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Abstract

Anomaly detection is regarded as one of the most important tasks in data mining due to
its wide application in various domains, such as finance, information security, healthcare
and earth science. With advancements in data collection techniques, the volume and
dimensionality of anomaly detection data sets increase explosively, and diverse attribute
types occur within these data sets. Also, in many data sets, anomalies can be detected in
some attributes only, while other attributes are irrelevant to anomaly detection. All these
characteristics pose new challenges to existing anomaly detection techniques. Motivated
by this fact, this research aims to design an anomaly detection method which can scale up
to large and high dimensional data, is able to identify anomalies in data sets with different
types of attributes, and tolerates irrelevant attributes.

This thesis posits that anomalies are instances with low probabilities in subspaces in

a data set. So, in a random subset of the data set, anomalies have higher probabilities of
having zero appearances in the subspaces than normal instances. Based on this property,
this thesis proposes a novel anomaly detection method called ZERO-++ which employs
the number of zero appearances in subspaces to detect anomalies. ZERO++ is the only
anomaly detector based on zero appearances in subspaces, as far as we know. It is unique
in that it works in regions of subspaces that are not occupied by data; whereas other
methods work in regions occupied by data. Utilising the anti-monotone property: ‘if
an instance has zero appearances in a subspace, it must also have zero appearances in
subspaces containing this subspace’, we show that only a small number of subspaces with
low dimensionality needs to be considered to identify anomalies effectively. ZERO-++
is an efficient algorithm with linear time complexity with respect to data size and data
dimensionality, and it can work effectively in data sets with different types of attributes,
and a low percentage of relevant attributes.
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Chapter 1

Introduction

Anomalies are data patterns that are rare and exceptional compared to the majority of
data. Detecting anomalies is attractive and valuable because finding such patterns often
uncovers either underlying treasures or potential hazards.

Anomaly detection generally refers to the process of finding anomalies. It is regarded
as one of the most important tasks in data mining due to its wide application in vari-
ous domains, such as finance, information security, healthcare and earth science. A key
challenge in anomaly detection is to identify anomalies accurately and efficiently in ever
growing complex data sets, e.g., very large and high-dimensional data sets with different
types of attributes. In recent years, a number of techniques have been proposed to handle
this challenge with varying degrees of success. In this research, we break down this key
challenge into four components, and propose a novel anomaly detection method to meet
all the four challenges.

This chapter provides an introduction to the research subject and research motivation
in Sections [L.1] and respectively, and states our contributions in Section [1.3] The
organisation of this thesis is then presented in Section

1.1 Research subject

Anomaly detection refers to the process of identifying abnormal instancesE]in data. Abnor-
mal instances, or anomalies, may have different meanings in different application domains.
Finding anomalies are very important for all these domains, because it may uncover new
treasures because of the discovery of rare patterns, or prevent catastrophic consequences
of anomalous events. Research on anomaly detection dates back to as early as the 19th
century (Chandola et al., 2009). Anomaly detection has been intensively studied in recent
years, and it is regarded as one of the four most important tasks in data mining, besides
classification, cluster analysis, and association analysis (Tan, Steinbach and Kumar, 2006).
This section presents a brief introduction to anomaly detection in terms of the definition
of anomaly, types of anomaly, anomaly detection techniques and their applications.

1.1.1 Definition of anomaly

Anomalies are referred to as outliers, exceptions, aberrations, abnormalities, novelties,
deviants and discordants in different domains (Aggarwal, [2013a; |Chandola et al., 2009).
Anomalies and outliers are the two most widely used terms and are often interchangeable
in the data mining community. One classic definition of anomaly is given by Hawkins

nstances are often referred to as points and records in the computer science community, and samples
and observations in the statistics community.
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(Hawkins, 1980) as “An outlier is an observation that differs so much from other obser-
vations as to arouse suspicion that it was generated by a different mechanism”, but there
are different definitions given from different perspectives. From a geometrical perspective,
Johnson et al.| (1998) and |[Kriegel and Zimek| (2008) assume anomalies are at the bound-
aries in the data space, whereas Knorr and Ng| (1997), Breunig et al.| (2000)) and He et al.
(2003) generally assume that anomalies lie in regions with low density. A more recent
definition is from the isolation concept which is motivated by the fact that anomalies are
susceptible to isolation, i.e., anomalies can be isolated using significantly fewer partitions
than those for normal instances (Liu et al., 2012).

The above definitions are based on numeric data (i.e., data sets with numeric at-
tributes only), and they apply to numeric domain only. For categorical data (i.e., data
sets with categorical attributes only), one widely used assumption is that anomalies occur
infrequently (or rarely) in the feature space (Ghoting et al., 2004; Koufakou and Geor-
giopoulos, 2010; He, Xu, Huang and Deng, 2005)). As far as we know, there is no widely
used definition of anomaly in mixed data (i.e., data sets with both numeric and categorical
attributes). A big challenge in dealing with mixed data is that it requires the capture of
the definitions of anomaly from both the numeric domain and categorical domain, and also
the interaction between these two heterogeneous domains (Ghoting et al., 2004; Koufakou
and Georgiopoulos, 2010; Zhang and Jin, [2011)

In this research, an anomaly is defined as an instance that occurs rarely in a categorical
data set. To apply to numeric or mixed data sets, we utilise a discretisation method to
convert numeric attributes to categorical attributes before applying the proposed anomaly
detection method.

1.1.2 Types of anomaly

Anomalies can generally be divided into three categories: point anomalies, conditional (or
contextual) anomalies and collective anomalies (Chandola et al., [2009)). Point anomalies
and conditional anomalies refer to individual instances only, while collective anomalies
are based on a collection of instances. An instance is considered as a point anomaly if
it is anomalous compared to other instances in a data set. Conditional anomalies have a
similar definition as point anomalies except that they are defined with some conditions.
The conditions vary in different applications e.g., location and time are commonly used
as a condition to define anomalies in spatial data and time series data, respectively. A
collective anomaly is a collection of data instances where each instance by itself appears
normal but together exhibit anomalous behaviour. Such anomalies often occur in sequence
data, graph data and spatial data.

Point anomalies can be further classified into global anomalies and local anomalies
based on the view of neighbourhood, and scattered anomalies and clustered anomalies
based on their distributions. Global anomalies are anomalous instances which are far
away from both sparse and dense normal clusters in the feature space, while local anoma-
lies are instances located near dense normal clusters but far away from sparse normal
clusters. Scattered anomalies refer to anomalies having a scattered distribution. In con-
trast, clustered anomalies are anomalies which are very close to each other and form a
small cluster.

It should be noted that the concepts of global and local anomalies, and scattered
and clustered anomalies rely on the key characteristic of numeric data, i.e., the notion of
ordering. As far as we know, these concepts are not well defined in categorical data because
there is no ordering in categorical attribute values. Existing research on anomaly detection
for categorical data (Ghoting et al., [2004; Koufakou and Georgiopoulos, 2010; Zhang and
Jin, 2011; Das et al. |2008; |[Wu and Wang}, |2013)) focuses on point anomalies, which are
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simply defined as instances with low frequency in the feature space. This research also
focuses on point anomalies only.

1.1.3 Anomaly detection and its applications

Anomaly detection has been studied in several research communities, e.g., statistics, data
mining, machine learning and information theory. Numerous anomaly detection methods
have been proposed over the years, including statistical test based methods (Barnett and
Lewis, 1994)), depth-based methods (Johnson et al., |[1998), angle-based methods (Kriegel
and Zimek}, 2008)), distance-based methods (Knorr and Ng; [1997)), density-based methods
(Breunig et al., 2000)) and clustering-based methods (He et al., 2003). Ensemble methods
for anomaly detection have been explored in recent years (Aggarwal, 2013b; Zimek et al.,
2012). We introduce these methods in detail in Chapter

Anomaly detection techniques have wide application in various domains. Examples of
application are presented as follows in terms of the notion of anomaly and its implications
(Chandola et al., [2009; |Aggarwal, 2013a)).

e Intrusion detection. In intrusion detection tasks, anomalies refer to malicious
activities in a network or a computer system. Anomaly detection techniques help
monitor and analyse network or computer system events for intrusions.

e Fraud detection. Anomalies generally refer to frauds in this domain, including
credit card transaction frauds, insurance claim frauds and insider trading. Detection
of such anomalies can prevent related organisations from huge financial loss.

e Healthcare. In the healthcare domain, anomalies often refer to unusual conditions
of patients (indicating certain diseases), or disease outbreaks. Early detection of such
anomalies allows more time for treatment or prevention of the spread of disease.

e Fault detection. In this domain, anomalies often refer to faults in mechanical
components such as motors, turbines and engines. Early detection of these faults
can prevent catastrophic events such as aircraft crashes.

e Image and video processing. Examples of anomalies are irregularities in im-
ages and unusual changes in videos over time. Typical application scenarios are
mammography image analysis, satellite image analysis and video surveillance.

1.2 Research motivation

Compared to normal instances, anomalies typically account for only a very small portion
of a data set. Identifying anomalies is like ‘finding a needle in a haystack’. With advance-
ments in data collection and storage techniques, data sets have become more and more
complex, e.g., large data size, high dimensionality, different types of attributes and data
noise. This makes anomaly detection much more challenging. Particularly, this research
is motivated by the following four challenges in anomaly detection:

1. Ability to handle data sets with different types of attributes. Diverse
data types exist in many real-world anomaly detection applications, such as numeric
pixel attributes derived from images and videos, boolean-value based or multiple-
labelﬂbased categorical attributes in medical data, mixed attributes in demographic
data and network intrusion data. This results in data sets with different types of
attributes, i.e., data sets with numeric attributes only, data sets with categorical
attributes only, and data sets with mixed attributes.

2Unordered labels are referred to as categorical attribute values in this thesis.
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2. High detection accuracy. High detection accuracy is an essential requirement in
anomaly detection. This is because false negative detections bear very high costs
in many real-world applications, such as fraudulent transaction detection and early
detection of cancer diseases.

3. Scale up to very large data size and high dimensionality. With advancements
in data collection techniques, anomaly detectors are often required to be able to
detect anomalies in very large and high dimensional data quickly. High detection
accuracy in many detectors comes at a cost to computational efficiency. These
detectors often cannot scale up well in terms of data size or data dimensionality.

4. Tolerant to irrelevant attributes. Anomalies are often only detectable in some
attributes. Other attributes, which are irrelevant attributes to anomaly detection
tasks, often mask anomalies. This is particularly true for high dimensional data
(Zimek et all 2012)). Many anomaly detection applications are high dimensional
domains, e.g., over 100 dimensions are used to describe instances in credit card
fraudulent transaction detection (Pham and Paghl 2012) and disease diagnostics
(Guvenir et al., [1997).

