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Abstract

Anomaly detection is regarded as one of the most important tasks in data mining due to
its wide application in various domains, such as finance, information security, healthcare
and earth science. With advancements in data collection techniques, the volume and
dimensionality of anomaly detection data sets increase explosively, and diverse attribute
types occur within these data sets. Also, in many data sets, anomalies can be detected in
some attributes only, while other attributes are irrelevant to anomaly detection. All these
characteristics pose new challenges to existing anomaly detection techniques. Motivated
by this fact, this research aims to design an anomaly detection method which can scale up
to large and high dimensional data, is able to identify anomalies in data sets with different
types of attributes, and tolerates irrelevant attributes.

This thesis posits that anomalies are instances with low probabilities in subspaces in
a data set. So, in a random subset of the data set, anomalies have higher probabilities of
having zero appearances in the subspaces than normal instances. Based on this property,
this thesis proposes a novel anomaly detection method called ZERO++ which employs
the number of zero appearances in subspaces to detect anomalies. ZERO++ is the only
anomaly detector based on zero appearances in subspaces, as far as we know. It is unique
in that it works in regions of subspaces that are not occupied by data; whereas other
methods work in regions occupied by data. Utilising the anti-monotone property: ‘if
an instance has zero appearances in a subspace, it must also have zero appearances in
subspaces containing this subspace’, we show that only a small number of subspaces with
low dimensionality needs to be considered to identify anomalies effectively. ZERO++
is an efficient algorithm with linear time complexity with respect to data size and data
dimensionality, and it can work effectively in data sets with different types of attributes,
and a low percentage of relevant attributes.
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Chapter 1

Introduction

Anomalies are data patterns that are rare and exceptional compared to the majority of
data. Detecting anomalies is attractive and valuable because finding such patterns often
uncovers either underlying treasures or potential hazards.

Anomaly detection generally refers to the process of finding anomalies. It is regarded
as one of the most important tasks in data mining due to its wide application in vari-
ous domains, such as finance, information security, healthcare and earth science. A key
challenge in anomaly detection is to identify anomalies accurately and efficiently in ever
growing complex data sets, e.g., very large and high-dimensional data sets with different
types of attributes. In recent years, a number of techniques have been proposed to handle
this challenge with varying degrees of success. In this research, we break down this key
challenge into four components, and propose a novel anomaly detection method to meet
all the four challenges.

This chapter provides an introduction to the research subject and research motivation
in Sections 1.1 and 1.2, respectively, and states our contributions in Section 1.3. The
organisation of this thesis is then presented in Section 1.4.

1.1 Research subject

Anomaly detection refers to the process of identifying abnormal instances 1 in data. Abnor-
mal instances, or anomalies, may have different meanings in different application domains.
Finding anomalies are very important for all these domains, because it may uncover new
treasures because of the discovery of rare patterns, or prevent catastrophic consequences
of anomalous events. Research on anomaly detection dates back to as early as the 19th
century (Chandola et al., 2009). Anomaly detection has been intensively studied in recent
years, and it is regarded as one of the four most important tasks in data mining, besides
classification, cluster analysis, and association analysis (Tan, Steinbach and Kumar, 2006).
This section presents a brief introduction to anomaly detection in terms of the definition
of anomaly, types of anomaly, anomaly detection techniques and their applications.

1.1.1 Definition of anomaly

Anomalies are referred to as outliers, exceptions, aberrations, abnormalities, novelties,
deviants and discordants in different domains (Aggarwal, 2013a; Chandola et al., 2009).
Anomalies and outliers are the two most widely used terms and are often interchangeable
in the data mining community. One classic definition of anomaly is given by Hawkins

1Instances are often referred to as points and records in the computer science community, and samples
and observations in the statistics community.

1



2 CHAPTER 1. INTRODUCTION

(Hawkins, 1980) as “An outlier is an observation that differs so much from other obser-
vations as to arouse suspicion that it was generated by a different mechanism”, but there
are different definitions given from different perspectives. From a geometrical perspective,
Johnson et al. (1998) and Kriegel and Zimek (2008) assume anomalies are at the bound-
aries in the data space, whereas Knorr and Ng (1997), Breunig et al. (2000) and He et al.
(2003) generally assume that anomalies lie in regions with low density. A more recent
definition is from the isolation concept which is motivated by the fact that anomalies are
susceptible to isolation, i.e., anomalies can be isolated using significantly fewer partitions
than those for normal instances (Liu et al., 2012).

The above definitions are based on numeric data (i.e., data sets with numeric at-
tributes only), and they apply to numeric domain only. For categorical data (i.e., data
sets with categorical attributes only), one widely used assumption is that anomalies occur
infrequently (or rarely) in the feature space (Ghoting et al., 2004; Koufakou and Geor-
giopoulos, 2010; He, Xu, Huang and Deng, 2005). As far as we know, there is no widely
used definition of anomaly in mixed data (i.e., data sets with both numeric and categorical
attributes). A big challenge in dealing with mixed data is that it requires the capture of
the definitions of anomaly from both the numeric domain and categorical domain, and also
the interaction between these two heterogeneous domains (Ghoting et al., 2004; Koufakou
and Georgiopoulos, 2010; Zhang and Jin, 2011)

In this research, an anomaly is defined as an instance that occurs rarely in a categorical
data set. To apply to numeric or mixed data sets, we utilise a discretisation method to
convert numeric attributes to categorical attributes before applying the proposed anomaly
detection method.

1.1.2 Types of anomaly

Anomalies can generally be divided into three categories: point anomalies, conditional (or
contextual) anomalies and collective anomalies (Chandola et al., 2009). Point anomalies
and conditional anomalies refer to individual instances only, while collective anomalies
are based on a collection of instances. An instance is considered as a point anomaly if
it is anomalous compared to other instances in a data set. Conditional anomalies have a
similar definition as point anomalies except that they are defined with some conditions.
The conditions vary in different applications e.g., location and time are commonly used
as a condition to define anomalies in spatial data and time series data, respectively. A
collective anomaly is a collection of data instances where each instance by itself appears
normal but together exhibit anomalous behaviour. Such anomalies often occur in sequence
data, graph data and spatial data.

Point anomalies can be further classified into global anomalies and local anomalies
based on the view of neighbourhood, and scattered anomalies and clustered anomalies
based on their distributions. Global anomalies are anomalous instances which are far
away from both sparse and dense normal clusters in the feature space, while local anoma-
lies are instances located near dense normal clusters but far away from sparse normal
clusters. Scattered anomalies refer to anomalies having a scattered distribution. In con-
trast, clustered anomalies are anomalies which are very close to each other and form a
small cluster.

It should be noted that the concepts of global and local anomalies, and scattered
and clustered anomalies rely on the key characteristic of numeric data, i.e., the notion of
ordering. As far as we know, these concepts are not well defined in categorical data because
there is no ordering in categorical attribute values. Existing research on anomaly detection
for categorical data (Ghoting et al., 2004; Koufakou and Georgiopoulos, 2010; Zhang and
Jin, 2011; Das et al., 2008; Wu and Wang, 2013) focuses on point anomalies, which are
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simply defined as instances with low frequency in the feature space. This research also
focuses on point anomalies only.

1.1.3 Anomaly detection and its applications

Anomaly detection has been studied in several research communities, e.g., statistics, data
mining, machine learning and information theory. Numerous anomaly detection methods
have been proposed over the years, including statistical test based methods (Barnett and
Lewis, 1994), depth-based methods (Johnson et al., 1998), angle-based methods (Kriegel
and Zimek, 2008), distance-based methods (Knorr and Ng, 1997), density-based methods
(Breunig et al., 2000) and clustering-based methods (He et al., 2003). Ensemble methods
for anomaly detection have been explored in recent years (Aggarwal, 2013b; Zimek et al.,
2012). We introduce these methods in detail in Chapter 2.

Anomaly detection techniques have wide application in various domains. Examples of
application are presented as follows in terms of the notion of anomaly and its implications
(Chandola et al., 2009; Aggarwal, 2013a).

• Intrusion detection. In intrusion detection tasks, anomalies refer to malicious
activities in a network or a computer system. Anomaly detection techniques help
monitor and analyse network or computer system events for intrusions.

• Fraud detection. Anomalies generally refer to frauds in this domain, including
credit card transaction frauds, insurance claim frauds and insider trading. Detection
of such anomalies can prevent related organisations from huge financial loss.

• Healthcare. In the healthcare domain, anomalies often refer to unusual conditions
of patients (indicating certain diseases), or disease outbreaks. Early detection of such
anomalies allows more time for treatment or prevention of the spread of disease.

• Fault detection. In this domain, anomalies often refer to faults in mechanical
components such as motors, turbines and engines. Early detection of these faults
can prevent catastrophic events such as aircraft crashes.

• Image and video processing. Examples of anomalies are irregularities in im-
ages and unusual changes in videos over time. Typical application scenarios are
mammography image analysis, satellite image analysis and video surveillance.

1.2 Research motivation

Compared to normal instances, anomalies typically account for only a very small portion
of a data set. Identifying anomalies is like ‘finding a needle in a haystack’. With advance-
ments in data collection and storage techniques, data sets have become more and more
complex, e.g., large data size, high dimensionality, different types of attributes and data
noise. This makes anomaly detection much more challenging. Particularly, this research
is motivated by the following four challenges in anomaly detection:

1. Ability to handle data sets with different types of attributes. Diverse
data types exist in many real-world anomaly detection applications, such as numeric
pixel attributes derived from images and videos, boolean-value based or multiple-
label 2 based categorical attributes in medical data, mixed attributes in demographic
data and network intrusion data. This results in data sets with different types of
attributes, i.e., data sets with numeric attributes only, data sets with categorical
attributes only, and data sets with mixed attributes.

2Unordered labels are referred to as categorical attribute values in this thesis.
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2. High detection accuracy. High detection accuracy is an essential requirement in
anomaly detection. This is because false negative detections bear very high costs
in many real-world applications, such as fraudulent transaction detection and early
detection of cancer diseases.

3. Scale up to very large data size and high dimensionality. With advancements
in data collection techniques, anomaly detectors are often required to be able to
detect anomalies in very large and high dimensional data quickly. High detection
accuracy in many detectors comes at a cost to computational efficiency. These
detectors often cannot scale up well in terms of data size or data dimensionality.

4. Tolerant to irrelevant attributes. Anomalies are often only detectable in some
attributes. Other attributes, which are irrelevant attributes to anomaly detection
tasks, often mask anomalies. This is particularly true for high dimensional data
(Zimek et al., 2012). Many anomaly detection applications are high dimensional
domains, e.g., over 100 dimensions are used to describe instances in credit card
fraudulent transaction detection (Pham and Pagh, 2012) and disease diagnostics
(Guvenir et al., 1997).

A number of techniques have been proposed to handle these challenges with varying
degrees of success. There are a few methods (Ghoting et al., 2004; He, Xu, Huang and
Deng, 2005; Koufakou and Georgiopoulos, 2010; Zhang and Jin, 2011) that are proposed to
handle categorical or mixed data, but their time complexity is at least quadratic in terms
of data dimensionality or data size. Many other existing anomaly detection methods
are numeric data oriented methods, including statistical test based methods (Aggarwal,
2013a; Barnett and Lewis, 1994), depth-based methods (Tukey, 1977; Johnson et al., 1998),
distance-based methods (Knorr and Ng, 1997; Knox and Ng, 1998), density-based meth-
ods (Breunig et al., 2000; Papadimitriou et al., 2003), clustering-based methods (He et al.,
2003; Jiang et al., 2006) and isolation-based methods (Liu et al., 2010, 2012). Also, widely
used methods like ε-neighbourhood (Knox and Ng, 1998), kNN (k-th Nearest Neighbour)
distance (Ramaswamy et al., 2000) and LOF (Local Outlier Factor) (Breunig et al., 2000)
have at least O(n2) 3 time complexity. Although it can be reduced to O(n log n) if
an indexing scheme such as R∗-tree (Beckmann et al., 1990) is employed, most indexing
methods work in low dimensional data sets only, and they break down in high dimension-
ality. Moreover, many existing methods (Angiulli and Pizzuti, 2002; Angiulli and Fassetti,
2009; Knox and Ng, 1998; Bay and Schwabacher, 2003; Breunig et al., 2000; He et al.,
2003; Ramaswamy et al., 2000) use full dimensionality to define anomalies and thus fail
to detect anomalies in data sets with high percentages of irrelevant attributes due to the
curse of dimensionality (Zimek et al., 2012).

Anomaly detection using ensemble techniques is an emerging research direction (Ag-
garwal, 2013b; Zimek, Campello and Sander, 2013). There are mainly two types of
anomaly detection ensembles, i.e., subspace-based methods (Lazarevic and Kumar, 2005;
Keller et al., 2012) and subsampling-based methods (Zimek, Campello and Sander, 2013;
Sugiyama and Borgwardt, 2013). These ensembles are often based on conventional anomaly
detection methods, such as LOF, and thus share similar defects, e.g., they are unable to
handle data sets with different types of attributes effectively, and are unable to scale up
with data size or data dimensionality.

Some ensemble-based methods are based on both subspace-based methods and subsampling-
based methods, such as isolation-based methods (Liu et al., 2012). They build models on
randomly selected attribute subsets and subsamples, and have linear time complexity in

3In this thesis, n and d denote data size and data dimensionality, respectively
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terms of data size and dimensionality, but they are also numeric data oriented methods
and are sensitive to irrelevant attributes.

This situation has motivated us to design a novel method which can provide a solution
to all these four challenges.

1.3 Contributions

This research aims to produce an anomaly detection method that will meet all the four
challenges stated in Section 1.2, i.e., a highly accurate detection method which can: scale
up to very large and high dimensional data, tolerate irrelevant attributes, and effectively
handle data sets with different types of attributes. We aim to demonstrate the effectiveness
and efficiency of our proposed method in both theoretical and empirical analyses.

To this end, we will focus on subsampling-based ensemble methods, which have favourable
scalability in terms of both data size and data dimensionality, as reported in Ting et al.
(2013), Liu et al. (2012), and Sugiyama and Borgwardt (2013). Also, we will explore
subspace-based anomaly scoring functions, which are insensitive to irrelevant attributes
(Kriegel, Kröger, Schubert and Zimek, 2009; Keller et al., 2012) and able to handle mixed
attributes effectively (Ghoting et al., 2004; Koufakou and Georgiopoulos, 2010).

The contributions of this thesis are as follows:

• This thesis proposes a categorical data based anomaly detection method which iden-
tifies anomalies based on zero appearances in subspaces. A statistical justification
is provided to explain why our proposed method works.

• Two discretisation methods are examined to extend our proposed method to numeric
data and mixed data.

• A series of experiments is conducted to evaluate the effectiveness and efficiency
of our proposed method. It is shown that our proposed anomaly detector is able
to detect anomalies more accurately and efficiently than existing state-of-the-art
anomaly detectors.

• An empirical evaluation of existing state-of-the-art anomaly detectors is conducted
on data sets with different types of attributes.

1.4 Organisation

The rest of this thesis is organised as follows.

Chapter 2 provides a review of related achievements in this research area and dis-
cusses their strengths and limitations. We first discuss two types of conventional anomaly
detection methods, including extreme value analysis based methods and proximity-based
methods. We then review relatively new established anomaly detection methods, namely
ensemble methods for anomaly detection. Finally, we discuss techniques for categorical
and mixed data.

Chapter 3 presents a novel anomaly detection method which is based on zero appear-
ances in subspaces. We first present our motivation and statistical justification of the
anomaly score used in our proposed method. We then discuss how our categorical data
based method can be extended to handle numeric and mixed data. Finally, we explain the
characteristics of our method and provide a conceptual comparison with related anomaly
detectors.

Chapter 4 provides an empirical evaluation of our proposed method. We examine the
detection performance, ability to tolerate irrelevant attributes, scalability and sensitivity
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of our proposed method using a range of data sets. We also apply our proposed method
for identifying anomalies in data sets with unknown ground truth.

The thesis is concluded in Chapter 5.



Chapter 2

Literature review

A wide range of methods have been proposed for anomaly detection over the years. Based
on the extent to which the methods use class labels (i.e., labels assigned to each instance as
being either normal or anomalous in a given data set), they can be generally categorised
into supervised methods, semi-supervised methods and unsupervised methods. Supervised
methods employ labelled instances of both the normal class and the anomalous class to
train detection models. Some examples of these methods are Support Vector Machines
(SVMs) and Neural Networks (Mukkamala et al., 2002). Semi-supervised methods require
labelled instances of the normal class only, in order to train their detection models, e.g.,
one-class SVMs (Ma and Perkins, 2003). Unsupervised methods do not require labelled
instances. Examples of unsupervised methods are statistical test based methods, distance-
based methods, density-based methods and clustering-based methods (Aggarwal, 2013a).
All methods make (explicit or implicit) assumptions on behaviours of normal instances
or abnormal instances and detect anomalies by examining how instances conform to the
behaviours.

Compared to supervised methods and semi-supervised methods, unsupervised methods
are more widely used in industry, because obtaining accurate labelled data for anomaly
detection often has a very high cost (Chandola et al., 2009). Particularly, collecting
accurate labelled data often requires substantial effort to manually assign the labels, and
obtaining labelled abnormal data is prohibitively expensive in many application domains
such as early detection of catastrophic events (e.g., spread of epidemic diseases, terrorist
activities and aircraft faults). Also, it is difficult to collect all types of anomalies as new
types of anomalies might emerge in new data.

This research focuses on unsupervised methods, and we review unsupervised methods
for anomaly detection only. Surveys of semi-supervised and supervised methods can be
found in Chandola et al. (2009) and Görnitz et al. (2014).

This chapter provides a literature review of conventional anomaly detection techniques
in Section 2.1, including extreme value analysis based methods and proximity-based meth-
ods. We review a newly established technique for anomaly detection, i.e., ensemble learn-
ing methods in Section 2.2, followed by methods for categorical and mixed data in Section
2.3. This chapter is then summarised in Section 2.4.

2.1 Conventional anomaly detection techniques

Following Kriegel, Kröger and Zimek (2009) and Aggarwal (2013a), traditional anomaly
detection methods can be broadly divided into extreme value analysis based methods and
proximity-based methods.

7
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2.1.1 Extreme value analysis based methods

Statistical test based methods, depth-based methods and angle-based methods are gener-
ally based on the assumption that anomalies are points with extreme values in the feature
space. Based on this definition, we denote these methods as extreme value analysis based
methods.

Statistical test based methods

Statistical test based methods (Barnett and Lewis, 1994; Aggarwal, 2013a) assume that all
data instances are generated by a certain type of statistical distribution, such as Gaussian.
Statistical test methods, e.g., t-test and χ2, are then used to determine the probabilities
of data values along with a statistical significance level. Instances lying at the tail (i.e.,
extreme values) of the given distribution are identified as anomalies. To quantify the lower
and upper probabilistic tail bounds of the distribution, a number of tail inequalities can
be used, such as Hoeffding Inequality and Chernoff Inequality (Aggarwal, 2013a).

These methods have well established probabilistic and statistical properties to interpret
anomaly detection results. Also, such methods can be used in the final stage of other
anomaly detection methods to report anomalies with a statistical significance level (Das
et al., 2008). However, these methods are parametric methods that make assumptions on
data distributions. They are also very sensitive to noise and anomalies. For example, the
mean and standard deviation estimation of Gaussian distribution can be severely biased
by noise and anomalies.

Depth-based methods

Depth-based methods (Tukey, 1977; Johnson et al., 1998) conventionally define instances
lying on the outer layers of a convex hull (Jarvis, 1973) as anomalies. These methods
operate in an iterative way to obtain the anomaly scores of instances: all instances located
at the corners of the convex hull are removed iteratively until the data set becomes empty.
An instance has depth = k if it is removed in the k-iteration. Instances with depth less
than a threshold r are considered as anomalies.

