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Abstract

This thesis investigates singularimetry in both optical and matter wave fields. The utility of

optical singularities for performing phase measurements was demonstrated using a three–

beam interferometer. Three–wave interference was used to generate a uniform lattice of

optical vortices, which was distorted by the presence of an object inserted into one arm

of the interferometer. Using theoretical ideas from singular wave optics, a proportionality

between the transverse displacement of the vortices and the phase shift in the object wave

was derived and experimentally tested. Tracking the vortices permitted the phase of the

object to be reconstructed. We demonstrated the method experimentally using a simple lens

and a more complex object, namely the wing of a common house fly. Since the technique is

implemented in real space, it is capable of reconstructing the phase locally.

By studying the extreme opposite of nodal singularities, an alternative phase retrieval

technique was designed and numerically tested, which utilizes the natural intensity singu-

larities of caustics. Using catastrophe theory, we showed that, given the formation of a

fold caustic in the wave field, the functional form of the wave’s phase may be expressed

as a truncated Taylor series. We then outlined how all expansion coefficients in the series

may be determined by quantifying unfolding of the caustic through focus, thus framing

this otherwise ill–posed inverse problem into a well–posed one. The method was then

successfully implemented on simulated data. Possibilities of extending the technique to

higher order catastrophes are also discussed.

The relationship between caustics and vortices in matter waves was also investigated.

By inducing aberrations in the magnetic lenses of a conventional transmission electron

microscope, it is shown that diffraction catastrophes may be created in the electron beam.

As a consequence of the duality of caustics and vortices—a central theme to the thesis—

electron vortices were created in the electron beam in the vicinity of the caustics. To measure

and explore the quantized anomalous Gouy shift of focused astigmatic electron waves,

caustics were again generated by inducing aberrations in the lenses and the Gouy phase shift

vii



viii Abstract

determined by phase retrieval. Multiple theoretical descriptions of the Gouy phase anomaly

are presented and discussed. It is shown that these various interpretations may be unified

into a single theoretical framework.

Lastly, we investigated caustics in the context of order–parameter manifolds. We show

that caustic surfaces also appear when a real or complex field is mapped to its order–parameter

manifold. We exemplify these structures in the context of spin–1/2 fields, where the order–

parameter manifold is the Bloch sphere. These generic structures are a manifestation of

catastrophe theory and are stable with respect to perturbations. The corresponding field

configurations are also stable and represent a new type of topological defect, which we call

order–parameter catastrophe defects. Equations governing the conditions for the existence

and unfolding of the defects are derived.
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Introduction 1

Singular optics involves the study of defects or singularities in light. However, what consti-

tutes a singularity depends on the mathematical formalism we choose to model the behaviour

of the optical wave field. Consider the situation shown in Fig. 1.1, where light passes through

a perfect lens, which is focused to a point after one focal length. In geometrical optics we

describe the light field as being comprised of a series of rays, which point in the direction of

wave propagation. As the rays pass through the lens the changing refractive index causes

a change in the angle of the ray, with the number density of the rays proportional to the

intensity of the light. In this model, of a perfect lens that is illuminated by perfectly parallel

incident rays, all rays must pass thought the focal point, resulting in an infinite intensity of

light at the focus. Singularities, corresponding to infinite intensities in ray theory are known

as caustics, with the above example constituting a point caustic.

Now consider the identical situation described in terms of a complex scalar wave equation.

In this picture the focal point becomes “blurred” due to the optical analogue of the uncertainty

principle and the finite wavelength of the light (Padgett, 2008). This results in a bright spot

of non–zero width and finite intensity. Thus we see how the dramatic behaviour of a point

caustic singularity in ray theory is softened, or smoothed, by the introduction of the wave

formalism of light. Although singularities of infinite intensity do not appear in the wave

theory of light, the transition from ray theory to modelling light as a complex–valued scalar

wavefunction results in different types of singularities. When the real and imaginary parts of

a complex scalar wavefunction vanish simultaneously, a point singularity known as a vortex

arises in the phase of the wavefunction. In contrast to caustics, vortices are associated with

zeros of intensity. Various other types of singularities can also occur in wave fields when

1
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(a) (b)

Figure 1.1: A beam of light is focused by a perfect lens. In the geometrical theory of
light, light rays are refracted, causing every ray to pass through the focal point of the lens,
as shown in (a). The density of rays at the focal point is infinite, giving rise to a point
singularity of infinite intensity according to geometrical optics. Describing this situation in
the context of the wave theory of light softens this infinitely intense focal point to a bright
spot possessing a non–zero width, as shown in (b).

we extend our optical models to include the vector or particle nature of light. The way in

which some singularities are “tamed” when described by another theory, resulting in other

types of singularities, is referred to as the “singularity hierarchy” (Berry, 1998). By viewing

optical phenomena at a scale where the quantum nature of light must be considered, vacuum

fluctuations reveal that the amplitude at a vortex core does not in fact vanish (Barnett, 2008;

Berry and Dennis, 2004). Vortices and caustics may be thought of as complementary, being

singularities of light’s darkness and brightness, serving to “bookend” the study of singular

optics.

The work presented in this thesis provides a detailed analysis of the duality between

caustics and vortices. However, rather than considering on the intrinsic nature of these

singularities, which has already been studied extensively, this thesis concerns itself with

the question: Can these singularities be exploited for their unique properties in order to

measure or image an object or field? This concept of using the singularities of the field as the

experimental measurement tool has been referred to as “Singularimetry” (Dennis and Götte,

2012, 2013). In the past this terminology has only been used in the context of the vortices or

zeros of the wave field. However, here we use the term singularimetry as an umbrella term

for any method that exploits any form of optical singularity as an experimental tool.
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1.1 Vortices

Vortices are a ubiquitous aspect of the physical world. A vortex may be defined as the centre

of the local rotation of a field. Examples of vortices appearing in the natural world include

the swirling of water as it goes down a plug hole, at the eye of a cyclone, or the centre of our

own spiral galaxy. Whilst these are all examples of dynamically rotating vortices, a screw

type lattice defect in a crystal is also a vortex in the position of the atoms. Here the amount

that a screw type dislocation can “rotate” is restricted to being an integer number of crystal

monolayers. An optical vortex is a screw dislocation in the planes of constant phase of a

complex scalar wavefunction. It shares similar properties with that of a crystal screw defect

in that its circulation is also limited to quantised values. This analogue between optical

vortices and crystal dislocations was used in the seminal paper by Nye and Berry (1974),

which described vortices as dislocations of wave theory.

1.1.1 Definition of a vortex

Consider a time–independent complex scalar wavefunction given by

Ψ(x) =
√

I(x) exp(iφ(x)), (1.1)

where x is the position vector and I and φ are the intensity and phase of the wavefunction,

respectively. Although nature demands Ψ be a continuous function, the oscillatory nature of

the complex exponential means that there is no such restriction on φ. Discontinuities can

therefore occur in φ as a consequence of its multivaluedness. It is this property that allows

for the existence of phase vortices.

An optical vortex is a screw type dislocation in the phase of the complex–valued scalar

wave field. To compute the circulation about a vortex, consider a smooth closed contour

Γ, that encloses a vortex point. Along every point of Γ, by assumption, there will be non–

vanishing intensity. The line integral along Γ of the phase gradient will be an integer multiple

of 2π, i.e., ∮
Γ

dφ =

∮
Γ

∇φ · t ds = 2πn, (1.2)

where t is the unit tangent vector to Γ, ds is the infinitesimal line element and the integer

n is known as the topological charge. This integer represents the number of times the

phase winds by 2π around the vortex core as the curve Γ is traversed; its sign specifies the
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(a) (b)

c

d

e

(d) (e)(c)

Figure 1.2: (a) The intensity of an optical speckle pattern. (b) The phase of the speckle
pattern containing numerous vortices. Three contours are drawn in red in (b) and their
order–parameter mappings (see §1.1.2) are given in (c)-(e). The two contours that encircle
a vortex fully wrap the order–parameter space (a 1D sphere, denoted by S1). However,
the contour in (e) only partially covers S1 and is thus equivalent to a single point in the
order–parameter space.

rotational direction of the phase winding, with anti–clockwise conventionally denoting a

positive topological charge. An example of the intensity and phase of a speckle field is shown

in Fig. 1.2. Several vortices can be observed in the phase of the wave with a vortex and

anti–vortex circled in red by the contours labelled ‘c’ and ‘d’, respectively. The abundance

of vortices within this speckle field highlights that vortices are a generic phenomenon in

such fields.

Vortices always occur at points of zero intensity of a complex scalar wave field. Consider

a complex wavefunction represented as a phase vector (phasor) in the complex plane with

the magnitude of the wave amplitude and the angle equal to the phase. At points where the

real and imaginary parts vanish the phasor has zero length, becoming a single point at the

origin. There is no way to define a phase angle of the phasor when this occurs, leading to a

phase ambiguity in the complex function. This construction demands that an intensity zero is

always located at a vortex point; however, the converse statement, that a vortex always occurs
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at an intensity zero, is not universally true. This is similar to the phase ambiguity in the

azimuthal angle at either pole of a sphere when parameterized in spherical polar coordinates.

1.1.2 Stability

An important property of a vortex is that it is a stable defect of a field, as it cannot be

eliminated by any continuous perturbation. From a topological perspective, we can view the

phase as a function that assigns every point in space (where the wave is defined), a value

between 0 and 2π. The phase may be regarded as an order–parameter of the field, with all

its possible values constituting an order–parameter space (Mermin, 1979). In the present

example, the phase defines an order–parameter space, which is a circle, denoted by S1 (see

Figs. 1.2(c)–(e)). As we traverse the closed path Γ we take the value of φ at each point on the

path and map it to the corresponding value on S1. If Γ represents contour “c” in Fig. 1.2(b),

which encloses a vortex, then the value of each point on Γ samples the full range of values

of φ. Since all values of S1 are sampled, Γ topologically wraps the entire order–parameter

space. Alternatively, the Γ′ contour “e” in Fig. 1.2 does not enclose a vortex because the

line integral given by Eq. (1.2) is zero, as the beginning and end points of Γ′ are equal.

The values along Γ′ only form a subset of S1; the order–parameter space is therefore only

partially covered by Γ, as shown in Fig. 1.2. Suppose we make a smooth and continuous

transformation to Γ′, such that we reduce its length but maintain a closed loop. The covering

of S1 is continuously deformed in this process. Eventually Γ′ becomes infinitesimally small

corresponding to only a single point on S1. Therefore, the covering of the order–parameter

space in Fig. 1.2(e) is topologically equivalent to a single point on S1. However, the values

along Γ completely cover S1; as we smoothly deform Γ we find that it cannot be reduced

to a point as there is no way to “unwrap” its covering on S1. This illustrates that a vortex

point is topologically distinct from other non–vortical points of the field. The fact that we

cannot unwrap the phase around a vortex core in S1 implies that the vortex point cannot be

transformed away by any continuous deformations.

1.1.3 Higher order vortices

Higher order vortices with topological charges |n| > 1 do not share this structural stability.

To illustrate this point, consider a simple wavefunction containing an nth order vortex at the
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Figure 1.3: Decay of a doubly charged optical vortex. Here the purple and blue curves
represent where Re[Ψ(x, y)] = 0 and Im[Ψ(x, y)] = 0, respectively. (a) A critical point
explosion of a double charged vortex. The point where all four curves intersect is highly
unstable. A small perturbation lifts this single point of intersection resulting in four points
of intersection. Each intersection corresponds to a first–order vortex. Thus the second–order
vortex decays into one vortex and three anti–vortices. (b) Alternative decay path of a second
order vortex. The curves of vanishing real and imaginary parts form closed loops when
they are perturbed in such a way that they no longer self–intersect. In this situation the
second–order vortex can decay into two first–order vortices. (c) The decayed second–order
vortex shown in (a), which has been perturbed further removing the intersections between
the curves (marked by the dashed lines), lifts the ambiguity in the vortex sign. Figure
adapted from Freund (1999) and Paganin (2006).
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origin that is given by a polynomial solution of the d’Alembert wave equation:

Ψ(x, y, z, t) = (x ± iy)nei(kz−ωt). (1.3)

Here k is the magnitude of the wave–vector and ω is the angular frequency of the wave

field. Such polynomial solutions have been described as pure screw dislocations by Nye

and Berry (1974). For simplicity let z = t = 0 and n = 1, giving Ψ(x, y) = x ± iy. The lines

corresponding to the vanishing of the real and imaginary parts in this case are x = 0 and y = 0.

Applying smooth infinitesimal perturbations to either curves using the real numbers ε1 and

ε2, the wavefunction becomes Ψ(x, y) = x + ε1 + i(y + ε2), which shifts the vortex to the point

(ε1, ε2). Thus a vortex of n = 1 is only shifted by a perturbation. If n = 2, the wavefunction

is Ψ(x, y) = x2 − y2 + i2xy and the curves describing where Re[Ψ(x, y)] = Im[Ψ(x, y)] = 0

are now y = ±x and x = y = 0. Their intersection at the origin is shown by the second–order

vortex in Fig. 1.3(a). Any small perturbation to the real or imaginary parts of Ψ causes the

single point of intersection between all four curves to bifurcate into two points of intersection.

Because the total topological charge of a wave field is a conserved quantity, the n = 2 vortex

will decay into two first–order vortices. The instability of higher order vortices holds for

vortices of any topological charge with magnitude greater than 1. This bifurcation of a higher

order vortex into multiple first–order vortices has been called a “critical point explosion” by

Freund (1999).

Considering vortex points as intersections of the curves Re[Ψ(x, y)] = 0 and

Im[Ψ(x, y)] = 0, and upon traversing these curves, Freund and Shvartsman (1994) showed

that the sign of adjacent vortices situated on the same line must alternate. This characteristic

is known as the sign principle. The major implication of this result is that, given a field

containing multiple vortices, and knowing the sign of a single vortex, we immediately know

the sign of all other vortices in the field. This is demonstrated in Fig. 1.3(b), which shows

an alternative decay path of a second–order vortex. In this situation the higher order vortex

is perturbed such that the self–intersections of its curves of vanishing Re[Ψ] and Im[Ψ] are

removed. Instead of decaying into four first–order vortices, it splits into two first–order

vortices of the same sign, which preserves the topological charge of the system. By following

either curve, Re[Ψ(x, y)] = 0 or Im[Ψ(x, y)] = 0, it is observed that the sign of each vortex

alternates at every point of intersection between the two curves, thus satisfying the sign rule.
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Note the ambiguity in applying the sign rule for the case shown in Fig. 1.3(a). This

is because the curves Re[Ψ(x, y)] = 0 or Im[Ψ(x, y)] = 0 were perturbed in such a way

that their points of self–intersection were not removed. At these points of intersection, it is

unclear in which direction each curve continues. An additional perturbation must be applied

to the situation in Fig. 1.3(a) in order to remove the self–intersections and therefore lift the

ambiguity in the sign rule. An example of the resultant curves after the application of such a

perturbation is shown in Fig. 1.3(c). Here, all curves of vanishing real and imaginary parts

can be traced without ambiguity, and it is now apparent how the sign rule relates to the initial

situation in Fig, 1.3(a). This demonstrates how self–intersection of these curves introduces

ambiguities when applying the sign rule.

1.1.4 Nodal lines, nucleation and annihilation

In two spatial dimensions, the curves of vanishing real and imaginary parts of the field trace

out a network, with vortices occurring at the intersection of these curves (see Fig. 1.4). In

three dimensions the lines defining Re[Ψ(x, y)] = 0 and Im[Ψ(x, y)] = 0 become planes, with

their intersections defining nodal lines, i.e., the two–dimensional representation of a vortex.

Nodal lines possess the same topological protection that vortices enjoy, so that when present

in a wave field nodal lines must persist as a wave propagates. Nodal lines can therefore

persist as a wave propagates to z → ∞; however, they can also terminate at the edge of a

boundary, such as an opaque object. Nodal lines may also form closed loops in space. A

closed nodal loop is a result of the nucleation of a vortex/anti–vortex pair, which later comes

together to annihilate at some point as the wave field propagates. Berry (1998) emphasized

that the nodal lines of the wave field are more fundamental than vortices. We are free to

choose any arbitrary plane to observe a wave field, whence the notion of a single vortex

nucleation point then becomes dependant on our image plane. However, the geometry of the

nodal lines is defined for all three spatial dimensions, no matter where a detector is placed;

the geometry would be found to be invariant. We must therefore regard vortices as points of

intersection between an image plane and the more fundamental structure described by the

nodal line.

Closed nodal lines can have interesting topology. O’Holleran et al. (2009a) showed in a

numerical study of an optical speckle field that two nodal loops can be threaded together.
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Figure 1.4: A two–dimensional image of the phase of a complex scalar wave field
containing vortices. The lines where the real and imaginary parts of the wavefunction
vanish in three dimensions are drawn in black and white, respectively. Vortices are located
at all intersections of these curves. In three dimensions these curves are two–dimensional
surfaces with their intersections tracing out the nodal lines (dashed lines). The nodal lines
may extend indefinitely, or form closed loops, corresponding to the creation/annihilation of
a vortex/anti–vortex pair.

They also observed the occurrence of multiple loops linking together to form long chains

of nodal loops. These instances were shown to be generic features of the field, rather than

special cases, and the probability of a nodal loop not being threaded exponentially decreased

for larger loops. It was also noted that nodal lines in such speckle fields possess similar

fractal properties to that of Brownian motion, with the size distribution of loops in optical

speckle fields exhibiting scale invariance (O’Holleran et al., 2008). Similar to how a long

piece of string is prone to become knotted, the authors expected nodal lines to form knots

at large length scales. Surprisingly, no knotted nodal structures were observed in their

simulations. Dennis et al. (2010) later showed that knotted nodal structures are still possible.

Complex fields with knotted nodal lines were found as special solutions to the paraxial wave

equation. This theoretical insight allowed Dennis et al. (2010) to derive optical masks using

spatial light modulators, which produced knotted nodal lines in a physical wave field.
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1.2 Caustics

Consider now the other extreme of optical behaviour—the singularities of infinite intensity.

Caustics are singularities in the ray picture of light, in which we take a “zoomed out”

perspective of light, to a scale where the wavelength becomes negligible. At this scale the

finite detail in our optical field, such as inference effects, focal width or vortex dislocations,

cannot be resolved. Recall our description of a point caustic given in the introduction, namely

a point at which all rays of a focused beam intersect. This isolated point caustic isn’t generic

in the sense that point foci rarely arise in nature, since lenses are engineered optical elements

specifically designed to create a point focus. Point caustics are also unstable to perturbations

e.g., aberrating a lens would cause the rays to no longer pass though a common point. A

more natural situation would be the focal volume of an aberrated lens, such as a drop of

water or rays reflected off a warped surface. The focus of this lens would no longer be a

point, but rather smeared out over some length, with the envelope of the rays forming a

caustic surface as shown in Fig. 1.5(a). The caustic surface is comprised of the locus of the

family of rays; caustics of this type are stable. Perturbing the lens in Fig. 1.5(a) alters the ray

trajectories, but they must still maintain a point of intersection within the ray family; this

causes deformation of the caustic surface, but does not destroy it.

A caustic surface in the volume of an aberrated lens is more generic than a point caustic,

meaning a point caustic has zero probability of forming compared to a caustic surface.

This arises in many natural instances. Typical examples include the bright shimmering

pattern of caustics at the bottom of a swimming pool, or the cusp caustic formed from the

reflection of light inside a coffee mug. Caustics also appear at the cosmological scale, as

the space–time curvature caused by a galaxy or star that bends the light around it. These

constitute cosmologically massive aberrated gravitational lenses which also focus light,

yielding caustics (Ohanian, 1983). Such a large scale caustic has been observed by Elliot

et al. (1977) during an occultation of a star by Mars, which caused a shadow to sweep

across the Earth’s surface. The atmosphere of Mars refracts star light to such a degree that it

behaved as a aberrated spherical lens, giving rise to a Mars–sized caustic at the surface of

the Earth. (Berry, 1981). A naturally occurring caustic formed by light refracted by a water

bottle is shown in Fig. 1.5(b). It is the ubiquity of structurally stable caustics that lead Nye

(1999) to used the term natural focussing in reference to the creation of such generic caustics,
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(a) (b)

Figure 1.5: (a) A caustic envelope of a family of rays, shown in yellow, produced in the
focal volume of an aberrated lens. Here the focal length of the lens increases from bottom
to top. (b) The natural focusing of light by a plastic water bottle generating a cusp caustic.

as opposed to the unnatural case of a point caustic.

The profusion of caustics is also not limited to optics. Propagating ripples in the fabric

of space–time, known as gravitational waves, are also subject to natural focusing. As a

gravitational wave propagates, small local contractions and expansions of space–time perturb

the wave, resulting in caustics. Bondi and Pirani (1989) described caustics of gravitational

waves as causing all test particles to come together and collide, also forming a caustic surface

of test particles. Another example is a rogue wave in the ocean, which is characterized as a

wave having an amplitude much greater than the background ocean. Metzger et al. (2014)

showed that rogue waves are a result of focusing water waves, analogous to focusing from

an aberrated lens. Diffraction integrals were used to model this behaviour. Conversely, this

link between water and optical waves has motivated the creation of optical analogues of

rogue waves (Solli et al., 2007). These examples illustrate how initial weak fluctuations can

result in very extreme events given enough time or propagation distance. This is the key

principle behind caustic formation. Caustics also arise in the Argand–plane representation

of a complex scalar wavefunction (Rothschild et al., 2012, 2014). These Argand–plane

caustics were shown to occur due to the vorticity of the complex–valued scalar field changing

sign. Caustics therefore arise from having at least one vortex and anti–vortex pair in a

wavefunction. This further highlights the duality between vortices and caustics.
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1.2.1 Introduction to catastrophe theory

Caustic surfaces are ubiquitous in naturally focused or reflected light, yet only ever appear

in a small number of particular geometries. This is because caustics are a manifestation of

topologies that originate from catastrophe theory, which describes the structural stability of

physical systems. Catastrophe theory stems from early work in structural stability by Thom

(1975, 1977, 1983), which was later developed into catastrophe theory by Arnol’d (1975). It

was made popular by Zeeman (1977), who applied it to a diverse range of physical systems.

Berry (1976) was the first to use catastrophe theory in optics, and elucidated the concept of

“diffraction catastrophes”.

Instability is a consequence of degenerate critical points in a system’s potential function,

which describes the energy of a system in any given state and therefore determines a

system’s behaviour. If a system’s potential function contains a degenerate critical point,

small perturbations can lead to bifurcations in the potential, which cause an abrupt qualitative

change in the behaviour of the system. For example, consider the simple function V(x) =

x3 + ax, where a ∈ R represents the degree of perturbation to the degenerate critical point

x3. For a ≥ 0, V(x) has a point of inflection at x = 0. However, for a < 0 the critical

point splits into a maximum and minimum, leading to a bifurcation at a = 0, hence the

system is governed by a potential function V(x), which exhibits an abrupt change in its

behaviour/dynamics. For higher order degenerate points, additional perturbation terms are

needed to classify the ways in which a critical point may bifurcate. The set of points that

describe the occurrence of bifurcations then define a bifurcation set of the potential function.

Depending on the number of different bifurcations that can occur in a given potential function,

the bifurcation set can be a curve, surface or even a hyper–surface. Catastrophe theory is

the study of degenerate critical points and their bifurcations, leading to the classification

of all types of critical points with their corresponding bifurcation sets. It is the geometry

of the bifurcation sets that we observe as caustic surfaces in optics. Moreover, catastrophe

theory shows that the bifurcation sets are stable to perturbations, which is also the origin

of the structural stability of caustic surfaces and perhaps also of their generality in nature.

Catastrophe theory is a central theme of this thesis and a detailed account is presented in

Chap. 3.
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1.2.2 Catastrophe optics

We have presented caustics as singularities arising in the geometrical theory of light, being

surfaces of infinite intensity due to the infinite density of rays along the locus of a family of

rays. We do not of course observe an infinite intensity. To better understand the physics of

caustics, we need to account for the non–zero wavelength of light, as well as wave superposi-

tion. Caustics formed by coherent wave fields are known as diffraction catastrophes (Berry

and Upstill, 1980; Berry and Howls, 2006).

For coherent fields, we can no longer regard intensity peaks of a diffraction catastrophe

as the envelope of a family of rays. Instead the caustic surface results from focusing

of optical intensity at these points, the caustic surface defining where the wavefront is

collapsing most rapidly. The caustic surface becomes decorated by diffraction detail as

a result of interference. Ultimately, adjacent regions of bright intensity are accompanied

by lines of perfect destructive interference associated with dislocations in the wavefront.

An intuitive reason for this duality is that as optical energy is focused, creating a caustic

surface, there must be regions where optical energy density is decreasing. This creates

regions of local intensity minima, which ultimately become intensity zeros after sufficient

propagation. Because of this, caustics typically are found to coexist with amplitude zeros;

consequently, the phase structure surrounding caustic surfaces are generally littered with

vortex singularities. In essence, vortices form a “singular skeleton” that stabilizes and fills

the voids of a caustic network body. This demonstrates how both singularities of amplitude

zeros and of infinite intensity are inextricably linked (Angelsky et al., 2004).

All caustics may be classified as being part of a small number of particular geometries.

There are five different geometries for catastrophes that we observe in full, as there are only

four bifurcation sets with a dimensionality1 of less than 3 in catastrophe theory. The evocative

nomenclature for all five are: fold, cusp, swallow tail, elliptic umbilic and hyperbolic umbilic

catastrophes. Figure 1.6 shows examples of the intensity and phase for some of these

catastrophes. Almost all caustic surfaces will exhibit one of these five structures. Diffraction

catastrophes are no less abundant than caustic surfaces for coherent wave fields. They have

also been created and studied in electron waves (Petersen et al., 2013b) and non–linear

1The dimensionality of the caustic refer to the number of variables required to fully define the caustic
surface, not the number of spatial dimensions in which it is embedded. This is known as the codimension of the
caustic as explained in Chap. 3.
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Figure 1.6: Intensity (left column) and phase (right column) of the various diffraction
catastrophes: (a) fold, (b) cusp, (c) elliptic umbilic and (d) hyperbolic umbilic.
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fields, such as Bose–Einstein condensates (Simula et al., 2013). The phase structure of these

diffraction catastrophes once again highlights the complementarity between caustics and

phase dislocations. A lattice of vortices can be observed in the phase of the cusp, elliptic

umbilic and hyperbolic umbilic catastrophes. These vortices are produced by the interference

between three wavefronts within the caustic surface (Pearcey, 1946; Berry, 1976). The

generation of optical vortices via three–wave interference is presented in detail in Chaps. 2

and 4. This shows an important qualitative distinction between the interference of three and

four waves, which we will revisit in §2.2. The phase of the fold catastrophe doesn’t exhibit

any vortices as its variation is only along one dimension; the phase singularity of the fold is

instead an edge dislocation at the fold’s locus. The fold catastrophe is also a diffraction free

“Airy beam” (Berry and Balazs, 1979) and these edge dislocations are related to the Gouy

phase (Pang et al., 2011). The relationship between the Gouy phase and caustics formed by

electron beams is discussed further in §6.2.

1.3 Overview of the Thesis

The remainder of the thesis is structured as follows. In Chap. 2 we review the literature

related to vortices, concentrating specifically on the methods of vortex generation in various

contexts of wave physics. Detailed theory and calculation on the formation of optical vortex

lattices by the interference arising from three–wave superposition then follows. This section

is included to serve as a theoretical background to the content of Chap. 4, which exploits

optical vortices to perform phase measurement. Lastly, a review of singularimetry techniques

using optical vortex lattices for phase measurement and super–resolution is given.

Chapter 3 gives an introduction to the mathematical theory behind caustics; namely,

catastrophe theory. The foundational concepts of catastrophe theory are presented indepen-

dently of its relationship to optics, with the focus being on the structural stability of families

of functions. We choose to present it in this way as the content of Chap. 5 and Chap. 7 relies

heavily on these mathematical principles. Catastrophe theory in the context of diffraction

physics is then presented, highlighting how the concepts of structural stability and diffraction

physics can be related to one another. These ideas underpin the analysis presented in Chap. 6.

Chapter 4 presents a novel singularimetry technique that uses vortices. A three–arm

interferometer is used to generate a lattice of optical vortices. A holography–type experiment
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is conducted with an object in one of the three interferometer arms perturbing the vortex

lattice. We describe the theory of how the phase shift in the wavefront from phase and

phase–amplitude objects may be locally retrieved from the positions of each vortex, using an

algebraic equation. Experimental results of the measurement of a simple spherical lens and

the wing of a common house fly are also presented.

In Chap. 5 we outline a singularimetry technique using caustics. This technique repre-

sents a complementary method to the work presented in Chap. 4, highlighting once again

the duality between caustics and vortices emphasised throughout the thesis. In this chap-

ter we consider the ill–posed inverse problem of retrieving the phase of a complex scalar

wavefunction, given that a fold caustic is formed at its aberrated focus. We outline a method

for transforming this ill–posed inverse problem into a well–posed inverse problem, which

possesses a solution. Using key theorems of catastrophe theory, discussed in Chap. 3, it is

shown that the phase function of the wavefront may be represented as a truncated Taylor

series. By measuring the variation of the caustic near the focus, all the coefficients of this

Taylor series may be determined. The prospect of extending this technique to higher order

caustics is also discussed.

Chapter 6 revisits the complementarity between caustics and phase defects, namely

vortices and the Gouy phase anomaly. This chapter consists of two parts. The first presents

experimental results of the generation of vortices in an electron beam. Aberrations were

introduced to the lenses of a transmission electron microscope (TEM), which induces diffrac-

tion catastrophes within the microscope column. Iterative phase retrieval was performed

on the diffraction catastrophe, which showed that electron vortices had indeed formed. The

second part of this chapter studies the relationship between caustics and the Gouy phase

anomaly in matter waves. By deliberately inducing astigmatism into the lenses of a TEM,

the Gouy phase shift is directly measured across the two line foci caused by the aberrated

lens. Various theoretical interpretations of the Gouy phase anomaly are also discussed. It is

shown that these interpretations may be unified into a single theoretical framework.

In Chapter 7 we investigate caustics in abstract order–parameter spaces. Here we show

that when a field is mapped to its associated order–parameter manifold, singularities of the

mapping manifest as caustics. Due to the topological stability of caustics, the corresponding

parts of the field must therefore also be topologically stable. These order–parameter caustics
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represent a new form of topological defect that may occur in fields. This chapter studies

these structures in the context of a spin–1/2 system, for which the order–parameter space

corresponds to the Bloch sphere. Facilitated by catastrophe theory, equations governing the

conditions under which these order–parameter caustics form are derived and we demonstrate

how this phenomenon represents a gradient mapping.

Finally, in Chapter 8 we summarise the key findings of the thesis and discuss future

directions related to the major themes of the thesis.





Generation and Applications of
Vortices

2

The work in this thesis was motivated by the recent experimental demonstration of vortical

electron beams. To contextualize this research we will give a brief history of vortex pro-

duction in wave fields. Experimental methods of vortex generation share much in common

across a wide variety of physical systems that exhibit wave singularities. For electron vor-

tices, our simulations of vortex production in the electron microscope show some subtle

features, which are described in the current chapter. These insights lead to an exploration of

vortex production using three–wave interference. A detailed description of the mechanisms

of vortex production is also described. The resulting formalism serves as a theoretical

background to the work in Chap. 4.

2.1 Generation of Vortices

2.1.1 Optical phase singularities

The earliest occurrence of phase vortices in waves can be attributed to Whewell (1833, 1836),

and relate to observations of the dynamics of ocean tides. The periodic nature of the tides

mean that they can be modelled by the real part of an oscillating complex function. The phase

contours of these functions are known as co–tidal lines and correspond to points of high tide.

In studying co–tidal line contour maps, Whewell postulated the existence of points of zero

amplitude in the complex harmonic oscillation of the tide; points where the co–tidal lines

would circulate giving vorticity to the tidal phase. Such features are known as amphidromic

points and their discovery ushered in the birth of phase singularities in wave theory (Berry,

2000). However, examples of phase singularities in optics were not explicitly considered

19
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until the 1950’s. The first to appreciate the existence of optical vortices was Sommerfeld

(1954); however, his work was based on earlier lectures in 1950. The first experimental

observation of optical vortices was in the context of total reflection of light at an air–glass

interface. Wolter (1950) noted that intensity zeros coincided with optical phase singularities,

which developed above the interface near the point of reflection.1 Soon after, Braunbek

(1951) noted that optical phase dislocations could result from the interference of just three

plane waves. However, Pearcey (1946) pre–empted these findings in 1946, within the context

of generic radio wave interference patterns. Three–wave interference will be discussed in

detail in Chap. 4.

In the early years of singular optics, vortices were considered as an emergent phenomenon

observed in certain optical setups. Vortices were later observed in fringe patterns produced by

wavefront division by Vaughan and Willetts (1979). The helical wavefronts in this instance

were produced by the interference of two waves. Vaughan and Willetts (1979) showed that,

by slightly displacing the superposed waves relative to each other and laterally inverting a

single wave, intensity variations transverse to the fringes occurred. This additional variation

in intensity in a diagonal direction to the fringes was sufficient to promote vortex generation.

Refined optical experiments, utilizing three–wave interference to produce uniform vortex

lattices in a highly controlled manner, have subsequently been investigated (Masajada and

Dubik, 2001; Dreischuh et al., 2002; O’Holleran et al., 2006; Vyas and Senthilkumaran,

2007; Kurzynowski and Borwińska, 2007; Masajada et al., 2007). Vortex formation utilizing

interference of three–waves will be discussed in detail in §2.2.

Singularities produced from the superposition of three complex functions also occur in

other optical settings. Phase singularities, called coherence vortices (Schouten et al., 2003;

Gbur and Visser, 2003), may exist in the complex–valued spectral degree of coherence (Born

and Wolf, 1999), which describes the correlation between two spatial coordinates of a

partially coherent wavefunction. Similar to the way vortices nucleate from three–wave

interference, Marasinghe et al. (2011) showed that coherence vortices also result from Mie

scattering of partially coherent light from three dielectric spheres (Bohren and Huffman,

1983). These authors go on to indicate that coherence vortices would result from a partially

coherent wave scattering from a random phase screen, which suggests that coherence vortices

1See Wolter (2009) for an English translation of this paper.
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are as common a phenomenon as optical vortices. Coherence vortices are associated with

pairs of points in a wavefunction that are completely uncorrelated, since the amplitude of

the coherence function must be zero at this pair of points.2 Physically, the consequence

of zero correlation means that the visibility of the interference between two uncorrelated

points is zero. The existence of a coherence vortex can be established by calculating the

circulation of the phase in the complex degree of coherence, using a generalization of

Eq. (1.2), whereby the angular frequency and one set of spatial coordinates are fixed on the

contour. The topological charge of the coherence vortex is equal to the number of oscillations

that the measured visibility undergoes, as this contour is traversed (Marasinghe et al., 2010).

Coherence vortices possess a higher dimensionality than phase singularities of a coherent

wave field. Since the spectral degree of coherence is defined for a pair of points, coherence

vortices define a 4–dimensional nodal hyper–surface embedded in 6 dimensions, rather than

a 1–dimensional nodal line embedded in 3 dimensions. So for a given angular frequency,

a one–dimensional (1D) partially coherent field therefore defines a two–dimensional (2D)

coherence function, which has sufficient dimensionality for vortices to form. This lead Simula

and Paganin (2011) to investigate the counter intuitive concept of coherence vortices in one

spatial dimension. The scattering of a 1D partially coherent (i.e., mixed state) wavefunction

from a step potential was considered. The incident, reflected and transmitted waves generated

a uniform vortex/anti–vortex lattice of coherence vortices in an almost identical manner to

the superposition of three coherent plane waves.

Beyond using wave interference to generate vortical structures, both amplitude and phase

masks have been developed for the purpose of producing isolated vortices. For example,

vortices can be generated holographically. In polar coordinates the polynomial vortex given

in Eq. (1.3) has the form exp(±niθ). For an off–axis holographic setup, a single vortex beam

interferes with a tilted reference beam, given by exp[i(kxx + kzz)]; at the plane z = 0, the

corresponding intensity pattern is:

I(x, y) = | exp(±inθ) + exp(ikxx)|2

= 2 + exp[i(±nθ − kxx)] + exp[−i(±nθ − kxx)]

= 2 + 2 cos[kxx ∓ ntan−1(y/x)]. (2.1)

2Note that this does not mean that two separate points of the coherence function vanish. This terminology
refers to the fact that the coherence function is a function of pairs of points of a wave field.
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When x is small, the magnitude of the inverse tangent in the argument of Eq. (2.1) abruptly

changes at y = 0. Therefore, near the origin, the fringe pattern undergoes a phase change of

nπ in the y direction. This yields a fork/edge dislocation in the fringe pattern, with the integer

n being the degree of the dislocation, which is illustrated in Fig. 2.1(a). This highlights

how optical vortices are analogous to crystal–like dislocations, as emphasized by Nye and

Berry (1974). Alternatively, an amplitude mask with a transmission function identical to

Eq. (2.1) would yield three beams in the diffraction pattern, corresponding to each term

in the second line of Eq. (2.1) (He et al., 1995); namely, a central beam and two vortex

beams with topological charge ±1 are contained in the first diffraction order. Bazhenov et al.

(1990, 1992) were the first to perform experiments using this holographic approach to vortex

production. First and second order vortices were also produced in this way by fabricating

forked and double–forked diffraction gratings. Due to the difficulty of making a mask with

the exact functional form specified by Eq. (2.1), computer generated diffraction gratings

consisting of a binary approximation were used to generate vortices. Caustics and diffraction

catastrophes have also been generated using diffraction gratings (Lee, 1983a,b).

Spiral Fresnel zone plates are another holographic method for producing vortices. Con-

ventional zone plates consist of a series of concentric circles arranged in such a way that

light is diffracted to a point. Heckenberg et al. (1992) showed that if the rotational symmetry

of the zone plate is broken, then the diffracted light could be focused into a helical beam. It

was shown that the required boundary between zones of the binary mask is given by:

± nθ = π/2 + Ar2, (2.2)

where A is a real constant and n determines the topological charge of the phase singularity.

Zone plates based on Eq. (2.2) are known as “spiral zone plates”, since their angular variation

is proportional to r2, giving rise to a spiral shape. Figure 2.1(b) shows an example of a spiral

zone plate.

Beams with helical wavefronts using phase masks have also been used to produce

vortices (Beijersbergen et al., 1994). Such masks are known as spiral phase plates and consist

of a phase object having a thickness T , proportional to the polar coordinate, i.e., T (r, θ) ∝ θ.

An example is shown in Fig. 2.1(c). Under the projection approximation the phase shift

imparted to a wave is proportional to the thickness of the object (Paganin, 2006). If the

thickness of the spiral phase mask is tailored such that T (r, θ = 2π)− T (r, θ = 0) corresponds
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(a) (b) (c)

Figure 2.1: (a) Fork dislocation in a diffraction grating, which produces vortices in the far–
field diffraction pattern. (b) The geometry of a n = 1 spiral zone plate used by Heckenberg
et al. (1992). (c) Example of a spiral phase plate. The projected phase variation is given by
exp(±iθ), with the step corresponding to a phase shift of 2π.

to a phase shift of 2π, then under coherent plane wave illumination the transmitted beam will

incur a phase shift of θ, identical to that of a beam with a helical wavefront. The projection

approximation assumes that the wave receives the entire spiral phase shift at a single plane.

However, because a phase object does not alter the intensity of the wave, the intensity cannot

be zero anywhere in the wave at the exit surface of the phase plate. Hence a small amount

of propagation of the transmitted wave is required for a vortex to form. The difficulty of

fabricating a smooth and precise optical element meant that an approximate spiral phase

plate consisting of a spiral staircase–like structure, could only be made. In the particular

experiment of Beijersbergen et al. (1994) the phase plate consisted of 72 steps.

2.1.2 X–ray vortices

Peele et al. (2002) generated a first order vortex in the near field of a 9 keV X–ray beam,

using a 16 step phase mask. Spiral zone plates have subsequently been used to produce

vortices in the soft X–ray regime (Sakdinawat and Liu, 2007). These methods are useful for

producing phase singularities in a controlled manner. However, intricate vortex–producing

optical elements are not necessary for making X–ray vortices. Vortices naturally develop in

propagating wave fields that contain moderate continuous phase modulations. The ease with

which X–ray vortices may be spontaneously generated is highlighted by the work of Pavlov

et al. (2011). In this work gold nanoparticles with ∼1 µm diameter were deposited onto a

substrate. When two adjacent nanoparticles were situated close to each other, they acted like

a highly aberrated concave nanolens. Following the discussion in §1.2.1, caustics ultimately
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arise from natural focusing by aberrated lenses and give rise to a singular skeleton of vortices.

Propagation induced hard X–ray vortices were observed in the scattered field as a result of

the natural focusing of the gold particle nanolens, in an analogous manner to the situation

shown in Fig. 1.5(a). Spontaneous vortex nucleation has also been discussed by Kitchen

et al. (2004), in the context of X–ray speckle fields. Using simulated data mimicking X–ray

scattering from lung tissue, it was observed that phase singularities littered the resulting

diffraction pattern (as discussed in §1.1.4). This example of propagation induced X–ray

vortices highlights the ubiquity of vortices in optical and X–ray wave fields. It also suggests

that X–ray phase singularities were likely produced as a result of random scattering of

X–rays, long before they were created by spiral phase plates.

2.1.3 Electron vortices

Vortices in an electron beam was have been studied theoretically by Allen et al. (2001b) and

Bliokh et al. (2007). Allen et al. (2001b) considered the effect electron vortices would have on

conventional imaging methods in an electron microscope, whilst Bliokh et al. (2007) showed

that wave–packet solutions to the Schrödinger equation could contain phase singularities.

Vortex generation was latter demonstrated experimentally by Uchida and Tonomura (2010),

who exploited a spiral phase–like plate. Since the de Broglie wavelengths of electrons

are far smaller than those of visible light or X–rays, it is extremely difficult to specifically

manufacture spiral phase plates for vortex production, although this was achieved by Shiloh

et al. (2014). Instead, Uchida and Tonomura (2010) used regions where spontaneously

stacked layers of graphite met in such a way as to form a very crude spiral phase–like plate,

consisting of only three or four phase jumps. The thickness of the graphite layers loosely

correlated to a phase shift of 2π. It is of interest to note that phase singularities in electron

waves had been discussed many years ago by Dirac (1931), who showed that solutions to the

Schrödinger equation possess a non–integrable phase given by Eq. (1.2) (Hirschfelder et al.,

1974).

Until very recently, interference of planar electron waves had not been explored to

create vortices in an electron microscope3. However, electron holography experiments have

3Electron vortices have now been produced by the deliberate formation of diffraction catastrophes. It
can be shown that vortices associated with the hyperbolic umbilic catastrophe are the result of multiple wave
interference (see Fig. 1.6(h)). This work will be discussed in detail in Chap. 6.
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now been performed using two biprisms. The two reference waves plus the object wave

results in three–wave interference in the electron microscope. The advantage of having two

reference waves is the increased control over the fringe spacing and width of the interference

pattern (Harada et al., 2004); the intensity of the fringes become modulated by the electro-

magnetic field, allowing for the direct visualization of the equipotential lines (Hirayama

et al., 1995). In this case both biprisms were aligned parallel to each other, so that the second

biprism produced an additional reference wave that was collinear with the other waves. It can

be shown that degenerate wave–vectors do not produce vortices in the interference pattern.

The work by Harada et al. (2005) did investigate the effect of introducing a relative rotation

between the biprisms. However, their experimental setup did not produce vortices. Instead

the focus of their work was the additional degree of control over the fringe pattern, which

is desirable for electron holography experiments. Nevertheless it is possible to produce

electron vortices using electron microscopes with relative rotation between two biprisms, as

was recently demonstrated by Niermann et al. (2014) and Dwyer et al. (2015).

