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Abstract

In this thesis, an analysis of two-dimensional complex scalar wavefields associated with
electromagnetic radiation is presented. The particular tool of analysis is the Argand-plane
mappings that are induced by such wavefields. The analysis is carried out over three
distinct but interconnected studies, each accompanied by a published body of work. The
first study involves the simulation of a visible-light speckle field that is littered with
vortices. The Argand-plane mappings induced by this field reveal caustic-like structures
that are singularities of the mapping. It is found that these singularities, called vorticity
singularities, are induced by lines of zero vorticity in the physical wavefield, and their
connection to vortices is investigated. The second body of work contains an experimental
realisation of vorticity singularities, done by generating a speckle field using visible light.
Various vorticity singularities - the fold, cusp, and elliptic umbilic - are reconstructed

using experimental data, and the lines of zero vorticity that induce them are observed.

The third study moves from the domain of visible light into x-ray radiation. Here, the
Argand-plane is used as a tool for investigating x-ray diffraction. Three objects, having
been illuminated by hard x-rays, are imaged using propagation-based phase contrast
imaging; a straight edge, cylinder and a sphere embedded within a cylinder. The full
information of the propagated wavefield is recovered using a combination of phase
retrieval and virtual optics. The associated Argand-plane mappings reveal structures
known as generalised Cornu spirals that are induced by the diffraction of the incident
radiation around the object in question. Each object is associated with a particular

generalised Cornu spiral that is explained using the Geometrical Theory of Diffraction.

The body of work constituting the present thesis indicates that the Argand plane is an

interesting tool for the analysis of the complex scalar wavefield associated with optical
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fields, possessing features that are singularities of the mapping to the Argand plane
that can be used to study various phenomena in the physical field. The applications for

Argand-plane analysis may be numerous, going beyond the context of optical fields.
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Chapter 1

Introduction

In this thesis, the complex scalar representation of free electromagnetic fields is studied,
with particular attention being paid to the Argand-plane mapping induced by such
wavefields. The Argand plane, also known as the complex plane, presents itself as
an interesting environment with which to study aspects of electromagnetic fields, as
exemplified by the work featured in the following chapters. Before presenting the main
body of work, it is necessary to lay down some background information of the theory of
fields. This includes the history of its development, some features of fields that are key to
this thesis and, briefly, the emergence of quantum field theory. Further, it is necessary to
provide the mathematical underpinning of classical field theory, as it is evoked throughout
this work. Finally, an introduction to the general theory of mappings, and Argand-plane

mappings in particular, is given.

1.1 The field concept in physics

1.1.1 History and development of the field concept

The first recorded use of the word ‘field” as a technical term in physics was by Thomson
(1851). He defined a ‘field of magnetic force’ as any space for which every point within
it possesses a finite magnetic force. The general idea of a field is that, when present, a

body has an area of influence around it and at a distance from it. This technical definition,



Argand-plane mappings induced by complex scalar wavefields

however, has been debated and discussed among philosophers and scientists long before

the mid-nineteenth century.

An idea that had early philosophers in almost total agreement was that there existed a
principle that excluded the possibility of ‘action from a distance’. That is, action can only
be transmitted between bodies through contact. Of course, various physical phenomena,
such as a magnet causing a distant piece of iron to move, begs further analysis. Can
contact be restored through some transmission across the intervening space between
the magnet and the piece of iron? Gilbert (1600) referred to this transmission as an
‘orb of virtue’ that expands in all directions. The motion of celestial bodies and the ebb
and flow of tides are also phenomena indicating causal action at a distance. Newton’s
theory of gravitation, which links mass, force and acceleration, is arguably a field theory
in that it provides a function that is defined for every point in space surrounding a
gravitating body, prescribing how a second body would behave. However, by Newton’s
own assertion (Newton, 1962), his theory considers forces mathematically and does not
define the manner by the which the force is exerted; Newton’s theory of gravitation is
a calculation device which does not provide an explanation that excludes action from a
distance. Faraday (1852), in his landmark work ‘On the physical character of the lines of
magnetic force’, made the distinction between this theory of gravitation and fields such as
light radiation, electrical induction and magnetic force, which have a continuous physical
action across space. Fields are a space wherein continuous action is occurring. Maxwell
(1890) cemented the idea of the assignment of a physical character to lines of force with
his Electromagnetic theory, describing the physical field produced by electrically charged
objects. This theory went beyond a mathematical construct to suggest that the calculated

field possesses a physicality that interacts locally with other objects.

1.1.2 Types of fields

Fields can be defined in terms of scalar, vector or tensorial quantities. Since a tensor is the
most general of these, the other three parameters can also be described using the notation

of tensors.
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If a field is defined by a number at each point in space then it is a scalar field, or a tensor
field of rank zero. The density of a fluid as a function of position is an example of a scalar
field. A vector field, also called a first rank tensor field, is more general than a scalar field
in that it defines the direction of the field at each point in a one-dimensional array. Each
component of the direction is a scalar. More general still is the tensor field, which can be
defined to all orders/ranks. This type of field is used in differential geometry, algebraic
geometry and in the analysis of stress and strain in materials. The tensors that define all
points in a tensor field represent physical properties that are too complex to be handled
by a vector. Einstein’s theory of General Relativity, for example, employs a fourth-order
tensor known as the Riemann curvature tensor to describe the curvature of spacetime,
which is a four-dimensional object. Maxwell’s formulation of the electromagnetic field,
while defined by a pair of vector fields, that is, the electric field E and magnetic field
B, is described in the tensorial formulation of classical dynamics by a second-order

antisymmetric tensor F, called the Faraday tensor.

There are other mathematical entities in physics that can consist of multi-dimensional
arrays of numbers but are not characterized as tensors. One example is the spinor, which
differs from a tensor in that is does not transform as a tensor does under a coordinate
change. Thus, a field that has a spinor at each point is called a spinor field. A (2s+1)-
dimensional spinor field is used in particle physics to describe particles with spin s, where
s is an integer or a half-integer. Fermions are described by a spinor field and bosons by a

tensor field.

Within each of the categories described above, a field can be defined as either a classical

or a quantum field.

1.1.3 Quantum and classical description of fields

The theory of electromagnetism as founded by Faraday and Maxwell is a classical field
theory. From this perspective, the electromagnetic field can be seen as a smooth and
continuous field that propagates in a wave-like manner. Faraday found that the electric
and magnetic fields E and B are not only force fields that dictate motion but carry energy

as well. In the absence of any charge, and under a suitable choice of gauge function,
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electromagnetic waves in free space are a function of the magnetic vector potential, which

is defined at every point in space.

In the presence of charged particles, Maxwell’s equations describe the interaction between
the electromagnetic field and moving charges. This so-called electrodynamic field is the
result of the existence of both the magnetic vector and electric scalar potentials, the latter
being the potential energy per unit charge, and is an anti-symmetric second-order tensor
field in space-time. Other cases of the electromagnetic field are the electrostatic field,
defined by a scalar potential at every point in space, therefore a scalar field, and the

magnetostatic field, which is defined by a vector potential and is therefore a vector field.

If one wishes to look at a certain limit of a field theory, it is possible to make approxi-
mations so that the more general, rigorous field theory is reduced to a simpler model.
Optical fields, characterized by very high temporal frequencies, are a sub-category of
electromagnetic fields, where a single scalar quantity can be used to describe the electric
field of the light wave, rather than a more rigorous vector model. This description of light
is known as ‘scalar physical optics’. Within scalar physical optics, there are particular
definitions for the regions of electromagnetic radiation around an object. An object can
transmit electromagnetic radiation directly, as with a transmitting antenna, or indirectly,
by scattering incident radiation. We can approximate the fields close to the objects under
‘near field’ conditions and similarly for the regions that lie at greater distances, under
‘far-field’” conditions. These approximations underly a lot of the work presented in this

thesis are therefore treated in detail throughout.

At the turn of the nineteenth century the quantum theory of electromagnetic fields began
to form. In 1900, Planck stipulated an explanation for blackbody radiation whereby
absorption and emission of radiation by atoms occurs discontinuously in quanta. Ein-
stein expanded on this through his work on the photoelectric effect, concluding that
the electromagnetic field itself was quantized, with photons defined as the quanta of
this field. The first formalism for the quantum theory of electromagnetic fields was laid
down by Dirac in 1927 in his paper ‘Quantum theory of the emission and absorption of
radiation’. The distinction between how a classical field and a quantum field are treated

mathematically is with the use of a number or quantum operators, respectively. Like with
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classical fields, quantum fields can be approached mathematically as solutions to their
governing equations. Thus, quantum electrodynamics (QED) is a quantized recasting of
classical electrodynamics, characterized by quantum mechanics, and has been extremely

successful in showing agreement between theory and experiment (e.g. Donati et al., 1973).

Regarding the development of QED, the form of the interaction is well known from
the classical theory. There are other interactions for which there is not a corresponding
classical theory to draw from. Quantum chromodynamics (QCD) and the electroweak
theory are examples of such quantum fields. However, QCD and the electroweak theory
were deeply influenced by the successes of classical electromagnetic theory as embodied
by its tensorial formulation and its quantum generalization in QED. These will not
be expanded on here as this thesis is restricted mostly to electromagnetic fields but

comprehensive descriptions can be found in Mandl and Shaw (2010).

Many are of the opinion that quantum mechanics should underly all physical phenomena,
requiring a recast of all classical theory in terms of quantum mechanics. The quantization
of electromagnetic fields laid down the groundwork for the quantization of any classical

field, where the quanta of a field are particles with well-defined properties .

As the theory which forms the foundation for the work in this thesis is derived from a
classical perspective of electromagnetic fields, it is not necessary to go into more detail on
quantum field theory. For a valuable resource on quantum field theory, see the previously-

cited text by Mandl and Shaw (2010).

The following two subsections will lay down some facts about fields that are relevant for
the remainder of the thesis before continuing on to mathematical treatment of fields in

Sec. 1.2.

1.1.4 Free fields

Every field theory possess a description of the scenario in which the field is absent of
any charges or scatterers. This scenario is known as the ‘free-field’. The formalism that

corresponds to the free-field describes the behaviour of a field in a vacuum.

I An exception to this is the incompatibility of General Relativity with quantum mechanics, which is a
topic of much ongoing research (see e.g. Serway et al., 2004).
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There are numerous techniques for creating a free field. The emission of vacuum elec-
tromagnetic waves, for example, may be brought about through the acceleration and
deceleration of an electric charge. Charges that are oscillating are continuously accelerat-
ing and decelerating, making an oscillating charge a useful source of free electromagnetic
waves. This approach is adopted in the use of an FM-receiving radio antenna and a set-top
TV antenna. Another source of a free-field beam is the laser, which is used extensively in

visible-light optics. Lasers produce such a beam via the process of stimulated emission.

One can also describe the movement of a particle beam in a vacuum. The emission of
an electron beam in free space can be brought about using an electron gun, which heats
a metal plate so that the electrons are free to move. Placing an anode nearby to attract
the electrons towards it creates an electron beam (e.g. by Crewe et al., 1968). A similar
mechanism is used in an x-ray tube for the production of characteristic x-rays. Electrons,
having been emitted using thermal emission, are accelerated by a high voltage to collide
with a metal target. The deceleration of high-speed electrons that slam into a metal target
produces x-rays. These x-rays are typically used in medical diagnostic procedures (see e.g.

Ngetal., 2012).

1.1.5 Scattering and diffraction

When regarding the evolution of a field in space, it is necessary to consider the interactions
of the field in question with various media. Scattering is the term used to describe the
general process whereby radiation, such as light or a beam of charged particles, deviates
from its trajectory by collisions with particles or other localised non-uniformities in the
medium through which it traverses. There are many different forms of scattering, such
as the scattering of an electron wavefield by a crystal or the scattering of neutrinos by
nuclei. An electromagnetic field can be scattered by various media such as lenses and
other optical elements, together with any distribution of matter. For example, sunlight is
scattered by particles in the atmosphere such as air molecules, aerosols and ice crystals
producing various phenomena. One such phenomenon is Rayleigh scattering, which

preferentially scatters blue light from the sun, turning the sky blue (Rayleigh, 1871).




Argand-plane mappings induced by complex scalar wavefields

In the domain of electromagnetic radiation, the phenomena of transmission, reflection
and refraction, which are consequences the description of light as rays, are macroscopic

manifestations of scattering which occurs at a submicroscopic level.

In the description of electromagnetic radiation as waves, the phenomenon of diffraction
emerges, defined as the bending of light around edges and smooth objects. It is also
well-known that matter exhibits wave-like behaviour, a phenomenon first exhibited
using electrons in the Davisson—-Germer experiment (Davisson and Germer, 1928) and
subsequently with neutral atoms (Doak et al., 1999; Kouznetsov and Oberst, 2005), which
has been used to demonstrate atomic holography (Shimizu and Fujita, 2002) as well as to
explain the quantum Zeno effect (Kouznetsov and Oberst, 2005). The effects of diffraction
on an electromagnetic wavefield can be predicted by the angular spectrum formalism,
which will be treated in greater detail in Chapter 2. The Geometrical Theory of Diffraction,
which provides a means of predicting diffracted fields using a ray formalism, is treated in

detail in Chapter 4 and provides much of the basis for the work done in Sec. 4.2.

1.2 Mathematics as a language for quantitatively studying

fields

This section describes the mathematical means of evaluating electromagnetic fields that
is adopted throughout this entire thesis. The general principle known as the ‘principle
of least action’ is first described, as it is from this that many of the known physical laws
can be deduced. Adopting this formalism, the relevant governing equation of motion for
the Maxwell electromagnetic free field is subsequently derived using classical Lagrangian
field theory. Finally, the complex scalar representation of the free electromagnetic field
is described, as it is this particular representation that facilitates calculations of optical

fields, which are the category of electromagnetic fields investigated here.

1.2.1 Principle of least action

There is one principle from which the vast majority of known physical laws can be
derived; the principle of least action. This includes electromagnetism, thermodynamics

and Newton’s laws of gravity. To demonstrate, the last-mentioned in this list can be framed

7
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in terms of the principle of least action, by stating: the average kinetic energy (KE) less
the average potential energy (PE) is as small as possible for an object traveling a path from
one point to another. For every possible path that the object can travel, there is assigned

an ‘action’, denoted by S. For the motion of a point particle, the action is given by

t
s:f (KE — PE)dt, (1.2.1)
t

where KE and PE are functions of time. For every possible path there is a different value
for the action. The principle of least action requires that we find the path for which that

number is a minimum.

Fermat’s principle, also known as the ‘principle of least time’, is associated with the
principle of least action in that it defines the path taken by a ray traveling between two
points to be the path that takes the least amount of time. The same logic which underlies
the principle of least action underlies Fermat’s principle, despite the fact that the former
involves the motion of particles and the latter the path traveled by rays. This principle
underpins the Geometrical Theory of Diffraction, and is invoked in both Sec. 4.1.1 and in

the publication in Sec. 4.2 to calculated diffracted rays.

1.2.2 Classical Lagrangian field theory

Transitioning from point-particle mechanics to field theory, we can switch to relativistic
notation to describe a system with a number of degrees of freedom that tends towards
infinity. Such a system requires one or more fields ¢,(x),r = 1,...,N to specify it. The
state of the system is defined by the ‘Lagrangian density’, given by Z(¢,,d"¢,). The
‘Lagrangian’ L is found by integrating the Lagrangian density over all of the space occupied
by the field ¢,(x),

L:J-Z(@,a”(f),)dV, (1.2.2)

describing the Lagrangian of the system at time ¢, where J* = % The evolution of the
"
state of the system in time is given by Hamiltonian’s variational system, defining the

action S as

S= Jtz Ldt = J$(¢,, ' ¢,)d4x, (1.2.3)
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where d*x = dtdV. The Euler-Lagrange equation of motion, deduced by applying the
variation principle 6S = 0, is given by (see Mandl and Shaw, 2010, p. 28)

0L ) oL (1.2.4)

) — =
. ( dIupr)]  IPr
The Euler-Lagrange equation can be applied to both classical and quantum mechanics.

We can apply Lagrangian mechanics to find the equation of motion governing the Maxwell
electromagnetic field expressed in covariant form. Consider the free-field four-vector
potential A¥(x) = (¢,A), where A is the aforementioned vector potential associated with

an electromagnetic field, with an associated Lagrangian density

1
¥ =———FMF

’ 1.2.
167 g (1.2.5)

where the antisymmetric field tensor F*" is given by FFY = d#AY — d¥ A¥. The functional

derivatives are given by

0 1 <
_ —____ FHWv — =
3, A) 47_(F and A 0, (1.2.6)

and the equation of motion is the equation of motion for the free Maxwell field,

9, F" =0, (1.2.7)

from which the free-space Maxwell equations for the magnetic and electric fields can be

derived. This equation of motion underpins all the theory presented in this body of work.

We close this section by nothing that, under a suitable choice of gauge function, Eq. 1.2.7
implies that both the electric and magnetic fields E and B obey the d’Alembert wave

equations in a vacuum:

2 2
(%%—VZ)E:O and (la——VZ)B=0, (1.2.8)
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where c is the speed of light in a vacuum and V? is the Laplace operator. This so-
called electromagnetic wave equation describes the propagation of electromagnetic waves

through a medium.

1.2.3 Scalar representation of electromagnetic waves

Maxwell’s field equations in a vacuum provide the basic equations governing electromag-
netic fields, using the vector potential A to derive two vector fields, the electric field and
the magnetic field, to specify the dynamics of an electromagnetic field according to Eq.
1.2.7. In many optical problems, however, it is often not important to know the behaviour
of a field vector. Rather, we wish to know the average energy of an optical field. Therefore

a simplification of the vector representation of optical fields is convenient.

In most optics scenarios, we can employ a single, generally complex, scalar wave function
W(r,t) called the disturbance or the complex amplitude, whose square modulus is equal

to the light intensity. This wave function obeys the d’Alembert equation in a vacuum,

1 9?2
(

C—za—tz—vz)‘l’(r,t)zo, (12’9)

where r= (x,y,z). The transition from a vector theory to a scalar theory of electromagnetic
optics is treated by Green and Wolf (1953) and Wolf (1959), as well as by Roman (1959)

for a field in the presence of charges and currents.

We can decompose the wavefunction W(r, t) into a superposition of monochromatic fields

using the Fourier integral:

_ L ® —iwt
WY(r,t)= \/ﬁJ;) Po(r)e"do, (1.2.10)

where each monochromatic component is a product of the spatial wavefunction ¢, (r) and
harmonic time factor e7'®*, where w denotes the angular frequency. The decomposition
above does not include any negative values for w, allowing for analyticity in the complex-
analysis sense of the term, and is therefore called the ‘analytic signal’ associated with the

scalar representation of an electromagnetic field. The real and imaginary parts of the

10
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analytic function are related to each other via the Hilbert transform. The actual waveform,
however, is only the real part; the actual signal is substituted by the analytic signal for the
purposes of analysis, providing a convenient and compact notation. The magnitude and
the phase of the complex analytic signal mathematically define an envelope and phase for
the waveform. More detail on the analytic signal can be found in words by Born and Wolf

(1999), Gabor (1946) and Bedrosian (1962).

The analytic signal may be visualised via a ‘phasor’, which is a concept frequently used in
circuit analysis to represent a complex number. Phasor diagrams, a tool for visualising
phasors, will be discussed as part of the next section, as they form a significant part of

this thesis.

Before concluding this section on the mathematical theory for electromagnetic fields,
it is useful to write down the time-independent differential equation that governs the
evolution of the spatial wavefunction 1, (r) associated with Eq. 1.2.10. Substituting Eq.

1.2.10 into the d’Alembert equation results in

[

From this equation it can be deduced that the quantity in square brackets vanishes,

V2+w—21,b(x z)|exp(~iwt)dw = 0 1.2.11
7 |Yolxv,2)|exp(-iwt)dw = 0. (L.2.11)

arriving at the Helmholtz equation:

(V2 + K)o (x,9,2) = 0, (1.2.12)

which describes the evolution of the spatial wavefunction associated with a given
monochromatic component of Eqn. 1.2.10. It is a key equation of scalar diffraction theory
and, as this theory concerns itself with constructing various solutions to the Helmholtz
equation, underlies a significant portion of the work in the present thesis. It is impor-
tant to note that the Helmholz equation is identical to the time-independent free-space
Schrédinger equation for spinless non-relativistic particles. As this thesis is concerned
with electromagnetic radiation, it is not necessary to define a quantum-mechanical theory
for evaluating the optics of particles, which can be found in a standard text on quantum

mechanics, such as that by Messiah (1961).

11
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1.3 Argand-plane representation of complex numbers

1.3.1 Basic theory of mappings

In linear algebra a ‘function’ is a rule f that associates each element in a set A with one
and only one element in a set B. If f associates an element a with an element b, then
b = f(a), and it can be said that b is the ‘image’ of a under f. The set A is defined as the
‘domain’ and B is the ‘codomain’ of f. The subset of B with all possible values for f as a
varies over A is called the ‘range’. Commonly, A and B are sets of real numbers, in which
case f is a ‘real-valued function of a real variable’. In other cases, B is a set of real numbers

and A is a set of vectors in R", where n is the number of variables.

If the domain of a function is R", and the codomain is R, then f is called a ‘map’ from

R" to R™, and is a generalisation of a function. This is denoted by:

f:R"—>R™ (1.3.1)

In the case where m = n, f is called an ‘operator’ on R". For a detailed overview of the
properties of maps and transformation, see the text by Howard and Rorres (2005). Here it

is in only necessary to define a few relevant properties.

A map is considered ‘one-to-one’ if it maps distinct vectors, or points, in R” into distinct
vectors, or points, in R". It follows that for each vector w in the range of a one-to-one
mapping, there is exactly one vector x such that f(x)=w. A mapping that is one-to-one is

‘invertible’ owing to the fact that distinctness has been preserved.

A mapping which may, but not necessarily, associate a given member of its range with
more than one member of its domain is known as a ‘many-to-one’ mapping. To give a
simple example in terms of a function f which is a mapping from R to R, consider a
trigonometric function such as sinx. Given that sinx = sin(2m + x) = sin(47 + x)..., the
function f = sinx is called many-to-one. As distinctness is not preserved under these

circumstances, the mapping is not considered invertible.