A number of techniques have been proposed to handle these challenges with varying
degrees of success. There are a few methods (Ghoting et al., |2004; He, Xu, Huang and|
Deng], 2005; Koufakou and Georgiopoulos), 2010; Zhang and Jin, 2011)) that are proposed to
handle categorical or mixed data, but their time complexity is at least quadratic in terms
of data dimensionality or data size. Many other existing anomaly detection methods
are numeric data oriented methods, including statistical test based methods (Aggarwal,
2013a; Barnett and Lewis, [1994), depth-based methods (Tukeyl, [1977; Johnson et al.,|1998),
distance-based methods (Knorr and Ng|, [1997; Knox and Ng| |1998)), density-based meth-
ods (Breunig et al., [2000; Papadimitriou et al.,[2003), clustering-based methods
2003; Jiang et al., 2006) and isolation-based methods (Liu et al. [2010}2012). Also, widely
used methods like e-neighbourhood (Knox and Ng| [1998)), kNN (k-th Nearest Neighbour)
distance (Ramaswamy et al., [2000) and LOF (Local Outlier Factor) (Breunig et al., 2000)
have at least O(n?) El time complexity. Although it can be reduced to O(n log n) if
an indexing scheme such as R*-tree (Beckmann et al., [1990) is employed, most indexing
methods work in low dimensional data sets only, and they break down in high dimension-
ality. Moreover, many existing methods (Angiulli and Pizzuti, [2002; |Angiulli and Fassetti,
2009; [Knox and Ng| [1998} [Bay and Schwabacher], 2003} [Breunig et al.| [2000; [He et all|
2003; Ramaswamy et al., |2000) use full dimensionality to define anomalies and thus fail
to detect anomalies in data sets with high percentages of irrelevant attributes due to the
curse of dimensionality (Zimek et al., [2012).

Anomaly detection using ensemble techniques is an emerging research direction
garwal, 2013b; Zimek, Campello and Sander, 2013). There are mainly two types of
anomaly detection ensembles, i.e., subspace-based methods (Lazarevic and Kumar), 2005
Keller et al., 2012) and subsampling-based methods (Zimek, Campello and Sander, 2013
Sugiyama and Borgwardt), 2013)). These ensembles are often based on conventional anomaly
detection methods, such as LOF, and thus share similar defects, e.g., they are unable to
handle data sets with different types of attributes effectively, and are unable to scale up
with data size or data dimensionality.

Some ensemble-based methods are based on both subspace-based methods and subsampling-
based methods, such as isolation-based methods (Liu et al., 2012). They build models on
randomly selected attribute subsets and subsamples, and have linear time complexity in

3In this thesis, n and d denote data size and data dimensionality, respectively
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terms of data size and dimensionality, but they are also numeric data oriented methods
and are sensitive to irrelevant attributes.

This situation has motivated us to design a novel method which can provide a solution
to all these four challenges.

1.3 Contributions

This research aims to produce an anomaly detection method that will meet all the four
challenges stated in Section i.e., a highly accurate detection method which can: scale
up to very large and high dimensional data, tolerate irrelevant attributes, and effectively
handle data sets with different types of attributes. We aim to demonstrate the effectiveness
and efficiency of our proposed method in both theoretical and empirical analyses.

To this end, we will focus on subsampling-based ensemble methods, which have favourable
scalability in terms of both data size and data dimensionality, as reported in [Ting et al.
(2013), Liu et al| (2012), and Sugiyama and Borgwardt| (2013). Also, we will explore
subspace-based anomaly scoring functions, which are insensitive to irrelevant attributes
(Kriegel, Kroger, Schubert and Zimek, 2009; Keller et al., [2012)) and able to handle mixed
attributes effectively (Ghoting et al.l 2004; Koufakou and Georgiopoulos, [2010).

The contributions of this thesis are as follows:

e This thesis proposes a categorical data based anomaly detection method which iden-
tifies anomalies based on zero appearances in subspaces. A statistical justification
is provided to explain why our proposed method works.

e Two discretisation methods are examined to extend our proposed method to numeric
data and mixed data.

e A series of experiments is conducted to evaluate the effectiveness and efficiency
of our proposed method. It is shown that our proposed anomaly detector is able
to detect anomalies more accurately and efficiently than existing state-of-the-art
anomaly detectors.

e An empirical evaluation of existing state-of-the-art anomaly detectors is conducted
on data sets with different types of attributes.

1.4 Organisation

The rest of this thesis is organised as follows.

Chapter [2| provides a review of related achievements in this research area and dis-
cusses their strengths and limitations. We first discuss two types of conventional anomaly
detection methods, including extreme value analysis based methods and proximity-based
methods. We then review relatively new established anomaly detection methods, namely
ensemble methods for anomaly detection. Finally, we discuss techniques for categorical
and mixed data.

Chapter [3] presents a novel anomaly detection method which is based on zero appear-
ances in subspaces. We first present our motivation and statistical justification of the
anomaly score used in our proposed method. We then discuss how our categorical data
based method can be extended to handle numeric and mixed data. Finally, we explain the
characteristics of our method and provide a conceptual comparison with related anomaly
detectors.

Chapter [4] provides an empirical evaluation of our proposed method. We examine the
detection performance, ability to tolerate irrelevant attributes, scalability and sensitivity
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of our proposed method using a range of data sets. We also apply our proposed method
for identifying anomalies in data sets with unknown ground truth.
The thesis is concluded in Chapter



Chapter 2

Literature review

A wide range of methods have been proposed for anomaly detection over the years. Based
on the extent to which the methods use class labels (i.e., labels assigned to each instance as
being either normal or anomalous in a given data set), they can be generally categorised
into supervised methods, semi-supervised methods and unsupervised methods. Supervised
methods employ labelled instances of both the normal class and the anomalous class to
train detection models. Some examples of these methods are Support Vector Machines
(SVMs) and Neural Networks (Mukkamala et al., [2002)). Semi-supervised methods require
labelled instances of the normal class only, in order to train their detection models, e.g.,
one-class SVMs (Ma and Perkins, 2003). Unsupervised methods do not require labelled
instances. Examples of unsupervised methods are statistical test based methods, distance-
based methods, density-based methods and clustering-based methods (Aggarwal, |2013a)).
All methods make (explicit or implicit) assumptions on behaviours of normal instances
or abnormal instances and detect anomalies by examining how instances conform to the
behaviours.

Compared to supervised methods and semi-supervised methods, unsupervised methods
are more widely used in industry, because obtaining accurate labelled data for anomaly
detection often has a very high cost (Chandola et al., 2009). Particularly, collecting
accurate labelled data often requires substantial effort to manually assign the labels, and
obtaining labelled abnormal data is prohibitively expensive in many application domains
such as early detection of catastrophic events (e.g., spread of epidemic diseases, terrorist
activities and aircraft faults). Also, it is difficult to collect all types of anomalies as new
types of anomalies might emerge in new data.

This research focuses on unsupervised methods, and we review unsupervised methods

for anomaly detection only. Surveys of semi-supervised and supervised methods can be
found in |(Chandola et al. (2009) and |Gornitz et al. (2014).

This chapter provides a literature review of conventional anomaly detection techniques
in Section including extreme value analysis based methods and proximity-based meth-
ods. We review a newly established technique for anomaly detection, i.e., ensemble learn-
ing methods in Section followed by methods for categorical and mixed data in Section
This chapter is then summarised in Section

2.1 Conventional anomaly detection techniques

Following |Kriegel, Kroger and Zimek (2009) and |Aggarwal| (2013a)), traditional anomaly
detection methods can be broadly divided into extreme value analysis based methods and
proximity-based methods.
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2.1.1 Extreme value analysis based methods

Statistical test based methods, depth-based methods and angle-based methods are gener-
ally based on the assumption that anomalies are points with extreme values in the feature
space. Based on this definition, we denote these methods as extreme value analysis based
methods.

Statistical test based methods

Statistical test based methods (Barnett and Lewis| [1994; |Aggarwal, 2013a) assume that all
data instances are generated by a certain type of statistical distribution, such as Gaussian.
Statistical test methods, e.g., t-test and 2, are then used to determine the probabilities
of data values along with a statistical significance level. Instances lying at the tail (i.e.,
extreme values) of the given distribution are identified as anomalies. To quantify the lower
and upper probabilistic tail bounds of the distribution, a number of tail inequalities can
be used, such as Hoeffding Inequality and Chernoff Inequality (Aggarwal, 2013a).

These methods have well established probabilistic and statistical properties to interpret
anomaly detection results. Also, such methods can be used in the final stage of other
anomaly detection methods to report anomalies with a statistical significance level (Das
et al., [2008)). However, these methods are parametric methods that make assumptions on
data distributions. They are also very sensitive to noise and anomalies. For example, the
mean and standard deviation estimation of Gaussian distribution can be severely biased
by noise and anomalies.

Depth-based methods

Depth-based methods (Tukey|, 1977} |Johnson et al., 1998]) conventionally define instances
lying on the outer layers of a convex hull (Jarvis, 1973 as anomalies. These methods
operate in an iterative way to obtain the anomaly scores of instances: all instances located
at the corners of the convex hull are removed iteratively until the data set becomes empty.
An instance has depth = k if it is removed in the k-iteration. Instances with depth less
than a threshold r are considered as anomalies.

Depth-based methods share a similar methodology as statistical test based methods,
but it should be noted that depth-based methods are non-parametric methods that do
not assume any data distribution. One typical limitation of these methods is their high
time complexity in convex hull computation. The brute force convex hull computation
method has O(n®). Tt can be reduced to O(n log n) for data sets with two and three
dimensions by using a divide-and-conquer technique, but it increases exponentially with
data dimensionality (Preparatat and Shamos| [1985; [Knox and Ngj [1998)).

Angle-based methods

The basic assumption in angle-based methods (Kriegel and Zimek, 2008; Pham and Pagh,
2012) is that anomalies lie at the boundaries of the data space. Therefore, compared to
normal instances in the inner regions, anomalies have smaller angles to pairs of instances
in the data set. Given a data set D and a test instance x, its anomaly score is the variance
over angles between x to any pairs of instances in D. Instances with higher angle variances
are more likely to be anomalies.