2.1.3.1 Simulations of propagation based vortex nucleation

Motivated by the recent publications reporting electron vortices, alternative methods of

creating vortices in the electron microscope were investigated. Given the difficulty and

precision required to engineer vortical masks for electrons, we sought to identify other

methods of vortex production that didn’t require phase–shifting optical elements. Multiple

wave interference was first considered, but was not pursued since it required two biprisms

to be inserted into the electron microscope. Instead we explored spontaneous generation

of electron vortices, using computer simulations to identify if electron vortices could be

generated in the electron microscope. Our simulations were based on amorphous carbon,

which was chosen as a random phase object. This material is already used in electron

microscopy for calibration purposes and/or as a specimen substrate. Showing that vortices

could be generated from such a commonly used material would demonstrate the ubiquity of

vortices in electron beams, and obviate the need for microscopic optical masks.

For the simulations, a thin (∼ 50 nm) spatially random amorphous carbon sample was

illuminated by 200 keV electrons. The exit wave was calculated assuming the projection

approximation (Cowley, 1995). The wave field was numerically propagated using either



26 Generation and Applications of Vortices

the operator or convolution formalism based on the Fresnel propagator, depending on the

defocus (Paganin, 2006). Vortices were observed nucleating at a defocus of approximately

±200 µm from the sample. By extending the characteristic length and changing the inter-

action constant of the sample, the plane at which vortices nucleated could only be adjusted

by an insignificant amount of ≈ 20 µm. However, our simulations did show that electron

vortices could be generated in this way. Unfortunately the defocus was on the order of a few

hundred microns, which lies far outside the typical propagation distances for the objective

lens of a conventional electron microscope. The result indicates that despite vortices forming

upon propagation from a spatially random scatterer, the interaction between the vortices and

the material was too weak to produce large enough phase modulation for vortices to nucleate

at a defocus less than hundreds of microns.

The simulated sample was then changed to model a cluster of randomly distributed latex

spheres. This new object was also a homogeneous material and provided much larger phase

variation of the transmitted wave (Eastwood et al., 2011). Because of its geometry, the

spheres also behaved as aberrated lenses, which naturally focus the beam, emulating the

experiment by Pavlov et al. (2011). Our simulated sample consisted of 30 latex spheres, each

having 15 nm radii and a 5 nm root–mean–squared variation in their projected thickness; the

spheres were distributed randomly over an area of 170 nm × 170 nm. Vortices formed in the

scattered wave at approximately ±50 µm, half the defocus required for the amorphous carbon

test case. An image of the simulated data is shown in Fig. 2.2(a), with the results of the

numerically propagated intensity and phase of the scattered wave field at −100 µm defocus

given in Figs. 2.2(b) and (c), respectively. Despite this improvement, the defocus values were

still far outside the typical defocus range of a conventional transmission electron microscope,

which is generally only capable of approximately ±5 micron defocus at most. However,

microscopes fitted with Lorentz lenses can achieve much larger defocus lengths and therefore

may be capable of creating electron vortices by propagation under the conditions of the

simulation (De Graef, 2003)

The propagation distance required to form electron vortices could be decreased if the

sample’s interaction coefficient was increased. However, our initial aim was to show that

vortex formation in the electron microscope is possible with very commonly used materials.

Since artificially tailored experimental samples are of limited utility, we abandoned this line
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Figure 2.2: (a) Image of the simulated sample, which consisted of randomly placed
30 nm diameter latex spheres, with a 5 nm root–mean–squared variation in their projected
thickness. Images (b) and (c) show the intensity and phase of the transmitted wave field at
−100 µm defocus, using 200 keV electrons. Vortices are observed in the phase of the wave,
where a region of the phase containing several vortices is magnified in the inset. A vortex
and anti–vortex are encircled in red.

of research. Nevertheless this preliminary work stimulated our exploration of diffraction

catastrophes in the electron microscope, which in turn led to the generation of electron

vortices. This work is presented in Chap. 6.

Our observations contradict comments made by Uchida and Tonomura (2010) who, upon

observing multiple vortices in their interference patterns, suggested that phase singularities

are a common phenomenon for randomly scattered electron beams. It was their contention
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that the stacked graphite flakes, which mimicked a crude phase plate, were the major

determinant in generating vortices, rather than the nanoscale variations in the thickness of

the material. However, it is difficult to make a direct comparison between our work and that

of Uchida and Tonomura (2010) because the graphite sample has a slightly higher mean

inner potential than carbon, and the defocus at which they observed phase singularities was

not reported. The high degree of Fresnel fringing in the experimental images of Uchida and

Tonomura (2010) suggests that these images are considerably out of focus (Petersen, 2014).

If this is the case, then the formation of electron vortices may be due to their spontaneous

formation from propagation, in addition to being a direct consequence of the sample acting

like a spiral phase plate.

2.2 Three–Wave Interference

In §2.1.1 it was stated that a lattice of vortices and anti–vortices may be generated in the

interference pattern of three or more waves. Here we consider the case of three waves

interfering, which serves as the theoretical underpinning of Chap. 4. In our treatment we

calculate the amplitude of an interference pattern using the summation of phasors for each

wave, which is similar to the approach of Masajada and Dubik (2001) and Paganin (2006).

Although we consider vortex formation for three–wave interference, vortices can also be

formed from the superposition of more than three waves (O’Holleran et al., 2006).

Consider a wavefunction consisting of the superposition of three monochromatic complex

scalar waves:

ψ(x, t) =

n=2∑
j=0

ρ j exp{i[k( j) · x + φ j(x)] − iωt}, (2.3)

where ρ j is the amplitude, x j is the position vector, k( j) is the wave–vector and φ j represents

the spatial envelope of the jth wave. Note that the specific spatial dependence on φ j is

suppressed for clarity. We also omit the harmonic time dependence and factor out the first

wave; furthermore we consider the interference pattern of Eq. (2.3) at the plane z = 0. Thus:

ψ(x⊥, z = 0) = exp[ik(0)
⊥ · x⊥ + iφ0]{ρ0 + ρ1 exp[i(k(1)

⊥ − k(0)
⊥ ) · x⊥ + i(φ1 − φ0)]

+ ρ2 exp[i(k(3)
⊥ − k(0)

⊥ ) · x⊥ + i(φ2 − φ0)]}. (2.4)
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By making the following substitutions:

kA
⊥ = k(1)

⊥ − k(0)
⊥ , (2.5)

kB
⊥ = k(2)

⊥ − k(0)
⊥ , (2.6)

φA = φ1 − φ0, (2.7)

φB = φ2 − φ0, (2.8)

we arrive at:

ψ(x⊥) = exp[ik(0)
⊥ · x⊥ + iφ0]{ρ0 + ρ1 exp[ikA

⊥ · x⊥ + iφA] + ρ2 exp[ikB
⊥ · x⊥ + iφB]}. (2.9)

A necessary condition for the formation of vortices is that the wavefunction vanishes. For

Eq. (2.9) this occurs when the terms within the braces sum to zero. Each of the three terms

may be represented by a phasor in the Argand plane, with an angle relative to the real axis

equal to the wave’s phase and with length equal to the amplitude of the wave. Three phasors

only sum to zero when they form a triangle, as shown in Fig. 2.3. For an intensity zero to

occur, no single phasor magnitude can be too large, otherwise a triangle cannot be formed.

For a vortex to form, a necessary condition on the amplitudes of each wave is that ρi ≤ ρ j +ρk,

where i, j, k = 0, 1, 2. Assuming that intensity zeros do occur in our wavefunction, we now

wish to locate their positions in the plane z = 0. With reference to Fig. 2.3(a), let α and β

represent the value of the second and third wave’s argument at the position of zero intensity,

which we denote by (x̃, ỹ). Thus:

α = kA
x x̃ + kA

y ỹ + φA + 2πn (2.10)

β = kB
x x̃ + kB

y ỹ + φB + 2πm. (2.11)

Here we have expanded the dot products between the position and wave–vectors, and n and

m are integers. Because α and β are the arguments of the oscillator complex exponentials in

Eq. (2.9), we can add integer multiples of 2π to each of them. The coordinates of the vortices

are found by solving Eqs. (2.10) and (2.11) simultaneously, giving

x̃(n,m) =
kB

y (α − φA − 2πn) + kA
y (−β + φB + 2πm)

kA
x kB

y − kA
y kB

x
, (2.12)

ỹ(n,m) =
kB

x (−α + φA + 2πn) + kA
x (β − φB − 2πm)

kA
x kB

y − kA
y kB

x
. (2.13)
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Figure 2.3: (a) Arrangement of phasors that sum to zero. The angles for which this occurs
are denoted by α and β for the second and third phasors, respectively. (b) Vortices cannot
form if ρ0 > ρ1 + ρ2. The dashed arcs indicate possible values of the arguments of each
wave. These arcs do not intersect it the length of the first phasor is too large, whence the
phasors cannot sum to zero under these conditions. Note that for clarity the phasors have
been offset from the origin of the complex plane.

Equations (2.12) and (2.13) define the Cartesian coordinates for each vortex at the (n,m)th

lattice site. The geometry of this vortex lattice is determined by a combination of both the

relative magnitude and angles of the wave–vectors of all three waves. The relative phase

factors φA and φB lead to an irregular lattice. If they were equal to zero, corresponding to

the interference of three plane waves all with zero phase at the origin, then Eq. (2.3) would
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exhibit a uniform lattice of vortices.4

Although we have claimed that Eqs. (2.12) and (2.13) represent the coordinates of the

vortices, this point is yet to be established, since the presence of an intensity zero is a

necessary but not sufficient condition to establish the existence of a vortex. To determine if

a vortex lies at the intensity zeros we must study the behaviour of the wavefunction in the

vicinity of these points. To this end we consider points close to each vortex location and

substitute (x̃ + δx̃, ỹ + δỹ), with |δx̃| and |δỹ| << 1, into Eq. (2.9), and expand to first order

in δx̃ and δỹ. Assuming the spatial modulation of each wave is sufficiently smooth, so that

φ j(x̃ + δx̃, ỹ + δỹ) ≈ φ j(x̃, ỹ), and using ψ(x̃, ỹ) = 0, after factoring the resulting equation into

real and imaginary parts we find:

ψ(x̃ + δx̃, ỹ + δỹ) ≈

ρ0 exp[i(k(0) · x + φ0)]
{[ (

k(1)
x δx̃ + k(1)

y δỹ
) ρ1

ρ0
Im

(
exp[i(kA · x̃ + φA)]

)
+

(
k(2)

x δx̃ + k(2)
y δỹ

) ρ2

ρ0
Im

(
exp[i(kB · x̃ + φB)]

) ]
+ i

[ (
k(0)

x δx̃ + k(0)
y δỹ

)
+

(
k(1)

x δx̃ + k(1)
y δỹ

) ρ1

ρ0
Re

(
exp[i(kA · x̃ + φA)]

)
+

(
k(2)

x δx̃ + k(2)
y δỹ

) ρ2

ρ0
Re

(
exp[i(kB · x̃ + φB)]

) ]}
.

(2.14)

In the coordinates (δx̃, δỹ), whose origin coincides with (x̃, ỹ), this equation is of the form

[(aδx̃ + bδỹ) + i(cδx̃ + dδỹ)] exp(iχ), where a, b, c, b and χ are real. If we view Eq. (2.14) as

a mapping of the local coordinates of a vortex to the complex plane, i.e. ψ : (δx̃, δỹ) 7→ C,

then it can be shown that a vortex exists at the point (x̃, ỹ) if the Jacobian determinant of this

mapping is non–vanishing.5 Additionally, the sign of the topological charge of the vortex is

given by the sign of the Jacobian determinant (Rothschild et al., 2012, 2014). It follows that a

vortex is present at (x̃, ỹ) when ad − bc > 0, whilst an anti–vortex is found when ad − bc < 0.

Alternatively, Eq. (1.2) could be calculated about this point to test for the presence of a vortex

and determine its topological charge. We have only considered the formation of vortices at

the intensity zeros when the phasors form an upward triangle; a downward phasor triangle is

also formed when the phase angles of the second and third waves equal α and β, respectively.

In this case vortices of the opposite topological charge are formed and their positions may be

4In Chap. 4 we show how the vortices’ dependence on the wave envelopes may be exploited in imaging.
5The situation where this Jacobian determinant vanishes is also interesting and is explored further in Chap. 7.
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derived in the same manner as above.

2.2.1 Nodal line topology of multiple wave interference

We have shown that a vortex lattice results from three–wave interference at the plane z = 0.

O’Holleran et al. (2006) studied the topology of the nodal structure of a vortex lattice

produced by three, four and five plane wave interference. For three–wave interference, the

nodal lines propagate rectilinearly and are all parallel, hence the vortices do not move relative

to each other. This rigidity of the vortex lattice is reflected in the geometry of the phasors.

There is only one phase angle for each wave that can give rise to the triangle phasor geometry.

As the wave propagates, all phasors rotate simultaneously, which preserves the shape of the

phasor triangle at each vortex point. However, for the case of four wave interference, the

additional wave introduces a degeneracy in the phase angles required for the phasors to sum

to zero. Assuming equal amplitudes, complete destructive interference of four waves occurs

when the four phasors form a rhombus. At each vortex point, the angles between the adjacent

edges of the rhombus undergo cyclic evolution as the wave propagates. Consequently, the

condition on the phase angles of each wave changes as a function of propagation, causing

the vortex lattice to contract and expand as it propagates. All vortices annihilate once the

lattice has contracted such that vortices of opposite topological charge are brought together.

This plane of annihilation occurs where the relative angles of each phasor are either 0 or

π as this means the phasors are collinear. Therefore the nodal lines do not exhibit parallel

propagation, but instead intersect each when their phasors are collinear. With small changes

to the relative magnitudes of each wave, the crossed nodal lines can be perturbed, such that

the nodal lines form a series of closed loops.

A qualitatively different scenario happens when the amplitudes of each wave are such

that the phasors can only form a trapezium. Here, for any relative phase angle the four

phasors cannot be simultaneously collinear, and vortex creation and annihilation cannot

occur. Similar to the nodal line topology of three–wave interference, the nodal lines extend

to infinity and do not interact with adjacent nodal lines. The additional wave induces a

perturbation to these lines, causing the vortices to propagate in non–straight trajectories. The

nodal line topology quickly becomes too intricate to describe for interference with five plane

waves, as noted by O’Holleran et al. (2006). Vortex positions are dictated by the phasors
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forming a five–sided polygon with a large degree of degeneracy in the phase angles required

for vortex formation.

The nodal line structure of the interference between three spherical waves generated

from a 3–pinhole interferometer was studied by Ruben and Paganin (2007). It was shown

that the interference of three spherical waves only generated a finite number of first order

vortices in contrast to plane waves, which generate an infinitely extended vortex lattice. The

nodal lines in this case expand radially outwards as the wave propagates. There are two

qualitatively different classes of nodal line present for three spherical wave interference. The

nodal lines either originate at the source plane or generate curved hairpin nodal lines after

some critical propagation distance as a result of vortex/anti–vortex creation events. The

nodal lines in the far–field become asymptotically straight, since the spherical waves are

approximately planar in this limit. As more waves are interfered, the field begins to resemble

that of a far–field speckle pattern. The resulting complicated field exhibits knotted nodal

loops (Leach et al., 2004, 2005) and linked nodal loops (O’Holleran et al., 2009a; Padgett

et al., 2011). An exotic example arises in the interference of two counter–propagating Bessel

beams. Here the nodal lines become interwoven forming a braided topology (Dennis, 2003).

2.2.2 Quasi–periodic optical lattices

In multiple wave interference, where the polar angles of all wave–vectors, relative to the

optic axis, are equal, the resulting wave becomes diffraction free. Additionally, when the

number of waves is 2n + 5, where n = 0, 1, 2..., the intensity and vortex pattern of the

resulting interference patterns is quasi–periodic (Becker et al., 2011; Chen et al., 2011).

The term quasi–periodic relates to the lattice having a regular and ordered structure but no

translational symmetry. By phase engineering it is possible to produce quasi–periodic optical

lattices that have spiral nodal line structures (Xavier et al., 2011), which upon propagation

give vortices (Xavier et al., 2012). Quasi–periodic optical lattices have been used to study

quasi–crystals (Shechtman et al., 1984). Guidoni et al. (1997) localized single atoms of

Caesium within a 3D quasi–periodic optical lattice to physically simulate a quasi–crystal.

Freedman et al. (2006, 2007) generated quasi–crystal photonic lattices within a non–linear

medium to study wave and transport phenomenon quasi–periodic order systems.
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2.3 Singularimetry

A number of experiments exploiting vortex lattices generated by three–beam interference

have been performed using specially made three–beam interferometers; this technique is

refereed to as Optical Vortex Interferometry (OVI). Masajada (2004) outlined a simple

method showing how an optical vortex lattice may be used for singularimetry. One of the

three beams of the OVI was reflected off a mirror, which was free to rotate about two of

its axes. The wave–vectors of the other two beams were arranged so that when the mirror

is rotated about its x axis, the vortex density of the lattice changed. When it was rotated

about the y axis, the relative angle between the vortices altered. Equations (2.12) and (2.13)

show that the positions of the vortices within the lattice are related to the relative phase

difference between each wave. Tilting the reflecting mirror induces a linear phase shift in one

of the beams, which in turn causes dilation and changes to the geometry of the vortex lattice.

Using equations similar to Eqs. (2.12) and (2.13), Masajada (2004) showed that by selecting

just three vortices, which need not be adjacent to one another, measurement of the change

in the separation and relatives angles between each vortex was sufficient to determine the

magnitude and orientation of the mirror. Popiołek-Masajada et al. (2007) went on to improve

the precision of this technique by developing a method based on measuring the trapezoidal

cell that is formed by four neighbouring vortices of the same topological charge. Changes in

this cell were averaged over the entire lattice and a statistical probability distribution used to

determine the tilt of the mirrors.

Polarization singularities have also been used to perform a similar type of singularime-

try. A modified type of OVI, described by Kurzynowski et al. (2006), used a modified

Mach–Zehnder interferometer, where one arm was fitted with a birefringent Wollaston

prism (Brosseau, 1998). This prism served to rotate the polarization of one of the beams,

effectively generating a third beam of altered polarization. This interferometer produced

a lattice of polarization singularities known as C points (Nye and Hajnal, 1987). These

singularities can be thought of as the polarization equivalent of optical vortices. For a

complex vector field E, a C point is defined as a point where the real and imaginary parts of

the complex scalar E · E vanish simultaneously. Using interferometry with two Wollaston

prisms, Borwińska et al. (2007) and Woźniak and Banach (2009) used the lattice of C

points to measure the prism’s linear birefringence parameters, i.e., the azimuthal angle of its
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first eigenvector and the phase difference between the eigenwaves. Using the Jones vector

description of polarized light, it was shown that the relative displacement of each sub–lattice

of polarization singularities of alternate sign is a function of the phase difference between

each Jones vector component introduced by the birefringent prism. The phase difference is

determined by measuring the shift in the sub–lattice of one particular topological charge

from the other sub–lattice. A change in the prism’s first eigenvector caused a linear shift in

both sub–lattices in the same direction. Measurement of this shift allowed the azimuthal

angle to be determined.

The use of the OVI is limited in its scope as the technique only measures the simple global

parameters of an optical element in the interferometer. Masajada et al. (2002) considered

using vortices within the lattice as phase markers, which could potentially be exploited to

measure non–uniform phase variations in one arm of the OVI. The first serious attempt

at this is due to Masajada and Popiołek-Masajada (2005), but the proposed technique had

shortcomings. Frączek and Mroczka (2008) reported a more practical phase measurement

technique using an optical vortex lattice. In this method, vortices are localized within an

optical vortex lattice, which has been perturbed by a non–uniform phase variation in one

of the reference arms. The relative phase between each vortex within the lattice is then

plotted as a function of the transverse Cartesian coordinates. A plane is fitted to the vortex

coordinates, which represents the positions where each vortex would lie if the lattice was

unperturbed. The distance between the positions of the vortices relative to the fitted plane is

taken as the phase measurement of the reference arm. The fact that the plane is fitted to all

vortices within the lattice means that this is a global technique, as the phase solution of any

point still depends on the entire interferogram of the OVI. In Chap. 4 we present a technique

that utilises an optical vortex lattice to retrieve a non–uniform phase variation locally. This

technique is also capable of handling intensity variations in the beam and does not require a

reference lattice.

2.3.1 Vortices for super–resolution measurements

Due to the unique properties of vortices, singularimetry may be used for super–resolution

measurements. Super–resolution refers to imaging or measurement of a feature that is smaller

than that dictated by the Rayleigh resolution criterion due to diffraction. Tychinsky (2008)
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proposed that this resolution criterion should be framed in terms of phase singularities,

as they define a singular feature of a wave field, which is smaller that the wavelength.

This means that phase singularities are associated with an optical phenomenon known as

superoscillations (Berry, 1994b,a; Dennis et al., 2008). This term refers to the ability of a

band–limited signal to oscillate faster than its maximum Fourier component. This apparent

paradoxical behaviour is resolved by noting that the signal becomes exponentially smaller

the faster the oscillations, similar to an evanescent wave. However, unlike evanescent

waves, superoscillations may persist in the far–field (Berry and Popescu, 2006). Because

the superoscillatory parts of the field are oscillating faster than their maximum Fourier

component (dictated by the wavelength), these features of interest have an effective Rayleigh

criterion smaller than that of the rest of the field, thereby making them capable of achieving

super–resolution.

Spektor et al. (2008) demonstrated the high sensitivity of phase singularities to sub–

wavelength objects. An experiment using a 488 nm wavelength beam containing an edge

dislocation was performed. The line phase singularity was scanned over a 1D phase step

on a glass substrate with a phase height 500 nm. An integration window was defined over

the initial region of the phase singularity, where the intensity is very low. As the singular

beam is scanned across the phase step, the line singularity is perturbed, and made visible by

observing the surrounding intensity near the singularity. Plots of the integrated intensity as

a function of the position of the phase step showed that the singular beam is capable of a

20 nm lateral resolution. This was subsequently reduced to 10 nm using 532 nm wavelength

light (Spektor et al., 2010). A similar experiment was also performed by Hemo et al. (2011),

who used vortices rather than line singularities, to image 50 nm latex spheres.

Vortices are also sensitive to sub–wavelength objects because the wave field becomes

superoscillatory near a vortex core. The phase varies by 2π radians around a vortex, with this

variation occurring faster towards the centre of the vortex; thus there there will be some point

near the vortex where the phase variation becomes greater than the highest spatial frequency

of the wave field. This is accompanied by the intensity vanishing at the vortex core. Brunet

et al. (2010) used phase–singularities to perform quantitative measurements with singular

acoustic waves. An array of transducers was used to generate a helical acoustic wavefront in

a rectangular tank of water. The helical beam was diffracted by a slightly off–axis circular
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aperture, five times smaller than the wavelength of the acoustic wavefront. The authors

showed that by measuring the shift6 of the acoustic vortex both its diameter and the position

of the aperture could be accurately imaged.

Doubly–charged optical vortices have also been utilized for the purposes of super–

resolution. An experiment by Masajada et al. (2009) used a second–order vortex to laterally

resolve a micro–step with a precision smaller than the radiation wavelength. However,

singularimetry utilising second–order vortices is quite different to that using first–order

vortices, since a small perturbation to a second–order vortex causes it to decay into two first

order vortices (see §1.1.3, and the discussion related to Fig. 1.3(b)). When a singular beam

is scanned towards the phase step, the two vortices exhibit asymmetric trajectories, since

their positions within the beam are perturbed differently by the step, due to their opposite

topological charges. As the beam continues to scan across the specimen, Masajada et al.

(2009) showed that the point where the separation between each vortex was minimized

corresponded to when the centre of the beam was aligned with the micro step. Working with

a numerical aperture of ∼0.07, the 300 nm high phase step was localized to within ±60 nm,

giving an effective numerical aperture of 0.95. The authors claimed that this method would

be capable of achieving a higher resolution of 25 nm.

Mari et al. (2012) also utilised second–order vortices, in a method they dubbed “optical

vortex coronagraphy” (OVC), which is used for direct detection of extrasolar planets (Swart-

zlander, 2001). Light emitted from two incoherent point sources, which are not resolvable

according to the Rayleigh criterion, are split into an on– and off–axis beam. The on–axis

beam passes through a second–order spiral phase plate, which introduces a second–order

optical vortex to the beam, whilst the off–axis beam avoids the spiral phase plate. This setup

results in an asymmetric intensity “doughnut” in the image plane. Mari et al. (2012) found

that the distance between the optic axis and the intensity minimum of the image was equal to

the angular separation between the two incoherent point sources. By localizing the position

of this minimum, the sources could be resolved to 0.1λ/D, where D is the diameter of the

aperture of the OVC. Whilst this technique could be performed using a first–order vortex, the

second-order vortex has proven to give the method better sensitivity (Swartzlander, 2009).

6A property of vortices is that upon propagation they diffract in the direction perpendicular to the intensity
gradient (Rozas et al., 1997).
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The singular duals of vortices, namely, caustics and diffraction catastrophes, underpin the

work of this thesis. The principal mathematical tools describing these optical singularities

are defined by catastrophe theory, to which this chapter serves as an introduction. The

mathematical concepts presented here are essential to understanding the contents of Chaps 5

and 7, since the key physical insights of these chapters exploit the results of catastrophe

theory. In addition, we shall also show under what conditions catastrophes arise in diffraction

theory and how they are related to the ray picture of light. This discussion serves to underpin

the content of Chap. 6, which relies on diffraction physics producing diffraction catastrophes.

3.1 Structural Stability and Critical Points

It is difficult to precisely define what constitutes catastrophe theory. It brings together

various results and principles from a number of different areas in mathematics, such as

topology, singularity theory and differential geometry. At its core, it is the study of abrupt or

discontinuous changes of dynamical physical systems, which arise from smooth continuous

changes of associated control parameters. This process is described in the context of

structural stability of functions and families of functions.

Consider an elastic material under tensile stress. As we smoothly1 increase the applied

tension, the length of the material smoothly increases. However, at some point, a further

increase in the tension results in a catastrophic event; namely, the material snaps—it has

abruptly changed the way it responds to the applied force. There are many examples of this

behaviour in physical systems: the rolling of a ship as it tilts to one side, the collapsing of a

1By smoothly we refer to a constant rate of change in the applied tension.
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bridge as more weight is applied, or the broken back of a camel after adding the proverbial

last straw.

This type of behaviour is quantified by the mathematical concept of structural stability,

with an abrupt change in a dynamical system leading to a structural instability. A dynamical

system is governed by the set of n first–order differential equations:

dxi

dt
= Fi(x(t)1, . . . , x(t)n; u1, . . . , um), (3.1)

where i = 1, . . . , n, xi are the local coordinates that define a n–dimensional phase space,

and u j is a set of real control parameters. For clarity, the explicit dependence of xi on t is

suppressed for the remainder of this chapter. The flow lines defined by Eq. (3.1) in the phase

space give the phase portrait of this system. The system governed by the set of equations (3.1)

is said to be structurally stable if, given a small perturbation to Fi, the change in the phase

portrait is topologically equivalent (Stewart, 1982). General catastrophe theory is the study

of the way in which the phase portrait undergoes a topologically distinct change due to a

perturbation, leading to an instability.

Elementary catastrophe theory simplifies this analysis by dealing with a subset of the

equations. Because it is strictly a local theory, we can assume the first order linear approxi-

mation by taking Fi = ∂G/∂xi, hence

dxi

dt
=

∂

∂xi
G(x1, . . . , xn; u1, . . . , um). (3.2)

The problem considers gradients of a single smooth real function G rather than n functions

given by Fi. This reduces the analysis to the local stability of points of the single function G.

Specifically, one considers points where ∂G/∂xi = 0, since the critical points are the only

topologically significant features of a function.

The notion of structural stability can now be defined locally. With reference to the

Eq. (3.4), a smooth function f is structurally stable at a point p, when at some point p′

within some local neighbourhood of p, there is a corresponding function g, such that f is

equivalent to g, i.e., f ∼ g, where the symbol ∼ denotes equivalence. The notion of functional

equivalence is central to catastrophe theory. If two functions are deemed equivalent, then

there is a one–to–one smooth and reversible mapping between them, i.e., a diffeomorphism.

If f is locally equivalent to g at the origin, then

f (x) = g(h(x)) + γ, (3.3)
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where h : Rn → Rn is a local diffeomorphism and γ is a constant. The function h acts to

rotate and dilate the coordinates, whilst γ is a simple shift of f , which does not change the

critical points of f .

With functional equivalence defined, local structural stability may be summarised as

follows: given two diffeomorphisms h1 and h2, which act to perturb p and f (p), respectively,

the following diagram commutes (Lu, 1976).2

p
f

−−−−−−−−−→ f (p)

h1

y h2

y
p′

g
−−−−−−−−−→ g(p′)

(3.4)

Since structural stability is now characterised by the critical points of a single function,

the natural question to ask is: What type of critical points are stable and which are not? The

answer comes from a powerful result in singularity theory known as the Morse lemma (Poston

and Stewart, 1996).

Lemma 1 (Morse Lemma). Let x0 be a non–degenerate critical point of a smooth function

f : Rn 7→ R, for which the determinant of the Hessian matrix of f is non–zero at x0. Then

f is structurally stable at x0 and there exists a local coordinate system (y1, . . . , yn) in a

neighbourhood X of x0, with yi(x) = 0 for all i, such that

f = f (x0) − y2
1 − · · · − y2

l + y2
l+1 + · · · + y2

n (3.5)

for all x0 ∈ X.

Proofs of the Morse lemma may be found in Milnor (1963) and Poston and Stewart

(1996). The Morse lemma states that a function is structurally stable if it contains no

degenerate critical points and is thus locally equivalent to the Morse function ±x2
1 ± · · · ± x2

n.

A Morse function is a function that contains no degenerate critical points and is therefore

structurally stable at all points.

2Commuting in this context means that p may be transformed into g(p′) by the sequential application of f
and h2, or h1 and g, to p.
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3.2 Corank

The corollary of the Morse lemma is that an instability arises from the existence of degenerate

critical points in the functions governing the dynamics of a physical system, G in Eq. (3.2).

In two dimensions, the Hessian determinant of a function f , is given by:

det[H( f )] =
∂2 f
∂x2

∂2 f
∂y2 −

(
∂2 f
∂x∂y

)2

. (3.6)

A critical point is degenerate when det(H) = 0, which can be satisfied under two conditions.

Equation (3.6) may vanish when each second order partial derivative vanishes simultaneously

( fxx = fyy = fxy = 0); f is then evidently degenerate in both the x– and y–directions (Saun-

ders, 1980). The case where fxx fyy = f 2
xy is not so clear. To proceed we must introduce

another result from singularity theory, called the splitting lemma.

Lemma 2 (Splitting Lemma). Let f : Rn → R be a smooth function with a degenerate

critical point at x0. Then in the neighbourhood of x0, f is equivalent to a function of the

form

g(x1, . . . , xr) ± x2
r+1 ± · · · ± x2

n (3.7)

where g : Rr → R is some smooth function.

The splitting lemma states that if all second order partial derivatives ∂2 f /∂xi∂x j do

not vanish simultaneously, there exists a diffeomorphism, such that f can be “split” into

non–essential variables that do not contribute to the instability and “essential” variables that

do. The dimensionality of g, denoted by r, is called the corank of f . The corank is the

number of directions in which the critical point of f is degenerate.

3.3 Unfoldings

So far we have only considered the local structural stability of the critical points of the

function G, as defined by Eq. (3.2). Suppose now that the set of m constant control parameters

ui, of G varies continuously, so that G now represents an m–parameter family of functions

of n variables. A family of functions is said to be structurally stable if, under a small

perturbation of the whole family, the topology of the family is unchanged. A family of

functions may contain structurally unstable functions or points, while the family itself may
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still enjoy structural stability. These results can be generalised to allow G to represent an

m–parameter family of functions (Poston and Stewart, 1996).

Since our treatment of Eq. (3.2) is local, we are free to express G as a truncated Taylor

series expansion about the origin.3 The order to which G may be truncated depends on

“how local” a neighbourhood about the origin we wish to consider.4 Therefore, a generic

m–parameter family of functions G, containing a polynomial with a degenerate critical point

s, is given by

G(x, y; u1, . . . um) = s(x, y) +
∑

i

∑
j

ui jxiy j, (3.8)

where i + j = m and for simplicity we have restricted G to only two variables (x, y). We say

that G is an unfolding of the singularity s. The monomials act as perturbing terms to s; the

parameters ui control the level of perturbation. The unfolding of s is said to be versal if G

represents a structurally stable family of functions. The terms in the summation are labelled

as the unfolding terms, with their corresponding coefficients called control parameters. The

m–dimensional Euclidean space coordinatized by the smoothly varying control parameters is

the control space. Given any versal unfolding of a singularity, each point of the control space

represents a single function belonging to a structurally stable family. The set of points in

control space that correspond to unstable functions of that family define the bifurcation set.

The bifurcation set partitions the control space in such a way that each region only contains

points associated with equivalent functions.

3.4 Codimension

Recall that the number of equations required to define a manifold depends upon the dimen-

sionality of the space within which it is embedded. A curve is fully specified by one equation

in two dimensions. However, in three dimensions a single linear equation represents a plane;

two equations being needed to describe a curve in three dimensions. Given an n′–dimensional

object in an n–dimensional space, we require m = n − n′ equations to describe the manifold.

The quantity dim(m) is known as the codimension of the manifold. The codimension is a

useful quantity as it does not change when the dimensionality of the manifold is decreased.

3Taylor series truncated at the kth order are known as k–jets.
4This point is justified in Chap. 5.
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A curve in three dimensions has codimension 2; however, a curve appears as a single point

in a two–dimensional slice, which is still of codimension 2.

Equivalently, for a family of functions F : Rn × Rm → R, describing the unfolding

of a non–Morse function (see Eq. (3.8)), dim(m) is the codimension of the unfolding of F.

Evidently the dimension of the control space is equal to the codimension of the unfolding of

a non–Morse function. This non–Morse function is known as the germ of the set of functions

in a family, which can be defined as the function obtained by setting all control parameters

to zero. The germ is the function corresponding to the origin of the control space.

The codimension of the singularity of the germ is the minimum number of unfolding

terms needed to fully describe all possible bifurcations of structurally unstable functions

within the family. This is known as the universal unfolding of the germ. As each control

parameter defines a set of coordinates in control space, the universal unfolding parameters

define a set of linearly independent coordinates (see Eq. (3.8)). The codimension may be

thought of as a measure of complexity of the germ’s critical point. The higher the order of

the degeneracy, the more unfolding terms are needed to describe all possible bifurcations.

The derivation of the universal unfolding terms is described in Chap. 5.

3.5 Thom’s Classification

Given our discussion of the structural stability of a family of functions, the purpose of catas-

trophe theory, may be stated as follows: Catastrophe theory is the study of the bifurcations in

families of functions formed by the versal unfoldings of degenerate singularities. However,

there are infinitely many ways we may unfold or parameterize singularities. Yet due to a

powerful result by Thom (1975, 1977), any type of versal unfolding of a singularity may be

classified by one of the so called elementary catastrophes.

Theorem 3 (Thom’s Classification Theorem). Let F : Rn ×Rk → R parameterize a family

of smooth functions f : Rn → R of finite codimension. Suppose k ≤ 4, then at any point

(xi, u j) ∈ Rn ×Rk, F(x1, . . . , xn; u1, . . . , uk) is equivalent to one of the universal unfoldings

listed in Table 3.1.

This classification means that for any family of smooth functions, there is a local

diffeomorphism that transforms it to one of Thom’s elementary catastrophes. These functions
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Name Canonical form Corank Codimension

Non–critical x − 0

Morse ±x2
1 ± x2

2 ± ... ± x2
n − 0

Fold x3 + u1x + M 1 1

Cusp ±x4 + u1x2 + u2x + M 1 2

Swallowtail x5 + u1x3 + u2x2 + u3x + M 1 3

Butterfly ±x6 + u1x4 + u2x3 + u3x2 + u4x + M 1 4

Hyperbolic Umbilic x3 + y3 + u1xy + u2x + u3y + M 2 3

Elliptic Umbilic x3 − xy2 + u1(x2 + y2) + u2x + u3y + M 2 3

Parabolic Umbilic x4 + xy2 + u1x2 + u2y2 + u3x + u4y + M 2 4

Table 3.1: List of Thom’s classification of elementary catastrophes. M represents the
Morse function ±x2

r+1 ± x2
r+2 ± ... ± x2

n and r is the corank of f .

are known as the canonical form of each catastrophe and represent the universal unfolding

of the associated singularity. An unfolding by a versal unfolding parameter is not linearly

independent of a universal unfolding term.

Although Table 3.1 only gives the canonical forms of a family of functions with less than

or equal to 4 parameters, the classification can be generalised to higher orders of k, making

the list infinite (Arnol’d, 1975). To better describe the notion of bifurcation structure, we

now detail the rich geometry of a select few elementary catastrophes. Specifically the fold,

cusp and elliptic umbilic catastrophes are described in increasing order of complexity. These

demonstrations of the working techniques of catastrophe theory will aid in the interpretation

of more abstract applications later in this thesis; such as caustic wavefront determination in

Chap. 5, and order parameter catastrophe defect classification in Chap. 7.

3.5.1 Fold catastrophe

Here we derive the bifurcation set of the fold catastrophe, whose canonical form is given by

f (x; u) = x3 + ux. (3.9)

Suppose that the germ x3 represents the potential function governing a physical system and

the term ux acts as a perturbation to the germ of the system. The family f describes the

dynamics of the system. Equilibrium points of our system correspond to extrema in the
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Figure 3.1: The equilibrium set, denoted by E, of a fold is parabolic in x. Projecting
the critical point of E onto the control space shows that the bifurcation set is given by the
point u = 0 in the 1D control space. The function either side of the germ shows a different
number of critical points.

system’s potential function. Hence we look for points of f , such that ∇ f = 0, where ∇ is

the gradient operator with respect to the state variables only. This set of points defines the

equilibrium manifold E of the fold catastrophe, given by 3x2 + u = 0. The instability of the

system stems from all degenerate critical points of f , so we are only interested in a subset

of E corresponding to a set of points where det[H( f )] = 0 (see Eq. (3.6)); this is called the

singularity set, denoted by S . The singularity set is the set of positions of the degenerate

critical points in state space. For the fold we find 6x = 0. Using both E and S , we eliminate

the state variable of f to find the position of the unstable functions of f in control space,

giving the bifurcation set B, of f . This is equivalent to the projection of the critical points

of E onto the control space coordinate. Evidently B for the fold catastrophe constitutes a

single point, u = 0. For the control parameter u ≥ 0, f contains a single non–stationary point

of inflection. When the control parameter is smoothly decreased below u = 0, the germ x3
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bifurcates into two critical Morse points. The state of the corresponding physical system

abruptly changes its configuration when the equilibrium conditions, determined by f , change

at this point. This situation is shown schematically in Fig. 3.1.

3.5.2 Cusp catastrophe

The canonical form of the cusp catastrophe is given by

f (x; u, v) = ±x4 + ux2 + vx. (3.10)

There exists two types of cusp catastrophe, corresponding to the alternate sign in front of the

leading term in Eq. (3.10). We shall just consider the positive case. The equilibrium surface

and the singularity sets of the cusp are:

E 4x3 + 2ux + v = 0, (3.11)

S 12x2 + 2u = 0. (3.12)

The singularity surface of the cusp is two–dimensional and is the cross section of all critical

points of f (x; u, v). Near the origin, the singularity set becomes many–to–one and the

manifold can no longer be described by an explicit function, as can be seen in Fig. 3.2(a).

The “folds” of the surface give the critical points of E, which are degenerate critical points

of the family f . Their projection onto the control space defined by (u, v) is found by solving

Eqs. (3.11) and (3.12) simultaneously. The bifurcation set of the cusp is found to be

8u3 + 27v2 = 0. (3.13)

The geometry of B is shown in Fig. 3.2(b). The bifurcation set of the cusp partitions

the control space into two regions, as it did for the fold catastrophe. Recall how the

codimension of a germ is a measure of the “complexity” of its singularity. Although only

a single bifurcation occurs at B, for the cusp catastrophes, the germ x4 unfolds into three

critical points, compared to two for the case of the fold catastrophe involving x3. To fully

describe all possible unfoldings of the cusp catastrophe its codimension must be of a higher

dimensionality than that of the fold catastrophe. Functions not within the region bounded

by B in control space only have a single critical point and a non–critical point of inflection.

However, the point of inflection becomes structurally unstable at points in B which bifurcate,

ensuring that f (x; u, v) has three critical points within the curve determined by Eq. (3.13).
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x

u

v

E
u

v

B

(a) (b)

Figure 3.2: (a) The equilibrium manifold E of the cusp catastrophe. The critical points
of this manifold form the bifurcation set B. The geometry of B is found by projecting the
fold lines of E onto the plane defined by the control coordinates. (b) Functions inside the
boundary of the cusp exhibit three critical points, while functions corresponding to points
outside the cusp only contain a single minimum. Functions corresponding to points on the
bifurcation set exhibit an unstable point of inflection.

3.5.3 Elliptic umbilic catastrophe

The elliptic umbilic catastrophe is one of two possible catastrophe germs with a degenerate

critical point in two–dimensions. These so called umbilic points have a corank of 2 because

the Gaussian curvature vanishes in all directions in the tangent space at these points. If this

weren’t the case then the splitting lemma could be used to eliminate the directions along

which the curvature does not vanish.

The origin of the germs in Table 3.1 of corank 1 are straightforward to derive, since near

any critical point in one dimension the Taylor expansion of the function has the form axn + b.

In two–dimensions, the Taylor expansion about any degenerate third order critical point has

the form

t(x, y) = (u1x + v1y)(u2x + v2y)(u3x + v3y), (3.14)

where we have neglected the trivial zero order term in the expansion. For the moment we

assume that the coefficients are real and no two ratios ui/u j are equal. Equation (3.14) may

be simplified by applying the linear transformation (x, y) 7→ (u1x′ + u1y′, u2x′ + u2y′) to t

giving

t(x, y) = xy[u3(u1 + u2)x + v3(v1 + v2)y]

∼ x2y + xy2. (3.15)
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After an additional transformation (x, y) 7→ (x+y, x−y) we get the elliptic umbilic catastrophe

germ x3− xy2 (Saunders, 1980). Note that the polynomial x2y+ xy2 is equally valid as a germ

to classify the elliptic umbilic; the only difference being that the form of the unfolding would

consist of a different polynomial. The former is simply used for convenience. The germs of

the other umbilic catastrophes are found when we relax the restriction on the coefficients in

Eq. (3.14) to allow for complex values, corresponding to the hyperbolic umbilic catastrophe,

For non–unique ratios, we observe the parabolic umbilic catastrophe.

The canonical form of the elliptic umbilic catastrophe is given by the family of functions

f (x, y; u, v,w) =
1
3

x3 − xy2 + w(x2 + y2) + ux + vy. (3.16)

Either x2 or y2 may be used as the quadratic unfolding term in the w–direction. Since

there is no distinction between either direction both are typically included, which makes

the bifurcation set symmetric about that unfolding axis. It also serves to make S and B

symmetric about the w–axis. The factor of 1/3 is used to ensure that the bifurcation set is

symmetric. The equilibrium surface is given by the following set of elliptic equations:

0 = x2 − y2 + 2wx + u, (3.17)

0 = −2xy + 2wy + v. (3.18)

The S set is found from setting the Hessian determinant to zero, giving

x2 + y2 = w2. (3.19)

Equation (3.19) represents a double cone centred on the w–axis in a (x, y,w) coordinate

system. In these coordinates we eliminate the state variables by parameterising Eq. (3.19) in

terms of the polar angle θ using x = cos θ, y = sin θ. The B set is found by substituting this

parameterization into Eqs. (3.17) and (3.18) and then making use of trigonometric double

angle formulas, giving

u = −w2(cos 2θ + 2 cos θ) (3.20)

v = w2(sin 2θ − 2 sin θ) (3.21)

w = w. (3.22)

The geometry of B is shown in Fig. 3.3. The three cusp points occur at the angles where the

partial derivatives of u and v vanish. The cusp points follow a parabolic curve with increasing
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w

v

u

Figure 3.3: The bifurcation set of the elliptic umbilic catastrophe.

w. Note that in Eqs. (3.20) there is still an implicit dependence on the state variables due to

the presence of θ. Thus θ is treated as a parameter when describing the set B for the elliptic

umbilic catastrophe.