12
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The Jacobian matrix is a matrix consisting of all first-order partial derivatives of a vector-
valued function f. For a function defined generally by 1.3.1, which takes the vector x

€ R" as the input and outputs the vector f(x) € R, the Jacobian matrix is an m x n matrix

defined by
h 9h
dx; 7t dx,
= + . | (1.3.2)
9fm 9fm

If m = n then the matrix is a square matrix. The determinant of the Jacobian, simply called
the ‘Jacobian’, provides important local information about the mapping, for example,
regarding whether a many-to-one mapping is evident. The Jacobian determinant is evoked

extensively throughout Chapter 3, particular in the publication inserted into Sec. 3.2.

The work in this thesis is largely concerned with the utility of a particular kind of mapping,
a mapping to the Argand plane. A two-dimensional differentiable continuous single-
valued complex function W(x,y) induces a mapping M : R?> — C to the Argand (complex)

plane, given by

M(¥(x,p)) — [ReW,ImWV], (1.3.3)

where ReW and ImW denote the real and imaginary parts of W(x,y), respectively.

The Argand plane provides a visual representation of the kind of complex functions used
to represent optical fields and is a topic that is treated in detail throughout this thesis.
There exists precedents where an Argand mapping is used to visually represent some
complex function to aid in the analysis of a real-world problem. Below are some practical

applications for the use of Argand plane as a graphical aid.

1.3.2 Practical use of Argand-plane representation

The complex number z has the form

13
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zZ=x+1y, (1.3.4)

and can be expressed in polar coordinates (r,0), as

z=rcosO+irsinf, where x=rcosf, y=rsinf. (1.3.5)

Furthermore, due to the Euler formula, z can be represented as

z=re'", (1.3.6)

The complex number z can be represented in the Argand plane as shown in Fig. 1.1.

Im

Re

Figure 1.1: Argand-plane representation of the complex number z = x + iy.

As previously stated in Sec. 1.2.3, in the analysis of waves, the complex-number repre-
sentation offers a description that is mathematically simpler to process in the form of the
complex analytic signal. A harmonic waveform can be taken to be the real part of the
analytic signal (x,t) = Ae!®!, where A is the amplitude and w is the angular frequency.
For a traveling waveform, the angle in Fig. 1.1 becomes wt, suggesting that the arrow
rotates at a frequency w. This rotating arrow and its associated phase angle constitute a

phasor.

In AC circuit theory, two sinusoidal waveforms of the same angular frequency w can have
a phase difference between them. To indicate the relationship between the amplitude and
phase of the waveform, terms such as ‘lag’ and ‘lead’, as well as ‘in-phase’ and ‘out-of-

phase’” are employed. Represented in the time-domain form, the generalised sinusoidal
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expression is given by A; = A, sin(wt + ¢). The phase difference ¢ can be visualised by

employing what is known as ‘phasor diagrams’.

To demonstrate, consider the diagram in Fig. 1.2, showing two sinusoidal waveforms,
whereby one (the current i) is lagging behind the other (voltage v) by 45 degrees, or 11/2

radians.

v voltage (V)

mT

+

current (i)

/ ) . 32 2n GEIm O=ot

1 &> ¢=n/4

m

_Vm_

Figure 1.2: Two sinusoidal waveforms representing the voltage (red) and current (blue). The
current i is lagging behind the voltage v by ¢ = 1/4 radions.

The phasor diagram, lying in the Argand plane where the real part of the waveform is

displaced along the x-axis and the imaginary part along the y-axis, is shown in Fig. 1.3.

Im

Re

1=1,sin(ot-¢)

Figure 1.3: Phasor diagram representing the phase difference between the two waveforms
illustrated in Fig. 1.2.

Next, we look at the application of Argand-plane analysis in engineering. In the analysis
of control systems, the ‘root locus analysis’ is a method used to determine all the roots of
the differential equations governing the system. The roots are desired as they describe
the natural response of the unit. This method was developed by Evans (1948) and uses a
graphical plot in the complex plane to explore how the roots of the system change with the

variation of some system parameter. This is a way to determine the stability of a system.
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For further reading, see the book by Kuo (1987, pp. 329-388) as well as articles by Evans
(1948; 1950) and Williamson (1969).

Finally, we can find an example of Argand-plane graphical analysis in optics. Fresnel
diffraction is a paraxial version of the angular spectrum formalism and is treated in detail
in the next chapter. The Fresnel integrals arise in the description of Fresnel diffraction

and are defined as

S(u) = fou sin(t?)du, C(u)= fou cos(t?)dr, (1.3.7)

where u is an arbitrary variable which characterizes the Fresnel integrals.

The simultaneous parametric plot of S(u) and C(u) results in the Cornu spiral, shown in

Fig. 1.4.
AS(w)

10.5

S(u)>C(w)
o

-0.5
( u=0

u=-2

! los Cw>Sw)

Y

Figure 1.4: The parametric plot of Fresnel integrals S(u) and C(u), resulting in the Cornu
spiral (from Morgan, 2011, with permission).

U=-00

The Cornu spiral can be seen as an Argand plane mapping of the points B(u) = S(u)+iC(u)
and represents diffraction from the edge of a half plane. Morgan et al. (2010) generalized
the Cornu spiral by describing the Argand-plane image corresponding to diffraction from
a cylindrical edge. The generalisation of the Cornu spiral is a topic that is explored

throughout the following chapters.

The remainder of this thesis is comprised of three published bodies of first-author work

concerning the Argand-plane mappings induced by complex scalar wavefields, each with
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a foreword. Chapter 2 focuses on the utility of the Argand plane in the analysis of vortical
fields and introduces singularities of the mapping to the Argand plane, called vorticity
singularities. The duality between these singularities and singularities of the phase of
the complex scalar wavefield, vortices, is explored. Chapter 3 features an experimental
realisation of the theory outlined in Chapter 2, including experimentally constructed
vorticity singularities, utilising visible light. Chapter 4 moves away from visible light
and into the region of hard x-rays. The generalisation of the Cornu spiral for objects with
increasingly complex geometry is explored. The generalised Cornu spiral of these objects
is experimentally realised using hard x-rays. Finally, Chapter 5 discusses future work and

possible applications of the work presented here. Chapter 6 concludes the thesis.
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Chapter 2

Argand-plane representation of op-
tical vortices in a two-dimensional

complex scalar wavefield

In this chapter, the Argand-plane mappings induced by a two-dimensional optical speckle
field is studied, with particular attention to the Argand-plane representation of the optical
vortices that may be associated with such a speckle field. Preceding the as-published
body of work is some background theory of singularities of wave and ray theory, namely
vortices and caustics, as well as a discussion on various approaches toward the simulation
or generation of optical vortices. The vortices simulated here are calculated by forward-
propagating an optical speckle field, and as such, the derivation of the formalism used to

do so, known as the angular spectrum formalism, is derived.

2.1 Introduction and background theory

2.1.1 Singularities of wave theory and ray theory

Many mathematical theories possess singularities, which manifest themselves on different

length scales. A singularity can be interpreted as any point at which the predictions of
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that theory break down. When a theory does exhibit this so-called singular behaviour, it is

sometimes necessary to go a higher, or more general theory to account for the singularity.

In the shortwave limit of an optical wavefield, we can neglect the finiteness of the wave-
length and adopt a ray approach for solving optical problems. This approach, known as
Geometrical Optics, forms the basis of the work presented in Chapter 4 of this thesis, and
is therefore described in detail in Sec. 4.1.1. This ray theory of optical fields predicts,
under focusing conditions, regions of infinite intensity known as caustics. Caustics are
singularities of ray theory. The formation of one such region, called a point caustic, via a
perfect lens is shown in Fig. 2.1. There, it can be seen that neighbouring rays intersect
at the site of a caustic. The cross-sectional area of the associated tube of rays is zero,
and consequently, an infinite amplitude is predicted at the point of intersection (Keller,
1962). The point caustic requires infinitely many rays to pass through a single point and

is therefore not stable with respect to perturbation (Thom, 1975).

\
T TN

Figure 2.1: Light rays indicated by arrows, upon traveling through a perfect lens, are focused
onto a single point P, forming a point caustic.

For a ray caustic that is stable, one can look to the surface caustic, wherein a family of rays
form an envelope (Thom, 1975). Examples of surface caustics are the cusp, commonly seen
at the surface of a cup of coffee, and the fold. Higher order caustics include the elliptic
umbilic and hyperbolic umbilic. The mathematics of caustics is dictated by catastrophe
theory, the study of singularities and gradient mappings, which predicts an infinite
hierarchy of caustics. For an in-depth treatment of catastrophe theory, see the seminal

book by Nye (1999).

The geometric description of light, while being enormously successful in evaluating light
fields under a plethora of circumstances, predicts these caustic regions of infinite density,
which are a physical absurdity. It is therefore necessary to pass to the wave theory of

optical fields, where light is regarded as possessing a finite wavelength.
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The wave theory of optics possess its own singularities, known as phase vortices. These
are singularities of the phase of the wavefield and are classified as screw-type singularities
(Berry, 1981). They are characterized by regions of zero intensity, being a consequence of
the wave nature of an optical field, of which destructive interference is a feature. They
are entirely complementary to ray caustics; where caustics possess an infinite intensity,
destructive interference of waves results in a zero intensity at the core of the vortex.
However, in moving from ray theory to wave theory, caustic surfaces of infinite intensity
are softened to peaks that often form a skeleton decorated with phase vortices. An example
of this is the vortices present in the vicinity of caustics that are formed in the focal volumes

of coherently illuminated abberated lenses (Allen et al., 2001b).

We can write the equation for a simple polynomial vortex. Up to a continuous deformation,

a phase vortex at (x, o) is locally given by

Py = (x—x9) £i(y — o), (2.1.1)

for Reyp = 0 and Imyp = 0. Here, ¢, denotes a vortex, around which the phase winds in an

anti-clockwise direction, and ¢_ an anti-vortex, with a clockwise phase-winding.

In Sec. 2.2, vortices and caustics are described in detail, as is the nature of their comple-
mentarity. There, it is shown that the Argand plane can be used in the analysis of phase
vortices present in an optical field. This paper also predicts singularities of the Argand-
plane mapping induced by complex scalar wavefields, known as vorticity singularities,
or Argand-plane caustics in the sense that they appear to possess the same structure and
hierarchy as ray caustics despite not being a representation of a physical gradient mapping.
The connection between the caustic-like singularities of the Argand-plane mapping and

singularities of the phase of the physical wavefield is explored in detail.

Further reading on the vortex—caustic duality can be found in Berry (1981).

2.1.2 Methods for vortex generation

For the analysis carried out in this chapter, it was necessary to find a method to generate

optical vortices. There are many methods of vortex generation for optical fields. One
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method involves the use of diffractive optics to transform a spatially coherent flat phase
beam into beams with optical vortices. Bazhenov et al. (1990) created a vortex beam by
modifying a diffraction grating to include a dislocation at its centre. The modified device
is called a ‘fork” hologram. More recent examples of the use of a fork hologram in the
creation of a vortex beam can be found by Bekshaev et al. (2010) and Bekshaev et al.

(2014).

In 1992, Allen et al. made the important discovery that beams with optical vortices carry
orbital angular momentum. They adopted a method using cylindrical lenses to convert a
Hermite-Gauss mode, a beam with zero angular momentum, into a Laguerre-Gaussian
mode, a beam carrying a well-defined angular momentum. The same method was adopted

by Lin et al. (2011) and Yu et al. (2015).

Another optical element that can be used in the generation of optical vortex beams is
the spiral phase plate (SPP), a method pioneered by Beijersbergen et al. (1993; 1994).
These are discs with refractive index n, and an optical thickness At that increases with
azimuthal angle. When a plane wave passes through the spiral phase plate it incurs a
phase shift determined by n and At. Upon transmission, the beam has a vortex. More
recently Xin et al. (2014) have adopted this method, combining quarter-wave plates and
spatially-variable half wave plates to construct a SPP for generating optical vortices, and
Janicijevic and Topuzoski (2016) have generated optical vortices using a helical lens, which
is a combination of the SPP and a thin lens. Similarly, Peele et al. (2002) have used a SPP

to generate an x-ray vortex, that is, an optical vortex in a field consisting of x-ray photons.

Despite all other methods that have been developed, several of which are mentioned
above, none match the performance of computer-generated holograms for generating
vortex beams (Heckenberg et al., 1992; Dennis et al., 2009). The availability of spatial
light modulators (SLMs), devices that have to ability to modulate amplitude, phase
or polarization of light, has made computer-generated holograms popular due to their
flexibility and performance. In phase modulation mode, an SLM is able to imprint a phase
component directly onto a beam. Examples of recent work adopting SLMs to generate
vortices are found in Rickenstorff and Ostrovsky (2013), Huang et al. (2014), Gao et al.

(2015) and Kapoor et al. (2016). Vyas and Senthilkumaran (2010) have used a SLM
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integrated into a Mach-Zehnder interferometer to generate a vortex beam, as shown in
Fig. 2.2. There, a laser emits linearly polarized light, which is then spatially filtered and
collimated. A beam splitter (BM1) splits the beam into two arms. One arm passes through
an SLM which uses a computer-generated phase mask to impart linear phase variations
on the beam. The beam diffracted from the SLM is then made to interfere with the other
arm of the Mach-Zehnder interferometer using BS2, and the resulting ‘interferogram’ is
captured by the CCD. The interferogram, which is a series of distorted fringes containing
phase information as a result of the superpositioning of the two beams, is used to detect
the presence of vortices. A neutral density filter (NDF) is used to make the amplitude of
the reference beam equal to that of the vortex beam, which has the effect of enhancing the

quality of the fringes. More detail on interferograms is found ahead in Sec. 3.1.2.

ILASER| |—| A |_|-| M
oY =

BS1 SLM

NDF

o
M L] BS2 ceb

Figure 2.2: Depiction of the use of an SLM to generate a vortex beam, after Vyas and Senthilku-
maran (2010). A laser (L) emits light which is then spatially filtered (SF) and
collimated via a lens (L). A beamsplitter (BS1) splits the beam into two arms. The
top arm passes through an SLM and interferes with the second arm via a mirror
(M). The second arm is directed, using a mirror, to pass through a neutral density
filter (NDF) to adjust the amplitude. The resulting interferogram exits BM2 and is
received by the detector.

The published work in Sec. 2.2 adopts a method for numerically generating optical
vortices that involves the spatial filtering of two-dimensional complex optical white noise.
This creates a speckled pattern of dark and light spots that results from interference
effects, known as a speckle field. The speckle field is then allowed to forward-propagate,
which has the effect of generating propagation-induced vortices. The numerical method is
explained in detail in Sec. 2.2. This is a similar technique to that explored by Staliunas
et al. (1995), who generate a random optical field with Gaussian statistics, which was then

allowed to propagate in order to induce vortices.
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Figure 2.3: Generation of x-ray speckle, after Kitchen et al. (2015). X-rays are emitted from a
source S and pass through a random phase object O, resulting in a speckle field.

Before continuing to describe the process used for computationally propagating the
speckle field through space, namely the angular spectrum formalism, note that optical
speckle has previously been associated with propagation-based phase vortices. For ex-
ample, Kitchen et al. (2004) indicated the presence of optical vortices in the speckle field
revealed by the phase contrast x-ray imaging of animal lungs. They noted that the speckle
field is a result of the focusing effect of the individual alveoli, each one behaving as an aber-
rated refractive lens. The presence of vortices in a speckle field at length scales comparable
to the wavelength had previously been noted by Bobrov (1991), Shvartsman and Freund
(1994), Staliunas et al. (1995), and Aksenov et al. (1998). Figure 2.3 demonstrates x-ray
speckle generation as per Kitchen et al. (2015). Relating to this are the aforementioned
vortices noted by Allen et al. (2001b) in the focal volumes of aberrated lenses, which is
an effect first noted by Boivin et al. (1967) in the focal region of an ‘aplanatic system’. At
length-scales that are large compared to the wavelength, surface caustics were observed in
the same focal volumes, owing to refraction of the optical field due to the lens aberration.
This is an example in the literature where the complementarity between ray caustics and

phase vortices is realised.

The study of speckle fields is an important area of physics, necessary to solve problems
in various areas of study. Some examples are the areas of adaptive optics, star speckle
interferometry and image reconstruction, where the reduction of wavefront distortion is

important (see Aksenov et al., 1998, and references therein).
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The experimental generation and analysis of optical speckle constitutes a significant part

of the next chapter.

2.1.3 Angular spectrum of plane waves

It in necessary to describe the method for evaluating a propagated field downstream of a
disturbance, known as the angular spectrum. This technique is used throughout the work

included later in this chapter and in subsequent chapters. For a complete derivation, see

AN >\\¥\ |
//

Figure 2.4: A source C radiating an electromagnetic field which then propagates into the half
space z > 0.

Paganin, 2006.

Figure 2.4 shows a source S which radiates a scalar electromagnetic wave, denoted by
the monochromatic wavefield 1, from within the half space z < 0, propagating forward
into the half-space z > 0 which is free from sources and charges. Assuming that ¢,
propagates strictly from left-to-right, the angular spectrum formalism can be used to
construct an operator that can be applied to wavefield evaluated over the plane z =0 to
give the propagated wavefield evaluated over a plane z = A lying downstream of the initial

disturbance.

Given a Cartesian coordinate system (x,y,z) with the positive z-axis acting as the optical

axis, the wavefield evaluated over the plane lying at z= A, where A > 0, is given by

Yo (x,9,2=A) = % ff‘ﬁw (kerkyz = 0)exp [iA,/kz K2 kg]

xexplilkex + kyy)|dk,dk,, (2.1.2)
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where 1, (kx, ky,z= 0) is the Fourier transform of 1(x,y,z = 0) with respect to x and v,
and k, and k, are the corresponding Fourier-space variables. The wavevector k has a
magnitude k = 27t/ for wavelength A. Note that this formalism provides an exact solution
to the Helmholtz equation, Eq. 1.2.12, for forward-propagating monochromatic scalar

electromagnetic beams.

We can express the angular spectrum formalism using an operator D which describes

the act of free-space propagation. Thus:

Yo(x,v,2=A) =Dpp,(x,9,2=0), A>0, (2.1.3)

where the ‘diffraction operator’ is defined as

Dp=Flexp [iA./k2 K- kg]f, (2.1.4)

with the operators acting from right to left. 7 denotes the Fourier transform operator and

F 1 the inverse direction.

If the plane-wave components of the forward-propagating field ¢, make a small angle
with the optical axis, it is said to be paraxial. As previously mentioned, Fresnel diffraction
is a paraxial version of the angular spectrum formalism. Under these circumstances the x-

and y- components of the wavevector k, k, and k,, will have a magnitude much less than

k2 + k2
N S T xzk L (2.1.5)

so 2.1.4 becomes, omitting an irrelevant phase factor,

that of k,. Therefore,

“IA(K2 + K2)
D) = - exp[% F, (2.1.6)

where D(AF) is the diffraction operator corresponding to Fresnel diffraction (Paganin, 2006).

In contrast with Eq. 2.1.2, this is an approximate solution to the Helmholtz equation.
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The forward and inverse Fourier transforms in the operator form of the angular spectrum
formalism can be evaluated numerically using the fast Fourier transform (FFT), which
is an efficient method of calculating a Fourier transform (see Press et al. (1992)). The
propagation distance A can vary from zero through to the near-field and intermediate
field. The ‘Fresnel number’, denoted by N, provides an approximation to the near-,

intermediate- and far-field definitions. It is given by,

l2

Np=—,
F=AA

(2.1.7)

where [ is the size of the smallest transverse feature, essentially specifying the resolution
and A is the wavelength of the beam. For a value of A such that Ny >> 1 the beam is in
the near-field. For Ng = 1, the beam is in the intermediate field and N << 1 indicates the
far-field. As one makes the transition to the far-field, the phase of the angular spectrum
propagator, A/k2 — k2 — kﬁ, becomes under-sampled and the angular spectrum formalism
breaks down in Fourier space. It can then be replaced with a one-FFT form of the Fresnel
diffraction operator, which will allow one to numerically propagate to the far-field. This
approximation has the form of a paraxial modulated spherical wave emanating from the
plane of the unpropagated disturbance (see Paganin, 2006 for more detail). The angular
spectrum formalism and Fresnel diffraction integral are used extensively throughout the

work in this thesis.

2.2 Duality between phase vortices and Argand-plane caus-
tics

On the following pages is inserted the as-published form of the first of three first-author

papers arising from this thesis. The paper has been published as:

E. Rothschild, M. J. Kitchen, H. M. L. Faulkner, and D. M. Paganin, ‘Duality between phase

vortices and Argand-plane caustics’, Opt. Commun. 285, pp 4141-4151 (2012).
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Singularities in the mappings of complex two-dimensional vortical wavefields to Argand space are used
here to investigate the duality between vortices in the physical field and caustic-like structures in the
Argand plane. Such map singularities are exemplified via a method of optical vortex generation based
on low-pass filtering of two-dimensional noise. The presence of Argand-plane fold caustics crossing the
Argand-plane origin is tied 1o changes in vortex numbers in the physical wavefield. Increasing the low

pass filter curoff leads ro higher-order Argand-plane caustic singularities, such as the hyperbaolic
umbilic catastrophe. This work presents a duality between vortices and caustics, explores the Argand
plane as a ol in analysing optical wavefields, and provides a new environment for studying
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1. A brief introduction to singularities

Singularities are a feature of many physical models. A theory
can possess singularities of different categories, manifesting
themselves on different spatial scales. Certain theories, such as
the wavefunction in Schridinger's wave mechanics and the
complex analytic signal of scalar electromagnetic wave optics,
describe waves using complex scalar functions of position and
time. These complex funcltions may possess screw-lype phase
singularities, namely wavefront dislocations [1], that exhibit
vartical hehaviour. In the short-wave limit, however, singularities
of ray/particle theory, called caustics [2], are manifest. A certain
complementarity between caustic and vorlex singularities is
developed in this paper. Specifically, we demonstrate a link
between the presence of vortices in a complex two-dimensional
coherent wavefield (such as a monochromatic scalar electromag-
netic wave) and associated caustics in the mapping from real-
space to the Argand plane that is induced by such a vartical field.

