire dataset: annual electricity consumption profile statistics by cluster . 130

6.6 MGP categorisation rules . 137

ix

List of Figures

1.1 The exploratory data analysis process . 1

1.2 Thesis organisation . 10

2.1 SOM network for the spiral dataset . 16

2.2 Neuron initialisation scenario 1 . 18

2.3 Neuron initialisation scenario 2 . 18

2.4 Neuron initialisation scenario 3 . 19

2.5 GSOM layout and the mapping of weight vectors for the spiral dataset . . . 20

2.6 Shared and distributed memory models . 25

2.7 Vertical partitioning of a dataset with N records and k ×m attributes . . . 27

2.8 Horizontal partitioning of a dataset with k × n records with M attributes . 27

3.1 The Distributed GSOM algorithm . 35

3.2 The redundancy reduction process . 42

3.3 Time consumption of the SMH data analysis 50

3.4 Time consumption of the CoverType data analysis 52

3.5 Maps generated by random and class based partitioning 55

3.6 The GSOM and Sammon’s projection of the GSOM of the WBC dataset . . 57

4.1 SOM shapes for rectangular datasets . 63

4.2 GSOM shapes for rectangular datasets . 65

4.3 The dataset used to compare the SOM and the GSOM 66

4.4 Partition networks of the Distributed SOM and the final output 68

4.5 Partition networks of the Distributed GSOM and the final output 68

4.6 Sammon’s projection time consumption for the SOM and the GSOM 69

4.7 Merging times for the SMH dataset . 74

x

4.8 Merging times for the CoverType dataset 75

4.9 A model for incremental data integration 78

4.10 Incremental data integration experiment 1 79

4.11 Incremental data integration experiment 2 80

5.1 MapReduce architecture and control flow 85

5.2 Hadoop framework architecture . 87

5.3 Data locality scenarios for Hadoop . 94

5.4 Implementation of the Distributed GSOM with and without Hadoop 95

5.5 A MapReduce architecture for the Distributed GSOM 96

5.6 A MapReduce example for heuristic based partitioning 100

5.7 Hadoop running time comparison for the CoverType dataset 106

6.1 The relationship between attribute variance and magnitude 115

6.2 The Distributed GSOM algorithm . 119

6.3 Daily electricity consumption . 124

6.4 Daily cluster 6 . 125

6.5 Daily sub clusters 1, 5, 7, 8, and 9 . 127

6.6 Daily sub cluster 9 . 127

6.7 Weekly electricity consumption profiles . 128

6.8 Annual electricity consumption profiles . 130

6.9 Cluster 6 electricity consumption profile . 131

6.10 Cluster 6: annual electricity consumption profiles of 10 sub clusters 131

6.11 Cluster 6: annual electricity consumption of sub clusters 1, 2, 3, 4 and 9 . . 132

6.12 Cluster 6: annual electricity consumption profiles of sub clusters 5 and 7 . . 133

6.13 Cluster 6: annual electricity consumption profiles of sub clusters 8 and 10 . 133

6.14 The multi granular profile framework . 134

6.15 Multi-granular profile structure . 136

6.16 Annual, weekly and daily electricity consumption patterns of MGP 1 138

xi

Exploratory Data Analysis using Scalable Self-Organising

Maps

Kakusanda Mudiyanselage Hiran Shyanaka Ganegedara

Monash University, 2014

Supervisor: Associate Professor Damminda Alahakoon

Associate Supervisor: Dr. Susan Bedingfield

Abstract

Exploratory data analysis is used to derive insights from large volumes of data. Un-

supervised learning methods, such as the self-organising map (SOM) and the growing

self-organising map (GSOM), have gained popularity as data exploration tools due to

the limited nature of the availability of meta-information about real-world datasets. The

key advantages of the SOM and the GSOM, in the domain of exploratory data analy-

sis, are their visualisation and summarisation features. However, the application of SOM

based techniques for large scale data exploration has been limited due to their high time

consumption.

Distributed computing has emerged as a means of providing large amounts of com-

puting power for data and compute-intensive applications. A number of parallel and

distributed algorithms have been proposed for SOM based learning. However, none of

the current distributed SOM algorithms possess all the desirable features of data-intensive

distributed algorithms: a distributed memory model, data parallelism, a horizontal data

layout and the ability to process both sparse and dense data.

This thesis presents a distributed SOM model, a distributed memory architecture util-

ising data parallelism with a horizontal data layout. The distributed SOM model employs

a divide and conquer architecture in four stages: data partitioning, SOM training in par-

allel, redundancy reduction and topographic mapping. Both sparse and dense datasets

are used to demonstrate the efficiency and the clustering accuracy of the algorithm which

shows up to 99% reduction in processing time while maintaining similar levels of clustering

xii

accuracy. The distributed SOM model has the advantage of using any SOM technique as

the learning engine. However, results demonstrate that the GSOM with a dynamic struc-

ture represents the dataset better than the SOM with a static structure in exploratory

data analysis.

An incremental data integration model for the Distributed GSOM is proposed in order

to maintain the currency of the analysis with the availability of new data. The incremen-

tal model reuses components of the Distributed GSOM to incorporate new data into an

existing network, thus avoiding the need to re-train the entire network. Results indicate

that the topographic mappings generated by incremental data presentation are almost

identical to the maps generated by the Distributed GSOM on the entire dataset.

The applicability of the distributed SOM model for real-world distributed computing

technologies is demonstrated through implementing the Distributed GSOM on Hadoop,

a popular MapReduce distributed computing framework. A MapReduce architecture is

developed for the Distributed GSOM where combiners are used to further improve the ef-

ficiency of the algorithm. The efficiency of the distributed SOM model is further improved

by the development of MapReduce processes for the four data partitioning methods.

The effectiveness of the Distributed GSOM is demonstrated by exploring a real-world

dataset for electricity consumption profile identification. Twelve gigabytes of smart elec-

tricity meter data are processed in order to profile customer behaviours. Heuristic based

partitioning is used to improve the quality of the output by incorporating outliers into

the analysis process. Electricity consumption profiles are identified over multiple time

intervals using the Distributed GSOM. A multi-granular profile generation framework is

proposed in order to combine the outcomes of the analysis in short-term, medium term and

long-term granularity levels. The results demonstrate that the Distributed GSOM iden-

tifies the most prominent and distinctive electricity consumption profiles whilst reducing

the time consumption of the analysis process by 95%.

In summary, this thesis presents a practical, distributed SOM model for exploratory

analysis of large datasets. The work extends the current knowledge and the technology of

self-organising maps and enhances the practical value of exploratory analysis in big data

environments. The effectiveness of the model is demonstrated through implementing the

Distributed GSOM on Hadoop and using the algorithm for customer profile identification

from real-world data.

xiii

Exploratory Data Analysis using Scalable Self-Organising

Maps

Declaration

I declare that this thesis is my own work and has not been submitted in any form for
another degree or diploma at any university or other institute of tertiary education. Infor-
mation derived from the published and unpublished work of others has been acknowledged
in the text and a list of references is given.

Kakusanda Mudiyanselage Hiran
Shyanaka Ganegedara
August 13, 2014

xiv

Acknowledgments

First and foremost, I would like to express my heartfelt gratitude to my supervisor, As-

sociate Professor Damminda Alahakoon, for the guidance, encouragement and support

throughout my candidature. Your expertise and advice was a massive assistance to my

research and I believe that I could not have asked for a better supervisor than you.

I would also like to thank my associate supervisor, Dr Susan Bedingeld, for the support

given to me and for keeping me on track when my main supervisor was not around.

My family is the most important thing in my life. I would like to express my sincere

gratitude to my parents for bringing me up in a nurturing surrounding and for guiding

and helping me in every endeavour of my life.

Endless thanks should go to my lovely wife, Upuli for supporting me through the past

four years. My PhD would have been just a dream if not for your encouraging words and

love. The delicious food you cooked no doubt gave me the strength to survive during the

hectic days of my PhD.

My friends from Monash University and outside added much needed excitement and

variety to my PhD candidature. The trips we went and the parties and games we had

would always be cherished and fondly remembered.

I would also like to thank Monash University for granting me two scholarships to assist

my studies and providing all resources necessary for successfully conducting my research.

My sincere thanks also go to the sta at the Faculty of IT and Monash University in general

for their support.

Kakusanda Mudiyanselage Hiran Shyanaka Ganegedara

Monash University

August 2014

xv

Chapter 1

Introduction

The world is said to have transitioned into the information age from the industrial age

in the late 1970s (Kluver, 2008). The introduction of the personal computer and sub-

sequent developments in information systems have revolutionised the day-to-day life of

humankind. The use of computer software has transformed labour intensive data entry

and data analysis operations into semi and fully automated computer-intensive processes.

Information systems can store large volumes of data in electronic format which, compared

to traditional paper based systems, is efficient in searching and retrieving information.

Data accumulation in information systems naturally creates the need to derive insights

from historical data. Analysis of the data can reveal valuable information for decision

making such as customer buying patterns, demographic trends and demand shifts. Ex-

ploration of data for possible patterns has been a widely researched area over the past

several decades. Investigating data for possible patterns is referred to as exploratory data

analysis. The need to analyse and interpret massive volumes of data has given rise to the

term ‘Big Data’ in recent years (Manyika et al., 2011). Figure 1.1 shows the main steps

of the exploratory data analysis process as given in Fayyad et al. (1996).

Figure 1.1: The exploratory data analysis process

1

CHAPTER 1. INTRODUCTION 2

The primary approaches to data exploration are machine learning (Witten and Frank,

2005), and statistical and probabilistic (Behrens, 1997). It is common practice to apply

unsupervised techniques to identify high level patterns and further refine the patterns

using supervised techniques with the knowledge acquired in the first stage. The self-

organising map (SOM) proposed in Kohonen (1990) and its variants, such as the growing

self-organising map (GSOM) proposed in Alahakoon et al. (2000), are widely used in ex-

ploratory data analysis as data mining tools. SOMs have become popular in the analysis

domain due to:

1. their ability to visualise data in two or three dimensional space

2. their unsupervised learning capabilities

3. their control over the level of detail of the analysis

A key advantage of the SOM is its ability to visualise the dataset in two or three

dimensional space. Browsing the lattice reveals the underlying structure of the data.

There are a number of visualisation improvements such as U-Matrix, component planes

and parallel axis which can be used in addition to the SOM for assisting the analysis task.

A common feature of exploratory data analysis exercises is the lack of knowledge about

the underlying structure in data. As a result, defining the expectations of the outcome of

the analysis may not be possible at the initial stages of analysis. The SOM algorithm’s

unsupervised learning capabilities are efficient at eliciting the inherent patterns within

data.

A common approach in exploratory data analysis is to start by performing a coarse

grained analysis and then to conduct a finer grained analysis based on the initial analysis.

This approach is referred to as drilling down and the analysis algorithm should have the

capability to produce different grains of analysis outcomes in order to facilitate this drill

down. The level of detail of the map can be changed by altering the size of the map.

Therefore, a larger map could be used for a finely grained analysis and a smaller map

could be used for a coarsely grained analysis.

The SOM has been used for a number of exploratory data analysis applications, as given

in Kaski et al. (1998) and Oja et al. (2003). The SOM is primarily used as a visualisation

technique in exploratory data analysis where the structure of the dataset is represented as a

CHAPTER 1. INTRODUCTION 3

two or three dimensional map in an unsupervised manner. However, the time consumption

of the SOM is excessive for very large datasets. Kohonen et al. (2000) demonstrated that

the SOM was estimated to consume more than six weeks of processing to cluster seven

million documents.

Although the structure of the SOM is inherently parallel, the SOM standard algorithm

is serial in nature. As a result, the algorithm is incapable of utilising more than one

execution thread. The time complexity of the SOM algorithm is linear on the number of

input vectors and quadratic on the number of neurons, as given in Roussinov and Chen

(1998). Although the time complexity does not have a significant impact for small to

medium size datasets (up to a few thousand records), as the number of input vectors

increases, the time consumption of the algorithm increases significantly. For very large

datasets, the time requirement leads to impractical processing times making the analysis

task span long durations. Therefore, improving the efficiency of the SOM is critical to

ensuring its application to massive datasets.

The execution time of a serial processor-intensive algorithm is primarily determined

by the clock speed of the central processing unit (CPU) of the computer that is executing

the algorithm. Traditionally, executing an algorithm on a faster CPU was employed as

a means of reducing the running time when the algorithm can no longer be optimised.

However, due to silicon chip fabrication limitations, the increase in CPU clock speeds has

stagnated in the past decade, according to Sutter (2005). This is evident by observing

the clock speeds of the latest desktop computer chips. According to Intel (2013), the

fastest desktop computer chip at present has a clock speed of 3.90 GHz. The fastest

desktop processor a decade ago, in 2004, had a clock speed of 3.60 GHz, which amounts

to an 8.33% increase over 10 years. In order to compensate for the slow improvement

in CPU clock speeds, computer chip manufacturers have sought to incorporate multiple

computing cores as a means of providing more computing capabilities into modern CPUs.

However, the performance gain obtained by hardware advancements has been limited for

serial algorithms since the execution process uses only one core of the CPU.

Parallel and distributed computing have been in existence for several decades as a

means of facilitating compute-intensive applications by integrating several computers to

function as a single unit. In order to fully utilise the computing capabilities offered by

CHAPTER 1. INTRODUCTION 4

parallel and distributed computing clusters, algorithms that run on them should have the

following properties.

Parallelism – The algorithm should consist of multiple processes which can be executed

in parallel.

Scalability – Since the number of processing units in the cluster can change across dif-

ferent configurations, the algorithm should be able to modify the number of parallel

tasks to fit the cluster.

Synchronisation – The parallel tasks should communicate efficiently amongst them-

selves such that communication bandwidth is used optimally.

Programmers have to design and implement programs on parallel and distributed sys-

tems adhering to the above properties. Due to the complexities involved in inter process

communication and data transfers, adoption of distributed and parallel computing on a

mass scale has been limited at the early stages. Hadoop (Apache, 2013), developed by

the Apache Foundation, provides a framework for distributed application development

which provides a simple communication model by abstracting the underlying complex

communication and synchronisation processes within a distributed system. Hadoop also

provides a distributed file system capable of hosting petabytes of data files which has seen

a significant increase in its popularity in large scale data analysis applications.

Hadoop currently provides a range of clustering and statistical data analysis methods

vi the Apache Mahout (Owen et al., 2011) project. However, the Mahout project currently

does not offer an SOM implementation. The main challenge of implementing the SOM on

Hadoop is the development of a suitable architecture for the SOM algorithm that matches

the Hadoop programming model.

Smart grids are considered one of the real-world large scale data analysis application

areas, as given in Villars et al. (2011). In order to process the gigabytes of electricity

consumption data generated on a daily basis, efficient, scalable, distributed data analysis

algorithms are required.

CHAPTER 1. INTRODUCTION 5

1.1 Research motivation

Based on the above discussion, there is a growing need for more efficient SOMs for pro-

cessing large scale data. Work presented in this thesis was conducted with the aim of

developing an efficient distributed algorithm for SOM based exploratory data analysis.

Distributed and parallel computing is considered as a means of providing the computing

power required for large scale data analysis tasks. Distributed algorithms should have

several key properties which make them suitable for large scale data analysis, as given in

Zaki (2000).

1. Algorithms should have a distributed memory model which has higher scalability

over shared memory models.

2. Algorithms should use data parallelism in order to process massive volumes of data

efficiently.

3. The data layout of the algorithm should be horizontal in order to preserve attribute

relationships for exploration and to achieve higher levels of scalability.

The current SOM literature does not have a distributed solution which possesses all

the above properties. As a result, the application of the SOM for the exploration of large

datasets has been hindered by time consumption limitations. The motivation to conduct

the work presented in this thesis stemmed from the absence of an efficient distributed

memory SOM algorithm with data parallelism having a horizontal data layout. It is

expected the new generation of SOM based distributed algorithms proposed in this thesis

will widen the application of SOMs in data exploration in the current data intensive

environments.

1.2 Research questions

Inspired by the motivation to develop a distributed SOM algorithm, research questions

were formulated in order to guide the work conducted. The primary research question can

be stated as follows.

How can the self-organising map be extended via the functionality of a dis-

tributed algorithm to enable exploratory analysis with big data?

CHAPTER 1. INTRODUCTION 6

As the primary research question is broad and abstract, the question was broken

down into the different research areas addressed in this thesis. The research areas were

identified as algorithmic research on the SOM, distributed computing research and large

scale exploratory data analysis research. Specific sub questions were formulated under

each research area in order to define the scope of the research. The research questions are

listed below.

1.2.1 Research questions on distributed SOM algorithm development

1. How can a distributed memory architecture be developed for the SOM with data

parallelism and a horizontal data layout?

2. What are the different partitioning methods to create a horizontal data layout?

3. How can redundancy be determined in SOMs trained on subsets of data and how

can redundant neurons be removed?

1.2.2 Research questions on implementing algorithms on distributed

computing frameworks

1. How can the distributed SOM algorithm be transformed into a MapReduce pattern?

2. How can partitioning of large datasets utilise a MapReduce algorithm?

3. How can data partitioning ensure that each parallel process receives a sufficient

number of records?

4. What measures can be taken to minimise the communication overhead in a dis-

tributed computing platform?

1.2.3 Research questions on applying the distributed SOM algorithm

onto large datasets

1. How do static and dynamic SOM structures affect data exploration?

2. How can the distributed SOM algorithm be used to explore large electricity meter

readings to identify electricity consumption profiles?

3. How can data partitioning be used to improve the quality of the analysis?

CHAPTER 1. INTRODUCTION 7

4. How can different granularity levels of the analysis add more meaning to the identified

electricity consumption profiles?

5. How can new data be integrated into the distributed SOM output without having

to re-train the entire network?

1.3 Research objectives

Research objectives were formulated with the aim of answering the research questions.

The main objectives of the research are listed below.

1. To develop a distributed memory algorithm for the SOM with data parallelism and

a horizontal data layout.

2. To investigate the impact of different partitioning methods on performance and the

quality of the output.

3. To develop a measure for redundancy and to develop algorithms to remove redundant

neurons.

4. To develop a MapReduce architecture for the distributed SOM algorithm.

5. To create a MapReduce architecture for the data partitioning process.

6. To ensure that the partitions are created such that each parallel process receives a

sufficient number of data vectors to ensure proper training of the SOMs trained on

each partition.

7. To develop data transfer methods to minimise the communication overhead in a

distributed computing environment.

8. To investigate the effect of static and dynamic SOM structures on the exploratory

data analysis process.

9. To develop a data analysis model for extracting electricity consumption profiles from

large volumes of electricity meter readings.

10. To utilise data partitioning to improve the quality of the output.

CHAPTER 1. INTRODUCTION 8

11. To identify profiles in different granularity levels in order to increase the level of

detail in the analysis.

12. To develop an architecture for the distributed SOM algorithm where new data can

be continuously integrated into an established SOM.

1.4 Research contributions

The research presented in this thesis was conducted with the aim of achieving the research

objectives. The main contributions of this research are summarised below.

1. Development of a novel parallel algorithm for the SOM which employs a distributed

memory model with data parallelism having a horizontal data layout. The new

algorithm, called the Distributed GSOM, is significantly faster than the traditional,

serial SOM and GSOM.

2. Evaluation of the effect of random and class based partitioning methods for a number

of datasets. Results indicate that random partitioning is a suitable option when class

information is unavailable.

3. Development of a new redundancy estimation measure called the redundancy index

which is used to identify and remove redundant neurons created in maps trained on

different partitions.

4. Implementation of the Distributed GSOM on Hadoop, a popular distributed com-

puting framework. The Hadoop framework features, such as combiners, were used

to improve the efficiency of the Distributed GSOM.

5. Development of novel MapReduce processes for data partitioning where terabytes of

data can be efficiently partitioned, in particular when heuristic based partitioning is

used.

6. Finetuning of the standard behaviour of the Hadoop framework in order to distribute

the workload across the cluster and to ensure that the partitions are created without

omitting any records.

7. Modification of the communication structure of the algorithm in order to encap-

sulate the vectors belonging to a particular neuron within the neuron itself. The

CHAPTER 1. INTRODUCTION 9

vector encapsulation removes the need to access the dataset during the redundancy

reduction process which results in faster performance.

8. Evaluation of the effectiveness of SOMs with a static structure and GSOMs with

a dynamic structure for exploratory data analysis. GSOMs have better structure

adaptation and have faster performance than SOMs.

9. Proposal of an innovative analysis model to identify electricity consumption profiles

from large volumes of smart electricity meter readings. The proposed model tolerates

outliers and resilience to varying distributions of records within partitions.

10. Utilisation of an average electricity consumption based heuristic to improve the

grouping of records into partitions. The partitioning method demonstrated high

tolerance of outliers.

11. Introduction of a novel methodology to identify short-term, medium term and long-

term electricity consumption profiles using the Distributed GSOM in order to analyse

electricity consumption behaviour in different granularity levels.

12. Development of a new model to continuously integrate new data into an established

SOM without the need to re-train the entire network.

1.5 Research methodology and chapter outline

This thesis presents the research contributions in detail in the chapters to follow. Relevant

research literature covering exploratory data analysis, self-organising maps and parallel

and distributed data mining are discussed in Chapter 2. Figure 1.2 shows the organisation

of the rest of this thesis.

Chapter 3 presents a novel distributed algorithm for the SOM learning process. The

new algorithm, named the Distributed GSOM, utilises a distributed memory model and

data parallelism. The dataset is partitioned into a horizontal layout which can be applied

to both sparse and dense data. The algorithm is experimentally evaluated for both ef-

ficiency and accuracy which demonstrates that the Distributed GSOM is several orders

faster than the serial SOM and GSOM.

The inner workings of the Distributed GSOM are discussed in detail in Chapter 4. The

implications of using static and dynamic SOM structures are discussed in the context of

CHAPTER 1. INTRODUCTION 10

Figure 1.2: Thesis organisation

exploratory data analysis. Results demonstrate that the GSOM with a dynamic structure

is more suited for data exploration. Chapter 4 also compares two redundancy reduction

methods. How the two redundancy reduction methods can be used in different stages of

the data exploration process is also discussed.

Chapter 5 discusses the implications of implementing the Distributed GSOM algorithm

on the popular Hadoop distributed computing framework. A new node assignment algo-

rithm is presented which distributes the workload of compute-intensive algorithms across

the entire cluster.

An exploratory data analysis using a real-world example of electricity consumption is

presented in Chapter 6. The analysis process of gigabytes of electricity meter readings is

done through the Distributed GSOM and the common electricity consumption profiles are

identified.

Chapter 2

Literature Review

The core research areas and theories related to the work presented in this thesis are

discussed in this chapter. Exploratory data analysis is a widely researched topic with a vast

amount of published literature and the self-organising map (SOM) is one of the popular

techniques used for data exploration. A key limitation of the SOM is the high time

consumption of the algorithm when processing large datasets. Parallel and distributed

computing has gained popularity as a means of providing computing clusters with massive

processing power for data and compute-intensive applications.

The work presented in this thesis focuses on extending the SOM technology such that

this widely used and popular technique could be utilised in the new highly data intensive

and distributed environments. Several questions have to be answered in order to explore

the literature related to SOM based data analysis. These are given below.

1. Exploratory data analysis

(a) What is exploratory data analysis?

(b) What are the common algorithms used for exploratory data analysis?

(c) What is the self-organising map and how and why is it considered a useful tool

in exploratory data analysis?

2. Self-organising maps

(a) How does the self-organising map function?

(b) What is the growing self-organising map and how does it differ from the self-

organising map?

11

CHAPTER 2. LITERATURE REVIEW 12

(c) What issues arise when processing large volumes of data with self-organising

maps?

3. Distributed data analysis algorithms

(a) How do parallel and distributed data mining handle large volumes of data?

(b) What are the key considerations in developing parallel and distributed algo-

rithms?

(c) What are the currently existing parallel and distributed self-organising map

algorithms?

The aim of this literature review chapter is to answer the above questions and to provide

context for the problem that is addressed in this thesis. Each of the above questions are

answered in subsequent sections of this chapter.

2.1 Exploratory data analysis and clustering

Exploratory data analysis is defined as “detective work – numerical detective work – or

counting – or graphical detective work” in Tukey (1977). In other words, exploratory data

analysis refers to the process of deriving insights where very little or no information is

known about the structure and the patterns within data. The massive growth of informa-

tion further complicates the analysis process. The rate of expansion of data is discussed in

Gantz and Chute (2008). Data analysts have to face a number of challenges in exploratory

data analysis exercises. The major challenges are processing power requirements, memory

requirements and pattern identification as given in Keim et al. (2006).

Clustering is considered as the main exploratory data analysis method in the work

presented in this thesis. Clustering has been widely used as an exploratory data analysis

technique from its very early stages (Dubes and Jain, 1980). The primary objective of

clustering is to find a number of groups within data such that the similarity of the records

within a group are very high and also the differences between the records in two different

groups is high. Segmentation achieved from clustering can provide insight into the dataset

by grouping similar records. For example, clustering the customer base of a company by

demographic attributes could reveal insights such as buying patterns of the customers in

different age groups.

CHAPTER 2. LITERATURE REVIEW 13

Over the years, a significant number of approaches have been researched for clustering.

The most popular clustering techniques are discussed briefly below.

Hierarchical algorithms – clusters are created using agglomeration or division. The

most popular hierarchical clustering algorithms are single-link (Sneath and Sokal,

1973), complete-link (King, 1967) and minimum-variance (Ward Jr, 1963) methods.

Partitional algorithms – a pre-defined number of clusters are created with some prop-

erty such as the squared-error. The best example is the K-means algorithm developed

by MacQueen (1967).

Fuzzy clustering – a membership function is used to assign data vectors to clusters.

Fuzzy theory was first applied to clustering by Ruspini (1969) and the most popular

fuzzy clustering algorithm at present is the fuzzy c-means algorithm devised by

Bezdek et al. (1984).

Neural networks – neural networks are widely used for clustering such as the self-

organising map (Kohonen, 1990) and adaptive resonance systems by Carpenter et al.

(1991).

Although all of these techniques have merits and demerits, the work presented in this

thesis is focused around the self-organising map (SOM). The SOM is widely used for

exploratory data analysis due to its unsupervised learning capabilities and visualisation

properties. Astel et al. (2007) have shown that the SOM yields more value to the data

analysis process compared to principal component analysis (Wold et al., 1987) and cluster

analysis. In addition, Ultsch et al. (1995) have demonstrated that the SOM has greater

clustering accuracy over the popular K-means (MacQueen, 1967) algorithm. Unlike most

clustering algorithms the SOM creates a visualisation of the dataset which is immensely

useful in exploratory data analysis. The strengths of the SOM for data exploration are

discussed further in 2.5.

2.2 Self-organising maps

The SOM is an unsupervised learning algorithm which projects high dimensional data onto

a low dimensional space. The low dimensional space is usually two or three dimensional

CHAPTER 2. LITERATURE REVIEW 14

and creates a comprehensible visualisation of the input data space. The self-organisation

follows the Hebbian learning principle (Hebb, 1949) which states that neurons which re-

spond to the same stimuli have stronger interconnectivity. The map aspect of the SOM

consists of a network of neurons arranged in a lattice. The most common lattice struc-

tures are rectangular and hexagonal. The SOM algorithm is an iterative process which is

described below.

2.2.1 The SOM algorithm

Step 1. Create a lattice of neurons. Several important decisions would have to be made

when creating the lattice.

• What is the structure of the lattice? The structure of the lattice could be either

rectangular or hexagonal. The primary functional difference between the two lattice

structures is the neighbourhood size of each neuron. A rectangular lattice will permit

a maximum of four neighbours whereas a hexagonal lattice will allow up to six

neighbours.

• What is the shape of the lattice? The shape of the SOM lattice plays an important

role, especially in data analysis (Kohonen, 2001). The shape could be either the

most common square and rectangular, or any other shape that is deemed suitable.

The shape of the map should match the shape of the dataset in order to create a

fair representation. A mismatch in shape would adversely affect the visualisation of

the dataset.

• What is size of the map? The size of the map is measured by the number of neurons.

The number of neurons in the map determines the level of detail required in the

output map. If the number of neurons in the network is insufficient, the dataset may

be under represented. Having too many neurons could overrepresent the dataset.

Step 2. Initialise the weight vectors of the neurons. The most common method of

initialisation is to assign a random weight vector for each neuron. Additional initialisation

methods have been proposed by Su et al. (2002) and Kitajima (1995).

Step 3. Repeat until the entire input dataset is covered for each iteration.

Step 3a. Pick a random vector, i, from the dataset.

CHAPTER 2. LITERATURE REVIEW 15

Step 3b. Find the neuron nc, having the closest proximity to i. The distance

between nc and i, dc is calculated using equation (2.1)

dc(t) = min
k

{||wk(t)− i||}, (2.1)

where wk is the weight vector of neuron nc. nc is referred to as the best matching

unit (BMU) for i. Several distance measures are used in different applications such

as Manhattan distance, Euclidean distance and weighted Euclidean distance. Im-

plications for the SOM learning process from these different similarity measures are

discussed in Strehl et al. (2000).

Step 3c. Update the weight vectors of the BMU and neighbourhood neurons (nk)

using

wk(t+ 1) = wk(t) + α(t)hck(t)[i − wk(t)], (2.2)

where α is the learning rate and hck is the neighbourhood function. In most cases,

the standard Gaussian function is used as the neighbourhood function as given in

equation (2.3).

hck(t) = e
−

|rk−rc|

σ(t) , (2.3)

where, rk and rc represent the coordinates of nc and nk in the low dimensional space

and σ(t) is a decreasing function.

The output of the SOM algorithm is a topographically arranged neuronal map where

close input vectors in the high dimensional space are mapped onto closer neurons in the

low dimensional space. This feature is the key reason for the SOM’s popularity in a wide

range of applications.

Figure 2.1 shows the SOM for a two dimensional spiral dataset. The created network

has the same arrangement as the actual dataset. The summarisation aspect is also visible

from the map. Red nodes indicate hit neurons where the neuron is the BMU for at least

one data vector. Gray nodes indicate non-hit neurons.

Although the dataset is two dimensional, the ability of the SOM to learn the structure

of the data is evident from the results. The results were obtained for an SOM network with

a size of 10×10 which was too large for the given dataset. The resulting over representation

CHAPTER 2. LITERATURE REVIEW 16

Figure 2.1: SOM network for the spiral dataset

of the data is clear between the lines of hit neurons. There are several layers of non-

hit neurons forming the boundary between the two spirals. In order to distinguish the

boundary, one layer of non-hit neurons is sufficient. Due to the use of a suboptimal network

size, an unnecessary level of detail is created.

The growing self-organising map (GSOM) addresses this limitation by dynamically ad-

justing the size of the network to accommodate the dataset. The GSOM and its advantages

are discussed in the following section.

2.3 Growing self-organising map (GSOM)

The GSOM, proposed by Alahakoon et al. (2000), is an extension of the SOM algorithm

where, instead of a fixed lattice, the network starts with only four neurons and creates

neurons to accommodate the dataset. The learning principle of the GSOM algorithm is

the same and due to the creation of nodes, the algorithm has two phases, the growing

phase and the smoothing phase.

A key decision in the initialisation of an SOM is the determination of the shape and

the size of the network. Using improper attributes could affect the quality of the output.

The GSOM overcomes this issue by using only one parameter in the initialisation, the

spread factor. The spread factor determines the level of detail in the generated neural

map. A higher spread factor will result in a detailed map and a lower spread factor will

create a less detailed map.

CHAPTER 2. LITERATURE REVIEW 17

In the growing phase, each vector in the dataset is randomly presented to the network

and the BMU is identified. Each BMU accumulates the quantisation error in the selection

process. If the BMU is a boundary node and the accumulated quantisation error exceeds

a pre-defined threshold called the growth threshold, new neurons are created in the neigh-

bourhood of the BMU. The weight vectors of the neighbouring neurons of the BMU are

then updated. This process is repeated over the number of growth iterations.

Once the growing phase is completed, the smoothing phase is carried out. This phase

executes all the steps in the growing phase except for the new neuron creation step.

Additionally, the learning rate used for the neighbourhood update process is less since, to

some extent, the network is already topographically arranged.

2.3.1 The GSOM algorithm

The GSOM algorithm employs the same Hebbian learning principle as the SOM as de-

scribed in 2.2.1. The key differences in the structures of the algorithms are that the SOM

has a single training phase whereas the GSOM has two phases, the growing phase and

the smoothing phase. The algorithms for growing and smoothing are discussed in the

following sections.

The growing phase

The growing stage is responsible for creating the required number of neurons and expansion

of the map. If a neuron accumulates a high quantisation error, it is an indication that the

weight vector of the neuron may not be the best match for the accumulated data vectors.