3.6 Diffraction Catastrophes

The utility of catastrophe theory lies in its applicability to a diverse range of physical systems.

The formation of caustic surfaces in optics is an important example of how catastrophe

theory manifests itself. To develop the connection between optics and catastrophe theory, we

start with the observation that optical caustics are equivalent to the bifurcation sets of the

elementary catastrophes; consequently they may be classified according to Thom’s theorem.

Because we are limited to three–spatial dimensions, it follows that caustics exist in the

control space associated with a 3–parameter family of functions. The family of functions to

which the caustic belongs is then classified according to Table. 3.1.

To show this explicitly, consider the paraxial propagation of the spatial part of a

monochromatic complex scalar wavefunction ψ, with uniform intensity and phase mod-

ulation denoted by f . Let the boundary be located at (x, y, z = 0) and the wave–vector k,

be aligned with the z–axis. The wave field at the point (X,Y,Z) in the half space z > 0 is

given by the convolution form of the Fresnel diffraction integral (Winthrop and Worthington,
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1966):

ψ(X,Y,Z) = −
ik
2π

∞∫
−∞

∞∫
−∞

exp
{
ik

[
Z − f (x, y)

]}
exp

{
ik
2Z

[
(x − X)2 + (y − Y)2

]}
dx dy

= −
ik
2π

exp
[
ik

(
Z +

1
2Z

(
X2 + Y2

))]

×

∞∫
−∞

∞∫
−∞

exp
{
−ik

[
f (x, y) −

1
2Z

(
x2 + y2

)
+

X
Z

x +
Y
Z

y
]}

dx dy.

(3.23)

The exponential multiplying the double integral describes an expanding spherical envelope

of the propagating wavefront. Following Nye (1999), it is convenient to account for this

additional parabolic term in the exponential by adding a similar reference parabola to f , i.e.,

f (x, y) = g(x, y) +
1

2Z0

(
x2 + y2

)
, (3.24)

where Z0 is the centre of curvature of the reference parabola (see Fig. 3.4). The phase of the

exponential inside the integral in Eq. (3.23) now becomes

φ(x, y; X,Y,Z) = g(x, y) +
1
2

(
1
Z0
−

1
Z

) (
x2 + y2

)
+

X
Z

x +
Y
Z

y. (3.25)

We make the following transformation to new coordinates (ξ, η, ζ) defined by:

ξ =
X
Z
, (3.26)

η =
Y
Z
, (3.27)

ζ =
1
2

(
1
Z0
−

1
Z

)
. (3.28)

Substituting Eqs. (3.25), (3.26), (3.27) and (3.28) into Eq. (3.23), we obtain

ψ(ξ, η, ζ) = −
ik
2π

exp
[
ikp(ξ, η, ζ)

] ∞∫
−∞

∞∫
−∞

exp[−ikφ(x, y; ξ, η, ζ)]dx dy, (3.29)

where p is a real function and

φ(x, y; ξ, η, ζ) = g(x, y) + ζ
(
x2 + y2

)
+ ξx + ηy. (3.30)

Equation (3.30) represents a 3–parameter family of 2–dimensional functions, where the

wavefront function g, represents the germ. We identify the variables (x, y) as the state
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Figure 3.4: An initial wavefront f (x, y), shown in blue, is mapped to the control space,
forming a cusp diffraction catastrophe.. The bifurcation set of the cusp, given by Eq. (3.13),
is outlined in red and marks the centre of curvature of the wavefront as it propagates near
Z0. All rays that satisfy the catastrophe condition, given by Eq. (3.36), map to the red curve.
The bifurcation set is littered with intricate detail due to the wave nature of the field, which
is described by Eq. (3.29).

variables and the variables (ξ, η, ζ) as the control parameters. We can view Eq. (3.23) or

Eq. (3.29) as a form of projection mapping, which takes an initial wavefront in the state

space (x, y) to the control space (ξ, η, ζ). Equation (3.29) is the main result of this section.

If φ is equivalent to the canonical form of an elementary catastrophe in Table. 3.1, then the

diffracted wavefront ψ will form a diffraction catastrophe. The local centre of curvature of the

propagating wavefront has an equivalent geometry to the bifurcation set of the catastrophe.

Diffraction catastrophes constitute a specific example of Thom’s theorem, which always

consists of a two–dimensional state space mapped to a three–dimensional control space. The

propagation of a wavefront via the catastrophe integral in Eq. (3.29) is a versal unfolding of

the germ specified by the initial wavefront, with the unfolding terms being x2 + y2, x and y.5

3.6.1 Caustics are singularities of gradient maps

Here we consider how the diffraction catastrophes reduce to caustics as we transition from

waves to rays. By moving to a ray–based description we assume k → ∞, which causes the

5Coincidently this unfolding is a universal unfolding for a specific representation of the elliptic and
hyperbolic umbilic catastrophes.
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integrand in the diffraction integral in Eq. (3.29) to become highly oscillatory. Consequently,

only significant contributions to the value of ψ will come from points where the phase is

stationary, namely the critical points of Eq. (3.30). This asymptotic approximation to the

diffraction integral is determined using the method of stationary phase (Walther, 1995; Born

and Wolf, 1999).

To solve Eq. (3.29) in the ray approximation we first find where Eq. (3.30) is stationary,

i.e.,

∇⊥φ(x, y; ξ, η, ζ) = 0. (3.31)

Equation (3.31) is often referred to as the ray condition, since it defines vectors normal to

the planes of constant phase, which specify the propagation direction of each ray. Given

some observation point P in control space, the number of rays contributing to the intensity at

P is found by substituting Eq. (3.30) into the ray condition:

∂g
∂x

+ 2ζx + ξ = 0, (3.32)

∂g
∂y

+ 2ζy + η = 0, (3.33)

which results in

ξ = −
∂g
∂x
− 2ζx, (3.34)

η = −
∂g
∂y
− 2ζy. (3.35)

These two equations describe the ray path originating in state space and propagating to an

observation plane at a constant ζ in control space. This is a form of gradient mapping of the

initial wavefront g. However, Eqs. (3.34) and (3.35) only describe how a ray maps to control

space, but does not provide any information as to whether a ray belongs to a family whose

envelope forms a caustic. The caustic envelope is comprised of points to which multiple

rays contribute. Hence a caustic appears in the mapping of rays when Eqs. (3.34) and (3.35)

become singular (Berry and Upstill, 1980). Points where this occurs correspond to where the

Jacobian determinant of the gradient mapping vanishes. Since Eqs. (3.34) and (3.35) define

a mapping (x, y) 7→ (ξ, η), the vanishing of the Jacobian determinant is given by:∣∣∣∣∣∣∣∣∣
∂ξ
∂x

∂ξ
∂y

∂η
∂x

∂η
∂y

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
−gxx − 2ζ gxy

gxy −gyy − 2ζ

∣∣∣∣∣∣∣∣∣ = 0, (3.36)
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where the subscripts indicate partial differentiation. This is known at the caustic condition,

since rays that satisfy this condition form a family of rays that contribute to a caustic. By

using the form of the ray condition in Eq. (3.31), the caustic condition may be represented

by a vanishing Hessian determinant of φ:

φxxφyy − φ
2
xy = 0. (3.37)

This caustic condition illustrates the connection between catastrophe theory and the formation

of caustic and diffraction catastrophes. It shows that optical catastrophes originate from

unstable degenerate critical points in the phase of the diffraction integral.

Although the form of the phase in Eq. (3.30) was derived from wave–theory, an identical

result can also be derived from a ray theory formulation of propagation. In this context φ

represents a distance function between points in the state and control space. Equation (3.30)

may be derived by extremising the action of the path along which a ray travels between the

two spaces (Berry and Upstill, 1980; Nye, 1999). This is equivalent to Fermat’s principle in

optics, with φ constituting a Fermat–type potential function.
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Interferometry is commonly used for wavefront determination in visible–light optics

(Heflinger et al., 1966), cold atom optics (Zhan et al., 2007), electron optics (Tonomura,

1999), and X-ray microscopy (Bonse and Hart, 1965). A two-beam interferogram is formed

by interference between a wave that has passed through a specimen and a reference wave

that does not interact with the specimen. Fourier-transform methods are commonly used to

reconstruct the intensity and phase of the wave from an interferogram (Takeda et al., 1982).

Although Fourier transform methods are simple to implement, the spatial resolution of the

reconstruction is limited by how isolated the side–lobes of the spectrum are from the central

maximum. These methods also involve inverting a subsection of the Fourier transform of

the interferogram. Since a specific region of the desired real-space phase map cannot be

localized in Fourier space, the phase is reconstructed non–locally. For example, poor fringe

visibility in a subsection of the interferogram can introduce systematic errors in the recovered

wave over the entire field of view. Further, Gibbs–type “ringing” can occur when processing

subsections of interferograms that exhibit strong scattering or absorption, leading to poor

contrast resolution.

The technique presented in this chapter uses interference of three plane waves to generate

a uniform lattice of optical vortices, which are used to recover the phase of the input wave

field. Perturbations to the input wave field, due to an object, distort the vortex lattice. The

resulting transverse displacements of the vortices are then used to determine the phase at the

“exit surface” of the object. The “exit surface” is the plane where the exit wave resides once

it has propagated through the object. We show that the phase is proportional to the Cartesian

components of the transverse displacements of each vortex in the lattice, thereby permitting

55
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the phase to be retrieved locally without introducing “ringing” artefacts. Further, the method

is also applicable to absorbing objects or reference waves with different intensities. This work

has been published in Eastwood et al. (2012), a copy of which may be found in Appendix C.

4.1 Relation between Vortex Position and the Phase of

the Wave Field

Consider again the superposition of three coherent plane scalar waves of unit intensity, given

by Eq. (2.3). Suppose now that one of these plane waves traverses a phase–amplitude object,

under the projection approximation. The wavefunction at the exit surface (z = 0) is then

given by the superposition of the object wave and two reference waves:

Ψ(x, y, z = 0) = ψob j(x, y) + ψ(1)(x, y) + ψ(2)(x, y)

= A(x, y)eik(0)
⊥ ·x⊥+iφ(x,y) + ρ1eik(1)

⊥ ·x⊥ + ρ2eik(2)
⊥ ·x⊥

= eik(0)
⊥ ·x⊥

{
A(x, y)eiφ(x,y) + ρ1eikA

⊥·x⊥ + ρ2eikB
⊥·x⊥

}
, (4.1)

where A(x, y) and φ(x, y) represent the real–valued amplitude and phase changes imparted

to the object wave by the phase–amplitude object. The remaining terms have been defined

in Eq. (2.3). The trivial harmonic time dependence exp(−iωt), where ω is the angular

frequency and t is time, is suppressed throughout. The additional phase and amplitude

modulation perturbs the otherwise uniform lattice of vortices. Here we show that both the

phase and amplitude of the object’s complex transmission function may be measured from

the displacement of the vortices.

4.1.1 Non–absorbing object

We first consider the case of a wave traversing a phase object, assuming that the three waves

have equal intensity. Consider the phasor diagram representing the superposition of each

wave at an intensity zero. The object wave phasor undergoes an Argand–plane rotation by an

angle equal to the phase of the object. Each position of a vortex in the perturbed lattice is

denoted by (x̃, ỹ). Because the amplitude of each wave is identical, the phasors must form

an equilateral triangle, since the field vanishes at a vortex core. At each vortex position the

value of the phase of the two reference arms, labelled α and β, will be 2π/3 and 4π/3, plus
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(a)

Im

Re

(b)
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Re

Figure 4.1: (a) The vector addition of three plane wave phasors. The length and angle of
each phasor corresponds to the amplitude and phase, respectively. At a vortex core these
phasors must form an equilateral triangle. The phasor geometry is rotated when the object
wave undergoes a spatially dependent phase shift due to traversing the phase object. (b)
Phasor arrangement when the object wave undergoes amplitude modulation.

the additional angle of rotation, thus:

(kA
x x̃ + kA

y ỹ) =
2π
3

+ 2πn + φ(x̃, ỹ), (4.2)

(kB
x x̃ + kB

y ỹ) =
4π
3

+ 2πm + φ(x̃, ỹ), (4.3)

where n and m are integers. Since the relative angles between all phasors remain constant at

each vortex core, we are able to substitute Eq. (4.2) into Eq. (4.3), giving:

2arg(ψ(2)) = arg(ψ(1)). (4.4)
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Solving for the phase of the object we find:

φ(x̃, ỹ) = (2kA
x − kB

x )x̃ + (2kA
y − kB

y )ỹ + 2πl, (4.5)

where l is an integer. Equation (4.5) shows that the phase shift in the exit wave field depends

directly on the coordinates of each vortex, up to an additive constant 2πl, making the phase

modulo 2π. Therefore, the phase of the object wave may be retrieved from the coordinates

of each vortex in the distorted lattice along with knowledge of the transverse wave–vectors

of each reference wave.

A second triangle is formed by complex conjugation of all three phasors, corresponding

to the conjugate phasors of the two reference arms in Eq. (4.1). This dual arrangement

corresponds to an anti–vortex having the opposite topological charge. A modified form

of Eq. (4.5) is easily derived, which allows us to measure the phase from vortices of the

opposite sign. Hence the phase of the object is related to the position of each anti–vortex by:

φ(x̃′, ỹ′) = (2kB
x − kA

x )x̃′ + (2kB
y − kA

y )ỹ′ + 2πp, (4.6)

where p is an integer, and x̃′ and ỹ′ denote the Cartesian coordinates of each anti–vortex.

Equation (4.6) differs from Eq. (4.5) in that the wave–vector of each reference wave is

interchanged.

4.1.2 Absorbing object

Here we generalize the analysis in §4.1.1 to the case of an absorbing object. An absorbing ob-

ject causes the length of the object phasor to reduce, as shown in Fig. 4.1(b). Equations (4.2)

and (4.3) no longer hold in this instance, as the relation 2arg(ψ(2)) = arg(ψ(1)) no longer

applies at the positions of each vortex. To find the relationship between the object’s phase

and vortex positions, we note that all the exterior angles of the phasors must sum to 2π; due

to the symmetry of the phasor arrangement, α + β = 2π is valid at each vortex position. By

factoring out the first term in braces in Eq. (4.1), and substituting the arguments of each

reference wave into α and β we find:

kA
x x̃ + kA

y ỹ + kB
x x̃ + kB

y ỹ − 2φ(x̃, ỹ) = 2π(1 − n − m). (4.7)

Solving for the phase gives:

φ(x̃, ỹ) =
1
2

(kA
x + kB

x )x̃ +
1
2

(kA
y + kB

y )ỹ + πs, (4.8)
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where s is an integer. Thus the phase is directly proportional to the vortex locations, modulo

π. Equations (4.5) and (4.8) are the two main results of this chapter, and form the basis of

our method of phase determination.

To determine the phase we proceed as follows. First we localize all vortices in the lattice,

resulting from a three–beam interference pattern, and determine their (x̃, ỹ) coordinates by

locating intensity zeros. Using either Eq. (4.5) or Eq. (4.8), we algebraically calculate φ for

each vortex point (x̃,ỹ). The use of either equation is dependent on the object being imaged,

i.e. for absorbing objects Eq. (4.8) is used, while for non–absorbing objects Eq. (4.5) is

used. If Eq. (4.5) is utilized, an additional step is required in which we separate vortices by

the sign of their topological charge. The wrapped phase is then recovered modulo 2π. For

absorbing specimens, the phase is wrapped modulo π, as dictated by Eq. (4.8). Once the

phase is computed, interpolation between each vortex is performed to recover the phase over

all (x, y) points in the image array.

Note that Eq. (4.8) is applicable for strongly absorbing objects. The magnitude of the

phasor corresponding to the object beam decreases with increasing absorption; unless the

object is completely absorbing, the phasors will still maintain their equilateral triangular

geometry, which is required for vortex formation. However, strongly absorbing objects will

decrease the contrast resolution of the interference pattern. Moreover, low contrast can make

it difficult to accurately localize a vortex, which requires the detection of minima in the

intensity pattern. However, there are phase shifting methods that use an extra reference

arm to form a fringe pattern, which can be exploited to increase the intensity gradient near

a vortex core. Phase shifting the reference arm to generate a fringe pattern causes shifts

in the intensity maxima, whilst the intensity minima due to vortices remain fixed at the

same locations. By taking a series of interferograms, each with the fourth interferometer

arm phase shifted, the absolute value of the difference between successive interferograms is

calculated. These differences are summed, which increases the local intensity gradient near

the vortex core. This compensates for the lack of contrast in the three-beam interferogram of

a highly absorbing object (Popiołek-Masajada and Frączek, 2011). Such an approach could

be used to increase the precision with which vortices can be localized in those cases where

the absorption is too large to accurately locate each vortex.

The phasor geometry used to derive Eq. (4.5) only considered a single sign of the
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topological charge. Therefore only the coordinates of one particular type of vortex are

used to determine the phase with Eq. (4.5). This is not the case for Eq. (4.8), where two

arrangements of phasors sum to zero, corresponding to positive and negative topological

charges. This is due to the symmetry in the coefficients of x̃ and ỹ in Eq. (4.8), which is

not present in Eq. (4.5). Thus, in determining the phase, Eq. (4.8) allows us to utilize either

vortex sign in the interference pattern. However, there is a trade off; namely, the third term

in Eq. (4.8) implies that the phase can only be retrieved modulo π rather than modulo 2π.

However, this is only a disadvantage for objects that have large phase gradients, in which

case aliasing may occur and phase unwrapping is difficult. In most situations the use of

Eq. (4.5) is still preferred.

4.1.2.1 Measurement of the attenuation of an object

Using the geometry of the phasor diagram in Fig. 4.1(b), the value of the object’s attenuation

coefficient may also be determined from the vortex displacements. Using the law of cosines,

the length of the object phasor can be related to the angle γ by

A2(x, y) = 2 − 2 cos(γ), (4.9)

where we have normalised the amplitudes of the reference waves to unity. Using the phasor

symmetry γ = 2α − π and substituting in Eq. (4.8) for the phase dependence in α, we arrive

at:

A(x, y) =

√
2 + 2 cos

(
kA
⊥ · x̃⊥ + kB

⊥ · x̃⊥
)
. (4.10)

Thus, assuming a single–material object, the attenuation of the object wave may be measured

directly from the location of each vortex having either topological sign. If the object’s

coefficient of attenuation µ is known, Eq. (4.10) could then be used to determine the projected

thickness T (x, y) of the object via the Beer–Lambert law, i.e., A(x, y) = exp[−µT (x, y)].

Equation (4.10) also shows that amplitude retrieval is independent of the effect of the object’s

phase on the locations of the vortices. This is possible as the displacement of a vortex, due to

an amplitude gradient, may be directionally uncoupled from its displacement due to a phase

gradient.
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4.1.3 Dynamics of the vortex lattice

In §2.3.1 we showed that a vortex perturbed by a phase gradient moves in a direction

perpendicular to one perturbed by an amplitude gradient. However, this is not the case

for our vortex lattice, which is formed after the wave has interacted with the object. In

this situation the vortices are not directly perturbed by the object itself, which leads to a

different relationship between vortex displacement, due to amplitude and phase gradients at

the object’s exit surface.

The displacement vector of a vortex due to a phase gradient, denoted by ∆φ, is found by

differentiating Eqs. (2.12) and (2.13) with respect to the phase, φ. After setting φA = φB = −φ,

we find

∆φ =

(
dx̃
dφ
,

dỹ
dφ

)
=

1
kA

x kB
y − kA

y kB
x

(
kB

y − kA
y , k

A
x − kB

x

)
. (4.11)

An absorbing object changes the length A, of the phasor of the object wave (see Fig. 4.1).

The dependence of Eqs. (2.12) and (2.13) on A is implicitly contained in their dependence

on α and β. The relationship between A and α is given by the cosine rule and the identity

γ = 2α − π, i.e.,

α =
1
2

arccos
(
1 −

A2

2

)
. (4.12)

The equations governing the positions of the vortices are expressed solely in terms of α by

making use of α + β = 2π. Upon substituting Eq. (4.12) into Eqs. (2.12) and (2.13), the

position of each vortex is differentiated with respect to A to give the displacement of the

vortex due to an amplitude gradient, ∆A:

∆A =

(
dx̃
dA

,
dỹ
dA

)
=

(4 − A2)−1

kA
x kB

y − kA
y kB

x

(
kB

y + kA
y ,−kA

x − kB
x

)
. (4.13)

Equations (4.11) and (4.13) show that the dynamics of the vortices depends on the relative

difference of the in–plane projections of the wave–vectors. Interestingly, however, because

of the additional factor (4 − A2)−1 in Eq. (4.13), the shift in a vortex’s position, due to a

phase gradient, is always greater than the shift due to an amplitude gradient. This additional

factor arises because vortices do not form when the magnitude of the object wave phasor is
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greater or equal to the sum of the magnitudes of the phasors of the two reference waves (i.e.,

when |ψob j| ≥ |ψ
(1)| + |ψ(2)|). The conditions under which ∆A and ∆φ are linearly independent

is found by taking the scalar product:

∆φ · ∆A =

∣∣∣kB
⊥

∣∣∣2 − ∣∣∣kA
⊥

∣∣∣2
(4 − A2)(kA

x kB
y − kA

y kB
x )2

. (4.14)

From Eq. (4.14) we make the following observations. The displacements of a vortex due

to an amplitude or phase change are perpendicular to one another when each of the two

reference arms have equal angles with respect to the optics axis. The displacement vectors

are collinear when |kA
⊥|

2 = |kB
⊥|

2. It follows that the shifts due to phase are independent of the

relative azimuthal angle of each wave and depend only on the wave’s tilt, whilst the opposite

is true for the vortex displacement due to a phase gradient Dennis and Götte (2012).

4.2 Experimental Implementation

A schematic and photograph of the experimental setup is shown in Fig. 4.2. The beam from

a linearly-polarized Helium-Neon laser (Thorlabs 5 mW) is spatially filtered by focusing it

through a 4.51 mm focal length aspheric lens and then passing it through a 20 µm pinhole.

The filtered beam is re–collimated using a 100 mm focal length plano-convex lens and an iris,

which is adjusted so that the beam is truncated at its first minimum. A neutral density filter

located before the first focusing lens is used to attenuate the beam. The filtered beam is then

passed through a polarizing beamsplitter cube, oriented to transmit the majority of the beam

power; this ensures a pure polarization state for the resulting beam. The beam is then passed

into a three–beam interferometer constructed from a pair of Mach-Zehnder interferometers

that share a common arm. The path lengths through each arm of the interferometer are

matched to maximise the coherence of the interference; 50:50 beamsplitter cubes are used to

split and combine beams in each interferometer.

The common central arm of the combined interferometer (object beam) is used as the

source of illumination for the object. The object is located close to the first beamsplitter

cube in the arm and is imaged onto a CCD camera via a system of two plano-convex lenses

arranged to image the object plane onto the camera with a magnification of two. The

lenses are arranged so that the first lens is located one focal length away from the object

( f = 75 mm) with the second lens ( f = 150 mm) spaced 225 mm away from the first lens
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and 150 mm away from the camera. The monochrome CCD camera (Prosilica GE1650) has

1600 × 1200 pixels and 12 bits per pixel.

The pixel size is 7.4 µm × 7.4 µm. The two remaining interferometer arms (reference

beams) each contain a neutral density filter to match the intensity of the beam through each

arm to that of the object beam. A λ/2 and a λ/4 wave plate allows the phase of the beam

exiting each arm to be varied in discrete steps. The phase is stepped by either λ/2 or λ/4

(depending on which wave plate is used) by changing the alignment of the wave plate so that

the fast optical axis is either parallel or perpendicular to the polarization axis of the beam.

To form a vortex lattice, two reference beams are adjusted in angle relative to the object

beam, such that the wave–vectors of the three beams are non-coplanar. The angles of the

beams of the reference arm can be adjusted by tilting the final beamsplitter in the top arm

of the interferometer and the final mirror in the bottom arm. Different geometries of the

lattice are generated depending on the mutual angle of the three beams, with a hexagonal

lattice being produced when the angle between any two beams is 120 degrees. The period of

the maxima in the three–beam interferogram was adjusted to be approximately 20 pixels.

A phase shift of either reference beam causes a shift in the vortex in the direction of that

beam’s transverse wave–vector.

Our technique was experimentally tested on two objects: a Thorlabs spherical lens (part

number LA1464) made from N–BK7 optical glass with a diameter of 25.4 mm, and the

wing of a common house fly (Musca Domestica). For the spherical lens, in addition to

the three–beam pattern, two–beam interference patterns of ψob j + ψA and ψob j + ψB were

individually acquired by blocking each of the reference arms in turn. Both reference arms

were then blocked to record an image of the Gaussian illumination. Wave–vectors of each

arm were measured by locating the peak maximum in the power spectrum of the three–beam

interference pattern. The interferograms were smoothed by convolution with a Gaussian

filter of approximately 60 µm full width at half maximum (FWHM) to reduce noise and

then flat–field corrected using a specimen–free illumination image. This was performed to

increase the signal in the outer edges of the interferograms.

To determine the accuracy with which vortices can be localized we computed the

normalized autocorrelation of a non-deformed section of our vortex lattice. Since the lattice

is uniform, perfect localization gives complete autocorrelation between vortex points (i.e.,
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Figure 4.2: (a) Schematic and (b) Photograph of the experimental setup of the three–beam
vortex interferometer. The optical elements are numbered similarly for (a) and (b). A
He–Ne laser (λ = 632 nm) is spatially filtered by the pinhole and a single polarization
direction is selected as it passes through the polarizing beam splitter. Two beamsplitters are
used to create the three arms of the interferometer. The central beam is transmitted through
an object after which two lenses are used to focus the exit surface of the object into the
camera. Each reference arm contains λ/2 and λ/4 wave plates, which are used for phase
stepping. A neutral density filter (ND) ensure that the two reference waves have the same
intensity as the object wave.
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Figure 4.3: Comparison of the experimental three–beam interference pattern with a
numerical simulation. (a) Experimental three–beam interference pattern. (b) Simulated
three–beam interference pattern. The plus signs and crosses in the top right inset indicate
the locations of vortices and anti–vortices, respectively.

the autocorrelation value is unity). However, small errors in localization decrease the degree

of autocorrelation for the vortex lattice, giving some width to the central maximum of the

autocorrelation function. Using the half width of the maximum as a measure of the precision

of vortex localization, it was found that the technique has a precision of 1.5 pixels. Based on

Eq. (4.5) this translates to a measured phase accuracy of ±0.2 radians.

4.3 Results

4.3.1 Phase measurement of a lens

A section of the three–beam interferogram of the lens along with a simulated interferogram

is shown in Fig. 4.3. Excellent agreement is found between theory and experiment. To

locate the vortices in the image, it is only necessary to locate the intensity zeros in the

interference pattern. A zero in the intensity is a necessary but not sufficient condition for

a vortex; a three–beam interference pattern of plane waves of equal intensity will always

have a vortex at each intensity zero (Paganin, 2006). In this context non–vortical zeros are

not stable with respect to perturbation, whereas vortical zeros are stable. The vortices were

separated depending on the sign of their topological charge using the methods outlined in

Frączek et al. (2005). The phase of the lens was calculated using Eq. (4.5) for vortices of

positive topological charge. Two–dimensional linear interpolation was used between each



66 Singularimetry using an Optical Vortex Lattice

Figure 4.4: Experimental results for phase reconstruction of a spherical lens using the
three–beam vortex interferometer. (a) The unwrapped reconstructed phase of the 1 m focal
length lens. The greyscale in this image ranges from 0 (black) to 2π (white). (b) Unwrapped
phase profile of the lens. The solid curve corresponds to the experimental data whilst the
dashed curve is the fitted function. The radius of curvature of the fitted profile is 519±1 mm.

vortex point to map the phase over all Cartesian pixel coordinates within the field of view.

Interpolation was performed on the real and imaginary parts of the wavefunction separately.

This allowed the complete wrapped phase (modulo 2π) to be recovered using

φ(x, y) = tan−1
{

sin[φ(x̃, ỹ)]
cos[φ(x̃, ỹ)]

}
. (4.15)

The reconstruction of the lens in Fig. 4.4(a) shows a series of concentric circles where the

phase has been wrapped by 2π, as would be expected for a spherical lens since its projection

is rotationally symmetric.

To demonstrate that our technique is quantitative, the wrapped lens phase was unwrapped

using the method described in Volkov and Zhu (2003). The gradient of the wrapped phase

suffers abrupt changes of 2π per pixel at each point where the phase undergoes wrapping. To

unwrap the phase, the first order partial derivatives of the wrapped phase were calculated and

then a threshold was used to removed the peaks caused by wrapping. The threshold pixels

are then set to a value equal to the average of the 8 adjacent pixels, giving a smooth gradient

that is equivalent to the gradient of the unwrapped phase. Volkov and Zhu (2003) showed

that the unwrapped phase can be recovered by making use of FFT’s, i.e.,

φ(x, y) = Re
{

1
2πi
F −1

[
F (∂xφ)u + F (∂yφ)v

u2 + v2

]}
, (4.16)

where F denotes a Fourier transform with the conjugate variables (u, v).
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Once the lens data had been unwrapped, the projected thickness was recovered by

multiplying the unwrapped phase by the factor −δk, where δ is the difference in the refractive

index of the lens from unity and k is the wavenumber. A circular arc was fitted to the profile

centred on the recovered projected thickness in order to measure the radius of curvature of

the lens. The profile of the lens and the fitted curve are shown in Fig. 4.4(b). The fitted

curve returned a value of 519±1 mm, while the quoted radius of the curvature of the lens

was 515.5 mm. This shows that our method is able to quantitatively reconstruct the object

function.

4.3.2 Phase measurement of the wing of a fly

The method was also applied to a three–beam interferogram of the wing of a common

house fly. As this sample contained higher spatial–frequency information than the lens, the

sampling of the phase, and consequently, the number of vortices needed for reconstruction

had to be increased. This was achieved by using the λ/2 and λ/4 wave plates described in

§4.2 to perform phase shifting in each reference arm of the interferometer. Three–beam

interferograms were recorded for the fly’s wing, with 11 phase shifts of π/4 between images

used to reconstruct the phase. Each interferogram was smoothed by convolution with

a Gaussian filter of approximately 60 µm FWHM and the transverse wave–vectors and

vortex points were found using the same method as for the spherical lens. Vortices were

not separated by sign for the fly’s wing as Eq. (4.8) is applicable to both vortices and

anti–vortices. For each of the 11 phase–stepped interferograms, the phase was recovered

using Eq (4.8). Before the phase of each image could be combined for interpolation, the

relative offset between the phase of each image needed to be determined. Two–dimensional

cross–correlation of a small portion of the vortex lattice was used to determine the offset

between each phase step. The coordinates of the maximum in each cross–correlation were

substituted into Eq. (4.8), which gave the value of the phase difference between each vortex

lattice. This phase difference was added to each reconstruction and linear interpolation

applied to every vortex point in all 11 phase stepped lattices. This resulted in a single phase

image which incorporated information from all 11 recorded vortex lattices. The recovered

wrapped and unwrapped phase reconstruction of the fly’s wing is shown in Figs. 4.5(a) and

(b), respectively. For comparison, the phase determined by the Takeda method (Takeda et al.,
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Figure 4.5: Experimental results for the wing of a fly. (a) Experimental three-beam
interferogram of the fly’s wing. (b) Recovered phase of the fly wing using Eq. (4.8). (c)
Recovered phase using the Takeda method (Takeda et al., 1982). (d) The unwrapped phase
in (b). The greyscale in (b) and (c) is wrapped to the range [−π/2, π/2] from black to white.

1982). This method works by firstly Fourier transforming an image of a fringe pattern, then

isolating one side–band from the rest of the spectrum using a mask. The side–band is then

shifted to the centre of the image and then the inverse Fourier transform is taken, resulting

in the complex function describing any perturbation to the fringe pattern. The phase of the

function gives the phase of an object placed in the arm of the interferometer. Using a mask

of 25 × 25 pixels, we applied the Takeda method to a two–beam interference pattern of the

wing of a fly. With the measured phase shown in Fig. 4.5(c). The two–beam interference
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pattern required for input into the Takeda method was obtained by blocking one of the

reference arms of the three–beam interferometer. This was also carried out on a subsection

of the spectrum of the three–beam interference pattern, producing a result consistent with

the phase obtained for the two–beam case. This is expected as a three–beam interference

pattern implicitly contains all the information in the two–beam interference pattern. The

phase recovered from the vortex interferometer was unwrapped using the method of Volkov

and Zhu (2003) and is shown in Fig. 4.5(d).

Since Eq. (4.8) has been used to recover the phase of the fly wing, it is wrapped from

−π/2 to π/2. The phase recovered from the Takeda method has also been wrapped between

these values, which facilitates comparison of the two results. Both images in Figs. 4.5 (a) and

(b) show good quantitative agreement with each other. Minor differences are observed around

the frame of the wing, where the absorption of the light is strongest. However, the phase

measured by the vortex lattice technique is mostly unaffected by the absence of information

in these regions. The local nature of our technique allows the phase reconstruction to simply

ignore these strongly absorbing regions, which are then interpolated. For Fourier–based

methods these regions result in larger phase gradients. This is observed at the bottom edge

of the wing where the phase rapidly increases, which is not observed in Fig. 4.5(b). Ringing

artifacts in Fig. 4.5(c) are also observed, corresponding to spatial frequencies not present

in the fly’s wing. Our vortex lattice method is not susceptible to this type of artifact as the

technique uses a local algebraic solution to recover the object’s phase.

4.4 Comments on Vortex Interferometry

A surprising aspect of the technique described in this chapter is that vortices, which cor-

respond to points at which the phase becomes undefined, are used to determine the phase

shifts of an object. In many forms of phase retrieval vortices are often undesirable, since

their presence can be detrimental to accurate phase retrieval (Allen et al., 2001a).

The separation of vortex sub-lattices was realised using Eq. (4.5), which depends on a

particular geometry for the three phasors; it also applies to a fixed topological sign of the

vortex sub–lattice. The ability to separate vortices based on their sign is a consequence of

the vortex sign rule (Freund and Shvartsman, 1994). A vortex occurs at the intersection of

lines where the real and imaginary parts of the wavefunction vanish; the sign rule states that
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each time a line intersects with another, the sign of the topological charge alternates. If we

assign a particular change to an arbitrary vortex, the sign rule allows us to determine the

sign of every vortex present in the lattice. Hence we may separate the vortices in the lattice

based on their topological charge. To reconstruct the phase without a sign ambiguity, using

Eq. (4.5), the sign of kx and ky for each reference wave and the topological charge of each

vortex must be determined. This is because the sign of the vortex determines the form of

the equation used to calculate the phase, and the sign of kx and ky determines the value of

the coefficients of x̃ and ỹ. These steps can be bypassed by using a priori knowledge of the

object, e.g., an object with refractive index greater than unity results in a positive sign in the

phase shift, as a consequence of the retardation of the wave as it passes through the medium.

If it is necessary to determine the sign of the refractive index as well as the sign of kx and

ky for each reference arm and the topological charge of the vortex sub–lattice, they can be

experimentally measured using the method outlined in Frączek et al. (2005, 2006).

The spatial resolution of the technique is determined by the spacing of the vortices in the

lattice, which increases with the angle that each wave–vector makes with the z–axis; this

allows the spatial resolution to be tuned. However, increasing the vortex density too much

results in aliasing, which leads to inaccurate vortex localization. Changing the relative angles

between the transverse wave–vectors can also be used to increase sampling, as this affects

the geometry of the lattice, e.g., a hexagonal lattice geometry occurs when the angle between

each wave–vector is 120◦, whilst a rectangular geometry occurs when two wave–vectors are

orthogonal. This could also be used as an alternative to phase stepping, obviating the need

for wave plates. In this case the relative angles between wave–vectors can be changed for

each image. The changing lattice would result in a shift of the vortices and therefore sample

more of the object.

An advantage of using vortex interferometry for phase retrieval is its robustness in the

presence of noise. Because the method uses a real space calculation, the power spectrum

of the noise has little or no effect on the reconstruction. In this case, noise only affects the

vortex localization itself, since small variations due to noise may either lead to false detection

of a vortex or inaccurate localization of the vortices. These effects are only significant if the

vortex lattice spacing is small and the intensity “blobs” in Fig. 4.3 are under–sampled.
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4.5 Extension of Technique to Super–resolution Imaging

In an attempt to perform super–resolution imaging an additional experiment was carried out

using a slightly modified three–beam interferometer. This investigation was motivated by the

superoscillatory nature of vortices, as discussed in §2.3.1. We conjectured that by increasing

the angles that the three wave–vectors make with the optical axis, so that the spacing between

the vortices was less than one wavelength, we could perform super–resolution measurements.

Furthermore the presence of the two sub–lattices of vortices and anti–vortices means that they

are not subject to restrictions on the vortex density (Roux, 2003). However, it became evident

that the technique, as described in this chaper is incapable of creating super–resolution

images. This is due to the fact that the object wave passes through the specimen prior to

superposition with the beams from the two reference arms; hence the vortices never interact

directly with the object. Any subwavelength feature would correspond to an evanescent

object wave (Felsen, 1976), exponentially decaying within a few wave–lengths (Wolf and

Foley, 1998). Thus any subwavelength features of the object will not carried by the wave to

the point where it interferes and so the vortices do not “see” these features.

The experimental setup was modified in order to have the optical vortex lattice illuminate

the object. In this arrangement the position of each vortex in the lattice is unaffected by the

phase object.1 Originally the optical vortex lattice is perturbed, so that only one wave incurs

a phase shift due to the object. With the object under structured illumination by the vortex

lattice, each constituent plane wave incurs an identical phase shift from the object. In this

case each phasor rotates by the same angle (see Fig 4.1), hence there is no change in the

relative phase angles and the condition for vortex localization is also unchanged.

Instead, we chose to localize a single vortex within the lattice and scan it across a

subwavelength feature (Masajada, 2005; Masajada et al., 2011a,b; Augustyniak et al., 2012;

Szatkowski et al., 2014). Using high precision piezoelectric motors to adjust the reflecting

mirrors of the reference wave’s mirrors, the optical vortex lattice could be stepped in any

transverse direction to high precision. Upon scanning a vortex across a subwavelength feature

a transverse shift in the position of the optical vortex was observed, which is consistent with

vortex dynamics (Rozas et al., 1997; Brunet et al., 2010; Hemo et al., 2011). Unexpectedly,

1Shifts in the positions of the vortices can still be introduced by propagating the vortex lattice. However,
measuring the phase shifts from such vortex displacements would require an entirely new approach, which was
not investigated.
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when scanning the vortex lattice we also observed vortex/anti–vortex nucleation events.

These nucleation events occurred often, but consistent and repeatable observation of the

phenomenon could not be achieved. At most we were only able to show that the shift in the

vortex implied that a subwavelength feature was present. Due to the non–repeatability of

these observations, we could not quantify this phenomenon in any meaningful way, forcing

us to abandon trying to obtain super–resolution measurement with vortex interferometry.

4.6 Conclusion

In this chapter we presented a new method of phase determination, called vortex lattice

interferometry, where three plane waves are interfered to generate a uniform vortex lattice.

Distortions in this lattice, due to phase shifts induced in the object wave, are related to the

position of each vortex in the interference pattern (see Eqs. (4.5) and (4.8)). Localizing each

vortex in the lattice allows for the phase to be algebraically calculated. The technique was

demonstrated on a spherical lens and a fly’s wing. Both phase reconstructions show good

agreement with existing Fourier methods. An advantage of our technique is its robustness to

noise and its capacity to reconstruct the phase locally. With recent experiments demonstrating

vortex lattices in electron beams (Verbeeck et al., 2012; Petersen et al., 2013b; Dwyer et al.,

2015), the implementation of this technique for matter waves is a real possibility. An attempt

was also made to extend vortex interferometry to perform super–resolution imaging. Whilst

interesting results were observed, the difficulty in quantifying these observations led to this

approach to super–resolution being ultimately abandoned.



Phase Retrieval Based on
Caustic Surface Measurements

5

In Chap. 4 we presented a method of phase determination using vortices. In the current

chapter, another type of phase retrieval method is discussed, which utilizes caustics as the

measurement tool. If the optical vortex interferometer was an example of singularimetry

using vortices—namely the singularities of waves—then this chapter presents a technique

that is an example of singularimetry using caustics, the singularities of rays. Here, a general

method of recovering phase is presented for a wave field that has been naturally focused to

form a caustic surface corresponding to a fold catastrophe. By definition, a caustic represents

singularities in the mapping from the state space to the control space, as described by the

caustic condition given by Eq. (3.36). No direct inverse of this mapping exists, which takes

points of the initial phase and then maps to points on the caustic surface. The novelty of the

type of singularimetry presented in this chapter is that it provides a method of recasting this

ill–posed inverse problem to one that is well–posed, by assuming a small amount of a priori

information about the wave field, which is derived from the formalism of catastrophe theory.

5.1 Introduction

Consider the dancing caustic network of bright lines on the bottom of a swimming pool.

This intricate web of caustics is a result of the light rays refracting from the undulating water

surface. The corresponding inverse problem can be stated as follows: given a snapshot of

the caustic network at some time t0, can we determine the topographic map of the water’s

surface? In optics, inverse problems are typically solved by seeking the inverse function,

which described how light propagates from the source to the image. Such methods require

that the inverse function exists. However, the presence of caustics in an image requires that

73
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the caustic condition (3.36) at each point of the caustic surface is satisfied. It follows from

Eq. (3.36) that the Jacobian determinant of the mapping vanishes and no inverse exists at

these points. The inverse problem of determining a wavefront from a caustic is ill–posed as

there is no direct solution, hence the answer to the original question would appear to be no.

Reconstructing the wavefront from the caustics it forms has several advantages. Over

large length scales, caustics typically represent the brightest regions of a light field. Given

a noisy signal from a dim source, propagating through a medium with a characteristic

length scale much larger than the wavelength, the highest signal–to–noise ratio would

typically occur along points on a caustic surface. Determining the wavefront deformation

solely from the information provided by a caustic would allow measurements of the phase

shifts in atmospheric sciences and astronomy. Phase retrieval based on caustics would also

facilitate characterisation and measurement of lens aberrations in an optical system. The

aberrations may be described by an aberration function, which is expressed as Zernike

polynomials (Zernike, 1942). All germs of the elementary catastrophes are found to be

represented by a particular Zernike polynomial. This means that a caustic forming in the focal

volume of an aberrated lens depends on the specific type of aberrations present. Chromatic

aberration leads to fold catastrophes (Berry and Klein, 1996); spherical aberrations give

cusps (Nye, 2005); astigmatism produces the elliptic umbilic (Berry et al., 1979), and

coma gives rise to the hyperbolic umbilic (Marston and Trinh, 1984; Nye, 1984). This

correspondence between a specific catastrophe and an aberration has been utilized to generate

electron vortices within diffraction catastrophes by deliberately inducing aberrations in

an electron microscope (Petersen et al., 2013b; Clark et al., 2013). Electron diffraction

catastrophes produced by aberrations will be discussed in Chap. 6.

In this chapter we find a solution to the apparent ill–posed inverse problem of determining

the phase of a caustic–forming wavefront upon recasting the problem into a well–posed one,

by using the a priori observation of a generic fold catastrophe. The method exploits a Taylor

series expansion of the phase, which is related to measurements of the versal unfolding of

the caustic in the control space. Our treatment is limited to the fold catastrophe; however,

methods of extending the technique to higher order catastrophes are briefly discussed.

In semi–classical molecular collision theory, similar ideas in which a catastrophe’s germ

have been determined from information measured from the bifurcation set have been investi-
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gated. The asymptotic form of the scattering amplitude has been shown to adopt the form of

a catastrophe integral, similar to Eq. (3.29) (Connor, 1976; Horn et al., 1989). Knowledge of

the control parameters are used to calculate the elements of the scattering matrix. The type

of elementary catastrophe associated with the scattering amplitude depends on the nature

of the scattering. To calculate the differential cross–section of He+–Ne scattering, Connor

and Farrelly (1981b) showed that the potential function of the scattering integral could be

represented by the canonical form of the cusp catastrophe, expressing the semi–classical

scattering amplitude in terms of a Pearcey integral and its first derivatives (Pearcey, 1946;

Connor and Farrelly, 1981a). The authors showed that the two unfolding parameters can be

determined either by an iterative algorithm or a direct algebraic approach. The algebraic

method was also shown to be capable of determining the universal unfolding parameters for

the umbilic catastrophes (Uzer and Child, 1982).