The first angle-based method ABOD (Angle-Based Outlier Detection) was proposed
by [Kriegel and Zimek! (2008) and is dedicated for anomaly detection in high dimensional
data. The time complexity of these methods is determined by the computation cost of
the angle variance between x to pairs of instances. The brute force method computes the
angles between x to all pairs of instances in the data set. This has O(n?) time complexity.
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An approximate method proposed in Kriegel and Zimek| (2008)) uses the variance over
angles between x to pairs of instances from the £ nearest neighbours to approximate the
original variance. This reduces the time complexity to O(n2k). A further near linear time
approximation method was proposed in Pham and Paghl (2012)). Angle-based methods
are free of parameters, which is one big advantage over many existing methods. It has
been reported in |[Kriegel and Zimek| (2008) that these methods could alleviate the effects
of the curse of dimensionality compared to anomaly detection methods using a distance
concept. However, it should be noted that, as discussed in | Aggarwal (2013a)), angle-based
measures such as cosine are influenced by concentration effects (Zimek et all 2012) and
irrelevant attributes in high dimensional data.

Strength and weakness. Extreme value analysis based methods have good sta-
tistical or geometrical interpretation of anomalies, and they can obtain high detection
accuracy when anomalies contain extreme values. However, in many real-world appli-
cations, anomalies can be surrounded by normal clusters. In such cases, the detection
performance of these methods will decrease substantially.

2.1.2 Proximity-based methods

Distance-based methods, density-based methods and clustering-based methods are popular
anomaly detection methods because of their simplicity and intuitive interpretation. The
basic assumption in these methods is that anomalies lie in regions with low density.

Distance-based methods

Distance-based methods make use of the distance of an instance to its nearest neighbours
to define proximity. Instances with large nearest neighbour distances have sparse prox-
imity, and thus can be reported as anomalies. Seminal work on distance-based methods
is DB(w,€)-Outliers, where 7 is a fraction of a data set D and e is a distance threshold.
The method was proposed in [Knorr and Ng| (1997), in which an instance x is considered
as an anomaly if at least m percent of instances in D have distance to x greater than e.
Alternatively, the definition can be interpreted as: x is reported as an anomaly if at
most (1 —7) percent of instances in D have distance to x smaller than e. This alternative
definition facilitates the e-neighbourhood method proposed in Knox and Ng (1998), in
which it proposes to use indexing techniques such as k-d trees (Bentley, [1975) to conduct
a range search with radius €. An instance is considered as an anomaly if no more than M
instances are found in the e-neighbourhood. Excluding the time complexity of indexing
techniques, the e-neighbourhood method has O(n2d) time complexity. A nested-loop pre-
process method was also proposed in Knox and Ngj (1998) in order to avoid the expensive
indexing construction time cost for some application contexts (e.g., high dimensional data),
but the nested-loop based e-neighbourhood anomaly detection method still has O(n?d)
time complexity. A cell-based pre-process method was also proposed in [Knox and Ng
(1998), in which it built grids such that any two instances within the same cell have
at most e distance to each other. This method reduces the time complexity of the e-
neighbourhood method, to be linear with respect to n but exponential with d.
Ramaswamy et al.| (2000) simplifies the e-neighbourhood anomaly definition and identi-
fies anomalies based on the distance of an instance to its k-th nearest neighbour. Instances
with large k-th nearest neighbour distance are reported as anomalies. This reduces the
number of parameters from two to one, i.e., k. In order to search for kNN efficiently,
Ramaswamy et al. (2000)) also introduces a partition-based pre-process method, which
uses linear-time clustering methods to partition instances into disjoint subsets and pruned
redundant instances. A number of other techniques (Bay and Schwabacher] [2003; |Angiulli
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and Pizzuti, 2002; |Angiulli and Fassetti, 2009) have been proposed to speed up the dis-
tance computation in kNN search, which can reduce the time complexity of kNN search
to near-linear time in some contexts, but can break down when dealing with large and
high dimensional data.

Density-based methods

Density-based methods are generally based on the assumption that anomalies lie in regions
of relatively low density. An instance is considered as an anomaly if the ratio of its density
to that of its local neighbourhood is small. Since neighbourhood distance based methods
use a single distance threshold (e.g., k-th distance) to measure anomalousness, they fail
to detect anomalies in data sets with normal clusters of varying densities. Motivated by
this fact, Breunig et al. (2000) proposes the Local Outlier Factor (LOF) method, which
can detect anomalies with the above-mentioned data characteristic.

The LOF of an instance is computed as the mean ratio of its average reachability
distance to that of its neighbours. The Reachability Distance (RD) of an instance x with
respect to y is defined as:

RD(X, Y) = max{dk (y)7 diSt(X, y)}

where di(y) is the kth nearest neighbour distance to y and dist(x,y) denotes the distance
between x and y. It is evident that RD(x,y) is not symmetric between x and y because
the kth nearest neighbour distance to x and y may be different. This asymmetric prop-
erty helps highlight x when x locates in regions with relatively low density. The Local
Reachability Distance (LRD) of x is inverse of the Average Reachability Distance (ARD)
of x to its k nearest neighbours, as defined below:

LRD(x) = L 1 ~ Card(kNN(x))
~ARD() ¥ RD(xy) Y. RD(x)
YEENN (x) YEENN (x)
Card(kNN(x))

where kNN (x) denotes the set of k nearest neighbours of x and Card(kNN(x)) is the
cardinality of kNN (x). The LOF of x is then defined as:

LRD(y)
yem%:zv(x) LRD(x)
Card(ENN(x))

LOF (x) =

Instances with LOF = 1 are located within a cluster; while instances with LOF > 1
are considered to be anomalies. The only parameter in LOF, k, plays a crucial role in
its performance. This parameter acts as a smoothing factor in computing the anomaly
scores. Larger values of k lead to greater smoothing. The detection performance of LOF
is dependent on the choice of the k value. In practice, a range of k values is employed
to compute LOF(x) and the maximum LOF value is used as the anomaly score of x.
Motivated by the success of LOF, a variety of LOF variants has been proposed, such
as Connectivity-based Outlier Factor (COF) (Tang et al., [2002)) and LOcal Correlation
Integral (LOCI) (Papadimitriou et al. 2003). COF improves LOF by giving a different
treatment to isolated instances and instances in regions of low density. LOCI replaces k
nearest neighours with e-neighbourhood and uses multiple granularities of e-neighbourhood
to define the anomaly factor. In LOCI, € can be automatically determined, and thus the
method does not require parameter tuning.
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Clustering-based methods

Many clustering-based anomaly detection methods proceed in a two-phase fashion. In-
stances are normally clustered into disjoint groups in the first phase. Some criteria based
on the clustering results are then used to identify anomalies. One typical criterion is the
cluster size. Jiang et al. (2001) first employs modified k-means clustering to partition all
instances into clusters, and then reports instances belonging to small clusters as anomalies.
Compared to the original k-means clustering, a cluster splitting-and-merging procedure
is added into the modified version in |Jiang et al.| (2001) and allows the final number of
clusters to be larger than k. This results in many small and medium sized clusters. In-
stances contained in the small clusters are considered as anomalies. This method can
detect clustered anomalies but can also report small normal clusters as anomalies.

Another straight-forward criterion is the distance of a given instance to its closest
cluster centroid. The larger the distance is, the more likely the instance is to be an
anomaly (Aggarwal, |2013a). This type of method is able to find isolated anomalies, but
it might fail to detect clustered anomalies, because clustered anomalies can be very close
to the anomaly cluster and their distance to the cluster is rather small.

Instead of using a single criterion, He et al. (2003 makes use of both cluster size
and the distance of the instance to its closest cluster centroid to define anomalies. In
another method, instead of deriving an instance outlier factor based on the clustering
results, |Jiang et al| (2006) employs the distances between clusters to design a cluster
outlier factor, and then labelled clusters as either normal or abnormal using a threshold.
Instances are considered as anomalies if the class label of their closest cluster is abnormal.

In general, clustering-based methods are more suitable for sparse data than distance-
based and density-based methods, because clusters are aggregated representations which
can well represent the sparse data. Most clustering-based methods cannot provide an
anomalous degree of an instance, because they only produce a binary class label about
whether instances are anomalies or not.

Strength and weakness. Proximity-based methods are straight-forward and easy-
to-implement, and thus they are widely used methods. However, distance computation
is an essential component within these methods. Such methods do not work effectively
in high dimensional data due to the curse of dimensionality, and they are also sensitive
to irrelevant attributes because they use the full dimensionality to define distance (Zimek
et al., 2012). Another major issue for this type of method is that the distance computation
requires O(n?) time complexity, and thus cannot scale up to very large data sets. Although
the distance computation can be reduced to O(n log n) when instances are preprocessed
by indexing methods such as R*-tree (Beckmann et al., |[1990), most indexing methods
work in low dimensional data sets only, and they break down in high dimensionality.

2.2 Ensemble methods for anomaly detection

Ensemble learning is a well established research area and has wide application in classifica-
tion and clustering (Dietterich, 2000)), but it has been rarely applied in anomaly detection
(Aggarwal, [2013b; [Zimek, Campello and Sander, 2013). Dozens of anomaly detection
ensembles proposed in recent years have shown promising improvement in the detection
performance of traditional anomaly detection methods. These ensembles can be divided
into subspace-based methods and subsampling-based methods. Subspace-based methods
build a set of anomaly detectors on the full data set with subsets of attributes, while
subsampling-based methods build the anomaly detectors using data subsets with all the
attributes. Very little work has been done using both techniques, i.e., build detectors on
data subsets with subsets of attributes.
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2.2.1 Subspace-based methods

Subspace-based anomaly detection methods are motivated by the fact that anomalies
are detectable using some subsets of attributes only. This is particularly true for high
dimensional data. Therefore, most subspace-based methods were proposed to identify
anomalies in high dimensional data. FeatureBagging (Lazarevic and Kumar] [2005) is
seminal work exploring how to combine results from different detection models built on
attribute subsets. Specifically, Lazarevic and Kumar| (2005) first employs a traditional
anomaly detection method, i.e., LOF, to construct a set of models on data with randomly
selected attribute subsets (subspaces). It then investigates two different strategies, includ-
ing breadth-first and cumulative-sum, to combine anomaly scores from different models.
In the breadth-first strategy, instances are simply assigned with the highest anomaly score
from all models, while instances are assigned with the sum of all the anomaly scores from
the models in the cumulative-sum strategy. Unlike Lazarevic and Kumar| (2005) who uses
a single detector on the attribute subsets, Nguyen et al.| (2010]) examines the effectiveness
of using heterogeneous detectors on different randomly selected attribute subsets. One
major limitation in Lazarevic and Kumar| (2005) and |[Nguyen et al.| (2010) is that ran-
domly selected attribute subsets might contain irrelevant attributes; in the worst case, all
the selected attributes are irrelevant attributes. Current research in this direction mainly
focuses on how to select informative subspaces.

