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ABSTRACT  

 
 
The M1 muscarinic acetylcholine receptor (mAChR) is predominantly expressed in the brain where 

it plays a major role in mediating cognitive processes such as learning and memory.  As a result, it 

has been implicated in diseases where such processes are impaired, such as Alzheimer’s disease 

and schizophrenia. Drug discovery efforts aimed at developing selective ligands for this receptor, 

both as therapeutics and as experimental tools, have largely failed as they focused on targeting the 

acetylcholine (ACh) binding site, which is identical in all five mAChR subtypes. The discovery of 

benzyl quinolone carboxylic acid (BQCA), the first positive allosteric modulator (PAM) with high 

selectivity for the M1 mAChR, has lead to a renaissance in selective targeting of this receptor 

family.  

In chapter 2 we exploit the unique “two-state” pharmacology of BQCA to investigate allosteric 

modulation at a chemogenetically modified M1 mAChR, developed as an alternative means to 

achieve selective receptor targeting in vivo. This study demonstrates that such an approach may not 

be valid, as chemogenetic modification of the M1 mAChR leads to changes in the allosteric 

behaviour of BQCA that are not reminiscent of its behaviour at the native receptor. As a 

consequence, caution must be exercised when interpreting studies of allosteric modulation using 

chemogenetically modified receptors in vivo.  

Despite the unique pharmacology of BQCA, the molecular mechanisms of its binding and function 

and the structural basis of its M1 mAChR selectivity remain poorly defined. Such knowledge would 

enable the design of novel M1 mAChR PAMs with improved pharmacological profiles. Chapters 3 

and 4 comprise studies focussed on identifying the amino acid residues that form the allosteric 

binding pocket at the M1 mAChR and/or play a role, either directly or indirectly, in the 

transmission of cooperativity with the orthosteric (ACh) binding site. Deeper mechanistic insights 
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into allosteric modulation at the M1 mAChR are further afforded by the use of benzoquinazolinone 

12, a high affinity structural derivative of BQCA.  The experimental findings are contextualised 

using molecular models, and collectively, the results suggest that many of the key residues that 

form the allosteric binding pocket at the M1 mAChR are structurally conserved in other mAChR 

subtypes. The findings in this thesis challenge the common assumption that allosteric ligands 

achieve subtype selectivity through binding to allosteric sites that are less conserved between 

subtypes and propose that the selectivity of BQCA and benzoquinazolinone 12 arises from 

selective cooperativity with ACh at the M1 mAChR.  The information herein may guide the 

rational design of M1 mAChR positive and/or negative allosteric ligands with increased therapeutic 

potential.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 
 

DECLARATION

 
 

In accordance with Monash University Doctorate Regulation 17.2 Doctor of Philosophy and 

Research Master’s regulations the following declarations are made: 

 

I hereby declare that this thesis contains no material which has been accepted for the award of any 

other degree or diploma at any university or equivalent institution and that, to the best of my 

knowledge and belief, this thesis contains no material previously published or written by another 

person, except where due reference is made in the text of the thesis.  

 

This thesis includes three original papers and one review article published in peer reviewed 

journals. The core theme of the thesis is “Pharmacological and Structure-Function Studies of M1 

Muscarinic Acetylcholine Receptor Allosteric Modulation”.  The ideas, development and writing 

up of all the papers in the thesis were the principal responsibility of myself, the candidate, working 

within the Drug Discovery Biology Laboratory under the supervision of Dr. Meritxell Canals and 

Prof. Arthur Christopoulos.   

 

The inclusion of co-authors reflects the fact that the work came from active collaboration between 

researchers and acknowledges input into team-based research. 

 

 

 

 

 

 



9 
 

In the case of Chapters 2-4 and Appendix I my contribution to the work involved the following: 

 

 

Thesis 

chapter 

Publication title Publication status Nature and extent of 

candidate’s contribution 

2 Allosteric Modulation of a 

Chemogenetically Modified 

G Protein-Coupled 

Receptor. 

Published Development of ideas, 

participation in research 

design, conduction of 

experiments, data analysis, 

writing and editing of the 

manuscript. (80%)   

3 Molecular Determinants of 

Allosteric Modulation at 

theM1 Muscarinic 

Acetylcholine Receptor. 

Published Development of ideas, 

participation in research 

design, conduction of 

experiments, data analysis, 

writing and editing of the 

manuscript.  (80%) 

4 Mechanistic Insights into 

Allosteric Structure-

Function Relationships at 

the M1 Muscarinic 

Acetylcholine Receptor. 

Published Development of ideas, 

participation in research 

design, conduction of 

experiments, data analysis, 

writing and editing of the 

manuscript. (70%)  

Appendix I   Regulation of G Protein-

Coupled Receptors by 

Allosteric Ligands. 

Published Development of ideas and 

writing parts of the article. 

(25%).  

 

 

 

 

 

Signed:  ……………………………….           Date: ……………………………… 

 

 

 

 



10 
 

ACKNOWLEDGEMENTS

 
 

First and foremost, I would like to thank God, the creator of the universe, for giving me the health 

and the strength to gain an understanding of His creation. I thank you God for giving me the ability 

to gain knowledge, which has and continues to increase my faith in you.                 

 

I would like to extend my sincere appreciation to my supervisors Dr. Meritxell Canals and Prof. 

Arthur Christopoulos for their support and guidance. Thank you for giving me a PhD project, for 

encouraging me throughout the last four years and for teaching me so many things.  Thank you also 

for sacrificing your time to meet with me regularly and for your patience in reviewing multiple 

drafts of my work. This thesis, and who I am today as a scientist, would not have come to fruition 

without your support.  

 

A huge thank you also to Dr. Robert Lane for sharing your infinite knowledge, for your brilliant 

ideas and valuable contributions to the manuscripts.  

 

Many thanks also to Dr. Laura López for generating the molecular models and for continuing to 

support my work even after leaving Monash University and to Dr. Shailesh Mistry for sharing your 

valuable medicinal chemistry expertise and for your contributions to my project.  

 

I would also like to extend my gratitude to Prof. Peter Scammells and Dr. Richard Loiacono for 

being part of the assessment panel and providing helpful advice for my project. 

 

To Dr. Ann Stewart, Peter Keov, Briana Davie and Thomas Coudrat, thank you for your kindness 

and willingness to help me every time I asked you for help. The little things you helped me with 

really mean a lot to me.  

 

To all members of the Drug Discovery Biology laboratory, thank you for your friendship, advice 

and suggestions through this journey, and thank you for making my time in the lab enjoyable.  

 

To my respected parents, I cannot thank you enough for your endless support and encouragement. 

Thank you for enduring the stress with me and believing in me and thank you for filling our home 

with your love and care. I’m forever grateful to you.   

 

To my beautiful sisters Ashraf, Zina, Ghadir and Abrar, thank you for the joy and happiness you 

have and still bring to my life. I feel blessed to have sisters like you. 

 

Finally, to my wonderful husband Ghyath. Thank you for coming into my life half way through 

this PhD and changing it in the most beautiful way. Thank you for your love and support and for 

encouraging me to chase my dreams.  

 

 

 

 

 



11 
 

PUBLICATIONS AND COMMUNICATIONS  

 

Peer-reviewed articles  

Alaa Abdul-Ridha, J. Robert Lane, Shailesh N. Mistry, Laura López
 
, Patrick M. Sexton, Peter J. 

Scammells, Arthur Christopoulos
 
and Meritxell Canals. “Mechanistic Insights into Allosteric 

Structure-Function Relationships at the M1 Muscarinic Acetylcholine Receptor”. J. Biol. Chem, 
289 (48): 33701-33711, 2014. 

Alaa Abdul-Ridha, Laura López, Peter Keov, David M. Thal, Shailesh N. Mistry, Patrick M. 

Sexton, J. Robert Lane, Meritxell Canals & Arthur Christopoulos. “Molecular Determinants of 

Allosteric Modulation at the M1 Muscarinic Acetylcholine Receptor”. J. Biol. Chem, 289 (9): 

6067-6079, 2014. 

Alaa Abdul-Ridha, J. Robert Lane, Patrick M. Sexton, Meritxell Canals & Arthur Christopoulos. 

“Allosteric Modulation of a Chemogenetically Modified G Protein-Coupled Receptors”. Mol 

Pharmocol. 83:521-530, 2013.  

J. Robert Lane, Alaa Abdul-Ridha & Meritxell Canals. “Regulation of G Protein-Coupled 

Receptors by Allosteric Ligands”. ACS Chem. Neuroscience, 4:527-534, 2013.   

Alaa Abdul-Ridha, Meritxell Canals and J. Robert Lane. “Allosteric Modulation of G Protein-

Coupled Receptor Pharmacology”. In preparation.  

 

Published Abstracts   

Alaa Abdul-Ridha, J. Robert Lane, Shailesh N. Mistry, Laura López, Arthur Christopoulos and 

Meritxell Canals.  “Mechanistic Insights into Allosteric Structure-Function Relationships at the M1 

Muscarinic Acetylcholine Receptor”. Poster Presentation. ASCEPT-MPGPCR Joint Scientific 

Meeting.  December 2014. Melbourne, Australia. 

Alaa Abdul-Ridha, Meritxell Canals & Arthur Christopoulos. “Molecular Determinants of 

Allosteric Modulation at the M1 Muscarinic Acetylcholine Receptor”. Oral presentation. The 

Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists (ASCEPT). 

December 2013. Melbourne, Australia. 

Alaa Abdul-Ridha, Laura López, Patrick M. Sexton, J. Robert Lane, Meritxell Canals & Arthur 

Christopoulos. “Molecular Determinants of Allosteric Modulation at the M1 Muscarinic 

Acetylcholine Receptor”. Poster presentation. The Australasian Society of Clinical and 

Experimental Pharmacologists and Toxicologists (ASCEPT). December 2013. Melbourne, 

Australia.  

Meritxell Canals, J. Robert Lane, Alaa Abdul-Ridha, Patrick M. Sexton and Arthur Christopoulos. 

“On the mode of action of BQCA: Assessing the Monod-Wyman-Changeux mechanism in the 

actions of a G protein-coupled receptor allosteric modulator”. Poster presentation. Molecular 

Pharmacology Gordon Research Conference. April 2013. Lucca, Italy. 



12 
 

Alaa Abdul-Ridha, J. Robert Lane, Meritxell Canals & Arthur Christopoulos. “Allosteric 

Modulation of a Chemogenetically Modified G Protein-Coupled Receptors”. Poster presentation. 

Melbourne protein group (MPG) student symposium. July 2013, Melbourne, Australia.   

Alaa Abdul-Ridha, J. Robert Lane, Meritxell Canals & Arthur Christopoulos. “Allosteric 

Modulation of a Chemogenetically Modified G Protein-Coupled Receptors”. Poster presentation. 

The Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 

(ASCEPT). December 2012, Sydney, Australia.     

Alaa Abdul-Ridha, J. Robert Lane, Meritxell Canals & Arthur Christopoulos. “Allosteric 

Modulation of a Chemogenetically Modified G Protein-Coupled Receptors”. Poster presentation. 

The 7
th

 International  Meeting on the Molecular Pharmacology of G Protein-Coupled Receptors 

(MPGPCR). December 2012. Melbourne, Australia. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



13 
 

ABBREVATIONS

 

[
3
H]NMS- tritiated N-methylscopolomine  

[
3
H]QNB- tritiated quinuclidinyl benzilate  

77-LH-28-1- (1-[3-(4-butyl-1-piperidinyl)propyl]-3,4-dihydro-2(1H)-quinolinone)                

AC- adenylyl cyclase 

AC-42- (4-n-butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl]-piperidine hydrogen chloride) 

ACh- acetylcholine 

AChEI- acetylcholinesterase inhibitors 

ADAM17- α secretase producing enzyme 17 

AF267B- (2S)-2-Ethyl-8-methyl-1-thia-4,8-diazaspiro[4.5]decan-3-one 

Ala- alanine 

ANGII- angiotensin II 

AP-2- adaptor protein 2 

APP- amyloid precursor protein 

Arg- arginine 

Asn- asparagine 

Asp- aspartate 

ATCM- allosteric ternary complex model 

ATIR- angiotensin 1 receptor 

ATP- adenosine triphosphate 

ATSM- allosteric two state model 

BACE-1- β-secretase converting enzyme 

Benzoquinazolinone 12- 3-((1S,2S)-2-hydroxycyclohexyl)-6-((6-(1-methyl-1H-pyrazol-4-

yl)pyridin-3 yl)methyl)benzo[h]quinazolin-4(3H)-one 

BMK1- big mitogen-activated protein kinase 

BQCA- benzyl quinolone carboxylic acid 

C7/3-phth- heptane-1,7-bis-(dimethyl-39-phthalimidopropyl) ammonium bromide  

Ca
2+

- calcium 

cADPR- cyclic ADP-ribose 

cAMP- cyclic adenosine monophosphate 

CaSR- calcium sensing receptor 

CCR-5- chemokine receptor type 5 

CCR-7- chemokine receptor type 7 

CFC- contextual fear conditioning 

CK1α- casein kinase 1α 

CNO- clozapine-N-oxide 

COPD- chronic obstructive pulmonary disease  

CRF- corticotrophin-releasing factor 

CRF-1- corticotrophin-releasing factor-1 receptor 

CSF- cerebrospinal fluid 

c-Src- proto-oncogene tyrosine kinase SRC 

Cys- cysteine 

DAG- diacylglycerol 

DREADD- Designer Receptor Exclusively Activated by Designer Drug 

ECL- extracellular loop 

EGFR- epidermal growth factor receptor 

ER- endoplasmic reticulum 

ERK1/2- extracellular regulated kinase 1/2 



14 
 

GABA- γ-aminobutyric acid 

GAPS- GTPase accelerating proteins 

GDP- guanosine diphosphate 

GIP- gastric inhibitory peptide 

GIRK- G protein inward rectifier K
+
 channel 

GLP- glucagon-like peptide 

Glu- glutamate 

Gly-glycine 

GPCR- G protein-coupled receptor 

GRAFS- Glutamate, Rhodopsin, Adhesion, Frizzled/Taste2 and Secretin receptors 

GRKs- G protein-coupled receptor kinases 

GSK1034702 -2H-Benzimidazol-2-one, 4-fluoro-1,3-dihydro-6-(methyl-11C)-1-(1 

(tetrahydro-2H-pyran-4-yl)-4-piperidinyl)- 

GTP- guanine triphosphate 

HIV- human immunodeficiency virus 

IBS- Irritable bowel syndrome 

ICL- intracellular loop 

IP3- inositol-1,4,5- triphosphate 

Iperoxo- 4-[(4,5-Dihydro-3-isoxazolyl)oxy]-N,N,N-trimethyl-2-butyn-1-aminium iodide 

JNK- c-Jun N-terminal kinase 

Leu- leucine 

LY2033298- 3-amino-5-chloro-6-methoxy-4-methylthieno[2,3-b]pyridine-2-carboxylic acid 

cyclopropylamide 

LY2119620- (3-amino-5-chloro-N-cyclopropyl-4-methyl-6-[2-(4-methylpiperazin-1-yl)-2  

mAChR- muscarinic acetylcholine receptor 

MAPK- mitogen activated protein kinase 

mGluR- metabotropic glutamate receptor 

mPFC- medial prefrontal cortex 

mRNA- messenger ribonucleic acid 

MWC- Monod-Wyman-Changeux 

NAL- neutral allosteric modulator 

NAM- negative allosteric modulator 

NC-IUPHAR- International Union of Pharmacology Committee on Receptor Nomenclature 

and Classification 

NDMC-n-desmethyl clozapine 

NF-κB- nuclear factor κ-B 

NMDA- N-methyl-D-aspartate 

NO- nitric oxide 

p38- p38 protein kinase 

PAM- positive allosteric modulator 

Phe- phenylalanine 

PI3K- phosphotidylinositol 3’ kinase 

PIP2- phosphoinositol-1,4,5-biphosphate 

PKA- protein kinase A 

PKC- protein kinase C 

PLA2- phospholipase A2 

PLC- phospholipase C 

PLD- phospholipase D 

PTH- parathyroid hormone 

PYK2- protein tyrosine kinase 2 



15 
 

RASSL- Receptor Activated Solely by Synthetic Ligand 

RGS- regulators of G protein signaling 

ROCK- Rho-associated kinase 

RTPα- receptor tyrosine phosphatase α 

SB269652- trans-1H-indole-2-carboxylic acid {4-[2-(cyano-3,4-dihydro-1H-isoquinolin-2 

yl)-ethyl]-cyclohexyl}-amide 

sEPSP- spontaneous excitatory postsynaptic currents 

Ser- serine 

TBPB- (1-[1'-(2-methylbenzyl)-1,4'-bipiperidin-4-yl]-1,3-dihydro-2H-benzimidazol-2-one) 

Thr- threonine 

TM- transmembrane domain 

Tyr- tyrosine 

VIP- vasoactive intestinal peptide 

Xanomeline- 3-[4-(Hexyloxy)-1,2,5-thiadiazol-3-yl]-1,2,5,6-tetrahydro-1-methylpyridine 

oxalate 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

16 
 

 

 

CHAPTER 1  
General Introduction



CHAPTER 1 
 

17 
 

 

1.1 G Protein-Coupled Receptors (GPCRs) 

1.1.1 General introduction 

Guanine nucleotide (G protein)-coupled receptors (GPCRs) are 7 transmembrane-spanning proteins 

that comprise the largest family of cell-surface receptors. Accounting for ~1-3% of the human 

genome, they play crucial roles in virtually all biological processes and mediate signals for a wide 

range of molecules including neurotransmitters, peptides, ions, photons, pheromones and odorants 

(Katritch et al., 2013; Pierce et al., 2002).   As a result, they are implicated in a multitude of 

physiological processes and are the target of a large proportion (~30%) of currently marketed drugs 

(Overington et al., 2006). Despite this clinical success, the extreme diversity of GPCRs with respect 

to their tissue distribution, endogenous and exogenous ligands and their cellular functions, have 

resulted in high attrition of drug discovery programs due to lack of efficacy or development of off-

target effects. Current drug discovery efforts aim to improve therapies for more than 50 established 

GPCR targets and expand the list of targeted GPCRs (Katritch et al., 2013). In addition to activating 

GPCR signals with agonists and inhibiting them with antagonists, the pursuit for improved and 

selective therapies has driven pharmacological research towards the discovery of allosteric and/or 

functionally selective modulators (Valant et al., 2012b) that bias downstream signaling toward 

specific G protein-activated or β-arrestin-activated pathways (Stallaert et al., 2011).  

 

1.1.2 Structural characteristics  

Despite their diversity and complexity, all GPCRs share a common basic architecture 

(Venkatakrishnan et al., 2013). GPCRs are integral membrane proteins with a common three-

dimensional structure of seven alpha (α)-helical hydrophobic transmembrane (TM 1-7) domains, 

connected by 3 intracellular (ICL 1-3) and 3 extracellular (ECL 1-3) loops and flanked by an 



CHAPTER 1 
 

18 
 

extracellular N-terminus and an intracellular C-terminus. Evidence for this seven TM architecture 

was first observed in the crystal structure of bovine Rhodopsin (Palczewski et al., 2000), and 

subsequently confirmed in a plethora of GPCR crystal structures (Venkatakrishnan et al., 2013) 

(Figure 1.1). A distinctive feature of the extracellular region is the presence of disulphide bridges 

that contribute to receptor stability. The most highly conserved disulphide bridge in most GPCR 

structures is found connecting a crucial cysteine residue at the top of TM3 with a cysteine in ECL2. 

This TM3-ECL2 disulphide bridge influences receptor stability and integrity and limits receptor 

conformational changes (Venkatakrishnan et al., 2013). GPCRs are dynamic proteins that undergo 

substantial conformational changes upon activation by ligands. The unique conformations they 

adopt can dictate their intracellular signaling via G protein-dependent and –independent 

mechanisms.   

Although GPCRs can function as single monomeric entities to activate signaling, they can also from 

homomers, heteromers or higher-order oligomers in intact cells (Bouvier, 2001; Ferré et al., 2014; 

Milligan, 2013).  This is best known for family C GPCRs, which form constitutive homo- or 

heteromers (Kniazeff et al., 2011), however the phenomenon has also been observed for family A 

(Gavalas et al., 2013; Han et al., 2009; Hern et al., 2010; Hill et al., 2014; Hu et al., 2013; 

Nenasheva et al., 2013; Pou et al., 2012; Siddiquee et al., 2013) and family B GPCRs (Harikumar et 

al., 2010; Harikumar et al., 2012; Pioszak et al., 2010; Schelshorn et al., 2012).  
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Figure 1.1 Structure of the β2-adrenergic receptor (β2AR) in complex with agonist and the G 

protein heterotrimer (Protein Data Bank code 3SN6). The common three-dimensional GPCR 

structure of seven TM domains, connected by ICLs 1-3 and ECLs 1-3 and flanked by the 

extracellular N-terminus and the intracellular C-terminus. The receptor and G protein are shown by 

coloured ribbons, whereas the agonist is illustrated by spheres with carbon atoms coloured yellow. 

Adapted from Katritch et al., 2013a 
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1.1.3 Classification of GPCRs 

According to the International Union of Pharmacology Committee on Receptor Nomenclature and 

Classification (NC-IUPHAR), GPCRs are classified into subfamilies based on phylogenetic criteria 

(Foord et al., 2005; Kolakowski, 1994). This classification system divides GPCRs into 5 

subfamilies known as A, B, C, Frizzled and Other receptors (Lagerstrom and Schioth, 2008a). All 

the receptor proteins, except some members of the Frizzled family and all the members of the Other 

family, are proven to bind G proteins. GPCRs for which the endogenous ligand is still unknown are 

termed “orphan” receptors (Davenport et al., 2013; Kolakowski, 1994). While this is the most 

widely used GPCR classification system, Fredriksson and colleagues (Fredriksson et al., 2003) 

developed an alternative classification system which illustrated that most of the human GPCRs can 

be divided in five main families, termed Glutamate, Rhodopsin, Adhesion, Frizzled/Taste2 and 

Secretin (GRAFS). The main difference between the two classification systems is that the latter 

further subdivides the Rhodopsin family into the four groups α, β, γ, δ and the further division of 

family B into the Secretin family and the Adhesion family (Fredriksson et al., 2003).  

 

1.1.3.1 Family A/Rhodopsin GPCRs   

Family A/Rhodopsin is the largest and best-characterised family of GPCRs and contains ~700 

receptor proteins, which include olfactory and light activated receptors (Katritch et al., 2013; 

Lagerstrom and Schioth, 2008a). As mentioned earlier, this family can be further divided into four 

groups (α, β, γ and δ) based on the vast variety of endogenous ligands they are activated by. GPCRs 

in the α-group include those that are activated by amines such as histamine, dopamine, serotonin, 

muscarinic and adrenergic receptors, while those in the β-group of Family A GPCRs include mainly 

peptide binding receptors such as endothelin and oxytocin receptors. The opioid, angiotensin and 

somatostatin receptors are important drug targets within the γ-group, which includes receptors for 



CHAPTER 1 
 

21 
 

both peptides and lipid-like compounds, while the δ-group mostly contains receptors for purines 

and proteases and the olfactory receptors (Lagerstrom and Schioth, 2008a).  