The only example of the inverse problem in the literature in the context of diffraction

catastrophes is due to Trinkaus and Drepper (1977). These authors used an approximate

solution to Eq. (3.29) for the fold diffraction catastrophe, showing that the distance between

the first and second interference maximum depends on the third order partial derivative

φyyy. Hence φyyy could be determined by measuring the distance between the two intensity

maxima. Given a measurement of intensity, the second derivative of the phase φxx, can also

be determined. A similar analysis was applied to the cusp diffraction catastrophe. Trinkaus

and Drepper (1977) showed that a measurement of the absolute intensity was sufficient to

find φxx, φxxy, φxyy and φyyy. If the cusp belongs to a higher order catastrophe, such as one

of the umbilics, the problem can be parameterized in such a manner that it is possible to

determine the four partial derivatives of the phase.

5.2 Description of the Problem

We assume that an initial wavefront at z = 0 results in a fold diffraction catastrophe after

propagation, so that the intensity pattern is described by Eq. (3.29). Given that we can only

measure the intensity of the fold, we seek to determine the wavefront of the initial wave. The

diffraction detail of the caustic is considered to be unnecessary detail in this situation, hence

we choose to simplify the problem by only considering the stationary phase approximation

to Eq. (3.29). The problem reduces to finding the function g(x, y) in Eq. (3.30), given the
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gradient mapping described by Eqs. (3.34) and (3.35). By definition, no direct inverse of this

mapping exists as the caustic condition, φxxφyy−φ
2
xy = 0, implies the Jacobian of the mapping

is singular (see Eq. (3.36)). However, given our discussion on equivalency in Chap. 3, g is

equivalent to the canonical form of the fold catastrophe, which we denote by fc. Following

§3.1 we also know that local diffeomorphisms exist between the respective bifurcation sets

of g and fc. Using the concept of determinacy and the connection between g and the fold

catastrophe germ, we show that g can be retrieved solely from imaging measurements of the

bifurcation set.

5.3 Determinacy

To explain the concept of determinacy we must first introduce the notion of jets. The jet of f ,

denoted by j f , is the Taylor series representation of f at the origin with a vanishing zeroth

order term.1 The k–jet of f , denoted by j k f , is the Taylor series of f truncated up to and

including all terms of order k. Hence we may express any real–valued smooth function as

f (x1, . . . , xn) = j k f (x1, . . . , xn) + f̂ (x1, . . . , xn), (5.1)

where f̂ is a function whose partial derivatives of order < k vanish at the origin. Jets play

a pivotal role in the derivation of the germs listed in Table. 3.1 and in the application of

catastrophe theory. Since catastrophe theory only considers the local nature of a critical

point, the stability of a function can be analysed in terms of a local approximation in the

form of a truncated Taylor series. Under certain criteria the k–jet of a function can be shown

to be an exact representation of the function, not simply an approximation.

A function is said to be k–determined if, whenever j k f = j kg, it follows that g is

equivalent to f . The k–jet j k f is then said to be k–sufficient (Stewart, 1982). It follows that

if f ∼ g, there exists a smooth local change of coordinates y : Rn → Rn such that

f (x1, . . . , xn) = g(y1(x1, . . . , xn), . . . , yn(x1, . . . , xn)). (5.2)

If we set

g(x1, . . . , xn) = j k f (x1, . . . , xn), (5.3)
1We can make this definition of a jet more general by considering a Taylor series expansion about an

arbitrary point. However, since we are only considering analytic functions, any point may be transformed to the
origin under a diffeomorphism, described by Eq. (3.3). Thus the jet about any point is equivalent to the jet at the
origin.
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then the condition for k-determinacy is clearly satisfied for Eq. (5.3). By making the

coordinate transformation (5.2), Eq. (5.3) becomes

f (x1, . . . , xn) = j k f (y1(x1, . . . , xn), . . . , yn(x1, . . . , xn)). (5.4)

Therefore if f is k–determined, it may be expressed exactly by its k–jet in the y coordinate

system. Note that if f is k–determined, the function f must also be (k + 1)–determined. A

truncated Taylor series generally represents an approximation of a function given some local

neighbourhood. Even if an arbitrarily large number of terms is included in the expansion, it

still remains a approximation. The significance of Eq. (5.4) is that a truncated Taylor series

represents the behaviour of a function exactly, provided the function is k–sufficient.

5.3.1 Rules for ascertaining determinacy

Here we present a set of rules that may be applied to rigorously test the determinacy

of a function (Poston and Stewart, 1976). Given a function f : Rn → R, we assume

f (0, . . . , 0) = 0. The order to which f is determined at 0 is denoted by σ( f ) and can be

found as follows

(i) Calculate the gradient ∇ f at x = 0. If the gradient is non–zero then σ( f ) = 1. By

Theorem 3, f is equivalent to the non–critical canonical form.

(ii) If ∇ f = 0, compute the Hessian matrix H of f at 0. If det (H) , 0 then σ( f ) = 2.

(iii) If det (H) = 0, then we expand f in terms of j k f , following the prescription in Eq. (5.1).

We define the first order partial derivatives of each term in the j k f as

fi(x) =
∂ j k f
∂xi

(x) (1 < i < n), (5.5)

where x ≡ (x1, . . . , xn). Hence fi is a polynomial of order ≤ k−1.

(iv) We now list all polynomials of the form

k+1m(x) fi(x), (5.6)

where m is any monomial of degree ≥ 2; the bar denotes that the product is truncated

to order k + 1. We label these polynomials by Pi.



78 Phase Retrieval Based on Caustic SurfaceMeasurements

(v) If all possible monomials of order k + 1 in x can be expressed as linear combinations

of Pi, then f is k–determined.

If it is found that f is not k–determined then this algorithm is iterated to test for (k + 1)

determinacy. The way a function behaves under perturbations is described by its derivatives.

These rules test whether any of the derivatives of f is a factor of any monomial that has

a higher order than k. If any of the derivatives of f are not a factor of all monomials of

higher order than k, then f has an unfolding that is not determined to order k; hence f isn’t

k–determined. This also shows how determinacy and unfolding are connected. This point is

illustrated later in this section, but first we give an example to make clear the application of

the above rules.

Consider the polynomial of the germ of the fold catastrophe in two–dimensions, i.e.,

p = 1
3 x3 + 1

2 y2, whose derivatives are fx = x2 and fy = y. By rules (i) and (ii) p is not 1– or

2–determined, thus we test for 3–determinacy. To this end, we then list all the monomials Pi

(see Table 5.1).

O(m) 4m(x, y) fx
4m(x, y) fy

1 x3 x2y xy y2

2 x4 x3y x2y2 x2y xy2 y3

3 x3y x2y2 xy3 y4

Table 5.1: List of all Pi monomials corresponding to the fold catastrophe germ 1
3 x3 + 1

2 y2.

All monomials in (x, y) of degree 4, i.e., x4, x3y, x2y2, xy3 and y4, are contained in the set of

Pi polynomials in Table 5.1. We conclude that the fold catastrophe germ is 3–determined.2

For polynomials in two dimensions, a method known as Siersma’s trick (Siersma, 1974)

provides a simpler method to test for determinacy. Let f = xy2 with fx = y2 and fy = 2xy,

and suppose we again wish to find monomials that have fx and fy as a factor. Consider

the arrangement of monomials in Fig. 5.1(a). The “shadows” cast by the monomials, xy

and y2 contain all monomials of which xy and y2 are factors, respectively. If all monomials

of the same order are shaded by the monomials contained in the first order derivative of a

2This test does not always give the lowest order determinacy of a polynomial. The definition of determinacy
can be further classified into strong and weak determinacy. These measures of determinacy are often the same,
but can differ when considering higher order polynomials (see e.g., Poston and Stewart (1996)).
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polynomial, then the polynomial has determinacy of that order. For xy2, the entire left side

of Fig. 5.1(a) containing monomials of the form xn remains unshaded. Therefore xy2 is not

determined to any finite order and is said to be indeterminate. Now consider the germ of

the elliptic umbilic catastrophe, f = 1
3 x3 − xy2 with fx = x2 − y2 and fy = −2xy. Because fx

is a linear combination of terms we cannot draw its shadow in the table of monomials. We

instead seek monomials that may be written as linear combination of the first derivatives of

f :

x3 = x fx +
1
2

y fy, (5.7)

y3 =
1
2

x fy − y fx. (5.8)

Thus, for the polynomial x3 − xy2, we draw the shadows of x3, y3 and xy monomials, shown

in Fig. 5.1(b). The third row of monomials is fully shaded indicating that the polynomial

x3 − xy2 is 3–determined. This example also highlights how Siersma’s trick may be used

to find the universal unfolding of a singularity. Note that the four monomials that are not

shaded in Fig. 5.1(b) correspond to the universal unfoldings given by the canonical form of

the elliptic umbilic catastrophe. This shows how the concept of determinacy is central to

catastrophe theory and to Thom’s theorem in particular.

5.4 3–jet of the Initial Wavefront

We now return to the task of retrieving the initial wavefront from a fold caustic surface. To

proceed, we express g as a Taylor expansion about the point x = y = 0:

g(x, y) = gxx + gyy +
1
2!

(
gxxx2 + 2gxyxy + gyyy2

)
+

1
3!

(
gxxxx3 + 3gxxyx2y + 3gxyyxy2 + gyyyy3

)
+ O(4), (5.9)

where subscripts denote partial differentiation and g is the phase of the initial wave as defined

in Eq. (3.24). We neglect the constant term g(0, 0), since it only adds a uniform phase shift

and therefore has no effect on the formation of the fold caustic. Given that g produces a

fold caustic in the control space, it is therefore equivalent to the canonical form of the fold

catastrophe. We have shown in §5.3.1 that the germ of the fold catastrophe is 3–determined,

if g ∼ fc; it then follows that g is also 3–determined and from Eq. (5.5) g is described exactly

by its 3–jet.
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(a)

(b)

Figure 5.1: Table of monomials. The “shadow” cast by the lowest order monomial within
the shadow is a factor of all other monomials contained within it. A polynomial is finitely
determined when the “shadows” cast by its first order derivatives contain all monomials
of the same order. (a) The“ shadows” of the first order derivatives of xy2. Since the left
hand side of the table is left unshaded, xy2 is therefore indeterminate and has infinite
codimension. (b) The polynomial x3 ± xy2. Since all monomials are shaded at 3rd order,
the polynomial is 3–determined.

Although we have shown that we are justified in truncating Eq. (5.9) to third order, j 3g

is still not equivalent to the canonical form of the fold. We need to also demand that the

singularity in g must be of corank of 1, i.e., identical to that of the fold. This restriction on g

amounts to neglecting all third order terms, except one, in j 3g. We may also choose to rotate

our coordinate system, defined by the control space variables ξ, η and ζ as described in §3.6,

such that the caustic at the focus in the control space is parallel with the η axis; this dictates

that the third order term in j 3g is x3. In §5.3.1 it was shown that the terms x2y and xy2 are

indeterminate. If they were to be included in the expansion of g then there is the possibility

g may not be 3–determined, given a particular set of values for its coefficients. Hence for an

initial wavefront that forms a caustic, g must have the following form:

g(x, y) = Ax3 + δζax2 + δζby2 + Bxy + δξx + δηy, (5.10)

where A, B, δζa, δζb, δξ and δη are real coefficients. The expansion coefficients have been

re–labelled to better describe their effect on the caustic surface. By using the principles of

catastrophe theory, we have shown that the problem of determining g has been reduced to

determining a small finite number of coefficients.
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(a) (b)

Figure 5.2: (a) The caustic surface formed by a family of rays from a wavefront whose
phase corresponds to the canonical form of the fold catastrophe. (b) Bifurcation set of
Eq. (5.13).

Before examining the caustic surface produced by the initial wavefront, we briefly

describe the geometry of the caustic surface of the canonical fold. To this end we substitute

the canonical form of the fold catastrophe into Eq. (3.30), giving

φ(x, y; ξ, η, ζ) = x3 + y2 + ζ(x2 + y2) + ξx + ηy. (5.11)

By using the caustic condition, the state variables may be eliminated from Eq. (5.11), which

gives the equation for the caustic surface in the control space, defined using the variables

(ξ, η, ζ), as

ζ2 − 3ξ = 0. (5.12)

Thus the fold caustic unfolds parabolically through its focus and is parallel to the η–axis.

The surface described by this equation is shown in Fig. 5.2(a). This parabolic unfolding may

also be observed in the focal volume of an aberrated lens as shown in Fig. 1.5(a). The form

of g in Eq. (5.10) represents a versal unfolding of the singularity associated with the fold

catastrophe. To find the geometry of the caustic surface corresponding to g, Eq. (5.10) is

substituted into Eq. (3.30), to give

φ(x, y; ξ, η, ζ) = Ax3 + Bxy + (ζ + δζa)x2 + (ζ + δζb)y2 + (ξ + δξ)x + (η + δη)y. (5.13)

By applying the ray and caustic conditions to Eq. (5.13), we obtain three equations, which



82 Phase Retrieval Based on Caustic SurfaceMeasurements

are used to eliminate the state variables. This gives the bifurcation set of Eq. (5.13) as

1
A(ζ + δζb)

{
B4 − 8B2(ζ + δζa)(ζ + δζb) + 24AB(ζ + δζb)(η + δη)

+ 16(ζ + δζb)2
[
(ζ + δζa)2 − 3A(ξ + δξ)

]}
= 0. (5.14)

Equation (5.14) represents the most general surface of a fold catastrophe in the control

space arising from a wavefront with initial phase g (see Fig. 5.2(b)). The bifurcation set of

Eq. (5.12) varies in a similar manner to that of the canonical fold catastrophe at large values

of ζ, but exhibits a singularity at ζ = −δζb. The behaviour of the caustic near this point

has also been noted by Peregrine and Smith (1979). Equation (5.14) shows that the caustic

surface is well defined if A , 0. This is a consequence of the fact that if A = 0, then the x3

term in g vanishes; g would then become 2–determined and not equivalent to the canonical

form of the fold catastrophe. An explanation as to how each expansion coefficient affects the

caustic surface is left to the next section, where our method of determining the expansion

coefficients is outlined.

5.5 Determination of the Expansion Coefficients from the

Surface of the Fold Caustic

The Bxy term in Eq. (5.13) is the origin of the singularity of the caustic surface shown in

Fig. 5.2(b). If B = 0 in Eq. (5.14) the bifurcation set reduces to the square brackets, which is

identical to the form of the bifurcation set of the canonical fold caustic, given by Eq. (5.12).

Essentially, B dictates how rapidly the caustic surface diverges. The information pertaining

to the coefficient B is encoded in the variation of the caustic close to focus. To proceed we

write Eq. (5.14) as an explicit function of ξ and ζ:

η(ξ, ζ) =
−1

24AB(ζ + δζb)

{
B4 − 8B2(ζ + δζa)(ζ + δζb) + 24ABδη(ζ + δζb) (5.15)

+ 16(ζ + δζb)2
[
(ζ + δζa)2 − 3A(ξ + δξ)

]}
.

The coefficient B is therefore given by

∂η

∂ξ
=

2
B

(ζ + δζb), (5.16)

whence we have

B = 2
(
∂2η

∂ξ∂ζ

)−1

. (5.17)
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ζ

Figure 5.3: Curve of the bifurcation set defined in Eq. (5.14) at constant η. The red
dotted curve represents the asymptotic approximation, described by Eq. (5.19). The dilation
factor for the curve is 1/3A. The position of the local minimum is at the coordinates
(−δζa, B2/6A − δξ), whilst the curve becomes undefined when ζ = −δζb.

We see that the gradient of η in the ξ–direction varies linearly with ζ. Therefore B may be

determined from Eq. (5.17) by measuring the variation in the gradient of the caustic in a

through–focal series. However, a more practical method of measuring B consists of fitting a

linear curve to Eq. (5.16) and calculating its gradient.

Consider the term δζby2 in Eq. (5.13). Due to the pre–factor in front of the braces in

Eq. (5.14), the bifurcation set becomes undefined at ζ = −δζb, as seen in Fig. 5.3. If the full

three–dimensional caustic surface was imaged, the value of δζb could be measured simply

by determining at what focal value this occurs. However, since the rate at which the caustic

surface diverges depends on B, a larger value would result in less precision in a measurement

of δζb. Note that the ζ–axis intercept of Eq. (5.16) is −ζb, therefore δζb may be found from

a linear fit to Eq. (5.16), in the same manner as B was determined, with the value of ζ at

∂η/∂ξ = 0 giving −δζb.

In the Ax3 term, the coefficient A serves as a dilation factor for the caustic surface.

Although the xy term in g causes a large variation in the surface near δζb, at points far away

from the singularity the behaviour of the surface is approximately parabolic; this is similar

to the bifurcation set of the canonical fold caustic. Therefore to measure A, we seek an
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asymptotic representation of Eq. (5.14) for |ζ | >> |δζa|, |δζb| . To this end we write Eq. (5.14)

as an explicit function of η and ζ, i.e.,

ξ(η, ζ) =
B4

48A(ζ + δζb)2 +
B(η + δη)
2(ζ + δζb)

−
B2(ζ + δζa)
6A(ζ + δζb)

−
1

3A

[
3Aδξ − (ζ + δζa)2

]
. (5.18)

For |ζ | >> |δζa|, |δζb|, the first two terms of Eq. (5.18) are negligibly small relative to the

terms in the square brackets. Equation (5.18) then reduces to

(ζ + δζa)2 − 3A(ξ + δξ) +
B2

2
≈ 0. (5.19)

This shows that the generic caustic surface is approximated by the equation of the canonical

fold catastrophe with an additional constant term. From Eq. (5.19), A can be found from:

∂ξ

∂ζ
=

2
3A

(ζ + δζa), (5.20)

whence

A =
2
3

(
∂2ξ

∂ζ2

)−1

. (5.21)

Thus by measuring the caustic at points far from its singularity, A can be retrieved using

Eq. (5.21). However, a more practical method for determining A would consist of fitting a

linear curve to the variation of the caustic at a constant ξ though focus.

Now consider the term δζax2. Equation (5.19) shows that the coefficients δζa and δξ

displace the caustic surface in the −ζ and −ξ direction, respectively (see Fig. 5.3). Hence, the

critical point of the bifurcation set occurs at ζ = −δζa, as shown in Fig. 5.3. The coefficient

δζa can therefore be found from the coordinates of the extrema of Eq. (5.19). Thus δζa is

determined from the derivative ∂ξ/∂ζ calculated from Eq. (5.19) by setting ∂ξ/∂ζ = 0 and

solving for ζ. The coefficient δξ in the term δξx may be measured determined once δζa is

known. The corresponding ξ coordinate for the critical point of Eq. (5.19) is B2/6A− δξ (see

Fig. 5.3). By using the known values of B, A and δζa and any point on the caustic surface

such that |ζ | >> |δζa| and |δζb|, Eq. (5.19) can be solved to determine the value of δξ.

Finally, consider the term δηy. The coefficients {A, B, δζa, δζb, δξ} can be determined

independently from δη. This latter coefficient can be found by choosing any point on the

caustic surface and substituting the values of those coefficients already determined into

Eq. (5.14). This procedure can be performed multiple times for a large number of points to

give better precision in the measurement of δη.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.4: A through–focal series of a simulated fold caustic observed in the (ξ, η)–plane,
with ∆ζ = 1.75 µm−1 between each consecutive image. (a)–(d) As ζ tends towards −δζb the
caustic rotates counter–clockwise due to a non–zero xy term in Eq. (5.13). (e) At ζ = δζb

the fold caustic disappears from the field of view as it has diverged to infinity. (f)–(j) The
fold caustic comes back into the field of view and rotates clockwise and shifts in the positive
ξ–direction as ζ increases.

5.6 Simulation of a Fold Caustic Surface as it Passes

Through Focus

The methods discussed in §5.5 were applied to simulated data for an arbitrary fold caustic.

The initial wavefront was defined according to Eq. (5.10) with the values of the coefficients

chosen randomly and with uniform probability over [−2, 2]. This range of values was chosen

for purely computational reasons to prevent the unfoldings of the caustic surface from being

too large. Otherwise the mapping of the germ from state space to control space will result in

sparse data coverage of the caustic surface in control space. However, large variations in a

physical continuous wave field would not obviate the utility of the methodology.

The caustic surface was then constructed using the gradient mapping defined by

Eqs. (3.34) and (3.35). An example of the simulated data is shown in Fig. 5.4. The fold

is viewed in the (ξ, η)–plane and its unfolding observed along the ζ–axis. The position of

the fold is shifted along the ξ–axis before beginning to rotate counter–clockwise as ζ tends

towards the point −δζb. Note that this figure is only a representative section of the actual

caustic surface used to determined the coefficients. The caustic surface was isolated from

the rest of the image using the Canny edge detection algorithm (Canny, 1986). The edge

detection scale was set by convolving all images with a Gaussian of width matching the ap-
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(a) (b)

Figure 5.5: (a) The red crosses give the measured ξ coordinate of the caustic surface as a
function of ζ for a fixed η. The blue curve represents a fit to the data based on Eq. (5.19).
This curve was used to determine A, δζa and δξ. (b) A linear fit to ∂η/∂ζ as a function of ζ.
The fitted curve corresponds to Eq. (5.16) and was used to calculate the coefficients B and
δζb.

A B δζa δζb δξ δη

Actual value 1.615 0.558 1.584 0.412 0.360 −0.451

Measured value 1.730 0.393 1.579 0.403 0.375 −0.475

% Error 1.121 29.570 0.316 2.184 4.167 5.322

Table 5.2: Measured coefficients for a fold catastrophe based on simulated data. The actual
values used in the simulation were chosen randomly.

proximate width of the fold singularity (Lindeberg, 1998). This had the additional advantage

of smoothing the pixelation present in the images. The gradients in each direction, Gξ and

Gη, were subsequently calculated by convolution with the Sobel gradient operators (Sobel,

1990). The edge strength S , and angle Θ, at each pixel in the image was found using

S =

√
G2
ξ + G2

η (5.22)

Θ = arctan(Gη/Gξ). (5.23)

Since caustics represent the brightest part of the image, the caustic surface corresponds to

points where the edge strength is a maximum.

Table 5.2 shows the measured coefficients determining using our methodology. These

results show good agreement between the simulated and measured values, with B exhibiting

the largest discrepancy. The coefficients A, δζa and δξ were found by fitting a function based
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on Eq. (5.19) to the ξ–position of the caustic at a constant value of η. The value of η was

chosen based on where the measured edge strength was the largest. The curve fitted to the

simulated data is shown in Fig. 5.5(a). The fit matches the data well with the exception of

the points near −δζb; this is due to the caustic surface diverging. A parabolic fit was used,

instead of fitting a linear curve to Eq. (5.20), as it avoided the need to calculate the partial

derivative ∂ξ/∂ζ. Figure 5.5(b) shows a linear fit to ∂η/∂ξ. This derivative was found from

the angle the caustic makes with the ξ–axis, which was calculated using Eq. (5.23). Both B

and δζb were determined from this graph since the equation of the fitted curve corresponds

to Eq. (5.16). To determine δη, the point on the caustic surface that gave the largest edge

strength for each image at each ζ value was found. These coordinates and the values of

all other coefficients were substituted into Eq. (5.14) and solved to give a value for δη for

each image. The final value of δη was taken as an average of the values determined for each

image.

5.7 Discussion

The caustic phase retrieval methods demonstrated in this chapter can also be applied to

the undulating fold diffraction catastrophe. Although the technique was demonstrated for

a caustic surface based on simulated data using ray theory (see Eqs. (3.34) and (3.35)),

the variation of the intensity maximum of the diffraction catastrophe is identical. The

only difference in applying this method to a diffraction catastrophe is a practical one. The

catastrophe can no longer be isolated using an edge detection algorithm, as the caustic surface

will be blurred by interference. Instead, a ridge detection algorithm is required to measure the

position and variation of the intensity maximum (Lindeberg, 1998). Another consideration

is that according to Eqs. (3.34) and (3.35) the location of the edge of the caustic does not

coincide with the position of the intensity maximum of a diffraction catastrophe. At the

focus the canonical fold caustic intersects the ξ–axis at 0; however, when interference effects

are manifest, this intensity maximum shifts slightly in the direction of −ξ, depending on

the wavelength. This wavelength shift would need to be taken into account in determining

coefficients. An experimental implementation of phase retrieval for diffraction catastrophes

has not been carried out and is subject to ongoing work.

Extending our caustic phase retrieval technique to higher order catastrophes requires
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Figure 5.6: Schematic of the “patching” method to measure the phase of a wave field that
gives rise to a curved caustic. At each smooth point on the caustic the local neighbourhood
is approximately linear and parameterised by (ξ′, η′). The initial phase g, of the wave field
can be retrieved within each local neighbourhood by applying the methods described in
§5.5 to the variation of the tangents (shown in red) with respect to ζ. Each local measure,
or “patch” of g, could then be combined to determine g globally in terms of the coordinates
(ξ, η).

the expansion of g to include all third–order terms; the critical point in g would then have a

corank of 2 and therefore correspond to an unfolding of an umbilic catastrophe. Truncation

of g as a higher order polynomial, such as a 4–jet, would then be equivalent to the cusp

catastrophe. In our treatment of the inverse problem we assumed that the only third order

term in the expansion of g involved x3. This means that the caustic in the observation plane is

linear and the parabolic variation of the caustic along ζ occurs in the ξ–direction. To extend

the scope of this chapter to include caustics with curvature in the (ξ, η)–plane, we would need

to consider all third order terms in j 3g. However, the inclusion of these additional terms

means that g would no longer be equivalent to the canonical form of the fold catastrophe.

Instead g would be diffeomorphically equivalent to one of the umbilic catastrophes, since

these are 3–determined and of corank 2. The specific subsection of the catastrophe that j 3g

represents (indicated by the squares in Fig. 5.6) would be dictated by the relative magnitudes

of each expansion coefficient. Suppose the coefficient of the x2y term was the largest, then the

curved caustic observed in the field of view would consist of a subsection of the bifurcation

set of any of the umbilic catastrophes. The specific catastrophe to which the caustic belongs

would not be apparent from observing the caustic surface alone. If the full bifurcation set

of an umbilic catastrophe was observed, then the third–order terms in the expansion could

be determined immediately, since we know that the third–order terms of j 3g would have to

match those in the germ of the umbilic catastrophes. It should still be possible to employ a
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method similar to that presented in this chapter, in order to retrieve the phase from higher

order catastrophes. However, the geometry of these catastrophes is more elaborate compared

to the fold catastrophe. Because of this, such an algorithm would require more sophisticated

image processing in order to fully quantify any versal unfolding of g.

When all third order terms are included in j 3g we propose an alternative means of

extending our technique to catastrophes that are non–linear in the (ξ, η)–plane. Consider

an image of a single fold caustic that possesses some curvature.3 At every smothh (ξ, η)

point along the caustic there exists a local neighbourhood within which the caustic is

approximately linear (see Fig. 5.6). Within this neighbourhood we may define a new set of

local coordinates (ξ′, η′), such that the tangent to the caustic is parallel with the η′–axis. Using

this parameterization, the local neighbourhood g is approximated in the (ξ′, η′) coordinate

system by Eq. (5.10). The phase of the initial wavefront can therefore be determined using

the method outlined in §5.5, so that g is measured locally along all points of the caustic

using knowledge of the size, position and orientation of the local neighbourhood defined by

(ξ′, η′), relative to the global coordinates (ξ, η). Each local measure of g can then be “patched”

together to recover the global form of g for the entire image (see Fig. 5.6). However, the way

in which multiple local measurements are combined to give g is non–trivial; consequently

further work is required to determine the algorithms needed to realise this “patching” method.

A major benefit in determining the exit phase of a wave field from its caustic surface

is that it enables phase retrieval even in the presence of significant noise. This is because

caustics will typically represent the point of the wave field with the greatest intensity. An

example is the dim light from a twinkling star, which is also aberrated by propagation through

the Earth’s atmosphere (Mercier, 1962; Jakeman et al., 1976).

In a statistical analysis of caustics formed by light originating from a star, Berry (1977)

considered the mth moment of a random wave field 〈|ψ|2m〉. Moments of order m ≥ 2 become

non–Gaussian due to caustic formation. For a codimension of 2, it was shown that only

cuspoidal catastrophes contributed to the intensity, with the fold catastrophe dominating

the second and third moments. In three dimensions, higher order catastrophes can also

arise in the phase of a random Gaussian wave field. In this situation the fold catastrophe

3It is slightly misleading to call this caustic a fold catastrophe as any curved caustic is actually some small
subsection of the caustic surface of a higher order catastrophe. The observation of a single caustic in the field of
view is a consequence of the terms x3 or y3 in the expansion of the wavefront having relatively large coefficients.
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was again shown to dominate in the second moment, whilst the fold, elliptic umbilic and

hyperbolic umbilic catastrophes dominate the third moment. These results suggest that for

caustics arising from propagation through inhomogeneous media, the fold catastrophe is the

most likely. So although our method of retrieving the phase from a caustic is only currently

applicable to the fold catastrophe, this limitation may not be a issue for the majority of

physical scenarios, as the fold catastrophe has the greatest probability of forming.

5.8 Conclusion

In this chapter we described a new form of singularimetry, which allows the phase of a wave

field to be determined from measurements of the caustic surface of a fold catastrophe in

the focal volume. The solution to this well–posed inverse problem that was recast from

the ill–posed inverse problem is made possible through Thom’s classification theorem (see

§3.5), which essentially provides us with a priori information; namely, if a fold caustic is

observed in the control space, then the phase of the wave must be equivalent to the germ

of the canonical form of the fold catastrophe. This reduces the problem of retrieving the

phase of a wave field to one of determining a finite set of coefficients in the Taylor expansion

of the phase. We have outlined a method for determining each coefficient in the expansion

from the variation and the position of the corresponding caustic surface in the control space.

The technique was demonstrated on simulated data, using the ray formalism to simulate

the caustic surface of the fold catastrophe. This formalism was chosen to simplify the

image processing steps; however, this singularimetry method is applicable when applied

to diffraction catastrophes. All six of the expansion coefficients describing the phase were

retrieved to within an error of < 6%. The coefficient of the xy term was the only exception,

with an error of approximately 30%. This is because the algorithm required the derivative

∂η/∂ξ to be calculated numerically in order to determine B. Although this technique in its

current form is applicable to isolated linear fold catastrophes, it is an important first step in

retrieving the phase of the wavefunction for higher order catastrophes, or for more complex

caustic networks observed in nature.
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In this chapter we will consider different types of singularities and phase anomalies in

electron waves. The first half of the chapter describes work published in Petersen et al.

(2013b).1 This work exploited the relationship between vortices and diffraction catastrophes

to experimentally produce vortices in the electron wavefunction. This was motivated by

our early attempts to produce electron vortices as discussed in §2.1.3.1, which also lead to

the work presented in Chap. 4. Diffraction catastrophes are created by aberrating the lenses

within a Transmission Electron microscope (TEM). The analysis of the resulting diffraction

catastrophes indicated that intensity zeros occurred near the edges of the caustic surfaces.

Phase retrieval was then used to explicitly show that electron vortices were present in the

wave field.

The second part of this chapter deals with the Gouy phase anomaly—an abrupt phase

shift that occurs when a wave passes through a focus (Gouy, 1891). Caustics, representing

the natural focus of a wave are therefore inextricably linked with the Gouy phase anomaly.

This part of the chapter is based on two published papers on the Gouy phase anomaly by

Petersen et al. (2013a) and Petersen et al. (2014).1 In the first paper, the Gouy phase shift was

measured for electron waves in the TEM. An astigmatic lens was used to focus an electron

wave into two line foci. In–line holography was then used to show that the phase of the

electron wave underwent a phase shift of π/2 through each line focus. The second of these

papers unites various interpretations of the Gouy phase anomaly within a single theoretical

framework.

1Relevant papers are included in Appendix C. See the declaration on page vi for my percentage contribution
to these publications.

91



92 Phase Singularities Associated with Caustics and Diffraction Catastrophes

6.1 Electron Vortex Production and Control using

Aberration Induced Diffraction Catastrophes

Quantized vortices in propagating electron waves are of interest for electron wavefunction

phase mapping, since in–line holography approaches can fail in the presence of these wave-

front dislocations (Allen et al., 2001a). In this context, electron vortices were theoretically

shown to arise from the transmission of fast electrons through an atomic lattice (Allen et al.,

2001b). However, the simulations in §2.1.3.1 of carbon phase objects with such thickness

variations suggest that specimen geometry is important and that electron vortices are not

readily produced. The coherent superposition of distorted plane waves is expected to give

rise to vortices. By analogy with three-wave interference in light optics (Masajada and

Dubik, 2001), we expect to experimentally observe electron vortices for Bragg diffraction

from crystalline specimens. Indeed, in biprism interference patterns from crystalline spec-

imens, one can find examples of forked dislocations (Ravikumar et al., 1997), which are

signatures of quantized phase vortices. Similarly, the hallmarks of three–wave electron

interference (Nicholls and Nye, 1987) are evident for three–beam electron diffraction from

crystals (Vincent et al., 1993; Terauchi et al., 1994; Moodie et al., 1996; Nakashima et al.,

2007).

Throughout this thesis it has been discussed how diffraction catastrophes give rise to

caustics, which are generic to optical wave fields and stable with respect to perturbations.

Berry et al. (1979) demonstrated the elliptic umbilic catastrophe using a triangular lens

formed from water. Further, it was shown that the associated diffraction detail can be

accurately approximated using a superposition of plane waves, which create a lattice of phase

vortices (see §2.2). The analysis of umbilic and cusp catastrophes by Berry et al. (1979)

demonstrates that vortical wave fields can be formed by lenses with aberrations.

Optical caustics formed by primary aberrations have been widely recognized since the

pioneering work of Nijboer and Nienhuis (Nijboer, 1947; Nienhuis and Nijboer, 1949; Wolf,

1951). Caustics arising from lens aberrations in the TEM have also been characterized

theoretically using geometric optics (Hawkes and Kasper, 1996). Primary aberrations can

induce diffraction catastrophes; in particular, the umbilic foci for astigmatism and coma have

been shown to be hyperbolic (Berry and Upstill, 1980). Caustics are routinely observed when
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TEM illumination apertures are removed to include electron trajectories deflected through

large angles. These rays do not produce significant interference effects in the probe intensity,

since the removal of probe–forming apertures degrades the spatial coherence, which would

seem to exclude the possibility of observing phase dislocations arising from diffraction

catastrophes. However, partial coherence can be improved if small illumination apertures are

used. Diffraction catastrophes can then be explored by imposing significant probe forming

aberrations to disturb the point focus and create severely distorted coherent electron probes.

We have conducted experiments to produce and manipulate electron vortices in the

specimen plane of a TEM, employing lens aberrations to create diffraction catastrophes. We

used a Titan3 80–300 TEM (FEI) that provides dual aberration correction (CEOS GmbH) of

both the illumination and imaging lenses. Operating at an acceleration voltage of 300 kV,

imaging lens aberrations were corrected to third order and the microscope was set up in the

bright field imaging mode to minimize the semiangle subtended by the field emission gun

source. A 10 µm condenser aperture was selected; the resulting intensity distribution was a

small yet parallel probe. By adjusting the condenser lenses, the illumination was focused in

the specimen plane to produce a far–field diffraction pattern of the circular condenser aperture

in the form of Airy rings. The circular symmetry of these rings was then broken by increasing

twofold condenser astigmatism, producing a sharp (sub–nanometre) line focus streaking

along one direction. Through–focus propagation of the resulting distorted electron probe,

using the imaging lens, revealed the presence of four umbilic foci, which outlined the caustic

of the probe. The electron probe cross section and decorating diffraction detail maintained

form as the probe was imaged throughout the focal series. This observed persistence of form

and stability under perturbations is a key aspect of a diffraction catastrophe.

Figure 6.1(a) shows the logarithm of an astigmatic experimental electron probe imaged

near one of the line foci. Figure 6.1(b) shows the same probe imaged several hundred

nanometres further along the optic axis. Since the electron optical configuration was chosen

to optimize the spatial coherence, the diffraction pattern was quite dim. Accordingly, the

acquisition times were 100 seconds per probe pattern. Comparing Figs. 6.1(a) and 6.1(b),

the stability of the umbilic features with respect to smooth variation of the electron wave

(changing focus) implies the formation of a diffraction catastrophe. Electron trajectories make

very small angles with the optic axis and we can assume paraxial imaging conditions. If we
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Figure 6.1: (a) Experimental intensity (logarithm) near a line focus caused by condenser
astigmatism. (b) Experimental intensity (logarithm) at a defocus half way between two
line foci. (c) Enlarged experimental intensity for the leftmost umbilic focus in (a). (d)
Logarithm of the caustic intensity computed from Eq. (6.1). (e) Corresponding phase
computed from Eq. (6.1), exhibiting an array of phase vortices. (f) Five–pixel wide line
plot measured from (c) showing interior intensity zeros threading vortex cores.

further ignore chromatic aberrations or the spread of energies in the electron source, we can

utilize the diffraction theory of aberrations based upon the Huygens-Fresnel principle (Born

and Wolf, 1999). To this end, we consider the condenser lens aberrations as modifying the

optical path lengths of spherical waves originating from a circular aperture A(x, y). Fresnel

propagation from the aperture plane describes the electron wave at a distance z along the

optic axis, downstream from the aperture:

Ψ(x, y, z) = S (x, y,R2)F −1
{
F

[
A(x, y)S (x, y,R1)e(2πi/λ)[C(x2+3y2)+B(x2y+y3)]

]
e−iπλz(k2

x+k2
y )
}
,

(6.1)

where kx and ky are the Fourier coordinates conjugate to the Cartesian aperture–plane coordi-

nates x and y, Ψ(x, y, z) is the scalar wavefunction and λ is the wavelength. The symbols F

and F −1 in Eq. (6.1) denote forward and inverse Fourier transforms, respectively. Primary

astigmatism in the aperture plane is parameterized by the coefficient C using the polynomial

form given by Kingslake (1925). The coefficient B parameterizes the degree of coma aberra-
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tion, which is set to zero here; this is also relevant to another experiment we outline in this

chapter, which used coma to induce diffraction catastrophes. The function S (x, y,R1) models

the electron source as a simple spherical wave in the paraxial approximation with radius R1,

which numerically serves to condense the wave within an image array of fixed size (Paganin,

2006). The spherical wave S (x, y,R2) removes residual scaling of Ψ(x, y, z) after propagation.

Setting B = 0 and after careful adjustment of the free parameters C and R1 in Eq. (6.1), we

obtain excellent agreement between the experimental results in Fig. 6.1(a) and the theoretical

predictions in Fig. 6.1(d). Diffraction catastrophes may also be simulated without the need

to account for the functions S (x, y,R1) and S (x, y,R2) by substituting the corresponding

catastrophe germ as the initial phase into Eq. (3.23) and using only one Fourier transform to

calculate the diffraction integral (Paganin, 2006).

The intensity logarithm and phase calculated from the diffraction integral in Eq. (6.1)

are shown in Figs. 6.1(d) and 6.1(e), respectively. Between the umbilic foci in Fig. 6.1(d),

spontaneously nucleated phase vortices decorate the outer edges of the caustic and some are

within the interior, where intensity zeros occur in Figs. 6.1(a), 6.1(c), and 6.1(d). Several

minima within the umbilic foci in Fig. 6.1(a) contain intensity zeros, which is consistent

with the creation of electron vortices. However, none of the minima inside the caustic in

Fig. 6.1(b) correspond to intensity zeros, in agreement with diffraction integral calculations.

Figure 6.1(f) shows a five pixel wide line plot of the intensity shown in Fig. 6.1(c). This

line plot confirms the presence of intensity zeros near the line focus, inside the caustic.

The observation of intensity zeros is a necessary condition for the existence of vortices, as

discussed in §1.1.

Another experiment was performed to investigate the caustic associated with coma

aberration. Astigmatism was minimized and the probe corrector was adjusted to induce

primary coma. This aberration produces the hyperbolic umbilic catastrophe. Astigmatism

could not be completely eliminated as strong excitation of the corrector lenses can lead to

parasitic aberrations. To explore the coma induced diffraction catastrophe, the coma caustic

was further enlarged by increasing the size of the condenser aperture to 150 µm, which

diminished the contrast of the pattern. To compensate for the reduced coherence, the first

condenser lens was excited to the maximum nominal setting after which the fringe contrast

increased significantly. Additional coma caustics were then recorded using multiple frames
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(ten) and shorter exposures (3 seconds per frame) to offset residual beam drift.

Figure 6.2 compares experiment with both catastrophe theory for the hyperbolic umbilic

and the diffraction integral for the coma aberration. The experimentally measured intensity

in Fig. 6.2(c) is an average of 50 images, each exposed for 1 s and then post–aligned with

respect to each other. The horizontal line in Fig. 6.2(c) marks a single-pixel wide line

plot, which is displayed in Fig. 6.2(g), showing significant fringe visibility and an array of

intensity zeros. For Fig. 6.2(d), 10 images were acquired for 3 s, post–aligned and averaged.

Arrays of intensity zeros were also observed at this defocus setting, which was nominally

100 nm from that shown in Fig. 6.2(c). The logarithm of the intensity in Fig. 6.2(d) compares

well to that of the hyperbolic umbilic catastrophe in Fig. 6.2(a) and the diffraction integral

intensity logarithm in Fig. 6.2(e). The hyperbolic umbilic catastrophe is described by

Ψ(x, y, z) =

∞∫
−∞

∞∫
−∞

ei(x3+y3−zs1 s2−xs1−ys2)ds1ds2, (6.2)

where s1 and s2 are the relevant state variables and the wavefunction Ψ is computed at focal

depth z and plotted in the plane spanned by (x, y) (Berry and Upstill, 1980). Equation (6.2)

was evaluated numerically with the coordinates x, y normalized by the number of pixels, to

span ±30 dimensionless units over 512 × 512 pixels. The integration variables s1, s2 were

truncated to ±3.5 and incremented in steps of 0.014 dimensionless units. The wavefunction

Ψ was then cropped to 256 × 256 pixels to approximately match the field of view of the

experimental data. The phase of Ψ, determined from Eq. (6.2), is shown in Fig. 6.2(b), where

arrays of phase vortices decorate the interior and outer portions of the coma caustic. Similar

vortices are evident in Fig. 6.2(f), which was computed from Eq. (6.1) with C = 0. The

parameter B was varied until the caustic intensity pattern visually matched the experimental

data.

Electron phase maps were experimentally determined from a through-focus series of

images using the Gerchberg–Saxton–Misell phase retrieval algorithm (Gerchberg and Saxton,

1972; Misell, 1973). Figure 6.3(a) shows the logarithm of the retrieved intensity for the first

image in the through-focus series for the astigmatism caustic. Comparing Fig. 6.3(a) and

6.3(b), it is evident that most of the diffraction detail was captured by the retrieval algorithm,

although the intensity minima are not as distinct. The retrieved phase map in Fig. 6.3(b)

has a similar form to that in Fig. 6.3(e). Propagation of the reconstructed wave over many



6.1 Electron Vortex Production and Control using Diffraction Catastrophes 97

g)

Figure 6.2: (a) Logarithm of the intensity calculated using diffraction catastrophe theory.
(b) Phase of the diffraction catastrophe showing a distorted lattice of vortices and anti–
vortices. (c) Experimental intensity of coma caustic near the diffraction focus. (d) Logarithm
of the experimental intensity nominally 100 nm away from the diffraction focus. (e)
Logarithm of the coma caustic intensity computed from the diffraction integral in Eq. (6.1)
with C = 0. (f) Phase of the coma caustic from the diffraction integral in Eq. (6.1) with
C = 0. (g) Line profile of (c), as indicated by the dashed line.
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Figure 6.3: (a) Logarithm of the reconstructed intensity for the first image in the through
focus series of astigmatic images. (b) Corresponding retrieved phase with vortices sur-
rounding the caustic. (c) Logarithm of the reconstructed intensity for the first image in
the through focus series of five coma images. (d) Corresponding retrieved phase. (e) The
z–component of the orbital angular momentum density for the retrieved astigmatism caustic
wavefunction near one line focus, and (f) a defocus between the two line foci.

focal planes correctly predicted a pair of mutually orthogonal sharp line foci, as well as

preservation of the caustic shape and diffraction detail with varying focus, all of which were

observed in our experiments.

