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Abstract

In this thesis, an analysis of two-dimensional complex scalar wavefields associated with

electromagnetic radiation is presented. The particular tool of analysis is the Argand-plane

mappings that are induced by such wavefields. The analysis is carried out over three

distinct but interconnected studies, each accompanied by a published body of work. The

first study involves the simulation of a visible-light speckle field that is littered with

vortices. The Argand-plane mappings induced by this field reveal caustic-like structures

that are singularities of the mapping. It is found that these singularities, called vorticity

singularities, are induced by lines of zero vorticity in the physical wavefield, and their

connection to vortices is investigated. The second body of work contains an experimental

realisation of vorticity singularities, done by generating a speckle field using visible light.

Various vorticity singularities - the fold, cusp, and elliptic umbilic - are reconstructed

using experimental data, and the lines of zero vorticity that induce them are observed.

The third study moves from the domain of visible light into x-ray radiation. Here, the

Argand-plane is used as a tool for investigating x-ray diffraction. Three objects, having

been illuminated by hard x-rays, are imaged using propagation-based phase contrast

imaging; a straight edge, cylinder and a sphere embedded within a cylinder. The full

information of the propagated wavefield is recovered using a combination of phase

retrieval and virtual optics. The associated Argand-plane mappings reveal structures

known as generalised Cornu spirals that are induced by the diffraction of the incident

radiation around the object in question. Each object is associated with a particular

generalised Cornu spiral that is explained using the Geometrical Theory of Diffraction.

The body of work constituting the present thesis indicates that the Argand plane is an

interesting tool for the analysis of the complex scalar wavefield associated with optical
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fields, possessing features that are singularities of the mapping to the Argand plane

that can be used to study various phenomena in the physical field. The applications for

Argand-plane analysis may be numerous, going beyond the context of optical fields.
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Chapter 1

Introduction

In this thesis, the complex scalar representation of free electromagnetic fields is studied,

with particular attention being paid to the Argand-plane mapping induced by such

wavefields. The Argand plane, also known as the complex plane, presents itself as

an interesting environment with which to study aspects of electromagnetic fields, as

exemplified by the work featured in the following chapters. Before presenting the main

body of work, it is necessary to lay down some background information of the theory of

fields. This includes the history of its development, some features of fields that are key to

this thesis and, briefly, the emergence of quantum field theory. Further, it is necessary to

provide the mathematical underpinning of classical field theory, as it is evoked throughout

this work. Finally, an introduction to the general theory of mappings, and Argand-plane

mappings in particular, is given.

1.1 The field concept in physics

1.1.1 History and development of the field concept

The first recorded use of the word ‘field’ as a technical term in physics was by Thomson

(1851). He defined a ‘field of magnetic force’ as any space for which every point within

it possesses a finite magnetic force. The general idea of a field is that, when present, a

body has an area of influence around it and at a distance from it. This technical definition,
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Argand-plane mappings induced by complex scalar wavefields

however, has been debated and discussed among philosophers and scientists long before

the mid-nineteenth century.

An idea that had early philosophers in almost total agreement was that there existed a

principle that excluded the possibility of ‘action from a distance’. That is, action can only

be transmitted between bodies through contact. Of course, various physical phenomena,

such as a magnet causing a distant piece of iron to move, begs further analysis. Can

contact be restored through some transmission across the intervening space between

the magnet and the piece of iron? Gilbert (1600) referred to this transmission as an

‘orb of virtue’ that expands in all directions. The motion of celestial bodies and the ebb

and flow of tides are also phenomena indicating causal action at a distance. Newton’s

theory of gravitation, which links mass, force and acceleration, is arguably a field theory

in that it provides a function that is defined for every point in space surrounding a

gravitating body, prescribing how a second body would behave. However, by Newton’s

own assertion (Newton, 1962), his theory considers forces mathematically and does not

define the manner by the which the force is exerted; Newton’s theory of gravitation is

a calculation device which does not provide an explanation that excludes action from a

distance. Faraday (1852), in his landmark work ‘On the physical character of the lines of

magnetic force’, made the distinction between this theory of gravitation and fields such as

light radiation, electrical induction and magnetic force, which have a continuous physical

action across space. Fields are a space wherein continuous action is occurring. Maxwell

(1890) cemented the idea of the assignment of a physical character to lines of force with

his Electromagnetic theory, describing the physical field produced by electrically charged

objects. This theory went beyond a mathematical construct to suggest that the calculated

field possesses a physicality that interacts locally with other objects.

1.1.2 Types of fields

Fields can be defined in terms of scalar, vector or tensorial quantities. Since a tensor is the

most general of these, the other three parameters can also be described using the notation

of tensors.
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If a field is defined by a number at each point in space then it is a scalar field, or a tensor

field of rank zero. The density of a fluid as a function of position is an example of a scalar

field. A vector field, also called a first rank tensor field, is more general than a scalar field

in that it defines the direction of the field at each point in a one-dimensional array. Each

component of the direction is a scalar. More general still is the tensor field, which can be

defined to all orders/ranks. This type of field is used in differential geometry, algebraic

geometry and in the analysis of stress and strain in materials. The tensors that define all

points in a tensor field represent physical properties that are too complex to be handled

by a vector. Einstein’s theory of General Relativity, for example, employs a fourth-order

tensor known as the Riemann curvature tensor to describe the curvature of spacetime,

which is a four-dimensional object. Maxwell’s formulation of the electromagnetic field,

while defined by a pair of vector fields, that is, the electric field E and magnetic field

B, is described in the tensorial formulation of classical dynamics by a second-order

antisymmetric tensor F, called the Faraday tensor.

There are other mathematical entities in physics that can consist of multi-dimensional

arrays of numbers but are not characterized as tensors. One example is the spinor, which

differs from a tensor in that is does not transform as a tensor does under a coordinate

change. Thus, a field that has a spinor at each point is called a spinor field. A (2s + 1)-

dimensional spinor field is used in particle physics to describe particles with spin s, where

s is an integer or a half-integer. Fermions are described by a spinor field and bosons by a

tensor field.

Within each of the categories described above, a field can be defined as either a classical

or a quantum field.

1.1.3 Quantum and classical description of fields

The theory of electromagnetism as founded by Faraday and Maxwell is a classical field

theory. From this perspective, the electromagnetic field can be seen as a smooth and

continuous field that propagates in a wave-like manner. Faraday found that the electric

and magnetic fields E and B are not only force fields that dictate motion but carry energy

as well. In the absence of any charge, and under a suitable choice of gauge function,
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electromagnetic waves in free space are a function of the magnetic vector potential, which

is defined at every point in space.

In the presence of charged particles, Maxwell’s equations describe the interaction between

the electromagnetic field and moving charges. This so-called electrodynamic field is the

result of the existence of both the magnetic vector and electric scalar potentials, the latter

being the potential energy per unit charge, and is an anti-symmetric second-order tensor

field in space-time. Other cases of the electromagnetic field are the electrostatic field,

defined by a scalar potential at every point in space, therefore a scalar field, and the

magnetostatic field, which is defined by a vector potential and is therefore a vector field.

If one wishes to look at a certain limit of a field theory, it is possible to make approxi-

mations so that the more general, rigorous field theory is reduced to a simpler model.

Optical fields, characterized by very high temporal frequencies, are a sub-category of

electromagnetic fields, where a single scalar quantity can be used to describe the electric

field of the light wave, rather than a more rigorous vector model. This description of light

is known as ‘scalar physical optics’. Within scalar physical optics, there are particular

definitions for the regions of electromagnetic radiation around an object. An object can

transmit electromagnetic radiation directly, as with a transmitting antenna, or indirectly,

by scattering incident radiation. We can approximate the fields close to the objects under

‘near field’ conditions and similarly for the regions that lie at greater distances, under

‘far-field’ conditions. These approximations underly a lot of the work presented in this

thesis are therefore treated in detail throughout.

At the turn of the nineteenth century the quantum theory of electromagnetic fields began

to form. In 1900, Planck stipulated an explanation for blackbody radiation whereby

absorption and emission of radiation by atoms occurs discontinuously in quanta. Ein-

stein expanded on this through his work on the photoelectric effect, concluding that

the electromagnetic field itself was quantized, with photons defined as the quanta of

this field. The first formalism for the quantum theory of electromagnetic fields was laid

down by Dirac in 1927 in his paper ‘Quantum theory of the emission and absorption of

radiation’. The distinction between how a classical field and a quantum field are treated

mathematically is with the use of a number or quantum operators, respectively. Like with
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classical fields, quantum fields can be approached mathematically as solutions to their

governing equations. Thus, quantum electrodynamics (QED) is a quantized recasting of

classical electrodynamics, characterized by quantum mechanics, and has been extremely

successful in showing agreement between theory and experiment (e.g. Donati et al., 1973).

Regarding the development of QED, the form of the interaction is well known from

the classical theory. There are other interactions for which there is not a corresponding

classical theory to draw from. Quantum chromodynamics (QCD) and the electroweak

theory are examples of such quantum fields. However, QCD and the electroweak theory

were deeply influenced by the successes of classical electromagnetic theory as embodied

by its tensorial formulation and its quantum generalization in QED. These will not

be expanded on here as this thesis is restricted mostly to electromagnetic fields but

comprehensive descriptions can be found in Mandl and Shaw (2010).

Many are of the opinion that quantum mechanics should underly all physical phenomena,

requiring a recast of all classical theory in terms of quantum mechanics. The quantization

of electromagnetic fields laid down the groundwork for the quantization of any classical

field, where the quanta of a field are particles with well-defined properties 1.

As the theory which forms the foundation for the work in this thesis is derived from a

classical perspective of electromagnetic fields, it is not necessary to go into more detail on

quantum field theory. For a valuable resource on quantum field theory, see the previously-

cited text by Mandl and Shaw (2010).

The following two subsections will lay down some facts about fields that are relevant for

the remainder of the thesis before continuing on to mathematical treatment of fields in

Sec. 1.2.

1.1.4 Free fields

Every field theory possess a description of the scenario in which the field is absent of

any charges or scatterers. This scenario is known as the ‘free-field’. The formalism that

corresponds to the free-field describes the behaviour of a field in a vacuum.

1An exception to this is the incompatibility of General Relativity with quantum mechanics, which is a
topic of much ongoing research (see e.g. Serway et al., 2004).
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There are numerous techniques for creating a free field. The emission of vacuum elec-

tromagnetic waves, for example, may be brought about through the acceleration and

deceleration of an electric charge. Charges that are oscillating are continuously accelerat-

ing and decelerating, making an oscillating charge a useful source of free electromagnetic

waves. This approach is adopted in the use of an FM-receiving radio antenna and a set-top

TV antenna. Another source of a free-field beam is the laser, which is used extensively in

visible-light optics. Lasers produce such a beam via the process of stimulated emission.