Kriegel, Kroger, Schubert and Zimek| (2009) selects informative attributes for an in-
stance based on the variance of instances in a reference set of the instance. Given an
instance x and its reference set Ref(x), i.e., a local neighbourhood of x, the method aims
to find a subspace hyperplane H spanned by Ref(x), where the variance of instances in
Ref(x) is high; while in its perpendicular subspace S, the variance of the instances in
Ref(x) is low. The instance x is considered as an anomaly if it deviates significantly from
its reference instances in the subspace hyperplane H. Such a deviation is captured by the
average Fuclidean distance from x to the centre of each attribute in the perpendicular
subspace S. The deviation is called Subspace Outlier Degree (SOD), which is defined as:

> (xi— Mz')2

A;eS
S|

SODRef(x) (X) -

where A; denotes a specific attribute in the subspace S, x; is the attribute value of x in
A;, p; is the mean value of all the instances in Ref(x) in A;, and |S| denotes the number
of attributes in S. The critical component in SOD is to find a meaningful reference set
for a given instance. In order to reduce the effect of the curse of dimensionality in high
dimensional data, [Kriegel, Kroger, Schubert and Zimek| (2009) adopts the Shared Nearest
Neighbours (SNN) (Houle et al., 2010) measure to identify the reference set, because “even
though all points are almost equidistant to a given point p, a nearest neighbour ranking
of the data objects is usually still meaningful”, as argued in [Kriegel, Kroger, Schubert
and Zimek (2009). Specifically, for the instance x, let kNN (x) denotes the k nearest
neighbours with respect to the Euclidean distance, the SNN similarity between x and
y € D is Simgyn(x,y) = Card(kNN(x) N kNN(y)), and the reference set of x consists
of | most similar instances with respect to Simgnyy. The SNN computation for each
instance is a time-consuming process, which has O(dn?) time complexity. When k < n
and [ < n, the total time complexity of SOD is O(dn3). Thus, the effectiveness of SOD
comes at a high computational time cost. Also, SOD only considers anomalousness on
a single dimension basis, in order to reduce computational cost, and thus cannot detect
anomalies exhibited in subspaces with two or more dimensions.
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Muller et al.| (2011) proposes the subspace-based method OUTERS, which detects
anomalies in subspaces with any number of dimensions. However, OUTERS can only
work on small data sets with very low dimensionality, because its time complexity is expo-
nential to data dimensionality and quadratic to data size. The method called HiCS (Keller
et al., [2012)) combines conditional Probability Density Function (PDF) and Welch’s t-test
to find high contrast subspaces, which are defined as subspaces where anomalies can be
clearly distinguished from other instances, based on a well defined notion of anomalous-
ness. LOF is then used to identify anomalies based on the high contrast subspaces. HiCS
is able to find anomalies in subspaces with varying numbers of dimensions. Since HiCS
uses the Apriori-like mechanism (Agrawal et al., 1996) to generate candidate subspaces, it
is more scalable to dimensionality then OUTERS, but its time complexity is still quadratic
to data size.

Strength and weakness. The first and simple approach is to randomly select some
attribute subsets to construct the subspaces. These methods have comparable time com-
plexity to proximity-based methods. However, since the process of attribute subset selec-
tion is random, irrelevant attributes can be selected. Therefore, these methods do not work
well in data sets with a large percentage of irrelevant attributes. The second approach
aims to search informative subspaces in a preprocessing step before employing anomaly
detection methods. These methods can overcome the sensitivity to irrelevant attributes
but they often have expensive time computation, e.g., at least quadratic to data size or
data dimensionality.

2.2.2 Subsampling-based methods

Compared to subspace-based methods, less work has been done in subsampling-based
methods. The work by [Zimek, Gaudet, Campello and Sander| (2013)) is one of the early
attempts to investigate how subsampling techniques could be used to improve detection
efficiency and effectiveness over a single local anomaly detector B It uses a traditional
local anomaly detection method such as LOF, as a base method to build a set of models
on a set of subsamples derived from the full data set. Given a data set D and the base
detector LOF, the anomaly score of an instance x is average over all the scores from all
models of the ensemble, as defined below:

t
EnLOF(x|D) = % > LOF(x|D;)
=1

where t is the ensemble size, i.e., the number of models built in the ensemble, D; is a
subsample with randomly selected r percent of instances from the full data set D, and
LOF (x|D;) denotes the LOF score of x based on D;. It is argued in [Zimek, Gaudet,
Campello and Sander| (2013)) that subsampling can help distinguish anomalies and nor-
mal instances as it increases the gap between anomalies and normal instances in the
anomaly ranking, and it is able to induce diversity into the ensemble. In [Wu and Jer-
maine, (2006) and [Sugiyama and Borgwardt| (2013)), the authors theoretically and empiri-
cally demonstrate how subsampling techniques could be used to enhance global anomaly
detection methods in terms of both effectiveness and efficiency. Global methods such as
e-neighbourhood and kNN-distance can be used as base methods in this ensemble method.

! Local anomaly detection methods consider the relative densities as anomaly scores, which are ratios of
the density of an instance to the densities of its neighbourhood, whereas global methods, such as DB(, €)-
Outliers, e-neighbourhood and kNN distance, compute the anomaly score for each instance based on the
global neighbourhood.
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Strength and weakness. These subsampling-based methods are based on traditional
anomaly detection methods, so they would inevitably inherit the weaknesses of the tradi-
tional methods, e.g., sensitivity to irrelevant attributes and the curse of dimensionality in
high dimensional data. The time complexity of these methods is strongly dependent on
the ensemble size and subsampling size. Subsampling can obtain favourable speed-up over
the base method if small ensemble size and small subsampling size are employed. How-
ever, since traditional methods like LOF require a sufficiently large number of instances
to approximate the neighbourhood of an instance, the subsampling size is required to be
fairly large, e.g., 10 percent of the data set. Also, the ensemble size needs to be set large
enough, e.g., at least 10, to introduce diversity. Building the ensemble, using ¢t = 10 and
10% of D instances, will take about the same runtime as building a single model using the
same base method on the full data set. In Zimek, Gaudet, Campello and Sander| (2013)), a
fixed number of 25 models on subsamples with 10% of D instances is used by default, and
this ensemble has higher time complexity than the base method, by a factor of roughly
2.5 times.

2.2.3 Using both subspace-based and subsampling-based methods

Very limited work has been done on ensemble methods based on both subsamples and
subspaces. iForest (Isolation Forest)(Liu et al., 2012)) is seminal work in this field. iForest
utilises the property, that anomalies are susceptible to isolation, to build isolation trees to
identify anomalies. Each tree is grown using a subsample until every instance is isolated,
where the attribute and cut-point at each node are randomly selected. To score a test
instance, the path length traversed from the root to a leaf node by the test instance is
then used as the anomaly score. Because anomalies can be isolated using significantly
fewer partitions than normal instances, anomalies have a shorter path length than normal
instances. Given an instance x, the anomaly score is defined as follows:

_E((x))
Score(x) =2 <)

t
where h(x) denotes the path length, E(h(x)) = 2 3" h;(x) is the average path length of x
i=1

from a set of ¢ isolation trees, c(1)) is the expected average path length given the subsample
size 1) and can be estimated by In(y) + 0.5772156649 (Euler’s constant).

MassAD (Mass-based Anomaly Detection) (Ting et al., [2013]) utilises mass estimation
techniques to detect anomalies. Mass is simply the number of instances in a region, which
is formed by axis-parallel splits using a subsample with randomly selected attributes.
Instances, which fall in sparse regions frequently, would have low mass values and are
considered as anomalies. In addition to the methodology, iForest and MassAD also share
some other features, e.g., they both use the average of anomaly scores from all the models
as the final score. It is worthwhile noting that the path length used in iForest is a proxy
to mass, as discussed in [Ting et al.| (2013]).

Strength and weakness. iForest and MassAD require no distance computation
and have linear time complexity in terms of data size and data dimensionality. On the
other hand, they have some common weaknesses, e.g., they are very sensitive to irrelevant
attributes because they work on a few randomly selected attributes in each subsample.
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2.3 Methods for categorical and mixed data

All the methods in previous sections are numeric data oriented ] Compared to methods
for numeric data, less work has been done for categorical and mixed data. In order to
identify anomalies in categorical or mixed data, one way is to convert categorical attributes
into numeric attributes, and then employ numeric data oriented methods; another way is
to directly design methods based on the characteristics of categorical or mixed data.

2.3.1 Categorical-to-numeric transformation

Existing research focuses on embedding a transformation from categorical attributes to nu-
meric attributes into a distance definition, because it facilitates the evaluation of different
transformation methods.

Diverse methods have been proposed from this perspective. Occurrence frequency
based methods assign higher weight to frequent categorical values, while inverse occurrence
frequency based methods assign less weight to these values (Lin, [1998). A comparative
study between these methods was conducted in Boriah et al. (2008]). The results show no
single distance measure can obtain consistent superiority over other measures. In other
words, such transformation methods are application context dependent; and it is thus
difficult to find a universally effective method for different data sets. For mixed data,
another major challenge is how to effectively combine the distance computation results in
mixed attributes (Huang) [1997).

These transformation methods can be well integrated into proximity-based anomaly
detection methods, but they are not applicable for other types of methods, such as extreme
value analysis based methods and isolation-based methods (Aggarwall [2013a; [Liu et al.|
2012).

One commonly used transformation method in the data mining and machine learn-
ing community is to convert categorical attributes into binary attributes using the 1-of-¢
transformation method (Hall et al., [2009; |Aggarwal, [2013a; Zhang and Jin} 2011). In
this method, a ¢-label attribute is first converted into ¢ binary attributes. The binary
attributes are then regarded as numeric attributes, along with the original numeric at-
tributes, to be further processed. A major limitation of this method is that the number of
attributes in the converted data would be much larger than that in its original form if the
categorical attributes contain many labels. This may render detectors less effective due
to the curse of dimensionality (Aggarwal, 2013a)). The advantage of this method is that
it can be easily used by different types of detectors.

2.3.2 Categorical or mixed data oriented methods

Most anomaly detection methods for categorical data are pattern based methods, includ-
ing normal pattern based methods and anomaly pattern based methods. FPOF (Frequent
Pattern based Outlier Factor) (He, Xu, Huang and Deng} 2005), a well known method
dedicated for categorical data, employs the Apriori method (Agrawal et al.l |1993) to gen-
erate frequent itemsets as normal patterns. If instances satisfy few or none of the frequent
itemsets, they are considered as anomalies. Let F'PS(D, ) be the frequent itemsets with
support no less than a given minimum support ¢ in the data set D. For a test instance x,
its anomaly score is computed as follows:

support(g)
- gCx N geFPS(D,d)

FPOF(x) = |[FPS(D, )|

2More details about the ability of existing detectors to handle specific data types will be presented in
the analysis of strength and weakness at the end of this section.
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where ¢ is a frequent itemset, ¢ C x denotes g satisfies x, and support(g) returns the
support of g. FPOF has been widely used and reported as one of the most effective
methods (Koufakou et al., 2007; |Wu and Wang} [2013). Its time complexity is linear to
data size but at least quadratic to dimensionality size.