In order to reduce the error, the neuron will spawn new neurons with the aim of creating

better candidates for the data vectors. New neurons are created only if at least one of the

four immediate neighbours of the neuron do not exist.

The algorithm for the growing phase is detailed below.

Step 1. Create a lattice of four neurons and initialise their weight vectors randomly.

Step 2. Calculate the growth threshold (GT) using

GT = −D × ln(spreadfactor) (2.4)

Step 3. Repeat until the entire input dataset is covered for each growing iteration.

CHAPTER 2. LITERATURE REVIEW 18

Step 3a. Select a random vector i from the dataset.

Step 3b. Find the BMU for i using equation (2.1).

Step 3c. Update the quantisation error (QE) of nc using

QEnc(t+ 1) = QEnc(t) + |wc(t)− i| (2.5)

Step 3d. If QE ≥ GT AND nc is a boundary node, then create all missing neigh-

bours for nc. There are three possible initialisation scenarios each of which is de-

scribed below.

(i) When a node is present directly opposite the spawning node and the spawned

node as shown in Figure 2.2,

Figure 2.2: Neuron initialisation scenario 1

the new weight wn is calculated as;

wn =
wa + wb

2
. (2.6)

(ii) When two consecutive neighbours exist along the spawning node as shown in

Figure 2.3,

Figure 2.3: Neuron initialisation scenario 2

the new weight wn is calculated as;

wn = wa − (wb − wa). (2.7)

CHAPTER 2. LITERATURE REVIEW 19

(iii) When two consecutive neighbours do not exist along the spawning node as

shown in Figure 2.4,

Figure 2.4: Neuron initialisation scenario 3

the new weight wn is calculated as;

wn = wa + (wa −wb). (2.8)

Step 3e. Update the neighbourhood of nc using equation (2.2).

Once the growing phase is completed, the map would have reached its final size. How-

ever, the neurons that were added at the end may not have gone through a sufficient

number of neighbourhood adaptation iterations to ensure topology preservation. There-

fore, a smoothing phase is carried out in order to improve the topographic arrangement

further.

The smoothing phase

The smoothing phase is carried out using a lower learning rate since the network possesses

a topographic arrangement generated from the growing phase. Usually the number of

smoothing iterations is less than the number of growing iterations.

Step 1. Set the learning rate. It is common practice to set the learning rate to 50% of

the growing phase learning rate.

Step 2. Repeat until the entire input dataset is covered for each smoothing iteration.

Step 2a. Select a random vector i from the dataset.

Step 2b. Find the BMU for i using equation (2.1).

Step 2c. Update the neighbourhood of nc using equation (2.2).

Unlike the traditional SOM algorithm, the layout of the map created by the GSOM

is irregular. If the GSOM algorithm is run on the same dataset, two different maps will

CHAPTER 2. LITERATURE REVIEW 20

Figure 2.5: GSOM layout and the mapping of weight vectors for the dataset in Figure 2.1

be created. Figure 2.5 shows the output of the GSOM for the same dataset shown in

Figure 2.1. The GSOM creates fewer non-hit nodes than the SOM and the network itself

resembles the actual dataset.

Compared with the SOM in Figure 2.1, the GSOM has created significantly fewer

neurons. In addition, the layout of the GSOM does not contain unnecessary neurons at

the boundaries. By adapting the structure of the map to that of the dataset, the GSOM

creates less confusion in interpretation and having a lesser number of neurons improves

the efficiency of the algorithm.

2.4 Applications of the SOMs

The SOM and its variants have been applied in a wide variety of applications as discussed

by Kaski et al. (1998) and Oja et al. (2003). The applications of the SOM can be divided

into two main categories, pattern recognition and simulation.

Pattern identification

The SOM algorithm has been widely used in a number of application areas for pattern

recognition. If the pattern space can be defined in multi-dimensional data vectors, the

SOM can be used on the dataset to group common patterns and arrange them in a

topographic map. The topology preserving property of the SOM allows users to inspect the

structure of high dimensional datasets visually. The topographic organisation would result

CHAPTER 2. LITERATURE REVIEW 21

in a clustered map which can be interpreted according to different application domains.

The clustering properties of the SOM are discussed by Vesanto and Alhoniemi (2000).

A number of additional techniques have been developed which enhance the visuali-

sation capabilities of the SOM. U-Matrix proposed by Ultsch et al. (1995) is one useful

technique where inter neuronal distances are visualised by a colour scale. For example, a

higher distance will be indicated by a darker colour and a smaller distance by a lighter

colour. The U-Matrix enables the identification of cluster boundaries. Another method

is component plane visualisation whereby the network is coloured by the distribution of

only one attribute at a time.

The SOM algorithm has been used in a wide range of application areas such as im-

age processing (Laaksonen et al., 2000; Haritopoulos et al., 2002; Toivanen et al., 2003;

Ganegedara et al., 2012), control systems (Barreto and Araujo, 2004; Kohonen et al.,

1996; Walter and Schulten, 1993; Jatmiko et al., 2010), text analysis (Honkela et al., 1997;

Roussinov and Chen, 1998; Matharage et al., 2013) and numerous other application areas

specified in Kaski et al. (1998) and Oja et al. (2003).

Neural computation and simulation

The SOM algorithm is based on the Hebbian learning principle. As a result, SOMs have

been used to simulate the human brain and develop models to understand the function

of the brain. Kohonen (1993) discusses the physiological interpretation of the SOM and

compares itwith the cortical function. Due to the SOM’s ability to mimic brain functions,

it has been used to develop a number of cortical models. Sirosh and Miikkulainen (1997)

propose a model for the ocular dominance function of the visual cortex which is known as

the laterally interconnected synergetically self-organising map (LISSOM). More recently,

Pilly and Grossberg (2013) have proposed a spiking neuron based self-organising map for

learning spatial and temporal properties of brain cells.

One of the earliest models of the visual cortex has been proposed by Hubel and Wiesel

(1968). SOMs have been used by Ramanathan et al. (2010) to develop a concept repre-

sentation model inspired by the visual cortex. Further applications of the SOM in neural

computation are given in Obermayer and Sejnowski (2001).

CHAPTER 2. LITERATURE REVIEW 22

2.5 The SOM based algorithms as data analysis tools

Although data analysis can be categorised as pattern recognition, data analysis applica-

tions of the SOM are discussed separately due their significance to the thesis topic. The

SOM and its variants are widely used in exploratory data analysis due to their compression

and visualisation capabilities.

Ultsch and Siemon (1990) were among the first to discuss the advantages of using the

SOM for exploratory data analysis. A comprehensive study on the desirability of the SOM

for data analysis is given in Kaski (1997). The key features of the SOM which assist the

data analysis process are:

i. Visualisation

ii. Unsupervised learning

iii. Compression

The core function of the SOM is to create a low dimensional representation of high

dimensional data. The dataset can be effectively browsed using the neuron lattice created

by the SOM algorithm. The visualisation features of the SOM are further discussed in

Vesanto (1999) and Flexer (1999). Additional visualisation methods have been developed

in order to enhance the data analysis process such as the U-Matrix, component planes and

parallel axes.

Having very little or no knowledge about the patterns in the dataset is a prominent

feature of exploratory data analysis. Therefore, data analysis algorithms would have to

isolate patterns from large quantities of data. Supervised learning algorithms, such as the

back propagation neural network (Bryson and Ho, 1969), would require a labelled dataset

for training which contains all the possible patterns. The learning algorithm in the SOM

is unsupervised, which implies labelled data is not required. Therefore the SOM is well

suited to exploratory data analysis.

Another important feature of the SOM is the compression of the input dataset into a

collection of neurons. The SOM trained on a large dataset can be used to describe the

dataset since similar records would be mapped onto the same neuron. This summarised

view of the dataset is useful for exploratory data analysis since a concise view of the entire

dataset is created.

CHAPTER 2. LITERATURE REVIEW 23

Due to the visualisation and summarisation features of the SOM, a number of applica-

tion areas have used SOMs for data exploration. Engineering applications of the SOM are

discussed in Kohonen et al. (1996). Kiviluoto (1998) used the SOM to predict bankrupt-

cies, and electricity consumption analysis was performed in Lendasse et al. (2002): these

are some of the many SOM based data analysis applications.

2.6 Using SOMs for large scale data analysis

For large datasets, the processing power required for analysis increases more than pro-

portionately to the increase in the size of the dataset. The time complexity of the SOM

is linear on the number of input vectors and quadratic on the number of neurons. Large

datasets could contain a large number of patterns. Therefore, SOMs would have to con-

tain a large number of neurons in order to represent the dataset properly. As a rule of

thumb, the number of neurons is set to approximately 5
√
N for N data vectors as given in

Vesanto and Alhoniemi (2000). Therefore, the processing power requirement for the SOM

for large datasets will be significantly high.

Improving the performance of the SOM for large datasets has been widely researched.

Two key approaches have been used to improve the efficiency of SOM algorithms: these are

1) improving the efficiency of the serial algorithm, and 2) creating parallel and distributed

algorithms.

A number of serial improvements have been proposed for the SOM algorithm for

efficient processing of large datasets. Some of the proposed enhancements include

initialisation methods (Su et al., 2002), changes to the structure (Rauber et al., 2002;

Ontrup and Ritter, 2006) and changes to the learning algorithm (Alahakoon et al., 2000;

Cuadros-Vargas and Romero, 2005; Mulier and Cherkassky, 1995). Such improvements

result in slightly lower computational times and can be used effectively for medium sized

datasets spanning a few hundred megabytes. However, any improvement to the serial

SOM algorithm will be constrained by the amount of resources available in the computer

which runs the algorithm.

Although significant advancements have been made in increasing the processing power

and data storage in computer hardware, time in delivering the results has also become

a very important factor. Kouzes et al. (2009) demonstrate that the size of datasets has

CHAPTER 2. LITERATURE REVIEW 24

significantly increased into terabytes and petabytes. For an algorithm to work efficiently,

the data has to be loaded onto the system memory of the computer. When the size of the

dataset exceeds the amount of physical memory, data will have to be transferred back and

forth between system memory and storage. According to Gray (2007), using disk or flash

based storage is several orders slower than using system memory. Therefore, a regular

computer could take months or years to process such massive volumes of data where the

relevance of the outcome would have been surpassed in a changing environment. Although

a number of supercomputers exist which boast extremely high processing speeds and vast

amounts of memory, availability and cost have restricted them to high end research.

Parallel and distributed computing have emerged as a cost effective means of facilitat-

ing compute-intensive operations for processing large datasets. The spread of the use of

parallel and distributed computing has been assisted by commercially available computing

clusters such as Amazon.com and Windows Azure. Most distributed computing clusters

use regular personal computers as computing nodes which reduces the cost and increases

the affordability of distributed computing for the masses.

2.7 Advancements in parallel and distributed computing

systems

Many advancements have been made in parallel and distributed computing hardware. The

cost of hardware has significantly decreased and has led to an increase in the availability of

parallel and distributed computing platforms. Parallel computing, distributed computing

and more recently, cloud computing resources are commercially offered by internet compa-

nies such as Amazon web services (Cloud, 2011) and Windows Azure (Redkar and Guidici,

2011).

Hadoop, a distributed computing framework, developed by the Apache Foundation,

has gained popularity in recent years due to its scalability and high storage capacity

(White, 2012). The cost of establishing a Hadoop cluster is affordable due to the use of

commodity hardware. A range of complementary technologies have been developed on

top of Hadoop in order to assist in exploratory data analysis, such as Hive and HBase for

data storage, Pig for data transformation, Sqoop for data loading and Mahout for data

mining, as given in Zikopoulos and Eaton (2011).

CHAPTER 2. LITERATURE REVIEW 25

2.8 Parallel and distributed data analysis

In order to harness the computing power offered by parallel and distributed systems, data

analysis algorithms would need to execute as parallel processes. There are a number of

concerns that have to be addressed when designing a parallel algorithm as listed in Zaki

(2000).

i. Shared vs distributed memory models

ii. Data vs task parallelism

iii. Horizontal vs vertical data layouts

Each of these aspects is discussed in the sections to follow.

2.8.1 Shared vs distributed memory models

Barney (2013) note functional and implementation aspects of parallel and distributed

memory models. Figure 2.6 shows the differences in the architecture of the two mod-

els. While both models have been widely used in exploratory data analysis applications,

distributed memory models are better equipped to process large volumes of data.

Figure 2.6: Shared and distributed memory models

Shared memory models assume access to physical memory as a global address space

for all CPUs. Shared memory systems are therefore located at the same physical location

and require specialised hardware in order to connect a large number of processors as a

single unit of computing. While shared memory systems have an advantage of shorter

memory access times, they suffer from low levels of scalability due to the memory bus

being shared across all the parallel processes. Shared memory models would incur high

levels of overhead if too many processes are trying to access memory simultaneously. In

CHAPTER 2. LITERATURE REVIEW 26

addition, the cost of acquiring and maintaining specialised hardware is higher compared

to commodity hardware.

CPUs in a distributed memory system on the other hand have local memory. Dis-

tributed memory models can operate locally on data and combine the outputs from each

process to generate the global output. Writing programs for distributed memory models

used to be difficult since programmers have to manage communication between the CPUs.

With the introduction of Hadoop, programming has become streamlined since the Hadoop

framework manages communication and reliability assurance. Distributed memory mod-

els can be scaled to a higher degree than shared memory models making them suitable

for large scale data analysis tasks. Most distributed memory systems use commodity

hardware which has increased the availability of distributed computing systems as well as

bringing down the cost of such systems. The desirability of distributed memory models

for data analysis is further discussed in Lawrence et al. (1999).

2.8.2 Data vs task parallelism

Algorithms that utilise data parallelism operate by assigning each parallel process to op-

erate on a subset of the dataset. The output of each process is then combined to form

a single output if required. Task parallelism operates differently via multiple processes

operating on the same dataset performing different tasks. Data parallelism is well suited

for distributed memory systems whereas task parallelism is geared towards shared memory

systems.

In the case of large scale exploratory data analysis, the volume of data could span

terabytes and petabytes. In such situations, task parallelism is undesirable since providing

access to the entire dataset across multiple processes could be impractical or impossible.

Data parallelism offers a scalable solution for large volumes of data by partitioning the

data and assigning a process for each partition.

2.8.3 Horizontal vs vertical data layouts

Data parallel algorithms need to partition the data among processes. The dataset can be

partitioned either horizontally or vertically. Vertical partitioning is where each partition

contains all the rows of the dataset with only a subset of attributes. Horizontal partitioning

will create partitions with all the attributes for subsets of rows.

CHAPTER 2. LITERATURE REVIEW 27

Figure 2.7 shows vertical partitioning of a dataset consisting of N data vectors and

k×m(= M) attributes. k partitions are created with n records in each partition having m

attributes. x denotes the record index and y denotes attribute indices. In order to create

a large number of partitions, the number of attributes have to be high.

Figure 2.7: Vertical partitioning of a dataset with N records and k ×m attributes

Creating k partitions from a dataset with k× n = (N) records and M attributes with

horizontal data layout is shown in Figure 2.8. For large scale applications, a large number

of partitions can be created since k × n will be a large value.

Figure 2.8: Horizontal partitioning of a dataset with k × n records with M attributes

Data analysis algorithms with vertical data layouts achieve faster performance since

each parallel task processes only a subset of attributes in the original data. However,

large scale data analysis tasks involve processing billions and trillions of records. In such

situations, even though the number of attributes is less, a very high number of rows would

have to be processed. That could still result in long processing times for each thread.

Therefore, vertical data layouts may not be viable for large scale data analysis tasks.

Most large datasets have a low number of attributes compared to the number of records.

Therefore, the scalability of algorithms that utilise vertical partitioning is limited by the

number of attributes in the dataset. Another drawback of vertical partitioning is the loss

CHAPTER 2. LITERATURE REVIEW 28

of attribute relationships across partitions. If closely related attributes are separated into

different partitions, the relationships would not surface during data exploration. Taking

all these factors into consideration, horizontal data layouts are preferred for large scale

exploratory data analysis tasks.

2.9 Parallel and distributed SOM algorithms

A number of parallel algorithms have been proposed in order to address the limitations of

the self-organising map encountered when processing large volumes of data. Some of the

popular parallel SOM algorithms are discussed below.

2.9.1 The parSOM

The parSOM algorithm proposed by Rauber et al. (2000) proposes a method that utilises

task parallelism to achieve faster performance. The parSOM utilises single-instruction

multiple data (SIMD) nodes for vectorisation which enables parallel vector operations.

In addition, the map is partitioned and distributed across multiple nodes such that each

partition contains a subset of neurons in the map. For each input vector, the local BMU

for each partition is identified and the master node determines the global BMU. The

neighbourhood of the global BMU is adjusted including the neurons belonging to partitions

other than the partition of the global BMU. These two synchronisation operations result

in a bottleneck especially in distributed memory systems.

The bottlenecks could dampen the performance advantage of the algorithm for very

large datasets since the BMU search and neighbourhood update have to be conducted for

every input vector. In particular, a distributed memory environment spread across phys-

ically separate computers could consume longer processing times due to network latency.

Although, theoretically, parSOM is capable of operating in distributed memory environ-

ments, the communication overhead of the BMU search and neighbourhood adaptation

could hinder the benefits of parallel execution. In addition, Tomsich et al. (2000) claim

to have optimised the algorithm for distributed memory systems. However, all the ex-

periments have been carried out on shared memory systems which do not depict the true

nature of distributed memory systems.

CHAPTER 2. LITERATURE REVIEW 29

Huntsberger and Ajjimarangsee (1990) have proposed a similar model where the weight

update process is executed in parallel. Due to the high overhead from synchronisation, this

method possesses the same limitations of the parSOM and would result in long processing

times for large datasets.

2.9.2 Sparse batch SOM

Lawrence et al. (1999) proposed the sparse batch SOM which employs data paral-

lelism to achieve scalability. The sparse batch SOM algorithm uses the Batch SOM

(Mulier and Cherkassky, 1995) as the learning algorithm. A subset of the dataset is as-

signed as input to each parallel task and a local SOM network is created for each partition.

At the end of an iteration, all the SOM networks across parallel tasks are synchronised

resulting in a single map.

As the global neighbourhood adaptation occurs only once per iteration, the preser-

vation of the topology of the final output could suffer. In order to minimise the loss of

topology, the dataset would have to be sparse. Sparse data would mean that the density

of the weight vector is low so that the chance of updating the same set of attributes is

low. This approach cannot be used for dense datasets as local weight updates would sig-

nificantly differ between partitions, thus adversely affecting the quality of the output. In

addition, the communication overhead is significant as the networks are synchronised at

the end of each iteration.

2.9.3 Graphic processing unit implementation of the SOM

The graphic processing unit (GPU) in a computer consists of an array of vector processors

which can operate in parallel. The SOM structure is inherently parallel and ideally the

role of each neuron can be thought of as a single processor. The GPU implementation

of the SOM proposed by Zhongwen et al. (2005) assigns a single neuron or a group of

neurons for each processor of the GPU for parallel operation. GPU processors are tuned

for vector operations which results in increased efficiency levels.

However, the GPU memory is slower than system memory and is very expensive as

given in Nickolls et al. (2008). In addition, the size of the GPU memory is limited to a few

gigabytes which makes them unsuitable for large scale data processing. Although a hybrid

approach is possible where data is stored in both system memory and GPU memory, the

CHAPTER 2. LITERATURE REVIEW 30

overhead of data transfer between the two types of memory would result in impractical

processing times for large datasets.

2.9.4 Scalable GSOM

The Scalable GSOM was proposed by Zhai et al. (2006) where data parallelism is used

to achieve faster performance. The algorithm uses a high level GSOM to partition the

dataset according to high level classes and trains separate GSOMs on each partition. The

authors do not specify any specific methods to merge the separate GSOMs to create a

singular view of the entire dataset.

The Scalable GSOM suffers from two key limitations. Firstly, the use of the GSOM

for the initial data partitioning process will significantly increase the processing time for

very large datasets. In addition, the Scalable GSOM can distribute the dataset unevenly

across the neurons which will result in unbalanced loads. The Scalable GSOM does not

provide a single map for the entire input dataset which will not provide the data analysts

with a holistic view of the data.

2.9.5 PartSOM

The PartSOM is a technique that uses data parallelism with vertical partitioning, proposed

by Gorgonio and Costa (2008). The algorithm assigns subsets of attributes to computing

nodes, trains an SOM at each node and uses another SOM to combine the results. The

scalability of the PartSOM depends on the number of attributes in the dataset as partitions

are created with subsets of attributes. For example, the maximum number of partitions

that can be created for a dataset with 10 attributes is 10. Therefore, the PartSOM will

consume excessive amounts of time for a dataset with a fewer number of attributes and

millions of records.

Table 2.1 summarises the different features of the above algorithms. An important

observation is the absence of a parallel SOM algorithm with all the desired properties for

large scale data processing.

This thesis presents a distributed memory algorithm which utilises data parallelism

with a horizontal data layout that is capable of processing both sparse and dense data.

The new algorithm will have all the desirable features of parallelism that are suited for

large scale exploratory data analysis. The author believes that the work presented in

CHAPTER 2. LITERATURE REVIEW 31

Table 2.1: Parallel and distributed SOM algorithm comparison

Algorithm Shared vs dis-
tributed mem-
ory

Task vs data
parallelism

Horizontal vs
vertical data
layout

Sparse vs
dense data

Parallel SOM Shared Task N/A Both

Sparse batch-SOM Distributed Data Horizontal Sparse

Scalable GSOM Hybrid Data Horizontal Sparse

partSOM Distributed Data Vertical Both

GPU implementation Shared Task N/A Both

parSOM Shared Task N/A Both

this thesis will result in a new generation of efficient SOM algorithms and increase the

popularity of the SOM even further.

Chapter 3

Distributed Self-Organising Maps

This chapter discusses the need for, and the value in extending SOMs to utilise distributed

computing platforms. It introduces the distributed architecture for generating SOMs

efficiently. Application of the SOM to large scale data analysis has been limited due to

the compute-intensive nature of the algorithm. In this chapter, the Distributed GSOM

is proposed which can harness the power of parallel and distributed computing platforms

while generating an output similar to the SOM. The Distributed GSOM is several orders

faster than the traditional SOM algorithm and retains the ability to generate a single map

representation of the dataset. The algorithm utilises a distributed memory model with

horizontal partitioning and data parallelism to achieve faster performance.

The work presented in this chapter was undertaken with the following research objec-

tives.

1. To develop a scalable distributed architecture for the SOM to address needs identified

for large scale exploratory data analysis.

2. To investigate different data partitioning techniques and their effect on sparse and

dense datasets.

3. To develop a measure of redundancy for SOMs to identify and prune redundant

neurons.

4. To develop a redundancy reduction algorithm so as to remove neurons which repre-

sent the same weight vectors arising from different partitions, efficiently in order to

optimise the composition of the map.

32

CHAPTER 3. DISTRIBUTED SELF-ORGANISING MAPS 33

5. To evaluate the performance of the distributed algorithm to ensure it is viable and

acceptable in practical applications.

6. To compare the accuracy of the new distributed method with the traditional SOM

to ensure that clustering accuracy is not compromised in the distributed method.

Work done to achieve the research objectives are described in the sections that follow.

3.1 The Distributed GSOM Algorithm

The Distributed GSOM algorithm aims to improve the time consumption of the anal-

ysis process by decreasing the time requirement for the training of the SOM. The Dis-

tributed GSOM algorithm utilises a divide and conquer approach to efficiently process

large datasets. The algorithm operates in four phases as listed below.

i. Data partitioning for generating multiple SOMs

ii. Training multiple SOMs in parallel

iii. Redundancy reduction to prune the SOMs

iv. Merging of multiple maps to generate a single map

The Distributed GSOM has a similar architecture to that of the PartSOM given in

Goil et al. (1999). The primary differences between the two methods are the data lay-

out and the merging methods. The Distributed GSOM uses a horizontal data layout as

opposed to the vertical data layout of the PartSOM. The Distributed GSOM utilises Sam-

mon’s projection (Sammon Jr, 1969) for creating the topographic mapping, whereas the

PartSOM uses the SOM algorithm. The differences between using Sammon’s projection

and the SOM for the merging process are discussed further in 3.5 below.

The first step of the Distributed GSOM algorithm is to partition the large input

dataset into a number of non overlapping subsets. Each subset has to be small enough to

reduce SOM training time significantly yet large enough to facilitate adequate learning.

Several partitioning methods are possible and are discussed in 3.2. An SOM is trained

on each of the subsets concurrently. Since the SOMs can operate independently on each

partition, the algorithm can utilise a distributed memory model which accommodates

higher levels of scalability as given in Lawrence et al. (1999). Since the SOM’s execution

CHAPTER 3. DISTRIBUTED SELF-ORGANISING MAPS 34

time is proportional to the size of the dataset, using only a subset of the data considerably

reduces time consumption. The parallel training phase is the primary contributor to the

reduction in execution time.

Due to partitioning, the classes within data may get distributed across the partitions.

Therefore, two different SOMs trained in parallel may contain neurons that represent the

same information. The presence of such neurons creates redundancy within the SOMs and

should be removed from the output map. The redundancy reduction process identifies such

neurons and removes them before the final map is created.

The main advantage of using an SOM for data exploration is the SOM’s data visual-

isation properties. Due to the creation of multiple SOMs in parallel, visualisation of the

entire dataset on a single map is lost. Therefore, once the redundant neurons are min-

imised, the SOMs have to be combined to provide a holistic view of the dataset. Sammon’s

projection is used to combine the SOMs and to arrange all the neurons topographically

as a single map.

Figure 3.1 shows the architecture of the Distributed GSOM algorithm. Each phase of

the algorithm is discussed in detail in the following sections.

3.2 Data Partitioning

The horizontal or vertical data layout of the algorithm is critical to the partitioning pro-

cess. Horizontal partitioning splits the dataset into smaller groups with the same number

of attributes but with fewer vectors in each group. In vertical partitioning, the number

of records in each partition is equal to the number of records in the dataset; however, the

attribute columns in each partition would be a subset of the attributes in the dataset.

If two closely related attributes are assigned to two partitions, the relationship may not

surface during the analysis. For exploratory data analysis, preserving the attribute rela-

tionships is critical. In addition, for large scale data analysis tasks, horizontal partitioning

delivers higher levels of scalability as discussed in Faro et al. (2011). Therefore, horizontal

partitioning is used for the data partitioning stage of the Distributed GSOM.

Data partitioning is the first stage of the algorithm where the input dataset is parti-

tioned into smaller non-overlapping subsets. The number of partitions is critical to the

performance of the algorithm and the quality of the output. Having a larger number of

CHAPTER 3. DISTRIBUTED SELF-ORGANISING MAPS 35

Figure 3.1: The Distributed GSOM algorithm

CHAPTER 3. DISTRIBUTED SELF-ORGANISING MAPS 36

partitions results in fewer vectors per partition. While fewer input vectors reduces the

time consumption of the parallel SOM training process, at the same time, the dataset

may be too small for the SOM to achieve convergence. Hush and Horne (1993) suggest

that the number of vectors presented to a neural network should be at least ten times the

number of attributes in the dataset. This rule of thumb has been used for self-organising

maps in Holub et al. (2012). Therefore, the maximum number of partitions (Pmax) can

be derived as

Pmax =
N

10×D
(3.1)

where N is the number of vectors in the dataset and D is the number of dimensions.

Ideally, the number of computing nodes should be greater than or equal to the number

of partitions so that all the SOMs can be trained in parallel. If the number of computing

nodes is less than the number of partitions, making the number of partitions equal to a

multiple of the number of computing nodes yields the optimal performance.

The time complexity of the partitioning process is significant to the performance of

the Distributed GSOM algorithm. A number of approaches for performing horizontal

partitioning have been identified. Random partitioning, class based partitioning, high level

cluster based partitioning and structure based partitioning are some examples of horizontal

partitioning techniques. Using a high level cluster based partitioning technique, such as

in Yang and Ahuja (1999), results in excessive time consumption which is not practical

for large scale datasets due to the use of SOMs in the partitioning algorithm. The fastest

data partitioning techniques are discussed below in detail.

i. Random partitioning

ii. Class based partitioning

iii. Structure based partitioning

iv. Heuristic based partitioning

3.2.1 Random partitioning

With the absence of any observed or derived information about the underlying patterns in

data, the dataset can be randomly partitioned into P groups. Each vector in the dataset

is randomly assigned to one of the P partitions. Since random partitioning is a linear

CHAPTER 3. DISTRIBUTED SELF-ORGANISING MAPS 37

process, massive datasets can be efficiently processed. It can be assumed that the data

distribution in the data partitions is a close approximation to the data distribution in the

complete dataset.

Although simple and efficient, random partitioning could create higher levels of noise

compared to other partitioning techniques. If the underlying cluster distribution is skewed,

some partitions may under or over represent the dataset. As a result, cluster boundaries

may get distorted in the final output. For clustering exercises with a clear separation

of clusters, the distortions created by random partitioning are minimal as discussed in

O’Connor and Herlocker (1999). In addition, the experiments conducted with respect to

the Distributed GSOM also show that random partitioning does not significantly reduce

the accuracy compared to other techniques.

3.2.2 Class based partitioning

If the underlying classes in the dataset are readily available, each partition could represent

a class in the data. The primary advantage of partitioning the dataset by classes is the low

levels of distortion in the SOMs trained in parallel. If each partition contains records from

all the classes, the neurons in each map would have to represent all the classes, whereas if

each partition contains records from only one class, the resulting map would consist of a

better spread of neurons and less distortion. In addition, during the redundancy reduction

phase, class based partitioning tends to create lower levels of redundancy compared to

random partitioning.

However, the use of class information for partitioning could create bias towards the

classes. If the classes in the dataset are different from the classes used for partitioning,

over fitting could result, as discussed in Obradovic and Vucetic (2004).

3.2.3 Structure based partitioning

If the dataset possesses an inherent structure, partitions can be created according to

structural formations. The structure could be time based, geography based or based on

any other attribute that creates logical groups within data. Structure based partitioning

would assist in the exploration of the dataset by creating a layer of maps which enables

analysts to drill down through the structure. Structure based partitioning has been used

CHAPTER 3. DISTRIBUTED SELF-ORGANISING MAPS 38

in clustering ontologies (Stuckenschmidt and Klein, 2004). However, over fitting can result

if the structure does not reflect the patterns within the dataset.

For example, a stream of electricity consumption data over an year could be partitioned

by months. Such partitioning could enable analysts to incorporate drilling down into the

analysis process itself since the combined map would contain data for the whole year

whereas the partitions contain maps for each month (an example of over fitting).

3.2.4 Heuristic based partitioning

The dataset may contain internal groupings based on a specific property. For such datasets,

a heuristic may exist which could be used to group the dataset into partitions. A heuristic

would be a rule of thumb which can be used to group records in a dataset intuitively. The

heuristic is determined by the purpose of the analysis task and the features of the dataset;

it could be an existing attribute or a calculated property. Heuristic based partitioning has

been discussed in detail in Kriegel et al. (2009).

For example, daily electricity consumption analysis could use grouping by average

electricity consumption in order to improve the coherence of the data within a partition.

Having highly varying electricity consumption values within a single partition could create

bias towards higher electricity consumption records due to the higher magnitude of the

weight vector. By grouping records by average consumption, the records within a partition

are similar in magnitude and would create less bias.

3.3 Parallel network training

Once the partitioning phase is complete, an SOM or a GSOM is trained on each partition in

parallel, provided that the number of partitions exceed the number of available computing

nodes. The training phase is the primary contributor to the efficiency of the Distributed

GSOM. The time complexity of the SOM algorithm is linear on the number of vectors and

quadratic on the number of neurons. The relationship between the number of neurons (N)

and the size of the dataset (n) is

N = 5
√
n (3.2)

CHAPTER 3. DISTRIBUTED SELF-ORGANISING MAPS 39

as given in Vesanto and Alhoniemi (2000). By reducing the number of each partition,

both the number of vectors and the number of neurons in each network are reduced.

Therefore, the decrease in time consumption is exponential with the increase in the number

of partitions. An SOM or a GSOM trained on a data partition is referred to as a partition

network. The primary difference between the two techniques is the structure of the map:

the SOM has a static structure and the GSOM has a dynamic structure.

The width and the height of the SOMs should be specified which would determine the

shape of the map by the width to height ratio and the level of detail by the number of neu-

rons. Since the vectors in the each partition may have different characteristics, a uniform

width and height across all the partitions may not be suitable. According to Kim and Han

(2001), a theoretical method for determining the optimum number of neurons of a SOM

does not exist. Determining the optimum width and height of the map is a subjective

process which is usually done by trial and error, as discussed in Koikkalainen and Oja

(1990) and Alahakoon et al. (2000). Having too many or too few neurons would over or

under represent the input dataset in the map according to Koikkalainen and Oja (1990).