One can also describe the movement of a particle beam in a vacuum. The emission of

an electron beam in free space can be brought about using an electron gun, which heats

a metal plate so that the electrons are free to move. Placing an anode nearby to attract

the electrons towards it creates an electron beam (e.g. by Crewe et al., 1968). A similar

mechanism is used in an x-ray tube for the production of characteristic x-rays. Electrons,

having been emitted using thermal emission, are accelerated by a high voltage to collide

with a metal target. The deceleration of high-speed electrons that slam into a metal target

produces x-rays. These x-rays are typically used in medical diagnostic procedures (see e.g.

Ng et al., 2012).

1.1.5 Scattering and diffraction

When regarding the evolution of a field in space, it is necessary to consider the interactions

of the field in question with various media. Scattering is the term used to describe the

general process whereby radiation, such as light or a beam of charged particles, deviates

from its trajectory by collisions with particles or other localised non-uniformities in the

medium through which it traverses. There are many different forms of scattering, such

as the scattering of an electron wavefield by a crystal or the scattering of neutrinos by

nuclei. An electromagnetic field can be scattered by various media such as lenses and

other optical elements, together with any distribution of matter. For example, sunlight is

scattered by particles in the atmosphere such as air molecules, aerosols and ice crystals

producing various phenomena. One such phenomenon is Rayleigh scattering, which

preferentially scatters blue light from the sun, turning the sky blue (Rayleigh, 1871).
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In the domain of electromagnetic radiation, the phenomena of transmission, reflection

and refraction, which are consequences the description of light as rays, are macroscopic

manifestations of scattering which occurs at a submicroscopic level.

In the description of electromagnetic radiation as waves, the phenomenon of diffraction

emerges, defined as the bending of light around edges and smooth objects. It is also

well-known that matter exhibits wave-like behaviour, a phenomenon first exhibited

using electrons in the Davisson–Germer experiment (Davisson and Germer, 1928) and

subsequently with neutral atoms (Doak et al., 1999; Kouznetsov and Oberst, 2005), which

has been used to demonstrate atomic holography (Shimizu and Fujita, 2002) as well as to

explain the quantum Zeno effect (Kouznetsov and Oberst, 2005). The effects of diffraction

on an electromagnetic wavefield can be predicted by the angular spectrum formalism,

which will be treated in greater detail in Chapter 2. The Geometrical Theory of Diffraction,

which provides a means of predicting diffracted fields using a ray formalism, is treated in

detail in Chapter 4 and provides much of the basis for the work done in Sec. 4.2.

1.2 Mathematics as a language for quantitatively studying

fields

This section describes the mathematical means of evaluating electromagnetic fields that

is adopted throughout this entire thesis. The general principle known as the ‘principle

of least action’ is first described, as it is from this that many of the known physical laws

can be deduced. Adopting this formalism, the relevant governing equation of motion for

the Maxwell electromagnetic free field is subsequently derived using classical Lagrangian

field theory. Finally, the complex scalar representation of the free electromagnetic field

is described, as it is this particular representation that facilitates calculations of optical

fields, which are the category of electromagnetic fields investigated here.

1.2.1 Principle of least action

There is one principle from which the vast majority of known physical laws can be

derived; the principle of least action. This includes electromagnetism, thermodynamics

and Newton’s laws of gravity. To demonstrate, the last-mentioned in this list can be framed
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in terms of the principle of least action, by stating: the average kinetic energy (KE) less

the average potential energy (PE) is as small as possible for an object traveling a path from

one point to another. For every possible path that the object can travel, there is assigned

an ‘action’, denoted by S. For the motion of a point particle, the action is given by

S =
∫ t2

t1

(KE − P E)dt, (1.2.1)

where KE and PE are functions of time. For every possible path there is a different value

for the action. The principle of least action requires that we find the path for which that

number is a minimum.

Fermat’s principle, also known as the ‘principle of least time’, is associated with the

principle of least action in that it defines the path taken by a ray traveling between two

points to be the path that takes the least amount of time. The same logic which underlies

the principle of least action underlies Fermat’s principle, despite the fact that the former

involves the motion of particles and the latter the path traveled by rays. This principle

underpins the Geometrical Theory of Diffraction, and is invoked in both Sec. 4.1.1 and in

the publication in Sec. 4.2 to calculated diffracted rays.

1.2.2 Classical Lagrangian field theory

Transitioning from point-particle mechanics to field theory, we can switch to relativistic

notation to describe a system with a number of degrees of freedom that tends towards

infinity. Such a system requires one or more fields φr(x), r = 1, . . . ,N to specify it. The

state of the system is defined by the ‘Lagrangian density’, given by L (φr ,∂µφr). The

‘Lagrangian’ L is found by integrating the Lagrangian density over all of the space occupied

by the field φr(x),

L =
∫
L (φr ,∂

µφr )dV , (1.2.2)

describing the Lagrangian of the system at time t, where ∂µ = ∂
∂xµ

. The evolution of the

state of the system in time is given by Hamiltonian’s variational system, defining the

action S as

S =
∫ t2

t1

Ldt =
∫
L (φr ,∂

µφr )d
4x, (1.2.3)

8
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where d4x = dtdV . The Euler-Lagrange equation of motion, deduced by applying the

variation principle δS = 0, is given by (see Mandl and Shaw, 2010, p. 28)

∂µ

(
∂L

∂(∂µφr )

)
− ∂L
∂φr

= 0. (1.2.4)

The Euler–Lagrange equation can be applied to both classical and quantum mechanics.

We can apply Lagrangian mechanics to find the equation of motion governing the Maxwell

electromagnetic field expressed in covariant form. Consider the free-field four-vector

potential Aµ(x) = (φ,A), where A is the aforementioned vector potential associated with

an electromagnetic field, with an associated Lagrangian density

L = − 1
16π

FµνFµν , (1.2.5)

where the antisymmetric field tensor Fµν is given by Fµν = ∂µAν −∂νAµ. The functional

derivatives are given by

∂L
∂(∂µAν)

= − 1
4π
Fµν and

∂L
∂Aν

= 0, (1.2.6)

and the equation of motion is the equation of motion for the free Maxwell field,

∂µF
µν = 0, (1.2.7)

from which the free-space Maxwell equations for the magnetic and electric fields can be

derived. This equation of motion underpins all the theory presented in this body of work.

We close this section by nothing that, under a suitable choice of gauge function, Eq. 1.2.7

implies that both the electric and magnetic fields E and B obey the d’Alembert wave

equations in a vacuum:

(
1
c2
∂2

∂t2
−∇2

)
E = 0 and

(
1
c2
∂2

∂t2
−∇2

)
B = 0, (1.2.8)
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where c is the speed of light in a vacuum and ∇2 is the Laplace operator. This so-

called electromagnetic wave equation describes the propagation of electromagnetic waves

through a medium.

1.2.3 Scalar representation of electromagnetic waves

Maxwell’s field equations in a vacuum provide the basic equations governing electromag-

netic fields, using the vector potential A to derive two vector fields, the electric field and

the magnetic field, to specify the dynamics of an electromagnetic field according to Eq.

1.2.7. In many optical problems, however, it is often not important to know the behaviour

of a field vector. Rather, we wish to know the average energy of an optical field. Therefore

a simplification of the vector representation of optical fields is convenient.

In most optics scenarios, we can employ a single, generally complex, scalar wave function

Ψ (r, t) called the disturbance or the complex amplitude, whose square modulus is equal

to the light intensity. This wave function obeys the d’Alembert equation in a vacuum,

( 1
c2
∂2

∂t2
−∇2

)
Ψ (r, t) = 0, (1.2.9)

where r= (x,y,z). The transition from a vector theory to a scalar theory of electromagnetic

optics is treated by Green and Wolf (1953) and Wolf (1959), as well as by Roman (1959)

for a field in the presence of charges and currents.

We can decompose the wavefunction Ψ (r, t) into a superposition of monochromatic fields

using the Fourier integral:

Ψ (r , t) =
1
√

2π

∫ ∞
0
ψω(r)e−iωtdω, (1.2.10)

where each monochromatic component is a product of the spatial wavefunction ψω(r) and

harmonic time factor e−iωt, where ω denotes the angular frequency. The decomposition

above does not include any negative values for ω, allowing for analyticity in the complex-

analysis sense of the term, and is therefore called the ‘analytic signal’ associated with the

scalar representation of an electromagnetic field. The real and imaginary parts of the
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analytic function are related to each other via the Hilbert transform. The actual waveform,

however, is only the real part; the actual signal is substituted by the analytic signal for the

purposes of analysis, providing a convenient and compact notation. The magnitude and

the phase of the complex analytic signal mathematically define an envelope and phase for

the waveform. More detail on the analytic signal can be found in words by Born and Wolf

(1999), Gabor (1946) and Bedrosian (1962).

The analytic signal may be visualised via a ‘phasor’, which is a concept frequently used in

circuit analysis to represent a complex number. Phasor diagrams, a tool for visualising

phasors, will be discussed as part of the next section, as they form a significant part of

this thesis.

Before concluding this section on the mathematical theory for electromagnetic fields,

it is useful to write down the time-independent differential equation that governs the

evolution of the spatial wavefunction ψω(r) associated with Eq. 1.2.10. Substituting Eq.

1.2.10 into the d’Alembert equation results in

∫ ∞
0

[(
∇2 +

ω2

c2

)
ψω(x,y,z)

]
exp(−iωt)dω = 0. (1.2.11)

From this equation it can be deduced that the quantity in square brackets vanishes,

arriving at the Helmholtz equation:

(
∇2 + k2

)
ψω(x,y,z) = 0, (1.2.12)

which describes the evolution of the spatial wavefunction associated with a given

monochromatic component of Eqn. 1.2.10. It is a key equation of scalar diffraction theory

and, as this theory concerns itself with constructing various solutions to the Helmholtz

equation, underlies a significant portion of the work in the present thesis. It is impor-

tant to note that the Helmholz equation is identical to the time-independent free-space

Schrödinger equation for spinless non-relativistic particles. As this thesis is concerned

with electromagnetic radiation, it is not necessary to define a quantum-mechanical theory

for evaluating the optics of particles, which can be found in a standard text on quantum

mechanics, such as that by Messiah (1961).
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1.3 Argand-plane representation of complex numbers

1.3.1 Basic theory of mappings

In linear algebra a ‘function’ is a rule f that associates each element in a set A with one

and only one element in a set B. If f associates an element a with an element b, then

b = f (a), and it can be said that b is the ‘image’ of a under f . The set A is defined as the

‘domain’ and B is the ‘codomain’ of f . The subset of B with all possible values for f as a

varies over A is called the ‘range’. Commonly, A and B are sets of real numbers, in which

case f is a ‘real-valued function of a real variable’. In other cases, B is a set of real numbers

and A is a set of vectors in Rn, where n is the number of variables.