In contrast to FPOF, some methods search for anomaly patterns to detect anomalies.
These patterns can be infrequent itemsets (Ghoting et al., 2004; [Koutakou and Geor-
giopoulos, 2010) or Bayesian Network rules (Das et al., [2008). These methods perform
comparably to FPOF, but they also cannot scale up with dimensionality. There has been
some information-theoretic based methods (He, Deng and Xul [2005; Wu and Wang}, [2013)
for categorical data, which formalised anomaly detection as an optimisation problem to
minimise the uncertainty in a data set by using some information-theoretic measures, such
as entropy. Instances are considered as anomalies if removing these instances can minimise
the uncertainty of the data set. These methods often work as top-k anomaly detectors,
which return the £ top ranked anomalies.

For categorical data oriented detectors, in order to deal with numeric or mixed data,
numeric attributes are first discretised into multiple bins, and the discretised attributes,
along with the original categorical attributes, are then further processed by the detectors.
Some widely used discretisation methods are the equal-frequency and equal-width methods
(Hall et al., |2009)), but it should be noted that different detectors have different require-
ments on discretisation granularity, so their performance is often sensitive to the number
of bins predefined in discretisation methods. However, compared to categorical-to-numeric
transformation, discretisation is a simpler process because no ordering information is re-
quired for categorical attributes, and it is a well established research area (Liu et al.,
2002).

LOADED (Link-based Outlier and Anomaly Detection in Evolving Data sets) (Ghoting
et al., 2004) is seminal work dedicated to anomaly detection in mixed data. For categorical
data, LOADED searches infrequent itemsets, which consist of categorical values in distinct
attributes. The anomaly score of a test instance is inverse to the length of infrequent
itemsets appearing in the instance. For mixed data, LOADED uses correlations of numeric
attributes on an itemset basis to measure the anomalousness of the test instance. This
helps to capture dependencies between two types of attributes. Though an approximation
scheme is employed, LOADED has high time complexity, which is quadratic to the number
of numeric attributes and is exponential to the number of categorical attributes.

ODMAD (Outlier Detection for Mixed Attribute Datasets) (Koufakou and Georgiopou-
los, 2010) also searches infrequent patterns in order to compute the anomaly score in
terms of categorical attributes. For numeric attributes, ODMAD first generates centroids
of instances containing a specified categorical value, and then employs cosine similarity
between test instances and the centroids to identify anomalies. Results in [Koufakou and
Georgiopoulos| (2010) show that ODMAD performed better than LOADED in terms of
both effectiveness and efficiency. The time complexity of ODMAD is linear to data size
and the number of numeric attributes, but it still increases exponentially with the number
of categorical attributes.

Strength and weakness. Most existing anomaly detection methods are numeric data
oriented. Categorical attributes are required to be transformed into numeric attributes in
order to make these methods applicable for categorical and mixed data, but their perfor-
mance is application context dependent. Limited anomaly detectors have been proposed
to deal with categorical and mixed data directly. To treat mixed data, categorical data
oriented detectors can be employed with discretisation methods, but their detection per-
formance is often sensitive to the number of bins used in the discretisation methods.
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Table 2.1: A summary of the ability of existing anomaly detection methods to meet the
four challenges stated in Section The four challenges include the ability to handle
data sets of different types of attributes (A), high detection accuracy (B), scale up to very
large data size and high dimensionality (C) and tolerant to irrelevant attributes (D). The
mark “x” denotes the methods generally cannot address a particular challenge, while “\/”
indicates the methods can often meet the challenge.

Methods
Extreme value analysis based
Representative: ABOD
Proximity-based
Representative: LOF
Subspace-based
Representative: SOD
Subsampling-based
Representative: EnLOF
Subspace and subsampling based
Representative: iForest
Categorical or mixed data oriented
Representative: FPOF
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For mixed data oriented methods, in order to capture the interaction between numeric
and categorical attributes, their treatments of categorical (numeric) attributes are based
on the results of handling numeric (categorical) attributes. In data sets with categorical
(numeric) attributes only, they do not have results from numeric (categorical) attributes
to assist the processing of categorical (numeric) attributes, and thus they are unable to
detect anomalies directly. Also, most existing categorical or mixed data oriented methods
can handle low dimensional data effectively, but their computation time quadratically
increases with data dimensionality.

2.4 Chapter summary

Anomaly detection is an important research area in data mining and has been studied
intensively in recent years. A variety of methods have been proposed, including extreme
value analysis based methods and proximity-based methods. Anomaly detection using
ensemble learning techniques is an emerging research direction due to its advantages in
dealing with high dimensional data, and its potential effectiveness and efficiency benefits
over single detectors. It should be noted that ensemble based methods often use extreme
value analysis based methods and proximity-based methods as base methods. A summary
of the ability of existing anomaly detection methods to meet the four challenges stated in
Section is presented in Table It shows that existing methods can handle the four
challenges with varying degrees of success, but none of the existing methods can meet all
the four challenges. Motivated by this fact, this research aims to design a novel method
to cope with all four challenges in a unified framework.
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Chapter 3

ZERO+4+: A novel anomaly
detection method

In this chapter, we propose a novel anomaly detection method, which employs the number
of zero appearances in subspaces to detect anomalies. Our proposed method is called
ZERO+++ because its anomaly score involves the sum of the number of ZERO appearances
in subspaces over a set of subsamples (i.e., a double summation ++).

Most existing anomaly detection methods rely on the key characteristic of numeric
data, i.e., the notion of ordering. For example, extreme value analysis based anomaly
detection methods employ the ordering information to identify anomalies with extremely
large or small values. For proximity-based methods, the ordering information is used to
define neighbourhood and identify anomalies that lie in regions of low density. However,
these methods cannot handle categorical data, which is inherently unordered or lacks
continuity in attribute values. Though techniques in transforming categorical data into
numeric data allow these anomaly detectors to treat categorical data, their detection
performance is often context dependent. Therefore, these methods can generally work
well in numeric data, but they often fail to obtain favourable detection performance in
categorical data and mixed data.

In contrast, ZERO++ is based on categorical data. To handle numeric data or mixed
data, numeric attributes are discretised into categorical attributes prior to employing our
proposed method. Discretisation is a well established field (Liu et al., 2002) and it is a
process simpler than the one which requires a reverse conversion in most existing methods,
because no ordering information is required for categorical attributes. As such, ZERO++
is in a better position to treat mixed data.

Based on the property that anomalies have a higher probability of having zero appear-
ances in subspaces and in subsamples than normal instances, ZERO++ aims to use the
number of zero appearances in subspaces over a set of subsamples to identify anomalies. A
major challenge in this motivation is that the number of subspaces is exponential to data
dimensionality, so it is inapplicable for high dimensional data. However, zero appearances
in subspaces follow the anti-monotone property, which states that ‘if an instance has zero
appearances in a subspace, it must also have zero appearances in subspaces containing
this subspace’. Utilising this property, an efficient and effective approximation method is
proposed by using a small set of low dimensional subspaces only.

This chapter presents the intuition of our proposed method in Section followed by
the introduction of our method in Section Next, we discuss how ZERO++ can be
extended to handle numeric and mixed data in Section We then present an analysis
of the characteristics of ZERO++ and its algorithmic framework in Sections and
respectively. A comparison between ZERO++ and anomaly detection methods in most
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related work is provided in Section This chapter ends with a chapter summary in
Section The symbols and notations used are provided in Table

Table 3.1: Symbols and notations

A data set with d attributes, where |D| = n

A subsample of D, where |D| = v

A product set of all the attributes in D

A subspace having a product set of m attributes

Set of all the subspaces in D

Set of all the m-dimensional subspaces

A random subset of R,,

An instance in D

) Frequency count of y in D, i.e., r(y) = |{x€ D:x=y}|
rs(y)  Frequency count of y in S and in D

Ps(y|D) The probability of y in S given D
Zs(y) A binary variable: whether y has zero appearances in S given D, or not

t The number of subsamples

= oy
<RIV

3.1 Intuition

In a categorical data set, anomalies are rare instances, i.e., those instances which have
combinations of values that are rare. Furthermore, in a random subsample, the probability
of having no instances in the subsample with the same values as a given test instance, on
any attribute subset, increases monotonically with a decrease in the frequencies of the
values in the full data set. Therefore, anomalies are likely to have zero appearances in
small subsamples, and also have a higher probability of having zero appearances than
normal instances in subsamples of any size (see Definition 2 in Section for the formal
definition of zero appearances). Based on this property, we propose to employ the number
of subspaces having zero appearances in subsamples to identify anomalies. Instances
with a high number of zero appearances in subspaces will have a high anomaly score.
To demonstrate this intuition, we provide two examples: one using univariate data and
another using multivariate data.

Given a univariate categorical data set with 1,000 instances, and there exists an
anomaly with 10 appearances and a normal instance with 100 appearances. When ran-

domly subsampling eight instances without replacement from the data set, the probability
1000—-10

of the anomaly having zero appearances in the subsample is W ~ 0.9225, whereas
1000—100 s
that of the normal instance is ~—~&5—~ =~ 0.4291 only. Therefore, in a set of subsamples,
8
anomalies are likely to have a higher number of zero appearances than normal instances.
In multivariate data sets, the rarity and exception characteristics of anomalies are
reflected in subspaces. Therefore, compared to normal instances, anomalies are likely
to have a larger number of zero appearances in subspaces. A big challenge in examining
zero appearances of instances in subspaces is its time and space complexities exponentially

d
increasing with data dimensionality, i.e., the number of all the subspacesis (i) =211

m=
in total for D. This number could be too big to store in memory, e.g., d = 50 requires

about one petabyte of main memory, and the runtime for examining zero appearances in
all these subspaces is prohibitive for only a few dozen instances.
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However, zero appearances in subspaces follow the anti-monotone property, which
states that ‘if an instance has zero appearances in a subspace, it must also have zero
appearances in subspaces containing this subspace’. Utilising this property, we provide an
effective and efficient approximation to identify anomalies by considering a small set of
low dimensional subspaces only.

An application of the anti-monotone property for a simple two-dimensional subspace
is shown in Figure Let Sa; be the region A = ¢ in the one-dimensional subspace of
attribute A.