In addition, the high time consumption when processing large volumes makes the trial

and error approaches impractical.

Due to the dynamic structure of the GSOM, the number of neurons in the map is

determined by the level of detail specified by the spread factor. As a result, the structure

of the GSOM would have different shapes depending on the shape of the dataset. Con-

sequently, the GSOM has the ability to adapt its structure to accommodate the dataset

in different partition configurations. A global spread factor could be used to ensure the

same level of detail is created across all partition networks, which is more suitable for data

exploration.

The GSOM algorithm is considered to be the preferred learning method for large

scale data analysis exercises for the distributed algorithm. Chapter 4 demonstrates the

advantages of the GSOM for the distributed algorithm by comparing both the SOM and

the GSOM as exploratory data analysis techniques.

CHAPTER 3. DISTRIBUTED SELF-ORGANISING MAPS 40

3.4 Redundancy Reduction

At the end of the training phase, the partition networks need to be merged to form a single

map representing the entire input dataset. However, if at least two partitions contained

similar records from the same class (which could result from random partitioning), there

is a possibility that some neurons representing the same class of vectors. If two neurons

from two partition networks represent the same information, this is considered to be a

redundancy. Having redundant neurons in the output map could result in high processing

power requirements and lower accuracy levels. Since the time complexity of Sammon’s

projection is O(n2), having more neurons as input could lead to a rapid increase in time

consumption for the merging process. In addition, with the presence of multiple neurons

representing the same set of input vectors, it could be difficult to distinguish cluster

boundaries. In order to decrease the level of redundancy in the merged map, a redundancy

reduction process is carried out.

Several redundancy reduction methods have been proposed in the literature. Fu et al.

(2001) have proposed a redundancy reduction method whereby if two neurons are closer

than a pre-defined maximum distance, the neurons are merged. For exploratory analysis,

the determination of the maximum distance may be impossible without an initial analysis.

In addition, the proposed method requires a distance matrix calculated for all the neurons

within intermediate outputs. For a detailed analysis with millions of neurons, the distance

matrix calculation process could reduce the efficiency of the Distributed GSOM.

A related redundancy reduction method is proposed in Qiao and Han (2010) where

redundant neurons are identified by inspecting the neighbourhood of the neurons. Since

the neurons in the partition networks are in different networks, determining a universal

neighbourhood is impossible in this phase. It is possible to apply this method on the

single map created from using Sammon’s projection when the neighbourhoods are defined

by topographic ordering. However, due to the presence of redundant neurons in the input

to Sammon’s projection, the overall efficiency of the algorithm would deteriorate.

In this section, a novel redundancy reduction algorithm is proposed which is suitable

for exploratory data analysis tasks. The quantisation error (QE) of the neuron is used

to determine redundancy. The QE is an indication of how well the weight vector of the

neuron matches the weight vectors of the vectors mapped onto it. A lower QE means a

CHAPTER 3. DISTRIBUTED SELF-ORGANISING MAPS 41

better match and vice versa. Using the QE as a measure, a redundant neuron is defined

as follows.

If there exists a neuron ni such that the records mapped to ni result in a lower quantisa-

tion error on neuron nj , it can be concluded that nj is a better candidate to accommodate

the records of ni. Therefore ni is considered a redundant neuron.

3.4.1 Notations

The following notations are used for describing the algorithms.

ni,j The neuron j in partition i

wi,j The weight vector of ni,j

Ii,j The list of input vectors mapped to ni,j

Ni,j The number of vectors in Ii,j

Ei,j The total quantisation error for ni,j for Ii,j

E
p,q
i,j The total quantisation error for ni,j for Ip,q

GetBMU(wi,j , k) Returns the closest neuron to wi,j in partitioned network k

IsHitNeuron(ni,j) Returns true if ni,j is a hit neuron or false otherwise

IsNonHitNeuron(ni,j) Returns true if ni,j is a non-hit neuron or false otherwise

An SOM or a GSOM training on a single dataset will not create any redundant neu-

rons. Since each partition network trains on a non overlapping subset of the dataset,

redundant neurons would not be present within a single partition. Therefore, each par-

tition is compared against other partitions for redundant neurons. In order to determine

whether a neuron is redundant, the quantisation error for the neuron would have to be

calculated. A neuron will have a quantisation error only if the neuron has at least one

input vector mapped onto it. Such a neuron is called a hit neuron where for at least one

vector in the input space, the neuron is the best matching unit. On the other hand, a

non-hit neuron is one where none of the vectors in the input space are mapped onto it.

As a result, redundant non-hit neurons cannot be identified using the quantisation error

comparison. In order to identify both redundant hit-neurons and redundant non-hit neu-

rons, redundancy reduction is performed in two stages: redundant hit neuron reduction

and redundant non-hit neuron reduction.

CHAPTER 3. DISTRIBUTED SELF-ORGANISING MAPS 42

Figure 3.2: The redundancy reduction process

3.4.2 Redundant hit neuron reduction

Figure 3.2 helps explain the redundant hit neuron reduction algorithm. The algorithm

starts by selecting a partition at random and for each hit neuron in the map, the closest

neurons from the other maps are identified. However, since only two comparisons can be

done at a time, only two networks are considered simultaneously. For example, if the two

networks are A and B, for each hit neuron nA,X , the best matching neuron in network B,

nB,Y , is identified since the best matching units across networks have the highest potential

for creating redundancy. Equation (3.3) is used to identify nB,Y .

nB,Y = ni : min{||wi −wA,X ||} ∀ni ∈ B (3.3)

In order to check for redundancy, the input vectors IA,X mapped onto nA,X are mapped

onto nB,Y and the error EA,X
B,Y is calculated using equation (3.4).

E
A,X
B,Y =

|IA,X |∑

i=1

||wB,Y −wIA,X [i]|| (3.4)

CHAPTER 3. DISTRIBUTED SELF-ORGANISING MAPS 43

If the original error, EA,X for IA,X on nA,X , is greater than E
A,X
B,Y then nA,X is con-

sidered redundant since there exists a better candidate, nB,Y , with a lower quantisation

error for IA,X .

If EA,X is less than E
A,X
B,Y there could be a possibility that nB,Y is redundant. If nB,Y

is a non-hit neuron, the comparison has to stop. However, in the case of nB,Y being a

hit neuron and if IB,Y are mapped onto nA,X and E
B,Y
A,X is less than EB,Y , then nB,Y is

considered redundant. Otherwise, if the total error for IA,X and IB,Y on a single neuron

is less than the combined error EA,X +EB,Y , the node with the higher error is considered

redundant and is removed.

The redundant hit node reduction algorithm is given in Algorithm 1. The algorithm

returns a measure computed based on the average Euclidean distance between each re-

dundant neuron and the corresponding retained neuron in order to determine redundant

non-hit neurons. The logic behind calculating the measure is described in the following

section.

3.4.3 Redundant non-hit neuron reduction

A non-hit neuron is a neuron which has not become the BMU for any of the vectors in

the dataset. As a result, non-hit neurons do not accumulate any quantisation errors. As

a result, the QE comparison approach used for the hit neuron reduction algorithm cannot

be used for non-hit neurons.

Since the only property of a non-hit neuron is its weight vector, a redundancy measure

has to be created around neuron distances. Since the purpose of non-hit neurons is to

create spacing between hit neurons, it can be assumed that redundant non-hit neurons

would be arranged in clusters in the final map. In order to determine the redundant non-

hit neurons, the radius of the redundant neuron clusters has to be calculated. The radius

is calculated during the redundant hit neuron reduction phase and is referred to as the

Redundancy Index (RI). The redundancy index is calculated as the average distance of the

removed neurons and their best matching counterparts, which is given by equation (3.5).

RI = eSF ×
∑ |wBMU − wredundant|

NR ×D
(3.5)

CHAPTER 3. DISTRIBUTED SELF-ORGANISING MAPS 44

Algorithm 1 Redundant hit neuron reduction algorithm

1:

2: Let P = All partitioned networks
3: d = 0, n = 0
4: for all partition Pi ∈ P do
5: for all hit neuron ni,j ∈ Pi do
6: for all partition Pk ∈ P where i 6= k do
7: nk,l = GetBMU(wi,j , k)

8: E
i,j
k,l =

∑Ni,j

x=0 |wk,l − Ii,j [x] |
9: E

k,l
i,j =

∑Nk,l

x=0 |wi,j − Ik,l [x] |
10: if Ei,j > E

i,j
k,l then

11: Ik,l = Ik,l + Ii,j
12: remove ni,j

13: d = d+ |wi,j − wk,l|
14: n = n+ 1
15: else
16: if Ek,l > E

k,l
i,j then

17: Ii,j = Ik,l + Ii,j
18: remove nk,l

19: d = d+ |wk,l − wi,j |
20: n = n+ 1
21: else
22: EC = Ei,j + Ek,l

23: E1 = Ei,j + E
k,l
i,j

24: E2 = Ek,l + E
i,j
k,l

25: if EC > E1 & E1 < E2 then
26: Ii,j = Ik,l + Ii,j
27: remove nk,l

28: d = d+ |wi,j − wk,l|
29: n = n+ 1
30: else if EC > E2 & E2 < E1 then
31: Ik,l = Ik,l + Ii,j
32: remove ni,j

33: d = d+ |wi,j − wk,l|
34: n = n+ 1
35: end if
36: end if
37: end if
38: end for
39: end for
40: end for
41: return eSF×d

D×n

CHAPTER 3. DISTRIBUTED SELF-ORGANISING MAPS 45

where SF is the spread factor, wredundant is the weight vector of each redundant neuron

and wBMU is the weight vector of each corresponding best matching unit, NR is the

total number of neurons removed due to redundancy and D is the number of dimensions.

The redundancy index is normalised by the number of dimensions in order to compare

the level of redundancies across datasets. Algorithm 2 describes the redundant non-hit

neuron reduction process.

Algorithm 2 Redundant non-hit neuron reduction algorithm

Require: RI =Redundancy Index
1: Let P = All partitioned networks
2: for all partition Pi ∈ P do
3: for all neuron ni,j ∈ Pi do
4: if IsNonHitNeuron(ni,j) then
5: for all partition Pk ∈ P such that i 6= k do
6: for all neuron nk,l ∈ Pk do
7: if IsNonHitNeuron(nk,l) then
8: if |wi,j −wk,l| ≤ (RI ×D) then
9: remove nk,l

10: end if
11: end if
12: end for
13: end for
14: end if
15: end for
16: end for

At the end of the redundancy reduction phase, partition networks are stripped of

redundant neurons and the input vectors that used to be mapped to those redundant neu-

rons are allocated to the preserved neurons. As a result, the number of vectors presented

to Sammon’s projection is reduced which in turn improves the efficiency of the overall

process.

3.5 Merging

The output of the redundancy reduction phase is a collection of neurons in their own

partitions. However, in order to provide a holistic view of the input dataset, the neurons

have to be combined to form a single map. Having the input represented in a single

map has significant advantages over multiple smaller maps. The merged map has to be

equivalent to training an SOM on the entire input dataset where the neurons are arranged

according to their distance relationships in the high dimensional space.

CHAPTER 3. DISTRIBUTED SELF-ORGANISING MAPS 46

Since the partition networks have undergone the expensive learning process, the pur-

pose of this phase is the topographic arrangement of the neurons. It is possible to use

a learning technique such as the SOM for the topographic projection. The SOM would

create a topographic map using the weight vectors of the neurons as input. This would

create bias towards averages since the weight vector of a neuron is an approximate average

of the vectors mapped onto that neuron. As a result, a dimensionality reduction technique

without incorporated learning is used for merging the neurons.

Sammon’s projection (Sammon Jr, 1969) is used to create the output map due to

its ability to arrange the neurons in the partition networks to form a single map topo-

logically. Using Sammon’s projection to project the neurons in an SOM has been pre-

sented as a means of improving the visualisation of the SOM in Trnen et al. (1999) and

Demartines and Hrault (1997).

The key advantages of Sammon’s projection over the SOM for creating a topographic

map for the output of the redundancy reduction process are the absence of learning and

the better visualisation features of Sammon’s projection. These features are described

below.

1. Absence of learning – Sammon’s non-linear algorithm is a projection technique which

does not involve any learning. Therefore, the knowledge accumulated (as weight vec-

tors) during the training phase is preserved during merging. In contrast, a neural

network algorithm would create new neurons based on the already trained input

neurons. This bias towards the averages of the input vectors could result in limited

representation, as discussed in Koskela et al. (1997). In addition, the number of

input vectors available for ensuring quality could be insufficient to achieve conver-

gence.

2. Better visualisation – Sammon’s projection arranges the vectors in a continuous

space whereas SOM based and GSOM based neural networks use a discrete space.

A continuous space has the ability to arrange neighbours of a particular network

arbitrarily, whereas a discrete space has limitations such as having equally close

neighbours. The visualisation advantages of Sammon’s projection are discussed in

CHAPTER 3. DISTRIBUTED SELF-ORGANISING MAPS 47

Trnen et al. (1999). The main advantage is that Sammon’s projection can visu-

ally show the inter neuronal distances whereas SOM based techniques require other

methods such as U-Matrix (Ultsch, 2003).

3.6 Evaluation of the Distributed GSOM

The performance of the Distributed GSOM was measured for efficiency and accuracy. In

order to consider a good cross section of the types of data, three datasets were used for the

experiments. The datasets and their details are described in the following section. The

scalability of the algorithm was evaluated with experiments for different partition config-

urations for each dataset. Each experiment was conducted five times for each partition

configuration and the mean and the standard deviation statistics were calculated.

The experiment set up was in a simulated parallel computing platform using a multi

core computer. Each computing node was assigned 2 Gigabytes of RAM and 2 GHz

processing power.

3.6.1 Datasets

Wisconsin Breast Cancer (WBC) Dataset

The WBC dataset (Wolberg et al., 1992) is one of the most popular benchmark datasets

used to measure the accuracy of classification and clustering algorithms (Wang, 2009).

Since the dataset has clear classes, the WBC dataset was primarily used to evaluate the

accuracy of the Distributed GSOM. The dataset contained 683 vectors from two classes.

Each vector consisted of 9 attributes describing the features of the cells. The distribution

of the classes was 444 records from benign cells and 239 records from malignant cells.

Since the size of the dataset was small, only two and four partitions were used in the

parallel training phase. The WBC dataset has been widely used to benchmark clustering

algorithms, as given in Pantazi et al. (2002) and Chen et al. (2011).

Sydney Morning Herald (SMH) News Archive

The SMH news archive contains 19316 news articles published in the Sydney Morning

Herald in 2009 (Matharage et al., 2013). The main classes in the dataset were considered

CHAPTER 3. DISTRIBUTED SELF-ORGANISING MAPS 48

to be the categories of the articles, namely, ‘National’, ‘Sport’, ‘World’ and ‘Entertain-

ment’ where the record percentages were 41%, 29%, 18% and 12%, respectively. Each

article was represented as a vector with 3526 attributes using term frequency and inverse

document frequency (TFIDF). The generated dataset with 19,316 records each containing

3526 attributes was a sparse dataset which was considered a moderately large analysis

task. The SMH dataset was used to evaluate the performance of the Distributed GSOM

for large sparse datasets. Experiments were conducted with 4, 8, 12 and 16 partitions

in order to evaluate the scalability of the algorithm. Efficiency and accuracy results are

analysed for 4, 8 and 16 partition configurations for brevity.

UCI CoverType Dataset

The CoverType dataset from the UCI machine learning repository contains 581,012 records

from seven different forest cover types (Blackard et al., 1998). Each record consists of 54

attributes generated from cartographic variables. The distribution of the seven classes

was 36.5%, 48.8%, 6.2%, 0.5%, 1.6%, 2.9% and 3.5% as percentages of the total number

of records. Due to the large size of the dataset, experiments were run for 8, 12, 16,

20, 24, 28 and 32 partitions. The classification accuracy for the CoverType dataset has

been in the range of 70% according to Blackard and Dean (1999). Although the cluster

separation is not as clear as the WBC dataset, the CoverType dataset provided a good

basis for evaluating the Distributed GSOM on large datasets. The clustering accuracy was

evaluated for the largest two clusters consisting of 85.3% of the total records. Efficiency

and accuracy results are analysed for 8, 16 and 32 partition configurations for brevity.

3.6.2 Redundancy Statistics

The effectiveness of the redundancy reduction algorithm was evaluated using the number of

neurons before and after the redundancy reduction process. Table 3.1 shows the statistics

for the SMH dataset. The total number of neurons created in partition networks increases

with the number of partitions. Therefore, the level of redundancy should also increase.

Results show that the redundancy reduction process removes redundant neurons to create

similar sized outputs. The redundancy reduction percentage is calculated as the number

of redundant neurons relative to the total number of neurons in the partitioned networks.

CHAPTER 3. DISTRIBUTED SELF-ORGANISING MAPS 49

Table 3.1: Redundancy reduction (RR) statistics for SMH dataset

Partitions Neuron count before RR Redundant neuron % RI

4 random 295 44.9% 0.0074

8 random 339 44.8% 0.0074

16 random 414 45.7% 0.0075

Class 303 5.5% 0.0122

Table 3.2: Redundancy reduction(RR) statistics for CoverType dataset

Partitions Neuron count before RR Redundant neuron % RI

8 random 14,421 26.3% 0.0110

16 random 19,425 38.1% 0.0126

32 random 26,450 52.8% 0.0154

Class 15,028 41.3% 0.0149

The percentage reduction of neurons is 53%, 61% and 66%, respectively, for 4, 8 and 16

partitions with random partitioning.

Class based partitioning, on the other hand, results in fewer redundant neurons due

to the distribution of classes among the partitions. The percentage reduction of neurons

is 13%, which is significantly lower than the number of neurons removed with random

partitioning.

Similar results can be observed for the CoverType dataset as shown in Table 3.2. It can

be observed that class based partitioning has resulted in a significant number of neuron

removals. Due to the skewed distribution of the classes, multiple partitions were created

for the two largest classes. As a result, the level of redundancy increases, hence the higher

number of neuron removals.

A detailed discussion on the implications of random and class based partitioning are

presented in section 3.6.5.

3.6.3 Efficiency Analysis

The efficiency of the algorithm was evaluated by comparing the total time consumption for

processing the dataset. Due to its smaller size, the time consumption for the WBC dataset

is in the order of two seconds. On the other hand, due to the higher number of records,

SMH and CoverType datasets were used to benchmark the Distributed GSOM against

the serial GSOM. Different partition configurations were used to assess the scalability of

the algorithm which will be discussed in section 3.6.4.

CHAPTER 3. DISTRIBUTED SELF-ORGANISING MAPS 50

Figure 3.3: Total time consumption of serial GSOM and Distributed GSOM for the SMH
dataset. (a) Time consumption of the different stages of the Distributed GSOM algorithm;
(b) Time consumption of the Distributed GSOM vs the serial GSOM.

Figure 3.3 shows the time consumption comparison for serial GSOM and Distributed

GSOM for the SMH dataset. Average time consumption of the five test runs was used to

create the charts. The breakdown of the time consumption of the Distributed GSOM is

shown in chart (a). The chart shows a significant reduction in the time consumption of

the partition network training process as the number of partitions increase. This effect

can be attributed to fewer vectors being used as input to the partition network with a

higher number of partitions.

The time consumption values of the redundancy reduction process and Sammon’s pro-

jection are considerably lower than that of the partition training phase. The difference

can be attributed to the high number of dimensions and the low number of neurons in

the output. Since the SMH dataset consists of 3526 attributes, the time consumption of

the partition network training process is comparatively high. The redundancy reduction

statistics are shown in Table 3.1 which displays the size of the input to Sammon’s pro-

jection. As the number of neurons in the output is consistent, the time consumption of

Sammon’s projection is approximately constant.

Chart (b) in Figure 3.3 depicts the time consumption of the Distributed GSOM and the

serial GSOM. Since the serial GSOM does not scale with the number of computing nodes,

CHAPTER 3. DISTRIBUTED SELF-ORGANISING MAPS 51

the time consumption is constant. The chart demonstrates that the Distributed GSOM is

several orders more efficient than the serial GSOM. The average time consumption of the

Distributed GSOM was 7.9%, 3% and 1% of the average time consumption of the serial

GSOM algorithm for 4, 8 and 16 partitions, respectively. Thus the Distributed GSOM

would result in significantly less turnaround time in exploratory data analysis tasks.

The time consumption values for the CoverType dataset are shown in Figure 3.4. The

time consumption breakdown of the different stages of the Distributed GSOM algorithm

are shown in chart (a). Compared to the SMH dataset, some key differences can be

observed. The time consumption of Sammon’s projection is greater than that of partition

network training.

The reason for the difference in time consumption can be explained using the redun-

dancy reduction statistics given in Table 3.2. Since the dense CoverType dataset consists

of only 54 attributes which is significantly lower than the 3526 attributes of the sparse

SMH dataset, the time consumption of the partition network training phase is lower. The

input for Sammon’s projection on the other hand contains a high number of neurons, in

the order of 10,000. The time complexity of Sammon’s projection is O(n2) on the size

of the input. The time consumption of Sammon’s projection therefore is high due to the

higher number of neurons created.

Chart (b) in Fig. 3.4 shows the time consumption comparison of the Distributed GSOM

and the serial GSOM. The total average time consumption figures of the Distributed

GSOM, as a percentage of the average time consumption for the serial GSOM, were 25%,

22% and 18% for 8, 16 and 32 partitions, respectively. Although creating more than 32

partitions could yield in higher efficiency levels, the maximum number of partitions was

set to 32 as the simulated environment had a maximum of 32 nodes.

It is evident from the efficiency analysis that the Distributed GSOM performs sig-

nificantly faster than its serial counterpart. As a result, the Distributed GSOM would

decrease the time consumption of the data processing stage of exploratory data analysis

thus increasing the efficiency of the entire process. The Distributed GSOM would enable

analysts to perform a deeper analysis of data since the turnaround time is shortened.

CHAPTER 3. DISTRIBUTED SELF-ORGANISING MAPS 52

Figure 3.4: Total time consumption of serial GSOM and Distributed GSOM for the Cover-
Type dataset. (a) Time consumption of the different stages of the Distributed GSOM
algorithm; (b) Time consumption of the Distributed GSOM vs the serial GSOM.

3.6.4 Scalability analysis

Figure 3.3 and Figure 3.4 also show that, with the increase of resources, the Distributed

GSOM handles the computational load gracefully. The total time consumption continues

to decrease as the number of partitions increases. However, depending the number of

records and the attributes in a dataset, there could be restrictions to the maximum number

of partitions. In situations where accuracy could be compromised for efficiency, the number

of partitions could be increased.

3.6.5 Accuracy analysis

Although the primary goal of the Distributed GSOM is to provide an efficient means of

processing data, the accuracy of the analysis would have to be comparable to that of

the GSOM. In this section, clustering accuracy of the Distributed GSOM is benchmarked

against the GSOM algorithm. In addition, the effects of different partition methods will

also be discussed.

CHAPTER 3. DISTRIBUTED SELF-ORGANISING MAPS 53

Distributed GSOM vs serial GSOM

The accuracy of the algorithms was compared using the clustering accuracy measure, the

F-measure. The WBC dataset was used as the basis for comparing accuracy since it

has been widely used for evaluating clustering algorithms. Results for the SMH and the

CoverType datasets are also listed in order to show that the Distributed GSOM is capable

of delivering similar levels of accuracy to the GSOM.

The F-measure values for the two classes in the WBC dataset are shown in Table 3.3.

Table 3.3: F-measure and the standard deviation (σ) of the F-measure for the WBC
dataset for benign (B) and malignant (M) classes

Technique
F-measure σ (F-measure)

B M Overall B M Overall

GSOM 0.9171 0.9323 0.9256 0.0096 0.0079 0.0084

Random Partitioning, 2 partitions 0.9204 0.9358 0.9290 0.0058 0.0085 0.0073

Random Partitioning, 4 partitions 0.9134 0.9294 0.9222 0.0199 0.0166 0.0178

Class based partitioning 0.9166 0.9433 0.9321 0.0054 0.0064 0.0056

The results show that the Distributed GSOM has higher levels of accuracy than the

GSOM for most of the partition configurations, with the exception being random par-

titioning with four partitions. The reason for these higher levels of accuracy could be

attributed to the better topology preservation of Sammon’s projection compared to the

GSOM. Higher levels of topology preservation would lead to better accuracies in cluster-

ing. The standard deviation values demonstrate that the Distributed GSOM maintains a

comparable level of stability against the GSOM. Therefore, it could be concluded that the

Distributed GSOM delivers similar levels of accuracy to the GSOM.

The minor decrease in accuracy in the case of four random partitions could be at-

tributed to the decreased number of records in each partition. The number of input vectors

have to be sufficient to achieve convergence in SOM based data analysis. A smaller num-

ber of input vectors could be compensated for by increasing the number of iterations in

the training phase. In order to evaluate the Distributed GSOM’s performance in standard

conditions, the number of iterations was the same across all experiments. As a result, the

lower number of records in the case of four partitions could have resulted in the minor

decrease in accuracy and the increase in the standard deviation.

CHAPTER 3. DISTRIBUTED SELF-ORGANISING MAPS 54

Table 3.4: F-measure and the standard deviation (σ) of the F-measure for the SMH
dataset for different number of partitions (P) and partitioning methods, random (R) and
class based. The classes are news (N), world (W), sport (S) and entertainment (E).

Method
F-Measure σ(F-Measure)

N W S E Avg. N W S E Avg.

GSOM 0.808 0.704 0.647 0.924 0.804 0.006 0.012 0.026 0.003 0.005

R, 4P 0.798 0.700 0.612 0.938 0.795 0.029 0.027 0.027 0.005 0.010

R, 8P 0.784 0.697 0.564 0.930 0.784 0.009 0.028 0.049 0.006 0.011

R, 16P 0.766 0.690 0.536 0.923 0.768 0.009 0.014 0.032 0.007 0.003

Class 0.893 0.853 0.821 0.971 0.898 0.002 0.005 0.003 0.002 0.002

Similar observations were made in the case of the SMH dataset as summarised in

Table 3.4. It should be noted that the 19,316 records in the SMH dataset, which has

3526 attributes, poses a challenge for the convergence of the network. As a rule of thumb,

Deboeck and Kohonen (1998) suggest that the number of neurons in the network has to

be greater than ten times the number of attributes for good training. However, due to the

sparsity of the data as well as the selected spread factor, the average number of neurons

in the serial GSOM analysis was 176. As a result, the deviations in the F-measure in

different partition configurations tend to be higher as the number of partitions increases.

Table 3.5 shows the accuracy results for the CoverType dataset which shows similar

accuracy levels to the WBC dataset. All results for different partition configurations

result in higher levels of accuracy compared to the serial algorithm. The primary reason

for higher levels of accuracy for the CoverType dataset and lower levels of accuracy for the

SMH dataset could be that there are fewer input records per partition. As the number of

attributes increases, the number of input records required for good training of the network

increases. Therefore, finding a healthy balance between the number of partitions and the

number of input records is important.

Random partitioning vs class based partitioning

F-measure results show that the difference between random partitioning and class based

partitioning for WBC and CoverType is nominal. Both datasets are dense and the number

of records relative to the number of attributes is low. As a result, the partitions would

have had a sufficient number of records to converge the partition networks. The F-measure

values therefore do not deviate significantly between these two methods.

CHAPTER 3. DISTRIBUTED SELF-ORGANISING MAPS 55

Figure 3.5: Maps generated by random and class based partitioning. (a), (b) Partition
network for random partitioning. (c) Output of the Distributed GSOM for random parti-
tioning. (d) Partition network for the malignant (M) class. (e) Partition network for the
benign (B) class. (f) Distributed GSOM output for class based partitioning.

CHAPTER 3. DISTRIBUTED SELF-ORGANISING MAPS 56

Table 3.5: F-measure and the standard deviation (σ) of the F-measure for the CoverType
dataset for different number of partitions (P) and methods (M)

Technique
F-measure σ(F-measure)

1 2 Overall 1 2 Overall

GSOM 0.6554 0.7781 0.7278 0.0104 0.0102 0.0072

Random, 8P 0.7548 0.8243 0.7953 0.0015 0.0008 0.0009

Random, 16P 0.7519 0.8224 0.7930 0.0019 0.0018 0.0018

Random, 32P 0.7412 0.8175 0.7860 0.0012 0.0013 0.0011

Class based 0.7492 0.8120 0.7851 0.0019 0.0005 0.0006

However, class based partitioning has yielded higher accuracy levels than both the Dis-

tributed GSOM with random partitioning and the serial GSOM. The increase in accuracy

could be attributed to the lower number of records relative to the number of attributes.

As a result, when the partitions are made up of records in a single class, each partition

network would train to be specialised for each class, resulting in lower levels of distor-

tion. Random partitioning, on the other hand, would struggle to converge the partition

networks due to the high number of attributes.

3.6.6 Evaluation of visualisation properties

The wide application of the SOM in exploratory data analysis is primarily due to its

visualisation properties. The creation of the two or three dimensional mapping of the

dataset allows users to observe and isolate patterns within data. Sammon’s projection,

used in the Distributed GSOM, creates a similar topographic visualisation of the data.

The primary difference between the maps created by the SOM and Sammon’s projection

is the layout. The SOM creates a discrete map whereas Sammon’s projection creates a

continuous map.

Figure 3.5 shows the maps created for the WBC dataset for random and class based

partitioning. The map generated by the random partitioning approach shows the same

topology as the map generated by class based partitioning. It can be noted that the two

partition networks in random partitioning resemble the shape of Sammon’s projection

whereas the two class based partitions parallel the two class components of the map. The

distribution of the non-hit nodes are shown in gray.

CHAPTER 3. DISTRIBUTED SELF-ORGANISING MAPS 57

Figure 3.6: The GSOM and Sammon’s projection of the GSOM of the WBC dataset. (a)
the GSOM. (b) Sammon’s projection of the GSOM

CHAPTER 3. DISTRIBUTED SELF-ORGANISING MAPS 58

Figure 3.6 shows the GSOM and Sammon’s projection of the GSOM for the same

dataset. It is evident that the Distributed GSOM produces a topologically similar map

with a clear separation of the two classes. The effect of the continuous map is also visible

where Sammon’s projection clearly separates the two classes into two concentrated masses.

Thus the need for additional enhancements such as the U-Matrix is avoided.

3.7 Discussion

In this chapter, the Distributed GSOM algorithm is introduced as a novel method of

utilising parallel processes to efficiently process large datasets using SOM based learning

techniques. The results show a significant reduction in processing times compared to the

traditional SOM. In some cases, the time consumption of the Distributed GSOM was 1%

of the time consumption of the traditional SOM, which quantifies to a 10,000% increase

in efficiency. The efficiency can be increased further with more parallel processes.

With the high levels of performance, the Distributed GSOM does not significantly

compromise the clustering accuracy. The reduction in accuracy is minor across different

datasets, and in some instances, the Distributed GSOM delivers higher levels of accu-

racy. In addition, the visualisation advantages of the SOM are preserved in Sammon’s

projection. Furthermore, Sammon’s projection visualises the inter-node distances in a

continuous space which integrates the function of the U-Matrix into the projection. The

continuous space visualisation of the Distributed GSOM is more useful for exploratory

data analysis.

Results show that difference between the clustering accuracy of random and class based

partitioning is minor. Therefore, in situations where class information is unavailable, the

Distributed GSOM would perform well with random partitioning.

The outcomes of the experiments described in this chapter are as follows.

1. A novel distributed memory algorithm has been proposed with data parallelism to

process large volumes of data with SOM techniques efficiently.

2. The data partitioning technique has minimal impact on the quality of the output.

3. A new measure was developed to measure the redundancy between two SOMs called

the redundancy index.

CHAPTER 3. DISTRIBUTED SELF-ORGANISING MAPS 59

4. Two redundancy reduction algorithms were proposed, for hit neurons and non-hit

neurons.

5. The efficiency of the new algorithms was evaluated by comparing the total time

consumption against the serial GSOM. The time consumption of the Distributed

GSOM was 1% of that of the serial GSOM in the best case.

6. The partitioning method does not have a significant impact on the accuracy for most

datasets.

7. Clusering accuracy comparison of the Distributed GSOM and the traditional GSOM

shows the Distributed GSOM outperforms the traditional GSOM for some datasets

while the loss of accuracy is minor in the others.

The next chapter discusses the implications of using SOMs and GSOMs as the learning

technique; it highlights the advantage of a dynamically structured SOM, introduces a new

redundancy reduction method and proposes a new model for incremental data integration

to the Distributed GSOM.

Chapter 4

A Deeper Look into the

Distributed GSOM

This chapter presents a detailed analysis of the Distributed GSOM algorithm. The main

focus of the discussion is to compare, contrast and evaluate the SOM and the GSOM as

the learning engine which is then used as the base to propose a new redundancy reduction

method, and to parent a novel incremental model integration model for the Distributed

GSOM algorithm.