If the domain of a function is Rn, and the codomain is Rm, then f is called a ‘map’ from

Rn to Rm, and is a generalisation of a function. This is denoted by:

f : Rn→ Rm. (1.3.1)

In the case where m = n, f is called an ‘operator’ on Rn. For a detailed overview of the

properties of maps and transformation, see the text by Howard and Rorres (2005). Here it

is in only necessary to define a few relevant properties.

A map is considered ‘one-to-one’ if it maps distinct vectors, or points, in Rn into distinct

vectors, or points, in Rm. It follows that for each vector w in the range of a one-to-one

mapping, there is exactly one vector x such that f (x)=w. A mapping that is one-to-one is

‘invertible’ owing to the fact that distinctness has been preserved.

A mapping which may, but not necessarily, associate a given member of its range with

more than one member of its domain is known as a ‘many-to-one’ mapping. To give a

simple example in terms of a function f which is a mapping from R to R, consider a

trigonometric function such as sinx. Given that sinx = sin(2π + x) = sin(4π + x) . . . , the

function f = sinx is called many-to-one. As distinctness is not preserved under these

circumstances, the mapping is not considered invertible.
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The Jacobian matrix is a matrix consisting of all first-order partial derivatives of a vector-

valued function f . For a function defined generally by 1.3.1, which takes the vector x

∈ Rn as the input and outputs the vector f(x) ∈ Rm, the Jacobian matrix is an m×n matrix

defined by

J =


∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...

∂fm
∂x1

. . . ∂fm
∂xn

 . (1.3.2)

If m = n then the matrix is a square matrix. The determinant of the Jacobian, simply called

the ‘Jacobian’, provides important local information about the mapping, for example,

regarding whether a many-to-one mapping is evident. The Jacobian determinant is evoked

extensively throughout Chapter 3, particular in the publication inserted into Sec. 3.2.

The work in this thesis is largely concerned with the utility of a particular kind of mapping,

a mapping to the Argand plane. A two-dimensional differentiable continuous single-

valued complex function Ψ (x,y) induces a mapping M : R2→ C to the Argand (complex)

plane, given by

M(Ψ (x,y))→ [ReΨ , ImΨ ], (1.3.3)

where ReΨ and ImΨ denote the real and imaginary parts of Ψ (x,y), respectively.

The Argand plane provides a visual representation of the kind of complex functions used

to represent optical fields and is a topic that is treated in detail throughout this thesis.

There exists precedents where an Argand mapping is used to visually represent some

complex function to aid in the analysis of a real-world problem. Below are some practical

applications for the use of Argand plane as a graphical aid.

1.3.2 Practical use of Argand-plane representation

The complex number z has the form
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z = x+ iy, (1.3.4)

and can be expressed in polar coordinates (r,θ), as

z = r cosθ + ir sinθ, where x = r cosθ, y = r sinθ. (1.3.5)

Furthermore, due to the Euler formula, z can be represented as

z = reiθ . (1.3.6)

The complex number z can be represented in the Argand plane as shown in Fig. 1.1.

Figure 1.1: Argand-plane representation of the complex number z = x+ iy.

As previously stated in Sec. 1.2.3, in the analysis of waves, the complex-number repre-

sentation offers a description that is mathematically simpler to process in the form of the

complex analytic signal. A harmonic waveform can be taken to be the real part of the

analytic signal ψ(x, t) = Aeiωt, where A is the amplitude and ω is the angular frequency.

For a traveling waveform, the angle in Fig. 1.1 becomes ωt, suggesting that the arrow

rotates at a frequency ω. This rotating arrow and its associated phase angle constitute a

phasor.

In AC circuit theory, two sinusoidal waveforms of the same angular frequency ω can have

a phase difference between them. To indicate the relationship between the amplitude and

phase of the waveform, terms such as ‘lag’ and ‘lead’, as well as ‘in-phase’ and ‘out-of-

phase’ are employed. Represented in the time-domain form, the generalised sinusoidal
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expression is given by At = Am sin(ωt ±φ). The phase difference φ can be visualised by

employing what is known as ‘phasor diagrams’.

To demonstrate, consider the diagram in Fig. 1.2, showing two sinusoidal waveforms,

whereby one (the current i) is lagging behind the other (voltage v) by 45 degrees, or π/2

radians.

Figure 1.2: Two sinusoidal waveforms representing the voltage (red) and current (blue). The
current i is lagging behind the voltage v by φ = π/4 radions.

The phasor diagram, lying in the Argand plane where the real part of the waveform is

displaced along the x-axis and the imaginary part along the y-axis, is shown in Fig. 1.3.

Figure 1.3: Phasor diagram representing the phase difference between the two waveforms
illustrated in Fig. 1.2.

Next, we look at the application of Argand-plane analysis in engineering. In the analysis

of control systems, the ‘root locus analysis’ is a method used to determine all the roots of

the differential equations governing the system. The roots are desired as they describe

the natural response of the unit. This method was developed by Evans (1948) and uses a

graphical plot in the complex plane to explore how the roots of the system change with the

variation of some system parameter. This is a way to determine the stability of a system.
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For further reading, see the book by Kuo (1987, pp. 329–388) as well as articles by Evans

(1948; 1950) and Williamson (1969).

Finally, we can find an example of Argand-plane graphical analysis in optics. Fresnel

diffraction is a paraxial version of the angular spectrum formalism and is treated in detail

in the next chapter. The Fresnel integrals arise in the description of Fresnel diffraction

and are defined as

S(u) =
∫ u

0 sin(τ2)du, C(u) =
∫ u

0 cos(τ
2)dτ, (1.3.7)

where u is an arbitrary variable which characterizes the Fresnel integrals.

The simultaneous parametric plot of S(u) and C(u) results in the Cornu spiral, shown in

Fig. 1.4.

Figure 1.4: The parametric plot of Fresnel integrals S(u) and C(u), resulting in the Cornu
spiral (from Morgan, 2011, with permission).

The Cornu spiral can be seen as an Argand plane mapping of the points B(u) = S(u)+iC(u)

and represents diffraction from the edge of a half plane. Morgan et al. (2010) generalized

the Cornu spiral by describing the Argand-plane image corresponding to diffraction from

a cylindrical edge. The generalisation of the Cornu spiral is a topic that is explored

throughout the following chapters.

The remainder of this thesis is comprised of three published bodies of first-author work

concerning the Argand-plane mappings induced by complex scalar wavefields, each with
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a foreword. Chapter 2 focuses on the utility of the Argand plane in the analysis of vortical

fields and introduces singularities of the mapping to the Argand plane, called vorticity

singularities. The duality between these singularities and singularities of the phase of

the complex scalar wavefield, vortices, is explored. Chapter 3 features an experimental

realisation of the theory outlined in Chapter 2, including experimentally constructed

vorticity singularities, utilising visible light. Chapter 4 moves away from visible light

and into the region of hard x-rays. The generalisation of the Cornu spiral for objects with

increasingly complex geometry is explored. The generalised Cornu spiral of these objects

is experimentally realised using hard x-rays. Finally, Chapter 5 discusses future work and

possible applications of the work presented here. Chapter 6 concludes the thesis.
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Chapter 2

Argand-plane representation of op-

tical vortices in a two-dimensional

complex scalar wavefield

In this chapter, the Argand-plane mappings induced by a two-dimensional optical speckle

field is studied, with particular attention to the Argand-plane representation of the optical

vortices that may be associated with such a speckle field. Preceding the as-published

body of work is some background theory of singularities of wave and ray theory, namely

vortices and caustics, as well as a discussion on various approaches toward the simulation

or generation of optical vortices. The vortices simulated here are calculated by forward-

propagating an optical speckle field, and as such, the derivation of the formalism used to

do so, known as the angular spectrum formalism, is derived.

2.1 Introduction and background theory

2.1.1 Singularities of wave theory and ray theory

Many mathematical theories possess singularities, which manifest themselves on different

length scales. A singularity can be interpreted as any point at which the predictions of
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that theory break down. When a theory does exhibit this so-called singular behaviour, it is

sometimes necessary to go a higher, or more general theory to account for the singularity.

In the shortwave limit of an optical wavefield, we can neglect the finiteness of the wave-

length and adopt a ray approach for solving optical problems. This approach, known as

Geometrical Optics, forms the basis of the work presented in Chapter 4 of this thesis, and

is therefore described in detail in Sec. 4.1.1. This ray theory of optical fields predicts,

under focusing conditions, regions of infinite intensity known as caustics. Caustics are

singularities of ray theory. The formation of one such region, called a point caustic, via a

perfect lens is shown in Fig. 2.1. There, it can be seen that neighbouring rays intersect

at the site of a caustic. The cross-sectional area of the associated tube of rays is zero,

and consequently, an infinite amplitude is predicted at the point of intersection (Keller,

1962). The point caustic requires infinitely many rays to pass through a single point and

is therefore not stable with respect to perturbation (Thom, 1975).

Figure 2.1: Light rays indicated by arrows, upon traveling through a perfect lens, are focused
onto a single point P, forming a point caustic.

For a ray caustic that is stable, one can look to the surface caustic, wherein a family of rays

form an envelope (Thom, 1975). Examples of surface caustics are the cusp, commonly seen

at the surface of a cup of coffee, and the fold. Higher order caustics include the elliptic

umbilic and hyperbolic umbilic. The mathematics of caustics is dictated by catastrophe

theory, the study of singularities and gradient mappings, which predicts an infinite

hierarchy of caustics. For an in-depth treatment of catastrophe theory, see the seminal

book by Nye (1999).

The geometric description of light, while being enormously successful in evaluating light

fields under a plethora of circumstances, predicts these caustic regions of infinite density,

which are a physical absurdity. It is therefore necessary to pass to the wave theory of

optical fields, where light is regarded as possessing a finite wavelength.
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The wave theory of optics possess its own singularities, known as phase vortices. These

are singularities of the phase of the wavefield and are classified as screw-type singularities

(Berry, 1981). They are characterized by regions of zero intensity, being a consequence of

the wave nature of an optical field, of which destructive interference is a feature. They

are entirely complementary to ray caustics; where caustics possess an infinite intensity,

destructive interference of waves results in a zero intensity at the core of the vortex.