Figure 6.3(c) shows the logarithm of the retrieved intensity for the first image in a

through-focus series for the coma caustic. Vortices are seen to decorate the exterior of the

coma caustic, with several inside the caustic shown in Fig. 6.3(d). Again, the intensity

minima are not as distinct when compared to the experimental input. Nonetheless, the

reconstructed wave reproduced much of the detail observed in the experimental images

over the entire focal range. Figures 6.3(e) and 6.3(f) show the experimentally measured

z–component of the orbital angular momentum (OAM) density, determined for the retrieved

wavefunction about a central cross section of the astigmatism caustic, displayed in SI units of

1.0 × 1016 kg s−1 per electron. The root mean square value of the OAM density in Fig. 6.3(f)

is 0.15~ nm−2. The OAM density in Figs. 6.3(e) and 6.3(f) varies significantly across the
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Figure 6.4: (a) Electron vortex loop observed in the interior of the coma caustic in Fig. 6.3,
where the colour—coded phase map shows a vortex/anti–vortex pair, which nucleates and
annihilates at specific points along the optic z axis. (b) Vortex lines puncturing the image
plane for the astigmatism caustic of Fig. 6.3(b); the colour–code (excluding the vortex
lines) represents the intensity.

beam, which is analogous to the optical interferometry measurements of Courtial et al. (1997)

for elliptical Gaussian beams. The small boxes shown in Figs. 6.3(e) and 6.3(f) have side

lengths of 0.7 nm, within which the integrated OAM per electron is 42~ and 35~, respectively.

Within both boxes, the corresponding average probability densities are greater than 75% of

the maximum intensity over the entire field of view.

Using the reconstructed experimental wavefunctions, vortices were tracked throughout

a propagated focal series comprising 20483 points and detected by measuring points of

nonzero circulation in two–dimensional phase maps. For our retrieved wavefunctions, we

examined particular nodal lines in detail by cropping out all tracks except those in the

sub–regions marked in the phase maps of Figs. 6.3(b) and 6.3(d). The electron vortex

loop from the coma caustic in Fig. 6.4(a) shows nodal line excitations and Crow–like

instabilities (Crow, 1970), apparently initiating dissociation into several vortex loops. The

nodal loops within the hyperbolic umbilic catastrophe are similar to the nodal line topology
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for four plane–wave interference, as discussed in §2.2.1, as the vortices within the coma

caustic are a result of a similar four–wave interference pattern (Nye, 2006). Similar nodal

loops within an elliptic umbilic catastrophe were studied by O’Holleran et al. (2009b). The

coloured plane in Fig. 6.4(a) shows the phase windings around adjacent sides of the loop,

which highlight vortices of opposite topological charge. Figure 6.4(b) shows three electron

vortices represented as intensity iso–surfaces, which are adjacent to the umbilic focus of the

astigmatism caustic shown in Fig. 6.3(b).

Our work shows that we are able to induce electron diffraction catastrophes, thereby

creating distorted lattices of spontaneously nucleated electron vortices, using an aberration

corrected electron microscope. We have demonstrated that phenomena, such as Crow-type

nodal-line instabilities and nonlinear effects, such as pair creation or annihilation, can be

measured for matter waves that obey a linear wave equation. Our singular electron optics

observations closely parallel experimental and theoretical findings in light optics and hence

raise the possibility of creating topologically knotted electron waves (Dennis et al., 2010).

Using experimentally retrieved electron wavefunctions, we have also mapped the OAM

density per electron for astigmatic wave fields. In addition to vortices, diffraction catastrophes

have also been known to exhibit the Gouy phase anomaly (Pang et al., 2011; Rolland et al.,

2012). In the next section we discuss this phenomenon in the context of electron diffraction

catastrophes.

6.2 Measurement of the Gouy Phase Anomaly for Electron

Waves

The Gouy phase anomaly (Gouy, 1891), which describes the additional phase shift accu-

mulated by a wave packet upon focusing, has been of fundamental interest in light optics

for more than a century, and the diverse literature on this phenomenon continues to grow.

Understanding, measuring, and ultimately exploiting the Gouy phase in a variety of ex-

perimental contexts has been pivitol to the development of particular optical technologies.

Gouy’s original observations were made using mirrors and white-light interferometry (Gouy,

1891; Siegman, 1986). Visible–light lasers have since been used to measure the effect (Kand-

pal et al., 2007). Measurements of the Gouy phase for cylindrically focused waves were
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reported in visible-light optics (Rolland et al., 2012), where the anomaly was generalized

for astigmatic wave fields (Visser and Wolf, 2010). Specifically, Visser and Wolf (2010)

derived the following expression for the on–axis Gouy phase anomaly δ(u) for a scalar wave

diffracted from an aperture of size a, focused by an astigmatic lens of focal length f with

coefficient of astigmatism A0:

δ(u) = arg
[∫ 1

0
ei[(kA0−u)ρ2/2]ρJ0(kA0ρ

2/2)dρ
]
−
π

2
, (6.3)

where J0 is a zeroth–order Bessel function of the first kind and the integration variable ρ is

dimensionless. The parameter u is proportional to the distance z along the optic axis according

to u = 2π(a/ f )2z/λ, where λ is the wavelength and k is the wave number. Equation (6.3)

describes two sequential Gouy phase shifts of π/2 rad along the optic axis, associated with a

pair of mutually orthogonal line foci, separated by ∆u = 2kA0 (see Fig. 6.5).

Recently, experiments were proposed for measuring the Gouy phase in matter waves,

such as coherent atomic beams, using cylindrical focusing of Rydberg atoms (da Paz et al.,

2011). Inspired by this proposal, we have measured the Gouy phase for astigmatic electron

matter waves using phase retrieval (Gerchberg and Saxton, 1972; Misell, 1973). Aberration

correction lenses in a TEM were used to induce astigmatic pairs of line foci with transverse

cross sections narrower than 1 nm, separated by more than 1 µm along the longitudinal optic

axis. A through–focal series of images was used to retrieve the phase of the wavefunction,

with the Gouy anomaly through each line focus measured by propagating the retrieved

electron wavefunction.

6.2.1 Experimental creation of two line caustics used for measuring

the Gouy phase

Figure 6.5 shows a schematic of the experiment in which electron matter waves were

diffracted by a circular aperture and focused by an astigmatic lens; this produced a caustic

volume containing a pair of mutually orthogonal line foci at different points along the optic

axis in the vicinity of the backfocal plane of the aberrated lens.

With a small 10–µm condenser aperture, a thin disordered carbon specimen was used to

correct the aberrations in the imaging lens of a Titan3 80–300 (FEI) aberration–corrected

(CEOS GmbH) TEM, operating at 300 kV. The probe–corrector stigmator coils were grossly
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Figure 6.5: Schematic of electron matter waves diffracted by a circular aperture and
focused by a lens with astigmatism. The Gouy phase anomaly describes the variation in
the electron wave along the longitudinal (vertical) optic axis, through the transverse centre
of the aberrated focal volume as compared to the linear variation of phase predicted by
geometric optics. A thin specimen is used to correct imaging lens aberrations with a parallel
probe, prior to the imposition of astigmatism in the illumination and focusing of the probe
in the specimen plane. The parameter ∆u is proportional to the distance along the optic axis
as described in the text.

excited to produce two astigmatic line foci of sub–nanometre width, 1.5 µm apart along the

optic axis. Using 100 s acquisition times, a focal series of 12 images was collected at points

along the optic axis between the two line foci, with nominal defocus increments of 60 nm.

The electron phase was retrieved using the Gerchberg–Saxton–Misell algorithm (Gerch-

berg and Saxton, 1972; Misell, 1973). Despite the long exposure times and down–sampling

the data to increase the signal–to–noise ratio, the algorithm failed to converge. To obviate

this problem, rather than use a guess for the initial phase, we approximated the caustic

using a diffraction integral (i.e., Eq. (3.23)) to compute the astigmatic wavefunction, which

was then used to seed the initial phase in the retrieval algorithm. Furthermore, the retrieval

algorithm excluded intensities far from the caustic, where the experimental data contained
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only noise and were devoid of phase information. Satisfactory convergence2 occurred after

103 iterations. To improve the spatial resolution of diffraction detail within the caustic, the

retrieved wavefunction was then resampled to 1024 × 1024 pixels and used to seed a further

103 iterations with the experimental data down–sampled to the same number of pixels.

6.2.2 Analysis

In principle, any in-line holographic method can be used to reconstruct a desired monochro-

matic scalar wavefunction, provided that the solution reproduces the experimental data when

propagated between focal planes. Allen et al. (2004) define a sum–squared error (SSE) to

characterize the convergence for iterative phase retrieval, which has the form

SSE j =
∑

n

∑
m

(√
I exp

j −
√

I rec
j

)2

I exp
j

, (6.4)

where the double sums are over all pixels in the jth experimental intensity Iexp and recon-

structed intensity Irec. The average of SSE j over all N images in the focal series defines an

averaged sum–square error, i.e., SSEav =
∑

j SSE j/N. Over the entire field of view for all 12

images in the focal series, the caustic reconstruction converged to SSEav = 5.6 × 10−2. For

all pixels with intensity above the threshold used for iterative replacement, the error metric

was measured to be SSEav = 1.4 × 10−2.

Figure 6.6 shows the results of the phase–retrieval for the astigmatic caustic. Figure 6.6(a)

shows the retrieved phase of the propagated wavefunction at a focal distance in–between the

two line foci, with the corresponding retrieved intensity shown in Fig. 6.6(b); these compare

favourably with the experimental data in Fig. 6.6(c). Figure 6.6(d) shows the retrieved phase

near one of the line foci, with the associated retrieved intensity shown in Fig. 6.6(e). The

experimental data is shown in Fig. 6.6(f). Figures 6.6(e) and 6.6(f) are in good agreement,

which is consistent with small values of SSEav and demonstrates satisfactory convergence of

the iterative phase–retrieval algorithm.

Using the retrieved wavefunction, the centres of the phase maps were tracked by prop-

agating the electron wave in steps of 30 nm along the optic axis. The positions of the

sharp line foci in the transverse intensity distributions were used to accurately determine

the position of the optic axis, along which the retrieved on-axis phase was then plotted, as
2The convergence criterion is based on the work by Allen et al. (2004).
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Figure 6.6: (a) Retrieved electron phase map at a focal distance in–between the two
astigmatic focal lines. (b) Corresponding propagated intensity. The arrow highlights a
outlying discrepancy, which is also visible in (e), arising from the finite field of view used
to experimentally record the caustic. (c) Experimental intensity distribution at the same
focal distance. (d) Retrieved electron phase map near one of the astigmatic focal lines. (e)
Corresponding propagated intensity. (f) Experimental intensity distribution at the same
focal distance.

shown by the dashed profile in Fig. 6.7. The solid–line profile in Fig. 6.7 was calculated from

Eq. (6.3). Apart from the electron wavelength, three additional parameters were required

for the computation; namely, the ratio of the effective aperture size to the focal length, a/ f ,

the coefficient of astigmatism A0, and the position of the line foci. All of these parameters

were robustly determined from the intensities of the experimentally retrieved wavefunction

by computing the Heisenberg uncertainties ∆x(z) and ∆y(z). Away from the line foci, ∆x(z)

and ∆y(z) behave asymptotically as T |z|, where T is a constant representing the gradient of

the uncertainty as a function of the distance z. Each measured value of T was averaged to

determine A0 using Eq. (6.3) with a/ f � 2T (Visser and Wolf, 2010). Both phase profiles

contain an arbitrary vertical offset, which we have systematically chosen so that the on-axis

variations approach zero in-between the two line foci.

The experimental on–axis phase profile in Fig. 6.7 follows closely the theory of Visser and
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Figure 6.7: Experimentally retrieved on–axis phase (dashed curve) for a focused astigmatic
electron wave compared with the Gouy anomaly predicted by Visser and Wolf (2010). Two
sequential phase shifts of π/2 rad occur at each line focus due to the Gouy anomaly. Pa-
rameters required for the theory given by Eq. (6.3) were measured from the experimentally
retrieved intensity distributions alone.

Wolf (2010); in particular, the slopes and horizontal positions of the rapid phase variations

near each line focus match. Some differences are evident between the undulations in Fig. 6.7,

which are sensitive to the effects of diffraction. These discrepancies could be ascribed to

systematic errors in the phase retrieval. However, we expect differences on account of the fact

that large excitation of the TEM stigmator coils does not produce pure twofold astigmatism

but, rather, an astigmatic beam with a pair of line foci, which is also perturbed by coma and

higher–order aberrations.

In addition to the scalar diffraction theory of focused paraxial waves, a variety of

interpretations exist for the Gouy anomaly. These interpretations are discussed in detail and

are brought together into a single theoretical framework in §6.3. One persistent theme is the

idea that the Gouy effect arises from fluctuations in the transverse momentum, induced by

variations in the uncertainty of the beam at different focal points along the optic axis (Boyd,

1980; Hariharan and Robinson, 1996; Feng and Winful, 2001). For Gaussian beams, the

variation in the standard deviation is characterized by the evolution of the beam waist, and the
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Figure 6.8: Electron probability density measured from a through-focus series of 32 im-
ages, which were stacked and interpolated along the vertical direction. The uncertainties
along two transverse directions, orthogonal to each line focus, were calculated from each
image. The paraxial electron wave evolves slowly along the optic axis as evidenced by the
10 nm transverse scale bar, which is to be contrasted with the micron–scale focal range
along the vertical axis.

transverse intensity distribution maintains the same shape at different points along the optic

axis (Siegman, 1986). Accordingly, the Gouy phase evolves along the optic axis, varying

most rapidly near the focus and more abruptly for smaller beam waists. We performed another

experiment to demonstrate the three–dimensional nature of this standard deviation, organized

by the diffraction detail within an astigmatic volume. Similar illumination conditions were

chosen, with the exception of the field-emission gun lens, the strength of which was halved,

thereby increasing the probe intensity to reduce the Poisson noise in the recorded images.

Thirty–two images were then acquired using 100 s exposures and nominal defocus increments

of 80 nm. These images were stacked to create a tomogram of the electron wave probability

density. Figure 6.8 shows a false–colour isosurface of the tomogram. The accompanying

Heisenberg uncertainties were measured along directions orthogonal to the line foci and fall

to a minimum at each line focus.

To summarize, we have measured the Gouy phase anomaly for astigmatic matter waves

using electron wavefunction phases inferred from experimental intensities. Successive Gouy
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phase shifts of π/2 rad were observed for fast electrons travelling along the optic axis,

passing through two sub–nanometre lines of focus. These longitudinal phase variations were

compared with wave optics theory, and consistency with experiment was demonstrated.

The origin of the Gouy phase anomaly has been analysed using a number of alternative

descriptions. In the next section many of these interpretations are considered. We show how

these descriptions may be unified into a single theoretical framework.

6.3 Unifying Interpretations of the Gouy Phase Anomaly

for Electron Waves

For over 100 years, Gouy’s quantized phase changes incurred by focused rays (Gouy,

1891) have resisted intuitive interpretation with many accurate, yet contrasting, theoretical

descriptions detailed in the literature. Analytical formulations in light optics have been

developed for Gaussian beams (Boyd, 1980) where the Gouy phase follows an inverse tangent

function of a scaled distance along the optic axis. For beams that propagate in free space

without changing shape, this characteristic inverse tangent phase variation has been derived

from wave optics as a “universal form” (Borghi et al., 2004). From a quantum-mechanical

point of view, a phase anomaly arises for Gaussian beams because the effective longitudinal

momentum is reduced due to transverse confinement of the wave, which increases the spread

of the transverse momentum (Hariharan and Robinson, 1996). Indeed, the Gouy phase has

been associated with the uncertainty principle to describe changes in an effective propagation

constant (Feng and Winful, 2001; Yang and Winful, 2006). Gaussian beams have also

been used to describe the Gouy anomaly (Subbarao, 1995) in terms of Berry’s geometric

phase (Berry, 1984; Simon and Mukunda, 1993).

Certain optical devices can collapse rays from all spatial directions towards a common

focal point, from which rays then diverge (Tyc, 2012). For such wide–angle lenses, a

Gouy phase anomaly protects against an unphysical singularity, since the superposition of

converging and diverging spherical waves must differ in phase by π radians at the focal

point in order to satisfy the wave equation (Tyc, 2012). Such phase shifts more generally

arise on passing through a caustic where singularities occur in geometric optics as rays

overlap (Keller, 1958, 1985) and are characterized by Maslov indices (Keller, 1985; Orlov,
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1981).

In this section we provide a theoretical analysis of the Gouy effect to describe quantized

phase changes within the context of focused scalar waves. Motivated by the experiments

presented in §6.2, we relate our observations to the rich variety of physical interpretations

detailed in the literature. For fast electrons obeying the Schrödinger equation, we sought

to unify these different points of view to better understand the Gouy effect and ultimately

identify new ways in which to measure and exploit the phenomenon. We begin with a

geometric construction to visualize the standard deviation of the transverse probability

density of a focused beam and its evolution along the optic axis. Using this model, we

show that the intuitive notion of the Gouy phase is incorrect; namely that it is induced

by second moments of transverse momentum, measured over the entire transverse plane.

Examination of local transverse momentum fluctuations in a neighbourhood containing the

optic axis leads to quantitative derivations of the Gouy phase in terms of paraxial waves.

Upon further scrutiny, we are able to connect several disparate interpretations of the Gouy

phase phenomenon within a unified theoretical framework. Specifically, for focused paraxial

waves, we relate the anomaly to statistical fluctuations, a geometric phase, semiclassical

phase changes, and statistical confinement. Although Gaussian beams are used for certain

numerical evaluations, we show that the quantized on–axis phase variation is independent of

the explicit form of the probability density.

6.3.1 Theoretical descriptions of the Gouy phase anomaly

Figure 6.9 shows the transverse spread of rays in the vicinity of a line focus. The solid

curves delineate the standard deviation in the transverse position ∆x(z), which varies along

the longitudinal optic axis z. The grey dashed curves mark the asymptotes of the standard

deviation ∆x(z) = ±T |z|, where T = tan(θ) is a positive real number. The curved portion of

the focal region represents the effects of diffraction in which the dashed boundary, governed

by geometric optics, is broadened to account for a finite wavelength, thereby avoiding an

unphysical singularity at the line focus (z = 0). For the distribution of ray trajectories defining

the angular range θ, T = tan(θ), and the mean transverse position 〈x(z)〉 is zero (enforcing

symmetry about the z axis). The dashed lines define a quadratic variance
〈
x2(z)

〉
= T 2z2.

The angular brackets refer to averages over the entire transverse plane such that, for a given
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function f (x) and probability density P(x),

〈 f (x)〉 =

∫ +∞

−∞

f (x)P(x)dx. (6.5)

One simple way to account for nonzero variance at the line focus is to add a small positive

constant ε so that
〈
x2(z)

〉
= T 2z2 + ε2. The expression for the standard deviation ∆x(z) in the

transverse position is now given by

∆x(z) =
√

T 2z2 + ε2. (6.6)

The spread in the transverse momentum px is constrained by the Heisenberg uncertainty

principle ∆x∆px ≥ ~/2. In terms of the transverse component kx of the wave–vector

k = (kx, ky), de Broglie’s relation gives ∆kx ≥ 1/(2∆x). Under paraxial conditions, we have

kx = kθ so that the angular spread ∆θ defines the spread in kx and Eq. (6.6) becomes

k∆θ = ∆kx ≥
1

2
√

T 2z2 + ε2
. (6.7)

Along the optic axis, the z component kz of k varies statistically on account of the

variation in kx and constant energy in the waves, where |k|2 = k2 = k2
x + k2

z . Averaged over

the transverse axis x, we can define the propagation constant 〈kz〉 in terms of the dispersion

in transverse momentum as

〈kz〉 =

√
k2 −

〈
k2

x

〉
� k −

1
2k

〈
k2

x

〉
= k −

1
2k

(∆kx)2. (6.8)

The phase accumulates along the optic axis in accordance with variations in kz. The

phase predicted by ray optics is the wave number k multiplied by the distance along the optic

axis. Upon subtracting this contribution we can define the average accumulated phase 〈φ(z)〉

by

〈φ(z)〉 :=
∫ z

zmin

〈
∂φ

∂z′

〉
dz′ − k

∫ z

zmin

dz′

= k
∫ z

zmin

dz′ −
1
2k

∫ z

zmin

〈
k2

x

〉
dz′ − k

∫ z

zmin

dz′ + C, (6.9)

where C is an arbitrary constant and zmin is the leftmost point on the optic axis.

Equations (6.6), (6.8) and (6.9) can be combined, whence,

〈φ(z)〉 ≥ −
1
8k

∫ z

zmin

1
T 2z′2 + ε2 dz′ (6.10)



110 Phase Singularities Associated with Caustics and Diffraction Catastrophes

Figure 6.9: Longitudinal variation in the standard deviation ∆x(z) along the optic axis
near a focal point. The parameter ε accounts for the effect of diffraction and the minimum
transverse spread in the electron beam. The minimum spread ε is proportional to the beam
waist for a Gaussian beam. For large z the standard deviation ∆x(z) behaves asymptotically
as T |z|, where T = tan θ.

where the constant C has been omitted by fixing the average phase to be zero at the focus.

Taking the limit zmin → −∞, the definite integral in Eq. (6.10) evaluates to give

〈φ(z)〉 ≥ −
1

8kεT
tan−1

(Tz
ε

)
. (6.11)

At the origin, z = 0, the standard deviation ∆x(z = 0) in the transverse position is

defined to be ε. Assuming that the angular spread ∆θ is approximately equal to the semiangle

(θ << 1), Eq. (6.7) provides bounds on the constants in Eq. (6.11), i.e.,

kθ ≈ k tan(θ) = kT ≥
1
2ε
→ εkT ≥

1
2
. (6.12)

Equation (6.11) becomes

〈φ(z)〉 ≥ −
1
4

tan−1
(Tz
ε

)
. (6.13)

In three dimensions the same arguments produce an additional, but identical, term on the

right-hand side of Eq. (6.10), which doubles the right–hand side of Eq. (6.13). On account

of this inverse tangent variation in z, it is tempting to directly associate 〈φ(z)〉 with the Gouy
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phase anomaly. However, this bound for 〈φ(z)〉 was derived from the minimum product in

the uncertainty principle, which occurs at z = 0 in Fig. 6.9. The explicit value of 〈φ(z)〉 for

all z can be computed using, say, the Gaussian beam solution of the paraxial wave equation

either directly or with expectation values of the transverse momentum through Eq. (6.9).

In either case, we find 〈φ(z)〉 = z/(2zR) in two transverse dimensions where zR = πw2
0/λ

is the Rayleigh range for a Gaussian beam with minimum beam waist w0 and wavelength

λ (Siegman, 1986). Consequently, the transverse average of the phase is not equal to the

Gouy phase anomaly. Generally, the linear variation in 〈φ(z)〉 is expected from the paraxial

approximation, which requires 〈k2
z 〉 = 0. Hence, we must have 〈kz〉 = constant so that,

by analogy with Ehrenfest’s theorem, the momentum (or energy) remains unchanged with

respect to z in the absence of any forces.

We have shown that the Gouy phase φG is not equal to the integrated transverse average of

the longitudinal phase gradient 〈φ(z)〉. Using the same theoretical framework, we can inquire

as to the longitudinal variation in the phase about the optic axis in the presence of statistical

fluctuations. Within the paraxial approximation, one has the following three–dimensional

form of Eq. (6.8):

〈kz〉 = k −
1
2k

〈
k2

x + k2
y

〉
. (6.14)

By identifying the wave–vector components with their operators, kx → −i∂/∂x and

ky → −i∂/∂y, the expectation value can be written out in full as

〈kz〉 = k
∫
R2

A2dxdy +
1
2k

∫
R2

Ae−iφ∇2
⊥Aeiφdxdy, (6.15)

where A is real and represents the amplitude of a paraxial electron wave, i.e., ξ = Aeiφ.

By equating Eq. (6.14) and Eq. (6.15) and evaluating the integral over an infinitesimal

patch of the transverse plane, the real part gives the paraxial eikonal equatiom3 (Gureyev

et al., 1995):
∂φ(z)
∂z

= k +
1
2k
∇2
⊥ ln(A). (6.16)

Appendix A provides an explicit calculation of Eq. (6.16).

By choosing a Gaussian function to model an arbitrary amplitude distribution, we can

show that Eq. (6.16) predicts the Gouy phase anomaly. Replacing the probability density
3Note that the full paraxial eikonal equation contains more terms than Eq. (6.16). However, we have assumed

that the first order transverse gradients in the phase and amplitude are zero. This is justified since Eq. (6.16) is
defined only over the optic axis, on which the caustic maintains an extremum for all z.
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I = |A|2 with a paraxial Gaussian beam (Boyd, 1980) having the same standard deviation,

we obtain

φG(z) =
∂φ

∂z
− k

=
1
2k
∇2
⊥ ln

{
exp

[
−

1
4

(
x2 + y2

)
/
(
T 2z2 + ε2

)]}
= −

1
2k

(
T 2z2 + ε2) . (6.17)

Integrating the longitudinal phase changes along z, we obtain the Gouy phase anomaly,

i.e., ∫ {
∂φ(z)
∂z
− k

}
dz = −

∫
−

1
2k

(
T 2z2 + ε2)dx

= −
1

2kεT
tan−1

(Tz
ε

)
= − tan−1

(Tz
ε

)
= φG(z), (6.18)

where εkT = 1/2 for a Gaussian distribution.

Therefore, we see that transverse local momentum fluctuations arising from the uncer-

tainty principle produce the Gouy phase anomaly φ(x = 0, y = 0, z) = φG(z). Using similar

considerations, we can also interpret the effect in terms of the Lévy–Leblond longitudinal

phase shift due to statistical confinement in the transverse dimensions (Lévy-Leblond, 1987).

The Lévy–Leblond phase shift is discussed in Appendix B.

Within the same theoretical framework, we can associate the phase anomaly with the

quantized caustic phase changes described by Keller (1985), as well as the Berry phase (Berry,

1984). We begin with Keller’s phase anomaly for rays that touch caustics, which are governed

by Maslov indices (Keller, 1985). Keller substitutes a Wentzel–Kramers-Brillouin wave

form into the Schrödinger equation in terms of a phase with a classical action (in units

of ~) and with an amplitude that can be complex and multivalued. The substitution leads

to semiclassical corrections for asymptotic solutions with integer or half–integer quantum

numbers, applicable for separable and nonseparable systems. Following Keller, we choose

the classical action, S = kz, of a ray with momentum directed along the optic axis and factor

the wavefunction ψ as a product of this phase contribution with a complex amplitude ξ,

which we will refer to as an “envelope”, such that ψ = ξ exp(ikz). By demanding ψ to be

single–valued, the phase of ξ is found to change by π/2 rad along a trajectory touching a
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caustic (Keller, 1985).4 For a closed–curve trajectory which touches a caustic m times, the

circulation integral describes Keller’s phase anomaly φK :

φK = −i
∮

Γ

∇ ln(ξ) · dl = −2π
m
4
, (6.19)

where m is the Maslov index, l is a vector along the trajectory Γ, and ∇ is the three–

dimensional gradient operator. We can associate Keller’s anomaly φK with the Gouy phase φG

by noting that the envelope ξ, by construction, obeys the paraxial equation (∇2
⊥+ 2ik∂/∂z)ξ =

0 for large wave number k. If we integrate along the entire optic axis and assume paraxial

conditions |∂2ξ/∂z2| << k|∂ξ/∂z| (Allen and Oxley, 2001), Eq. (6.19) can be rewritten as

φK = −i lim
R→∞

∫ R

−R

∂ ln(ξ)
∂z

≡ −i
∮

∂ ln(ξ)
∂z̃

dz̃

=
1
2k

∮
Γ

1
ξ
∇2
⊥ξdz̃, (6.20)

where the limit represents the Cauchy principal value at infinity (Ablowitz and Fokasz, 1997)

and we have extended the integral over the Argand plane for complex z̃. Equation (6.20)

is formally equivalent to Eq. (6.15) evaluated over an infinitesimal patch for the Gouy

phase anomaly, deduced from fluctuations in transverse momentum; this follows since the

imaginary part of ξ contributes nothing to the circulation due to conservation of probability

density.

We can generalize our analysis further if we reduce the essence of the Gouy anomaly to

the mere existence of a quantized phase change without concern for the explicit functional

form of this phase variation, which is accumulated as the wave field evolves along the optic

axis. Equation (6.20) and implicitly Eq. (6.18) are proportional to the logarithmic derivative

of the paraxial wave, ξ′(z)/ξ(z) = ∂z ln[ξ(z)], where both the dash and ∂z both refer to the

longitudinal derivative with respect to z. Using the same contour of integration, we can

evaluate the logarithmic derivative using Cauchy’s argument principle (Ablowitz and Fokasz,

1997) and determine the scale of the phase shift without recourse to the explicit details of

the Gaussian beam. Suppose that the transverse probability distribution is Gaussian, but

the scale of the Gouy phase and phase variation in Eq. (6.18) is not specified, such that

φG(z) = α tan−1(βz), with α and β unknown at present. For a given standard deviation

∆x(z) = ∆y(z) = σ(z), conservation of probability requires that the beam amplitude varies in

4A complex amplitude giving rise to a “Gouy type” phase shift is discussed further in Chap. 7.
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proportion to 1/σ(z) in two transverse spatial dimensions. Accordingly, the natural logarithm

of ξ(z) takes the following form on the optic axis:

ln
[
δξ(βz)

]
= ln

[
δ

σ(βz)
eiαφG(βz)

]
=

1
2

ln
[

1
β2T 2z2 + ε2

]
+ α ln

[
1 + iβz

1 + (βz)2

]
+ ln[δ], (6.21)

where α, β, and δ are all constants of proportionality; the factor of 1/2 arises from the

square root in Eq. (6.6), and the term multiplying α derives from the inverse tangent form of

φG(z). Cauchy’s argument principle states that the closed contour integral of the logarithmic

derivative in the complex plane is equal to 2πi(N − P) with the number of zeros N and poles

P weighted by their respective multiplicities and orders (Ablowitz and Fokasz, 1997). Both

N and P are trivially zero for the term containing δ in Eq. (6.21) (as is the derivative of this

term). Similarly, N and P are both unity for the second term on the right in the upper half of

the complex plane, so φG(z) does not contribute to the closed contour integral. The remaining

term has no zeros and one simple pole in the upper half of the complex plane, hence the closed

contour integral evaluates to give a total Gouy phase shift of φG = − 1
2 i(2πi)(0 − 1) = −π rad

where the prefactor of −i in Eq. (6.20) has been included. In one transverse dimension the

beam amplitude varies as [σ(z)]−1/2, in which case the same analysis gives φG = −π/2 rad

for the total Gouy shift. Hence, the argument principle fixes the scale of the Gouy anomaly.

Berry (1984) showed that, for quantum states which evolve slowly (adiabatically) and,

therefore, remain in the same instantaneous eigenstate at later times, there is an associated

phase factor γ(t) which also varies in time. Upon changing a parameter in the Hamiltonian

cyclically, the wavefunction will return to the same state at some later time; however,

the accumulated phase will not generally match the initial value of γ(t). In such cases,

a measurable geometric phase arises. Let us associate slow adiabatic evolution with the

paraxial equation for the envelope ξ, where the fast oscillation of eikz has been factored out

of the wavefunction ψ. In this context, evolution refers to propagation along the optic z axis

since the paraxial equation is formally identical to the time–dependent Schrödinger equation

in two spatial dimensions if z replaces the time parameter t . Following Berry (1984), we

can determine the evolution of the phase factor γ(z) by substituting a formal solution for

ξ(z) (Teague, 1983), i.e.,

ξ(z) = e(iz/2k)∇2
⊥ξ(z = 0), (6.22)
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into the paraxial wave equation,(
∇2
⊥ + 2ik

∂

∂z

)
eiγ(z)e(iz/2k)∇2

⊥ξ(z = 0) = 0, (6.23)

which implies that

2keiγ(z)e(iz/2k)∇2
⊥

(
i
∂ξ

∂z
−
∂γ

∂z
ξ

)
= 0. (6.24)

From Eq. (6.24), we deduce that

φB =

∫ +∞

−∞

∂γ(z)
∂z

dz = −i
∫ +∞

−∞

1
ξ

∂ξ

∂z
dz

= −i
∫ +∞

−∞

∂ ln(ξ)
∂z

dz, (6.25)

where φB denotes the integration of phase changes described by γ(z). These integrals can

be written as circulations if we integrate over the complex plane in the same manner as

for the Keller phase anomaly, since the results are formally identical. From here, Green’s

theorem is used to express Eq. (6.25) as a closed contour integral in the Argand plane. By

stereographically back projecting this closed contour onto the Riemann sphere, Eq. (6.25)

may be written as a surface integral, i.e.,

φG = φB = −i
∮

∂ ln(ξ)
∂z̃

dz̃ = −
1
2

	
dA = −

Ω

2
, (6.26)

where Ω is the solid angle subtended by the patch on the Riemann sphere and z̃ is the

z–variable extended to the Argand plane. Note that in one dimension, the phase shift φB

given in Eq. (6.26) is halved, in accordance with the observations of the Gouy phase shift for

astigmatic line foci. For a full derivation of Eq. (6.26) see Appendix A.

As with our derivation based upon the argument principle, we find that the phase changes

in Eq. (6.26) are invariant to an arbitrary change in the Gaussian beam phase scale and to

that in the complex focus z̃. Similarly, we are free to distort the Gaussian wave envolope by

multiplying ξ by any function that has an as analytic logarithmic derivative, without changing

the value of the quantized phase; this is a direct consequence of Cauchy’s integral theorem. In

other words, when we integrate over half the Cartesian plane or perform a contour integrating

along the entire real (optic) axis, the magnitude of the Gouy phase anomaly is explicitly π/2

rad in one transverse dimension and π rad in two transverse dimensions.
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6.3.2 Conclusion

Within the context of focused matter waves, our theoretical description of the Gouy anomaly

unites Heisenberg’s uncertainty principle, Berry’s geometric phase (Berry, 1984) and Maslov

indices for rays that touch caustics (Keller, 1958, 1985). If we denote the phase change from

transverse fluctuations in momentum as a “Heisenberg phase,” then, for focused paraxial

electron beams, the Gouy, Heisenberg, Keller, Berry, and Lévy–Leblond phases all are seen

to be manifestations of the same phenomenon.



Catastrophes on
Order–parameter Manifolds

7

7.1 Introduction

Up to this point we have highlighted singularities in the context of optical and electron

wave fields. The current chapter applies these ideas to more abstract scenarios, in which

caustics are described as occurring in order–parameter spaces. The concept of an order–

parameter was introduced in §1.1.2, where its role in determining the topological stability of

a vortex was discussed. Here we show that the order–parameter caustics are a topologically

stable defect. However, in this case the stability of these defects originates from the intrinsic

stability of the caustics, rather than from the topology of the order–parameter space. Aided by

the principles of catastrophe theory discussed in Chap. 3, we outline a theoretical formalism

for the formation and unfoldings of entirely new and hitherto unexplored catastrophes on

order–parameter manifolds.

Order–parameters are pivotal to the study and classification of topological defects and

phase transitions (Sethna, 2006). Many important areas of physics can be understood using

this construct, e.g., crystal growth (Mermin, 1979), quantum computing (Golovach et al.,

2010), nematic liquid crystals (Pieranski et al., 2013), magnetic textures (Röszler et al., 2006;

Mühlbauer et al., 2009; Ezawa, 2010), multiferroics (Wang et al., 2003; Kimura et al., 2003;

Chu et al., 2008), superconductors (Gull et al., 2013; Seibold et al., 2012) and superfluid

Helium (Levitin et al., 2013), to name but a few. The order–parameter may be viewed as a

function that maps points in the physical space to the order–parameter space. The topological

properties of the order–parameter space are important in the study of defects, since these

properties govern the stability of the defect (Ruben et al., 2010).

Here we demonstrate the existence of a new type of singularity that becomes manifest

117
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Figure 7.1: Schematic showing how the field ψ in an R2 patch is mapped to its order–
parameter manifold, leading to a catastrophe on S . Here S is a local patch of the manifold,
which may possess a non-trivial global topology. Due to the intrinsic stability of the
catastrophe, a mapping of the patch of the perturbed field ψ̃, would yield a deformed
catastrophe. The features of the field that are mapped to the catastrophe persist in the
presence of perturbations.

when a field is mapped to its order–parameter space. These defects are governed by the

framework of catastrophe theory (Arnol’d, 1975; Saunders, 1980; Poston and Stewart, 1996;

Thom, 1983). Since catastrophes are stable with respect to perturbation (see §3.1), features

of the field that map to a catastrophe on the order–parameter manifold must also be stable to

perturbations. This singularity represents a new type of topological defect, which we refer to

as an order–parameter catastrophe defect (OPCD) (see Fig. 7.1).

Catastrophes possess their own topology regardless of the topology of the

order–parameter manifold on which they exist. Their stability is intrinsic to the catas-

trophe defect, rather than depending on the topology of the order–parameter manifold. This

implies that local regions of the field that map to the order–parameter catastrophe defect,

transcend the topology of the order–parameter space, due to the intrinsic topology of the

catastrophe itself. Catastrophe theory may be applied to any system whose order–parameter

space is “tattooed” with such catastrophes.

As we have seen in previous chapters, catastrophes appear naturally in many physical

systems and are generic structures (Arnol’d, 1975; Berry, 1976; Thom, 1977; Nye, 1978;

Berry and Upstill, 1980; Hannay, 1982; Maeda et al., 1994; Nye, 2003a,b, 2006; Petersen

et al., 2013b; Simula et al., 2013). OPCDs are also expected to be universal phenomena,

which arise as local topological defects that persist within the order–parameter manifold

associated with the relevant field. In addition to the broad range of systems mentioned above,

we can also expect to find OPCDs in abstract physical systems involving quantum fields,
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cosmological phase transitions and stochastic fields, or indeed in any area of physical science

in which a field can be mapped to its order–parameter manifold. For example, evidence of

such catastrophes has recently been observed in scalar optical fields (Rothschild et al., 2012,

2014), in which the Argand plane of the wave field is identified with the order–parameter

manifold. An exposition of how OPCDs arise on order-parameter manifolds is non–trivial

and worthy of a detailed exploration. From the wide variety of applicable physical systems,

here we choose to illustrate order-parameter catastrophes for a 2D spin–1/2 field, for which

the corresponding order–parameter manifold is the Bloch sphere.

7.2 Bloch Sphere Mapping

Consider the general wavefunction of a two–component spinor

|Ψ(x, t)〉 = ψ0(x, t) |0〉 + ψ1(x, t) |1〉 , (7.1)

where x is the spatial variable and t denotes the time coordinate; ψ0 and ψ1 are the probability

amplitudes of the spin up state |0〉 and spin down state |1〉, respectively. Without loss of

generality we may assume |ψ0|
2 + |ψ1|

2 = 1, and consider only pure spin states that map

to the surface of the Bloch sphere. A single spin state is represented graphically as a unit

position vector of the Bloch sphere, denoted by |B〉 (see Fig. 7.2). It is parametrized by the

spherical polar angles (φ, θ), i.e.,

|B〉 = eiχ[e−iφ(x,y)/2cos (θ(x, y)/2) |0〉 + eiφ(x,y)/2sin (θ(x, y)/2) |1〉], (7.2)

where the global phase factor exp(iχ) is an unobservable of the system (Martinis et al., 2003;

Xiang et al., 2005; Nielsen and Chuang, 2010).

Here we are concerned with the mapping of the Bloch vector, located at every point in

coordinate space, to the Bloch sphere. Consider the mapping of an (x, y)–patch of Bloch

vectors, corresponding to a spin–1/2 field, to the surface of the Bloch sphere. If the patch

contains a texture defect it will wrap the surface of the Bloch sphere an integer number

of times (Mermin, 1979; Mäkelä et al., 2003; Kawaguchi et al., 2008; Zhang et al., 2009).

Perturbing the field locally will not destroy the texture structure, since it is topologically

protected. Instead, the mapping is altered in such a way that a local (x, y)–patch can be

sheared, dilated or rotated by the mapping, whilst still fully wrapping the Bloch sphere. To
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accommodate transformations of this type, a small region on the Bloch sphere must fold

back onto itself, resulting in a fold catastrophe. However, the converse is not necessarily

true. To see this, consider a two–dimensional periodic spin arrangement. This field has the

topology of a torus, and so cannot wrap the Bloch sphere. The catastrophes are insensitive to

the global topology of the order–parameter manifold and hence may still be present in local

regions of the mapping.

7.3 Conditions for a Catastrophe

The explicit form of the Bloch sphere map is determined by the inverse of Eq. (7.2), given by

φ(x, y) = arg (ψ1/ψ0) , (7.3)

θ(x, y) = arccos (η) . (7.4)

The quantity η = ψ∗0ψ0 − ψ
∗
1ψ1 is the spin asymmetry, which represents the difference in

probability density of the spin up and spin down components. The Bloch sphere image is

a 2D histogram of φ and θ, each of which are calculated for every (x, y) point of the spin

field. The mapping takes a patch of the (x, y)–plane and calculates the complex functions

ψ0(x, y) and ψ1(x, y). Together these functions completely define the spin–1/2 field over the

Euclidean patch in R2. These states are then mapped to the corresponding (φ, θ)–patch on

the Bloch sphere.

We demonstrate the preceding ideas via a generic example. A randomly varying spinor

wavefunction was generated by low–pass filtering an image of white noise for each spin

component, producing the field shown in Fig. 7.3(a). By applying Eqs. (7.3) and (7.4)

the field was mapped to the Bloch sphere to produce Fig. 7.3(b). The presence of several

phase vortices can be seen in the Bloch sphere coordinate φ(x, y), shown in real space in

Fig. 7.3(c). These screw–type topological defects come from the vortices in the phase of the

two–component spinor definied by Eq. (7.1), which are preserved when φ(x, y) is calculated.

A Bloch sphere singularity corresponds to a many–to–one mapping. This singularity

occurs when the Jacobian determinant of the mapping vanishes, where the Jacobian matrix

is defined by

J(x, y) =


∂φ
∂x

∂φ
∂y

∂θ
∂x

∂θ
∂y

 . (7.5)
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Figure 7.2: The Bloch sphere is the order–parameter manifold for a two–component
wavefunction, since all possible states of Eq. (7.1) correspond to points on its surface (for
pure states) or points within its volume (for mixed states). It is parameterised by the two
basis states, |0〉 (spin up) and |1〉 (spin down). The Bloch vector |B〉, which describes
each spin state as a point on the Bloch sphere, may also be represented in spherical polar
coordinates.

Setting det[J(x, y)] = 0 gives the condition for a particular spin state to map to a catastrophe,

i.e., [(
|ψ0|

2 ν1 − |ψ1|
2 ν0

)
× ∇η

]
· ẑ = 0, (7.6)

where ẑ is a unit vector in the z–direction; ν0 and ν1 are the respective probability current

densities of ψ0 and ψ1, given by

νi =
i~
2m

(
ψi∇ψ

∗
i − ψ

∗
i∇ψi

)
. (7.7)

Equation (7.6) specifies the condition for the formation of a Bloch sphere catastrophe

and represents the main result of this chapter. The interpretation of Eq. (7.6) is aided by

constructing an auxiliary function, defined by

Γ(x, y) =
√
η exp (iφ). (7.8)
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(a) (b)

(c) (d)
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Figure 7.3: (a) Bloch vectors of a random spin–1/2 field distributed in real space with
the colour of the vector corresponding to the z–component. (b) Mollweide projection of
the Bloch sphere map. Here the density of the plot is proportional to the number of spin
states of the spin–1/2 field shown in (a). (c) The Bloch sphere coordinate φ displayed as a
2D function of (x, y). (d) The Γ–map of the spin field in (a), which can be thought of as a
projection mapping the Bloch sphere to the Argand plane (see main text).