Depth-based methods share a similar methodology as statistical test based methods,
but it should be noted that depth-based methods are non-parametric methods that do
not assume any data distribution. One typical limitation of these methods is their high
time complexity in convex hull computation. The brute force convex hull computation
method has O(n5). It can be reduced to O(n log n) for data sets with two and three
dimensions by using a divide-and-conquer technique, but it increases exponentially with
data dimensionality (Preparatat and Shamos, 1985; Knox and Ng, 1998).

Angle-based methods

The basic assumption in angle-based methods (Kriegel and Zimek, 2008; Pham and Pagh,
2012) is that anomalies lie at the boundaries of the data space. Therefore, compared to
normal instances in the inner regions, anomalies have smaller angles to pairs of instances
in the data set. Given a data set D and a test instance x, its anomaly score is the variance
over angles between x to any pairs of instances in D. Instances with higher angle variances
are more likely to be anomalies.

The first angle-based method ABOD (Angle-Based Outlier Detection) was proposed
by Kriegel and Zimek (2008) and is dedicated for anomaly detection in high dimensional
data. The time complexity of these methods is determined by the computation cost of
the angle variance between x to pairs of instances. The brute force method computes the
angles between x to all pairs of instances in the data set. This has O(n3) time complexity.
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An approximate method proposed in Kriegel and Zimek (2008) uses the variance over
angles between x to pairs of instances from the k nearest neighbours to approximate the
original variance. This reduces the time complexity to O(n2k). A further near linear time
approximation method was proposed in Pham and Pagh (2012). Angle-based methods
are free of parameters, which is one big advantage over many existing methods. It has
been reported in Kriegel and Zimek (2008) that these methods could alleviate the effects
of the curse of dimensionality compared to anomaly detection methods using a distance
concept. However, it should be noted that, as discussed in Aggarwal (2013a), angle-based
measures such as cosine are influenced by concentration effects (Zimek et al., 2012) and
irrelevant attributes in high dimensional data.

Strength and weakness. Extreme value analysis based methods have good sta-
tistical or geometrical interpretation of anomalies, and they can obtain high detection
accuracy when anomalies contain extreme values. However, in many real-world appli-
cations, anomalies can be surrounded by normal clusters. In such cases, the detection
performance of these methods will decrease substantially.

2.1.2 Proximity-based methods

Distance-based methods, density-based methods and clustering-based methods are popular
anomaly detection methods because of their simplicity and intuitive interpretation. The
basic assumption in these methods is that anomalies lie in regions with low density.

Distance-based methods

Distance-based methods make use of the distance of an instance to its nearest neighbours
to define proximity. Instances with large nearest neighbour distances have sparse prox-
imity, and thus can be reported as anomalies. Seminal work on distance-based methods
is DB(π, ε)-Outliers, where π is a fraction of a data set D and ε is a distance threshold.
The method was proposed in Knorr and Ng (1997), in which an instance x is considered
as an anomaly if at least π percent of instances in D have distance to x greater than ε.

Alternatively, the definition can be interpreted as: x is reported as an anomaly if at
most (1−π) percent of instances in D have distance to x smaller than ε. This alternative
definition facilitates the ε-neighbourhood method proposed in Knox and Ng (1998), in
which it proposes to use indexing techniques such as k-d trees (Bentley, 1975) to conduct
a range search with radius ε. An instance is considered as an anomaly if no more than M
instances are found in the ε-neighbourhood. Excluding the time complexity of indexing
techniques, the ε-neighbourhood method has O(n2d) time complexity. A nested-loop pre-
process method was also proposed in Knox and Ng (1998) in order to avoid the expensive
indexing construction time cost for some application contexts (e.g., high dimensional data),
but the nested-loop based ε-neighbourhood anomaly detection method still has O(n2d)
time complexity. A cell-based pre-process method was also proposed in Knox and Ng
(1998), in which it built grids such that any two instances within the same cell have
at most ε distance to each other. This method reduces the time complexity of the ε-
neighbourhood method, to be linear with respect to n but exponential with d.

Ramaswamy et al. (2000) simplifies the ε-neighbourhood anomaly definition and identi-
fies anomalies based on the distance of an instance to its k-th nearest neighbour. Instances
with large k-th nearest neighbour distance are reported as anomalies. This reduces the
number of parameters from two to one, i.e., k. In order to search for kNN efficiently,
Ramaswamy et al. (2000) also introduces a partition-based pre-process method, which
uses linear-time clustering methods to partition instances into disjoint subsets and pruned
redundant instances. A number of other techniques (Bay and Schwabacher, 2003; Angiulli
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and Pizzuti, 2002; Angiulli and Fassetti, 2009) have been proposed to speed up the dis-
tance computation in kNN search, which can reduce the time complexity of kNN search
to near-linear time in some contexts, but can break down when dealing with large and
high dimensional data.

Density-based methods

Density-based methods are generally based on the assumption that anomalies lie in regions
of relatively low density. An instance is considered as an anomaly if the ratio of its density
to that of its local neighbourhood is small. Since neighbourhood distance based methods
use a single distance threshold (e.g., k-th distance) to measure anomalousness, they fail
to detect anomalies in data sets with normal clusters of varying densities. Motivated by
this fact, Breunig et al. (2000) proposes the Local Outlier Factor (LOF) method, which
can detect anomalies with the above-mentioned data characteristic.

The LOF of an instance is computed as the mean ratio of its average reachability
distance to that of its neighbours. The Reachability Distance (RD) of an instance x with
respect to y is defined as:

RD(x,y) = max{dk(y), dist(x,y)}

where dk(y) is the kth nearest neighbour distance to y and dist(x,y) denotes the distance
between x and y. It is evident that RD(x,y) is not symmetric between x and y because
the kth nearest neighbour distance to x and y may be different. This asymmetric prop-
erty helps highlight x when x locates in regions with relatively low density. The Local
Reachability Distance (LRD) of x is inverse of the Average Reachability Distance (ARD)
of x to its k nearest neighbours, as defined below:

LRD(x) =
1

ARD(x)
=

1∑
y∈kNN(x)

RD(x,y)

Card(kNN(x))

=
Card(kNN(x))∑

y∈kNN(x)

RD(x,y)

where kNN(x) denotes the set of k nearest neighbours of x and Card(kNN(x)) is the
cardinality of kNN(x). The LOF of x is then defined as:

LOF (x) =

∑
y∈kNN(x)

LRD(y)

LRD(x)

Card(kNN(x))

Instances with LOF ≈ 1 are located within a cluster; while instances with LOF � 1
are considered to be anomalies. The only parameter in LOF, k, plays a crucial role in
its performance. This parameter acts as a smoothing factor in computing the anomaly
scores. Larger values of k lead to greater smoothing. The detection performance of LOF
is dependent on the choice of the k value. In practice, a range of k values is employed
to compute LOF (x) and the maximum LOF value is used as the anomaly score of x.
Motivated by the success of LOF, a variety of LOF variants has been proposed, such
as Connectivity-based Outlier Factor (COF) (Tang et al., 2002) and LOcal Correlation
Integral (LOCI) (Papadimitriou et al., 2003). COF improves LOF by giving a different
treatment to isolated instances and instances in regions of low density. LOCI replaces k
nearest neighours with ε-neighbourhood and uses multiple granularities of ε-neighbourhood
to define the anomaly factor. In LOCI, ε can be automatically determined, and thus the
method does not require parameter tuning.
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Clustering-based methods

Many clustering-based anomaly detection methods proceed in a two-phase fashion. In-
stances are normally clustered into disjoint groups in the first phase. Some criteria based
on the clustering results are then used to identify anomalies. One typical criterion is the
cluster size. Jiang et al. (2001) first employs modified k-means clustering to partition all
instances into clusters, and then reports instances belonging to small clusters as anomalies.
Compared to the original k-means clustering, a cluster splitting-and-merging procedure
is added into the modified version in Jiang et al. (2001) and allows the final number of
clusters to be larger than k. This results in many small and medium sized clusters. In-
stances contained in the small clusters are considered as anomalies. This method can
detect clustered anomalies but can also report small normal clusters as anomalies.

Another straight-forward criterion is the distance of a given instance to its closest
cluster centroid. The larger the distance is, the more likely the instance is to be an
anomaly (Aggarwal, 2013a). This type of method is able to find isolated anomalies, but
it might fail to detect clustered anomalies, because clustered anomalies can be very close
to the anomaly cluster and their distance to the cluster is rather small.

Instead of using a single criterion, He et al. (2003) makes use of both cluster size
and the distance of the instance to its closest cluster centroid to define anomalies. In
another method, instead of deriving an instance outlier factor based on the clustering
results, Jiang et al. (2006) employs the distances between clusters to design a cluster
outlier factor, and then labelled clusters as either normal or abnormal using a threshold.
Instances are considered as anomalies if the class label of their closest cluster is abnormal.

In general, clustering-based methods are more suitable for sparse data than distance-
based and density-based methods, because clusters are aggregated representations which
can well represent the sparse data. Most clustering-based methods cannot provide an
anomalous degree of an instance, because they only produce a binary class label about
whether instances are anomalies or not.

Strength and weakness. Proximity-based methods are straight-forward and easy-
to-implement, and thus they are widely used methods. However, distance computation
is an essential component within these methods. Such methods do not work effectively
in high dimensional data due to the curse of dimensionality, and they are also sensitive
to irrelevant attributes because they use the full dimensionality to define distance (Zimek
et al., 2012). Another major issue for this type of method is that the distance computation
requires O(n2) time complexity, and thus cannot scale up to very large data sets. Although
the distance computation can be reduced to O(n log n) when instances are preprocessed
by indexing methods such as R∗-tree (Beckmann et al., 1990), most indexing methods
work in low dimensional data sets only, and they break down in high dimensionality.

2.2 Ensemble methods for anomaly detection

Ensemble learning is a well established research area and has wide application in classifica-
tion and clustering (Dietterich, 2000), but it has been rarely applied in anomaly detection
(Aggarwal, 2013b; Zimek, Campello and Sander, 2013). Dozens of anomaly detection
ensembles proposed in recent years have shown promising improvement in the detection
performance of traditional anomaly detection methods. These ensembles can be divided
into subspace-based methods and subsampling-based methods. Subspace-based methods
build a set of anomaly detectors on the full data set with subsets of attributes, while
subsampling-based methods build the anomaly detectors using data subsets with all the
attributes. Very little work has been done using both techniques, i.e., build detectors on
data subsets with subsets of attributes.
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2.2.1 Subspace-based methods

Subspace-based anomaly detection methods are motivated by the fact that anomalies
are detectable using some subsets of attributes only. This is particularly true for high
dimensional data. Therefore, most subspace-based methods were proposed to identify
anomalies in high dimensional data. FeatureBagging (Lazarevic and Kumar, 2005) is
seminal work exploring how to combine results from different detection models built on
attribute subsets. Specifically, Lazarevic and Kumar (2005) first employs a traditional
anomaly detection method, i.e., LOF, to construct a set of models on data with randomly
selected attribute subsets (subspaces). It then investigates two different strategies, includ-
ing breadth-first and cumulative-sum, to combine anomaly scores from different models.
In the breadth-first strategy, instances are simply assigned with the highest anomaly score
from all models, while instances are assigned with the sum of all the anomaly scores from
the models in the cumulative-sum strategy. Unlike Lazarevic and Kumar (2005) who uses
a single detector on the attribute subsets, Nguyen et al. (2010) examines the effectiveness
of using heterogeneous detectors on different randomly selected attribute subsets. One
major limitation in Lazarevic and Kumar (2005) and Nguyen et al. (2010) is that ran-
domly selected attribute subsets might contain irrelevant attributes; in the worst case, all
the selected attributes are irrelevant attributes. Current research in this direction mainly
focuses on how to select informative subspaces.

Kriegel, Kröger, Schubert and Zimek (2009) selects informative attributes for an in-
stance based on the variance of instances in a reference set of the instance. Given an
instance x and its reference set Ref(x), i.e., a local neighbourhood of x, the method aims
to find a subspace hyperplane H spanned by Ref(x), where the variance of instances in
Ref(x) is high; while in its perpendicular subspace S, the variance of the instances in
Ref(x) is low. The instance x is considered as an anomaly if it deviates significantly from
its reference instances in the subspace hyperplane H. Such a deviation is captured by the
average Euclidean distance from x to the centre of each attribute in the perpendicular
subspace S. The deviation is called Subspace Outlier Degree (SOD), which is defined as:

SODRef(x) (x) =

√ ∑
Ai∈S

(xi − µi)2

|S|

where Ai denotes a specific attribute in the subspace S, xi is the attribute value of x in
Ai, µi is the mean value of all the instances in Ref(x) in Ai, and |S| denotes the number
of attributes in S. The critical component in SOD is to find a meaningful reference set
for a given instance. In order to reduce the effect of the curse of dimensionality in high
dimensional data, Kriegel, Kröger, Schubert and Zimek (2009) adopts the Shared Nearest
Neighbours (SNN) (Houle et al., 2010) measure to identify the reference set, because “even
though all points are almost equidistant to a given point p, a nearest neighbour ranking
of the data objects is usually still meaningful”, as argued in Kriegel, Kröger, Schubert
and Zimek (2009). Specifically, for the instance x, let kNN(x) denotes the k nearest
neighbours with respect to the Euclidean distance, the SNN similarity between x and
y ∈ D is SimSNN (x,y) = Card(kNN(x) ∩ kNN(y)), and the reference set of x consists
of l most similar instances with respect to SimSNN . The SNN computation for each
instance is a time-consuming process, which has O(dn2) time complexity. When k � n
and l � n, the total time complexity of SOD is O(dn3). Thus, the effectiveness of SOD
comes at a high computational time cost. Also, SOD only considers anomalousness on
a single dimension basis, in order to reduce computational cost, and thus cannot detect
anomalies exhibited in subspaces with two or more dimensions.
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Muller et al. (2011) proposes the subspace-based method OUTERS, which detects
anomalies in subspaces with any number of dimensions. However, OUTERS can only
work on small data sets with very low dimensionality, because its time complexity is expo-
nential to data dimensionality and quadratic to data size. The method called HiCS (Keller
et al., 2012) combines conditional Probability Density Function (PDF) and Welch’s t-test
to find high contrast subspaces, which are defined as subspaces where anomalies can be
clearly distinguished from other instances, based on a well defined notion of anomalous-
ness. LOF is then used to identify anomalies based on the high contrast subspaces. HiCS
is able to find anomalies in subspaces with varying numbers of dimensions. Since HiCS
uses the Apriori-like mechanism (Agrawal et al., 1996) to generate candidate subspaces, it
is more scalable to dimensionality then OUTERS, but its time complexity is still quadratic
to data size.

Strength and weakness. The first and simple approach is to randomly select some
attribute subsets to construct the subspaces. These methods have comparable time com-
plexity to proximity-based methods. However, since the process of attribute subset selec-
tion is random, irrelevant attributes can be selected. Therefore, these methods do not work
well in data sets with a large percentage of irrelevant attributes. The second approach
aims to search informative subspaces in a preprocessing step before employing anomaly
detection methods. These methods can overcome the sensitivity to irrelevant attributes
but they often have expensive time computation, e.g., at least quadratic to data size or
data dimensionality.

2.2.2 Subsampling-based methods

Compared to subspace-based methods, less work has been done in subsampling-based
methods. The work by Zimek, Gaudet, Campello and Sander (2013) is one of the early
attempts to investigate how subsampling techniques could be used to improve detection
efficiency and effectiveness over a single local anomaly detector 1. It uses a traditional
local anomaly detection method such as LOF, as a base method to build a set of models
on a set of subsamples derived from the full data set. Given a data set D and the base
detector LOF, the anomaly score of an instance x is average over all the scores from all
models of the ensemble, as defined below:

EnLOF (x|D) =
1

t

t∑
i=1

LOF (x|Di)

where t is the ensemble size, i.e., the number of models built in the ensemble, Di is a
subsample with randomly selected r percent of instances from the full data set D, and
LOF (x|Di) denotes the LOF score of x based on Di. It is argued in Zimek, Gaudet,
Campello and Sander (2013) that subsampling can help distinguish anomalies and nor-
mal instances as it increases the gap between anomalies and normal instances in the
anomaly ranking, and it is able to induce diversity into the ensemble. In Wu and Jer-
maine (2006) and Sugiyama and Borgwardt (2013), the authors theoretically and empiri-
cally demonstrate how subsampling techniques could be used to enhance global anomaly
detection methods in terms of both effectiveness and efficiency. Global methods such as
ε-neighbourhood and kNN-distance can be used as base methods in this ensemble method.

1Local anomaly detection methods consider the relative densities as anomaly scores, which are ratios of
the density of an instance to the densities of its neighbourhood, whereas global methods, such as DB(π, ε)-
Outliers, ε-neighbourhood and kNN distance, compute the anomaly score for each instance based on the
global neighbourhood.
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Strength and weakness. These subsampling-based methods are based on traditional
anomaly detection methods, so they would inevitably inherit the weaknesses of the tradi-
tional methods, e.g., sensitivity to irrelevant attributes and the curse of dimensionality in
high dimensional data. The time complexity of these methods is strongly dependent on
the ensemble size and subsampling size. Subsampling can obtain favourable speed-up over
the base method if small ensemble size and small subsampling size are employed. How-
ever, since traditional methods like LOF require a sufficiently large number of instances
to approximate the neighbourhood of an instance, the subsampling size is required to be
fairly large, e.g., 10 percent of the data set. Also, the ensemble size needs to be set large
enough, e.g., at least 10, to introduce diversity. Building the ensemble, using t = 10 and
10% of D instances, will take about the same runtime as building a single model using the
same base method on the full data set. In Zimek, Gaudet, Campello and Sander (2013), a
fixed number of 25 models on subsamples with 10% of D instances is used by default, and
this ensemble has higher time complexity than the base method, by a factor of roughly
2.5 times.

2.2.3 Using both subspace-based and subsampling-based methods

Very limited work has been done on ensemble methods based on both subsamples and
subspaces. iForest (Isolation Forest)(Liu et al., 2012) is seminal work in this field. iForest
utilises the property, that anomalies are susceptible to isolation, to build isolation trees to
identify anomalies. Each tree is grown using a subsample until every instance is isolated,
where the attribute and cut-point at each node are randomly selected. To score a test
instance, the path length traversed from the root to a leaf node by the test instance is
then used as the anomaly score. Because anomalies can be isolated using significantly
fewer partitions than normal instances, anomalies have a shorter path length than normal
instances. Given an instance x, the anomaly score is defined as follows:

Score(x) = 2
−E(h(x))

c(ψ)

where h(x) denotes the path length, E(h(x)) = 1
t

t∑
i=1

hi(x) is the average path length of x

from a set of t isolation trees, c(ψ) is the expected average path length given the subsample
size ψ and can be estimated by ln(ψ) + 0.5772156649 (Euler’s constant).

MassAD (Mass-based Anomaly Detection) (Ting et al., 2013) utilises mass estimation
techniques to detect anomalies. Mass is simply the number of instances in a region, which
is formed by axis-parallel splits using a subsample with randomly selected attributes.
Instances, which fall in sparse regions frequently, would have low mass values and are
considered as anomalies. In addition to the methodology, iForest and MassAD also share
some other features, e.g., they both use the average of anomaly scores from all the models
as the final score. It is worthwhile noting that the path length used in iForest is a proxy
to mass, as discussed in Ting et al. (2013).