The distributed algorithm proposed in the previous chapter can use either the SOM

or the GSOM algorithm as the learning technique. The implications of using the SOM

and te GSOM as the learning technique is discussed briefly in Chapter 3. This chapter

discusses the impact of the SOM and the GSOM in detail and aims to demonstrate that

the GSOM adds more value to the analysis process.

The new redundancy reduction algorithm proposed in this chapter improves the scal-

ability of the Distributed GSOM algorithm. The new algorithm is faster than the redun-

dancy reduction algorithm proposed in 3.4. A detailed analysis of the efficiency and the

accuracy of the two redundancy reduction algorithms is presented in the following sections.

This chapter also presents a new model for incrementally integrating data into the

Distributed GSOM, which enhances the applicability of the algorithm in the domain of

exploratory data analysis. The new model continuously integrates new data into an exist-

ing network in an efficient manner. This adds a powerful feature to SOM based exploratory

data analysis since new maps have to be generated only for the new data. The effectiveness

of the model is demonstrated using a two dimensional dataset.

60

CHAPTER 4. A DEEPER LOOK 61

The research objectives addressed in this chapter are listed below.

1. To compare, contrast and evaluate the SOM and the GSOM as the learning technique

for distributed learning, demonstrating the advantage of the GSOM.

2. To develop a new redundancy reduction method by pruning across the partition

networks and to compare it with the redundancy reduction method detailed in 3.4.

3. To evaluate and compare the efficiency and the accuracy of two redundancy reduction

methods.

4. To develop and demonstrate a model for incrementally integrating new data into

the Distributed GSOM efficiently, thus extending the exploratory analytical value of

SOMs in general.

4.1 SOM vs GSOM for exploratory data analysis

The Distributed GSOM algorithm has the ability to use either the SOM or the GSOM

as the learning technique in the training phase. Although both the SOM and the GSOM

use the same learning principle, the structure and the training process have significant

differences, as discussed in 2.2 and 2.3. In this section, the SOM and the GSOM are

evaluated for their suitability for exploratory data analysis using the distributed approach

proposed in Chapter 3. The two methods are compared for efficiency and accuracy using

WBC, SMH and CoverType datasets.

4.1.1 SOM for data exploration

The most common lattice structure used for the SOM is a rectangular lattice. The SOM

is initialised by defining the dimensions of the map, namely the width and the height

of the network. Since the ultimate objective of the SOM is to create a low dimensional

representation of the input dataset, the shape (the width to height ratio) of the map should

ideally reflect the shape of the dataset. If the shape of the dataset is known, it is possible

to specify a shape for the SOM that fits the dataset. However, for most exploratory data

analysis applications, the shape information is unknown.

In order to demonstrate the effects caused by the rigidity of the SOM structure, exper-

iments were conducted using an artificial two dimensional dataset with different shapes.

CHAPTER 4. A DEEPER LOOK 62

The experiments transformed a square shaped dataset with 1,000 two dimensional vectors

incrementally into a rectangular shaped dataset. For each transformed instance, an SOM

was trained with the same specification, a 13 × 13 square shaped SOM with a learning

rate of 0.2 trained for 1,000 iterations. The number of neurons in each SOM, N , was

determined by equation 3.2 in Chapter 3.

N = 5×
√
1000

N ≈ 159N ≈ 13× 13

Figure 4.1 shows the outcome of the experiment. It can be observed that when the

shape of the dataset closely resembles to the square shape of the SOM, the network has

low levels of distortions as in the case of (a), (b). However, in (c), the structure of the SOM

is starting to compress and distortions start to appear. The distortions further increase in

(d) and (e) which also creates bias towards the vectors at the centre of the dataset. The

neuron density at the centre of the map is higher than the neuron density at the borders.

This causes over representation of vectors at the centre and under representation at the

borders.

In addition, for all the experiments, the border neurons are adapted towards the centre,

which creates under representation of the vectors at the borders. As a result, input vectors

at the boundary of the dataset create higher quantisation errors. These effects are further

detailed in Kohonen (2001).

In data exploration, where shape information is mostly unavailable, the possibility of

distortions is high for the SOM. In the next section, the same dataset is processed using

the GSOM and compared with the SOM.

4.1.2 GSOM for data exploration

Section 2.3 describes the GSOM algorithm in detail. In summary, the GSOM starts with

four neurons and creates additional neurons in order to accommodate the entire input

dataset. New neurons are created only if an existing neuron accumulates a quantisation

error greater than the growth threshold. Input vectors which generated the quantisation

error are then distributed among the newly created neurons. Therefore, the GSOM has

CHAPTER 4. A DEEPER LOOK 63

Figure 4.1: How the SOM accommodates differently shaped datasets

CHAPTER 4. A DEEPER LOOK 64

the ability to adapt the structure of its map to match the input dataset. Figure 4.2 shows

the results using a GSOM for the same dataset used in the previous section.

Figure 4.2 indicates that the GSOM creates an even distribution of neurons compared

to the SOM. The main reason for the even distribution of the neurons can be attributed to

the growth technique of the GSOM. If the input vectors are densely packed, the neurons

in the dense area would generate higher quantisation errors. As a result, such neurons

would exceed the growth threshold faster and create more neurons in order to represent

the dense set of vectors.

Another difference of the GSOM has to do with how vectors at the dataset boundary

are represented in the map. Due to the dynamic nature of the structure of the GSOM,

boundary neurons are able to distance themselves from the neurons at the centre of the map

by growing outwards from the centre. With a higher distance from the centre, boundary

neurons are able to resist neighbourhood adaptation. When compared with the output of

the SOM, it is evident that the GSOM map spreads closer to the border which results in

better representation of the data.

The GSOM neuron location plot shows that the GSOM’s shape is a rotated repre-

sentation of the actual dataset. Rotation is caused by the random initialisation of the

neurons. The maps show that the actual shapes of the GSOMs are similar to the shape of

the dataset. Th ability of the GSOM to take the shape of the dataset creates an additional

visualisation advantage for the analysts by showing the structure of the dataset.

Table 4.1 shows the number of neurons and the total quantisation error values for the

SOM and the GSOM for the same datasets described above. For each SOM, a learning

rate of 0.2 was used and over 1,000 iterations were processed on the dataset.

The GSOMs were trained using a spread factor of 0.15, which generated 171 neurons

for dataset (a). Fifty growing iterations and 950 smoothing iterations were used for the

GSOM in order to create similar circumstances to that of the SOM. Both algorithms

employed a learning rate of 0.2.

It can be observed that when the shape of the dataset matches the shape of the

SOM, the total quantisation error is slightly lower than that of the GSOM in the case

of dataset (a). However, the GSOM tends to generate a lower quantisation error as the

shape of the dataset increasingly becomes rectangular for datasets (b), (c) and (d). In the

case of dataset (e), the SOM creates a lower quantisation error due to over representation.

CHAPTER 4. A DEEPER LOOK 65

Figure 4.2: How the GSOM accommodates differently shaped datasets

Table 4.1: Neuron count and quantisation error (QE) values for the rectangular dataset
for the SOM and the GSOM

SOM GSOM

Neuron count QE Neuron count QE

Dataset (a) 169 34.2402 171 34.2709

Dataset (b) 169 30.4347 167 28.8775

Dataset (c) 169 27.3300 163 27.3113

Dataset (d) 169 22.9986 140 22.9528

Dataset (e) 169 16.0397 122 16.1538

CHAPTER 4. A DEEPER LOOK 66

However, the performance advantage of the GSOM with approximately 30% fewer neurons

outweighs the 0.7% increase in the total quantisation error. It is also evident that, as the

span of the dataset decreases, the GSOM creates fewer neurons which is an advantage

when shape information is unavailable.

The next section describes the implications of using the SOM and the GSOM as the

learning technique for the distributed algorithm proposed in this thesis.

4.2 Comparison of the SOM and the GSOM for data explo-

ration using the distributed algorithm

The limitations of the SOM in exploratory data analysis is evident when the shape of the

dataset does not match the shape of the SOM. In addition, the SOM tends to create incon-

sistencies in the representation of the input by over representing low density regions and

under representing the high density regions, as given in Haykin (1994) and Su and Chang

(2000). However, the GSOM is able to overcome this limitation by dynamically adapting

the network to match the spread of the neurons to suit the density of the input.

Figure 4.3: The dataset used to compare the SOM and the GSOM

In order to demonstrate the effects of the SOM and the GSOM in the context of the

distributed SOM approach discussed in Chapter 3, a varying density dataset was used.

The two dimensional artificial dataset used for the experiments is shown in Figure 4.3.

The dataset is divided into four quarters which would form the partitions. Each quarter

CHAPTER 4. A DEEPER LOOK 67

Table 4.2: Neuron count and quantisation error (QE) values for the four data partitions
for the SOM and the GSOM. Additionally, the merged result is also shown.

SOM GSOM

Neuron count QE Neuron count QE

Q1 169 9.3549 145 8.6814

Q2 169 12.05 130 12.0436

Q3 169 15.447 174 13.0595

Q4 169 17.4016 167 14.6668

Merged 676 54.0196 616 40.9787

contained 1000 two dimensional vectors. Q1 is a Gaussian distribution where the vector

density is very high at the centre. Records in Q2 are arranged in an inverse Gaussian

distribution where the vector density is higher closer to the borders. Q3 contains a square

dataset having a higher density along the line, y = 0.75. The records in Q4 are evenly

distributed in xǫ[0, 0.5] and yǫ[0.5, 0.75].

The experiment was conducted as two exercises where the distributed algorithm was

executed using SOMs and GSOMs separately. The steps in the experiment included cre-

ating partitions for the four quarters, training an SOM and a GSOM on each partition,

redundancy reduction and topographic arrangement of the neurons using Sammon’s pro-

jection. Since each partition contained 1000 records, the size of the SOMs was set to 13

× 13.

The GSOMs were trained with a spread factor of 0.15 which created similar levels of

detail in the GSOMs for the dataset with the even distribution, Q4. Table 4.2 shows the

outcomes of the SOM and GSOM for the partitions. It can be observed that the GSOM

creates a lower total quantisation error for all the partitions. The GSOM has created

fewer total neurons, which has resulted in less time consumption for Sammon’s projection

compared to the SOM. The total quantisation error for the merged network is lower than

the summation of the errors of the partition networks due to partition boundary nodes

being assigned to neurons from other partition networks.

The visualisation of the SOM partition networks and the resulting Sammon’s projection

are shown in Figure 4.4. It can be observed that the visualisation of the irregular shapes

are distorted by the SOMs for Q1, Q2 and Q3 datasets. The distortions are carried forward

to Sammon’s projection resulting in a higher quantisation error.

CHAPTER 4. A DEEPER LOOK 68

Figure 4.4: Partition networks of the Distributed SOM and the final output

Figure 4.5: Partition networks of the Distributed GSOM and the final output

Figure 4.5 shows the output created using GSOMs for the distributed algorithm. The

GSOM output more closely resembles the actual datasets for all four partitions. The

output of Sammon’s projection has fewer distortions and depicts a structure similar to

the actual dataset. Due to the lower levels of distortion, the GSOM output creates a

significantly lower quantisation error compared to the SOM.

The total quantisation error of an SOM or a GSOM indicates the degree of mismatch

between the input dataset and the weight vectors of the neurons. Observing the statistics

shown in Table 4.2, the GSOM creates a 24% lower total quantisation error than the SOM.

CHAPTER 4. A DEEPER LOOK 69

Figure 4.6: Time consumption of Sammon’s projection for the Distributed SOM and the
Distributed GSOM

Therefore, the GSOM creates a better match for the input dataset than the SOM. Hence,

the GSOM creates a more faithful representation of the input dataset.

Furthermore, the GSOM creates fewer neurons than the SOM which in turn reduces

the size of the input presented to Sammon’s projection. This results in faster performance

of the overall algorithm when GSOMs are used as the learning technique. Figure 4.6 shows

the time consumption of Sammon’s projection process for the Distributed SOM and the

Distributed GSOM. It can be observed that the time consumption of Sammon’s projection

of the Distributed GSOM is 16.8% less than that of the Distributed SOM which improves

the efficiency of the overall process.

In real-world exploratory data analysis applications, datasets seldom have regular

shapes and even distributions. Specifying the shape of the SOM to match the dataset

may be impossible for large scale analysis tasks. Experiments show that GSOMs can

better accommodate irregular, varying density datasets over the SOM. Hence, the Dis-

tributed GSOM will create a more faithful representation of the dataset compared to the

Distributed SOM. In addition, the GSOM creates fewer neurons than the SOM which re-

sults in lower time consumption for Sammon’s projection. Therefore, it can be concluded

that the GSOM is the most appropriate learning technique for the distributed algorithm

proposed in Chapter 3 and appropriately named, the Distributed GSOM.

4.3 Redundancy reduction

Chapter 3 discusses how neurons in the partition networks trained in parallel may repre-

sent the same set of vectors if vectors within the same class are distributed across different

CHAPTER 4. A DEEPER LOOK 70

partitions. Such neurons are considered redundant and would be removed by the redun-

dancy reduction process. The approach suggested in 3.4 identifies redundant neurons by

comparing the quantisation errors created for subsets of input vectors. If a hit neuron is

identified as redundant, its hit vectors are assigned to the BMU for the redundant neu-

ron. As a result, as the redundancy reduction process progresses, the number of vectors

assigned to the preserved neurons increases.

With the accumulation of input vectors, fewer redundant neurons are identified as the

redundancy reduction process progresses. This effect is caused by the neurons becom-

ing increasingly specialised on the input vectors mapped onto the neurons. With a higher

number of partitions, the rate of accumulation increases since overall redundancy increases

as the number of partitions increase. As a consequence of the accumulation, the number of

neurons presented to Sammon’s projection increases, which, in turn, increases the overall

time consumption of the Distributed GSOM. This effect is evident from Table 3.1 which

shows that the redundant neuron percentage is similar across different partition configu-

rations. However, as the number of partitions increase, the redundant neuron percentage

should increase with random partitioning.

Table 3.2 indicates that the number of neurons in the Distributed GSOM output in-

creases with the number of partitions. As a result, the time consumption of Sammon’s

projection process increases as the number of partitions increases. Although this increase

in time consumption is compensated by the reduction of time consumption of the partition

network training phase, Figure 3.4 shows that the time consumption of the overall process

could reach its minimum value when the curves of the partition network time consumption

and Sammon’s projection time consumption cross each other. The scalability of the algo-

rithm would thus be limited. This effect is further discussed in Ganegedara and Alahakoon

(2012) and Matharage et al. (2013).

4.3.1 A new redundancy reduction method

As a means of avoiding input vector accumulation of the preserved neurons, this section

discusses using only the original input vectors of a neuron for redundancy determination.

Using the same notations given in 4.3 above, the algorithm for redundant hit neuron

reduction, using the original hit items is given in Algorithm 3.

CHAPTER 4. A DEEPER LOOK 71

Algorithm 3 Redundant hit neuron reduction algorithm using only the original hit items

1:

2: Let P = All partitioned networks
3: d = 0, n = 0
4: for all partition Pi ∈ P do
5: for all hit neuron ni,j ∈ Pi do
6: for all partition Pk ∈ P where i 6= k do
7: nk,l = GetBMU(wi,j , k)

8: E
i,j
k,l =

∑Ni,j

x=0 |wk,l − Ii,j [x] |
9: E

k,l
i,j =

∑Nk,l

x=0 |wi,j − Ik,l [x] |
10: if Ei,j > E

i,j
k,l then

11: remove ni,j

12: d = d+ |wi,j − wk,l|
13: n = n+ 1
14: else
15: if Ek,l > E

k,l
i,j then

16: remove nk,l

17: d = d+ |wk,l − wi,j |
18: n = n+ 1
19: else
20: EC = Ei,j + Ek,l

21: E1 = Ei,j + E
k,l
i,j

22: E2 = Ek,l + E
i,j
k,l

23: if EC > E1 & E1 < E2 then
24: remove nk,l

25: d = d+ |wi,j − wk,l|
26: n = n+ 1
27: else if EC > E2 & E2 < E1 then
28: remove ni,j

29: d = d+ |wi,j − wk,l|
30: n = n+ 1
31: end if
32: end if
33: end if
34: end for
35: end for
36: end for
37: return eSF×d

D×n

CHAPTER 4. A DEEPER LOOK 72

In order to evaluate the features of the new method, the SMH and CoverType datasets

were used to compare the efficiency and accuracy of the output. Through the remainder

of this chapter, the redundancy reduction method which examined accumulated hit items

introduced in 3.4 will be referred to as redundancy reduction method 1 and Algorithm 3

will be referred to as redundancy reduction method 2.

4.3.2 Experiments and results

The two redundancy reduction methods were compared using WBC, SMH and CoverType

datasets, which were discussed in Chapter 3. Since the main concerns of the two methods

are on scalability and time consumption, the SMH and CoverType datasets were used

to compare efficiency. All three datasets were used to compare accuracy. The following

sections discuss the redundancy reduction statistics, efficiency and the accuracy of the two

methods.

Redundancy reduction statistics

Table 4.3 shows the redundancy reduction statistics for the SMH dataset. It can be

observed that, as the number of partitions increases, the percentage of redundant neurons

identified by method 2 increases at a faster rate than in method 1. Therefore, as the

number of partitions increases, the number of neurons preserved during the redundancy

reduction process increases for method 1. On the other hand, as the number of partitions

increases, due to the higher percentage of redundant neuron identification by method 2,

the total number of preserved neurons decreases. Consequently, method 1 creates a lower

redundancy index (RI) compared to method 2.

Table 4.4 shows that the two redundancy reduction methods create a similar effect for

the CoverType dataset. Since the CoverType dataset is a dense dataset, the proportion of

redundant neurons is high. Although the identified redundant neuron percentage increases

with the number of partitions in method 1, method 2 has a higher rate of increase.

As the number of partitions increase, the average number of hit items assigned per

neuron decrease. With a small number of hit items to compare for redundancy, the chance

of finding a better replacement for a particular neuron is high. As a result, in method

2, as the number of partitions increases, the number of redundant neurons also increases.

Both random partitioning and class based partitioning have higher levels of redundant

CHAPTER 4. A DEEPER LOOK 73

Table 4.3: Statistics for the two redundancy reduction methods for the SMH dataset

Partitions Neuron
count

Redundant
neurons

Preserved neu-
rons no.

Redundancy
index

Method 1

4 random 295 44.9% 167 0.0074

8 random 339 44.8% 182 0.0074

16 random 414 45.7% 225 0.0075

Class 303 5.5% 287 0.0122

Method 2

4 random 295 61.9% 112 0.0074

8 random 339 76.6% 79 0.0075

16 random 414 85.6% 60 0.0076

Class 303 21.0% 240 0.0104

Table 4.4: Statistics for the two redundancy reduction methods for the CoverType dataset

Partitions Neuron
count

Redundant
neurons

Preserved neu-
rons no.

Redundancy
index

Method 1

8 random 14,421 26.3% 10,628 0.0110

16 random 19,425 38.1% 12,016 0.0126

32 random 26,450 52.8% 12,496 0.0154

Class 15,028 41.3% 8,820 0.0149

Method 2

8 random 14,421 40.2% 8621 0.0101

16 random 19,425 56.1% 8525 0.0116

32 random 26,450 72.5% 7364 0.0143

Class 15,028 62.9% 5578 0.0158

neuron identification percentages for method 2 which is consistent for both datasets. As

a result, both redundancy reduction methods perform consistently for both random and

class based partitioning.

Efficiency comparison of the two redundancy reduction methods

Since the redundancy reduction method 2 creates fewer neurons as input to Sammon’s

projection, the time consumption of Sammon’s projection is less for method 2. As a

CHAPTER 4. A DEEPER LOOK 74

Figure 4.7: Time consumption of the redundancy reduction (RR) process, Sammon’s
projection and the combined time for the SMH dataset for the two redundancy reduction
methods

result, method 2 delivers higher efficiency levels and higher scalability for the Distributed

GSOM algorithm.

Figure 4.7 shows the time consumption of the Distributed GSOM for the SMH dataset.

It can be observed that the total merging time increases for method 1 and decreases for

method 2. This is caused by the reduction of the total number of neurons presented

to Sammon’s projection as the number of partitions increases. The time consumption

of Sammon’s projection dominates the time consumption of the merging process and

Sammon’s projection consumes less time when the number of inputs is less. A similar

observation can be made for the CoverType dataset as shown in Figure 4.8.

For both datasets, the total time consumption for the redundancy reduction and merg-

ing process combined increases for method 1. The increase in time consumption would

limit the scalability of the Distributed GSOM when the increase in time consumption from

the merging process outweighs the reduction in time consumption caused by splitting the

dataset. Method 2, on the other hand, shows a decreasing trend for the total merging time

for both datasets. Therefore, method 2 would have higher levels of scalability compared

to method 1.

Accuracy comparison of the two redundancy reduction methods

The F-measure was used in order to investigate the impact of the two redundancy reduction

methods on accuracy. All three datasets were used for the accuracy evaluation. Tables

4.5, 4.6 and 4.7 show the accuracy results for method 1 (M1) and method 2 (M2). Due

to its taking into account only the original hit items for error calculation, method 2 may

CHAPTER 4. A DEEPER LOOK 75

Figure 4.8: Time consumption of the redundancy reduction (RR) process, Sammon’s
projection and the combined time for the CoverType dataset for the two redundancy
reduction methods

Table 4.5: F-measure and the standard deviation (σ) of the F-measure for the WBC
dataset for benign (B) and malignant (M) classes showing results for random (R) and
class based partitioning

Details
F- Measure σ (F-Measure)

M B Avg. M B Avg.

GSOM 0.9171 0.9323 0.9256 0.0096 0.0079 0.0084

R, 2P, M1 0.9204 0.9358 0.9290 0.0058 0.0085 0.0073

R, 2P, M2 0.9215 0.9369 0.9301 0.0056 0.0089 0.0075

R, 4P, M1 0.9134 0.9294 0.9222 0.0199 0.0166 0.0178

R, 4P, M2 0.9075 0.9269 0.9185 0.0235 0.0199 0.0212

Class, M1 0.9166 0.9433 0.9321 0.0054 0.0064 0.0056

Class, M2 0.9166 0.9433 0.9321 0.0054 0.0064 0.0056

remove neurons which could be preserved if accumulated hit items are used. If such

neurons existed at cluster boundaries, taking account of the accumulated hit items would

result in better clustering accuracy. Redundancy reduction method 1 which incorporates

accumulated hit items therefore produces higher accuracy levels overall.

Table 4.5 indicates the F-measure and the standard deviation of the F-measure for the

WBC dataset. The results indicate that the differences between method 1 and method

2 are minor where method 2 has higher levels of accuracy for random partitioning with

two partitions. Method 1 has higher levels of accuracy for random partitioning with four

partitions and accuracy is the same for both methods for class based partitioning. Method

2 shows marginally higher levels of standard deviation, which could be expected as using

only the original hit items introduces higher levels of variability.

CHAPTER 4. A DEEPER LOOK 76

Table 4.6: F-measure and the standard deviation (σ) of the F-measure for the SMH
dataset for news (N), world (W), sport (S) and entertainment (E) classes showing results
for random (R) and class based partitioning

Details
F-Measure σ (F-Measure)

N W S E Avg. N W S E Avg.

GSOM 0.808 0.704 0.647 0.924 0.080 0.006 0.012 0.026 0.003 0.005

R, 4P, M1 0.798 0.700 0.612 0.938 0.795 0.029 0.027 0.027 0.005 0.010

R, 4P, M2 0.785 0.688 0.596 0.932 0.788 0.013 0.000 0.000 0.000 0.000

R, 8P, M1 0.784 0.697 0.564 0.930 0.784 0.009 0.028 0.049 0.006 0.011

R, 8P, M2 0.774 0.672 0.557 0.923 0.774 0.014 0.001 0.001 0.000 0.000

R, 16P, M1 0.766 0.690 0.536 0.923 0.768 0.009 0.014 0.032 0.007 0.003

R, 16P, M2 0.742 0.658 0.509 0.907 0.745 0.010 0.001 0.001 0.000 0.000

Class, M1 0.893 0.853 0.821 0.971 0.898 0.002 0.005 0.003 0.002 0.002

Class, M2 0.886 0.850 0.791 0.973 0.891 0.005 0.000 0.000 0.000 0.000

Table 4.6 shows the F-measure and the standard deviation of the F-measure for the

two redundancy reduction methods for the SMH dataset. It can be observed that method

2 results in lower clustering accuracy levels than method 1. As the number of vectors

considered for redundancy neuron determination is lower in method 2, the neurons at

cluster boundaries may get removed. As a result, vectors at the cluster boundaries may

get assigned to incorrect clusters. In addition, method 2 shows lower variability caused

by the sparsity of the dataset.

Table 4.7 shows similar results for the CoverType dataset where method 2 has mod-

erately lower levels of accuracy with similar levels of variability.

4.3.3 Applications of the two redundancy reduction methods

The exploratory data analysis process usually involves several stages of analysis. At the

initial stages, a trial and error approach may be used to determine the best attribute and

record configurations. Based on the outcomes of the initial analysis, subsequent methods

of analysis would be finetuned to identify specific patterns.

For large scale data, the initial trial and error approach may consume excessive amounts

of time which would limit the number of trials. In such situations, method 2 can be used

since it offers faster performance. As the initial stages are only used for the guidance of the

subsequent analysis, the loss in accuracy is affordable. The faster performance of method

CHAPTER 4. A DEEPER LOOK 77

Table 4.7: F measure and the standard deviation (σ) of the F measure for the CoverType
dataset for the most frequent two classes (class 1 and class 2) showing results for random
(R) and class based partitioning

Details
F measure σ(F measure)

Class 1 Class 2 Avg. Class 1 Class 2 Avg.

GSOM 0.6554 0.7782 0.7278 0.0104 0.0102 0.0072

R, 8P, M1 0.7548 0.8243 0.7953 0.0015 0.0008 0.0009

R, 8P, M2 0.7413 0.8152 0.7844 0.0027 0.0005 0.0011

R, 16P, M1 0.7519 0.8224 0.7930 0.0019 0.0018 0.0018

R, 16P, M2 0.7300 0.8082 0.7757 0.0041 0.0011 0.0016

R, 32P, M1 0.7412 0.8175 0.7860 0.0012 0.0013 0.0011

R, 32P, M2 0.7138 0.7989 0.7638 0.0026 0.0012 0.0007

Class, M1 0.7492 0.8120 0.7851 0.0019 0.0005 0.0006

Class, M2 0.7312 0.8017 0.7718 0.0008 0.0019 0.0013

2 would allow analysts to perform more trials in order to determine the most suitable

analysis configuration.

Once the details of the analysis process are determined using trial and error, method

1 can be used to perform a more accurate analysis. As the detailed analysis is usually

performed only once, method 1’s higher accuracy in clustering would compensate its slower

performance.

4.4 Dynamic data integration into the Distributed GSOM

Depending on the problem under investigation, the results from any exploratory data

analysis may have only short-term value; this is because the source data may become

out-of-date. With time, historical data may increasingly become irrelevant as new data

becomes available. In order to maintain the effectiveness of the analysis, the analysis

process would have to be periodically repeated on the most up-to-date data. Therefore,

exploratory data analysis can be considered a continuous process.

A key feature of the traditional SOM algorithm is the need to re-train the entire

network when new data becomes available. The re-training process has to be com-

pleted efficiently if new data arrive frequently. However, for large datasets, the time

consumption of re-training the SOM may be impractically excessive. Furao et al. (2007),

CHAPTER 4. A DEEPER LOOK 78

Figure 4.9: An incremental data integration for the Distributed GSOM

Nurnberger and Detyniecki (2006) and Prudent and Ennaji (2005) have proposed incre-

mental SOM algorithms which can integrate new data into the existing network effi-

ciently. The algorithm proposed in Furao et al. (2007) uses a two layer approach which

approximately doubles the time consumption of the SOM which limits its applicability

on large datasets. The algorithms proposed in Nurnberger and Detyniecki (2006) and

Prudent and Ennaji (2005) use dynamic structures to create new nodes dynamically where

the new position calculation process is significantly time consuming.

The Distributed GSOM architecture possesses inherent support for incremental data

integration. The components of the Distributed GSOM algorithm can be reused for inte-

grating new data into an existing network. This can be performed by training a GSOM

on the new data off-line and integrating the neurons in the newly trained GSOM into

the existing network by executing a redundancy reduction phase, followed by Sammon’s

projection. The architecture of this model is shown in Figure 4.9.

The model was evaluated using the dataset given in Figure 4.3 by presenting the

different quarters of the dataset incrementally. Two sets of experiments were conducted

using different orderings of the presentation of datasets.

Figure 4.10 shows the first set of experiments where the datasets are presented to the

Distributed GSOM in the order, Q1, Q2, Q3 and Q4. It can be observed that the output

of the Distributed GSOM algorithm creates the correct intermediate output for each in-

crement. Although the output contains minor distortions in the case of three partitions

in step (b), the three clusters within the input are accurately identified. The distortions

CHAPTER 4. A DEEPER LOOK 79

Figure 4.10: Incremental data integration experiment 1

in step (b) can be attributed to the skew of the datasets which contains only three quar-

ters. As a result, Sammon’s projection stretches the projection space to accommodate the

dataset. As the dataset spans the entire input space in step (c), the output accurately

represents the entire input dataset.

Figure 4.11 shows the second set of experiments run where the datasets were presented

in the following order: Q4, Q2, Q3, Q1 order. The results indicate that with the skew of

the datasets in steps (a) and (b), minor distortions are introduced into the output of the

Distributed GSOM. The intermediate outputs are accurately created and the final outputs

have a high degree of similarity.

The output of the incrementally trained networks can be compared with the output

of the Distributed GSOM created by presenting the entire dataset simultaneously. The

final outputs of the incremental integration exercises shown in step (c) in Figure 4.10

and Figure 4.11 can be compared to the Distributed GSOM output shown in Figure 4.5

where the entire dataset was presented simultaneously. The figures indicate that both

CHAPTER 4. A DEEPER LOOK 80

Figure 4.11: Incremental data integration experiment 2

the incremental model and the standard Distributed GSOM algorithm produce nearly

identical outputs. Therefore, it can be concluded that the Distributed GSOM would

create the same output when the data is presented incrementally or simultaneously.

It has to be noted that Sammon’s projections shown in Figures 4.10 and 4.11 show the

location plot of the projection. Plotting the weight vectors would reveal the same image as

the individual GSOM plots in the images since Sammon’s projection does not modify the

weight vectors of the input. Therefore, the visualisation advantage of Sammon’s projection

is clearly demonstrated as it shows the clusters accurately within the data.

The results demonstrate that the Distributed GSOM can be used for integrating new

data effectively into the network by positioning the new data accurately within the existing

network. It can be assumed that the new data would have a lower level of skewness. If the

skewness of the dataset is low, the number of distortions created in the Distributed GSOM

will be minimal. As a result, the output of the Distributed GSOM would be similar to the

output that would be created on the entire dataset in a single run. Thus the incremental

CHAPTER 4. A DEEPER LOOK 81

model prevents the need to retrain the entire network on new data. Furthermore, this

approach would also facilitate the analysis of the new data separately by analysing the

partitioned network (GSOM) created on the new data in isolation.

4.5 Discussion

In this chapter, three aspects of the Distributed GSOM algorithm were discussed in detail.

The implications of using static and dynamic structured SOMs for data exploration were

investigated, a new redundancy reduction method was introduced and an incremental data

integration mode was proposed.

It was clear that the GSOM with a dynamic structure creates a lower total quantisa-

tion error with fewer neurons compared to the SOM with a static structure. The total

quantisation error indicates the degree to which the weight vectors of the neurons are dif-

ferent from the actual input data vectors. Experiments indicate that the GSOM creates

a lower total quantisation error on average, which demonstrates that the GSOM creates

a better representation of the input space compared to the SOM. Furthermore, since the

GSOM creates fewer average neurons, the efficiency of Sammon’s projection is improved.

As a result, it can be concluded that the GSOM is a better learning technique for the

distributed algorithm.

The new redundancy reduction method (method 2) proposed in this chapter offer faster

performance and higher levels of redundant neuron identification compared to the method

proposed in Chapter 3. Since the new method takes into account only the original hit

items of neurons for error calculation, as the volume of data increases, the redundancy

reduction process scales well. This increases the overall scalability of the algorithm. The

new redundancy reduction method achieves faster performance at the cost of accuracy.

As a result, method 2 can be used for the initial stages of the exploratory data analysis

process where high accuracy levels are not required and method 1 (the accumulated hit

item based method) for advanced analysis.