T T T
et olf
A=k 151} @
sl ©@ ®
A=i o]}
I I I

EE B=r (1] B (0] Bt 3]

Figure 3.1: A two-dimensional categorical data subset with 30 instances, where the size of
the circle indicates the number of instances in a region; and the number in [ ] indicates the
number of instances in the region of one-dimensional subspace. Labels for A are {4, j, k,(}
and labels for B are {q,r,s,t}

Given the data distribution shown in Figure [3.1] regions of zero appearances in one-
dimensional subspaces are S4;, Sq; and Sps only. Any test instance having either A = 4,
A =lor B = sismore likely to be an anomaly. Since instances must have zero appearances
in higher-dimension subspaces of either A =i, A =1 or B = s, we only need to examine
regions in these one-dimensional subspaces.

In high dimensional data sets, the anti-monotone property substantially reduces the
number of subspaces that need to be examined. Although using zero appearances in low
dimensional subspaces to approximate zero appearances in all the subspaces may lose
some accuracy, it gains significant reduction in time and space complexities, i.e., the time
and space complexities are reduced from 2% to d, and in Chapter |4 we will empirically
show that our approximation can identify anomalies more effectively than state-of-the-art
anomaly detectors in a wide range of real-world and synthetic data sets.

3.2 ZERO-++: The anomaly detection method

In ZERO++, based on our argument in Section which states that anomalies have a
higher probability of having zero appearances in subspaces and in subsamples than normal
instances, in Section [3.2.2] our anomaly score computation method is introduced based
on the number of zero appearances in subspaces over a set of subsamples. Since the time
and space complexities of examining zero appearances in all subspaces are prohibitive
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for high dimensional data sets, we provide an efficient approximation for anomaly score
computation using a small set of low dimensional subspaces only in Section [3.2.3

3.2.1 Zero appearances in subspaces

In this thesis, a subspace refers to a m-attribute subspace in a categorical space and it
is defined as a product set of m attributes. Formally, let D be a set of i.i.d. instances
{y1,...,yn} with d categorical attributes, and A = A; x Az x ... x Ay be a product set
of the attributes; and y = [y1, ..., yd]-

Definition 1 A subspace is a product set of m attributes
S:AklekQX...XAkm, (3.1)

where 1 < k1 <ko... <k, <d.

Let D, with ¢ randomly selected instances (sampling without replacement), be a ran-
dom subset of D; and Is(x =y) be an indicator function, which is 1 if instance x is
identical to y in subspace S, and 0 otherwise.

Definition 2 Aninstancey has zero appearances in S given D, if Vx € D, [s(x =y) =0,
e, {X €D [Thyy- s iy | = [Ykys - Yk )} = 0.

For example, assume A; and As are two attributes of D, and Ay contains three values
ay, ag, az and Ay contains two values by, by, then S = Ay x Ay = {(a,b) : a € A&b € B} =
{(a1,b1), (a1,b2), (az,b1), (a2, b2), (as,b1), (a3, b2)}. In a subsample D of D, suppose only
{(a1,b1), (a1,b2), (az,b1), (a2,b2)} occur, then (ag,b;) and (ag, by) have zero appearances
in S given D.

In a given data set, anomalies are instances with low probabilities in subspaces. So,
in a random subset of the data set, anomalies are likely to have zero appearances in the
subspaces. This is demonstrated in the following theorem [[] and its corollaries.

Definition 3 Z5(y) = 1 if y has zero appearances in S given D, and Zs(y) = 0 other-
wise.

n—rs(y)
Theorem 1 The probability of Zs(y) is equal to its expected value E(Z5(y)) = ((ﬁ))
W

Based on Theorem [1 we have the following three properties and their implications in
anomaly detection:

(7) If rs(y) < rs(x) < n —1, then E(Z5(x)) < E(Zs(y)). Anomalies are rare, and
thus they have smaller rg(-) compared to normal instances. As anomalies have
smaller rg(-) than normal instances, they have a higher probability of having zero
appearances in a given subspace.

7) If y has a large number of identical instances in S, such that rg > n — 1), then
y g y s
E(Zs(y)) =0, i.e., y must not have zero appearances in the subspace. In such cases,
y is considered as a normal instance because it conforms to a major behaviour in the
subspace.

Proofs of theorems are provided in Appendix
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(7i) If y is a previously unseen instance, i.e., rs(y) = 0, then E(Zs(y)) = 1. Such
instances are considered as anomalies because they conform to an unusual behaviour.
Also, the probability of y having zero appearances in the subspace approaches 1 when
rs(y) becomes very small and v is small. Given the rarity and exception nature,
anomalies often have very small r5(-), so in a small subsample they have very high
probability of having zero appearances in a given subspace.

3.2.2 Anomaly score

Based on Theorem (1| and its properties in Section [3.2.1] we define anomalies as follows:

Definition 4 Anomalies are instances having zero appearances in a large number of sub-
spaces over a set of subsamples.

Definition 5 The probability of instance y in subspace S given D is defined as:

erD Is (X = Y)

(3.2)

If y has zero appearances in S given D, i.e., {X € D : [y, .- Tk, | = Wkys- -+ Ykl } =
(), then Ps(y|D) will be equal to 0. ZERO++ employs the number of zero appearances
in subspaces as an anomaly score. Given D and R, the anomaly score for y is defined as
follows:

Definition 6 The anomaly score fory is defined as the number of zero appearances in D
and R:

score(y|D,R) = Y I(Ps(y|D) = 0) (3.3)
SeR

where I(Ps(y|D) = 0) is an indicator function, which is 1 if Ps(y|D) = 0, and 0 otherwise.

The anomaly score is bounded by [0, |R|]. Based on the first property in Theorem
compared to normal instances, anomalies have a higher probability of having zero
appearances in a given subspace. Therefore, in a set of subspaces, anomalies are likely to
have a larger number of zero appearances than normal instances, and thus have a larger
anomaly score.

Theorem 2 If Z5(y) are independent, then
1
(n—T’(y)) TR
0 < E(score(y|D,R)) < |R| | 1— (1 - :f) (3.4)
()
Moreover, if E(Zs(y)) are identical for every S € R, then

1

(n—r(y)) IR]
E(score(y|D,R)) = |R| [ 1 — (1 — w) (3.5)

(v)

Note that here R is a fixed set, so the expected anomaly score of y is subject to D
only. Suppose the assumptions in Theorem [2| hold, then given a test instance y and a
fixed subsampling size 1,
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(7) if y has r(y) such that r(y) < n—1, then based on Equation (3.4)) its anomaly score
is upper bounded by

1

R | 1- (1_(5)”)) E

It should be noted that the independence of zero appearances in subspaces is a strong
assumption, so it may not be a tight upper bound. However, Equation shows
that the anomaly score of y is inversely proportional to its appearances in the full
data set, and provides an explanation as to why our proposed anomaly score can be
used to identify anomalies effectively.

(éi) if y is a frequent instance, e.g., such that r(y) > n — ¢, then it has the smallest
anomaly score 0 and should be considered as a normal instance.

(7i) y will have the largest anomaly score |R|, when D does not contain any instance
which is identical to y, e.g., a previously unseen anomaly.

(iv) Equation (3.5)) is built on a very strong assumption that F(Zs(y)) are identical for
every S € R. When this assumption holds, anomalies must have higher anomaly
scores than normal instances since they have smaller r(-).
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Figure 3.2: Average anomaly scores and two standard deviations of anomalies and normal
instances in BreastCancer using different subsampling sizes. The average anomaly score is
derived as follows: we first compute the anomaly score for each anomaly (normal instance),
and the sum of anomaly scores for anomalies (normal instances) is then divided by the
total number of anomalies (normal instances). We obtain the standard deviations based
on the average scores over 10 runs.

We use the data set BreastCancer (Asuncion and Newman), 2007)), which contains 699
instances and 9 categorical attributes, to demonstrate the implication of Theorem [2| in
Figure 3.2 The data set contains 444 ‘benign’ instances and 241 ‘malignant’ instances.
Following [Hawkins et al| (2002) and [He, Xu, Huang and Deng| (2005), to transform this
classification data set for anomaly detection tasks, we selected the first 39 ‘malignant’
instances as anomalies against all ‘benign’ instance. The total number of subspaces in R

9
is equal to > (7‘2) = 29 — 1 = 511, and thus the anomaly score is bounded by [0, 511].

m=1
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Figure 3.2 presents a comparison of anomaly scores of anomalies and normal instances
in BreastCancer with the subsampling sizes of 2, 4, 8, 16, 32, 64, 128 and 256. The
average score and two standard deviations over 10 runs are presented. We also visualise
the upper bound of the anomaly score with different subsample sizes. The averages over
the anomaly scores of both anomalies and normal instances approach 0 as the subsampling
size increases, but the average over anomaly scores of anomalies decrease at a much slower
rate, and they are generally much larger than those of normal instances. As r(-) is as small

1
as 1, the upper bound of the anomaly score is 511 x (1 — (1 — 4%138?/’) '), which decreases

slowly with increasing subsample sizes. It is interesting to note that small subsamples have
only a few dozen instances, so the independence of Zs(y) is likely to hold, and as a result,
the upper bound is rather tight using small subsamples.

In order to obtain a more accurate estimation of the anomaly score for each instance,
we use a set of subsamples to compute anomaly scores.

Definition 7 For a test instance 'y given D;, 1 =1,2,--- ,t, and R, the anomaly score of
y s defined as follows:

score(y) = Z score(y|D;, R) (3.6)

=1

In Equation , according to the Law of Large Numbers (Etemadi, 1981)), for a given
y, score(y) will converge and have a stable value when ¢ is sufficiently large. Figure
shows the average anomaly scores and two standard deviations over 10 runs for anomalies
and normal instances in BreastCancer using ¢ = 8 and different ¢ values. The score
converges very quickly and it becomes very stable when ¢ > 50. We will present more
experiments on examining the sensitivity of ¢ and ¢ in Chapter [4 and Appendix [C]

BreastCaner

—&— Anomalies
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Figure 3.3: Average anomaly scores and two standard deviations over 10 runs for anomalies
and normal instances in BreastCancer using ¢ = 8 and different numbers of subsamples.

3.2.3 Approximation

d
The number of subspaces in Ris (i) = 291 in total for D, which leads to exponential

m=

time and space complexities with respect to data dimensionality. For high dimensional
data, examining the zero appearances of a given instance in all the subspaces is prohibitive
in terms of both time and space complexities. For example, a 50-dimensional data set
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requires about one petabyte of main memory to store all the subspaces, and for each test
instance, we need to examine zero appearances in 2°0 — 1 subspaces, so the time and
space complexities are prohibitive for data with only a few dozen instances. Therefore,
ZERO++ with R is inapplicable in many real-world data sets, which have hundreds of
dimensions and thousands of instances.