In the past 13 years, more than 40 crystal structures of different class A GPCRs have been solved in 

complex with ligands of varied pharmacology, peptides, antibodies and a G protein (Haga et al., 

2012; Hanson et al., 2012; Hollenstein et al., 2013; Kruse et al., 2012a; Rasmussen et al., 2011b; 

Srivastava et al., 2014; Tan et al., 2013; Wu et al., 2014). These structures have provided 

unprecedented insights into the structural and functional diversity of this protein family. Despite the 

ability of family A GPCRs to bind ligands of diverse shapes, sizes and chemical properties, all 

ligands have been observed to bind in a pocket in the extracellular side of the TM bundle. 

Systematic comparison of the residues that contact the ligands revealed vast similarities in the 

ligand binding pocket, and most of these ligand-contacting residues are present in the TM helices. 

In almost all receptors, key positions in TM3, TM6 and TM7 form a consensus scaffold of the 

ligand-binding pocket, and variations in the amino acids at these positions contribute to ligand 

specificity in different receptors (Hulme, 2013; Katritch et al., 2013; Venkatakrishnan et al., 2013).  

In addition, several conserved amino acid motifs are observed in most Family A GPCRs, such as 

the D(E)-R-Y(F) motif at the bottom TM3, in which the arginine (R) forms an ‘ionic lock’ with a 

conserved residue in ICL2, and the NPxxY motif in TM7 in addition to several conserved proline 

residues in the middle of TM 5, 6 and 7 (Gether and Kobilka, 1998; Hulme, 2013; Lagerstrom and 

Schioth, 2008a). 

 

1.1.3.2  Family B/Adhesion and Secretin GPCRs 

The second largest GPCR family in humans is the Family B, which comprises 33 Adhesion and 15 

Secretin-like receptors. The Secretin-like receptors all have an extracellular hormone-binding 

domain and bind peptide hormones. They include receptors for calcitonin, corticotrophin-releasing 
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factor (CRF), glucagon, glucagon-like peptide (GLP), gastric inhibitory polypeptides (GIP), 

vasoactive intestinal peptide (VIP) and secretin. They also contain conserved cysteine residues in 

the N-terminus, which have been shown to be crucial for ligand interactions along with the 

extracellular loops and TM6. Adhesion receptors differ from Secretin-like receptors in their N-

terminal architecture, which contains several domains that play an important role in the specificity 

of receptor ligand binding interactions (Bjarnadottir et al., 2004; Lagerstrom and Schioth, 2008a; 

Lin et al., 2001) and contain GPCR photolytic (GPS) domains, which the Secretin-like receptors 

lack (Krasnoperov et al., 1997).  In addition, Adhesion receptors bind extracellular matrix 

molecules rather than peptide hormones (Lagerstrom and Schioth, 2008a).    

Recently, the first crystal structures of Family B GPCRs were solved for the glucagon and the CRF-

1 receptors, both of which are Secretin-like receptors (Hollenstein et al., 2013; Siu et al., 2013). The 

relative positions of the TM helices at the intracellular face of the proteins were found to overlap 

with those in class A GPCRs, however there was substantial deviation between the two families of 

GPCRs at the extracellular face (Sexton and Wootten, 2013). In addition, the conserved amino acid 

motifs described above for family A GPCRs (DRY and NPxxY) were not present in the two Family 

B receptors, which contained distinct patterns of conserved motifs specific to this family 

(Hollenstein et al., 2013; Siu et al., 2013).  

 

1.1.3.3 Family C/Glutamate Receptors   

Family C/ Glutamate GPCRs consists of 22 human proteins that include the metabotropic glutamate 

receptors (mGluRs), the γ-aminobutyric acid receptor B (GABAB) and the calcium-sensing receptor 

(CaSR). Most Family C GPCRs bind their respective endogenous orthosteric ligand within the N-

terminal region of the receptor in which two lobes of the region form a ligand encasing cavity 

described as a ‘Venus fly trap’ (Fredriksson et al., 2003). This class of receptors is distinct from the 
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other receptor families as they exist constitutively as homo- or heterodimers, which is required for 

their structural integrity, trafficking to the cell surface and signaling (Comps-Agrar et al., 2011; 

Kniazeff et al., 2011; Rondard et al., 2011). Two Family C GPCRs have been crystallised to date, 

namely the mGlu1R and mGlu5R, both crystallised with allosteric modulators (Dore et al., 2014; 

Wu et al., 2014).  

 

1.1.3.4 Frizzled/ Taste2 GPCRs 

The Frizzled family of receptors consists of 10 frizzled receptors and the smoothened receptor 

(Fredriksson et al., 2003). The frizzled receptors bind the family of Wnt glycoproteins (Bhanot et 

al., 1996), whereas the smoothened receptor binds small organic compounds and has been reported 

to function in a ligand-independent manner as the signaling unit in the patched, sonic hedgehog and 

smoothened complex (Lagerstrom and Schioth, 2008b; Murone et al., 1999). This subfamily also 

contains the Taste2 receptors, which mediate the bitter taste (Chandrashekar et al., 2000). The 

frizzled and smoothened receptors both contain an extracellular cysteine-rich domain. This domain 

is the site of binding of the Wnt glycoproteins in frizzled receptors, but its function is not clear in 

the smoothened receptor (Wang et al., 2013b). Recently, several crystal structures of the human 

smoothened receptor were reported in complex with either the small molecule antagonists 

LY2940680 (Wang et al., 2013b),  SANT1 and Anta XV or with the agonist SAG1.5 (Wang et al., 

2014), providing detailed insights into the structural basis of molecular recognition and modulation 

of smoothened receptors by small molecules.   

 



CHAPTER 1 
 

24 
 

1.1.4 Functional characteristics 

1.1.4.1 G protein-dependent signaling 

G proteins are intracellular heterotrimeric proteins composed of three subunits; alpha (α), beta (β) 

and gamma (γ) (Gilman, 1987). Upon activation of a GPCR by an agonist, or constitutive receptor 

activity in absence of agonist, the receptor undergoes conformational changes that lead to 

rearrangements of the TM helices, exposing intracellular binding sites for many effector proteins, 

including G proteins (Pierce et al., 2002; Rasmussen et al., 2011b). The activated receptor serves as 

a guanine exchange factor for the G protein to promote the catalytic exchange of guanosine 

diphosphate (GDP) for guanosine-5’-triphosphate (GTP) at the α subunit. The activated G protein 

dissociates into the α-GTP-bound subunit and the βγ complex, each of which have an independent 

capacity to regulate separate effectors and initiate intracellular signaling pathways (Gilman, 1987; 

Milligan and Kostenis, 2006). The heterotrimer reassembles following hydrolysis of GTP to GDP in 

the α subunit. While this is the most widely accepted mechanism of G protein-dependent signaling, 

there are a few exceptions. These include examples of inactive state receptor-G protein pre-

assembly (Challiss and Wess, 2011; Qin et al., 2011) and cell signaling in the absence of 

heterotrimeric G protein dissociation (Frank et al., 2005).     

G proteins are generally classified according to their α subunit. The principal G protein families are 

Gαs, Gαq/11, Gαi/o and Gα12/13, each of which are responsible for activating specific intracellular 

signaling pathways (Figure 1.2) (Gilman, 1987; Neer, 1995; Wess, 1998). Signaling by Gαs 

involves the activation of the enzymatic function of membrane bound adenylyl cyclases (ACs) for 

the catalytic conversion of adenosine-triphosphate (ATP) to cyclic adenosine monophosphate 

(cAMP), which in turn activates protein kinase A (PKA) and downstream effectors. In contrast, 

Gαi/o G proteins inhibit the activation of ACs and the cAMP pathways. Gαq/11 G proteins stimulate 

phospholipase C (PLC), which causes hydrolysis of phosphoinositol-1,4,5-biphosphate (PIP2) into 

two second messengers, namely inositol-1,4,5- triphosphate (IP3) and diacylglycerol (DAG) which 
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leads to a subsequent rise in intracellular Ca
2+

 levels and activation of protein kinase C (PKC) 

(Felder, 1995). Gα12/13 G proteins couple to the activation of Rho, leading to a variety of effects that 

include regulation of the Na
+
-H

+
 exchanger and cytoskeletal rearrangements (Milligan and 

Kostenis, 2006; Neer, 1995; Neves et al., 2002; Wess, 1998).  In addition to the role of α-subunits, 

the βγ complex also contributes to cellular signaling (Bondar and Lazar, 2014; Khan et al., 2013b; 

Mahajan et al., 2013; O’Neill et al., 2012) including activation of G protein-gated inward rectifier 

K
+
 (GIRK) channels (Whorton and MacKinnon, 2013b), phosphorylation of extracellular signal-

related kinase 1 and 2 (pERK1/2) and activation of PLC and phosphotidylinositol 3’ kinase (PI3K) 

(Gutkind, 2000). In addition, a number of receptors demonstrate promiscuous coupling to multiple 

G proteins to elicit a wide range of signals, however this often occurs in a cell-type-specific, 

agonist-specific and even a dose-dependent manner (Daaka et al., 1997; Defea, 2008; Marinissen et 

al., 2003; Vanhauwe et al., 2002).     

The alterations in cellular behaviour and functions that result from G protein activation are 

manifested in many critical physiological functions, including embryonic development, locomotion, 

learning, memory and metabolism (Neves et al., 2002).    
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Figure 1.2 Major G protein-mediated signaling pathways. Upon binding of an agonist to a 

GPCR, the α subunit of the G protein complex exchanges GDP for GTP and dissociates away from 

the βγ complex. The α-subunit and βγ complex can in turn activate, suppress and regulate various 

signaling cascades, the major of which are detailed here. AC -adenylyl cyclase; cAMP - cyclic 

adenosine monophosphate; DAG - diacyl glycerol; ERK1/2 - extracellular signal regulated kinase 

1/2 ; IP3 - inositol 1,4,5 trisphosphate; K
+
- potassium; MEK1/2 - MAPK/ERK kinase 1/2; PIP2 -

phosphotidylinositol 4,5 -bisphosphate; PKA- protein kinase A; PKC- protein kinase C; PLC - 

phospholipase C;  PLD- phospholipase D; Raf - a serine/threonine kinase. 
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1.1.4.2 G protein-independent signaling 

In addition to G protein-mediated signaling, some GPCRs can signal independently of G proteins 

via interaction with tyrosine kinases and adaptor proteins (Pyne and Pyne, 2011; Pyne et al., 2003; 

Ritter and Hall, 2009). The most extensively studied G protein-independent signaling pathways are 

those mediated by β-arrestins and G protein-coupled receptor kinases (GRKs) (Pierce et al., 2002; 

Pitcher et al., 1998; Shukla et al., 2013; Shukla et al., 2014; Zheng et al., 2012). Classically, upon 

persistent GPCR activation, plasma membrane signaling is terminated by phosphorylation of the 

cytoplasmic loops and C-tail of the receptor by GRKs. This results in the recruitment and binding of 

β-arrestins and subsequent desensitization followed by internalization into clathrin-coated pits 

(Rajagopal et al., 2010). However, β-arrestins act not only as regulators of GPCR desensitisation, 

but also as multifunctional adaptor proteins that can signal through multiple mediators (Defea, 

2008). For example, β-arrestin can function as an adaptor protein to recruit the proto-oncogene 

tyrosine kinase SRC (c-Src) to the activated receptor and facilitate activation of downstream 

ERK1/2 (Luttrell et al., 1999). In addition, β-arrestins can scaffold mitogen-activated protein 

kinases (MAPKs) (Luttrell et al., 2001), p38 (Sun et al., 2002), c-Jun N-terminal kinases (JNKs) 

(McDonald et al., 2000), nuclear factor κB (NF-κB) (Cianfrocca et al.) and PI3K (Lin and DeFea, 

2013).  

 

1.1.4.3 Biased signaling 

Classically, agonists were thought to encompass the entire signal repertoire of a receptor such that 

they were either ‘on’ or ‘off’ as depicted in the classic two-state model of receptor function (Leff, 

1995; Samama et al., 1993). In this model it was envisioned that binding of inverse agonists 

preferentially stabilise the inactive state, whereas full and partial agonists stabilise the active state 

and neutral antagonists do not discriminate between the two conformations and this would block 

both agonist and inverse agonist activities (Stallaert et al., 2011). However, over several decades, 
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numerous examples of drug action were found that did not fit this paradigm, thus giving rise to the 

conceptualisation of the phenomenon of biased signaling (Violin et al., 2014). Biased signaling, 

also known as biased agonism, stimulus bias, ligand-directed signaling, collateral efficacy or 

functional selectively, refers to the ability of ligands for a single receptor to elicit differential 

efficiency for different signaling responses (Lefkowitz, 2013). This phenomenon results from the 

fact that GPCRs are able to pleotropically couple to, and signal through, multiple G protein-

dependent and –independent mechanisms upon receptor activation (Kenakin, 2007). Biased 

signaling entails the existence of distinct conformations of the receptor, stabilized by different 

ligands, which lead to the activation of distinct signaling pathways (Kenakin, 1995a; Kenakin, 

1995b). Signaling bias is exemplified by the angiotensin II (AngII) type 1 receptor (AT1R) ligand 

Sar
1
 IIe

4
 IIe

4
-angiotensin (SII), which induces AT1R-dependent MAPK  activation but not PI3K 

turnover through preferential recruitment of β-arrestins over Gαq (Wei et al., 2003) G protein 

activation. Another example of ligand bias comes from the parathyroid hormone (PTH) 1 receptor, 

whereby PTH(1-34) activates both PKA and PKC, PTH(1-31) activates only cAMP, and PTH(3-38) 

activates only PKC (Luttrell and Kenakin, 2011; Mohan et al., 2000; Takasu et al., 1999). The 

endogenous chemokine ligands CCL21 and CCL19 demonstrate bias at the chemokine receptor 

type 7 (CCR7), where the former is G protein biased and the latter is unbiased (Kohout et al., 2004). 

 

Quantitative measures of ligand bias necessitate determination of the overall activity of an agonist 

in multiple cellular pathways in comparison to a reference ligand (usually the endogenous agonist). 

This can be achieved by use of an operational model of agonism (Black and Leff, 1983) to qualify 

ligand functional affinity, KA, and operational efficacy, τ, the latter incorporates both receptor 

coupling efficiency to a particular signaling pathway, KE, and receptor density, RT. Both KA and τ 

contribute to agonist potency, while only τ contributes to ligand efficacy. Calculation of τ/KA ratios 

of agonists from multiple pathways allows determination if the bias profile of ligands as 
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demonstrated recently in a number of studies (Evans et al., 2011; Kenakin and Christopoulos, 2013; 

Shonberg et al., 2013; Stallaert et al., 2011).  
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1.2  Allosteric Modulation of GPCRs 

1.2.1 General introduction 

The term ‘allosteric’ was first coined by Monod and colleagues in their studies of enzymes (Monod 

et al., 1963; Monod and Jacob, 1961; Monod et al., 1965)  where they highlighted the ability of 

these proteins to undergo global conformational changes that yield binding pockets with different 

affinities for ligands.  They described that enzymes possess two or more non-overlapping binding 

sites for which enzymatic substrates could bind to engender “allosteric transition” that leads to 

change in the biological activity of the protein (Monod et al., 1963; Monod et al., 1965). Their 

observations followed earlier studies on haemoglobin that revealed one of the first examples of 

allosterism, in which the protein could simultaneously bind more than one molecule of oxygen 

(Bohr C, 1904). Today, IUPHAR defines the term ‘allosteric’ in relation to any binding site on a 

receptor protein that is topographically distinct to that of the endogenous ‘orthosteric’ binding site. 

The ‘effectors’ that bind to these sites are termed ‘allosteric ligands’ (Christopoulos et al., 2014; 

Christopoulos and Kenakin, 2002; Neubig et al., 2003). In addition to the ability of allosteric 

ligands to promote conformational changes in the receptor that manifest as an alteration in the prop-

erties (change in the affinity and/or efficacy) of a ligand bound to the orthosteric site, they have the 

potential for direct activation or inhibition of receptor signaling via the allosteric site. Positive 

allosteric modulators (PAMs) enhance orthosteric ligand activity, negative allosteric modulators 

(NAMs) inhibit it, and agents that occupy an allosteric site but do not change the activity of 

orthosteric ligands are said to have neutral ‘cooperativity’ and are referred to as neutral allosteric 

ligands (NALs). Allosteric compounds that directly activate the receptors are called allosteric 

agonists (Christopoulos, 2014; Christopoulos et al., 2014; Keov et al., 2011; Kruse et al., 2014b). 

Allosteric modulators have been identified for all receptor super families including GPCRs, nuclear 

hormone receptors, receptor tyrosine kinases, and ligand- and voltage-gated ion channels 

(Christopoulos et al., 2014).  
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The binding of G proteins to intracellular binding sites that are topographically distinct from the 

orthosteric binding site makes these proteins the best-known and prototypical allosteric modulators 

of GPCRs (Christopoulos and Kenakin, 2002; Ehlert, 1985; May et al., 2007b). Moreover, the 

interaction of GPCRs with regulatory proteins, such as β-arrestins and GRKs, suggests that the 

activity of GPCRs is largely allosteric (Kenakin, 2010). This idea is also supported by the presence 

of several endogenous peptides, lipids and cholesterol that have been reported to allosterically 

regulate GPCR activity (Gimpl et al., 1997; Massot et al., 1996; Thomas et al., 1997; Verma et al., 

2005). 

The binding of ions, such as Na
+
, Ca

2+
 and Zn

2+
 has also been shown to play a role in allosterically 

modulating the activity of orthosteric ligands at several GPCRs (Galvez et al., 2000; Schetz et al., 

1999; Swaminath et al., 2003). In particular, Na
+
 has been shown to bind to an evolutionary 

conserved binding site in most family A GPCRs. The central cluster that harbours the Na
+ 

ion is 

predicted to play a key functional role in the modulation of conformational transitions upon 

receptor activation and the observed activation-related collapse of the sodium pocket implicates a 

role for Na
+
 in signal transduction, where the ion translocates towards or into the cytoplasm 

(Katritch et al., 2014; Liu et al., 2012). 

Structural complexes that have provided molecular insights into allosteric mechanisms at GPCRs 

include studies on sodium ion binding (Liu et al., 2012) (discussed above) as well as the GPCR 

structures bound to small molecules with allosteric pharmacology such as the Class A chemokine 

CCR5 receptor bound to maraviroc (Tan et al., 2013), the free fatty acid receptor-1 bound to TAK-

875 (Srivastava et al., 2014), the M2 mAChR bound to LY2119620 and the orthosteric agonist 

iperoxo (Kruse et al., 2013), the Class B CRF1 receptor bound to CP-376395 (Hollenstein et al., 

2013), the Class C mGluR1 bound to FITM (Wu et al., 2014) and mGluR5 bound to magvoglurant 

(Dore et al., 2014).   
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Emerging evidence also suggests that allosteric modulation may occur across GPCR dimers (Lane 

et al., 2014; Smith and Milligan, 2010). It is possible for a ligand binding to the orthosteric binding 

site of one protomer of a dimer to allosterically modulate the binding and/or function of the 

orthosteric ligand in the other protomer. Examples in the literature also provide evidence that GPCR 

oligomerisation influences the affinity and specificity of ligand binding and receptor signaling and 

internalisation (El-Asmar et al., 2005; Ellis et al., 2006; Harikumar et al., 2012; Rocheville et al., 

2000; Wootten et al., 2013).   

The therapeutic potential of allosteric modulators has been demonstrated by the clinical use of the 

PAM of the CaSR, cinacalcet, to treat secondary hyperparathyroidism, a disorder characterised by 

increased levels of PTH (Kebig and Mohr, 2008), and the NAM, maraviroc, at CCR5, to prevent 

cellular entry of human immunodeficiency virus (HIV) (Dorr et al., 2005; Fatkenheuer et al., 2005; 

Watson et al., 2005).  

1.2.2 Advantages of allosteric modulators  

GPCR allosteric modulators offer several advantages over ligands that target the orthosteric sites 

(Christopoulos, 2002) (Figure 1.3). First, allosteric modulators that lack intrinsic efficacy will only 

exert their effects in the presence of a released endogenous agonist, thus maintaining the temporal 

and spatial specificity of physiological signaling. Second, the effects of the allosteric modulator on 

the function of the orthosteric ligand is saturable, such that no further allosteric effects are observed 

upon complete occupancy of the allosteric sites. This ‘ceiling’ to the effects of allosteric modulators 

protects against potential overdosing of a drug.  A clinical example of this property of allosteric 

ligands relates to allosteric modulation of the GABAA ligand-gated ion channel by the 

benzodiazepine PAMs. These molecules produce their effects by a subtle potentiation the actions of 

GABA.  The potentiation is limited by a small degree of positive cooperativity between the two 

ligands, making the benzodiazepines relatively safe in overdose situations (Christopoulos, 2014; 

Ehlert et al., 1982). Third, allosteric modulators have the potential to achieve greater selectivity 
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among receptor subtypes via binding to less evolutionary conserved binding sites compared to the 

orthosteric site or by subtype-selective cooperativity with orthosteric ligands (Christopoulos, 2002; 

Keov et al., 2011; May et al., 2007b; Wootten et al., 2013).    

 

1.2.3 Probe dependence 

A fundamental pharmacological property displayed by allosteric ligands is the phenomenon of 

‘probe dependence’ (Figure 1.3); so named as to highlight the fact that the extent and direction of an 

allosteric interaction can vary with the nature of the orthosteric ligand used as a probe of receptor 

function (Kenakin, 2005; Keov et al., 2011; Valant et al., 2012a). For example, LY2033298 (Figure 

1.10), is a PAM of the binding affinity of the M4 muscarinic acetylcholine receptor (mAChR) 

orthosteric agonist acetylcholine (ACh) (Figure 1.5), but had neutral cooperativity with the 

orthosteric antagonists [
3
H]N-methylscopolamine ([

3
H]NMS) or [

3
H]quinuclidinyl benzilate 

([
3
H]QNB) (Figure 1.6), at the same receptor and in the same assay (Leach et al., 2011). When 

tested at the M2 mAChR with the orthosteric agonists oxotremorine-M and xanomeline, 

LY2033298 acted as a PAM and a NAM of the two ligands, respectively (Valant et al., 2012a). In 

addition, probe dependence is relevant for receptors that respond to multiple endogenous ligands.  