Strength and weakness. iForest and MassAD require no distance computation
and have linear time complexity in terms of data size and data dimensionality. On the
other hand, they have some common weaknesses, e.g., they are very sensitive to irrelevant
attributes because they work on a few randomly selected attributes in each subsample.
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2.3 Methods for categorical and mixed data

All the methods in previous sections are numeric data oriented 2. Compared to methods
for numeric data, less work has been done for categorical and mixed data. In order to
identify anomalies in categorical or mixed data, one way is to convert categorical attributes
into numeric attributes, and then employ numeric data oriented methods; another way is
to directly design methods based on the characteristics of categorical or mixed data.

2.3.1 Categorical-to-numeric transformation

Existing research focuses on embedding a transformation from categorical attributes to nu-
meric attributes into a distance definition, because it facilitates the evaluation of different
transformation methods.

Diverse methods have been proposed from this perspective. Occurrence frequency
based methods assign higher weight to frequent categorical values, while inverse occurrence
frequency based methods assign less weight to these values (Lin, 1998). A comparative
study between these methods was conducted in Boriah et al. (2008). The results show no
single distance measure can obtain consistent superiority over other measures. In other
words, such transformation methods are application context dependent; and it is thus
difficult to find a universally effective method for different data sets. For mixed data,
another major challenge is how to effectively combine the distance computation results in
mixed attributes (Huang, 1997).

These transformation methods can be well integrated into proximity-based anomaly
detection methods, but they are not applicable for other types of methods, such as extreme
value analysis based methods and isolation-based methods (Aggarwal, 2013a; Liu et al.,
2012).

One commonly used transformation method in the data mining and machine learn-
ing community is to convert categorical attributes into binary attributes using the 1-of-`
transformation method (Hall et al., 2009; Aggarwal, 2013a; Zhang and Jin, 2011). In
this method, a `-label attribute is first converted into ` binary attributes. The binary
attributes are then regarded as numeric attributes, along with the original numeric at-
tributes, to be further processed. A major limitation of this method is that the number of
attributes in the converted data would be much larger than that in its original form if the
categorical attributes contain many labels. This may render detectors less effective due
to the curse of dimensionality (Aggarwal, 2013a). The advantage of this method is that
it can be easily used by different types of detectors.

2.3.2 Categorical or mixed data oriented methods

Most anomaly detection methods for categorical data are pattern based methods, includ-
ing normal pattern based methods and anomaly pattern based methods. FPOF (Frequent
Pattern based Outlier Factor) (He, Xu, Huang and Deng, 2005), a well known method
dedicated for categorical data, employs the Apriori method (Agrawal et al., 1993) to gen-
erate frequent itemsets as normal patterns. If instances satisfy few or none of the frequent
itemsets, they are considered as anomalies. Let FPS(D, δ) be the frequent itemsets with
support no less than a given minimum support δ in the data set D. For a test instance x,
its anomaly score is computed as follows:

FPOF (x) =

∑
g⊆x ∧ g∈FPS(D,δ)

support(g)

|FPS(D, δ)|
2More details about the ability of existing detectors to handle specific data types will be presented in

the analysis of strength and weakness at the end of this section.
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where g is a frequent itemset, g ⊆ x denotes g satisfies x, and support(g) returns the
support of g. FPOF has been widely used and reported as one of the most effective
methods (Koufakou et al., 2007; Wu and Wang, 2013). Its time complexity is linear to
data size but at least quadratic to dimensionality size.

In contrast to FPOF, some methods search for anomaly patterns to detect anomalies.
These patterns can be infrequent itemsets (Ghoting et al., 2004; Koufakou and Geor-
giopoulos, 2010) or Bayesian Network rules (Das et al., 2008). These methods perform
comparably to FPOF, but they also cannot scale up with dimensionality. There has been
some information-theoretic based methods (He, Deng and Xu, 2005; Wu and Wang, 2013)
for categorical data, which formalised anomaly detection as an optimisation problem to
minimise the uncertainty in a data set by using some information-theoretic measures, such
as entropy. Instances are considered as anomalies if removing these instances can minimise
the uncertainty of the data set. These methods often work as top-k anomaly detectors,
which return the k top ranked anomalies.

For categorical data oriented detectors, in order to deal with numeric or mixed data,
numeric attributes are first discretised into multiple bins, and the discretised attributes,
along with the original categorical attributes, are then further processed by the detectors.
Some widely used discretisation methods are the equal-frequency and equal-width methods
(Hall et al., 2009), but it should be noted that different detectors have different require-
ments on discretisation granularity, so their performance is often sensitive to the number
of bins predefined in discretisation methods. However, compared to categorical-to-numeric
transformation, discretisation is a simpler process because no ordering information is re-
quired for categorical attributes, and it is a well established research area (Liu et al.,
2002).

LOADED (Link-based Outlier and Anomaly Detection in Evolving Data sets) (Ghoting
et al., 2004) is seminal work dedicated to anomaly detection in mixed data. For categorical
data, LOADED searches infrequent itemsets, which consist of categorical values in distinct
attributes. The anomaly score of a test instance is inverse to the length of infrequent
itemsets appearing in the instance. For mixed data, LOADED uses correlations of numeric
attributes on an itemset basis to measure the anomalousness of the test instance. This
helps to capture dependencies between two types of attributes. Though an approximation
scheme is employed, LOADED has high time complexity, which is quadratic to the number
of numeric attributes and is exponential to the number of categorical attributes.

ODMAD (Outlier Detection for Mixed Attribute Datasets) (Koufakou and Georgiopou-
los, 2010) also searches infrequent patterns in order to compute the anomaly score in
terms of categorical attributes. For numeric attributes, ODMAD first generates centroids
of instances containing a specified categorical value, and then employs cosine similarity
between test instances and the centroids to identify anomalies. Results in Koufakou and
Georgiopoulos (2010) show that ODMAD performed better than LOADED in terms of
both effectiveness and efficiency. The time complexity of ODMAD is linear to data size
and the number of numeric attributes, but it still increases exponentially with the number
of categorical attributes.

Strength and weakness. Most existing anomaly detection methods are numeric data
oriented. Categorical attributes are required to be transformed into numeric attributes in
order to make these methods applicable for categorical and mixed data, but their perfor-
mance is application context dependent. Limited anomaly detectors have been proposed
to deal with categorical and mixed data directly. To treat mixed data, categorical data
oriented detectors can be employed with discretisation methods, but their detection per-
formance is often sensitive to the number of bins used in the discretisation methods.
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Table 2.1: A summary of the ability of existing anomaly detection methods to meet the
four challenges stated in Section 1.2. The four challenges include the ability to handle
data sets of different types of attributes (A), high detection accuracy (B), scale up to very
large data size and high dimensionality (C) and tolerant to irrelevant attributes (D). The
mark “×” denotes the methods generally cannot address a particular challenge, while “

√
”

indicates the methods can often meet the challenge.

Methods A B C D

Extreme value analysis based ×
√
× ×

Representative: ABOD ×
√
× ×

Proximity-based ×
√
× ×

Representative: LOF ×
√
× ×

Subspace-based ×
√
×
√

Representative: SOD ×
√
×
√

Subsampling-based ×
√
× ×

Representative: EnLOF ×
√
× ×

Subspace and subsampling based ×
√ √

×
Representative: iForest ×

√ √
×

Categorical or mixed data oriented ×
√
×
√

Representative: FPOF ×
√
×
√

For mixed data oriented methods, in order to capture the interaction between numeric
and categorical attributes, their treatments of categorical (numeric) attributes are based
on the results of handling numeric (categorical) attributes. In data sets with categorical
(numeric) attributes only, they do not have results from numeric (categorical) attributes
to assist the processing of categorical (numeric) attributes, and thus they are unable to
detect anomalies directly. Also, most existing categorical or mixed data oriented methods
can handle low dimensional data effectively, but their computation time quadratically
increases with data dimensionality.

2.4 Chapter summary

Anomaly detection is an important research area in data mining and has been studied
intensively in recent years. A variety of methods have been proposed, including extreme
value analysis based methods and proximity-based methods. Anomaly detection using
ensemble learning techniques is an emerging research direction due to its advantages in
dealing with high dimensional data, and its potential effectiveness and efficiency benefits
over single detectors. It should be noted that ensemble based methods often use extreme
value analysis based methods and proximity-based methods as base methods. A summary
of the ability of existing anomaly detection methods to meet the four challenges stated in
Section 1.2 is presented in Table 2.1. It shows that existing methods can handle the four
challenges with varying degrees of success, but none of the existing methods can meet all
the four challenges. Motivated by this fact, this research aims to design a novel method
to cope with all four challenges in a unified framework.
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Chapter 3

ZERO++: A novel anomaly
detection method

In this chapter, we propose a novel anomaly detection method, which employs the number
of zero appearances in subspaces to detect anomalies. Our proposed method is called
ZERO++ because its anomaly score involves the sum of the number of ZERO appearances
in subspaces over a set of subsamples (i.e., a double summation ++).

Most existing anomaly detection methods rely on the key characteristic of numeric
data, i.e., the notion of ordering. For example, extreme value analysis based anomaly
detection methods employ the ordering information to identify anomalies with extremely
large or small values. For proximity-based methods, the ordering information is used to
define neighbourhood and identify anomalies that lie in regions of low density. However,
these methods cannot handle categorical data, which is inherently unordered or lacks
continuity in attribute values. Though techniques in transforming categorical data into
numeric data allow these anomaly detectors to treat categorical data, their detection
performance is often context dependent. Therefore, these methods can generally work
well in numeric data, but they often fail to obtain favourable detection performance in
categorical data and mixed data.

In contrast, ZERO++ is based on categorical data. To handle numeric data or mixed
data, numeric attributes are discretised into categorical attributes prior to employing our
proposed method. Discretisation is a well established field (Liu et al., 2002) and it is a
process simpler than the one which requires a reverse conversion in most existing methods,
because no ordering information is required for categorical attributes. As such, ZERO++
is in a better position to treat mixed data.

Based on the property that anomalies have a higher probability of having zero appear-
ances in subspaces and in subsamples than normal instances, ZERO++ aims to use the
number of zero appearances in subspaces over a set of subsamples to identify anomalies. A
major challenge in this motivation is that the number of subspaces is exponential to data
dimensionality, so it is inapplicable for high dimensional data. However, zero appearances
in subspaces follow the anti-monotone property, which states that ‘if an instance has zero
appearances in a subspace, it must also have zero appearances in subspaces containing
this subspace’. Utilising this property, an efficient and effective approximation method is
proposed by using a small set of low dimensional subspaces only.

This chapter presents the intuition of our proposed method in Section 3.1, followed by
the introduction of our method in Section 3.2. Next, we discuss how ZERO++ can be
extended to handle numeric and mixed data in Section 3.3. We then present an analysis
of the characteristics of ZERO++ and its algorithmic framework in Sections 3.4 and 3.5,
respectively. A comparison between ZERO++ and anomaly detection methods in most
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related work is provided in Section 3.6. This chapter ends with a chapter summary in
Section 3.7. The symbols and notations used are provided in Table 3.1.

Table 3.1: Symbols and notations

D A data set with d attributes, where |D| = n
D A subsample of D, where |D| = ψ
A A product set of all the attributes in D
S A subspace having a product set of m attributes
R Set of all the subspaces in D
Rm Set of all the m-dimensional subspaces
R′m A random subset of Rm
y An instance in D
r(y) Frequency count of y in D, i.e., r(y) = |{x ∈ D : x = y}|
rS(y) Frequency count of y in S and in D
PS(y|D) The probability of y in S given D
ZS(y) A binary variable: whether y has zero appearances in S given D, or not
t The number of subsamples

3.1 Intuition

In a categorical data set, anomalies are rare instances, i.e., those instances which have
combinations of values that are rare. Furthermore, in a random subsample, the probability
of having no instances in the subsample with the same values as a given test instance, on
any attribute subset, increases monotonically with a decrease in the frequencies of the
values in the full data set. Therefore, anomalies are likely to have zero appearances in
small subsamples, and also have a higher probability of having zero appearances than
normal instances in subsamples of any size (see Definition 2 in Section 3.2.1 for the formal
definition of zero appearances). Based on this property, we propose to employ the number
of subspaces having zero appearances in subsamples to identify anomalies. Instances
with a high number of zero appearances in subspaces will have a high anomaly score.
To demonstrate this intuition, we provide two examples: one using univariate data and
another using multivariate data.

Given a univariate categorical data set with 1,000 instances, and there exists an
anomaly with 10 appearances and a normal instance with 100 appearances. When ran-
domly subsampling eight instances without replacement from the data set, the probability

of the anomaly having zero appearances in the subsample is
(1000−10

8 )
(10008 )

≈ 0.9225, whereas

that of the normal instance is
(1000−100

8 )
(10008 )

≈ 0.4291 only. Therefore, in a set of subsamples,

anomalies are likely to have a higher number of zero appearances than normal instances.

In multivariate data sets, the rarity and exception characteristics of anomalies are
reflected in subspaces. Therefore, compared to normal instances, anomalies are likely
to have a larger number of zero appearances in subspaces. A big challenge in examining
zero appearances of instances in subspaces is its time and space complexities exponentially

increasing with data dimensionality, i.e., the number of all the subspaces is
d∑

m=1

(
d
m

)
= 2d−1

in total for D. This number could be too big to store in memory, e.g., d = 50 requires
about one petabyte of main memory, and the runtime for examining zero appearances in
all these subspaces is prohibitive for only a few dozen instances.
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However, zero appearances in subspaces follow the anti-monotone property, which
states that ‘if an instance has zero appearances in a subspace, it must also have zero
appearances in subspaces containing this subspace’. Utilising this property, we provide an
effective and efficient approximation to identify anomalies by considering a small set of
low dimensional subspaces only.

An application of the anti-monotone property for a simple two-dimensional subspace
is shown in Figure 3.1. Let SAi be the region A = i in the one-dimensional subspace of
attribute A.

B=q [3] B=r [14] B=s [0] B=t [13]

A=i [0]

A=j [15]

A=k [15]

A=l [0]

3

10

4

5

8

Figure 3.1: A two-dimensional categorical data subset with 30 instances, where the size of
the circle indicates the number of instances in a region; and the number in [ ] indicates the
number of instances in the region of one-dimensional subspace. Labels for A are {i, j, k, l}
and labels for B are {q, r, s, t}

.

Given the data distribution shown in Figure 3.1, regions of zero appearances in one-
dimensional subspaces are SAi, SAl and SBs only. Any test instance having either A = i,
A = l or B = s is more likely to be an anomaly. Since instances must have zero appearances
in higher-dimension subspaces of either A = i, A = l or B = s, we only need to examine
regions in these one-dimensional subspaces.

In high dimensional data sets, the anti-monotone property substantially reduces the
number of subspaces that need to be examined. Although using zero appearances in low
dimensional subspaces to approximate zero appearances in all the subspaces may lose
some accuracy, it gains significant reduction in time and space complexities, i.e., the time
and space complexities are reduced from 2d to d, and in Chapter 4 we will empirically
show that our approximation can identify anomalies more effectively than state-of-the-art
anomaly detectors in a wide range of real-world and synthetic data sets.

3.2 ZERO++: The anomaly detection method

In ZERO++, based on our argument in Section 3.2.1, which states that anomalies have a
higher probability of having zero appearances in subspaces and in subsamples than normal
instances, in Section 3.2.2, our anomaly score computation method is introduced based
on the number of zero appearances in subspaces over a set of subsamples. Since the time
and space complexities of examining zero appearances in all subspaces are prohibitive
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for high dimensional data sets, we provide an efficient approximation for anomaly score
computation using a small set of low dimensional subspaces only in Section 3.2.3.

3.2.1 Zero appearances in subspaces

In this thesis, a subspace refers to a m-attribute subspace in a categorical space and it
is defined as a product set of m attributes. Formally, let D be a set of i.i.d. instances
{y1, . . . ,yn} with d categorical attributes, and A = A1 × A2 × . . .× Ad be a product set
of the attributes; and y = [y1, . . . , yd].

Definition 1 A subspace is a product set of m attributes

S = Ak1 ×Ak2 × . . .×Akm , (3.1)

where 1 ≤ k1 < k2 . . . < km ≤ d.

Let D, with ψ randomly selected instances (sampling without replacement), be a ran-
dom subset of D; and IS(x = y) be an indicator function, which is 1 if instance x is
identical to y in subspace S, and 0 otherwise.

Definition 2 An instance y has zero appearances in S given D, if ∀x ∈ D, IS(x = y) = 0,
i.e., {x ∈ D : [xk1 , . . . , xkm ] = [yk1 , . . . , ykm ]} = ∅.

For example, assume A1 and A2 are two attributes of D, and A1 contains three values
a1, a2, a3 and A2 contains two values b1, b2, then S = A1×A2 = {(a, b) : a ∈ A&b ∈ B} =
{(a1, b1), (a1, b2), (a2, b1), (a2, b2), (a3, b1), (a3, b2)}. In a subsample D of D, suppose only
{(a1, b1), (a1, b2), (a2, b1), (a2, b2)} occur, then (a3, b1) and (a3, b2) have zero appearances
in S given D.

In a given data set, anomalies are instances with low probabilities in subspaces. So,
in a random subset of the data set, anomalies are likely to have zero appearances in the
subspaces. This is demonstrated in the following theorem 1 and its corollaries.

Definition 3 ZS(y) = 1 if y has zero appearances in S given D, and ZS(y) = 0 other-
wise.

Theorem 1 The probability of ZS(y) is equal to its expected value E(ZS(y)) =
(n−rS (y)ψ )

(nψ)
.

Based on Theorem 1, we have the following three properties and their implications in
anomaly detection:

(i) If rS(y) < rS(x) ≤ n − ψ, then E(ZS(x)) < E(ZS(y)). Anomalies are rare, and
thus they have smaller rS(·) compared to normal instances. As anomalies have
smaller rS(·) than normal instances, they have a higher probability of having zero
appearances in a given subspace.

(ii) If y has a large number of identical instances in S, such that rS(y) > n − ψ, then
E(ZS(y)) = 0, i.e., y must not have zero appearances in the subspace. In such cases,
y is considered as a normal instance because it conforms to a major behaviour in the
subspace.

1Proofs of theorems are provided in Appendix A
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(iii) If y is a previously unseen instance, i.e., rS(y) = 0, then E(ZS(y)) = 1. Such
instances are considered as anomalies because they conform to an unusual behaviour.
Also, the probability of y having zero appearances in the subspace approaches 1 when
rS(y) becomes very small and ψ is small. Given the rarity and exception nature,
anomalies often have very small rS(·), so in a small subsample they have very high
probability of having zero appearances in a given subspace.

3.2.2 Anomaly score

Based on Theorem 1 and its properties in Section 3.2.1, we define anomalies as follows:

Definition 4 Anomalies are instances having zero appearances in a large number of sub-
spaces over a set of subsamples.

Definition 5 The probability of instance y in subspace S given D is defined as:

PS(y|D) =

∑
x∈D IS(x = y)

|D|
(3.2)

If y has zero appearances in S given D, i.e., {x ∈ D : [xk1 , . . . , xkm ] = [yk1 , . . . , ykm ]} =
∅, then PS(y|D) will be equal to 0. ZERO++ employs the number of zero appearances
in subspaces as an anomaly score. Given D and R, the anomaly score for y is defined as
follows:

Definition 6 The anomaly score for y is defined as the number of zero appearances in D
and R:

score(y|D, R) =
∑
S∈R

I(PS(y|D) = 0) (3.3)

where I(PS(y|D) = 0) is an indicator function, which is 1 if PS(y|D) = 0, and 0 otherwise.