Vortices are ubiquitous, in the sense that they are present in
most non-trivial complex scalar wavefields [3]. They appear in
macroscopic systems including plumes of smoke, hurricanes and
optical speckle, and in microscopic systems such as the angular
momentum eigenstates of the hydrogen atom, in superfluids and
in turbulent Bose-Einstein condensates {BECs). Caustics, too, are
found ubiguitously, in macroscopic systems such as filaments in
the large-scale structure of the universe, optical caustics in cups
of coffee and swimming pools, and in microscopic systems such
as the focal volume of coherently illuminated aberrated lenses.
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Focussing attention on scalar wave optics, a single Cartesian
component of linearly polarised light can be represented by a
complex analytic signal (T ,t) with intensity I( ¥ .0) = | r’,r)|z
and phase ¢( ¥ 1), such that [4,5]

VT .0 = (T oexplio(F.0), M

here T is the po n vector in Cartesian coordinates and t is the
time [6]. The surfaces of constant phase are identified with
wavelronts. Screw-type and edge-type singularities are important
features of such wavefronts, corresponding to topological defects
of (¥ ,1) [2]. We restrict attention Lo screw-type phase singula-
rities since, unlike edge dislocations, these are stable with respect
to perturbation [2].

The nature of these screw-type phase singularities can be studied
using a topological argument which takes as a starting point the
smoothness and single-valuedness of the complex scalar wavelield
W(T.t). Single-valuedness implies that over a simple smooth
positively traversed closed circuit I, over every point of which the
intensity of the wavefield is strictly positive, the phase (¥ ,t) may
only change by an integer multiple m of 27 [1,6]. Hence

ﬁdw:ﬂ?¢-ﬁc&s=2nm. (2}

where 1 is the unit vector tangent to I and ds is the differential
element of arc length along I

If m is non-zero, at least one vortex-type singularity pierces
the two-dimensional surface spanning I'. Here, we consider only
first-order vortices (m= + 1) that are structurally stable and
disregard higher-order vortices (m= +2,+3,...}, which are not
stable with respect to perturbations [7]. Mote that m=0 can also
correspond to the presence of an equal number of vortices and
antivortices; m=273, ... to several vortices being present; m=—2,
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3... to several antivortices heing present. The smoothness of
the wavefield implies that a vortex can only occur when =0
over at least one point of a two-dimensicnal surface possessing I™ as
a boundary, that is, where the phase @ is undefined. This requires two
conditions: that Rey =0 and Im =0; this implies that phase
singularities are lines in space or points on a plane [2]. Nye and
Berry [8] refer to these as “wavefront dislocations”, using terminology
evocative of arystal dislocations [9]. An important property of vortices
is the structural stability with respect to perturhation of the nodal
lines which thread them, which may be compared to the stability of
certain caustics under perturbation.

Phase singularities in complex scalar fields occur on spatial
scales comparable to the wavelength. When the wave is sampled
over length scales that are very large when compared to the
wavelength, corresponding to the short-wave limit, waves
become rays and a different class of singularities arise. As rays
have the ability to focus, concentrating their energy onto a peint
or surface, ray theory predicts regions of infinite intensity known
as caustics [2]. These caustic regions can be categorized into
various types. For structural stability, one can look to the surface
caustic, wherein a family of rays form an envelope, rather than
having infinitely many rays passing through a single peint. A
hierarchy of surface caustics is stable with respect (o perturba-
tions and may be classified into a series of equivalence classes
known as catastrophes [10]. The mathematical tool needed (o
explain these phenomena is catastrophe theory, the study of
singularities and gradient mappings |2,10]. Examples of caustics
are the cusp and the fold. Higher order caustics include the
swallowtail and the elliptic umbilic. All of these are stable focal
structures generically formed without any need for deliberate
optical focussing, hence named ‘natural focusing’ by Hannay, as
reported in Nye's text [11].

In passing from the ray to the wave theory, the caustic surfaces
of infinite intensity are softened to peaks. Such softened caustics
often form a skeleton that is decorated with phase vortices [2]. A
good example of this is the presence of phase vortices in the
vicinity of the caustic surfaces predicted by ray theory in the focal
volumes of coherently illuminated aberrated lenses [12].

The most obvious complementarity between vortices and
caustics is at the level of intensity. On a caustic in a coherent
field, there is infinite intensity according to ray theory, whereas
on a vortex core, the intensity is zero according to wave theory [2].
These two classes of singularities are not simultaneously obser-
vable since they manifest at mutually exclusive length scales [2].
Over length scales that are large compared to the wavelength,
singularities of ray theory dominate as the effects of the finite
wavelength can be ignored. At this scale, vortices are unresolved.
When magnified to a point where effects of a non-zero wave-
length are significant and vortices can be seen, the caustic
singularities are “smoothed away™ by diffraction. In this sense,
the measurement of one prevents the measurement of the other.

Such complementarity is present in the concept of wave-particle
duality, whereby the wave and particle natures of light are
similarly not simultaneously ohservable. Berry [2, pp. 479-480]
draws comparisons on this point, stating that the complementar-
ity of vortices and caustics “must surely embody a deep aspect of
the wave-particle duality but I do not know how (o exploit it
This beautiful and deep question, while not directly addressed
here, has inspired the work of the present paper.

We close this introduction with an outline of the remainder of the
paper. Section 2 introduces the mapping of complex functions, from a
two-dimensional plane in space to the Argand plane, which is
induced by a two-dimensional complex scalar optical wavelield. This
section also describes the condition for formation of an Argand-plane
caustic, by such a map. Section 3.1 outlines a method of optical vortex
generation, which is based on the filtering of white noise, together
with its associated Argand-plane mapping The resulting coherent
speckle fields are used for the numerical simulations in the remainder
of the paper. Section 3.2 concentrates on the mapping of vortices in
such wavefields o the Argand plane, with Section 3.3 treating the
singularities that arise from this mapping, confirming their connec-
tion to vortices. The key result of these sections is a cerain
complementarity between optical vortices in the wavefield and
caustics in the Argand-plane map induced by the wavefield: (i) the
existence of Argand-plane caustics is a consequence of the existence
at least one vortex-antivortex pair in the field; (i) the number of
optical vortices changes when the associated Argand-plane map
possesses a caustic which crosses the Argand origin.

2. Singularities of Argand-plane mappings

An arbitrary two-dimensional differentiable continuous sin-
gle-valued complex function ¥(x,y) can be considered to induce a
map A : R € from two-dimensional real space to the complex
plane, given by

MO (x, v —{Re ¥ Im ¥}, (3

where ¥ixy) represents the boundary value of the spatial part of
a forward-propagating monochromatic scalar three-dimensional
wavefield over a given planar surface. Note also that coherent
scalar fields are assumed in this paper, with harmonic time
dependence being suppressed.

Fig. 1 demonstrates the mapping A of a complex number
¥ix,yyassociated with a single point (x,y} in real space, to a point
on the Argand plane. Note that the mapping induced by ¥, in Eq.
(3}, can be placed inte direct correspondence with a complex
scalar function of a complex variable (Fig. 2).

Up to continuous deformation, and to first order in x and y, a
vortex at (xg, ¥y is given by [13]

W, = (x—xp) £ ily—wgh (@
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Wix,y)

Fig. 2. A complex scalar two-dimensional “patch”™ Fixy) transforms under the
mapping A4 to fold and produce a caustic in the Argand plane, indicated by the dark
line. ¥ix,y) transforms under mapping At = At 4+, where C is a complex constant
that shifts the Argand plane mapping A4 such that the caustic crosses the origin

where an infinitesimal patch at (xg,vp) maps under A4 to cover the
Arzand-plane origin, at which Re ¥ =0 and Im ¥ = 0. ¥, denotes a
vortex, with an anti-clockwise phase winding and %_ an antivortex
with a clockwise phase winding. The Argand-mapping of such a patch
is shown in Fig. 2. The infinitesimal patch at (xp,vp) in ¥, maps
directly onto the Argand-plane origin; in %_ it must be “flipped” in
order to map to the Argand-plane origin. This implies a fold under the
mapping M to the Argand plane, as when there are two vortices of
opposite helicity over a simply connected region in the field, the
comesponding patches of space will both map to the onigin, with one
patch flipped relative to one another.

The mapping M applied to ¥(x,y) is such that the darker
region in Fig. 2 lies across the Argand-plane origin, i.e. two sheets
connected by a fold caustic o are covering the origin, implying the
presence of two vortices of opposite helicity. The constant C is
chosen so that « has crossed over the Argand-plane erigin and
there are no sheets covering it, and therefore, no vortices or
antivortices in the field.

Given that complex wavefield zeroes are generally structurally
stable only if they coincide with screw-type phase dislocations,
we are led to conclude that the presence of an Argand-plane caustic
crossing the origin in the image of M will be associared with a
change in the number of vortical phase singularities in the wavefield
¥(x,y) inducing the Argand-plane map. The number of Riemann
sheets of M(¥(xyp, at the complex-plane origin, gives the total
number of vortices plus antivortices in the phase of ¥(x,y). Hence
when the number of Riemann sheets at the complex-plane origin
changes as a caustic {such as a fold} crosses this point, the number
of vortical phase discontinuities in ¥(x,y) will change abruptly.

As a demonstration, let us take the simple example

iy =—x"+iy, (5

which induces a many-to-one mapping M. The Argand-mapping
of this function results in a fold in the real direction as it is
independent of the sign of x. As a result of the requirement that
the optical field ¥, (x,y) be continuous, a fold caustic will result. In
order to control the position of the Argand-plane caustic, a real

constant A is introduced such that
Py ey = A7 iy (6}

physically, A® represents a coherent background signal, namely a
plane wave with amplitude A* propagating perpendicular to the
xy-plane. The Argand-plane mapping corresponding to Eq. (6], as
applied to the region |x| < 10, |y| < 10, is plotted in Fig. 3a for
A=5. The phase of this function, determined by the equation

¢ = atan{lm ¥y /Re ¥), (7}

where Re ¥ and Im ¥ denote the real and imaginary parts of
Eq. (6}, respectively, is shown in Fig. 3b. There, a vortex-
antivortex pair is present. The position of these vortices, deter-
mined by the fulfilment of the requirement that Re ¥, =0 and
Im ¥, =0, is also controlled by the parameter A. As A—0, the
vortices at ( +A,0) move closer together, ultimately annihilating
one another when A=0.

a

20

T & 4 2 ] 2 ] ] 8 10
X

Fig. 3. (a) A histegram of the Argand-plane mapping of the many-Le-one [unction
Pk =AY —xE 4y for ] < 10, |¥| < 10 and A=5. Eq. (6] transforms as a 20 array
under A4 to result in a fold caustic o located at Re Wy = 25. The histogram is
generaled using a Monte Carlo method, where points rom the wavelield are
sampled and placed in “hing” in the Argand plane. In figure (b) a grevscale image
of the phase of the function is shown, where a vortex-antivortex dipele 15 seen at
points § and y. The positions of these vortices are (5,0} and (=5, 0). As A tends to 0,
the two vortices will move each ather, ihilating when A=0.
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The fold caustic seen in Fig. 3a is a consequence of the two
vortices present in ¥(x.¥) (seen in Fg. 3b), as was described
earlier in relation to Eq. (4} where it was stated thar a field thar
contains a vortex and an antivortex within a simply connected
region must fold under the mapping A to the Argand plane.

Increasing in complexity, we take a second function

Warxy) = A —x* i -y, (8}

where A and B are real constants. Solving for Re ¥; =0 and
Im ¥4 =0, we find selutions for vortices at positions (A8}, (A,—B),
(—A,B) and (—A,—B). The Argand mapping for Eq. (8) is shown in
Fig. 4a for A=B=>5. In Fig. 4b, the vortex quadrupole associated
with the phase of Eq. (8) as defined by Eq. (7} is shown.

In Fig. 3, it was seen that the x* term and the subsequent
presence of a vortex-antivortex dipole result in a fold in the real
direction when the wavefunction is mapped to the Argand-plane.
Therefore, ¥, must have a fold in both the real and imaginary
directions, as four Riemann sheets {two corresponding (o positive
Jacobian, see Eq. {9), and two to negative Jacobian} must cover the

° ~

fa
[
£
=)
7 -
E

Fig. 4. (a) A histogram of the Argand mapping of the function Piixy)=
A -7 4 i(B* ~y?) applied 1o the region |%[ < 10, |¥| < 10 for A8 = 5. The presence
of a fald caustic is indicated by &, (1) A greyscale image of the phase map for ¥,
where a vortex quadrupele is seen. The four vartices €, ¢, &, 4 are [ =5.5), (5.5
(=5,-5) and (5,-5) respectively. As A B—0, the vortices will move closer
tagether, ultimately annihilaling ane ancther.

Argand-plane origin. In order to view Fig. 4a in a more revealing
and structurally stable form, perturbing terms can be added to
¥, to "unfold” the Argand mapping. By adding a ¥ term to the real
part ¥, the Argand-mapping is unfolded in the x direction
(Fig. 5a}. An additional x term in the imaginary part of ¥, unfolds
the Argand-mapping in the y direction (Fig. 5b).

Both ¥, and ¥, are examples wherein a function can be
transformed under A to bring about Argand-plane singularities.
These Argand-plane caustics are intimately linked to the presence
of vortices of opposite helicities in ¥(x,y), since (i) the existence of
vortices of opposite helicities in ¥(xy) implies that APy
must cover the Argand-plane origin ar least twice, with one image
patch at the Argand-plane origin being flipped with respect to at
least one other patch mapped to the origin; (ii} the continuity of
P(xy) then implies the inevitable existence of at least once
caustic in M{P(x.y}. These points will be explained in maore
detail in Sections 3.2 and 3.3.

The Jacobian determinant (Jacobian} of the mapping Ad is
given by

dRe Pix,yy/ex & Re ¥(xy)/ov

alm Poxyy/ex  alm ¥Yixyy ey 3

Ty =

The Jacechian at a peint provides important information of ¥
near there. The absolute value of the Jacobian at (x,y,) gives
the factor by which ¥ expands or shrinks infinitesimal patches at
p, while the sign of | indicates whether or not the image of the
patch is flipped (f <0) or not (f >0 A value of /=0 indicates
that patch areas have “disappeared”, that is, a patch in the xy
plane has been collapsed into a single point and a singularity has
formed in MW (x,y)). The Argand-plane singularity can be located
by letting f=0 and solving for {x,,y,). For the example plotted in
Fig. 5b, Eq. {8}, with the additional ¥ term in the real part and x
term in the imaginary part, is substituted into Eq. {9} and, setting
Joeyy=0, gives y = 1 /4x for J=0. Substituted back into ¥y 4y +ix,
we obtain

oy =1/4x) = A" 11 /Ax+i(B%~1/16x% +x), (10)

which is mapped to the Argand plane in Fig. 5¢. The lines correlate
with the caustics seen in Fig. 5b.

As every patch of space containing a vortex is required to be
mapped to a sheet which lies over the Argand-plane origin, it is
evident that the number of sheets lying over the Argand-plane
origin as a result of the mapping M of some complex scalar
wavefield corresponds to the number of vortices in the wavefield.
The appearance of the fold caustic in the Argand-plane mapping is
an inevitability arising from the mapping of a pair of opposite-
helicity vertices to the Arzand-plane. It is now understood what is
special about Argand-plane caustics, such that when A=0
for ¥,(xy), causing the fold caustic in Fig. 3a, the vortex-
antivortex pair is annihilated: a single fold caustic crossing the
origin will result in a change in the number of vortices by two, as
the “sheet count”™ over the Argand-plane origin has changed
by two.

The remainder of this paper is a study of the connection
between vortices in P(x,¥) and associated Argand-plane caustics
in M(Wix,y)), exemplified via the spatially random two-dimen-
sional vortical coherent speckle fields arising from spatial filtering
of two-dimensional noise. The existence of at least one caustic in
MOP(x,v1 will be seen to follow from the existence of at least one
vortex-antivortex pair in ¥(x,y). We shall see that a change in the
number of real-space vortices may be associated with a caustic in
the corresponding Argand-plane image, when the said caustic
appreaches the origin of coordinates in the Argand plane. We will
see that the locus of {xy) points with [ =0 will partition this space
into cells containing either vortices of one given helicity or no
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Fig. 5. (a) The Argand-mapping of ¥;(x¥)+ y. The additicn of the ¥ term "unfolds” the Argand-mapping of Wz(x¥) in the x-directicn, revealing some structure hidden in
Fig. 4a. (b) The Argand-mapping of %;(xy)+ ¥+ i Now the Argand-mapping is unfelded in bath directions. It can be seen that the region [x| < 10, [y| < 10 has been twice
folded. (c] The lecations of the caustics in Fig. 5h. This was determined by solving Eq. (91 for j=0 and substituting the result back inte Waixyi+y+ix to give Eq. (10},

vortices at all, with the interior of each such cell being mapped to
the interior of a caustic in the Argand plane. This locus of points
with f=0, which are mapped to Argand-plane caustics, corre-
sponds to lines of zero verticity in the field (see Section 3.2 for
further information).

3. Duality between vortices in a two-dimensional coherent
scalar field, and caustics in the associated Argand-plane map

Several well-known methaods exist for vortex generation. He
et al, for example, have used a diffractive optical element to
produce vortices [14]. Nicholls and Nye [15] as well as Masajada
and Dubik [16] have shown that a lattice of phase vortices may
result from the interference of three plane waves. This concept
has been extended upon using Young's three-pinhole interferom-
eter [17] and more recently in works that use the interference of a
Bose-Einstein condensate (BEC) to generate vortices [ 18-20]. The
three-pinhole interferometer also provides an example of spon-
laneous voriex g(-.neralil)n, where one can Superpose a small

number of non-vortical fields (in this case, three spherical waves)
to induce vortices instead of having to explicitly “stir” the beam,
e.g. with the use of a spiral phase plate [21].

As another methed for generating optical vortices, one may
scatter coherent plane waves from a spatially random sample,
with the resulting speckle field containing a random set of
vortices and antivertices [22,23]. We restrict our attention to
such vortex-laden random optical speckle fields. Section 3.1
describes a simple method of vortical speckle-field generation
that uses spatial filtering of two-dimensional noise, Section 3.2
discusses the relationship between vortices and the Argand-plane
mapping M of the random two-dimensional complex scalar
wavefield, in the context of the previously described “noise
filtering” method for vortex generation. Section 3.3 looks at the
like structures that are generated as the wavefield is

caus
transformed under M, as certain control parameters in the noise
filtering method of vortex generation are varied. This section also
discusses the duality between vortices in a two-dimensional
coherent scalar field, and caustics in the associated Argand-
plane map.
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3.1. Method for generating vortices via noise-filtering

One particular method for vortex generation involves the
filtering of two-dimensional delta-correlated complex white
noise. This may be achieved using visible light by passing a
coherent plane wave through a static ground glass plate and then
spatially filtering the resulting exit-surface wavefield using a
circular Fourier-plane filter in the back focal plane of an imaging
system placed downstream of the glass plate. A schematic of an
optical experiment which could be used to implement this is
shown in Fig. 6.

Te computationally madel this process, a random twao-dimen-
sional complex scalar wavelield, ¥ ng.(x.y) was simulated over a
Cartesian grid. Uniformly randemly generated intensity f(x,y) and
phase @(xy} values were created at each pixel in this grid,
combined using
Vnatse () = /IG6Y) expligp(x,y), an
with random deviates for both the intensity and phase being
drawn from a uniform probability distribution with 0 <I(xyi =<1
and 0 = @x,y) < m

The two-dimensional fast Fourier transform (FFT} of the
simulated wavefield, denoted ‘j’,m,-,e(kx,ky) was truncated using a
low-pass filter j(k, ky) with cutoff &

1 for \/kf }kz,.s;x,

filkee Ky ) =
o 0 elsewhere,

(12}

where (ky,J;) are Fourier coordinates corresponding to (xy). The

: . I 7
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Fig. 6. Schematic of experiment to generate vortices using noise filtering.
Coherent light is produced using a laser (1}, propagating through a ground glass
plate (2], with the emerging complex field dencted ¥ .. The wavelunction ¥,
then passes through a circular iris with varying radius r(3) To filter cul the zere-
frequency component, a plate of glass with a darkened spot at the centre is placed
in front of the circular iris (4). The filtered wavefunction that emerges from the
glass passes through a lens with focal length £ (51

P\( Iuﬁﬁ P)
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above filter was augmented by the mask:

F : 2o
Atk ky) = 1 for ‘."I(:+lg, = Kgmalts

(13)
T elsewhere,

where k. < & is the radius of the small absorbing disc with real
transmission coefficient T that is centered over the Fourier-space
origin. This second mask corresponds to a form of dark-field
imaging in which the lowest Fourier components of the imaged
wavefield were suppressed by a factor of . The complete
expression for the method for generating vortices via noise
filtering is therefore

FLAk Jdptkie o) P e e K], (14)

where 7~ denotes inverse two-dimensional Fourier transformation.

A simulation of the filtering process is shown in Fig. 7 (see
caption for associated numerical parameters). We have chosen
Kyman [0 represent the filtering of a single pixel located ar the
Fourier-space origin, i.e. the zero-spatial-frequency component
(DC frequency component ).

3.2. Mapping of vortices to the Argand plane

When the real and imaginary parts of the spatially random
wavefield in Fig. 7c are mapped to the Argand plane under M, as
shown in Fig. 8, the resulting image of the mapping contains a
series of caustic structures. These are much like Fig. 5b, but are
more complicated here due to the increased complexity of the
field ¥(x,y) that is being transformed. Fig. 8 demonstrates the
dependancy of the vortex density and caustic-structure of the
Argand plane on the parameter x in the Fourier-filtering process.
The larger the cutoeffl radius x of the circular mask, the smaller the
characteristic length scale 1/x of the resulting randem speckle
field and hence the more phase vortices are likely to be present.
As a result of this, the more richly structured will be the image of
the mapping M of the wavelunction in the Argand plane. The
low-pass filter cuteff « is a parameter whose increased value may
lead to higher-order singularities in the Argand plane. We see that
the number of vortices increases with &, as shown in column
(ii} of Fig. 8. Via dimensional reasoning, the relationship between
the maximum vortex density g,,,, and the low-pass cutoff filter x
is given by g, = K°.