For example, the chemokine receptor type 5 (CCR5) allosteric modulator aplaviroc, produced very 

little effect on the binding of the chemokine ligand CCL5 to the receptor, but completely blocked 

the binding of the chemokine ligand CCL3 (Watson et al., 2005). The phenomenon of probe 

dependence highlights the importance of choosing the right orthosteric ligands to assess the effects 

of allosteric modulators (Kenakin, 2008; Leach et al., 2007).  

 

1.2.4 Bitopic ligands 

Although allosteric ligands could provide greater subtype selectivity for a given GPCR target, they 

often have low affinity compared to orthosteric ligands. Recent studies have exploited the 
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properties of orthosteric and allosteric compounds to develop a new class of ligands termed 

‘bitopic’, ‘dualsteric’ or ‘multivalent’ (Lane et al., 2013b; Mohr et al., 2010; Valant et al., 2009). 

These hybrid molecules are rationally designed to simultaneously bridge orthosteric and allosteric 

sites within a single receptor. This approach attempts to target the allosteric site to achieve 

selectivity and the orthosteric site to provide high affinity as has been demonstrated in several 

studies ((Daval et al., 2013; Keov et al., 2013; Valant et al., 2008; Valant et al., 2014). Bitopic 

ligands are further discussed in section 1.4.5.2. 

 

 

 

 

Figure 1.3 Pharmacological Characteristics of GPCR allostery. Adapted from Christopoulos. A, 

2014.   
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1.2.5 Quantifying allosteric effects 

1.2.5.1 The allosteric ternary complex model  

Various analytical approaches can be used to analyse and quantify the complex interactions 

between allosteric ligands and GPCRs (Christopoulos and Kenakin, 2002; Leach et al., 2007; May 

et al., 2007b). The allosteric ternary complex model (ATCM) is the simplest mass-action scheme 

that can be applied to experimental data of allosteric interactions (Figure 1.4) (Ehlert, 1988). This 

model describes the allosteric interactions in terms of the equilibrium dissociation constants for 

orthosteric (KA) and allosteric (KB) ligands, and the allosteric effect, governed by the cooperativity 

factor (α), that each ligand exerts on the affinity of the other. Values of α greater than 1 denote 

positive cooperativity, values of α less than 1 but more than 0 denote negative cooperativity, and α 

values equal to 1 denote neutral cooperativity. However, despite the utility of the ATCM in directly 

quantifying experimental data where an allosteric ligand modifies orthosteric ligand affinity, the 

model is limited as it does not take into account the isomerisation of a GPCR between active and 

inactive states and does not consider allosteric modulators that change orthosteric ligand efficacy in 

addition to, or instead of, effects on binding affinity (Keov et al., 2011; Leach et al., 2007).   

 

1.2.5.2 The allosteric two state model  

To accommodate the effects of modulators that alter orthosteric ligand efficacy, and the 

isomerisation of receptors between active (R*) and inactive (R) states, the ATCM has been 

extended into the allosteric two-state model (ATSM) (Figure 1.4) (Hall, 2000).  This model 

describes the allosteric ligand effects on affinity, efficacy and the ability to modulate orthosteric 

ligands across active and inactive receptor states.   The isomerisation of receptors between states is 

denoted by the parameter L, while α is the binding cooperativity factor. The parameters β and γ 

denote the intrinsic efficacy of orthosteric and allosteric ligands, respectively (ability to stabilise 
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active receptor state), while δ denotes the activation cooperativity between both ligands to form the 

active state of the ternary complex (Hall, 2000). As such, the ATSM holds an additional feature in 

that it can account for allosteric agonism at a receptor that is not occupied by an orthosteric ligand 

(R*B) (Keov et al., 2011).  

Although this model describes both binding and efficacy parameters, it includes multiple 

parameters that are difficult to measure experimentally. An alternative ‘operational approach’ had 

been proposed to overcome the limitations of the ATSM (Keov et al., 2011; Leach et al., 2007).  

1.2.5.3 The operational model of allosterism   

The ATCM has been extended to incorporate the classic operational model of agonism postulated 

by Black and Leff (Black and Leff, 1983) to derive the operational model of allosteric modulation 

and agonism (Ehlert, 2005; Kenakin, 2005; Leach et al., 2007; Price et al., 2005) (Figure 1.4). In 

this model, the binding cooperativity between orthosteric (A) and allosteric (B) ligands is governed 

by the factor α, but in contrast to the ATSM, the operational model defines allosteric modulation of 

orthosteric ligand efficacy by the parameter β, and does not differentiate between active and 

inactive receptor states. The magnitude and direction of β should not change for a given set of 

ligands at a given receptor across different assay systems; however, allosteric modulator-mediated 

stimulus-bias will manifest as a pathway-dependent change in the β parameter (Keov et al., 2011). 

Moreover, the parameters τA and τB denote the capacity of orthosteric and allosteric ligands, 

respectively, to exhibit agonism, and incorporate the intrinsic efficacy of each ligand, the total 

density of receptors and the efficiency of stimulus-response coupling. In a system with low 

stimulus–response coupling efficiency or very low receptor density, the efficacy of the allosteric 

ligand might not be apparent. Conversely, under conditions of high coupling efficiency and/or high 

receptor expression levels, allosteric ligand efficacy is detected as changes in the basal 

responsiveness of the system (Leach et al., 2007). The remaining parameters, Em and n denote the 
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maximal possible system response and the slope factor of the transducer function that links 

occupancy to response, respectively (Keov et al., 2011; Leach et al., 2007).  

The operational model of agonism can be applied to functional data where concentration-response 

curves for the orthosteric ligands are performed in the presence of increasing concentrations of 

allosteric ligands to obtain values for the above mentioned parameters, as demonstrated in Chapters 

2-4.    
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Figure 1.4 Models of allosteric interactions 

(A) The allosteric ternary complex model (ATCM) (red) and the allosteric two-state model (ATSM; 

cubic scheme). (B) The operational model of allosterism. In all models, KA and KB denote the 

equilibrium dissociation constants of orthosteric, A, and allosteric, B, ligands, respectively. L 

denotes the isomerisation constant governing the transition between active and inactive receptor 

states. The parameter, α, denotes the binding cooperativity factor for interaction at the ground state 

of the receptor, the parameters β and γ denote the intrinsic efficacies of orthosteric and allosteric 

ligands, respectively (ability to stabilize active receptor state), and the parameter, δ, denotes the 

activation cooperativity factor for the ternary complex (Hall, 2000; Keov et al., 2011). Stimulus in 

any given system is governed by SA and SB for the orthosteric and allosteric ligand, respectively, 

the parameters τA and τB denote the capacity of orthosteric and allosteric ligands, respectively, to 
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exhibit agonism, and incorporate the intrinsic efficacy of each ligand, the total density of receptors 

and the efficiency of stimulus-response coupling (Leach et al., 2007).  
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1.3  Muscarinic Acetylcholine Receptors 

1.3.1 General introduction  

Muscarinic acetylcholine receptors (mAChRs) are family A GPCRs that mediate the majority of the 

actions of the biogenic amine neurotransmitter ACh. They consist of five molecularly distinct 

subtypes, denoted as M1, M2, M3, M4 and M5 mAChRs, encoded by five distinct genes (CHRM1, 

CHRM2, CHRM3, CHRM4, and CHRM5) (Bonner et al., 1987; Caulfield and Birdsall, 1998; 

Hammer et al., 1980). Although mAChRs share evolutionarily conserved amino acid sequences and 

a high degree of sequence homology, they show pronounced differences in G protein coupling 

preferences and the physiological roles they mediate (Hulme et al., 1990; Wess, 1996). 

 

 1.3.2 Localisation and function 

Each of the mAChR subtypes has a unique distribution throughout the central nervous system, 

where they are expressed both pre- and post-synaptically and in peripheral tissues (Felder, 1995). 

Centrally expressed mAChRs mediate cognitive, sensory and motor processes, while some of the 

roles of peripherally expressed receptors include stimulation of smooth muscle contraction, slowing 

of the heart rate and glandular secretions (Eglen, 2005; Wess et al., 2007).  

The M1 mAChR is predominantly expressed in the CNS, particularly in the forebrain areas 

including the cerebral cortex, hippocampus and the striatum (Eglen, 2006). It is therefore implicated 

in learning and memory processes and represents an important therapeutic target for diseases in 

which these processes are impaired, such as Alzheimer’s disease and schizophrenia (Conn et al., 

2009; Langmead et al., 2008b). The M1 mAChR is further discussed in section 1.4.  

The M2 mAChRs are widely expressed both centrally and peripherally (Levey, 1993). Their 

blockade leads to increased cholinergic outflow as a result of reduced autoreceptor function in both 
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the brain and the periphery. Studies with M2 mAChR deficient mice suggest a role for these 

receptors in mediating cognitive processes and bipolar depressive disorders due to their 

involvement in hippocampal cholinergic neurotransmission (Cannon et al., 2011; Eglen, 2012). In 

the periphery, the M2 mAChR is expressed predominantly in the myocardium, where it mediates the 

negative chronotropic and inotropic effects of ACh. Genetic deletion of this receptor shows 

abolished bradycardic effects in response to ACh (Eglen, 2012; Gomeza et al., 1999a). 

The M3 mAChR is widely distributed in the CNS with the highest levels of expression in the 

hypothalamus (Levey, 1993). While little is known about the role of these receptors in the CNS, M3 

mAChR-deficient mice are hypophagic and lean, suggesting a role for this subtype in regulating 

food intake (Gautam et al., 2008). These studies also suggest a role for these receptors in promoting 

growth and regulating bone mass (Gautam et al., 2008; Wess et al., 2007). Both the M2 and M3 

mAChRs mediate contractile responses in smooth muscle cells, and have been targeted 

therapeutically for hyperactive smooth muscle disorders such as irritable bowel syndrome (IBS) and 

chronic obstructive pulmonary disease (COPD) (Eglen, 2012; Peretto et al., 2009).   

The M4 mAChR is expressed centrally in the corpus striatum, mostly co-localised with dopamine 

receptors on striatal neurons. In the periphery, this receptor subtype is present on prejunctional 

nerve endings where it plays a role in inhibiting sympathetic and parasympathetic transmission 

(Eglen, 2012; Levey, 1993; Trendelenburg et al., 2003). Studies with the M1/M4 mAChR agonist 

xanomeline suggest a role for this receptor subtype in psychosis (see below) and this evidence is 

supported by the finding that M4 mAChR-deficient mice display an increased sensitivity to 

compounds that disrupt prepulse inhibition (a preclinical model of psychosis) (Bodick et al., 1997a; 

Chan et al., 2008; Shekhar et al., 2008; Tzavara et al., 2003). Studies with M4 mAChR-deficient 

mice also show increased locomotor activity and an enhancement of dopamine D1 receptor-

mediated effects (Gomeza et al., 1999b). As such, this receptor subtype has been targeted 
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therapeutically for the treatment of schizophrenia and Parkinson’s disease (Jones et al., 2012; 

Langmead et al., 2008b).     

The M5 mAChR is expressed in the dopaminergic neurons of the substantia nigra, which provide 

the principal dopaminergic transmission to the striatum (Felder et al., 2000). The activation of this 

receptor subtype, along with the M4 mAChR, facilitates striatal dopamine release in the brain 

(Vilaro et al., 1990). The M5 mAChR is also the predominant subtype expressed in the ventral 

tegmental area, a tissue that provides major dopaminergic innervations to the nucleus accumbens 

and other limbic areas (Eglen, 2012; Eglen and Nahorski, 2000). These brain areas play a major role 

in the rewarding effects of drugs of abuse, as evidenced by studies with M5 mAChR knockout mice, 

which show reduced sensitivity to the actions of addictive drugs such as morphine and cocaine 

(Fink-Jensen et al., 2003). Therefore, M5 mAChR antagonism may be an important approach as 

novel therapeutics for compound addiction (Eglen, 2012; Kruse et al., 2014b).  

 

1.3.3 Structural characteristics 

The structural and functional features of mAChRs have been extensively explored by site-directed 

mutagenesis, covalent-labelling and molecular modelling studies (Hulme, 2013; Leach et al., 2012). 

Recently, the first crystal structures of mAChRs were solved, revealing the molecular organisation 

of the M2 and M3 mAChR subtypes in inactive (inverse agonist-bound) conformations (Haga et al., 

2012; Kruse et al., 2012b), and an active agonist-bound structure of the M2 mAChR with and 

without the presence of a PAM. Moreover, structural and computational studies have identified the 

mechanisms by which drug-like allosteric modulators bind to the M2 mAChR (Dror et al., 2013; 

Kruse et al., 2013). 

The structures of the inactive M2 and M3 mAChR revealed that, like other biogenic amine receptors, 

members of the mAChR family share the seven transmembrane topology and overall GPCR fold 
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(Dror et al., 2013; Kruse et al., 2014b; Kruse et al., 2013).  Structural conservation includes ICLs 1 

and 2 and ECLs 1-3, which share highly similar overall folds despite low sequence conservation 

(Kruse et al., 2014a). Both, M2 and M3 mAChRs exhibit features unique to the mAChR group, 

including a large extracellular vestibule as part of an extended hydrophilic channel containing the 

orthosteric binding site. This channel is separated from the cytoplasmic surface by a hydrophobic 

layer formed by three amino acids: Leu
2.46

, Leu
4.43 

and Ile
6.40

, which are absolutely conserved 

among all five muscarinic subtypes (Haga et al., 2012) [Numbering in superscript corresponds to 

the Ballesteros–Weinstein system (Ballesteros and Weinstein, 1995)]. Both M2 and M3 mAChRs 

also feature a unique outward bend at the extracellular end of TM4 that is not seen in other GPCR 

crystal structures. This bend is stabilised by a hydrogen bond between the Gln
4.64 

side chain and the 

Leu
4.61 

backbone peptide carbonyl (Kruse et al., 2012a). This bend is part of a polar interaction 

network involving four residues absolutely conserved within the mAChR family, suggesting that 

this unusual feature is important to mAChRs in general. Mutagenesis of Gln
4.64

 in the M3 mAChR 

impaired both ligand binding and receptor activation (Scarselli et al., 2007).  

The extracellular domains of mAChRs contribute to the structural stability of the receptors. In 

particular, the ECL2 is stabilised by a conserved disulphide with Cys
3.25

 at the N terminus of TM3 

and a Cys in the middle of ECL2. The ECL2 defines a boundary of the orthosteric binding site that 

forms a lid-like structure over the orthosteric binding pocket and limits the extent of the 

conformational changes of this region upon receptor activation (Hulme, 2013; Hulme et al., 2003b; 

Kruse et al., 2014b). Restriction of flexibility of this region in the M2 mAChR (via engineering of 

an additional disulphide bond) substantially hinders access of orthosteric ligands (Avlani et al., 

2007). The ECL3 contains an additional intra-loop disulphide bridge between Cys
6.61 

and Cys
7.29

 

that also contributes to receptor stability. In addition, other conserved amino acid residues have also 

been found that are essential for maintaining the overall helical structure, stability and folding of 

mAChRs Asp
2.50

, Leu
3.43

, Asp
3.49

, Tyr
3.51

, Trp
4.50

, and Pro
7.50

 such that mutation of such residues 
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leads to reduction in cell surface expression (Hulme et al., 2001; Hulme et al., 2003b; Lu and 

Hulme, 1999a; Lu et al., 2001a; Lu et al., 1997).  

Unlike other GPCRs, the mAChR (and opioid) crystal structures show that there is no interaction 

involving Arg
3.50

 in the conserved DRY sequence in TM3 and Glu
6.30

 in TM6 (the so-called “ionic 

lock”), instead a conserved Arg in ICL2 forms a salt bridge with Asp
3.49 

of the DRY motif in TM3, 

thereby tethering ICL2 with the TM core (Haga et al., 2012; Kruse et al., 2012b).  

 

1.3.4 Signaling 

Muscarinic receptors are classified according to their G protein coupling preferences (Caulfield and 

Birdsall, 1998). Generally, upon activation by agonists, the M2 and M4 mAChRs preferentially 

couple to Gαi/o G proteins, resulting in the inhibition of AC, reduction in cAMP levels and 

prolongation in the opening of potassium, non-selective cation, and transient receptor potential 

channels (Felder, 1995; Migeon et al., 1995; Whorton and MacKinnon, 2013a).  The M1, M3 and 

M5 mAChRs couple preferentially to Gαq/11 G proteins and activate PLCβ which leads to the 

generation of IP3 and DAG and a subsequent rise in intracellular Ca
2+ 

levels (Lanzafame et al., 

2003; Peralta et al., 1988) (Figure 1.2 and 1.11). These three subtypes also activate other cellular 

messengers such as nitric oxide (NO) or phospholipase A2 (PLA2) (Eglen, 2005; Felder, 1995). Both 

Gαi/o- and Gαq/11 -coupled receptors also activate small GTPase proteins such as Rho, leading to 

cytoskeletal effects (Eglen, 2006). They also signal through a variety of effector molecules such as 

PI3Ks and MAPKs, such as ERK1/2, to effect cell growth and proliferation (Eglen, 2006). In some 

cases the βγ subunits also play a role in cellular signaling and provide a mechanism by which the 

M2 mAChRs activate PLCβ (Katz et al., 1992; Stehno-Bittel et al., 1995).  Muscarinic receptors 

have also been shown to promiscuously couple to more than one G protein and multiple effector 

pathways (Akam et al., 2001; Lee et al., 1998a; Michal et al., 2007; Migeon et al., 1995; Thomas et 
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al., 2008), suggesting the capacity for biased signaling (Kenakin, 2007). However, activation of 

these different signaling pathways occurs in a cell-type-specific and agonist-specific manner.  

  

1.3.5 Regulation and trafficking 

In addition to cellular mechanisms that control receptor activation and signaling, GPCRs are highly 

regulated (van Koppen and Kaiser, 2003). Generally, regulatory processes can be divided into three 

distinct events based on their timing and mechanism. First, desensitisation takes place upon receptor 

activation, which results in receptor uncoupling from G proteins (seconds to minutes). Second, 

receptors are sequestered and internalised away from the cell surface (minutes), and third,  down-

regulation of receptors results in a decrease in the total number of cellular receptors (hours) (Eglen, 

2012).  

The prototypic internalisation process that occurs after agonist activation of the receptor begins by 

phosphorylation of serine and threonine residues on ICL3 of the receptor by an array of protein 

kinases including members of the GRK family, PKC and casein kinase 1α  (CK1α) (van Koppen 

and Kaiser, 2003).  This is followed by binding of β-arrestins, which promotes receptor 

desensitisation by blocking interaction of the receptor with the G protein. In addition, β-arrestins 

can also bind the adaptor protein AP2 and recruit the receptor into clathrin-coated pits in a 

dynamin-dependent manner to cause receptor internalisation (Bouvier et al., 1988; Eglen, 2012; 

Ferguson et al., 1996; Lohse et al., 1989). Among the muscarinic receptors, the M1, M3 and M4 

mAChR subtypes follow this prototypical pathway more closely than the M2 subtype. These three 

subtypes are internalised through the dynamin-dependent, clathrin-mediated pathway (Claing et al., 

2000; Lee et al., 1998b; van Koppen, 2001; Vogler et al., 1998; Vogler et al., 1999a; Vogler et al., 

1999b; Yeatman et al., 2014). However, it has been shown that the M2 mAChR internalises in a β-
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arrestin and clathrin-independent manner, suggesting potential alternative pathways for mAChR 

internalisation (Eglen, 2012; van Koppen and Kaiser, 2003).  

Following internalisation, receptors are either recycled back to the cell surface or targeted to the 

lysosome, leading to down regulation or permanent loss of the receptors from the cell. The M1, M3 

and M4 but not the M2 mAChRs recycle back to the cell surface upon their short exposure to the 

orthosteric agonist carbachol and a recovery period (van Koppen, 2001; Yeatman et al., 2014).  

 

 

1.3.6 Ligand binding  

In addition to the endogenous agonist ACh, mAChRs bind a large number of ligands with varying 

structural and pharmacological properties. Some of the non-selective mAChR orthosteric agonists 

include carbachol, pilocarpine, oxotremorine-M and arecoline (Figure 1.5), while inverse agonists 

include atropine, tiotropium, NMS and QNB (Figure 1.6) (Langmead and Christopoulos, 2006). 

Numerous allosteric modulators also exist, some of which are selective for specific mAChR 

subtypes (Conn et al., 2009; De Amici et al., 2010). Both orthosteric and allosteric binding sites 

have been mapped out in recent mAChR crystal structures and computational studies (Haga et al., 

2012; Kruse et al., 2012b; Kruse et al., 2013).  

 

1.3.6.1 Inverse agonist binding 

The M2 and M3 mAChRs were crystallised in complex with the non-selective muscarinic inverse 

agonists QNB and tiotropium, respectively (Figure 1.6). The two ligands have a similar chemical 

structure and bind in similar poses (Haga et al., 2012; Kruse et al., 2012b). The orthosteric binding 

pocket occupied by these ligands is deeply buried within the membrane and is placed similarly to 

the orthosteric binding sites of the biogenic amine receptors such as histamine (Shimamura et al., 
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2011), dopamine (Chien et al., 2010), adrenaline (Cherezov et al., 2007; Rasmussen et al., 2007; 

Warne et al., 2008) and serotonin (Wacker et al., 2013) receptors. The binding pocket is defined by 

side chains of TM3, 4, 5, 6 and 7 and is covered by a lid comprising four conserved tyrosines- 

Tyr
3.33

, Tyr
6.51

,
 
Tyr

7.39
 and Tyr

7.43
- that completely occlude the ligand from solvent to facilitate 

hydrophobic contacts with the receptor. The amino acids that form the binding pocket are identical 

in all five muscarinic receptor subtypes, with the exception of Phe181 in the M2 mAChR, which 

extends downward from the ECL2 and interacts with one of the phenyl rings of QNB.  

 

Figure 1.5 Structure of non-selective orthosteric mAChR agonists.   

 

 

All other mAChR subtypes have a leucine in the homologous position (Haga et al., 2012; Hulme, 

2013; Kruse et al., 2012b). Substitutions of Tyr
3.33

, Tyr
6.51

, Tyr
7.39

 and Tyr
7.43 

for the aromatic 
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amino acid Phe, causes minimal effects on binding of the muscarinic inverse-agonist NMS (Lu et 

al., 2001b; Ward et al., 1999; Wess et al., 1991; Wess et al., 1992a). However alanine substitution 

of these residues, in addition to residues at position 4.57, 5.39 and 5.42, reduces the binding affinity 

of both NMS and QNB, with the exception of Tyr
6.51, 

which is able to discriminate between 

different mAChR antagonists by showing loss of binding to NMS but unaltered affinity for QNB 

(Avlani et al., 2010; Heitz et al., 1999; Lu and Hulme, 1999a; Lu et al., 2001b; Matsui et al., 1995; 

Ward et al., 1999) (Figure 1.7). Collectively, this evidence indicates that aromaticity at these 

positions is essential for the interaction of these ligands with the receptor. 