However, in moving from ray theory to wave theory, caustic surfaces of infinite intensity

are softened to peaks that often form a skeleton decorated with phase vortices. An example

of this is the vortices present in the vicinity of caustics that are formed in the focal volumes

of coherently illuminated abberated lenses (Allen et al., 2001b).

We can write the equation for a simple polynomial vortex. Up to a continuous deformation,

a phase vortex at (x0, y0) is locally given by

ψ± = (x − x0)± i(y − y0), (2.1.1)

for Reψ = 0 and Imψ = 0. Here, ψ+ denotes a vortex, around which the phase winds in an

anti-clockwise direction, and ψ− an anti-vortex, with a clockwise phase-winding.

In Sec. 2.2, vortices and caustics are described in detail, as is the nature of their comple-

mentarity. There, it is shown that the Argand plane can be used in the analysis of phase

vortices present in an optical field. This paper also predicts singularities of the Argand-

plane mapping induced by complex scalar wavefields, known as vorticity singularities,

or Argand-plane caustics in the sense that they appear to possess the same structure and

hierarchy as ray caustics despite not being a representation of a physical gradient mapping.

The connection between the caustic-like singularities of the Argand-plane mapping and

singularities of the phase of the physical wavefield is explored in detail.

Further reading on the vortex–caustic duality can be found in Berry (1981).

2.1.2 Methods for vortex generation

For the analysis carried out in this chapter, it was necessary to find a method to generate

optical vortices. There are many methods of vortex generation for optical fields. One
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method involves the use of diffractive optics to transform a spatially coherent flat phase

beam into beams with optical vortices. Bazhenov et al. (1990) created a vortex beam by

modifying a diffraction grating to include a dislocation at its centre. The modified device

is called a ‘fork’ hologram. More recent examples of the use of a fork hologram in the

creation of a vortex beam can be found by Bekshaev et al. (2010) and Bekshaev et al.

(2014).

In 1992, Allen et al. made the important discovery that beams with optical vortices carry

orbital angular momentum. They adopted a method using cylindrical lenses to convert a

Hermite-Gauss mode, a beam with zero angular momentum, into a Laguerre-Gaussian

mode, a beam carrying a well-defined angular momentum. The same method was adopted

by Lin et al. (2011) and Yu et al. (2015).

Another optical element that can be used in the generation of optical vortex beams is

the spiral phase plate (SPP), a method pioneered by Beijersbergen et al. (1993; 1994).

These are discs with refractive index n, and an optical thickness ∆t that increases with

azimuthal angle. When a plane wave passes through the spiral phase plate it incurs a

phase shift determined by n and ∆t. Upon transmission, the beam has a vortex. More

recently Xin et al. (2014) have adopted this method, combining quarter-wave plates and

spatially-variable half wave plates to construct a SPP for generating optical vortices, and

Janicijevic and Topuzoski (2016) have generated optical vortices using a helical lens, which

is a combination of the SPP and a thin lens. Similarly, Peele et al. (2002) have used a SPP

to generate an x-ray vortex, that is, an optical vortex in a field consisting of x-ray photons.

Despite all other methods that have been developed, several of which are mentioned

above, none match the performance of computer-generated holograms for generating

vortex beams (Heckenberg et al., 1992; Dennis et al., 2009). The availability of spatial

light modulators (SLMs), devices that have to ability to modulate amplitude, phase

or polarization of light, has made computer-generated holograms popular due to their

flexibility and performance. In phase modulation mode, an SLM is able to imprint a phase

component directly onto a beam. Examples of recent work adopting SLMs to generate

vortices are found in Rickenstorff and Ostrovsky (2013), Huang et al. (2014), Gao et al.

(2015) and Kapoor et al. (2016). Vyas and Senthilkumaran (2010) have used a SLM
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integrated into a Mach-Zehnder interferometer to generate a vortex beam, as shown in

Fig. 2.2. There, a laser emits linearly polarized light, which is then spatially filtered and

collimated. A beam splitter (BM1) splits the beam into two arms. One arm passes through

an SLM which uses a computer-generated phase mask to impart linear phase variations

on the beam. The beam diffracted from the SLM is then made to interfere with the other

arm of the Mach-Zehnder interferometer using BS2, and the resulting ‘interferogram’ is

captured by the CCD. The interferogram, which is a series of distorted fringes containing

phase information as a result of the superpositioning of the two beams, is used to detect

the presence of vortices. A neutral density filter (NDF) is used to make the amplitude of

the reference beam equal to that of the vortex beam, which has the effect of enhancing the

quality of the fringes. More detail on interferograms is found ahead in Sec. 3.1.2.

Figure 2.2: Depiction of the use of an SLM to generate a vortex beam, after Vyas and Senthilku-
maran (2010). A laser (L) emits light which is then spatially filtered (SF) and
collimated via a lens (L). A beamsplitter (BS1) splits the beam into two arms. The
top arm passes through an SLM and interferes with the second arm via a mirror
(M). The second arm is directed, using a mirror, to pass through a neutral density
filter (NDF) to adjust the amplitude. The resulting interferogram exits BM2 and is
received by the detector.

The published work in Sec. 2.2 adopts a method for numerically generating optical

vortices that involves the spatial filtering of two-dimensional complex optical white noise.

This creates a speckled pattern of dark and light spots that results from interference

effects, known as a speckle field. The speckle field is then allowed to forward-propagate,

which has the effect of generating propagation-induced vortices. The numerical method is

explained in detail in Sec. 2.2. This is a similar technique to that explored by Staliunas

et al. (1995), who generate a random optical field with Gaussian statistics, which was then

allowed to propagate in order to induce vortices.
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Figure 2.3: Generation of x-ray speckle, after Kitchen et al. (2015). X-rays are emitted from a
source S and pass through a random phase object O, resulting in a speckle field.

Before continuing to describe the process used for computationally propagating the

speckle field through space, namely the angular spectrum formalism, note that optical

speckle has previously been associated with propagation-based phase vortices. For ex-

ample, Kitchen et al. (2004) indicated the presence of optical vortices in the speckle field

revealed by the phase contrast x-ray imaging of animal lungs. They noted that the speckle

field is a result of the focusing effect of the individual alveoli, each one behaving as an aber-

rated refractive lens. The presence of vortices in a speckle field at length scales comparable

to the wavelength had previously been noted by Bobrov (1991), Shvartsman and Freund

(1994), Staliunas et al. (1995), and Aksenov et al. (1998). Figure 2.3 demonstrates x-ray

speckle generation as per Kitchen et al. (2015). Relating to this are the aforementioned

vortices noted by Allen et al. (2001b) in the focal volumes of aberrated lenses, which is

an effect first noted by Boivin et al. (1967) in the focal region of an ‘aplanatic system’. At

length-scales that are large compared to the wavelength, surface caustics were observed in

the same focal volumes, owing to refraction of the optical field due to the lens aberration.

This is an example in the literature where the complementarity between ray caustics and

phase vortices is realised.

The study of speckle fields is an important area of physics, necessary to solve problems

in various areas of study. Some examples are the areas of adaptive optics, star speckle

interferometry and image reconstruction, where the reduction of wavefront distortion is

important (see Aksenov et al., 1998, and references therein).
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The experimental generation and analysis of optical speckle constitutes a significant part

of the next chapter.

2.1.3 Angular spectrum of plane waves

It in necessary to describe the method for evaluating a propagated field downstream of a

disturbance, known as the angular spectrum. This technique is used throughout the work

included later in this chapter and in subsequent chapters. For a complete derivation, see

Paganin, 2006.

Figure 2.4: A source C radiating an electromagnetic field which then propagates into the half
space z ≥ 0.

Figure 2.4 shows a source S which radiates a scalar electromagnetic wave, denoted by

the monochromatic wavefield ψω, from within the half space z < 0, propagating forward

into the half-space z ≥ 0 which is free from sources and charges. Assuming that ψω

propagates strictly from left-to-right, the angular spectrum formalism can be used to

construct an operator that can be applied to wavefield evaluated over the plane z = 0 to

give the propagated wavefield evaluated over a plane z = ∆ lying downstream of the initial

disturbance.

Given a Cartesian coordinate system (x,y,z) with the positive z-axis acting as the optical

axis, the wavefield evaluated over the plane lying at z = ∆, where ∆ ≥ 0, is given by

ψω(x,y,z = ∆) =
1

2π

∫ ∫
ψ̂ω

(
kx, ky , z = 0

)
exp

[
i∆

√
k2 − k2

x − k2
y

]
× exp

[
i(kxx+ kyy)

]
dkxdky , (2.1.2)
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where ψ̂ω
(
kx, ky , z = 0

)
is the Fourier transform of ψ(x,y,z = 0) with respect to x and y,

and kx and ky are the corresponding Fourier-space variables. The wavevector k has a

magnitude k = 2π/λ for wavelength λ. Note that this formalism provides an exact solution

to the Helmholtz equation, Eq. 1.2.12, for forward-propagating monochromatic scalar

electromagnetic beams.

We can express the angular spectrum formalism using an operator D∆ which describes

the act of free-space propagation. Thus:

ψω(x,y,z = ∆) =D∆ψω(x,y,z = 0), ∆ ≥ 0, (2.1.3)

where the ‘diffraction operator’ is defined as

D∆ = F −1 exp
[
i∆

√
k2 − k2

x − k2
y

]
F , (2.1.4)

with the operators acting from right to left. F denotes the Fourier transform operator and

F −1 the inverse direction.

If the plane-wave components of the forward-propagating field ψω make a small angle

with the optical axis, it is said to be paraxial. As previously mentioned, Fresnel diffraction

is a paraxial version of the angular spectrum formalism. Under these circumstances the x-

and y- components of the wavevector k, kx and ky , will have a magnitude much less than

that of kz. Therefore, √
k2 − k2

x − k2
y ≈ k −

k2
x + k2

y

2k
, (2.1.5)

so 2.1.4 becomes, omitting an irrelevant phase factor,

D(F)
∆

= F −1 exp

−i∆(k2
x + k2

y )

2k

F , (2.1.6)

where D(F)
∆

is the diffraction operator corresponding to Fresnel diffraction (Paganin, 2006).