On the other hand, the dark-field attenuation parameter T,
while also affecting the number of vortices in the two-
dimensional wavefield, does not change the form of the image
of the map in the Argand plane in the same way that k does, hut

c

-

Fig. 7. Filtering two-dimensicnal complex white noise to generate phase vortices: (a) grid of 300 « 300 pseudo-randem numbers unifermly generated between 0 and »,

representing the phase of a two-dimensional complex scalar wavefield, A phase of
(not shown) was alse generated. These were combined using Eq. (11 in F
# = & pixels with a value of 0 outside and 1 inside the mask. T!

separation scaling as 1/x One anlivortex is circled in (o}

m is indicaled by black, © by while. A similar “while noise” map of inlensily values
space to give a camplex wavefield which is then multiplied by a circular mask of radius
effect of the mask is shown in the zoemed-in phase map image in (b} By implementing an in Fouri
transform, filtering the DC compenent by a factor of © =0, the resulting complex field, whose phase is given in (c), becomes littered with phase vortices

@ Fourier
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Fig. 8. Columns (1), (11) and (iii) show the intensity, phase and Argand-pl ing of a vortical two-di ional complex scalar speckle wavefield for = 0 and grid size

of 300 x 300 pixels, respectively. Successive rows show how the images evelve as the maximum filtering frequency x is increased. The values for x are (2} 1.5, (b} 2, (¢) 8
and (d) 16. The Argand-plane caustics that appear in (iii) and the vortices present in (ii) increase in complexity as x is increased.

only displaces its position in the Argand plane (provided that the Although the change in the Argand plane is trivial, 7, as
non-negative real number K is sufficiently small). This mentioned, has an effect on the number of vortices. For all the
Argand-plane translation is shown in Fig. 9. simulations performed, when 7 =1, no vortices are present in the
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Fig. 9. (a) through (d) show the mappings of a vortical two-dimensional complex scalar wavefield in the Argand plane for a mask size of k = 6 pixels on a grid of 300 x 300
pixels. The parameter 7 is increased: 0.003 in (a), 0.012 in (b), 0.02 in (¢} and 0.04 in (d), each time shifting the mapping by a complex constant until the mapping is
completely off the origin, which is marked by red lines. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this

article.)

field and when the DC component is completely removed, ie.
when t =0, vortices are present.

Knowing now that the effect of the addition of a constant
complex number, which comes about via the filtering of the DC by
a factor of 7, is to shift the Argand mapping of the wavefield, we
can explain the dependancy of vortex density on <. Filtering the zero-
frequency component by some factor adds a constant complex
number to the wavefield which subsequently shifts its mapping
M in the Argand plane. As mentioned in Section 2, for every vortex in
the wavefield, there will be a corresponding “sheet” lying over the
Argand-plane origin; the number of Riemann sheets covering the
Argand-plane origin, in each panel of column {iii} in Fig. 8, therefore
gives the total number of vortices plus antivortices.

To illustrate this, in Fig. 10a we plot the number of vortices
N embedded in a complex two-dimensional wavefield versus t
(see caption of Fig. 10 for associated numerical parameters). A
vortex can be detected by searching for points that satisfy the

requirement that |¥g|, |¥| <¢, where the tolerance ¢ is 1077,
Additionally, we must maintain that the phase changes by a
multiple of 27 around this point as described by Eq. (2). The result
is a plot consisting of highly singular peaks (Fig. 10a).

The presence of peaks, corresponding to a change in the
number of zeros, is entirely consistent with the claim in Section
2, which stated that a caustic fold singularity crossing the origin
in the Argand plane will result in a change in the number of
vortices by two. That is, two sheets will disappear from or appear
at the origin, depending on the direction that the Argand-plane
mapping is travelling as 7 changes.

To obtain as ensemble average of Fig. 104, the previously fixed
random seed was allowed to vary randomly. 3000 random
realizations of a two-dimensional complex scalar wavefield were
generated, and the ensemble average of N for each value of t was
calculated. A plot of the average number of vortices versus 7 is
shown in Fig. 10b. The shape of the plot in Fig. 10b was fitted to a
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Fig. 10. The number of vortices ¥ in a 484 < 484 two-dimensional complex scalar wavefield versus ¢ for k = 80, © was varied between 0 and 0L067 in increments of 0.0001.
Shown is (a) a single realization; (b) an ensemble average of 3000 realizations. Certain values of T resull in peaks in the number of vortices in (a) that correspond e one or
more fold caustics crossing the origin Although a single realization appears highly structured, the sum of 3000 is relatively structureless, monotenically decreasing and

Gaussian. The set of points is Atted to a Gaussian curve (red j with 3?
the web version of this article.)
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Fig. 11. Argand el a 2 1 wavelield with a grid of
400 = 400 and paramelers =10, & =6, 400 = 400 bins. A rich variety of structu-
rally stable caustics is observed. The presence of a fold caustic, denoted « and a
cusp, f is indicated as well as higher-crder singularities, the elliptic umbilics, 7,
and hyperbolic umbilic, & [26,11].

Gaussian curve that appears as a red line, with goodness-oi-fit
¥* =08607, This result is consistent with the analysis by
Goodman [24, Section 4.8.4].

3.3, Svucture of Argand-plane caustics associated with o coherent
vortex-field

Consider the plot in Fig 11, which shows the mapping of a
random vortex-laden speckle field (produced using the methoed
described in Section 3.1) to the Argand-plane, with the said speckle
field generated using the parameters specified in the caption.
MNote that, unlike the mappings in both the rnght column of Fig. 8
and in all panels of Fig. 9, the map in Fiz. 11 is plotted using a
histogram with logarithmic scaling, to better reveal the rich variety of

08607, (For interpretation of the references to colour in this figure caption, the reader is referred to

caustics present there. The structurally stable caustics in this mapping
include the fold @, the cusp f, the elliptic umbilics ¢ and the
hyperbolic umbilic 4.

In Section 2 we argued that for a vortex—antivortex pair, the
infinitesimal patches of space surrounding the vortex and anti-
vortex will be respectively mapped to cover the Argand-plane
origin, with the respective image patches being flipped with
respect o one another. Intuitively, this implies the existence of
at least one caustic in the Argand-plane image of any simply
connected region, which contains at least one vortex and at least
one antivartex. The proof of this statement is as follows: (i)
consider a simply connected region £ in (xy) space which
contains at least ene distinct vortex and antivortex. Let any one
vortex be located at A, and let an antivortex be located at B.
(ii) The associated Jacobian f (see Eq. (9}) for the induced Argand-
plane map will be positive at the location of the vortex, and
negative at the location of the antivortex. {iii} Now connect A to B
with a continuous line I', each peint of which lies within &. The
possibility of this construction is guaranteed by the simply
connected nature of . {iv} Under the assumption that both
Yix,yy and its first partial derivatives are continuous, which will
automatically be satisfied for coherent scalar waves in free space
vbeying a second-order differential field equation, | will be a
continuous function of position aleng I'. Since | varies continu-
ously as one moves from A to B along I', and since | changes sign
in moving from A to B, the intermediate-value theorem of
mathematical analysis implies that | will be zero for at least one
point on I, This peint of zero Jacobian will be mapped to a caustic
in the Argand plane. Hence we have proved the required result; at
least one caustic exists in the Arzand-plane image of any simply
connected region which contains both at least one vortex and at
least one antivortex. Note also that, if £ is never infinitely thin at
any point, then the set of points where [ =0 must form at least a
one-dimensional manifold which cuts £2 into disconnected pieces,
one of which contains A and the other of which contains B. This
latter point is readily proved by considering the set of all possible
contours I" in the above argument.

Note that the locus of peints for which =0 [25], in the xy
plane, will partition the space into a connected set of cells, each of
which will either contain no vortices or only vortices of a given
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Fig. 12, (a) A 200 = 200 pixel greyscale image of the phase of a randemly generated wavefield for © = 0 and & = 4. The black lines represent points where the magnitude of
the Jacobian {see Eq. ()] is smaller than a specified tolerance € = 0.5 « 10 . (b} A 400 x 400-bin logarithmic histogram of the Argand-plane mapping of the same field; (c).
(dy and {e} are Argand mappings of the regions bound by the blue, green and red loops in (a), respectively. (For interpretation of the references to colour in this figure

caption, the reader is referred te the web version of this article.)

helicity. Moreover, the manifold of xy points with zero Jacobian
will be mapped to Argand-plane caustics, with the interior of each
such cell being mapped to a region bounded by the caustic image
of its “perimeter” (i.e. the set of points with =0 which bounds a
given cell}. To give physical meaning to the set of points for which
J=0, note that these correspond to points of vanishing vorticity,
since the Jacobian in Eq. (9} is proportional to the z-component of
the curl of the Poynting vector Ko/ ox,d@/ ey

To illustrate the above points, consider the simulation in
Fig. 12, derived from a speckle field obtained using the method
of Section 3.1, with parameters as specified in the caption. The
greyscale component of Fig. 12a shows the phase of the result-
ing speckle field {(folded modulo 27}, with several vortices
and antivortices evident as branch peints in the phase function.
Overlaid on this are black pixels, which represent areas where
]| <e=0.5x 1075, as determined via a first-order symmelric
finite difference approximation to Eq. (9). As previously stated,
the regions where J=0 are regions of the field that are mapped to
caustics in the Argand plane, as shown in Fig. 12b. The “zero-
Jacobian™ lines in Fig. 12a segregate vortices of different-sign
charges, allowing the image under M to fold (or exhibit other
caustic morphelogies, as appropriate} so that the infinitesimal
patch containing each vortex is mapped to the origin of the
Argand plane with the correct orientation.

The areas enclosed within the blue, green and red strips in Fig. 12a
are mapped to the Argand-plane images shown in Fig. 12¢, d and e,
respectively. (i) The blue rectangle encloses two vortices of the same

charge, with no peints of zero Jacobian contained within this region.
Hence there are no caustics in the Argand-plane map shown in
Fig. 12¢, which loops from the origin and back, such that the image of
the patch surrounding each vortex contributes one “sheet” covering
the origin. (i} The green rectangle in Fiz. 12a encleses two anti-
vortices of the same charge, with two zero-Jacobian lines lying
between them. This pair of zero-Jacobian lines is mapped to a pair
of fold caustics in Fig. 12d, across each of which the orentation of the
map reverses. Two reversals of the sense of the mapping, cne at each
fold, allows the Argand plane image (o cover the ongin twice, as it
must for two antivortices. (iii} The red rectangle encloses a vortex-
antivortex pair and predictably folds when mapped (o the Argand
plane, as shown in Fig. 12e. Examples (ii} and (iii) manifest a form of
vortex—caustic duality, in the sense that the presence of vortex
structures is directly tied to the presence of associated Argand-plane
caustics. From a physical perspective, this comesponds o the inevi-
table presence of zero-vorticity points, in a complex scalar wavefield
¥ix,yy, contained within a simply connected region, which contains
both vortices and antivortices.

Let us return to a point made in the third paragraph of this sub-
section, that a two-dimensional cell bounded by a line of zero
Jacobian may contain no vortices. An illustration of this is given in
Fig. 13(a), which shows a map of the phase of a random two-
dimensional coherent scalar wavefield, generated for k =4 and T =0.
The corresponding zero-Jacobian regions enclosing no vortices are
seen in three places, one of which is bounded by a blue rectangle. The
Argand-plane map, of the region bounded by this blue rectangle, is
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shown in Fig. 13{b} This shows that, for this example, the “Jacobian
circle”, which hounds a cell containing neither vortices nor antivor-
tices, is mapped to an elliptic umbilic catastrophe.

4. Conclusion

We have studied the Argand-plane maps induced by vortical
rwo-dimensional complex scalar fields defined over a simply
connected region. When such a field contains at least one distinct
vortex and antivortex, the associated Argand-plane map will
contain at least one caustic. The locus of real space points with
Jacobian j=0, which corresponds to lines of zero vorticity, will
partition the space into cells that contain either no vortices or
only vortices of a given helicity. The boundary of each such cell is
mapped to a caustic, and the number of patches covering the
Argand-plane origin gives the total number of vortices plus
antivortices. This investigation on the urility of the Argand plane
in analysing vortical optical wavefields provides (i) an interesting
new environment for studying catastrophes, and (ii} an interest-
ing connection between vortices in an optical field, and caustics in
the induced Argand-plane map.

Note added in proof

There are many extensions of the basic ideas presented in this
article to other systems. Examples include the mapping of the
gradient of the intensity onto its dx- and dy- components.
Additionally, the extension of such mapping to higher dimensions
as well as to other manifolds may lead to new connections
between Morse theory and catastrophe theory. The authors are
grateful to the anocnymous reviewer for these suggestions, and
will explore these connections in a future publication.
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Chapter 3

A study of Argand-plane vorticity sin-

gularities using optical speckle

3.1 Introduction and background theory

3.1.1 The generation and manipulation of optical speckle

In the paper presented in Sec. 2.2, optical speckle was simulated with the goal of studying
the resulting vortex population and its connection to Argand-plane vorticity singularities.
Here, optical speckle is generated experimentally for the same purpose. There are many
methods that can be used to generate optical speckle so that it can be studied. Aksenov
et al. (1998), for example, generated a speckle field by passing an optical beam through an
inhomogeneous medium. A method of generating speckle might incorporate a means of
precisely controlling the size and/or position of the speckle so that we could better study
it. Pascucci et al. (2016) generated a speckle pattern by passing a beam through a random
phase mask and used the handedness of a circular polarizer to change the position of the

dark speckle.

An example of a simulated speckle field is shown in Fig. 3.1. Figure 3.1(a) shows a
representation of lungs, comprised of 23,600 air-filled spheres with a mean diameter of
60.0 ym. The diameter of each sphere is randomly generated using Poisson statistics; the

position is randomly generated using a uniform distribution, with a limit on the maximum

39



Argand-plane mappings induced by complex scalar wavefields

number of spheres allowed in the projection owing to the thickness of the sample (11.3
mm). Using the angular spectrum formalism, the sample is numerically ‘illuminated’
by 34 keV x-rays, which are then allowed to propagate. One metre from the sample, a

speckle pattern is visible, as seen in Fig. 3.1(b).

Figure 3.1: Following Kitchen et al. (2004); (a) a simulated contact image of the exit surface
of a 11.3 mm-thick lung sample containing 23,600 air sacs with a mean diameter
of 60.0um illuminated by 34 keV x-rays, and (b) a numerically simulated speckle
field obtain by propagating the image in (a) by 1.0 m using the angular spectrum
formalism shown in Sec. 2.1.3.

The method used to generate speckles experimentally in Sec. 3.2 involved adapting the
numerical approach used in Sec. 2.2. There, white noise underwent a Fourier transform so
that higher frequencies could be filtered out from the noisy wavefield. This had the effect
of producing larger speckles upon the implementation of an inverse Fourier transform.
The size of the speckle was seen to be inversely proportional to the size of the mask placed

on the power spectrum of the noisy field.

A detailed schematic corresponding to the experimental set-up used to produce the speckle
field is given in Sec. 3.2. There, a collimated optical beam was propagated through a
ground-glass screen, a method which has the effect of introducing amplitude fluctuations
into a beam that we call noise. In the interest of limiting the number of optical elements
used in the experimental implementation of the numerical method of Sec. 2.2, it was
noted that as white noise has within it an equal power distribution of all frequencies, the
Fourier transform of white noise will be white noise. This noisy beam, which is essentially

the two-dimensional spatial frequency spectrum of white noise, was then incident on
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Argand-plane mappings induced by complex scalar wavefields

a circular iris. In passing through this aperture, the radius of which can be precisely
controlled, higher spatial frequencies were removed. An inverse Fourier transform was
then implemented with the use of a lens, invoking the Fourier transform properties of
lenses, which tells us that if the transmissive object, in this case the circular iris, is placed
one focal length in front of a lens of focal length f, then its Fourier transform will form one
focal length behind the lens (Goodman, 2005). The resulting speckle field was received by
a detector. The diameter of the circular iris was inversely proportional to the size of the
individual speckle. If the speckles are associated with vortices, then the circular iris is a

means by which to control the number of vortices.

Generally speaking, the number of vortices in an optical beam can be varied by adjusting
some external parameter that the wave depends on. As mentioned earlier, Sec. 2.2
investigates the connection between the presence of vortices in a simulated wavefield and
the singularities induced by its Argand-plane mapping, and the publication in Sec. 3.2
explores this experimentally. Coming back to Eq. 1.3.2 of Chapter 1, singularities are
formed along lines where the Jacobian is equal to zero!. Knowing this, we can divide
the external parameters that can adjust the vortex population into two categories: trivial
and non-trivial parameters. A trivial parameter is designed to change the number of
vortices while only rigidly shifting the positions of the singularity lines, and a non-trivial
parameter changes their overall form. When a wave depends on a non-trivial external
parameter, higher-order vorticity singularities can occur. This effect was demonstrated

numerically through Fig. 8 of the publication inserted into Sec. 2.2.

An example of a parameter that adjusts the singularity lines in a non-trivial fashion is
the propagation distance. In the experimental scheme devised in Sec. 3.2 and described
above, the size of the circular iris represents a non-trivial external parameter with regards
to the singularity lines. Rather than simply rigidly shifting the speckle pattern, changing
the size of the iris changes the size of the speckle itself and consequently the number
of speckles within the region of interest, altering the field in a non-trivial fashion. This

device can therefore be used to induce higher-order vorticity singularities.

IPhysically, these lines correspond to lines of zero vorticity, a point discussed further in Sec. 3.2. Berry
demonstrates such lines in Fig. 2 of his 2009 paper.
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An arbitrary complex constant that could be imparted onto the wave, rigidly shifting
it while changing only the position of the singularity lines, would suffice as a trivial
parameter. In the experiment, this is done by using a Mach-Zehnder interferometer to
add a phase term onto the vortex beam, the details of which are explained fully in Sec. 3.2.
As with the Mach-Zehnder set up of Fig. 2.2, a reference beam was split off from the main
beam. Incorporated into the reference beam were optical elements designed to introduce

phase shifts before recombining the two arms of the interferometer.

The detector that is situated at the end of the vortex beam enabled a measurement of
intensity only. In order to reconstruct the entire wavefield, it was necessary to measure

the phase of the beam as well as the intensity.

3.1.2 The phase problem

In the field of imaging, there is often a loss of information that occurs when making a
physical measurement regarding the phase. Detectors, like the CCD camera used in the
experiment described in Sec. 3.2, are only able to measure the intensity of light, which is
related to its magnitude. This is not a complete measurement of the information contained
in the beam; light has also a phase which carries with it important information e.g. about
an object which it has passed through. Due to the rapidly oscillating nature of the
wavefield at higher frequencies, the phase can not be directly measured (at lower temporal
frequencies, microwaves for instance, modern technology can directly measure the phase).
There are several, largely uncomplicated techniques that exist for the interferometric
recovery of phase with visible-light optics due to the ease with which one can obtain a
coherent visible light source and the abundance of optical elements suitable for visible
light, such as mirrors and lenses. The problem is far more difficult in x-ray physics as
x-ray lasers and optical elements suitable for use with x-ray radiation are difficult to come
by, and in some cases do not yet exist. Solutions to the phase problem for these higher

temporal frequencies will be discussed in the following chapter.

The phase problem falls under the category of an ‘inverse problem’. Generally speaking,
a forward, or direct problem, seeks to determine the effect from a given cause, while

an inverse problem attempts to deduce the cause from a given effect. In the context
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of imaging, a forward problem takes as its input the model of an object, returning the
imaging data that results from the object model and its interaction with a source and
detector. This class of problem forms the basis of the results of the publication in Sec.
2.2, where the appropriate mathematical method is used to map the given model, in this
case white optical noise, to the desired data. Additionally, solutions to forward problems
feature throughout the remainder of this thesis, largely as a means to extrapolate data

beyond the general capabilities of the experimental hardware.

An inverse problem involves the determination of information about an object from its
imaging data. As the map from the data to the model does not necessarily exist, it is in
general a far more difficult problem than its associated forward problem. In order to
construct an algorithm for an inverse problem, one must possess a detailed knowledge of
the associated forward problem and consider the existence and uniqueness of a solution
as well as the stability of the retrieved information with respect to perturbations of the

input data (Paganin, 2006).

Hadamard (1923) suggested that a mathematical model of a physical phenomenon should
be such that a solution exists that is unique and changes continuously with the initial
conditions. If an inverse problem possesses such a solution, it is considered ‘well-posed’,
in the sense of Hadamard. Otherwise, it is considered ‘ill-posed’. A problem can be
ill-posed because no solution exists or because non-unique solutions exist which cannot be
distinguished from one another. In order to proceed and render the problem well-posed,
extra data and/or a priori knowledge is required. Alternatively, one can approach an
ill-posed problem statistically, using the ‘Bayesian’ class of methods. There, a statistical
probability is assigned to each possible solution, and the solution with the highest prob-
ability is of being correct is chosen, within a given model. For more detail see Paganin
(2006) and references therein. More on solutions to ill-posed inverse problems is included

in the next chapter, in the context of phase retrieval for x-ray imaging.

Given that the detector in an imaging system is only able to record intensity, one solution
the phase problem in this context is to deliberately introduce phase shifts into the beam
that are visible as intensity variations. The most famous method of doing so is known

as ‘interferometry’, a family of techniques whereby waves are superimposed to obtain
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information about them. The result of the superposition is an interferogram, described

previously in Sec. 2.1.2.

Interferometers can be categorized as either ‘double path’ or ‘common path’. For a double-
path interferometer, the reference beam travels along a path that is separated from the
sample. The Mach-Zehnder (Masi et al., 2012) set-up is an example of this, as is the
Michelson (Hettwer et al., 2000) interferometer and the Twyan-Green interferometer
(Novak et al., 2005). Common-path interferometers have both beams traveling along
the same path. The Sagnac interferometer (Lo et al., 2005) and the fibre-optic gyroscope
(Lefevre and M. Turpin, 1990) are examples of this. A double path interferometer
was implemented into the experimental set-up described in Sec. 3.2 as it allowed the
introduction of phase shifts into the reference beam for the purpose of both phase-stepping

interferometry and trivial manipulation of vortex numbers.

Phase-shifting, or phase-stepping interferometry (PSI) is a highly efficient method of
phase recovery for visible light that is adopted in the work of Sec. 3.2. The integration
of computers into the measurement of optical hardware has allowed PSI to be optimised
and mainstreamed. This is not just a hardware configuration, but a method in data
collection and analysis, making deliberate phase shifts to produce several interferograms
that are then combined in an algorithm to recover the phase of the original beam. The
advantage of PSI is that it is not dependent on finding fringe centres. Additionally, it
is not sensitive to variations in spatial intensity or detector sensitivity. This stands in
contrast to methods that involve the analysis of single static interferograms. While these
methods have also improved with the use of computers, it requires the locating of fringe
centres. Additionally, as data is only collected as fringe centres, there is low spatial
sampling. These problems are eliminated with PSI. There are many different methods of
phase-shifting interferometry (see e.g. Schreiber and Bruning, 2006). The method used in
Sec. 3.2 is a four-step algorithm described by Schreiber and Bruning (2006), and derived

below.