Definition 8 Suppose we have two subspaces S = A, X Ap, X ... X Ag, and §' =
Apy X Apy X oo X Ay, if ¢ > m, then S’ is a higher-dimension subspace containing S.

In this research, utilising the anti-monotone property of zero appearances in subspaces,
we introduce an efficient approximation to the proposed anomaly score with R as shown
in Equation .

The anti-monotone property states that:
given a subspace S, let 8’ be a higher-dimension subspace containing S, if Ps(y|D) = 0,
then Ps/(y|D) = 0.

Based on this property, if a test instance has zero appearances in a subspace, it must
also have zero appearances in the higher-dimension subspaces of this subspace. Thus,
examining zero appearances in low dimensional subspaces is often sufficient to distinguish
anomalies and normal instances.

The anti-monotone property enables us to approximate our anomaly score by using
R,, with a small m only. The simplest case is to replace R with R; in Equation .
In such a case, there are d subspaces, with each subspace spanned by a single attribute.
However, it is very easy for anomalies to mask themselves by having the same attribute
value as normal instances in single attributes, and using zero appearances in R; fails to
work when the zero appearances are dependent on multiple attributes. An example of this
case is demonstrated by a two dimensional occupation-salary artificial data set in Figure
where attribute A stands for income level with h, 4, j, k and [ corresponding to five
respective levels very low, low, medium, high and very high, and B stands for occupation
with a, b, ¢, d and e corresponding to five respective occupations cleaner, premier, software
engineer, astronaut and CEO. In the left panel, A = h (having very low salary), A = [
(having very high salary), B = b (being a premier), B = d (being an astronaut), and
B = e and A =i (a low-salary CEQO) are rare attribute values, and instances having these
values are considered as anomalies, so there are five anomalies in this data set. For the
subsample in the right panel, any instance having either A=h, A=1[, B=bor B=4d
has zero appearances in the one-dimensional subspaces, and four anomalies having A = [
or B = d can be detected. However, it cannot identify the fifth anomaly with B = e
and A = ¢ by working on one-dimensional subspaces only, as the zero appearance of this
anomaly is dependent on both attributes.

Also, the time and space complexities of using R, with m > 2 are prohibitive for large
and high-dimensional data sets. For example, the time and space complexities of examining
zero appearances in all the subspaces in Ry are quadratic to data dimensionality, and that
for R, with 3 <m < [%1 are at least cubic to data dimensionality. For computational
efficiency, we focus on using a small random subset of R,,, denoted by R/ . to replace R,,.

In this research, ZERO++ employs the zero appearances in subspaces in R to identify
anomalies. R) is a subset of Ry having |Rj)| = d such that every attribute must appear
exactly twice in R5. This is to ensure that R covers all the attributes and every attribute
has an equal chance to be considered in R}. The coverage of attributes in R/, enables
ZERO++ to tolerate irrelevant attributes (A discussion about this can be found in Section

).
5 is generated randomly as follows: A random order of d attributes A;,, A;,, ..., 4;,
is first generated. Then, d attribute-pairs are formed by chaining the consecutive pair of

attributes circularly until each attribute appears exactly twice, yielding R, = {Si iy, Sigis,
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Figure 3.4: A two-dimensional occupation-salary data set with 100 instances, where the
size of the circle indicates the number of instances in a region; and the number in [ |
indicates the number of instances in the region of one-dimensional subspace. The left
panel is for the full data set; the right panel is a result of subsampling eight instances from
the data set.

. ,Si(d_l)id, Sizii }, where S;; = A; x A;. Note that to produce an anomaly score for y as
shown in Equation , R}, is generated randomly ¢ times. In contrast, Ry is a unique
set.

Our anomaly score using R, is an efficient approximation to that using R shown in
Equation , and m can be any value within the range [1, d] ﬂ The reasons for the use

of R}, are as follows:

e Using R} is a trade-off between the use of Ry and R], with 3 < m < d in terms of
detection performance in data sets with different attribute dependences.

In data sets where anomalies exhibit abnormal behaviours based on multiple at-
tributes, in order to obtain favourable detection performance, zero appearances in
subspaces spanned by two or more attributes, e.g., subspaces in R}, with 2 <m <d,
need to be examined. Using R; fails to detect these anomalies because subspaces in
Rq cannot capture dependence of abnormal behaviours on multiple attributes.

In data sets where attributes are independent, e.g., abnormal behaviours are not
dependent on multiple attributes, using R/ with a larger m works less effectively,
e.g., using R; works best in such data sets. This is because data subspace becomes
sparser with increasing dimensionality sizes, and normal instances also become rare
instances in subspaces in R}, with a larger m, and as a result, normal instances can
be incorrectly reported as anomalies.

To demonstrate the above two situations, we provide two real-world examples: one
using Mushroom where abnormal behaviours are dependent on multiple attributes,
and another using Shuttle where attributes are independent El

In Mushroom, many poisonous mushroom cases can be detected only when examining
behaviours in two or more attributes (Duch et al., |1996|). Therefore, using R/,

2The process of generating R} can also be used to generate R,, with other m values, but it should be
noted that R;, with m = 1 or m = d has a different property as R,, with 2 < m < d — 1, i.e., every
attribute appears once only in R} and R}. R} has the same subspace set as R, and R/ contains one
subspace only spanned by all the attributes.

3Descriptions of the data sets can be found in Appendix The empirical results are based on ¥ = 8
and t = 50, which are the default settings for the two parameters in our experiments in Chapter E}
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with m > 2 is expected to obtain better detection performance than using Rj.
The AUC E| and two standard errors over 10 runs using R}, with a different m in
Mushroom is presented in Figure It shows that our anomaly score using R],
with 2 < m < 22(d = 22) outperforms that using Ry significantly, and the AUC
performance using R, with 2 < m < 10 increases with m.

0.9

Figure 3.5: AUC performance and two standard errors over 10 runs using R, with a
different m in Mushroom.

In Shuttle P, most anomalies can be detected by examining behaviours in the first
or the seventh attributes. In such data sets, our anomaly score using R; is expected
to perform better than that using R}, with 2 < m < d. The result in Shuttle is
provided in Figure It shows that the AUC performance decreases quickly with
increasing m, and using R/, with a small m is able to outperform that with a large
m significantly. Note that AUC performance using R} is very closed compared to
that using Ry, i.e., the AUC difference is 0.0001 only.

Different data sets have different dependences of abnormal behaviours on attributes,
and it is often difficult to obtain the dependence information in advance and then use
R!, with a proper m value. We employ R}, as a trade-off between the use of Ry and
R}, with 3 < m < d to deal with data sets having different attribute dependences.

e Time and space complexities are prohibitive in order to capture dependence of ab-
normal behaviours on different numbers of attributes, i.e., subspaces in R}, with
different m values.

Subspaces in R}, with different m values needed to be examined in order to capture
the dependence of abnormal behaviours on different numbers of attributes. An ex-
ample of this is provided in Table where a data subset contains twelve instances
and four attributes. Elements of (a1, b, c2) appear in every one- or two-dimensional
subspaces spanned by any subset of A1, Ao and As, but it has zero appearances in
the three-dimensional subspace spanned by these three attributes. For (a1, ba, c1,d3),
its elements exist in all subspaces with less than four dimensions, but it has zero

4AUC is the area under the curve of Receiver Operating Characteristic (ROC) which is a plot of the
true positive rate against the false positive rate at various threshold settings. Higher AUC indicates better
detection performance. More detail of this is presented in Section

5Shuttle is a numeric data set. This data set was discretised by the T & 3s rule discretisation method
introduced in Section before applying our proposed method to it. All the nine attributes in this data
set are independent.
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Figure 3.6: AUC performance and two standard errors over 10 runs using R), with a
different m in Shuttle.

appearances in the full dimensionality. In order to capture all these types of zero ap-
pearances, it requires remembering appearance information in subspaces in R], with
different m values, i.e., Ry, R, ---, and R/, which has time and space complexities
increasing exponentially with d, and thus is inapplicable for high dimensional data.

Table 3.2: A toy example: Zero appearances occur in three or higher dimensional subspaces
only. Each attribute contains three labels, i.e., A1 = {a1,a2,a3}, A2 = {b1,b2,b3}, A3 =
{e1,¢2,¢3} and Ay = {d1,da, d3}.

Instances | A7 Ay Az Au
y1 a3 by ca  d3
Y2 a3 by co dy
y3 ay by ¢ d3
y4 azg by c2 dy
ys5 ap by ¢ do
Y6 azg by ¢ ds
y7 ap by ¢ dy
ys ap by ¢ dy
Yo ap by co dy
Y10 ap by e ds
yi1 ap by ¢ ds
Y12 ap by c2 d3

Compared to the use of Ra, our anomaly score using R/, with a sufficiently large num-
ber of subsamples can provide a good approximation to that using Re, while at the same
time reducing time and space complexities from a quadratic to a linear level. For example,
for low dimensional data sets, e.g., with d < 30, Equation with Rs needs to examine
the zero appearances of y in |Rg| = @ < 14.5d subspaces, while if Eqn. uses a suf-
ficiently large ¢ number of R}, e.g., t > 50, it will examine at least ¢|Rj| > 50d subspaces.
In such a case, Equation with R/, can provide an effective approximation to that
using Ro. For higher dimensional data sets, in many real-world data sets, many attributes
are irrelevant to anomaly detection tasks, so numerous subspaces in Ry are spanned by ir-
relevant attributes. Assume a 100-dimensional data set with only 10% relevant attributes,
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then the total number of relevant subspaces in R is LQXQ = 45. However, in R}, there

will be % x 50 = 250 relevant subspaces for t = 50. Therefore, Equation with R) is
still able to provide an effective approximation to that using Rs. It should be noted that
R), is generated randomly for each subsample, so there may exist the same subspace in R}
in different subsamples. This allows ZERO++ to examine whether the zero appearances
in the same subspaces occur by chance.

Compared to the use of R or R}, with different m values, our anomaly score using
R/, might lose some accuracy, but time and space complexities have been reduced from at
least O(2%) to O(d).

ZERO++ is employed with R, by default hereafter. We will empirically show that
ZERO++ with R/, can identify anomalies more effectively than state-of-the-art anomaly
detectors in a wide range of real-world and synthetic data sets in Chapter [4]

3.3 Extensions to numeric and mixed data

For numeric and mixed data, as ZERO++ is based on categorical attributes, numeric
attributes are discretised to become categorical attributes. This is a process simpler than
the one which requires a reverse conversion because no ordering information is required
for categorical attributes. We examine ZERO-++ with two discretisation methods, i.e.,
the equal-width method and the T + 3s rule discretisation method.