 

 

Figure 1.6 Structure of non-selective orthosteric mAChR antagonists/inverse agonists. 
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The cationic amine moieties of NMS, QNB and tiotropium form a charge-charge interaction with 

Asp
3.32

.  The importance of Asp
3.32 

for both agonist and antagonist binding has been demonstrated 

in mutagenesis, covalent-labelling, and modelling studies (Goodwin et al., 2007; Heitz et al., 1999; 

Hulme et al., 2003a). This interaction is also observed in all biogenic amine receptor structures 

solved to date and has been shown to make a major energetic contribution to ligand binding 

(Kooistra et al., 2013; Venkatakrishnan et al., 2013).  In the M2 and M3 mAChR crystal structures, 

Asn
6.52 

forms a paired hydrogen bond with the hydroxyl and ketone groups of QNB and tiotropium 

(Haga et al., 2012; Kruse et al., 2012b; Kruse et al., 2013).  Mutagenesis studies on Asn
6.52 

have 

shown the importance of this residue for the binding of atropine and NMS and QNB to a lower 

extent (Bluml et al., 1994a; Hulme et al., 2003a; Ward et al., 1999). The paired hydrogen bonding 

between the ligand and Asn
6.52 

is a unique feature of the mAChR family and has been proposed to 

be an important factor in slow ligand dissociation from mAChRs (Kruse et al., 2014b; Tautermann 

et al., 2013).  
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Figure 1.7 Binding interactions between the M2 mAChR and QNB. A schematic representation 

of QNB binding interactions in the orthosteric pocket. Polar interactions are indicated by green 

dashed lines. Adapted from Haga et al,. 2012 (Protein Data Bank code 3UON). 

 

1.3.6.2 Agonist binding and receptor activation 

The crystal structure of an agonist (iperoxo)-bound, active state of the human M2 mAChR stabilised 

by a G protein-mimetic antibody fragment, was recently solved (Kruse et al., 2013). In addition to 

mapping the orthosteric agonist binding site, this study highlights the receptor conformational 

changes that occur upon receptor activation (Haga et al., 2012) (Figure 1.8).   

Iperoxo is an orthosteric agonist that displays high affinity and potency at all mAChRs and was 

used rather than ACh as the latter has lower affinity and is prone to hydrolysis (Schrage et al., 2013) 

(Figure 1.5). Iperoxo binding to the M2 mAChR leads to contraction of the orthosteric binding site, 
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which completely occludes the agonist ligand from solvent and creates a cavity that is smaller than 

that observed for QNB. TM5, TM6, and TM7 move inward towards iperoxo and TM3 undergoes a 

slight rotation around its axis (Kruse et al., 2014a; Kruse et al., 2014b; Kruse et al., 2013). Despite 

these activation-related structural changes, polar contacts between the agonist and the receptor 

resemble those of QNB-bound to the inactive M2 mAChR structure. Asp
3.32 

serves as a counter-ion 

to the ligand amine and the side chain of Asn
6.52

 form a hydrogen bond with the isoxazoline ring of 

iperoxo. However, the smaller size of iperoxo relative to QNB causes an inward motion of TM6 

and results in more limited hydrophobic contacts particularly with residues in TM5. The inward 

motion of the exofacial portion of TM6 leads to the formation of a hydrogen bond network between 

Tyr
6.51

, Tyr
3.33

, and Tyr
7.39

, resulting in the closure of the tyrosine lid above the ligand (Kruse et al., 

2014a; Kruse et al., 2014b; Kruse et al., 2013) (Figure 1.8).  

Although the M2 mAChR was crystallised with iperoxo rather than ACh, docking of ACh to the 

inactive M2 mAChR conformation shows that both ligands contact identical residues (Haga et al., 

2012). Moreover, the results with iperoxo are in agreement with the results from a plethora of site-

directed mutagenesis and covalent-labelling studies that identified amino acids that are critical for 

the binding of ACh to the mAChRs (Hulme, 2013; Lu et al., 2001b; Ward et al., 1999; Wess et al., 

1991), many of which are also essential for the binding of inverse agonists such as NMS and QNB.  

For example, similar to the inverse agonists QNB, NMS and tiotropium, the negative charge on 

Asp
3.32 

was found to form a salt bridge with the quaternary nitrogen of ACh. Conservative 

substitution of this residue for a Glu or Asn reduces the affinity of ACh, although the effect is less 

pronounced with Glu, highlighting the importance of the negative charge for the binding of ACh 

(Abdul-Ridha et al., 2014b; Curtis et al., 1989; Leach et al., 2011; Lu and Hulme, 1999a; Page et 

al., 1995; Spalding et al., 1994). In addition, hydrogen bonding of the Tyr lid was shown to be 

important for agonist binding and activation in muscarinic receptors. Mutation of any of the three 
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Tyr to Ala, or more conservatively, to Phe leads to impaired ACh binding (Gregory et al., 2010; Lu 

and Hulme, 1999a; Lu et al., 2001b; Ward et al., 1999; Wess et al., 1991; Wess et al., 1992b).  

Additional features of the active conformation of the M2 mAChR relative to the inactive 

conformation are a significant outward displacement of the cytoplasmic end of TM6, together with 

a smaller outward movement of the C-terminal portion of TM5 and a rearrangement of the highly 

conserved 
3.49

DRY
3.51 

and 
7.49

NPxxY
7.53 

motifs (Kruse et al., 2014a; Kruse et al., 2014b; Kruse et 

al., 2013). Similar conformational changes have been reported for the active-state conformations of 

rhodopsin (Choe et al., 2011a; Scheerer et al., 2008) and the β2-adrenergic receptor (Rasmussen et 

al., 2011a; Rasmussen et al., 2011b).   

In this structure, Asp
3.49 

of the 
3.49

DRY
3.51 

motif is stabilised by a hydrogen bond with Asn
2.39

. 

Asp
3.49 

and Tyr
3.51 

are essential for the function of the majority of Family A GPCRs (Lu et al., 

1997). In the mAChRs, Ala mutation of Asp
3.49 

and Tyr
3.51 

causes significant decrease in ligand 

efficacy and reduces receptor expression while Ala mutation of Asn
2.39 

results in normal ligand-

binding properties, but impaired ability to activate G proteins (Jones et al., 1995; Kruse et al., 2013; 

Leach et al., 2011; Lu et al., 1997). Thus, Asn
2.39

 either directly stabilises the active conformation, 

or engages in direct interactions with the G protein while Asp
3.49 

and Tyr
3.51

 are critical for 

maintaining a receptor conformation able to bind ligand. 

The rearrangements of the 
7.49

NPxxY
7.53 

region upon receptor activation include a partial 

‘unwinding’ of TM7 around Tyr
7.53

, which places this residue in close proximity to the highly 

conserved Tyr
5.58

, allowing the formation of a water mediated hydrogen bond that is also seen in  

the active-state conformations of rhodopsin (Choe et al., 2011a; Scheerer et al., 2008) and the β2-

adrenergic receptor (Rasmussen et al., 2011a; Rasmussen et al., 2011b) indicating that this feature 

represents a hallmark of GPCR activation (Kruse et al., 2013; Miao and McCammon, 2013).  

Mutation of Tyr
5.58 

to Phe, which is predicted to disrupt the water-mediated hydrogen bond, causes 

significant decrease is agonist affinity and abolished response to ACh.  However, it has no effect on 
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antagonist binding, indicating that the interaction between these tyrosine residues stabilises the 

active conformation of the receptor in a manner reminiscent of the ‘ionic lock’ interaction, which 

stabilizes the inactive conformation of family A GPCRs (Kruse et al., 2013). 

 

Figure 1.8 Intracellular changes on activation of the M2 mAChR receptor. (A) The overall 

structure of the active-state M2 mAChR (orange) in complex with the orthosteric agonist iperoxo 

and the active-state stabilizing nanobody Nb9-8. (B) Compared to the inactive structure of the M2 

mAChR (blue), TM6 is substantially displaced outward, and TM7 has moved inward. Together, 

these motions lead to the formation of the G-protein-binding site. Adapted from Kruse et al., 2013 

(Protein Data Bank code 4MQS). 
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1.3.6.3 G protein-coupling 

The structure of the β2 adrenergic receptor-Gαs complex reveals that the G protein only contacts 

residues in TM3, 5, 6 and ICL2 of the receptor and does not interact with residues in TM7 and helix 

8 (Figure 1.1) (Rasmussen et al., 2011b). The outward displacement of the cytoplasmic ends of the 

TM domains that occur upon agonist binding allows the initial insertion of the Gαs C-terminal α5-

helix into the transiently accessible G protein coupling site between helices on the intracellular side 

of the receptor. However, the structure of rhodopsin crystallised with a peptide that resembles the 

C-terminus of Gαs, indicates that ICL2 and 3, the cytoplasmic ends of TM3, 5 and 6 and the N-

terminal segment of helix 8 are all involved in G protein binding (Scheerer et al., 2008). 

Nonetheless, both receptors show the specific interaction between the conserved 
3.49

DRY
3.51 

motif 

residue, Arg
3.50

,
 
and the Gαs α5-helix confirming the importance of Arg

3.50 
in receptor signaling and 

underlining its importance in stabilizing an active receptor state (Choe et al., 2011b).  

In agreement with these results, mutagenic studies suggest an interaction between Gαq and ICL3, 

TM5 and 6 and helix 8 of the M3 mAChR, with four residues at the cytoplasmic end of TM6 

(positions 6.33, 6.34, 6.37 and 6.38) identified as critical in determining G-protein coupling 

selectivity (Blin et al., 1995; Bluml et al., 1994c; Kostenis et al., 1997; Liu et al., 1995). Similar 

observations have been made in the M5 mAChR (Burstein et al., 1996; Burstein et al., 1998a; 

Burstein et al., 1998b; Hill-Eubanks et al., 1996) and in the β2 adrenergic receptor-Gαs complex 

(Rasmussen et al., 2011b) two of the four corresponding residues make contact with C-terminal α5-

helix of Gαs.  

In addition, a cysteine cross-linking study additionally identified Leu173 and Arg176 in ICL2 and 

Thr549, Thr552, and Thr556 in the N-terminal segment of helix 8 of the M3 mAChR as residues 

that directly interact with the C-terminal α5-helix of Gαq (Hu et al., 2010).  

The differences in the cytoplasmic ends of TM5 and ICL2 of the M2 and M3 mAChRs may underlie 

the G protein-coupling specificity of the two receptors (Kruse et al., 2012b). The highly conserved 
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Tyr
5.58 

residue shows a deviation between the two receptors, pointing towards the core of the protein 

in M2 mAChR, and away from the receptor towards the surrounding lipid bilayer in M3 mAChR  

(Haga et al., 2012; Kruse et al., 2012b). Tyr
5.62

 at the bottom of TM5 in the M3 mAChR has also 

been shown to play a role in activation of Gαq (Bluml et al., 1994b). In the M2 mAChR, the 

corresponding residue, Ser
5.62,

 is displaced by approximately 4Å relative to the same residue in the 

M3 mAChR (Haga et al., 2012; Kruse et al., 2012b). Comparison of the position of TM5 in the M2 

and M3 receptors to that in other GPCR structures found that it is M2 mAChR-like in all Gαi/o-

coupled receptors, whereas the two mammalian Gαq-coupled receptors solved to date (Histamine H1 

and squid rhodopsin) (Murakami and Kouyama, 2008; Shimamura et al., 2011) exhibit a different 

conformation (Katritch et al., 2013; Venkatakrishnan et al., 2013).  

 

1.3.7 Chemogenetic strategies for studying GPCR physiology  

1.3.7.1 Development of DREADDs 

In order to gain insight into their physiological role in vivo, different families of GPCRs have been 

engineered to allow control over their cell type- or tissue-specific expression or to provide targeted 

and selective activation (Nichols and Roth, 2009; Wess et al., 2013).   

Early attempts to produce such engineered receptors resulted in the generation of Receptors 

Activated Solely by Synthetic Ligands (RASSLs) (Nichols and Roth, 2009). RASSLs have a 

significantly reduced ability to interact with their endogenous ligands but are able to interact with 

exogenously administered synthetic ligands. A large number of studies have demonstrated the 

utility of these receptors as tools to study complex biological behaviours (Bruysters et al., 2005; 

Coward et al., 1998). An example of such modified GPCRs is Ro1, a Gαi/o-coupled kappa-opioid 

receptor with drastically reduced affinity for the natural peptide ligand, but very high affinity for the 

small synthetic ligand spiradoline (Coward et al., 1998). This receptor was expressed in transgenic 

mice to study cardiac function after its selective activation (Redfern et al., 1999). 
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Although they have been shown to be valuable tools, RASSLs have some significant limitations. 

Often, the synthetic ligands used to activate these receptors exhibit high affinities for the native 

receptors as well as other off-target actions, limiting their use in vivo. In addition, many RASSLs 

have high basal signalling and display constitutive activity in vivo which could obscure any ligand-

induced phenotypes (Pei et al., 2008).  

To overcome the imitations associated with RASSLs, a second generation of engineered GPCRs 

was generated for the mAChR family, named Designer Receptors Exclusively Activated by 

Designer Drugs (DREADDs) (Armbruster, 2007). DREADDs contain mutations at two strictly 

conserved amino acid residues, namely Tyr
3.33

Cys and Ala
5.46

Gly. As a result of these mutations, 

these receptors are activated by Clozapine-N-Oxide (CNO) with high potency and efficacy (Figure 

1.9), but show little response to the native ligand ACh. CNO is a pharmacologically inert metabolite 

of clozapine, an antipsychotic drug. However, DREADDs still show the same G protein coupling 

preference as their parent receptors (M1, M3, and M5 for Gαq/11; M2 and M4 for Gαi/o) (Armbruster et 

al., 2007). Unlike RASSLs, expression of DREADDs in vivo in mice or rats does not result in 

constitutive signaling in the absence of CNO (Armbruster, 2007; Wess et al., 2013).  

To validate DREADDs, Alvarez-Curto et al., 2011 investigated whether the action of the synthetic 

ligand (CNO) at DREADDs can cause signaling outcomes that are equivalent to those caused by the 

native mAChRs when activated by ACh. The effects of CNO at the M3 DREADD were found to be 

similar to WT at the varying endpoints measured, including equivalent conformational changes of 

ICL3, activation of ERK1/2 phosphorylation, phosphorylation of intracellular Ser residues, 

interaction with β-arrestin 2 and internalisation from the cell surface in response to the 

corresponding ligand. Such results provided confidence that, at least for the M3 mAChR, the results 

obtained after transgenic expression of M3 DREADD are likely to mirror the actions of ACh at the 

WT receptor (Alvarez-Curto et al., 2011).  
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 Figure 1.9 The structure of clozapine-N-oxide (CNO) 

 

 

1.3.7.2 Molecular basis of CNO-DREADD interactions 

CNO binds to the mAChRs with a 1000-fold lower affinity compared to its parent molecule 

clozapine (Abdul-Ridha et al., 2013; Johnson et al., 2005). Structurally, CNO differs from clozapine 

by the presence of the N-oxide group. It is proposed that the negative charge on this group may 

interfere, via electrostatic repulsion, with formation of a salt bridge between the positively charged 

nitrogen of CNO and the negative charge of Asp
3.32 

(Wess et al., 2013). 

Mutagenesis studies at the M1 and M3 mAChRs involving the Tyr
3.33

, show that mutation of this 

residue to either Ala or Cys caused a significant reduction in the affinity of orthosteric antagonists 

QNB and NMS and reduction in affinity, potency and efficacy of agonists (ACh or carbachol) (Han 

et al., 2005; Lu and Hulme, 1999b). Mutation of Ala
5.46

Gly at the M1 mAChR caused a similar 

decrease in ACh affinity, potency and signaling efficacy as well as a decreased affinity for QNB 

(Allman et al., 2000).  These results explain why DREADDs containing both the Tyr
3.33

Cys and 

Ala
5.46

Gly point mutations show minimal ACh binding affinity and efficacy.  
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Docking of CNO into the M3 mAChR crystal structure shows that it adopts a pose similar to that of 

tiotropium and, like tiotropium, makes contact with both the Tyr
3.33

 and Ala
5.46

 residues. It is 

unclear why CNO shows high affinity and efficacy at the DREADD but not at the WT mAChRs, 

though it has been suggested that the Tyr
3.33

Cys mutation causes minor conformational 

rearrangements of the aromatic Tyr lid that lead to changes in the kinetics of CNO binding, 

resulting in an increase in CNO binding affinity. The Ala
5.46

Gly mutation has been suggested to 

increases the conformational flexibility of TM5, thus facilitating a CNO dependent inward 

movement of TM5 (Wess et al., 2013).  

 

1.3.7.3 Expression in vivo 

The cell-type or tissue-specific expression of DREADDs in vivo has been achieved using several 

experimental strategies. For example, the generation of transgenic mice in which DREADD 

expression can be temporally and spatially controlled by the use of Tet-off technology and tissue-

specific promoters (Alexander et al., 2009; Garner et al., 2012). A knock-in mouse model has also 

been used in which the expression of M4 DREADD is dependent on Cre-mediated removal of a 

floxed stop sequence preceding the M4 DREADD coding sequence (Ray et al., 2011; Ray et al., 

2013).  Using these approaches, DREADDs have been successfully employed to study GPCR 

signaling pathways and to investigate biological processes and behaviours. In particular, DREADD 

technology has been used by neuroscientists to map neuronal circuits underlying CNS functions 

such as memory formation, regulation of food intake, wakefulness, motor control and drug seeking 

behaviour (Farrell et al., 2013; Ferguson et al., 2011; Garner et al., 2012; Guettier et al., 2009; 

Karunarathne et al., 2013; Krashes et al., 2011; Mahler et al., 2014; Michaelides et al., 2013; Ray et 

al., 2011; Sasaki et al., 2011; Zhu and Roth, 2014).  
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Transgenic mouse lines expressing the hM3 DREADD or M3Gαs DREADD (M3 DREADD 

receptors modified to couple to Gαs) in pancreatic β-cells have been reported and show that 

stimulation of either receptor has significant effects on β-cells function including glucose tolerance 

and insulin release (Guettier et al., 2009; Jain et al., 2013). Another study demonstrated remote 

control of neuronal activity in mice also expressing the hM3 DREADD receptor in the 

hippocampus. Administration of CNO to these transgenic mice lead to increases in hippocampal 

neural activity as well as behavioural modifications in a dose dependent manner (Alexander et al., 

2009). Additional studies have also used M3 DREADD transgenic mice to study the consequences 

of activating Agouti-Related Protein neurons on mice feeding behaviour and found that activation 

of these neurons induces feeding, reduces energy expenditure and leads to increases in fat storage 

(Krashes et al., 2011). Ferguson et al. further demonstrated the utility of this approach for 

deconstructing neuronal pathway contributions to behaviour in relation to development of drug 

addiction upon repeated drug intake (Ferguson et al., 2011). Finally, a recent study expressed 

DREADD receptors in Drosophila as an approach to control behaviour, neuronal signaling and 

physiology in the fly (Becnel et al., 2013). A list of all studies that used DREADD technology is 

found in the review by Wess et al., (2013).  

 

1.3.7.4 Allosteric modulation of DREADDs 

Although DREADD technology has been most often used for in vivo studies, it has also been useful 

in understanding mechanisms of allosteric modulation in cultured cell lines (Abdul-Ridha et al., 

2013; Nawaratne et al., 2008). The M4 mAChR allosteric modulator, LY2033298 (Figure 1.10) 

(Chan et al., 2008) has been shown to act cooperatively with the orthosteric binding site to 

remarkably restore the functionality of ACh at the M4 DREADD receptor (Nawaratne et al., 2008). 

This study provides evidence for the retention of a functional allosteric site on the M4 DREADD 
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and highlights the roles of the mutated residues in transmission of cooperativity across binding 

sites. Furthermore, these modified receptors can be used as model ‘inactive’ receptors to study the 

two-state behaviour of GPCRs as allosteric proteins and allosteric ligands that have been shown to 

display ‘state-dependence’, such as the M1 mAChR allosteric modulator benzyl quinolone 

carboxylic acid (BQCA) (Figure 1.15) (Canals et al., 2012). Abdul-Ridha et al., (2013) used BQCA 

to investigate whether the allosteric modulation of CNO-bound M1 DREADD is equivalent to the 

modulation of the ACh-bound WT receptor as detailed in Chapter 2. 

 

Figure 1.10 (A) Structure the M4 mAChR and (B) the M2 mAChR PAMs.

 

 

1.3.7.5 Arrestin biased DREADD 

A β-arrestin-biased DREADD has been generated as a tool for studying the physiological relevance 

of arrestin-dependent signaling pathways (Nakajima and Wess, 2012). The M3 β-arrestin-biased 

DREADD contains an additional Arg
3.50

Lys point mutation and is unable to activate G protein 

signaling pathways such as cAMP accumulation/inhibition and calcium mobilisation. However, it is 

able to recruit arrestins and promote ERK1/2 phosphorylation in a CNO- and arrestin- dependent 

fashion. CNO treatment of MIN6 mouse insulinoma cells expressing the M3 arrestin-biased 
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DREADD resulted in insulin release, and this effect is reduced was genetic deletion of β-arrestin 1 

and 2, supporting previous studies that arrestins play a role in insulin release (Kong et al., 2010).   It 

is anticipated that further studies that express the β-arrestin-biased DREADD in vivo may provide 

novel information about the physiological and pathophysiological roles of β-arrestin signaling 

pathways (Nakajima and Wess, 2012; Wess et al., 2013). 
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1.4  The M1 Muscarinic Acetylcholine Receptor 

1.4.1 Localisation and function 

The hM1 mAChR, encoded by the gene located in the long arm of chromosome 11 (q12-13), is the 

predominant mAChR subtype in the CNS.  It is located in major forebrain areas including the 

cortex, hippocampus, striatum, and thalamus and to a lower extent in the amygdala (Caulfield and 

Birdsall, 1998; Langmead et al., 2008b). Immunoprecipitation studies indicate that approximately 

40% of total mAChRs in the rodent cortex represent the M1 mAChR subtype, and in the human 

brain, it is the primary receptor in the frontal, temporal, parietal and occipital cortical areas, 

accounting for 35-60% of total mAChRs (Flynn et al., 1995; Levey et al., 1991; Volpicelli and 

Levey, 2004). Cortical M1 mAChRs localise post-synaptically in all layers of cortical pyramidal 

cells with enriched expression in layers II, III and VI. In the striatum, the M1 mAChR is confined to 

the caudate-putamen where it is expressed both pre- and post-synaptically on cell bodies, dendrites 

and spines of medium spiny neurons. The hippocampus has the highest density of M1 mAChR 

expression where the receptors localise to pyramidal cell bodies and apical and basal dendrites of 

the striatum and stratum oriens (Flynn et al., 1995; Hersch et al., 1994; Hersch and Levey, 1995; 

Kamsler et al., 2010; Levey et al., 1991). Peripherally, the M1 mAChR localises to salivary glands, 

where it mediates salivary secretion (Gautam et al., 2004; Lin et al., 2008), to lymphocytes, where it 

causes the activation of the inflammatory cytokine interleukin 2 and plays a role in regulating the 

immune response (Levey, 1993; Nomura et al., 2003), and to colonic epithelial cells, where it is 

predicted to regulate epithelial chloride secretion and may play a role in inflammatory gut 

dysfunction (Khan et al., 2013a).  