To find an expression for the interferograms that are used to recover the phase, consider

the two arms of the Mach-Zehnder interferometer, the test beam and the reference beam,
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denoted by ¢; and ¢,, respectively. We can assign a wavefunction to each, given by

Pr(x,9) = ar(x,9)e'*™?) and  ,(x,y) = ay,i(x,p)ell P70, (3.1.1)

where a;(x,v), a,(x,y) are the amplitudes and ¢;(x,v), ¢,(x,v) are the phases of the two
beams. The reference beam has an introduced phase shift o; which, in the case of this

four-step algorithm, takes on four discrete values, each separated by 7/2:

0;=0,1/2,7,31/2; i=1,2,3,4 (3.1.2)

The resulting interferogram, I;(x,y) is given by

Ii(x,9) = [0e(x,9) + (%, 9)|
= a2(x,y) + a2(x,y)

+2a4(x,)a,(x,y)cos [(x,9) — P, (x,9) + 6i], (3.1.3)

which leads to the fundamental PSI equation (Schreiber and Bruning, 2006),

Li(x,v)=T"(x,v)+1"(x,v)cos[p(x,v)+6;], i=1,2,3,4 (3.1.4)

where the intensity pattern for I;(x,y, t) is a sum of the average intensity I'(x,y) = atz(x,y) +

a2(x,v) and the intensity modulation I”(x,y) = 2a,(x,y)a,(x,v), which depends on the
wavefront phase difference ¢(x,v) = ¢;(x,v) — p.(x,v) between the reference and test
beams, and the introduced phase shift 9;. The four-step method requires the recording
of four separate interferograms, each separated by 7/2 in phase, according to Eq. 3.1.2.
Using Eq. 3.1.4 together with trigonometric identities, the interferograms can be written

as
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I(x,9) =I'(x,p) + I"(x,p) cos [ (x, )]
Li(x,y)=I"(x,y)=1"(x,y)sin[$(x, )]
L(x,y)=1'"(x,y) = 1"(x,) cos [P(x, )]

I(x,y) =I'(x,y) + 1" (x,y)sin[¢(x, y)]. (3.1.5)

The terms that are constant can be eliminated by combining the four interferograms, as

follows:

I3-1; _sin[¢(x,)]

= . (3.1.6)
Ip—I, cos[p(x,p)]
Arriving at the final result, the phase can be recovered using
I;-1
(j)(x,y):atan[ 3 1]. (3.1.7)
Iy=1I

3.2 Argand-plane vorticity singularities in complex scalar op-

tical fields: An experimental study using optical speckle

On the following pages is inserted the as-published form of the second of three first-author

papers arising from this thesis. The paper has been published as:

F. Rothschild, A. I. Bishop, M. J. Kitchen, and D. M. Paganin, ‘Argand-plane vorticity
singularities in complex scalar optical fields: An experimental study using optical speckle’,

Opt. Exp. 22, pp 6495-6510 (2014).

Note that, due to a printing error, the last two sentences of the caption of Fig. 8 in this
publication are obscured. These state: “The location of vortices are indicated by circles:
dark fill for vortices and light fill for antivortices. The field-of-view measures 1.48 mm X
1.11 mm. The Argand mapping is shown in e), now with much finer sampling, allowing a

clear image of vorticity singularities.”
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Argand-plane vorticity singularities in
complex scalar optical fields: An
experimental study using optical speckle

Freda Rothschild,” Alexis I. Bishop, Marcus J. Kitchen,
and David M. Paganin
School of Physics, Monash University, Victoria 3800, Australia

Abstract:  The Cornu spiral is, in essence, the image resulting from an
Argand-plane map associated with monochromatic complex scalar plane
waves diffracting from an infinite edge. Argand-plane maps can be useful
in the analysis of more general optical fields. We experimentally study
particular features of Argand-plane mappings known as “vorticity singular-
ities” that are associated with mapping continuous single-valued complex
scalar speckle fields to the Argand plane. Vorticity singularities possess a
hierarchy of Argand-plane catastrophes including the fold, cusp and elliptic
umbilic. We also confirm their connection to vortices in two-dimensional
complex scalar waves. The study of vorticity singularities may also have
implications for higher-dimensional fields such as coherence functions and
multi-compenent fields such as vector and spinor fields.

© 2014 Optical Society of America

OCIS codes: (030.6140) Speckle; (050.4865) Optical vortices; (070.2580) Paraxial wave
optics; (110.3175) Interferometric imaging; (110.4153) Motion estimation and optical flow;
(120.5050) Phase measurement; (260.6042) Singular optics; (350.6980) Transforms.
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1. Introduction

The Comu spiral 1s, in essence, the mapping to the Argand plane of the optical field over a
plane perpendicular to the optical axis, which results when monochromatic complex scalar
plane waves are normally incident upon an infinite edge. This is illustrated in Fig. 1{a), which
plots the Argand-plane image of the complex optical field

W(s) = Cls) +i8(s) ()
where [1, sec. 8.7.3]

¢ =b{[+ew] - B+r) ®
s =o{lbree)t ke P0)) ®

resulting from diffraction of a plane wave by an infinife opaque edge. Here, ¥(s) and 5#(s)
denote the Fresnel mtegrals, £ 13 a constant and 5 13 a variable and both depend on the pesition of
the point of ohservation. Adopting the perspective of Keller’s geometrical thaory of diffraction
12}, (1) the bottom-left lobe of the spiral in Fig. 1(a) corresponds to the phasor associated with
eylindrical waves scattered from the diffracting edge into the region of geometrical shadow;
while (i) the top right lobe results from the coherent superposition of the incident plane wave
phasor with the scattered cylindrical edge wave.

The Cornu spiral can be generalized. Morgan ef @l [3] found that in the geometrical shadow
of an infinitely long uniform dielectric eylinder normally luminated by monochromatic scalar
plane waves, the Comu spiral turns into a hypocycloid (see Fig. 1(b) [3]) as a result of the dis-
torted plane wave (having travelled through the cylmder) superposing with the wave diffracting
from the edge of the cvlinder. Morgan ef al. also found that the magnitudes of the oscillation
of the Cormnu spiral and the hypoeyeloid decrease with propagation distance, and wrote down
approximate analytical expressions for these fields using the geometric theory of diffraction.

In Rothschild ef el [4], we considered the role of the Argand plane as a means to add insight
into vortex behaviour in a complex scalar two-dimensional wavefield. We simulated a vaortex-
taden speckle field by spatially filtering two-dimensional complex white noise. Note that, in
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Fig. 1. (a) A Cornu spiral gencrated by taking the Argand-planc image of the complex
ficld resulting when a planc wave diffracts from an infinite opaque edge upon which it is
incident. (b) From Morgan ef al. [3], the simulated Argand-plane plot for coherent x-ray
scalar waves diffracted by a uniform infinitely-long diclectric cylinder. One lobe of the
Cornu spiral evolves into a hypoeycloid in the geometrical shadow of the cylinder. The
dotted circle corresponds to the unscattered plane-wave and has an intensity of 1.

passing from complex fields that vary in only one of the two transverse dimensions to those
that vary in both transverse dimensions, the associated Argand-plane map evolves from a line
trace (generalized Comnu spiral) into a fully two-dimensional mapping. The appearance of this
mapping is typically reminiscent of the caustic-network pattern seen at the bottom of a swim-
ming pool on a bright day. In particular, for such maps we looked at the connection between
Argand-plane singularities and quantized phase vortices in the physical field. We described the
role of vortices and vorticity in the appearance of singularities of the mapping . # of the com-
plex wavefunction to the Argand plane — namely, the cusp and the fold vorticity singularities.
Note that we previously referred 1o these singularities as “Argand-plane caustics™ [4]. How-
ever, following advice from Sir M. V. Berry in a private communication to the corresponding
author, we herein use the term “vorticity singularities™ in recognition of the fact that Argand-
plane singularities are not associated with gradient maps and do not correspond to caustics, or
a focussing of rays in real space.

In the present paper we experimentally verify the numerical predictions made in Rothschild
et al. [4] by calculating Argand mappings of coherent two-dimensional complex scalar wave-
[unctions associated with optical speckle fields. We generate such a speckle [ield by expen-
mentally recreating the process used for simulations in Rothschild er ¢/. [4]. Additionally, we
use the Taylor series expansion of the complex wavefunction to present a local means to locate
Argand-plane singularities ol any order. Vortices in speckle [ields have been studied previously
(see e.g. |5]) and similar experimental and data smoothing techniques to those adopted here
have been used by O’Holleran ef al |6]. However, the present work considers the detailed
structure of vortices and relates it to the seminal work on “Optical currents” by Berry [7]. We
also provide an experimental verification of aspects of the work laid down by Berry [7].

We close this introduction with an outline of the remainder of the paper. Section 2 details
the theory of Argand-plane vorticily singularities, Section 3 provides a description of the ex-
perimental set-up and execution whereby an optical phase-stepping interferometer is used to
measure Argand-plane maps of coherent vortical speckle. Section 4 reports on the results of
the experiment and the methods used to analyse the data. Using the results. we confirm our
predictions regarding Argand-plane singularities, shown in Sec. 5. We provide a discussion in
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Fig. 2. The Argand mapping of a complex number W(x, y) for a given point (x,y). The axis
in the Argand plane are parameterized by ‘¥z and ‘¥';. The magnitude and phase of the
wavefunction ‘P(x,y) are represented by |'F| and ¢, respectively.

Sec. 6, and conclude with Sec. 7.

2. Theory of Argand-plane vorticity singularities

An arbitrary two-dimensional differentiable continuous single-valued complex function ¥ (x,y)
induces a mapping .# : R? — © from two-dimensional real space to the Argand plane, given
by

A () = {¥r, Y1} )

Here, g and ¥; denote the real and imaginary parts of ‘P (x, ), which is the boundary value of
the spatial part of a forward-propagating monochromatic scalar three-dimensional wave-field
over a given planar surface [8]. In this paper. coherent scalar fields are assumed and harmonic
time dependence 1s suppressed.

Figure 2 shows the Argand mapping of a complex number ‘¥ (x,y) that is associated with a
single Cartesian co-ordinate (x,v) in real space to a point on the Argand plane. The set of all
such image points for a given ‘¥ (x,y) may be viewed as a two-dimensional generalization of
the Cornu spiral. This generalization forms the core subject of this paper.

Before proceeding. we recall that ' (x,y) is only defined up to a global phase factor exp(idy ).
where yp is any real number. This freedom, which for time-independent field equations typi-
cally arises from the invariance of the said equations with respect to the origin of time, implies
that the Argand plane image corresponding to Eq. 4 may only be meaningfully defined mod-
ulo an arbitrary rigid rotation about the Argand plane origin. Global phase factors may also be
introduced into a two-dimensional complex wavefunction, by, for example. passing the wave
through a thin sheet of non-absorbing glass. Such global phase factors effect a rigid Argand-
plane rotation, which amounts to a re-coordinatization of the Argand plane, they do not alter
the conclusions drawn below.

To locate the singularities induced by the mapping .# corresponding to a specified small
patch of (x,y) space, we can perform a jet [9] operation, taking the complex wavefunction
¥ (x,v) and producing a low-order Taylor polynomial at every point of its domain. Truncating
at second order about a given fixed point (x,,y, ), we have

W(x,y) = A+ Bx+Cy+Dxy+ Ex? + Fy?, (5)

where 4 = 4(xp,vp), B = Blxp,3p ) -, F = F(x,,¥p) € C. The Jacobian determinant (“Jaco-
bian™) of the mapping .# to the Argand plane associated with ' (x,¥) 1s given by
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which is quadratic in x and y for the Taylor expansion to second order, and, when set to zero,
provides the location of singularities in the Argand plane for an arbitrary second-order wave-
function. Therefore for a patch of space centered about {x,,¥,) that is sufficiently small for
Eq. (5} to be a good approximation, the locus of points for which J = G carresponds to a conic
section in (x,¥) space, that is, a parabola, hyperbola, ellipse or straight line. The Arpand-plane
mmage of this locus of points will then correspond to the associated Argand-plane singulanity.
These conie sections will evolve into more general curves 1f the Taylor expansion i Eq. (5) 15
taken to higher than second order, although we note that the method of analysis presented hare
is readily generalized to such a case.

The Jacobian determinant of .# at a point (x,y) provides important mformation about the
transformation of W{x, ) under the mapping from an infinitesimal two-dimensional patch en-
closing this point. The absolute value of the Jacoban J at some point {x,,¥,) gives the factor
by which ¥ expands or contract infinitesimal patches at p upon being mapped from real space
to the Argand plane, while the sign of J indicates whether the patch has been flipped {/ << 0) or

single point and an Argand-plane singularity has formed for . (¥{x,¥)).
We can assign a physical meaning to the Jacobian. The vorticity Q2 of a three-dimensional
complex scalar field W (x.), 2) can be expressed as [10]

Q=Vxj=In(V¥ x V¥) = V¥ x V¥, )

where V is the gradient operator and j= Im"¥* VW is the current up to a multiplicative constant
which is set to unity here. The vorticity gives the amount of local rotation in the field. The
z-component of the local vorticity,

= ®
XAy dx dy
represents the local current rotation at (x,¥) and is equivalent to the Jacobian, as seen from He.
6. When the local current rotation of the field changes from clockwise to anti-clockwise, that
is, where £, = 0, a singularity will be induced by .#. This fact arises from the continuity of
the vorticity, Le. if £, changes sign as one traverses a given path then the vorticity must vanish
for at least one point along the path. As with the Jacobian, points where the vorticity are equal
to zero will map to Argand-plane singularities under .4
The vorticity £ should not be confused with the local orbital angular momentum density
T, = rxj. The longitudinal arbital angular momentum density is given by

Ly = Im [¥* (09, ¥ — yo, ). (9

Note the distinction between the local current rotation referred to above, and the quantized
phase vortices associated with screw-type singularities which are a regular feature of complex
scalar functions such as W(x,y). Such phase vortices are characterized by the vanishing of
the real and tmaginary part of the wave function at the core of the vortex with a change of
phase by an integer multiple of 27 around 1t. These structures yield interesting features in
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the Argand plane. For detailed descriptions of optical vortices, see e.g. the seminal works of
[11,12] Module a continuous deformation, a phase vortex at (xg,ys) can be locally given by

Wy = (sm) £ (y—50), (10)

where an infinitesimal patch at (xg,1) maps under .# to cover the Argand-plane origin, at
which point Re("W} = Im(¥) = 0. ¥ denotes a vortex (anti-clockwise phase winding) and
Y. an anti vortex {clockwise phase winding). In W, the infinitesimal patch in xv space maps
directly onto the Argand-plane origin; in *¥_ it must be “flipped” m order to cover the Argand-
plane origin with the correct orientation. Thus, when there are two vortices of opposite helicity
within a simply-connected region in the flield of W{x,y), the patches of space will map to the
Argand plane origin with one patch being flipped relative to the other, mplying the presence
of an Argand singularity such as a fold that 13 induced under the mapping .# of the region.
The continuity of ‘¥{x,¥) yields a many-to-one mapping where the fold occurs, thus implying
the presence of a singularity. This is an example whaerein a function can be transformed under
A to bring about Argand-plane singularities, that, in this case, are intimataly connected to the
presence of vortices of opposite helicity in Wix, v} (see [4] for more detail).

Returning to the main thread of the argument, we can exemplify Eqn. 6 by taking the special
case of a second-order complex polynomial, given by

Ploy) =Atxtiviay el oy?), deC (1)
P
for which the Jacobian of .# vanishes on the unit circle:

Jley)=1-x*—y* =0. (12

To determine the Argand-plane image of the unit circle, under the Argand-plane map .# which
1s induced by the wavefunction given in Bq. 11, let us parameterize the unit circle via 8 ¢
i0,2m), as

fx(@) =cos9,
1};(9) =s8inf, 0<6<2m. '

Now we can write the Argand-plane coordinates from Eqns. 11 and 13 as

1.
[‘{-‘R(QJ =Ap-+oosO 4 —sin2f,

2 ‘ N
4 | (14
l‘?;((}} :A1+sm9+—500529, A4<C, 80,27

Visual representations of the magnitude W, phase v, current vorticity |£.] and orbital angular
momentum {L,} associated with Eqn. 11 are shown in Fig. 3. A plot of "5 against '¥; as defined
by Eqg. 14 is shown in Fig. 3{e) and takes the form of the cross-section of an elliptic umbilic
catastrophe [13]. The zeros of |€2,! and |L.| have no direct association with one another, as
predicted by Berry [7].

In the following sections, we will show that Argand mappings containing vorticity singular-
ities can be observed experimentally using an optical speckle feld.

We close this theory section with an idea raised by one of the anonymous referees of thig
paper. Consider a simply-connected two-dimensional region, over which the continuous com-
plex single-valued scalar field ¥(x,y) is defined. Assume also that the field does not vanish at
any point on the boundary, which in turn implies that the phase ¢ (x,y) = ArgWix,v) is defined
at each point of the boundary. Assume that any phase vortices within the boundary will have
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Fig. 3. Various visualizations ol '¥(x,y) in Eqn. 11 evaluated over —2 < x,y < z. (a) |'V;
(b) phase ¢: (¢) a plot of |€2-|, which [alls to zero over a unit cirele, as predicted by Eqn. 12:
(d) a plot of |L-| and (¢), the parametric plot of Eqn. 14, which is the image of ¥(x, ) in the
Argand plane and takes the form of the cross-section of an elliptic umbilic catastrophe [13].
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Fig. 4. Schematic of apparatus for creating and identitving optical vortices. The appara-
tus is a form of Mach-Zehnder interferometer and the waveplates allow the recording of
mterferograms using a CCD camera with different phase shifts of the reference beam, for
analysis using phase-step interferometery. Optical vortices are created by the speckle inter-
ference from the ground glass screen and the distribution of vortices is controlled by the
size of the downstream iris.

topological charges that have a magnitude of unity, which is typically a good assumption for
generic fields on account of the instability of higher-order vortices. Knowledge of the phase
over the boundary will then allow one to determine the net topological charge of the field,
namely O = N(+) —N({—), where N(+}) and N{—) are the number of positive and negative
unit charges, respectively. Also, as pointed out in Ref. [4], the number of Argand-plane sheets
covering the Argand origin (cf. Fig. 8) is equal to the total number N — N(+) + N{—) of vor-
tices. Thus knowledge of both O and N allows N(+) = (N +Q)/2 and N(—) = (N —Q0)/2 to
be independently measured without needing to located each vortex individually or needing Lo
determine the topological charge of cach such vortex.,

3. Experimental method

In Rothschild ez a/. [4]. we computationally generated vortices using the spatial filtering of two-
dimensional complex white noise. The Fourier transform of resulting wavefield was truncated
using a low-pass filter, resulting in a speckle field once an inverse two-dimensional Fourier
transform was applicd. The cutoff of the low-pass filter was used to control the size of the
speckle.

This process can be achieved in an experiment using a coherent laser, a ground glass screen,
a circular iris and a lens, among other apparatus. A schematic of the experiment is shown in
Fig. 4.

The output of a linearly-polarised Helium-Neon laser (Thorlabs. 5 mW) was passed through
a ncutral density filter, and was then spatially filtered by an /' — 18.4 mm aspheric lens, and a 20
pm pinhole located at the focus, followed by an iris downstream set to pass only the zero-order
central maxima. The filtered beam was collimated by an /= 100 mm plano-convex lens to give
a planar, near-Gaussian beam of approximately 6 mm diameter. The collimated beam passed
through a polarising beamsplitter cube to ensure that the beam used in the experiment had pure
vertical polarisation. The neutral density filter attenuated the beam to climinate saturation of
the camera.

A random phase field containing optical vortices was created by passing the expanded planar
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laser beam through a random phase plate, composed of a fine ground glass plate from a film-
camera viewing screen. An iris {aperture set to approximately 0.8 mm) nnmediately after the
screen limited the aperture for the system and determined the characteristic size of the speckle
interference pattern that propagated towards the CCD camera (Prosilica GE1630).

A plano-convex lens (f = 300 mm) located one focal length away from both the iris and the
camera ensured that the Fourier transform of the speckle pattern was recorded on the camera.
This corresponded to the far-field (Fraunhofer) diffraction of the speckle field present at the
1wis.

In order to plot the data in the Argand plane, 1t was necessary to recover the phase informa-
tion. This was done using phase stepping interferometry {14}, The algorithm we used requires
that four separate nterferograms are recorded. As shown in Fig. 4, a reference beam was split
from the laser beam before 1t encountered the glass screen, which was then passed through a
A /4 and a A /2 waveplate before being recombined with the random phase field on the camera.
Hach beam traversed an equal length to the camera and the optical configuration was that of
a Mach-Zehnder interferometer. A neutral density filter (OD 1) attenuated the beam intensity
to match the intensity of the bearn containing the optical vortices. Rotating the waveplates to
change the alignment of the optical axis of a waveplate from the slow axis to the fast axis with
respect to the beam polarisation introduced the characteristic phase shift retardance of the wave-
plate without introducing additional phase variations that would be associated with removing
the waveplate. Using a combination of waveplate retardances, a 90° optical phase shift was
mtroduced into the reference beam between each sequentially recorded interferogram. These
mterferograms corresponded to the reference beam being retarded by 0°, 9G%, 1807 and 270°.
The phase ¢{x,y) was calculated using

LT
) —tan™ |, (5

O,m/2, m3m/2, where i = 1,2,3,4 [14].

4. Results

The results of the experiment for the reconstructed intensity and phase are shown in Fig. 5. The
region of interest (ROT) is outlined by a white broken rectangle and enlarged for both mnten-
sity and phase n Fig. 5. This selection lies near the local minimum of the gentle background
curvature in the phase, on the order of 10 wavelength per millimetre. Additionally, the size of
the ROT is small enough to allow us to clearly see features in the Argand plane. We note the
presence of interference fringes in several areas of the ROL, evident as ripples in the phase and
intensity, and are dug to unwanted scattering by optical elements.

The Argand-plane mapping of the data 1 Fig. 515 shown in Fig. 6. It 1s difficult to see any of
the hehaviour deseribed in Sec. 2, in particular that of vorticity singularities, due to an overlying
high frequency ripple. These Argand-plane ripples are Jue to the high frequency interference
fringes noted m Fig. 5.