The anomaly score is bounded by [0, |R|]. Based on the first property in Theorem
1, compared to normal instances, anomalies have a higher probability of having zero
appearances in a given subspace. Therefore, in a set of subspaces, anomalies are likely to
have a larger number of zero appearances than normal instances, and thus have a larger
anomaly score.

Theorem 2 If ZS(y) are independent, then

0 ≤ E(score(y|D, R)) ≤ |R|

1−

(
1−

(n−r(y)
ψ

)(
n
ψ

) ) 1
|R|

 (3.4)

Moreover, if E(ZS(y)) are identical for every S ∈ R, then

E(score(y|D, R)) = |R|

1−

(
1−

(n−r(y)
ψ

)(
n
ψ

) ) 1
|R|

 (3.5)

Note that here R is a fixed set, so the expected anomaly score of y is subject to D
only. Suppose the assumptions in Theorem 2 hold, then given a test instance y and a
fixed subsampling size ψ,
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(i) if y has r(y) such that r(y) ≤ n−ψ, then based on Equation (3.4) its anomaly score
is upper bounded by

|R|

1−

(
1−

(n−r(y)
ψ

)(
n
ψ

) ) 1
|R|

 .

It should be noted that the independence of zero appearances in subspaces is a strong
assumption, so it may not be a tight upper bound. However, Equation (3.4) shows
that the anomaly score of y is inversely proportional to its appearances in the full
data set, and provides an explanation as to why our proposed anomaly score can be
used to identify anomalies effectively.

(ii) if y is a frequent instance, e.g., such that r(y) > n − ψ, then it has the smallest
anomaly score 0 and should be considered as a normal instance.

(iii) y will have the largest anomaly score |R|, when D does not contain any instance
which is identical to y, e.g., a previously unseen anomaly.

(iv) Equation (3.5) is built on a very strong assumption that E(ZS(y)) are identical for
every S ∈ R. When this assumption holds, anomalies must have higher anomaly
scores than normal instances since they have smaller r(·).
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Figure 3.2: Average anomaly scores and two standard deviations of anomalies and normal
instances in BreastCancer using different subsampling sizes. The average anomaly score is
derived as follows: we first compute the anomaly score for each anomaly (normal instance),
and the sum of anomaly scores for anomalies (normal instances) is then divided by the
total number of anomalies (normal instances). We obtain the standard deviations based
on the average scores over 10 runs.

We use the data set BreastCancer (Asuncion and Newman, 2007), which contains 699
instances and 9 categorical attributes, to demonstrate the implication of Theorem 2 in
Figure 3.2. The data set contains 444 ‘benign’ instances and 241 ‘malignant’ instances.
Following Hawkins et al. (2002) and He, Xu, Huang and Deng (2005), to transform this
classification data set for anomaly detection tasks, we selected the first 39 ‘malignant’
instances as anomalies against all ‘benign’ instance. The total number of subspaces in R

is equal to
9∑

m=1

(
9
m

)
= 29 − 1 = 511, and thus the anomaly score is bounded by [0, 511].
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Figure 3.2 presents a comparison of anomaly scores of anomalies and normal instances
in BreastCancer with the subsampling sizes of 2, 4, 8, 16, 32, 64, 128 and 256. The
average score and two standard deviations over 10 runs are presented. We also visualise
the upper bound of the anomaly score with different subsample sizes. The averages over
the anomaly scores of both anomalies and normal instances approach 0 as the subsampling
size increases, but the average over anomaly scores of anomalies decrease at a much slower
rate, and they are generally much larger than those of normal instances. As r(·) is as small

as 1, the upper bound of the anomaly score is 511×
(

1−
(

1− 483−ψ
483

) 1
511

)
, which decreases

slowly with increasing subsample sizes. It is interesting to note that small subsamples have
only a few dozen instances, so the independence of ZS(y) is likely to hold, and as a result,
the upper bound is rather tight using small subsamples.

In order to obtain a more accurate estimation of the anomaly score for each instance,
we use a set of subsamples to compute anomaly scores.

Definition 7 For a test instance y given Di, i = 1, 2, · · · , t, and R, the anomaly score of
y is defined as follows:

score(y) =
t∑
i=1

score(y|Di, R) (3.6)

In Equation (3.6), according to the Law of Large Numbers (Etemadi, 1981), for a given
y, score(y) will converge and have a stable value when t is sufficiently large. Figure 3.3
shows the average anomaly scores and two standard deviations over 10 runs for anomalies
and normal instances in BreastCancer using ψ = 8 and different t values. The score
converges very quickly and it becomes very stable when t > 50. We will present more
experiments on examining the sensitivity of ψ and t in Chapter 4 and Appendix C.
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Figure 3.3: Average anomaly scores and two standard deviations over 10 runs for anomalies
and normal instances in BreastCancer using ψ = 8 and different numbers of subsamples.

3.2.3 Approximation

The number of subspaces in R is
d∑

m=1

(
d
m

)
= 2d−1 in total for D, which leads to exponential

time and space complexities with respect to data dimensionality. For high dimensional
data, examining the zero appearances of a given instance in all the subspaces is prohibitive
in terms of both time and space complexities. For example, a 50-dimensional data set
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requires about one petabyte of main memory to store all the subspaces, and for each test
instance, we need to examine zero appearances in 250 − 1 subspaces, so the time and
space complexities are prohibitive for data with only a few dozen instances. Therefore,
ZERO++ with R is inapplicable in many real-world data sets, which have hundreds of
dimensions and thousands of instances.

Definition 8 Suppose we have two subspaces S = Ak1 × Ak2 × . . . × Akm and S ′ =
Ak1 ×Ak2 × . . .×Akq , if q > m, then S ′ is a higher-dimension subspace containing S.

In this research, utilising the anti-monotone property of zero appearances in subspaces,
we introduce an efficient approximation to the proposed anomaly score with R as shown
in Equation (3.6).

The anti-monotone property states that:
given a subspace S, let S ′ be a higher-dimension subspace containing S, if PS(y|D) = 0,
then PS′(y|D) = 0.

Based on this property, if a test instance has zero appearances in a subspace, it must
also have zero appearances in the higher-dimension subspaces of this subspace. Thus,
examining zero appearances in low dimensional subspaces is often sufficient to distinguish
anomalies and normal instances.

The anti-monotone property enables us to approximate our anomaly score by using
Rm with a small m only. The simplest case is to replace R with R1 in Equation (3.6).
In such a case, there are d subspaces, with each subspace spanned by a single attribute.
However, it is very easy for anomalies to mask themselves by having the same attribute
value as normal instances in single attributes, and using zero appearances in R1 fails to
work when the zero appearances are dependent on multiple attributes. An example of this
case is demonstrated by a two dimensional occupation-salary artificial data set in Figure
3.4, where attribute A stands for income level with h, i, j, k and l corresponding to five
respective levels very low, low, medium, high and very high, and B stands for occupation
with a, b, c, d and e corresponding to five respective occupations cleaner, premier, software
engineer, astronaut and CEO. In the left panel, A = h (having very low salary), A = l
(having very high salary), B = b (being a premier), B = d (being an astronaut), and
B = e and A = i (a low-salary CEO) are rare attribute values, and instances having these
values are considered as anomalies, so there are five anomalies in this data set. For the
subsample in the right panel, any instance having either A = h, A = l, B = b or B = d
has zero appearances in the one-dimensional subspaces, and four anomalies having A = l
or B = d can be detected. However, it cannot identify the fifth anomaly with B = e
and A = i by working on one-dimensional subspaces only, as the zero appearance of this
anomaly is dependent on both attributes.

Also, the time and space complexities of using Rm with m ≥ 2 are prohibitive for large
and high-dimensional data sets. For example, the time and space complexities of examining
zero appearances in all the subspaces in R2 are quadratic to data dimensionality, and that
for Rm with 3 ≤ m ≤ dd2e are at least cubic to data dimensionality. For computational
efficiency, we focus on using a small random subset of Rm, denoted by R′m, to replace Rm.

In this research, ZERO++ employs the zero appearances in subspaces in R′2 to identify
anomalies. R′2 is a subset of R2 having |R′2| = d such that every attribute must appear
exactly twice in R′2. This is to ensure that R′2 covers all the attributes and every attribute
has an equal chance to be considered in R′2. The coverage of attributes in R′2 enables
ZERO++ to tolerate irrelevant attributes (A discussion about this can be found in Section
3.4.).

R′2 is generated randomly as follows: A random order of d attributes Ai1 , Ai2 , . . . , Aid
is first generated. Then, d attribute-pairs are formed by chaining the consecutive pair of
attributes circularly until each attribute appears exactly twice, yielding R′2 = {Si1i2 ,Si2i3 ,
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Figure 3.4: A two-dimensional occupation-salary data set with 100 instances, where the
size of the circle indicates the number of instances in a region; and the number in [ ]
indicates the number of instances in the region of one-dimensional subspace. The left
panel is for the full data set; the right panel is a result of subsampling eight instances from
the data set.

. . . ,Si(d−1)id ,Sidi1}, where Sij = Ai ×Aj . Note that to produce an anomaly score for y as
shown in Equation (3.6), R′2 is generated randomly t times. In contrast, R2 is a unique
set.

Our anomaly score using R′m is an efficient approximation to that using R shown in
Equation (3.6), and m can be any value within the range [1, d] 2. The reasons for the use
of R′2 are as follows:

• Using R′2 is a trade-off between the use of R1 and R′m with 3 ≤ m ≤ d in terms of
detection performance in data sets with different attribute dependences.

In data sets where anomalies exhibit abnormal behaviours based on multiple at-
tributes, in order to obtain favourable detection performance, zero appearances in
subspaces spanned by two or more attributes, e.g., subspaces in R′m with 2 ≤ m ≤ d,
need to be examined. Using R1 fails to detect these anomalies because subspaces in
R1 cannot capture dependence of abnormal behaviours on multiple attributes.

In data sets where attributes are independent, e.g., abnormal behaviours are not
dependent on multiple attributes, using R′m with a larger m works less effectively,
e.g., using R1 works best in such data sets. This is because data subspace becomes
sparser with increasing dimensionality sizes, and normal instances also become rare
instances in subspaces in R′m with a larger m, and as a result, normal instances can
be incorrectly reported as anomalies.

To demonstrate the above two situations, we provide two real-world examples: one
using Mushroom where abnormal behaviours are dependent on multiple attributes,
and another using Shuttle where attributes are independent 3.

In Mushroom, many poisonous mushroom cases can be detected only when examining
behaviours in two or more attributes (Duch et al., 1996). Therefore, using R′m

2The process of generating R′2 can also be used to generate R′m with other m values, but it should be
noted that R′m with m = 1 or m = d has a different property as R′m with 2 ≤ m ≤ d − 1, i.e., every
attribute appears once only in R′1 and R′d. R′1 has the same subspace set as R1, and R′d contains one
subspace only spanned by all the attributes.

3Descriptions of the data sets can be found in Appendix B. The empirical results are based on ψ = 8
and t = 50, which are the default settings for the two parameters in our experiments in Chapter 4.
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with m ≥ 2 is expected to obtain better detection performance than using R1.
The AUC 4 and two standard errors over 10 runs using R′m with a different m in
Mushroom is presented in Figure 3.5. It shows that our anomaly score using R′m
with 2 ≤ m ≤ 22(d = 22) outperforms that using R1 significantly, and the AUC
performance using R′m with 2 ≤ m ≤ 10 increases with m.
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Figure 3.5: AUC performance and two standard errors over 10 runs using R′m with a
different m in Mushroom.

In Shuttle 5, most anomalies can be detected by examining behaviours in the first
or the seventh attributes. In such data sets, our anomaly score using R1 is expected
to perform better than that using R′m with 2 ≤ m ≤ d. The result in Shuttle is
provided in Figure 3.6. It shows that the AUC performance decreases quickly with
increasing m, and using R′m with a small m is able to outperform that with a large
m significantly. Note that AUC performance using R′2 is very closed compared to
that using R1, i.e., the AUC difference is 0.0001 only.

Different data sets have different dependences of abnormal behaviours on attributes,
and it is often difficult to obtain the dependence information in advance and then use
R′m with a proper m value. We employ R′2 as a trade-off between the use of R1 and
R′m with 3 ≤ m ≤ d to deal with data sets having different attribute dependences.

• Time and space complexities are prohibitive in order to capture dependence of ab-
normal behaviours on different numbers of attributes, i.e., subspaces in R′m with
different m values.

Subspaces in R′m with different m values needed to be examined in order to capture
the dependence of abnormal behaviours on different numbers of attributes. An ex-
ample of this is provided in Table 3.2, where a data subset contains twelve instances
and four attributes. Elements of (a1, b2, c2) appear in every one- or two-dimensional
subspaces spanned by any subset of A1, A2 and A3, but it has zero appearances in
the three-dimensional subspace spanned by these three attributes. For (a1, b2, c1, d3),
its elements exist in all subspaces with less than four dimensions, but it has zero

4AUC is the area under the curve of Receiver Operating Characteristic (ROC) which is a plot of the
true positive rate against the false positive rate at various threshold settings. Higher AUC indicates better
detection performance. More detail of this is presented in Section 4.1.2.

5Shuttle is a numeric data set. This data set was discretised by the x ± 3s rule discretisation method
introduced in Section 3.3 before applying our proposed method to it. All the nine attributes in this data
set are independent.
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Figure 3.6: AUC performance and two standard errors over 10 runs using R′m with a
different m in Shuttle.

appearances in the full dimensionality. In order to capture all these types of zero ap-
pearances, it requires remembering appearance information in subspaces in R′m with
different m values, i.e., R′2, R

′
3, · · · , and R′d, which has time and space complexities

increasing exponentially with d, and thus is inapplicable for high dimensional data.

Table 3.2: A toy example: Zero appearances occur in three or higher dimensional subspaces
only. Each attribute contains three labels, i.e., A1 = {a1, a2, a3}, A2 = {b1, b2, b3}, A3 =
{c1, c2, c3} and A4 = {d1, d2, d3}.

Instances A1 A2 A3 A4

y1 a3 b2 c2 d3
y2 a3 b2 c2 d1
y3 a2 b2 c1 d3
y4 a2 b2 c2 d1
y5 a1 b2 c1 d2
y6 a2 b2 c1 d3
y7 a1 b2 c1 d1
y8 a1 b2 c1 d1
y9 a1 b3 c2 d1
y10 a1 b1 c1 d3
y11 a1 b1 c1 d3
y12 a1 b2 c2 d3

Compared to the use of R2, our anomaly score using R′2 with a sufficiently large num-
ber of subsamples can provide a good approximation to that using R2, while at the same
time reducing time and space complexities from a quadratic to a linear level. For example,
for low dimensional data sets, e.g., with d ≤ 30, Equation (3.6) with R2 needs to examine

the zero appearances of y in |R2| = d(d−1)
2 ≤ 14.5d subspaces, while if Eqn.(3.6) uses a suf-

ficiently large t number of R′2, e.g., t > 50, it will examine at least t|R′2| ≥ 50d subspaces.
In such a case, Equation (3.6) with R′2 can provide an effective approximation to that
using R2. For higher dimensional data sets, in many real-world data sets, many attributes
are irrelevant to anomaly detection tasks, so numerous subspaces in R2 are spanned by ir-
relevant attributes. Assume a 100-dimensional data set with only 10% relevant attributes,
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then the total number of relevant subspaces in R2 is 10×9
2 = 45. However, in R′2, there

will be 10
2 × 50 = 250 relevant subspaces for t = 50. Therefore, Equation (3.6) with R′2 is

still able to provide an effective approximation to that using R2. It should be noted that
R′2 is generated randomly for each subsample, so there may exist the same subspace in R′2
in different subsamples. This allows ZERO++ to examine whether the zero appearances
in the same subspaces occur by chance.

Compared to the use of R or R′m with different m values, our anomaly score using
R′2 might lose some accuracy, but time and space complexities have been reduced from at
least O(2d) to O(d).

ZERO++ is employed with R′2 by default hereafter. We will empirically show that
ZERO++ with R′2 can identify anomalies more effectively than state-of-the-art anomaly
detectors in a wide range of real-world and synthetic data sets in Chapter 4.

3.3 Extensions to numeric and mixed data

For numeric and mixed data, as ZERO++ is based on categorical attributes, numeric
attributes are discretised to become categorical attributes. This is a process simpler than
the one which requires a reverse conversion because no ordering information is required
for categorical attributes. We examine ZERO++ with two discretisation methods, i.e.,
the equal-width method and the x± 3s rule discretisation method.

A number of discretisation methods have been proposed, but they were mainly ded-
icated for supervised learning techniques (Liu et al., 2002). Two commonly used unsu-
pervised discretisation methods include equal-frequency and equal-width methods. The
equal-frequency method divides instances into bins of the same number of instances in
each attribute. Since our interest is to find zero appearances of infrequent attribute values
in subsamples, the equal-frequency method is inapplicable because values in each attribute
will have the same frequency after using this method.

The equal-width method divides instances into bins of equal width in each attribute.
Formally, it works as follows. For a given attribute A and a user-defined number of bins
Nbin, we first find the maximum and minimum values in A, denoted by max(A) and

min(A); the bin width is then obtained by w = max(A)−min(A)
Nbin

; and the Nbin bins are
finally generated by (Nbin − 1) cut points min(A) + i × w where i = 1, 2, · · · , Nbin − 1.
Different widths will lead to varying binning results, which will in turn result in unstable
anomaly detection performance.

In this research, we also examine a simple preprocessing method which converts a
numeric attribute into a categorical attribute with two labels as follows. For each subsam-
ple, we compute the mean x and the standard deviation s for each attribute. If a numeric
value falls within the range [x− 3s, x+ 3s], it is assigned a label ’y’; otherwise label ’n’ is
assigned.

The intuition of the x ± 3s rule method is demonstrated using a synthetic data set
in Figure 3.7. We visualise results of the discretisation in a Gaussian distribution with
10,000 instances in a two-dimensional numeric feature space shown in Figure 3.7, where
each rectangle area indicates a discretised partition result of a subsample, bounded by
[x − 3s, x + 3s] in each dimension. Each rectangle is generated based on 64 randomly
selected instances from which x and s are computed. An instance that falls outside the
rectangle area has zero appearances in this region. The figure shows that anomaly o does
not appear in all 50 regions created from 50 subsamples; while normal instance x appears
in all 50 regions. Figure 3.8 shows the average probabilities of having zero appearances in
the region outside the rectangle with respect to increasing ψ values. The probability of
anomaly o having zero appearances is substantially higher than that of x, and it converges
very quickly with increasing subsampling sizes.
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Figure 3.7: A data set of 10,000 instances generated from a Gaussian distribution. The
50 rectangles are 2-D subspaces generated from 50 subsamples, each having 64 instances.
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Figure 3.8: Average probabilities of having zero appearances for x and o with respect to
different subsampling sizes.

The x ± 3s rule is known to be not robust, i.e., x and s are easily influenced by
anomalies. However, x and s are derived from each subsample which is less likely to
contain anomalies. In addition, the multiple models used in ZERO++ also reduce the
impact of biased x and s.

This discretisation method is based on an underlying assumption that the normal
instances follow uni-modal distributions. Therefore, once the uni-modal distribution as-
sumption is violated, more advanced discretisation methods may be required in order to
obtain favourable detection performance. We will show in Chapter 4 that ZERO++ using
the x ± 3s rule method is able to handle many real-world numeric data sets and mixed
data sets effectively.