Given the widespread distribution of M1 mAChRs in the brain, they are implicated in a multitude of 

neurologic and psychiatric disorders such as Alzheimer’s disease and schizophrenia (Langmead et 

al., 2008b).    
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At a cellular level, activation of the M1 mAChR potentiated N-methyl-D-aspartate (NMDA) 

receptor currents in hippocampal pyramidal and cortical cells (Ishibashi et al., 2014; Marino and 

Conn, 2002; Marino et al., 1998). NMDA receptors play a critical role in regulating synaptic 

plasticity, and disrupted NMDA-receptor neurotransmission is thought to underlie the cognitive 

deficits observed in numerous psychiatric diseases (Foster et al., 2014). The MAPK-signaling 

pathway is also considered to play an important role in synaptic plasticity and many cognitive 

functions (Adams and Sweatt, 2002). Activation of the MAPK pathway by muscarinic agonists was 

abolished in primary cortical cultures or hippocampal pyramidal neurons in M1 mAChR knockout 

mice (Berkeley et al., 2001; Hamilton and Nathanson, 2001), supporting the concept that M1 

mAChR activation plays a role in cognition. In addition, M1 mAChR knockout mice showed 

deficits in neuronal plasticity in different regions of the forebrain (Caruana et al., 2011; Origlia et 

al., 2006; Shinoe et al., 2005; Zhang et al., 2006) and demonstrated an age-dependent cognitive 

decline in tasks that they performed normally at a younger age (Medeiros et al., 2011). Mice lacking 

the M1 mAChR gene also showed performance deficits in the eight-arm radial maze and fear 

conditioning studies, both of which involve learning and memory tasks, and a profound increase in 

locomotor activity in all behavioural tests (Hamilton et al., 1997; Kamsler et al., 2010; Miyakawa et 

al., 2001). It is thought that the behavioural pattern displayed by the M1 mAChR knockout mice is 

reminiscent of human attention-deficit/hyperactivity disorder in which hyperactivity is often 

accompanied by cognitive deficits (Paule et al., 2000; Wess et al., 2007). Furthermore, M1 mAChR 

knockout mice showed normal or improved memory in tests that involved matching-to-sample 

tasks, but showed significant impairments in non-matching-to-sample working memory and 

consolidation (Anagnostaras et al., 2003; Wess et al., 2007), indicating that M1 mAChRs receptors 

are not essential for memory formation or for the initial stability of memory in the hippocampus.  

Rather, they are likely to be involved in cortical memory function and processes requiring 

interactions between the cortex and hippocampus (Anagnostaras et al., 2003; Wess et al., 2007).  
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Recently, the M1 mAChR selective agonist GSK1034702 (Figure 1.11) showed efficacy in 

improving episodic memory in humans in a nicotine abstinence model of cognitive dysfunction, 

including significant improvements in immediate recall (but not delayed recall) following 

abstinence-induced impairment (Nathan et al., 2013).  

 

 

1.4.2 Activation and signaling  

The M1 mAChR preferentially couples to pertussis toxin-insensitive Gαq/11 to initiate the activation 

of PLC which causes hydrolysis PIP2 into two second messengers, IP3 and DAG. IP3 binds to 

receptors located on the endoplasmic reticulum (ER) and causes the release of intracellular Ca
2+ 

which then activates Ca
2+

-calmodulin. (Berstein et al., 1992; Felder, 1995; Odagaki et al., 2013; van 

Koppen and Kaiser, 2003) (Figure 1.2). DAG is involved in the activation of PKC isoenzymes that 

can initiate a number of signaling events (Felder, 1995; Nelson et al., 2007; Xu et al., 1990). PKC 

mediated events include activation of the transcription factor Nrf2 that regulates the expression of 

genes containing antioxidant response elements in hippocampal and cerebellar neurons (Espada et 

al., 2009), mediating M1 mAChR-activated NMDA currents in the striatum (Calabresi et al., 1998) 

and activation of MAPKs (Werry et al., 2006). M1 mAChR signaling via PLC is complex due to the 

presence of multiple PLC enzymes. Thirteen PLC enzymes have been identified consisting on 

PLCβ1-4, PLCγ1-2, PLCδ1, 3, 4, PLCε, PLCζ and PLCη. However, the M1 mAChR is most 

commonly associated with activation of the PLCβ subfamily (Suh et al., 2008; Taylor et al., 1991; 

Young and Thomas, 2014).  Kinetic studies have shown that binding of PLC to Gαq/11 upon M1 

mAChR activation accelerates nucleotide exchange and GTPase activity, and that PLC is 

maintained in the active state by cycles of rapid GTP hydrolysis and nucleotide exchange on Gαq/11 

subunits bound to PLC (Falkenburger et al., 2010).  
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The ability of the M1 mAChR to influence additional downstream effector pathways via activation 

of other G protein subtypes has also been reported (Nathanson, 2000). The M1 mAChRs is able to 

activate Gαi/o (Akam et al., 2001; Offermanns et al., 1994) and increase AC activity via a Gαs 

protein-dependent (Burford and Nahorski, 1996; Gurwitz et al., 1994; Hao et al., 2005; Migeon and 

Nathanson, 1994; Olianas et al., 2013) or -independent mechanisms based on increased intracellular 

Ca
2+

, calmodulin and PKC activity (Baumgold, 1992; Baumgold et al., 1992; Felder et al., 1989; 

Jansson et al., 1991). The M1 mAChR is able to affect cell cytoskeleton and induce membrane 

ruffling by coupling to Gα12/13 G proteins (Canals et al., 2012). G protein coupling preferences can 

also be ligand-dependent. For example, Thomas et al, 2008 showed that the orthosteric agonists 

oxotremorine-M, arecoline, and pilocarpine and the allosteric agonists AC-42 and 77-LH-21-1 both 

stabilise receptor conformations associated with Gαq/11- and Gαs-dependent signaling. However, 

AC-42 and 77-LH-28-1, unlike the orthosteric agonists do not promote M1 mAChR Gαi1/2 coupling, 

suggesting that these ligands have the potential to activate distinct subsets of downstream effectors 

(Thomas et al., 2008).  

The M1 mAChR has been shown to activate MAPK pathways which are involved in a diverse array 

of functions including cell survival, proliferation, apoptosis and gene transcription (Werry et al., 

2005). MAPKs are serine/threonine kinases that are divided into subfamilies including JNK1-3, 

ERK1/2, p38 protein kinase (p38) and big-mitogen-activated protein kinase 1 (BMK1) (Werry et 

al., 2005). The M1 mAChR can activate the MAPK pathways by multiple mechanisms including 

activation of protein tyrosine kinase 2 (PYK2) via calmodulin-dependent protein kinases and PKC-

mediated mechanisms; PYK2 can activate c-Src to cause activation of the ERK1/2 pathway (Felsch 

et al., 1998; Gudermann et al., 2000; Gutkind, 1998). Activation of ERK1/2 in response to M1 

mAChR activation has been reported in numerous cell lines including hippocampal dendrites and 

somata pyramidal neurons (Berkeley et al., 2001), cerebral cortical neurons (Hamilton and 

Nathanson, 2001), human salivary cell lines (Lin et al., 2008), CHO cells (Abdul-Ridha et al., 2013) 
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and in PC12 cells (Berkeley and Levey, 2000; Haring et al., 1998). Activation of the M1 mAChR 

induced neuronal differentiation in pyramidal hippocampal neurons through induction of Ca
2+

 

mobilisation, activation of PKC and most importantly of ERK1/2 (VanDeMark et al., 2009).  The 

M1 mAChR can also increased JNK activity in Cos-7, PC12 and NIH-3T3 cells (Coso et al., 1995; 

Coso et al., 1996; Mangelus et al., 2001) and activated p38 in PC12 and DT40 lymphoma cells 

(Bence et al., 1997; Mangelus et al., 2001).  The M1 mAChR was also able to activate MAPK 

pathways via transactivation of epidermal growth factor receptors (EGFR). For example, activation 

of the M1 mAChR caused PKC-mediated activation of a metalloprotease that released an epidermal 

growth factor-like ligand that can activated the EGFR to initiate signaling (Prenzel et al., 1999). 

Activation of the M1 mAChR lead to direct stimulation of Bruton’s tyrosine kinase through direct 

interaction with Gαq/11 (Bence et al., 1997) and caused Ras activation through a Gβγ-mediated 

phosphorylation and activation of a guanine nucleotide exchange factor (Mattingly and Macara, 

1996). The M1 mAChR has also been reported to activate PLA2 to release arachidonic acid (Felder 

et al., 1991) and to regulate phospholipase D (PLD) activity to yield phosphatidic acid that is 

involved in a number of cellular responses including Ca
2+ 

mobilisation, cytoskeletal rearrangements 

and vesicle trafficking (Felder, 1995; Sandmann et al., 1991). The M1 mAChR is also known to 

interact with the cytoskeletal protein spectrin by forming a Gαq/11-associated protein complex that 

controls cytoskeletal modelling in CHO cells, a process mediated by PLC, PKC and Rho-associated 

kinase (ROCK) (Street et al., 2006). Cyclic ADP-ribose (cADPR) has also been shown to play a 

role in signaling downstream of the M1 mAChR in rat superior cervical ganglion (Zhang et al., 

2005). In the cerebral cortex, activation of the M1 mAChR caused an increase in the levels of the 

neural and inducible isoforms of nitric oxide synthase (nNOS and iNOS), which are associated with 

increased levels of NO via a signaling cascade involving PLC, calcium/calmodulin and PKC 

(Sterin-Borda et al., 2003).      
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The M1 mAChR plays an important role in the regulation of the function of numerous ion channels 

either by direct coupling to the channels or indirectly via transactivation of receptor tyrosine kinases 

or channel phosphorylation mediated by kinases such as PKA and PKC (Cantrell et al., 1996; 

Huang et al., 1993; Nathanson, 2000; Thiele, 2013). M1 mAChR affected neuronal activity by 

closing voltage-gated K
+
 channels which are usually held open by binding to PIP2 (Brown, 2010; 

McCormick and Prince, 1986; McCormick and Williamson, 1989; Selyanko et al., 2000; Womble 

and Moises, 1992).  However, M1 mAChR-induced hydrolysis of PIP2 leads to channel closure 

(Gamper and Shapiro, 2007; Kobrinsky et al., 2000; Suh and Hille, 2005).  The M1 mAChR has 

been shown to modulate the activity of voltage gated K
+
 channels via transactivation of EGFRs in a 

PKC- and receptor tyrosine phosphatase α (RTPα)-dependent manner (Daub et al., 1997; Tsai et al., 

1999; Tsai et al., 1997). M1 mAChR signaling also leads to closure of inward rectifying K
+
 type 1, 2 

and 4 channels (Carr and Surmeier, 2007; Hill and Peralta, 2001; Huang et al., 1993; Jones, 1996), 

closure of slow after hyperpolarisation K
+
 channels (Ghamari-Langroudi and Bourque, 2004; 

McCormick et al., 1993), closure of leaky K
+
 channels (Womble and Moises, 1992), and opening  

(Gulledge et al., 2007; Gulledge and Stuart, 2005) but also closing (Giessel and Sabatini, 2010) of 

SK-type calcium-activated K
+
 channels. The release of Ca

2+
 from intracellular stores after M1 

mAChR activation is thought to cause the opening of SK-type calcium-activated K
+
 channels 

(Gulledge et al. 2007). However, M1 mAChR activation reduced the sensitivity of calcium-activated 

K
+
 channels to Ca

2+
 through a PKC pathway (Buchanan et al., 2010) or casein kinase-2 pathway 

(Giessel and Sabatini, 2010) thus also resulting in reduced calcium-activated K
+
 channels opening.  

Voltage gated Ca
2+

 channels are also regulated by the M1 mAChR via slow (soluble second-

messenger) and fast (membrane-delimited) mechanisms (Hille, 1994; Wickman and Clapham, 

1995). P/Q-, N-, and L-type Ca
2+ 

channels are part of the high voltage-activated class of Ca
2+ 

channels. M1 mAChR activation contributed to Ca
2+

 channel inhibition by PLC/Ca
2+

- dependent 

PKC pathways (Salgado et al., 2007). Specifically, L- and N-currents are inhibited via DAG lipase 
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in cervical ganglion neurons (Liu et al., 2008).  Low voltage-activated T-type Ca
2+

 channels are also 

blocked upon M1 mAChR activation (Hildebrand et al., 2007). M1 mAChR activation caused 

opening of Ca
2+

- dependent (Haj-Dahmane and Andrade, 1998; Yan et al., 2009) and -independent 

(Egorov et al., 2003) nonspecific cation channels. 

Finally, M1 mAChR-mediated activation of Gαq/11 proteins is regulated by RGS2 (regulators of G 

protein signaling 2) and RGS4 (Bernstein et al., 2004; Lin et al., 2002). RGS proteins are GAPs 

(GTPase accelerating proteins) that increase the GTPase activity of G proteins to reduce G protein-

mediated cell signaling.  

 

1.4.3 Regulation and trafficking 

In response to agonist stimulation, the M1 mAChR receptor signaling is terminated by receptor 

desensitisation and internalisation. This regulation is dependent on receptor phosphorylation by 

protein kinases such as GRKs, PKC and CK1α, which promotes the interaction of the receptor with 

scaffolding proteins such as β-arrestins (Butcher et al., 2012; Pitcher et al., 1998; van Koppen and 

Kaiser, 2003; Waugh et al., 1999).  

The desensitisation of the M1 mAChR upon agonist stimulation involves phosphorylation of 

specific serine and threonine amino acid residues on the ICL3 and the C-terminus of the receptor 

(Haga et al., 1996).    PKC has been shown to phosphorylate the Ml mAChR both in vivo and in 

vitro in an agonist-independent manner (Haga et al., 1996; Richardson and Hosey, 1990; Uchiyama 

et al., 1990). Phosphorylation sites for PKC include Thr354, Ser356 and Ser451, Thr455, Ser457 

(Haga et al., 1996). M1 mAChR-independent PKC activation can lead to heterologous 

desensitisation of the M1 mAChR in numerous cell lines including rat cerebral cortical astrocytes 

(Pearce et al., 1988) and N1E-115 neuroblastoma cells (Kanba et al., 1990; Kanba et al., 1986).  

Phosphorylation of agonist-occupied M1 mAChR by GRKs is mediated by GRK2 in Sf9 insect cells 

(Debburman et al., 1995; Haga et al., 1996), CHO and human embryonic kidney 293 (HEK293) 
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cells (Yeatman et al., 2014) and hippocampal neurons (Willets et al., 2005; Willets et al., 2007). 

GRK phosphorylation sites on the M1 mAChR are located in the 

284SerMetGIuSerLeuThrSerSerGlu292 sequence in ICL3 (Haga et al., 1996; Lameh et al., 1992; 

Moro et al., 1993). There is also weak evidence that the M1 mAChR may be a substrate for GRK5 

and GRK6, however further studies are required to confirm this (van Koppen and Kaiser, 2003).  

CK1α has also been shown to mediate agonist induced M1 mAChR phosphorylation in CHO cells 

(Waugh et al., 1999). 

Phosphorylation of the M1 mAChR facilitates receptor internalisation. Ala substitution of 

phosphorylation sites in ICL3 of the M1 mAChR impairs receptor internalisation (Moro et al., 

1993).  Phosphorylation of the M1 mAChR leads to internalisation in clathrin- and β-arrestin-

dependent manner (Santini et al., 2000; Tolbert and Lameh, 1996; Yeatman et al., 2014). One study 

also reported that the M1 mAChR can internalise in a clathrin- but not β-arrestin-dependent manner 

(Lee et al., 1998b). Internalised M1 mAChRs colocalise with β-arrestin and clathrin in HEK293 and 

RBL-2H3 cells (Mundell and Benovic, 2000; Santini et al., 2000; Tolbert and Lameh, 1996). The 

use of a dominant-negative β-arrestin that is able to bind to phosphorylated M1 mAChR but not to 

clathrin, inhibits its internalisation (Claing et al., 2000). Similarly, the use of a dominant-negative 

clathrin mutant also inhibited M1 mAChR internalisation (Vogler et al., 1999b). Clathrin-coated pits 

are cleaved from the membrane by the actions of dynamin GTPase, a dominant-negative dynamin 

mutant is able to inhibit internalisation of the M1 mAChR (Claing et al., 2000; Vogler et al., 1999b). 

The M1 mAChR internalisation process requires phosphorylation of dynamin by c-Src. A mutant 

and catalytically-deficient c-Src is able to suppress M1 mAChR internalisation (Werbonat et al., 

2000). In polarized epithelial kidney cells, caveolin was shown to be involved in regulating M1 

mAChR trafficking by means of attenuating of the M1 mAChR movement to and from the plasma 

membrane (Shmuel et al., 2007). Once internalised, M1 mAChRs can be either degraded or recycled 

back to the cell surface.   
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The continued exposure of the M1 mAChR to agonists leads to a loss of total number of receptors in 

a process known as down-regulation that results from degradation of receptors (van Koppen and 

Kaiser, 2003). Several studies suggest that down-regulation of mAChR involves a decrease in 

receptor mRNA levels. For example, M1 mAChR activation in CHO, IMR-32 and SH-SY5Y 

neuroblastoma cells leads to a decrease in total receptor number accompanied by a decrease in the 

level of M1 mAChR mRNA transcript (Koman et al., 1993; Lee et al., 1994). However, down-

regulation of M1 mAChR expression is not always accompanied by a decrease in mRNA levels. 

Decreased M1 mAChR expression in primary rat cortico-striatal cells is accompanied by an increase 

in the mRNA transcript over the first 2-6 hours of agonist treatment (Brusa et al., 1995). Four 

mutations in the M1 mAChR located in ICL2 or in the N- and C- terminal regions of ICL3 impair 

M1 mAChR down-regulation in CHO cells (Shockley et al., 1997).    

Receptor trafficking through the endocytic machinery and the fate of internalised receptors is 

dependent on the agonist (Lane et al., 2013a).   Allosteric modulators may potentially induce 

receptor desensitization/internalization or conversely increase cell surface expression or prevent the 

internalization induced by the endogenous/orthosteric ligand. Examples of such scenarios are 

summarised in Table 1 Appendix 1.  

 

1.4.4 Therapeutic potential of M1 mAChRs in CNS 

 

1.4.4.1 Alzheimer’s disease 

Alzheimer’s disease is the most common form of dementia, currently affecting 35 million 

individuals worldwide and considered a public health crisis (Ballard et al., 2011; Foster et al., 

2014). It is a disease that commonly affects the elderly, resulting in cognitive dysfunction and 

severe memory loss (Melancon et al., 2013b). The hallmarks of Alzheimer’s disease pathology are 

the accumulation of amyloid-beta (Aβ) peptide aggregates (Aβ plaques) and hyperphosphorylated 
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tau protein (neurofibrillary tangles) (Foster et al., 2014). Aβ is derived from proteolytic cleavage of 

the membrane bound amyloid precursor protein (APP), which is known to undergo proteolytic 

cleavage via two competing routes, nonamyloidogenic and amyloidogenic. In the amyloidogenic 

pathway APP is sequentially cleaved by β- and γ-secretases to release Aβ peptides. However, in the 

nonamyloidogenic route, APP is cleaved by α-secretase to yield soluble APP and preventing Aβ 

peptide generation (Huang and Mucke, 2012; Langmead et al., 2008b). The build-up of Aβ plaques 

leads to neuronal inflammation, dysfunction, and cell death. The two brain regions most critically 

affected by this degeneration are the cortex and hippocampus (Foster et al., 2014).  Alzheimer’s 

disease is also associated with reduced cholinergic innervations of these brain regions (Auld et al., 

2002). The cognitive and behavioural deficits observed in Alzheimer’s disease patients highlight the 

importance of the cholinergic system in mediating these processes. A large body of evidence 

indicates that the M1 mAChR mediates the cognitive-enhancing effects of ACh (Hasselmo, 2006; 

Wess et al., 2007). For example, the use of mAChR antagonists, as well as cholinergic lesions in the 

forebrain of rats, leads to cognitive impairment (Hagan et al., 1987; Hagan et al., 1988; Smith et al., 

1988), while M1 mAChR deficiency increases amyloidogenic processing of APP and exacerbate 

cognitive processes and other Alzheimer’s disease-related pathological features in mice (Davis et 

al., 2010). The M1 mAChR interacts with β-site APP-cleaving enzyme 1 (BACE1), the β-secretase 

enzyme responsible for formation of Aβ, to regulate its proteosomal degradation (Fisher, 2007). 

Furthermore, M1 mAChR activation lowers Aβ levels and increases soluble APP formation in vitro 

thereby preventing the formation of Aβ via MAPK- and PKC- dependent pathways (Jiang et al., 

2012; Lahmy et al., 2013). In addition, M1 mAChR activation decreases tau phosphorylation; 

thereby affecting both pathological hallmarks of Alzheimer’s disease (Tarr et al., 2012). Transgenic 

Tg2576 mice, which overexpress a familial Alzheimer’s disease mutant form of the APP, are 

impaired on compound discrimination reversal learning (Zhuo et al., 2008; Zhuo et al., 2007). 

Treatment of these mice with the M1 mAChR selective agonist, AF267B (Figure 1.11), showed 
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increased cerebrospinal fluid (CSF) levels of α-secretase producing enzyme, ADAM17, and a 

decrease in β-secretase formation (Fisher et al., 2000; Giessel and Sabatini, 2010).  

The current primary treatments for Alzheimer’s disease symptoms are acetylcholinesterase 

inhibitors (AChEIs) such as galantamine, donepezil, tacrine and rivastigmine, which potentiate 

cholinergic signaling by reducing enzymatic degradation of ACh (Munoz-Torrero, 2008). Although 

these treatments provide improvements in cognitive and psychiatric symptoms associated with 

Alzheimer’s disease, cardiovascular and gastrointestinal side effects are often observed, thought to 

be mediated by peripherally located ACh receptors (Foster et al., 2014).  