To clean up the Argand image of the data and reveal the underlying vorticity smgularities,
a Gaussian (Fourier) filter was applied at the level of the complex field. This strategy was
necessary because one can not directly smooth the branch cuts in the multi-valued phase map.
The process 1s shown in Fig. 7. Looking at the power spectrum in Fig. 7(a), there 1s a diagonal
streaking effect at medium to high spatial frequencies. This is unrelated to the vertical and
horizontal cross-shaped streaking, which is due to truncating to a rectangular region of interast.
Tn order to achieve smoother results, we can apodise the power spectrum by a Founer-space
Gaugsian filter (Fig. 7(b)) that 18 small enocugh to exclude any unwanted features.
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Fig. 5. (a) The intensity and (b) the phase, which were reconstructed using a phase-stepping
method applied to the speckle field created by the apparatus in Fig. 4. The broken rectangles
indicate the ROI These areas are enlarged to reveal a greater level of detail.
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Fig. 6. The Argand-plane mapping of the ROT of the data shown in Fig. 5. The mapping is
polluted by a high frequency ripple, an example of which is enlarged.
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Fig. 7. The application of Fourier-space Gaussian filter to smooth the data in Fig. 5 and
eliminate the caustic ripple in Fig. 6 so that the underlying structure of the Argand-mapping
of the data can be revealed. (a) The power spectrum of the data in Fig. 5, as a function of the
spatial frequencies (ky.ky) dual to (x,y). The diagonal streaking originates from parasitic
scattering. This is related to the ripple behaviour seen in Fig. 6; (b) The Fourier-space
Gaussian filter and (c¢) the result of the application of the Gaussian filter on the power
spectrum, from where the diagonal streaking has been removed.

Upon smoothing the data, a cubic interpolation was performed to increase the density of
points in the ROI by a multiple of 15. Due to the smoothing and interpolation, the interference
fringes that were visible in Fig. 5 are not present and the sampling has become finer. The final
result is shown in Fig. 8.

Figures 8(c) and 8(d) show the orbital angular momentum density and vorticity calculated
corresponding to the indicated region of data, respectivelv. The position of the vortices in these
images is consistent with the work of Berry in his seminal Optical Currents work [7], in which
he stated that the location of vortex cores has no special relationship to the vorticity of a wave-
field. This is indeed the case in Fig. 8(c). Figure 8(d) shows that each of the vortex cores co-
incide with a zero in the orbital angular momentum, consistent with the prediction by Berry [7].

5.  Analysis

Vorticity singularities were distinguished in the Argand plane and linked to particular be-
haviours in the wave field. The Jacobian determinant was calculated to obtain a visual indi-
cation of the phase winding behavior. Figure 9(a) shows the phase of the first frame of data.
The black lines are the regions where the magnitude of the Jacobian is sufficiently close to
zero, |J| < € = 0.5 x 1077, As explained in Sec. 2. the regions where J = 0 possess a two-
fold meaning: That a patch of space has induced a many-to-one mapping under ./, forming
an Argand-plane singularity and that a region of zero vorticity exists there. We previously pre-
dicted that a region of the wave field containing vortices of opposite helicity must fold at least
once under .# so that each vortex covers the Argand-plane origin, inducing a fold singular-
ity. The red loop in Fig. 9(a) contains a vortex and an anti-vortex separated by a single “zero
Jacobian line”, Therefore we expected that the patch of space will fold once, inducing a fold
singularity under . #. Indeed, in Fig. 9(c). the Argand image of the area enclosed by the red
loop, confirms this. The green loop encloses two vortices of the same helicity. This would im-
ply that the patch of space that contains these does not have to fold under . # as both vortices
must map to the Argand plane origin in the same orientation. Indeed, the corresponding Argand
image. shown in Fig. 9(d) does not contain a fold. Rather the patch of space covers the origin
for the first vortex and then /loops around so that the other vortex covers the origin. Hence we
have two patches covering the origin, corresponding to two vortices, however, no singularity

#205300 - $15.00 USD Received 3 Feb 2014; revised 2 Mar 2014; accepted 3 Mar 2014; published 12 Mar 2014
(C) 2014 OSA 24 March 2014 | Vol. 22, No. 6 | DOL:10.1364/0E.22.006495 | OPTICS EXPRESS 6505




0.4

0.2
0.0
Agb
Eo2

-0.4

(.6 ; . ‘

T(l.t') -0.4 .2 0.0 0.2 0.4 0.6
real
()

Fig. 8. The result of applving the Gaussian filter of Fig. 7 and expanding the density of

points in the region of interest by a multiple of 15 using cubic interpolation. The intensity

(a) and phase (b) appear smoother. Minimum values are represented by black, maximum

by white. Several features are indicated in the phase: A vortex ¢, antivortex 8 and branch

cut y. The vorticity € and angular momentum 7. are also calculated. €| < 0.5 x 1077

is shown in (¢) and |Z;| < 0.035 is shown in (d). The locations of vortices are indicated
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Fig. 9. (a) The zeroes (|€%| < 0.5 x 1077} of the vorticity, calculated by evaluating the
Jacobian of the mapping .#, as seen in Fig. 8(a). The image measures 1.48 mmx1.11
mm. The locations of vortices and anti-vortices are indicated by filled and unfilled circles,
respectively. The regions where the Jacobian 1s sufficiently close to zero are mapped to
the Argand plane (b) to reveal an image containing singularities only. A vortex-antivortex
dipole separated by one ‘Jacobian line” is indicated by the red loop in a) and mapped to the
Argand plane in (c) to form a fold caustic. Two antivortices that are not separated by any
Jacobian lines are indicated by the green loop and mapped to the Argand plane 1n (d) to
reveal a patch of space that loops around but does not fold. Two vortices separated by two
Jacobian lines are indicated by the blue loop and are mapped to the Argand plane i (¢) to
reveal a fold caustic and a cusp.

has been induced as the direction of the phase winding did not change over the area enclosed
by the arrow loop. Finally, the blue loop in Fig. 9(a) also contains two vortices of the same
helicity. Here, though, there are two Jacobian lines separating the two vortices. According to
Rothschild ef al. [4], this means the enclosed space must induce two singularities under %
Figure 9(e) indeed contains two singularities — a fold and a cusp — corresponding to instances
where the patch of space folded and then twisted around again, mapping both vortices over the
Argand plane origin at the same orientation. Thus the cusp singularity is the result of a “twist”
in the Argand plane origin, induced by a change in the direction of the phase winding.

It is easy to see from these examples that, with an understanding of both the vortex distribu-
tion and phasc winding behaviour of the wave ficld, the presence of vorticity singularities is a
natural result of inducing a mapping .# in a complex scalar function.

There are other. higher order, vorticity singularities that can be observed in the Argand planc.
Figure 10(c) shows an image of a vorticity singularity that resembles the cross section of the
elliptic umbilic catastrophe. This was induced by the mapping of a “Jacobian ellipse”, shown in
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Fig. 10. These data were obtained by shifting the ground glass screen by 10 gm. The region
of study measures 1.48 mm < 1.11 mm. (a) The zeros of its vorticity, where a “Jacobian ¢l-
lipse™ is indicated by a rectangular loop; (b) the zeroes of the orbital angular momentum,
where the area that enclosed the Jacobian ellipse in (a) is shown 1o be lacking in any equally
interesting features of the angular momentum and (¢) a vorticity singularity closely resem-
bling the cross-section of an elliptic umbilic catastrophe, induced by the mapping of the
Jacobian ellipse to the Argand plane.

Fig. 10(a). This feature was spotted in data that was obtained by transversely shifting the ground
glass screen (see IFig. 4) 10 gm from its initial position. The zeros of the angular momentum of
this data are shown in Fig. 10(b) and display no direct association with the zeros of the vorticity.
This 1s all consistent with our simulation of the Jacobian ellipse and elliptic umbilic catastrophe
in Fig. 3.

We close this Analysis by giving an experimental demonstration of the method outlined m
the final paragraph of Sec. 2, which gives a means to determine the total number N(-+) of vor-
tices and N(-) of anti-vortices in a simply-connected two-dimensional region, given (i) the
knowledge of the phase at each point of the boundary of the region, and (i1) the associated
Argand-plane map, under the assumption that (ii1) all vortices have topological charges of mag-
nitude unity. By counting the number of black-white and white-black phase wraps along the
boundaries of the red loop in Fig. 9(a) one can determine that the net topological charge of the
phase map within the loop 1s @ = 0, while zooming in on the Argand-plane origin of the field
enclosed in the red loop, shown in Fig. 9(c). shows that there are N = 2 sheets covering the
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conswstent with the nurnber of black dots (vortices) and the number of white dots (anti-vortices)
enclosed in the red loop in Fig. 9a). The same method can be shown to derive the number of
vortices in the blue and green loops in Fig. 9(a). This example shows that the number of vor-
tices, together with the number of anti-vortices, may be determined without needing to locate
each individual vortex and anti-vortex.

6. Ihiscussion

Our study of the Argand plane provides a useful complementary method for analysing optical
fields. In fact, this device could be used for the study of any complex scalar function, not just
optical. Already, the discovery of vorticity singularities that are induced by such a mapping
to the Argand plane, and our study of them, has provided us with additional insight into the
behaviour of our wavefield. For example, we note the connection between the orbital angular
momentum density and vorticity and the significance of vortex locations.

The role of the Argand plane in the analysis of optical fields i1s an mteresting one, and we
wmitend to continue our investigations into its usefulness. Animmediate extension of this work 15
to continue to catalogue vorticity singularities, associating each one with a solution for J =0,
ag done for the elliptic umbilic in Sec. 2. Other vortical fields such as the focal volumes of
aberrated lenses [15-17] and turbulent Bose-Finstein condensates (see [18-20], for instance)
and their resulting Argand images under .# could help clarify the connection between phase
vortices and vortictty singularities. Berry [7] estabhished that vorticity i an optical field is not
associated with the location of vortex cores. Tt is interesting that we have shown that vorticity
singularities are a manifestation of vorticity and are strongly influenced by the location of vortex
cores. Further study, such as the extensions described above, could add insight into the work
already laid down by Berry.

Further, one could study critical point explosions (see [217) of high order vortices, and the
evolution of its image under .# a3 an interesting insight into the so-called “vortex-vorticity”
duahty. Studying the “unfolding” of vorticaty singularities with certain parameter changes such
as propagation distance or aperture size may also provides insights into the meaning of vorticity
singularities.

The mvestigation into two-dimenstonal Argand maps 1s a generalisation of the Cornu spi-
ral mentioned 1n Sec. 1. We can further generalise Argand maps by looking at vector fields
and other multicomponent fields. For example, arbitrary spin matter waves, with spin s, will
be described by 25+ 1 complex wave-functions. The mapping of spinor fislds to the Bloch, or
Poincare, sphere may possess vorticity singularities. As a generalisation of the two-dimensional
complex scalar function, we could look at coherence functions - which are two-point correla-
tion functions and can exist in seven dimensions. In this case, “coherence vortices” become
manifest {corresponsing to a pair of points in three-dimensional space, together with a time lag
or angular frequency [22-241). The circulating coherence current (see [25]) associated with a
cohearence vortex is analogous to the current in a complex scalar wavefield. This begs the ques-
fion: Can the two-point correlation function associated with a partially coherent field hittered
with coherence vortices induce a mapping to the Argand plane to reveal coherence-current vor-
ficity smgularities? If so, what can we leam about the coherence current, and, finally, what 15
the physical meaning and practical utility of such a construction?

7. Conchision

We have presented the Argand plane as an interesting tool for the analysis of optical flelds.
We have verified the existence of vorticity singularities via an experiment involving the spatial
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filtering of two-dimensional white noise. We have observed the fold, cusp and elliptic umbilic
singularities, and showed them to be consistent with theory. The locations of the zeros of the
vorticity and orbital angular momentam density of the field were determined and we observed
that their association with the location of vortex cores is consistent with the work of Berry [7].
Finally, we have used the second-order Taylor series expansion of the complex wavefunction to
locate vorticity singularities induced by a mapping to the Argand plane. Possible extensions of
this work could involve critical point explosions, vector and other multi-component fields and
coherence functions.
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Chapter 4

A study of generalised Cornu spirals

using hard x-rays

In this chapter, the investigation of Argand-plane mappings induced by complex scalar
wavefields moves from the domain of visible light to x-rays. In particular, the Argand-
plane mappings induced by diffracted x-rays are considered experimentally. Such map-
pings are shown here to take the form of generalised Cornu spirals. Before presenting
the publication that has resulted from my work on this topic, some background theory is
included. First, is it necessary to define a theory for predicting the effects of diffraction.
In this case, that theory is the Geometrical Theory of Diffraction, which is an extension
of Geometrical Optics that accounts for diffraction, despite having abandoned the finite
wavelength of light. Following from this is a brief discussion on the existing applications
of generalised Cornu spirals for solving diffraction problems or otherwise. Next, it is nec-
essary to describe the techniques used in the experimental reconstruction of generalised
Cornu spirals, and so a description of the technique used here to reconstruct the image of
an object illuminated by x-rays, namely propagation-based x-ray phase contrast imaging,
is provided. As discussed in Chapter 3, imaging with high-frequency radiation presents
one with the phase problem, which is more difficult with regards to x-ray imaging, when
compared to the case for visible light. Solutions to this problem are discussed here. Finally,
methods for the analysis of the reconstructed wavefield that are relevant here, namely

virtual optics, are discussed before continuing with the published work itself.
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Argand-plane mappings induced by complex scalar wavefields

4.1 Introduction and background theory

4.1.1 Geometrical representation of optical fields

In Chapter 1 we saw that an electromagnetic field can be described as a wave propagating
through space, obeying the d’Alembert equation. Here we describe an alternate repre-
sentation of electromagnetic fields at small wavelengths, or in the ‘shortwave limit’. The
electromagnetic fields associated with the propagation of visible light, called optical fields,
are characterized by rapid oscillations which correspond to wavelengths on the order of
107% m. X-rays, which are smaller still, with a wavelength mostly ranging from 1078 m to
107! m, are also considered an optical field. For many optical problems, it is adequate to
abandon the finiteness of the wavelength and use an alternate description of light which

embodies the field of geometrical optics.

Consider the propagation of an optical field from the perspective of its wavefronts, which
are surfaces of constant phase, illustrated in both Figs. 2.3 and 2.4, to which the direction
of propagation is always perpendicular. The shape of the wavefront, in the absence of any
scatterers, depends on the geometry of the source. A point source will emanate spherical
wavefronts; a line source, such as from a fluorescent tube or some boundary wave, a
cylindrical wavefront. The simplest form is the plane wave, which is an approximation
that many waves take in a sufficiently localized region of space. Geometrical optics
describes light in terms of rays which are perpendicular to the light’s wavefront, traveling
locally in the direction of the energy flow. In the case of light traveling as a plane wave,
the geometric rays are parallel to one another, as is seen with the incident rays illustrated

in Fig. 2.1, which appears in Sec. 2.1.1.

The path of the ray can be calculated using Fermat’s principle which, as previously
mentioned, is akin to the principle of least action, insofar as it states that the optical path
length of a ray between two points will be shorter than along any other curve that joins
these points and which lies in a regular neighbourhood of it. A ‘regular neighbourhood’ is
one that is covered by rays in such a way that only one ray passes through each point of it

(Born and Wolf, 1999).
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Geometrical optics provides an accurate description of the reflection, refraction and
absorption of light rays. Being thousands of years old, its applications are vast. For further
reading of the numerous applications of geometrical optics, see any standard textbook on
optics, such as those written by Born and Wolf (1999) and Hecht (2002). It is relevant to
this thesis, though, to mention that geometrical optics can be used to predict behaviour of
light in the presence of lenses and other optical elements, with applications such as the
determination and correction of lens aberration (Allen et al., 2001a; Allen et al., 2001b;

Faulkner et al., 2003).

A limitation of geometrical optics is its failure to predict any field in shadow regions. This
is due to its inability to account for the wave-like properties of light in the geometric
approximation, namely diffraction and interference. Developed by Joseph Keller (Keller,
1962), the geometrical theory of diffraction (GTD) assumes that light travels in rays, as
with geometrical optics, and introduces diffracted rays. These are produced by incident
rays which hit or graze edges, corners and vertices of boundary surfaces. Some of these
rays will enter the shadow region, accounting for the light there, and others will enter the

illuminated regions.

The GTD is sufficient for the analysis of a large number of diffraction scenarios, including
diffraction by an aperture in a thin screen (Keller, 1957) and in a hard screen (Karp
and Keller, 1961), and diffraction by a smooth object (Levy and Keller, 1959) and a
round-ended object (Keller, 1959).

The methods for calculating an optical field using GTD, essentially a systematic general-

ization of Fermat’s principle, is explored in greater details in Chapter 4.

The development of GTD represents a major breakthrough for the evaluation of a wide
variety of high-frequency electromagnetic radiation and scattering problems. However, it
is limited by the fact that GTD fails at the transition regions adjacent to the geometrical
shadow boundaries, called the shadow-boundary (SB) transition region. This is due to the
fact that, at these regions, the field departs from purely ray-optical behaviour. GTD, as a

purely geometric theory, therefore experiences singular behaviour there (Pathak, 1982).

To overcome the limits of GTD which occur at SB transition regions, a uniform version of

the theory was developed, known as the ‘uniform geometrical theory of diffraction’ (UTD)
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(Kouyoumjian et al., 1981). This theory requires that the total high frequency field be
continuous at SB regions and removes the restriction that the diffracted field remain ray-
optical there. Whereas GTD cannot account from the departure from ray-optical behavior,
UTD is allowed to become discontinuous at these problem regions, compensating for
the discontinuities experiences by GTD there. This uniform theory reduces to ordinary
geometrical optics away from the SB transition regions (Kouyoumjian et al., 1981; Pathak,

1982).

UTD has many applications and has been successful in, for instance, the design of large
reflector antennas; the prediction of radiation patterns of antennas on aircraft, ships,
missile and satellite configurations; the prediction of radar cross-sections of complex
targets; and in the finding of solutions to the problem of discontinuities in waveguides.

For further reading on these and other applications of UTD, see (Pathak et al., 2013).

In the publication in Sec. 4.2, it is shown that GTD is useful in predicting diffracted
wavefields resulting from hard x-rays being incident upon various objects. The Argand-

plane mappings induced by these wavefields take the form of generalised Cornu spirals.

4.1.2 The Cornu spiral in literature

The Cornu spiral was described in Sec. 1.3.2 as a simultaneous parametric plot of the
Fresnel integrals and as representing the diffraction from the edge of a half-plane. Histori-
cally, it has been used to evaluate Fresnel integrals, but this application is now a curiosity
owing to the proficiency of computers at this task. The spiral does, however, provide a
visualisation of Fresnel diffraction, and might be used as a complementary visual aid in
the analysis of Fresnel diffraction. In generalising the Cornu spiral, it might be possible
to use them to study diffraction patterns due to objects that are more complex than the
half-plane. Morgan et al. (2010) predicted the generalised Cornu spiral corresponding to
diffraction from a cylindrical edge and the publication in Sec. 4.2 goes a step further by

addressing diffraction from more complicated objects.

The terms ‘Cornu spiral’ and ‘generalised Cornu spiral’ appear sparsely throughout the
literature. Ali et al. (1995; 1999) generalised the curvature profile of the Cornu spiral to

form a function of arc length that can be used to facilitate control of the curve. This has
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applications for the synthesis of curves with computer-assisted design (CAD) for architects
and engineers. Cross and Cripps (2015) facilitated the practical use of generalised Cornu

spirals in order to synthesise curves from within CAD.

An example concerning electromagnetic waves can be found with Hitachi (2012), who uses
the Cornu spiral to study diffraction effects in ultrasound radiation. Specifically, Hitachi
using the Cornu spiral to study ‘Babinet’s principle’, which informs the relationship
between a rectangular slit U; and a rectangular obstacle U,. When the two objects
are complementary to each other, i.e. where U; + U, = 1,, Babinet’s principle states
that the resulting field far downstream of the obstacle is equal to field observed for the
complementary object. By drawing phasors onto the Argand plane, Hitachi is able to
directly confirm this principle, showing aspects of diffraction that are difficult to observe

directly.

4.1.3 Propagation-based x-ray phase contrast imaging

As stated earler, we make the transition from visible light to x-rays in this chapter. In
Sec. 4.2, the Cornu spiral is experimentally constructed using hard x-rays. This is done
by imaging x-rays incident upon a straight edge. In addition, the same is done for x-rays
incident on a cylinder and on a sphere embedded within a cylinder, with each scenario

producing a generalised Cornu spiral in the Argand plane.

X-rays are electromagnetic vibrations similar to visible light but with a much smaller
wavelength and a great penetrating power. Various methods of x-ray imaging take
advantage of this power, relying on the absorption of x-rays by the object of interest.
This absorption of the incident radiation results in a drop in intensity; these intensity
variations are converted into a form that is visible. Radiography uses x-ray radiation to
view the internal structure of a non-uniform, opaque object. X-rays are passed through
the object and are absorbed to various degrees depending on the density and compositions
of the object in question. The transmitted rays are then captured by a detector, which
provides a two-dimensional representation of the internal structure. Traditional medical

film radiography generally relies on simple shadow casting and uses the chemical changes
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in the film, that are induced by the incident x-rays, to render the intensity variations

visible.

Tomography is a technique whereby the source and the detector are shifted to produce
sectional images in such a manner that a 3-D representation is constructed. With the
advent of the CT (computed tomography) scanner, tomographic reconstruction is done
by computer. This has ensured the prolific use of CT scanners in medical imaging.
Sectional imaging of this kind requires a large amount of data to reconstruct a single
image and, as such, many algorithms for CT make some compromise between accuracy

and reconstruction time (Herman, 2009).

Pertinent to the topic of absorption imaging is the use of contrast agents. which has
the function of improving the visibility of soft bodily structures in techniques such as
radiography, CT and fluoroscopy. Common contrast agents include iodine and barium.
Iodine, which is commonly administered intravenously, is used for arterial and venous

investigations, for example. Barium is mostly used to image the gastrointestinal tract.

However, for samples with low x-ray absorption, such as soft biological tissue, these
techniques do not suffice. There are other imaging techniques used to overcome this, such
as magnetic resonance imaging (e.g. Watson et al., 2016; Silva et al., 2016) and positron
emission tomography (e.g. Lucas et al., 1999; Schuetze et al., 2005). There are also several
x-ray imaging techniques for objects with low absorption that fall into the category of
‘phase-contrast imaging’, in that they employ methods to render the phase variations

imparted on the radiation by the object of interest visible as variations in intensity.