3.4 Characteristics of ZERO++

ZERO++ has the following three characteristics:

1. ZERO++ works well with a small subsample size.



32 CHAPTER 3. ZERO++: A NOVEL ANOMALY DETECTION METHOD

Let p = rS(y)
n be the probability of y occurring in subspace S given the full data set

D. E(ZS(y)) can then be computed as follows:

E(ZS(y)) = (1− p)× n(1− p)− 1

n− 1
× · · · × n(1− p)− (ψ − 1)

n− (ψ − 1)

For a large n, it can be simply approximated as follows:

E(ZS(y)) ≈ (1− p)ψ (3.7)

Based on Equation (3.7), given a small subsample D, if y is a rare instance in D,
i.e., p is very small, then the probability of y having zero appearances in D is very
high. Figure 3.9 presents E(ZS(y)) with respect to different ψ, i.e., 2, 4, 8, 16,
32, 64, 128, 256 6, given different p, including 0.1, 0.05, 0.01, 0.005. It shows that
a small subsample size, e.g., ψ 6 64, can generally ensure rare instances bearing
high probability (> 0.5) of having zero appearances in subsamples. Particularly,
for p 6 0.05, E(ZS(y)) > 0.65 if ψ 6 8. For a relatively large p, e.g., p = 0.1,
a smaller ψ, e.g., 2 or 4, should be taken in order to ensure E(ZS(y)) within the
range (0.5, 1.0]. Considering the percentage of anomalies is normally less than 5%, a
small subsample size, e.g., ψ 6 64, is preferred in order to ensure anomalies having
a sufficiently large number of zero appearances in the subspaces. In this research,
ψ = 8 is used as the default setting in our experiments.
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Figure 3.9: Probability of having zero appearances in subsamples with respect to different
subsample sizes, given instances with different p.

2. ZERO++ is able to work on data sets with a low percentage of relevant attributes.

For anomaly detection tasks, anomalies do not exhibit abnormal behaviours in irrel-
evant attributes, i.e., anomalies and normal instances share the same behaviour in
such attributes. Therefore, in ZERO++, both normal instances and anomalies have
equivalent anomaly scores in subspaces spanned by those attributes. However, in
subspaces spanned by relevant attributes where anomalies have rare attribute val-
ues, anomalies are more likely to have zero appearances in subsamples than normal
instances, and as a result, anomalies will have higher anomaly scores than normal
instances. Therefore, even if the data sets have a very low percentage of relevant
attributes, e.g., 1%, anomalies are still likely to have a larger number of zero ap-
pearances in the subspaces compared to normal instances.

6In ZERO++, these values are used as a search range for best performance by default in our experiments.
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It should be noted that R′2 in ZERO++ covers every attribute in each subsam-
ple, whereas other subspace-based methods, such as FeatureBagging (Lazarevic and
Kumar, 2005), iForest (Liu et al., 2012) and MassAD (Ting et al., 2013), work on
subspaces spanned by a randomly selected attribute subset only. If data sets contain
a high percentage of irrelevant attributes, these methods are very likely to work on
subspaces spanned by irrelevant attributes only, and as a result, they perform poorly
in such data sets.

3. Considering interactions within attributes is an integral component in ZERO++.

For ZERO++ working with R′2, instances are considered as anomalies when they
exhibit abnormal behaviours in one or two attributes of a given subspace, so it is able
to identify anomalies which have abnormal behaviours depending on two attributes.
ZERO++ can be adapted to cases which are required to capture dependences be-
tween three or more attributes by simply replacing R′2 with a higher dimensional
subspace set, e.g., R′3. Attribute independence is often violated in many real-world
data sets (Ghoting et al., 2004; Webb et al., 2005). The ability to capture depen-
dences between numeric and categorical attributes is often required for detecting
anomalies in mixed data sets (Ghoting et al., 2004; Zhang and Jin, 2011). ZERO++
with R′2 captures the interaction between one numeric attribute and one categorical
attribute in a seamless manner.

3.5 The algorithm

Given a data set with categorical attributes, ZERO++ builds a model in the training
stage, and the model can then be used to score every instance in the testing stage. The
procedures of these two stages are given below.

Training. In the training stage, ZERO++ builds a probability table from each sub-
sample for R′2. The probability table consists of probabilities of instances occurring in
each subspace in R′2, as defined in Equation (3.2). As there are d subspaces in R′2, the
width of the probability table is equal to d. The procedure to generate the probability
tables is presented in Algorithm 1. Note that we are interested in entries of the subspaces
having zero probabilities only, and the non-zero entries in the probability table are only
useful in so far as to identify zero entries; the actual probabilities are immaterial.

Algorithm 1 ProbabilityTable(D, t, ψ)

Input: D - input data, t - the number of subsamples, ψ - subsample size
Output: Ω - a set of probability tables

1: Initialise Ω as an empty set
2: for i = 1 to t do
3: Initialise probability table ωi
4: Di ← Randomly select ψ instances without replacement from D
5: Generate a randomised subspace set R′2
6: Build ωi for R′2 from Di.
7: Ω← ωi
8: end for
9: return Ω

Testing. To score a test instance y, ZERO++ computes the number of zero appear-
ances in the subspaces in the probability table ωi, as defined in Equation (3.2), as the
anomaly score for y. The higher the score is, the more likely y is an anomaly. This
procedure is presented in Algorithm 2.
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Algorithm 2 ZERO++(y)

Input: y - a test instance
Output: z - the number of zero appearances in subspaces of y

1: z ← 0
2: for i = 1 to t do
3: r ← number of zero appearances in subspaces in ωi(y).
4: z ← z + r
5: end for
6: return z

Complexity analysis. In the training stage, ZERO++ builds t d-sized probability ta-
bles, each using a subsample of ψ instances. Thus, ZERO++ has time complexity O(tdψ).
During the testing stage, for a test instance, ZERO++ needs to look up t probability ta-
bles, where each table look up takes O(d). To score n instances in a data set, ZERO++
has time complexity O(ntd). Since n is normally far larger than ψ, the time complexity
of ZERO++ is O(ntd).

In terms of space complexity, ZERO++ needs to store t d-sized probability tables
for every subsample. Let ` be the average number of labels per attribute, so for each
probability table, O(d`2) is required to store values in its subspaces. Therefore, ZERO++
has space complexity O(td`2).

A comparison of time and space complexities between ZERO++, FPOF (He, Xu,
Huang and Deng, 2005), iForest (Liu et al., 2012), LOF (Breunig et al., 2000) and SOD
(Kriegel, Kröger, Schubert and Zimek, 2009) is provided in Table 3.3. Both ZERO++ and
iForest have linear time complexity with respect to both data size and dimensionality, and
constant space complexity with respect to data size. The state-of-the-art anomaly detector
for categorical data FPOF, density-based detector LOF, and subspace-based detector SOD
have much higher time and space complexities than ZERO++ and iForest. The time
complexity of FPOF is linear to data size but quadratic to dimensionality, and it is affected
by the length of the itemsets considered and the minimum support threshold. Though the
time complexity of LOF and SOD can be reduced to O(n log(n) d) and O(n2d) respectively
when using some indexing scheme such as R∗-tree (Beckmann et al., 1990), most indexing
schemes only work on low-dimensional numeric data and do not work on data with high
dimensionality or with categorical attributes.

Table 3.3: time and space complexities between ZERO++, FPOF, iForest, LOF and SOD.

Methods Time complexity Space complexity

ZERO++ O(ntd) O(td`2)
FPOF O(n2d) O(2d)
iForest O(nt) O(tψ)
LOF O(n2d) O(nd)
SOD O(n3d) O(nd)

Note that we have ignored the time and space requirements for the preprocessing
step. For ZERO++ or FPOF, converting numeric attributes to categorical attributes is
only required for data sets having numeric attributes. The time complexity of the equal-
width discretisation method is dominated by searching for maximum and minimum values,
which can be done in linear time. Only the bin width, and maximum and minimum
values for each attribute are required to be stored, which is negligible. For the x ± 3s
rule discretisation method, time complexity is dominated by the computation of standard
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deviation for which a linear time complexity algorithm can be found in (Donald, 1999).
The space required is to store the means and standard deviations for each attribute, which
is also negligible. For methods based on numeric data such as iForest, LOF and SOD, a
preprocessing step is required to convert categorical attributes to numeric attributes for
data sets having categorical attributes. The time and space requirements in this step are
small as well.

3.6 Comparison to detectors in most related work

Most existing categorical data motivated methods, including ZERO++, frequent patterns
based detectors (e.g., FPOF (He, Xu, Huang and Deng, 2005)) and infrequent patterns
based detectors (e.g., LOADED (Ghoting et al., 2004)), are based on a general assumption
that anomalies are instances with rare attribute values. FPOF aims to capture normal
behaviours using frequent patterns and report instances as anomalies when they do not
conform to the patterns. In contrast, both ZERO++ and LOADED focus on capturing
abnormal behaviours, but they use different anomaly scores and algorithmic frameworks.
ZERO++ identifies anomalies based on the number of zero appearances in the subspaces
while LOADED is based on the inclusion of infrequent itemsets. Also, ZERO++ builds
a set of models on a set of subspaces and subsamples, whereas LOADED builds a single
model on an entire data set.

ZERO++ has much lower time and space complexities than FPOF and LOADED.
FPOF and LOADED need to search for frequent patterns or infrequent patterns to detect
anomalies, which have time and space complexities at least quadratic to data dimension-
ality; while ZERO++ detects anomalies in a small set of randomised two-dimensional
subspaces, which has time complexity linear to data dimensionality and data size. The
anti-monotone property is applied in FPOF and LOADED to reduce the search space,
whereas ZERO++ applies the same property to consider low dimensional subspaces only
and no search is required in ZERO++.

ZERO++ uses a similar algorithmic framework as iForest (Liu et al., 2012) and Mas-
sAD (Ting et al., 2013), i.e., construct detection models over subspaces and subsamples,
and have similar time and space complexities, but they have significant differences in
terms of motivation, working principles and anomaly scores, as summarised in Table 3.4.
ZERO++ is based on categorical data and easily extended to numeric data and mixed
data, while iForest and MassAD are numeric data oriented methods and there are no
good solutions to extend them to handle categorical attributes thus far. Also, compared
to iForest and MassAD, ZERO++ uses a totally different anomaly score and considers a
lot more subspaces, as a result, ZERO++ converges much faster.

3.7 Chapter summary

We introduce a novel anomaly detection method ZERO++ which is the only anomaly
detector based on zero appearances in subspaces, as far as we know. It is unique in that
it works in regions of subspaces that are not occupied by data; whereas existing methods
work in regions occupied by data. ZERO++ works well with small subsample sizes, and
it is able to identify anomalies in data sets with a low percentage of relevant attributes
and capture the dependence of abnormal behaviours on attributes.

ZERO++ is based on categorical data, but it can be easily extended to handle numeric
data and mixed data by using discretisation methods. ZERO++ is an efficient and scalable
detector, which has linear time complexity in terms of data size and dimensionality and
constant space complexity. A series of empirical results is presented in Chapter 4 to
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Table 3.4: Conceptual differences between ZERO++, iForest and MassAD

Motivation

ZERO++ It is a categorical data oriented method and can be
easily extended to numeric and mixed data by using
existing discretisation methods.

iForest It is a numeric data oriented method. Ordering in-
formation for each categorical attribute is required to
extend iForest to categorical domain, and there are
no good solutions to order the categorical values for
iForeest thus far.

MassAD It is also a numeric data oriented method. It has the
same limitation as iForest in handling data sets with
categorical attributes.

Working
principle

ZERO++ Its working principle is based on zero appearances in
subspaces. The subspaces used in each subsample
cover all the attributes.

iForest It is based on susceptibility to isolation, implemented
in a tree structure. Its working regions in each sub-
sample are based on a few randomly selected at-
tributes only.

MassAD It models the data in terms of mass estimation, im-
plemented using trees. Its working regions in each
subsample are also based on a few randomly selected
attributes only.

Anomaly
score

ZERO++ Number of zero appearances in subspaces. In each
subsample, ZERO++ examines zero appearances in
d subspaces, and so the anomaly score is based on
the number of zero appearances in td subspaces in t
subsamples, which considers a lot more subspaces than
iForest and MassAD, leading to a faster convergence.

iForest Path length in isolation trees. In each subsample, a
path length is derived from a subspace of a few ran-
domly selected attributes, and so it only considers t
subspaces in t subsamples.

MassAD Mass values in half-space trees. MassAD has a similar
working process as iForest and its anomaly score is
only based on t subspaces in t subsamples.
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demonstrate the effectiveness of ZERO++ in handling data sets with different types of
attributes, its favourable scalability and its ability to tolerate irrelevant attributes.
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Chapter 4

Experiments

In this chapter, after an introduction to the experiment settings in Section 4.1, a series of
empirical results is presented from Section 4.2 to 4.4 to illustrate how ZERO++ can meet
the four challenges stated in Section 1.2:

• Although ZERO++ is based on categorical data, it can be easily extended to handle
numeric and mixed data by using discretisation techniques, as discussed in Section
3.3. In Section 4.2, we empirically compare ZERO++ with four well-known anomaly
detectors, i.e., FPOF (He, Xu, Huang and Deng, 2005), iForest (Liu et al., 2012),
LOF (Breunig et al., 2000) and SOD (Kriegel, Kröger, Schubert and Zimek, 2009),
on 19 real-world data sets and a synthetic data set. There are seven mixed data sets,
four categorical data sets, and nine numeric data sets. We first show the results of
ZERO++ and its contenders in data sets with categorical attributes only in Section
4.2.1, and then the results in data sets with numeric attributes only and mixed data
sets in Section 4.2.2.

• We argue in Section 3.4 that ZERO++ is able to work well in data sets with a low
percentage of relevant attributes. Section 4.3 provides empirical results of examining
the ability of ZERO++ to tolerate irrelevant attributes on a set of synthetic data
sets.

• A complexity analysis in Section 3.5 demonstrates that the time complexity of
ZERO++ is linear to the data size and data dimensionality. In Section 4.4, we
empirically evaluate the scalability of ZERO++ with respect to data dimensionality
and data size, with the four contenders as baselines. A set of synthetic data sets
with dimensions from 10 up to 1,000 was used in the scaleup test with respect to
dimensionality. Seven subsets of the largest data set used in our experiments were
employed to evaluate the scalability of ZERO++ with respect to data size. The
smallest subset contains 1,000 instances, and subsequent subsets are increased by a
factor of four, until the largest subset which contains 4,096,000 instances.

Subsample size ψ and ensemble size t are the only two parameters in ZERO++. In
Section 4.5, we examine the sensitivity of ZERO++ with respect to its two parameters in
all the 20 data sets used in Section 4.2.

We also tested ZERO++ on data sets without ground truth. Section 4.6 presents
anomalies identified by ZERO++ when it was applied in these data sets. One numeric
data set and two categorical data sets were used.

In Section 4.7, there is a discussion over the empirical results, and a summary of all
the empirical results is presented in Section 4.8.
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4.1 Experiment settings

Four well-known anomaly detection methods were selected as the contenders of ZERO++.
A series of experiments was conducted to compare ZERO++ with its contenders on a wide
range of real-world and synthetic data sets in terms of effectiveness and efficiency.

4.1.1 Contenders and their parameter settings

We compared ZERO++ with FPOF (He, Xu, Huang and Deng, 2005), iForest (Liu et al.,
2012), LOF (Breunig et al., 2000) and SOD (Kriegel, Kröger, Schubert and Zimek, 2009) .
The contenders are the representative methods of four categories of anomaly detectors, i.e.,
methods for categorical or mixed data, methods based on both subspace and subsampling,
proximity-based methods, and subspace-based methods, as illustrated in Table 2.1 in
Section 2.4. These methods were selected as contenders because:

• FPOF is a state-of-the-art categorical data based method. It has been reported
as one of the most effective methods and widely used as performance contender
in previous literature on anomaly detection for categorical data (Koufakou et al.,
2007; Wu and Wang, 2013). Also, FPOF is a closely related work to ZERO++, as
discussed in Section 3.6. Another closely related work is LOADED (Ghoting et al.,
2004). Compared to LOADED, which is proposed for mixed data sets, FPOF is more
related to ZERO++ in the sense that FPOF and ZERO++ are based on categorical
data, so we chose FPOF over LOADED.

Compared to numeric data oriented methods, relatively less work has been done
for categorical data. An effective information-theoretic based method was recently
proposed in Wu and Wang (2013). However, this method is aimed at identifying
anomalies among an anomaly candidate set only, i.e., a data subset, and therefore
may result in low true positive rate regardless of its high detection precision. Also,
only the instances in the candidate set have anomaly scores. Therefore, we are
unable to obtain its overall detection performance, measured in terms of the Area
Under the ROC Curve (AUC) (Hand and Till, 2001). We examine the ability of
detectors in identifying anomalies in terms of ROC, so this method is inconsistent
with our examination objective.

• iForest is a state-of-the-art ensemble method for anomaly detection, and it is also a
closely related work to ZERO++ in terms of methodology, i.e., both ZERO++ and
iForest are ensemble methods based on both subspace and subsampling.

• LOF has been recognised as a state-of-the-art method in handling numeric data sets,
and it is widely used as a performance baseline in the literature (Chandola et al.,
2009).

• SOD is a well-known subspace-based method. SOD computes anomaly scores using
selected informative subspaces while ZERO++ scores instances using randomly se-
lected subspaces and does not have a procedure to select informative subspaces. It
is interesting to compare such two different subspace-based methods.

• Anomaly detection methods from other categories, such as extreme value analysis
based methods and subsampling-based methods, are less effective than these four
methods in addressing the four challenges stated in Section 1.2, as discussed in
Section 2.4. Therefore, we focus on comparing ZERO++ with FPOF, iForest, LOF
and SOD.
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In order to have a thorough evaluation, ZERO++ and its four contenders were exam-
ined with default and tuned parameter settings. Specifically,

• ZERO++ and iForest. Both ZERO++ and iForest employed t = 50 as the default
settings. The subsampling size ψ was 8 by default in ZERO++. As recommended
in (Liu et al., 2012), iForest employed ψ = 265 as the default setting. For both
methods, the best ψ was searched over the range 2, 4, 8, 16, 32, 64, 128, 256.

• FPOF. Following He, Xu, Huang and Deng (2005), FPOF employed the minimum
support threshold δ = 0.1 and 5 as the maximum length of itemsets by default. We
searched δ over the range 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9, and report the
best results.

• LOF. In order to obtain favourable detection performance, the lower bound of the
neighbourhood size k in LOF is 10, as discussed in Breunig et al. (2000). Also, k
is an important factor for the computation time of LOF, e.g., its runtime increases
quickly with k. LOF employed k = 20 as the default setting to have a reasonable
trade-off between effectiveness and efficiency. We also searched k over the range 10,
20, 40, 60, 80, 150, 250, 300, 500, 1000, 2000, 3000 and 4000, and report the best
results.

• SOD. Since the reference set in SOD works similarly to the neighbourhood in LOF,
SOD used a similar search range and default setting as in LOF. (k, l) were searched
with the difference k − l = 100, i.e., (110, 10), (120, 20), (140, 40), (160, 60), (180,
80), (250, 150), (350, 250), (400, 300), (600, 500), (1100, 1000), (2100, 2000), (3100,
3000) and (4100, 4000). This implies that the top l SNN-based reference set selection
is always built upon a larger kNN set, and the size l of the reference set in SOD is
equal to the size of neighbourhood used in LOF. k and l were 120 and 20 by default
in SOD, respectively.

All the methods were implemented in JAVA. We implemented ZERO++ in WEKA
(Hall et al., 2009). FPOF was implemented using the Apriori algorithm in WEKA. iForest
is already in the WEKA platform, and LOF and SOD in the ELKI platform (Achtert et al.,
2013) were used in the experiments. R∗-tree indexing (Beckmann et al., 1990) was used
by default in LOF and SOD. All the experiments were performed as a single-thread job
processed at 2.27 GHz in a Linux cluster with 40GB memory.