It can be shown that, up to a scaling factor, Eq. (7.6) is equivalent to the z–component of the

curl of the probability current density of Γ, i.e., the vorticity of Γ.

Equation (7.8) is a projection that maps the Bloch sphere to the Argand plane; this Γ–map

is shown in Fig. 7.3(d). Zeros of Γ are mapped to the equator of the Bloch sphere, while the

entire equator is mapped to the origin of the Argand plane. Note that the mapping in Eq. (7.8)

preserves the local structure of the catastrophes, as can be inferred by comparing Figs. 7.3(a)

and 7.3(b). Each hemisphere is projected over a unit disc, with the poles mapping to the

disc’s circumference at |Γ| = 1. However, each hemisphere of the Bloch sphere is rotated
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relative to the other by π/2 radians. This is a consequence of Γ having a complex amplitude.

Since η may be negative, corresponding to where the Bloch vector crosses the equator of

the Bloch sphere, Γ undergoes an abrupt phase shift of π/2. We note the close similarity

between this phase shift in Γ and the Gouy phase shift discussed in Chap. 6. Specifically, the

function ψ as defined in §6.3.1, also possesses a complex amplitude corresponding to a ray

passing though a caustic (Keller, 1985). For Bloch sphere caustics, Γ acquires a “Gouy type”

phase shift when the Bloch vector touches the equator.

The function Γ allows us to express the equation governing order–parameter space

defects of the spin–1/2 field in terms of its curl. The current density of Γ has the form η∇φ,

which may be interpreted as describing the flow of spin asymmetry. Catastrophes are mapped

to the Bloch sphere along points where the curl of Γ vanishes.

7.4 Relation to the Canonical Form

Thom’s theorem identifies a number of elementary catastrophes — these being all possible

topologically distinct catastrophes that occur when the codimension of the catastrophe is

less than or equal to four (Thom, 1983) (see Chap. 3). Every elementary catastrophe has an

associated function, known as the canonical form (Thom, 1983; Arnol’d, 1975; Saunders,

1980; Poston and Stewart, 1996). If a local patch of a spin–1/2 field maps to a particular

elementary catastrophe on the Bloch sphere, the field itself must be related to the canonical

form of the catastrophe. The Bloch sphere catastrophe that appears in the coordinates (φ, θ)

is only a two–dimensional slice of the entire caustic surface associated with one of Thom’s

elementary catastrophes.

The catastrophes on the Bloch sphere are singularities of the Bloch sphere mapping.

Hence points of the spin field, where the Jacobian determinant vanishes, map to a Bloch

sphere catastrophe. In catastrophe theory it is the degenerate critical points of the canonical

form that map to the caustic surface. Points where the spin–field has a vanishing Jacobian

determinant are locally equivalent to the Hessian of the germ of the catastrophe V(x, y), i.e.,
∂φ̃
∂x

∂φ̃
∂y

∂θ̃
∂x

∂θ̃
∂y

 =


∂2V
∂x2

∂2V
∂y∂x

∂2V
∂x∂y

∂V
∂y2

 , (7.9)

where φ̃ and θ̃ are the transformed coordinates of the Bloch sphere, which account for
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the local translation and rotation of the catastrophe from its canonical form and V(x, y) is

chosen to represents an arbitrary catastrophe germ as it may also be thought of as a type

of potential function. To account for smooth deformations of the catastrophe of the Bloch

sphere mapping, the coefficients of the transformations of φ and θ must be functions of the

state space coordinates (x, y). Since the transformation matrix has an inverse, this allows us

to express the Bloch sphere coordinates in terms of the transformed coordinates asφθ
 =

a(x, y) b(x, y)

c(x, y) d(x, y),


φ̃θ̃

 , (7.10)

where the inverse transformation matrix elements a, b, c and d are arbitrary functions of

(x, y), which encapsulate the local rotations, translations or deformations of the coordinate

system.

Given Eqs. (7.9) and (7.10) we find that φ(x, y) and θ(x, y) may be expressed in terms of

the partial derivatives of the canonical form of the catastrophe:

φ(x, y) = a(x, y)Vx(x, y) + b(x, y)Vy(x, y) (7.11)

θ(x, y) = c(x, y)Vx(x, y) + d(x, y)Vy(x, y), (7.12)

where Vx ≡ ∂V/∂x and Vy ≡ ∂V/∂y. Equations (7.11) and (7.12) show that the Bloch sphere

catastrophe is indeed a form of gradient mapping. If a small patch on the spin field in state

space maps to a catastrophe, the field in that patch of state space must relate to the canonical

form of the catastrophe. The field in these local regions has the functional form:

|Ψ〉 = e−
i
2 [(aVx+bVy)cos

[
(cVx + dVy)/2

]
|0〉 + e

i
2 (aVx+bVy)sin

[
(cVx + dVy)/2

]
|1〉 . (7.13)

The Bloch sphere coordinates (φ, θ) are deformed gradient maps of the canonical form

of the catastrophe; the structure of the zeros of the Jacobian determinant dictates the type of

elementary catastrophe to which the field will map. In essence, the lines of zeros determine

where to fold a patch in R2, as it is mapped to the Bloch sphere. The way in which the patch

is folded yields a particular type of catastrophe. Examples of elliptic and hyperbolic umbilic

catastrophes are shown in Fig. 7.4, where the geometry of the Jacobian determinant of the

mapping is highlighted in the insets. The canonical form of the elliptic umbilic catastrophe

is x3 − xy2, where the null set for the Hessian determinant of this form corresponds to the

equation of an ellipse, i.e., the zeros of the Jacobian determinant map to an elliptic umbilic
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(a) (b)
(a)

Figure 7.4: Mollweide plots of (a) elliptic, and (b) hyperbolic umbilic Bloch sphere
catastrophes. The insets on each figure show the Jacobian determinant of the mapping,
with the zeros highlighted in black. When the zeros of the Jacobian form an ellipse, the
map of that region forms an elliptic umbilic catastrophe. Similarly, when the zeros form a
hyperbolic curve, the field maps to the hyperbolic umbilic catastrophe.

catastrophe. Similarly the Hessian determinant of the hyperbolic umbilic catastrophe is the

equation of a hyperbola, given by its canonical form x3 + y3. We can also use the geometries

of the zeros, associated with Eq. (7.6), to visualize the spin arrangements corresponding

to the elliptic umbilic and hyperbolic umbilic OPCDs (see Fig. 7.4). Figures 7.5(a) and

(b) display the respective spatial distribution of the Bloch vectors, which create OPCDs

in Figs. 7.4(a) and (b). The corresponding spin arrangements of the elliptic umbilic and

hyperbolic umbilic OPCDs can be visualized by masking these spin fields where the Jacobian

determinant vanishes. The resulting isolated spin defects correspond to only those Bloch

vectors that map to the caustic surfaces in Fig. 7.4. Consider the OPCD of the elliptic umbilic

catastrophe shown in Fig. 7.5(c) and choose an arbitrary point which lies on the defect. As

we traverse the path where Eq. (7.6) is satisfied, the vectors undergo a full 2π rotation in both

order–parameter variables θ and φ. The same is observed with the OPCD of the hyperbolic

umbilic catastrophe, given in Fig. 7.5(d). The distinction, here, is that only in the x–direction

do the vectors rotate though the order–parameter variable φ. Whilst the θ rotation of the

vectors occurs in the y–direction. This behaviour alludes to a type of wrapping, similar to

conventional topological defects. In the latter case the phase winding about a vortex point

fully wraps the 1D sphere (see §1.1.2). However, whilst these vectors rotate a full 2π within

the spin arrangement of the OPCDs, they map to caustic surfaces. This behaviour is due to

the fact that whilst we visualize the Bloch vectors on a 2–sphere, the spinors exists in SU(2),

which has the topology of a 3-sphere. This extra degree of freedom that spinors possess is

made evident by the Bloch sphere mapping, which highlights why the Bloch sphere mapping
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(a) (b)

(c) (d)

Figure 7.5: Visualization of the elliptic umbilic and hyperbolic umbilic OPCDs. (a) and
(b) show the respective spatial distributions of the Bloch vectors that produce the Bloch
sphere mappings in Figs. 7.4(a) and (b). The semi–transparent black masks on the spin
field indicate where the Jacobian determinant vanishes. Using these masks to isolate spins
corresponding to points where the Jacobian determinant vanishes allows the visualization
of the elliptic umbilic OPCD (c) and the hyperbolic umbilic OPCD (d).

must be used in order to identify these “hidden” topological defects. Since we have shown

that the spin field is related to the canonical form of the catastrophe by a gradient map,

perturbations of the spin–1/2 field behave as a particular unfolding of the canonical form.

7.5 Stability of the Caustic Surface of Bloch Sphere

Catastrophes

Bloch sphere catastrophes represent 2D slices of the full caustic surface associated with

each type of elementary catastrophe, which are topologically protected. Perturbation of the

spin field preserves the catastrophe and simply changes the section of the caustic surface

on the Bloch sphere. To demonstrate this consider the full caustic surface of the hyperbolic
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(a)

(b)

(d)

(c)

(e)

w = -2.0 w = -0.1

w = 1.0 w = 3.0

Figure 7.6: (a) Caustic surface of the hyperbolic umbilic catastrophe. (b)–(e) Bloch sphere
projections showing a hyperbolic umbilic catastrophe perturbed through various values of
w. Note that the order–parameter manifold is only partially covered in this example. The
presence of the OPCD highlights that, whilst the spin arrangement as a whole is unstable,
the local region associated with the hyperbolic umbilic catastrophe is stable.

umbilic catastrophe shown in Fig. 7.6(a). By inputting the known canonical form and using

Eq. (7.13), we can map an isolated hyperbolic umbilic catastrophe to the Bloch sphere

and control its unfolding. This is demonstrated in Figs. 7.6(b)–(e). This method of spin–

engineering by way of using a catastrophe’s canonical form could be used to generate any

Bloch sphere mapping at a given unfolding. In this example the cross sections denote the

u − v plane. As the control parameter w is varied, the u − v plane shifts along the w–axis,

which perturbs the Bloch sphere catastrophe. In general, a hyperbolic umbilic Bloch sphere

catastrophe will express itself as cross sections of the caustic surface through some arbitrary

plane.

7.6 Discussion

Order–parameter catastrophe defects are a new form of topological defect that are associated

with fields on order–parameter manifolds. Catastrophes are extremely general structures that

almost always arise when mapping physical fields to their corresponding order–parameter

manifold. Equations (7.11) and (7.12) show that the order–parameter coordinates are pro-

portional to the first partial derivatives of a catastrophe’s canonical form, which are always

simple polynomial functions. For the spin–1/2 exemplar, this means that both φ and θ will

also have a local polynomial form for regions that map to a catastrophe. If we consider any

sufficiently small local expansion about a point of an arbitrary spin field, the patch only

needs to be diffeomorphic to the canonical form of one of the elementary catastrophes. This
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criterion is satisfied for the creation of a catastrophe and demonstrates that a mapping of a

generic field to its order–parameter space will result in caustic “tattoos” on its manifold. This

is a general result that can be found in other types of mappings. For example, catastrophes

manifest themselves as Argand–plane caustics, which arise when a complex scalar field is

mapped to the Argand–plane (Rothschild et al., 2012, 2014). In this context, the condition,

det[J(x, y)] = 0, that a point maps to a caustic is equivalent to the optical vorticity vanishing.

Whilst we have chosen to illustrate OPCDs using pure states, the general concept can

be readily extended to include mixed states, when the magnitude of the spinor component

in Eq. (7.2) adopts values less than unity. The additional Bloch sphere coordinate then

provides another dimension in which to view the caustic surface. For example, if a three-

dimensional spinor field is mapped to the Bloch sphere, the entire geometry of three–

dimensional catastrophes (e.g., the elliptic and hyperbolic umbilic catastrophes), could be

observed in full.

Whilst we have used the specific example of 2D spin–1/2 fields and the Bloch sphere, it

is important to emphasize that all the concepts presented in this chapter are very general. We

need only ask what is the mapping of any field to its order–parameter space to be able to view

the field through the new perspective of order–parameter catastrophe defects. This concept

is not restricted to 2–dimensions; the 2D surface of the Bloch sphere allows us to view 1D or

2D catastrophes, such as folds or cusps, or 2D cross sections of higher order catastrophes,

such as the elliptic or hyperbolic umbilic catastrophes (see Fig. 7.4). For mappings to order–

parameter spaces of higher dimensionality, the full bifurcation sets or higher dimensional

cross sections of catastrophes with higher codimension would also become observable.

The stability of OPCDs is attributed to the intrinsic topology of the catastrophes them-

selves, rather than that of the order–parameter space, as is the case for conventional topologi-

cal defects. Whilst our treatment of OPCDs considered the Bloch sphere as an exemplar,

the principal finding has wide applicability; it provides a novel framework for elucidat-

ing phenomena in any physical system in which a real or complex field is mapped to its

order–parameter manifold.
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The occurrence of singularities in nature is a generic phenomenon. In this thesis we have

seen how caustics and vortices — the singularities of rays and waves — form complementary

singularities, whence the natural formation of one does not occur in isolation to the formation

of the other. However, they represent singularities of different theories, which operate at

different length scales, giving rise to a type of singularity “uncertainty principle”. We have

shown that vortices and caustics may be exploited separately, using their unique properties

for applications in imaging and measurement.

Vortices have been considered undesirable in optical fields, when imaging is concerned.

However, Chap. 4 presented a modified holography technique, which used vortices to

reconstruct an image of a phase–amplitude object. Using a three–beam interferometer, scalar

plane waves were interfered to produce a uniform optical vortex lattice. Passing one of the

beams through an object perturbed the optical vortex lattice, allowing the phase of the object

to be determined locally by measuring the displacement of each vortex. Our method was

demonstrated on a spherical lens and the wing of a house fly. With its robustness to noise

being a key feature of this method, it would be interesting to quantify the impact of noise on

the reconstructed images.

In Chap. 5 we applied the ideas of phase measurement using vortices to consider singu-

larimetry with caustics. Using catastrophe theory, we showed that it was possible to recast

the ill–posed inverse problem of determining the phase of a wave from measurements of

the fold caustic, into a well–posed one. Numerical simulations were used to validate the

proposed technique. However, further work is required to extend the technique to explore

higher codimensional catastrophes, as only a fold catastrophe was considered in this thesis.

129



130 Conclusions and FutureWork

One of the many goals of the thesis was to produce vortices and vortex lattices using

a transmission electron microscope. Chapter 6 we presented an experiment that exploited

the duality between vortices and caustics. Aberrations were introduced to the lenses of the

electron microscope, which focused the beam, giving rise to electron diffraction catastrophes.

Phase retrieval performed on a through–focal series showed that vortices had indeed formed.

In future work we intend to exploit specifically designed apertures to create “tailored” vortex

lattices in a TEM, thereby allowing the singularimetry technique to be applied to high

resolution imaging of electromagnetic fields. In Chap 6 also presented the first direct

measurement of the Gouy phase anomaly for matter waves. Astigmatism applied to the

magnetic lenses of a conventional TEM was used to create two perpendicular line caustics.

Iterative phase retrieval determined that the phase shifted by π/2 once the electron beam

passed though each line focus. This chapter also presented multiple interpretations of the

Gouy phase anomaly, unifying them within a single theoretical framework.

Finally, in Chap. 7 we investigated caustics in more abstract fields. It was shown that

caustics “tattoo” the surface of the manifold, when a field is mapped to its order–parameter

space. Furthermore, it follows from catastrophe theory that these new catastrophes on the

order–parameter manifold are stable with respect to perturbations. We have called this

new and largely unexplored topological phenomenon order–parameter catastrophe defects

(OPCDs). Chapter 7 investigated OPCDs on the Bloch sphere — the order–parameter space

corresponding to spin–1/2 fields. Equations governing the conditions for the existence of

OPCDs and the relationship to Thom’s theorem were also presented. Since we have only

considered a single application of OPCDs, there is still much scope for investigating this

concept in various other physical contexts.

One of the encompassing aspects of singular optics is how all types of singularities and

defects, in many various guises, share an underlying interconnectedness. This aspect is no

more apparent than for the duality between caustics and vortices — the singularities of rays

and waves. The research reported in this thesis reflects on this duality between caustics and

vortices, with this theme permeating and influencing all key ideas of the research programme.



Appendix A A

A.1 Derivation of the Paraxial Eikonal Equation

We begin with the expectation values of the z component of a paraxial wave–vector, given by

Eqs. (6.14) and (6.15) in §6.3, i.e.,

〈kz〉 = k −
1
2k

〈
k2

x + k2
y

〉
= k

∫
R2

A2dxdy +
1
2k

∫
R2

Ae−iφ∇2
⊥Aeiφdxdy, (A.1)

where A is real and represents the amplitude of a paraxial electron wave, i.e., ξ = Aeiφ.

The two-dimensional Laplacian operator ∇2
⊥ ≡ ∂

2/∂x2 +∂2/∂y2 creates a mixture of first–

and second–order partial derivatives in the amplitude A and phase φ. For a symmetric beam,

all first-order partial derivatives are zero on the optic axis, so the integrand in Eq. (A.1) can

be written as

Ae−iφ∇2
⊥Aeiφ = A∇2

⊥A + iA2∇2
⊥φ. (A.2)

The effective propagation constant can be complex, with the imaginary part Im(k̃z)

describing the amplitude variation and the real part Re(k̃z) giving the longitudinal phase

derivative. With this in mind, we now consider the expectation value in Eq. (A.1) over an

infinitesimal patch of the transverse plane and equate the integrands to obtain

A2k̃z = A2 ∂φ(z)
∂z
− iA2 ∂A2

∂z
= kA2 +

A2

2k
1
ξ
∇2
⊥ξ

= kA2 +
1
2k

A∇2
⊥A + i

1
2k

A2∇2
⊥φ, (A.3)

where k̃z denotes a complex variable and Eq. (A.2) has been used to produce the final

expression. The longitudinal phase gradient in Eq. (A.3) is consistent with the local mo-

mentum, Re(ξ∗∂ξ/∂z)/A2 of the paraxial envelope ξ (Berry, 2009), for which we also have
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Im(ξ∗∂ξ/∂z)/A2 = ln(∂A/∂z) since transverse derivatives of ξ are zero on the optic axis for a

symmetric beam. The real part of Eq. (A.3) gives the paraxial eikonal equation (Gureyev

et al., 1995):

∂φ(z)
∂z

= k +
1
2k

1
A
∇2
⊥A

= k +
1
2k
∇2
⊥ ln(A), (A.4)

where the natural logarithm has been introduced by discarding first–order on–axis partial

derivatives in the amplitude A due to symmetry of the beam.

A.2 Gouy Phase Evaluated on the Riemann Sphere

We begin by extending the integral for φB in Eq. (6.25) to the Argand plane. For complex

defocus z̃, we can decompose an integration contour Γ in the complex plane as a succession

of line segments ΓRe and ΓIm, which are parallel to either the real or the imaginary axis,

respectively. Writing z̃ = zR + izI , Eq. (6.25) becomes

−i
∫

Γ

∂ ln(ξ)
∂z̃

dz = −i
{∫

ΓRe

∂ ln(ξ)
∂zR

dzR +

∫
ΓIm

∂ ln(ξ)
∂zI

dzI

}
=

∫
Γ

{
∂ ln(ξ)
∂zR

− i
∂ ln(ξ)
∂zI

}
dz̃ (A.5)

For closed contour integrals, Green’s theorem can be used on both the real and the

imaginary parts of Eq. (A.5). For a differentiable complex function g(zR, zI), Green’s theorem

is given by ∮
gdz̃ = i

	 {
∂g
∂zR

+ i
∂g
∂zI

}
dzRdzI . (A.6)

Substitution of Eq. (A.5) into Eq. (A.6) gives	
S

∂2 ln(ξ)
∂z2

R

+ i
∂2 ln(ξ)
∂zR∂zI

 dzRdzI −

	
S

∂2 ln(ξ)
∂zR∂zI

+ i
∂2 ln(ξ)
∂z2

I

 dzRdzI

=

	
S

∂2 ln(ξ)
∂z2

R

+
∂2 ln(ξ)
∂z2

I

 dzRdzI , (A.7)

so that Eq. (6.25) can be expressed as

φB = −i
∮

∂ ln(ξ)
∂z̃

dz̃ =

	
∇2

zR,zI
ln(ξ)dzrdzI , (A.8)

where the two-dimensional Laplacian is defined by the double derivatives with respect to

zR and zI in Eq. (A.7). To reveal the geometric aspect of Eq. (A.8), consider again our
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archetypal Gaussian beam on the optic axis in two transverse dimensions (Boyd, 1980).

Evaluating the Laplacian, we obtain:

∇2
z̃ ln(ξ) = ∇2

x,y ln
[(

1 + |z̃|2
)− 1

2 et tan−1(z̃)
]

= −
4(

1 + z2
R + z2

I

)2 dzrdzI . (A.9)

Mapping points from the Riemann sphere to the complex plane (Ablowitz and Fokasz,

1997) allows the areal element dA on the unit sphere to be written as

dA =
4(

1 + z2
R + z2

I

)2 dzrdzI . (A.10)

Combining Eqs. (A.8)—(A.10), we have

φB = −i
∮

∂ ln(ξ)
∂z̃

dz̃ = −
1
2

	
dA = −

Ω

2
, (A.11)

where Ω is the solid angle subtended by the patch on the Riemann sphere.





Appendix B B

B.1 The Lévy–Leblond Phase Shift and Statistical

Confinement

In this section we describe the Gouy phase anomaly by considering the effects of geometric

confinement, which supports the interpretation given by Hariharan and Robinson (1996). Far

from any obstructions, an electron wave is free and propagates along the z–axis with energy

E given by

E =
h2k2

2m
, (B.1)

where the wave number k = 1/λ and m is the electron mass.

Confinement along the transverse axis within a distance L produces a change in the

magnitude of the wave–vector, from k to k′ (Lévy-Leblond, 1987) hence

E =
h2k′2

2m
+

h2n2

8mL2 , (B.2)

where n is an integer greater than zero. Using conservation of energy, we can equate

Eqs. (B.1) and (B.2) to obtain

E =
h2k2

2m
=

h2k′2

2m
+

h2n2

8mL2 → (k − ∆k)2 +
n2

4L2 , (B.3)

where h∆k is the change in the longitudinal momentum kz.

Assuming small changes in k, (∆k)2 << k∆k, we have

∆k =
n2

8kL2 . (B.4)

The integer n2 must be replaced by n2 + m2 for waves propagating in two transverse

dimensions, which doubles the change in momentum when both n and m are unity. Hence,
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the essence of the Lévy-Leblond (1987) phase shift is a geometric effect, which reduces the

momentum upon confinement of the wave in the transverse coordinate, orthogonal to the

longitudinal propagation direction.

In the absence of boundaries or cavities, focused beams conserve kinetic energy, and

we expect no change in the average longitudinal momentum. However, we can describe

the Gouy anomaly in terms of the Lévy–Leblond phase shift if we identify the standard

deviation in Fig. 6.9 with statistical confinement of the wave, which varies continuously

along the z–axis. To examine local phase variations, we must consider an expectation value

of the energy or momentum in the vicinity of the optic axis instead of Eq. (B.3). Since the

paraxial wave equation is formally equivalent to the time–dependent Schrödinger equation

with two spatial variables, we can replace the expectation value of the energy with 〈∂/∂z〉,

integrated over an infinitesimal patch of the transverse plane containing the optic axis, which

is equivalent to Eq. (A.3). Hence, from the perspective of the Lévy–Leblond effect, focusing

produces statistical confinement, which, in turn, induces local momentum fluctuations that

give rise to longitudinal phase variations in the optic axis. Naively, this can be inferred from

Eq. (B.4) if the confinement parameter L is made proportional to the uncertainty in the beam.

Integration along the optic axis then gives an inverse tangent function, which is proportional

to the Gouy phase.
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Abstract: A new phase-measurement technique is proposed, which utilizes 

a three-beam interferometer. Three-wave interference in the interferometer 

generates a uniform lattice of optical vortices, which is distorted by the 

presence of an object inserted in one arm of the interferometer. The 

transverse displacement of the vortices is proportional to the phase shift in 

the object wave. Tracking the vortices permits the phase of the object to be 

reconstructed. We demonstrate the method experimentally using a simple 

lens and a more complex object, namely the wing of a common house fly. 

Since the technique is implemented in real space, it is capable of 

reconstructing the phase locally. 
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1. Introduction 

Interferometry is commonly used for wavefront determination in visible optics [1], cold atom 

optics [2], electron optics [3], and X-ray microscopy [4]. A two-beam interferogram is formed 

by interference between a wave that has passed through a specimen and a reference wave that 

does not interact with the specimen. Fourier-transform methods are commonly used to 

reconstruct the intensity and phase of the wave [5]. Although these methods are simple to 

implement, the spatial resolution of the reconstruction is limited by how isolated the spatial-

frequency spectrum is from the central maximum. Transform methods also involve inverting a 

subsection of the Fourier transform of the interferogram; since a specific region of the desired 

real-space phase map cannot be localized in Fourier space, the phase is reconstructed non-

locally. For example, poor fringe visibility in a subsection of the interferogram can introduce 

systematic errors in the recovered wave over the entire field of view. Further, a Gibbs-type 

phenomenon, namely ‘ringing’, can occur when processing subsections of interferograms that 

exhibit strong scattering or absorption, leading to poor contrast resolution. 

The method developed in the present paper uses three-wave interference to generate a 

uniform lattice of optical vortices, which are used to recover the phase of the input wave-field. 

Perturbations to the input wave-field due to an object distort the vortex lattice. The resulting 

transverse displacements of the vortices are then used to determine the phase at the exit 

surface of the object [6]. The exit surface is the plane where the exit wave resides once it has 

propagated through the object. We show that the phase is proportional to the positions of each 

vortex in the lattice, thereby permitting the phase to be retrieved locally without introducing 

‘ringing’ artefacts. Further, the method is also applicable to absorbing objects. 

The utility of vortex lattices has been investigated in other contexts, such as wavefront tilt 

[7], small-angle rotations of wave-vectors [8], and to determine polarization parameters of 

birefringent media [9,10]. Reference [11] reports a method of tracking vortices in a vortex 

lattice, which plots the relative phase between each vortex in the lattice as a function of their 

transverse Cartesian coordinates ( , )x y . A plane is then fitted to this function and the distance 

between the positions of the vortices relative to the fitted plane is taken as the phase. 

However, in this method [11] the plane is fitted over the entire field of view and the phase 

solution at any point depends on all parts of the interferogram; consequently it is also non-

local. In contrast, the method reported here reconstructs the phase locally, as it is based on an 

algebraic method that does not require integration. 

The outline of the paper is as follows. In section 2 we detail the method and show how the 

position of vortices generated by three-beam interference can be used for phase determination. 

The experimental setup is described in section 3, with results presented in section 4. Section 5 

provides a brief discussion of the technique and its potential applications. 
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2. Theoretical background 

Consider the superposition of three coherent plane scalar waves of unit intensity. The first 

wave, ψobj, is directed along the z-axis and transmitted through a phase-amplitude object. 

 

Fig. 1. (a) Phasor geometry for three waves of unit intensity at a vortex point. (b) Phasor 

geometry for a vortex when the exit wave is transmitted through an absorbing object. 

The complex transmission function is ( , ) exp[ ( , )]A x y i x yφ , where ( , )A x y is a real function 

of ( , )x y  and ( , )x yφ is the phase shift imparted to the wave by the object in the projection 

approximation [12]. Note that the trivial harmonic time dependence exp( )i tω− , where ω is 

angular frequency and t is time, is suppressed throughout. Now consider a second and third 

plane wave, labeled ( , ) exp[ 2 ( )]
A A A

x y
x y i k x k yψ π= +  and ( , ) exp[ 2 ( )]

B B B

x y
x y i k x k yψ π= + , 

respectively, which are both tilted with respect to the z -axis. The superposition of the three 

wave-fields, ( , )x yΨ , at 0z =  is given by 

 

( , ) ( , ) ( , ) ( , )

exp[ ( , )]

{ ( , ) exp[ 2 ( ) ( , )] exp[ 2 ( ) ( , )] .

 

}

A B

obj

A A B B

x y x y

x y x y x y x y

i x y

A x y i k x k y i x y i k x k y i x y

ψ ψ ψ

φ

π φ π φ

Ψ = + +

= ×

+ + − + + −

  (1) 

It can be shown that Eq. (1) results in a lattice of phase vortices of both positive and negative 

topological charge, provided that all three wave vectors are not co-planar and 2A <  [12–17]. 

At the vortex core P the phase of the wavefunction becomes undefined and the intensity 

vanishes [18]. Computing the line integral of the phase gradient over a smooth simply-

connected closed path Γ enclosing P we obtain: 

 · ds = 2πp,φΓ∫ t� ∇  (2) 

where t  is the unit tangent vector to the curve Γ, ds is the infinitesimal line element along Γ 

and p is a non-zero integer known as the topological charge of the vortex. The charge 

corresponds to the number of times the phase winds by 2π around the vortex core as the curve 

Γ is traversed; its sign represents the rotational direction of the phase winding, with anti-

clockwise conventionally denoted as positive. Optical vortices may be engineered by the use 

of a spiral phase mask [19], a synthetic hologram [20], or the superposition of three or more 

coherent scalar waves [12–17]. At each vortex core the intensity must vanish, therefore at any 

vortex location the wavefunction must vanish. 

Each term in Eq. (1) represents a phasor in the complex plane. The sum of the three plane 

waves will only vanish when each phasor in the braces in Eq. (1) forms a closed triangle as 
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shown in Fig. 1(a) (cf [12, 14].). To demonstrate how the phase is related to the position of 

each vortex, we consider two cases; first a completely transparent object (i.e. where A is 

unity) and secondly that of an absorbing object. 

2.1. Non-absorbing object 

For a non-absorbing object, each vortex occurs when the three phasors form an equilateral 

triangle as shown in Fig. 1(a), where ( , )x yɶ ɶ  denotes the vortex location. Note that there are 

two possible phasor arrangements that can form an equilateral triangle. The second triangle is 

formed by complex conjugation of all three phasors, corresponding to reflection about the x -

axis in Fig. 1(a). This dual arrangement corresponds to alternate signs of the topological 

charge of each vortex. 

The arrangement of the phasors shown in Fig. 1(a) occurs when the arguments of the 

second and third phasor take the following values: 

 
2

2 ( ) ( , ) 2 ,
3

A A

x y
k x k y x y n

π
π φ π+ − = +ɶ ɶ ɶ ɶ  (3a) 

 
4

2 ( ) ( , ) 2 ,
3

B B

x y
k x k y x y m

π
π φ π+ − = +ɶ ɶ ɶ ɶ  (3b) 

where n and m are integers. Substitution of Eqs. (3a) and (3b) into Eq. (1) shows that ( , )x yΨ ɶ ɶ  

vanishes for all n and m. Since the relative angles between phasors will remain constant at 

each vortex point ( , )x yɶ ɶ , we may substitute Eq. (3a) into Eq. (3b) to obtain the relation: 

 4 ( ) 2 ( , ) 2 ( ) ( , ) 2 ( 2 ).
A A B B

x y x y
k x k y x y k x k y x y m nπ φ π φ π+ − = + − + −ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ  (4) 

Solving for the phase we find 

 ( , ) 2 (2 ) 2 (2 ) 2 ,
A B A B

x x y y
x y k k x k k y lφ π π π= − + − +ɶ ɶ ɶ ɶ  (5) 

where l is an integer. Equation (5) shows that the phase shift in the exit wave-field depends 

directly on the coordinates of each vortex, up to an additive constant. Therefore, the phase of 

the object wave may be retrieved from the coordinates of each vortex in the distorted lattice 

along with knowledge of the transverse wave-vectors of each reference wave. 

2.2. Absorbing object 

Here we generalize the analysis of section 2.1, to the case of an absorbing object. The phasor 

geometry for an absorbing object is shown in Fig. 1(b), where the magnitude of the phasor of 

the exit wave can vary due to absorption. This means that Eqs. (3a) and (3b) will no longer be 

valid for every vortex point, since the relative angles between each phasor can vary. The 

angles that reference waves A and B make with the x-axis are denoted by α and β, 

respectively. Due to the symmetry of the phasor arrangement in Fig. 1(b) we note that 

2β π α= −  for any objψ . Therefore we may write 

 2 ( ) ( , ) 2 ( 1) 2 ( ) ( , ).
A A B B

x y x y
k x k y x y m n k x k y x yπ φ π π φ+ − = + + − + +ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ  (6) 

Equation (6) may be solved for the phase to give 

 ( , ) ( ) ( ) ,
A B A B

x x y y
x y k k x k k y sφ π π π= + + + +ɶ ɶ ɶ ɶ  (7) 

where s is an integer. Equations (5) and (7) are the two main results of this paper, and form 

the basis of our phase determination method. 
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Equation (7) is applicable for strongly absorbing objects, with the exception of the 

extreme case of total absorption by the object. The magnitude of the phasor of the object 

beam decreases with increasing absorption; unless the object is completely absorbing, the 

phasors will still sum to zero and a vortex will be formed. However, strongly absorbing 

objects will decrease the contrast resolution of the interference pattern. Moreover, low 

contrast can make it difficult to accurately localize a vortex, which requires the detection of 

minima in the intensity pattern. However, there are phase shifting methods that use an extra 

reference arm to form a fringe pattern, which can be exploited to increase the intensity 

gradient near a vortex core. Phase shifting the reference arm to generate a fringe pattern 

causes shifts in the intensity maxima, whilst the intensity minima due to vortices remain fixed 

at the same locations. By taking a series of interferograms, each with the fourth interferometer 

arm phase shifted, the absolute value of the difference between successive interferograms is 

calculated. These differences are summed, which increases the local intensity gradient near 

the vortex core; this compensates for the lack of contrast in the three-beam interferogram of a 

highly absorbing object [21]. Such an approach could be used to increase the precision with 

which vortices can be localized in those cases where the absorption is too large to accurately 

locate each vortex. 

The phasor geometry used to derive Eq. (5) considered a single sign of topological charge. 

Therefore only the coordinates of one particular type of vortex are used to determine the 

phase using Eq. (5). This is not the case for Eq. (7), where there are two arrangements of the 

phasors that sum to zero; however, both result in the same equation. This is due to the 

symmetry in the coefficients of xɶ  and yɶ  in Eq. (7), which is not present in Eq. (5). Thus 

Eq. (7) allows us to utilize either vortex sign in the interference pattern to determine the 

phase. The presence of the third term in Eq. (7) shows that the phase is retrieved modulo π 

rather than modulo 2π. This is only a disadvantage for objects that have large phase gradients, 

in which case aliasing may occur and phase unwrapping is difficult. 

The proposed method of phase determination proceeds as follows. First we localize all 

vortices in the lattice, resulting from a three-beam interference pattern, and determine their 

( , )x yɶ ɶ  coordinates by locating intensity zeros. Using either Eq. (5) or (7), we algebraically 

calculate φ for each vortex point ( , )x yɶ ɶ .The use of either equation is dependent on the object 

being imaged, i.e. for absorbing objects Eq. (7) is used. If Eq. (5) is utilized, an additional step 

is required in which we separate vortices by the sign of their topological charge. The wrapped 

phase is then recovered modulo 2π, if Eq. (5) is used, or modulo π in the case of Eq. (7). Once 

the phase is computed, interpolation between each vortex is performed to recover the phase 

over all ( , )x y  points in the image array. 

3. Experiment 

The experimental setup is shown in Fig. 2. The beam from a linearly-polarized Helium-Neon 

laser (Thorlabs 5 mW) is spatially filtered by focusing it through a 4.51 mm focal length 

aspheric lens and then passing it through a 20 µm pinhole. The filtered beam is re-collimated 

using a 100 mm focal length plano-convex lens and an iris, which is adjusted so that the beam 

is truncated at its first minimum. A neutral density filter located before the first focusing lens 

is used to attenuate the beam. The filtered beam is then passed through a polarizing 

beamsplitter cube, oriented to transmit the majority of the beam power; this ensures a pure 

polarization state for the resulting beam. The beam is then passed into a three-beam 

interferometer constructed from a pair of Mach-Zehnder interferometers that share a common 

arm. The path lengths through each arm of the interferometer are matched to maximize the 

coherence of the interference; 50:50 beamsplitter cubes are used to split and combine beams 

in each interferometer. 

The common central arm of the combined interferometer (object beam) is used as the 

source of illumination for the object. The object is located close to the first beamsplitter cube 
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in the arm and is imaged onto a CCD camera via a system of two plano-convex lenses 

arranged to image the object plane onto the camera with a magnification of two. The lenses 

are arranged so that the first lens is located one focal length away from the object 

( 75 mm)f =   with the second lens ( 150 mm)f =   spaced 225 mm away from the first lens 

and 150 mm away from the camera. The monochrome CCD camera (Prosilica GE1650) has 

1600 1200×  pixels and 12 bits per pixel. 

 

Fig. 2. Experimental setup of the three-beam vortex interferometer. A He-Ne laser (λ = 633nm) 

is spatially filtered by the pinhole and a single polarization direction is selected as it passes 

through the polarizing beam splitter. Two beamsplitters are used to create the three arms of the 

interferometer. The central beam is transmitted through an object after which two lenses are 

used to focus the exit surface of the object into the camera. Each reference arm contains λ/2 

and λ/4 wave plates; which are used for phase stepping. Neutral density filters (ND) ensure that 

the two reference waves have the same intensity as the object wave. 

The pixel size is 7.4 µm × 7.4 µm. The two remaining interferometer arms (reference 

beams) each contain a neutral density filter to match the intensity of the beam through each 

arm to that of the object beam. A λ/2 and λ/4 wave plate allows the phase of the beam exiting 

each arm to be varied in discrete steps. The phase is stepped by either λ/2 or λ/4 (depending 

on which wave plate is used) by changing the alignment of the wave plate so that the fast 

optical axis is either parallel or perpendicular to the polarization axis of the beam. 

To form a vortex lattice, two reference beams are adjusted in angle relative to the object 

beam, such that the wave-vectors of the three beams are non-coplanar. The angles of the 

beams of the reference arm can be adjusted by tilting the final beamsplitter in the top arm of 

the interferometer and the final mirror in the bottom arm. Different geometries of the lattice 

are generated depending on the mutual angle of the three beams, with a hexagonal lattice 

being produced when the angle between any two beams is 120� . The period of the three-beam 

interferogram maxima was adjusted to be approximately 20 pixels. A phase shift of either 

reference beam causes a shift in the vortex in the direction of that beam’s transverse wave-

vector. 

Our technique was experimentally tested on two objects: a Thorlabs spherical lens (part 

number LA1464) made from N-BK7 optical glass with a diameter of 25.4 mm, and the wing 

of a common house fly (Musca Domestica). For the spherical lens, in addition to the three-

beam pattern, two-beam interference patterns of 
A

obj
ψ ψ+  and 

B

obj
ψ ψ+ were individually 

acquired by blocking each of the reference arms in turn. Both reference arms were then 

blocked to record an image of the Gaussian illumination. Wave-vectors of each arm were 

measured by locating the peak maximum in the power spectrum of the three-beam 
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interference pattern. The interferogram was smoothed, to reduce noise, by convolution with a 

Gaussian filter of approximately 60 µm full width half maximum (FWHM) and then flat-field 

corrected using a specimen-free illumination image. This was performed to increase the signal 

in the outer edges of the interferograms. 

To determine the accuracy with which vortices can be localized we computed the 

normalized autocorrelation of a non-deformed section of our vortex lattice. Since the lattice is 

uniform, perfect localization gives complete autocorrelation between vortex points (i.e. the 

autocorrelation value is unity). However, small errors in localization decrease the 

autocorrelation for the vortex lattice, giving some width to the central maximum of the 

autocorrelation function. Using the half width of the maximum as a measure of the precision 

of vortex localization, it was found that the technique has a precision of 1.5 pixels. Based on 

Eq. (5) this translates to a measured phase accuracy of ± 0.2 radians. 

4. Results 

A section of the three-beam interferogram of the lens along with a simulated interferogram is 

reproduced in Fig. 3(a) and 3(b) respectively; these show excellent agreement is found 

between theory and experiment. To locate the vortices in the image, it is only necessary to 

locate the intensity zeros in the interference pattern. A zero in the intensity is a necessary but 

not sufficient condition for a vortex; a three-beam interference pattern of planar waves will 

always have a vortex at each intensity zero [12,14]. Note, in this context, that non-vortical 

zeros are not stable with respect to perturbation, whereas vortical zeros are stable with respect 

to perturbation. The vortices were separated depending on the sign of their topological charge 

using the methods outlined in Ref [22]. The phase of the lens was calculated using Eq. (5) for 

vortices of positive topological charge. Two-dimensional linear interpolation was then 

performed between each vortex point to map the phase over all Cartesian pixel coordinates 

within the field of view. This was performed by taking the real and imaginary parts of the 

wavefunction. The real and imaginary parts were then linearly interpolated, which allowed for 

the complete wrapped phase ( , )x yφ  to be recovered using 

 
1 sin[ ( , )]

( , ) tan .
cos[ ( , )]

x y
x y

x y

φ
φ

φ
−  

=  
 

ɶ ɶ

ɶ ɶ
 (8) 

 

Fig. 3. Comparison of the experimental three-beam interference pattern with a numerical 

simulation. (a) Experimental three-beam interference pattern. (b) Simulated three-beam 

interference pattern. The plus signs and crosses in the top right insert indicate the locations of 

vortices of positive and negative topological charge, respectively. 

The reconstruction of the lens in Fig. 4(a) shows a series of concentric circles where the 

phase has been wrapped by 2π, as would be expected for a spherical lens since its projection 
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is rotationally symmetric. To demonstrate our technique quantitatively, the wrapped lens 

phase was unwrapped using the methods outlined in Ref [23]. In this paper, Volkov and Zhu 

showed that the image may be represented in terms of the Fourier transforms of its x and y 

derivatives. The gradient of the wrapped phase suffers abrupt changes of 2π per pixel at each 

point where the phase undergoes wrapping. Thresholding the x and y phase gradients 

eliminates these discontinuities. The unwrapped phase is then recovered using Fourier 

transforms to reconstruct the phase from the thresholded x and y derivatives. Once the lens 

data had been unwrapped, the projected thickness was recovered by dividing the unwrapped 

phase by the factor kδ , where δ is the difference of the refractive index of the lens from unity 

and k is the wavenumber. A circular arc was fitted to the profile centered on the recovered 

projected thickness in order to measure the radius of curvature of the lens. The profile of the 

lens and the fitted curve are shown in Fig. 4(b). The fitted curve returned a value of 519±1 

mm, in good agreement with the quoted radius of curvature of the lens of 515.5 mm. This 

shows that our method is able to quantitatively reconstruct the object function. 