Data analysis algorithms should incorporate new data into the existing analysis in or-

der to maintain the relevance of the outcomes. An incremental data integration model is

proposed in this chapter which reuses components of the Distributed GSOM algorithm to

fuse new data into the existing network. Experimental results show that the Distributed

CHAPTER 4. A DEEPER LOOK 82

GSOM can effectively add new data into an existing network by maintaining cluster sep-

aration.

The outcomes of the chapter can be listed as follows:

1. The GSOM creates a better representation of the dataset compared to the SOM

when the shape of the dataset is unknown. Therefore, the GSOM is considered to

be the preferred learning technique for the distributed algorithm.

2. The new redundancy reduction method, which considers only the original hit items

of neurons for redundancy determination, delivers faster performance at the expense

of accuracy. The two redundancy reduction methods can be used at different stages

of the exploratory data analysis process.

3. The Distributed GSOM can efficiently integrate new data into the existing network

by training a GSOM on the new data off-line and integrating the newly trained

GSOM. The results show that the output accurately represents the clusters within

the data when the data is incrementally presented.

The next chapter discusses the details of the implementation of the Distributed GSOM

algorithm on the Hadoop distributed computing framework.

Chapter 5

The Distributed GSOM on

Hadoop

Hadoop is one of the leading cloud computing frameworks in existence developed by the

Apache Foundation (White, 2012). Hadoop computing clusters offer massive amounts

of computing power for data and compute-intensive applications. Although there have

been some accounts of SOM implementations on Hadoop such as Goto et al. (2013) and

Weichel (2010), it is believed that the work presented in this chapter is the first instance

of a clear and detailed implementation of SOM technologies on Hadoop. Therefore, the

implementation of the Distributed GSOM on Hadoop is believed to be a contribution

towards the practical use of SOM technologies in current big data environments.

Hadoop applications follow a ‘divide and conquer’ execution model which is referred

to as MapReduce, where multiple parallel map processes divide the work load amongst

multiple processors and the intermediate results are combined using the reduce process.

The Distributed GSOM algorithms follows a similar pattern where GSOMs are created

on multiple data partitions which are then combined to form a single map. Therefore,

the Distributed GSOM has an ideal architecture for MapReduce implementations. But,

developing a Hadoop implementation for the Distributed GSOM would have to overcome

a number of programming challenges. The research objectives of this chapter, which are

listed below, are based on addressing these challenges.

1. To adapt the Distributed GSOM architecture to fit MapReduce.

83

CHAPTER 5. THE DISTRIBUTED GSOM ON HADOOP 84

2. To develop a technique for splitting multivariate data such that each GSOM receives

a sufficient number of vectors to achieve convergence.

3. To develop cascading layers of MapReduce processes to integrate a MapReduce data

partitioning process into the Distributed GSOM to improve its efficiency.

4. To minimise dataset access in the reduce process.

5. To employ combiners to improve the efficiency of the overall process.

6. To demonstrate the performance of the Hadoop implementation of the Distributed

GSOM using benchmark datasets.

The following sections describe the Hadoop framework and the work done to achieve

the research objectives.

5.1 MapReduce

One key barrier for the wide adaptation of distributed and parallel programming had been

the complexity that has to be handled by the programmers. Parallel and distributed ap-

plications require interfacing with multiple computers and remotely managing, monitoring

and synchronising processes running on a multitude of computers. The MapReduce pro-

gramming model was developed by Google Inc. in order to create a programmer friendly

computing environment that abstracts the complex communication and synchronisation

aspects involved in parallel and distributed computing (Dean and Ghemawat, 2008).

The purpose of the MapReduce cluster is to provide a scalable computing environment

for processing massive volumes of data. At Google, the MapReduce model is complemented

by a distributed file system called the Google file system (GFS). The GFS combines

all the storage elements within the cluster to create a massive, federated, distributed

storage module capable of storing petabytes scale data as discussed in Ghemawat et al.

(2003). Unlike early distributed computing platforms, MapReduce was developed to run

on clusters made up of commodity hardware. The use of commodity hardware significantly

reduces the capital cost of setting up the cluster. As a result, a number of organisations

have established MapReduce clusters on site in order to provide analysts with dedicated

resources and on demand computing power.

CHAPTER 5. THE DISTRIBUTED GSOM ON HADOOP 85

Figure 5.1: MapReduce architecture and control flow

The key elements of the MapReduce model are shown in Figure 5.1. The typical

execution of a MapReduce program consists of two phases, the map phase and the reduce

phase. In the map phase, multiple tasks are created that would generate partial results

for the final output. The reduce process combines the intermediate results generated by

the map processes to produce the final output. The coordination of the map and reduce

processes and the parallel task execution is performed by the master node. Slave nodes

execute the individual map tasks and manage a portion of the GFS.

Due to the simplicity of the MapReduce programming model, programmers have widely

adopted the MapReduce architecture in parallel and distributed applications. Currently,

the MapReduce implementation at Google is proprietary, and is unavailable for public

access. A number of open source and proprietary implementations of MapReduce have

been developed such as Hadoop (Apache, 2013), Disco (Mundkur et al., 2011) and Phoenix

(Yoo et al., 2009).

The limitations and the strengths of MapReduce are discussed in the sections to follow.

CHAPTER 5. THE DISTRIBUTED GSOM ON HADOOP 86

5.2 Hadoop framework

Hadoop was created by Doug Cutting and Mike Cafarella in 2005. The Hadoop project

is hosted by the Apache Foundation. Hadoop has been widely adopted compared to the

other MapReduce frameworks for several reasons. Hadoop was one of the first MapReduce

frameworks offered to the public and the code was written in mainstream Java language.

Subsequent introduction of complementary technologies for data storage, data transfor-

mation and data extraction have also aided the expansion of the use of Hadoop.

The Hadoop environment follows a master slave architecture. The master is called the

namenode and the slaves are called datanodes. The components of the Hadoop MapReduce

architecture and their interconnections are shown in Figure 5.2.

The namenode is responsible for maintaining the file system index and the location

of the individual blocks of a file. The namenode is the only source of information about

the file locations and datanodes rely on the namenode to perform their functions. If the

namenode fails, all the file indices would be lost along with access to those files. Therefore,

ensuring the correct function of the namenode is essential for the health of the cluster. The

secondary namenode creates periodic backups of the contents of the primary namenode

which is useful for data recovery.

Datanodes are the workers of the cluster. Each datanode has its own storage which

forms a part of the distributed file system. Each datanode also hosts a task tracker

which monitors and coordinates the progress of the tasks currently executing. When a

MapReduce job is running on the cluster, datanodes would execute the map and reduce

processes and perform input output operations.

The job tracker coordinates the execution of a MapRedce job across the entire cluster.

The namenode would attempt to distribute the file blocks across the cluster evenly and

the job tracker would assign map tasks on the node that hosts data. The job tracker

maintains a list of the datanodes assigned to a particular job and performs error recovery

in case a datanode fails. Details of the error recovery features of Hadoop are discussed

later in this chapter.

CHAPTER 5. THE DISTRIBUTED GSOM ON HADOOP 87

Figure 5.2: Hadoop framework architecture

CHAPTER 5. THE DISTRIBUTED GSOM ON HADOOP 88

5.3 Hadoop Distributed File System (HDFS)

The Hadoop distributed file system is designed to hold massive data files. Files are ar-

ranged in blocks similar to a disk file system; however, the block size is significantly larger.

The default block size on HDFS is 64 megabytes which implies even a text file containing

a single character would occupy a 64 megabyte block. The reason behind using larger

block sizes is to accommodate large files in gigabyte or terabyte scale. Therefore, it is

advantageous to arrange data as large files spanning several blocks.

Since Hadoop clusters are made up of commodity hardware, the likelihood of failure

is very high. If one node fails, the cluster should be able to recover the data stored on

the failed node. HDFS utilises data replication in order to compensate for possible node

failure. For each block in a file, two more copies are created across the cluster by default.

Two copies of each block would be hosted on the same server rack and the third copy

would be hosted on a different rack.

5.4 Using Hadoop for large scale data analysis

The MapReduce computing model combined with the HDFS creates a well suited en-

vironment for large scale data analysis. The Hadoop framework accommodates parallel

and distributed program execution while the HDFS enables efficient storage of massive

datasets. The following sections discuss the features of Hadoop that have increased its

wide adoption for large scale data processing.

5.4.1 Processing power

The Hadoop framework is capable of scaling to thousands of computing nodes. Currently,

Yahoo Inc., an internet services company, hosts a Hadoop cluster with over 10,000 nodes

(Zawodny, 2008). Sorting terabytes of data has been used to benchmark Hadoop cluster

performance and currently Yahoo holds the record, as given in O’Malley and Murthy

(2009). Compute-intensive algorithms such as the SOM require a very high degree of

processing massive datasets. By distributing the workload among the nodes in the cluster,

Hadoop can efficiently perform computations.

CHAPTER 5. THE DISTRIBUTED GSOM ON HADOOP 89

Trial and error approaches are a common approach in data exploration. However,

the turnaround time of the analytical task should be short enough to produce the anal-

ysis outcomes within a practical time frame. It is possible to evaluate different analyti-

cal methods and parameter configurations using the Hadoop infrastructure by executing

compute-intensive tasks concurrently.

5.4.2 Storage capacity

Two problems would have to be addressed when storing and retrieving large data files.

Firstly, the storage capacity of the system should be large enough to hold the file and

secondly, data retrieval should be efficient. Considering one terabyte of data stored on a

single disk and a disk read speed of 100 megabytes per second, the read operation would

require approximately three hours to complete. The write operation would be even slower.

Hadoop is equipped with a federated file system geared to store and retrieve data files

spanning terabytes and petabytes efficiently. In addition to the large storage capacity, the

HDFS provides faster access to large files. Due to the distribution of the blocks of a file

across the network, each node would read a single block and the entire dataset would be

read much faster than a single disk system. File reads are performed in parallel, thus the

total time required to read large files is significantly reduced.

5.4.3 Hadoop ecosystem

In addition to the data processing and storage features offered by the Hadoop framework,

a range of complementary technologies has been developed in order to assist the data anal-

ysis process such as Hive, HBase, Sqoop, Pig and Mahout (Monteith et al., 2013). Each

technique is suitable for different components of the exploratory data analysis process.

Hive and HBase are data stores, Sqoop is a data extraction tool, Pig is a data transforma-

tion tool and Mahout is a collection of data analysis algorithms. These technologies are

briefly described in the following sections.

HBase and Hive

HBase and Hive use Hadoop and HDFS to create a structured data store for large data

volumes. HBase and Hive are widely used as data warehouses. HBase is a column oriented

database which stores data in the form of key value pairs. Hive, on the other hand, is

CHAPTER 5. THE DISTRIBUTED GSOM ON HADOOP 90

a relational style data store with querying capabilities. Hive query language is used to

manipulate data which is an adaptation of structured query language (SQL).

Sqoop

Sqoop is a data transferring tool which is designed to import and export data between

Hadoop and relational databases. Sqoop supports incremental loading of tables which

is particularly desirable for large scale data processing applications. Sqoop can be used

to import data from production databases into HDFS, Hive or HBase. Furthermore, the

analytical outcomes can be exported to relational databases for reporting purposes using

Sqoop.

Pig

The contents of the data files may need to be transformed into a format compatible with

data analysis techniques. For massive volumes of data, MapReduce can be used to improve

the efficiency of the transformation. Pig is a data transformation tool which can be used

to transform data into different formats. The transformation instructions are given in

a language named Pig Latin. The Pig runtime creates MapReduce jobs to execute the

instructions in Pig Latin which are executed in parallel.

Mahout

Apache Mahout is a collection of MapReduce data analysis algorithms developed on

top of the Hadoop framework. Mahout provides distributed implementations of popu-

lar clustering, classification and recommendation algorithms, details of which are given in

Owen et al. (2011). Mahout has significantly contributed to the use of Hadoop for large

scale data with modular data analysis algorithms which analysts can incorporate into their

applications.

5.4.4 Economy

When MapReduce was introduced in 2004, the main difference from the then existing par-

allel and distributed implementations was that Hadoop could run on commodity hardware.

Commodity hardware is much cheaper than specialised parallel computing hardware. If a

Hadoop cluster node fails, it can be replaced by any regular computer system. Due to the

CHAPTER 5. THE DISTRIBUTED GSOM ON HADOOP 91

use of commodity hardware, setting up and maintaining a Hadoop cluster has become a

comparatively low cost operation. Therefore, commercial infrastructure providers such as

Amazon and Microsoft offer access to Hadoop at an affordable price. In addition, if a dis-

tributed computing cluster is set up at an organisation, the cost of maintaining the cluster

could be high due to hardware purchase and for specialist personnel. As a result, many

organisations use the services of Amazon, Microsoft and a number of other infrastructure

providers due to their low cost.

5.5 Challenges in Hadoop development for processor inten-

sive multi variate data

Although Hadoop clusters offer a massive amount of processing power and computing

resources, many applications fail to harness the full potential such systems. According

to Das (2009), four types of issues can be identified, imbalance in input splits, imbalance

in computations, imbalance in partition sizes, and imbalance in heterogeneous hardware.

Although programmers do not have any influence over the hardware, the remaining three

issues can be addressed in the program design.

Implementing concurrent algorithms on distributed and cloud computing infrastruc-

ture poses a number of challenges. They range from setting up infrastructure to balancing

data and computational load, as discussed in Zhang et al. (2010). In the context of ex-

ploratory data analysis, which is both data and CPU intensive, the key challenges for the

programmers are data loading, splitting, load balancing and efficient processing. These

are described in the following sections.

5.5.1 Data loading

Exploratory data analysis is performed on data generated by software applications of an

organisation. Massive real-world datasets span terabytes and petabytes of disk space.

In most cases, data is accumulated in databases geared to handle massive volumes of

data such as Teradata, Oracle, Cassandra and MySQL. Querying production databases

is avoided to a large extent in data analysis exercises since running multiple queries on

production systems would slow down or crash applications. The best practice is to import

data into a data warehouse periodically and use the data warehouse as the source for data

CHAPTER 5. THE DISTRIBUTED GSOM ON HADOOP 92

analysis exercises. Importing data from such systems is a key challenge in developing a

seamless Hadoop data analysis solution.

In order to ensure fast performance, the data has to be available in the HDFS of the

Hadoop cluster. Therefore, the most common choices for the data warehouse are HBase

and Hive (Thusoo et al., 2010).

5.5.2 Splitting

Splitting is the process of dividing the job into a number of smaller jobs that will be

executed in parallel. The splitting method determines the number of map processes.

Determining the number of map processes is critical to ensuring full utilisation of the

cluster. The split operations are wrapped inside InputFormat classes in Hadoop. The

Hadoop framework supplies three classes to handle input formats: FileInputFormat,

TextInputFormat and SequenceFileInputFormat.

The FileInputFormat is used to read files in blocks. If the data file spans more than one

block in HDFS, the file is split by blocks such that a map process is created for each block

in the file. The main disadvantage of splitting by blocks is the inability to decide the exact

split point. If the end of the block occurs at the middle of a line, the map process should

manage incomplete lines. For data analysis applications, ignoring incomplete lines could

lead to missing data records and thus omission of possible patterns. The FileInputFormat

is suitable for character and sequence search applications. The FileInputFormat class

creates mappers with file offsets as keys and the contents of the block as text.

The TextInputFormat class is used for applications where data rows are separated by

new line characters. A mapper is created for each line of the file. The TextInputFormat

is designed to process text data with long string entries in each line. Using this class

for a large volume of short string lines would result in high levels of overhead since a

large number of map tasks would be created. The TextInputFormat class is unsuitable for

multivariate data analysis since datasets usually contain a large number of records.

If the data consists of binary sequences, the SequenceFileInputFormat can be used. The

mappers have to process the binary values to produce the output. As data in exploratory

analysis is mainly textual, the SequenceFileInputFormat cannot be used.

It is evident that the three input format classes provided by the framework are not

capable of processing multivariate data. The type of input format class suitable for the

CHAPTER 5. THE DISTRIBUTED GSOM ON HADOOP 93

Distributed GSOM algorithm would process multivariate data files to create splits at line

boundaries, parse attributes and ensure a sufficient number of records are passed into each

map task. Since none of the default classes possess such behaviour, a new input format

class would have to be defined for SOM based data analysis.

5.5.3 Load balancing and node assignment

During job execution, the Hadoop runtime does not guarantee that all the map tasks are

simultaneously executed. Scheduling of the map tasks mainly depends on node availability.

Data and processor-intensive applications could suffer from availability based node assign-

ment since improper or unbalanced assignment could become bottlenecks. If two map

tasks are assigned to the same node, it is equivalent to running two serial tasks. Perfor-

mance could suffer if frequent context switches occur. Fischer et al. (2010) have proposed

an algorithm which executes the map tasks efficiently to achieve faster performance.

In addition, the homogeneity of the cluster is an important consideration since the

nodes in a heterogeneous cluster would have different computing capabilities. Several

approaches have been proposed to compensate for the heterogeneity of the cluster, such as

using a fitness function for scheduling tasks (Liu et al., 2011) and using multiple queues

(Tian et al., 2009).

In order to ensure optimal performance, each node would have to process equivalent

computational loads and all the map tasks should execute in parallel. However, making

changes to the Hadoop framework may be impossible in some instances. The best possible

method is to address the node assignment issue within the Hadoop application.

5.5.4 Processing

Data locality is one of the key aspects of ensuring the efficient execution of a Hadoop job.

Data locality refers to using the physical storage of a node to store the data processed by

the same node. For data intensive applications, having to access data over the network

could hinder the efficiency of the program. Figure 5.3 shows different situations that could

arise in data storage.

The performance of the SOM algorithm would depend on data locality. The cur-

rent Hadoop framework does not guarantee data locality. Modifications to the Hadoop

framework have been proposed by Jin et al. (2011), where the task scheduler is modified

CHAPTER 5. THE DISTRIBUTED GSOM ON HADOOP 94

Figure 5.3: Different data locality scenarios. 1) Data processed on the same node as the
CPU. 2) Data available over the network at the same data centre. 3) Data located at a
different data centre

to assign map tasks data at the same node. Xie et al. (2010) propose a data placement

strategy to ensure data is stored locally for map tasks.

5.6 Applications of Hadoop for data clustering

Hadoop has been widely used for clustering due to the compute-intensive nature of cluster-

ing algorithms. Zhao et al. (2009) have used a MapReduce implementation of the K-means

algorithm to improve te efficiency of the clustering process. Hadoop was used to execute

SOMs for clustering demographic data in Nair and Mehta (2011); however, the publication

does not provide details of the SOM implementation of Hadoop.

A detailed implementation of the Batch SOM algorithm on Hadoop is given in Weichel

(2010). The proposed implementation is similar to the Sparse Batch SOM proposed in

Lawrence et al. (1999). The suggested approach creates a distributed map and weight

updates for the BMU are performed locally and, at the end of each iteration, the weights

of the global network are updated. The Batch SOM would work well for sparse datasets

but would create distortions for dense data. Therefore, the clustering accuracy would

suffer for dense data using the method in Weichel (2010). In addition, this approach

would generate a significant volume of network traffic across the cluster for large datasets

and would suffer from the same limitations discussed in section 2.9.2.

This chapter presents an efficient implementation of the SOM on Hadoop in the form

of the Distributed GSOM. Since the dataset is partitioned into multiple smaller subsets,

CHAPTER 5. THE DISTRIBUTED GSOM ON HADOOP 95

Figure 5.4: Comparison of the implementation of the Distributed GSOM on a distributed
cluster by itself and on Hadoop

the computation time is significantly reduced. The details of the Hadoop implementation

of the Distributed GSOM are discussed in the following section.

5.7 A MapReduce architecture for the Distributed GSOM

5.7.1 Why Hadoop?

A key concern in implementing distributed algorithms on cloud clusters is the coordination

of the complex communication and synchronisation processes. Since Hadoop provides an

abstract communication model, the programming complexity is significantly reduced in

application development. Figure 5.4 shows the implementation of the Distributed GSOM

algorithm on a distributed cluster with and without Hadoop.

If the Distributed GSOM is applied for a large scale data analysis task on a distributed

environment, the program would have to handle consolidating data on multiple disks for

the partitioning process. The partitions would be created and manually assigned to the

computing nodes individually. The partitioning process would also have to transfer the

data partitions across the network and ensure correct delivery. A GSOM would be trained

on each partition at each computing node. The redundancy reduction process would

have to wait for all the parallel GSOM processes to complete before redundancy removal.

CHAPTER 5. THE DISTRIBUTED GSOM ON HADOOP 96

Figure 5.5: A MapReduce architecture for the Distributed GSOM

Therefore, the programmers would have to manage all the complex communication and

process synchronisation operations manually.

Hadoop, on the other hand, provides an abstract model for defining distributed pro-

gram flows. With the HDFS supporting extremely high data volumes, the partitioning

process is be able to create partitions on the HDFS itself which would be optimally as-

signed in the map process. The Hadoop runtime ensures replication and reliability of

data transfers and provides the correct inputs for the reducer which would execute the

redundancy reduction process. Therefore, the programming time and effort is significantly

reduced via Hadoop.

5.7.2 The Distributed GSOM on Hadoop

The MapReduce architecture is built into the Distributed GSOM algorithm. The Data

partitioning stage is the map process which initiates the parallel tasks. Each map task is

responsible for training a GSOM on a partition. The resulting partition GSOMs are then

combined in the redundancy reduction phase which is the reduce process. Although it is

possible to integrate the Sammon’s projection into the reducer, due to the serial nature of

the algorithm, it is best run on a standalone computer. Figure 5.5 depicts the MapReduce

architecture of the Distributed GSOM.

CHAPTER 5. THE DISTRIBUTED GSOM ON HADOOP 97

The three main components of the algorithm are data partitioning, GSOM execution

and redundancy reduction. Each process has to ensure optimal use of the cluster while

adhering to the Hadoop programming model. The Hadoop runtime does not ensure that

each node is allocated only one map task. If a node is responsible for two map tasks

while free nodes exist, the time consumption of the algorithm would increase. Therefore,

customisations were made to the standard input output classes in order to optimise the

execution of the Distributed GSOM. Details of the modifications are provided in the

sections to follow.

5.7.3 Data transformation

The input data processed by the Distributed GSOM can be stored in different formats.

Data sources can vary from data warehouses to flat text files. Data warehouses store data

in either a relational schema or a star schema. Text files, on the other hand, can store

data in widely different formats, both structured and unstructured. The data input to

an SOM has to be numeric multivariate data. Therefore, source data would have to be

transformed into an SOM compatible format before the Distributed GSOM is executed.

Since the SOM algorithm is an iterative process, accessing the data source for every

iteration could result in reduced efficiency levels. In addition, if the data retrieval queries

involve joining tables and filtering results, the loss in efficiency would be even greater.

Therefore, the data loading process retrieves the data from the data warehouse or pro-

duction systems and creates a tokenised text file for the dataset on the HDFS. The most

common tokenised formats are tab separated and comma separated value formats.

Transformation of massive datasets would require a significant amount of processing

power. The intuitive approach would be to develop a data transformation tool running

on Hadoop itself. A MapReduce job would extract data from sources, transform the data

into an SOM compatible format and save on the HDFS. However, this would require

a new MapReduce program to be written for every data transformation task. Pig, a

data transformation tool that runs on Hadoop, simplifies this process by automating the

MapReduce job creation. Pig requires a script written in Pig Latin which defines the data

transformation operation. The Pig runtime converts the Pig Latin script into a collection

of MapReduce jobs which efficiently transforms the data into the specified format.

CHAPTER 5. THE DISTRIBUTED GSOM ON HADOOP 98

5.7.4 Data partitioning

The data partitioning process creates subsets of data that feeds the GSOMs in the map-

pers. The data partitioning phase is the starting point of the map process. Two strategies

are possible for the data partitioning stage.

1. Create data partitions during the extraction process itself.

2. Extract the entire dataset from the source and create partitions.

For extremely large datasets in the terabyte or petabyte scale, creating a single repre-

sentation of the dataset before partitioning would result in high time consumption. Inte-

grating the partitioning process into the data transformation process would increase the

overall efficiency. If MapReduce is used for data extraction, the efficiency of the process

will be even higher. This approach is not applicable for heuristic based partitioning which

is based on any metric that is based on the entire dataset. For example, if the partitions

are created by the average value of the attributes, averages for the entire dataset have to

be calculated in order to group the records.

The partitioning strategy should be decided according to the specific data analysis

task. If the node executing the GSOM fails, it should be possible to access a copy of the

same data partition to create a new process. Therefore, the output of the data partitioning

process should be created as separate files on the HDFS. Otherwise, the contents of the

data source may have changed and the same partition may not be created, which would

result in inconsistent results.

A MapReduce approach for data partitioning

The time consumption of the data partitioning phase could become a significant proportion

of the overall time for massive datasets. The data partitioning process has to read the

entire dataset and assign each record to a partition. Reducing the time consumption of

the data partitioning phase would improve the efficiency of the overall process.

Random, class based and structure based partitioning create straightforward MapRe-

duce computing tasks where the map process reads the data vectors and outputs the

records arranged by their corresponding partition identifiers. Brief descriptions of the

MapReduce approaches for creating P partitions are given below.

CHAPTER 5. THE DISTRIBUTED GSOM ON HADOOP 99

Random partitioning Each map task would read a block of data and parse the input

vectors. For each vector, output key value pairs would be created such that the key

is a random integer in [1,P] and the value is the data vector. The reducer would

receive the vectors grouped by the keys where each key represents a partition. The

data vectors belonging to each partition can be written to the file system within the

reducer.

Class based partitioning Similar to the map process in random partitioning, each map

task would read a block and determine the class of each data vector. The map process

would create key value pairs such that the key is the class name and the value is

the data vector. The reducer would then create partitions for each key. If the

record distribution is uneven across different classes, the reducer can create multiple

partitions for individual classes.

Structure based partitioning Structure based partitioning is similar to class based

partitioning where the main difference is that the map process creates keys based

on the structural property (time, geography etc.)

Heuristic based partitioning, on the other hand, groups records by a calculated measure

in most cases. Partitioning by the magnitude of the data vector, for example requires

the entire dataset to be traversed in order to calculate the magnitude of all the vectors.

Heuristic based partitioning therefore requires more processing compared to the other

partitioning methods. Figure 5.6 shows the architecture of a heuristic based map reduce

partitioning process.

It is assumed that the records in each partition are grouped by a calculated heuristic

property. Blocks from 1 to n are read in each map process which are then parsed to read

data vectors. A heuristic function calculates the property by which the records would

be grouped. The map process creates key value pairs such that the key is the calculated

heuristic value and the value is the data vector. The shuffle and sort process of the

Hadoop framework ensures that the input to the reducer is sorted by the key, which in

turn will produce a collection of records sorted by the heuristic property. The reducer

then sequentially reads the keys and assigns the records to a partition.

CHAPTER 5. THE DISTRIBUTED GSOM ON HADOOP 100

Figure 5.6: A MapReduce example for heuristic based partitioning

5.7.5 Node assignment

Node assignment is critical to the overall performance of the algorithm since the GSOMs

are processor-intensive. There would be a significant degradation of efficiency if two or

more partitions are assigned to the same node while free nodes are available. The approach

used in the Distributed GSOM implementation utilises the split assignment of the Hadoop

framework but modifies the assignment to ensure maximum utilisation of the cluster. The

node assignment strategy used in this application has two features to preserve data locality

while distributing the workload evenly across nodes.

1. Execute the GSOM on the same partition that has the data provided that no other

GSOMs are being executed on the same node.

2. If a node hosts more than one partition and is currently executing a GSOM, assign

the other partitions to free nodes.

The built-in splitting algorithm in the FileInputFormat class attempts to ensure data

locality. However, since the compressed data files processed by the partition networks are

relatively small in size, it is extremely likely that multiple data partitions on a node would

be assigned to process all the partitions. The new splitting algorithm therefore assigns

one local partition to a node. The only exception is if the number of partitions exceed the

number of nodes. In such situations, the assignment process is repeated across the entire

cluster.

CHAPTER 5. THE DISTRIBUTED GSOM ON HADOOP 101

Algorithm 4 describes the node assignment algorithm. When a free node is assigned

to process data that is located at an occupied node, a data transfer operation occurs. In

the worst case, the newly assigned split may already have been assigned to an unoccupied

node. Although the algorithm ignores that fact, the benefit of distributing the workload

outweighs the communication overhead. This is due to the GSOM execution time being

much longer than the data transfer time.

Algorithm 4 Node assignment algorithm

1: let originalSplits = get splits from FileInputFormat

2: let newSplits = []
3: repeat
4: for all node n in the cluster do
5: let assigned = FALSE
6: for all split s in originalSplits do
7: if s.AssignedNode = n then
8: {s is assigned to the correct node}
9: add s to newSplits

10: remove s from originalSplits
11: assigned = TRUE
12: break
13: end if
14: end for
15: if NOT assigned then
16: {n does not have any assigned splits}
17: assign originalSplits[0] to n
18: add originalSplits[0] to newSplits
19: remove originalSplits[0]
20: end if
21: end for
22: until originalSplits is empty
23: return newSplits

5.7.6 Data reading

The output of the data partitioning process is a list of data files each of which will be

processed by a GSOM. The data files are created on the HDFS and would be created

in the comma separated value (CSV) format. As discussed in 5.5.2, the standard input

format classes in the Hadoop framework are unsuitable for vector based multivariate data

processing. A new input format class, CsvRecordInputFormat, was developed in order to

provide the desired functionality.

CHAPTER 5. THE DISTRIBUTED GSOM ON HADOOP 102

Hadoop input format classes employ an implementation of the RecordReader class to

extract data from files. The RecordReader implementation for the CsvRecordInputFormat

class was named CsvRecordReader. The CsvRecordReader performs two functions.

1. Read the input file and parse data records.

2. Create a key-value format output as the input to the map process.

Listing 5.1 shows the main component of the CsvRecordInputFormat class which is the

next method. The output of the method creates a list of key-value pairs with the file

name as the key and the record list as the value. The DataVectorList is a collection of

DataVector objects which represent the weight vectors of the input dataset.

Listing 5.1: next method of the CsvRecordReader class

@Override

public boolean next(Text key, DataVectorList value) throws IOException {

// get the next line

if (!lineReader.next(lineKey, lineValue)) {

return false;

}

List<DataVector> inputList = new ArrayList<DataVector>();

while (lineReader.next(lineKey, lineValue)) {

// parse the lineValue which is in the format:

// record ID, x1, x2, x3,....

String[] pieces = lineValue.toString().split(",");

// try to parse double components of value

double[] weightVector = new double[pieces.length - 1];

try {

for (int i = 0; i < weightVector.length; i++) {

weightVector[i] = Double.parseDouble(pieces[i + 1]);

}

} catch (NumberFormatException nfe) {

throw new IOException(

"Error parsing floating point value in record");

}

// now that we know we’ll succeed, overwrite the output objects

CHAPTER 5. THE DISTRIBUTED GSOM ON HADOOP 103

inputList.add(new DataVector(pieces[0], weightVector));

}

key.set(fileName);

value.set(inputList);

return true;

}

5.7.7 GSOM execution

The Hadoop runtime creates a map task for each key-value pair generated in the data

partitioning stage. The node assignment algorithm ensures the maximum utilisation of

the cluster. A GSOM is trained on each data partition concurrently using the standard

algorithm. At the completion of the GSOM execution, another list of key-value pairs are

created as the output of the mapper.

A distinctive feature of the GSOM in the Hadoop implementation is that the best

matching unit always stores the input vectors in order to reduce communication overhead.

The redundancy reduction algorithm in the reduce process requires access to the entire

dataset in order to calculate quantisation errors. If the reduce process has to access all

the partitions in the HDFS, the communication overhead would create a significant loss

of efficiency due to network and disk latency.

The output of the GSOM is presented to the combiners and reducers as a list of

neurons. Since only one reducer is used, the key is a constant value across all the map

processes.

5.7.8 Combiners

The Hadoop runtime does not guarantee the execution of combiners. Therefore, the

absence of the combiner should not affect the function of the reducer. Combiners are

executed in parallel similar to the map processes. The combiners are used to reduce the

redundancy of a subset of the map processes which will improve the efficiency of the

overall process if executed. In order to improve the quality of the output, combiners use

the redundancy reduction process where the accumulated vectors are used to determine

redundancy (method 1 in section 4.3); only the splits assigned to the same server would be

used as input to the combiner. Therefore, the amount of data would be a small proportion

CHAPTER 5. THE DISTRIBUTED GSOM ON HADOOP 104

compared to the entire dataset. Hence, the performance difference between using method

1 and method 2 in the combiners would be minimal. Thus, the more accurate method 1

is used in the combiner.

5.7.9 Reducer

The input to the reducer is the intermediate output generated by either the map processes

or the combiner processes. The intermediate output would consist of lists of neurons

with potential redundancy. The primary function of the reducer is to reduce the level

of redundancy in the intermediate outputs. While it is possible to use any of the two

redundancy reduction methods, method 2, where only the original hit items are used, is

preferred since very large datasets would require fewer computations.