Phase III clinical studies with the M1/M4 mAChR-preferring agonist xanomeline (Figure 1.5) 

showed efficacy in ameliorating cognitive and psychotic deficits observed in Alzheimer’s disease 

patients.  These included significant improvements in verbal learning and short-term memory, 

reductions in hallucinations, delusions, vocal outbursts, and other behavioural disturbances. (Bodick 

et al., 1997a; Bodick et al., 1997b). However, due to dose limitations and severe gastrointestinal 

side effects, the use of xanomeline was discontinued.  Nonetheless, the results from the xanomeline 

studies provide strong clinical validation of M1 mAChRs as a target for the treatment of both 

psychotic and cognitive disturbances in Alzheimer’s disease.   Further validation of the critical role 

of the M1 mAChR in modulating these processes was obtained from treatment of Alzheimer’s 

disease patients with a selective M1 mAChR agonist, talsaclidine, which led to an observed 

reduction in Aβ plaque levels in their CSF (Hock et al., 2003).  

Furthermore, several studies have shown that M1 mAChR-selective agonists or PAMs have 

cognition-enhancing activity in rodents and are able to improve impaired cognition in mouse 

models of Alzheimer’s disease (Caccamo et al., 2009; Caccamo et al., 2006; Davie et al., 2013; 

Melancon et al., 2013b; Shirey et al., 2009). As a result, a large number of ligands aimed at 

selectively targeting the M1 mAChR have been developed in the last decade (discussed in section 

1.4.5.2).   
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Figure 1.11 Structures of M1 mAChR selective agonists.  

 

 

1.4.4.2 Schizophrenia  

Schizophrenia is a chronic brain disorder that affects ~1% of the general population and is 

characterised by three classical symptom clusters: positive symptoms, negative symptoms and 

cognitive impairments. Cognitive symptoms include deficits in attention, memory and executive 

function; negative symptoms include social withdrawal, anhedonia and apathy, while positive 

symptoms include delusions, hallucinations and thought disorders. The negative and cognitive 

symptoms are not effectively treated by current antipsychotic drugs, and represent a lifelong 

disability for patients with schizophrenia (Melancon et al., 2013b; van Os and Kapur, 2009).   
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A key feature associated with schizophrenia is increased dopaminergic signaling in subcortical 

areas of the brain such as the nucleus accumbens (Melancon et al., 2013b). However, behavioural, 

anatomical, neurochemical and neuroimaging studies suggest that muscarinic cholinergic 

transmission contributes to the pathophysiology of schizophrenia (Wess et al., 2007). Non-selective 

muscarinic antagonists induce symptoms associated with schizophrenia in healthy humans and 

exacerbate existing symptoms in schizophrenia patients (Melancon et al., 2013b; Scarr et al., 2013). 

Specifically, the M1 mAChR is postulated to play a role in schizophrenia (Kruse et al., 2014b; Scarr 

et al., 2013; Wess et al., 2007).  Receptor protein and mRNA levels of M1 mAChR are decreased in 

frontal cortex of schizophrenic patients (Scarr et al., 2007) and genetic polymorphisms of the M1 

mAChR are also associated with schizophrenia (Liao et al., 2003). Elevated levels of autoantibodies 

targeting the M1 mAChR has also been observed in patients with schizophrenia (Jones et al., 2014). 

M1 mAChR-knockout mice have indicated that the lack of central M1 mAChR leads to a ‘dopamine 

hypersensitivity phenotype’, further supporting the idea which suggests that agents that act through 

the M1 mAChR may be capable of antipsychotic activity (Gerber et al., 2001; Kruse et al., 2014b). 

NMDA receptors have an important role in the regulation of circuits that are needed for normal 

cognitive and executive functions that are disrupted in schizophrenic patients. A prominent effect of 

M1 mAChR activation is in the hippocampus and other forebrain areas is the potentiation of NMDA 

receptor currents (Marino et al., 1998). Therefore, it is postulated that M1 mAChR-induced 

potentiation of NMDA receptor function may be important for the therapeutic efficacy of mAChR 

activation in psychotic disorders (Marino et al., 1998). This is supported by the finding that N-

desmethylclozapine (NDMC) which is an M1 allosteric agonist, potentiated NMDA receptor 

currents in hippocampal CA1 pyramidal cells (Sur et al., 2003).  More importantly, xanomeline 

produced improvements in psychotic symptoms in a pilot study involving schizophrenic patients 

(Shekhar et al., 2008). However, as with the clinical trials in Alzheimer’s disease patients and 

despite the encouraging results, the use of xanomeline was discontinued.  Taken together, these 
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findings have been the driving force behind the generation of a large number of novel M1 mAChR 

ligands.   

 

1.4.4.3 Parkinson’s disease  

Parkinson’s disease represents another CNS disorder in which the M1 mAChR may be implicated 

(Gerber et al., 2001; Langmead et al., 2008b).  The pathological hallmark of Parkinson’s disease is 

a loss of dopaminergic neurons in the substantia nigra that provide dopaminergic innervations to the 

striatum (Langmead et al., 2008b; Wess et al., 2007). Imbalance between striatal dopaminergic and 

muscarinic cholinergic neurotransmission leads to impairments in coordinated locomotor activity 

such as tremor and bradykinesia (Di Chiara et al., 1994; Xiang et al., 2012). Muscarinic antagonists 

are used clinically to relieve the movement disorder associated with Parkinson’s disease, but their 

use is limited due to central and peripheral adverse effects mediated my mAChR subtypes not 

involved in regulation of basal ganglia motor function (Wess et al., 2007). In vivo and in vitro 

studies suggest that pharmacological blockade of central M1 mAChRs may be beneficial in the 

treatment of Parkinson’s disease. M1 mAChRs knockout mice exhibit a pronounced increase in 

extracellular dopamine levels in the striatum (Gerber et al., 2001), while the selective M1 mAChR 

antagonist VU0255035 has recently been shown to regulate basal ganglia functions and produce  

antiparkinsonian effects (Xiang et al., 2012). 

 

Although the majority of studies focus on the therapeutic aspect of targeting M1 mAChRs in the 

CNS, it should be noted that on-target side-effects may limit the utility of selective M1 mAChR 

ligands. For example, activation of M1 mAChRs in the salivary glands may lead to excessive 

salivation (Gautam et al., 2004; Lin et al., 2008) while activation of M1 mAChR in lymphocytes 

may cause an altered immune response as a result of the increased activity of the inflammatory 

cytokine interleukin 2 (Levey, 1993; Nomura et al., 2003). Moreover, colonic epithelial cells also 
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express the M1 mAChR and its activation is predicted to regulate epithelial chloride secretion and 

may play a role in inflammatory gut dysfunction (Khan et al., 2013a). Indeed, excessive salivation 

and seizures have been recorded in mice treated with the M1 mAChR PAM, benzoquinazolinone 12 

(unpublished observations).    

 

1.4.5 Allosteric modulation of mAChRs 

1.4.5.1 General introduction  

Among family A GPCRs, the mAChRs have long served as a model system for understanding 

GPCR allostery and much of what we know in this field today comes from studies of allosteric 

modulation at mAChRs (Christopoulos, 2014). All five mAChR subtypes are known to possess at 

least one allosteric site, in addition to the highly conserved orthosteric site (Christopoulos et al., 

1998). As with the other mAChRs, the M1 mAChR is activated by prototypical orthosteric agonists 

such as ACh, oxotremorine-M, arecoline, pilocarpine and carbachol (Figure 1.5) and inhibited by 

inverse agonists such as NMS, QNB and atropine (Figure 1.6) (Langmead and Christopoulos, 

2006).  Biochemical, covalent labelling, mutagenic and crystallographic studies have revealed that 

the amino acids forming the ACh binding pocket are identical across the five mAChR subtypes and 

other ACh binding proteins in humans and other species (Haga et al., 2012; Hulme, 2013). Despite 

the significant clinical potential for selectively targeting different mAChR subtypes in disorders 

such as Alzheimer’s disease and schizophrenia, conservation in the orthosteric pocket has hindered 

the clinical progression of orthosteric mAChR ligands due to insufficient subtype selectivity 

(Christopoulos, 2014). Fortunately, the last few years witnessed an increasing number subtype of 

selective ligands that that bind to topographically distinct allosteric sites on mAChRs (Conn et al., 

2009; Foster et al., 2014; Kruse et al., 2014b; Melancon et al., 2013b). Allosteric ligands may attain 

subtype selectivity by two means. First, allosteric sites show greater divergence in their amino acid 

sequences between subtypes and, unlike orthosteric sites they did not evolve to accommodate an 
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endogenous ligand such as ACh (Christopoulos, 2014; Conn et al., 2009). Second, even if the 

allosteric site is shared between subtypes, selectivity may be achieved via selective cooperativity 

with the orthosteric ligand (Lazareno et al., 2004; Lazareno et al., 1998). This phenomenon is 

exemplified in mAChRs as they possess an extracellular vestibule that contains a “common” 

allosteric site (Dror et al., 2013; Ellis and Seidenberg, 1992; Matsui et al., 1995; Trankle et al., 

1998), however, selectivity is still achieved in this region due to a combination of variability in 

amino acid sequence and prominent differences in the magnitude of cooperativity between the 

allosteric and orthosteric sites across subtypes.  

 

1.4.5.2 Prototypical allosteric modulators   

The earliest demonstration of allosteric modulation at a mAChR was shown in a seminal study by 

Clark and Mitchelson (1976) that described and quantified the mechanism of action of gallamine 

(Figure 1.12) as a negative allosteric modulator of the M2 mAChR in isolated rat atria (Clark and 

Mitchelson, 1976). These findings were later confirmed in radioligand binding studies that 

demonstrated that gallamine is unable to completely inhibit specific [
3
H]NMS binding at the M2 

mAChR but is able to delay the rate of dissociation of [
3
H]NMS and [

3
H]QNB, indicating that it 

exerts its effect through a site distinct to the orthosteric binding site (Dunlap and Brown, 1983; 

Stockton et al., 1983). Gallamine was later reported to act allosterically at all five mAChRs, 

suggesting the presence of at least one common allosteric site present on each receptor subtype 

(Ellis et al., 1991; Lee and el-Fakahany, 1991a; Lee and el-Fakahany, 1991b). Early “prototypical” 

allosteric modulators discovered also include curare-like alkaloids (alcuronium, strychnine and 

brucine) and alkane bis-ammonium compounds (W84, C7/3-phth) which bind to the same (or 

overlapping) allosteric site and modulate orthosteric ligand function with minimal activity on their 

own (Figure 1.12) (Christopoulos et al., 1998; Dror et al., 2013; Ellis and Seidenberg, 1992; 

Lanzafame et al., 1997). Gallamine and C7/3-phth both display negative binding cooperativity with 
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[
3
H]NMS and [

3
H]QNB and show the highest affinity for the M2 over other mAChR subtypes 

(Christopoulos et al., 1999; Ellis et al., 1991; Gnagey et al., 1999; Leach et al., 2011; Michel et al., 

1990; Prilla et al., 2006). Curare-like alkaloids (alcuronium, strychnine, and brucine) also bind to all 

mAChRs and slow the dissociation rate of [
3
H]NMS and [

3
H]QNB (Jakubik et al., 1995; Lazareno 

and Birdsall, 1995; Lazareno et al., 1998). These compounds have been useful in demonstrating the 

phenomenon of ‘probe-dependence’. For example, alcuronium and strychnine display positive 

cooperativity with [
3
H]NMS at both the M2 and M4 mAChRs, while alcuronium shows negative 

cooperativity with [
3
H]NMS at the M1, M3 and M5 (Jakubik et al., 1995; Lazareno and Birdsall, 

1995). Brucine demonstrated positive modulation of ACh function at the M1 mAChR, providing the 

first validation for selective allosteric modulation of M1 mAChR activity (Jakubik et al., 1995; 

Lazareno and Birdsall, 1995; Lazareno et al., 1998). Modification of brucine to N-

chloromethylbrucine results in positive cooperativity with ACh at the M2 and M3 mAChRs while 

neutral cooperativity is maintained at the M4 mAChR (Birdsall et al., 1999).  

A second allosteric binding site has been proposed to exist on mAChRs and is recognised by 

indolocarbazole and benzimidazole compounds (Lazareno et al., 2000). Indolocarbazoles, such as 

staurosporine and its analogue KT5720 (Figure 1.13) have been reported to act allosterically at the 

M1-M4 mAChRs with varying degrees of cooperativity with ACh and NMS depending on the 

particular subtype (Lazareno et al., 2000). Unlike the prototypical allosteric modulators, 

indolocarbazoles display the highest affinity for the M1 rather than M2 mAChR subtype and have 

limited effects on the dissociation rate of [
3
H]NMS (Lazareno et al., 2000). Equilibrium binding 

interaction studies between gallamine and KT5720 at the M1 mAChR showed that the latter 

compound was unable to antagonise gallamine-induced inhibition of [
3
H]NMS, thus displaying 

neutral cooperativity instead of a competitive interaction which indicates that both ligands can bind 

to the [
3
H]NMS-occupied receptor at the same time (Lazareno et al., 2000). Similar findings were 
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observed for interaction studies between brucine and KT5720, providing additional evidence for the 

existence of a second allosteric site (Lazareno et al., 2000).  

Further evidence for a second allosteric site comes from studies that investigated the actions of 

benzimidazole compounds such as WIN 51,708 and WIN 62,577 (Figure 1.13) which were initially 

characterised as neurokinin receptor antagonists (Lazareno et al., 2002). WIN 62,577 positively 

modulates the action of ACh at the M3 and M4 mAChRs but displays negative cooperativity with 

the prototypical allosteric modulators C7/3-phth, alcuronium and brucine, indicating that WIN 

62,577 binds to a second allosteric site (Lanzafame et al., 2006). Furthermore, the interaction 

between staurosporine and KT5720 was found to be competitive, indicating that both types of 

allosteric modulators may be binding to the same site (Lazareno et al., 2002). 

 

 

Figure 1.12 Structure of prototypical allosteric modulators.  
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Figure 1.13 Structure of the ‘second allosteric site’ ligands. 
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1.4.5.3 Bitopic ligands   

Recent studies have exploited the properties of orthosteric and allosteric compounds to develop a 

new class of ligands termed ‘bitopic’, ‘dualsteric’ or ‘multivalent’, which are rationally designed, 

hybrid molecules that are composed of two pharmacophores, each known to independently interact 

with an orthosteric and allosteric site (Antony et al., 2009; Bock and Mohr, 2013; Christopoulos, 

2014; Disingrini et al., 2006; Lane et al., 2013b; Mohr et al., 2010; Steinfeld et al., 2007; Valant et 

al., 2014).   Advantages of bitopic ligands include the potential for greater receptor selectivity by 

means of targeting an allosteric site and greater affinity due to simultaneous engagement with the 

orthosteric site (Christopoulos, 2014). In addition, the concomitant binding to two different sites 

may promote unique receptor conformations that engender biased agonism (Kebig et al., 2009; 

Keov et al., 2014; Valant et al., 2014).  The first study to demonstrate a bitopic mechanism of action 

for a mAChR ligand was achieved using the nonselective mAChR agonist, McN-A-343 (Figure 

1.14) (Valant et al., 2008). McN-A-34 was reverse engineered into two distinct pharmacophores: 

tetramethylammonium (a high efficacy orthosteric agonist) and 3-chlorophenylcarbamate (a 

negative allosteric modulator).  Combination of the two pharmacophores recapitulates the 

pharmacology of the parent molecule, resulting in a partial biased agonist (Valant et al., 2008).  

 

McN-A-343 

Figure 1.14 Structure of the bitopic mAChR ligand McN-A-343.

 

As a consequence of this finding, other mAChR ligands such as AC-42, TBPB, and 77-LH-28-1 

(Figure 1.11) have been re-examined as they have been previously classified as “allosteric” but it is 
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still uncertain whether they covey their actions solely via an allosteric site or via interaction with the 

orthosteric site (Digby et al., 2012b; Jacobson et al., 2010; Keov et al., 2014; Keov et al., 2013; 

Langmead et al., 2008a; Langmead and Christopoulos, 2006; Sheffler et al., 2013; Spalding et al., 

2002).  This highlights the importance to distinguish between classes of ligands at the preclinical 

stage of discovery in order to improve the likelihood of clinical translation of such molecules.  The 

recently identified M1 mAChR–selective agonist TBPB, displays high functional selectivity for the 

M1 mAChR, potentiates NMDA receptor currents in rat hippocampal neurons, promotes 

nonamyloidogenic APP processing in PC12 cells and elicits antipsychotic-like behaviour in rodent 

models of schizophrenia (Jones et al., 2008).  However, evidence to support an allosteric mode of 

action for TBPB remained unclear for some time. For example, TBPB displays a non-competitive 

interaction with the atropine in a calcium mobilization assay, functional insensitivity to mutation of 

the orthosteric residue Y381
6.51

A (Ward et al., 1999), and retards the dissociation of NMS from the 

M1 mAChR (Jacobson et al., 2010), suggesting an allosteric binding mode of action. However, the 

non-competitive interaction with atropine may also reflect a hemiequilibrium state rather than 

allostery (Charlton and Vauquelin, 2010; Jones et al., 2008) and TBPB may be binding to the 

orthosteric pocket but adopting a different pose, such that it does not interact with Y381
6.51

. 

Moreover, the dissociation binding assay reflects interaction of a test ligand with a receptor that has 

been pre-equilibrated with an orthosteric antagonist and thus does not guarantee that TBPB  will 

adopt an allosteric mode of binding if the orthosteric site is unoccupied (Avlani et al., 2010; Keov et 

al., 2013). Moreover, the positive allosteric modulator, VU0029767 potentiated the action of TBPB 

at the M1 mAChR to the same extent as its potentiation of ACh. While this observation may 

indicate positive cooperativity between two ligands binding to two distinct allosteric sites on the M1 

mAChR, it also suggests a potential orthosteric site-interaction of TBPB (Marlo et al., 2009). Keov 

at al., (2013) used a reverse engineering approach and showed that removal of an allosteric 

pharmacophore from TBPB results in the generation of an agonist fragment that lost M1 mAChR 
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selectivity.  This study also conclusively demonstrated that TBPB interacts concomitantly with 

orthosteric and allosteric sites in a bitopic mode of action (Keov et al., 2013). Similar to TBPB, 

pharmacological studies also report that AC-42 and 77-LH-28-1 exhibit characteristics suggestive 

of both orthosteric and allosteric modes of action (Avlani et al., 2010; Jacobson et al., 2010; Keov 

et al., 2014; Langmead et al., 2006; Spalding et al., 2006; Spalding et al., 2002). Despite not 

engaging with some amino acid residues required by prototypical agonists, AC-42 and 77-LH-28-1 

have been shown to occupy the orthosteric domain of the M1 mAChR in addition to, or 

simultaneously with, the allosteric site via a bitopic mechanism (Avlani et al., 2010; Gregory et al., 

2010; May et al., 2007a).  Recently, Keov et al., (2014) used a mutagenesis, molecular modelling 

and a fragment based approach to investigate the molecular mechanisms of bitopic engagement of 

TBPB and 77-LH-28-1 with the M1 mAChR and identified regions on the receptor that have distinct 

roles and differential effects on the affinity and efficacy of bitopic ligands compared to orthosteric 

ligands (Keov et al., 2014).   

Numerous M1 mAChR agonists such as NDMC (Sur et al., 2003; Thomas et al., 2010), LU 

AE51090 (Figure 1.11) (Sams et al., 2010), the Vanderbilt University compounds VU0184670, 

VU0357017 (Digby et al., 2012a; Digby et al., 2012b; Lebois et al., 2010) and VU0364572 (Lebois 

et al., 2011), and several GlaxoSmithKline compounds (Budzik et al., 2010a; Budzik et al., 2010b; 

Budzik et al., 2010c; Johnson et al., 2010) including the clinically efficacious GSK1034702 (Figure 

1.11) (Nathan et al., 2013) have also been suggested to engage with the M1 mAChR via a bitopic 

manner (Davie et al., 2013). However, further studies are needed to confirm the mode of action of 

these ligands.  

While most studies of bitopic ligands to date have assumed that such ligands bind to monomeric 

GPCRs, recent studies have considered the behaviour of bitopic ligands in the context of GPCR 

dimers or oligomers (Ferré et al., 2014; Lane et al., 2014; Smith and Milligan, 2010). A recent study 

at the dopamine D2 receptor was the first to demonstrate that the allosteric modulator, SB269652 
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(Silvano et al., 2010) appears to mediate its action by binding to one D2 receptor protomer to 

allosterically modulate the binding of dopamine at an another (Lane et al., 2014). SB269652 

engages both the orthosteric site and a secondary pocket on the D2 receptor to transmit its allosteric 

effect to the second associated protomer (Lane et al., 2014). However, such a mechanism has yet to 

be demonstrated at a mAChR.   

 

1.4.5.4 M1 mAChR positive allosteric modulators  

Since the first demonstration of selective allosteric modulation of M1 mAChR activity by brucine in 

1998 (Lazareno et al., 1998),  a large number of structurally diverse M1 mAChR-selective positive 

allosteric modulators have been identified and characterized (Davie et al., 2013; Foster et al., 2014; 

Kuduk and Beshore, 2012; Melancon et al., 2013b; Nickols and Conn, 2014).  

The first subtype-selective M1 mAChR PAM among those was benzyl quinolone carboxylic acid 

(BQCA) (Figure 1.15). Discovered by scientists at Merck Laboratories, BQCA exhibits high 

selectivity with no activity at M2-M4 mAChR subtypes and induces a 300-fold increase in ACh 

affinity and 129-fold leftward shift in ACh potency in addition to displaying allosteric agonism on 

its own at the M1 mAChR (Abdul-Ridha et al., 2013; Canals et al., 2012; Ma et al., 2009; Shirey et 

al., 2009). In mice, BQCA reversed scopolamine-induced memory loss by potentiating endogenous 

ACh activity, displayed efficacy in a contextual fear conditioning (CFC) mouse model of cognitive 

dysfunction (Chambon et al., 2012; Ma et al., 2009), and prevented natural forgetting in rats 

(Chambon et al., 2011). BQCA was also efficacious in reversing amphetamine-induced 

hyperlocomotion in mice (Ma et al., 2009). Both in vivo and in vitro, BQCA potentiated carbachol-

induced spontaneous excitatory postsynaptic currents (sEPSCs) in medial prefrontal cortex 

pyramidal (mPFC) cells, an area critical for higher cognitive, learning, and memory functions 

(Miller and Cohen, 2001). These effects were absent in brain slices from M1 mAChR knockout mice 

(Shirey et al., 2009). BQCA also restored discrimination reversal learning in a transgenic mouse 
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model of Alzheimer’s disease and was found to regulate non-amyloidogenic APP processing in 

vitro, suggesting that M1 mAChR PAMs have the potential to provide both symptomatic and 

disease modifying effects in Alzheimer’s disease patients (Shirey et al., 2009).  