The method was also applied to a three-beam interferogram of the wing of a common 

house fly. As this sample contained higher spatial frequency information than the lens, the 

sampling of the phase, and consequently, the number of vortices needed to be increased. This 

was achieved by using the λ/2 and λ/4 wave plates described in section 3 to perform phase 

shifting in each reference arm of the interferometer. Three-beam interferograms were 

recorded for the fly’s wing, with 11 phase shifts of π/4 between images used to reconstruct the 

phase. Each interferogram was smoothed by convolution with a Gaussian filter of 

approximately 60 µm FWHM and the transverse wave-vectors and vortex points were found 

using the same method as for the spherical lens data. Vortices were not separated by sign for 

this object as Eq. (7) is applicable to vortices of either topological charge. For each of the 11 

phase-stepped interferograms, the phase was recovered using Eq. (7). Before the phase of 

each image could be combined for interpolation, the relative offset between the phase of each 

image needed to be determined. Two-dimensional cross-correlation of a small portion of the 

vortex lattice was used to determine the offset between each phase step. The coordinates of 

the maximum in the cross-correlation data were substituted into Eq. (7), which gave the value 

of the phase difference between each vortex lattice. This phase difference was added to each 

reconstruction and linear interpolation was applied to every vortex point in all 11 phase 

stepped lattices. This results in a single phase image which incorporates information from all 

 

Fig. 4. Experimental results for phase reconstruction of a spherical lens using the three-beam 

vortex interferometer. (a) The unwrapped reconstructed phase of the lens. The greyscale in this 

image ranges from 0 (black) to 2π (white). (b) Unwrapped phase profile of the lens. The solid 

curve corresponds to the experimental data whilst the dashed curve is the fitted curve. The 

radius of curvature of the fitted profile is 519 ± 1 mm. 
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11 recorded vortex lattices. The recovered wrapped and unwrapped phase reconstruction of 

the fly’s wing is shown in Figs. 5(a) and 5(b), respectively. The phase determined by the 

Takeda method [5] using a mask of 25 ×  25 pixels applied to a two-beam interference pattern 

is given in Fig. 5(c) for comparison. The two-beam interference pattern was obtained by 

blocking one of the reference arms of the three-beam interferometer. This was also applied to 

a subsection of the three-beam interference pattern spatial-frequency spectrum, producing a 

consistent result to the phase obtained for the two-beam case. This is expected as a three-

beam interference pattern implicitly contains all the information of a two-beam interference 

pattern. The phase recovered from the vortex lattice method was unwrapped using the same 

method [23] as for the lens data and is shown in Fig. 5(d). As Eq. (7) has been used to recover 

the phase of the fly wing, the phase is wrapped from / 2π−  to / 2π . The phase recovered 

from the Takeda method [5] has also been wrapped between these values, which facilitates 

comparison of the two results. Both images in Figs. 5 (a) and 5(b) show good quantitative 

agreement with each other. Minor differences are observed around the frame of the wing, 

where the absorption of the light is strongest. However, the vortex lattice phase determination 

technique is mostly unaffected by the absence of information in these regions. The local 

nature of our technique allows the phase reconstruction to simply ignore these strongly 

absorbing regions, which are then interpolated. For Fourier-based methods these regions 

result in larger phase gradients. This can be observed at the bottom edge of the wing where 

the phase rapidly increases, which is not observed in Fig. 5(b). Ringing artefacts in Fig. 5(c) 

are also observed, corresponding to spatial frequencies not present in the fly’s wing. Our 

vortex lattice method is not susceptible to this type of artifact as the technique uses a local 

algebraic solution to recover the object’s phase. 

5. Discussion 

A surprising aspect of the technique described in this paper is that vortices, which correspond 

to points at which the phase becomes undefined, are used to determine the phase shifts of an 

object. In many forms of phase retrieval vortices are often undesirable, since their presence 

can be detrimental to accurate phase retrieval [24]. The separation of vortex sublattices was 

performed using Eq. (5), which depends on a particular geometry of the phasors of the three 

waves; hence it applies to a particular topological sign of the sublattice. The ability to separate 

vortices based on their sign is a consequence of the vortex sign rule [25]. A vortex occurs at 

the intersection of lines, where the real and imaginary parts of the wavefunction vanish; the 

sign rule states that each time a line intersects with another, the sign of the topological charge 

alternates. If we assign any vortex to a particular charge, the sign rule allows us to determine 

the sign of every vortex present in the lattice. Hence we may separate the vortices in the 

lattice based on their topological sign. To reconstruct the phase without a sign ambiguity, 

using Eq. (5), the sign of 
x

k  and 
y

k  for each reference wave and the topological charge of 

each vortex must be determined. This is because the sign of the vortex determines the form of 

the equation used to calculate the phase, and the sign of 
x

k  and 
y

k determines the value of the 

coefficients of xɶ  and yɶ  . These steps can be bypassed by using a priori knowledge of the 

object, e.g., an object with refractive index greater than unity results in a positive sign in the 

phase shift, as a consequence of the retardation of the wave as it passes through the medium. 

If it is necessary to determine these parameters, the sign of 
x

k  and 
y

k  for each reference arm 

and the topological charge of the vortex sublattice can be experimentally measured using the 

method outlined in Ref [22]. 

The spatial resolution of the technique is determined by the spacing of the vortices in the 

lattice, which increase as the angle that each wave-vector makes with the z-axis increases; this 

allows the spatial resolution to be tuned. However, increasing the vortex density too much 

results in aliasing, which can lead to inaccurate vortex localization. Changing the relative 
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angles between the transverse wave-vectors can also be used to increase sampling, as this 

affects the geometry of the lattice, e.g., a hexagonal lattice geometry occurs when the angle 

between each wave-vector is 120� , whilst a rectangular geometry occurs when two wave-

vectors are orthogonal. This could also be used as an alternative to phase stepping, obviating 

the need for wave plates; in this case the relative angles between wave-vectors can be changed 

for each image. The changing lattice would result in a shift of the vortices and therefore 

sample more of the object. 

 

Fig. 5. Experimental results for the wing of a fly. (a) Experimental three-beam interferogram of 

the fly's wing. (b) Recovered phase of the fly wing using Eq. (7). (c) Recovered phase using 

the Takeda method [5]. (d) The unwrapped phase in (b). The greyscale in (b) and (c) is 

[ / 2, / 2]π π−  from black to white. 

An advantage of using vortex interferometry for phase retrieval is its robustness in the 

presence of noise. Because the method uses a real space calculation, the power spectrum of 

the noise has little or no effect on the reconstruction. In this case, noise only affects the vortex 

localization itself, since small variations due to noise may either lead to false detection of a 

vortex or inaccurate localization of the vortex points. However, the noise will have a 

significant effect on the interferogram, since shot noise is reduced for low intensity regions, 
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such as areas in the vicinity of the vortex core. These effects can be significant if the vortex 

lattice spacing is small and the intensity “blobs” in Fig. 3 are under-sampled. 

6. Conclusion 

This paper presents a new method of phase determination in interferometry. By interfering 

three plane waves, a uniform vortex lattice is generated. Distortions in this lattice due to phase 

shifts induced in the object wave have been shown to be related to the position of each vortex 

in the interference pattern (see Eqs. (5) and (7)). Localizing each vortex in the lattice allows 

for the phase to be algebraically calculated. The technique has been demonstrated on a 

spherical lens and a house fly’s wing. Both objects show good agreement with existing 

Fourier methods. An advantage of the presented technique is its robustness to noise and its 

capacity to reconstruct the phase locally. 
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An aberration corrected electron microscope is used to create electron diffraction catastrophes,

containing arrays of intensity zeros threading vortex cores. Vortices are ascribed to these arrays using

catastrophe theory, scalar diffraction integrals, and experimentally retrieved phase maps. From measured

wave function phases, obtained using focal-series phase retrieval, the orbital angular momentum density is

mapped for highly astigmatic electron probes. We observe vortex rings and topological reconnections of

nodal lines by tracking the vortex cores using the retrieved phases.

DOI: 10.1103/PhysRevLett.110.033901 PACS numbers: 42.30.Rx, 05.45.�a, 41.85.�p, 68.37.Og

Quantized vortices in propagating electron waves are of
interest for electron wave- function phase mapping, since
in-line holography approaches can fail in the presence of
these wave front dislocations [1]. In this context, electron
vortices were theoretically shown to arise from the trans-
mission of fast electrons through an atomic lattice [2].
Recent experiments have shown how electron vortices
may be produced and controlled. For example, cleaved
steps of graphite films can act as approximate spiral phase
masks, giving rise to dislocations in electron biprism inter-
ference fringes, thereby producing vortices [3]. It has been
suggested that these screw-type phase singularities may be
ubiquitous for specimens with heterogeneous thickness
variations on the nanoscale [3]. However, our simulations
of carbon phase objects with such thickness variations
suggest that specimen geometry is important and that elec-
tron vortices are not readily produced. The coherent super-
position of distorted plane waves is expected to give rise to
vortices. By analogy with three-wave interference in light
optics [4], we expect to experimentally observe electron
vortices for Bragg diffraction from crystalline specimens.
Indeed, in biprism interference patterns from crystalline
specimens, one can find examples of forked dislocations
[5], which are signatures of quantized phase vortices.
Similarly, the hallmarks of three-wave electron interfer-
ence (which is a classical method for vortex production
[6]) are evident for three-beam electron diffraction from
crystals [7–10]. Recently, controlled vortex beams were
demonstrated using micron-scale forked masks in a trans-
mission electron microscope (TEM) [11,12].

Electron vortex beams open up new avenues for reveal-
ing specimen properties on the nanoscale. For example,
Verbeeck et al. [11] exploited the orbital angular momen-
tum (OAM) in a vortex beam to create a dichroic effect for
2p1=2 ! 3d and 2p3=2 ! 3d inelastic transitions in Fe.

Related experiments for subnanometer spatial resolution
have since been explored using spiral masks [13] and
forked masks placed in the illumination aperture of the

TEM [14]. It seems plausible to associate electron beams
that contain vortices with probes that can promote the
exchange of OAM. However, Berry [15] has cautioned
against a direct association, demonstrating that OAM is
not precisely connected with the presence of vortices in
general. Nevertheless, the OAM density can vary signifi-
cantly across an electron beam containing vortices. For
light optics, astigmatism aberrations can impart significant
OAM onto Gaussian beams [16].
Quantized phase vortices have also been studied inten-

sively in visible light optics [17–19], x-ray optics [20], for
microwaves [21], and acoustics [22]. For optical wave fields
it is known that diffraction catastrophes [23] give rise to
caustics. Diffraction catastrophes are generic to optical
wave fields and are stable with respect to perturbations;
i.e. they persist upon continuously varying aberrations,
such as free space propagation, maintaining recognizable
shapes such as linear ‘‘folds’’ or pointed ‘‘cusps’’ [23,24].
Diffraction catastrophes and phase discontinuities generally
form in the focal volumes of lenses with aberrations [25,26].
Berry et al. [17] demonstrated the elliptic umbilic catastro-
phe using a triangular lens formed by water. Further, it was
shown that the associated diffraction detail can be accu-
rately approximated using superposition of plane waves,
which create a lattice of phase vortices. The generation of
vortex lattices by the superposition of three plane waves
[4,6], or distorted spherical waves [27], has been studied in
wave optics and, more recently, in Bose-Einstein conden-
sates [28,29]. The analysis of umbilic and cusp catastrophes
by Berry et al. [17] demonstrates that vortical wave fields
can be formed by lenses with aberrations.
Optical caustics formed by primary aberrations have been

widely recognized since the pioneering work of Nijboer and
Nienhuis [30–32]. Caustics arising from lens aberrations in
the TEM have also been characterized theoretically using
geometric optics [33]. Primary aberrations can induce dif-
fraction catastrophes; in particular, the umbilic foci for
astigmatism and coma have been shown to be hyperbolic
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[34]. Caustics are routinely observed when TEM illumina-
tion apertures are removed to include electron trajectories
deflected through large angles. These rays do not produce
significant interference effects in the probe intensity, since
the removal of probe-forming apertures degrades the spatial
coherence, which would seem to exclude the possibility of
observing phase dislocations arising from diffraction cata-
strophes. However, partial coherence can be improved if
small illumination apertures are used. Diffraction catastro-
phes can then be explored by imposing significant probe
forming aberrations to disturb the point focus and create
severely distorted coherent electron probes.

We have conducted experiments to produce and manipu-
late electron vortices in the specimen plane of a TEM,
employing lens aberrations to create diffraction catastro-
phes. We used a Titan3 80–300 TEM (FEI) that provides
dual aberration correction (CEOS GmbH) of both the
illumination and imaging lenses. Operating at an accelera-
tion voltage of 300 kV, imaging lens aberrations were
corrected to third order and the microscope was set up in
the bright field imaging mode to minimize the semiangle
subtended by the field emission gun source. A 10 �m
condenser aperture was selected; the resulting intensity
distribution was a small yet parallel probe. By adjusting
the condenser lenses, the illumination was focused in the
specimen plane to produce a far-field diffraction pattern of
the circular condenser aperture in the form of Airy rings.
The circular symmetry of these rings was then broken by
increasing twofold condenser astigmatism, producing a
sharp (subnanometer) line focus streaking along one direc-
tion. Through-focus propagation of the resulting distorted
electron probe, using the imaging lens, revealed the pres-
ence of four umbilic foci, which outlined the caustic of the
probe. The electron probe cross section and decorating
diffraction detail maintained form as the probe was imaged
throughout the focal series. This observed persistence of
form and stability under perturbations is a key aspect of a
diffraction catastrophe.

Figure 1(a) shows the logarithm of an astigmatic experi-
mental electron probe imaged near one of the line foci.
Figure 1(b) shows the same probe imaged several hundred
nanometers further along the optic axis. Since the electron
optical configuration was chosen to optimize the spatial
coherence, the diffraction pattern was quite dim.
Accordingly, the acquisition times were 100 s per probe
pattern. Comparing Figs. 1(a) and 1(b), the stability of the
umbilic features with respect to smooth variation of the
electron wave (changing focus) implies the formation of a
diffraction catastrophe. Electron trajectories make very
small angles with the optic axis and we can assume para-
xial imaging conditions. If we further ignore chromatic
aberrations or the spread of energies in the electron source,
we can utilize the diffraction theory of aberrations based
upon the Huygens-Fresnel principle [35]. To this end, we
consider the condenser lens aberrations as modifying the
optical path lengths of spherical waves originating from a
circular aperture Aðx; yÞ. Fresnel propagation from the

aperture plane describes the electron wave at a distance z
along the optic axis, downstream from the aperture:

�ðx; y; zÞ
¼ Sðx; y; R2ÞF�1fF½Aðx; yÞSðx; y; R1Þeð2�i=�ÞCðx2þ3y2Þ�

� e�i��zðq2xþq2yÞg; (1)

where qx and qy are the Fourier coordinates conjugate to

the Cartesian aperture-plane coordinates x and y,�ðx; y; zÞ
is the scalar wave function and � is the wavelength. The
symbols F and F�1 in Eq. (1) denote forward and inverse
Fourier transforms, respectively. Primary astigmatism in
the aperture plane is parametrized by the coefficient C
using the polynomial form given by Kingslake [36]. The
function Sðx; y; R1Þ models the electron source as a simple
spherical wave in the paraxial approximation with radius
R1, which numerically serves to condense the wave within
an image array of fixed size [37]. The spherical wave
Sðx; y; R2Þ removes residual scaling of �ðx; y; zÞ after
propagation. Adjustment of the free parameters in Eq. (1),
namely, C and R1, produced excellent agreement between
the experimental results in Fig. 1(a) and the theoretical
predictions in Fig. 1(d).
The intensity logarithm and phase calculated from the

diffraction integral in Eq. (1) are shown in Figs. 1(d) and 1(e),
respectively. Between the umbilic foci in Fig. 1(d), sponta-
neously nucleated phase vortices decorate the outer edges
of the caustic and some are within the interior, where
intensity zeros occur in Figs. 1(a), 1(c), and 1(d). Several
minima within the umbilic foci in Fig. 1(a) contain inten-
sity zeros, which is consistent with the creation of electron
vortices. However, none of the minima inside the caustic in
Fig. 1(b) correspond to intensity zeros, in agreement with
diffraction integral calculations. Figure 1(f) shows a five-
pixel wide line plot of the intensity shown in Fig. 1(c). This

(f)(e)(d)

(c)

1 nm5 nm5 nm

(b)(a)

FIG. 1. (a) Experimental intensity (logarithm) near a line focus
caused by condenser astigmatism. (b) Experimental intensity
(logarithm) at a defocus half way between two line foci.
(c) Enlarged experimental intensity for the leftmost umbilic
focus in (a). (d) Logarithm of the caustic intensity computed
from Eq. (1). (e) Corresponding phase computed from Eq. (1),
exhibiting an array of phase vortices. (f) Five-pixel wide line
plot measured from (c) showing interior intensity zeros threading
vortex cores.
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line plot confirms the presence of intensity zeros near the
line focus, inside the caustic. The observation of intensity
zeros is a necessary condition for the existence of vortices.

The Titan3 80–300 TEM (FEI) provides sensitive con-
trol over lens aberrations; however, strong excitation of
corrector lenses leads to parasitic aberrations and it is
difficult to apply pure aberrations. To model probe cross
sections accurately, it is generally necessary to characterize
and account for a multitude of probe forming and imaging
lens aberrations [38]; yet in Eq. (1) we have only included
primary astigmatism. The detailed agreement between
experiment and theory is a consequence of catastrophe
theory, in that the umbilic foci represent structurally stable
forms of the electron wave. To further validate this obser-
vation, astigmatism was minimized and the probe corrector
was adjusted to induce primary coma, since the form of this
aberration function produces the hyperbolic umbilic catas-
trophe [34]. Three basic examples of caustics with varying
coma, collected using exposure times of 5 s per diffraction
pattern are provided in the Supplemental Material [39],
showing excellent agreement with earlier observations of
caustics reported in coherent light optics [32,40]. To
explore the coma induced diffraction catastrophe, the
coma caustic was further enlarged by increasing the size
of the condenser aperture to 150 �m, which diminished
the contrast of the pattern. To compensate for the reduced
coherence, the first condenser lens was excited to the
maximum nominal setting after which the fringe contrast
increased significantly. Additional coma caustics were then
recorded using multiple frames (ten) and shorter exposures
(3 s per frame) to offset residual beam drift.

Figure 2 compares experiment with both catastrophe
theory for the hyperbolic umbilic and the diffraction inte-
gral for the coma aberration. The experimentally measured
intensity in Fig. 2(c) is an average of 50 images, each
exposed for 1 s and then postaligned with respect to each
other. The horizontal line in Fig. 2(c) marks a single-pixel
wide line plot, which is displayed in the Supplemental
Material [39], showing significant fringe visibility and an
array of intensity zeros. For Fig. 2(d), 10 images were
acquired for 3 s, postaligned and averaged. Arrays of
intensity zeros were also observed at this defocus setting,
which was nominally 100 nm from that shown in Fig. 2(c).
The logarithm of the intensity in Fig. 2(d) compares well to
that of the hyperbolic umbilic catastrophe in Fig. 2(a) and
the diffraction integral intensity logarithm in Fig. 2(e). The
hyperbolic umbilic diffraction catastrophe is described by

�ðx; y; zÞ ¼
Z 1

�1

Z 1

�1
eiðs31þs3

2
�xs1�ys2�zs1s2Þds1ds2 (2)

where s1 and s2 are the relevant state variables [34] and the
wave function �ðx; y; zÞ is computed at focal depth z and
plotted in the plane spanned by (x, y). Equation (2) was
evaluated numerically with the coordinates x, y normalized
by the number of pixels, to span �30 dimensionless units
over 512� 512 pixels. The integration variables s1, s2
were truncated to �3:5 and incremented in steps of 0.014

dimensionless units. The wave function�ðx; y; zÞ was then
cropped to 256� 256 pixels to approximately match the
field of view of the experimental data. The phase of
�ðx; y; zÞ, determined from Eq. (2), is shown in Fig. 2(b),
where arrays of phase vortices decorate the interior and
outer portions of the coma caustic. Similar vortices are
evident in Fig. 2(f), which was computed using the dif-
fraction integral:

�ðx; y; zÞ
¼ Sðx; y; R2ÞF�1fF½Aðx; yÞSðx; y; R1Þeð2�i=�ÞByðx2þy2Þ�

� e�i��zðq2xþq2yÞg; (3)

where all symbols in Eq. (3) are identical to those in Eq. (1)
except for the coefficient B, which parametrizes the degree
of coma [36]. This parameter was varied until the caustic
intensity pattern visually matched the experimental data.
Electron phase maps were experimentally determined

from a through-focus series of images using the Gerchberg-
Saxton-Misell phase retrieval algorithm [41–45] (for
details, see the Supplemental Material [39]). Objective
lens defocus was calibrated using power spectra of experi-
mental images using the DIFFTOOLS suite of scripts [46].
Figure 3(a) shows the logarithm of the retrieved intensity
for the first image in the through-focus series for the
astigmatism caustic. Comparing Fig. 3(a) and 1(b), it is
evident that most of the diffraction detail was captured by
the retrieval algorithm, although the intensity minima are
not as distinct. The retrieved phase map in Fig. 3(b) has a
similar form to that in Fig. 1(e). Propagation of the recon-
structed wave over many focal planes correctly predicted a
pair of mutually orthogonal sharp line foci, as well as
preservation of the caustic shape and diffraction detail
with varying focus, all of which were observed in our
experiments. Transverse current densities were computed

(a) (b) (c)

(d) (e) (f)

2 nm

2 nm

FIG. 2. (a) Logarithm of the intensity calculated using diffrac-
tion catastrophe theory. (b) Phase of the diffraction catastrophe
showing a distorted lattice of vortices and antivortices.
(c) Experimental intensity of coma caustic near the diffraction
focus. (d) Logarithm of the experimental intensity nominally
100 nm away from the diffraction focus. (e) Logarithm of the
coma caustic intensity computed from the diffraction integral in
Eq. (3). (f) Phase of the coma caustic from the diffraction
integral in Eq. (3).
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from the retrieved waves (see Supplemental Material [39]).
The phase and current density vectors were rendered using
software scripts based upon the algorithms of Mitchell and
Schaffer [47].

Figure 3(c) shows the retrieved intensity logarithm for the
first image in a through-focus series for the coma caustic.
Vortices are seen to decorate the exterior of the coma
caustic, with several inside the caustic shown in Fig. 3(d).
Again, the intensity minima are not as distinct when com-
pared to the experimental input. Nonetheless, the recon-
structed wave reproduced much of the detail observed
in the experimental images over the entire focal range.
Figures 3(e) and 3(f) show the experimentally measured z
component of the OAMdensity, determined for the retrieved
wave function about a central cross section of the astigma-
tism caustic, displayed in SI units of 1:0� 10�16 kg s�1 per
electron. The root mean square value of the OAM density in
Fig. 3(f) is 0:15@ nm�2. The OAM density in Figs. 3(e) and
3(f) varies significantly across the beam, which is analogous
to the optical interferometry measurements of Courtial et al.
[16] for elliptical Gaussian beams. The small boxes shown
in Figs. 3(e) and 3(f) have side lengths of 0.7 nm, within
which the integrated OAM per electron is 42@ and 35@,
respectively. Within both boxes, the corresponding average
probability densities are greater than 75% of the maximum
intensity over the entire field of view.

Using the reconstructed experimental wave functions,
vortices were tracked throughout a propagated focal series
comprising 20483 points and detected by measuring points
of nonzero circulation in two-dimensional phase maps.
Arrays of tracked vortices were represented as small
spheres [48] and are shown in the Supplemental Material
[39]. The vortex tracks exhibited fine detail, such as Kelvin
waves along nodal lines and vortex loops. The observed

nodal line instabilities were possibly due to wave pertur-
bations from residual aberrations in the experiment, since it
is known that additional plane waves can warp the structure
of nodal lines in three-wave vortex lattices [49]. In accor-
dance with known results in light optics [19], we also
observed vortex loops in diffraction integral calculations,
using Eqs. (1) and (3), which portrayed similar structures
to nodal lines computed from the experimentally retrieved
wave functions. In light optics, entire arrays of nodal loops
can be formed from the superposition of four plane waves
[19]. At the other extreme, tangled vortices and nodal loops
can exist in self-similar speckle fields created by a ground
glass screen, where the vortex lines possess a fractal struc-
ture [50]. In the context of catastrophe optics, nodal loops
have been identified and studied in the hyperbolic umbilic
diffraction catastrophe [51]. For our retrieved wave func-
tions, we examined particular nodal lines in detail by crop-
ping out all tracks except those in the subregions marked in
the phase maps of Figs. 3(b) and 3(d). The electron vortex
loop from the coma caustic in Fig. 4(a) shows nodal line
excitations and Crow-like instabilities [52], apparently
initiating dissociation into several vortex loops.
The colored plane in Fig. 4(a) shows the phase windings

around adjacent sides of the loop, which highlight vortices
of opposite topological charge. Figure 4(b) shows three
electron vortices represented as intensity iso surfaces,
which are adjacent to the umbilic focus of the astigmatism
caustic shown in Fig. 3(b).
In conclusion, we have induced electron diffraction

catastrophes, thereby creating distorted lattices of sponta-
neously nucleated electron vortices, using an aberration
corrected electron microscope. We have demonstrated
that phenomena, such as Crow-type nodal-line instabilities
and nonlinear effects, such as pair creation or annihilation,
can be measured for matter waves that obey a linear wave
equation. Our singular electron optics observations closely(a)  (c) (e)

(b) (d) (f)

5 nm 2 nm 5 nm

5 nm

1.0

-1.0

0.0

1.0

-1.0

0.0

FIG. 3 (color). (a) Logarithm of the reconstructed intensity for
the first image in the through focus series of astigmatic images.
(b) Corresponding retrieved phase with vortices surrounding the
caustic. (c) Logarithm of the reconstructed intensity for the first
image in the through focus series of five coma images.
(d) Corresponding retrieved phase. (e) The z component of the
orbital angular momentum density for the retrieved astigmatism
caustic wave function near one line focus, and (f) a defocus
between the two line foci.

FIG. 4 (color). (a) Electron vortex loop observed in the interior
of the coma caustic in Fig. 3, where the color-coded phase map
shows a vortex-antivortex pair, which nucleates and annihilates
at specific points along the optic z axis. (b) Vortex lines punctur-
ing the image plane for the astigmatism caustic of Fig. 3(b); the
color-coded part represents the intensity.
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parallel experimental and theoretical findings in light op-
tics and thereby raise the possibility of creating topologi-
cally knotted electron waves [53]. Using experimentally
retrieved electron wave functions, we have also mapped
the OAM density per electron for astigmatic wave fields.
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Measurement of the Gouy phase anomaly for electron waves
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We measure the Gouy phase anomaly for matter waves using in-line holography to retrieve the full complex
field of an astigmatic electron wave function. Sequential phase shifts of π/2 rad are observed for electron
trajectories along the optic axis that pass through each line-focus caustic of subnanometer transverse width. Our
observations demonstrate that anomalous phase shifts of matter waves in the vicinity of caustics can be robustly
measured using phase retrieval, extending the current scope of singular electron optics.
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I. INTRODUCTION

The Gouy phase anomaly [1], which describes the ad-
ditional phase shift accumulated by a wave packet upon
focusing, has been of fundamental interest in light optics
for more than a century, and the diverse literature on this
phenomenon continues to grow. Understanding, measuring,
and ultimately exploiting the Gouy phase in a variety of
experimental contexts is crucial for the development of
particular optical technologies. For example, the rotation of the
Poynting vector in Laguerre-Gauss beams is proportional
to the Gouy phase [2]. Applications that exploit the phase
anomaly include visible-wavelength super-resolution [3], sub-
wavelength terahertz (THz) imaging [4], ultrashort laser pulses
[5], single nanoparticle interferometry [6], and astigmatic
mode conversion [7]. Use of the Gouy phase in this latter
situation has been demonstrated for vortical electron beams
[8]. In light optics, the rotation of topological defects in
Laguerre-Gauss beams [9] has been used as a means to study
Gouy phase effects. Such rotations were recently measured
and were demonstrated for matter waves in a transmission
electron microscope (TEM) [10].

Gouy’s original observations were made using mirrors and
white-light interferometry [1,11]. Visible-light lasers have
since been used to measure the effect [12]. Measurements
of the Gouy phase for cylindrically focused waves were
reported in visible-light optics [13] where the anomaly was
generalized for astigmatic wave fields [14]. Specifically, Visser
and Wolf [14] derived the following expression for the on-axis
Gouy phase anomaly δ(u) for a scalar wave diffracted from
an aperture of size a, focused by an astigmatic lens of focal
length f with coefficient of astigmatism A0,

δ (u) = arg

[∫ 1

0
ei[(kA0−u)ρ2/2]ρJ0(kA0ρ

2/2)dρ

]
− π

2
,

(1)

where J0 is a zeroth-order Bessel function of the first kind and
the integration variable ρ is dimensionless. The parameter u

is proportional to the distance z along the optic axis according
to u = 2π (a/f )2z/λ, where λ is the wavelength and k is

*Corresponding author: timothy.petersen@monash.edu

the wave number. Equation (1) describes two sequential Gouy
phase shifts of π/2 rad along the optic axis, associated with a
pair of mutually orthogonal line foci, separated by �u = 2kA0

(see Fig. 1).
Refracting objects can act as natural lenses and inherently

can give rise to Gouy phase shifts. For example, near the focal
point of a light-scattering microsphere, the phase anomaly has
been retrieved using a modified Hartman wave-front sensor
[15]. The Gouy phase has also been measured in other contexts,
such as the local expansion of adjacent intensity minima in
standing microwaves [16], time-resolved THz pulses [17], and
the cylindrical focusing of phonon-polariton wave packets in
Raman scattering [18].

Recently, experiments were proposed for measuring the
Gouy phase in matter waves, such as coherent atomic beams,
using cylindrical focusing of Rydberg atoms [19]. Inspired by
this proposal, we have measured the Gouy phase for astigmatic
electron matter waves using phase retrieval [20,21]. Aberration
correction lenses in a TEM were used to induce astigmatic
pairs of line foci with transverse cross sections narrower than
1 nm, separated by more than 1 μm along the longitudinal
optic axis. Through-focal series of images were used to retrieve
the wave-function phase; the Gouy anomaly through each line
focus was measured by propagating the retrieved electron wave
function.

II. EXPERIMENT

Figure 1 shows a schematic of the experiment where
electron matter waves diffracted by a circular aperture are
focused by an astigmatic lens, which produces a caustic
volume containing a pair of mutually orthogonal line foci
at different points along the optic axis in the vicinity of the
backfocal plane of the aberrated lens.

With a small 10-μm condenser aperture, a thin disordered
carbon specimen was used to correct the aberrations in the
imaging lens on a Titan3 80-300 (FEI) aberration-corrected
(CEOS GmbH) TEM, operating at 300 kV. Without fully cor-
recting aberrations in the probe-forming lenses, the condenser
system was configured to produce a small yet parallel probe,
and the first condenser lens was adjusted to about half the
maximum nominal setting. Airy rings were observed upon
convergence of the electron probe in the imaging plane after
which the probe-corrector stigmator coils were then grossly
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FIG. 1. Schematic of electron matter waves diffracted by a
circular aperture and focused by a lens with astigmatism. The Gouy
phase anomaly describes the variation in the electron wave phase
along the longitudinal (vertical) optic axis, through the transverse
center of the aberrated focal volume as compared to the linear
variation of phase predicted by geometric optics. A thin specimen
is used to correct imaging lens aberrations with a parallel probe, prior
to the imposition of astigmatism in the illumination and focusing of
the probe in the specimen plane. The parameter u is proportional
to the distance along the optic axis as described in the paragraph
containing Eq. (1).

excited to produce an astigmatic line focus of subnanometer
width. Defocusing of the imaging objective lens revealed
another mutually orthogonal line focus about 1.5 μm farther
along the optic axis. A micron-sized hole in the specimen was
found so that images of electron probe cross sections could be
observed in the absence of scattering. Using 100 s acquisition
times, a focal series of 12 images was collected at points along
the optic axis between the two line foci, using nominal defocus
increments of 60 nm.

The electron phase was retrieved using the Gerchberg-
Saxton-Misell algorithm [20,21], which propagates a paraxial
wave between focal planes and replaces wave intensities
with those measured in experiment. Starting with an initial
phase estimate, iterations of this process can retrieve the wave
function with transverse probability distributions that are con-
sistent with experimental observations. Although alternative
approaches exist, this algorithm was employed to reliably
handle intensity zeros surrounding caustic cross sections as
well as possible phase vortices [22,23], which arise in the
focal volumes of lenses with aberrations [24,25]. To increase
the signal-to-noise ratio, all images were down-sampled
from 2048 × 2048 pixels to 256 × 256 pixels. For improved
robustness to noise, propagated waves were averaged in a fixed
plane with each iteration using the approach of Allen et al. [23],
but excluding the effects of partial coherence. Despite these
measures and the long exposure times used to acquire the
experimental intensities, the propagated intensities failed to
converge towards experiment and the phase-retrieval algorithm
stagnated. Some features, such as the caustic shape and blurred
line foci, were retrieved; yet after thousands of iterations, the
consistency of the wave function intensities with experiment
was not satisfactory, even on a qualitative level. To deal with
this, we approximated the caustic using a diffraction integral

to compute the astigmatic wave function, which was then used
to seed the initial phase in the retrieval iterations. Furthermore,
the retrieval algorithm was modified to exclude the fitting of
intensities far from the caustic where the experimental data
contained only noise and were devoid of phase information.
This was achieved in a systematic manner by iteratively
replacing only those pixels where the experimental intensity
was above one standard deviation of the intensity, measured
in a region far from the caustic. Satisfactory convergence of
propagated intensities towards the experimental input was then
achieved after 103 iterations. To improve the spatial resolution
of diffraction detail within the caustic, the retrieved wave
function was then resampled to 1024 × 1024 pixels and was
used to seed a further 103 iterations with the experimental data
down-sampled to the same number of pixels.

III. ANALYSIS

In principle, any in-line holographic method can be used
to reconstruct a desired monochromatic scalar wave function,
provided that the solution reproduces the experimental data
when propagated between focal planes. Allen et al. [23] define
a sum-squared error (SSE) to characterize the convergence
for iterative phase retrieval, which has the form SSEj =
��(

√
Iexp − √

Irec)2/��Iexp, where the double sums are
over all pixels in the j th experimental intensity Iexp and
reconstructed intensity Irec. The average of SSEj over all N

images in the focal series defines an averaged sum-square
error: SSEav = �SSEj /N . Over the entire field of view for
all 12 images in the focal series, the caustic reconstruction
converged to SSEav = 5.6 × 10−2. For all pixels with intensity
above the threshold used for iterative replacement, the error
metric was measured to be SSEav = 1.4 × 10−2.

Figure 2 shows the phase-retrieval results for the astigmatic
caustic. Figure 2(a) shows the retrieved phase of the propagated
wave function at a focal distance in-between the two line

FIG. 2. (a) Retrieved electron phase map at a focal distance in-
between the two astigmatic focal lines. (b) Corresponding propagated
intensity. (c) Experimental intensity distribution at the same focal
distance. (d) Retrieved electron phase map near one of the astigmatic
focal lines. (e) Corresponding propagated intensity. (f) Experimental
intensity distribution at the same focal distance. The arrow in (b)
highlights an outlying discrepancy in the retrieved probability density,
discussed in the main text.
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FIG. 3. Experimentally retrieved on-axis phase (dashed curve)
for a focused astigmatic matter-wave field compared with the Gouy
anomaly theory predicted by Visser and Wolf [14]. Two sequential
phase shifts of π/2 rad occur at each line focus due to the Gouy
anomaly. Parameters required for the theory given by Eq. (1) were
measured from the experimentally retrieved intensity distributions
alone.

foci with the corresponding retrieved intensity in Fig. 2(b),
which compares favorably with the experimental data in
Fig. 2(c). Figure 2(d) shows the retrieved phase near one
of the line foci with the associated retrieved intensity in
Fig. 2(e) compared to the experimental data in Fig. 2(f).
Close inspection of Fig. 2(f) indicates that the left cusp is
clipped since this region was outside the field of view of the
CCD used to capture the unprocessed experimental data. This
explains the outlying discrepancy labeled in Fig. 2(b), which
arose because the intensity in this region was unconstrained
and the clipping of the experimental data is an unphysical
artifact. Figures 2(e) and 2(f) also show good agreement,
thereby demonstrating satisfactory convergence of the iterative
phase-retrieval algorithm, which is consistent with the small
value of SSEav.

Using the retrieved wave function, the centers of the phase
maps were tracked by propagating the electron wave in steps of
30 nm along the optic axis. The positions of the sharp line foci
in the transverse intensity distributions were used to accurately
determine the optic axis position, along which the retrieved
on-axis phase was then plotted, as shown by the dashed profile
in Fig. 3. The solid-line profile in Fig. 3 was calculated from
Eq. (1). Apart from the electron wavelength, three additional
parameters were required for the computation, namely, the
effective aperture size to focal length ratio a/f , the coefficient
of astigmatism A0, and the position of the line foci. All of these
parameters were robustly determined from the intensities of
the experimentally retrieved wave function by computing the
Heisenberg uncertainties �x(z) and �y(z). Away from the line
foci, �x(z) and �y(z) behave asymptotically as T |z|, where
T is a constant representing the gradient of the uncertainty as
a function of the distance z. Each measured value of T was
averaged to determine A0 using Eq. (1) with a/f ∼= 2T [14].
Both phase profiles contain an arbitrary vertical offset, which
we have systematically chosen so that the on-axis variations
approach zero in-between the two line foci.

The experimental on-axis phase profile in Fig. 3 follows
the theory of Visser and Wolf [14] closely; in particular, the
slopes and horizontal positions of the rapid phase variations
near each line focus match. Some differences are evident
between the undulations in Fig. 3, which are sensitive to the

effects of diffraction. These discrepancies could be ascribed
to systematic errors in the phase retrieval. However, we expect
differences on account of the fact that large excitation of
the TEM stigmator coils does not produce pure twofold
astigmatism but, rather, an astigmatic beam with a pair of
line foci, which is also perturbed by coma and higher-order
aberrations.

In addition to the scalar diffraction theory of focused
paraxial waves, a variety of interpretations exist for the Gouy
anomaly. One persistent theme is the idea that the Gouy effect
arises from fluctuations in the transverse momentum, induced
by variations in the uncertainty of the beam at different focal
points along the optic axis [26–28]. For Gaussian beams,
the variation in the standard deviation is characterized by
the evolution of the beam waist, and the transverse intensity
distribution maintains the same shape at different points along
the optic axis [11]. Accordingly, the Gouy phase evolves along
the optic axis, varying most rapidly near the focus and more
abruptly for smaller beam waists. Borghi et al. [29] have
theoretically demonstrated a “universal form” of this Gouy
phase variation for a wide class of such shape-invariant beams.
The caustic shapes and standard deviations of other beams,
such as those formed by astigmatic lenses, are not shape
invariant and are nontrivial with interference phenomena more
readily described by catastrophe optics [30–32]. We performed
another experiment to demonstrate the three-dimensional
nature of this standard deviation, organized by the diffraction
detail within an astigmatic volume. Similar illumination con-
ditions were chosen, with the exception of the field-emission
gun lens, the strength of which was halved, thereby increasing
the probe intensity to reduce the Poisson noise in recorded
images. Thirty-two images were then acquired using 100-s
exposures and nominal defocus increments of 80 nm. These
images were stacked to create a tomogram of the matter-wave
probability density. Figure 4 shows a false-color isosurface of

FIG. 4. (Color) Electron probability density measured from a
through-focus series of 32 images, which were stacked along the
vertical direction and were interpolated. The uncertainties along two
transverse directions, orthogonal to each line focus, were calculated
from each image. The paraxial electron wave evolves slowly along
the optic axis as evidenced by the 10-nm transverse scale bar, which
is to be contrasted with the micron-scale focal range along the vertical
axis.
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the tomogram, which was rendered using the VOLUME VIEWER

plug-in for IMAGEJ [33,34]. The accompanying Heisenberg
uncertainties were measured along directions orthogonal to
the line foci and fall to a minimum at each line focus. These
plots and other image-processing operations were performed
using the scientific data analysis package DIFFTOOLS [35].

Diffraction effects, due to the finite electron wavelength
and the uncertainty principle, prevent the uncertainties from
reaching zero in Fig. 4 where the Gouy anomaly varies most
rapidly. The entire tomogram of the electron probability den-
sity can be viewed as a richly detailed three-dimensional in-line
hologram. Several transverse sections of such a volume, which
encode the holographic information, enabled the complex field
of the matter wave to be retrieved to yield the Gouy anomalies
shown in Fig. 3.

IV. CONCLUSION

To summarize, we have measured the Gouy phase anomaly
for astigmatic matter waves using electron wave-function
phases inferred from experimental intensities. Successive
Gouy phase shifts of π/2 rad were observed for fast electrons

traveling along the optic axis, passing through two subnanome-
ter lines of focus. These longitudinal phase variations were
compared with wave optics theory, and consistency with
experiment was demonstrated. With singular electron optics
in its infancy, opportunities exist to extend these findings
and to explore quantized phase changes of matter waves in
more general settings, such as discrete phase changes for
rays that touch caustics, which are characterized by Maslov
indices [36,37].
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We provide a unified description of the Gouy phase anomaly, highlighting the pivotal role of local fluctuations
in transverse momentum and quantal phase changes associated with electron trajectories that touch caustics.
Using arguments based on wave optics, at the interface between classical and quantum mechanics, we derive
the magnitude of the quantized Gouy phase changes for scalar waves. Our analysis unifies disparate descriptions
of the Gouy anomaly within a single theoretical framework. In particular, we find that the phase anomaly
connects Maslov indices, quantal Berry phases, Heisenberg momentum fluctuations, and confinement-induced
Lévy-Leblond phase shifts.
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I. INTRODUCTION

For over 100 years, Gouy’s quantized phase changes in-
curred by focused rays [1] have resisted intuitive interpretation
with many accurate, yet contrasting, theoretical descriptions
detailed in the literature. The phase anomaly has been derived
from diffraction integrals describing aberrations in scalar light
optics [2,3]. For converging spherical waves diffracted by a
circular aperture, the total phase excursion along the optic
axis differs from that predicted in ray optics by π rad [2].
For converging astigmatic waves, a phase anomaly of π/2
rad is incurred for each line focus [3]. By focusing annular-
shaped and collimated laser light, Gouy phase variations have
been found to occur in the focal region where diffraction is
suppressed in such beams [4]. Gouy phase variations have
also been defined and analytically derived for nondiffracting
Airy beams [5]. Using the vector model of electromagnetic
waves, focused light in high numerical aperture systems has
been studied where three components of the electric field
exhibit different phase anomalies [6]. Nonparaxial and radially
polarized beams have been investigated where noninteger and
even irrational Gouy phases were identified as arising from
discontinuities in the associated pupil function [7]. Substantial
polarization variations in the focal volume of beams with radial
polarization have been attributed to the different Gouy phases
of the electric-field components [8]. For partially coherent
waves, the spectral degree of coherence also exhibits the
Gouy phase [9]. Similarly, for partially coherent x rays, an
on-axis anomaly occurs in the phase of the cross-spectral
density, which measures the evolution of coherence in terms
of correlation functions [10].

Analytical formulations in light optics have been developed
for Gaussian beams [11] where the Gouy phase follows an
inverse tangent function of a scaled distance along the optic
axis. For beams that propagate in free space without changing
shape, this characteristic inverse tangent phase variation has
been derived from wave optics as a “universal form” [12].
From a quantum-mechanical point of view, a phase anomaly
arises for Gaussian beams because the effective longitudinal
momentum is reduced due to transverse confinement of the

*timothy.petersen@monash.edu.au

wave, which increases the spread of the transverse momen-
tum [13]. Indeed, the Gouy phase has been associated with
the uncertainty principle to describe changes in an effective
propagation constant [14,15]. Gaussian beams have also been
used to describe the Gouy anomaly [16] in terms of Berry’s
geometric phase [17,18].

Certain optical devices can collapse rays from all spatial
directions towards a common focal point, from which rays
then diverge [19]. For such wide-angle lenses, a Gouy phase
anomaly protects against an unphysical singularity since the
superposition of converging and diverging spherical waves
must differ in phase by π rad at the focal point in order to satisfy
the wave equation [19]. Such phase shifts more generally
arise on passing through a caustic where singularities occur in
geometric optics as rays overlap [20,21] and are characterized
by Maslov indices [21,22].

Visible light images of high-order Gaussian beams partially
obstructed by an aperture have been observed experimentally
to undergo rotations upon propagation, which can be quantified
directly by the Gouy effect [23], revealing the anomaly without
explicit interferometry. Recently, such Gouy rotations of mat-
ter waves were measured in a transmission electron microscope
(TEM) by studying electron vortex probes, which were created
with micron-sized holographic masks and were cut by a knife
edge [24]. The Gouy phase for astigmatic matter waves has also
been used to induce mode conversion of electron vortex beams,
which was experimentally demonstrated in the TEM [25].
In visible light optics, astigmatic phase anomalies of π/2
rad recently were measured using a modified Mertz-Sagnac
interferometer, quantitatively confirming theoretical predic-
tions in wave optics [3]. Using in-line electron holography,
we recently measured the Gouy phase for astigmatic electron
waves and compared the results to the same theory [26].
Our measurements motivated the current paper, which was
prompted by a desire to ascribe our experimental observations
to the rich variety of physical interpretations detailed in the
literature. For fast electrons obeying the Schrödinger equation,
we sought to unify these different points of view to better
understand the Gouy effect and ultimately identify new ways
in which to measure and exploit the phenomenon.