Since the all the map processes use the same key, the reducer will receive a collection of

neuron lists as input. Each list would correspond to a map process and a GSOM trained

on one data partition. Algorithm 1 is used for redundancy reduction.

In order to complete the Distributed GSOM, the output of the reducer has to be topo-

graphically arranged. The current projection technique is the Sammon’s projection which

is a serial process. Running the Sammon’s projection on Hadoop would be suboptimal

since the parallelism offered by Hadoop would not be used. Therefore, the best strategy

would be to write the output of the reducer to the HDFS and use a standalone computer to

create the Sammon’s projection. Since the Sammon’s projection does not require access to

the dataset, the resources offered by a standard computer would suffice for this operation.

5.8 Experiments and results

The Distributed GSOM running on a Hadoop cluster was evaluated using the SMH and

CoverType datasets. The Hadoop cluster consisted of 32 nodes which accommodated

the maximum number used in the experiments for the 32 partitions in the case of the

CoverType dataset. Experiments were conducted in order to compare the efficiency results

described in Chapter 3 against the experiments using Hadoop. The execution environment

in Chapter 3 consisted of a shared memory computing model. As a result, the results

also demonstrate the performance of the Distributed GSOM algorithm on shared and

distributed memory systems.

CHAPTER 5. THE DISTRIBUTED GSOM ON HADOOP 105

The relative advantages and disadvantages of shared and distributed memory models

in the context of large scale data analysis are discussed in Chapter 2. The time consump-

tion of the parallel GSOM training phase was expected to have similar time consumption

values whereas the redundancy reduction phase of the distributed memory Hadoop im-

plementation was expected to take longer than the shared memory model. However, the

time consumption of the redundancy reduction phase is less than 1% of the total time

consumption, which does not have a significant impact on the overall performance.

Table 5.1 shows the time consumption statistics for the SMH dataset described in

section 3.6.1. The time consumption for the GSOM training phase is similar, with minor

differences. The difference can be attributed to the randomness of the GSOM algorithm.

The redundancy reduction process involves transferring the intermediate outputs created

in the GSOM training phase across the network. Hadoop runtime performs the data trans-

fer across physical nodes whereas the shared memory model performs the data transfer on

a shared disk. Therefore the redundancy reduction process of the Hadoop implementa-

tion consumes more time compared to the shared memory model. Since the redundancy

reduction process consumes significantly less time compared to the overall time, the total

time consumption values are dominated by the time consumption of the GSOM train-

ing phase. As a result, the overall time consumption is similar across different partition

configurations.

Table 5.1: Total time consumption (in minutes) of the Distributed GSOM on the shared
memory system and Hadoop for the SMH dataset

Shared memory Hadoop

Partition count 4 8 16 4 8 16

Parallel GSOM training 71.035 26.937 8.642 70.861 27.265 8.259

Redundancy reduction 0.006 0.013 0.024 0.020 0.040 0.070

Sammon’s projection 0.082 0.088 0.142 0.093 0.103 0.157

Total time 71.124 27.037 8.808 70.974 27.408 8.486

Similar results were observed for the CoverType dataset (described in section 3.6.1)

as given in Table 5.2. Due to a large number of partitions, the Hadoop implementation

resulted in longer time consumption values, which can be attributed to the increased levels

of network communication. The time consumption of the CoverType dataset experiment

is shown in Figure 5.7. It can be observed that the total time consumption of the Hadoop

CHAPTER 5. THE DISTRIBUTED GSOM ON HADOOP 106

Figure 5.7: Running time comparison of the shared memory model and the Hadoop im-
plementation. (a), (e) GSOM training. (b), (f) Redundancy reduction. (c), (g) Sammon’s
projection. (f), (h) Total time

implementation is higher than that of the shared memory model. The increase in the time

consumption is 3.6%, 2.4% and 1.5%, respectively, for 8, 12 and 32 partition configurations.

Table 5.2: Total time consumption (in minutes) of the Distributed GSOM on the shared
memory system and Hadoop for the CoverType dataset

Shared memory Hadoop

Partition count 8 16 32 8 16 32

Parallel GSOM training 255.107 136.403 59.596 262.566 139.757 61.673

Redundancy reduction 0.255 0.423 0.639 1.254 2.365 4.589

Sammon’s projection 349.155 452.533 481.939 362.256 461.267 484.698

Total time 604.517 589.359 542.174 626.077 603.389 550.960

The results indicate a minor loss of efficiency in the Hadoop implementation compared

with the shared memory model. The lower efficiency of the Hadoop implementation can

be attributed to the cost of transferring data across the network that occur at the end of

every stage of the Distributed GSOM. However, the delay is comparatively low since the

network connecting the nodes in a Hadoop cluster usually consists of a high bandwidth

network.

However, the advantages of MapReduce such as failure resilience, abstraction of inter-

node communication, scalability to thousands of nodes, storage support for massive data

CHAPTER 5. THE DISTRIBUTED GSOM ON HADOOP 107

volumes and a very simple programming model are highly desirable for large scale data

analysis applications as given in Dean and Ghemawat (2010). Therefore, MapReduce

significantly decreases the development time for data processing applications which, in

turn, allows data analysts to produce timely results. Amazon Inc. and Microsoft Inc.

currently offer MapReduce solutions as infrastructure as a service (IAAS) which offers

affordable computing resources without the cost of maintenance and hardware upgrades.

Therefore, the benefits offered by Hadoop outweigh the minor loss of efficiency.

5.9 Discussion

This chapter presents an implementation of the Distributed GSOM algorithm on the pop-

ular Hadoop distributed framework. Several programming and design challenges were

overcome in order to accommodate the compute-intensive Distributed GSOM algorithm

within the standard Hadoop framework. The research contributions include a new node

assignment algorithm, a new InputFormat class and an architecture to reduce the commu-

nication overhead of the program execution.

The research outcomes of the work presented in this chapter can be summarised as

follows.

1. A MapReduce architecture for the Distributed GSOM is introduced which is used

to implement the Distributed GSOM on Hadoop.

2. A robust splitting algorithm is used to ensure that the records are not partially split.

The splitter also ensures each partition network receives a sufficient number of data

vectors to facilitate convergence.

3. Hadoop MapReduce processes are proposed for the partitioning of massive datasets.

The use of MapReduce for partitioning significantly improves the efficiency of the

partitioning process, especially in heuristic based partitioning.

4. In order to minimise the communication overhead of the reduce process, data vectors

local to a partition network are transmitted within the neurons. This approach

avoids the need for the reducers to access the dataset which significantly reduces the

communication overhead.

CHAPTER 5. THE DISTRIBUTED GSOM ON HADOOP 108

5. Combiners were used to improve the acurracy and the efficiency of the overall process.

By using the accumulated data vector based redundancy reduction approach for the

combiners, the accuracy of the analysis is increased. As a result, the reducer is able

to use the more efficient original data, vector based, redundancy reduction method.

6. Results indicate that the performance of the Distributed GSOM on Hadoop is more

efficient by several orders than the serial algorithm and is comparable to the perfor-

mance of the shared memory simulation results.

The next chapter introduces a real-world exploratory data analysis application using

the Distributed GSOM.

Chapter 6

An Application of the Distributed

GSOM for Exploratory Data

Analysis

A key motivation for the design and development of a distributed and scalable GSOM

was to enable SOM technologies to be used with very large datasets. In this chapter,

the Distributed GSOM is used for exploratory analysis of a real-world large dataset to

demonstrate its practical application and value.

Smart grid technologies have advanced in the last few decades with the aim of improv-

ing the distribution and consumption of electricity. This chapter presents an application

of the Distributed GSOM algorithm in smart grids, specifically in the analysis of elec-

tricity consumption. Smart electricity meters generate periodic electricity consumption

records which are an integral component of smart grids. Due to the massive volume of

data generated by smart meters every 15 or 30 minutes, the traditional serial SOMs and

GSOMs algorithms cannot be used for the analysis process due to their excessive time

consumption.

The Distributed GSOM was used to analyse gigabytes of electricity consumption read-

ings efficiently in order to extract the most common electricity consumption profiles. The

work presented in this chapter was conducted in order to achieve the following research

objectives.

109

CHAPTER 6. A DISTRIBUTED GSOM APPLICATION 110

1. To demonstrate the practical value and usability of the Distributed GSOM with a

real life example.

2. To demonstrate how data partitioning is carried out in a real case.

3. To demonstrate how the Distributed GSOM could be used to conduct exploratory

analysis in multiple levels of granularity.

4. To demonstrate how multi-granular profiles could be used to link short-term, medium

term and long-term electricity consumption profiles based on the the exploratory

analysis in 3 above.

5. To develop and demonstrate an efficient model to integrate new data continuously

into the existing Distributed GSOM.

6.1 Smart grids

The energy industry has attracted significant attention from the research community due

to its importance in the modern society. Current world electricity consumption is heavily

dependent on fossil fuels, with more than 80% of the world’s electricity production arising

from coal, oil and natural gas based electricity generators, according to IEA (2012). Due

to the non-renewable nature of fossil fuels and their impact on the environment, optimising

the electricity generation and distribution process has become a key research area in the

energy industry. Smart grid technologies aim to integrate electricity generation, distri-

bution, information technology, communication and control systems in order to optimise

processes in the electricity industry in the most cohesive manner (Fang et al., 2011).

Smart grids comprise three systems;

i. A smart infrastructure system

ii. A smart management system

iii. A smart protection system

A smart infrastructure system is responsible for optimising electricity generation, de-

livery and consumption by utilising advanced metering technologies and information and

communication technologies. Research in smart infrastructure systems has introduced de-

mand side management and time of use pricing methodologies in order to improve the

CHAPTER 6. A DISTRIBUTED GSOM APPLICATION 111

efficiency of the electricity grids (Palensky and Dietrich, 2011). Smart electricity meters

are an integral part of smart grids which enables two way communication between the

consumer and the electricity provider. Smart meters are capable of transmitting near

real-time electricity consumption readings, usually at intervals of one hour or less.

Demand side management is one of the key smart grid technologies which utilises smart

meter readings to determine real-time demand trends to manage electric load effectively, as

discussed in Palensky and Dietrich (2011). Time of use pricing is an enabling technology

for demand side management which imposes different tariffs on electricity based on the

time of use. Smart meters and analysing smart meter data is essential for demand side

management as well as for forecasting demand trends and to better understand customers.

Over the years, a number of neural network approaches (Bakirtzis et al., 1995;

De Silva et al., 2011a,b; Verd et al., 2006; Lendasse et al., 2002), fuzzy methods

(Song et al., 2005; Srinivasan et al., 1999) and statistical techniques (Govindan et al.,

2009; Lam et al., 2008) have been introduced for electricity consumption profile analysis.

The SOM has distinct advantages in the domain of electricity consumption profiling such

as visualisation of the profile distribution and summarisation of the records (Verd et al.,

2006).

The influx of data from smart meters could be massive for a utility company with a

large customer base. An electricity consumption reading every 15 or 30 minutes results in

a high volume data stream to the electricity provider.

It is estimated that a utility company with 2 million customers would generate approx-

imately 22 gigabytes of data every day in a smart grid, as given in Shargal and Houseman

(2009).

6.2 Analysis requirements

A multitude of demographic and socio economic factors affect the electricity consumption

behaviour of consumers. As a result, these behavioural patterns tend to change over time.

In order to maintain the relevance of the analysis outcome, the analysis process should

integrate new data and patterns continuously. Furthermore, in order to use demand

side management, short-term forecasting and time of use pricing effectively, electricity

consumption data has to be analysed with different levels of granularity.

CHAPTER 6. A DISTRIBUTED GSOM APPLICATION 112

The analysis exercise was performed for a leading utility company in Australia with a

4.3 million customer base (Origin, 2014). The requirements for the analysis are listed as

follows.

1. Identify the most common electricity consumption profiles across different time pe-

riods;

2. Characterise the electricity consumption profiles using the available data;

3. Investigate the relationship between electricity consumption and temperature.

An electricity consumption profile is defined as a certain behavioural pattern displayed

by a group of consumers. For example, working households could consume more electricity

during non-working hours and less energy during working hours. On the other hand,

retired households or office buildings would consume more electricity during the day than

at night.

The business value of profiling lies in the ability to use the profiles to predict the

electricity consumption behaviour of new and existing customers. Predicting electricity

consumption behaviour would enable the electricity generators to plan the demand better

and thus utilise resources efficiently and increase profitability.

The analysis of electricity consumption behaviour could be repeated over a number of

time spans. In this exploratory data analysis exercise, daily, weekly and yearly electricity

consumption patterns were analysed. Identifying profiles for these different time periods

would provide insights into the short-term, medium term and long-term electricity usage

patterns of the consumers.

Five research questions were formulated around the above analysis requirements and

are listed on the second page of this chapter.

A sample of the dataset was provided by the utility company which contained the

electricity meter readings for 10,000 smart meters in Melbourne, Australia, over a year

spanning 01 April 2010 to 31 March 2011. Each smart meter recorded the electricity

consumption at 30 minute intervals. The dataset was 12 gigabytes in size in raw form

with more than 175 million entries. No prior information existed on possible patterns

within the data, thus the analysis exercise was a fitting exploratory data analysis task.

CHAPTER 6. A DISTRIBUTED GSOM APPLICATION 113

6.3 Problem scope

This chapter discusses two key contributions from the work outlined in this thesis which

would significantly improve the process of electricity consumption profiling.

1. Distributed GSOM based unsupervised learning to improve the efficiency of the

process.

2. An adaptive multi-granular profiling framework

Verd et al. (2006) and Rusitschka et al. (2010) demonstrate the importance of cloud

computing for the development of smart grid technologies. The Distributed GSOM pro-

vides a scalable solution to traditional SOM based unsupervised learning that is several

orders faster, as discussed in Chapter 3. In addition, the Distributed GSOM uses a dis-

tributed approach which could harness the computing power of cloud computing platforms

to analyse electricity consumption data efficiently.

6.4 The advantages of the Distributed GSOM

Considering the SOM based approaches for achieving the analysis objectives, out of the

SOM, GSOM and the Distributed GSOM, the Distributed GSOM was selected for the

following reasons.

i. Low time consumption of the Distributed GSOM resulting in shorter turnaround time;

ii. utilisation of heuristic based partitioning to group records based on electricity con-

sumption which improves the spread of the map;

iii. customisability of the spread of partition networks to accommodate even spread across

all partition networks;

iv. the ability to integrate data into the analysis process continuously without having to

re-train the entire network.

6.4.1 Higher efficiency of the Distributed GSOM

The volume of data available for analysis in the order of several gigabytes and was consisted

of several millions of records. It has been shown in Chapter 3 that the Distributed GSOM

CHAPTER 6. A DISTRIBUTED GSOM APPLICATION 114

delivers higher levels of efficiency while maintaining similar levels of accuracy compared

to the GSOM. Processing such large volumes requires significant processing power and

resources such as physical memory.

It was estimated that the SOM or the GSOM running on a single computer would

take approximately 30 days from start to completion. Having a 30 day turnaround time

was considered far too long given the trial end error nature of exploratory data analysis.

The Distributed GSOM, on the other hand, was estimated to complete the same task in

approximately 36 hours which, significantly was, only 5% of the time to run the serial

algorithm.

In addition to the 95% saving of time, the Distributed GSOM has demonstrated similar

levels of accuracy compared to the SOM and the GSOM. Therefore, the use of Distributed

GSOM would result in increased efficiency without having to compromise accuracy.

6.4.2 Ability to use partitioning to improve the quality of the results

An important feature of the Distributed GSOM for the analysis of electricity consumption

data is the possibility of creating partitions by grouping similar records since this would

improve the quality of the analysis. For example, the daily electricity consumption analysis

resulted in the highest number of records with 3,650,000 records with 48 attributes. Using

random partitioning resulted in maps highly biased towards high consumption records.

Approximately 94% of the records displayed low electricity consumption of 23.76 kWh a

day whereas only 0.01% of the records had a very high daily electricity consumption of

19042.5 kWh.

The very high consumption records could be considered as outliers and discarded. How-

ever, in an exploratory data analysis task, outliers could also provide valuable insights into

the behaviour of the customers represented by such records. As a result, ignoring the out-

liers would result in the omission of certain patterns. On the other hand, including outliers

would detract from the clustering effect of the SOM, as given in Wu and Chow (2004).

Therefore, if the entire dataset is presented to a single SOM, the very high consumption

records would detract from the cluster separation. In addition, the growth of the GSOM

is driven by the accumulated quantisation error in neurons. Having high consumption

vectors (with a high magnitude) would dominate the growth and create significant bias

CHAPTER 6. A DISTRIBUTED GSOM APPLICATION 115

towards such records. Consequently low electricity consumption records would be under

represented in the final output.

In order to reduce any bias towards high electricity consumption records, data par-

titioning was performed such that records with similar electricity consumption values

were grouped within the same partition. The heuristic used was that the total electricity

consumption for the day could be used to differentiate between high and low electricity

consumption meters. Applying this heuristic, the records were sorted according to the

total electricity consumption and partitions were created from sequential records resulting

in the grouping of records with similar total electricity consumption.

6.4.3 Customisability of GSOM parameters of partition networks

With total consumption based partitioning, partitions would be created with records hav-

ing extremely low electricity consumption. It was observed that the dataset was skewed

in terms of magnitude and also the attribute variance increased with the increase of the

magnitude. Figure 6.1 shows that the dataset is highly skewed, with 93% of the vectors

having a magnitude of [0–2] and the highest standard deviation is observed for the vectors

with a high magnitude.

Figure 6.1: The relationship between attribute variance and magnitude

In order for the GSOM to grow nodes, neurons should accumulate a quantisation

error greater than the growth threshold. The quantisation error is determined by the

difference between the input vector and the prototype vector. Vectors with a lower vari-

ance tend to create low quantisation errors as a result of smaller differences in attributes.

CHAPTER 6. A DISTRIBUTED GSOM APPLICATION 116

Wilson and Martinez (1997) demonstrate that the Euclidean distance creates bias towards

attributes with a high variance, resulting in higher quantisation errors for vectors with a

high variance. Therefore, it would take a higher number of iterations for low variance

vectors to generate an accumulated quantisation error greater than the growth thresh-

old. Hence, partition networks representing low electricity consumption partitions with

a low variance tend to contain fewer neurons compared to high consumption partitions.

Although standardisation is shown in Wilson and Martinez (1997) to be a means of re-

ducing the bias towards high variance vectors, the time consumption of standardisation

would be very high for large datasets.

The Distributed GSOM has the ability to compensate for this effect and ensure even

spreads across all the partition networks. By using a higher spread factor for low electricity

consumption partition networks and a lower spread factor for high consumption partitions,

an even representation of all the consumption patterns could be obtained. The spread

factor can be used to adjust the spread of the GSOM as given in Alahakoon (2004).

Therefore, two spread factors are used for partitions with high and low consumption

partitions in order to ensure even spreads across the partition networks. The low spread

factor generates a high growth threshold (GTHigh) and the high spread factor creates a

low growth threshold (GTLow) according to 2.4.

For high quantisations created by the high consumption vectors, the high growth

threshold is used which limits the spread of the map. New neurons are created for n

when the accumulated quantisation error QE is,

QE =
∑

x

||n − I[x]|| ≥ GTHigh (6.1)

where I is the list of input vectors mapped onto n.

On the other hand, low quantisation errors are created for low consumption vectors.

Therefore a lower growth threshold is used to increase the spread of the network. New

neurons are created when,

QE =
∑

x

||n− I[x]|| ≥ GTLow (6.2)

Having an evenly distributed set of partition networks would ensure uniform represen-

tation of the entire dataset in the Distributed GSOM output.

CHAPTER 6. A DISTRIBUTED GSOM APPLICATION 117

6.4.4 Ability to integrate data continuously

Electricity usage for a meter is determined by several factors, as described below with

examples.

i. Time: Electricity usage changes with the time of day as well as the time of year.

An office building would consume more electricity during the day compared to other

times. Summer and winter tend to have higher electricity consumption compared to

spring and autumn.

ii. Environmental factors: Temperature has a clear influence on electricity consumption

especially during summer and winter. Houses equipped with air conditioners would

consume more electricity during summer on days with high temperatures. On the

other hand, houses which use electric heaters would consume more electricity during

winter on days with low temperatures.

iii. Demographics: Working households tend to consume more electricity during the early

morning and the evening than during the day. Young people may have a high rate of

electricity consumption due to their use of computers and video games.

iv. Property features: Features of the property would have a high influence in determining

electricity consumption. Houses with gas heating would consume less electricity during

winter compared to houses with electric heating.

v. Attitude towards energy saving: Personal attitudes towards energy saving would also

have an impact on the electricity consumption of households. A conservative attitude

would try to reduce energy consumption whereas a less conservative attitude would

use more electricity.

Due to the varying nature of the above factors, patterns of electricity consumption

behaviour are likely to change over time. The rate of change would further increase with

migration when tenants or home owners relocate from one house to another. Therefore, the

profiles identified during the analysis frequently change, as given in Darby (2006). Hence,

the relevance of the knowledge acquired in the Distributed GSOM should be maintained

by incorporating new patterns into the existing network.

If new data becomes available, the traditional SOM or GSOM algorithms would require

complete re-training which could consume significant amounts of time. The Distributed

CHAPTER 6. A DISTRIBUTED GSOM APPLICATION 118

GSOM, on the other hand, has the ability to integrate data continuously by training a

network only on the new data and integrating the new GSOM into the existing map.

Further details of the Distributed GSOM’s ability to integrate data dynamically is given

in 4.4. The GSOM could be integrated by executing the redundancy reduction process

between the new GSOM and the existing network, followed by Sammon’s projection.

6.5 The analysis process

The use of SOM unsupervised learning techniques has been successfully used for elec-

tricity consumption profile identification in Chicco et al. (2003), Valero et al. (2007) and

Lendasse et al. (2002). The analysis process consists of several stages, pre-processing,

SOM training and clustering. Therefore a Distributed GSOM solution is proposed which

significantly decreases the time consumption of the overall process. Figure 6.2 shows the

major components of the analysis process.

The process starts by pre-processing the data in order to ensure compatibility with

the Distributed GSOM algorithm. Depending on the duration of the profile, aggregation

may be required. For example, if half hourly readings are used for annual profiles, each

vector would contain 17,520 attributes which provides an unnecessary level of detail while

making the analysis process more processor-intensive. Consumption based partitioning is

used in order to reduce distortions in the partition networks.

6.5.1 Pre-processing

The data generated by smart electricity meters in raw form consists of tuples with the

structure,

<meter identifier, electricity consumption in kWh, day, interval, period, end time >.

The main data values in each tuple could be considered as the meter identifier, day, period

and the electricity consumption. The raw data was arranged by meters, and for each meter

the time stamp of the reading was recorded along with the block number (1–48) for the

day.

CHAPTER 6. A DISTRIBUTED GSOM APPLICATION 119

Figure 6.2: The Distributed GSOM algorithm

CHAPTER 6. A DISTRIBUTED GSOM APPLICATION 120

Since the raw data files contained more than 175 million lines, the dataset was trans-

posed into a multi-dimensional vector space in order to use SOM based algorithms. Nor-

malisation was performed on the generated data file in order to ensure compatibility with

the SOM algorithms.

Since the consumption data has a temporal relationship along the columns, normalising

by individual columns was deemed to be suboptimal. For each experiment configuration,

normalisation was carried out by considering the maximum and the minimum across all

the columns. Exploration of the data was carried out in three granularity levels which

determined the number of rows and columns of the dataset, as given in Table 6.1.

6.5.2 Data Partitioning

Due to the significant variations of the electricity consumption values in data, if both high

and low consumption records are assigned to the same partition, the partition network

would be biased towards the high consumption records. Random partitioning was ruled

out for that reason. Since any information about the possible classes in the data was

unavailable, class based partitioning was also infeasible. A heuristic based partitioning

technique was developed, based on the consumption values, in order to avoid bias in

partition networks towards high consumption records.

The total consumption for each row was calculated and the entire dataset was sorted by

the total consumption figures. Due to high variation in the consumption readings, total

consumption based partitioning was used to group records with similar electricity con-

sumption within the same partition. All data records were sorted by the total electricity

consumption and the required number of partitions was created. Due to the limitations of

the distributed computing environment, 128 partitions were created for each level of gran-

ularity. Consumption based partitioning would perform better than random partitioning

due to the lower levels of variations within partitions.

6.5.3 Network training

GSOMs are used for unsupervised learning to summarise each partition and create par-

tition networks. Parameters for the GSOMs are specified based on the total electricity

consumption with high spread factors for low consumption partitions and low spread fac-

tors for high consumption partitions. Due to the differences in electricity consumption

CHAPTER 6. A DISTRIBUTED GSOM APPLICATION 121

values across the partitions, different spread factors were used to ensure even spreads of

the partition networks. The low spread factor was set to 0.3 and the high spread factor

was set to 0.5.

6.5.4 Clustering

In order to identify electricity consumption profiles, data has to be clustered where each

cluster would represent a profile. The neurons in the Distributed GSOM are clustered

using the k-means algorithm (MacQueen, 1967). The cluster centroid would be used as

the consumption profile for the records belonging to the cluster. The cluster centroid is the

average of all the neuron weight vectors in the cluster. Therefore, the actual weight vectors

of the neurons may have minor differences from the cluster centroid. The visualisation

feature of SOM based techniques is quite useful for browsing the cluster and determining

closely related patterns.

6.6 Analysis outcomes

6.6.1 Dataset

The dataset contained electricity consumption readings from 10,000 smart meters. For

each meter, half hourly electricity consumption in kWh was recorded for a year, from 01

Apr 2010 to 31 Mar 2011. Forty eight electricity consumption values were recorded for

each day for 365 days. The dataset consisted of 12 gigabytes of data in its raw format

which was pre-processed in order to ensure compatibility with the Distributed GSOM.

6.6.2 Data configurations

The analysis was performed for different time periods in order to identify patterns of

consumption:

1. Daily consumption,

2. Weekly consumption,

3. Annual consumption.

The number of rows and columns for each configuration is listed in Table 6.1.

CHAPTER 6. A DISTRIBUTED GSOM APPLICATION 122

Table 6.1: Dataset statistics

Configuration Rows Columns

Daily 3,650,000 48

Weekly 510,000 336

Annual 10,000 1440

Analysis of electricity consumption behaviour in terms of daily, weekly and annual time

periods have been used in a number of other approaches such as Wood and Newborough

(2003), Yao and Steemers (2005) and Badran et al. (2008). In order to investigate the

identified three granularity levels, three types of experiments were carried out.

1. Daily electricity consumption analysis

2. Weekly electricity consumption analysis

3. Annual electricity consumption analysis

For each type of analysis, electricity consumption values were arranged in attributes

according to their temporal ordering. The daily electricity consumption analysis created

365 vectors for each meter corresponding to each day of the period from 01 April 2010 to

31 March 2011. Each record consisted of 48 attributes corresponding to each 30 minute

interval of the day. The first attribute would be the reading for the 30 minute interval

from midnight to 00:30 while the 48th attribute would be for the interval from 23:30 to

midnight.

Similarly, the weekly analysis was performed on records where each record was based

on the weekly electricity consumption for a meter. Fifty two records were generated for

each meter where the record started Monday 00:00 to 00:30 and ended on Sunday 23:30

to 00:00. Consequently, 336 (48 × 7) attributes were created for each record.

Annual analysis resulted in the fewest records with one record per meter. It was

evident that some level of aggregation was required, since using the original 30 minute

interval readings was deemed unnecessary in the case of annual consumption. In addition,

aggregating readings would result in fewer attributes thereby improving the efficiency of

the analysis.

The Distributed GSOM was run on a simulated distributed computing environment

with a maximum of 128 computing nodes. Each node possessed 2 GHz of processing power

and 2 gigabytes of memory.

CHAPTER 6. A DISTRIBUTED GSOM APPLICATION 123

6.6.3 Daily electricity consumption analysis

Identifying daily electricity consumption profiles is useful for time of use pricing de-

cision making. A mathematical model for daily electricity consumption is given in

Paatero and Lund (2006) which generates profiles based on the appliances in the house-

hold. However, appliance information would not be available for utility companies, which

limits the relevance of this method. Jardini et al. (2000) propose a supervised method

which requires standard profiles to be defined. In addition, specialised hardware has been

used to record the electricity load. The Distributed GSOM provides an unsupervised

method which has the ability to generate profiles without household appliance informa-

tion.

The objective of the daily electricity consumption analysis was to group the meters

by different daily electricity consumption. Each record represented the daily electricity

consumption values for a single meter for a single day. In order to capture the patterns

as comprehensively as possible, the original granularity of half hourly intervals was used.

Therefore, 365 records with 48 attributes were created for each meter and the entire dataset

for 10,000 meters contained 3,650,000 records which created the largest dataset for the

five configurations.

Hundred and twenty eight partitions were created for the Distributed GSOM based on

total daily electricity consumption. In order to ensure even spreads across the partitions,

a high spread factor of 0.5 was used for the 64 least consumption partitions and a low

consumption spread factor of 0.3 was used for the remaining 64 partitions. The Sammon’s

projection output was used for analysis purposes and K-means algorithm was used to

group the neurons in the Sammon’s projection into 10 clusters.

Daily electricity consumption profiles

Figure 6.3 shows the cluster distribution for the daily electricity consumption records

for the entire dataset. It can be seen that there are two types of consumption profiles.

One is a Gaussian like curve where the peak electricity consumption occurs midday with

high consumption between 06:00 and 17:00, as shown by clusters 1, 4, 5 and 7. The

other main profile type has approximately constant electricity consumption during the

day with only minute variations by time of day as indicated by clusters 2, 3 and 6. It

could be said that clusters 8, 9 and 10 possess hybrid profiles of the two main types with

CHAPTER 6. A DISTRIBUTED GSOM APPLICATION 124

Figure 6.3: Entire dataset: daily electricity consumption by time of day

somewhat constant electricity consumption along with consumption peaking during the

day. The main difference between the clusters in these three types is the average electricity

consumption which clearly differentiates the profiles. The consumption statistics and the

relative sizes of the clusters are given in Table 6.2.

Table 6.2: Entire dataset: daily electricity consumption by no. of records, average kWh,
and percentage of total

Cluster No. of records Average kWh Percentage of total

1 5882 1780.89 kWh 0.16%

2 363 19042.50 kWh 0.01%

3 2149 3298.32 kWh 0.06%

4 773 7603.26 kWh 0.02%

5 1962 2424.83 kWh 0.05%

6 3446235 23.76 kWh 94.42%

7 1526 4172.36 kWh 0.04%

8 134311 245.20 kWh 3.68%

9 15842 1035.28 kWh 0.43%

10 40957 541.63 kWh 1.12%

Total 3650000 53.39 kWh 100.00%

It can be seen that the distribution of records across the clusters is quite uneven, with

94% of the records belonging to cluster 6 where the average daily electricity consumption

is 23.76 kWh. This is less than 50% of the average for the entire dataset, which is 53.39

kWh. It is interesting to see that the records in cluster 2 have extremely high electricity

CHAPTER 6. A DISTRIBUTED GSOM APPLICATION 125

consumption where the daily electricity consumption is more than twice the annual con-

sumption of 94.4% of the readings. Clusters 4, 7 and 3 have moderately high electricity

consumption values.

The majority of records were mapped to cluster 6 where 94.42% of the records were

present. Cluster 6 represents meters with the lowest consumption. Figure 6.4 shows the

electricity consumption profile for the cluster. Since the number of records in cluster 6 is

significantly large, it is possible that the records within clusters have profiles different from

the cluster profile. In order to investigate this further, the records belonging to cluster 6

were normalised and the Distributed GSOM algorithm was run on the data to generate a

second level of sub clusters.

Figure 6.4: Cluster 6: electricity consumption by time of day

As noted, the highest electricity consumption occurs in cluster 2; Figure 6.3 shows

that consumption as constant across all time periods. It was concluded that the records

in cluster 2 belong to a storage warehouse or some other form of consistent electricity

consumption meter. The total number of records in cluster 2 was 363, all of which belonged

to the same meter. Therefore, cluster 2 can clearly be identified as an outlier or an anomaly.

Average daily consumption was calculated as 19042.5 kWh.

Figure 6.3 shows cluster 4 as another high electricity consumption cluster where the

electricity consumption starts to rise around 05:00 and peaks midday. Consumption starts

to decrease around 17:00. It was concluded that the records in cluster 4 belonged to offices

where high electricity consumption occurs during normal working hours. Only 4 meters

indicated the consumption pattern in cluster 4.