In contrast with Eq. 2.1.2, this is an approximate solution to the Helmholtz equation.
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The forward and inverse Fourier transforms in the operator form of the angular spectrum

formalism can be evaluated numerically using the fast Fourier transform (FFT), which

is an efficient method of calculating a Fourier transform (see Press et al. (1992)). The

propagation distance ∆ can vary from zero through to the near-field and intermediate

field. The ‘Fresnel number’, denoted by NF , provides an approximation to the near-,

intermediate- and far-field definitions. It is given by,

NF =
l2

λ∆
, (2.1.7)

where l is the size of the smallest transverse feature, essentially specifying the resolution

and λ is the wavelength of the beam. For a value of ∆ such that NF >> 1 the beam is in

the near-field. For NF ≈ 1, the beam is in the intermediate field and NF << 1 indicates the

far-field. As one makes the transition to the far-field, the phase of the angular spectrum

propagator, ∆
√
k2 − k2

x − k2
y , becomes under-sampled and the angular spectrum formalism

breaks down in Fourier space. It can then be replaced with a one-FFT form of the Fresnel

diffraction operator, which will allow one to numerically propagate to the far-field. This

approximation has the form of a paraxial modulated spherical wave emanating from the

plane of the unpropagated disturbance (see Paganin, 2006 for more detail). The angular

spectrum formalism and Fresnel diffraction integral are used extensively throughout the

work in this thesis.

2.2 Duality between phase vortices and Argand-plane caus-

tics

On the following pages is inserted the as-published form of the first of three first-author

papers arising from this thesis. The paper has been published as:

F. Rothschild, M. J. Kitchen, H. M. L. Faulkner, and D. M. Paganin, ‘Duality between phase

vortices and Argand-plane caustics’, Opt. Commun. 285, pp 4141–4151 (2012).
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Chapter 3

A study of Argand-plane vorticity sin-

gularities using optical speckle

3.1 Introduction and background theory

3.1.1 The generation and manipulation of optical speckle

In the paper presented in Sec. 2.2, optical speckle was simulated with the goal of studying

the resulting vortex population and its connection to Argand-plane vorticity singularities.

Here, optical speckle is generated experimentally for the same purpose. There are many

methods that can be used to generate optical speckle so that it can be studied. Aksenov

et al. (1998), for example, generated a speckle field by passing an optical beam through an

inhomogeneous medium. A method of generating speckle might incorporate a means of

precisely controlling the size and/or position of the speckle so that we could better study

it. Pascucci et al. (2016) generated a speckle pattern by passing a beam through a random

phase mask and used the handedness of a circular polarizer to change the position of the

dark speckle.

An example of a simulated speckle field is shown in Fig. 3.1. Figure 3.1(a) shows a

representation of lungs, comprised of 23,600 air-filled spheres with a mean diameter of

60.0 µm. The diameter of each sphere is randomly generated using Poisson statistics; the

position is randomly generated using a uniform distribution, with a limit on the maximum
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number of spheres allowed in the projection owing to the thickness of the sample (11.3

mm). Using the angular spectrum formalism, the sample is numerically ‘illuminated’

by 34 keV x-rays, which are then allowed to propagate. One metre from the sample, a

speckle pattern is visible, as seen in Fig. 3.1(b).

(a) (b)

Figure 3.1: Following Kitchen et al. (2004); (a) a simulated contact image of the exit surface
of a 11.3 mm-thick lung sample containing 23,600 air sacs with a mean diameter
of 60.0µm illuminated by 34 keV x-rays, and (b) a numerically simulated speckle
field obtain by propagating the image in (a) by 1.0 m using the angular spectrum
formalism shown in Sec. 2.1.3.

The method used to generate speckles experimentally in Sec. 3.2 involved adapting the

numerical approach used in Sec. 2.2. There, white noise underwent a Fourier transform so

that higher frequencies could be filtered out from the noisy wavefield. This had the effect

of producing larger speckles upon the implementation of an inverse Fourier transform.

The size of the speckle was seen to be inversely proportional to the size of the mask placed

on the power spectrum of the noisy field.

A detailed schematic corresponding to the experimental set-up used to produce the speckle

field is given in Sec. 3.2. There, a collimated optical beam was propagated through a

ground-glass screen, a method which has the effect of introducing amplitude fluctuations

into a beam that we call noise. In the interest of limiting the number of optical elements

used in the experimental implementation of the numerical method of Sec. 2.2, it was

noted that as white noise has within it an equal power distribution of all frequencies, the

Fourier transform of white noise will be white noise. This noisy beam, which is essentially

the two-dimensional spatial frequency spectrum of white noise, was then incident on
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a circular iris. In passing through this aperture, the radius of which can be precisely

controlled, higher spatial frequencies were removed. An inverse Fourier transform was

then implemented with the use of a lens, invoking the Fourier transform properties of

lenses, which tells us that if the transmissive object, in this case the circular iris, is placed

one focal length in front of a lens of focal length f , then its Fourier transform will form one

focal length behind the lens (Goodman, 2005). The resulting speckle field was received by

a detector. The diameter of the circular iris was inversely proportional to the size of the

individual speckle. If the speckles are associated with vortices, then the circular iris is a

means by which to control the number of vortices.

Generally speaking, the number of vortices in an optical beam can be varied by adjusting

some external parameter that the wave depends on. As mentioned earlier, Sec. 2.2

investigates the connection between the presence of vortices in a simulated wavefield and

the singularities induced by its Argand-plane mapping, and the publication in Sec. 3.2

explores this experimentally. Coming back to Eq. 1.3.2 of Chapter 1, singularities are

formed along lines where the Jacobian is equal to zero1. Knowing this, we can divide

the external parameters that can adjust the vortex population into two categories: trivial

and non-trivial parameters. A trivial parameter is designed to change the number of

vortices while only rigidly shifting the positions of the singularity lines, and a non-trivial

parameter changes their overall form. When a wave depends on a non-trivial external

parameter, higher-order vorticity singularities can occur. This effect was demonstrated

numerically through Fig. 8 of the publication inserted into Sec. 2.2.

An example of a parameter that adjusts the singularity lines in a non-trivial fashion is

the propagation distance. In the experimental scheme devised in Sec. 3.2 and described

above, the size of the circular iris represents a non-trivial external parameter with regards

to the singularity lines. Rather than simply rigidly shifting the speckle pattern, changing

the size of the iris changes the size of the speckle itself and consequently the number

of speckles within the region of interest, altering the field in a non-trivial fashion. This

device can therefore be used to induce higher-order vorticity singularities.

1Physically, these lines correspond to lines of zero vorticity, a point discussed further in Sec. 3.2. Berry
demonstrates such lines in Fig. 2 of his 2009 paper.
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An arbitrary complex constant that could be imparted onto the wave, rigidly shifting

it while changing only the position of the singularity lines, would suffice as a trivial

parameter. In the experiment, this is done by using a Mach-Zehnder interferometer to

add a phase term onto the vortex beam, the details of which are explained fully in Sec. 3.2.

As with the Mach-Zehnder set up of Fig. 2.2, a reference beam was split off from the main

beam. Incorporated into the reference beam were optical elements designed to introduce

phase shifts before recombining the two arms of the interferometer.

The detector that is situated at the end of the vortex beam enabled a measurement of

intensity only. In order to reconstruct the entire wavefield, it was necessary to measure

the phase of the beam as well as the intensity.

3.1.2 The phase problem

In the field of imaging, there is often a loss of information that occurs when making a

physical measurement regarding the phase. Detectors, like the CCD camera used in the

experiment described in Sec. 3.2, are only able to measure the intensity of light, which is

related to its magnitude. This is not a complete measurement of the information contained

in the beam; light has also a phase which carries with it important information e.g. about

an object which it has passed through. Due to the rapidly oscillating nature of the

wavefield at higher frequencies, the phase can not be directly measured (at lower temporal

frequencies, microwaves for instance, modern technology can directly measure the phase).

There are several, largely uncomplicated techniques that exist for the interferometric

recovery of phase with visible-light optics due to the ease with which one can obtain a

coherent visible light source and the abundance of optical elements suitable for visible

light, such as mirrors and lenses. The problem is far more difficult in x-ray physics as

x-ray lasers and optical elements suitable for use with x-ray radiation are difficult to come

by, and in some cases do not yet exist. Solutions to the phase problem for these higher

temporal frequencies will be discussed in the following chapter.

The phase problem falls under the category of an ‘inverse problem’. Generally speaking,

a forward, or direct problem, seeks to determine the effect from a given cause, while

an inverse problem attempts to deduce the cause from a given effect. In the context
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of imaging, a forward problem takes as its input the model of an object, returning the

imaging data that results from the object model and its interaction with a source and

detector. This class of problem forms the basis of the results of the publication in Sec.

2.2, where the appropriate mathematical method is used to map the given model, in this

case white optical noise, to the desired data. Additionally, solutions to forward problems

feature throughout the remainder of this thesis, largely as a means to extrapolate data

beyond the general capabilities of the experimental hardware.

An inverse problem involves the determination of information about an object from its

imaging data. As the map from the data to the model does not necessarily exist, it is in

general a far more difficult problem than its associated forward problem. In order to

construct an algorithm for an inverse problem, one must possess a detailed knowledge of

the associated forward problem and consider the existence and uniqueness of a solution

as well as the stability of the retrieved information with respect to perturbations of the

input data (Paganin, 2006).

Hadamard (1923) suggested that a mathematical model of a physical phenomenon should

be such that a solution exists that is unique and changes continuously with the initial

conditions. If an inverse problem possesses such a solution, it is considered ‘well-posed’,

in the sense of Hadamard. Otherwise, it is considered ‘ill-posed’. A problem can be

ill-posed because no solution exists or because non-unique solutions exist which cannot be

distinguished from one another. In order to proceed and render the problem well-posed,

extra data and/or a priori knowledge is required. Alternatively, one can approach an

ill-posed problem statistically, using the ‘Bayesian’ class of methods. There, a statistical

probability is assigned to each possible solution, and the solution with the highest prob-

ability is of being correct is chosen, within a given model. For more detail see Paganin

(2006) and references therein. More on solutions to ill-posed inverse problems is included

in the next chapter, in the context of phase retrieval for x-ray imaging.

Given that the detector in an imaging system is only able to record intensity, one solution

the phase problem in this context is to deliberately introduce phase shifts into the beam

that are visible as intensity variations. The most famous method of doing so is known

as ‘interferometry’, a family of techniques whereby waves are superimposed to obtain
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information about them. The result of the superposition is an interferogram, described

previously in Sec. 2.1.2.