The technique of Zernike phase contrast, in its simplest incarnation, uses a non-absorbing
thin film of uniform distribution in the back focal plane, which has a phase-shifting
non-absorbing dot at its centre, to impose a phase shift on the beam that is passing
through it (Zernike, 1942). This has the effect of adding a complex constant to every point
in the input disturbance. The phase variations imposed on the input plane are seen as
intensity variations at the output plane. Experimental implementation of x-ray Zernike
phase contrast was first accomplished by Schmahl et al. (1991) and Schmahl et al. (1994),

followed by numerous other implementations, such as by Neuhdusler et al. (2003).
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Another method of introducing phase contrast involves the use of analyser crystals to
yield phase contrast, known as ‘analyser-based phase contrast’. This techniques involves
placing a monochromactor, usually a crystal, in front of the sample to be imaged, the
function of which is to select a small frequency band from the incident radiation. The
monochromated beam then strikes an analyser crystal that is positioned between the
sample and the detector, yielding the desired phase contrast. This method was first
demonstrated by Forster et al. (1980) and related work has been published by Somenkov
et al. (1991), Davis et al. (1995a; 1995b) and Ingal and Beliaevskaya (1995). Examples
of subsequent experiments have been performed using the analyser-based method to
produce a phase-contrast image can be found with Pagot et al. (2003), Bravin (2003), Vine
et al. (2007) and Coan et al. (2010). Synchrotron radiation is preferred for analyser-based
imaging, which requires the incident radiation to be almost parallel and monochromatic

with a particular energy bandwidth for the crystal (Diemoz et al., 2012).

Propagation-based phase contrast imaging (PBI) has the simplest set-up of all phase-
contrast methods (Diemoz et al., 2012) as it does not require any additional optical
elements between the source and the detector. The act of free-space propagation over
a suitable distance produces the desired contrast, rendering phase variations that are
accumulated by radiation as it passes from one side of a non-absorbing object to another
visible as intensity variations (Wilkins et al., 1996; Cloetens et al., 1996; Kitchen et al.,
2008; Beltran et al., 2010). This is the imaging technique used to produce the results in

Sec. 4.2, and so it will be described in detail here.

In simulating the forward problem for propagation-based x-ray phase contrast imaging, it
is first necessary to employ a method that can predict the phase and amplitude variations
introduced upon the passage of light through the object. The projection approximation

does this.

Figure 4.1 shows a monochromatic plane wave emanating from an x-ray source on the far
left. The plane wave is visualized as a series of parallel arrows that are incident upon a
scatterer lying in the space 0 < z < z;. The spaces z < 0 and z > z are assumed to be free of

charges and current.
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z=0 Z=17Z

Figure 4.1: A z-directed monochromatic plane wave is incident upon a scatterer which lies
between the z =0 and z = z( planes.

In using the projection approximation, it is assumed that all scatterers that lie in the
scattering volume are weak enough so that ray paths visualised in Fig. 4.1 are only

perturbed negligibly. Via the projection approximation, the wavefield at z = 0 is given by:

z=2

lﬁa,(x,y,z:zo)zexp(—ikf [6a)(xlylz)_i/jw(xfy’z)]dz l[)w(xlylzzo)r (4-1'1)

where 1, is the envelope that, when multiplied by the unscattered plane wave exp(ikz),

giving the total wavefield 1),,. The complex refractive index n,, is given by:

N =1 =084+ B (4.1.2)

where 6, and B, are real numbers. The phase shift imparted on the wavefunction upon

its passage through to the exit surface of the object is given by

AP(x,v) =-ko,T(x,v), (4.1.3)

where T(x,p) is the projected thickness of the object, and the intensity of the exit surface

wavefunction is given by:

Iw(xf%z = ZO) = exp [—Iin(X;V)]Iw(x,%Z = O), (4-1-4)
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where p,, = 2kp,,.
For a full derivation of the projection approximation, see Paganin (2006).

The resulting complex analytic expression for the exit-surface wavefunction can be con-

structed from these phase and intensity expressions, as:

Po(x,9,2=0) = VI, (%,y,2 = 0)exp i, (x,,2 = 0)], (4.1.5)

where the phase and intensity of the exit surface wavefunction is taken simply as their

variations accumulated via the passage of light through the object.

Obtaining the intensity of the wavefunction at a distance z = A requires the free-space
propagation of the exit-surface wavefunction via use of the Fresnel diffraction integral,

previously given in Eq. 2.1.6:

~iA(K2+K2)

ho(x,9,2 = A) = exp(ikA) F ! eXP[ %

lfl,bw(x,y,z:O), A>0, (4.1.6)

where 1, (x,v,z = A) is the wavefield that results from propagating the initial disturbance
Vo(x,9,2z = 0) through a distance of A > 0. ~! and F denote the inverse Fourier transform
and the Fourier transform operators, respectively, k is the wavenumber and (k,, k,) are the

Fourier-space coordinates of the wavefield.

If the propagation distance A is small enough, the second exponential term in Eq. 4.1.6

can be approximated to

iA(K2 +K2)

1—
2k

(4.1.7)

Using the form of the exit-surface wavefield as per Eq. 4.1.5, the propagated wavefield

can be expressed as:

Yo(x,v,2=A) =exp(ikA) [1 + iAVi] I,(x,9,z=0)exp[id,(x,v,2=10)], (4.1.8)

2k
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using the Fourier derivative theorem. The transverse Laplacian is denoted by V2 =
0%/9x? + 9%/dy?. The desired intensity can be calculated by taking the magnitude squared
of the wavefield at z = A, and may be manipulated into the following form (Paganin,

2006):

I,(x,v,2=A)=1,(x,9,2=0)— %VL w(%9,2=0)V, ¢y(x,v,2=0)], (4.1.9)

showing that the intensity of the wavefield at some distance of A > 0 from the exit surface,
recorded as a propagation-based phase contrast image, is related to both the intensity and
phase variation accumulated by illuminated radiation upon is passage through the object
being imaged. Equation 4.1.9 is a form of the transport-of-intensity equation, which will

be discussed in the next section in the context of phase retrieval.

4.1.4 Phase retrieval

The phase problem was defined in Sec. 3.1.2. In Sec. 4.1.3 phase contrast was described as
means by which phase shifts on a beam of light can be seen as variations in intensity. The
intensity of a phase-contrast image is, in general, a function of the both the intensity and
the phase of the input wavefield. Phase retrieval goes a step further than phase-contrast

imaging, recovering the phase from one or more phase contrast images.

There are several algorithms that can accomplish this task, some of which will be discussed
here. The Gerchberg-Saxton algorithm (Gerchberg and Saxton, 1972) is an iterative
method involving Fourier transformation back and forth between the object of interest
and the Fourier domain, and the application of constraints due to the measured data
within each domain (Fienup, 1982). A number of applications are listed in Fienup, 1984.
This method is useful in the reconstruction of non-crystalline samples, given a far-field

diffraction pattern (Paganin, 2006).

Another method uses the transport-of-intensity (TIE) equation, which describes the flow
of intensity along the optical axis of propagation light waves. It outlines the relationship
between the phase of the object plane ¢(x,v,z) and the first-order derivative of the intensity

I(x,v,z), with respect to the optical axis. The TIE is given by Teague (1983):
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dI(x,v,z)

V., I(x9,2)V, p(x,9,2)] =k P (4.1.10)

Various methods of phase retrieval using algorithms based on the TIE can be found in
(Gureyev and Nugent, 1996; Paganin and Nugent, 1998; Gureyev and Nugent, 1997).
Each of these methods employ intensity measurements to estimate the right side of the
TIE, as well as I on the left side, leaving a differential equation that has only the desired
phase as its unknown. One such method, developed by Paganin et al. (2002), requires a
single PBI image, and is the method used throughout the paper in Sec. 4.2. This algorithm
assumes that the sample to be imaged is comprised of a single homogeneous material
that is imaged under paraxial coherent x-ray radiation. Under these assumptions, the
expressions for the phase and intensity variation imparted on light upon passage through
such a material, as given by Eqgs. 4.1.3 and 4.1.4, can be used together with the TIE to give

the equation for single-image phase retrieval, as derived by Paganin et al. (2002):

(4.1.11)

Tir,) = —%1oge (f_1 {ﬂ}'{MZI(MrL,z =R,)} })

R25|kJ_|2/M t+U
where R, is the distance between the contact image I(r,,z = 0) and the phase contrast
image I(r,,z=R;), M = (R + R;)/R; is the magnification of the contact image resulting
from illumination of the object by a point source at a distance of R; behind the object, and

r, = (x,p) are the Cartesian coordinates over a plane perpendicular to the optic axis z.

Beltran et al. (2010) extended the algorithm of Paganin et al. to allow for the tomographic
imaging of samples comprised of more than one material, under the condition that the
various materials are spatially quantized. This algorithm has been used in numerous
studies on phase-contrast imaging, such as Mayo et al. (2003) and Gureyev et al. (2006),
and has been shown to be quite robust in the presence of noise, making it a good choice

here.

4.1.5 Virtual optics

In the area of x-ray crystallography, the diffraction pattern generated by x-rays falling

upon a small crystalline sample can be used to decode the structure of the crystal. The
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result is called the ‘image’ of the crystalline sample, even though it is not a direct image.
The technique of tomography also uses indirect imaging, building a three-dimensional
reconstruction of a sample from two-dimensional projection images, as does in-line

holography, generating the full wavefield information from its diffraction pattern.

In all of these instances, a computer forms part of the imaging system, which is a two-step
process: First, data is obtained using hardware, and second, the output obtained is used
to computationally reconstruct the sample information. This class of imaging systems
employ what is known as ‘virtual optics’ (Lichte et al., 1992; Lichte et al., 1993; Paganin
et al., 2004). It is so called since the process of forming an image is done using computer
software rather than optical hardware. In the example of in-line holography, the full
information of the wavefield at the exit surface (z = zy plane from Fig. 4.1) is desired.
Once this information is known, the projected structure of the object can be determined.
A three-dimensional refractive index may then be constructed for the object if the object

is imaged under a number of different sample orientations (Paganin, 2006).

To go a step further than this, once the full information of the field is obtained, software
can be used to simulate the action of some subsequent imaging system that might take
such a field as its input. Virtual optics can be used even in cases where the hardware
that would correspond to such an imaging system is difficult or impossible to construct.
Paganin et al. (2004) coined the term ‘omni optics’ to described this concept, due to its
flexibility, and demonstrated the three-stage method for constructing such a virtual field:
(i) Determining the propagation-based phase contrast image of a single material object,
(ii) using propagation-based phase-contrast image to reconstruct the wavefield at the exit
surface of the object, and (iii) using the reconstructed wavefield information to construct a
virtual x-ray field. Guehrs et al. (2009) have used reconstructed holographic information
to generate images using this sort of numerical processing in order to achieve particular
types of contrast, and similar methods are employed by Li et al. (2008), Schot et al. (2015)
and Zuo et al. (2015).

This three-step method described by Paganin is used in Sec. 4.2 in order to achieve the

desired phase contrast which was limited by the hardware.
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4.2 Generalised Cornu spirals: An experimental study using

hard x-rays

On the following pages is inserted the as-published form of the third of three first-author

papers arising from this thesis. The paper has been published as:

E. Werdiger, M. J. Kitchen and D. M. Paganin, ‘Generalised Cornu spirals: An experimental

study using hard x-rays’, Opt. Exp. 24, 10620-10634 (2016).
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Generalised Cornu spirals: an
experimental study using hard x-rays

Freda Werdiger,” Marcus J. Kitchen, and David M. Paganin
School of Physics and Astronomy, Monash University, Victoria 3800, Australia

Abstract: The Cornu spiral is a graphical aid that has been used histori-
cally to evaluate Fresnel integrals. It is also the Argand-plane mapping of a
monochromatic complex scalar plane wave diffracted by a hard edge. We
have successfully reconstructed a Cornu spiral due to diffraction of hard
x-rays from a piece of Kapton tape. Additionally, we have explored the
generalisation of the Cornu spiral by observing the Argand-plane mapping
of complex scalar electromagnetic fields diffracted by a cylinder and a
sphere embedded within a cylinder.

© 2016 Optical Society of America
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1. Introduction

The Cornu spiral is, in essence, an Argand-plane representation of the Fresnel diffraction of
light that is normally incident upon an infinite opaque edge. Historically, it was used as a
graphical aid for the calculation of the Fresnel integrals associated with this diffraction. Fig-
ure 1(a) shows the Argand-plane plot of the complex optical field which results from a plane
wave diffracting from a semi—transparent thin aluminium screen. Adopting the perspective of
Keller’s geometrical theory of diffraction [1], (i) the bottom right lobe of the spiral in Fig. 1(a)
corresponds to the phasor associated with cylindrical waves scattered from the diffracting edge
into the region of geometrical shadow; while (ii) the top left lobe results from the coherent
superposition of the incident plane wave phasor with the scattered cylindrical edge wave.

=
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Fig. 1. (a) A Cornu spiral resulting from the Argand-plane mapping of a monochromatic
plane wave diffracted by a partially absorbing aluminium half-plane screen (the dotted line
is a unit circle that represents the unscattered plane wave), and (b) a hypocycloid resulting
from a monochromatic plane wave diffracted by a partially absorbing cylinder, described
by Morgan et al. [2]. The diffracted light that emerges outside the geometric shadow of the
cylinder is indicated in blue.

Morgan et al. [2] described such a mapping of diffraction from a cylindrical edge. This is
demonstrated in Fig. 1(b), which shows the simulated Argand mapping of a monochromatic
plane wave diffracted by a partially absorbing cylinder. The resulting wavefield takes the form
of a hypocycloid when mapped to the Argand plane. There, the lobe on the bottom left (blue),
representing the outside of the cylinder where the diffraction pattern lies against the unscattered
plane wave, is identical to that of a screen. Crossing the edge of the cylinder, however, the
changing thickness of the cylinder causes the Argand-plane trace to evolve into a hypocycloid
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(black): As the thickness of the cylinder increases, the phase accumulated by passage of the
light ray through the cylinder increases in magnitude, causing the one-dimensional trace to
rotate in the Argand plane. At the same time, the intensity decreases as more of the incident
light is absorbed, causing the Argand trace to spiral in towards the origin. Finally, the light
that is scattered from the edge of the cylinder interferes with the light that is incident upon
the cylinder, resulting in oscillations in phase and intensity that decrease in amplitude as the
distance from the edge increases.

Both the Cornu spiral and the Cornu-come-hypocycloid in Figs. 1(a) and 1(b) are one-
dimensional traces embedded in two-dimensional Argand space; while the thickness varies
across the cylinder, it retains the one-dimensional nature of the straight edge when pro-
jected onto a two-dimensional surface. In order to find a complex function that leaves a two-
dimensional image of x-y space in the Argand plane, we need to add a higher degree of spatial
complexity to the object of interest. A sphere, when projected onto a surface, has a thickness
that varies in both transverse dimensions. However, if the sphere is lying against a homogeneous
background, such as the normally incident monochromatic plane wave, that distinction does not
translate to a two-dimensional image in the Argand plane. By placing a sphere inside a cylinder,
however, we can achieve the varying background necessary to evolve the Argand-plane trace
into the sort of two-dimensional Argand-plane image seen in our previous works [3,4].

Here, we experimentally reconstruct the Cornu spiral and two of its generalisations through
the imaging of three objects with increasing complexity: the straight edge, cylinder and sphere-
in-cylinder.

Section 2 will provide some background theory, namely Argand-plane mapping theory,
including a description of vorticity singularities (Sec. 2.1), and the Geometrical Theory of
Diffraction (GTD) (Sec. 2.2). We can use GTD to write down equations for the field down-
stream of each of the three objects to be imaged and to understand and predict the morphology
of the Argand-plane mapping of each field. Section 3 includes the experimental results obtained
using hard x-rays. Methods used for capturing images and processing the data are described in
Sec. 3.1. Section 3.2 reports on the results of using a piece of Kapton tape to observe x-ray
diffraction from a straight edge and subsequent Argand-plane mapping of the reconstructed
field. Sections 3.3 and 3.4 do the same for an aluminium cylinder and a spherical bubble trapped
in an agar-filled perspex cylinder. Section 4 discusses our results, including possible applica-
tions and plans for future work. We conclude with Sec. 5.

2. Theory

Here, we briefly review some relevant background theory, with the reader being referred to
Refs [3] and [4] for further detail.

2.1.  Argand plane mappings

For an arbitrary two-dimensional differentiable single-valued continuous complex function
W(x,y), a mapping .# to the Argand plane is given by

A (¥(x,y)) = (Pr, V1), )

where Wg and W} are the respective real and imaginary parts of W(x,y), which is here taken to
be the boundary value of the spatial part of a forward-propagating three-dimensional monochro-
matic scalar wavefunction [5], evaluated over a planar surface.

For a complex wavefunction that lies in x-y space, there is in general a loss of information
that occurs under a mapping .# to the Argand plane, rendering the mapping essentially non-
invertible due to the mapping being many-to-one. In such cases, it is possible for a singularity
to form under a mapping to the Argand plane.
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In order to locate singularities induced by a many-to-one mapping .# to the Argand plane
associated with W(x,y), we can define the Jacobian determinant (“Jacobian”) of .# as [4]

. ¥r ay\PR

PR AL @

J(x’ y) =

The Jacobian of .# provides valuable information about the transformation of W(x,y). The
absolute value of J at a point P = (x,,y,) in x-y space gives the factor by which infinitesimal
patches at p expand or contract under the transformation from real space to Argand space. The
sign of J indicates whether a patch has been inverted (J < 0) or not (J/ > 0). A value of J =0
indicates that an infinitesimal patch of space in the xy-plane has collapsed onto a single point
under . and a singularity of the Argand plane has formed for .# (W(x,y)). Setting J(x,y) =0
provides the location of all singularities of the mapping. The set &2 of all (x,y) points for
which J(x,y) = 0 maps to a hierarchy of singularities in Argand space, such as the fold, which
is induced by, as the name suggests, a fold in the local image of x-y space along a single line of
zero vorticity.

Orne can assign a physical meaning to the “zero lines” of the Jacobian and subsequent sin-
gularities in the Argand plane. The vorticity Q of a three-dimensional complex scalar field
W(x,y,z) can be expressed as [6,7]

Q =V xj=Im(V¥* x V¥) = VW x V¥, 3)

where V is the gradient operator and j= ImW* VW is the current up to a multiplicative con-
stant, which is set to unity here. The vorticity quantifies the local rotation in the field. The
z-component of the local vorticity,

Q,= IWr JW; W IWr @)

represents the local current rotation at (x,y) and is equivalent to the Jacobian, as seen from
Eq. 2. When the local current rotation changes from clockwise to anti-clockwise, implying that
when Q, =0, a singularity will be induced by ., due to the assumed continuity of the vorticity.
Stated alternatively, the Jacobian zero lines are present where the vorticity has vanished.

2.2.  Geometrical theory of diffraction

In observing the diffraction of x-rays from the hierarchy of objects defined here, it is necessary
to define a theory that describes a diffracted light field. A consequence of the finite wavelength
of light, diffraction is not a property described by Geometrical Optics (GO), which uses geo-
metrical rays to calculate light fields accounting for the incidence, refraction and reflection of
electromagnetic waves. The Geometrical Theory of Diffraction (GTD), however, adds to this a
description of rays that are diffracted around edges and smooth objects. Introduced by Joseph
B. Keller in 1953, this theory augmented GO by using geometric rays to describe wave diffrac-
tion [1]. GTD, like GO, assumes light travels in rays but introduces diffracted rays, which are
produced by incident rays hitting or grazing the edges, corners or vertices of boundaries. Some
of these enter the shadow region and others go into the illuminated regions, contributing to the
light there. Diffracted rays can be calculated using a modified Fermat’s principle, assigning a
phase to each ray and letting the total field at a given point be the sum of all complex rays
passing through it.

We can use the geometrical theory of diffraction to describe the field downstream of a semi-
opaque phase-amplitude screen illuminated by a monochromatic plane wave. The total field at
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apoint (x,y) will be the sum of all rays passing through that point, each of which can be placed
into one of three categories: Those which have passed through the screen, having picked up a
subsequent phase change equal to —k8 7', where k is the wave number, 1 — 8 the refractive index
of the screen material and 7' the projected thickness of the screen; those which have passed
through uninterrupted, having incurred no phase change; finally, those which have scattered off
the boundary of the screen, emanating in the form of a locally cylindrical wavefront, given that
the source of the boundary wave is a line.

Thus we can state that for the field W(x,y) over an image plane lying perpendicular to the
axis of propagation which is at a distance z from the exit surface of a semi-opaque screen of
thickness T which has been illuminated by a rigidly-translating monochromatic plane wave
with wavenumber %,
oHR
\/R k]
where u is the attenuation coefficient of the material, R is the distance from the point (x,y) in
the image plane and the edge of the screen, and < is the amplitude of the scattered wave. If the
thickness of the screen varies in one transverse dimension, say the x- direction, we can write
R = +/x2+72. The two lobes of the Cornu spiral in Fig. 1(a) are due to the phasor addition of
the cylindrical wave with the wavefront passing uninterrupted on the outside of the screen and
with the wavefront transmitted through the screen.

In the case of a cylinder with radius R,,, whose axis is perpendicular to the optic axis, we can
adjust Eq. (5) to account for two separate line sources for a cylindrical boundary wave, one on
either side of the cylinder, and a thickness T'(x) = 2Re+/R2 — x2 that varies across the object.
Thus,

W(x,y) = et 1T/ 2= 48T 4 oy )

e T ()2, —kBT() | el | el
W(x,y) = e"le MWW 2pTHOEX 1 of + B , 6)
*,y) xR 0
where Ry = +/(x+R.)?2+22, Ry = +/(x —R:)* +z%. As x moves closer to the centre of the

cylinder, T increases. Referring back to Fig. 1(b), the black lobe of the Cornu spiral unravels in
the geometric shadow of the cylinder, due to the change in thickness. The oscillations in phase
and intensity are brought about via the addition of phasors, accounting for the cyclodic motion
of the Argand-plane trace.

Continuing with the hierarchy of objects investigated for diffraction in this paper, we can
adjust Egs. (5) and (6) to account for a sphere lying within the cylinder. In the event of a
sphere normally illuminated by planar complex scalar electromagnetic waves, the source of the
diffracted wave would be aring following the outermost edge around the sphere. Theoretically,
aring source would result in a toroidal wavefront accounting for the diffraction from the edge of
the sphere. For a point P lying in the x-y plane at some distance z from the sphere, the diffracted
rays that pass through that point are a result of the locally toroidal wavefront emanating from
the closest point on the circle. Figure 2.2 demonstrates this point.