CHAPTER 6. A DISTRIBUTED GSOM APPLICATION 126

Table 6.3: Cluster 6: 10 sub clusters by number of records, average kWh and percentage
of total

Sub cluster Total No. of records Average kWh Percentage of total

1 237517 48.10 kWh 6.89%

2 4492 136.42 kWh 0.13%

3 78385 70.31 kWh 2.27%

4 49017 87.15 kWh 1.42%

5 39093 128.05 kWh 1.13%

6 34023 111.11 kWh 0.99%

7 692826 26.94 kWh 20.10%

8 64033 70.80 kWh 1.86%

9 2018305 9.34 kWh 58.57%

10 228544 40.41 kWh 6.63%

Total 3446235 23.76 kWh 100.00%

Expansion of cluster 6

Table 6.3 outlines the statistics for 10 sub clusters in cluster 6. While cluster 6’s overall

profile has a very even outline (Figure 6.4), the records contained in the cluster have a

wide variety of patterns at the sub cluster level. The importance of the second level of

clustering is therefore evident.

Figure 6.5 shows that sub clusters 5, 7, 8 and 9 have the closest resemblance to the top

level cluster 6 profile. The primary difference is the average electricity consumption with,

128 kWh, 27 kWh, 71 kWh and 9 kWh for sub clusters 5, 7, 8 and 9 respectively. All

four clusters have peak electricity consumption between the hours of 18:00 and 21:00. It

could be assumed that working households may have such behaviour since peak electricity

consumption would occur after the working members return from work. sub clusters 5, 7,

8 and 9 contain 88.5% of the records, which indicates that the majority of these electricity

consumers could have such profiles.

Since cluster 9 contains the clear majority of the records, a more detailed examination

may reveal electricity consumption patterns of working households more clearly. Figure

6.6 does this by outlining a profile for sub cluster 9 in a smaller scale. It can be seen

that the electricity consumption starts to increase around 04:00, which would indicate the

time of day some households wake up and start using appliances and lights. Electricity

consumption increases until approximately 07:00 when it starts to decline. The reason for

the decline could be attributed to the households leaving for work and school. Electricity

CHAPTER 6. A DISTRIBUTED GSOM APPLICATION 127

Figure 6.5: Cluster 6: electricity consumption profiles of sub clusters 1, 5, 7, 8 and 9

consumption remains low during the day and starts to rise again, starting at approximately

16:00 which is the time people are returning from school or work. Electricity consumption

peaks for the day around 19:00 possibly due to the use of cooking appliances, televisions

and computers.

Figure 6.6: Sub cluster 9: more detail on electricity consumption by time of day

It is worth noting, in Figure 6.6, that electricity consumption fluctuates between 22:30

and 02:00. Although insufficient data is available to determine the exact cause, it could

be due to electricity consumption by appliances set to a delayed start such as washing

machines and dishwashers. Delayed starts could be due to the customer being on a two

rate (peak/off peak) plan where energy intensive appliances such as washers, dryers and

dishwashers are used during the off peak period when the tariff is low.

CHAPTER 6. A DISTRIBUTED GSOM APPLICATION 128

6.6.4 Weekly electricity consumption profiles

The Distributed GSOM was run on weekly electricity consumption data in order to gener-

ate the weekly electricity consumption profiles. Weekly profiles also indicate the electricity

consumption patterns of customers on different days of the week, mainly the differences in

electricity consumption on weekdays and weekends. Figure 6.7 shows the weekly electricity

consumption profiles identified for the entire dataset.

Figure 6.7: Entire dataset: weekly electricity consumption by day of week. (a) Profiles of
high consumption meters. (b) Profiles of low consumption meters

It can be seen that weekdays, from Monday to Friday, have similar electricity con-

sumption behaviour while that on Saturday and Sunday changes significantly. Similar to

daily electricity consumption profiles, two main types of profiles can be identified where

one has a low variance between the maximum and the minimum electricity consumption

peaks, as in clusters 5 and 6, whereas the other clusters show varying consumption based

on the day of week and time of day.

CHAPTER 6. A DISTRIBUTED GSOM APPLICATION 129

Table 6.4 summarises the statistics for each cluster. The primary differentiator between

the profiles is the average weekly electricity consumption. As cluster 3 contained 90% of

the records, a further level of analysis was performed using the Distributed GSOM. The

second level sub clusters indicated a result similar to the sub cluster daily profile analysis

for the entire dataset.

Table 6.4: Entire dataset: weekly electricity consumption profile statistics

Cluster Total No. of Records Average kWh Percentage of total

1 2182 7512.04 kWh 0.43%

2 28851 922.71 kWh 5.66%

3 461184 144.49 kWh 90.43%

4 11619 2161.91 kWh 2.28%

5 51 132342.30 kWh 0.01%

6 370 22425.77 kWh 0.07%

7 150 45596.58 kWh 0.03%

8 4388 3934.01 kWh 0.86%

9 331 20370.12 kWh 0.06%

10 874 11848.48 kWh 0.17%

Total 510000 374.54 kWh 100.00%

6.6.5 Annual electricity consumption profiles

Clustering the electricity consumption records for the entire year revealed the annual

electricity consumption profiles. Annual electricity consumption profiles indicate the vari-

ations in electricity consumption for longer time periods such as months and seasons.

Figure 6.8 shows the annual electricity consumption profiles identified.

It can be seen that all the clusters have similar electricity consumption patterns

throughout the year with high electricity consumption during summer and low consump-

tion during winter. In addition, the weekly electricity consumption behaviour is also

visible, with high electricity consumption (the peaks) on weekdays and low consumption

(the troughs) on weekends. The main difference between each cluster is primarily the

average annual electricity consumption as given in Table 6.5.

Table 6.5 shows that distribution between clusters is uneven with 63% of the records

mapped on to cluster 6. Figure 6.9 shows the profile of cluster 6 with maximum and min-

imum temperature overlay.This reveals a profile where electricity consumption increased,

CHAPTER 6. A DISTRIBUTED GSOM APPLICATION 130

Figure 6.8: Entire dataset: annual electricity consumption profiles by season

Table 6.5: Entire dataset: annual electricity consumption profile statistics by cluster

Cluster Total No. of records Average kWh Percentage of total

1 6 2802051.00 kWh 0.06%

2 50 308143.80 kWh 0.50%

3 75 183168.10 kWh 0.75%

4 359 62662.88 kWh 3.59%

5 641 27021.22 kWh 6.41%

6 6306 4547.90 kWh 63.06%

7 24 525388.70 kWh 0.24%

8 17 958796.80 kWh 0.17%

9 172 115801.10 kWh 1.72%

10 2350 13450.83 kWh 23.50%

Total 10000 19488.89 kWh 100.00%

with a drop in spring and a spike during summer. The maximum and minimum tem-

peratures elaborate the relationship further with a negative correlation with electricity

consumption during winter months and a positive correlation with electricity consump-

tion during summer.

CHAPTER 6. A DISTRIBUTED GSOM APPLICATION 131

Figure 6.9: Cluster 6 electricity consumption profile by season and month, with tempera-
ture (max and min) overlay

Figure 6.10: Cluster 6: annual electricity consumption profiles of 10 sub clusters

In order to investigate the profiles in cluster 6 further, a second level of clustering

was performed on the records in cluster 6. These second level, sub clusters revealed

further electricity consumption profiles which are shown in Figure 6.10. The profiles in

combination generate the profile of the top level cluster 6 as shown in Figure 6.9.

The sub clusters with the closest profiles to that of the parent cluster are sub clusters 1,

2, 3, 4 and 9, as shown in Figure 6.11. The average electricity consumption differentiates

the profiles with 13.50 kWh, 9.49 kWh, 15.77 kWh, 21.73 kWh and 4.65 kWh for profiles 1,

2, 3, 4 and 9, respectively. Considering the maximum and minimum temperature values as

shown in Figure 6.9, the profiles in Figure 6.11 indicate high electricity consumption during

CHAPTER 6. A DISTRIBUTED GSOM APPLICATION 132

Figure 6.11: Cluster 6: annual electricity consumption profiles of sub clusters 1, 2, 3, 4
and 9

winter and spikes in electricity consumption on high temperature days during summer.

This behaviour could be explained by the high electricity consumption during winter due

to the use of electric heaters during days with low temperatures coupled with the use of

air conditioners on high temperature days during summer.

Figure 6.12 shows the electricity consumption profiles of sub clusters 5 and 7 where

electricity consumption displays low electricity usage with minor fluctuations during win-

ter and without any seasonal trend. Electricity consumption is significantly high during

summer especially in sub cluster 5 profile where the high electricity consumption trend

spans the entire summer. The two types of profiles could be characterised by the elec-

tricity consumption of households with no electric heating during winter possibly due to

their having gas heating. The high consumption in summer could be due to the use of air

conditioning during the summer on high temperature days.

In contrast, sub clusters 8 and 10 display the opposite behaviour to that of sub clus-

ters 5 and 7, with high electricity consumption during the winter and low consumption

during summer. The energy consumption profiles for sub clusters 8 and 10 are shown in

Figure 6.13. The reason for such behaviour could be due to the increased consumption of

electricity as a result of the use of electric heating during winter coupled with absence of

using air conditioning during summer. The minor surge in electricity consumption during

high temperature days could be attributed to the use of electric fans or evaporative coolers

which are less energy intensive compared to air conditioners.

CHAPTER 6. A DISTRIBUTED GSOM APPLICATION 133

Figure 6.12: Cluster 6: annual electricity consumption profiles of sub clusters 5 and 7

Figure 6.13: Cluster 6: annual electricity consumption profiles of sub clusters 8 and 10

6.7 A Multi-Granular Profile (MGP) analysis framework

Electricity consumption readings made by smart meters form the primary source of data for

the electricity consumption profiling. The real-time electricity consumption data recorded

by smart meters provide 15 or 30 minute electricity consumption values. Analysing elec-

tricity consumption patterns in daily, weekly and annual time intervals enables analysts

to understand customers better. However, questions arise as to how daily electricity

consumption patterns predict annual electricity consumption and how external factors

(weather and socio economic factors) affect electricity consumption behaviour.

To address these concerns, a novel framework is proposed which produces multi-

granular profiles which create a complete solution for analysing electricity consumption

data. Figure 6.14 shows a diagrammatic representation of the framework.

CHAPTER 6. A DISTRIBUTED GSOM APPLICATION 134

Figure 6.14: The multi granular profile framework

The first stage of the framework generates the daily, weekly and annual electricity

consumption profiles. Raw data is transformed into daily, weekly and annual electricity

consumption models. The Distributed GSOM is run on each of the three data models to

summarise and visualise outcomes for daily, weekly and annual electricity consumption

configurations. The output of the Distributed GSOM is clustered to identify the profiles

for each configuration.

Once the profiles are generated for daily, weekly and annual electricity consumption,

the relationships among the configurations are examined to generate the multi-granular

profiles (MGP). The relationship structure is generated by examining the distribution of

identifiers in the clusters at each level. For example, if meter A has an annual consumption

of type 1, the distribution of meter A records in weekly analysis clusters is investigated.

Repeating this process for all meters would reveal the relationship with annual profiles and

weekly profiles. A similar approach could be used to generate the relationship between

weekly and daily electricity consumption profiles.

The multi-granular profiles can then be used for various types of analysis exercises. A

data warehouse could be built to store the MGPs and querying could be performed either

CHAPTER 6. A DISTRIBUTED GSOM APPLICATION 135

directly on the MGPs or through the data warehouse. External data such as temperature

and rainfall could be linked in order to integrate another dimension into the analysis. The

querying process could be improved by developing a user interface (UI) to interact with

underlying information.

6.7.1 Profile generation

Smart electricity meter data could span several years. Therefore, electricity consumption

profiles could cover a wide range of cyclic time spans. Analysing the data with differ-

ent levels of granularity enables utilities companies to observe and understand consumer

behaviour from multiple perspectives.

At the coarsest level of granularity, the profile could span the entire time period which

would reveal electricity consumption over a number of years or decades. Having access

to long-term electricity consumption patterns would enable utilities companies to identify

trends and anticipate long-term implications of the demand for electricity.

Analysing the medium term electricity profiles would indicate the electricity consump-

tion patterns over a period of less than a year. Annual profiles contain information about

seasonal and monthly electricity consumption patterns. The predictability of medium

term electricity usage patterns would enable utilities companies to plan for the electricity

demand according to seasonal variations.

Short-term energy consumption profiles over daily and hourly time intervals would

indicate any short-term electricity usage trends. Short-term trends have high relevance to

smart grid technologies such as demand side management and time of use pricing. The

ability to respond quickly to changing electricity usage trends could lead to more efficient

energy generation and utilisation.

Profiles are generated by clustering the energy consumption records by the selected

level or granularity. Each cluster would represent an electricity consumption profile show-

ing the electricity consumption pattern for the members of the cluster.

6.7.2 MGP extraction

Multi-granular profiles are created by identifying the relationships between the multiple

granularity levels. MGPs pave the basis for exploring the electricity consumption patterns

of the consumers from a new perspective. MGPs create a fusion of long-term, medium

CHAPTER 6. A DISTRIBUTED GSOM APPLICATION 136

Figure 6.15: Multi-granular profile structure. Profile identifiers are in <top level cluster
identifier >[<second level cluster identifier >] format.

term and short-term electricity consumption profiles which could be used for effective

decision making.

MGPs enable analysts to predict the long-term electricity consumption behaviour of a

customer using short-term electricity consumption readings. MGPs also provide a platform

for evaluating customers’ behavioural changes by analysing the movement of meters from

one MGP to another.

6.7.3 Identified multi-granular profiles

The profiles generated for daily, weekly and annual electricity consumption were combined

across different granular levels in order to create the MGPs. Figure 6.15 shows the most

prominent MGPs.

CHAPTER 6. A DISTRIBUTED GSOM APPLICATION 137

Table 6.6: MGP categorisation rules

Range in kWh Classification

> 1000 Ultra high

> 100 Very high

> 30 High

> 10 Average

< 10 Low

The MGPs could be categorised according to average daily electricity consumption.

Categorisation rules are given in Table 6.6. Examples from each section are discussed in

the following sub sections.

Low electricity consumption MGPs

Figure 6.16 shows the annual, weekly and daily consumption patterns of MGP 1. MGP 1

has an annual profile having high electricity consumption during winter and high consump-

tion during summer with low electricity consumption during autumn and spring. 97% of

the meters with such annual profiles displayed high consumption during weekdays and

Saturdays with relatively low consumption on Sundays. 99% of the records having this

weekly profile displayed a daily profile where the highest electricity consumption occurs at

night, approximately at 19:00, with low consumption during the day and moderately high

consumption could be observed early morning. It could be inferred from the MGP that

the profile relates to working households with low electricity consumption with electric

heating and air conditioning facilities.

It can be observed that the daily electricity consumption is repeated over the week

irrespective of which day of the week. This information would be taken into consideration

for time of use based pricing. In addition, electricity consumption during the winter is

relatively low compared to the other seasons of the year. Seasonal discounts could be

offered to fully utilise the electricity generation.

6.8 Discussion

The Distributed GSOM based analysis process proposed in this chapter provides an ef-

ficient alternative to SOM based electricity consumption profiling. The process further

CHAPTER 6. A DISTRIBUTED GSOM APPLICATION 138

Figure 6.16: Annual, weekly and daily electricity consumption patterns of MGP 1

CHAPTER 6. A DISTRIBUTED GSOM APPLICATION 139

improves the analysis process by incorporating additional features such as reducing the

level of distortion and providing an efficient technique to integrate new data continuously.

The multi-granular profile framework enables analysts to view the profiles in different

perspectives in order to link profiles with different levels of granularity. The MGPs can be

used to predict long-term electricity consumption behaviour from daily or weekly electricity

usage trends.

The data warehouse, external data integration and the query component of the MGP

framework needs to be further enhanced by incorporating a graphical user interface for

ease of use.

The outcomes of the work described in this chapter are as follows.

1. The Distributed GSOM significantly improved the efficiency of the analysis process

by reducing the total time consumption to only 5% compared to that of traditional

SOMs.

2. The Distributed GSOM was used effectively to cluster and visualise electricity con-

sumption patterns from gigabytes of smart electricity meter readings. The outliers

were included in the analysis using heuristic based partitioning thereby increasing

the value of the analysis.

3. Heuristic based partitioning was used to improve clustering accuracy.

4. Average electricity consumption based partitioning was used to group records with

similar electricity consumption which resulted in less distortion in clusters.

5. A multi-granular profile structure was developed linking daily, weekly and annual

electricity consumption profiles: this can be used to predict electricity consumption

behaviour within a practical and reasonable time frame.

6. Harnessing the scalable and the parallel nature of the new algorithm, a model was

developed to integrate new electricity consumption data continuously without re-

training the entire network.

Chapter 7

Conclusion

This thesis has described a novel distributed algorithm for efficiently exploring large

datasets using self-organising maps. The scope of the research was highlighted in Chap-

ter 1 where the research questions and research objectives were discussed. The literature

relevant to the work presented in this thesis was presented in Chapter 2. Chapter 3 in-

troduced the Distributed GSOM algorithm and the conceptual as well as the empirical

justification for using the GSOM as the learning engine was discussed in Chapter 4. The

implementation of the algorithm on the Hadoop distributed computing framework was

presented in Chapter 5. A real-world exploratory data analysis application, using the

Distributed GSOM to demonstrate the practical applicability of the work, was demon-

strated in Chapter 6 where gigabytes of smart electricity meter readings are explored for

electricity consumption profiles.

This chapter concludes this thesis by discussing how the research objectives have been

achieved.

The primary research question addressed in this thesis was:

How can the self-organising map be extended via the functionality of a dis-

tributed algorithm to enable exploratory analysis with big data?

This thesis reports the work conducted in order to answer the primary research ques-

tion. This chapter describes the summary of the research contributions and outlines the

answers to the main research questions. This chapter concludes the thesis by discussing

future research directions.

140

CHAPTER 7. CONCLUSION 141

7.1 Summary of contributions

In order to answer the main research question, a distributed algorithm was developed with

a divide and conquer architecture. The algorithm, named the Distributed GSOM, encom-

passes all the desirable features of scalable data and compute-intensive distributed algo-

rithms. The algorithm was evaluated using three datasets to determine its efficiency and

accuracy. The Distributed GSOM was implemented on the Hadoop distributed computing

framework addressing the practical concerns. The practical usefulness of the algorithm

was demonstrated using a real-world exploratory data analysis application.

Summaries of the research contributions presented in each chapter are outlined below.

The field of exploratory data analysis and SOMs was discussed in Chapter 2. The SOM

is a widely used exploratory data analysis algorithm due to its visualisation and summari-

sation features. The GSOM is an extension of the SOM with a dynamic structure which

is more suitable for data exploration. A key limitation of both the SOM and the GSOM

is their excessive time consumption when processing large scale datasets. Distributed

computing is considered to be an effective approach for distributing the computational

load for large scale data analysis applications. A number of parallel algorithms have been

proposed for the SOM; however, none of the current parallel SOM algorithms possess all

the desirable properties of data and compute-intensive distributed algorithms.

The Distributed GSOM, a scalable, parallel algorithm with a distributed memory model

was introduced in Chapter 3. The Distributed GSOM possesses all the key features of

data and compute-intensive distributed algorithms, a distributed memory model, data

parallelism, a horizontal data layout and the ability to process both sparse and dense

data. The algorithm utilises a divide and conquer approach by partitioning the dataset,

training GSOMs in parallel on each data partition and merging the outputs of the GSOMs

to form a singular representation of the entire dataset. Experiments indicated that the

Distributed GSOM results in significantly higher levels of efficiency by reducing the total

time consumption by several orders compared to the serial counterparts. In addition, the

Distributed GSOM created similar levels of clustering accuracy compared to the serial

GSOM.

Several key features of the distributed algorithm were further analysed, justified and

presented in detail in Chapter 4. Initially, the use of the GSOM in place of the traditional

CHAPTER 7. CONCLUSION 142

SOM was analysed and justified conceptually as well as empirically. Next, the redundancy

method and incremental data integration features were discussed. Comparison of the

effects of static and dynamic structured SOMs demonstrated that, when the shape of the

dataset is unknown, the GSOM with a dynamic structure accommodates the data better.

Chapter 4 introduced a new redundancy reduction method that improves the scalability

of the algorithm. The strengths of the two redundancy reduction methods can be used in

different stages of the exploratory data analysis process. Chapter 4 also introduced a new

incremental data integration model that reuses the components of the Distributed GSOM

algorithm to integrate new data efficiently into an existing network.

Implementation of the Distributed GSOM on the Hadoop distributed computing frame-

work is discussed in Chapter 5. A MapReduce architecture was developed for the Dis-

tributed GSOM in order to deploy it in the popular Hadoop distributed computing frame-

work. MapReduce processes were developed for the data partitioning methods which

further improve the performance of the Distributed GSOM. The components of the Dis-

tributed GSOM were optimised for Hadoop in order to ensure load balancing and minimal

communication.

The advantages of the Distributed GSOM were demonstrated using a real-world ex-

ploratory data analysis application in Chapter 6. The Distributed GSOM was used to

explore gigabytes of smart electricity meter reading data in order to identify electricity

consumption profiles. Due to the use of the Distributed GSOM, the total time consump-

tion of the analysis was decreased by 95%, significantly shortening the turnaround time.

An incremental, multi-granular electricity consumption profile analysis framework is pre-

sented in Chapter 6 which was utilised to identify short-term, medium term and long-term

profiles.

7.2 Addressing the main research questions

This section describes the research contribution of this thesis for each research question

formulated in Chapter 1.

The main research question, How can the self-organising map be extended with the

functionality of a distributed algorithm to enable exploratory analysis with big data?, was

composed of three sub-questions: questions on distributed SOM algorithm development,

CHAPTER 7. CONCLUSION 143

implementation of distributed SOM algorithms on distributed computing platforms and

the application of distributed SOM algorithms for real-world exploratory data analysis

tasks. Research contributions made for each research question are outlined in the sections

below.

7.2.1 Research questions on distributed SOM algorithm development

1. How can a distributed memory architecture be developed for the SOM with data par-

allelism and a horizontal data layout?

The Distributed GSOM algorithm is proposed in Chapter 3 as a solution to the high

time consumption of the SOM algorithm for large scale exploratory data analysis

applications. The algorithm utilises data parallelism in order to achieve higher levels

of scalability for large scale data processing. Data parallelism is achieved by parti-

tioning the dataset horizontally which preserves the attributed relationships during

the training process. As the SOMs or GSOMs are trained in parallel on data parti-

tions, the Distributed GSOM has a distributed memory model. Since the Distributed

GSOM does not use the sparsity of the dataset in order to achieve parallelism, both

sparse and dense data can be processed by the algorithm.

Experiments conducted using the WBC, SMH and CoverType datasets show that

the Distributed GSOM is up to 100 times faster than the serial algorithm while

creating similar levels of accuracy. Hence, the Distributed GSOM is an effective

distributed SOM algorithm that can be used for large scale data exploration.

2. What are the different partitioning methods to create a horizontal data layout?

The primary horizontal data partitioning methods are discussed in Chapter 3. These

are random partitioning, class based partitioning, structure based partitioning and

heuristic based partitioning. Random partitioning does not require any meta infor-

mation from the data and can be applied for any dataset. Class based partitioning

can be used if the underlying classes in the data are known and each partition will

contain records pertaining to only one class. If the dataset is structured by an

inherent property such as time or geography, partitions can be created based on

the structure. If the partitions can be created based on a heuristic property of the

dataset, heuristic based partitioning can be used.

CHAPTER 7. CONCLUSION 144

Although structure and heuristic based partitioning are specific to data analysis

applications, random and class based partitioning can be applied to most datasets.

Experiments show that the class based partitioning creates marginally higher levels

of accuracy compared to random partitioning. The minor difference in accuracy in

the two techniques indicate that random partitioning is a suitable alternative to class

based partitioning where class information is unavailable.

3. How can redundancy be determined in SOMs trained on subsets of data and how can

redundant neurons be removed?

Redundant neurons arising due to partitioning are identified by comparing quan-

tisation errors of neurons for sets of input vectors. The neuron with the greater

error is removed from the partition network. Two redundancy reduction methods

are available, one where preserved neurons accumulate the hit items of the removed

neurons (introduced in Chapter 3) and the other which considers only the original

hit items for error calculation (introduced in Chapter 4). Experiments showed that

the method that uses accumulated hit items yields higher levels of accuracy whereas

the method that uses original hit items results in faster performance and higher

levels of scalability.

The redundancy index is a measure of redundancy across SOMs which indicates the

average attribute distance of redundant neurons. The redundancy index was used

to identify redundant non-hit neurons which do not incur a quantisation error.

7.2.2 Research questions on implementing algorithms on distributed

computing frameworks

1. How can the distributed SOM algorithm be transformed into a MapReduce pattern?

The Distributed GSOM has an inherent MapReduce structure where the partitioning

and parallel network training phases form the map stage and the redundancy reduc-

tion and merging processes form the reduce stage. Chapter 5 proposes a MapReduce

architecture for the Distributed GSOM. The map processes execute in parallel and

distribute the workload among the nodes of the computing cluster. The node assign-

ment algorithm strives to achieve the optimum node assignment by ensuring that

all datanodes are occupied prior to assigning a second map task to a datanode. The

CHAPTER 7. CONCLUSION 145

MapReduce model was implemented on the Hadoop distributed computing frame-

work, one of the most popular cloud computing platforms in existence. Furthermore,

combiners were used to reduce the time consumption of the redundancy reduction

stage.

2. How can partitioning of large datasets utilise a MapReduce algorithm?

MapReduce data partitioning modes were proposed in Chapter 5 for the four data

partitioning methods proposed in Chapter 3. Random partitioning, class based par-

titioning and structure based partitioning were performed by assigning each record

in the input dataset to the designated partition in the map process and combining

the records for each partition in the reduce process. Heuristic based partitioning in-

volved further processing since the dataset may need to be ordered by the heuristic

property. The sort and shuffle process of Hadoop was utilised for heuristic based

partitioning without the need for an explicit sorting function.

3. How can data partitioning ensure that each parallel process receives a sufficient num-

ber of records?

The CsvRecordReader class developed for the Distributed GSOM implementation en-

sured that the records were accurately parsed and a sufficient number of records were

assigned for each partition. Each line in the data files was parsed in order to extract

the records. The minimum number of records per partition required for SOMs or

GSOMs is outlined in Chapter 3. The partitioning process ensured that the number

of records assigned for a partition is greater than the required minimum.

4. What measures can be taken to minimise the communication overhead in a distributed

computing platform?

Outputs of the partition networks were modified such that the input vectors are

encapsulated within the neurons. Having the input vectors within the neurons over-

comes the need to access the dataset during redundancy reduction. The reduce

process, therefore, can operate independent of the dataset and the volume of com-

munication in the computing cluster is minimised.

CHAPTER 7. CONCLUSION 146

7.2.3 Research questions on applying the distributed SOM algorithm

onto large datasets

1. How do static and dynamic SOM structures affect data exploration?

The SOM with a static structure resulted in a greater quantisation error compared

to the GSOM with a dynamic structure when the dataset does not match the shape

of the network, as discussed in Chapter 4. If the shape of the dataset is known,

static structures can be used effectively. However, in exploratory data analysis, the

shape of the dataset is rarely known. Therefore, GSOMs create a more accurate

representation of the dataset compared to the SOM.

SOMs created higher levels of inconsistency in representing varying density data

whereas the level of inconsistency in GSOMs was low. In addition, the GSOM created

fewer neurons in order to achieve lower levels of quantisation errors compared to that

of the SOM. Therefore, GSOMs created a better representation of the dataset while

improving the performance of the merging process.

2. How can the distributed GSOM algorithm be used to explore large electricity meter

readings to identify electricity consumption profiles?

The Distributed GSOM algorithm was used to identify electricity consumption pro-

files from gigabytes of smart electricity meter readings in Chapter 6. A model was

proposed to identify profiles of different granularity levels enabling the analysis of the

data from multiple perspectives. External factors were integrated into the analysis

in order to add more value to the analysis. The time consumption of the analysis

process was reduced by 95% by using the distributed algorithm.

3. How can data partitioning be used to improve the quality of the analysis?

Heuristic based partitioning was employed to group the data based on total electricity

consumption. The high consumption records within the dataset were confined to one

partition thereby ensuring that the partition networks are unaffected by outliers.

Due to the absence of distortions created by the outliers, cluster separation was

consistent. The clusters revealed clear electricity consumption profiles which can be

attributed to characteristics of households.

CHAPTER 7. CONCLUSION 147

4. How can different granularity levels of the analysis add more meaning to the identi-

fied electricity consumption profiles?

Profiles were identified for short-term, medium term and long-term electricity con-

sumption behaviour. Short-term profiles indicated the electricity consumption for

24 hours and represented daily electricity consumption behaviours. The medium

term electricity consumption behaviour was determined using the weekly profiles

which showed the change in electricity consumption by days of the week. Annual

electricity consumption behaviour was considered long-term and the profiles showed

the patterns of electricity consumption in different seasons of the year.

The short-term, medium term and long-term profiles were combined in order to cre-

ate multi-granular profiles that characterise the behaviour of consumers at multiple

levels of granularity. Prediction of long-term electricity consumption behaviour us-

ing short-term electricity consumption data was a key feature of the multi-granular

profile analysis.

5. How can new data be integrated into the distributed SOM output without having to

re-train the entire network?

An incremental data integration model was presented in Chapter 4, in order to facil-

itate the incorporation of new knowledge into an existing map with the availability

of new data. The incremental model operates by training a GSOM on the new data

and integrating the GSOM into an existing network by performing the redundancy

reduction and Sammon’s projection steps. The results demonstrated that the map

generated by incrementally presenting the dataset is almost identical to the map

generated by presenting the entire dataset simultaneously.

7.3 Future work directions

This thesis presents a scalable distributed SOM model for increasing the efficiency of the

exploratory data analysis process. The work reported in the thesis demonstrates that the

proposed Distributed GSOM algorithm is efficient and effective in clustering massive data

volumes. Further research would improve the accuracy and applicability of the algorithm

for large scale data exploration applications in the modern day.

CHAPTER 7. CONCLUSION 148

The map merging process can be improved by developing a parallel architecture for

generating the topographic map. A merging stage that can concurrently generate a sin-

gle map would improve the efficiency of the overall algorithm. In addition, cascading

MapReduce models can be implemented on Hadoop resulting in a seamless end to end

process.

An application in electricity consumption profiling is presented for the Distributed

GSOM. It would be interesting to scale the algorithm to thousands of nodes for processing

hundreds of gigabytes or terabytes of data. The incremental data integration can be

utilised to create an evolving self-organising map that continuously learns and maintains

its currency. A pruning process can be integrated into the architecture to reduce the level

of obsolete knowledge within the network.

In conclusion, the work presented opens up many interesting avenues for future re-

search.

7.4 Concluding remarks

The need to analyse massive volumes of data is becoming increasingly common for most

organisations. The SOM is a popular, unsupervised data exploration technique. A key

issue of the SOM is the high time consumption of the algorithm when processing large

datasets. With the computing power of cloud and distributing computing platforms at our

disposal, efficient scalable, parallel algorithms are in high demand for data exploration.

This thesis proposes the Distributed GSOM as a means of delivering the data analysis

power of SOM based techniques for large scale data analysis. It also demonstrates the

application of the algorithm for analysing large real-world datasets. The Distributed

GSOM is several orders faster than the SOM and the total time consumption can be

reduced by up to 99%.

It is believed that the work reported in this thesis will give rise to a new generation of

efficient distributed SOM algorithms for large scale data analysis applications.

Vita

Publications arising from this thesis include:

Ganegedara, H. and Alahakoon, D. (2011), Scalable data clustering: A Sammon’s
projection based technique for merging GSOMs. In The 18th International Confer-
ence on Neural Information Processing Shanghai, China

Ganegedara, H. , et al. (2012), Self-organising map based region of interest labelling
for automated defect identification in large sewer pipe image collections. In Inter-
national Joint Conference on Neural Networks Brisbane, Australia

Ganegedara, H. and Alahakoon, D. (2012), Redundancy reduction in self-
organising map merging for scalable data clustering. In International Joint
Conference on Neural Networks Brisbane, Australia

Matharage, S. , Ganegedara, H. and Alahakoon, D. (2013), A Scalable and Dy-
namic Self-Organizing Map for Clustering Large Volumes of Text Data. In Interna-
tional Joint Conference on Neural Networks Dallas, USA

Permanent Address: Clayton School of Information Technology

Monash University

Australia

This thesis was typeset with LATEX2ε
1 by the author.

1LATEX2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of

the American Mathematical Society. The macros used in formatting this thesis were written by Glenn

Maughan and modified by Dean Thompson and David Squire of Monash University.

149

References

Alahakoon, D., Halgamuge, S. and Srinivasan, B. (2000). Dynamic self-organizing maps

with controlled growth for knowledge discovery, Neural Networks, IEEE Transactions

on 11(3): 601–614.