Interferometers can be categorized as either ‘double path’ or ‘common path’. For a double-

path interferometer, the reference beam travels along a path that is separated from the

sample. The Mach-Zehnder (Masi et al., 2012) set-up is an example of this, as is the

Michelson (Hettwer et al., 2000) interferometer and the Twyan-Green interferometer

(Novak et al., 2005). Common-path interferometers have both beams traveling along

the same path. The Sagnac interferometer (Lo et al., 2005) and the fibre-optic gyroscope

(Lefevre and M. Turpin, 1990) are examples of this. A double path interferometer

was implemented into the experimental set-up described in Sec. 3.2 as it allowed the

introduction of phase shifts into the reference beam for the purpose of both phase-stepping

interferometry and trivial manipulation of vortex numbers.

Phase-shifting, or phase-stepping interferometry (PSI) is a highly efficient method of

phase recovery for visible light that is adopted in the work of Sec. 3.2. The integration

of computers into the measurement of optical hardware has allowed PSI to be optimised

and mainstreamed. This is not just a hardware configuration, but a method in data

collection and analysis, making deliberate phase shifts to produce several interferograms

that are then combined in an algorithm to recover the phase of the original beam. The

advantage of PSI is that it is not dependent on finding fringe centres. Additionally, it

is not sensitive to variations in spatial intensity or detector sensitivity. This stands in

contrast to methods that involve the analysis of single static interferograms. While these

methods have also improved with the use of computers, it requires the locating of fringe

centres. Additionally, as data is only collected as fringe centres, there is low spatial

sampling. These problems are eliminated with PSI. There are many different methods of

phase-shifting interferometry (see e.g. Schreiber and Bruning, 2006). The method used in

Sec. 3.2 is a four-step algorithm described by Schreiber and Bruning (2006), and derived

below.

To find an expression for the interferograms that are used to recover the phase, consider

the two arms of the Mach-Zehnder interferometer, the test beam and the reference beam,
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denoted by ψt and ψr , respectively. We can assign a wavefunction to each, given by

ψt(x,y) = at(x,y)eiφt(x,y) and ψr(x,y) = ar,i(x,y)ei[φr (x,y)−δi ], (3.1.1)

where at(x,y), ar(x,y) are the amplitudes and φt(x,y), φr(x,y) are the phases of the two

beams. The reference beam has an introduced phase shift δi which, in the case of this

four-step algorithm, takes on four discrete values, each separated by π/2:

δi = 0,π/2,π,3π/2; i = 1,2,3,4. (3.1.2)

The resulting interferogram, Ii(x,y) is given by

Ii(x,y) =
∣∣∣ψt(x,y) +ψr,i(x,y)

∣∣∣2
= a2

t (x,y) + a2
r (x,y)

+ 2at(x,y)ar(x,y)cos[φt(x,y)−φr(x,y) + δi] , (3.1.3)

which leads to the fundamental PSI equation (Schreiber and Bruning, 2006),

Ii(x,y) = I ′(x,y) + I ′′(x,y)cos[φ(x,y) + δi] , i = 1,2,3,4 (3.1.4)

where the intensity pattern for Ii(x,y, t) is a sum of the average intensity I ′(x,y) = a2
t (x,y) +

a2
r (x,y) and the intensity modulation I ′′(x,y) = 2at(x,y)ar(x,y), which depends on the

wavefront phase difference φ(x,y) = φt(x,y) − φr(x,y) between the reference and test

beams, and the introduced phase shift δi . The four-step method requires the recording

of four separate interferograms, each separated by π/2 in phase, according to Eq. 3.1.2.

Using Eq. 3.1.4 together with trigonometric identities, the interferograms can be written

as
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I0(x,y) = I ′(x,y) + I ′′(x,y)cos[φ(x,y)]

I1(x,y) = I ′(x,y)− I ′′(x,y)sin[φ(x,y)]

I2(x,y) = I ′(x,y)− I ′′(x,y)cos[φ(x,y)]

I3(x,y) = I ′(x,y) + I ′′(x,y)sin[φ(x,y)] . (3.1.5)

The terms that are constant can be eliminated by combining the four interferograms, as

follows:

I3 − I1
I0 − I2

=
sin[φ(x,y)]
cos[φ(x,y)]

. (3.1.6)

Arriving at the final result, the phase can be recovered using

φ(x,y) = atan
[
I3 − I1
I0 − I2

]
. (3.1.7)

3.2 Argand-plane vorticity singularities in complex scalar op-

tical fields: An experimental study using optical speckle

On the following pages is inserted the as-published form of the second of three first-author

papers arising from this thesis. The paper has been published as:

F. Rothschild, A. I. Bishop, M. J. Kitchen, and D. M. Paganin, ‘Argand-plane vorticity

singularities in complex scalar optical fields: An experimental study using optical speckle’,

Opt. Exp. 22, pp 6495–6510 (2014).

Note that, due to a printing error, the last two sentences of the caption of Fig. 8 in this

publication are obscured. These state: “The location of vortices are indicated by circles:

dark fill for vortices and light fill for antivortices. The field-of-view measures 1.48 mm ×

1.11 mm. The Argand mapping is shown in e), now with much finer sampling, allowing a

clear image of vorticity singularities.”
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Chapter 4

A study of generalised Cornu spirals

using hard x-rays

In this chapter, the investigation of Argand-plane mappings induced by complex scalar

wavefields moves from the domain of visible light to x-rays. In particular, the Argand-

plane mappings induced by diffracted x-rays are considered experimentally. Such map-

pings are shown here to take the form of generalised Cornu spirals. Before presenting

the publication that has resulted from my work on this topic, some background theory is

included. First, is it necessary to define a theory for predicting the effects of diffraction.

In this case, that theory is the Geometrical Theory of Diffraction, which is an extension

of Geometrical Optics that accounts for diffraction, despite having abandoned the finite

wavelength of light. Following from this is a brief discussion on the existing applications

of generalised Cornu spirals for solving diffraction problems or otherwise. Next, it is nec-

essary to describe the techniques used in the experimental reconstruction of generalised

Cornu spirals, and so a description of the technique used here to reconstruct the image of

an object illuminated by x-rays, namely propagation-based x-ray phase contrast imaging,

is provided. As discussed in Chapter 3, imaging with high-frequency radiation presents

one with the phase problem, which is more difficult with regards to x-ray imaging, when

compared to the case for visible light. Solutions to this problem are discussed here. Finally,

methods for the analysis of the reconstructed wavefield that are relevant here, namely

virtual optics, are discussed before continuing with the published work itself.

63



Argand-plane mappings induced by complex scalar wavefields

4.1 Introduction and background theory

4.1.1 Geometrical representation of optical fields

In Chapter 1 we saw that an electromagnetic field can be described as a wave propagating

through space, obeying the d’Alembert equation. Here we describe an alternate repre-

sentation of electromagnetic fields at small wavelengths, or in the ‘shortwave limit’. The

electromagnetic fields associated with the propagation of visible light, called optical fields,

are characterized by rapid oscillations which correspond to wavelengths on the order of

10−6 m. X-rays, which are smaller still, with a wavelength mostly ranging from 10−8 m to

10−11 m, are also considered an optical field. For many optical problems, it is adequate to

abandon the finiteness of the wavelength and use an alternate description of light which

embodies the field of geometrical optics.

Consider the propagation of an optical field from the perspective of its wavefronts, which

are surfaces of constant phase, illustrated in both Figs. 2.3 and 2.4, to which the direction

of propagation is always perpendicular. The shape of the wavefront, in the absence of any

scatterers, depends on the geometry of the source. A point source will emanate spherical

wavefronts; a line source, such as from a fluorescent tube or some boundary wave, a

cylindrical wavefront. The simplest form is the plane wave, which is an approximation

that many waves take in a sufficiently localized region of space. Geometrical optics

describes light in terms of rays which are perpendicular to the light’s wavefront, traveling

locally in the direction of the energy flow. In the case of light traveling as a plane wave,

the geometric rays are parallel to one another, as is seen with the incident rays illustrated

in Fig. 2.1, which appears in Sec. 2.1.1.

The path of the ray can be calculated using Fermat’s principle which, as previously

mentioned, is akin to the principle of least action, insofar as it states that the optical path

length of a ray between two points will be shorter than along any other curve that joins

these points and which lies in a regular neighbourhood of it. A ‘regular neighbourhood’ is

one that is covered by rays in such a way that only one ray passes through each point of it

(Born and Wolf, 1999).
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Geometrical optics provides an accurate description of the reflection, refraction and

absorption of light rays. Being thousands of years old, its applications are vast. For further

reading of the numerous applications of geometrical optics, see any standard textbook on

optics, such as those written by Born and Wolf (1999) and Hecht (2002). It is relevant to

this thesis, though, to mention that geometrical optics can be used to predict behaviour of

light in the presence of lenses and other optical elements, with applications such as the

determination and correction of lens aberration (Allen et al., 2001a; Allen et al., 2001b;

Faulkner et al., 2003).

A limitation of geometrical optics is its failure to predict any field in shadow regions. This

is due to its inability to account for the wave-like properties of light in the geometric

approximation, namely diffraction and interference. Developed by Joseph Keller (Keller,

1962), the geometrical theory of diffraction (GTD) assumes that light travels in rays, as

with geometrical optics, and introduces diffracted rays. These are produced by incident

rays which hit or graze edges, corners and vertices of boundary surfaces. Some of these

rays will enter the shadow region, accounting for the light there, and others will enter the

illuminated regions.

The GTD is sufficient for the analysis of a large number of diffraction scenarios, including

diffraction by an aperture in a thin screen (Keller, 1957) and in a hard screen (Karp

and Keller, 1961), and diffraction by a smooth object (Levy and Keller, 1959) and a

round-ended object (Keller, 1959).

The methods for calculating an optical field using GTD, essentially a systematic general-

ization of Fermat’s principle, is explored in greater details in Chapter 4.

The development of GTD represents a major breakthrough for the evaluation of a wide

variety of high-frequency electromagnetic radiation and scattering problems. However, it

is limited by the fact that GTD fails at the transition regions adjacent to the geometrical

shadow boundaries, called the shadow-boundary (SB) transition region. This is due to the

fact that, at these regions, the field departs from purely ray-optical behaviour. GTD, as a

purely geometric theory, therefore experiences singular behaviour there (Pathak, 1982).

To overcome the limits of GTD which occur at SB transition regions, a uniform version of

the theory was developed, known as the ‘uniform geometrical theory of diffraction’ (UTD)
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(Kouyoumjian et al., 1981). This theory requires that the total high frequency field be

continuous at SB regions and removes the restriction that the diffracted field remain ray-

optical there. Whereas GTD cannot account from the departure from ray-optical behavior,

UTD is allowed to become discontinuous at these problem regions, compensating for

the discontinuities experiences by GTD there. This uniform theory reduces to ordinary

geometrical optics away from the SB transition regions (Kouyoumjian et al., 1981; Pathak,

1982).