BQCA is the first allosteric GPCR ligand proven to behave according to a strict two-state Monod-

Wyman-Changeux (MWC) model of receptor activation at the M1 mAChR (Canals et al., 2012; 

Canals et al., 2011).  According to this model, the degree of allosteric modulation depends on both 

the intrinsic efficacy of the cobound orthosteric ligand and the coupling efficiency of the receptor 

for a given intracellular signaling pathway, the later element also dictates the magnitude of the 

modulators’ allosteric agonism.   As such, BQCA displays probe dependence by engendering high 

positive cooperativity with high efficacy orthosteric agonists and lower positive cooperativity with 

low efficacy ones. In addition, it displays negative cooperativity when co-bound with orthosteric 

antagonists (Canals et al., 2012). The activity of BQCA was abolished at an inactive mutant but 

significantly increased at a constitutively active M1 mAChR.  These findings revealed the unique 

nature of BQCAs’ behaviour and provided a framework that can be applied to the study and 

classification of allosteric modulators across different GPCR families (Canals et al., 2012). 
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Figure 1.15 Structures of M1 mAChR selective positive allosteric modulators based on the BQCA 

scaffold.
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Figure 1.16 Structures of M1 mAChR selective positive allosteric modulators from Vanderbilt 

University.

 

 

Despite the numerous favourable features of BQCA, this compound is also characterised by low 

affinity for the M1 mAChR (~100µM) which greatly limits its in vivo and potentially, therapeutic 

utility. The low affinity also restricts the prospect of gaining mechanistic insights of modulator 

activity from structure-function studies (Abdul-Ridha et al., 2014b). As a result, recent drug discov-

ery efforts have yielded an increasing number of novel M1 mAChR-selective PAMs (Foster et al., 

2014; Melancon et al., 2013b; Nickols and Conn, 2014). Merck and others exploited the multiple 

points of diversification on the BQCA scaffold to generate a plethora of analogues (Kuduk and 

Beshore, 2012; Kuduk et al., 2010b; Kuduk et al., 2011; Kuduk et al., 2012; Kuduk et al., 2014; 
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Mistry et al., 2013; Uslaner et al., 2013). Amongst such BQCA analogues (Figure 1.15), some 

display substantial improvement on the characteristics of the parent compound, as exemplified by 

benzoquinazolinone 12 (Compound 7 in Figure 1.15) (discussed in Chapter 4) (Davie et al., 2013; 

Kuduk and Beshore, 2012; Kuduk et al., 2010a).   

Vanderbilt University researchers have also reported several M1 mAChR-selective PAMs based on 

novel, structurally distinct chemical scaffolds (Marlo et al., 2009; Melancon et al., 2013b). For 

example, VU0456940 (ML137) and VU0405652 (ML169) (Figure 1.16), both display M1 mAChR 

selectivity and potentiate M1 mAChR-mediated non-amyloidogenic APP processing (Melancon et 

al., 2013a; Poslusney et al., 2013; Reid et al., 2011; Tarr et al., 2012). However, further 

development of this series of M1 mAChR PAMs was discontinued owing to problems with high 

clearance and moderate CYP450 inhibition. Another structurally distinct series arose from M1, M3 

and M5 mAChR PAMs which, through chemical optimisation efforts, generated VU0366369, 

VU0422337, VU0451351 and VU0449278 all of which are highly M1 mAChR-selective PAMs 

(Figure 1.16) (Bridges et al., 2010; Melancon et al., 2013a; Poslusney et al., 2013). The 

development of novel M1 PAMs related to these ligands are currently underway. 

 

1.4.5.5 The allosteric binding site 

Compelling evidence from pharmacological, molecular dynamic simulations and crystallographic 

studies indicates that mAChRs have an allosteric binding site located extracellularly to the TM-

bound orthosteric pocket (Dror et al., 2013; Kruse et al., 2013; Leach et al., 2012).  This site, 

referred to as the “common” or the “prototypical modulator” site is typically known to bind 

compounds such as gallamine, C7/3-phth, brucine and alcuronium (Figure 1.12). The location of the 

“second” allosteric site, which has been proposed to bind certain indolocarbazoles and the 

benzimidazole analogues, WIN 51,708 and WIN 62,577 (Figure 1.13) (Lanzafame et al., 2006; 

Lazareno et al., 2000) is currently unknown, although molecular modelling studies suggest an 
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intracellular location (Espinoza-Fonseca and Trujillo-Ferrara, 2005; Espinoza-Fonseca and Trujillo-

Ferrara, 2006).  

An early study at the M1 mAChR proposed that Trp
3.28 

and Trp
7.35

, which lie at the top of TM3 and 

TM7, respectively, play a role in the binding of gallamine (Matsui et al., 1995). The higher affinity 

of gallamine at the M2 mAChR (as compared to other mAChR subtypes) maybe be attributed to 

interaction with Trp
7.35 

in addition to a conserved Tyr residue in ECL2 (Tyr177) and to a lesser 

degree to 172Glu-Asp-Gly-Glu175, as well as residues at the junction of ECL3 and top of TM7, 

namely Asn
7.32

 and Thr
7.36

 (Huang et al., 2005; May et al., 2007a; Prilla et al., 2006; Valant et al., 

2008; Voigtlander et al., 2003). At the M4 mAChR, Ser
7.36 

has also been implicated in gallamine 

binding (Buller et al., 2002) whilst Glu
7.32 

is implicated in the transmission of cooperativity between 

brucine and ACh at the M3 mAChR (Stewart et al., 2010). A recent study used the inactive-state 

crystal structure of the M2 mAChR as a template to perform molecular dynamic simulations in 

order to identify the mode of binding and function of a number of prototypical allosteric modulators 

including gallamine, C7/3-phth, dimethyl-W84, alcuronium and strychnine (Dror et al., 2013).  

Despite their structural diversity, all the allosteric modulators bound to the same site in the 

extracellular vestibule, approximately 15Å from the orthosteric site and made similar interactions 

with the receptor. The study identified two core “centres” that contribute to the “common” allosteric 

site in the extracellular vestibule. Each centre is defined by a pair of aromatic residues (centre 1, 

Tyr177 in ECL2 and Trp
7.35

; centre 2, Tyr
2.61 

and Tyr
2.64

) (Dror et al., 2013). Mutagenesis of these 

residues suggest that centre 1 contributes more strongly than centre 2 to C7/3-phth and gallamine 

binding, in agreement with computational and previous mutagenesis findings (Dror et al., 2013; 

Huang et al., 2005; May et al., 2007a; Prilla et al., 2006).  In addition, several residues also 

contribute to different extents to the binding of ligands at each centre; centre 1 (Asn
6.58 

and Asn
7.32

), 

centre 2 (Tyr
2.60

, Tyr
2.63

, Thr
2.64 

and Thr
7.36

) (Dror et al., 2013). The binding site for the M4 mAChR 

PAM, LY2033298 (Figure 1.10), may also overlap with the common allosteric site as C7/3-phth has 
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been shown to interact competitively with LY2033298 (Leach et al., 2010). In addition, alanine 

substitution of the ECL2 residue Phe186 at the M4 mAChR (equivalent to Tyr177 at the M2 and 

Tyr179 at the M1 mAChR) attenuates the binding of LY2033298 (Nawaratne et al., 2010). 

Furthermore, substitution of Asp
7.32 

and
 
Ser

7.36
 in the M4 mAChR to the corresponding M2 mAChR 

residues Asn
7.32 

and Thr
7.36

, respectively, did not alter the binding affinity or interaction of 

LY2033298 with ACh (Chan et al., 2008; Nawaratne et al., 2010).  

The active-state structure of the M2 mAChR in complex with a nanobody G protein mimetic and the 

high affinity agonist, iperoxo with and without the PAM, LY2119620 (Figure 1.10), has been 

recently determined (Kruse et al., 2013). This study provided the first structural view of how an 

allosteric ligand binds to a GPCR. The M2 mAChR PAM LY2119620, which displays similar 

pharmacological properties to its congener, LY2033298, engages the extracellular vestibule directly 

above the orthosteric site (Kruse et al., 2013). Specifically, the aromatic rings of the modulator are 

situated directly between Tyr177 and Trp
7.35

, both of which have been largely implicated in the 

binding of the ligands discussed above (Huang et al., 2005; Matsui et al., 1995; May et al., 2007a; 

Prilla et al., 2006; Valant et al., 2008; Voigtlander et al., 2003). Additionally, Tyr
2.61

,
 
Asn

6.58
 and 

Asn419 in ECL3 form hydrogen bonds with the modulator, and Glu172 in ECL2 engages in a 

charge–charge interaction with the ligand piperidine. LY2119620 binding site is separated from the 

orthosteric binding site by a tyrosine lid, with Tyr
7.39 

interacting with both LY2119620 and iperoxo 

(Kruse et al., 2013).  

It is noteworthy that most of the residues implicated in the binding of the allosteric ligands 

discussed above (including Tyr
2.61

, Glu
7.32

, Trp
7.35

, Glu
7.36

 and Tyr179 in addition to Tyr
2.64

) have 

been identified as key contributors for the binding and function of BQCA and, in some cases 

benzoquinazolinone 12  (see Chapters 3 and 4). This is consistent with BQCA sharing a common 

binding site with other mAChR allosteric modulators (Abdul-Ridha et al., 2014b; Ma et al., 2009).  

Overall, these studies suggest that, as with orthosteric ligands, allosteric ligands can recognize a 
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common site but, nonetheless, adopt different poses within that site such that they display 

differential sensitivity to specific mutations. Subtype-selective allosteric ligands that bind to this 

site may attain their selectivity through this differential sensitivity or via selective cooperativity 

with orthosteric agonists at the particular subtype they bind. 

 

1.4.5.6 Molecular basis of allosteric modulation 

Despite the discovery of a large number of allosteric modulators and identification of a vast 

repertoire of behaviours for muscarinic allosteric ligands, the molecular mechanisms underlying 

allosteric modulation and allosteric ligand behaviours are not well understood. Recent structural and 

computational biology studies have provided some insight into the mechanism of action of negative 

and positive allosteric modulators (Christopoulos, 2014; Dror et al., 2013; Kruse et al., 2014b; 

Langmead and Christopoulos, 2014).      

Computational molecular dynamics simulations show that binding of cationic allosteric modulators 

such as gallamine, C7/3-phth, dimethyl-W84, alcuronium and strychnine at the inactive M2 mAChR 

structure is driven largely by interactions between cationic amines on the modulators and aromatic 

residues on the receptor (Dror et al., 2013). The abundant aromatic residues that comprise the 

allosteric pocket (described above) form cation-π interactions with the modulator ammonium 

groups (Dror et al., 2013). Substitution of non-aromatic residues in this pocket to aromatic ones 

strengthens the cation-π interactions and enhanced the binding affinity, while introduction of 

cationic residues reduced the binding affinity of the NAMs C7/3-phth and gallamine (Dror et al., 

2013). Examination of the mechanisms that contribute to the transmission of cooperativity between 

orthosteric and allosteric ligands revealed that electrostatic repulsion between a cationic orthosteric 

ligand such as NMS and a cationic allosteric modulator such as C7/3-phth, weakens the binding of 

one in the presence of the other, resulting in negative cooperativity. The degree of repulsion varies, 

such that less cationic NAMs experience less repulsion (Dror et al., 2013). Neutralising the cationic 
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nitrogen atom with a silicon atom shifted the cooperativity of C7/3-phth in the positive direction 

(Daiss et al., 2002; Dror et al., 2013). It is hypothesised that the presence of cationic residues in 

mAChR allosteric pockets may cause cationic allosteric modulators to have lower affinity for a 

receptor. For example, the presence of a cationic residue (Lys
7.32

) at the M3 mAChR may be the 

reason for the typically lower affinity of modulators at this receptor (Conn et al., 2009; Dror et al., 

2013). Despite the presence of a cationic group on alcuronium, the cooperativity between NMS and 

this modulator is positive, an observation that cannot be explained by electrostatic repulsion (Dror 

et al., 2013).   

 Another possible mechanism underlying cooperativity relates to the conformations of the 

orthosteric and allosteric sites which are conformationally linked such that the presence of a ligand 

in one site, affects the shape of the other. When NMS is bound, both the allosteric and orthosteric 

sites of the M2 mAChR are maintained in a wide-open conformation while both sites assume a 

narrow conformation in absence of ligands (Dror et al., 2013).  Binding of the “bulky” PAM 

alcuronium to the empty receptor forces both sites into an open conformation which seems to 

contribute to the positive cooperativity between NMS and alcuronium (Dror et al., 2013). By 

contrast, the NAM C7/3-phth favours binding to the narrow conformation formed in the absence of 

orthosteric ligand.  Therefore, small allosteric modulators destabilise antagonist binding in the 

inactive mAChR state, leading to negative cooperativity between the two ligands, whereas “bulkier” 

modulators enhance antagonist binding (Christopoulos, 2014). The addition of “bulky” substituents 

to C7/3-phth improved the binding affinity at the NMS-occupied M2 mAChR but reduced the 

negative cooperativity (Dror et al., 2013), supporting the concept that orthosteric antagonist binding 

can be enhanced or diminished by a modulator that preferentially stabilizes a particular 

conformation of the extracellular vestibule (Christopoulos, 2014). 
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The iperoxo-bound M2 mAChR crystal structure shows that large extracellular vestibule, which has 

been shown to bind to allosteric modulators (Bock et al., 2012; Dror et al., 2013; Gregory et al., 

2007), undergoes a substantial contraction upon receptor activation due to rotation of TM6 (Kruse 

et al., 2013). As with other active-state GPCR crystal structures (Rasmussen et al., 2011a; 

Rasmussen et al., 2011b), the movement of TM6 facilitates structural coupling of the extracellular 

vestibule, the orthosteric binding pocket, and the intracellular surface of the receptor, allowing 

allosteric modulators to affect the affinity and efficacy of orthosteric ligands and in some cases 

activate G proteins as allosteric agonists (Kruse et al., 2013; May et al., 2007a). The iperoxo- and 

LY2119620-bound M2 mAChR structure is largely similar to that of receptor and agonist without 

LY2119620, with slight additional contraction around the allosteric ligand, indicating that the 

allosteric binding site is mostly pre-formed in the presence of agonist (Kruse et al., 2013). In 

contrast, the extracellular vestibule is wide open in the inactive M2 mAChR conformation. Trp
7.35

, 

which is largely implicated in the binding of numerous allosteric ligands at mAChRs (Dror et al., 

2013; Ma et al., 2009; Prilla et al., 2006), adopts a vertical conformation in the presence of 

LY2119620 and a horizontal conformation with iperoxo alone to allow it to engage in an aromatic 

stacking interaction with the modulator.  Closure of the allosteric pocket in the presence of 

LY2119620 permits more extensive interactions with the modulator and allows the modulator to 

potentiate agonist binding affinity by slowing agonist dissociation (Kruse et al., 2013). The inward 

movement of the top of TM6 upon receptor activation is responsible for the closed conformation of 

the extracellular vestibule and stabilization of the closed extracellular vestibule. Allosteric 

modulators may in turn stabilize the open, active conformation of the intracellular side of TM6, 

facilitating allosteric agonism and transmission of positive cooperativity with orthosteric agonists 

(Kruse et al., 2013).  It remains questionable as to whether a similar mechanism of allosteric 

modulation occurs at the M1 mAChR or indeed with another allosteric modulators at the M2 

mAChR.   In order to truly understand the atomistic basis of small molecule allosteric modulation at 
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GPCRs via structural biology, multiple structures are required of the same receptor in active and 

inactive states.  
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1.5  Scope of Thesis 

The M1 mAChR is highly expressed in brain regions responsible for learning, cognition and 

memory and has therefore been implicated in numerous CNS disorders where such processes are 

impaired (Melancon et al., 2013b). M1 mAChR knockout mice show cognitive deficits 

(Anagnostaras et al., 2003; Hamilton et al., 1997; Kamsler et al., 2010; Kruse et al., 2014b), while 

evidence from clinical trials supports the importance of targeting this receptor for improving 

memory and reducing cognitive deficits (Bodick et al., 1997a; Bodick et al., 1997b; Nathan et al., 

2013). Despite the abundance of studies that support the involvement of this receptor in cognition 

and memory formation, it is still unclear how M1 mAChR-activated signaling proteins and 

pathways are linked to accomplish such processes.  While such processes are likely an integration 

of signaling pathways involving many receptors in the CNS, dissecting the physiological and 

pathophysiological role of M1 mAChR signaling and physiology has been hindered by the lack of 

subtype selective ligands for this receptor (owing to the highly conserved orthosteric site).  The lack 

of subtype selectivity has also been the reason for the high attrition rates of compounds developed 

as therapies for Alzheimer’s disease and schizophrenia.   

With the discovery of M1 mAChR selective allosteric ligands, there is considerable potential to 

understand the role of this receptor subtype in disease and as therapeutics for the treatment of CNS 

disorders. Despite the abundance of mutagenesis studies on the M1 mAChR, they have largely 

focused on delineating the location of the orthosteric ligand binding site and identifying the role 

these residues play in receptor function (Hulme, 2013).  The inactive-crystal structures of the M2 

and M3 mAChRs provided additional insight into the location of the orthosteric binding pocket at 

mAChRs and illustrated the 7TM architecture of this family of receptors (Haga et al., 2012; Kruse 

et al., 2012b). Despite the recent surge in the number of selective M1 mAChR allosteric modulators, 

there have been very little investigations into the molecular determinants of selective allosteric 
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ligand activity at this receptor and it remains largely unknown how these ligands achieve their 

receptor subtype selectivity and mediate their allosteric effects on the receptor. Only recently have 

structural and molecular dynamic simulation studies shed light on the structural basis of allosteric 

modulation by both NAMs and PAMs and identified possible location of an allosteric site on the M2 

mAChR (Dror et al., 2013; Kruse et al., 2013).  While these studies provide a significant milestone 

in the GPCR allostery, the information they provide is limited to the M2 mAChR, and represents 

only a snapshot of the vast repertoire of behaviours displayed by allosteric ligands. The current 

project therefore aimed to address key knowledge gaps for the M1 mAChR, including investigating 

allosteric modulation at a mutant M1 mAChR designed as a biological tool for understanding in vivo 

GPCR signaling and delineating the molecular basis of binding and function of selective M1 

mAChR PAMs.    

In Chapter 2, the activity of BQCA is explored in binding studies and across multiple signaling 

pathways at the WT M1 mAChR, confirming its “two-state” behaviour. This distinctive feature of 

BQCA was exploited to investigate whether allosteric modulation at a chemogenetically modified 

M1 DREADD receptor (developed as a tool to study the physiological function of this receptor in 

vivo) is equivalent to the corresponding modulation at the WT receptor. This evaluation is important 

if DREADD receptors are to be used to investigate allosteric modulation in vivo given the potential 

for these receptors to adopt conformations that may lead to biased downstream signaling or change 

the behaviour of allosteric ligands (Abdul-Ridha et al., 2013).  

Several studies, mostly on the M2 mAChR, report the involvement of a number of amino acid 

residues in allosteric ligand binding and formation of the allosteric binding site (Dror et al., 2013; 

Kruse et al., 2013; Ma et al., 2009; Matsui et al., 1995; May et al., 2007a; Voigtlander et al., 2003).  

In Chapter 3, numerous residues, including some equivalent to those reported in the above studies, 

are introduced into the M1 mAChR in order to determine their contribution to the allosteric binding 

site at the M1 mAChR and investigate the role they play in allosteric modulation. The 
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pharmacology of orthosteric ligands and BQCA is extensively characterised at each mutant receptor 

in radioligand binding and functional studies and analysed via application of operational allosteric 

models to the data to quantify the effects of the mutations on the various allosteric parameters. The 

results are confirmed by molecular modelling studies (Abdul-Ridha et al., 2014b). 

The low affinity of BQCA prompted researchers to develop a large number of M1 mAChR PAMs. 

Amongst the BQCA analogues generated, some display substantial improvement on the 

characteristics of BQCA, as exemplified by benzoquinazolinone 12. Chapter 4 reports the 

optimized synthesis and detailed pharmacological characterization of benzoquinazolinone 12. Site-

directed mutagenesis and molecular modeling is utilized to validate the allosteric binding pocket 

described for BQCA and provide the molecular basis for its improved affinity at the M1 mAChR. 

The study highlights how the properties of affinity and cooperativity can be differentially modified 

on a common structural scaffold, and identifies molecular features that can be exploited to tailor the 

development of M1 mAChR-targeting PAMs (Abdul-Ridha et al., 2014a). 

Collectively, these studies use mutagenesis, molecular modelling and SAR approaches to provide 

unprecedented insights into the molecular mechanisms of allosteric modulation at the M1 mAChR 

and highlight that BQCA and its derivatives share a common binding site with other prototypical 

mAChR allosteric modulators. Although these findings provide insight into the location of the 

binding pocket for mAChR allosteric modulators, they do not explain how subtype selectivity is 

achieved. However, it is likely that selectivity is achieved via selective cooperativity of the 

modulators with ACh.  
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A large body of evidence from pre-clinical and clinical studies support the implication of the 

M1 mAChR in the cognitive processes of learning and memory (Conn et al., 2009; Wess et 

al., 2007). As a result, the M1 mAChR has long been an attractive therapeutic target for 

diseases where such processes are impaired such as AD and schizophrenia (see Chapter 1). In 

the quest to find selective ligands for this receptor, the positive allosteric modulator BQCA 

was discovered. BQCA represents a valuable and selective pharmacological tool for in vivo 

and in vitro studies and is the first allosteric GPCR ligand proven to behave according to a 

strict two-state Monod-Wyman-Changeux (MWC) model of receptor activation at the M1 

mAChR (Canals et al., 2012; Canals et al., 2011; Monod et al., 1963; Monod et al., 1965). 

The unique nature of BQCAs’ behaviour has provided a framework for the study and 

classification of allosteric modulators across different GPCR families (Canals et al., 2012). 

The distinctive and predictable manner by which BQCA behaves is exploited in Chapter 2 to 

investigate the nature of allosteric modulation at the M1 DREADD, a chemogenetically 

modified M1 mAChR designed as a tool to investigate the physiological outcomes of 

activation of this receptor in vivo upon CNO administration (see Chapters 1 and 2). A 

comprehensive analysis of the allosteric interaction of BQCA with CNO, ACh and a number 

of structurally and functionally diverse M1 mAChR ligands was performed at multiple 

signaling pathways linked to the M1 WT and DREADD mAChRs.  

Initial pharmacological characterisation of the various ligands in binding and Ca
2+ 

mobilisation assays revealed different profiles of receptor binding and activation at the M1 

DREADD that suggest multiple modes of receptor engagement. The mutations at the M1 

DREADD caused the orthosteric ligands ACh and xanomeline to lose affinity and potency, 

while the opposite effects were observed for CNO and its close structural analogues NDMC 

and clozapine, whereby both properties were significantly enhanced. Interestingly, the 

affinity and potency of the bitopic ligand TBPB (Keov et al., 2014; Keov et al., 2013) was 
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unaffected by the M1 DREADD mutations. Unlike TBPB, however, McN-A-343, a partial M1 

mAChR agonist that has been shown to be bitopic at the M2 mAChR (Valant et al., 2008), 

displayed reduced potency and efficacy at the M1 DREADD that was not due to a loss of 

binding affinity, suggesting that McN-A-343 is unable to mediate receptor transition into an 

active state at the M1 DREADD. 