Therefore we find that for a sphere of radius R, lying within in a cylinder that is illuminated
by a monochromatic plane wave, the field through a point P(x,y) lying in the image plane at
some distance z from the object is given by

_ ik KT [2 kT () | O g€t e
W(x,y) = ee e +dm+%m+%\/ﬁ3,

where Rj is the optical path length of the ray which possesses a geometrical path length given
by R3 = \/ (/X2 +y? — R;)? +z2. If the sphere is a bubble in the cylinder, the entire object

@
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Fig. 2. For a sphere lying in the object plane, the source of the diffracted rays is a ring
around the outermost edge (red). To find the contribution of the diffracted rays through
point P lying at a distance of z = A from the object plane, we find the shortest distance from
P in the image plane to the ring source in the object plane, defined by R3. The diffracted
rays through P are a result of a toroidal wavefront emanating from the point where R3
meets the ring.

can be a single material with a single refractive index 1 — ¢ and attenuation coefficient y, with
projected thickness T (x,y) = 24/R% —x2 —2/R? —x2 —y2.

3. Experimental realisation vsing hard x-rays

Here we present our experimental results, obtained using hard x-rays. Our reason for choosing
this form of radiation is a long-term goal, which lies beyond the scope of the present paper,
namely the application of Argand-plane analyses to improve methods for the speckle imaging
of lung tissue using coherent x-ray images [8].

3.1.  Experimental and analytical methods

The results in this section were obtained via x-ray experiments conducted using a 215m-long
beamline (BL20B2) at the SPring-8 synchrotron radiation facility in Hyogo, Japan. The length
of the beam allowed for a large field and spatially coherent beam [9]. At the end of the beamline,
the distance from source to detector can be adjusted to allow for propagation-based phase con-
trast imaging (PBI) [9], which is used here to reconstruct the various objects that are featured
in the following sections. A schematic of the experimental set-up is shown in Fig. 3. The tech-
nique used to obtain images used in this paper is PBI. Unlike other methods that adopt phase
contrast, such as x-ray interferometry [10], analyser-based phase-contrast imaging [11, 12], or
x-ray diffraction grating methods [13], PBI does not require the use of any additional optical
elements between the sample and detector. The act of free-space propagation enables the phase
shifts that the sample imposes upon the incident radiation to become visible.

Pertinent to the results presented in this section is the phase retrieval algorithm developed by
Paganin et al. [14], which requires a single PBI image per projection. In applying this algorithm,
we assume that the sample in question is comprised of a single homogeneous material imaged
under paraxial coherent x-ray radiation.

An optical system, such as the system used in the methods described above, can also add spe-
cific contrast modes, such as Zernike phase contrast [15]. These techniques have widespread
use in light microscopy, particularly for biological specimens, due to their usefulness in defin-
ing fine structure in the images. The introduction of certain appropriate optical elements in
microscopy serves as a means to generate the desired mode of contrast; this is hard-wired into
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Fig. 3. The general set up of the experiments used to obtain results shown in Secs 3.2 - 3.4.
The object to be imaged lies downstream of the x-ray source. The partially coherent light
is then allowed to propagate further in order to observe edge enhancement via interference.

the experimental set-up. In holography, however the desired contrast mode can be generated
numerically using virtual optics. The appropriate transfer function is used to simulate the ana-
log of any optical element, given the boundary value of a forward propagating complex scalar
electromagnetic wave over a given plane perpendicular to the optic axis. Thus, the computer
becomes a part of the imaging system. This method was termed omni-microscopy and demon-
strated using hard x-rays by Paganin ef al. [16]. These methods are exploited in the following
sub-sections to achieved the desired contrast. The complete wavefield information, obtained
using experimental images, is subject to virtual optics, virtually propagated through space to
obtain an appropriate amount of phase contrast. In particular, the wavefield derived in Sec. 3.4
is propagated beyond the limits of the particular experimental hardware involved in obtaining
the original images.

3.2.  Straight edge

In order to reconstruct a Cornu spiral, it was necessary to use an object with a straight edge
and illuminate it with electromagnetic radiation to observe diffraction from the edge. A piece
of Kapton (polyimide) tape was used for this purpose. The experiment was performed using
30 keV x-rays (4 = 35.05m~', § =3.38 x 10=7 [17]) to illuminate the sample. Figure 4(a),
together with the profile plot in Fig. 4(b), shows the PBI image of the tape that was taken at a
distance of 2.0 m from the sample with a 4000 x 2672 pixel Hamamatsu CCD camera (C9300-
124) with a 16.2 um pixel size. Single image phase retrieval [14] was used to construct an image
of the tape at the exit surface, seen in Fig. 4(c). The noise is significant in the profile plot in Fig.
4(d). The resolution of the image was increased by a factor of two using cubic interpolation
before using the angular spectrum formulation to forward propagate [18], employing virtual
optics to observe a diffraction pattern. Figure 4(e) shows a forward propagation to 2.0 m. The
profile plots of the original and simulated images at a distance of 2.0 m from the contact surface,
Figs 4(b) and 4(f), respectively, closely resemble one another. The central fringe is brighter in
Fig. 4(f), presumably a result of the increased resolution.

Figure 5(a) shows the intensity of the field forward-propagated with virtual optics to eight
metres, where there are several fringes. This field is mapped to the Argand plane in Fig. 5(b),
where the noise obscures the Cornu spiral, which has emerged due to the boundary wave.
Integrating the image along 341 columns to produce a field that varies in only one spatial
direction, a clean image of the Cornu spiral can be seen in Fig. 5(c). Cropping the image close
to the edge of the tape, a clean Argand trace can be obtained.

Figure 6 shows the evolution of the trace with distance through 0.0 m, 2.0 m and 6.0 m.
Diffraction fringes multiply upon virtual-optics propagation; oscillations in phase and inten-
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Fig. 4. (a) A 1.10 cm x 0.24 cm image 2.0 m from a sample containing a piece of Kapton
(polyimide) tape, taken using 24 keV x-rays. A profile plot of the raw image is shown in (b),
wherein lies a single bright phase contrast fringe pair. Note as well the highly transmissive
quality of the tape; (c) An image of the projected thickness of the tape, with a profile plot
shown in (d), highlighting the low signal-to-noise ratio; (e) For comparison, a simulated
image of the tape at 2.0 m is shown, along with a profile plot (f) showing the previously
noted single bright fringe. The fringe in (f) appears brighter than the one in (d) as the pixel
size was halved for the purpose of the simulation.

sity manifest at each end of the Cornu spiral. The characteristic bright central fringe becomes
prominent in Fig. 6(b), at 2.0 m from the contact surface. Propagating further to 6.0 m, there
are several fringes which are apparent in oscillations seen in Fig. 6(c). The arm that extends
outside of the unit circle (dashed line) represents the outside of the Kapton tape which is occu-
pied by the uninterrupted plane wave. Due to the low absorption coefficient and thickness (see
Fig. 4(d)) of the material, only a very small amount of radiation is absorbed by the tape; both
the uninterrupted and transmitted waves are close to unity and the Cornu spiral clings to the
unit circle in each image.

3.3.  Cylindrical edge

Further to the goal of generalising the Cornu spiral, we sought to observe its evolution upon
the straight edge being replaced with a cylindrical one. Under these conditions, one side of
the object would experience a varying phase and intensity, due to the changing thickness of
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Fig. 5. (a) Intensity of the field forward propagated to 8.0 m, where several fringes are
visible; (b) Argand mapping of the field propagated to 8.0 m, where the spiral is obscured
by noise; (c) Argand mapping of the field after being summed and averaged along the
vertical axis, showing a clean Cornu spiral.
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Fig. 6. The evolution of the Cornu spiral with propagation distance: (a) 0.0 m, (b) 2.0 m
and (c) 6.0 m. The spiral clings to the unit circle (dashed line) in each instance due to the
low absorption of the Kapton tape. The field in (a) traces out an arc due to its smooth and
continuous nature, rather than two discrete points representing either side of the tape.

the cylindrical object, which would deform the corresponding arm of the Cornu spiral. Fig-
ure 7(a) shows an image of a 3 mm aluminium cylinder taken with 24 keV x-rays using the
Hamamatsu ORCA Flash C11440-52U fibre optic detector with a pixel size of 6.5 um. The
sample-to-detector distance is 35 cm. At 24 keV, aluminium has an absorption coefficient of
i = 464.48 m~! and refractive index decrement § = 9.398 x 107 [17]. Observing a profile
plot of the raw image, Fig. 7(b), a single fringe is seen on each side of the cylinder. Note as
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well the effects of the point spread function (PSF) in the field as it approaches the edges of the
cylinder. Using single-image phase retrieval, the projected thickness of the cylinder was recon-
structed (Fig. 7(c)). Looking at the profile plot in Fig. 7(d), the fringes have been suppressed, as
would be expected at the contact surface. The reconstructed image shows a cylinder diameter
of approximately 3.25 mm. For comparison, the field at the exit surface was interpolated by a
factor of four and then forward-propagated to 35 cm using the angular spectrum formula [18].
The intensity at 35cm is shown in Fig. 7(e), and a profile plot in Fig. 7(f). The noise has been
suppressed and there is a single sharp peak at each boundary. The peak in Fig. 7(f) is higher
than that in Fig. 7(b) due to the process of cubic interpolation whereby the number of pixels
across the peak has been inflated by a factor of four. Note as well that there is no smearing of
the point spread function.
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Fig. 7. (a) A 9.1 mm x1.6 mm image taken 35 cm downstream of an aluminium rod
illuminated by 24 keV x-rays with a plot profile (b) showing a single bright fringe at the
edge of the highly absorbent cylinder; (c) a reconstruction of the projected thickness of the
rod and profile in (d); (e) forward propagation to 35 cm for comparison (the intensity is
shown) and profile in (f) showing a brighter central fringe due to the interpolation as part
of the simulation.

Figure 8 shows the Argand-plane mapping of the propagated field at various distances; 0.35
m, 1.0 m and 4.0 m. Diffraction fringes multiply as propagation distance increases, as with
the Kapton tape in Sec. 3.2. Oscillations in phase and intensity on the outside of the cylinder
manifest in the same way as with the straight edge of Fig. 6, spiraling in towards the value of the
uninterrupted plane wave. Crossing the edge, the thickness of the sample increases, resulting in
changes in phase and intensity, due to the subsequent refraction and absorption of the incident
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Fig. 8. Evolution of the Argand-plane mapping of the aluminium cylinder with propagation

distance: (a) 35 cm, (b) 1.0 m and (c) 4.0 m. The spiral in each image represents the outside

of the cylinder, where the intensity and phase oscillate against the unscattered plane wave.

Within the cylinder, the varying phase causes the trace to move around the Argand plane as

the thickness increases and the intensity falls to a minimum. The hypocycloid, as described

in Fig. 1(b), is noticable in (c).
radiation. This causes the trace to travel around the Argand plane, instead of being fixed around
a constant background. This ultimately results in the hypocycloid that manifests in Fig. 8(c), at
a distance of 4.0 m from the contact surface. At this distance, there is significant diffraction and
the resulting phase and intensity oscillations stand out against a rapidly varying background.
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Fig. 9. The projected thickness is forward propagated using x-rays with reduced energy. (a)
18 keV x-rays propagated to 4.0 m; (b) 16 keV x-rays at 4.0 m; (c) 15 keV x-rays at 6.0 m.
The retrograde motion of the Argand trace can be seen in (c). The lower energy rays have
a higher absorption coefficient and diffract more heavily.

In order to observe the evolution of the hypocycloid under circumstances where there is
significantly more diffraction, the energy of the x-rays used in the angular spectrum formula
was reduced. For Fig. 9(a), the energy has been reduced to 18 keV (u = 1132.0 m ', 8 =
1.67 x 107° [17]) and the wavefield allowed to propagate to 4.0 m before being mapped to
the Argand plane. Drawing comparison with Fig. 8(c), which is also at 4.0 m from the contact
surface, there are considerably more revolutions in the lobe at the bottom-left of Fig. 9(a) than in
the corresponding lobe for Fig. 8(c), signifying more diffraction. Additionally, the hypocycloid
noted in Fig. 8(c) is more dramatic in Fig. 9(a) due to the increased absorption at the energy.
Decreasing the energy to 16 keV (1 = 1622.98 m !, § =2.12 x 10 [17]) heightens this effect.
Reducing again to 15 keV (1 = 1974.14 m ', 8 =2.41 x 10 [17]) and propagating further to
6.0 m from the contact surface, increasing the diffraction from the edge of the cylinder, results
in the retrograde motion of the Argand-plane trace described by Morgan et al. [2], seen in Fig.

9(c) [17].
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3.4.  Sphere-in-cylinder
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Fig. 10. (a) A I cm x 1 cm image taken 2.0 m from a bubble trapped in a perspex cylinder
filled with agar illuminated by 24 keV x-rays. A plot profile (b) taken along the red line in
(a) shows the three distinct regions: air, perspex and agar. The reconstruction uses p and &

for the latter; (c) The projected thickness is shown, with plot profile (d) taken along the red
line in (c), within the boundary of the cylinder. Noise and fringes are suppressed.

In order to observe the evolution of the Argand-plane mapping from a one-dimensional trace
to the fully-realized two-dimensional Argand mapping, we imaged a sphere embedded in a
cylinder. A perspex cylinder was filled with a solution of 2% agar and a spherical air bubble
was trapped in the solution as it set. The sample was then illuminated by 24 keV x-rays and
a PBI image was captured using the ORCA Flash detector, as used to obtain the images in
Sec. 3.3. Placing the detector at a distance of 2.0 m from the sample, the image in Fig. 10(a)
was obtained. A profile plot in Fig. 10(a) shows some contrast at the boundaries between air,
perspex and agar. As the aim was to obtain the Argand mapping of a sphere against a cylindrical
background, the properties of the agar solution (1 =46.95 m~!, § = 4.00 x 1077 [17]) were
used for single-image phase retrieval. The resulting projected thickness is shown in Fig. 10(c),
and corresponding profile plot taken across the inside of cylinder in Fig. 10(d), where the fringes
have been suppressed. The pixel size was reduced by a factor of four using cubic interpolation.

The field was numerically forward-propagated to 50 m to observe stark contrast between
the bubble and its surroundings. The intensity at this distance is shown in Fig. 11(a). Figure
11(b) shows the profile plot across the mid-section of the bubble, showing some fringes at
the boundary of the bubble. The Argand mapping of the bubble is shown in Fig. 11(c), where
two small but distinct spiral-like structures are seen, separated due to the varying cylindrical
background as well as the noise. Figure 11(d) shows a close-up image of the lower spiral-
structure. This structure is the Argand mapping of a field normally incident on a sphere that is
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Fig. 11. (a) Image of the cylinder propagated to a distance of 50 m; (b) profile across the
mid-section of the bubble, which has a strong signal at this distance; (c) Argand map-
ping of the bubble; (d) Close-up image of (c), with behaviour seen in fully-realized two-
dimensional vorticity singularities, such as the fold singularity indicated by o; (e) With
energy halved to 12 keV, the x-rays diffract more strongly and are absorbed heavily, result-
ing in some hypocylodic behaviour seen on the left side of the image.
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lying within a cylinder. It is effectively the Argand mapping resulting from light incident upon
a series of infinitesimally flat cylinders, with varying radii, lying against a varying background
that together map to the Argand plane in the form of this two-dimensional structure consisting
of a continuous infinity of Cornu spirals.

In order to observe some hypocyclodic behaviour, the energy of the x-rays was halved to 12
keV for the angular spectrum formula. The result in Fig. 11(e) shows some such behaviour due
to more extreme diffraction that is expected at this lower energy level. There is also greater
absorption, with this spiral having a magnitude of approximately one tenth of that in Fig. 11(c).

It is with Figs. 11(c), 11(d) and 11(e) that we finally obtain Argand-plane singularities asso-
ciated with configuration-space vorticity zeros. These structures, reminiscent of the caustics of
geometric optics, are exemplified by the fold-type singularity marked « in Fig. 11(d). As pre-
viously explained, all such Argand-plane singularities correspond to the image of points (¥,)
with both zero vorticity and zero Jacobian.

4. Discussion

Our previous works [3, 4] focused on vortical behaviour in continuous two-dimensional com-
plex scalar wavefunctions and noted the existence of singularities induced by the associated
mapping .# to the Argand plane — coined “vorticity singularities” as they correspond to lines
of zero vorticity in the xy-plane. We have so far used singularities induced by .# to make gen-
eral and particular observations about the behaviour of screw-type phase defects in complex
scalar wavefunctions — such as the behaviour of the wavefield in and around vortex pairs.

At the same time, the field of “singularimetry” (a termed coined recently by Dennis and
Gotte [19, 20]), is emerging as an important result of modern singular optics. The locality
and stability of zeroes of an optical field makes them useful in measuring beam shifts to
subwavelength-accuracy. More recent work by Petersen ef al. [21] demonstrates the use of
vortex lattices to determine small phase shifts imparted on the field by various spherical and
cylindrical specimens. One also has recent experimental work on optical currents, such as that
of Angelsky ez al. [22] and Pavlov et al. [23].

Our work in this paper shifts the focus away from exclusively vortical fields, namely those
with screw-type phase defects. The Cornu spiral, the Argand-plane mapping of the diffraction of
a field by a straight edge, is a convenient platform for the study of Argand-plane maps, having
already been somewhat generalized by Morgan ez al. [2]. Mirroring the work of Petersen ef
al. [21], we have looked beyond the straight edge to explore phase shifts imposed on a field by
cylindrical and spherical objects, which manifest as generalized Cornu spirals in the Argand
plane. The evolution of the Cornu spiral from a one-dimensional trace (albeit embedded in a
two-dimensional plane) for a straight edge to the fully-realized two-dimensional Argand-plane
map is in our view an interesting tool that is worthy of further investigation in the future.

5. Conclusion

We have presented a study of generalised Cornu spirals, which are a series of Argand-plane
mappings of monochromatic wavefields that are incident upon objects with varying degrees of
complexity. Here we have focused on a hierarchy of three objects: a straight edge, a cylinder
and a sphere embedded within a cylinder. Each object was imaged using propagation-based
phase contrast imaging with hard x-rays. After phase retrieval, generalised Cornu spirals were
then constructed for each object.
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Chapter 5

Future work

There are numerous possible future applications of the work presented in this thesis, and

here I outline a few applications.

With regards to the study of Argand-mappings induced by vortical fields, particularly the
presence of vorticity singularities, a natural extension would be to continue this explo-
ration to a greater hierarchy of vorticity singularities. So far, the fold and cusp vorticity
singularities have been described and attributed to vorticity singularity lines lying be-
tween various combinations of vortices and antivortices, exemplified by the experimental
study of Chapter 3. The elliptic umbilic vorticity singularity was reconstructed and linked
to the presence of vorticity singularities in the form of a Jacobian ellipse, but no physical
explanation was provided. Future work would involve continuing to experimentally
observe the possible infinite hierarchy of vorticity singularities, connecting each to some
unique formation of singularity lines in the physical field and investigation their physical
significance. Such work may improve our understanding of the vorticity in the context of

a complex scalar wavefield littered with optical vortices.

The study of vorticity singularities has the potential to go beyond complex scalar wave-
fields to more general wavefields, such a partially coherent fields, which are described by
multi-dimensional coherence functions. Furthermore, a study of vorticity singularities in
the context of spinor fields, which are described by multiple complex wavefields, would

extend this work to fields that possess multiple sets of singularity lines.
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Argand-plane mappings induced by complex scalar wavefields

The experimental set-up described in Chapter 3 for reconstructing vorticity singularities
could provide a context for the study of topological reactions associated with time-varying
fields, such as vortex-antivortex annihilation and saddle points. The Argand plane
could also be used to study various fields with topological defects, such as Bose-Einstein

condensates, which are naturally vortical two-dimensional object that change over time.

The study of visible-light speckle fields featured in Chapters 2 and 3 could be extended
into x-ray speckle, which has multiple interesting and important applications. Garson
et al. (2013) generated a speckle field in an x-ray phase contrast image (PCI) of animal
lungs using a bench-top imaging system. The study of lung x-ray speckle is particularly
interesting due to its ability to provide further understanding about the structure of lungs.
For example, Leong et al. (2014) have shown a method of measuring alveolar size and
Kitchen et al. (2015) have shown that lung speckle patterns can be used to measure the
dimensions of lung airways. Extending the work described in Chapter 4 by replacing the
geometric objects with lung samples may have ramifications in the study of lungs, which
are, in essence, cylindrical cavities containing thousands of air-filled spheres. It is not
presently clear whether speckle is simply a geometrical phenomenon or whether it is a
wave phenomenon. Simulations by Kitchen et al. (2015) show wave behaviour resulting
in optical vortices, but their experimental reconstructions, specifically phase retrieval, are
based on the geometrical approximation of light. Studying the Argand-plane mappings
induced by an optical speckle field, and its associated vorticity singularities, could help

clarify the essence of such a field and improve reconstruction procedures.
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Chapter 6

Conclusion

In this thesis, I have presented a study of Argand-plane mappings induced by complex
scalar wavefields, reported over three separate bodies of published papers as first author.
The first publication is a theoretical study of a two-dimensional optical speckle fields
littered with vortices. The Argand-plane mappings induced by those wavefields revealed
caustic-like Argand-plane singularities that were shown to be a results of lines of zero
vorticity in the physical field, proving the Argand-plane to be an interesting domain for
the study of such fields. The second publication presents a study that is exemplified
by an experimental validation of that theoretical work, utilising visible light. Various
vorticity singularities were successfully reconstructed, namely the fold, cusp and elliptic
umbilic vorticity singularities, and connected to lines of zero vorticity in the physical
field. Moving beyond visible light, the third publication presents a study that is focused
on x-ray fields, studying the Argand-plane mappings induced by propagation-based x-ray
phase contrast images. Various objects with increasing spatial complexity were imaged - a
straight edge, a cylinder, and a sphere embedded within a cylinder. The diffraction of the
incident radiation upon coming into contact with these objects resulted in generalised
Cornu spirals present in the induced Argand-plane mappings. Through these bodies of
published work, the usefulness of the Argand-plane in the analysis of two-dimensional
complex scalar wavefields was made apparent. There are numerous possible extensions to

this work, such as the study of x-ray lung speckle and the analysis of time-varying fields.
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