UTD has many applications and has been successful in, for instance, the design of large

reflector antennas; the prediction of radiation patterns of antennas on aircraft, ships,

missile and satellite configurations; the prediction of radar cross-sections of complex

targets; and in the finding of solutions to the problem of discontinuities in waveguides.

For further reading on these and other applications of UTD, see (Pathak et al., 2013).

In the publication in Sec. 4.2, it is shown that GTD is useful in predicting diffracted

wavefields resulting from hard x-rays being incident upon various objects. The Argand-

plane mappings induced by these wavefields take the form of generalised Cornu spirals.

4.1.2 The Cornu spiral in literature

The Cornu spiral was described in Sec. 1.3.2 as a simultaneous parametric plot of the

Fresnel integrals and as representing the diffraction from the edge of a half-plane. Histori-

cally, it has been used to evaluate Fresnel integrals, but this application is now a curiosity

owing to the proficiency of computers at this task. The spiral does, however, provide a

visualisation of Fresnel diffraction, and might be used as a complementary visual aid in

the analysis of Fresnel diffraction. In generalising the Cornu spiral, it might be possible

to use them to study diffraction patterns due to objects that are more complex than the

half-plane. Morgan et al. (2010) predicted the generalised Cornu spiral corresponding to

diffraction from a cylindrical edge and the publication in Sec. 4.2 goes a step further by

addressing diffraction from more complicated objects.

The terms ‘Cornu spiral’ and ‘generalised Cornu spiral’ appear sparsely throughout the

literature. Ali et al. (1995; 1999) generalised the curvature profile of the Cornu spiral to

form a function of arc length that can be used to facilitate control of the curve. This has
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applications for the synthesis of curves with computer-assisted design (CAD) for architects

and engineers. Cross and Cripps (2015) facilitated the practical use of generalised Cornu

spirals in order to synthesise curves from within CAD.

An example concerning electromagnetic waves can be found with Hitachi (2012), who uses

the Cornu spiral to study diffraction effects in ultrasound radiation. Specifically, Hitachi

using the Cornu spiral to study ‘Babinet’s principle’, which informs the relationship

between a rectangular slit U1 and a rectangular obstacle U2. When the two objects

are complementary to each other, i.e. where U1 + U2 = 1,, Babinet’s principle states

that the resulting field far downstream of the obstacle is equal to field observed for the

complementary object. By drawing phasors onto the Argand plane, Hitachi is able to

directly confirm this principle, showing aspects of diffraction that are difficult to observe

directly.

4.1.3 Propagation-based x-ray phase contrast imaging

As stated earler, we make the transition from visible light to x-rays in this chapter. In

Sec. 4.2, the Cornu spiral is experimentally constructed using hard x-rays. This is done

by imaging x-rays incident upon a straight edge. In addition, the same is done for x-rays

incident on a cylinder and on a sphere embedded within a cylinder, with each scenario

producing a generalised Cornu spiral in the Argand plane.

X-rays are electromagnetic vibrations similar to visible light but with a much smaller

wavelength and a great penetrating power. Various methods of x-ray imaging take

advantage of this power, relying on the absorption of x-rays by the object of interest.

This absorption of the incident radiation results in a drop in intensity; these intensity

variations are converted into a form that is visible. Radiography uses x-ray radiation to

view the internal structure of a non-uniform, opaque object. X-rays are passed through

the object and are absorbed to various degrees depending on the density and compositions

of the object in question. The transmitted rays are then captured by a detector, which

provides a two-dimensional representation of the internal structure. Traditional medical

film radiography generally relies on simple shadow casting and uses the chemical changes

67



Argand-plane mappings induced by complex scalar wavefields

in the film, that are induced by the incident x-rays, to render the intensity variations

visible.

Tomography is a technique whereby the source and the detector are shifted to produce

sectional images in such a manner that a 3-D representation is constructed. With the

advent of the CT (computed tomography) scanner, tomographic reconstruction is done

by computer. This has ensured the prolific use of CT scanners in medical imaging.

Sectional imaging of this kind requires a large amount of data to reconstruct a single

image and, as such, many algorithms for CT make some compromise between accuracy

and reconstruction time (Herman, 2009).

Pertinent to the topic of absorption imaging is the use of contrast agents. which has

the function of improving the visibility of soft bodily structures in techniques such as

radiography, CT and fluoroscopy. Common contrast agents include iodine and barium.

Iodine, which is commonly administered intravenously, is used for arterial and venous

investigations, for example. Barium is mostly used to image the gastrointestinal tract.

However, for samples with low x-ray absorption, such as soft biological tissue, these

techniques do not suffice. There are other imaging techniques used to overcome this, such

as magnetic resonance imaging (e.g. Watson et al., 2016; Silva et al., 2016) and positron

emission tomography (e.g. Lucas et al., 1999; Schuetze et al., 2005). There are also several

x-ray imaging techniques for objects with low absorption that fall into the category of

‘phase-contrast imaging’, in that they employ methods to render the phase variations

imparted on the radiation by the object of interest visible as variations in intensity.

The technique of Zernike phase contrast, in its simplest incarnation, uses a non-absorbing

thin film of uniform distribution in the back focal plane, which has a phase-shifting

non-absorbing dot at its centre, to impose a phase shift on the beam that is passing

through it (Zernike, 1942). This has the effect of adding a complex constant to every point

in the input disturbance. The phase variations imposed on the input plane are seen as

intensity variations at the output plane. Experimental implementation of x-ray Zernike

phase contrast was first accomplished by Schmahl et al. (1991) and Schmahl et al. (1994),

followed by numerous other implementations, such as by Neuhäusler et al. (2003).
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Another method of introducing phase contrast involves the use of analyser crystals to

yield phase contrast, known as ‘analyser-based phase contrast’. This techniques involves

placing a monochromactor, usually a crystal, in front of the sample to be imaged, the

function of which is to select a small frequency band from the incident radiation. The

monochromated beam then strikes an analyser crystal that is positioned between the

sample and the detector, yielding the desired phase contrast. This method was first

demonstrated by Förster et al. (1980) and related work has been published by Somenkov

et al. (1991), Davis et al. (1995a; 1995b) and Ingal and Beliaevskaya (1995). Examples

of subsequent experiments have been performed using the analyser-based method to

produce a phase-contrast image can be found with Pagot et al. (2003), Bravin (2003), Vine

et al. (2007) and Coan et al. (2010). Synchrotron radiation is preferred for analyser-based

imaging, which requires the incident radiation to be almost parallel and monochromatic

with a particular energy bandwidth for the crystal (Diemoz et al., 2012).

Propagation-based phase contrast imaging (PBI) has the simplest set-up of all phase-

contrast methods (Diemoz et al., 2012) as it does not require any additional optical

elements between the source and the detector. The act of free-space propagation over

a suitable distance produces the desired contrast, rendering phase variations that are

accumulated by radiation as it passes from one side of a non-absorbing object to another

visible as intensity variations (Wilkins et al., 1996; Cloetens et al., 1996; Kitchen et al.,

2008; Beltran et al., 2010). This is the imaging technique used to produce the results in

Sec. 4.2, and so it will be described in detail here.

In simulating the forward problem for propagation-based x-ray phase contrast imaging, it

is first necessary to employ a method that can predict the phase and amplitude variations

introduced upon the passage of light through the object. The projection approximation

does this.

Figure 4.1 shows a monochromatic plane wave emanating from an x-ray source on the far

left. The plane wave is visualized as a series of parallel arrows that are incident upon a

scatterer lying in the space 0 < z < z0. The spaces z < 0 and z > z0 are assumed to be free of

charges and current.
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Figure 4.1: A z-directed monochromatic plane wave is incident upon a scatterer which lies
between the z = 0 and z = z0 planes.

In using the projection approximation, it is assumed that all scatterers that lie in the

scattering volume are weak enough so that ray paths visualised in Fig. 4.1 are only

perturbed negligibly. Via the projection approximation, the wavefield at z = 0 is given by:

ψ̃ω(x,y,z = z0) ≈ exp
(
−ik

∫ z=z0

z=0
[δω(x,y,z)− iβω(x,y,z)]dz

)
ψ̃ω(x,y,z = 0), (4.1.1)

where ψ̃ω is the envelope that, when multiplied by the unscattered plane wave exp(ikz),

giving the total wavefield ψω. The complex refractive index nω is given by:

nω = 1− δω + βω, (4.1.2)

where δω and βω are real numbers. The phase shift imparted on the wavefunction upon

its passage through to the exit surface of the object is given by

∆φ(x,y) = −kδωT (x,y), (4.1.3)

where T (x,y) is the projected thickness of the object, and the intensity of the exit surface

wavefunction is given by:

Iω(x,y,z = z0) = exp[−µωT (x,y)] Iω(x,y,z = 0), (4.1.4)
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where µω = 2kβω.

For a full derivation of the projection approximation, see Paganin (2006).

The resulting complex analytic expression for the exit-surface wavefunction can be con-

structed from these phase and intensity expressions, as:

ψω(x,y,z = 0) =
√
Iω(x,y,z = 0)exp[iφω(x,y,z = 0)] , (4.1.5)

where the phase and intensity of the exit surface wavefunction is taken simply as their

variations accumulated via the passage of light through the object.

Obtaining the intensity of the wavefunction at a distance z = ∆ requires the free-space

propagation of the exit-surface wavefunction via use of the Fresnel diffraction integral,

previously given in Eq. 2.1.6:

ψω(x,y,z = ∆) = exp(ik∆)F −1 exp

−i∆(k2
x + k2

y )

2k

F ψω(x,y,z = 0), ∆ ≥ 0, (4.1.6)

where ψω(x,y,z = ∆) is the wavefield that results from propagating the initial disturbance

ψω(x,y,z = 0) through a distance of ∆ ≥ 0. F −1 and F denote the inverse Fourier transform

and the Fourier transform operators, respectively, k is the wavenumber and (kx, ky) are the

Fourier-space coordinates of the wavefield.