Alahakoon, L. D. (2004). Controlling the spread of dynamic self-organising maps, Neural

Computing & Applications 13(2): 168–174.

Apache (2013). Hadoop.

URL: http://hadoop.apache.org/, last accessed 08 February 2013

Astel, A., Tsakovski, S., Barbieri, P. and Simeonov, V. (2007). Comparison of self-

organizing maps classification approach with cluster and principal components analysis

for large environmental data sets, Water Research 41(19): 4566–4578.

Badran, I., El-Zayyat, H. and Halasa, G. (2008). Short-term and medium-term load

forecasting for jordan’s power system, American Journal of Applied Sciences 5(7).

Bakirtzis, A., Theocharis, J., Kiartzis, S. and Satsios, K. (1995). Short term load forecast-

ing using fuzzy neural networks, Power Systems, IEEE Transactions on 10(3): 1518–

1524.

Barney, B. (2013). Introduction to parallel computing.

Barreto, G. A. and Araujo, A. F. (2004). Identification and control of dynamical systems

using the self-organizing map, Neural Networks, IEEE Transactions on 15(5): 1244–

1259.

Behrens, J. T. (1997). Principles and procedures of exploratory data analysis, Psychological

Methods 2(2): 131.

150

REFERENCES 151

Bezdek, J. C., Ehrlich, R. and Full, W. (1984). Fcm: The fuzzy c-means clustering

algorithm, Computers and Geosciences 10(2): 191–203.

Blackard, J. A., Dean, D. and Anderson, C. (1998). The forest covertype dataset.

Blackard, J. A. and Dean, D. J. (1999). Comparative accuracies of artificial neural networks

and discriminant analysis in predicting forest cover types from cartographic variables,

Computers and Electronics in Agriculture 24(3): 131–151.

Bryson, A. and Ho, Y.-C. (1969). Applied optimal control. 1969, Blaisdell, Waltham,

Mass .

Carpenter, G. A., Grossberg, S. and Rosen, D. B. (1991). Fuzzy art: Fast stable learning

and categorization of analog patterns by an adaptive resonance system, Neural networks

4(6): 759–771.

Chen, H.-L., Yang, B., Liu, J. and Liu, D.-Y. (2011). A support vector machine classifier

with rough set-based feature selection for breast cancer diagnosis, Expert Systems with

Applications 38(7): 9014–9022.

Chicco, G., Napoli, R. and Piglione, F. (2003). Application of clustering algorithms and self

organising maps to classify electricity customers, Power Tech Conference Proceedings,

2003 IEEE Bologna, Vol. 1, IEEE, p. 7 pp. Vol. 1.

Cloud, A. E. C. (2011). Amazon web services, Retrieved November 9: 2011.

Cuadros-Vargas, E. and Romero, R. A. F. (2005). Introduction to the sam-s m* and mam-

s m* families, Neural Networks, 2005. IJCNN’05. Proceedings. 2005 IEEE International

Joint Conference on, Vol. 5, IEEE, pp. 2966–2970.

Darby, S. (2006). The effectiveness of feedback on energy consumption, A Review for

DEFRA of the Literature on Metering, Billing and direct Displays 486: 2006.

Das, D. (2009). Howto hadoop.

URL: http://trac.nchc.org.tw/cloud/ raw-attachment/Fwiki/HadoopWorkshop/h

adoop-assembled.pdf

REFERENCES 152

De Silva, D., Yu, X., Alahakoon, D. and Holmes, G. (2011a). A data mining framework for

electricity consumption analysis from meter data, Industrial Informatics, IEEE Trans-

actions on 7(3): 399–407.

De Silva, D., Yu, X., Alahakoon, D. and Holmes, G. (2011b). Semi-supervised classifi-

cation of characterized patterns for demand forecasting using smart electricity meters,

Electrical Machines and Systems (ICEMS), 2011 International Conference on, IEEE,

pp. 1–6.

Dean, J. and Ghemawat, S. (2008). Mapreduce: simplified data processing on large clus-

ters, Communications of the ACM 51(1): 107–113.

Dean, J. and Ghemawat, S. (2010). Mapreduce: a flexible data processing tool, Commu-

nications of the ACM 53(1): 72–77.

Deboeck, G. and Kohonen, T. (1998). Visual explorations in finance: with self-organizing

maps, Vol. 2, Springer London.

Demartines, P. and Hrault, J. (1997). Curvilinear component analysis: A self-organizing

neural network for nonlinear mapping of data sets, Neural Networks, IEEE Transactions

on 8(1): 148–154.

Dubes, R. C. and Jain, A. K. (1980). Clustering methodologies in exploratory data anal-

ysis, Advances in Computers 19(11).

Fang, X., Misra, S., Xue, G. and Yang, D. (2011). Smart gridthe new and improved power

grid: a survey.

Faro, A., Giordano, D. and Maiorana, F. (2011). Mining massive datasets by an unsuper-

vised parallel clustering on a grid: Novel algorithms and case study, Future Generation

Computer Systems 27(6): 711–724.

Fayyad, U., Piatetsky-Shapiro, G. and Smyth, P. (1996). From data mining to knowledge

discovery in databases, AI magazine 17(3): 37.

Fischer, M. J., Su, X. and Yin, Y. (2010). Assigning tasks for efficiency in hadoop,

Proceedings of the 22nd ACM symposium on Parallelism in algorithms and architectures,

ACM, pp. 30–39.

REFERENCES 153

Flexer, A. (1999). On the use of self-organizing maps for clustering and visualization,

Springer, pp. 80–88.

Fu, T.-c., Chung, F.-l., Ng, V. and Luk, R. (2001). Pattern discovery from stock time

series using self-organizing maps, Workshop Notes of KDD2001 Workshop on Temporal

Data Mining, Citeseer, pp. 26–29.

Furao, S., Ogura, T. and Hasegawa, O. (2007). An enhanced self-organizing incremental

neural network for online unsupervised learning, Neural Networks 20(8): 893–903.

Ganegedara, H. and Alahakoon, D. (2012). Redundancy reduction in self-organising map

merging for scalable data clustering, Neural Networks (IJCNN), The 2012 International

Joint Conference on, IEEE, pp. 1–8.

Ganegedara, H., Alahakoon, D., Mashford, J., Paplinski, A., Muller, K. and Deserno,

T. M. (2012). Self organising map based region of interest labelling for automated

defect identification in large sewer pipe image collections, Neural Networks (IJCNN),

The 2012 International Joint Conference on, IEEE, pp. 1–8.

Gantz, J. F. and Chute, C. (2008). The diverse and exploding digital universe: An updated

forecast of worldwide information growth through 2011, IDC.

Ghemawat, S., Gobioff, H. and Leung, S.-T. (2003). The google file system, ACM SIGOPS

Operating Systems Review, Vol. 37, ACM, pp. 29–43.

Goil, S., Nagesh, H. and Choudhary, A. (1999). Mafia: Efficient and scalable subspace

clustering for very large data sets, Proceedings of the 5th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pp. 443–452.

Gorgonio, F. L. and Costa, J. (2008). Combining parallel self-organizing maps and k-

means to cluster distributed data, Computational Science and Engineering Workshops,

2008. CSEWORKSHOPS’08. 11th IEEE International Conference on, IEEE, pp. 53–58.

Goto, Y., Yamada, R., Yamamoto, Y., Yokoyama, S. and Ishikawa, H. (2013). Som-based

visualization for classifying large-scale sensing data of moonquakes, P2P, Parallel, Grid,

Cloud and Internet Computing (3PGCIC), 2013 Eighth International Conference on,

IEEE, pp. 630–634.

REFERENCES 154

Govindan, S., Choi, J., Urgaonkar, B., Sivasubramaniam, A. and Baldini, A. (2009).

Statistical profiling-based techniques for effective power provisioning in data centers,

Proceedings of the 4th ACM European conference on Computer systems, ACM, pp. 317–

330.

Gray, J. (2007). Tape is dead, disk is tape, flash is disk, ram locality is king, Gong Show

Presentation at CIDR .

Haritopoulos, M., Yin, H. and Allinson, N. M. (2002). Image denoising using self-

organizing map-based nonlinear independent component analysis, Neural Networks

15(8): 1085–1098.

Haykin, S. (1994). Neural networks: a comprehensive foundation, Prentice Hall PTR.

Hebb, D. (1949). The organization of behavior, A Neuropsychological Theory .

Holub, J., Richardson, T., Dryden, M., La Grotta, S. and Winer, E. (2012). Contextual

self-organizing map visualization to improve optimization solution convergence, Proceed-

ings of the 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,

AIAA.

Honkela, T., Kaski, S., Lagus, K. and Kohonen, T. (1997). Websomself-organizing maps

of document collections, Proceedings of WSOM, Vol. 97, pp. 4–6.

Hubel, D. and Wiesel, T. (1968). Receptive fields and functional architecture of monkey

striate cortex, The Journal of Physiology 195(1): 215.

Huntsberger, T. and Ajjimarangsee, P. (1990). Parallel self-organizing feature maps for

unsupervised pattern recognition, International Journal of General Systems 16(4): 357–

372.

Hush, D. R. and Horne, B. G. (1993). Progress in supervised neural networks, Signal

Processing Magazine, IEEE 10(1): 8–39.

IEA, I. E. A. (2012). Key world energy statistics 2013.

URL: http://www.iea.org/publications/freepublications/publication/KeyWorld2013.pdf

Intel (2013). 4th generation intel core i7 processor.

URL: http://ark.intel.com/products/family/75023, last accessed 08 February 2013

REFERENCES 155

Jardini, J. A., Tahan, C., Gouvea, M., Ahn, S. U. and Figueiredo, F. (2000). Daily

load profiles for residential, commercial and industrial low voltage consumers, Power

Delivery, IEEE Transactions on 15(1): 375–380.

Jatmiko, W., Azurat, A., Wibowo, A., Marihot, H., Wicaksana, M., Takagawa, I.,

Sekiyama, K. and Fukuda, T. (2010). Self-organizing urban traffic control architec-

ture with swarm-self organizing map in jakarta: Signal control system and simulator,

International Journal on Smart Sensing and Intelligent Systems 3(3).

Jin, J., Luo, J., Song, A., Dong, F. and Xiong, R. (2011). Bar: an efficient data locality

driven task scheduling algorithm for cloud computing, Cluster, Cloud and Grid Comput-

ing (CCGrid), 2011 11th IEEE/ACM International Symposium on, IEEE, pp. 295–304.

Kaski, S. (1997). Data exploration using self-organizing maps, ACTA POLYTECHNICA

SCANDINAVICA: MATHEMATICS, COMPUTING AND MANAGEMENT IN EN-

GINEERING SERIES NO. 82, Citeseer.

Kaski, S., Kangas, J. and Kohonen, T. (1998). Bibliography of self-organizing map (som)

papers: 1981-1997, Neural computing surveys 1(3-4): 1–176.

Keim, D. A., Mansmann, F., Schneidewind, J. and Ziegler, H. (2006). Challenges in

visual data analysis, Information Visualization, 2006. IV 2006. Tenth International

Conference on, IEEE, pp. 9–16.

Kim, K.-S. and Han, I. (2001). The cluster-indexing method for case-based reasoning

using self-organizing maps and learning vector quantization for bond rating cases, Expert

Systems with Applications 21(3): 147–156.

King, B. (1967). Step-wise clustering procedures, Journal of the American Statistical

Association 62(317): 86–101.

Kitajima, N. (1995). A new method for initializing reference vectors in lvq, Neural Net-

works, 1995. Proceedings., IEEE International Conference on, Vol. 5, IEEE, pp. 2775–

2779.

Kiviluoto, K. (1998). Predicting bankruptcies with the self-organizing map, Neurocom-

puting 21(1): 191–201.

REFERENCES 156

Kluver, R. (2008). Globalization, informatization, and intercultural communication.

Kohonen, T. (1990). The self-organizing map, Proceedings of the IEEE 78(9): 1464–1480.

Kohonen, T. (1993). Physiological interpretation of the self-organizing map algorithm,

Neural Networks 6(7): 895–905.

Kohonen, T. (2001). Self-organizing maps, Vol. 30, Springer.

Kohonen, T., Kaski, S., Lagus, K., Salojarvi, J., Honkela, J., Paatero, V. and Saarela,

A. (2000). Self organization of a massive document collection, Neural Networks, IEEE

Transactions on 11(3): 574–585.

Kohonen, T., Oja, E., Simula, O., Visa, A. and Kangas, J. (1996). Engineering applications

of the self-organizing map, Proceedings of the IEEE 84(10): 1358–1384.

Koikkalainen, P. and Oja, E. (1990). Self-organizing hierarchical feature maps, Neural

Networks, 1990., 1990 IJCNN International Joint Conference on, IEEE, pp. 279–284.

Complexity of SOM.

Koskela, T., Varsta, M., Heikkonen, J. and Kaski, K. (1997). Time series prediction using

recurrent SOM with local linear models, Helsinki University of Technology.

Kouzes, R. T., Anderson, G. A., Elbert, S. T., Gorton, I. and Gracio, D. K. (2009). The

changing paradigm of data-intensive computing, Computer 42(1): 26–34.

Kriegel, H.-P., Krger, P. and Zimek, A. (2009). Clustering high-dimensional data: A

survey on subspace clustering, pattern-based clustering, and correlation clustering, ACM

Transactions on Knowledge Discovery from Data (TKDD) 3(1): 1.

Laaksonen, J., Koskela, M., Laakso, S. and Oja, E. (2000). Picsomcontent-based image

retrieval with self-organizing maps, Pattern Recognition Letters 21(13): 1199–1207.

Lam, J. C., Tang, H. and Li, D. H. (2008). Seasonal variations in residential and commer-

cial sector electricity consumption in hong kong, Energy 33(3): 513–523.

Lawrence, R., Almasi, G. and Rushmeier, H. (1999). A scalable parallel algorithm for

self-organizing maps with applications to sparse data mining problems, Data Mining

and Knowledge Discovery 3(2): 171–195.

REFERENCES 157

Lendasse, A., Lee, J., Wertz, V. and Verleysen, M. (2002). Forecasting electricity consump-

tion using nonlinear projection and self-organizing maps, Neurocomputing 48(1): 299–

311.

Liu, Y., Li, M., Alham, N. K., Hammoud, S. and Ponraj, M. (2011). Load balancing in

mapreduce environments for data intensive applications, Fuzzy Systems and Knowledge

Discovery (FSKD), 2011 Eighth International Conference on, Vol. 4, IEEE, pp. 2675–

2678.

MacQueen, J. (1967). Some methods for classification and analysis of multivariate ob-

servations, Proceedings of the fifth Berkeley symposium on mathematical statistics and

probability, Vol. 1, California, USA, p. 14. K-means.

Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C. and Byers, A. H.

(2011). Big data: The next frontier for innovation, competition, and productivity.

Matharage, S., Ganegedara, H. and Alahakoon, D. (2013). A scalable and dynamic self-

organizing map for clustering large volumes of text data, Neural Networks (IJCNN),

The 2013 International Joint Conference on, IEEE, pp. 1–8.

Monteith, J. Y., McGregor, J. D. and Ingram, J. (2013). Hadoop and its evolving ecosys-

tem, Proceedings of the Fifth International Workshop on Software Ecosystems.

Mulier, F. and Cherkassky, V. (1995). Self-organization as an iterative kernel smoothing

process, Neural Computation 7(6): 1165–1177.

Mundkur, P., Tuulos, V. and Flatow, J. (2011). Disco: a computing platform for large-

scale data analytics, Proceedings of the 10th ACM SIGPLAN workshop on Erlang, ACM,

pp. 84–89.

Nair, S. and Mehta, J. (2011). Clustering with apache hadoop, Proceedings of the Interna-

tional Conference & Workshop on Emerging Trends in Technology, ACM, pp. 505–509.

Nickolls, J., Buck, I., Garland, M. and Skadron, K. (2008). Scalable parallel programming

with cuda, Queue 6(2): 40–53.

Nurnberger, A. and Detyniecki, M. (2006). Externally growing self-organizing maps and

its application to e-mail database visualization and exploration, Applied Soft Computing

6(4): 357–371.

REFERENCES 158

Obermayer, K. and Sejnowski, T. J. (2001). Self-organizing map formation: foundations

of neural computation, Vol. 93, The MIT Press.

Obradovic, Z. and Vucetic, S. (2004). Challenges in scientific data mining: Heterogeneous,

biased, and large samples, Technical report, Citeseer.

O’Connor, M. and Herlocker, J. (1999). Clustering items for collaborative filtering, Pro-

ceedings of the ACM SIGIR workshop on recommender systems, Vol. 128, Citeseer.

Oja, M., Kaski, S. and Kohonen, T. (2003). Bibliography of self-organizing map (som)

papers: 1998-2001 addendum, Neural computing surveys 3(1): 1–156.

O’Malley, O. and Murthy, A. C. (2009). Winning a 60 second dash with a yellow elephant,

Proceedings of sort benchmark .

Ontrup, J. and Ritter, H. (2006). Large-scale data exploration with the hierarchically

growing hyperbolic som, Neural networks 19(6-7): 751–761.

Origin (2014). Origin energy - who we are.

URL: http://www.originenergy.com.au/1758/Who-we-are, last accessed 18 February

2014

Owen, S., Anil, R., Dunning, T. and Friedman, E. (2011). Mahout in action, Manning.

Paatero, J. V. and Lund, P. D. (2006). A model for generating household electricity load

profiles, International journal of energy research 30(5): 273–290.

Palensky, P. and Dietrich, D. (2011). Demand side management: Demand response,

intelligent energy systems, and smart loads, Industrial Informatics, IEEE Transactions

on 7(3): 381–388.

Pantazi, S., Kagolovsky, Y. and Moehr, J. R. (2002). Cluster analysis of wisconsin breast

cancer dataset using self-organizing maps, Studies in health technology and informatics

pp. 431–436.

Pilly, P. K. and Grossberg, S. (2013). Spiking neurons in a hierarchical self-organizing

map model can learn to develop spatial and temporal properties of entorhinal grid cells

and hippocampal place cells, PloS one 8(4): e60599.

REFERENCES 159

Prudent, Y. and Ennaji, A. (2005). A new learning algorithm for incremental self-

organizing maps, ESANN, Citeseer, pp. 7–12.

Qiao, J.-f. and Han, H.-g. (2010). An adaptive fuzzy neural network based on self-

organizing map (som), InTech .

Ramanathan, K., Shi, L. and Chong, T. (2010). A hubel weisel model for hierarchical

representation of concepts in textual documents, The Annual Congress of the Cognitive

Science Society.

Rauber, A., Merkl, D. and Dittenbach, M. (2002). The growing hierarchical self-organizing

map: exploratory analysis of high-dimensional data, Neural Networks, IEEE Transac-

tions on 13(6): 1331–1341.

Rauber, A., Tomsich, P. and Merkl, D. (2000). parsom: A parallel implementation of the

self-organizing map exploiting cache effects: making the som fit for interactive high-

performance data analysis, Neural Networks, 2000. IJCNN 2000, Proceedings of the

IEEE-INNS-ENNS International Joint Conference on, Vol. 6, IEEE, pp. 177–182.

Redkar, T. and Guidici, T. (2011). Windows Azure Platform, Apress.

Roussinov, D. and Chen, H. (1998). A scalable self-organizing map algorithm for tex-

tual classification: A neural network approach to thesaurus generation, Communication

Cognition and Artificial Intelligence 15(1-2): 81111.

Rusitschka, S., Eger, K. and Gerdes, C. (2010). Smart grid data cloud: A model for uti-

lizing cloud computing in the smart grid domain, Smart Grid Communications (Smart-

GridComm), 2010 First IEEE International Conference on, IEEE, pp. 483–488.

Ruspini, E. H. (1969). A new approach to clustering, Information and control 15(1): 22–32.

Sammon Jr, J. (1969). A nonlinear mapping for data structure analysis, Computers, IEEE

Transactions on 100(5): 401–409.

Shargal, M. and Houseman, D. (2009). The big picture of your coming smart grid, Smart

Grid News 5.

REFERENCES 160

Sirosh, J. and Miikkulainen, R. (1997). Topographic receptive fields and patterned lateral

interaction in a self-organizing model of the primary visual cortex, Neural Computation

9(3): 577–594.

Sneath, P. H. and Sokal, R. R. (1973). Numerical taxonomy. The principles and practice

of numerical classification.

Song, K.-B., Baek, Y.-S., Hong, D. H. and Jang, G. (2005). Short-term load forecasting for

the holidays using fuzzy linear regression method, Power Systems, IEEE Transactions

on 20(1): 96–101.

Srinivasan, D., Tan, S. S., Cheng, C. and Chan, E. K. (1999). Parallel neural network-

fuzzy expert system strategy for short-term load forecasting: system implementation

and performance evaluation, Power Systems, IEEE Transactions on 14(3): 1100–1106.

Strehl, A., Ghosh, J. and Mooney, R. (2000). Impact of similarity measures on web-page

clustering, Workshop on Artificial Intelligence for Web Search (AAAI 2000), pp. 58–64.

Stuckenschmidt, H. and Klein, M. (2004). Structure-based partitioning of large concept

hierarchies, Springer, pp. 289–303.

Su, M.-C. and Chang, H.-T. (2000). Fast self-organizing feature map algorithm, Neural

Networks, IEEE Transactions on 11(3): 721–733.

Su, M. C., Liu, T. K. and Chang, H.-T. (2002). Improving the self-organizing feature

map algorithm using an efficient initialization scheme, Tamkang Journal of Science and

Engineering 5(1): 35–48.

Sutter, H. (2005). The free lunch is over: A fundamental turn toward concurrency in

software, Dr. Dobbs Journal 30(3): 202–210.

Thusoo, A., Sarma, J. S., Jain, N., Shao, Z., Chakka, P., Zhang, N., Antony, S., Liu,

H. and Murthy, R. (2010). Hive-a petabyte scale data warehouse using hadoop, Data

Engineering (ICDE), 2010 IEEE 26th International Conference on, IEEE, pp. 996–1005.

Tian, C., Zhou, H., He, Y. and Zha, L. (2009). A dynamic mapreduce scheduler for

heterogeneous workloads, Grid and Cooperative Computing, 2009. GCC’09. Eighth In-

ternational Conference on, IEEE, pp. 218–224.

REFERENCES 161

Toivanen, P. J., Ansamki, J., Parkkinen, J. and Mielikinen, J. (2003). Edge detec-

tion in multispectral images using the self-organizing map, Pattern Recognition Letters

24(16): 2987–2994.

Tomsich, P., Rauber, A. and Merkl, D. (2000). Optimizing the parsom neural network

implementation for data mining with distributed memory systems and cluster comput-

ing, Database and Expert Systems Applications, 2000. Proceedings. 11th International

Workshop on, IEEE, pp. 661–665.

Trnen, P., Kolehmainen, M., Wong, G. and Castrn, E. (1999). Analysis of gene expression

data using self-organizing maps, FEBS letters 451(2): 142–146.

Tukey, J. W. (1977). Exploratory data analysis, Reading, Ma 231.

Ultsch, A. (2003). U*-matrix: a tool to visualize clusters in high dimensional data, Fach-

bereich Mathematik und Informatik.

Ultsch, A. and Siemon, H. (1990). Kohonen’s self organizing feature maps for exploratory

data analysis.

Ultsch, A., Vetter, C. and Vetter, C. (1995). Self-Organizing-Feature-Maps versus statis-

tical clustering methods: a benchmark, Fachbereich Mathematik.

Valero, S., Ortiz, M., Senabre, C., Alvarez, C., Franco, F. and Gabaldon, A. (2007).

Methods for customer and demand response policies selection in new electricity markets,

Generation, Transmission and Distribution, IET 1(1): 104–110.

Verd, S. V., Garcia, M. O., Senabre, C., Marn, A. G. and Franco, F. J. G. (2006). Clas-

sification, filtering, and identification of electrical customer load patterns through the

use of self-organizing maps, Power Systems, IEEE Transactions on 21(4): 1672–1682.

Vesanto, J. (1999). Som-based data visualization methods, Intelligent data analysis

3(2): 111–126.

Vesanto, J. and Alhoniemi, E. (2000). Clustering of the self-organizing map, Neural Net-

works, IEEE Transactions on 11(3): 586–600.

Villars, R. L., Olofson, C. W. and Eastwood, M. (2011). Big data: What it is and why

you should care, White Paper, IDC .

REFERENCES 162

Walter, J. A. and Schulten, K. (1993). Implementation of self-organizing neural networks

for visuo-motor control of an industrial robot, Neural Networks, IEEE Transactions on

4(1): 86–96.

Wang, J.-Y. (2009). Data mining analysis(breast-cancer data).

Ward Jr, J. H. (1963). Hierarchical grouping to optimize an objective function, Journal

of the American statistical association 58(301): 236–244.

Weichel, C. (2010). Adapting self-organizing maps to the mapreduce programming

paradigm, STeP, pp. 119–131.

White, T. (2012). Hadoop: the definitive guide, O’Reilly.

Wilson, D. R. and Martinez, T. R. (1997). Improved heterogeneous distance functions,

arXiv preprint cs/9701101 .

Witten, I. H. and Frank, E. (2005). Data Mining: Practical machine learning tools and

techniques, Morgan Kaufmann.

Wolberg, W. H., Street, W. N. and Mangasarian, O. L. (1992). Breast cancer wiscon-

sin (diagnostic) data set, UCI Machine Learning Repository [http://archive. ics. uci.

edu/ml/] .

Wold, S., Esbensen, K. and Geladi, P. (1987). Principal component analysis, Chemometrics

and intelligent laboratory systems 2(1): 37–52.

Wood, G. and Newborough, M. (2003). Dynamic energy-consumption indicators for

domestic appliances: environment, behaviour and design, Energy and Buildings

35(8): 821–841.

Wu, S. and Chow, T. W. (2004). Clustering of the self-organizing map using a cluster-

ing validity index based on inter-cluster and intra-cluster density, Pattern Recognition

37(2): 175–188.

Xie, J., Yin, S., Ruan, X., Ding, Z., Tian, Y., Majors, J., Manzanares, A. and Qin,

X. (2010). Improving mapreduce performance through data placement in heteroge-

neous hadoop clusters, Parallel and Distributed Processing, Workshops and Phd Forum

(IPDPSW), 2010 IEEE International Symposium on, IEEE, pp. 1–9.

REFERENCES 163

Yang, M. and Ahuja, N. (1999). A data partition method for parallel self-organizing map,

Vol. 3, IEEE, pp. 1929–1933 vol. 3.

Yao, R. and Steemers, K. (2005). A method of formulating energy load profile for domestic

buildings in the uk, Energy and Buildings 37(6): 663–671.

Yoo, R. M., Romano, A. and Kozyrakis, C. (2009). Phoenix rebirth: Scalable mapreduce

on a large-scale shared-memory system, Workload Characterization, 2009. IISWC 2009.

IEEE International Symposium on, IEEE, pp. 198–207.

Zaki, M. J. (2000). Parallel and distributed data mining: An introduction, Springer, pp. 1–

23.

Zawodny, J. (2008). Yahoo! launches worlds largest hadoop production application, Yahoo!

Developer Network Blog .

Zhai, Y., Hsu, A. and Halgamuge, S. (2006). Scalable dynamic self-organising maps for

mining massive textual data, Springer, pp. 260–267.

Zhang, Q., Cheng, L. and Boutaba, R. (2010). Cloud computing: state-of-the-art and

research challenges, Journal of Internet Services and Applications 1(1): 7–18.

Zhao, W., Ma, H. and He, Q. (2009). Parallel k-means clustering based on mapreduce,

Springer, pp. 674–679.

Zhongwen, L., Hongzhi, L., Zhengping, Y. and Xincai, W. (2005). Self-organizing maps

computing on graphic process unit.

Zikopoulos, P. and Eaton, C. (2011). Understanding big data: Analytics for enterprise

class hadoop and streaming data, McGraw-Hill Osborne Media.

	List of Tables
	List of Figures
	Abstract
	Acknowledgments
	1 Introduction
	1.1 Research motivation
	1.2 Research questions
	1.2.1 Research questions on distributed SOM algorithm development
	1.2.2 Research questions on distributed algorithm implementation
	1.2.3 Research questions on large scale data analysis

	1.3 Research objectives
	1.4 Research contributions
	1.5 Research methodology and chapter outline

	2 Literature Review
	2.1 Exploratory data analysis and clustering
	2.2 Self-organising maps
	2.2.1 The SOM algorithm

	2.3 Growing self-organising map (GSOM)
	2.3.1 The GSOM algorithm

	2.4 Applications of the SOMs
	2.5 The SOM based algorithms as data analysis tools
	2.6 Using SOMs for large scale data analysis
	2.7 Advancements in parallel and distributed computing systems
	2.8 Parallel and distributed data analysis
	2.8.1 Shared vs distributed memory models
	2.8.2 Data vs task parallelism
	2.8.3 Horizontal vs vertical data layouts

	2.9 Parallel and distributed SOM algorithms
	2.9.1 The parSOM
	2.9.2 Sparse batch SOM
	2.9.3 Graphic processing unit implementation of the SOM
	2.9.4 Scalable GSOM
	2.9.5 PartSOM

	3 Distributed Self-Organising Maps
	3.1 The Distributed GSOM Algorithm
	3.2 Data Partitioning
	3.2.1 Random partitioning
	3.2.2 Class based partitioning
	3.2.3 Structure based partitioning
	3.2.4 Heuristic based partitioning

	3.3 Parallel network training
	3.4 Redundancy Reduction
	3.4.1 Notations
	3.4.2 Redundant hit neuron reduction
	3.4.3 Redundant non-hit neuron reduction

	3.5 Merging
	3.6 Evaluation of the Distributed GSOM
	3.6.1 Datasets
	3.6.2 Redundancy Statistics
	3.6.3 Efficiency Analysis
	3.6.4 Scalability analysis
	3.6.5 Accuracy analysis
	3.6.6 Evaluation of visualisation properties

	3.7 Discussion

	4 A deeper look
	4.1 SOM vs GSOM for exploratory data analysis
	4.1.1 SOM for data exploration
	4.1.2 GSOM for data exploration

	4.2 SOM and GSOM comparison
	4.3 Redundancy reduction
	4.3.1 A new redundancy reduction method
	4.3.2 Experiments and results
	4.3.3 Applications of the two redundancy reduction methods

	4.4 Dynamic data integration into the Distributed GSOM
	4.5 Discussion

	5 The Distributed GSOM on Hadoop
	5.1 MapReduce
	5.2 Hadoop framework
	5.3 Hadoop Distributed File System (HDFS)
	5.4 Using Hadoop for large scale data analysis
	5.4.1 Processing power
	5.4.2 Storage capacity
	5.4.3 Hadoop ecosystem
	5.4.4 Economy

	5.5 Challenges in Hadoop development for processor intensive multi variate data
	5.5.1 Data loading
	5.5.2 Splitting
	5.5.3 Load balancing and node assignment
	5.5.4 Processing

	5.6 Applications of Hadoop for data clustering
	5.7 A MapReduce architecture for the Distributed GSOM
	5.7.1 Why Hadoop?
	5.7.2 The Distributed GSOM on Hadoop
	5.7.3 Data transformation
	5.7.4 Data partitioning
	5.7.5 Node assignment
	5.7.6 Data reading
	5.7.7 GSOM execution
	5.7.8 Combiners
	5.7.9 Reducer

	5.8 Experiments and results
	5.9 Discussion

	6 A Distributed GSOM Application
	6.1 Smart grids
	6.2 Analysis requirements
	6.3 Problem scope
	6.4 The advantages of the Distributed GSOM
	6.4.1 Higher efficiency of the Distributed GSOM
	6.4.2 Ability to use partitioning to improve the quality of the results
	6.4.3 Customisability of GSOM parameters of partition networks
	6.4.4 Ability to integrate data continuously

	6.5 The analysis process
	6.5.1 Pre-processing
	6.5.2 Data Partitioning
	6.5.3 Network training
	6.5.4 Clustering

	6.6 Analysis outcomes
	6.6.1 Dataset
	6.6.2 Data configurations
	6.6.3 Daily electricity consumption analysis
	6.6.4 Weekly electricity consumption profiles
	6.6.5 Annual electricity consumption profiles

	6.7 A Multi-Granular Profile (MGP) analysis framework
	6.7.1 Profile generation
	6.7.2 MGP extraction
	6.7.3 Identified multi-granular profiles

	6.8 Discussion

	7 Conclusion
	7.1 Summary of contributions
	7.2 Addressing the main research questions
	7.2.1 Research questions on distributed SOM algorithm development
	7.2.2 Research questions on distributed algorithm implementation
	7.2.3 Research questions on large scale data analysis

	7.3 Future work directions
	7.4 Concluding remarks

	Vita