A number of discretisation methods have been proposed, but they were mainly ded-
icated for supervised learning techniques (Liu et al., 2002)). Two commonly used unsu-
pervised discretisation methods include equal-frequency and equal-width methods. The
equal-frequency method divides instances into bins of the same number of instances in
each attribute. Since our interest is to find zero appearances of infrequent attribute values
in subsamples, the equal-frequency method is inapplicable because values in each attribute
will have the same frequency after using this method.

The equal-width method divides instances into bins of equal width in each attribute.
Formally, it works as follows. For a given attribute A and a user-defined number of bins
Npin, we first find the maximum and minimum values in A, denoted by maz(A) and
min(A); the bin width is then obtained by w = w; and the Np;, bins are
finally generated by (Npiy, — 1) cut points min(A) + i x w where i = 1,2, , Ny, — 1.
Different widths will lead to varying binning results, which will in turn result in unstable
anomaly detection performance.

In this research, we also examine a simple preprocessing method which converts a
numeric attribute into a categorical attribute with two labels as follows. For each subsam-
ple, we compute the mean T and the standard deviation s for each attribute. If a numeric
value falls within the range [Z — 3s, T + 3s], it is assigned a label ’y’; otherwise label 'n’ is
assigned.

The intuition of the T 4+ 3s rule method is demonstrated using a synthetic data set
in Figure We visualise results of the discretisation in a Gaussian distribution with
10,000 instances in a two-dimensional numeric feature space shown in Figure [3.7, where
each rectangle area indicates a discretised partition result of a subsample, bounded by
[T — 3s,T + 3s] in each dimension. Each rectangle is generated based on 64 randomly
selected instances from which T and s are computed. An instance that falls outside the
rectangle area has zero appearances in this region. The figure shows that anomaly o does
not appear in all 50 regions created from 50 subsamples; while normal instance x appears
in all 50 regions. Figure|3.8shows the average probabilities of having zero appearances in
the region outside the rectangle with respect to increasing v values. The probability of
anomaly o having zero appearances is substantially higher than that of x, and it converges
very quickly with increasing subsampling sizes.
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Figure 3.7: A data set of 10,000 instances generated from a Gaussian distribution. The
50 rectangles are 2-D subspaces generated from 50 subsamples, each having 64 instances.
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Figure 3.8: Average probabilities of having zero appearances for x and o with respect to
different subsampling sizes.

The T £ 3s rule is known to be not robust, i.e., T and s are easily influenced by
anomalies. However, T and s are derived from each subsample which is less likely to
contain anomalies. In addition, the multiple models used in ZERO++ also reduce the
impact of biased T and s.

This discretisation method is based on an underlying assumption that the normal
instances follow uni-modal distributions. Therefore, once the uni-modal distribution as-
sumption is violated, more advanced discretisation methods may be required in order to
obtain favourable detection performance. We will show in Chapter [4 that ZERO++ using

the T £ 3s rule method is able to handle many real-world numeric data sets and mixed
data sets effectively.

3.4 Characteristics of ZERO++
ZERO++ has the following three characteristics:

1. ZERO++ works well with a small subsample size.
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Let p= "8 &) he the probability of y occurring in subspace S given the full data set

n

D. E(Zs(y)) can then be computed as follows:

n(l—p) —1 n(l—p) —(-1)
A T Y

For a large n, it can be simply approximated as follows:

E(Zs(y)) = (1 —p)* (3.7)

E(Zs(y)) = (1-p)

Based on Equation , given a small subsample D, if y is a rare instance in D,
i.e., p is very small, then the probability of y having zero appearances in D is very
high. Figure presents E(Zs(y)) with respect to different 1, i.e., 2, 4, 8, 16,
32, 64, 128, 256 [, given different p, including 0.1, 0.05, 0.01, 0.005. It shows that
a small subsample size, e.g., ¥ < 64, can generally ensure rare instances bearing
high probability (> 0.5) of having zero appearances in subsamples. Particularly,
for p < 0.05, E(Zs(y)) > 0.65 if ¢» < 8. For a relatively large p, e.g., p = 0.1,
a smaller ¢, e.g., 2 or 4, should be taken in order to ensure E(Zs(y)) within the
range (0.5, 1.0]. Considering the percentage of anomalies is normally less than 5%, a
small subsample size, e.g., ¥ < 64, is preferred in order to ensure anomalies having
a sufficiently large number of zero appearances in the subspaces. In this research,
1 = 8 is used as the default setting in our experiments.

Probability

Figure 3.9: Probability of having zero appearances in subsamples with respect to different
subsample sizes, given instances with different p.

2. ZERO++ is able to work on data sets with a low percentage of relevant attributes.

For anomaly detection tasks, anomalies do not exhibit abnormal behaviours in irrel-
evant attributes, i.e., anomalies and normal instances share the same behaviour in
such attributes. Therefore, in ZERO++, both normal instances and anomalies have
equivalent anomaly scores in subspaces spanned by those attributes. However, in
subspaces spanned by relevant attributes where anomalies have rare attribute val-
ues, anomalies are more likely to have zero appearances in subsamples than normal
instances, and as a result, anomalies will have higher anomaly scores than normal
instances. Therefore, even if the data sets have a very low percentage of relevant
attributes, e.g., 1%, anomalies are still likely to have a larger number of zero ap-
pearances in the subspaces compared to normal instances.

5In ZERO++, these values are used as a search range for best performance by default in our experiments.
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It should be noted that R, in ZERO++ covers every attribute in each subsam-
ple, whereas other subspace-based methods, such as FeatureBagging (Lazarevic and
Kumar, |2005), iForest (Liu et al., [2012)) and MassAD (Ting et al., 2013), work on
subspaces spanned by a randomly selected attribute subset only. If data sets contain
a high percentage of irrelevant attributes, these methods are very likely to work on
subspaces spanned by irrelevant attributes only, and as a result, they perform poorly
in such data sets.

. Considering interactions within attributes is an integral component in ZERO++.

For ZERO++ working with R, instances are considered as anomalies when they
exhibit abnormal behaviours in one or two attributes of a given subspace, so it is able
to identify anomalies which have abnormal behaviours depending on two attributes.
ZERO++ can be adapted to cases which are required to capture dependences be-
tween three or more attributes by simply replacing R/, with a higher dimensional
subspace set, e.g., Rj. Attribute independence is often violated in many real-world
data sets (Ghoting et al., 2004; Webb et al., 2005). The ability to capture depen-
dences between numeric and categorical attributes is often required for detecting
anomalies in mixed data sets (Ghoting et al.,[2004; Zhang and Jin, 2011)). ZERO++
with R}, captures the interaction between one numeric attribute and one categorical
attribute in a seamless manner.

3.5 The algorithm

Given a data set with categorical attributes, ZERO++ builds a model in the training
stage, and the model can then be used to score every instance in the testing stage. The
procedures of these two stages are given below.

Training. In the training stage, ZERO++ builds a probability table from each sub-

sample for R,. The probability table consists of probabilities of instances occurring in
each subspace in R}, as defined in Equation . As there are d subspaces in R), the
width of the probability table is equal to d. The procedure to generate the probability
tables is presented in Algorithm [I] Note that we are interested in entries of the subspaces
having zero probabilities only, and the non-zero entries in the probability table are only
useful in so far as to identify zero entries; the actual probabilities are immaterial.

Algorithm 1 ProbabilityTable(D, t, 1)

Input: D - input data, ¢t - the number of subsamples, 1 - subsample size
Output: Q - a set of probability tables

1: Initialise  as an empty set

2: for i =1tot do

3:  Initialise probability table w;

4:  D; + Randomly select ¢ instances without replacement from D
5. Generate a randomised subspace set Rf

6:  Build w; for R from D;.

7 Q<+ w;

8: end for

9: return

Testing. To score a test instance y, ZERO++ computes the number of zero appear-

ances in the subspaces in the probability table w;, as defined in Equation (3.2]), as the
anomaly score for y. The higher the score is, the more likely y is an anomaly. This
procedure is presented in Algorithm
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Algorithm 2 ZERO++(y)

Input: y - a test instance
Output: z - the number of zero appearances in subspaces of y
1: z+0

2: for i =1tot do

3: 1 < number of zero appearances in subspaces in w;(y).
4: Z4—z+rT
5
6

. end for
: return =z

Complexity analysis. In the training stage, ZERO-++4 builds ¢ d-sized probability ta-
bles, each using a subsample of ¢ instances. Thus, ZERO++ has time complexity O(tdv)).
During the testing stage, for a test instance, ZERO-++ needs to look up ¢ probability ta-
bles, where each table look up takes O(d). To score n instances in a data set, ZERO++
has time complexity O(ntd). Since n is normally far larger than 1, the time complexity
of ZERO++ is O(ntd).

In terms of space complexity, ZERO++ needs to store t d-sized probability tables
for every subsample. Let ¢ be the average number of labels per attribute, so for each
probability table, O(d¢?) is required to store values in its subspaces. Therefore, ZERO++
has space complexity O(td¢?).

A comparison of time and space complexities between ZERO++, FPOF (He, Xu,
Huang and Deng, [2005), iForest (Liu et al., 2012), LOF (Breunig et al., 2000) and SOD
(Kriegel, Kroger, Schubert and Zimek, 2009)) is provided in Table Both ZERO++ and
iForest have linear time complexity with respect to both data size and dimensionality, and
constant space complexity with respect to data size. The state-of-the-art anomaly detector
for categorical data FPOF, density-based detector LOF, and subspace-based detector SOD
have much higher time and space complexities than ZERO-++ and iForest. The time
complexity of FPOF is linear to data size but quadratic to dimensionality, and it is affected
by the length of the itemsets considered and the minimum support threshold. Though the
time complexity of LOF and SOD can be reduced to O(n log(n) d) and O(n?d) respectively
when using some indexing scheme such as R*-tree (Beckmann et al., [1990), most indexing
schemes only work on low-dimensional numeric data and do not work on data with high
dimensionality or with categorical attributes.

Table 3.3: time and space complexities between ZERO-++, FPOF, iForest, LOF and SOD.

Methods  Time complexity Space complexity

ZERO++ O(ntd) O(tdl?)
FPOF O(n29) 0(2%)
iForest O(nt) O(ty)
LOF O(n?d) O(nd)
SOD O(n3d) O(nd)

Note that we have ignored the time and space requirements for the preprocessing
step. For ZERO++ or FPOF, converting numeric attributes to categorical attributes is
only required for data sets having numeric attributes. The time complexity of the equal-
width discretisation method is dominated by searching for maximum and minimum values,
which can be done in linear time. Only the bin width, and maximum and minimum
values for each attribute are required to be stored, which is negligible. For the T + 3s
rule discretisation method, time complexity