If the propagation distance ∆ is small enough, the second exponential term in Eq. 4.1.6

can be approximated to

1−
i∆(k2

x + k2
y )

2k
. (4.1.7)

Using the form of the exit-surface wavefield as per Eq. 4.1.5, the propagated wavefield

can be expressed as:

ψω(x,y,z = ∆) = exp(ik∆)
[
1 +

i∆∇2
⊥

2k

]√
Iω(x,y,z = 0)exp[iφω(x,y,z = 0)], (4.1.8)
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using the Fourier derivative theorem. The transverse Laplacian is denoted by ∇2
⊥ =

∂2/∂x2 +∂2/∂y2. The desired intensity can be calculated by taking the magnitude squared

of the wavefield at z = ∆, and may be manipulated into the following form (Paganin,

2006):

Iω(x,y,z = ∆) = Iω(x,y,z = 0)− ∆

k
∇⊥ · [Iω(x,y,z = 0)∇⊥φω(x,y,z = 0)] , (4.1.9)

showing that the intensity of the wavefield at some distance of ∆ ≥ 0 from the exit surface,

recorded as a propagation-based phase contrast image, is related to both the intensity and

phase variation accumulated by illuminated radiation upon is passage through the object

being imaged. Equation 4.1.9 is a form of the transport-of-intensity equation, which will

be discussed in the next section in the context of phase retrieval.

4.1.4 Phase retrieval

The phase problem was defined in Sec. 3.1.2. In Sec. 4.1.3 phase contrast was described as

means by which phase shifts on a beam of light can be seen as variations in intensity. The

intensity of a phase-contrast image is, in general, a function of the both the intensity and

the phase of the input wavefield. Phase retrieval goes a step further than phase-contrast

imaging, recovering the phase from one or more phase contrast images.

There are several algorithms that can accomplish this task, some of which will be discussed

here. The Gerchberg-Saxton algorithm (Gerchberg and Saxton, 1972) is an iterative

method involving Fourier transformation back and forth between the object of interest

and the Fourier domain, and the application of constraints due to the measured data

within each domain (Fienup, 1982). A number of applications are listed in Fienup, 1984.

This method is useful in the reconstruction of non-crystalline samples, given a far-field

diffraction pattern (Paganin, 2006).

Another method uses the transport-of-intensity (TIE) equation, which describes the flow

of intensity along the optical axis of propagation light waves. It outlines the relationship

between the phase of the object planeφ(x,y,z) and the first-order derivative of the intensity

I(x,y,z), with respect to the optical axis. The TIE is given by Teague (1983):
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∇⊥ · [I(x,y,z)∇⊥φ(x,y,z)] = −k
∂I(x,y,z)

∂z
. (4.1.10)

Various methods of phase retrieval using algorithms based on the TIE can be found in

(Gureyev and Nugent, 1996; Paganin and Nugent, 1998; Gureyev and Nugent, 1997).

Each of these methods employ intensity measurements to estimate the right side of the

TIE, as well as I on the left side, leaving a differential equation that has only the desired

phase as its unknown. One such method, developed by Paganin et al. (2002), requires a

single PBI image, and is the method used throughout the paper in Sec. 4.2. This algorithm

assumes that the sample to be imaged is comprised of a single homogeneous material

that is imaged under paraxial coherent x-ray radiation. Under these assumptions, the

expressions for the phase and intensity variation imparted on light upon passage through

such a material, as given by Eqs. 4.1.3 and 4.1.4, can be used together with the TIE to give

the equation for single-image phase retrieval, as derived by Paganin et al. (2002):

T (r⊥) = −1
µ

loge

(
F −1

{
µ
F {M2I(Mr⊥, z = R2)}
R2δ|k⊥|2/M +µ

})
, (4.1.11)

where R2 is the distance between the contact image I(r⊥, z = 0) and the phase contrast

image I(r⊥, z = R2), M = (R1 +R2)/R1 is the magnification of the contact image resulting

from illumination of the object by a point source at a distance of R1 behind the object, and

r⊥ = (x,y) are the Cartesian coordinates over a plane perpendicular to the optic axis z.

Beltran et al. (2010) extended the algorithm of Paganin et al. to allow for the tomographic

imaging of samples comprised of more than one material, under the condition that the

various materials are spatially quantized. This algorithm has been used in numerous

studies on phase-contrast imaging, such as Mayo et al. (2003) and Gureyev et al. (2006),

and has been shown to be quite robust in the presence of noise, making it a good choice

here.

4.1.5 Virtual optics

In the area of x-ray crystallography, the diffraction pattern generated by x-rays falling

upon a small crystalline sample can be used to decode the structure of the crystal. The
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result is called the ‘image’ of the crystalline sample, even though it is not a direct image.

The technique of tomography also uses indirect imaging, building a three-dimensional

reconstruction of a sample from two-dimensional projection images, as does in-line

holography, generating the full wavefield information from its diffraction pattern.

In all of these instances, a computer forms part of the imaging system, which is a two-step

process: First, data is obtained using hardware, and second, the output obtained is used

to computationally reconstruct the sample information. This class of imaging systems

employ what is known as ‘virtual optics’ (Lichte et al., 1992; Lichte et al., 1993; Paganin

et al., 2004). It is so called since the process of forming an image is done using computer

software rather than optical hardware. In the example of in-line holography, the full

information of the wavefield at the exit surface (z = z0 plane from Fig. 4.1) is desired.

Once this information is known, the projected structure of the object can be determined.

A three-dimensional refractive index may then be constructed for the object if the object

is imaged under a number of different sample orientations (Paganin, 2006).

To go a step further than this, once the full information of the field is obtained, software

can be used to simulate the action of some subsequent imaging system that might take

such a field as its input. Virtual optics can be used even in cases where the hardware

that would correspond to such an imaging system is difficult or impossible to construct.

Paganin et al. (2004) coined the term ‘omni optics’ to described this concept, due to its

flexibility, and demonstrated the three-stage method for constructing such a virtual field:

(i) Determining the propagation-based phase contrast image of a single material object,

(ii) using propagation-based phase-contrast image to reconstruct the wavefield at the exit

surface of the object, and (iii) using the reconstructed wavefield information to construct a

virtual x-ray field. Guehrs et al. (2009) have used reconstructed holographic information

to generate images using this sort of numerical processing in order to achieve particular

types of contrast, and similar methods are employed by Li et al. (2008), Schot et al. (2015)

and Zuo et al. (2015).

This three-step method described by Paganin is used in Sec. 4.2 in order to achieve the

desired phase contrast which was limited by the hardware.
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4.2 Generalised Cornu spirals: An experimental study using

hard x-rays

On the following pages is inserted the as-published form of the third of three first-author

papers arising from this thesis. The paper has been published as:

F. Werdiger, M. J. Kitchen and D. M. Paganin, ‘Generalised Cornu spirals: An experimental

study using hard x-rays’, Opt. Exp. 24, 10620–10634 (2016).
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Chapter 5

Future work

There are numerous possible future applications of the work presented in this thesis, and

here I outline a few applications.

With regards to the study of Argand-mappings induced by vortical fields, particularly the

presence of vorticity singularities, a natural extension would be to continue this explo-

ration to a greater hierarchy of vorticity singularities. So far, the fold and cusp vorticity

singularities have been described and attributed to vorticity singularity lines lying be-

tween various combinations of vortices and antivortices, exemplified by the experimental

study of Chapter 3. The elliptic umbilic vorticity singularity was reconstructed and linked

to the presence of vorticity singularities in the form of a Jacobian ellipse, but no physical

explanation was provided. Future work would involve continuing to experimentally

observe the possible infinite hierarchy of vorticity singularities, connecting each to some

unique formation of singularity lines in the physical field and investigation their physical

significance. Such work may improve our understanding of the vorticity in the context of

a complex scalar wavefield littered with optical vortices.

The study of vorticity singularities has the potential to go beyond complex scalar wave-

fields to more general wavefields, such a partially coherent fields, which are described by

multi-dimensional coherence functions. Furthermore, a study of vorticity singularities in

the context of spinor fields, which are described by multiple complex wavefields, would

extend this work to fields that possess multiple sets of singularity lines.
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The experimental set-up described in Chapter 3 for reconstructing vorticity singularities

could provide a context for the study of topological reactions associated with time-varying

fields, such as vortex-antivortex annihilation and saddle points. The Argand plane

could also be used to study various fields with topological defects, such as Bose-Einstein

condensates, which are naturally vortical two-dimensional object that change over time.

The study of visible-light speckle fields featured in Chapters 2 and 3 could be extended

into x-ray speckle, which has multiple interesting and important applications. Garson

et al. (2013) generated a speckle field in an x-ray phase contrast image (PCI) of animal

lungs using a bench-top imaging system. The study of lung x-ray speckle is particularly

interesting due to its ability to provide further understanding about the structure of lungs.

For example, Leong et al. (2014) have shown a method of measuring alveolar size and

Kitchen et al. (2015) have shown that lung speckle patterns can be used to measure the

dimensions of lung airways. Extending the work described in Chapter 4 by replacing the

geometric objects with lung samples may have ramifications in the study of lungs, which

are, in essence, cylindrical cavities containing thousands of air-filled spheres. It is not

presently clear whether speckle is simply a geometrical phenomenon or whether it is a

wave phenomenon. Simulations by Kitchen et al. (2015) show wave behaviour resulting

in optical vortices, but their experimental reconstructions, specifically phase retrieval, are

based on the geometrical approximation of light. Studying the Argand-plane mappings

induced by an optical speckle field, and its associated vorticity singularities, could help

clarify the essence of such a field and improve reconstruction procedures.
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Chapter 6

Conclusion

In this thesis, I have presented a study of Argand-plane mappings induced by complex

scalar wavefields, reported over three separate bodies of published papers as first author.

The first publication is a theoretical study of a two-dimensional optical speckle fields

littered with vortices. The Argand-plane mappings induced by those wavefields revealed

caustic-like Argand-plane singularities that were shown to be a results of lines of zero

vorticity in the physical field, proving the Argand-plane to be an interesting domain for

the study of such fields. The second publication presents a study that is exemplified

by an experimental validation of that theoretical work, utilising visible light. Various

vorticity singularities were successfully reconstructed, namely the fold, cusp and elliptic

umbilic vorticity singularities, and connected to lines of zero vorticity in the physical

field. Moving beyond visible light, the third publication presents a study that is focused

on x-ray fields, studying the Argand-plane mappings induced by propagation-based x-ray

phase contrast images. Various objects with increasing spatial complexity were imaged - a

straight edge, a cylinder, and a sphere embedded within a cylinder. The diffraction of the

incident radiation upon coming into contact with these objects resulted in generalised

Cornu spirals present in the induced Argand-plane mappings. Through these bodies of

published work, the usefulness of the Argand-plane in the analysis of two-dimensional

complex scalar wavefields was made apparent. There are numerous possible extensions to

this work, such as the study of x-ray lung speckle and the analysis of time-varying fields.
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