4.1.2 Datasets and detection performance measure

Experiments were conducted on 19 real-world data sets from the UCI repository(Asuncion
and Newman, 2007) and one synthetic data set generated by the Mulcross data generator
(Rocke and Woodruff, 1996). We only considered data sets with over 1,000 instances
or over 100 dimensions in order to avoid empirical bias derived from small and low-
dimensional data sets. A summary of the data sets is given in Table 4.1. Further detail
of these data sets can be found in Appendix B.

The True Positive rate (denoted by TP), False Positive rate (denoted by FP), and AUC
are widely used quantitative measures for anomaly detection performance (Chandola et al.,
2009). TP refers to the percentage of the number of correctly detected anomalies, while
FP refers to the percentage of the number of normal instances incorrectly identified as
anomalies. AUC is a measure integrating TP and FP, which is the area under the ROC
curve that is a plot of the TP against the FP at various threshold settings. We used
AUC as the detection performance measure in our experiments. Higher AUC indicates
better detection performance. We also recorded the run time to compare their efficiency.
The AUC and runtime results were averaged over 10 runs for all randomised methods,
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Table 4.1: A summary of data sets used. #num and #cate denote the number of numeric
and categorical attributes respectively. The Anomaly class column presents the anomaly
class selected and its percentage in each data set. #binary is the total number of categor-
ical values contained in all the categorical attributes. It is also the total number of binary
attributes produced from the 1-of-` transformation which converts categorical attributes
to binary attributes. Horizontal lines are used to separate data sets with different types
of attributes.

Data set n d #num #cate Anomaly class #binary

Linkage 5749132 9 4 5 match(0.36%) 5
Census 299285 40 7 33 50K+(6.20%) 493

CoverType 286048 54 10 44 class 4 (0.96%) 44
Probe 64759 41 34 7 attack(6.43%) 83
U2R 60821 41 34 7 attack(0.37%) 83

AnnThyroid 7200 21 6 15 class 1,2(7.42%) 15
Arrhythmia 452 279 206 73 8 smallest classes(14.60%) 73

Nursery 4648 8 0 8 very recom (7.06%) 26
Chess 4580 6 0 6 zero(0.59%) 39

Mushroom 4429 22 0 22 poisonous(5.00%) 121
SolarFlare 1066 10 0 10 flare X(0.47%) 29

Http 567497 3 3 0 attack(0.39%) 0
Mulcross 262144 4 4 0 2 clusters(10.00%) 0

Smtp 95156 3 3 0 attack(0.03%) 0
Shuttle 49097 9 9 0 classes 2,3,5,6,7 (7.15%) 0
Mammo 11183 6 6 0 class 1(2.32%) 0

HAR 7032 561 561 0 class 3(20.00%) 0
Satimage 6435 36 36 0 crop(10.92%) 0

Isolet 730 617 617 0 class Y (1.37%) 0
Mfeat 410 649 649 0 digit 0 (2.44%) 0
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i.e., ZERO++ and iForest. In this research, confidence intervals are based on the average
AUC over 10 runs and its two standard errors, so the statistical significance statement is
at 95% confidence level.

We employed a commonly used performance evaluation method for unsupervised anomaly
detection techniques (Aggarwal, 2013a). Specifically, we trained and evaluated detection
models on the same data set, but it is assumed that class labels are unavailable in the train-
ing stage. The class labels are only used to compute the detection performance measure
AUC in the evaluation stage.

4.2 Detection performance in different types of data sets

This section aims to compare the detection performance of ZERO++ and its four con-
tenders on data sets with different types of attributes: (i) categorical attributes only;
(ii)numeric attributes only; and (iii) both numeric and categorical attributes. In our ex-
periments, there are four categorical data sets, nine numeric data sets, and seven mixed
data sets. In the experiments on categorical data, mixed data sets were used with cat-
egorical attributes only. Likewise, these mixed data sets were also used in experiments
on numeric data by removing categorical attributes. We compared the detection perfor-
mance of ZERO++ with its contenders using the default settings and the best parameters
obtained from the search range specified in Section 4.1. The method that produces the
best performance for each data set is underlined in the detection performance comparison
tables throughout this section.

Note that iForest, LOF and SOD are numeric data oriented methods. To run these
algorithms on data sets with categorical attributes, the attributes were first converted
into binary attributes using the 1-of-` transformation method 1, i.e., a `-label attribute is
converted into ` binary attributes. The binary attributes were then regarded as numeric
attributes to be further processed by these three methods.

4.2.1 Categorical data sets

Table 4.2 shows the detection performance of ZERO++, FPOF, iForest, LOF and SOD
with the default settings on categorical data. The average AUC of ZERO++ over 10 runs
is the best in 6 out of 11 data sets, with three close to the best (having the difference in
AUC less than 0.01). ZERO++ outperforms FPOF significantly in five data sets, and has
comparable performance to FPOF in four data sets. We cannot obtain the result of FPOF
in Arrhythmia due to an out-of-memory exception error. ZERO++ outperforms iForest,
LOF and SOD significantly in most data sets. Note that LOF and SOD were unable to
process large categorical data sets because the indexing methods did not work in the data
sets, Linkage, Census, CoverType, Probe and U2R 2.

Table 4.3 presents the runtime results of the five detectors on the categorical data
sets. It shows that ZERO++ is significantly faster than FPOF by a factor of more than
100 and 1,000 in the two large data sets with high dimensions, Census and CoverType,
respectively. ZERO++ is slower than iForest by a factor of between 10 and 40 in the same

1As discussed in Section 2.3.1, this transformation method can be employed by different types of detec-
tors, which ensures a fair empirical comparison between the detection performance of different detectors,
so we selected it as a preprocessing method to enable three different types of detectors to treat categorical
or mixed data.

2For LOF and SOD, R∗-tree or other indexing methods in ELKI do not work on large categorical data
because there are too many identical values in the attributes. Also, since data is pre-indexed by default in
ELKI, LOF and SOD still cannot work on those data sets even though they do not use R∗-tree or other
indexing methods throughtout this section.
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Table 4.2: AUC performance comparison between ZERO++, FPOF, iForest, LOF and
SOD with the default settings on categorical data.

ZERO++ FPOF iForest LOF SOD

ψ = 8 δ = 0.1 ψ = 256 k = 20 l = 20
Linkage 0.9973±0.0001 0.9972 0.9790±0.0041 n/a n/a
Census 0.6420±0.0056 0.6148 0.5449±0.0172 n/a n/a

CoverType 0.9946±0.0020 0.9965 0.9773±0.0043 n/a n/a
Probe 0.9802±0.0020 0.9867 0.9776±0.0022 n/a n/a
U2R 0.9891±0.0009 0.9156 0.9729±0.0073 n/a n/a

AnnThyroid 0.4401±0.0012 0.4357 0.4386±0.0008 0.4875 0.4766
Arrhythmia 0.6588±0.0093 n/a 0.6878±0.0024 0.6114 0.6205

Mushroom 0.9430±0.0047 0.9218 0.9182±0.0117 0.7609 0.7738
Nursery 1.0000±0.0000 1.0000 0.9986±0.0010 0.7866 0.7002

SolarFlare 0.9750±0.0052 0.9791 0.9325±0.0070 0.5785 0.8884
Chess 0.9774±0.0101 0.9122 0.8606±0.0566 0.7304 0.9179

ZERO++ vs. (#wins/losses/draws) 5/1/4 8/1/2 5/1/0 5/1/0

two data sets, and it also runs slower than FPOF in the largest data set, Linkage, which
has only five dimensions.

Table 4.3: Runtime (in seconds) comparison between the five detectors on categorical
data.

ZERO++ FPOF iForest LOF SOD

ψ = 8 δ = 0.1 ψ = 256 k = 20 l = 20
Linkage 468.51 74.21 70.00 n/a n/a
Census 172.03 89168.49 14.88 n/a n/a

CoverType 225.89 1044166.03 6.17 n/a n/a
Probe 7.37 1.85 1.11 n/a n/a
U2R 6.96 1.78 0.80 n/a n/a

AnnThyroid 1.92 16.59 0.18 37.07 62.48
Arrhythmia 0.78 n/a 0.07 0.51 0.74

Mushroom 1.86 102.57 0.25 11.61 21.12
Nursery 0.64 0.35 0.13 0.50 13.17

SolarFlare 0.20 0.35 0.07 0.61 1.08
Chess 0.49 0.30 0.18 6.64 16.27

The best detection performance of the five detectors and their best parameters are
shown in Tables 4.8 and 4.9, respectively. ZERO++ is better than FPOF, having four
wins, only one loss and five draws. ZERO++ outperforms iForest significantly in 8 out
of 11 data sets, with three draws but no loss. ZERO++ obtains the best performance
in most data sets with ψ 6 64, while iForest often requires a larger ψ, e.g., ψ = 256.
The performance of LOF and SOD has been improved using the best parameters, but is
required to search for the parameters in a wide range of values.

Summary. Compared to FPOF, ZERO++ performs significantly better or compara-
bly in most data sets, and it runs two to three orders of magnitude faster in large data sets
with high dimensions, such as Census and CoverType. Note that FPOF cannot work in
the high dimensional data set, Arrhythmia, due to its high space complexity, even though
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Table 4.4: AUC performance comparison between ZERO++, FPOF, iForest, LOF and
SOD with the best parameter on categorical data.

ZERO++ FPOF iForest LOF SOD

best ψ best δ best ψ best k best l
Linkage 0.9976±0.0002 0.9978 0.9790±0.0041 n/a n/a
Census 0.6465±0.0053 0.6148 0.5544±0.0286 n/a n/a

CoverType 0.9954±0.0021 0.9965 0.9773±0.0043 n/a n/a
Probe 0.9820±0.0025 0.9867 0.9776±0.0022 n/a n/a
U2R 0.9910±0.0010 0.9156 0.9729±0.0073 n/a n/a

AnnThyroid 0.4735±0.0143 0.4868 0.4429±0.0020 0.4965 0.5515
Arrhythmia 0.6905±0.0012 n/a 0.6878±0.0024 0.6295 0.7033

Mushroom 0.9842±0.0023 0.9218 0.9182±0.0117 0.9770 0.9815
Nursery 1.0000±0.0000 1.0000 0.9995±0.0008 1.0000 1.0000

SolarFlare 0.9784±0.0011 0.9791 0.9641±0.0057 0.9778 0.9695
Chess 0.9981±0.0010 0.9122 0.8606±0.0566 0.9948 0.9989

ZERO++ vs. (#wins/losses/draws) 4/1/5 8/0/3 3/1/2 2/2/2

Table 4.5: Parameter settings for the best performance of ZERO++, FPOF, iForest, LOF
and SOD on categorical data.

ZERO++ FPOF iForest LOF SOD

ψ δ ψ k l
Linkage 4 0.5 256 n/a n/a
Census 32 0.1 16 n/a n/a

CoverType 16 0.1 256 n/a n/a
Probe 2 0.1 256 n/a n/a
U2R 16 0.1 256 n/a n/a

AnnThyroid 64 0.9 64 300 4000
Arrhythmia 4 n/a 256 150 60

Mushroom 128 0.1 256 150 500
Nursery 8 0.1 128 80 1000

SolarFlare 4 0.1 64 500 500
Chess 64 0.1 256 40 250
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it has no more than 500 instances. Although ZERO++ runs slower than iForest, it out-
performs iForest significantly in most data sets, either with the default setting or the best
parameter. LOF and SOD do not work on most categorical data sets. ZERO++ performs
significantly better than or comparably to LOF and SOD in most data sets in which LOF
and SOD can obtain the results, and it is significantly faster than LOF and SOD by a
factor of more than 10 in moderate large data sets, such as AnnThyroid and Mushroom.
The runtime gap between ZERO++ and LOF, SOD would be much larger on large data
sets. This can be observed in the next section.

It is interesting to note that ZERO++ can obtain favourable detection performance
using very small subsample sizes, such as 2 and 4, and it obtains the best performance in
10 out of 11 data sets using ψ 6 64.

4.2.2 Extensions to numeric and mixed data

ZERO++ and FPOF are based on categorical data. Two discretisation methods, i.e., the
equal-width method and the x ± 3s rule method, were used to enable them to work in
numeric and mixed data. ZERO++ with the equal-width (EW) method and the x ± 3s
rule (MS) method are denoted by ZERO++(EW) and ZERO++(MS), respectively. For
the EW discretisation method, numeric attributes are discretised into 10 bins by default.

We have also tested FPOF with both EW and MS. Note that MS used in ZERO++
is based on the x and s from each subsample, which is not directly applicable for FPOF
because FPOF works on the full data set. MS was adapted to FPOF by using the µ and σ
from the full data set. Our results showed that the detection performance of FPOF with
EW was much better than that using MS. This is because the EW method discretised data
in a much smaller granularity than the MS method. Therefore, FPOF with EW obtains
significantly more frequent patterns than that using MS, which helps to capture the normal
behaviours more effectively 3. Also, the full data set based MS discretisation can perform
poorly, since the µ and σ derived from the full data set are sensitive to anomalies. In this
research, we report the best results of FPOF, i.e., FPOF with EW.

Numeric data sets

Table 4.6 shows the AUC performance of ZERO++(MS), ZERO++(EW), FPOF, iForest,
LOF and SOD with the default settings on numeric data sets. ZERO++(MS) works best,
which obtains the best performance in 10 out of 16 data sets. It outperforms FPOF and
iForest significantly in nine data sets, and outperforms both LOF and SOD significantly
in 13 data sets. ZERO++(EW) works less effectively than ZERO++(MS). It has 6 and
10 losses in comparison to FPOF and iForest respectively, though it has nine wins in
comparison to LOF and SOD.

Note that we cannot obtain the results of FPOF in high dimensional data sets, includ-
ing HAR, Isolet, Mfeat and Arrhythmia, because there are too many frequent itemsets
generated in these data sets, leading to out-of-memory exception errors. Also, the run-
time for LOF and SOD is prohibitive in the two largest data sets (i.e., Http and Linkage)
and we cannot obtain the results in two weeks.

Table 4.7 presents the runtime comparison between ZERO++(MS), ZERO++(EW),
FPOF, iForest, LOF and SOD on numeric data sets. ZERO++(MS) and ZERO++(EW)
run two to three orders of magnitude faster than LOF and SOD in most data sets,
and they are also two to three orders of magnitude faster than FPOF in two medium-
sized 34-dimensional data sets, i.e., Probe and U2R. ZERO++(MS) runs faster than

3As shown in Section 4.2.1 and 4.2.2, FPOF often works best using a small minimum support, e.g.,
δ = 0.1, which implies that FPOF often needs to work with a larger number of frequent patterns.
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Table 4.6: AUC performance comparison between ZERO++, FPOF, iForest, LOF and
SOD with the default settings on numeric data.

ZERO++(MS) ZERO++(EW) FPOF iForest LOF SOD

ψ = 8 ψ = 8 δ = 0.1 ψ = 256 k = 20 l = 20
Linkage 0.8772±0.0243 0.6390±0.0233 0.5469 0.9974±0.0000 n/a n/a
Census 0.7890±0.0171 0.7049±0.0101 0.7531 0.6659±0.0072 0.6292 0.6367

CoverType 0.9198±0.0058 0.6882±0.0075 0.5793 0.8726±0.0173 0.5262 0.7202
Probe 0.9900±0.0003 0.9924±0.0003 0.9943 0.9652±0.0110 0.5338 0.5851
U2R 0.9863±0.0005 0.9774±0.0012 0.9795 0.9860±0.0015 0.5471 0.9708

AnnThyroid 0.9128±0.0066 0.6125±0.0061 0.6224 0.8317±0.0136 0.7064 0.7697
Arrhythmia 0.8137±0.0026 0.8102±0.0032 n/a 0.7962±0.0104 0.7707 0.7924

Http 0.9981±0.0012 0.9975±0.0001 0.9973 0.9997±0.0001 n/a n/a
Mulcross 0.9980±0.0009 0.6517±0.0632 0.9494 0.9533±0.0085 0.6019 0.1396

Smtp 0.8879±0.0082 0.5892±0.0000 0.5892 0.8834±0.0058 0.6514 0.6975
Shuttle 0.9984±0.0001 0.9862±0.0006 0.9751 0.9957±0.0008 0.5243 0.7292

Mammo. 0.8386±0.0080 0.8554±0.0028 0.8537 0.8484±0.0069 0.7396 0.7970
HAR 0.9985±0.0060 0.9995±0.0001 n/a 0.9815±0.0022 0.3218 0.9876

Satimage 0.9856±0.0012 0.9677±0.0061 0.9756 0.9804±0.0028 0.5191 0.6291
Isolet 1.0000±0.0000 0.9987±0.0011 n/a 0.9997±0.0003 0.9999 0.9982
Mfeat 0.9499±0.0060 0.9190±0.0146 n/a 0.9401±0.0124 0.9542 0.9688

ZERO++(MS) vs. (#wins/losses/draws) 9/2/1 9/2/5 13/0/1 13/1/0
ZERO++(EW) vs. (#wins/losses/draws) 4/6/2 3/10/3 9/4/1 9/4/1

ZERO++(EW) because ZERO++(MS) works on 2-bin data while ZERO++(EW) works
on 10-bin data. ZERO++(MS) and iForest have similar runtime results.

The best performance of ZERO++(MS), ZERO++(EW), FPOF, iForest, LOF and
SOD is presented in Table 4.8. Tuned ZERO++(MS) has similar performance to ZERO++(MS)
with the default setting. It has 11, 7 and 11 wins against FPOF, iForest and SOD, re-
spectively. ZERO++(MS) has six wins and six losses compared to LOF. ZERO++(EW)
performs better than SOD (with eight wins, five losses and one draws), but it works less
effectively than FPOF, iForest and LOF overall.

The best parameter used by each method is reported in Table 4.9. The results show
that ZERO++(MS) and ZERO++(EW) obtain the best performance in 13 out of 16 data
sets using a small subsample size (ψ 6 64) regardless of the diverse characteristics in
those data sets (e.g., data size and dimensionality). In contrast, LOF and SOD require a
much wider range of parameter searches (range from 10 to 4,000) than ZERO++ in order
to obtain the best AUC performance. iForest and FPOF can often perform best using
ψ = 265 and δ = 0.1, respectively.

Summary. ZERO++ using the MS discretisation method obtains the most favourable
detection performance. ZERO++ (MS) with the default setting outperforms FPOF, iFor-
est, LOF and SOD significantly in most data sets. For the results using the best parameter,
it has similar superiority to that with the default setting over FPOF, iForest and SOD,
and it has comparable detection performance to LOF (six wins and six losses). However,
it should be noted that LOF requires a wide range parameter search in order to obtain
preferable AUC performance, whereas ZERO++(MS) often obtains the best performance
using a small subsample size (ψ 6 64), and for ZERO++(MS) there is normally a small gap
between the best performance and the performance using the default setting. ZERO++
(EW) performs less effectively than ZERO++(MS), but it is still able to achieve quite
comparable detection performance to the other four detectors.
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Table 4.7: Runtime comparison between ZERO++, FPOF, iForest, LOF and SOD with
the default settings on numeric data.