In this paper, we provide a theoretical analysis of the
Gouy effect to describe quantized phase changes within the
context of focused scalar waves. We begin with a geometric
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construction to visualize the standard deviation of the
transverse probability density of a focused beam and its
evolution along the optic axis. Using this model, we show
that the intuitive notion of the Gouy phase as being induced
by second moments of transverse momentum, measured over
the entire transverse plane, is incorrect. Examination of local
transverse momentum fluctuations in a neighborhood contain-
ing the optic axis leads to quantitative derivations of the Gouy
phase in terms of paraxial waves. Upon further scrutiny, we are
able to connect several disparate interpretations of the Gouy
phase phenomenon within a single theoretical construction.
Specifically, for focused paraxial waves, we relate the anomaly
to statistical fluctuations, a geometric phase, semiclassical
phase changes, and statistical confinement. Although Gaussian
beams are used for certain numerical evaluations, we show
that the quantized on-axis phase variation is independent of
the explicit form of the probability density.

II. THEORY

Figure 1 shows the transverse spread of rays in the vicinity
of a line focus. The solid curves delineate the standard
deviation in the transverse position �x(z), which varies along
the longitudinal optic axis z. The gray dashed curves mark the
asymptotes of the standard deviation �x(z) = ±T |z|, where
T = tan(θ ) is a positive real constant. The curved portion
of the focal region represents the effects of diffraction in
which the dashed boundary, governed by geometric optics, is
broadened to account for a finite wavelength, thereby avoiding
an unphysical singularity for the line focus at z = 0.

For the distribution of ray trajectories defining the angular
range θ , T = tan θ , and the mean transverse position 〈x(z)〉
is zero (enforcing symmetry about the z axis). The dashed
lines define a quadratic variance 〈x2(z)〉 = T 2z2. The angular
brackets refer to averages over the entire transverse plane such
that, for a given function f (x) and probability density P (x),
〈f (x)〉 = ∫ +∞

−∞ f (x)P (x)dx. One simple way to account for
nonzero variance at the line focus is to add a small positive
constant ε so that 〈x2(z)〉 = T 2z2 + ε2. The expression for

FIG. 1. Longitudinal variation in the standard deviation �x(z)
along the optic axis near a focal point. The parameter ε accounts for
the effects of diffraction and the minimum transverse spread in the
electron beam. The minimum spread ε is proportional to the beam
waist for Gaussian beams. For large z, the standard deviation �x(z)
behaves asymptotically as T |z|, where T = tan θ .

the standard deviation �x(z) in the transverse position is now
given by

�x(z) =
√

T 2z2 + ε2. (1)

The spread in the transverse momentum px is constrained
by the Heisenberg uncertainty principle �x�px � �/2. In
terms of the transverse component kx of the wave vector
k = (kx ,kz), de Broglie’s relation gives �kx � 1/(2 �x). Under
paraxial conditions, we have kx = kθ so that the angular spread
�θ defines the spread in kx and Eq. (1) becomes

k�θ = �kx � 1

2
√

T 2z2 + ε2
. (2)

Along the optic axis, the z component kz of k varies
statistically on account of the variation in kx and constant
energy in the waves where |k|2 = k2 = k2

x + k2
z . Averaged over

the transverse axis x, we can define the propagation constant
〈kz〉 in terms of the dispersion in transverse momentum as

〈kz〉 =
√

k2 − 〈
k2
x

〉 ∼= k − 1

2k

〈
k2
x

〉 = k − 1

2k
(�kx)2. (3)

The phase accumulates along the optic axis in accordance
with variations in kz. The phase predicted by ray optics is
the wave number k times the distance along the optic axis.
Upon subtracting this contribution, we can define the average
accumulated phase 〈φ(z)〉 by

〈φ(z)〉 def.=
∫ z

zmin

〈
∂φ

∂z′

〉
dz′ − k

∫ z

zmin

dz′

= k

∫ z

zmin

dz′ − 1

2k

∫ z

zmin

〈
k2
x

〉
dz′ − k

∫ z

zmin

dz′ + C, (4)

where C is an arbitrary constant and zmin is the leftmost point
on the optic axis.

Equations (1), (3), and (4) can be combined, whence,

〈φ(z)〉 � − 1

8k

∫ z

zmin

1

T 2z′2 + ε2
dz′, (5)

where the constant C has been omitted by fixing the average
phase to be zero at the focus.

Taking the limit zmin → −�, the definite integral in Eq. (5)
evaluates to give

〈φ(z)〉 � − 1

8kεT
tan−1(T z/ε). (6)

At the origin, z = 0, the standard deviation �x(z = 0) in
the transverse position is defined to be ε. Assuming that the
angular spread �θ is approximately equal to the semiangle
(θ 	 1), Eq. (2) provides bounds on the constants in Eq. (6),
i.e.,

kθ ≈ k tan θ = kT � 1

2ε
→ εkT � 1

2
. (7)

Equation (6) then becomes

〈φ(z)〉 � −1

4
tan−1(T z/ε). (8)

In three dimensions, the same arguments produce an
additional, but identical, term on the right-hand side of Eq. (5),
which doubles the right-hand side of Eq. (8). On account of
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this inverse tangent variation in z, it is tempting to directly
associate 〈φ(z)〉 with the Gouy phase anomaly. However, this
bound for 〈φ(z)〉 was derived from the minimum product in
the uncertainty principle, which occurs at z = 0 in Fig. 1.
The explicit value of 〈φ(z)〉 for all z can be computed using,
say, the Gaussian beam solution of the paraxial wave equation
either directly or with expectation values of the transverse
momentum through Eq. (4). In either case, we find 〈φ(z)〉 =
−z/(2zR) in two transverse dimensions where zR = πω2

0/λ is
the Rayleigh range for a Gaussian beam with minimum beam
waist ω0 and wavelength λ [27]. Consequently, the transverse
average of the phase is not equal to the Gouy phase anomaly.
Generally, the linear variation in 〈φ(z)〉 is expected from the
paraxial approximation, which requires 〈k2

z 〉 = 0. Hence, we
must have 〈kz〉 = constant so that, by analogy with Ehrenfest’s
theorem, the momentum (or energy) remains unchanged with
respect to z in the absence of any forces.

We have shown that the Gouy phase φG is not equal to the
integrated transverse average of the longitudinal phase gradient
〈φ(z)〉. Using the same theoretical framework, we can inquire
as to the longitudinal variation in the phase about the optic axis
in the presence of statistical fluctuations. Within the paraxial
approximation, one has the following three-dimensional form
of Eq. (3):

〈kz〉 = k − 1

2k

〈
k2
x + k2

y

〉
. (9)

Writing out the expectation value in full, we have

〈kz〉 = k

∫
R2

A2dx dy + 1

2k

∫
R2

Ae−iφ∇2
⊥Aeiφdx dy, (10)

where A is real and represents the amplitude of a paraxial
electron wave ξ = Aeiφ .

The two-dimensional Laplacian operator ∇2
⊥ ≡ ∂2/∂x2 +

∂2/∂y2 creates a mixture of first- and second-order partial
derivatives in the amplitude A and phase φ. For a symmetric
beam, all first-order partial derivatives are zero on the optic
axis, so the integrand in Eq. (10) can be written as

Ae−iφ∇2
⊥Aeiφ = A∇2

⊥A + iA2∇2
⊥φ. (11)

The effective propagation constant can be complex with the
imaginary part Im(k̃z) describing the amplitude variation and
the real part Re(k̃z) giving the longitudinal phase derivative.
With this in mind, we now consider the expectation values in
Eq. (9) over an infinitesimal patch of the transverse plane and
equate the integrands to obtain

A2k̃z = A2 ∂φ(z)

∂z
− iA2Im(k̃z) = kA2 + A2

2k

1

ξ
∇2

⊥ξ

= kA2 + 1

2k
A∇2

⊥A + i
1

2k
I∇2

⊥φ, (12)

where k̃z denotes a complex variable and Eq. (11) has been
used to produce the final expression. It should be noted that
the longitudinal phase gradient in Eq. (12) is consistent with the
local momentum [28] Re(ξ ∗∂ξ/∂z)/A2 of the paraxial enve-
lope ξ for which we also have Im(ξ ∗∂ξ/∂z)/A2 = ln(∂A/∂z)
since transverse derivatives of ξ are zero on the optic axis
for our symmetric beam. The real part of Eq. (12) gives the
paraxial eikonal equation [29], and the imaginary part gives the

transport of intensity equation [29] with I = |A|2. Equating
the real terms, we have

∂φ(z)

∂z
= k + 1

2k

1

A
∇2

⊥A = k + 1

2k
∇2

⊥ln(A), (13)

where the natural logarithm has been introduced by discarding
first-order on-axis partial derivatives in amplitude A due to
symmetry of the beam.

By choosing a Gaussian function to model an arbitrary
amplitude distribution, we can show that Eq. (13) predicts
the Gouy phase anomaly. Replacing the probability density
I = |A|2 with that of a paraxial Gaussian beam [11] with the
same standard deviation, we obtain

φG(z) = ∂φ(z)

∂z
− k

= 1

2k
∇2

⊥ ln

{
exp

[
−1

4
(x2 + y2)/(T 2z2 + ε2)

]}

= − 1

2k(T 2z2 + ε2)
. (14)

Finally, integrating the longitudinal phase changes along z,
we obtain the Gouy phase anomaly,∫ {

∂φ(z)

∂z
− k

}
dz = −

∫
1

2k(T 2z2 + ε2)
dz

=− 1

2kεT
tan−1

(
T z

ε

)
=− tan−1

(
T z

ε

)

= φG(z), (15)

where εkT = 1
2 for a Gaussian distribution.

Therefore, we see that transverse local momentum fluctua-
tions arising from the uncertainty principle produce the Gouy
phase anomaly φ(x = 0,y = 0,z) = φG(z). Using similar con-
siderations, we can also interpret the effect in terms of the
Lévy-Leblond [30] longitudinal phase shift due to statistical
confinement in the transverse dimensions (see the Appendix).

Within the same theoretical framework, we can associate
the phase anomaly with the quantized caustic phase changes
described by Keller [21] as well as the Berry phase [17]. We
begin with Keller’s phase anomaly for rays that touch caustics,
which are governed by Maslov indices [21]. Keller substitutes
a Wentzel-Kramers-Brillouin wave form into the Schrödinger
equation in terms of a phase with a classical action (in units of
�) and with an amplitude that can be complex and multivalued.
The substitution leads to semiclassical corrections for asymp-
totic solutions with integer or half-integer quantum numbers,
applicable for separable and nonseparable systems. Following
Keller, we choose the classical action of a ray with momentum
directed along the optic axis to be S = kz and factor the wave
function ψ as a product of this phase contribution with a
complex amplitude ξ , which we will refer to as an “envelope”
such that ψ = ξ exp(ikz). By demanding ψ to be single valued,
the phase of ξ is found to change by π/2 rad along a trajectory
touching a caustic [21]. For a closed curve trajectory which
touches a caustic m times, the following circulation integral
describes Keller’s associated phase anomaly φK :

φK = −i

∮
�

∇ ln ξ · dl = −2π
m

4
, (16)
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where m is the Maslov index, l is a vector along the trajectory
�, and � is the three-dimensional gradient operator. We
can associate Keller’s anomaly φK with the Gouy phase
φG by noting that the envelope ξ , by construction, obeys
the paraxial equation (∇2

⊥ + 2ik ∂/∂z)ξ = 0 for large wave
number k. If we integrate along the entire optic axis and assume
paraxial conditions |∂2ξ/∂z2| 	 k|∂ξ/∂z| [31], Eq. (16) can
be rewritten as

φK = −i lim
R→∞

∫ R

−R

∂ ln ξ

∂z
dz ≡ −i

∮
�

∂ ln ξ

∂z̃
dz̃

= 1

2k

∮
�

1

ξ
∇2

⊥ξ dz̃, (17)

where the limit represents the Cauchy principal value at
infinity [32] and we have extended the integral over the Argand
plane for complex z̃.

Equation (17) is formally the same as Eq. (12) for the
Gouy phase anomaly, deduced from fluctuations in transverse
momentum since the imaginary part of ξ contributes nothing
to the circulation due to conservation of probability density.
However, the exchange of the definite integral for the closed
line integral requires some explanation. We integrate along the
real (optic) axis with a semicircle of radius R in the upper half
of the complex plane joining both ends of the optic axis. It is
assumed that the complex integral over the semicircle tends to
zero as R → �. As an example, consider the paraxial Gaussian
beam once again, utilizing Eq. (11),

φK = 1

2k

∮
∇2

⊥ ln A dz̃ = lim
R→∞

{
− 1

2k

∫ R

−R

dz

T 2z2 + ε2

− 1

2k

∫
CR

dz̃

T 2z̃2 + ε2

}
, (18)

where z̃ is complex, z is the real distance along the optic
axis, and CR is a semicircular contour in the upper half of
the complex plane. The semicircle contour integral explicitly
tends to zero [32], and Eq. (18) is then 2πi times the sum of
the residues for the enclosed poles. The integrand contains two
simple poles at z̃ = ±iε/T . The pole in the upper half plane
contributes to give the residue 1/(4z̃) = 1/(4iεkT ). Using εkT
= 1/2, for a Gaussian beam, the contour integral for the Keller
anomaly is then a phase change of φK = −π rad. Half of this
phase change occurs if the number of transverse dimensions
is reduced to 1 since the Laplacian contribution reduces by a
factor of 2. For the Maslov index m in Eq. (16), the trajectory
touches the caustic twice (m = 2) for a pair of astigmatic
line foci in two transverse dimensions and only once (m =
1) for one transverse dimension, which is consistent with the
evaluation of the Gaussian beam using the residue theorem.

We can both simplify and generalize the analysis further
if we reduce the essence of the Gouy anomaly to the mere
existence of a quantized phase change without concern for
the explicit functional form of this phase variation, which
is accumulated as the wave field evolves along the optic
axis. Equations (17) and (implicitly) (15) are proportional to
the logarithmic derivative of the paraxial wave ξ ′(z)/ξ (z) =
�zln[ξ (z)] where the apostrophe and �z refer to the longitu-
dinal derivative with respect to z. Using the same contour
of integration, we can evaluate the logarithmic derivative

using Cauchy’s argument principle [32] and can determine
the scale of the phase shift without recourse to the explicit
details of the Gaussian beam. Suppose, then, that the transverse
probability distribution is Gaussian but the scale of the Gouy
phase and phase variation in Eq. (15) is not specified such that
φG(z) = α tan−1(βz) with α and β unknown at present. For a
given standard deviation �x(z) = �y(z) = σ (z), conservation
of probability requires that the beam amplitude varies in
proportion to 1/σ (z) in two transverse spatial dimensions.
Accordingly, the natural logarithm of ξ (z) takes the following
form on the optic axis:

ln[δξ (βz)] = ln

[
δ

σ (βz)
eiαφG(βz)

]
= 1

2
ln

[
1

β2T 2z2 + ε2

]

+α ln

[
1 + iβz

1 + (βz)2

]
+ ln[δ], (19)

where α, β, and δ are all constants of proportionality, the
factor of 1

2 arises from the square root in Eq. (1), and the
term multiplied by α derives from the inverse tangent form
of φG(z). Cauchy’s argument principle states that the closed
contour integral of the logarithmic derivative in the complex
plane is equal to 2πi(N − P ) with the number of zeros N

and poles P weighted by their respective multiplicities and
orders [32]. Both N and P are trivially zero for the δ term in
Eq. (19) (as is the derivative of this term). Similarly, N and
P are both unity for the second term on the right in the upper
half of the complex plane, so φG(z) does not contribute to
the closed contour integral. The remaining term has no zeros
and one simple pole in the upper half of the complex plane,
hence, the closed contour integral evaluates to give a total
Gouy phase shift of φG = − 1

2 i(2πi)(0 − 1) = −π rad where
the prefactor of −i in Eq. (17) has been included. In one
transverse dimension, the beam amplitude varies as [σ (z)]−1/2

in which case, the same analysis gives φG = −π/2 rad for
the total Gouy shift. Hence, the argument principle fixes the
scale of the Gouy anomaly. These considerations stem from
the fact that the wave-function envelope ξ (z) is an analytic
function, contains no zeros or poles along the closed contour,
and there are only a finite number of poles within it since ξ (z̃)
is meromorphic in the Argand plane for complex z̃. Moreover,
the total Gouy phase shift is invariant to distortions of ξ (z̃) that
preserve the topology in the complex plane. In other words,
a phase change of π (or π/2) is guaranteed as long as no
additional zeros or poles are introduced upon deforming ξ (z̃)
to some non-Gaussian or nonsymmetric form. The argument
principle cannot be used, for example, to describe on-axis
phase changes for higher-order Gaussian modes. Such beams
can contain intensity zeros and phase vortices on the optic
axis. Shifting the closed contour slightly off axis serves little
purpose for then, ξ (z̃) ceases to be meromorphic [32] in the
complex plane. These facts are not surprising, given that we
are trying to describe the phase change along the optic axis
at points where the phase is not defined in these particular
circumstances.

Berry [17] explained that, for quantum states which evolve
slowly (adiabatically) and, therefore, remain in the same
eigenstate at later times, there is an associated phase factor
γ (t) which also varies in time. Upon changing a parameter
in the Hamiltonian cyclically, the wave function will return to
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the same state at some later time; however, the accumulated
phase will not generally match the initial value of γ (t). In such
cases, a measurable geometric phase arises. Let us associate
slow adiabatic evolution with the paraxial equation for the
envelope ξ where the fast oscillation of eikz has been factored
out of the wave function ψ . In this context, evolution refers to
propagation along the optic z axis since the paraxial equation is
formally identical to the time-dependent Schrödinger equation
in two spatial dimensions if z replaces the time parameter
t . Following Berry [17], we can determine the evolution of
the phase factor γ (z) by substituting a formal solution for
ξ (z) [33], i.e.,

ξ (z) = e(iz/2k)∇2
⊥ξ (z = 0), (20)

into the paraxial wave equation,(
∇2

⊥ + 2ik
∂

∂z

)
eiγ (z)e(iz/2k)∇2

⊥ξ (z = 0) = 0, (21)

which implies that

2keiγ (z)e(iz/2k)∇2
⊥

(
i
∂ξ

∂z
− ∂γ

∂z
ξ

)
= 0. (22)

From Eq. (22), we deduce that

φB =
∫ +∞

−∞

∂

∂z
γ (z)dz = −i

∫ +∞

−∞

1

ξ

∂ξ

∂z
dz

= 1

2k

∫ +∞

−∞

1

ξ
∇2

⊥ξ dz, (23)

where φB denotes the integration of phase changes described
by γ (z).

These integrals can be written as circulations if we integrate
over the complex plane in the same manner as for the Keller
phase anomaly since the results are formally identical. Note
that γ (z) is complex but φB is real if the integral in Eq. (23)
extends over the entire z axis. Indeed, upon expressing Eq. (23)
as a closed contour integral for complex z, we can express the
phase in terms of a surface integral and thereby can emphasize
the geometric aspect of the anomaly. Similar to Subbarao’s
construction based upon a Gaussian beam waist [16], we
avoid Stokes’ theorem and, instead, employ Green’s theorem
to compute areas which are then stereographically projected
onto the Riemann sphere to define a solid angle over which the
area subtends. However, our parameter space is the complex
defocus, rather than the real and imaginary parts of the complex
beam waist employed by Subbarao [16].

For complex defocus z̃, we can decompose an integration
contour � in the complex plane as a succession of line segments
�Re and �Im, which are parallel to either the real or the
imaginary axis, respectively. Writing z̃ = zR + izI , Eq. (23)
becomes

−i

∫
�

∂ ln(ξ )

∂z̃
dz

= −i

{∫
�Re

∂ ln(ξ )

∂zR

dzR +
∫

�Im

∂ ln(ξ )

∂zI

dzI

}

= −i

∫
�

{
∂ ln(ξ )

∂zR

− i
∂ ln(ξ )

∂zI

}
dz̃. (24)

For closed contour integrals, Green’s theorem can be used
on both the real and the imaginary parts of Eq. (24). For a
differentiable complex function g(zR ,zI ), Green’s theorem is
given by (p. 99 of Ref. [32])∮

g dz̃ = i

∫∫
©

{
∂g

∂zR

+ i
∂g

∂zI

}
dzRdzI . (25)

Substitution of Eq. (24) into Eq. (25) gives∫∫
©

S

[
∂2 ln(ξ )

∂z2
R

+ i
∂2 ln(ξ )

∂zR∂zI

]
dzRdzI

−i

∫∫
©

S

[
∂2 ln(ξ )

∂zR∂zI

+ i
∂2 ln(ξ )

∂z2
I

]
dzRdzI

=
∫∫
©

S

[
∂2 ln(ξ )

∂z2
R

+ ∂2 ln(ξ )

∂z2
I

]
dzRdzI , (26)

so that Eq. (23) can be expressed as

φB = −i

∮
∂ ln(ξ )

∂z̃
dz̃ =

∫∫
© ∇2

zR,zI
ln(ξ )dzRdzI , (27)

where the two-dimensional Laplacian is defined by the
double derivatives with respect to zR and zI in Eq. (26). To
reveal the geometric aspect of Eq. (27), consider again our
archetypal Gaussian beam on the optic axis in two transverse
dimensions [11], and evaluate the Laplacian,

∇2
z̃ ln(ξ ) = ∇2

x,y ln[(1 + |z̃|2)−1/2ei tan−1(z̃)]

= − 2(
1 + z2

R + z2
I

)2 . (28)

Mapping points from the Riemann sphere to the complex
plane (p. 17 of Ref. [32]) allows the areal element dA on the
unit sphere to be written as

dA = 4(
1 + z2

R + z2
I

)2 dzRdzI . (29)

Combining Eqs. (27)–(29), we have

φG = φB = −i

∮
∂ ln(ψ)

∂z̃
dz̃ = −1

2

∫∫
© dA = −�

2
. (30)

In one transverse dimension, the square root in the Gaussian
beam [27] changes to give the expression,

φG = φB = −i

∮
∂ ln(ψ)

∂z̃
dz̃ = −1

4

∫∫
© dA = −�

4
, (31)

where � is the solid angle subtended of the areal patch on the
Riemann sphere.

As with our derivation based upon the argument principle,
we find that the phase changes in Eqs. (30) and (31) are
invariant to an arbitrary change in the Gaussian beam phase
scale and to that in the complex focus z̃. Similarly, we are
free to distort the Gaussian envelope wave by multiplying ξ

with any function that has an as analytic logarithmic derivative,
without changing the value of the quantized phase, by virtue of
Cauchy’s integral theorem. In other words, when we integrate
over half the Cartesian plane or contour integrate along the
entire real (optic) axis, the magnitude of the Gouy phase
anomaly is explicitly π/2 rad in one transverse dimension
and π rad in two transverse dimensions.
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III. CONCLUSION

Within the context of focused matter waves, our theoretical
description of the Gouy anomaly unites Heisenberg’s uncer-
tainty principle, Berry’s geometric phase [17], and Maslov
indices for rays that touch caustics [20,21]. If we denote the
phase change from transverse fluctuations in momentum as a
“Heisenberg phase,” then, for focused paraxial electron beams,
the Gouy, Heisenberg, Keller, Berry, and Lévy-Leblond phases
all are seen to be manifestations of the same phenomenon.
Using a geometric construction based upon the standard
deviation of a focused electron beam, these anomalous phase
shifts were united by the longitudinal logarithmic derivative of
a paraxial wave. The simplicity of this view suggests feasible
new experiments for accurately measuring these phase anoma-
lies for a variety of caustics. For matter waves that maintain
extrema on the optic axis, Eq. (12) shows that phase anomalies
can be measured directly from transverse probability densities
without recourse to any form of interferometry or phase
retrieval, which is possible since transverse sections of caustics
are Gabor holograms [34]. Indeed, experiments utilizing
Eq. (12) would constitute successive weak measurements of
the local momentum [28] on the optic axis.
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APPENDIX: THE LÉVY-LEBLOND PHASE SHIFT
AND STATISTICAL CONFINEMENT

In this section, we describe the Gouy phase anomaly by con-
sidering the effects of geometric confinement, which supports
the interpretation given by Hariharan and Robinson [13]. Far
from any obstructions, an electron wave is free and propagates
along the z axis with energy E given by

E = h2k2

2m
, (A1)

where the wave number k = 1/λ and m is the electron mass.

Confinement along the transverse axis within a distance L

produces a change in the wave-vector magnitude from k to
k′ [30] since

E = h2k′2

2m
+ h2n2

8mL2
, (A2)

where n is an integer greater than zero. Using conservation of
energy, we can equate Eqs. (A1) and (A2) to obtain

E = h2k2

2m
=h2k′2

2m
+ h2n2

8mL2
→ k2 = (k − �k)2+ n2

4L2
, (A3)

where h �k is the change in the longitudinal momentum kz.
Assuming small changes in k, (�k)2 	 k �k, we have

�k = n2

8kL2
. (A4)

The integer n2 must be replaced by n2 + m2 for waves
propagating in two transverse dimensions, which doubles the
change in momentum when both n and m are unity. Hence, the
essence of the Lévy-Leblond [30] phase shift is a geometric
effect which reduces the momentum upon confinement of
the wave in the transverse coordinate, orthogonal to the
longitudinal propagation direction.

In the absence of boundaries or cavities, focused beams
conserve kinetic energy, and we expect no change in the
average longitudinal momentum. However, we can describe
the Gouy anomaly in terms of the Lévy-Leblond phase shift
if we identify the standard deviation curve in Fig. 1 with
statistical confinement of the wave, which varies continuously
along the z axis. To examine local phase variations, we must
consider an expectation value of the energy or momentum
in the vicinity of the optic axis instead of Eq. (A3). Since
the paraxial wave equation is formally equivalent to the time-
dependent Schrödinger equation with two spatial variables, we
can replace the expectation value of the energy with 〈∂/∂z〉,
integrated over an infinitesimal patch of the transverse plane
containing the optic axis, which is equivalent to Eq. (12) in
the paper. Hence, from the perspective of the Lévy-Leblond
effect, focusing produces statistical confinement, which, in
turn, induces local momentum fluctuations that give rise to
longitudinal phase variations in the optic axis. Naively, this can
be inferred from Eq. (A4) if the confinement parameter L is
made proportional to the uncertainty of the beam. Integration
along the optic axis then gives an inverse tangent function
which is proportional to the Gouy phase.
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Abstract

Caustics are optical phenomena which occur when a family of rays creates an envelope of di-

vergent intensity. Here we show that caustic surfaces also appear when a real or complex field

is mapped to its order parameter manifold. We study these structures in the context of spin-1/2

fields, where the order parameter manifold is the Bloch sphere. These generic structures are a

manifestation of catastrophe theory and are stable with respect to perturbations. The correspond-

ing field configurations are also stable and represent a new type of topological defect. Equations

governing the conditions for their existence and unfolding are derived.

PACS numbers: 05.45.-a, 04.20.Gz, 61.72.-y, 02.40.Pc

1

183



INTRODUCTION

Order parameters are pivotal to the study and classification of topological defects and

phase transitions [1]. Many important areas of physics can be understood using this con-

struct, e.g., crystal growth [2], quantum computing [3], nematic liquid crystals [4], magnetic

textures, such as Skyrmions [5–7], multiferroics [8–10], superconductors [11, 12] and particle

cosmology [13], to name but a few. The order parameter may also be viewed as a function

that maps points in the physical space to the order parameter space. The topological prop-

erties of the order parameter space are important in the study of defects, since they govern

the stability of defects in the field [14].

Here we demonstrate the existence of a new type of singularity formed when a field is

mapped to its order–parameter space; these defects are governed by the framework of catas-

trophe theory [15–17]. Thom’s theorem [18] tells us that catastrophes are stable with respect

to perturbation; consequently features of the field that map to a catastrophe on the order–

parameter space manifold must also be stable to perturbations. This singularity represents

a new type of topological defect, which we refer to as an order–parameter catastrophe defect

(see Fig. 1).

Such catastrophes possess their own topology regardless of the order parameter manifold

on which they exist. Their stability is intrinsic to the catastrophe defect, rather than de-

pending on the topology of the order parameter manifold. This implies that local regions of

the field, which map to the order parameter catastrophe defect, transcend the topology of

the order parameter space, due to the intrinsic topology of the catastrophe itself. Catastro-

phe theory may be applied to any system whose order parameter space is “tattooed” with

such catastrophes.

Catastrophes themselves are very generic structures, appearing naturally in many physical

systems [15, 19–29]. Hence the concepts presented here will be applicable to a broad range

of phenomena. Although the fundamental idea is very general, we choose to contextualize

the concept of order–parameter catastrophes by applying it to a 2D spin–1/2 field, for which

the corresponding order parameter space is the Bloch sphere.

2
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FIG. 1. Schematic showing how the field ψ in an R2 patch is mapped to its order parameter

manifold, leading to a catastrophe on S. Here S is a local patch of the manifold, which may

possess a non-trivial global topology. Due to the intrinsic stability of the catastrophe, a mapping

of the patch of the perturbed field, ψ̃, would yield a deformed catastrophe. The features of the

field that are mapped to the catastrophe persist in the presence of perturbations.

BLOCH SPHERE MAPPING

Consider the general wave–function of a two–component spinor

|Ψ(x, t)〉 = ψ0(x, t) |0〉+ ψ1(x, t) |1〉 , (1)

where x is the spatial variable and t the time coordinate; ψ0 and ψ1 are the probability

amplitudes of the spin up state |0〉 and spin down state |1〉, respectively. Without loss of

generality we may assume |ψ0|2 + |ψ1|2 = 1, and consider only pure spin states that map

to the surface of the Bloch sphere. A single spin state is represented graphically as a unit

position vector of the Bloch sphere, denoted by |B〉. It is parametrized by the spherical

polar angles (φ, θ), as

|B〉 = eiχ[e−iφ(x,y)/2cos (θ(x, y)/2) |0〉

+eiφ(x,y)/2sin (θ(x, y)/2) |1〉],
(2)

where χ is the global phase of the Bloch vector [30–32]. The global phase factor exp(iχ) is

an unobservable of the system.

Here we are concerned with the mapping of the Bloch vector, located at every point in

coordinate space, to the Bloch sphere. Consider the mapping of an (x, y)–patch of Bloch

vectors, corresponding to a spin–1/2 field, to the surface of the Bloch sphere. If the patch

contains a texture defect it will wrap the surface of the Bloch sphere an integer number of

times [2, 33–35]. If the field is perturbed locally, the texture structure will not be destroyed,

since it is topologically protected. Instead, the mapping is altered in such a way that a local

3
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(x, y)–patch may be sheared, dilated or rotated by the mapping, whilst still maintaining the

condition that the surface of the Bloch sphere remains wrapped. To accommodate transforms

of this type, small regions on the Bloch sphere must fold back onto themselves, resulting in a

fold catastrophe. This highlights the ubiquity of order–parameter catastrophes; a continuous

perturbation of a texture defect can yield a caustic “tattoo” on the Bloch sphere (see Fig. 1).

In the general case, when a texture defect exists in a spin field, Bloch–sphere catastrophes

will also be present. However, the converse is not necessarily true.

CONDITIONS FOR A CATASTROPHE.

The explicit form of the Bloch sphere map is determined by the inverse of Eq. (2), given

by

φ(x, y) = arg (ψ1/ψ0) , (3)

θ(x, y) = arccos (η) . (4)

The quantity η = ψ∗
0ψ0 − ψ∗

1ψ1 is the spin asymmetry, which represents the difference in

probability density of the spin up and down components. The Bloch sphere image is a 2D

histogram of φ and θ, each of which are calculated for every (x, y) point of the spin field. The

mapping takes a patch of the (x, y)–plane and calculates the complex functions ψ0(x, y) and

ψ1(x, y). Together these functions completely define the spin–1/2 field over the Euclidean

patch in R2 These states are then mapped to the corresponding (φ, θ)–patch on the Bloch

sphere. The density of the patch on the Bloch sphere at a particular point is proportional

to the number of times the spin–1/2 field takes on the values of that particular state.

A randomly varying spinor wavefunction was generated by low–pass filtering an image of

white noise for each spin component, producing the field shown in Fig. 2(a). By applying

Eqs. (3) and (4) the field was mapped to the Bloch sphere to produce Fig. 2(b). The presence

of several phase vortices can be seen in the Bloch sphere coordinate φ(x, y), shown in real

space in Fig. 2(c). These screw–type topological defects come from the vortices in the phase

of both components in Eq. (1), which is preserved when φ(x, y) is calculated.

A Bloch sphere singularity corresponds to a many–to–one mapping. This occurs when

the mapping becomes singular, hence the Jacobian determinant of the mapping must vanish.

4
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FIG. 2. (a) Bloch vectors of a random spin–1/2 field distributed in real space with the color

corresponding to their z–component. (b) Mollweide projection of the Bloch sphere map. Here the

density of the plot is proportional to the number of spin states in the region of the spin–1/2 field

shown in (a). (c) The Bloch sphere coordinate φ displayed as a 2D function of (x, y). (d) The Γ

map, defined in the main text, of the spin field in (a). This map can be thought of as a projection

mapping the Bloch sphere to the Argand plane.

The Jacobian is defined by

J(x, y) =




∂φ
∂x

∂φ
∂y

∂θ
∂x

∂θ
∂y


 . (5)

Setting det[J(x, y)] = 0 gives the conditions for a particular spin state to map to a catas-

trophe, i.e.
[(
|ψ0|2j2 − |ψ1|2j1

)
×∇η

]
· ẑ = 0, (6)

where j1 and j2 are the probability current densities of ψ0 and ψ1, respectively, and ẑ is a unit

vector in the z direction. It can be shown that, up to a scaling factor, Eq. (6) is equivalent

to the z component of the curl of the probability current density of a single complex scalar

wave-function of the form

Γ(x, y) =
√
η exp (iφ). (7)

Equation (7) is a projection that maps the Bloch sphere to the Argand plane; this “Γ map”

is shown in Fig. 2(d). Zeros of Γ are mapped to the equator of the Bloch sphere, while the
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(a) (b)
(a)

FIG. 3. Mollweide plots of (a) elliptic, and (b) hyperbolic umbilic Bloch sphere catastrophes. The

insets of each figure show the Jacobian determinant of the mapping, with their zeros highlighted

in black. When the zeros of the Jacobian form an ellipse, the map of that region forms an elliptic

umbilic catastrophe. Similarly, when the zeros form a hyperbolic curve, the field maps to the

hyperbolic umbilic catastrophe.

entire equator is mapped to the the origin of the Argand plane. Each hemisphere is projected

over a unit disc, with the poles mapping to the disc’s circumference at |Γ| = 1. However,

each hemisphere of the Bloch sphere is rotated relative to the other by π/2 radians; this is

a direct result of the abrupt phase change Γ acquires when η changes sign.

The construction of Γ allows us to express the equation governing order–parameter space

defects of the spin–1/2 field in terms of the vorticity of Γ. The current density of Γ has the

form η∇φ, which may be interpreted as an equation describing the flow of spin asymmetry.

Catastrophes are mapped to the Bloch sphere along points where the vorticity of Γ vanishes.

RELATION TO THE CANONICAL FORM

Catastrophes are associated with an instability of a system. Any potential function which

governs the behavior of a system will consist of state variables, in this case (x, y), and a

set of parameters called the control variables. Degenerate critical points of a potential lead

to instabilities of the system because a bifurcation may occur at these points when there

is a small change in the control variables. Catastrophes exist in the space of the control

variables of the potential function. The dimensionality of the control space is determined

by the number of control parameters of the potential function, i.e. the co–dimension. The

bifurcation set defines a caustic surface embedded in control space; this corresponds to the set

of values of the control variables at which bifurcations of the critical points in the potential

function occur.
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Thom’s theorem describes a number of so-called elementary catastrophes, these being

all possible topologically distinct catastrophes that occur when the co-dimension is less

than or equal to four [18]. Every elementary catastrophe has an associated function known

as the canonical form [15–18]. Therefore if a local patch of a spin–1/2 field maps to a

particular elementary catastrophe on the Bloch sphere, the field itself must have a relation

to the canonical form of the catastrophe. The Bloch sphere catastrophe is embedded in

the coordinates (φ, θ) of the sphere. However, the catastrophe bifurcation set lies in the

control space. In essence, the Bloch sphere catastrophe is a slice though the control space of

the bifurcation set, which has also been subject to a continuous deformation, rotation and

translation.

In catastrophe theory, a function has a degenerate critical point when the Hessian deter-

minant vanishes. Points of the spin field where the Jacobian determinant vanishes map to

a catastrophe. Therefore the Hessian of the canonical form of the catastrophe, V (x, y), is

locally equivalent to the Jacobian matrix of the mapping, i.e.



∂φ̃
∂x

∂φ̃
∂y

∂θ̃
∂x

∂θ̃
∂y


 =




∂2V
∂x2

∂2V
∂y∂x

∂2V
∂x∂y

∂V
∂y2


 , (8)

where φ̃ and θ̃ are the transformed coordinates of the Bloch sphere, which account for the

local translation and rotation of the catastrophe from its canonical form. To account for

smooth deformations of the catastrophe of the Bloch sphere mapping, the coefficients of the

transformations of φ and θ must be functions of the state space coordinates (x, y). Since the

transformation matrix has an inverse, this allows us to express the Bloch sphere coordinates

in terms of the transformed coordinates as
φ
θ


 =


a(x, y) b(x, y)

c(x, y) d(x, y),





φ̃
θ̃


 , (9)

where the inverse transformation matrix elements a, b, c and d are arbitrary functions of

(x, y), which encapsulate the local rotations, translations or deformations of the coordinate

system.

Given Eqs. (8) and (9) we find that φ(x, y) and θ(x, y) may be expressed in terms of the

partial derivatives of the canonical form of the catastrophe:

φ(x, y) = a(x, y)Vx(x, y) + b(x, y)Vy(x, y) (10)

θ(x, y) = c(x, y)Vx(x, y) + d(x, y)Vy(x, y) (11)
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where Vx ≡ ∂V/∂x and Vy ≡ ∂V/∂y. Equations (10) and (11) show that the Bloch sphere

catastrophe is indeed a form of gradient mapping of the canonical form of the catastrophe.

If a small patch on the spin field in state space were to map to a catastrophe, the field in

that patch of state space must relate to the canonical form of the catastrophe. The field in

these local regions has the functional form:

|Ψ〉 = e−
i
2
[(aVx+bVy)cos [(cVx + dVy)/2] |0〉+

e
i
2
(aVx+bVy)sin [(cVx + dVy)/2] |1〉 .

(12)

The Bloch sphere coordinates (φ, θ) are deformed gradient maps of the canonical form

of the catastrophe; the structure of the zeros of the Jacobian determinant determines the

type of elementary catastrophe to which the field will map. In essence, the lines of zeros

of the Jacobian determinant determine where to fold a patch in R2, as it is mapped to the

Bloch sphere. The way in which the patch is folded yields a particular type of catastrophe.

Examples of elliptic and hyperbolic umbilic catastrophes are shown in Fig. 3, along with the

geometry of each catastrophe’s Jacobian determinant given in the insets. The canonical form

of the elliptic umbilic catastrophe is x3−xy2, where the null set for the Hessian determinant of

this form corresponds to the equation of an ellipse, i.e. the zeros of the Jacobian determinant

map to an elliptic umbilic catastrophe. Similarly the Hessian determinant of the hyperbolic

umbilic catastrophe is the equation of a hyperbola, given by its canonical form of x3 + y3.

We have shown that the spin field is related to the canonical form of the catastrophe by a

gradient map, therefore perturbations to the spin–1/2 field behave as a particular unfolding

of the canonical form.

STABILITY AND UNFOLDING OF BLOCH SPHERE CATASTROPHES.

A Bloch sphere catastrophe is a particular cross–section of the full bifurcation set surface.

Catastrophes may undergo a process known as unfolding. This occurs when the potential

function of any given catastrophe is subject to a perturbation in such a way that the slice of

the bifurcation set that is viewed on the Bloch sphere changes. In this picture we see that the

topological stability of a Bloch sphere catastrophe defect arises because every catastrophe

already possesses a topology that is fixed by its bifurcation set. A perturbation to the spin

field only serves to unfold the Bloch sphere catastrophe, whence we observe different slices

through the bifurcation set of the catastrophe.
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(a)

(b)

(d)

(c)

(e)

w = -2.0 w = -0.1

w = 1.0 w = 3.0

FIG. 4. (a) Bifurcation set of the hyperbolic umbilic catastrophe. (b)-(e) Bloch sphere projections

showing a hyperbolic umbilic catastrophe unfolding through various values of w.

To demonstrate this consider the full bifurcation set of the hyperbolic umbilic catastrophe

shown in Fig. 4(a). By inputting the known canonical form and using Eq. (12) we can map

an isolated hyperbolic umbilic catastrophe to the Bloch sphere and control its unfolding.

This is demonstrated in Figs. 4(b)–(e). This method of spin–engineering by way of using

a catastrophe’s canonical form could be used to generate any Bloch sphere mapping at a

given unfolding. The hyperbolic umbilic catastrophes that appear on the Bloch sphere are

intersections of the Bloch sphere surface with the catastrophe’s 3–dimensional bifurcation

set. In this example the cross–sections are the u − v plane. As the control parameter w is

varied the u−v plane shifts along the w axis, which unfolds the Bloch sphere catastrophe. In

general, a hyperbolic umbilic Bloch sphere catastrophe will express itself as cross–sections

of the bifurcation set through some arbitrary plane, in which case the unfolding of the

catastrophe will depend on all three control parameters u, v and w.

DISCUSSION

Order–parameter catastrophe defects are a generic form of topological defect that are

found in fields. Catastrophes are very general structures that almost always arise in non–

trivial mappings to an order parameter manifold. Equations (10) and (11) show that the

order–parameter coordinates are proportional to the first partial derivatives of a catastro-

phe’s canonical form, which are always simple polynomial functions. This means that both

φ and θ will also have a local polynomial form for regions that map to a catastrophe. If

we consider any sufficiently small local expansion about a point of an arbitrary spin field,

9
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the patch only need be diffeomorphic to the canonical form of one of the elementary catas-

trophes. This criterion is satisfied for the creation of a catastrophe and demonstrates that

a mapping of a generic field to its order parameter space will result in caustic tattoos on

its manifold. This is a general result that can be found in other types of mappings. For

example, catastrophes manifest themselves as Argand–plane caustics, which arise when a

complex scalar field is mapped to the Argand–plane [36, 37]. In that context, the condition

that a point maps to a caustic, det[J(x, y)] = 0, is equivalent to the optical vorticity van-

ishing. By making a similar comparison in Eq. (8) for a complex field it is then apparent

that Argand–plane catastrophes also rise from gradient mappings.

Whilst we have used the specific example of 2D spin–1/2 fields and the Bloch sphere, it is

important to emphasize that all the concepts presented here are very general. We need only

ask what is the mapping of any field to its order parameter space to be able to view the field

through the new perspective of order parameter catastrophe defects. This concept is not

restricted to 2–dimensions; the 2D surface of the Bloch sphere allows us to view 1D or 2D

catastrophes, such as folds or cusps, or 2D cross–sections of higher order catastrophes, such

as the elliptic or hyperbolic umbilic catastrophes (Fig. 3). For mappings to order parameter

spaces of higher dimensionality, the full bifurcation sets or higher dimensional cross–sections

of catastrophes with higher co–dimension would also become observable.

In summary, order parameter catastrophe defects represent a new form of topological

defect in fields. Their stability is attributed to the intrinsic topology of the catastrophes

themselves rather than that of the order parameter space, as it is the case for standard

topological defects and textures.
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