The key findings in Chapter 2 were observed in the allosteric interaction studies of BQCA 

with both the cognate and the synthetic agonists at the M1 DREADD. As expected, BQCA 

displayed key characteristics of allostery within a two-state system at the WT M1 mAChR, 

such as positive modulation of co-bound orthosteric or bitopic agonists, and different degrees 

of cooperativity depending on the intrinsic efficacy of the co-bound ligand and the magnitude 

of stimulus-response coupling of the studied signal pathway (Canals et al., 2012; Canals et 

al., 2011; Monod et al., 1963; Monod et al., 1965). The allosteric modulation at the M1 

DREADD was not compatible with a two-state model in that no correlation could be 

observed between the strength of cooperativity and the degree of signaling efficacy of co-

bound ligands, suggesting that the behaviour of the DREADD with respect to allosteric 

modulation is a result of multiple, distinct, receptor conformations. Moreover, the allosteric 

modulation of the CNO-bound DREADD receptor is not equivalent to the corresponding 

modulation of the ACh-bound WT receptor. BQCA was found to engender stimulus bias at 

the M1 DREADD, by remarkably behaving as a neutral allosteric modulator of CNO efficacy 

in the pERK1/2 pathway while having negative modulation in the Ca2
+
 mobilisation and IP1 

pathways. The same pattern of biased modulation was observed in the interaction of BQCA 

with NDMC suggesting that a unique receptor conformation is stabilised by CNO and its 

analogues in combination with BQCA at the M1 DREADD that is distinct from that stabilized 

by ACh and BQCA at the M1 WT mAChR.  
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Given that GPCRs are known to adopt a range of biologically active states, rather than simply 

two states (active or inactive) (Mary et al., 2012; Vaidehi and Kenakin, 2010), it may be 

questionable as to how BQCA behaves in a manner consistent with a two-state model. In this 

regard, it is likely that BQCA changes the abundance but not the nature of the different states, 

shifting the overall abundance of receptors to active microstates and resulting in what appears 

to be a “two-state” system at the macroscopic level. A change in the nature of the microstates, 

in addition to their abundance, would manifest as biased modulation and may be the reason 

for the observed biased engendered by BQCA at the M1 DREADD. 

Collectively, the findings in Chapter 2 suggest that the DREADD receptor may not be a valid 

approach to study the actions of BQCA in vivo since the signalling outcomes produced in the 

presence of CNO will not be reflecting those of the native receptor. In addition, the higher 

cooperativity of BQCA with ACh means that it still will preferentially enhance the actions of 

endogenous ACh over the synthetic ligand CNO at the modified receptor in vivo. Even in the 

event where the DREADD is introduced into a transgenic animal with a knock-out 

background, the potential for the interaction of endogenous ACh with the DREADD remains 

in the presence of BQCA. As a consequence, the spatio-temporal control that was a key 

advantage of this approach may be compromised and, thus, the interpretation of such in vivo 

experiments would be extremely challenging and caution must be exercised when 

interpreting studies of allosteric modulation using DREADDs. In addition, selective allosteric 

ligands, may be sufficient on their own to provide control over cellular activity in a defined 

special and temporal manner, eliminating the need to design chemogenetic tools such as the 

DREADD.  

The recent surge in high resolution Family A GPCR crystal structures has provided 

tremendous insights into the structural and functional characteristics of this protein family 

(Venkatakrishnan et al., 2013). Such insights, combined with knowledge from mutagenesis 
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and computational studies have been able to map out the precise location of orthosteric ligand 

binding pockets in addition to revealing molecular changes that occur upon receptor 

activation and the mechanisms by which different ligands stabilise distinct receptor 

conformations (Haga et al., 2012; Jaakola et al., 2008; Katritch et al., 2013; Kruse et al., 

2012b; Miao et al., 2013; Wacker et al., 2013; Wang et al., 2013a).  Despite the abundance of 

information obtained from GPCR crystal structures, challenges remain in understanding the 

mode of action and binding of small molecule allosteric ligands. To understand allosterism 

from such an approach,   multiple structures need to be solved; the orthosteric ligand-bound 

structure, the allosteric ligand-bound structure and the structure with both sites occupied. To 

understand probe dependence, these structures need to be solved for different orthosteric and 

allosteric ligand pairs. The former approach has been recently partially demonstrated for the 

M2 mAChR, where crystal structures have been solved in complex with either the orthosteric 

antagonist (QNB) alone (Haga et al., 2012), the orthosteric agonist (iperoxo) alone (Kruse et 

al., 2013) or iperoxo co-bound with the M2 mAChR PAM, LY2119620 (Kruse et al., 2013). 

However, no crystal structure with LY2119620 alone has been solved. While these structures 

offered insights into the structural basis of mAChR activation and allosteric modulation by a 

small drug-like molecule, they offer only a single snapshot of an active mAChR and the 

information may be limited to the M2 mAChR. Moreover, the general limitation of GPCR 

crystals is that they are static structures and cannot translate information on the dynamic 

nature of ligand-receptor interactions. Therefore, even with the availability of crystal 

structures (Haga et al., 2012; Kruse et al., 2013), structure-function studies are still required 

to validate and understand how certain allosteric ligand-receptor interactions observed in 

crystal structures contribute to ligand activity. Consequently, combining information from 

structure-function studies that determine the importance of certain ligand-receptor 
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interactions, with information from crystallographic studies provides an ideal approach to 

both understanding allosteric ligand activity and for guiding rational drug design.   

Despite the numerous favourable features of BQCA; its high M1 mAChR selectivity, its 

unique mode of action and high cooperativity with ACh, this compound is still limited as a 

pharmacological tool by its low affinity for the receptor (~100µM) and poor aqueous 

solubility (Canals et al., 2012). Such limitations greatly restrict its in vivo and potentially, 

therapeutic utility. Moreover, the mechanism by which BQCA achieves its M1 mAChR 

selectivity and the structural basis of its binding and function remain poorly understood. 

Knowledge of receptor interactions that govern the selectivity and mechanism of action of 

BQCA can provide considerable guidance in the rational design of allosteric ligands with 

improved pharmacological characteristics. Nonetheless, being the first selective PAM for the 

M1 mAChR, BQCA represents a very useful starting point to understand allosteric 

modulation at this receptor.  

To determine the structural basis of BQCA selectivity and to understand allosteric ligand-

receptor interactions at the M1 mAChR, a structure-function approach is applied in Chapter 3 

to investigate the role certain amino acids play in the function of BQCA. Site-directed 

mutagenesis is performed by substituting amino acid side chains into Ala, or ‘side-chain 

deletion’. This method is useful to verify the role of individual residues in ligand activity and 

intermolecular interactions at a particular receptor. 

Using this approach, there have been a number of structure-function studies at the M1 

mAChR and other mAChR subtypes that investigated the molecular determinants of binding 

and function  of allosteric modulators (Huang et al., 2005; Leach et al., 2011; Matsui et al., 

1995; May et al., 2007a; Nawaratne et al., 2010; Prilla et al., 2006; Stewart et al., 2010; 

Valant et al., 2012a; Voigtlander et al., 2003). Evidence from these studies indicated that 

mAChRs have an allosteric binding site located extracellularly to the TM-bound orthosteric 
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pocket and that residues at positions 2.61, 2.64, 3.28, 5.24-5.27, 5.29, 7.32, 7.35 and 7.36 

contribute to the allosteric modulator binding site, and or play a role in cooperativity. These 

studies also suggested that residues in the orthosteric pocket may contribute indirectly to the 

function of allosteric ligands (Hulme, 2013; Leach et al., 2011; Nawaratne et al., 2010). This 

information provided the basis for the rationale to introduce mutations into a selected number 

of amino acids at the M1 mAChR in the current project.  

Chapter 3 elucidated the effects of the introduced mutations on the affinity, efficacy and 

cooperativity of BQCA and identified differential effects of distinct receptor regions on each 

of the molecular properties at the M1 mAChR. Specifically, BQCA was found to occupy an 

allosteric pocket in the extracellular vestibule of the M1 mAChR and interact with residues at 

the top of TM2 (Tyr85
2.64

), ECL2 (Tyr179 and Phe182) and the top of TM7 (Glu397
7.32

 and 

Trp400
7.35

). Molecular dynamic simulation studies with BQCA confirmed the contribution of 

each of these residues to the allosteric binding pocket. These findings are particularly 

interesting as they highlight that the BQCA binding pocket partially overlaps with the 

previously described “common” allosteric site identified for a number of allosteric ligands at 

other mAChR subtypes. The results suggest that BQCA achieves selectivity by “selective 

cooperativity” with the orthosteric agonist at the M1 mAChR, despite binding at a 

“conserved” allosteric site. The conservation within the allosteric site likely results from the 

fact that amino acid residues at positions 2.64 and 7.35 are identical across all mAChR 

receptor subtypes; while Tyr179 is only present at the M1 and M2 mAChRs but is still an 

aromatic residue (Phe) at the M3 and M4 mAChRs.  

The studies in Chapter 3 also identified that Ala substitution of a number of residues from 

various regions in the receptor caused a decrease in the cooperativity between BQCA and 

CCh in binding and functional interaction studies. Such reductions in cooperativity resulted 

either from mutation of residues that contributed directly to the allosteric binding pocket 
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(Tyr85
2.64

, Tyr179, Phe182, Glu397
7.32

 and Trp400
7.35

) or residues conformationally linked to 

the allosteric site and thus needed for the transmission of cooperativity or receptor activation 

upon ligand binding. For example, Ala substitution of Glu397
7.32 

and Glu401
7.36

, both of 

which are not conserved across the mAChR family and, as predicted by the modelling 

experiments, make minimal interactions with BQCA, had no effect on BQCA binding affinity 

but decreased cooperativity with CCh. Such residues may govern the subtype-specific 

cooperative effect of BQCA upon orthosteric ligand binding from a conserved allosteric 

pocket. Furthermore, mutation of the highly conserved orthosteric site residues (D105
3.32

,
 

Y106
3.33

, W157
4.57

 and Y381
6.51

), led to complete loss or significant reduction in the binding 

cooperativity between CCh and BQCA, highlighting the importance of the orthosteric site 

residues for the transmission of binding cooperativity and demonstrating a striking example 

of a conformationally linked mechanism for the transmission of cooperativity. Moreover, the 

significantly impaired signaling efficacy of CCh at these mutants was “rescued” by BQCA, 

suggesting that BQCA becomes an “efficacy only” modulator when such residues are 

mutated. These findings emphasise the importance of using both binding and functional 

assays to characterize the effect of mutations upon allosteric ligand function. Interestingly, 

similar observations were noted in Chapter 2, whereby at the DREADD (which contains a 

mutation at the orthosteric site residue Tyr106
3.33

), BQCA lost the ability to potentiate the 

affinity of ACh, while “rescuing” the impaired signaling efficacy of ACh at this receptor.  

 

Recent compelling evidence from: (1) an atomic scale molecular dynamics simulations study 

at the M2 mAChR, which identified the mode of binding of a number of prototypical 

allosteric ligands (Dror et al., 2013), and (2) a study that solved the crystal structure of the M2 

mAChR with iperoxo and the PAM LY2119620 (described above) (Kruse et al., 2013),  
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highlight the importance of the TM2 residues Tyr
2.61 

and Tyr
2.64

,
 
Tyr177 in ECL2 (residue 

179 at the M1 mAChR) and Trp
7.35 

in TM7 for the binding of the allosteric ligands examined.  

In Chapter 3, the molecular models predict that the TM2 residues Tyr82
2.61 

and Tyr85
2.64

, and 

Tyr179 in ECL2, interact directly with BQCA. Despite this, mutation of these residues to Ala 

did not cause a significant decrease in BQCA binding affinity, rather, only led to a decrease 

in the transmission of BQCA’s cooperativity with the orthosteric agonist. Given the 

contribution of these residues to the BQCA binding pocket as suggested by the model in 

Chapter 3, and the findings in Dror et al., (2013) and Kruse et al., (2013), it may be 

hypothesised that these residues in fact do contribute to the binding affinity of BQCA, but 

this is not detected in our study for two main reasons. First, a decrease in the binding affinity 

of an inherently low affinity ligand, such as BQCA, is difficult to detect experimentally. This 

is evident by the fact that BQCA is unable to completely displace the binding of the 

radiolabeled antagonists [
3
H]QNB and [

3
H]NMS. Second, the affinity (pKB) values 

determined for BQCA in Chapter 3 are estimates of the ATCM from binding interaction 

studies, rather than direct measurements. Therefore, the low affinity of BQCA restricts the 

prospect of gaining mechanistic insights of modulator activity from structure-function 

studies. As seen in Chapter 3, it is difficult to distinguish key residues that govern modulator 

affinity (thus directly contributing the allosteric binding site), versus residues that contribute 

to the transmission of the allosteric effect (thus indirectly contributing to the observed 

potency and selectivity). Such insights would be greatly facilitated by the availability of 

higher affinity allosteric probes.  

Fortunately, numerous structure-activity studies focusing at improving the “druggability” and 

affinity of BQCA have resulted in the disclosure of a number of putative allosteric M1 

mAChR ligands with higher functional potency than BQCA (Foster et al., 2014). In a patent 

from Merck (Kuduk and Beshore, 2012; Kuduk et al., 2010a), benzoquinazolinone 12 was 



CHAPTER 5 

 

170 
 

disclosed amongst a number of aryl methyl benzoquinazolinone compounds.  This compound 

was of particular interest to our study because it is structurally related to BQCA and on the 

basis of preliminary studies, has been reported to have a substantially higher functional 

potency than BQCA. However, nothing is known about its mechanism of action or the 

structural basis of its function. 

In Chapter 4, we developed an optimised chemical synthesis of benzoquinazolinone 12 

(performed by S.N Mistry, see Chapter 4 declaration), improving the overall yield of this 

compound. This was followed by the first comprehensive pharmacological characterisation of 

the allosteric properties of benzoquinazolinone 12, which confirmed its M1 mAChR 

selectivity. Moreover, analysis of the allosteric actions of this compound revealed that, 

compared to BQCA, it displayed a greater than 50-fold increase in affinity for the M1 

mAChR while maintaining a similar level of efficacy and positive cooperativity with ACh.  

Given these findings, it was of interest to determine the structural basis of the improved 

allosteric action of benzoquinazolinone 12 as compared to BQCA at the level of receptor 

residues that this ligand engages and confirm whether benzoquinazolinone 12 engages the 

same allosteric site as that which has been proposed for BQCA. Moreover, we took 

advantage of the high affinity of benzoquinazolinone 12 to overcome the limitations posed by 

BQCA and to gain deeper mechanistic insights of modulator activity from structure-function 

studies.  

The studies in Chapter 4 focused on the four amino acids (Tyr82
2.61 

and Tyr85
2.64

,
 
Tyr179 and 

Trp400
7.35

) reported to contribute the binding of BQCA and other mAChR allosteric 

modulators. The results from the Ala mutation experiments reveal the importance of Tyr179 

and Trp400
7.35 

for the binding of benzoquinazolinone 12 and BQCA, consistent with both 

ligands binding to the same allosteric site within the M1 mAChR. Ala mutation of all the 

three Tyr residues found them to be critical for the binding of benzoquinazolinone 12 but not 
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for the transfer of cooperativity with the ACh binding site. This is in contrast to the results 

with BQCA, which found these residues to be important for the transmission of cooperativity 

with the orthosteric site rather than binding affinity.  It is interesting to note that while BQCA 

was minimally affected by both Tyr82
2.61

Ala and Tyr85
2.64

Ala
 
mutations, this was not the 

case for benzoquinazolinone 12. As such, the replacement of the methoxy group with an 

aromatic substituent at the 4-position of the benzylic pendant of BQCA, or the replacement of 

the carboxylic acid with the corresponding 3- ((1S,2S)-2-hydroxycyclohexyl) group present 

in benzoquinazolinone 12 must confer the difference sensitivity to mutation of these TM2 

residues. However, this may reflect the fact that a reduction in binding affinity at these 

mutants can only be detected by the improved affinity window offered by the high affinity of 

benzoquinazolinone 12. Additionally, the different effects observed for BQCA and 

benzoquinazolinone 12 could due to limitations in the ternary complex model used to analyse 

the binding data and not to differences in the way the compounds interact with the receptor.   

 

Our experimental findings were rationalised in molecular dynamic simulations which showed 

that both BQCA and benzoquinazolinone 12 adopt a similar pose within the allosteric pocket. 

However, while both ligands are predicted to interact with similar residues, certain additional 

interactions appear to take place with benzoquinazolinone 12, accounting for the higher 

affinity of this compound. In addition, the aromatic side chain of Trp400
7.35

 is predicted to 

adopt a different orientation in the benzoquinazolinone 12-bound model, facilitating a 

number of additional interactions of certain residues with benzoquinazolinone 12 that do not 

take place with BQCA. The closer interaction of the tricyclic core of benzoquinazolinone 12 

to the TM2 residues Tyr82
2.61 

and Tyr85
2.64

 may also contribute to the higher affinity of this 

ligand. This may also explain the greater than 10-fold loss of affinity for benzoquinazolinone 

12 when these residues are mutated to Ala while no effect upon BQCA’s affinity was 
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observed. The modelling studies additionally suggested that the hydroxyl group on Tyr82
2.61

, 

Tyr85
2.64

 and Tyr179 might participate in a hydrogen bond network with benzoquinazolinone 

12 and/or with other residues in the complex in the benzoquinazolinone 12 but not the 

BQCA-bound complex. While these results provide insight into ligand-receptor interactions, 

it should be noted that the homology model used to predict these interactions is limited as it is 

based on the crystal structure of the nanobody-stabilised active-state human β2 adrenergic 

receptor (see Chapter 3 and 4 Experimental Procedures section) and the interactions predicted 

remain to be validated upon the availability of an M1 mAChR crystal structure. Therefore, 

caution must be exercised if the information generated in this model is to be used for future 

structure-based drug design.   

While the Ala scanning approach proved useful in identifying the importance of individual 

residues for the binding of BQCA and benzoquinazolinone 12, the information provided 

regarding the nature of these interactions is limited. Further insights were gained into the 

contribution of each of the aromatic amino acid residues to the allosteric binding pocket when 

the effects of more subtle amino acid substitutions were tested on ligand binding and 

function. Each of the Tyr residues (Y82
2.61

, Y85
2.64 

and Y179) were mutated to Phe in order 

to maintain the aromaticity of the side chain of these amino acids while removing their 

hydroxyl group.  The effects of these mutations were subsequently compared upon the 

pharmacology of both BQCA and benzoquinazolinone 12. At the Tyr-to-Phe mutations, the 

binding and function of BQCA were unaffected, suggesting that the ability of these residues 

to make hydrophobic rather than polar interactions with the modulator. In contrast, the same 

mutations resulted in significant decreases in the binding affinity of benzoquinazolinone 12, 

suggesting that the significant role these residues play in the binding of benzoquinazolinone 

12 is via polar interactions and giving support to the network of polar interactions predicted 

by the modelling studies. Therefore, the network of polar interactions formed between 
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benzoquinazolinone 12 and Tyr residues in the allosteric binding pocket may also contribute 

to the higher affinity of this compound in comparison to BQCA.  

Collectively, the studies in Chapters 3 and 4 identified key regions in the M1 mAChR that are 

involved in the binding and function of BQCA and benzoquinazolinone 12, and provide an 

unprecedented insight into the structural basis of allosteric modulation at this receptor which 

may be of general application to GPCR drug discovery. The combined mutagenesis and 

molecular dynamics simulations studies provide a mechanistic basis for observed structure-

activity relationship of M1 mAChR positive allosteric modulators. In particular, the studies 

demonstrated that benzoquinazolinone 12 displays a significant increase in affinity at the M1 

mAChR and identified the ligand-receptor interactions that confer this increase. These 

insights will provide the basis for the development of novel M1 mAChR selective allosteric 

ligands or guide the improvement of existing allosteric ligands.  

A key property often associated with allosteric targeting of GPCRs is that selective 

modulators gain subtype selectivity through their binding to a site that is not conserved across 

a receptor subfamily. However, the findings in Chapters 3 and 4 challenge this concept and 

show that selective cooperativity via interaction with a conserved allosteric site may account 

for the selectivity of BQCA and benzoquinazolinone 12. However, the mechanism by which 

this “selective cooperativity” is achieved remains to be elucidated. Given the findings in this 

thesis and other recent studies that the allosteric binding site in the extracellular vestibule of 

mAChRs is conserved between subtypes, it may be hypothesised that this site has evolved to 

harbour yet undiscovered endogenous allosteric ligands for mAChRs. Indeed, early studies 

on the M2 mAChR reported that certain endogenous peptides, such as dynorphin A, 

protamine, myelin basic protein and major basic protein display allosteric behaviour in their 

interactions at this receptor (Hu and el-Fakahany, 1993; Hu et al., 1992; Jacoby et al., 1993). 

However, further studies are required to validate these findings.   



CHAPTER 5 

 

174 
 

Given the vast insights gained from structure function studies described herein, and the 

increasing number of GPCR crystal structures being solved, it should thus be appreciated that 

structure-based drug design using in silico screening for novel allosteric modulators is not 

sufficient to produce ligands with desired functions and a high level of selectivity. Rather, 

drug discovery efforts should complement their findings from in in silico screening with 

structure-function studies. Although the in vivo efficacy of benzoquinazolinone 12 is yet to be 

determined,  the binding pocket described for this ligand and BQCA may be used to perform 

virtual ligand screening to identify new allosteric modulators, or refine existing modulators to 

improve their selectivity and/function.  

While M1 mAChR PAMs have been the focus of many studies, selective M1 mAChR NAMs 

may potentially be beneficial in diseases where cholinergic neurotransmission is augmented. 

For example, mAChR antagonists are among the treatments used for Parkinson’s disease 

(Xiang et al., 2012), however, the clinical utility of these compounds is significantly limited 

by their central and peripheral adverse effects. Similar to positive allosteric ligands, the 

structure-function information provided in the current thesis may guide the development of 

new selective M1 mAChR NAMs.  

In conclusion, the studies in this thesis have identified the molecular determinants of 

allosteric modulation at the M1 mAChR, determined the structural basis of the improved 

function of novel allosteric modulators and provided new insights into allosteric modulation 

at a chemogenetically modified M1 mAChR. These studies may facilitate the future 

development of selective therapies.  With the first M1 mAChR PAM (MK-7622) recently 

reaching the clinical trial stage (Conn et al., 2014), the future of M1 mAChR PAMs looks 

promising. 
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