ZERO++(MS) ZERO++(EW) FPOF iForest LOF SOD

Linkage 79.59 190.72 17.69 140.57 n/a n/a
Census 6.96 31.34 4.67 9.46 6676.55 35134.71

CoverType 9.01 41.92 4.80 6.07 1214.91 50984.72
Probe 4.32 39.82 13562.03 3.44 981.85 2594.77
U2R 4.08 37.22 12502.24 2.69 844.64 2358.70

AnnThyroid 0.11 0.72 0.48 0.14 0.74 33.46
Arrhythmia 0.56 3.45 n/a 0.03 0.06 0.96

Http 6.75 25.23 1.08 14.30 n/a n/a
Mulcross 3.87 15.60 1.21 6.31 503.62 59690.21

Smtp 2.03 4.38 0.51 2.64 274.50 6795.19
Shuttle 1.38 6.85 2.87 2.04 124.23 1948.35

Mammography 0.13 1.14 0.46 0.31 15.54 32.02
HAR 12.65 117.67 n/a 3.05 90.26 116.56

Satimage 0.66 4.60 2.57 0.17 8.99 22.64
Isolet 1.55 14.22 n/a 0.03 2.11 3.10
Mfeat 0.73 9.00 n/a 0.01 1.01 1.52

Table 4.8: AUC performance comparison between ZERO++, FPOF, iForest, LOF and
SOD with the best parameter on numeric data.

ZERO++(MS) ZERO++(EW) FPOF iForest LOF SOD

best ψ best ψ best δ best ψ best k best l
Linkage 0.9708±0.0246 0.8755±0.0196 0.5469 0.9974±0.0000 n/a n/a
Census 0.8247±0.0082 0.7476±0.0057 0.79 0.7906±0.0247 0.6690 0.7120

CoverType 0.9598±0.0011 0.9514±0.0027 0.6982 0.8726±0.0173 0.9781 0.8428
Probe 0.9964±0.0000 0.9938±0.0003 0.9954 0.9747±0.0081 0.6321 0.9670
U2R 0.9913±0.0001 0.9782±0.0006 0.9846 0.9860±0.0015 0.8873 0.9747

AnnThyroid 0.9157±0.0082 0.6268±0.0081 0.6460 0.8717±0.0287 0.7170 0.7800
Arrhythmia 0.8146±0.0030 0.8157±0.0018 n/a 0.8164±0.0106 0.8296 0.8000

Http 0.9990±0.0001 0.9975±0.0001 0.9973 0.9997±0.0001 n/a n/a
Mulcross 0.9992±0.0008 0.7204±0.0638 0.9494 0.9979±0.0012 0.6035 0.2667

Smtp 0.9018±0.0042 0.5892±0.0000 0.5892 0.8834±0.0058 0.9500 0.8214
Shuttle 0.9988±0.0002 0.9872±0.0005 0.9751 0.9962±0.0007 0.9809 0.9919

Mammography 0.8412±0.0052 0.8574±0.0031 0.8555 0.8557±0.0101 0.8644 0.8100
HAR 0.9986±0.0090 0.9998±0.0000 n/a 0.9996±0.0001 0.9988 0.9900

Satimage 0.9884±0.0027 0.9683±0.0033 0.9756 0.9836±0.0027 0.9934 0.9800
Isolet 1.0000±0.0000 0.9999±0.0001 n/a 0.9997±0.0003 1.0000 1.0000
Mfeat 0.9643±0.0016 0.9559±0.0068 n/a 0.9401±0.0124 0.9800 0.9700

ZERO++(MS) vs. (#wins/losses/draws) 11/1/0 7/3/6 6/6/2 11/1/2
ZERO++(EW) vs. (#wins/losses/draws) 4/6/2 4/8/4 6/7/1 8/5/1



4.2. DETECTION PERFORMANCE IN DIFFERENT TYPES OF DATA SETS 49

Table 4.9: Parameter settings for the best performance of ZERO++, FPOF, iForest, LOF
and SOD on numeric data.

ZERO++(MS) ZERO++(EW) FPOF iForest LOF SOD

ψ ψ δ ψ k l
Linkage 2 256 0.1 256 n/a n/a
Census 4 2 0.4 8 80 250

CoverType 128 256 0.5 256 3000 1000
Probe 128 2 0.2 128 4000 4000
U2R 128 2 0.8 256 500 500

AnnThyroid 16 2 0.4 16 40 10
Arrhythmia 4 64 n/a 128 80 500

Http 16 8 0.1 256 n/a n/a
Mulcross 4 4 0.1 16 40 300

Smtp 2 8 0.1 256 1000 500
Shuttle 16 16 0.1 128 4000 4000

Mammography 16 4 0.2 64 150 60
HAR 4 2 n/a 8 4000 4000

Satimage 32 16 0.1 64 2000 2000
Isolet 8 32 n/a 256 20 20
Mfeat 64 128 n/a 256 80 40

In terms of runtime, ZERO++(MS) and ZERO++(EW) are two to three orders of
magnitude faster than LOF and SOD in most data sets, and they run significantly faster
than FPOF in data sets with slightly higher dimensions (i.e., Probe and U2R) by a factor
of more than 100 and 1,000, respectively. ZERO++(MS) runs faster than ZERO++(EW),
and has similar runtime results as iForest.

Mixed data sets

Table 4.10 presents the detection performance of ZERO++, FPOF, iForest, LOF and
SOD with the default settings on mixed data. It shows that ZERO++(MS) achieves the
best performance in five out of seven data sets, with the other two close to the best.
ZERO++(MS) outperforms FPOF and iForest significantly in four data sets, and out-
performs LOF and SOD in six data sets. ZERO++(EW) has similar advantages to
ZERO++(MS) over FPOF, LOF and SOD. Note that we cannot obtain the results of
FPOF in CoverType and Arrhythmia because the space complexity of FPOF is prohibitive
in these two data sets and it results in out-of-memory exception errors. Also, the runtime
of LOF and SOD in Linkage is too expensive and we cannot get the results in two weeks.

Runtime results for each method in each data are presented in Table 4.11. Both
versions of ZERO++ are significantly faster than FPOF, LOF and SOD by a factor more
than 100 or 1,000 in most data sets. They run slower than iForest.

The best performance of each detector in each data set is presented in Table 4.12.
ZERO++(MS) with the best parameter achieves similar performance to that using the
default setting. It performs significantly better, in five data sets than FPOF and iForest,
and in six out of seven data sets than LOF and SOD.

The best parameter used by each method is reported in Table 4.13. ZERO++(MS) ob-
tains the best performance in all the seven data sets using a small subsample size (ψ 6 64),
and requires a smaller search range than ZERO++(EW), iForest, LOF and SOD. The best
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Table 4.10: AUC performance comparison between ZERO++, FPOF, iForest, LOF and
SOD with the default settings on mixed data.

ZERO++(MS) ZERO++(EW) FPOF iForest LOF SOD

ψ = 8 ψ = 8 δ = 0.1 ψ = 256 k = 20 l = 20
Linkage 0.9997±0.0001 0.9779±0.0059 0.9715 0.9999±0.0001 n/a n/a
Census 0.7710±0.0043 0.6634±0.0051 0.6564 0.5712±0.0174 0.5479 0.6746

CoverType 0.9780±0.0073 0.9432±0.0045 n/a 0.9436±0.0235 0.5363 0.7216
Probe 0.9965±0.0002 0.9965±0.0003 0.9971 0.9954±0.0014 0.5475 0.6505
U2R 0.9876±0.0003 0.9837±0.0007 0.9807 0.9832±0.0015 0.5827 0.9405

AnnThyroid 0.8436±0.0114 0.5923±0.0053 0.5801 0.6486±0.0126 0.6683 0.5850
Arrhythmia 0.8119±0.0040 0.8097±0.0021 n/a 0.8026±0.0085 0.6522 0.7807

ZERO++(MS) vs. (#wins/losses/draws) 4/1/0 4/0/3 6/0/0 6/0/0

ZERO++(EW) vs. (#wins/losses/draws) 4/1/0 1/2/4 5/0/1 5/0/1

Table 4.11: Runtime comparison between ZERO++, FPOF, iForest, LOF and SOD with
the default settings on mixed data.

ZERO++(MS) ZERO++(EW) FPOF iForest LOF SOD

Linkage 310.39 315.76 171.14 200.80 n/a n/a
Census 102.16 107.81 174559.87 16.03 106648.16 265268.48

CoverType 44.17 132.94 n/a 10.23 2056.70 83013.78
Probe 27.71 22.89 174745.96 3.35 1916.51 2383.72
U2R 29.57 21.77 157964.46 3.10 1413.63 3851.64

AnnThyroid 1.04 1.47 238.84 0.33 8.95 37.74
Arrhythmia 6.34 4.05 n/a 0.02 0.76 0.63

Table 4.12: AUC performance comparison between ZERO++, FPOF, iForest, LOF and
SOD with the best parameter on mixed data.

ZERO++(MS) ZERO++(EW) FPOF iForest LOF SOD

best ψ best ψ best δ best ψ best k best l
Linkage 0.9998±0.0001 0.9939±0.0010 0.9975 0.9999±0.0001 n/a n/a
Census 0.7711±0.0049 0.6678±0.0027 0.6680 0.5712±0.0174 0.5745 0.6746

CoverType 0.9866±0.0035 0.9891±0.0013 n/a 0.9436±0.0235 0.7051 0.9551
Probe 0.9982±0.0000 0.9970±0.0001 0.9972 0.9971±0.0008 0.6260 0.9662
U2R 0.9909±0.0002 0.9880±0.0006 0.9857 0.9832±0.0015 0.9205 0.9854

AnnThyroid 0.8718±0.0177 0.5964±0.0032 0.5828 0.7818±0.0320 0.6905 0.6344
Arrhythmia 0.8148±0.0034 0.8134±0.0015 n/a 0.8127±0.0122 0.6522 0.7978

ZERO++(MS) vs. (#wins/losses/draws) 5/0/0 5/0/2 6/0/0 6/0/0

ZERO++(EW) vs. (#wins/losses/draws) 2/2/1 3/2/2 5/1/0 4/2/0
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parameter of FPOF ranges from 0.2 up to 0.8.

Table 4.13: Parameter settings for the best performance of ZERO++, FPOF, iForest,
LOF and SOD on mixed data.

ZERO++(MS) ZERO++(EW) FPOF iForest LOF SOD

ψ ψ δ ψ k l
Linkage 16 64 0.7 256 n/a n/a
Census 4 128 0.4 256 10 20

CoverType 16 64 n/a 256 2000 1000
Probe 32 2 0.2 128 1000 500
U2R 64 64 0.8 256 500 250

AnnThyroid 4 16 0.4 16 10 2000
Arrhythmia 4 64 n/a 32 20 40

Summary. ZERO++(MS), with either the default setting or the best parameter,
performs consistently and significantly better than FPOF, iForest, LOF and SOD in most
data sets. ZERO++(MS) obtains the best performance in all the data sets using ψ 6 64.
Although ZERO++(EW) performs less effectively than ZERO++(MS), its performance
is comparable to FPOF and iForest, and is superior to LOF and SOD.

Both ZERO++(MS) and ZERO++(EW) run two to three orders of magnitude faster
than FPOF, LOF and SOD in most data sets. They are slower than iForest.

4.3 Ability to tolerate irrelevant attributes

In many real-world anomaly detection tasks, anomalies are only visible in some attributes.
Other attributes are irrelevant to anomaly detection and degrade detection performance of
anomaly detectors which cannot tolerate irrelevant attributes. In this section, we examined
the ability of ZERO++ to handling data sets with irrelevant attributes. We focused
on using synthetic numeric data sets in this experiment, because it is much easier and
more straight-forward to define irrelevant attributes and create anomalies compared to
categorical or mixed data.

A Gaussian cluster with 100-dimensional 10,000 instances was generated where anoma-
lies could only be detected with r percentage of attributes which are relevant. The other
(1−r) percentage of attributes are irrelevant attributes with uniform random noise. From
the 10,000 instances, 2% were randomly selected and applied an offset to create anomalies,
which were randomly generated outside the range [µ−2σ, µ+2σ] in the relevant attributes.
This is the same method as used in (Zimek et al., 2012). Note that the relevant attributes
of each anomaly are randomly selected, and thus each anomaly has different relevant at-
tributes. We examined r in the range 1%, 2%, 3%, . . . , 30%. At each r value, an average
result is reported from 10 runs using 10 generated data sets.

Figure 4.1 shows that ZERO++(MS) works best in data sets having a low percentage
of relevant dimensions: it performs better than iForest, LOF and SOD in data sets having
1 to 15 relevant dimensions out of the 100 dimensions; and it performs significantly better
than FPOF in data sets having one to five relevant dimensions. Note that with only 1%
relevant dimensions, ZERO++(MS) can perform at the level of AUC close to 1, whereas
the other four detectors have AUC about 0.55 to 0.65, which are nearly equivalent to
random ranking. ZERO++(EW) performs less effectively than ZERO++(MS) in data
sets with relevant attributes lower than 5%, but it performs better than the other four
detectors.
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Figure 4.1: AUC performance of ZERO++ with increasing percentage of relevant dimen-
sions, using FPOF, iForest, LOF and SOD as baselines.

4.4 Scalability examination

This section investigates the scalability of ZERO++ with respect to data dimensionality
and data size, using FPOF, iForest, LOF and SOD as baselines.

Section 4.2 showed that ZERO++(MS) generally worked much better than ZERO++(EW)
in numeric and mixed data sets. Also, in Section 4.3, ZERO++(MS) performed well in
data sets with a very low percentage of relevant attributes. Therefore, in the following
experiments, we use ZERO++(MS) in handling numeric and mixed data sets by default.

4.4.1 Dimensionality

We examine the scalability of ZERO++ with respect to dimensionality using seven syn-
thetic data sets. The data sets contain the same number of instances, i.e., 10,000 instances,
but have different dimensions, ranging from 10 dimensions up to 1,000 dimensions. The
results are shown in Figure 4.2. The results show that both ZERO++ and iForest have
runtime linear to the data dimensionality, and run two orders of magnitude faster than
LOF and SOD, and three orders of magnitude faster than FPOF. Note that the space
complexity of FPOF increases quickly with increasing dimensions, and FPOF runs out-
of-memory when the dimension reaches 500.

4.4.2 Data size

We examine the scalability of ZERO++ with respect to data size using seven subsets of
the largest data set Linkage. The smallest data subset contains 1,000 instances, and other
subsets increase by a factor of four, the largest subset contains 4,096,000 instances. In
this experiment, both numeric and categorical attributes in Linkage are used. All the
categorical attributes in Linkage are boolean attributes. Therefore, the discretised version
and the categorical-to-numeric converted version of Linkage have the same number of
attributes. This ensures that categorical data oriented methods and numeric data oriented
methods work on data sets with the same dimensionality.

The scaleup test results are reported in Figure 4.3. It shows that ZERO++, FPOF
and iForest are linear to data size. ZERO++ is comparably fast to FPOF and iForest,
and runs significantly faster than LOF and SOD by a factor of more than 1,000.
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Figure 4.2: Scaleup test of ZERO++ with respect to data dimensionality using FPOF,
iForest, LOF and SOD as baselines. Each data set contains 10,000 instances and its
dimensionality ranges from 10 to 1,000. A logarithmic scale is used on the horizontal axis.
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Figure 4.3: Scaleup test of ZERO++ with respect to data size using FPOF, iForest, LOF
and SOD as baselines. Data size ranges from 1,000 to 4,096,000. Logarithmic scale is used
on both axes.

4.5 Sensitivity examination

The subsampling size ψ and ensemble size t are the only two parameters in ZERO++.
We investigated the sensitivity of ZERO++ with respect to ψ and t in all the 20 data
sets. We used the default setting for ψ when conducting the sensitivity test with respect
to t, and vice versa. Most data sets have similar sensitivity results for ψ and t. For better
readability, we focus on discussing distinctive results here only. The results in all the 20
data sets are presented in Appendix C.

Figure 4.4 reports the AUC mean values and two standard error bars over 10 runs of
ZERO++ with respect to ψ in four selected data sets. The results show that although the
detection performance of ZERO++ may vary with increasing subsample size, ZERO++
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normally achieves the best performance using small subsample sizes, e.g., 6 64, in data
sets of different characteristics, e.g., different data sizes, diverse dimensionality sizes and
data sets with different types of attributes. ZERO++ performs stably as the two standard
errors are very small, e.g., they are often smaller than 0.01. Also, it is interesting to note
that the performance of ZERO++ can often converge at the very beginning with respect
to ψ. Similar results can also be found in other data sets, as illustrated in Figure C.1.
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Figure 4.4: Sensitivity test with respect to ψ on the four selected data sets.

Figure 4.5 presents the AUC mean values and two standard error bars over 10 runs of
ZERO++ with respect to t in the four selected data sets. The results show that the AUC
performance of ZERO++ converges very quickly with respect to t. ZERO++ normally
obtains the best performance and works stably using t > 30. Similar results can also be
found in other data sets in Figure C.2.

4.6 Application on data sets without ground truth

In this section, we investigated the applications of ZERO++ on three UCI data sets
without ground truth, i.e., Mnist, Zoo and Internet Usage. ZERO++ was used with the
default setting in the following experiments.

Mnist: This data set contains 60,000 and 10,000 images of handwritten digits in the
training and test sets, respectively. Each image has 784 pixel features, but most of the
pixels are blank. We examined ZERO++ on the test set with reduced pixel features,
i.e., to extract 96 features using the block size 14 (Maji and Malik, 2009). Since different
people have different handwriting styles, we were interested in looking for handwritten
exceptions for each digit. To this end, we ran ZERO++ on the test set and ranked all the
instances according to their anomaly scores. The two top ranked anomalies for each digit
were then picked up and visualised in Figure 4.6. These top ranked images are all poor
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Figure 4.5: Sensitivity test with respect to t on the four selected data sets.

written digits because their pixel feature values deviate substantially from the typical digit
images.
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Figure 4.6: Top two anamolies for each digit in Mnist detected by ZERO++.

Zoo: Zoo consists of 101 instances from 7 species of animals, including 8 instances
of insect, 10 instances of invertebrate, 20 instances of bird, 41 instances of mammal, 13
instances of fish, 4 instances of amphibian and 5 instances of reptile. There are 15 Boolean
attributes and 2 numeric attributes. The two numeric attributes, including the number of
legs and animal type, were regarded as nominal attributes since the difference between the
attribute values are not statistically meaningful in defining an animal. We ran ZERO++
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on this data and obtained the following top three anomalies: honeybee, scorpion and
octopus:

• Honeybee is a top ranked anomaly because it is the only insect animal that is ven-
omous and domestic.

• Scorpion is an unusual invertebrate animal because it has a breathing system and a
tail, contrasting to all the other invertebrate animals.

• Octopus is an extreme case in the data set because none of the other animals has
eight legs and is cat sized.

Similar results on this data set can also be found in (Kriegel and Zimek, 2008), where
scorpion and octopus are considered as the two top ranked anomalies.

Internet usage: This data set comes from a survey about Internet usage in 1997.
It consists of 10,104 instances with 71 categorical attributes plus an ID attribute. Each
instance contains general demographic information on an Internet user. The number of
labels in the attributes range from 2 to 129. The two top ranked anomalies detected by
ZERO++ are users 99179 and 91839:

• User 99179 is a five year old nurse in Denmark with 1-3 years Internet usage.

• User 91839 is a nine year old Virginia male with a college degree and has a networking
occupation but has less than six months on Internet.

4.7 Discussion

As presented in Sections 4.2 to 4.4, ZERO++ (either with the default setting ψ = 8 and
t = 50 or the best parameter) is more favourable than (or competitive to) its four state-
of-the-art contenders in the 20 data sets with different characteristics, i.e., diverse in data
size, data type and data dimensionality. This section provides an analysis of these results
from three perspectives as follows:

• Data size. Given an instance, its probability of having zero appearances in sub-
spaces is dependent on the frequency of the instance. Since the nature of anomaly is
rare and exceptional, anomalies have rare attribute values regardless of data size. As
illustrated in Figure 3.9, such instances were very likely to have zero appearances in
subspaces when using a small subsample size, e.g., if the attribute values accounted
for no greater than 1%, the probability of the values having zero appearances was
more than 0.9 when using ψ = 8.

For LOF and SOD, their detection performance is mainly dependent on the size
of its neighbourhood set, which is strongly related to the data size. In general,
they required a large neighbourhood size to perform well in large data sets (e.g.,
range from 500 to 4,000 in CoverType, Probe and U2R in Table 4.9) while a small
neighbourhood size was needed in small data sets (e.g., range from 10 to 80 in
AnnThyroid, Isolet and Mfeat in Table 4.9). As reported in Tables 4.5, 4.9 and 4.13,
since iForest considers a few subspaces only, it normally requires a larger subsample
size (ψ = 265) than ZERO++ to perform well in large data sets. It is difficult
to capture all the normal patterns in a data set, especially in large data sets, so a
small δ is normally needed in FPOF in order to obtain a sufficient number of normal
patterns.

The runtimes of ZERO++, iForest and FPOF are linear to data size, while LOF
and SOD are at least quadratic to data size. It should be noted that FPOF has
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lower linear time complexity than ZERO++ with respect to data size, so ZERO++
ran slower than FPOF in large data sets with low dimensionality, such as the largest
data set Linkage. ZERO++ also ran slower than iForest, this is because ZERO++
considers a lot more subspaces than iForest. For LOF and SOD, indexing methods
can be employed to reduce time complexity from O(n2) to O(n log n), which is still
much higher than ZERO++.

• Data type. ZERO++ and FPOF are categorical data oriented methods, and as
reported in Tables 4.2 and 4.5 they performed better than the other three numeric
data oriented methods (iForest, LOF and SOD) with one-of-` categorical-to-numeric
transformation method in categorical data. However, the reverse is not true: ac-
cording to the results in Tables 4.6 and 4.8, ZERO++ and FPOF, using MS or EW
discretisation methods, also performed better than or were very competitive to the
three numeric data oriented methods in numeric data. This is mainly because the
categorical-to-numeric transformation is a more difficult task than the discretisation,
as categorical attributes do not have the notion of ordering and often contain only
a few labels; and the effectiveness of the transformation is often context dependent
(Boriah et al., 2008).

It should be noted that the MS discretisation method is based on an underlying
assumption that normal instances follow uni-modal distributions. Due to this as-
sumption, ZERO++ (MS) works best in data sets where normal instances follow
uni-modal distributions in relevant attributes and anomalies lie outside of the dis-
tributions, e.g., Isolet and Mulcross. It fails to work if anomalies lie at the middle
of the distributions, e.g., for a two-dimensional data set, normal instances have a
distribution in the shape of a doughnut and an anomaly is located in the centre of
the doughnut. In data sets where normal instances follow multi-modal distributions
in relevant attributes, ZERO++ (MS) can still work well if anomalies lie outside the
distributions, e.g., Satimage and HAR; but it fails to work if anomalies lie inside the
distributions.

The runtime of ZERO++ and FPOF is dependent on the number of bins used in the
discretisation method. Their runtime can be slightly longer if the number of bins
produced is large. For example, in Tables 4.7 and 4.11, ZERO++ using the 10-bin
EW discretisation method ran slower than that using the 2-bin MS method.

It should be noted that the gap between the runtimes of ZERO++ and iForest varied
in different data types: ZERO++ ran much slower than iForest in categorical data
sets, but it had comparable runtime as iForest when using the 2-bin MS method
in numeric data sets. This is because: in categorical data, iForest built isolation
trees on binary attributes, which ran faster than building trees on attributes having
a range of continuous values in numeric data; while for ZERO++, it ran slower in
categorical data than that using the 2-bin MS discretisation method in numeric data
because attributes in categorical data often contain multiple labels.

For LOF and SOD, since there are too many identical attribute values in converted
categorical attributes, R∗-tree or other tree indexing methods cannot work in data
sets with categorical attributes only, and work less effectively in mixed data. That
is why even though the R∗-tree indexing method was employed in LOF and SOD,
their runtime still increased quickly with data size in the mixed data Linkage, as
shown in Figure 4.3.

• Data dimensionality. In anomaly detection, one typical challenge related to data
dimensionality is irrelevant attributes (Zimek et al., 2012). ZERO++, FPOF and
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Table 4.14: A summary of the ability of ZERO++ to meet the four challenges stated in
Section 1.2. The four challenges include the ability to handle data sets with different types
of attributes (A), high detection accuracy (B), scale up to very large data size and high
dimensionality (C) and tolerant to irrelevant attributes (D).

Challenges Performance of ZERO++ (With four well-known detectors as baselines)

A & B ZERO++ was able to identify anomalies in data sets with different types
of attributes effectively. It performed consistently better than iForest in
categorical, numeric and mixed data sets. It performed comparably to
FPOF in categorical data, and outperformed FPOF significantly in most
numeric and mixed data sets. ZERO++ performed comparably to LOF
and significantly better than SOD in numeric data, and outperformed
LOF and SOD significantly in all the mixed data sets.

C ZERO++ had linear time complexity to data dimensionality and data
size, so it could scale up well with very large and high dimensional data.
It ran two to three orders of magnitude faster than LOF and SOD in
large data sets, and is two to three orders of magnitude faster than FPOF
in data set with high dimensions. ZERO++ had comparable runtime as
iForest in large and low dimensional data, and ran slower than iForest
in high dimensional data.

D ZERO++ could identify anomalies in data sets with a low percentage of
relevant attributes. ZERO++ worked very well in data sets with irrele-
vant attributes, and it outperformed the four contenders significantly in
data sets with a very low percentage of relevant attributes..

iForest work on low dimensional subspaces, while LOF and SOD use the full dimen-
sionality to define distance and thus are sensitive to irrelevant attributes. Therefore,
ZERO++, FPOF and iForest performed better than LOF and SOD in data sets
with a high percentage of irrelevant attributes, as shown in Figure 4.1.

iForest considers a few subspaces only, which are spanned by some randomly selected
attribute subsets, and all these subspaces used in iForest are likely to be spanned
by irrelevant attributes only in data sets with many irrelevant attributes; whereas
the subspaces used in ZERO++ and FPOF cover all the attributes, and at least
a portion of subspaces are spanned by relevant attributes. Therefore, in data sets
with a very low percentage of relevant attributes, iForest is very likely to work on
irrelevant subspaces only, and performs much less effectively than ZERO++ and
FPOF, which work on at least a portion of relevant subspaces.

4.8 Chapter summary

A summary of the ability of ZERO++ to meet the four challenges stated in Section 1.2 is
provided in Table 4.14. In general, our assessment showed that ZERO++ could identify
anomalies more effectively than FPOF, iForest, LOF and SOD in data with different
attribute types, and was able to identify anomalies in data sets with a very low percentage
of relevant attributes. In terms of efficiency, ZERO++ scaled up well with data size and
dimensionality, and ran two to three orders of magnitude faster than FPOF, LOF and
SOD.

ZERO++ has two parameters, i.e., subsample size ψ and ensemble size t. Our results
showed that ZERO++ often obtained the best (or close to the best) detection performance
using a small subsample size, i.e., ψ 6 64; and it converged very quickly with respect to t,



4.8. CHAPTER SUMMARY 59

for example, it normally converged at t = 30. It is worth noting that ZERO++ with the
default setting, i.e., ψ = 8 and t = 50, obtained favourable AUC performance in data sets
with different characteristics.

Also, our results on data sets with unknown ground truth showed that ZERO++
was able to: identify unusual patterns in recognition of poor written digit images, detect
unusual animal species and remove data noise in survey response data.
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Chapter 5

Conclusion

This thesis proposes the anomaly detection method ZERO++ and makes the following
four key contributions to the field of anomaly detection:

First, we introduce a novel anomaly detection method ZERO++ which employs the
number of zero appearances in subspaces to identify anomalies. We provide a statistical
justification that, given a set of subsamples, anomalies are likely to have a higher number
of zero appearances in subspaces than that for normal instances. ZERO++ is unique
in that it works in regions of subspaces that are not occupied by data; whereas existing
methods work in regions occupied by data. It has linear time complexity with respect
to data size and data dimensionality, and it has constant space complexity with a small
constant.

Second, we examine two discretisation methods, i.e., the equal-width method and the
x ± 3s rule discretisation method, for enabling ZERO++ to handle numeric and mixed
data. We demonstrate that although ZERO++ is based on categorical data, it can handle
numeric and mixed data effectively by using a discretisation method in the preprocessing
step.

Third, a series of empirical results is conducted to compare ZERO++ with four state-
of-the-art anomaly detectors, including one categorical data oriented detector (FPOF) and
three numeric data oriented detectors (iForest, LOF and SOD), and show that ZERO++
is superior in terms of:

• its ability to detect anomalies in data sets with different types of attributes,

• its ability to tolerate irrelevant attributes, and

• its scalability with respect to data size and data dimensionality. (Note that both
iForest and ZERO++ have linear time complexity to data size and data dimension-
ality.)

Fourth, we have an empirical investigation on the performance of categorical (or nu-
meric) data oriented anomaly detectors that work in numeric (or categorical) data and
mixed data. There is a lack of such empirical results in the literature. Our results enable
researchers to understand the detection performance of existing well-known detectors in
data sets with different types of attributes. The results for categorical and mixed data sets
are particularly important references because relatively few methods have been proposed
for these two types of data.

In future work, we are interested in designing more advanced discretisation methods for
ZERO++, such as density based variable-width discretisation methods (Kontkanen and
Myllymäki, 2007), in order to handle data sets with different distributions more effectively,
e.g., data sets with multi-modal distributions. We also plan to modify ZERO++ to detect
all the anomalies automatically in data sets where abnormal behaviours are dependent
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on different numbers of attributes, e.g., through the use of subsets of R′m with different
m values. ZERO++ might be applicable for data streams without major modifications.
This is because it requires only a set of small subsamples to train detection models, so it
can update models and detect anomalies quickly in data streams.

As discussed in Section 1.1.2, in categorical data, there is no formal definition to
different types of anomaly (i.e., scattered point anomalies, including global anomalies and
local anomalies, and clustered anomalies) proposed in numeric data, and existing research
in categorical domain focuses on point anomalies only. The key challenge for defining
these anomalies in categorical data lies in the definition of an effective metric based on
the unordered categorical attributes. In future work, we are also interested in exploring
ways to define and differentiate those different types of anomaly in categorical data, and
utilise ZERO++ to detect all these anomalies.



Appendix A

Proofs of theorems

Theorem 1 The probability of ZS(y) is equal to its expected value E(ZS(y)) =
(n−rS (y)ψ )

(nψ)
.

Proof 1 There are
(n−rS(y)

ψ

)
choices for sampling ψ instances from n instances while ex-

cluding instances that are identical to y in S.

On the other hand, simply sampling ψ instances from n instances has
(
n
ψ

)
choices.

Therefore,

E(ZS(y)) =

(n−rS(y)
ψ

)(
n
ψ

)

Theorem 2 If ZS(y) are independent, then

0 ≤ E(score(y|D, R)) ≤ |R|

1−

(
1−

(n−r(y)
ψ

)(
n
ψ

) ) 1
|R|


Moreover, if E(ZS(y)) are identical for every S ∈ R, then

E(score(y|D, R)) = |R|

1−

(
1−

(n−r(y)
ψ

)(
n
ψ

) ) 1
|R|


Proof 2 If ψ > n− r(y), then D ∩ {x ∈ D : x = y} 6= ∅

Therefore, ∃x ∈ D s.t. x = y, and so

PS(y|D) 6= 0, ∀S ∈ R

And thus
score(y|D, R) = 0

If ψ ≤ n− r(y), then

I (PA(y|D) = 0) = 1−
∏
S∈R

(1− I (PS(y|D) = 0)) (A.1)

= 1−
∏
S∈R

(1−ZS(y)) (A.2)

63



64 APPENDIX A. PROOFS OF THEOREMS

Since ZS(y) are independent, and the geometric mean is bounded above by the arith-
metic mean,

E(I (PA(y|D) = 0)) = 1−
∏
S∈R

(1− E(ZS(y))) (A.3)

> 1−

(
1

|R|
∑
S∈R

(1− E(ZS(y)))

)|R|
(A.4)

= 1−

1−

∑
S∈R

E(ZS(y))

|R|

|R| (A.5)

On the other hand,

E(I(PA(y|D) = 0) = E(ZA(y)) (A.6)

=

(n−r(y)
ψ

)(
n
ψ

) (A.7)

So,

(n−r(y)
ψ

)(
n
ψ

) > 1−

1−

∑
S∈R

E(ZS(y))

|R|

|R| (A.8)

And therefore,

E(score(y|D, R)) =
∑
S∈R

E(ZS(y)) (A.9)

≤ |R|

1−

(
1−

(n−r(y)
ψ

)(
n
ψ

) ) 1
|R|

 (A.10)

Moreover, if all E(ZS(y)) are identical, the geometric mean is the same as the arith-
metric mean, so

E(score(y|D, R)) = |R|

1−

(
1−

(n−r(y)
ψ

)(
n
ψ

) ) 1
|R|

 (A.11)



Appendix B

Details for datasets used

We used 19 real-world data sets, including Linkage, Census, CoverType, Probe, U2R,
AnnThyroid, Arrhythmia, Nursery, Chess, Mushroom, SolarFlare, Http, Smtp, Shuttle,
Mammography, HAR, Satimage, Isolet and Mfeat, and one synthetic data set Mulcross
(Hadi, 1992), to examine the effectiveness of ZERO++ in handling data sets with different
types of attributes in Section 4.2. These data sets were selected mainly because they had
been used widely in previous literature.

• Linkage is a data set used for element-wise record linkage comparison. Its task is to
decide whether underlying records match one person based on phonetic equality of
first name and family name, date of birth and gender. It has two classes, ‘match’
and ‘non-match’, and contains 5,749,132 instances, of which only 20,931 instances
belong to ‘match’. We treat the ‘match’ class as the anomaly class. There are 11
attributes in its original form, but two of them have more than 99% missing values,
so we remove these two attributes in our experiment. This data set was used in
Ngufor and Wojtusiak (2013).

• Census is short for Census-Income data, which contains two classes ‘50K–’ and
‘50K+’, indicating whether a survey respondent has annual income over $50K. The
small class ‘50K+’ is used as anomalies. This data set was used in Ghoting et al.
(2004) and Zhang and Jin (2011).

• CoverType is used for predicting types of forest cover from cartographic variables. It
is transformed into an anomaly detection data set by keeping the smallest class (class
4 ‘Cottonwood/Willow’) as anomalies against the largest class (class 2 ‘Lodgepole
Pine’). This data set was used in Bay and Schwabacher (2003), Liu et al. (2012) and
Ting et al. (2013).

• Following Shoemaker and Hall (2011) and Lazarevic and Kumar (2005), two data
sets, Probe and U2R, are derived from KDD CUP 99 network intrusion data. Probe
and U2R are with the original 41 mixed-type attributes, and they contain instances
of probe and user-to-root attacks in the KDD CUP 99 data, respectively.

• AnnThyroid is a version of the series of Thyroid data, which is used to determine
whether a patient referred to the clinic is hypothyroid. The first two classes are
‘hyperfunction’ and ‘subnormal functioning’, which are used as anomalies against
the ‘normal’ class. This data set was previously used in (Liu et al., 2012) and Ting
et al. (2013).

• Arrhythmia contains 16 classes. Following Liu et al. (2012) and He, Xu, Huang and
Deng (2005), the eight smallest classes 3, 4, 5, 7, 8, 9, 14 and 15 are regarded as
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anomalies against the rest of the classes. This data set was also used in Noto et al.
(2010).

• Nursery is used to rank applications for nursery school. Class ‘very recom’ is used as
anomalies versus the class ‘not recom’. This data set was used in Noto et al. (2010).

• The data set Chess is converted to an anomaly detection data set by using the
smallest class (‘zero’) as anomalies against the largest class (‘fourteen’). This data
set was used in Noto et al. (2010).

• Mushroom, which contains 23 edible or poisonous mushroom species described by 22
categorical attributes, is widely used in categorical data clustering and classification.
To transform it into an anomaly detection data set, following He, Xu, Huang and
Deng (2005), Koufakou and Georgiopoulos (2010) and Zimek, Gaudet, Campello and
Sander (2013), we keep the large class unchanged and downsample the small class
to create a rare class (consisting of 5% instances of the entire data set), evaluating
the rare class as anomalies versus the large class. This data set was used in Noto
et al. (2010) and Koufakou et al. (2007).

• SolarFlare contains 3 classes, i.e., three types of solar flare occurring in a 24 hour
period. We focus on the flare class X, and use the occurrence of solar flare X as
anomalies against non-occurrence normal instances. This data set was used in Tang
et al. (2013).

• Http and Smtp are also taken from the KDD CUP 99 network intrusion data, but
they are very different from Probe and U2R. Http and Smtp are created as follows:
4 attributes, including service, duration, src bytes, and dst bytes, out of an original
41 attributes are selected because they are regarded as the most basic attributes
(Yamanishi et al., 2000), and the data is then divided into five subsets according to
the five values in the service attribute, called http, smtp, ftp, ftp data, and others.
Http and Smtp are the two largest subsets. Therefore, Http and Smtp contain three
numeric attributes duration, src bytes, and dst bytes only. These two data sets were
used in Yamanishi et al. (2000), Liu et al. (2012) and Ting et al. (2013).

• Shuttle contains nine independent attributes and seven classes, of which class 1
accounts for about 80% of instances. Following Lazarevic and Kumar (2005) and
Liu et al. (2012), classes 2, 3, 5, 6 and 7 are selected as anomalies against class 1.

• Mammography is used for detection of mammographic calcifications. Instances la-
belled as calcifications (2.32%) are regarded as anomalies against non-calcifications
normal instances (97.68%). This data set was used in Woods et al. (1993), Lazarevic
and Kumar (2005), Liu et al. (2012) and Ting et al. (2013).

• HAR is a Human Activity Recognition data set used in Anguita et al. (2012), which
contains walking, down-stair walking, up-stair walking, sitting, standing and laying
six activities. The smallest class up-stair walking is used as the anomaly class against
three non-walking activity classes.

• Satimage is a landsat data set, which consists of 6,453 sub-areas of scenes. The
scenes are labeled as cotton crop and five different soils. The cotton crop class is
used as the anomaly class against all the soil classes. Satimage was used in Lazarevic
and Kumar (2005).

• Isolet and Mfeat are taken from Pham and Pagh (2012). Isolet classifies instances
based on the pronunciation of 26 letters of the alphabet while Mfeat (Multiple Fea-
tures) consists of data of handwritten digits (‘0’ - ‘9’). For each data set, instances
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from some classes having common behaviours are selected as normal instances, and
10 instances from another class as anomalies. For Isolet, instances of classes C, D,
and E that share the ‘e’ sound as normal instances and 10 instances from class Y
as anomalies. Instances of classes 6 and 9 in Mfeat are selected as normal instances
because of the similarity of shapes, and 10 instances of class 0 as anomalies.

• Mulcross is taken from Liu et al. (2012), which is generated by the Mulcross data gen-
erator (Rocke and Woodruff, 1996). In Mulcross, normal instances are drawn from
a multivariate normal distribution with an offset to create clustered anomalies. The
data set used was generated using the following basic setting: two clustered anoma-
lies centred a normal cluster, contamination ratio = 10% (percentage of anomalies),
distance factor = 2 (distance between the centre of the normal cluster and anomaly
clusters). This data contains 262,144 instances, so each anomaly cluster has more
than 10,000 instances.
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Appendix C

Sensitivity examination results
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Figure C.1: Sensitivity test of ZERO++ with respect to ψ on all the 20 data sets.
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Figure C.2: Sensitivity test of ZERO++ with respect to t on all the 20 data sets.
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